

Lecture Notes in Computer Science 3341
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Rudolf Fleischer Gerhard Trippen (Eds.)

Algorithms
and Computation

15th International Symposium, ISAAC 2004
Hong Kong, China, December 20-22, 2004
Proceedings

13

Volume Editors

Rudolf Fleischer
Fudan University
Department of Computer Science and Engineering
220 Handan Road, 200433 Shanghai, China
E-mail: fleischer@acm.org

Gerhard Trippen
The Hong Kong University of Science and Technology
Department of Computer Science
Clear Water Bay, Kowloon, Hong Kong, China
E-mail: trippen@cs.ust.hk

Library of Congress Control Number: 2004116722

CR Subject Classification (1998): F.2, C.2, G.2-3, I.3.5, F.1

ISSN 0302-9743
ISBN 3-540-24131-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2004
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11369226 06/3142 5 4 3 2 1 0

Preface

This volume contains the proceedings of the 15th Annual International Sympo-
sium on Algorithms and Computation (ISAAC 2004), held in Hong Kong, 20–22
December, 2004. In the past, it has been held in Tokyo (1990), Taipei (1991),
Nagoya (1992), Hong Kong (1993), Beijing (1994), Cairns (1995), Osaka (1996),
Singapore (1997), Taejon (1998), Chennai (1999), Taipei (2000), Christchurch
(2001), Vancouver (2002), and Kyoto (2003).

ISAAC is an annual international symposium that covers a wide range of
topics, namely algorithms and computation. The main purpose of the symposium
is to provide a forum for researchers working in the active research community
of algorithms and the theory of computation to present and exchange new ideas.

In response to our call for papers we received 226 submissions. The task of
selecting the papers in this volume was done by our program committee and other
referees. After a thorough review process the committee selected 76 papers, the
decisions being based on originality and relevance to the field of algorithms and
computation. We hope all accepted papers will eventually appear in scientific
journals in a more polished form. Two special issues, one of Algorithmica and
one of the International Journal of Computational Geometry and Applications,
with selected papers from ISAAC 2004 are in preparation.

The best student paper award will be given for “Geometric optimization prob-
lems over sliding windows” by Bashir S. Sadjad and Timothy M. Chan from the
University of Waterloo. Two eminent invited speakers, Prof. Erik D. Demaine,
MIT, and Prof. David M. Mount, University of Maryland, also contributed to
this volume.

It is impossible to organize such a conference without the help of many in-
dividuals. We would like to express our appreciation to the authors of the sub-
mitted papers, and to the program committee members and external referees for
their excellent work. We also would like to thank the organizing committee, most
notably Gerhard Trippen, for their tremendous work in making ISAAC 2004 a
successful conference. Finally, we thank our sponsors, the Croucher Foundation
and the K.C. Wong Education Foundation, for their assistance and support.

October 2004 Rudolf Fleischer
Gerhard Trippen

Organization

Program Committee

Lars Arge, Duke University, USA
Michael Bender, SUNY Stony Brook, USA
Therese Biedl, University of Waterloo, Canada
Adam Buchsbaum, AT&T Labs, Florham Park, USA
Siu-Wing Cheng, HKUST, Hong Kong, China
Xiaotie Deng, City University of Hong Kong, Hong Kong, China
Rudolf Fleischer, Fudan University, China (Chair)
Leszek Gasieniec, University of Liverpool, UK
Seokhee Hong, University of Sydney, Australia
Wen-Lian Hsu, Academia Sinica, Taipei, Taiwan
Tak-Wah Lam, Hong Kong University, Hong Kong, China
Guojun Li, Shandong University, China
Tomomi Matsui, Tokyo University, Japan
Christoph Meinel, University of Trier, Germany
Friedhelm Meyer auf der Heide, University of Paderborn, Germany
Mike Paterson, University of Warwick, UK
Knut Reinert, Free University of Berlin, Germany
Jörg-Rüdiger Sack, Carleton University, Canada
Hiroki Shizuya, Tohoku University, Japan
Jack Snoeyink, University of North Carolina at Chapel Hill, USA
Roberto Solis-Oba, University of Western Ontario, Canada
Ulrike Stege, University of Victoria, Canada
John Watrous, University of Calgary, Canada
Gerhard Woeginger, University of Twente, The Netherlands
Hsu-Chun Yen, National Taiwan University, Taiwan

VIII Organization

Organizing Committee

Sunil Arya, HKUST, Hong Kong, China
Leizhen Cai, Chinese University, Hong Kong, China
Siu-Wing Cheng, HKUST, Hong Kong, China
Francis Chin, Hong Kong University, Hong Kong, China
Xiaotie Deng, City University, Hong Kong, China
Rudolf Fleischer (chair), Fudan University, China
Mordecai Golin, HKUST, Hong Kong, China
Tak-Wah Lam, Hong Kong University, Hong Kong, China
Gerhard Trippen, HKUST, Hong Kong, China
Derick Wood, HKUST, Hong Kong, China
Frances Yao, City University, Hong Kong, China
Joseph Zhen Zhou, HKUST, Hong Kong, China

Sponsors

The Croucher Foundation, Hong Kong, China
The K.C. Wong Education Foundation, Hong Kong, China

Organization IX

Referees

Pankaj Agarwal
Heekap Ahn
Amihood Amir
Nikhil Bansal
Marcin Bienkowski
Johannes Blömer
Carsten Böke
Franz J. Brandenburg
Gruia Calinescu
H.L. Chan
W.T. Chan
Bernard Chazelle
Bogdan Chelebus
Ning Chen
Xi Chen
Yong Chen
Tae-nam Cho
Graham Cormode
Valentina Damerow
Bhaskar DasGupta
Benjamin Doerr
Andreas Döring
Adrian Dumitrescu
Peter Eades
John Ellis
Leah Epstein
Thomas Erlebach
Hongbin Fan
Qizhi Fang
Martin Farach-Colton
Arash Farzan
Fedor Fomin
Gereon Frahling
P.Y. Fung
Luisa Gargano
Mohammad GhasemZadeh
Clemens Gröpl
Qianping Gu
Joachim Gudmundsson
Arvind Gupta
Torben Hagerup
Mikael Hammar
Herman Haverkort

Chin-Wen Ho
W.K. Hon
Tsan-Sheng Hsu
Ji Hu
Sha Huang
Wanjun Huang
John Iacono
Martin Isenburg
Michael Jacobson
Xiaohua Jia
David Johnson
Valerie King
Ralf Klasing
Bettina Klinz
Volker Klotz
Ming-Tat Ko
Jochen Konemann
Yehuda Koren
Miroslav Korzeniowski
Dariusz Kowalski
Miroslaw Kowaluk
Piotr Krysta
Eduardo Laber
Gad M. Landau
D.T. Lee
Jianping Li
Shuguang Li
Weifa Liang
Minming Liless
Yuanxin (Leo) Liu
Chi-Jen Lu
Hsueh-I Lu
Anna Lubiw
Veli Mäkinen
Andrea Mantler
Alexander Martin
Monaldo Mastrolilli
Wendy Myrvold
Nikola Nikolov
Naomi Nishimura
Chong-Dae Park
Jung-Heum Park
Kunsoo Park

X Organization

Andrzej Pelc
David Peleg
Xingqin Qi
Prabakhar Ragde
Manuel Rode
Günter Rote
Stefan Rührup
Frank Ruskey
David Sankoff
Christian Scheideler
Volker Schillings
Allan Scott
Jiri Sgall
Chan-Su Shin
Michiel Smid
Christian Sohler
Frits Spieksma
Venkatesh Srinivasan
Xiaoming Sun
Ting-Yi Sung
Don E. Taylor
Gerard Tel
Mikkel Thorup
H.F. Ting
I-Ming Tsai
George Tzanetakis
Miguel Vargas Martin
Suresh Venkatasubramanian

Tomas Vinar
Berthold Vöcking
Klaus Volbert
Lutz Vorwerk
Bow-Yaw Wang
Da-Wei Wang
Lusheng Wang
Wei Wang
Xiaoli Wang
Rolf Wanka
Ingo Wegener
Alexander Wolff
Duncan Wong
Prudence Wong
David R. Wood
Kuen-Pin Wu
Kui Wu
Qin Xin
Yinfeng Xu
S.M. Yiu
Jinjiang Yuan
Michael Zastre
Jing Zhang
Shaoqiang Zhang
Yunlei Zhao
Binhai Zhu
Uri Zwick

Table of Contents

Puzzles, Art, and Magic with Algorithms
Erik D. Demaine . 1

The ABCs of AVDs: Geometric Retrieval Made Simple
David M. Mount . 2

Pareto Optimality in House Allocation Problems
David J. Abraham, Kataŕına Cechlárová, David F. Manlove,

Kurt Mehlhorn . 3

Property-Preserving Data Reconstruction
Nir Ailon, Bernard Chazelle, Seshadhri Comandur, Ding Liu 16

On the Monotone Circuit Complexity of Quadratic Boolean Functions
Kazuyuki Amano, Akira Maruoka . 28

Generalized Function Matching
Amihood Amir, Igor Nor . 41

Approximate Distance Oracles for Graphs with Dense Clusters
Mattias Andersson, Joachim Gudmundsson, Christos Levcopoulos . . . 53

Multicriteria Global Minimum Cuts
Amitai Armon, Uri Zwick . 65

Polyline Fitting of Planar Points Under Min-sum Criteria
Boris Aronov, Tetsuo Asano, Naoki Katoh, Kurt Mehlhorn,
Takeshi Tokuyama . 77

A Generalization of Magic Squares with Applications to Digital
Halftoning

Boris Aronov, Tetsuo Asano, Yosuke Kikuchi, Subhas C. Nandy,
Shinji Sasahara, Takeaki Uno . 89

Voronoi Diagrams with a Transportation Network on the Euclidean
Plane

Sang Won Bae, Kyung-Yong Chwa . 101

XII Table of Contents

Structural Alignment of Two RNA Sequences with Lagrangian
Relaxation

Markus Bauer, Gunnar W. Klau . 113

Poly-APX- and PTAS-Completeness in Standard and Differential
Approximation

Cristina Bazgan, Bruno Escoffier, Vangelis Th. Paschos 124

Efficient Algorithms for k Maximum Sums
Fredrik Bengtsson, Jingsen Chen . 137

Equipartitions of Measures by 2-Fans
Sergey Bereg . 149

Augmenting the Edge-Connectivity of a Spider Tree
Davide Bilò, Guido Proietti . 159

On Nash Equilibria for Multicast Transmissions in Ad-Hoc Wireless
Networks

Vittorio Bilò, Michele Flammini, Giovanna Melideo,
Luca Moscardelli . 172

Structural Similarity in Graphs (A Relaxation Approach for Role
Assignment)

Ulrik Brandes, Jürgen Lerner . 184

Flexibility of Steiner Trees in Uniform Orientation Metrics
Marcus Brazil, Pawel Winter, Martin Zachariasen 196

Random Access to Advice Strings and Collapsing Results
Jin-Yi Cai, Osamu Watanabe . 209

Bounding the Payment of Approximate Truthful Mechanisms
Gruia Calinescu . 221

The Polymatroid Steiner Problems
Gruia Calinescu, Alexander Zelikovsky . 234

Geometric Optimization Problems Over Sliding Windows
Timothy M. Chan, Bashir S. Sadjad . 246

On-Line Windows Scheduling of Temporary Items
Wun-Tat Chan, Prudence W.H. Wong . 259

Table of Contents XIII

Generalized Geometric Approaches for Leaf Sequencing Problems in
Radiation Therapy

Danny Z. Chen, Xiaobo S. Hu, Shuang Luan, Shahid A. Naqvi,
Chao Wang, Cedric X. Yu . 271

An Efficient Exact Algorithm for the Minimum Ultrametric
Tree Problem

Hsin-Fu Chen, Maw-Shang Chang . 282

On the Range Maximum-Sum Segment Query Problem
Kuan-Yu Chen, Kun-Mao Chao . 294

An Efficient Algorithm for Finding Maximum Cycle Packings in
Reducible Flow Graphs

Xujin Chen, Wenan Zang . 306

Efficient Job Scheduling Algorithms with Multi-type Contentions
Zhenming Chen, Vikas Singh, Jinhui Xu . 318

Superimposing Voronoi Complexes for Shape Deformation
Chao Chen, Ho-Lun Cheng . 330

On Partial Lifting and the Elliptic Curve Discrete Logarithm Problem
Qi Cheng, Ming-Deh Huang . 342

Guarding Art Galleries by Guarding Witnesses
Kyung-Yong Chwa, Byung-Cheol Jo, Christian Knauer,

Esther Moet, René van Oostrum, Chan-Su Shin . 352

On p-Norm Based Locality Measures of Space-Filling Curves
H.K. Dai, H.C. Su . 364

Composability of Infinite-State Activity Automata
Zhe Dang, Oscar H. Ibarra, Jianwen Su . 377

Error Compensation in Leaf Root Problems
Michael Dom, Jiong Guo, Falk Hüffner, Rolf Niedermeier 389

On Compact and Efficient Routing in Certain Graph Classes
Feodor F. Dragan, Irina Lomonosov . 402

Randomized Insertion and Deletion in Point Quad Trees
Amalia Duch . 415

Diagnosis in the Presence of Intermittent Faults
Bin Fu, Richard Beigel . 427

XIV Table of Contents

Three-Round Adaptive Diagnosis in Binary n-Cubes
Satoshi Fujita, Toru Araki . 442

Fast Algorithms for Comparison of Similar Unordered Trees
Daiji Fukagawa, Tatsuya Akutsu . 452

GCD of Random Linear Forms
Joachim von zur Gathen, Igor E. Shparlinski . 464

On the Hardness and Easiness of Random 4-SAT Formulas
Andreas Goerdt, André Lanka . 470

Minimum Common String Partition Problem: Hardness and
Approximations

Avraham Goldstein, Petr Kolman, Jie Zheng . 484

On the Complexity of Network Synchronization
Darin Goldstein, Kojiro Kobayashi . 496

Counting Spanning Trees and Other Structures in Non-constant-jump
Circulant Graphs

Mordecai J. Golin, Yiu Cho Leung, Yajun Wang 508

Adaptive Spatial Partitioning for Multidimensional Data Streams
John Hershberger, Nisheeth Shrivastava, Subhash Suri,

Csaba D. Tóth . 522

Paired Pointset Traversal
Peter Hui, Marcus Schaefer . 534

Approximated Two Choices in Randomized Load Balancing
Kazuo Iwama, Akinori Kawachi . 545

Space-Efficient and Fast Algorithms for Multidimensional Dominance
Reporting and Counting

Joseph JaJa, Christian W. Mortensen, Qingmin Shi 558

Local Gapped Subforest Alignment and Its Application in Finding
RNA Structural Motifs

Jesper Jansson, Ngo Trung Hieu, Wing-Kin Sung 569

The Maximum Agreement of Two Nested Phylogenetic Networks
Jesper Jansson, Wing-Kin Sung . 581

Table of Contents XV

Sequences of Radius k: How to Fetch Many Huge Objects into Small
Memory for Pairwise Computations

Jerzy W. Jaromczyk, Zbigniew Lonc . 594

New Bounds on Map Labeling with Circular Labels
Minghui Jiang, Sergey Bereg, Zhongping Qin, Binhai Zhu 606

Optimal Buffer Management via Resource Augmentation
Jae-Hoon Kim . 618

Oriented Paths in Mixed Graphs
Egon Wanke, Rolf Kötter . 629

Polynomial Deterministic Rendezvous in Arbitrary Graphs
Dariusz R. Kowalski, Andrzej Pelc . 644

Distributions of Points and Large Quadrangles
Hanno Lefmann . 657

Cutting Out Polygons with Lines and Rays
Ovidiu Daescu, Jun Luo . 669

Advantages of Backward Searching - Efficient Secondary Memory and
Distributed Implementation of Compressed Suffix Arrays

Veli Mäkinen, Gonzalo Navarro, Kunihiko Sadakane 681

Inner Rectangular Drawings of Plane Graphs
Kazuyuki Miura, Hiroki Haga, Takao Nishizeki . 693

Approximating the Minmax Subtree Cover Problem in a Cactus
Hiroshi Nagamochi, Taizo Kawada . 705

Boundary-Optimal Triangulation Flooding
Richard J. Nowakowski, Norbert Zeh . 717

Exact Computation of Polynomial Zeros Expressible by Square Roots
Timo von Oertzen . 729

Many-to-many Disjoint Path Covers in a Graph with Faulty Elements
Jung-Heum Park, Hee-Chul Kim, Hyeong-Seok Lim 742

An O(n log n)-Time Algorithm for the Maximum Constrained
Agreement Subtree Problem for Binary Trees

Zeshan Peng, Hingfung Ting . 754

XVI Table of Contents

Planning the Transportation of Multiple Commodities in Bidirectional
Pipeline Networks

Artur Alves Pessoa . 766

Efficient Algorithms for the Hotlink Assignment Problem: The Worst
Case Search

Artur Alves Pessoa, Eduardo Sany Laber, Cŕıston de Souza 778

Dynamic Tree Cross Products
Marcus Raitner . 793

Spanners, Weak Spanners, and Power Spanners for Wireless Networks
Christian Schindelhauer, Klaus Volbert, Martin Ziegler 805

Techniques for Indexing and Querying Temporal Observations for a
Collection of Objects

Qingmin Shi, Joseph JaJa . 822

Approximation Algorithms for the Consecutive Ones Submatrix
Problem on Sparse Matrices

Jinsong Tan, Louxin Zhang . 835

The Two-Guard Problem Revisited and Its Generalization
Xuehou Tan . 847

Canonical Data Structure for Interval Probe Graphs
Ryuhei Uehara . 859

Efficient Algorithms for the Longest Path Problem
Ryuhei Uehara, Yushi Uno . 871

Randomized Algorithms for Motif Detection
Lusheng Wang, Liang Dong, Hui Fan . 884

Weighted Coloring on Planar, Bipartite and Split Graphs: Complexity
and Improved Approximation

Dominique de Werra, Marc Demange, Bruno Escoffier,
Jerome Monnot, Vangelis Th. Paschos . 896

Sweeping Graphs with Large Clique Number
Boting Yang, Danny Dyer, Brian Alspach . 908

Table of Contents XVII

A Slightly Improved Sub-Cubic Algorithm for the All Pairs Shortest
Paths Problem with Real Edge Lengths

Uri Zwick . 921

Author Index . 933

Puzzles, Art, and Magic with Algorithms

Erik D. Demaine

MIT Computer Science and Artificial Intelligence Laboratory,
32 Vassar Street, Cambridge, MA 02139, USA

edemaine@mit.edu

Solving and designing puzzles, creating sculpture and architecture, and invent-
ing magic tricks all lead to fun and interesting algorithmic problems. This talk
describes some of our explorations into these areas.

Puzzles. Solving a puzzle is like solving a research problem. Both require the
right cleverness to see the problem from the right angle, and then explore that
idea until you find a solution. The main difference is that the puzzle poser usually
guarantees that the puzzle is solvable. Puzzles also lead to the meta-puzzle of
how to design algorithms that can design families of puzzles.

Art. Elegant algorithms are beautiful. A special treat is when that beauty trans-
lates visually. Sometimes this is by design, when you develop an algorithm to
compose artwork within a particular family. Other times the visual beauty of an
algorithm just appears, without anticipation.

Magic. Mathematics is the basis for many magic tricks, particularly “self-
working” tricks. One of the key people at the intersection of mathematics and
magic is Martin Gardner, whose work has inspired several of the results described
here. Algorithmically, our goal is to automatically design familes of magic tricks.

This is joint work with Martin Demaine and several others.

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, p. 1, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

The ABCs of AVDs:
Geometric Retrieval Made Simple

David M. Mount

Department of Computer Science and
Institute for Advanced Computer Studies,

University of Maryland,
College Park, Maryland 20742, USA

mount@cs.umd.edu

One of the best known structures in computational geometry is the Voronoi
diagram. Given a set of n points in space, called sites, this is a subdivision
that partitions space into n convex cells according which site is closest. The
Voronoi diagram and its dual, the Delaunay triangulation are among the most
fundamental proximity structures known, and have numerous uses in science. For
example, applying point location to the subdivision defined by a Voronoi diagram
answers nearest neighbor queries. Although they are popular in low dimensional
spaces, there are various reasons why Voronoi diagrams are rarely used higher
dimensions. First, the combinatorial complexity of the diagram grows rapidly,
as fast as Ω(nd/2) in d-dimensional space. Second, the diagram does not admit
a straightforward search structure in higher dimensions.

The AVD, or approximate Voronoi diagram was first proposed by Har-Peled
as a simple and easily implemented alternative to the Voronoi diagram for an-
swering approximate nearest neighbor queries. Given a user-supplied approxima-
tion bound, ε > 0, this structure is based on a simple hierarchical decomposition
of space into rectangular cells, much like a quadtree. Given this structure, ε-
approximate nearest neighbor queries can be answered by simply locating the
cell that contains the query point, followed perhaps by a small number of distance
calculations. If constructed properly, this remarkably simple structure provides
the most efficient approach known for answering approximate nearest neighbor
queries in spaces of constant dimensionality.

Recent research has shown that the AVD can be adapted to answer other
geometric retrieval problems. In this talk we will discuss a number of aspects of
the AVD and its applications. This includes its origins, improved algorithms and
analysis of its construction and space complexity, generalizations to approximate
k-nearest neighbor searching, metric range searching, and other generalizations.

This is based on joint work with Sunil Arya and Theocharis Malamatos.

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, p. 2, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Pareto Optimality in House Allocation Problems

David J. Abraham1,�, Kataŕına Cechlárová2, David F. Manlove3,��,
and Kurt Mehlhorn4

1 Computer Science Department, Carnegie-Mellon University, 5000 Forbes Ave,
Pittsburgh PA 15213-3890, USA

dabraham@cs.cmu.edu
2 Institute of Mathematics, P.J. Šafárik University in Košice, Faculty of Science,

Jesenná 5, 040 01 Košice, Slovakia
cechlarova@science.upjs.sk

3 Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK
davidm@dcs.gla.ac.uk

4 Max-Planck-Institut für Informatik, Stuhlsatzenhausweg 85,
66123 Saarbrücken, Germany
mehlhorn@mpi-sb.mpg.de

Abstract. We study Pareto optimal matchings in the context of house
allocation problems. We present an O(

√
nm) algorithm, based on Gale’s

Top Trading Cycles Method, for finding a maximum cardinality Pareto
optimal matching, where n is the number of agents and m is the total
length of the preference lists. By contrast, we show that the problem
of finding a minimum cardinality Pareto optimal matching is NP-hard,
though approximable within a factor of 2. We then show that there exist
Pareto optimal matchings of all sizes between a minimum and maximum
cardinality Pareto optimal matching. Finally, we introduce the concept
of a signature, which allows us to give a characterization, checkable in
linear time, of instances that admit a unique Pareto optimal matching.

1 Introduction

We study the problem of allocating a set H of heterogeneous indivisible goods
among a set A of agents [14, 8, 3, 4]. We assume that each agent a ∈ A ranks in
order of preference a subset of H (the acceptable goods for a) and that monetary
compensations are not possible. In the literature the situation in which each
agent initially owns one good is known as a housing market [14, 12, 11]. When
there are no initial property rights, we obtain the house allocation problem [8,
16, 1]. A mixed model, in which a subset of agents initially owns a good has also
been studied [2]. Yuan [15] describes a large-scale application of these problems
in the allocation of families to government-subsidized housing in China.

� Work done whilst at Department of Computing Science, University of Glasgow, and
Max-Planck-Institut für Informatik.

�� Supported by grant GR/R84597/01 from the Engineering and Physical Sciences
Research Council and RSE/Scottish Executive Personal Research Fellowship.

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 3–15, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

4 D.J. Abraham et al.

Following convention we refer to the elements of H as houses, though the
class of problems under consideration could equally be formulated in terms of
allocating graduates to trainee positions, professors to offices, clients to servers,
etc. For ease of exposition we begin by assuming that there are no initial property
rights, though we later show how to take account of such a situation.

Given such a problem instance, the task is to construct a matching, i.e. a
subset M of A×H such that (a, h) ∈M implies that a finds h acceptable, each
agent is assigned to at most one house and vice versa. Furthermore one seeks
a matching that is optimal in a precise sense, taking into account the agents’
preferences. Various notions of optimality have been considered in the literature,
but a criterion that has received much attention, particularly from economists, is
Pareto optimality. A matching M is Pareto optimal if there is no other matching
M ′ such that no agent is worse off in M ′ than in M , whilst some agent is better
off in M ′ than in M . For example, a matching M is not Pareto optimal if two
agents could improve by swapping the houses that they are assigned to in M .

There is a straightforward greedy algorithm, which we denote by Greedy-
POM, for finding a Pareto optimal matching [1]: consider each agent a in turn,
giving a his/her most-preferred vacant house (assuming such a house exists).
This algorithm is also known as a serial dictatorship mechanism [1]. Roth and
Sotomayor [13–Example 4.3] remark that a similar mechanism is used by the
United States Naval Academy in order to match graduating students to their
first posts as Naval Officers (in this context however, the algorithm considers
each student in non-decreasing order of graduation results). However one may
construct an example instance (see Section 2 for further details) in which Pareto
optimal matchings may have different cardinalities and Greedy-POM could fail
to produce a Pareto optimal matching of maximum size. Yet in many applica-
tions, one wishes to match as many agents as possible.

Stronger notions of optimality have been considered in the literature. For
example a matching M is rank-maximal [10] if, in M , the maximum number of
agents are matched to their first-choice house, and subject to this condition, the
maximum number of agents are matched to their second-choice house, and so on.
Irving et al. [10] describe two algorithms for finding a rank-maximal matching,
with complexities O(min{n + C,C

√
n}m) and O(Cnm), where n = |A| + |H|,

m is the total length of the preference lists and C is the maximum k such that
some agent is assigned to his/her kth-choice house in the constructed matching.
Clearly a rank-maximal matching is Pareto optimal, however a rank-maximal
matching need not be a maximum cardinality Pareto optimal matching (hence-
forth a maximum Pareto optimal matching). Alternatively, one may consider
a maximum cardinality maximum utility matching M , in which we maximise∑

(a,h)∈M ua,h over all maximum cardinality matchings, where ua,h indicates the
utility of house h being allocated to agent a. If one defines ua,h = l − ranka,h,
where ranka,h is the rank of house h in agent a’s preference list and l is the
maximum length of an agent’s list, then a maximum cardinality maximum util-
ity matching is in turn a maximum Pareto optimal matching. Since all utilities
are integral, a maximum cardinality maximum utility matching may be found

Pareto Optimality in House Allocation Problems 5

in O(
√
nm log n) time [5]. However if one only requires to find a maximum car-

dinality matching that satisfies the weaker condition of being Pareto optimal, it
is of interest to consider whether faster algorithms exist.

The next two sections of this paper work towards answering this question.
In Section 2 we give a formal definition of the problem model, and present nec-
essary and sufficient conditions for a matching to be Pareto optimal. In Section
3 we use these conditions as the basis for an O(

√
nm) algorithm for finding a

maximum Pareto optimal matching. This algorithm extends the Top Trading
Cycles Method due to Gale [14], which has been the focus of much attention,
particularly in the game theory and economics literature [14, 12, 11, 15, 2]. We
then show that any improvement to the complexity of our algorithm would imply
an improved algorithm for finding a maximum matching in a bipartite graph.
We also demonstrate how to modify our algorithm in order to take account of
initial property rights, guaranteeing that those who own a good initially will end
up with a good that is either the same or better.

In the remainder of the paper, we prove several related results. In Section 4
we consider the problem of finding a minimum Pareto optimal matching, show-
ing that this problem is NP-hard, though approximable within a factor of 2. In
Section 5 we prove an interpolation result, showing that there exist Pareto op-
timal matchings of all sizes between a minimum and maximum Pareto optimal
matching. Finally, in Section 6 we give a characterization, checkable in linear
time, of instances that admit a unique Pareto optimal matching.

2 Preliminaries

We begin with a formal definition of the problem model under consideration.
An instance I of the pareto optimal matching problem (POM) comprises a
bipartite graph G = (A,H,E), where A = {a1, a2, . . . , ar} is the set of agents
and H = {h1, h2, . . . , hs} is the set of houses. For each ai ∈ A, we denote by
Ai ⊆ H the vertices adjacent to ai – these are referred to as the acceptable houses
for ai. Moreover ai has a linear order over Ai. We let n = r + s and m = |E|.
Henceforth we assume that G contains no isolated vertices.

An assignment M is a subset of A×H such that (ai, hj) ∈M only if ai finds
hj acceptable (i.e. hj ∈ Ai). If (ai, hj) ∈M , we say that ai and hj are assigned
to one another. For each q ∈ A ∪ H, let M(q) denote the assignees of q in M .
A matching is an assignment M such that |M(q)| ≤ 1 for each q ∈ A ∪ H. If
M(q) = ∅, we say that q is unmatched in M , otherwise q is matched in M .

Let M be a matching in I. M is maximal if there is no (agent,house) pair
(ai, hj) such that ai and hj are both unmatched in M and hj ∈ Ai. Also M is
trade-in-free if there is no (agent,house) pair (ai, hj) such that ai is matched in
M , hj is unmatched in M , and ai prefers hj to M(ai). Finally M is coalition-
free if M admits no coalition, which is a sequence of matched agents C =
〈a0, a1, . . . , ak−1〉, for some k ≥ 2, such that ai prefers M(ai+1) to M(ai)
(0 ≤ i ≤ k − 1) (here, and in the remainder of this paper, all subscripts are
taken modulo k when reasoning about coalitions). The matching

6 D.J. Abraham et al.

M ′ = (M\{(ai,M(ai)) : 0 ≤ i ≤ k − 1}) ∪ {(ai,M(ai+1)) : 0 ≤ i ≤ k − 1}

is defined to be the matching obtained from M by satisfying C.
The preferences of an agent extend to matchings as follows. Given two match-

ingsM andM ′, we say that an agent ai prefers M ′ to M if either (i) ai is matched
in M ′ and unmatched in M , or (ii) ai is matched in both M and M ′ and prefers
M ′(ai) to M(ai). Given this definition, we may define a relation ≺ on the set of
all matchings as follows: M ′ ≺M if and only if no agent prefers M to M ′, and
some agent prefers M ′ to M . It is straightforward to then prove the following.

Proposition 1. Given an instance I of POM, the relation ≺ forms a strict
partial order over the set of matchings in I.

A matching is defined to be Pareto optimal if and only if it is ≺-minimal.
Intuitively a matching is Pareto optimal if no agent ai can be better off with-
out requiring another agent aj to be worse off. The following proposition gives
necessary and sufficient conditions for a matching to be Pareto optimal.

Proposition 2. Let M be a matching in a given instance of POM. Then M is
Pareto optimal if and only if M is maximal, trade-in-free and coalition-free.

Proof. Let M be a Pareto optimal matching. If M is not maximal, then there
exists an agent ai and a house hj , both unmatched in M , such that hj ∈ Ai.
Let M ′ = M ∪ {(ai, hj)}. If M is not trade-in-free, then there exist an agent
ai and a house hj , such that ai is matched in M , hj is unmatched in M , and
ai prefers hj to M(ai). Let M ′ = (M\{(ai,M(ai))}) ∪ {(ai, hj)}. Finally if M
admits some coalition C, let M ′ be the matching obtained by satisfying C. In
all three cases, M ′ ≺M , a contradiction.

Conversely let M be a matching that is maximal, trade-in-free and coalition-
free, and suppose for a contradiction that M is not Pareto optimal. Then there
exists some matching M ′ such that M ′ ≺M . Let a0 be any agent matched in M
who prefers M ′ to M . Note that such an agent must exist, since M is maximal
and at least one agent prefers M ′ to M .

It follows that M ′(a0) is matched in M , say to a1, for otherwise M is not
trade-in-free. Therefore, M ′(a1) �= M(a1), and so a1 must also prefer M ′ to
M . Using this same argument, M ′(a1) is matched in M , say to a2. We can
continue in this manner finding a sequence of agents 〈a0, a1, a2, . . .〉, where ai

prefers M(ai+1) to M(ai). Since the number of agents is finite, this sequence
must cycle, thereby contradicting the assumption that M is coalition-free.
�

Henceforth we will establish the Pareto optimality of a given matching by
showing that the conditions of the above proposition are satisfied. For a given
matching M , we can trivially check whether M satisfies the maximality and
trade-in-free properties in O(m) time. To check for the absence of coalitions,
we construct the envy graph of M . This is a directed graph, denoted by G(M),
consisting of one vertex for each agent, with an edge from ai to aj whenever aj is

Pareto Optimality in House Allocation Problems 7

matched in M and either (i) ai is unmatched in M and finds M(aj) acceptable,
or (ii) ai is matched in M and prefers M(aj) to M(ai). It is clear that M is
coalition-free if and only if G(M) is acyclic. So we can perform this last check
in O(m) time by using a cycle-detection algorithm on G(M). Putting these
observations together, we have the following result.

Proposition 3. Let M be a matching in a given instance of POM. Then we
may check whether M is Pareto optimal in O(m) time.

It is easy to construct an instance of POM in which the Pareto optimal
matchings are of different sizes. For example let A = {a1, a2} and let H =
{h1, h2}. Suppose that a1 prefers h1 to h2, whilst a2 finds only h1 acceptable.
Then both M1 = {(a1, h1)} and M2 = {(a1, h2), (a2, h1)} are Pareto optimal.
Given this observation it is natural to consider the complexity of each of the
problems of finding a maximum and minimum Pareto optimal matching. (Note
that Greedy-POM produces M1 given the agent ordering 〈a1, a2〉, and produces
M2 given the agent ordering 〈a2, a1〉.)

3 Maximum Pareto Optimal Matchings

In this section, we describe a three-phase algorithm for finding a maximum
Pareto optimal matching, mirroring the three necessary and sufficient conditions
in Proposition 2. We let I be an instance of POM, and we assume the notation
and terminology introduced in Section 2. Phase 1 involves using the Hopcroft-
Karp algorithm [7] to compute a maximum matching M in G. This phase, which
guarantees that M is maximal, takes O(

√
nm) time and dominates the runtime.

The final two phases transformM into a trade-in-free and coalition-free matching
respectively. We describe these phases in more detail below.

3.1 Phase 2 of the Algorithm

In this phase, we transform M into a trade-in-free matching by repeatedly iden-
tifying and promoting agents that prefer an unmatched house to their existing
assignment. Each promotion breaks the existing assignment, thereby freeing a
house, which itself may be a preferred assignment for a different agent. With the
aid of suitable data structures, we can ensure that the next agent and house can
be identified efficiently.

For each house h, we maintain a linked list Lh of pairs (a, r), where a is a
matched agent who finds h acceptable, and r is the rank of h in a’s preference
list. Initially the pairs in Lh involve only those matched agents a who prefer h
to M(a), though subsequently the pairs in Lh may contain agents a who prefer
M(a) to h. The initialization of these lists can be carried out using one traversal
of the agent preference lists, which we assume are represented as doubly linked
lists or arrays, in O(m) time.

For each matched agent a, we also use this traversal to initialize a variable,
denoted by curra, which stores the rank of M(a) in a’s preference list. This

8 D.J. Abraham et al.

variable is maintained during the execution of the algorithm. We also assume
that, for each matched agent a we store M(a). One final initialization remains:
construct a stack S of all unmatched houses h where Lh is non-empty. We now
enter the loop described in Figure 1.

while S �= ∅
h := S.pop();
(a, r) := Lh.removeHead();
if r < curra

// h is unmatched in M , a is matched in M and prefers h to M(a)
h′ := M(a);
M := (M\{(a, h′)}) ∪ {(a, h)};
curra := r;
h := h′;

if Lh �= ∅
S.push(h);

Fig. 1. Phase 2 loop

During each loop iteration we pop an unmatched house h from S and remove
the first pair (a, r) from the list Lh (which must be non-empty). If a prefers h
to M(a) (i.e. r < curra) then a is promoted from h′ = M(a) to h, also M and
curra are updated, and finally h′, which is now unmatched, is pushed onto S if
Lh′ is non-empty. Otherwise h is pushed back onto S if Lh is non-empty.

Each iteration of the loop removes a pair from a list Lh. Since agent preference
lists are finite and no new pair is added to a list Lh during a loop iteration, the
while loop must eventually terminate with S empty. At this point no matched
agent a would trade M(a) for an unmatched house, and so M is trade-in-free.
Additionally, M remains a maximum matching, since any agent matched at the
end of Phase 1 is also matched at the end of Phase 2. Finally, it is clear that
this phase runs in O(m) time given the data structures described above.

3.2 Phase 3 of the Algorithm

In this phase, we transform M into a coalition-free matching. Recall that coali-
tions in M correspond to cycles in the envy graph G(M). So a natural algorithm
involves repeatedly finding and satisfying coalitions in G(M) until no more coali-
tions remain. This algorithm has a runtime of O(m2), since there are O(m)
coalitions, and cycle-detection takes O(m) time.

A better starting point for an efficient algorithm is Gale’s Top Trading Cy-
cles Method [14]. This method is also based on repeatedly finding and satisfying
coalitions, however the number of iterations is reduced by the following observa-
tion: no agent assigned to his/her first choice can be in a coalition. We remove
such agents from consideration, and since the houses assigned to them are no
longer exchangeable, they can be deleted from the preference lists of the re-
maining agents. This observation can now be recursively applied to the reduced

Pareto Optimality in House Allocation Problems 9

for each matched agent a such that p(a) �= M(a)
P := {a}; // P is a stack of agents
c(a) := 1; // counters record the number of times an agent is in P
while P �= ∅

a′ := P.pop();
p(a′) := most-preferred unlabelled house on preference list of a′;
if c(a′) = 2

C := coalition in P containing a′;
satisfy C;
for each a′′ ∈ C

label M(a′′);
c(a′′) := 0;
P.pop();

else if p(a′) = M(a′)
label M(a′);
c(a′) := 0;

else
P.push(a′);
a′′ := M(p(a′));
c(a′′) := c(a′′) + 1;
P.push(a′′);

Fig. 2. Phase 3 loop

preference lists. At some point, either no agents remain, in which case the match-
ing is coalition-free, or no agent is assigned to his/her reduced first choice (i.e.
the first choice on his/her reduced preference list).

In this last case, it turns out that there must be a coalition C in M , which
can be found in O(r) time by searching the envy graph restricted to reduced
first-choice edges. After satisfying C, each agent in C is assigned to his/her
reduced first choice. Therefore, no agent is in more than one coalition, giving
O(r) coalitions overall. The runtime of this preliminary implementation then is
Ω(m+ r2). We now present a linear-time extension of Yuan’s description of the
Top Trading Cycles Method [15].

In our implementation, deletions of houses from agents’ preference lists are
not explicitly carried out. Instead, a house that is no longer exchangeable is
labelled (all houses are initially unlabelled). For each agent a we maintain a
pointer p(a) to the first unlabelled house on a’s preference list – this is equivalent
to the first house on a’s reduced preference list. Initially p(a) points to the first
house on a’s preference list, and subsequently p(a) traverses left to right. Also,
in order to identify coalitions, we initialize a counter c(a) to 0 for each agent a.
Then, we enter the main body of the algorithm, as given in Figure 2.

This algorithm repeatedly searches for coalitions, building a path P of agents
(represented by a stack) in the (simulated) envy graph restricted to reduced first-
choice edges. At each iteration of the while loop, we pop an agent a′ from the
stack and move up p(a′) if necessary. If P cycles (i.e. we find that c(a′) = 2),
there is a coalition C – the agents involved in C are removed from consideration

10 D.J. Abraham et al.

and the houses assigned to these agents are labelled (in practice the agents in C
can be identified and C can be satisfied during the stack popping operations).
Alternatively, if P reaches a dead-end (a′ is already assigned to his/her first
choice), this agent is removed from consideration and his/her assigned house is
labelled. Otherwise, we keep extending the path by following the reduced first-
choice edges.

At the termination of this phase we note that M is coalition-free by the
correctness of the Top Trading Cycles Method [14]. Also M remains a maximum
trade-in-free matching, since each agent and house matched at the end of Phase 2
is also matched at the end of Phase 3. Finally, it is clear this phase runs in O(m)
time given the data structures described above. We summarize the preceding
discussion in the following theorem.

Theorem 1. A maximum Pareto optimal matching can be found in O(
√
nm)

time. Such a matching is also a maximum matching of agents to houses.

We now show that any improvement to the complexity of the above algo-
rithm would imply an improved algorithm for finding a maximum matching in
a bipartite graph. Without loss of generality, let G = (A,H,E) be an arbitrary
bipartite graph with no isolated vertices. Construct an instance I of POM with
bipartite graph G, where each agent a’s preference list in I is an arbitrary per-
mutation over a’s neighbours in G. By Theorem 1, any maximum Pareto optimal
matching in I is also a maximum matching in G. Since I may be constructed
from G in O(m) time, the complexity of finding a maximum matching in a bi-
partite graph is bounded above by the complexity of finding a maximum Pareto
optimal matching.

3.3 Initial Property Rights

Suppose that a subset A′ of the agents already own a house. We now describe
an individually rational modification of our algorithm, which ensures that every
agent in A′ ends up with the same house or better.

We begin with a matching M that pre-assigns every agent a ∈ A′ to his/her
existing house h. We then truncate the preference list of each such a by removing
all houses less preferable than M(a). Now, we enter Phase 1, where we use the
Hopcroft-Karp algorithm to exhaustively augment M into some matching M ′.
Members of A′ must still be matched in M ′, and since their preference lists were
truncated, their new assignments must be at least as preferable as those in M .
Note that M ′ may not be a maximum matching of A to H, however M ′ does
have maximum cardinality among all matchings that respect the initial property
rights. The remaining two phases do not move any agent from being matched to
unmatched, and so the result follows immediately.

In the special case that all agents own a house initially (i.e. I is an in-
stance of a housing market), it is clear that Phases 1 and 2 of the algorithm are
not required. Moreover it is known that Phase 3 produces the unique match-
ing that belongs to the core of the market [12], a stronger notion than Pareto
optimality.

Pareto Optimality in House Allocation Problems 11

4 Minimum Pareto Optimal Matchings

In this section, we consider the problem of finding a minimum Pareto optimal
matching. Let MIN-POM denote the problem deciding, given an instance I of
POM and an integer K, whether I admits a Pareto optimal matching of size at
most K. We firstly prove that MIN-POM is NP-complete via a reduction from
MMM, which is the problem of deciding, given a graph G and an integer K,
whether G admits a maximal matching of size at most K.

Theorem 2. MIN-POM is NP-complete.

Proof. By Proposition 3, MIN-POM belongs to NP. To show NP-hardness, we
give a reduction from the NP-complete restriction of MMM to subdivision graphs
[6] (given a graph G, the subdivision graph of G is obtained by subdividing
each edge e = {u,w} into two edges {u, ve}, {ve, w}, where ve is a new vertex
corresponding to e).

Let G = (V,E) (a subdivision graph) and K (a positive integer) be given
as an instance of MMM. Then V is a disjoint union of two sets U and W ,
where each edge e ∈ E joins a vertex in U to a vertex in W . Assume that
U = {u1, u2, . . . , ur} and W = {w1, w2, . . . , ws}. Without loss of generality
assume that each vertex ui ∈ U has degree 2, and moreover assume that pi and
qi are two sequences such that pi < qi, {ui, wpi

} ∈ E and {ui, wqi
} ∈ E.

We create an instance I of MIN-POM as follows. Let A be the set of agents
and let H be the set of houses, where A = A1 ∪ A2, At = {at

1, a
t
2, . . . , a

t
r}

(t = 1, 2), H = W ∪ X and X = {x1, x2, . . . , xr}. For each i (1 ≤ i ≤ r), we
create preference lists for agents a1

i and a2
i as follows:

a1
i : xi wpi

wqi
a2

i : xi wqi
wpi

We claim that G has a maximal matching of size at most K if and only if I has
a Pareto optimal matching of size at most K + r.

For, suppose that M is a maximal matching in G of size at most K. We
construct a set M ′ as follows. For any ui ∈ U that is unmatched in M , add the
pair (a1

i , xi) to M ′. Now suppose that (ui, wj) ∈ M . If j = pi, add the pairs
(a1

i , wj) and (a2
i , xi) to M ′. If j = qi, add the pairs (a1

i , xi) and (a2
i , wj) to M ′.

Clearly M ′ is a matching in I, and |M ′| = |M |+r ≤ K+r. It is straightforward
to verify that, by the maximality of M in G, M ′ is Pareto optimal in I.

Conversely suppose that M ′ is a Pareto optimal matching in I of size at most
K+r. For each i (1 ≤ i ≤ r), either (a1

i , xi) ∈M ′ or (a2
i , xi) ∈M ′, for otherwise

M ′ is not trade-in-free. Hence we may construct a matching M in G as follows.
For each i (1 ≤ i ≤ r), if (at

i, wj) ∈ M ′ for some t (1 ≤ t ≤ 2), add (ui, wj) to
M . Then |M | = |M ′| − r ≤ K. The maximality of M ′ clearly implies that M is
maximal in G.
�

For a given instance I of POM with bipartite graph G, we denote by p−(I)
and p+(I) the sizes of a minimum and maximum Pareto optimal matching in
I respectively. Similarly, we denote by β−

1 (G) and β1(G) the sizes of a mini-
mum maximal and a maximum matching in G respectively. It is known that

12 D.J. Abraham et al.

β−
1 (G) ≥ β1(G)/2 [9]. By Proposition 2, Pareto optimal matchings in I are

maximal matchings in G. Hence, by Theorem 1, we have that β−
1 (G) ≤ p−(I) ≤

p+(I) = β1(G). It is therefore immediate that, for a given instance I of POM,
the problem of finding a minimum Pareto optimal matching is approximable
within a factor of 2.

5 Interpolation of Pareto Optimal Matchings

In this section, we prove that, for a given instance I of POM, there are Pareto
optimal matchings of all sizes between p−(I) and p+(I).

Given a matching M , an augmenting path P for M is an alternating se-
quence of distinct agents and houses 〈a1, h1, a2, . . . , ak, hk〉, where a1 and hk are
unmatched in M , hi ∈ Ai, and M(ai+1) = hi (1 ≤ i ≤ k − 1). We associate
with each such augmenting path a vector rankP , whose ith component contains
the rank of ai for hi. Given two augmenting paths P and Q for M , we say that
P � Q if (i) both P and Q begin from the same agent, and (ii) rankP is lexico-
graphically less than rankQ. Also for paths P and Q, we define three operations:
PrefixP (v) is the substring of P from a1 to v ∈ P , SuffixP (v) is the substring of
P from v ∈ P to hk, and P ·Q denotes the concatenation of P and Q.

Theorem 3. For a given instance I of POM, there exist Pareto optimal match-
ings of size k, for each k such that p−(I) ≤ k ≤ p+(I).

Proof. Let M be any Pareto optimal matching such that |M | < p+(I), and let
M ′ be the matching that results from augmenting M along some �-minimal
augmenting path P . We will show in turn that M ′ is maximal, trade-in-free and
coalition-free; the result then follows by induction.

If M ′ is not maximal, then clearly we contradict the maximality of M . Now
suppose that M ′ is not trade-in-free. Then there exists an agent a and house
h, where a is matched in M ′, h is unmatched in M ′, and a prefers h to M ′(a).
Since h is also unmatched in M , a must be in P , for otherwise M(a) = M ′(a),
and M is not trade-in-free. But then P ′ = PrefixP (a) · 〈h〉 is an augmenting path
for M , contradicting the �-minimality of P .

Finally suppose for a contradiction that M ′ is not coalition-free. Then there
exists a coalition C = 〈a0, a1, . . . , ak−1〉 with respect to M ′. At least one agent in
P must also be in C, for otherwise M is not coalition-free. Let ai be the first such
agent in P . We establish some properties of M ′(ai+1). Firstly, M ′(ai+1) must
be matched in M , for otherwise M admits the augmenting path PrefixP (ai) ·
〈M ′(ai+1)〉, contradicting the �-minimality of P . Also, M ′(ai+1) cannot appear
before ai in P , for otherwise ai is not the first agent in P to be in C. Lastly,
M ′(ai+1) cannot appear after ai in P , for otherwise M admits the augmenting
path PrefixP (ai)· SuffixP (M ′(ai+1)), contradicting the �-minimality of P . So, it
must be the case that M ′(ai+1) is matched in M and does not appear in P . Let
ai+j be the first agent in C after ai, such that ai+j is in P . Note that ai+j �= ai+1
by the above properties of M ′(ai+1), but since C is a cycle, ai+j = ai is possible.

Pareto Optimality in House Allocation Problems 13

It follows that the subsequence S = 〈M ′(ai+1), ai+1, . . . ,M
′(ai+j−1), ai+j−1〉 of

C is disjoint from P , and so P ′ = PrefixP (ai) · S· SuffixP (M ′(ai+j)) is a valid
augmenting path of M . But then P ′ contradicts the �-minimality of P , since ai

prefers M ′(ai+1) to M ′(ai).
�

Corollary 1. Given an instance I of POM and a Pareto optimal matching M
in I of size k, we can construct a Pareto optimal matching M ′ of size k + 1, or
determine that no such matching exists, in O(m) time.

Proof. Let G be the bipartite graph in I, with edges in M directed from H
to A, and edges not in M directed from A to H. Also associate with each
non-matching edge (ai, hj) the rank of ai for hj . We search for a �-minimal
augmenting path by performing an ordered depth first search of G starting from
the set of unmatched agents, where for each agent a in the search, we explore
outgoing edges from a in increasing order of rank. In general, ordered depth-first
search is asymptotically slower than depth-first search. However, the O(m) result
holds, since each preference list is already given in increasing order of rank.
�

We remark that the results of this section extend to the case where a subset
of the agents have initial property rights.

6 Uniqueness of Pareto Optimal Matchings

In this section, we give a characterization of instances with no initial property
rights that admit a unique Pareto optimal matching. This is based on the concept
of a signature of a Pareto optimal matching.

If a matching M is Pareto optimal, the envy graph G(M) contains no cycles,
and therefore admits a topological ordering. We say that a reversed topological
ordering of G(M), denoted by σ(M), is a signature of M . The next lemma will
help us establish that the signature of a matching is unique for that matching.
This lemma is similar to [1–Lemma 1], though the proof here, which uses the
concept of a signature, is much simpler.

Lemma 1. Given an instance I of POM, the algorithm Greedy-POM can gen-
erate any Pareto optimal matching in I.

Proof. Let M be an arbitrary Pareto optimal matching in I. We claim that by
processing the agents in order of σ(M), the greedy algorithm returns M .

Suppose for a contradiction that Greedy-POM returns a matching M ′ �= M .
It follows that since M ′ is Pareto optimal, some agent must prefer M ′ to M . Let
a be the first such agent in σ(M).

Now,M ′(a) must be matched inM , say to a′, for otherwiseM is not maximal
(if a is unmatched in M), or M is not trade-in-free (if a is matched in M). G(M)
must therefore contain an edge from a to a′, meaning that a′ precedes a in σ(M).
At the time a′ is processed by Greedy-POM, M ′(a) is unmatched (since it is
assigned later to a). So, a′ must prefer M ′(a′) to M(a′) = M ′(a), contradicting
the assumption that a was the first such agent in σ(M).
�

14 D.J. Abraham et al.

Corollary 2. Given an instance I of POM, every agent permutation is a sig-
nature of exactly one Pareto optimal matching in I.

We can now present a necessary and sufficient condition, checkable in linear
time, for a POM instance to admit a unique Pareto optimal matching.

Theorem 4. An instance I of POM admits a unique Pareto optimal matching
M if and only if every agent is matched in M with his/her first choice.

Proof. Let M be the unique Pareto optimal matching in I. Since every agent
permutation is a signature of M , G(M) contains no edges. Then every agent
must be matched to his/her first choice.

Conversely, let M be a matching in I in which every agent is matched with
his/her first choice. Then if M ′ is any matching in I such that M ′ �= M , it
follows that M ≺M ′. Hence M is the unique Pareto optimal matching in I.
�

7 Concluding Remarks

We conclude with an open problem. The basic POM definition given in Section
2 can be generalized by permitting agents to contain ties in their preference
lists (i.e. to rank equally two or more houses). In this context the definition of
the relation ≺ is the same as that given in Section 2, and hence the definition
of Pareto optimality remains unchanged. A maximum Pareto optimal matching
can be found in O(

√
nm log n) time using a similar reduction to the Assignment

problem as described in Section 1 (in this case ranka,h is the number of houses
that a prefers to h). However is the problem of finding a maximum Pareto
optimal matching solvable in O(

√
nm) time?

References

1. A. Abdulkadiroǧlu and T. Sönmez. Random serial dictatorship and the core from
random endowments in house allocation problems. Econometrica, 66(3):689–701,
1998.

2. A. Abdulkadiroǧlu and T. Sönmez. House allocation with existing tenants. Journal
of Economic Theory, 88:233–260, 1999.

3. X. Deng, C. Papadimitriou, and S. Safra. On the complexity of equilibria. Journal
of Computer and System Sciences, 67(2):311–324, 2003.

4. S.P. Fekete, M. Skutella, and G.J. Woeginger. The complexity of economic equi-
libria for house allocation markets. Inf. Proc. Lett., 88:219–223, 2003.

5. H.N. Gabow and R.E. Tarjan. Faster scaling algorithms for network problems.
SIAM Journal on Computing, 18(5):1013–1036, 1989.

6. J.D. Horton and K. Kilakos. Minimum edge dominating sets. SIAM Journal on
Discrete Mathematics, 6:375–387, 1993.

7. J.E. Hopcroft and R.M. Karp. A n5/2 Algorithm for Maximum Matchings in
Bipartite Graphs. SIAM Journal on Computing, 2:225–231, 1973.

Pareto Optimality in House Allocation Problems 15

8. A. Hylland and R. Zeckhauser. The efficient allocation of individuals to positions.
Journal of Political Economy, 87(2):293–314, 1979.

9. B. Korte and D. Hausmann. An analysis of the greedy heuristic for independence
systems. Annals of Discrete Mathematics, 2:65–74, 1978.

10. R.W. Irving, T. Kavitha, K. Mehlhorn, D. Michail, and K. Paluch. Rank-maximal
matchings. Proceedings of SODA ’04, pages 68–75. ACM-SIAM, 2004.

11. A.E. Roth. Incentive compatibility in a market with indivisible goods. Economics
Letters, 9:127–132, 1982.

12. A.E. Roth and A. Postlewaite. Weak versus strong domination in a market with
indivisible goods. Journal of Mathematical Economics, 4:131–137, 1977.

13. A.E. Roth and M.A.O. Sotomayor. Two-sided matching: a study in game-theoretic
modeling and analysis.Cambridge University Press, 1990.

14. L. Shapley and H. Scarf. On cores and indivisibility. Journal of Mathematical
Economics, 1:23–37, 1974.

15. Y. Yuan. Residence exchange wanted: a stable residence exchange problem. Euro-
pean Journal of Operational Research, 90:536–546, 1996.

16. L. Zhou. On a conjecture by Gale about one-sided matching problems. Journal of
Economic Theory, 52(1):123–135, 1990.

Property-Preserving Data Reconstruction�

Nir Ailon, Bernard Chazelle, Seshadhri Comandur, and Ding Liu

Dept. Comp. Sci., Princeton University, Princeton NJ 08544, USA
{nailon, chazelle, csesha, dingliu}@cs.princeton.edu

Abstract. We initiate a new line of investigation into online property-
preserving data reconstruction. Consider a dataset which is assumed to
satisfy various (known) structural properties; eg, it may consist of sorted
numbers, or points on a manifold, or vectors in a polyhedral cone, or
codewords from an error-correcting code. Because of noise and errors,
however, an (unknown) fraction of the data is deemed unsound, ie, in
violation with the expected structural properties. Can one still query
into the dataset in an online fashion and be provided data that is always
sound? In other words, can one design a filter which, when given a query
to any item I in the dataset, returns a sound item J that, although not
necessarily in the dataset, differs from I as infrequently as possible. No
preprocessing should be allowed and queries should be answered online.
We consider the case of a monotone function. Specifically, the dataset
encodes a function f : {1, . . . , n} �→ R that is at (unknown) distance
ε from monotone, meaning that f can—and must—be modified at εn
places to become monotone.

Our main result is a randomized filter that can answer any query in
O(log2 n log log n) time while modifying the function f at only O(εn)
places. The amortized time over n function evaluations is O(log n). The
filter works as stated with probability arbitrarily close to 1. We also
provide an alternative filter with O(log n) worst case query time and
O(εn log n) function modifications.

1 Introduction

It is a fact of (computing) life that massive datasets often come laden with vary-
ing degrees of reliability. Errors might be inherent to the data acquisition itself
(faulty sensors, white/bursty noise, aliasing), or to data processing (roundoff er-
rors, numerical instability, coding bugs), or even to intrinsic uncertainty (think
of surveys and poll data). Classical error correction postulates the existence of
exact data and uses redundancy to provide recovery mechanisms in the presence
of errors. Mesh generation in computer graphics, on the other hand, will often
deal with reconstruction mostly on the basis of esthetic criteria, while signal
processing might filter out noise by relying on frequency domain models.

� This work was supported in part by NSF grants CCR-998817, 0306283, ARO Grant
DAAH04-96-1-0181.

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 16–27, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Property-Preserving Data Reconstruction 17

In the case of geometric datasets, reconstruction must sometimes seek to en-
force structural properties. Early work on geometric robustness [5,9] pointed out
the importance of topological consistency. For example, one might want to ensure
that the output of an imprecise, error-prone computation of a Voronoi diagram
is still a Voronoi diagram (albeit that of a slightly perturbed set of points). Ge-
ometric algorithm design is notoriously sensitive to structure: Dimensionality,
convexity, and monotonicity are features that often impact the design and com-
plexity of geometric algorithms. Consider a computation that requires that the
input be a set of points in convex position. If the input is noisy, convexity might
be violated and the algorithm might crash. Is there a filter that can be inserted
between the algorithm (the client) and the dataset so that: (i) the client is always
provided with a point set in convex position; and (ii) the “filtered” data differs
as little as possible from the original (noisy) data? In an offline setting, the filter
can always go over the entire dataset, compute the “nearest” convex-position
point set, and store it as its filtered dataset. This is unrealistic in the presence of
massive input size, however, and only online solutions requiring no preprocess-
ing at all can be considered viable. We call this online property-preserving data
reconstruction. Besides convexity, other properties we might wish to preserve
include low dimensionality and angular constraints:

– Consider a dataset consisting of points on a low-dim manifold embedded in
very high dimensional space. Obviously, the slighest noise is enough to make
the point set full-dimensional. How to “pull back” points to the (unknown)
manifold online can be highly nonobvious.

– Angle constraints are of paramount importance in industrial/architectural
design. Opposite walls of a building have a habit of being parallel, and no
amount of noise and error should violate that property. Again, the design of
a suitable filter to enforce such angular constraints online is an interesting
open problem.

In this paper we consider one of the simplest possible instances of online
property-preserving reconstruction: monotone functions. Sorted lists of numbers
are a requirement for all sorts of operations. A binary search, for example, will
easily err if the list is not perfectly sorted. In this case of property-preserving
data reconstruction, the filter must be able to return a value that is consistent
with a sorted list and differs from the original as little as possible. (An immediate
application of such a filter is to provide robustness for binary searching in near-
sorted lists.)

We formalize the problem. Let f : {1, . . . , n} �→ R be a function at an un-
known distance ε from monotonicity, which means that f can (and must) be
modified at εn places to become monotone. Figure 1 illustrates the filter in ac-
tion. To avoid confusion, we use the term “query” to denote interaction between
the client and the filter, and “lookup” to denote interaction between the filter and
the dataset. Given a query x, the filter generates lookups a, b, c, . . . to the dataset,
from which it receives the values f(a), f(b), f(c), . . ., and then computes a value
g(x) such that the function g is monotone and differs from f in at most cεn
places, for some c (typically constant, but not necessarily so). We note two things.

18 N. Ailon et al.

1. Once the filter returns g(x) for some query x, it commits to this value and
must return the same value upon future queries.

2. The filter may choose to follow a multi-round protocol and adaptively gen-
erate lookups to the dataset depending on previous results. The function
g(x) is defined on the fly, and it can depend on both the queries and on
random bits. Therefore, after the first few queries, g might only be defined
on a small fraction of the domain. At any point in time, if k distinct xi’s
have been queried so far, then querying the remaining xi’s (whether the
client does it or not) while honoring past commitments leads to a monotone
function close enough to f .
It is natural to measure the performance of the filter with respect to two

functions. A (p(n, ε), q(n))-filter performs O(p(n, ε)) lookups per query, and re-
turns a function g that is at a distance of at most q(n)ε from monotonicity, with
high probability. The lookup-per-query guarantee can be either amortized or in
worst case (the running times are deterministic). Ideally, we would like p(n, ε) to
depend only on n, and q(n) to be constant. There is a natural tradeoff between
p and q: we expect q to decrease as p increases. We will see an example of this
in this work.

Theorem 1. There exists a randomized (log2 n log log n, 2+δ)-filter for any fixed
δ > 0. with a worst case lookups-per-query guarantee. The amortized lookups-per-
query over n function evaluations is O(logn). The filter behaves as stated with
probability arbitrarily close to 1.

We also provide an alternative filter with a better lookups-per-query guaran-
tee and a worse distance guarantee.

Theorem 2. There exists a (logn,O(logn))-filter with a worst case lookups-
per-query guarantee.

It is important to note that, in this work, we think of the client as adversarial.
That is, the filter’s guarantees must hold for all sequences of client queries.
However, in some cases it might be useful to assume the client’s queries are
drawn from some known probability distribution. We will see that the filter can
take advantage of this.

Theorem 3. Assuming the client draws the queries independently, uniformly at
random, a (1, O(logn))-filter can be devised.

We are not aware of any previous work on this specific problem. Of course,
property testing is by now a well studied area [4,8], with many nontrivial results
regarding combinatorial, algebraic, and geometric problems [2,3,7]. More recent
work [1, 6] has provided sublinear algorithms for estimating the distance of a
function to monotone. We use ideas from [1] in this work.

2 The (log2 n log log n, 2 + δ)-Filter

We use the following notation in what follows. The distance between two func-
tions f1 and f2 over the domain {1, .., n} is defined as the fractional size of

Property-Preserving Data Reconstruction 19

domain points on which they disagree. The function f and the domain size n
which are the input to the problem (the dataset in Figure 1) are fixed. We use
ε to denote the distance of f from monotonicity, and f̂ to denote the monotone
function closest to f . So the distance between f and f̂ is ε, and f̂ minimizes the
distance between f and any monotone function. We use g to denote the function
outputted by the filter.

Dataset ClientFilter

x

g(x)f(a),f(b),f(c)...

a,b,c...

Fig. 1. The property-preserving reconstruction filter: g is sound and differs from f in
few places

2.1 Preliminaries

Proving Theorem 1 requires a few preliminaries, beginning with these definitions:

– δ-bad and δ-good : Given 0 < δ < 1/2, the integer i is called δ-bad if there
exists j > i such that∣∣∣{ i ≤ k ≤ j | f(k) < f(i)

}∣∣∣ ≥ (1/2− δ)(j − i+ 1)

or, similarly, j < i such that∣∣∣{ j ≤ k ≤ i | f(k) > f(i)
}∣∣∣ ≥ (1/2− δ)(i− j + 1) .

Otherwise the integer i is called δ-good.
– a-light and a-heavy : Let D be the joint distribution of m independent 0/1

random variables x1, . . . , xm, which can be sampled independently. If E[xi] ≤
a for all i, then D is called a-light; else it is a-heavy.

Lemma 1. (Ailon et al. [1]) Given any fixed a < b, if D is either a-light or
b-heavy, then with probability 2/3 we can tell which is the case in O(m) time. If
D is neither, the algorithm returns an arbitrary answer.

In the following we use the algorithm of Lemma 1 to test, with high probabil-
ity of success, whether a given integer i is δ-bad or 2δ-good, for any fixed δ > 0.
Given an interval [u, v], we define two 0/1 random variables α[u, v] and β[u, v]:
given a random integer j ∈ [u, v], α[u, v] = 1 (resp. β[u, v] = 1) iff f(u) > f(j)
(resp. f(j) > f(v)). The algorithm bad-good-test (Fig. 2) tests if a given inte-
ger i is δ-bad or 2δ-good.

Lemma 2. Given any fixed δ > 0 and a parameter k, if i is either δ-bad or
2δ-good, then bad-good-test will tell which is the case in time O(logn log k)
and with probability at least 1− 1/k.

20 N. Ailon et al.

Proof. If integer i is 2δ-good then the expectation of every x(i)
2j−1 or x(i)

2j defined
in bad-good-test is at most 1/2− 2δ, and so the distribution D is (1/2− 2δ)-
light. On the other hand, if i is δ-bad, then there exists some x(i)

2j−1 or x(i)
2j with

expectation at least (1/2 − δ)/(1 + δ) ≥ 1/2 − 3δ/2, and so D is (1/2 − 3δ/2)-
heavy. The algorithm from Lemma 1 distinguishes between (1/2− 2δ)-light and
(1/2 − 3δ/2)-heavy with probability 2/3 in O(logn) time. Since we repeat it
c log k times and take a majority vote, a standard Chernoff bound argument
shows that bad-good-test fails with probability at most 1/k. �

bad-good-test (f, i, δ, k)

repeat the following c log k times for a big enough constant c
for each 1 ≤ j ≤ (2/δ) ln n

define x
(i)
2j−1 = α[i, i + (1 + δ)j] and x

(i)
2j = β[i − (1 + δ)j , i]

let D be the distribution (x1, x2, · · ·)
if majority of above tests output (1/2 − 2δ)-light

then output 2δ-good
else output δ-bad

Fig. 2. Testing if an integer i is δ-bad or 2δ-good

Lemma 3. There are at most (2 + O(δ))εn δ-bad integers (Ailon et al. [1]).
Moreover, the monotone function f̂ which is closest to f can be assumed to
agree with f on δ-good integers.

Finally, we let δ > 0 denote an arbitrarily small positive real. Choosing a
small enough δ will satisfy the distance guarantee of Theorem 1.

2.2 The Algorithm

We now describe the algorithm monotonize. Our goal, as described above, is:
given a fixed δ > 0, compute a function g online such that: (1) g is monotone;
(2) g is ((2 +O(δ))ε)-close to f . Specifically, on query i, monotonize computes
g(i) in time O(log2 n log log n). Whenever monotonize outputs a value g(i), this
value must be recorded to ensure consistency. The procedure will therefore hold
an internal data structure that will record past commitments. The data structure
can be designed to allow efficient retrievals, but we omit the details because we
are mainly interested in the number of f -lookups it performs, and not the cost
of other operations.

Given a query i, monotonize first checks whether i was committed to in the
past, and returns that commitment in that case. If not, more work should be
done. In virtue of Lemma 3, monotonize tries to keep the f values at δ-good

Property-Preserving Data Reconstruction 21

integers and change the values for other queries. We will use bad-good-test to
decide whether i is bad or good.

Suppose now we decide that i is δ-bad and hence g(i) needs a value that might
be different from f(i). Ideally, we would like to find the closest δ-good integers l
(to the left of i) and r (to the right of i) and assign g(i) to some value between
f(l) and f(r). Because of the sublinear time constraint, we slightly relax this
condition. Instead, the idea is to find an interval I0 around i such that the fraction
of 2δ-good integers in I0 is at least Ω(δ), but their fraction in a slightly smaller
interval is O(δ). This ensures that such an interval can be detected through
random sampling and that there are not many 2δ-good integers between i and
any 2δ-good integer in this interval (a relaxation of the closest condition).

We will search for a good interval within the interval determined by the
closest committed values on the left and right of i. Denote this interval by [l, r].
Once such a good interval I0 is found, we try to find a value x that is sandwiched
between values of f evaluated at two δ-good points in I0. Finding x is done in
find-good-value (Figure 3). We commit to the value x on g restricted to I0.
If no good intervals are found, we spread the value of g(l) on g in the interval
[l + 1, r − 1].

find-good-value (f, I, δ)

set L as an empty list
randomly select cδ−1 log n integers from I for a big enough constant c.
for each j in random sample

if bad-good-test (f, j, δ, δ−2) returns ‘‘2δ-good’’
then append f(j) to L

return median value of L

Fig. 3. Finding a good value in an interval

Lemma 4. The procedure find-good-value returns, with probability 1− 1/n3,
a value y that is sandwiched between f(i1) and f(i2), where i1, i2 ∈ I are δ-good.
This requires the existence of at least a fraction of δ 2δ-good integers in I. The
running time of find-good-value is O(log2 n), for fixed δ.

Proof. The expected number X of δ-bad samples for which bad-good-test re-
turns “2δ-good” is at most cδ(1 − δ) logn, by Lemma 2. The expected total
number Y of samples for which bad-good-test returns “2δ-good” is at least
c(1 − δ2) logn. The probability that X exceeds Y/2 is at most 1/n3 if c is cho-
sen large enough, using Chernoff bounds. Therefore, with probability at least
1 − 1/n3, more than half the values that are appended to the list L are the
function f evaluated at δ-good points (“good values”). By taking the median of

22 N. Ailon et al.

values in L, in such a case, we are guaranteed to get a value sandwiched between
two good values. The time bound follows from Lemma 2. �

monotonize (f, δ, i)

if g(i) was already committed to then return g(i)
if bad-good-test(f, i, δ, n3) returns ‘‘2δ-good’’

then commit to g(i) = f(i) and return g(i)

let l be closest committed index on left of i (0 if none)
let r be closest committed index on right of i (n + 1 if none)
(*)
set jmax =
ln(i − l)/ ln (1 + δ)� and jmin = 0.
while jmax − jmin > 1

set j =
(jmax + jmin)/2�, I = [i − (1 + δ)j , i]
choose random sample of size cδ−1 log n from I, for large c
for each point i′ in sample

run bad-good-test(f, i′, δ, c1), for large c1

if number of "2δ-good" outputs is ≥ 3
2c log n

then set jmax = j
else set jmin = j

if jmax �=
ln(i − l)/ ln (1 + δ)�
then set Il = [i − (1 + δ)jmax , i] and vall = find-good-value(f, Il, δ)
else set vall = g(l) and Il = [l + 1, i]

(**)
repeat lines (*)...(**) for right side of i, obtaining valr and Ir

choose vall < y < valr and commit to y on Il ∪ {i} ∪ Ir

return y

Fig. 4. Computing a monotone function online

To find a good interval, we do a binary search among all the intervals of
length (1 + δ)j (j = 0, 1, . . .) starting or ending at i, that is, [i, i + (1 + δ)j]
and [i − (1 + δ)j , i]. There are O(logn) such intervals, and thus the running
time is O(log log n) times the time spent for each interval. The overall algorithm
monotonize is shown in Figure 4. The following claim together with a suitable
rescaling of δ concludes the proof of the first part of Theorem 1.

Claim. Given any 0 < δ < 1
2 , with probability 1− 1/n, monotonize computes a

monotone function g that is within distance (2 + δ)ε to f . Given a query i, g(i)
is computed online in time O(log2 n log log n), when δ is assumed to be fixed.

Proof. First we analyze the running time. The bad-good-test in line 3 takes
O(log2 n) time. If the algorithm determines that i is δ-bad, then the while-
loops run O(log log n) times. In one iteration of the while-loop, the algorithm

Property-Preserving Data Reconstruction 23

calls bad-good-test O(logn) times. Each call takes O(logn) time by
Lemma 2. Therefore, the time complexity of the while-loop is O(log2 n log log n).
By Lemma 4, the running time of the call to find-good-integer is O(log2 n).
The time complexity of the algorithm is therefore O(log2 n log log n).

Let us first look at the while-loop. If I has more than 2δ-fraction of 2δ-good inte-
gers, then the number of ”2δ-good” outputs is < 3

2c log n with inverse polynomial
probability. This can be shown through Chernoff bounds. On the other hand, if I
has less than δ-fraction of 2δ-good integers, then the number of ”2δ-good” outputs
is> 3

2c log n with inverse polynomial probability. Therefore, we can assume that -
– When find-good-value is called on interval Il, Il has at least a δ-fraction

of 2δ-good integers.
– The interval Imin = [i − (1 + δ)jmin , i] has at most 2δ-fraction of 2δ-good

integers.

Both these events hold with probability 1− 1/nc, for some large constant c.
These events occur totally at most a polynomial number of times. We can also as-
sume that, during the execution of the algorithm, the first call of bad-good-test
(in line 3) correctly distinguishes between δ-bad and 2δ-good.

As shown in Lemma 2, this holds with probability 1 − 1/n3. This is totally
called at most n times. By a union-bound, all of the above events occur with
probability 1− 1/nd, for some positive constant d.

To show that the function g is monotone, we first note that if bad-good-test
outputs ”2δ-good” for i (leading to g(i) being set to f(i)), then i is not δ-bad. If i is
bad, then vall lies between the value at two δ-good points in Il. If vall is assigned
to all the values of g in Il, then g would be monotone with respect to all the values
at the δ-good points already committed to. Similarly, valr can be assigned to the
values of g in Ir without disturbing monotonicity. Therefore, since the algorithm
assigns some value between vall and valr to Il ∪ {i} ∪ Ir, g is remains monotone.

Finally we show that g is within distance (2+δ)ε to f . We earlier showed that
for Imin = [i− (1 + δ)jmin , i], the fraction of 2δ-good integers in Imin is at most
2δ. Since by the end of the algorithm jmax ≤ jmin + 1, the fraction of 2δ-good
integers in Ir = [i, i+ (1 + δ)jmax] (or Il = [i− (1 + δ)jmax , i]) is at most 4δ. In
other words, each time we make a total of |Il ∪{i}∪ Ir| corrections to f at least
a (1− 4δ)-fraction of these changes are made on 2δ-bad integers. By Lemma 2.4
in [1], the total number of 2δ-bad integers is at most (2 + 10δ)εn. So the total
number of changes we made on f is at most (2 + 10δ)εn/(1− 4δ) ≤ (2 + cδ)εn
for some constant c. This concludes the proof. �

2.3 Achieving Logarithmic Amortized Query Time

In this section we show how to modify the algorithm to achieve better amortized
query time. The worst case query time for a single query remains the same. We
need a technical lemma first.

Lemma 5. For any 1/2 > δ > 0, let i be a δ-bad integer. Let l, r be two δ-
good integers such that l < i < r. Then there is a witness to i’s badness in the
interval [l, r].

24 N. Ailon et al.

Proof. If f(i) < f(l), then we claim that l is a witness to i’s badness. In fact, since
f(l) and f(i) is a violating pair, it is immediate that at least one of them is 0-bad
with respect to the interval [l, i]. Since l is δ-good, i must be 0-bad (and hence δ-
bad) with respect to [l, i]. In this case, l is a witness to i’s badness. Similarly, r will
be a witness if f(i) > f(r). In the following we assume that f(l) < f(i) < f(r).

Let w be a witness to i’s badness. Without loss of generality, assume that
w < i. If w ≥ l then we are done, so let w < l. Since i is δ-bad and l is δ-good, we
know that: number of violations in [w, l] with respect to l is < (1/2−δ)(l−w+1);
number of violations in [w, i] with respect to i is ≥ (1/2− δ)(i−w+ 1). We also
know that each violation in [w, l] with respect to i is also a violation with respect
to l, so the number of violations with respect to i in [l+1, i] is > (1/2−δ)(i−l) =
(1/2−δ)(i−(l+1)+1). This shows that i has a witness to its badness in [l+1, i]. �

The improvement on amortized query time comes from the following strat-
egy: each time the algorithm answers a client query, it also generates a new query
by itself and answers that query. This self query is completely independent of
all the client queries, and we call it an oblivious query.

The oblivious queries are generated based on the balanced binary tree on
[1, n]. The root of this tree is �n/2�. The left subtree of the root corresponds to
the interval [1, �n/2�−1], and similarly the right subtree corresponds to [�n/2�+
1, n]. The two subtrees are then defined recursively. This tree is denoted by T .

The oblivious queries are generated according to the following order. We
start from the root of T and scan its elements one by one by going down level
by level. Within each level we scan from left to right. This defines an ordering of
all integers in [1, n] which is the order to make oblivious queries. This ordering
ensures that, after the (2k − 1)-th oblivious query, [1, n] is divided by all the
oblivious queries into a set of disjoint intervals of length at most n/2k. Each
oblivious query is either a δ-good integer itself in which case monotonize returns
at line 6, or it causes two δ-good integers being outputted (val1 and valr in
monotonize). These two δ-good integers lie on the left and right side of the
oblivious query, respectively. This shows that after the (2k − 1)-th oblivious
query, [1, n] is divided by some δ-good integers into a set of smaller intervals
each of length at most n/2k.

Based on Lemma 5, whenever we call bad-good-test (in find-good-integer
or monotonize) to test the badness of an integer i, we only need to search for a
witness within a smaller interval [l, r] such that l (resp. r) is the closest δ-good
integer on the left (resp. right) of i. As explained above, these δ-good integers
come as by-products of oblivious queries. This will reduce the running time of
bad-good-test to O(logni log k) (to achieve success probability at least 1−1/k),
where ni = r− l+1. Accordingly, the time spent on binary searching intervals in
monotonize is reduced to O(log log ni). By the distribution of oblivious queries,
for the j-th client query where 2k−1 ≤ j < 2k, the running time of monotonize
is now O(logn log n

2k log log n
2k). The same is true for the j-th oblivious query.

To bound the amortized running time, it suffices to focus on the smallest
m such that all n distinct queries appear in the first m queries (including both
client and oblivious queries). We can also ignore repetition queries (those that

Property-Preserving Data Reconstruction 25

have appeared before) since each one only takes O(logn) time using standard
data structure techniques. Therefore, without loss of generality, we assume that
the first n client queries are distinct. The total query time for these n queries is:

log n∑
k=1

O(2k−1 log n log
n

2k
log log

n

2k
) .

It is simple to verify that this sum is O(n log n). The following claim concludes
the proof of the second part of Theorem 1.

Claim. With probability 1 − 1/n, monotonize computes a monotone function
g that is within distance (2 + O(δ))ε to f . Each single evaluation of g(i) is
computed online in time O(log2 n log log n), and the amortized query time over
the first m ≥ n client queries is O(logn).

3 The (log n, O(log n))-Filter

We prove Theorem 2. To do this, we define a function g by a random process. The
function is determined after some coin flipping done by the algorithm (before
handling the client queries). Although the function g is defined after the coin
flips, the algorithm doesn’t explicitly know it. In order to explicitly calculate
g at a point, the algorithm will have to do some f -lookups. Our construction
and analysis will upper bound E[dist(f, g)] and the amount of work required for
explicitly calculating g at a point.

As before, let f̂ be a monotone function such that dist(f, f̂) = ε. Let B ⊆ [n]
be the set of points {x|f(x) �= f̂(x)}. So |B| = εn. For simplicity of notation,
assume the formal values of −∞ (resp. +∞) of any function on [n] evaluated at
0 (resp. n+ 1).

We build a randomized binary tree T = build-tree(1, n) with nodes labeled
1..n, where build-tree(a, b) is defined as follows:

build-tree(a, b)

if a > b then
return empty tree

else
return tree with
root i chosen uniformly at random in [a, b]
left subtree build-tree(a, i − 1)
right subtree build-tree(i + 1, b)

After constructing the randomized tree T , the function g at point i is defined
as follows. If i is the root of the tree, then g(i) = f(i). Otherwise, Let p1, .., pj , i

26 N. Ailon et al.

denote the labels of the nodes on the path from the root to node i, where p1 is
the root of the tree and pj is the parent of i. Assume that g was already defined
on p1, .., pj . Let l = max({0}∪{pk|pk < i}) and r = min({n+1}∪{pk|pk > i}). If
g(l) ≤ f(i) ≤ g(r), then define g(i) = f(i), otherwise define g(i) as an arbitrary
value in [g(l), g(r)]. The function g is clearly monotone. The number of f -lookups
required for computing g(i) is the length of the path from the root to i. We omit
the proof of the following fact.

Lemma 6. The expected length of this path for any i is at most O(logn).

We show that E[dist(f, g)] = O(ε log n). We first observe that for any i, if
{p1, .., pj , i}

⋂
B = ∅, then it is guaranteed that g(i) = f(i). Therefore, any i for

which f(i) �= g(i) can be charged to some b ∈ B on the path from the root to
i. The amount of charge on any b ∈ B is at most the size of the subtree b in T .
We omit the proof of the following lemma.

Lemma 7. The expected size of the subtree rooted at node i in T is O(logn) for
any i ∈ [n].

Therefore, the expected total amount of charge is at most O(|B| log n) =
O(nε log n). By Chebyshev’s inequality, the total amount of charge is at most
O(nε log n) with high probability. The total amount of charge is an upper bound
on the distance between f and g. This proves Theorem 2, except for the fact that
the lookups-per-query guarantee is only on expectation, and not worse case (due
to Lemma 6). We note without proof that the random tree T can be constructed
as a balanced binary tree, so that Lemma 6 is unnecessary, and Lemma 7 is still
true. So we get a worst case (instead of expected) guarantee of O(logn) on the
length of the path from the root to i (and hence on the number of f -lookups per
client query). This concludes the proof of Theorem 2.

To prove Theorem 3, where the client queries are assumed to be uniformly
and independently chosen in [n], we observe that the choices the client makes
can be used to build T . More precisely, we can build T on the fly, as follows: The
root r of T is the first client query. The left child of r is the first client query
in the interval [1, r − 1], and the right child of r is the first client query in the
interval [r+1, n]. In general, the root of any subtree in T is the first client query
in the interval corresponding to that subtree. Clearly, this results in a tree T
drawn from the same probability distribution as in build-tree(1, n). So we still
have Lemma 7, guaranteeing the upper bound on the expected distance between
g and f . But now we observe that for any new client query i, the path from
the root of T to i (excluding i) was already queried, so we need only one more
f -lookup, namely f(i). This concludes the proof of Theorem 3. �

References

1. Ailon, N., Chazelle, B., Comandur, S., Liu, D.: Estimating the distance to a mono-
tone Function. Proc. 8th RANDOM, 2004

Property-Preserving Data Reconstruction 27

2. Fischer, E.: The art of uninformed decisions: A primer to property testing. Bulletin
of EATCS, 75: 97-126, 2001

3. Goldreich, O.: Combinatorial property testing - A survey. “Randomization Methods
in Algorithm Design,” 45-60, 1998

4. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to learn-
ing and approximation. J. ACM 45 (1998), 653–750

5. Hoffmann, C.M., Hopcroft, J.E., Karasick, M.S.: Towards implementing robust ge-
ometric computations. Proc. 4th SOCG (1988), 106-117.

6. Parnas, M., Ron, D., Rubinfeld, R.: Tolerant property testing and distance approx-
imation. ECCC 2004

7. Ron, D.: Property testing. “Handbook on Randomization,” Volume II, 597-649,
2001

8. Rubinfeld, R., Sudan, M.: Robust characterization of polynomials with applications
to program testing. SIAM J. Comput. 25 (1996), 647–668

9. Salesin, S., Stolfi, J., Guibas, L.J.: Epsilon geometry: building robust algorithms
from imprecise computations. Proc. 5th SOCG (1988), 208-217

On the Monotone Circuit Complexity of
Quadratic Boolean Functions

Kazuyuki Amano and Akira Maruoka

Graduate School of Information Sciences, Tohoku University,
Aoba 6-6-05, Aramaki, Sendai 980-8579, Japan

{ama|maruoka}@ecei.tohoku.ac.jp

Abstract. Several results on the monotone circuit complexity and the
conjunctive complexity, i.e., the minimal number of AND gates in mono-
tone circuits, of quadratic Boolean functions are proved. We focus on
the comparison between single level circuits, which have only one level
of AND gates, and arbitrary monotone circuits, and show that there is
a huge gap between the conjunctive complexity of single level circuits
and that of general monotone circuits for some explicit quadratic func-
tion. Almost tight upper bounds on the largest gap between the single
level conjunctive complexity and the general conjunctive complexity over
all quadratic functions are also proved. Moreover, we describe the way
of lower bounding the single level circuit complexity, and give a set of
quadratic functions whose monotone complexity is strictly smaller than
its single level complexity.

1 Introduction

Deriving a superlinear lower bound on the Boolean circuit-size complexity for an
explicit Boolean function is one of the most challenging problems in computa-
tional complexity. In order to attack the problem, the complexity of many types
of restricted circuits have been investigated. The model of monotone Boolean cir-
cuits, i.e., circuits with only AND and OR gates, is one of the most well-studied
models.

In this paper, we investigate the monotone circuit complexity of the class of
quadratic Boolean functions, i.e., functions of the form

∨
i,j ai,j ∧ xi ∧ xj where

ai,j ∈ {0, 1}. Although we have a series of strong lower bounds on the monotone
circuit complexity of explicitly defined Boolean functions [2, 3, 4, 5, 7, 8, 9, 15, 16,
18], such as exponential lower bounds for the clique function, we believe that
an investigation of the monotone complexity of quadratic functions is important
for several reasons:

(i) The method of approximations and many variants of them have been
successful to obtain exponential lower bounds on the monotone circuit com-
plexity [2, 3, 4, 5, 7, 8, 9, 15, 16, 18]. However, several researchers have pointed out
that these methods are shown to be equivalent [4, 5, 8, 9, 18]. In addition, a sim-
ple analysis of the method shows that it cannot yield any non-trivial lower

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 28–40, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

On the Monotone Circuit Complexity of Quadratic Boolean Functions 29

bounds on the monotone circuit complexity of a quadratic Boolean function.
This is because the method is in fact lower bounding the minimum of the
number of AND gates and that of OR gates needed to compute the func-
tion, and every quadratic Boolean function on n variables can be computed
by a monotone circuit including at most n − 1 AND gates. So a superlin-
ear lower bound for quadratic Boolean functions may imply an essentially dif-
ferent method for lower bounding the monotone circuit complexity. (ii) For
some natural class of quadratic Boolean functions, which we will describe in
Section 4, we can show that a superlinear lower bound on the monotone cir-
cuit complexity of a function f in that class immediately implies the lower
bound of the same order on the general circuit complexity of f . In addition,
we hope that a lower bound proof that is highly specialized for a particular
function may not fulfill the “largeness” condition in the notion of “natural
proof” [17].

A quadratic Boolean function is naturally represented by a graph. Let G =
(V,E) be an undirected graph with vertex set V = {1, . . . , n} and edge set
E ⊆ {(i, j) | 1 ≤ i < j ≤ n}. A quadratic (Boolean) function associated with G
is defined by fG(x1, . . . , xn) =

∨
(i,j)∈E xixj .

There have been a series of researches on the complexity of quadratic Boolean
functions (sometimes under the name of graph complexity), which are mostly
concerned on the circuits of constant depth with unbound fan-in gates (e.g.,
[10, 12, 14]). In this paper, we restrict the fan-in of gates to two and mainly focus
on the comparison between single level monotone circuits and general monotone
circuits. A single level circuit is a circuit which has only one level of AND gates.
Obviously, every quadratic function can be computed by a single level circuit
of size O(n2). Not surprisingly, if we restrict ourselves to circuits of single level,
we can easily derive a superlinear lower bound on the size. (We will describe
this in more detail in Section 3.3.) However, it seems quite difficult to obtain a
good lower bound on the general monotone circuit size for an explicit quadratic
function.

One of the major difference between single level circuits and general circuits
in a computation of quadratic functions relies on the use of “absorption” rule,
i.e., f ∨ fg = f (and f(f ∨ g) = f). We think that an investigation on the
efficiency of the absorption rule in a monotone computation may be a key to
obtain a tighter/higher lower bound on the monotone complexity, and this was
the initial motivation of our work.

The contributions of this paper are as follows: First, in Section 3, we con-
sider the conjunctive complexity of quadratic Boolean functions. The conjunctive
complexity of a quadratic function fG is the minimal number of AND gates in
a monotone circuit that computes fG. Such measures have been widely studied
by e.g., Tuza [20], Lenz and Wegener [11]. In Section 3,2, we prove that there
is a huge gap between the conjunctive complexity of single level circuits and
that of general monotone circuits for some explicit quadratic function (Theorem
2). Almost tight upper bounds on the largest gap between the single level con-
junctive complexity and the general conjunctive complexity over all quadratic

30 K. Amano and A. Maruoka

functions are also proved (Theorem 4). Then, in Section 3.3, we describe the way
of lower bounding the single level circuit complexity (Theorem 8), and give a set
of quadratic functions whose monotone circuit complexity is strictly smaller than
its single level complexity (Theorem 10). Finally, in Section 4, we discuss the
relationship between the complexity of monotone circuits and of non-monotone
circuits for quadratic functions based on the notion of pseudo complements (The-
orem 11).

2 Boolean Circuits

A Boolean circuit is a directed acyclic graph. Nodes with indegree zero are called
input nodes and there are distinguished nodes with outdegree zero called output
nodes. An input node is labeled by a Boolean variable or a constant 0 or 1.
Each non-input node has indegree 2 or 1 and is called the gate node. A gate
node of indegree 2 is labeled by a Boolean operation AND (∧) or OR (∨). A
gate node of indegree 1 is labeled by a Boolean operation NOT (¬). A gate in
a Boolean circuit computes a Boolean function in a natural way. If g is a gate
in a Boolean circuit, we will also use g to denote the function computed by g.
A Boolean circuit computes Boolean functions that are computed by the output
gates. A monotone Boolean circuit is a Boolean circuit that contains no NOT
gates. A Boolean function that can be computed by a monotone Boolean circuit
is called a monotone Boolean function. Since we will not discuss any non-Boolean
functions, we may drop the word “Boolean”.

3 Single Level Versus Multi Level

3.1 Notations

Let G = (V,E) be an undirected graph with vertex set V = {1, . . . , n} and edge
set E ⊆ {(i, j) | 1 ≤ i < j ≤ n}. A quadratic (Boolean) function associated with
G is defined by fG(x1, . . . , xn) =

∨
(i,j)∈E xixj .

For a monotone circuit C, the level of C is defined as the maximal num-
ber of AND gates on a path from an input to an output in C. In particu-
lar, a circuit of level 1, i.e., a circuit such that no path combines AND gates,
is called a single level circuit. Obviously, for every graph G = (V,E) on
V = {x1, . . . , xn}, the function fG can be computed by a single level cir-
cuit including at most |V | − 1 AND gates and |E| OR gates using the form∨

1≤i<n xi ∧ (∨j:(i,j)∈Exj).
Let f be a monotone function. The circuit complexity (the monotone circuit

complexity, resp.) of f , denoted by size(f) (sizemon(f), resp.), is the minimal
number of gates in a Boolean circuit (a monotone circuit, resp.) for f , and the
single level complexity of f , denoted by size1

mon(f), is the minimal number of
gates in a single level monotone circuit for f .

In this paper, we also investigate the number of AND gates needed to com-
pute a function, which is called as the conjunctive complexity. The conjunc-

On the Monotone Circuit Complexity of Quadratic Boolean Functions 31

tive complexity (the single level conjunctive complexity, resp.) of f , denoted
by sizemon,∧(f) (size1

mon,∧(f), resp.), is the minimal number of AND
gates in a monotone circuit (a single level monotone circuit, resp.) that
computes f .

3.2 Conjunctive Complexity

If we restrict ourselves to circuits of single level, the conjunctive complexity of
a quadratic function fG is equal to the minimal number of complete bipartite
graphs whose union (of the edge sets) coincides with G.

Since the single level conjunctive complexity size1
mon,∧(f) is a purely graph

theoretical complexity measure, it has been widely studied (see e.g., [11]). In
contrast, little is known about the conjunctive complexity sizemon,∧(f). In the
following, we show that almost all quadratic functions have a conjunctive com-
plexity Θ(n), which improves the n/(c log n) lower bound of Lenz and Wegener
[11]. We remark that it was shown that almost all quadratic functions have a
single level conjunctive complexity of larger than n− c log n.

Theorem 1. For each c < 1/13, the conjunctive complexity of almost all quadratic
functions is larger than cn.

Proof. The proof of the theorem is analogous to the proof of the n/(c log n) lower
bound due to Lenz and Wegener [11]. The only difference is to use the result of
Zwick [24], which says that if f can be computed by a monotone circuit that
contains k AND gates, then f can also be computed by a monotone circuit that
contains k AND gates and O(k(n+ k)/ log k) OR gates, instead of the result of
Alon and Boppana [2], which is slightly weaker than the result of Zwick.

Careful inspection of Zwick’s proof reveals that the hidden constant in the
Big-O notation of their upper bound is at most 3. The standard counting ar-
gument shows that, for each d > 4, the monotone circuit complexity of almost
all quadratic functions is at least n2/(d log n). Hence, for almost all graphs on n
vertices G, if we denote the conjunctive complexity of fG by k, then

n2

d log n
≤ 3k(n+ k)

log k
+ k.

holds. A simple calculation shows that k ≥ cn for sufficiently large n.
�

One might conjecture that an optimal circuit for a quadratic function with
respect to the conjunctive complexity is always given by a single level circuit.
This was known as the single level conjecture (with respect to the conjunctive
complexity) and was disproved by Lenz and Wegener [11]. They provided an
explicit graph H on 8 vertices such that 4 = size1

mon,∧(fH) > sizemon,∧(fH) = 3,
and asked what the largest possible value of size1

mon,∧(fG)/sizemon,∧(fG) is (as
open problem No. 7 in [11]).

In the following, we improve their result by giving an explicit construction of
a graph G on n vertices such that size1

mon,∧(fG)/sizemon,∧(fG) = Ω(n/ log n).

32 K. Amano and A. Maruoka

Theorem 2. There is a graph G on n vertices such that size1
mon,∧(fG) = Ω(n)

and sizemon,∧(fG) = O(logn).

Proof. Let G̃ = (U ∪ V, Ẽ) be a bipartite graph with U = {u1, . . . , un/2}, V =
{v1, . . . , vn/2} and Ẽ = {(ui, vi) | i = 1, . . . , n/2}. For simplicity, we assume
that n = 2t for some positive integer t. Let G be a graph on U ∪ V such
that G = G̃ ∪ KU ∪ KV where KU and KV are the complete graphs on U
and V respectively. In the following, we show that size1

mon,∧(fG) ≥ n/4 and
sizemon,∧(fG) = O(logn).

First, we show that size1
mon,∧(fG) ≥ n/4. Let C be a single level monotone

circuit for fG. For a function g, let PI(g) denote the set of all prime implicants
of g. Since G̃ contains n/2 edges, it is sufficient to show that for every ∧ gate
g in C, if PI(g) contains more than two edges in G̃ then g can be eliminated
without changing the output of C. Let g1 and g2 be two inputs of g. Note that
g1 and g2 are OR’s of variables. Suppose that PI(g) contains three edges in G̃,
say (ui, vi),(uj , vj),(uk, vk). Then, w.l.o.g., we can assume that for some distinct
indices i1, i2 ∈ {i, j, k}, ui1 and ui2 are appearing in g1 and vi1 and vi2 are
appearing in g2. This implies that PI(g) contains (ui1 , vi2), which is not included
in G̃. Hence g cannot contribute the output of C, and can be removed safely.

We now show that sizemon,∧(fG) = O(logn). Let d be a positive integer
whose value will be chosen later. Let l = 2d−1 and r = (n/2)1/l. For simplicity,
we assume that r is an integer. For 1 ≤ k ≤ n/2, we represent k by a vector
k = (k1, . . . , kl) ∈ {1, . . . , r}l. It will be convenient to consider that k is rep-
resented by an r-ary l-digits number. For 1 ≤ i ≤ l and 1 ≤ j ≤ r, let P i

j

(Qi
j , resp.) be the set of n/r variables consists of all uk (vk, resp.) such that

k = (r1, . . . , ri−1, j, ri+1, . . . , rl) for some r1, . . . , rl ∈ {1, . . . , r}, i.e., the i-th
digit of the r-ary representation of k is equal to j.

We claim that fG is equivalent to

∧
1≤i≤l

⎛⎝ ∨
1≤j≤r

(
OR(P i

j) ∧OR(Qi
j)
)⎞⎠ ∨ (Thn/2

2 (U) ∨ Thn/2
2 (V)

)
, (1)

where OR(X) denotes the disjunction of all variables of X and Thn
k (X) denotes

the k-threshold function on n variables, i.e., it outputs 1 iff the number of ones
in an input is greater than or equal to k.

Before we show the correctness of Eq. (1), we determine the value of d and
estimate the number of AND gates needed to compute Eq. (1). Since (i) the
AND of l functions can be computed by a circuit of level log l = d− 1 with l− 1
AND gates, and (ii) the 2-threshold function on n/2 variables can be computed
by a single level circuit that includes log(n/2) = log n − 1 AND gates1, we can
construct a d-level circuit including at most

1 Proof: Let X = {x1, . . . , xn} and consider that an integer k = 1, . . . , n is represented
by a log n-digits binary number. Let Xi,j (j ∈ {0, 1}) be the OR of all xk such that
i-th digit of binary representation of k is equal to j. Then it is easy to check that
Thn

2 ≡ ∨1≤i≤log n(Xi,0 ∧ Xi,1).

On the Monotone Circuit Complexity of Quadratic Boolean Functions 33

lr + l − 1 + 2(logn− 1) < 2d−1((n/2)1/2d−1
+ 1) + 2 logn (2)

AND gates. If we choose d = log logn, the RHS of Eq. (2) is upper bounded by
4.5 logn.

Now we proceed to the proof of the correctness of Eq. (1). Obviously, for an
input with at most 1 ones, both fG and Eq. (1) output 0. For an input with at
least 3 ones, both fG and Eq. (1) output 1 because (at least) one of two sets U
and V contain at least 2 variables that assigned the value 1. Thus, the interesting
cases are for an input with 2 ones.
(Case 1) uk1 = uk2 = 1 or vk1 = vk2 = 1 for some k1 �= k2.

Obviously, both fG and Eq.(1) output 1 in this case.
(Case 2) uk = vk = 1 for some k ∈ {1, . . . , n/2}.

By the definition of G, fG outputs 1 on such an input. For each 1 ≤ i ≤ l,
OR(P i

ki
) = OR(Qi

ki
) = 1 if ki is equal to the i-th digit of r-ary representation

of k. This implies the output of Eq. (1) is also 1.
(Case 3) uk1 = vk2 = 1 for some k1 �= k2.

By the definition of G, fG outputs 0 on such an input. Since k1 �= k2, there
is 1 ≤ i ≤ l such that the i-th digit of the r-ary representation of k1 and k2
are different. For such i, the value of

∨
1≤j≤l(OR(P i

j) ∧ OR(Qi
j)) is 0, and this

implies the output of Eq. (1) is also 0.
�

Remark 3. The graph we defined in the proof of Theorem 2 consists of three sub-
graphs, G̃,KU andKV . Interestingly, the single level conjunctive complexity and
the conjunctive complexity of each subgraph are identical, i.e., size1

mon,∧(G̃) =
sizemon,∧(G̃) = n/2, size1

mon,∧(KU) = sizemon,∧(KU) = log n − 1 and
size1

mon,∧(KV) = sizemon,∧(KV) = logn− 1.

Let Gap∧(n) = max{size1
mon,∧(fG)/sizemon,∧(fG) | G = (V,E), |V | = n}.

Theorem 2 shows that Gap∧(n) = Ω(n/ log n). Note that the upper bound of
O(n) is trivial since size1

mon,∧(fG) ≤ n− 1 for every G on n vertices. We conjec-
ture that our lower bound is tight, i.e., Gap∧(n) = Θ(n/ log n). Below we prove
a slightly weaker upper bound of Gap∧(n) = O(n/ log log n).

Theorem 4. Let G be a graph on n vertices. Suppose that size1
mon,∧(fG) =

Ω(p(n)) for some function p(·). Then sizemon,∧(fG) = Ω(log log p(n)).

Proof. (Sketch) Let G be a graph on n vertices whose single level conjunctive
complexity is Ω(p(n)). Let C be an arbitrary monotone circuit that computes
fG. Below we show that C must contain Ω(log log p(n)) AND gates.

For a monotone function h, let PIi(h) be the set of all prime implicants
of h whose length is i. The covering number of h, denoted by cov(h), is de-
fined as the minimal m such that there are m pairs of sets of variables (Ai, Bi)
(i = 1, . . . ,m) that satisfy (i) Ai ∩ Bi = ∅ (∀i), (ii) Ai × Bi ⊆ PI2(h) (∀i),
and (iii)

⋃m
i=1Ai × Bi = PI2(h). In such a case, we say that a set of pairs

{(Ai, Bi) | i = 1, . . . ,m} covers PI2(h). Obviously, cov(fG) = size1
mon,∧(fG) for

every G.

34 K. Amano and A. Maruoka

We define the operation ∧∗ as follows: Suppose that g = g1 ∧ g2. Then
g1 ∧∗ g2 is the disjunction of all prime implicants of g whose length is at most
2. Let C∗ be a circuit obtained from C by replacing each ∧ gate in C with ∧∗

gate. The theorem known as the “replacement rules” (see e.g., [22, Theorem
5.1]) guarantees that the circuit C∗ also computes fG. In the following, we as-
sume that if g1 and g2 are two inputs of an ∧∗ gate in C∗, then PI1(g1) and
PI1(g2) are disjoint. (If PI1(g1) ∩ PI1(g2) = S �= ∅, then we replace g1 ∧∗ g2 by
(h1∧∗h2)∨OR(S) where hi is obtained from gi by removing all prime implicants
in S. This does not affect on the number of ∧∗ gates in C∗ and the output of
C∗. In addition, this replacement has no influence on the covering number of
each gate.)

For an ∧∗ gate g in C∗, the level of g is defined as the maximal number of
∧∗ gates on a path from an input to (the output of) g. Note that the lowest ∧∗

gate is of level 1. Let d be the level of the circuit C∗, and for i = 1, . . . , d, let ki

be the number of ∧∗ gates whose level is i. Note that the number of ∧∗ gates in
C∗, say k, is given by k =

∑d
i=1 ki.

Let g = g1 ∧∗ g2 be an arbitrary ∧∗ gate of level l in C∗. We claim that

cov(g) ≤ 5 · 62l−1−2 max{k1, . . . , kl−1}2
l−2, (for l ≥ 2), (3)

cov(gi) ≤ 62l−2−1 max{k1, . . . , kl−1}2
l−1−1, (for l ≥ 2 and i = 1, 2). (4)

To prove these inequalities, we need the following lemma.

Lemma 5. Let h = h1 ∧∗ h2. Suppose that cov(h1), cov(h2) ≥ 1 and PI1(h1) ∩
PI1(h2) = ∅. Then cov(h) ≤ 5 · cov(h1)cov(h2).

�

Proof. Let m1 = cov(h1) and m2 = cov(h2). We can express h1 and h2
as

h1 = t1 ∨
m1∨
i=1

ai,1bi,1, h2 = t2 ∨
m2∨
i=1

ai,2bi,2,

where the tj , ai,j and bi,j are disjunctions of variables such that V ar(ai,j) ∩
V ar(bi,j) = ∅ (∀i, j) and V ar(t1) ∩ V ar(t2) = ∅. We have

PI2(h1 ∧∗ h2) =
∨

i1,i2

PI2(ai1,1ai2,1bi1,1bi2,2)

∨
∨
i2

PI2(t1ai2,2bi2,2) ∨
∨
i1

PI2(t2ai1,1bi1,1) ∨ PI2(t1t2).

It is easy to check that, for each pair (i1, i2), PI2(ai1,1ai2,1bi1,1bi2,2) can be
covered by two pairs (ai1,1 ∩ ai2,2, bi1,1 ∩ bi2,2) and (ai1,1 ∩ bi2,2, ai2,2 ∩ bi1,1).
Similarly, each PI2(t1ai2,2bi2,2) (PI2(t2ai1,1bi1,1), resp.) can be covered by a
pair (t1 ∩ ai2,2, t1 ∩ bi2,2) ((t2 ∩ ai1,1, t2 ∩ bi1,1), resp.). Altogether, PI2(h1 ∧∗ h2)
can be covered by a set of at most 2m1m2 +m1 +m2 + 1 ≤ 5m1m2 pairs.

�

On the Monotone Circuit Complexity of Quadratic Boolean Functions 35

Proof of Theorem 4(continued). By Lemma 5, Eq. (4) immediately implies Eq.
(3) for each l. Hence we only need to show Eq. (4). We show this by induction
on l.

The base case, l = 2, is obvious since RHS of Eq. (4) is k1 and the cov-
ering number of an input of an ∧∗ gate of level 2 is shown to be at most
k1.

The induction step is as follows : Since the function computed by an input
of an ∧∗ gate of level l can be represented by the disjunction of variables and
outputs of ∧∗ gates of level at most l − 1, the covering number of it is upper
bounded by

5kl−162l−2−2 max{k1, . . . , kl−2}2
l−1−2 + 62l−3−1 max{k1, . . . , kl−2}2

l−2−1

≤ 62l−2−1 max{k1, . . . , kl−1}2
l−1−1,

which completes the proof of the induction step.
The assumption size1

mon,∧(fG) = Ω(p(n)) in the statement of the theorem
implies that k times the value of Eq. (3) for l = d is Ω(p(n)), and this implies
(6k)2

k ≥ (6k)2
d

= Ω(p(n)) (since k ≥ d). Hence we have k = Ω(log log p(n)),
which completes the proof of the theorem.

�

3.3 Disproving Single Level Conjecture for Multi-output
Functions

Again, if we restrict ourselves to circuits of single level, a good lower bound on
size1

mon(f) can easily be derived by combining the graph theoretic arguments
and the results that have been developed for obtaining a lower bound on the
monotone complexity of the Boolean sums, which we state below.

Definition 6. Let X = {x1, . . . , xn}. F (X) ≡ (f1, . . . , fm) : {0, 1}n → {0, 1}m

is a set of Boolean sums if each function fi is a disjunction of variables in X.
For a disjunction f of variables in X, we use V ar(f) denote the subset of X on
which f essentially depends. A set of Boolean sums F is called (h, k)-disjoint if
for every {i0, . . . , ih} ⊆ {1, . . . ,m},

∣∣⋃h
i=0 V ar(fi)

∣∣ ≤ k holds.

Theorem 7 ([13]). Let F = (f1, . . . , fm) be a set of Boolean sums. If F is
(h, k)-disjoint, then the size of an optimal monotone circuit for F is at least

∑
1≤i≤m

�|V ar(fi)|/k� − 1
hmax{1, h− 1} .

By using the above theorem, we can show the following.

Theorem 8. Let G = (V,E) be a graph that does not contain a copy of K2,2.
Then size1

mon(fG) ≥ |E|.

36 K. Amano and A. Maruoka

Proof. Let C be an optimal single level monotone circuit for fG. We repre-
sent fG = ∨k

i=1gi,1gi,2, where k is the number of AND gates in C, and gi,1
and gi,2 are disjunctions of variables computed by the inputs of the i-th AND
gate.

For each i = 1, . . . , k, at least one of V ar(gi,1) or V ar(gi,2) contain at most
one variable. This is because if |V ar(gi,1)| ≥ 2 and |V ar(gi,2)| ≥ 2, then G must
contain K2,2 (if two sets are disjoint), or fG must contain a prime implicant of
length 1 (if two sets are not disjoint). Hence, without loss of generality, we can
assume that |V ar(gi,1)| = 1 for every i = 1, . . . , k (by exchanging gi,1 and gi,2
if necessary). Let X =

⋃
i V ar(gi,1). Now we convert C to a circuit C ′ by the

following construction:

∨
x∈X

x ∧

⎛⎝ ∨
j:V ar(gj,1)={x}

gj,2

⎞⎠ .

Since we can save k−|X| AND gates and the number of additional OR gates
we need is shown to be at most k − |X|, the size of C ′ is not greater than that
of C.

For each x ∈ X, let hx =
∨

j:V ar(gj,1)={x} gj,2. It is obvious that V ar(hx) is a
subset of the set of neighbors of x. Since G does not contain K2,2, |V ar(hx1) ∩
V ar(hx2)| ≤ 1 for every distinct x1, x2 ∈ X. Hence the set of functions H =
{hx | x ∈ X} can be viewed as the (1, 1)-disjoint Boolean sums. Therefore, the
size of C ′ is at least

sizemon(H) + |X|+ |X| − 1 ≥ |E| − |X|+ 2|X| − 1 ≥ |E|.

The first inequality follows from Lemma 7.

�

An explicit construction of the graph on n vertices that does not contain
K2,2 and has Ω(n3/2) edges based on the notion of the “projective plane” was
known (e.g., [1]). The above theorem yields size1

mon(fG) = Ω(n3/2) for such
G. We remark that we can extend the arguments of the proof of Theorem 8
for a graph that does not contain a copy of Kr,r for r > 2. Thus an explicit
construction for such a graph may yield higher lower bounds on the size of
single level circuits.

The question that then arises is : “Is there a quadratic function f such that
sizemon(fG) is strictly smaller than size1

mon(fG)?”
The problem of answering this question was stated as open problem in [11].

We have shown in the previous section that the answer is “yes” if we only count
the number of AND gates. In the following, we show that the answer is also
“yes” if we consider a set of quadratic functions.

For a set of m graphs G = (G1, . . . , Gm), a set of quadratic functions associ-
ated with G, denoted by fG , is defined by the set of m functions (fG1 , . . . , fGm

).

Lemma 9. Let H = (h1, . . . , hm) be a set of Boolean sums on {x1, . . . , xn}. Let
F = (f1, . . . , fm) be a set of quadratic functions on U ∪ V = {u1, . . . , un} ∪

On the Monotone Circuit Complexity of Quadratic Boolean Functions 37

{v1, . . . , vn} where each fi is obtained from hi by replacing each variable xk

in hi with the conjunction ukvk. Then an optimal single level monotone cir-
cuit for F is a circuit obtained from an optimal monotone circuit for H that
consists of OR gates only by replacing each input node xk with an AND gate
uk ∧ vk.

Proof. Let C be an optimal single level monotone circuit for F . Let g be an
AND gate in C. Since C is a single level circuit, we can represent g = g1 ∧ g2
where g1 and g2 are disjunctions of variables. Suppose that g contains a prime
implicant not of the form ukvk for some k. In such a case, there is an assignment
to the input variables that contains at most 2 ones such that g outputs 1 and
fi outputs 0 for every i. This implies that there are no paths from an input to
an output of C that leads through g (since C is a single level circuit), and this
contradicts the assumption that C is optimal. Hence we can conclude that every
AND gate computes the conjunction of the form ukvk for some k.

�

Theorem 10. There is a set of graphs G = (G1, . . . , G14) such that sizemon(fG)
is strictly smaller than size1

mon(fG).

Proof. To prove the theorem, we use the construction of Boolean sums given
by Tarjan [19] (or [22, p.164]), which was used for disproving that AND gates
are powerless for computing Boolean sums. Let H = (h1, . . . , h14) be a set of
Boolean functions on {x1, . . . , x11} defined as follows: Let

H1 = {1, 5}, H2 = {2, 6}, H3 = {3, 5}, H4 = {4, 6},
H5 = {5, 9}, H6 = {5, 9, 10}, H7 = {5, 9, 10, 11},
H8 = {6, 9}, H9 = {6, 9, 10}, H10 = {6, 9, 10, 11},
H11 = H1 ∪ {7, 9, 10, 11}, H12 = H2 ∪ {8, 9, 10, 11},
H13 = H3 ∪ {7, 9, 10, 11}, H14 = H4 ∪ {8, 9, 10, 11},

and define hi =
∨

k∈Hi
xk for i = 1, . . . , 14. It was shown that 18 OR gates are

necessary to compute H if no AND gates are used. On the other hand, we can
compute H by a circuit that contains 16 OR gates and one AND gate (an AND
gate that computes h7 ∧ h10 can save two OR gates.)

Define a set of the quadratic functions F = (f1, . . . , f14) as in the statement
of Lemma 9. By the above argument, we have sizemon(F) ≤ 17+11 = 28. On the
other hand, by Lemma 9, we have size1

mon(F) = 18 + 11 = 29, which completes
the proof of the theorem.

�

As for the case of the conjunctive complexity, to determine the largest pos-
sible value of size1

mon(F)/sizemon(F) seems to be an interesting subject. The
construction in the proof of Theorem 10 gives the lower bound of 29/28. More
sophisticated constructions may yield a slightly better constant. The authors do
not know whether there is a set of quadratic functions F such that the ratio is
more than a constant at the time of writing this paper.

38 K. Amano and A. Maruoka

4 Monotone Versus Non-monotone

The graph G that we defined in the proof of Theorem 2 has the form of G =
G̃ ∪KU ∪KV where G̃ ⊆ U × V is a bipartite graph, and KU and KV are the
complete graphs on U and V respectively. Interestingly, it is shown that NOT
gates are almost powerless for quadratic functions associated with graphs of such
form.

Theorem 11. (implicitly in [21]) Let G be a graph on {1, . . . , n} such that
G = G̃∪KU ∪KV where G̃ ⊆ U ×V for some partition U, V ⊆ {1, . . . , n}. Then

sizemon(fG) ≤ 2size(fG) + 6n+ o(n).

Proof. (Sketch) In fact, the result by Wegener [21, Theorem 4.4] is of the form
sizemon(fG) ≤ O(size(fG))+O(n). For the purpose of completeness and in order
to determine the hidden constants, we describe the sketch of the proof.

Given an optimal circuit C computing fG. By using the DeMorgan’s law, we
can convert C to a so-called standard circuit C ′ for fG, that is a Boolean circuit
in which the permitted gate operations are {∧,∨} and whose input nodes are
labeled by literals, whose size is at most twice of the size of C.

Let U = {u1, . . . , uk} and V = {v1, . . . , vn−k}. Let u′
i = ui ∧ OR(V), v′

i =
vi ∧ OR(U), ũi = ∨j �=iu

′
j and ṽi = ∨j �=iv

′
j . Let f ′ be a function computed by a

circuit obtained from C ′ by replacing each ui (vi, resp.) with u′
i (v′

i, resp.) and
each ūi (v̄i, resp.) with ũi (ṽi, resp.). The key to the proof is the observation
that fG can be computed by f ′ ∨ Th|U |

2 (U)∨ Th|V |
2 (V). (In other words, we can

use u′
i and v′

i as pseudoinputs and ũi and ṽi as pseudocomplements for ui and vi

respectively. See [21] for more details.)
By following the equation

Thn
2 (X) =

2∨
q=1

Th
√

n
2

(
OR(Bq

1), . . . , OR(Bq√
n
)
)
,

where X = {xr1r2 | 1 ≤ r1, r2 ≤
√
n} and Bq

i = {xs1s2 | sq = i}, we can compute
Th

|U |
2 and Th

|V |
2 with at most 2(|U | + |V |) + o(n) = 2n + o(n) gates. Clearly,√

|U |+
√
|V | = o(n) additional gates are suffice to compute OR(U) and OR(V).

All u′
i and v′

i can be computed with n gates. Moreover, 3|U |+3|V | = 3n gates are
suffice to compute all ũi and ṽi. Altogether we use at most 6n+ o(n) gates.
�

We remark that the standard counting argument shows that the circuit com-
plexity of almost all quadratic functions associated with graphs of the form
G ∪KU ∪KV , where G̃ ⊆ U × V , is Ω(n2/ log n).

For a bipartite graph G ⊆ U × V , let G+ be the graph G ∪ KU ∪ KV .
The relationship between the monotone complexity of fG and of fG+ seems
to be an interesting. Since sizemon(Thn

2) is known to be 2n + o(n), we have
sizemon(fG+) ≤ sizemon(fG) + 2n + o(n). On the other hand, we do not know
whether sizemon(fG+) = Ω(sizemon(fG)) or not. However, if we consider multi-
output functions, computing a set of functions fG+

1
, . . . , fG+

m
may significantly

easier than computing a set of functions fG1 , . . . , fGm
.

On the Monotone Circuit Complexity of Quadratic Boolean Functions 39

The n-point Boolean convolution CONVn(x0, . . . , xn−1, y0, . . . , yn−1):
{0, 1}2n → {0, 1}2n−1 is the function with output (S0, . . . , S2n−2) defined by

Sk(x0, . . . , xn−1, y0, . . . , yn−1) =
∨

i+j=k

xiyi.

Each Sk is naturally represented by a bipartite graph G̃k ⊆ U × V where
U = {x0, . . . , xn−1} and V = {y0, . . . , yn−1}. Let CONV+

n denote the func-
tion with output (fG+

0
, . . . , fG+

2n−2
). It was known that the monotone complex-

ity of the n-point Boolean convolution is Ω(n1.5) [23] and the (general) circuit
complexity of it is O(n log2 n log log n) [22, p.168]. These imply that sizemon

(CONVn) = Ω(n1.5) whereas sizemon(CONV+
n) = O(size(CONV+

n)) + O(n) =
O(size(CONVn)) +O(n) = O(n log2 n log log n).

Acknowledgments. The authors would like to thank anonymous reviewers for
their helpful suggestions which helped in improving the quality of this paper.

References

1. N. Alon, Eigenvalues, Geometric Expanders, Sorting in Rounds, and Ramsey The-
ory, Combinatorica 6 (1986) 207–219

2. N. Alon and R. Boppana, The Monotone Circuit Complexity of Boolean Functions,
Combinatorica 7(1) (1987) 1–22

3. A. Andreev, On a Method for Obtaining Lower Bounds for the Complexity of
Individual Monotone Functions, Soviet Math. Dokl. 31(3) (1985) 530–534

4. K. Amano and A. Maruoka, The Potential of the Approximation Method, SIAM
J. Comput. 33(2) (2004) 433–447 (Preliminary version in : Proc. of 37th FOCS
(1996) 431–440)

5. C. Berg, S. Ulfberg, Symmetric Approximation Arguments for Monotone Lower
Bounds Without Sunflowers, Computational Complexity 8(1) (1999) 1–20

6. P.E. Dunne, The Complexity of Boolean Networks, Academic Press (1988)
7. A. Haken, Counting Bottlenecks to Show Monotone P �=NP, Proc. of 36th FOCS

(1995) 36–40
8. D. Harnik, R. Raz, Higher Lower Bounds for Monotone Size, Proc. of 32nd STOC

(2000) 191–201
9. S. Jukna, Combinatorics of Monotone Computations, Combinatorica 19(1) (1999)

65-85
10. S. Jukna, On Graph Complexity, ECCC TR04-004 (2004)
11. K. Lenz and I. Wegener, The Conjunctive Complexity of Quadratic Boolean Func-

tions, Theor. Comput. Sci. 81 (1991) 257–268
12. S.V. Lokam, Graph Complexity and Slice Functions, Theory Comput. Syst. 36

(2003) 71–88
13. K. Mehlhorn, Some Remarks on Boolean Sums, Acta Inf. 12 (1979) 371–375
14. P. Pudlák, V.Rődl and P.Savický, Graph Complexity, Acta Inf. 25 (1988) 515–535
15. A. Razborov, Lower Bounds on the Monotone Complexity of Some Boolean Func-

tion, Soviet Math. Dokl. 31 (1985) 354–357
16. A. Razborov, On the Method of Approximation, Proc. 21th STOC (1989) 167–176

40 K. Amano and A. Maruoka

17. A. Razborov, S. Rudich, Natural Proofs, J. Comput. Syst. Sci. 55(1) (1997) 24–35
18. J. Simon and S.C. Tsai, On the Bottleneck Counting Argument, Theor. Comput.

Sci. 237(1-2) (2000) 429–437
19. R. Tarjan, Complexity of Monotone Networks for Computing Conjunctions, Ann.

Disc. Math. 2 (1978) 121–133
20. Z. Tuza, Covering of Graphs by Complete Bipartite Subgraphs, Complexity of 0-1

Martix, Combinatorica 4 (1984) 111–116
21. I. Wegener, More on the Complexity of Slice Functions, Theor. Comput. Sci. 43

(1986) 201–211
22. I. Wegener, The Complexity of Boolean Functions, Wiley-Teubner (1987)
23. J. Weiss, An Ω(n3/2) Lower Bound on the Complexity of Boolean Convolution,

Info. and Cont. 59 (1983) 84–88
24. U. Zwick, On the Number of ANDs versus the Number of ORs in Monotone

Boolean Circuits, Inf. Process. Let. 59 (1996) 29–30

Generalized Function Matching

Amihood Amir1,� and Igor Nor2,��

1 Department of Computer Science, Bar-Ilan University,
Ramat-Gan 52900, Israel

+972-3-531-8770, Fax +972-3-736-0498
College of Computing, Georgia Tech, Atlanta, GA 30332-0280

2 Department of Computer Science, Bar-Ilan University,
Ramat-Gan 52900, Israel

{amir, norigo}@cs.biu.ac.il

Abstract. We present problems in different application areas: tandem
repeats (computational biology), poetry and music analysis, and author
validation, that require a more sophisticated pattern matching model
that hitherto considered.

We introduce a new matching criterion – generalized function match-
ing – that encapsulates the notion suggested by the above problems. The
generalized function matching problem has as its input a text T of length
n over alphabet ΣT ∪ {φ} and a pattern P = P [0]P [1] · · · P [m − 1] of
length m over alphabet ΣP ∪ {φ}. We seek all text locations i where
the prefix of the substring that starts at i is equal to f(P [0])f(P [1]) · · ·
f(P [m − 1]), for some function f : ΣP → Σ∗

T .
We give a polynomial time algorithm for the generalized pattern

matching problem over bounded alphabets. We identify in this problem
an important new phenomenon in pattern matching. One where there
is a significant complexity difference between the bounded alphabet and
infinite alphabet case. We prove that the generalized pattern matching
problem over infinite alphabets is NP-hard. To our knowledge, this is
the first case in the literature where a pattern matching problem over
a bounded alphabet can be solved in polynomial time but the infinite
alphabet version is NP-hard.

Keywords: Pattern matching, function matching, parameterized match-
ing, NP-hard.

1 Introduction

The last few decades have prompted the evolution of pattern matching from
a combinatorial solution of the exact string matching problem [15, 17] to an
area concerned with approximate matching of various relationships motivated
by computational molecular biology, computer vision, and complex searches in

� Partly supported by NSF grant CCR-01-04494 and ISF grant 282/01.
�� Partly supported by ISF grant 282/01.

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 41–52, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

42 A. Amir and I. Nor

digitized and distributed multimedia libraries [14, 8]. In [2] a new generalized
matching paradigm, that of function matching, was introduced. In this paper
we generalize the function matching model to make it more suitable for several
important applications in a number of diverse areas.

In the traditional pattern matching model, one seeks exact occurrences of a
given pattern in a text, i.e. text locations where every text symbol is equal to
its corresponding pattern symbol. In the parameterized matching problem, in-
troduced by Baker [10], one seeks text locations where there exists a bijection f
on the alphabet for which every text symbol is equal to the image under f of the
corresponding pattern symbol. The parameterized matching problem was intro-
duced by Baker [10]. Her main motivation lay in software maintenance, where
program fragments are to be considered “identical” even if variable names are
different. Therefore, strings under this model are comprised of symbols from two
disjoint sets Σ and Π containing fixed symbols and parameter symbols respec-
tively. In this paradigm, one seeks parameterized occurrences, i.e., occurrences
up to renaming of the parameter symbols, of a string in another. This renaming
is a bijection b : Π → Π.

In [2] it was pointed out that for some applications f cannot be a bijection.
Rather, it should be simply a function. More precisely, P matches T at location i
if for every element a ∈ Σ, all occurrences of a have the same corresponding sym-
bol in T . In other words, unlike in parameterized matching, there may be a sev-
eral different symbols in the pattern which are mapped to the same text symbol.

An example of a problem where parameterized matching proves insufficient
and function matching is required is the following.

One of the interesting problems in web searching is searching for color images
(e.g. [20, 9, 5]). The simplest possible cases is searching for an icon in a screen, a
task that the Human-Computer Interaction Lab at the University of Maryland
was confronted with. If the colors were fixed, then this is exact two-dimensional
pattern matching [4]. However, if the color map is different the exact matching
algorithm would not find the pattern. Parameterized two dimensional search is
precisely what is needed. If, in addition, we are also willing to lose resolution,
then we would use a two dimensional function matching search.

However, even a function f : Σ → Σ can not answer more sophisticated ques-
tions on the text structure where the repeating element is not a single symbol, but
rather, say, a substring. A very useful and famous example is the tandem repeat.

Tandemly repeated DNA sequences are widespread throughout the human
genome and show sufficient variability among individuals in a population that
they have become important in several fields including genetic mapping, linkage
analysis, and human identity testing. This importance has led to very active re-
search in efficient algorithms to find tandem repeats (e.g. [11]). Tandem repeats
may appear in various lengths. They are called sattelites in the ranges of 100 kb
to over 1 Mb, minisattelites in the ranges of 1 kb to 20 kb, and microsattelites or
short tandem repeats (STRs) in the range of 1 to 6 base pairs. The repeat is not
just a single repetition. In the case of STR’s, for example, the whole repetitive re-
gion may span up to 150 base pairs. Thus, an analysis of a repeat region may be a

Generalized Function Matching 43

query of the type: Find a region of the form AAAAA, which means: “find a region
where a substring appears adjacent to itself five times”. Clearly one may think
of more complex combinations, and interrelations between different substrings.

Other motivations for the problem may arise from poetry and music anal-
ysis, or author validation, among others. Various forms of poetry have quite a
rigid order and organization. For example, the English or Shakespearean son-
net uses the rhyme scheme ABABCDCDEFEFGG, the Italian sonnet using
the rhyme scheme ABBAABBACDECDE. Various music forms also have a
distinct structure. One may want to search for a repeated theme, for instance.
Finally, in the authorship verification problem one is asked to verify authorship of
an anonymous (or fraudulent) text (e.g. [16]). It is possible that certain writing
structure will give the clue.

The above examples are a sample of diverse application areas encountering
search problems that are not solved by state of the art methods in pattern
matching. This need led us to introduce, in this paper, the generalized function
matching criterion, and to explore the efficiency of searching in this paradigm.

Definition 1. The Generalized Function Matching with Don’t Cares Problem
(GFMφ) is defined as follows.

Input: Text T of length n over alphabet ΣT

⋃
{φ}. Pattern P of length m

over alphabet ΣP

⋃
{φ}, where φ is a “don’t care”. A φ in the text matches any

pattern symbol, while φ in the pattern matches any text substring.
Output: Every index i for which there exist some function f : ΣP → Σ∗

T ,
such that the prefix of the text substring starting at i is equal to f(P [0])f(P [1]) · · ·
f(P [m− 1]).

Function matching was a natural generalization of parameterized matching.
However, relaxing the bijection restriction introduced non-trivial technical dif-
ficulties. Many powerful pattern matching techniques such as automata meth-
ods [17, 12], subword trees [23, 13], dueling [21, 4] and deterministic sampling [22]
assume transitivity of the matching relation. For any pattern matching criteria
where transitivity does not exist, the above methods do not help.

Examples of pattern matching with non-transitive matching relation are
string matching with “don’t cares” [15], less-than matching [7], pattern match-
ing with mismatches [1, 18] and swapped matching [19, 3, 6]. It is interesting
to note that the efficient algorithms for solving the above problems all used
convolutions as their main tool. Convolutions were introduced by Fischer and
Paterson [15] as a technique for solving pattern matching problems where the
match relation is not transitive. Indeed, in [2] convolutions played a key role in
the efficient algorithm for function matching. It turns out that for generalized
function matching, even convolutions are not powerful enough.

There are three main contributions in this paper.

1. The introduction of an important new type of generalized pattern matching,
that of generalized function matching.

2. An example of an important new phenomenom in pattern matching. One
where there is a significant complexity difference between the bounded al-

44 A. Amir and I. Nor

phabet and infinite alphabet case. In all known pattern matching applications
to date it was always the case that a polynomial time algorithm for infinite
alphabet existed whenever a polynomial time algorithm for a bounded al-
phabet existed. A couple of examples are the exact matching case, where the
time for both bounded and infinite alphabet is linear [17], pattern matching
with mismatches, where the time for bounded alphabets is O(n logm) and
for infinite alphabets is O(n

√
m logm) [1]. To our knowledge, this is the first

case where a pattern matching problem over a bounded alphabet can be
solved in polynomial time but the infinite alphabet version is NP-hard.

3. We show a polynomial time algorithm for the generalized function matching
problem with don’t cares over bounded alphabets. We prove that the gener-
alized function matching problem with don’t cares over infinite alphabets is
NP-hard.

2 The Bounded Alphabet Case

We reformulate the problem using simplified notations.
The generalized function matching with don’t cares problem is the following.
Input: Text T = t0t1 · · · tn−1, ti ∈ ΣT

⋃
{φ}, ∀i ∈ {0, ..., n − 1}. Pattern

P = p0p1 · · · pm−1, pj ∈ ΣP

⋃
{φ}, ∀j ∈ {0, ...,m− 1}.

Output: All text locations i, for which ∃f : ΣP → Σ∗
T such that T (i) = f(P)

(where we denote T (i) = titi+1ti+2 · · · ti+�, and f(P) = f(p0)f(p1) · · · f(pm−1)).
Note that T (i) = f(P) also in the case where there are φ’s in T (i). Each such

φ matches the symbol in f(P) that is aligned with it. Notice also that the φ’s in
the pattern can be replaced by different characters that are not in ΣP . Formally,
let t be the number of don’t cares in the pattern. Define α0, α1, αt−1, (αi �∈ ΣP).
Let P ′ be the string obtained by replacing the ith φ with αi, i = 0, ..., t− 1.

Lemma 1. The generalized function matches of P ′ in T are exactly those of P
in T .

Proof: It is clear that any generalized function matching of P ′ in T is also a
generalized function matching of P in T . The other direction is also true since
the only property that may be lost by the replacement is the injectivity. But
since function matching (unlike parameterized matching) does not require this
property, this is not a problem.
�

Note: The don’t cares replacement is linear relatively to |P |, since the maximal
number of don’t cares in the pattern is |P |. Note also that we have made an
implicit assumption that “don’t care” in the pattern can match anything in the
text. A more limiting assumption would be that a “don’t care” can only match
the image under f of a symbol from ΣP . Here we choose to apply the broadest
possible interpretation.

We will show in section 3 that the generalized function matching problem
with don’t cares in the text only is NP-hard for infinite alphabets. Lemma 1

Generalized Function Matching 45

guarantees that for infinite alphabets this problem is equivalent to the general-
ized function matching with don’t cares problem. In this section we proceed to
give a polynomial time algorithm for the generalized function matching prob-
lem with don’t cares in the text only for bounded alphabets. The algorithm is a
simple greedy algorithm.

Algorithm’s Idea: For every text location i, consider every pattern symbol
sequentially, trying to match it to all possible substrings starting where the last
matched substring ended. Clearly this greedy strategy “blows up” for infinite
alphabets, but for bounded alphabets, once all symbols were assigned to a sub-
string there is only one possible assignment for every symbol.

We present a pseudocode of the algorithm and its time analysis.

Algorithm
1. For every text location i do:

2. For each alphabet symbol σ ∈ Σ do:
Construct all potential fi(σ) as follows:

For every i ≤ k < � ≤ n, fi(σ) is tk · · · t�
endFor

3. For every possible constructed value of fi(p0) · · · fi(pm−1)
construct fi(P).

4. If T (i) = fi(P) then accept and halt
endFor

5. { No acceptance for all i } reject
end Algorithm

Algorithm’s Time: O(n2|ΣP |+1). It is easy to see that the algorithm can be
streamlined and achieve time O(n|ΣP |+1). In any event, for a fixed bounded
alphabet, the time is O(nc) for some c – clearly polynomial.

3 The Infinite Alphabet Case

Before proving the NP-Completeness, it is necessary to convert the given opti-
mization problem to a decision problem. It is possible to choose the most general
way for this purpose, so that the only requirement for the decision problem is to
answer the question “Is there a generalized function matching of the given pat-
tern in the text?”. Formally, the generalized function matching decision problem
is the following.

Definition 2. The Generalized Function Matching with Don’t Cares Decision
Problem (DGFMφ) is defined as follows.

Input: Text T = t0t1 · · · tn−1, ti ∈ ΣT

⋃
{φ}, ∀i ∈ {0, ..., n − 1}. Pattern

P = p0p1 · · · pm−1, pj ∈ ΣP , ∀j ∈ {0, ...,m− 1}.
Decide: Is there a text locations i, for which ∃f : ΣP → Σ∗

T where T (i) = f(P).

46 A. Amir and I. Nor

Theorem 1. DGFMφ is NP-complete.

Proof: Clearly DGFMφ ∈ NP . Suppose there is an input T = t0t1 · · · tn−1, and
P = p0p1 · · · pm−1. Guess text location i, and guess a function f : ΣP → Σn

T .
Now verify the following:

1. Construct f(P) by replacing every pj by f(pj).
2. Compare (character-by-character) T (i) to f(P).
3. If there is equality then accept, else reject.

Clearly the guess is polynomial in the input size: at most n elements for each
of the (possibly) m different symbols of P , for a total of O(nm). The verification
is linear time.

We now show that V C ≤p
m DGFMφ.

Definition 3. The Vertex Cover(VC) problem is the following.
Input: Graph G = (V,E), positive integer k.

Decide: Does G contain V ′ ⊆ V , |V ′| ≤ k and ∀(vli , vri) ∈ E, either vli ∈ V ′ or
vri ∈ V ′.

The Reduction: Given a general input of the VC problem G = (V,E), V =
(v1v2 · · · vn), E = (e1e2 · · · em), we construct the input for the generalized func-
tion matching.
Define:
x0, x1, · · · , xk−1, xj �= vi : k different symbols that will be assigned generalized
function matching. Refer to these symbols as pattern variables.
p0, p1, · · · , p2m−1, pj �= vi : 2m different symbols whose task is pattern blocks
borders.
b0, b1, · · · , b2m−1, bj �= vi : 2m different symbols whose task is text blocks borders.
...P ,

...T �= xi, pi, bi : pattern and text block separators.

Denote by
...P · · ·

...P︸ ︷︷ ︸
t

and
...T · · ·

...T︸ ︷︷ ︸
t

means t sequential appearances of the pattern

or text separator, respectively. We refer to them as sequential separator sets (of
text or pattern).
φ · · ·φ︸ ︷︷ ︸

t

: t sequential don’t cares.

We are ready to construct the pattern.

PR =
...P · · ·

...P︸ ︷︷ ︸
t

P
Block(0)

...P · · ·
...P︸ ︷︷ ︸

t

P
Block(1) · · ·

...P · · ·
...P︸ ︷︷ ︸

t

P
Block(m−1)

...P · · ·
...P︸ ︷︷ ︸

t

,

where P
Block(i) = p2ix0x1 · · ·xk−1p2i+1

The text is constructed as follows:

TR =
...T · · ·

...T︸ ︷︷ ︸
t

T
Block(0)

...T · · ·
...T︸ ︷︷ ︸

t

T
Block(1) · · ·

...T · · ·
...T︸ ︷︷ ︸

t

T
Block(m−1)

...T · · ·
...T︸ ︷︷ ︸

t

,

where T
Block(i) = b2i φ · · ·φ︸ ︷︷ ︸

k−1

vli φ · · ·φ︸ ︷︷ ︸
k−1

vri φ · · ·φ︸ ︷︷ ︸
k−1

b2i+1

vli and vri
are the two vertices of edge ei, and parameter t, the number of

separators’ repetitions will be specified later.

Generalized Function Matching 47

The idea of the reduction is to build a text block for every graph edge. This
text block contains the two vertices that define the edge, a lot of don’t cares,
whose purpose will be explained in the following lemmas, and two more symbols,
different from all others, that are located at the left and the right block borders.
The number of pattern and text blocks is equal to the number of edges. Every
two adjacent blocks are separated by block separators, (different in the text and
pattern). The pattern blocks are almost identical (except for their borders), and
can be matched to any text block.

Lemma 2. The reduction is polynomial in the size of the input problem.

Proof: Each pattern block contains k xi’s and 2 different pj ’s. The pattern
contains m pattern blocks, so without counting the pattern separators the size
is: | P

Block(i) |m = (k + 2)m, which is O(km).
In the text, every edge appears exactly once and for each of them there is one

block. So, a text block contains 2 symbols for 2 edge vertices, 3 sets of k−1 don’t
care and 2 borders symbols. There are |E| = m text blocks, so not counting the
text separators the size is: (2 + 3k − 3 + 2)m = (3k + 1)m, which is O(mk).

Define t, the number of times sequential separators repeat, to be (3k+1)m, for
both pattern and text separators. The reduction stays polynomial size since the
number of separators will be the main part of the pattern and text. The pattern
size is therefore (k + 2)m+ (3k + 1)m(m+ 1) = O(km2), while the text size is
also O(km2), it means both of them are polynomial in the input size.
�

Example: V = (1, 2, · · · , 9), E = ((1, 2), (2, 5), (3, 5), (1, 8)), k = 2, m = 4, thus
t = 28.

TR =
...T · · ·

...T︸ ︷︷ ︸
28

b0φ1φ2φb1
...T · · ·

...T︸ ︷︷ ︸
28

b2φ2φ5φb3
...T · · ·

...T︸ ︷︷ ︸
28

b4φ3φ5φb5
...T · · ·

...T︸ ︷︷ ︸
28

b6φ1φ8φb7
...T · · ·

...T︸ ︷︷ ︸
28

PR =
...P · · ·

...P︸ ︷︷ ︸
28

p0x0x1p1
...P · · ·

...P︸ ︷︷ ︸
28

p2x0x1p3
...P · · ·

...P︸ ︷︷ ︸
28

p4x0x1p5
...P · · ·

...P︸ ︷︷ ︸
28

p6x0x1p7
...P · · ·

...P︸ ︷︷ ︸
28

The next lemma is the main lemma required for the NP-completeness proof.

Lemma 3. ∃ VC of size ≤ k in G = (V,E) ⇐⇒ there is a text location i, for
which ∃f : ΣP → Σ∗

T , such that T (i) = f(P)

Proof: =⇒ Assume ∃ VC of size k in G. This means there is a set {v′
1, v

′
2, · · · , v′

k}
= V ′ ⊆ V, ∀ei, ∃v′

i ∈ ei ∩ V ′. In this case there is a match located at i = 1 and

it is: f(
...P) =

...T , f(xi) = vj , 0 ≤ i, j ≤ k − 1, while for every P
Block(q) match

only one xi to vj , and the rest xr, 0 ≤ r ≤ k− 1, r �= i will be set to don’t cares
that surround the vj .

Lemma 4. The matching described above exists.

Proof: Based on the VC existence assumption, for every edge (text block) eq,
there is at least one symbol v′

j ∈ V ′ which is in eq. Thus, for every block q in

48 A. Amir and I. Nor

the text, there is at least one symbol vj ∈ V that belongs to the VC. So, choose
this symbol for xi. Since there are k − 1 don’t cares on both sides of any vj in
the reduced text, set xr, 0 ≤ r ≤ i− 1 to a φ left of vj and xr, i+1 ≤ r ≤ k− 1

to a φ right of vj . Assign
...P to

...T since their number is the same. All other
matches are between sets of separators and are not within those sets so there are
no intersections by this matching. This way one can match any pattern blocks
q to the parallel text block q, while the remaining symbols inside the text block
will be set to p2q and p2q+1, 0 ≤ q ≤ 2m− 1. Since to the left and right of vj in
any block q there are at least k symbols (k − 1 don’t cares and one bw), there
is always at least one symbol for any pr. A schematic of this function matching
appears below.

...T · · ·
...T︸ ︷︷ ︸

t

...P · · ·
...P︸ ︷︷ ︸

t

P
Block(0)

...T · · ·
...T︸ ︷︷ ︸

t

P
Block(0)

...P · · ·
...P︸ ︷︷ ︸

t

P
Block(1)

...T · · ·
...T︸ ︷︷ ︸

t

P
Block(1)

...P · · ·
...P︸ ︷︷ ︸

t

· · ·

P
Block(m−1)

...T · · ·
...T︸ ︷︷ ︸

t

P
Block(m−1)

...P · · ·
...P︸ ︷︷ ︸

t

,

where the q blocks match is:

b2q···φ · · ·φ︸ ︷︷ ︸
k−i−1

p2q

φ · · ·φ︸ ︷︷ ︸
i

x0x1···xi−1

vj

xi

φ · · ·φ︸ ︷︷ ︸
k−i−1

xi+1xi+2···xk−1

φ · · ·φ︸ ︷︷ ︸
i

···b2q+1

p2q+1

�

⇐= Assume ∃ index i, function f : ΣP → Σ∗
T such that T (i) = f(P).

Lemma 5. f(
...P) =

...T .

Proof: The number of repetitions of the pattern separator
...P ism(3k+1)(m+1).

It can only be function matched to a symbol that appears at least m(3k+1)(m+

1) times. The only such text symbol is
...T and it appears exactly m(3k+1)(m+1)

times. Therefore f(
...P) =

...T .
�

Lemma 6. Any set of t sequential
...P is matched to set of t sequential

...T .

Proof: Since f(
...P) =

...T , every
...P is matched to either

...T or φ. But pattern sep-
arators are located sequentially, in sets of (3k+1)m, while the maximal number
of sequential φ in the text is k − 1, which is less than the number of sequential
separators. Thus, it is impossible to match one complete set to sequential don’t
cares only. On the other hand, the symbols immediately to the left and right of
a text separator are br and bl, respectively, and they are different from the text
separator symbol. Thus, the only way for generalized function matching of a
sequence of pattern separators is to match it to a sequence of text separators.
�

The immediate conclusion from the above lemmas is that every set of sequen-
tial pattern separators is matched to a set of sequential text separators. More-
over, the beginning of this matching is from the first text character: T (0) = f(P).

Generalized Function Matching 49

This means that for every i, the ith set of pattern separators is assigned to the
ith set of text separators. This leads to the conclusion that the existence of a
generalized function matching on a pattern and text constructed by the reduc-
tion causes every pattern block to be matched to the text block with the same
index. Schematically we get:

bl φ · · ·φ︸ ︷︷ ︸
k−1

vl φ · · ·φ︸ ︷︷ ︸
k−1

vr φ · · ·φ︸ ︷︷ ︸
k−1

br

plx0x1···xi−1xixi+1···xk−1pr

Lemma 7. For every pattern block p that is generalized function matched to
text block p, ∃xi, 0 ≤ i ≤ k − 1, such that for f(xi) = tqp

tqp+1tqr
, ∃j such

that tqp+j = vl or tqp+j = vr. In other words, either vl or vr is in the sequence
matched by one of the xi’s.

Proof: We start by claiming that every pattern block has at least one xi that
is assigned to some text block symbols which are not solely don’t cares. This is
clear since the maximum number of sequential don’t cares is k − 1, while the
number of sequentially located xi is k, at least one of them matches to non don’t
cares symbols.

Moreover, since pl and pr have to be matched to some not empty text
symbols, bl will be the first symbol of pl’s matching, while br has to be the
last symbol of pr’s matching. Thus, for every pattern block q, ∃xi, such that
f(xi) = tqp

tqp+1 · · · tqr
, where one of the tqi

’s is either vl or vr, the two graph
vertices that define the appropriate graph edge.
�

The idea for finding the vertex cover in case of generalized function matching
is based on the next simple fact.

The Single Matching Claim: If every xi is matched to exactly one symbol
(and the rest of the symbols are matched to pl and pr), then the matching is
the VC.

Proof: Based on the proven property that for every block there is at least one
xi that matches to a sequence that has vl or vr (or both) symbol, and adding the
assumption that the size of all matchings is exactly 1, one can conclude that for
every block there is exactly one xi that is matched to some vj , while the other
pattern variables are matched to φ in this block. The reason is that around any
vj there are k− 1 φ, thus if xi is matched to a vj and the size of every matching
is 1, the other pattern variables should be matched to φ in this particular block.
This reasoning is true for all blocks. Thus, generalized function matching covers
every text block and, as a result, every graph edge. The number of the pattern
variables is k, so the vertex cover size is also ≤ k.
�

The following lemma shows how to construct a generalized function matching
that satisfies the requirement of the single matching claim, i.e. that |f(xi)| = 1
for all pattern variables xi. Once this is the case, the single matching claim
guarantees the existence of a vertex cover of size k.

50 A. Amir and I. Nor

Lemma 8. Suppose there is a generalized function matching on the constructed
pattern and text and suppose there are q xi’s for which (|f(xi)| > 1). Then one
can construct another generalized function matching where |f(xi)| = 1, ∀i, 0 ≤
i ≤ k − 1.

Proof: By induction on q.

Base Case: q = 1. Assume there is exactly one xi for which |f(xi)| > 1, while
for all other pattern variables xw, |f(xw)| = 1. It is necessary to show that in
this case there is another generalized function matching such that ∀xw, 0 ≤ w ≤
k − 1, w �= j, |f(xw)| = 1.

Proof: Let xi be the only pattern variable where |f(xi)| > 1. We will show that
there is a matching where x0 is the only pattern variable where |f(x0)| > 1. We
do that iteratively by starting from the situation where xi is the only pattern
variable for which |f(xi)| > 1, and creating a matching where xi−1 is the only
pattern variable for which |f(xi−1)| > 1. This iteration is proven by the following
lemma.

Lemma 9. Suppose there is exactly one xi so that |f(xi)| = r > 1, while
all other pattern variables are matched to a single symbol. Denote f(xi) =
ti0ti0+1 · · · ti0+r−1, and f(xi−1) = ti0−1. Then one can change the matching
so that f(xi) = ti0+r−1, f(xi−1) = ti0−1ti0ti0+1 · · · ti0+r−2 and all others pattern
variables have the same assignments as they had had before.

Proof: Suppose that the suggested change is not a correct generalized func-
tion matching. This means there is some text block p that is not the match
of pattern block p using the suggested matching. The only pattern variables
whose assignments were changed were xi and xi+1 and they always follow each
other. Therefore the generalized function matching of the pair xi−1xi remains
unchanged. Note that if there was injectivity before, it may now be lost, how-
ever, this is not a requirement in function matching. Thus in case of this local
change the entire matching will stay correct.
�

The following lemma immediately follows, since one can iteratively “move to
the left” the symbol xi such that |f(xi)| > 1 until it becomes x0.

Lemma 10. Under the induction base case conditions, one can change the gen-
eralized function matching so the only pattern variable that will be matched to
more than one symbol will be the first one x0, while the others will be matched
to exactly one text symbol.

Our current situation is that we have a generalized function matching where
every pattern variable, except the first, is matched to a single text symbol. The
following lemma shows how to construct a matching where every pattern variable
is matched to a single text symbol, and then by the single matching claim we
have a vertex cover.

Generalized Function Matching 51

Lemma 11. If a matching f exists where |f(x0)| > 1, and |f(xi)| = 1, ∀i =
1, 2, · · · , k − 1, the ∃ matching f ′ where |f ′(xi)| = 1, ∀i = 0, 1, · · · , k − 1

Proof: Let f(x0) = ti0ti0+1 · · · ti0+r−1. Then construct matching f ′ such that
f ′(xi) = f(xi), ∀i = 1, 2, · · · , k − 1, for every block j, f ′(brj) = f(brj), f

′(blj) =
f(blj)ti0ti0+1 · · · ti0+r−2, and f ′(x0) = ti0+r−1.

f ′ is a generalized function matching since there is no problem with the blj
because they are different in every block. f ′(x0) also must match in every block
because f(x0) was a function and f ′(x0) is simply the last element of f(x0).
�

Induction Step: Assume correctness for q − 1. Prove the correctness for q.
Let xl be the leftmost pattern variable that satisfies |f(xl)| > 1. Then while

all pattern variables xi for i < l are matched to exactly one text symbol, to the
right of xl there are q − 1 �= 1 pattern variables that are matched to more than
one text symbol. Consider f(xl+1). One can perform the same trick that had
been done in the base case of the induction – construct a different generalized
function matching by transfering all symbols of f(xl) to f(xl+1), except the first
symbol. The correctness of this operation is explained in a similar fashion to that
of the base case of the induction. As a result, |f(xl)| = 1, while |f(xl+1)| > 1 and
this is another correct generalized function matching. If |f(xl+1)| was equal to 1
in the original matching, continue performing this change in right direction until
reaching the first xj where xj+1 satisfies the condition: |f(xj+1)| > 1. Performing
the operation now reduces the number of pattern variables that are matched to
more than one symbol to q − 1, so one can use the induction hypothesis and
complete the proof.
�

4 Conclusion and Open Problems

We have shown what is, to our knowledge, the first known pattern matching
problem that has a polynomial time solution for bounded alphabets but is NP-
hard for infinite alphabets. It would be interesting to find out whether the gen-
eralized function matching without don’t cares has a polynomial time solution.
Also, it is of interest to know whether generalized parameterized matching is
NP-complete or in P. Finally, the generalized function matching problem has
many applications. Thus it is important to find a good approximation to the
problem.

References

1. K. Abrahamson. Generalized string matching. SIAM J. Comp., 16(6):1039–1051,
1987.

2. A. Amir, A. Aumann, R. Cole, M. Lewenstein, and E. Porat. Function matching:
Algorithms, applications, and a lower bound. In Proc. 30th ICALP, pages 929–942,
2003.

3. A. Amir, Y. Aumann, G. Landau, M. Lewenstein, and N. Lewenstein. Pattern
matching with swaps. Proc. 38th IEEE FOCS, pages 144–153, 1997.

52 A. Amir and I. Nor

4. A. Amir, G. Benson, and M. Farach. An alphabet independent approach to two
dimensional pattern matching. SIAM J. Comp., 23(2):313–323, 1994.

5. A. Amir, K. W. Church, and E. Dar. Separable attributes: a technique for solving
the submatrices character count problem. In Proc. 13th ACM-SIAM Symp. on
Discrete Algorithms (SODA), pages 400–401, 2002.

6. A. Amir, R. Cole, R. Hariharan, M. Lewenstein, and E. Porat. Overlap matching.
In Proc. 12th ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 279–288,
2001.

7. A. Amir and M. Farach. Efficient 2-dimensional approximate matching of half-
rectangular figures. Information and Computation, 118(1):1–11, April 1995.

8. A. Apostolico and Z. Galil (editors). Pattern Matching Algorithms. Oxford Uni-
versity Press, 1997.

9. G.P. Babu, B.M. Mehtre, and M.S. Kankanhalli. Color indexing for efficient image
retrieval. Multimedia Tools and Applications, 1(4):327–348, Nov. 1995.

10. B. S. Baker. A theory of parameterized pattern matching: algorithms and appli-
cations. In Proc. 25th Annual ACM Symposium on the Theory of Computation,
pages 71–80, 1993.

11. G. Benson. Tandem repeats finder: a program to analyze dna sequence. Nucleic
Acids Research, 27(2):573–580, 1999.

12. R.S. Boyer and J.S. Moore. A fast string searching algorithm. Comm. ACM,
20:762–772, 1977.

13. M. T. Chen and J. Seiferas. Efficient and elegant subword tree construction. In
A. Apostolico and Z. Galil, editors, Combinatorial Algorithms on Words, chap-
ter 12, pages 97–107. NATO ASI Series F: Computer and System Sciences, 1985.

14. M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, 1994.
15. M.J. Fischer and M.S. Paterson. String matching and other products. Complexity

of Computation, R.M. Karp (editor), SIAM-AMS Proceedings, 7:113–125, 1974.
16. D. Holmes. The evolution of stylometry in humanities scholarship. Literary and

Linguistic Computing, 13(3):111–117, 1998.
17. D.E. Knuth, J.H. Morris, and V.R. Pratt. Fast pattern matching in strings. SIAM

J. Comp., 6:323–350, 1977.
18. S. Rao Kosaraju. Efficient string matching. Manuscript, 1987.
19. S. Muthukrishnan. New results and open problems related to non-standard

stringology. In Proc. 6th Combinatorial Pattern Matching Conference, pages 298–
317. Lecture Notes in Computer Science 937, Springer-Verlag, 1995.

20. M. Swain and D. Ballard. Color indexing. International Journal of Computer
Vision, 7(1):11–32, 1991.

21. U. Vishkin. Optimal parallel pattern matching in strings. Proc. 12th ICALP, pages
91–113, 1985.

22. U. Vishkin. Deterministic sampling - a new technique for fast pattern matching.
SIAM J. Comp., 20:303–314, 1991.

23. P. Weiner. Linear pattern matching algorithm. Proc. 14 IEEE Symposium on
Switching and Automata Theory, pages 1–11, 1973.

Approximate Distance Oracles for Graphs with
Dense Clusters

Mattias Andersson1, Joachim Gudmundsson2, and Christos Levcopoulos1

1 Department of Computer Science, Lund University, Box 118, 221 00 Lund, Sweden
christos@cs.lth.se, mattias@cs.lth.se

2 Department of Mathematics and Computing Science, TU Eindhoven, 5600 MB,
Eindhoven, the Netherlands
h.j.gudmundsson@tue.nl

Abstract. Let H1 = (V, F1) be a collection of N pairwise vertex disjoint
O(1)-spanners where the weight of an edge is equal to the Euclidean
distance between its endpoints. Let H2 = (V, F2) be a graph on V with
M edges of non-negative weight. The union of the two graphs is denoted
G = (V, F1 ∪F2). We present a data structure of size O(M2 + |V| log |V|)
that answers (1 + ε)-approximate shortest path queries in G in constant
time, where ε > 0 is constant.

1 Introduction

The shortest-path (SP) problem for weighted graphs with n vertices and m edges
is a fundamental problem for which efficient solutions can now be found in any
standard algorithms text, see also [8, 11, 18]. Lately the approximation version of
this problem has also been studied extensively [2, 7, 9]. In numerous algorithms,
the query version of the SP-problem frequently appears as a subroutine. In such
a query, we are given two vertices and have to compute or approximate the
shortest path between them. Thorup and Zwick [20] presented an algorithm for
undirected weighted graphs that computes (2k − 1)-approximate solutions to
the query version of the SP problem in O(k) time, using a data structure that
takes expected time O(kmn1/k) to construct and utilizes O(kn1+1/k) space. It
is not an approximation scheme in the true sense because the value k needs to
be a positive integer. Since the query time is essentially bounded by a constant,
Thorup and Zwick refer to their queries as approximate distance oracles.

We focus on the geometric version of this problem. A geometric graph has
vertices corresponding to points in Rd and edge weights from a Euclidean metric.
Throughout this paper we will assume that d is a constant. A geometric graph
G = (V, E) is said to be a t-spanner for V, if for any two points p and q in V, there
exists a path of length at most t times the Euclidean distance between p and q.
For geometric graphs, also, considerable previous work exists on the shortest path
and related problems. A good survey can be found in [17], see also [3, 6, 10, 19].
The geometric query version was recently studied by Gudmundsson et al. [13, 14]

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 53–64, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

54 M. Andersson, J. Gudmundsson, and C. Levcopoulos

Fig. 1. The three figures models parts of the transportation network in Norway, Sweden
and Finland. (a) The domestic railway network in the three countries (not complete).
(b) The railway connections between the countries together with the main air and sea
connections within, and between, Norway, Sweden and Finland. (c) The two networks
combined into one graph G

and they presented the first data structure that answers approximate shortest-
path queries in constant time, provided that the input graph is a t-spanner for
some known constant t > 1. Their data structure uses O(|V| log |V|) space and
can be constructed in time O(|E|+ |V| log |V|).

In this paper we extend the results in [13, 14] to hold also for “islands” of
t-spanners, i.e., a set of N vertex disjoint t-spanners inter-connected through
“airports” i.e. M edges of arbitrary non-negative weight. We construct a data
structure that can answer (1 + ε)-approximate shortest path queries in constant
time. The data structure uses O(M2+|V| log |V|) space and can be constructed in
time O(|E|+(M2+|V|) log |E|). Hence, for M = O(

√
|E|) the bound is essentially

the same as in [13, 14].
We claim that the generalization studied is natural in many applications.

Consider for example the freight costs within Norway, Sweden and Finland, see
Fig. 1. The railway network and the road network within a country are usually
t-spanners for some small value t, and the weight (transport cost) of an edge is
linearly dependent on the Euclidean distance. In Fig. 1a the railway networks of
Norway, Sweden and Finland (although not complete) is shown. The weight of
an edge is dependent on the Euclidean distance between its endpoints. Hence,
each country’s railway network and road network can most often be modeled as
a Euclidean t-spanner for some small constant t. (Places that are not reachable
by train are treated as single t-spanners containing only one point, for example
Haugesund on the west coast of Norway is only reachable by boat.). Apart from
these edges there are also edges that model, for example, air freight, sea freight,
or inter-connecting railway transports. An example of this is shown Fig. 1b,
where the main air and sea routes together with the inter-connecting railway
tracks are shown. The weight of these edges can be completely independent of
the Euclidean distance, as is usually the case when it comes to air fares. The

Approximate Distance Oracles for Graphs with Dense Clusters 55

reason why inter-connecting railway transport is included in the latter set of
edges is because the railway networks of different countries are usually sparsely
connected. For example, there are one connection between Sweden and Finland,
four between Norway and Sweden, and zero between Finland and Norway.

In [14] it was shown that an approximate shortest-path distance oracle
can be applied to a large number of problems, for example, finding a short-
est obstacle-avoiding path between two vertices in a planar polygonal domain
with obstacles and interesting query versions of closest pair problems. The exten-
sion presented in this paper also generalizes the results for the above mentioned
problems.

The main idea for obtaining our results is to develop a method to efficiently
combine existing methods for O(1)-spanners with methods for general graphs.
One problem, for example, may be given a starting point p and a destination
q, which should be the first airport to travel to, since (in theory) there might
be a non-constant number of airports on p’s island? In order to achieve this,
we determine a small number, O(M), of representative “junction” points, so
that every point p in the graph is represented by exactly one such junction
point r(p), located on the same island as p. All endpoints of the M edges of
H2 are also treated as such junction points. For all pairs of junction points we
precompute approximate distances, using space O(M2). For any two points p
and q, an approximately shortest path between them is found either by only
using edges of one of the O(1)-spanners, or by following a path from p to its
representative junction point r(p), then from r(p) to r(q), and finally from r(q)
to q. In order to choose such a small set of suitable representative junction
points we present, in Section 2.4, a partition of space which may be useful also
in other applications. In Section 3 we show general correctness, and in Section
4 we mention some refinements and extensions of the main results. Due to lack
of space, many proofs are omitted in this extended abstract.

Our model of computation is the traditional algebraic computation
model with the added power of indirect addressing. We will use the following
notation. For points p and q in Rd, |pq| denotes the Euclidean distance between
p and q. If G is a geometric graph, then δG(p, q) denotes the Euclidean length
of a shortest path in G between p and q. If P is a path in G between p and q of
length Δ with δG(p, q) � Δ � (1 + ε) · δG(p, q), then P is a (1 + ε)-approximate
shortest path for p and q. The main result of this paper is stated in the following
theorem:

Theorem 1. Consider two graphs H1 = (V,F1) and H2 = (V,F2), where H1
is a collection of N vertex disjoint Euclidean t-spanners (t > 1 is a constant),
and H2 is a graph with M edges of non-negative weight. The union of the two
graphs is denoted G = (V, E = {F1 ∪ F2}).

One can construct a data structure in time O((|E|+M2) log |V|) using O(M2+
|V| log |V|) space that can answer (1 + ε)-approximate shortest path queries in G
in constant time, where 0 < ε < 1 is a given constant.

The set of pairwise vertex disjoint t-spanners of H1 is called the “islands” of
G and will be denoted G1 = (V1, E1), . . . ,GN = (VN , EN). An edge (u, v) ∈ F2 is

56 M. Andersson, J. Gudmundsson, and C. Levcopoulos

said to be an inter-connecting edge (even though both its endpoints may belong
to the same island). A vertex v ∈ Vi incident to an edge in H2 is called an
airport, for simplicity (even though these vertices may represent any kind of
junction point). The set of all airports of Vi is denoted Ci. Note that the total
number of airports is O(M) since the number of inter-connecting edges is M .

2 Tools

In the construction of the distance oracle we will need several tools, among
them the well-separated pair decomposition by Callahan and Kosaraju [5], a
graph pruning tool by Gudmundsson et al. [14, 15] and well-separated clusters
by Krznaric and Levcopoulos [16]. In this section we briefly recollect these tools.
In section 2.4 we also show a useful tool that clusters points with respect to a
subset of representative points, as described in the introduction.

2.1 Well-Separated Pair Decomposition

Definition 1. [5] Let s > 0 be a real number, and let A and B be two finite
sets of points in Rd. We say that A and B are well-separated with respect to s
if there are two disjoint balls CA and CB, having the same radius, such that CA

contains A and, CB contains B, and the distance between CA and CB is at least
s times the radius of CA. We refer to s as the separation ratio.

Lemma 1. [5] Let A and B be two sets of points that are well-separated with
respect to s, let x and x′ be two points of A, and let y and y′ be two points of
B. Then |xx′| � (2/s)|x′y′|, and |x′y′| � (1 + 4/s)|xy|.

Definition 2 ([5]). Let S be a set of points in Rd, and let s > 0 be a real
number. A well-separated pair decomposition (WSPD) for S with respect to s is
a sequence {Ai, Bi}, 1 � i � m, of pairs of non-empty subsets of S, such that

1. Ai ∩Bi = ∅ for all i = 1, . . . ,m,
2. for each unordered pair {p, q} of distinct points of S, there is exactly one

pair {Ai, Bi} in the sequence, such that (i) p ∈ Ai and q ∈ Bi, or (ii) q ∈ Ai

and p ∈ Bi,
3. Ai and Bi are well-separated with respect to s for all i = 1, . . . ,m.

The integer m is called the size of the WSPD. Callahan and Kosaraju show
how such a WSPD can be computed. They start by constructing in O(n log n)
time, a split tree T having the points in S as leaves. Given this tree, they show
how a WSPD of size m = O(sdn) can be computed in time O(sdn). In this
WSPD, each pair {Ai, Bi} is represented by two nodes ui and vi of T . That is,
Ai and Bi are the sets of all points stored at the leaves of the subtrees rooted
at ui and vi, respectively.

Theorem 2. [5] Let S be a set of points in Rd, and let s > 0 be a real number. A
WSPD for S with respect to s having size O(sdn) can be computed in O(n log n+
sdn) time.

Approximate Distance Oracles for Graphs with Dense Clusters 57

2.2 Pruning a t-Spanner

In [14] it was shown how the WSPD can be used to prune an existing t-spanner.
Assume that we are given a t-spanner G = (V, E). Compute a WSPD {Ai, Bi},
1 � i � �, for V, with separation constant s = 4(1 + (1 + ε)t)/ε and � = O(n).
Let G′ = (V, E ′) be the graph that contains for each i, exactly one (arbitrary)
edge (xi, yi) of E with xi ∈ Ai and yi ∈ Bi, provided such an edge exists. It
holds that G′ is a (1 + ε) spanner of G, and hence:

Fact 1. (Corollary 1 in [15]) Given a real constant ε > 0 and a t-spanner
G = (V, E), for some real constant t > 1, with n vertices and m edges, one
can compute a (1 + ε)-spanner G′ of G with O(n) edges in time O(m+ n log n).

2.3 Well-Separated Clusters

Let S be a set of points in the plane, and let b ≥ 1 be a real constant. Let the
rectangular diameter of R, abbreviated rd(R), be the diameter of the smallest
axis-aligned rectangle containing R. We may now consider the following cluster
definitions from [16]:

Definition 3. A subset D of S is a b-cluster if D equals S or the distance
between any point of D and any point of S − D is greater than b · rd(D).

Definition 4. The hierarchy of b-clusters of S is a rooted tree whose nodes
correspond to distinct b-clusters, such that the root corresponds to S and leaves
to single points of S. Let ν be any internal node and let A be its corresponding
b-cluster. The children of ν correspond to every b-cluster C such that C ⊂ A and
there is no b-cluster B such that C ⊂ B ⊂ A.

The following observation is straightforward.

Observation 1. Let A and B be two distinct b-clusters, and let x and x′ be two
points of A, and let y and y′ be two points of B. Then |x′y′| � (1 + 2/b)|xy|.
Proof. Assume w.l.o.g that |x′y′| ≥ |xy| and that rd(A) ≥ rd(B). This means

|x′y′| � |xy|+ 2rd(A) � |xy|+ 2|xy|/b⇒ |x′y′| � (1 + 2/b)|xy|

The cluster tree can also be computed efficiently.

Theorem 3. Let S be a set of n points in Rd and a real constant b ≥ 1, the
hierarchy of b-clusters of S can be computed in O(n log n) time and space.

2.4 Partitioning Space into Small Cells

Given a set V of n points in Rd and a subset V ′ ⊆ V, we will show how to
associate a representative point r ∈ V with each point p ∈ V, such that the
distance |pr|+ |rq|, for any point q ∈ V ′, is a good approximation of the distance
|pq|. The total number of representative points is O(|V ′|). The idea is to partition
space into cells, such that all points included in a cell may share a common
representative point.

We will use the following fact by Mount et al. [4]:

58 M. Andersson, J. Gudmundsson, and C. Levcopoulos

Fact 2. (Theorem 1 in [4]) Consider a set S of n points in Rd. There is a
constant cd,ε � d�1 + 6d/ε�d, such that in O(dn log n) time it is possible to
construct a data structure of size O(dn), such that for any Minkowski metric:

(i) Given any ε > 0 and q ∈ Rd, a (1 + ε)-approximate nearest neighbor of q in
S can be reported in O(cd,ε log n).

(ii) More generally, given εN > 0, q ∈ Rd, and any k, 1 � k � n, a sequence of k
(1+ε)-approximate nearest neighbors can be computed in O((cd,ε +kd) logn)
time.

Computing Representative Points. As input we are given the point set
V, V ′ ⊆ V and a positive real value τ1 < 1. Set ε = (1 +

√
2)τ1/

√
8. As a

pre-processing step we compute the b-cluster tree T of V ′ with b = 10/ε2, as
described in Theorem 3.

For a level i in T let ν(D1), . . . , ν(D�i) be the nodes at that level, where
D1, . . . ,D�i are the associated clusters. For each cluster Dj pick an arbitrary
vertex dj as the center point of Dj . The set of the �i center points is denoted
D(i). Perform the following four steps for each level i of T .

1. Compute an approximate nearest neighbor structure with D(i) as input, as
described in Fact 2.

2. For each center point dj in D(i) compute the (1 + ε)-approximate nearest
neighbor of dj . The point returned by the structure is denoted vj , where
vj �= dj .

3. For each cluster Dj construct two squares; is(Dj) and os(Dj) with centers at
dj and side length 2α = 2(1+1/ε)·rd(Dj) and 2β = 2ε|dj ,vj |

(1+ε)(1+2/b) respectively,
where α < β. The two squares are called the inner and outer shells of Dj ,
and the set theoretical difference between the inner and the outer shell is
denoted the doughnut of Dj .

4. The inner shell ofDj is recursively partitioned into four equally sized squares,
until each square s either
(a) is completely included in the union of the outer shells of the children of

ν(Dj). In this case the square is deleted and, hence, not further parti-
tioned. Or,

(b) has diameter at most ε
1+ε ·K, where K is the smallest distance between

a point within s and a point in Dj . A (1 + ε)-approximation of K can
be computed in time O(log |Dj |). This implies that the diameter of s is
bounded by ε ·K.

The resulting cells are denoted inner cells. Note that, due to step 4a, every
inner cell is empty of points from Dj .

Finally, after all levels of T have been processed, we assign a representative
point to each point p in V. Preprocess all the produced cells and perform a
point-location query for each point. If p belongs to a doughnut cell then the
center point of the associated cluster (see step 1) is the representative point of

Approximate Distance Oracles for Graphs with Dense Clusters 59

p. Otherwise, if p belongs to an inner cell C and p is the first point within C
processed in this step then rep(C) is set to p. If p is not the first point then
rep(p) = rep(C). Further, note that an inner cell may overlap with the union of
the outer shells of the children of v(Dj). If a point is included in both an inner
cell and an outer shell, we treat it as if it belonged to the inner cell, and assign
a representative point as above.

We state the main result of this section.

Theorem 4. Given a set V of n points in Rd, a subset V ′ ⊆ V and a posi-
tive real value τ1 < 1, the above algorithm associates with each point p ∈ V a
representative point r(p) ∈ V such that for any point h ∈ V ′, it holds that

min{|p, r(p)|, |r(p), h|} ≤ τ1|p, h|.

The number of representative points is O(|V ′|) and they can be computed in time
O(n log n).

3 Constructing the Oracle

This section is divided into three subsections: first we present the construction
of the structure, then how queries are answered and, finally the analysis is pre-
sented.

Consider two graphs H1 = (V,F1) and H2 = (V,F2) with the same vertex
set, where H1 is a collection of N vertex disjoint Euclidean t-spanners Gi =
(Vi, Ei), 1 � i � N , with m edges where t > 1 is a constant, and H2 is a graph
with M edges of non-negative weight. The union of the two graphs is denoted
G = (V, E = {F1 ∪ F2}).

3.1 Constructing the Basic Structures

In this section we show how to pre-process G in time O(m+(M2 +n) logn) such
that we obtain three structures that will help us answer approximate distance
queries in constant time. We will assume that the number of edges in each
subgraph is linear with respect to the number of vertices in Vi, if not the subgraph
is pruned using Fact 1. Hence, we can from now on assume that #Ei = O(Vi).

Let V ′ be the set of vertices in V incident on an inter-connecting edge. Now
we can apply Theorem 4 with parameters V, V ′ = Γ ′ and τ1 to obtain a repre-
sentative point for each point in V.

Now we are ready to present the three structures:

Oracle A: An oracle that given points p and q returns a 3-tuple [SI, r(p), r(q)],
where SI is a boolean with value ‘true’ if p and q belongs to the same island,
otherwise it is ‘false’, and r(p) and r(q) are the representative points for p
and q respectively.

Oracle B: An approximate distance oracle for any pair of points belonging to
the same island.

Matrix D: An O(M)×O(M) matrix. For each pair of representative points, p
and q, D contains the approximate shortest distance between p and q.

60 M. Andersson, J. Gudmundsson, and C. Levcopoulos

The representative point of a point p is denoted r(p), and the set of all
representative points of Vi and V is denoted Γi and Γ , respectively. Note that
Ci ⊆ Γi. Now we turn our attention to the construction of the oracles and the
matrix.

Oracle A: The oracle is a 4-level tree, denoted T , with the points of V corre-
sponding to the leaves of T . The parents of the leaves correspond to the rep-
resentative points of V and their parents correspond to the islands G1, . . . ,GN

of G. Finally, the root of T corresponds to G. Since the representative points
already are computed, the tree T can be constructed in linear time. The root is
at level 0 and the leaves are at level 3 in T .

Assume that one is given two points p and q. Follow the paths from p and q
respectively to the root of T . If p and q have the same ancestor at level 1 then
they lie on the same island and hence SI is set to ‘true’, otherwise to ‘false’.
Finally, the ancestor of p and the ancestor of q at level 2 correspond to the
representative points of p and q. Obviously a query can be answered in constant
time since the number of levels in T is four.

Oracle B: This oracle is the structure that is easiest to build since we can apply
the following result to each of the islands (see also [14]).

Fact 3. Let V be a set of n points in Rd, let τ2 be a positive real constant and let
G = (V, E) be a t-spanner for V, for some real constant t > 1, having m edges.
In O(n log n) time we can preprocess G into a data structure of size O(n log n),
such that for any two points p and q in V, we can in constant time compute a
(1 + τ2)-approximation to the shortest-path distance in G between p and q.

Hence, oracle B will actually be a collection of oracles, one for each island.
Given two points p and q the appropriate oracle can easily be found in constant
time using a similar construction as for oracle A. Thus, after O(n log n) pre-
processing using O(n log n) space, (1 + τ2)-approximate shortest path queries
between points on the same island can be answered in constant time.

Matrix D: For each i, 1 � i � N , compute the WSPD of Γi with separa-
tion constant s = (1+τ2+τ3

τ3−τ2
). As output we obtain a set of well-separated pairs

{Ai, Bi}1≤i≤wi
, such that wi = O(#Ci). Next, construct the non-Euclidean

graph F = (Γ, {E ′ ∪ F2}), where E ′ is constructed as follows. For each Γi and
each well-separated pair {Aj , Bj} of the WSPD of Γi select two (arbitrary) rep-
resentative points aj ∈ Aj and bj ∈ Bj . Add the edge (aj , bj) to E ′ with weight
Bi(aj , bj), where Bi(p, q) denotes a call to oracle Bi for Gi with parameters p
and q. Note that the graph F will have O(M) vertices and edges.

Let D be an |Γ | × |Γ | matrix. For each representative point p ∈ Γ compute
the single-source shortest path in F to every point q in Γ and store the distance
of each path in D[p, q]. The total time for this step is O(M2 logM), and it can
be obtained by running Dijkstra’s algorithm M times.

Lemma 2. The oracles A and B, and the matrix D can be built in time O(m+
(M2 + n) logn) and the total complexity of A, B and M is O(M2 + n log n).

Approximate Distance Oracles for Graphs with Dense Clusters 61

p
q

Fig. 2. Illustrating the approximate shortest path between p and q. The boxes illustrate
the “airports” along the path

Proof. The lemma is obtained by adding up the complexity for the pre-processing
together with the cost of building each structure. Recall that as pre-processing
steps we first pruned the subgraphs and then we computed the representative
point for each point in V. This was done in O(m+n log n) time using O(n log n)
space, according to Fact 1 and Theorem 4. Next, oracle A was constructed in
linear time using linear space, followed by the construction of oracle B which, ac-
cording to Fact 3 was done in O(n log n) time using O(n log n) space. Finally, the
matrix D was constructed by first computing the graph F . Then a single-source
shortest path query was performed for each vertex in F . Since the complexity of
F is O(M) it follows that D was computed in time O(M2 log n) using O(M2)
space. Hence, adding up these bounds gives the lemma.

3.2 Querying

Given the two oracles and the matrices presented above the query algorithm is
very simple, see pseudo-code below. Let r(p) denote the representative point of
p ∈ V. Now assume that we are given two points p and q. If p and q do not
belong to the same island we return the sum of B(p, r(p)), D(r(p), r(q)) and
B(r(q), q). If p and q belong to the same island then we query Oracle B with
input p, q and return the value obtained from the oracle. Obviously this is done
in constant time.

Query(p, q)
1. [SameIsland, r(p), r(q)]← A(p, q)
2. distance← B(p, r(p)) +D(r(p), r(q)) +B(r(q), q)
3. if SameIsland then
4. distance← min(distance,B(p, q))
5. return distance

3.3 Correctness

Let δG(p, q) be a shortest path in a graph G between two points p and q. Set
τ2, τ3 and τ5 to be positive real values such that 1 + ε = (1 + τ2)(1 + τ3)(1 + τ5).

62 M. Andersson, J. Gudmundsson, and C. Levcopoulos

Observation 2. Let p and q be any pair of points in Vi. It holds that B(p, q) �
(1 + τ2) · δGi

(p, q).

Observation 3. Given a point p ∈ Vi it holds that δGi
(p, r(p)) � (1 + τ4) ·

δG(p, r(p)), where τ4 = t · τ1.

Lemma 3. Let p and q be any pair of representative points in Vi it holds that
D(p, q) � (1 + τ3) · δGi(p, q).

Proof. Note that it suffices to prove that D(p, q) � 1+τ3
1+τ2

· B(p, q), according to
Observation 2. The proof is done by induction on the Euclidean length of (p, q).

Base case: Recall that F = (Γ, E ′) was constructed to build the matrix D.
Assume that (p, q) is the closest pair of Γ . In this case there exists a well-
separated pair {Aj , Bj} such that Aj = {p} and Bj = {q} otherwise (p, q) could
not be the closest pair. Hence the claim holds since there is an edge in F of
weight B(aj , bj).

Induction hypothesis: Assume that the lemma holds for all pairs in Γ closer
than |pq| to each other.

Induction step: If (p, q) /∈ F then there exists an edge (x, y) in F and a well-
separated pair {Aj , Bj} such that x, p ∈ Aj and y, q ∈ Bj . According to the
induction hypothesis there is path between p and x of weight 1+τ3

1+τ2
·D(p, q) and

a path between y and q of weight 1+τ3
1+τ2

· D(p, q). Also, the weight of the edge
(x, y) is B(x, y). Putting together the weights we obtain that

δF (p, q) � 1 + τ3
1 + τ2

B(p, x) +B(x, y) +
1 + τ3
1 + τ2

B(y, q)

�
(
2
1 + τ3
1 + τ2

(2/s) + (1 + 4/s)
)
·B(p, q)

=
1 + τ3
1 + τ2

B(p, q) = (1 + τ3) · δGi
(p, q)

In the third step we used the fact that s = 1+τ2+τ3
τ3−τ2

.

Corollary 1. Let p and q be any representative points in V it holds that D(p, q) �
(1 + τ3) · δG(p, q).

Lemma 4. Given a pair of points p, q ∈ V it holds that

δG(p, r(p)) + δG(r(p), r(q)) + δG(r(q), q) � (1 + τ5) · δG(p, q).

Lemma 5. Let p and q be any points in V it holds that

δG(p, q) � B(p, r(p)) +D(r(p), r(q)) +B(r(q), q) � (1 + ε) · δG(p, q).

Approximate Distance Oracles for Graphs with Dense Clusters 63

Proof.

δG(p, q) � B(p, r(p)) +D(r(p), r(q)) +B(r(q), q)
� (1 + τ2) · δGi

(p, r(p)) + (1 + τ3) · δG(r(p), r(q))
+(1 + τ2) · δGj (r(q), q)

� (1 + τ2)(1 + τ4) · δG(p, r(p)) + (1 + τ3) · δG(r(p), r(q))
+(1 + τ2)(1 + τ4) · δG(r(q), q)

< (1 + τ4)(1 + τ3) · (δG(p, r(p)) + δG(r(p), r(q)) + δG(r(q), q))
� (1 + τ4)(1 + τ3)(1 + τ5) · δG(p, q)
= (1 + ε) · δG(p, q)

On line 1 we used Observation 2 together with Lemma 3. On the following line we
used Observation 3, applied Lemma 4 and finally replaced (1+τ2)(1+τ3)(1+τ5)
with (1 + ε).

Putting together Lemma 2 and Lemma 5 gives us Theorem 1. For conve-
nience we restate Theorem 1 below:

Theorem 1. Consider two graphs H1 = (V,F1) and H2 = (V,F2), where H1
is a collection of N vertex disjoint Euclidean t-spanners (t > 1 is a constant),
and H2 is a graph with M edges of non-negative weight. The union of the two
graphs is denoted G = (V, E = {F1 ∪ F2}).

One can construct a data structure in time O((|E|+M2) logn) using O(M2+
n log n) space that can answer (1 + ε)-approximate shortest path queries in G in
constant time, where 0 < ε < 1 is a given constant.

4 Conclusion

In this paper we presented a data structure that answers approximate distance
queries in constant time in the case when the input is a set of vertex disjoint
Euclidean t-spanners inter-connected with edges of arbitrary weight. The result
can be slightly extended and improved. For example, the data structure can be
modified to handle the case when each island is a ti-spanner, i.e., every island
has different (although constant) dilation. Also, a refined analysis yields that the
data structure of Theorem 1 only uses O(|C|2 + |V| log |V|) space, where C is the
set of all airports.

Recall that the subdivision of the graph into islands needs to be given. An
interesting open problem is to find such a subdivision, i.e., compute a subdivision
of a graph into a minimum number of vertex-disjoint t-spanners. The problem
is NP-hard in the case when t = 0, since this is equivalent to finding a minimum
clique partition which is known to be NP-hard. For general graphs the problem
cannot be approximated within a factor of |V|1/7+ε in polynomial time [1].

64 M. Andersson, J. Gudmundsson, and C. Levcopoulos

References

1. G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela and M.
Protasi. Complexity and Approximation – Combinatorial optimization problems
and their approximability properties. Springer Verlag, ISBN 3-540-65431-3, 1999.

2. D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani. Fast estimation of diameter
and shortest paths (without matrix multiplication). SIAM Journal on Computing,
28(4):1167–1181, 1999.

3. S. Arikati, D. Z. Chen, L. P. Chew, G. Das, M. Smid, and C. D. Zaroliagis. Planar
spanners and approximate shortest path queries among obstacles in the plane. In
Proc. 4th European Symposium on Algorithms, pp. 514-528, 1996.

4. S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. An opti-
mal algorithm for approximate nearest neighbor searching. Journal of the ACM,
45(6):891-923, 1998.

5. P. B. Callahan and S. R. Kosaraju. A decomposition of multidimensional point
sets with applications to k-nearest-neighbors and n-body potential fields. Journal
of the ACM, 42(1):67–90, 1995.

6. D. Z. Chen. On the all-pairs Euclidean short path problem. In Proc. 6th ACM-
SIAM Symposium on Discrete Algorithms, pp. 292-301, 1995.

7. E. Cohen. Fast algorithms for constructing t-spanners and paths with stretch t.
SIAM Journal on Computing, 28(1):210–236, 1998.

8. E. W. Dijkstra. A Note on Two Problems in Connexion with Graphs. In Nu-
merische Mathmatik vol. 1, 1959.

9. D. Dor, S. Halperin, and U. Zwick. All-pairs almost shortest paths. SIAM Journal
on Computing, 29(5):1740–1759, 2000.

10. D. Eppstein and D. Hart. Shortest Paths in an Arrangement with k Line Orienta-
tions. 10th ACM-SIAM Symposium on Discrete Algorithms, pp. 310-316, 1999.

11. M. L. Fredman, R. E. Tarjan Fibonacci heaps and their uses in improved network
optimization algorithms. Journal of the ACM, 34(3):596-615, 1987.

12. D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ancestors.
SIAM Journal on Computing, 13(2):338–355, 1984.

13. J. Gudmundsson, C. Levcopoulos, G. Narasimhan and M. Smid. Approximate
Distance Oracles Revisited. In Proc. 13th International Symposium on Algorithms
and Computation, pp. 357-368, 2002.

14. J. Gudmundsson, C. Levcopoulos, G. Narasimhan and M. Smid. Approx-
imate Distance Oracles for Geometric Spanners. Submitted August 2004.
http://win.tue.nl/ hgudmund/glns-adogs-04.pdf. Extended abstract published in
Proc. 13th ACM-SIAM Symposium on Discrete Algorithms, pp. 828-837, 2002.

15. J. Gudmundsson, G. Narasimhan and M. Smid. Fast Pruning of Geometric Span-
ners. Submitted June 2004. http://win.tue.nl/ hgudmund/gns-fps-04.pdf

16. D. Krznaric and C. Levcopoulos. Computing hierarchies of clusters from the Eu-
clidean minimum spanning tree in linear time. In Proc. 15th Conf. on Foundations
of Software Technology and Theoretical Computer Science, pp. 443-455, 1995.

17. J. S. B. Mitchell. Shortest paths and networks. In Handbook of Discrete and
Computational Geometry, pp. 445–466. CRC Press LLC, 1997.

18. R. Raman. Recent results on the single-source shortest paths problem. SIGACT
News 28:81-87,1997.

19. J. A. Storer and J. H. Reif. Shortest Paths in the Plane with Polygonal Obstacles.
Journal of the ACM, 41(5): 982-1012, 1994.

20. M. Thorup and U. Zwick. Approximate distance oracles. In Proc. 33rd ACM
Symposium on Theory of Computing, pp. 183-192, 2001.

Multicriteria Global Minimum Cuts

Amitai Armon and Uri Zwick

School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel

Abstract. We consider two multicriteria versions of the global mini-
mum cut problem in undirected graphs. In the k-criteria setting, each
edge of the input graph has k non-negative costs associated with it.
These costs are measured in separate, non interchangeable, units. In the
AND-version of the problem, purchasing an edge requires the payment
of all the k costs associated with it. In the OR-version, an edge can be
purchased by paying any one of the k-costs associated with it. Given k
bounds b1, b2, . . . , bk, the basic multicriteria decision problem is whether
there exists a cut C of the graph that can be purchased using a budget
of bi units of the i-th criterion, for 1 ≤ i ≤ k.

We show that the AND-version of the multicriteria global minimum
cut problem is polynomial for any fixed number k of criteria. The OR-
version of the problem, on the other hand, is NP-hard even for k = 2,
but can be solved in pseudo-polynomial time for any fixed number k of
criteria. It also admits an FPTAS. Further extensions, some applications,
and multicriteria versions of two other optimization problems are also
discussed.

1 Introduction

We consider two multicriteria versions of the global minimum cut problem in
undirected graphs. Let G = (V,E) be an undirected graph, and let w1, . . . , wk :
E → R+ be k nonnegative cost (or weight) functions defined on its edges. A
cut C of G is a subset C ⊆ V such that C �= φ and C �= V . The edges cut by
this cut are E(C) = {(u, v) ∈ E | u ∈ C, v �∈ C}. (As the graph is undirected, C
and V−C define the same cut.) In the AND-version of the k-criteria problem,
the i-th weight (or cost) of the cut is

i-th cost in the AND-version: wi(C) =
∑

e∈E(C)

wi(e) , 1 ≤ i ≤ k .

In the OR-version of the problem we pay only one of the costs associated
with each edge e ∈ E(C) of the cut. More specifically, we choose a function
α : E(C) → {1, 2, . . . , k} which specifies which cost is paid for each edge of the
cut. The i-th cost of the cut C, with respect to the choice function α, is then

i-th cost in the OR-version: wi(C, α) =
∑

e∈E(C) ∧ α(e)=i

wi(e) , 1 ≤ i ≤ k .

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 65–76, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

66 A. Armon and U. Zwick

The basic multicriteria global minimum cut decision problem asks, given k
cost bounds b1, b2, . . . , bk, is there a cut C such that wi(C) ≤ bi, for 1 ≤ i ≤ k? In
the optimization problem we are given k−1 bounds b1, b2, . . . , bk−1 and asked to
find a cut C for which wk(C) is minimized, subject to the constraints wi(C) ≤ bi,
for 1 ≤ i ≤ k − 1. The min-max version of the problem asks for a cut C for
which maxk

i=1 wi(C) is minimized, i.e., a cut whose largest cost is as small as
possible. The Pareto set P (G,w1, . . . , wk) ⊆ Rk of an instance 〈G,w1, ..., wk〉 is
the set of cost vectors of cuts that are not dominated by the cost vector of any
other cut. It follows, therefore, that if (c′

1, c
′
2, . . . , c

′
k) is the cost vector of a cut

C ′ of the graph, then there exists a vector (c1, c2, . . . , ck) ∈ P (G,w1, . . . , wk)
such that ci ≤ c′

i for 1 ≤ i ≤ k. Corresponding definitions can be made for the
OR-version of the problem.

Multicriteria optimization is an active field of research (see, e.g., the books of
Climacao [3] and Ehrgott [4]). (Most research is focused, in our terminology, on
AND-versions of various optimization problems. All results cited below refer to
the AND-versions of the problems, unless stated otherwise.) Papadimitriou and
Yannakakis [17] investigated the complexity of several multicriteria optimization
problems. In particular, they considered the multicriteria s-t minimum cut prob-
lem, in which the cut must separate two specified vertices, s and t. They proved
that this problem is strongly NP-complete, even for just two criteria.

We show here that (the AND-version of) the multicriteria global minimum
cut decision problem can be solved in polynomial time for any fixed number of
criteria, making it strictly easier than its s-t variant. The running time of our al-
gorithm is O(mn2k), where m = |E| is the number of edges in the graph, n = |V |
is the number of vertices, and k is the number of criteria. This easily implies
tractability of the optimization problem and also yields a pseudo-polynomial al-
gorithm for constructing the Pareto set. The problem, however, becomes strongly
NP-hard when the number of criteria is not fixed. We also show that the directed
version of the problem is strongly NP-hard even for just two criteria.

The single-criterion minimum cut problem has been studied for more than
four decades as a fundamental graph optimization problem (see, e.g., [6, 15, 13,
19, 11, 12]). Minimum cuts are used in solving a large variety of problems, in-
cluding VLSI design, network design and reliability, clustering, and more (see
[12] and references therein). The best known deterministic algorithms for this
problem run in O(mn + n2 log n) time (Nagamochi and Ibaraki [15] and Stoer
and Wagner [19]). The best known randomized algorithm runs in O(m log3 n)
time (Karger [12]). (A huge gap between the deterministic and randomized com-
plexities!) These algorithms are faster than the best known algorithms for the
s-t minimum cut problem which are based on network flow.

The polynomial time algorithm for the multicriteria problem relies on the
fact that the standard single criterion global minimum cut problem has only a
polynomial number of almost optimal solutions. More specifically, Karger and
Stein [13] showed that for every α ≥ 1, not necessarily integral, the number
of α-approximate solutions is only O(n2α). Karger [12] improved this bound to
O(n
2α�). Nagamochi et al. [16] gave a deterministic O(m2n +mn2α) time algo-

Multicriteria Global Minimum Cuts 67

rithm for finding all the α-approximate cuts. Our algorithm for the multicriteria
problem uses their algorithms.

Apart from the theoretical interest in minimum cuts in the multicriteria set-
ting, there are some applications in which this problem is of interest. (The mul-
ticriteria global minimum cut problem is of interest in almost any application
of the single criterion global minimum cut problem.) A multicriteria minimum
balanced-partition is required, for example, in the situations described in [18].

A special case of the bicriteria global minimum cut problem, called the ≤ r-
cardinality min-cut, was considered by Bruglieri et al. [1, 2]. The input to this
problem is an undirected graph G = (V,E) with a single weight function w :
E → R+ defined on its edges. The goal is to find a cut of minimum cost that
contains at most r edges. This is exactly the optimization version of the bicriteria
minimum cut problem, where w1(e) = 1, w2(e) = w(e), for every e ∈ E, and
w1(C) must not exceed r. Bruglieri et al. [1, 2] ask whether this problem can be
solved in polynomial time. We answer their question in the affirmative. We also
obtain a polynomial time algorithm for finding a minimum cut which contains
at most r vertices on the smallest side of the cut.

As mentioned, most research on multicriteria optimization focused, in our
terminology, on AND-versions of various multicriteria optimization problems.
We consider here also the OR-versions of the global minimum cuts problem, the
shortest path problem, and the minimum spanning tree problem.

OR-versions of multicriteria optimization problems may be seen as general-
izations of the scheduling problem on unrelated machines (see [9, 14, 10]). The
input to such a scheduling problem is a set of n jobs that should be scheduled
on m machines. The i-th job has a cost vector (ci1, . . . , cim) associated with it,
where cij is the processing time of the i-th job on the j-th machine. The goal
is to allocate the jobs to the machines so as to minimize the makespan, i.e., the
completion time of the last job. (Jobs allocated to the same machine are pro-
cessed sequentially.) This is precisely the OR-version of the min-max m-criteria
minimum cut problem on a graph with two vertices and n parallel edges.

As another example where the OR-version of the multicriteria minimum-cut
problem is of interest, consider a cyber-terrorist wishing to disconnect a com-
puter network, where there is more than one option for damaging each link.
Specifically, assume that each link can either be disconnected by an electronic
attack, which requires a certain amount of work hours (that may differ for differ-
ent links), or by physically disconnecting it, e.g. by cutting an underground cable
using explosives (the required amount may again differ from link to link). Given
an upper bound on the amount of available explosives, what is the minimum
time required for electronic attacks?

It follows immediately from the simple reduction given above that the OR-
version of the multicriteria global minimum cut problem is NP-hard even for
just two criteria. We show, however, that the problem can be solved in pseudo-
polynomial time for any fixed number of criteria. We also show that the problem
can be solved in polynomial time when k, the number of criteria, is fixed and at
least k−1 of the weight functions assume only a fixed number of values. We also

68 A. Armon and U. Zwick

obtain some results on the complexity of the OR-versions of the shortest path
and minimum spanning tree problems.

The rest of this paper is organized as follows. In the next section we consider
the AND-version of the global minimum cut problem. In Section 3 we then
consider the OR-version of the problem. In Section 4 we consider the OR-version
of the multicriteria shortest path and minimum spanning tree problems. Finally,
we conclude in Section 5 with some concluding remarks and open problems.

2 Multicriteria Global Minimum Cut: The AND-Version

We first present a polynomial time algorithm for the min-max version of the
multicriteria global minimum cut. The algorithm for solving the min-max version
of the problem is then used to solve the decision and optimization problems.

2.1 The Min- ax Problem

An optimal min-max cut is a cut C for which maxk
i=1 wi(C) is minimized. We

show that the simple algorithm given in Figure 1 solves the min-max version of
the k-criteria global minimum cut problem in polynomial time, for every fixed k.
A k-approximate cut in a graph G with respect to a single weight function w′ is
a cut whose weight is at most k times the weight of the minimum cut.

Theorem 1. Algorithm Min-Max solves the min-max version of the k-criteria
global minimum cut problem. For any fixed k, it can be implemented to run,
deterministically, in O(mn2k) time.

Proof. We begin by proving the correctness of the algorithm. We show that
if C is an optimal min-max cut, and D is any other cut in the graph, then
w′(C) ≤ k · w′(D), where w′(e) =

∑k
i=1 wi(e), for every e ∈ E. This follows as

w′(C) =
k∑

i=1

wi(C) ≤ k· k
max
i=1

wi(C) ≤ k· k
max
i=1

wi(D) ≤ k·
k∑

i=1

wi(D) = k·w′(D) .

The inequality k ·maxk
i=1 wi(C) ≤ k ·maxk

i=1 wi(D) follows from the assump-
tion that C is an optimal min-max cut. In particular, if D is an optimal minimum
cut with respect to the single weight function w′, then w′(C) ≤ k ·w′(D), and it
follows that C is a k-approximate cut of G with respect to w′. This proves the
correctness of the algorithm.

We next consider the complexity of the algorithm. Karger and Stein [13]
showed that every graph has at most O(n2k) k-approximate cuts and gave a
randomized algorithm for finding an implicit representation of them all in Õ(n2k)
time. A deterministic algorithm of Nagamochi et al. [16] explicitly finds all the
k-approximte cuts in O(mn2k) time. Choosing the best min-max cut among all
the k-approximate cuts also takes only O(mn2k) time.
�

It is also easy to see that for any 1 < α ≤ k, we can find an α-approximate
solution to the min-max problem in O(mn2k/α) time, by checking all the k/α-
approximate cuts in G′.

M

Multicriteria Global Minimum Cuts 69

The randomized algorithm of Karger and Stein [13] extends to finding all
the k-approximate minimum r-cuts in Õ(n2k(r−1)) time. (An r-cut is a partition
of the graph vertices into r sets, instead of 2). Thus, it is easy to see that the
min-max multicriteria problem can also be solved for r-cuts, in Õ(mn2k(r−1))
time using this randomized (Monte-Carlo) algorithm.

2.2 The Decision Problem

We next show that the algorithm for the min-max version of the k-criteria prob-
lem can be used to solve the decision version of the problem: Given k bounds
b1, b2, . . . , bk, is there a cut C such that wi(C) ≤ bi, for 1 ≤ i ≤ k.

Theorem 2. For any fixed k, the decision version of the k-criteria global min-
imum cut problem can be solved, deterministically, in O(mn2k) time.

Proof. The decision problem can be easily reduced to the min-max problem.
Given k weight functions w1, . . . , wk : E → R+ and k bounds b1, b2, . . . , bk, we
simply produce scaled versions w′

i(e) = wi(e)/bi, for every e ∈ E and 1 ≤ i ≤ k,
of the weight functions. Clearly the answer to the decision problem is ‘yes’ if and
only if there is a cut C for which maxk

i=1 w′
i(C) ≤ 1.
�

2.3 The Optimization Problem

We next tackle the optimization problem: Given k−1 bounds b1, b2, . . . , bk−1, find
a cut C for which wk(C) is minimized, subject to to the constraints wi(C) ≤ bi,
for 1 ≤ i ≤ k − 1.

Theorem 3. For any fixed k, the optimization version of the k-criteria global
minimum cut problem for graphs with integer edge weights can be solved, deter-
ministically, in O(mn2k log M) time, where M =

∑
e∈E wk(e).

Proof. If the k-th weight function assumes only integral values, we can easily
use binary search to solve the optimization problem. Given the k − 1 bounds
b1, b2, . . . , bk−1, we conduct a binary search for the minimal value bk for which
there is a cut C such that wi(C) ≤ bi, for 1 ≤ i ≤ k. As the minimal bk is an
integer in the range [0,M], this requires the solution of only O(log M) decision
problems.
�

The algorithm given above is not completely satisfactory as it is not strongly
polynomial and does not work with non-integral weights. These problems can
be fixed, however, as we show below.

Theorem 4. For any fixed k, the optimization version of the k-criteria global
minimum cut problem for graphs with arbitrary real edge weights can be solved,
deterministically, in O(mn2k log n) time.

Proof. We first isolate a small interval that contains the minimal value of bk. Let
S = {wk(e) | e ∈ E} be the set of values assumed by the k-th weight function.

70 A. Armon and U. Zwick

The minimum bk of the optimization problem lies in an interval [s, ms], for
some s ∈ S. (If C is the cut that attains the optimum, let s be the weight of the
heaviest edge, with respect to wk, in the cut.) Using a binary search on the values
in S, we can find such an interval that contains the minimum. This requires the
solution of only O(log m) = O(log n) decision problems. Next, we conduct a
binary search in the interval [s, ms] until we narrow it down to an interval of the
form [s′, (1 + 1

n)s′] which is guaranteed to contain the right answer. This again
requires the solution of only O(log(mn)) = O(log n) decision problems.

Next, we run a modified version of the Min-Max algorithm given in Figure 1
on the following scaled versions of the weights: w′

i(e) = wi(e)/bi, for 1 ≤ i ≤ k−1,
and w′

k(e) = wk(e)/s′. It is easy to see that if C is an optimal solution of the
optimization problem, then C is also an (1 + 1

n)-approximate solution of the
min-max problem. This in turn implies, as in the proof of Theorem 1, that C is
also a k(1 + 1

n)-approximate minimum cut with respect to the weight function
w′(e) =

∑k
i=1 wi(e), for every e ∈ E. Instead of finding all the k-approximate

minimum cuts with respect to w′, as done by algorithm Min-Max, we find all
the k(1 + 1

n)-approximate minimum cuts. Among all these cuts we find a cut C
for which w′

i(C) ≤ 1, i.e., wi(C) ≤ bi, for 1 ≤ i ≤ k − 1, and for which wk(C) is
minimized. This cut is the optimal solution to the optimization problem.

We next analyze the complexity of the algorithm. The O(log n) decision prob-
lems can be solved in O(mn2k log n) time. All the k(1+ 1

n)-approximate cuts can
then be found in O(mn2k(1+ 1

n)) = O(mn2k) time using the algorithm of Nag-
amochi et al. [16]. (Note that n1/n = O(1).) Checking all these cuts also takes
only O(mn2k) time. This completes the proof of the theorem.
�

Algorithm Min-Max(G(V, E, w1, ..., wk)):
1. Let w′(e) =

∑k
i=1 wi(e), for every e ∈ E.

2. Find all the k-approximate minimum cuts in G with respect to w′.
3. Among all the cuts C found in the previous step find the one for

which maxk
i=1 wi(C) is minimized.

Fig. 1. A strongly polynomial time algorithm for the min-max version of the k-criteria
global minimum cut problem

2.4 Two Applications

Theorem 5. Let G = (V,E) be an undirected graph and let w : E → R+ be a
weight function defined on its edges. Let 1 ≤ r ≤ m. Then, there is a deter-
ministic O(mn4 log n) time algorithm for finding a cut of minimum weight that
contains at most r edges.

Multicriteria Global Minimum Cuts 71

Proof. We simply let w1(e) = 1 and w2(e) = w(e), for every e ∈ E, and solve
the optimization problem with b1 = r.
�

As mentioned in the introduction, this solves an open problem raised by
Bruglieri et al. [1, 2]. We also have:

Theorem 6. Let G = (V,E) be an undirected graph and let w : E → R+ be a
weight function defined on its edges. Let 1 ≤ r ≤ n. Then, there is a deterministic
O(n6 log n) time algorithm for finding a cut of minimum weight with at most r
vertices on its smaller side.

Proof. We set up two weight functions over a complete graph on n = |V | vertices:
w1(u, v) = 1, for every u, v ∈ V , and w2(u, v) = w(u, v), if (u, v) ∈ E, and
w(u, v) = 0, otherwise. We then find a cut C that minimizes w2(C) subject to
the constraint w1(C) ≤ r(n− r).
�

2.5 The Pareto Set

Suppose all weight functions are integral. Let Mi =
∑

e∈E wi(e), for 1 ≤ i ≤ k.
The Pareto set can be trivially found by invoking the basic decision algorithm
Πk

i=1Mi times, or the optimization algorithm Πk−1
i=1 Mi times. These naive algo-

rithms are pseudo-polynomial for every fixed k.
Using very similar ideas we can also obtain an FPTAS for finding an approx-

imate Pareto set, a notion defined by Papadimitriou and Yannakakis [17]. It is
defined as a set of feasible k-tuples, such that for every solution there is a k-tuple
in the set within a factor of (1 − ε) in all coordinates. More formally, the set
Pε(G,w1, . . . , wk) is a set of cost vectors of cuts in the graph such that for every
cut C there exists (c1, ..., ck) ∈ Pε(G,w1, .., wk) such that (1− ε)ci ≤ wi(C) for
1 ≤ i ≤ k. It is easy to see that we can find this set in polynomial time by
checking only powers of 1− ε, instead of checking all the possible values.

2.6 Hardness Results

Theorem 7. The multicriteria minimum cut problem with a non-fixed number
of criteria is strongly NP-complete.

Proof. We use a reduction from the bisection width problem (see [5], problem
ND17): Given an unweighted input graph G = (V,E) on n = 2r vertices and a
bound b, is there a bisection of the graph that cuts at most b edges? We transform
such an instance in the following way: Assume that V = {1, 2, . . . , n}. We add
two vertices, s and t, and add edges connecting them to each of the vertices
in V . Let G′ = (V ′, E′) be the resulting graph. Each edge of G′ is now assigned
n + 3 weights. For 1 ≤ i ≤ n, we let wi(s, i) = wi(t, i) = 1, and wi(e) = 0 for all
other edges. We assign wn+1(e) = 1 for the edges of the form (s, i), i ∈ V , and
wn+1(e) = 0, otherwise. Similarly, we assign wn+2(e) = 1 for the edges of the
form (t, i), i ∈ V , and wn+2(e) = 0, otherwise. Finally, wn+3(e) = 1 for e ∈ E,
and wn+3(e) = 0, otherwise. It is now easy to see that G has a bisection of width

72 A. Armon and U. Zwick

at most b if and only if G′ has a cut C for which wi(C) ≤ 1, for 1 ≤ i ≤ n,
wn+1(C), wn+2(C) ≤ r, and wn+3(C) ≤ b.
�

It is also not difficult to show that the directed multicriteria global minimum
cut problem is strongly NP-complete even for two criteria. We omit the details.

3 Multicriteria Global Minimum Cut: The OR-Version

3.1 Relation to Scheduling on Unrelated Machines

As mentioned in the introduction, there is a trivial reduction from the scheduling
on unrelated machines problem to the OR-version of the min-max multicriteria
global minimum cut problem. Known hardness results for the scheduling problem
(see Lenstra et al. [14]) then imply the following:

Theorem 8. The OR-version of the min-max multicriteria global minimum cut
problem is NP-hard even for just two criteria. The problem with a non-fixed
number of criteria cannot be approximated to within a ratio better than 3/2,
unless P=NP.

The scheduling problem on a fixed number of unrelated machines can however
be solved in pseudo-polynomial time. Horowitz and Sahni [9] present a simple
branch-and-bound pseudo-polynomial algorithm for that problem which runs
in O(m2(kM)k−1) time, where m is the number of jobs, k is the number of
machines, and M is the optimal makespan. This immediately implies:

Theorem 9. Let G = (V,E) be an undirected graph with k integral weight func-
tions w1, . . . , wk : E → N defined on it edges. Let C be a cut in G. Then, a choice
function α : E(C) → {1, 2, . . . , k} which minimizes maxk

i=1 wi(C, α) can be found
in pseudo-polynomial time.

Jansen and Porkolab [10] obtained an FPTAS for the unrelated machines
scheduling problem, which runs in O(m(k/ε)O(k)) time. It can be used instead
of the exact algorithm of [9] when approximate solutions are acceptable.

3.2 The Min-max Version

We show that the simple algorithm given in Figure 2, which is a variant of the
algorithm given in Figure 1, solves the OR-version of the min-max problem in
pseudo-polynomial time, for any fixed number of criteria.

Theorem 10. The OR-version of the min-max k-criteria global minimum cut
problem with integer edge weights can be solved in O(m2n2k(kM)k−1) time,
where M is the optimal min-max value.

Proof. We begin again with the correctness proof. Let C be an optimal min-max
cut and let α be the corresponding optimal choice function. Let D be any other

Multicriteria Global Minimum Cuts 73

Algorithm Min-Max-Or(G(V, E, w1, ..., wk)):
1. Let w′(e) = mink

i=1 wi(e), for every e ∈ E.
2. Find all the k-approximate minimum cuts in G with respect to w′.
3. For each of the cuts C found in the previous step, find the best

choice function α : E(C) → {1, 2, . . . , k}.
4. Output the best cut and choice function found.

Fig. 2. A pseudo-polynomial time algorithm for the min-max version of the k-criteria
global minimum cut problem

cut. We show that w′(C) ≤ k · w′(D), where w′(e) = mink
i=1 wi(e), for every

e ∈ E. To see that, we let β : E(D) → {1, 2, . . . , k} be a choice function for
which β(e) = i if wi(e) ≤ wj(e), for every 1 ≤ j ≤ k. Then,

w′(C) ≤ k · k
max
i=1

wi(C, α) ≤ k · k
max
i=1

wi(D,β) ≤ k · w′(D) .

The second inequality follows as (C, α) is an optimal solution of the min-max
problem.

We next consider the complexity of the algorithm. The k-approximate cuts
with respect to w′ can be found again in O(mn2k) time using the algorithm of
Nagamochi et al. [16]. For each one of the O(n2k) approximate cuts produced,
we find an optimal choice function using the algorithm of Horowitz and Sahni
[9]. The total running time is then O(mn2k + n2k ·m2(kM)k−1) = O(mn2k +
m2n2k(kM)k−1), where M is the value of the optimal solution.
�

Theorem 11. The OR-version of the min-max k-criteria global minimum cut
problem, with k fixed, admits an FPTAS.

Proof. The proof is identical to the proof of Theorem 10 with the exact algorithm
of Horowitz and Sahni [9] replaced by the FPTAS of Jansen and Porkolab [10].

�

As in Section 2, we can use the algorithm for the min-max version of the
problem to solve the decision and optimization versions of the problem. We
omit the obvious details.

3.3 A Case That Can be Solved in Polynomial Time

We now discuss a restriction of the min-max problem that can be solved in
strongly polynomial time. For simplicity, we consider the bicriteria problem.

Theorem 12. Instances of the OR-version of the min-max bicriteria global min-
imum cut problem in which one of the weight functions assumes only r different
values can be solved in O(mr+1n4) time.

74 A. Armon and U. Zwick

Proof. Assume, without loss of generality, that w2 assumes only r different real
values a1, a2, . . . , ar. Let Ei = w−1

2 (ai) = {e ∈ E | w2(e) = ai}, for 1 ≤ i ≤ r.
Consider an optimal min-max cut C and an optimal choice function α : E(C) →
{1, 2} for it. It is easy to see that for every 1 ≤ i ≤ r there is a threshold ti
such that if e ∈ Ei, then α(e) = 1 if and only if w1(e) ≤ ti. (Indeed, if there are
two edges e1, e2 ∈ Ei such that w1(e1) < w1(e2), α(e1) = 2 and α(e2) = 1, then
the choice function α′ which reverses the choices of α on e1 and e2 is a better
choice function. We assume here, for simplicity, that all weights are distinct.)
As there are at most m + 1 essentially different thresholds for each set Ei, the
total number of choice functions that should be considered is only O(mr). With
a given choice function α : E → {1, 2}, the problem reduces to an AND-version
of the problem with the weights w′

i(e) = wi(e), if α(e) = i, and w′
i(e) = 0,

otherwise, for i = 1, 2. As each such problem can be solved in O(mn4) time, the
total running time of the resulting algorithm is O(mr+1n4).
�

4 OR-Versions of Other Multicriteria Problems

In this section we consider the OR-versions of the bicriteria shortest path and
minimum spanning tree problems. Our results can probably be extended to any
fixed number of criteria.

4.1 Shortest Paths

The input to the problem is a directed graph G = (V,E) with two weight
functions w1, w2 : E → R+ defined on its edges, two vertices s, t ∈ V , and two
bounds b1, b2. The question is whether there is a path P from s to t in the
graph and a choice function α : P → {1, 2} such that w1(α−1(1)) ≤ b1 and
w2(α−1(2)) ≤ b2. (Recall the subway example given in the introduction.)

It is easy to see, using a simple reduction from the scheduling on unrelated
machines problem, that the OR-version of the bicriteria shortest path problem
is NP-hard. We show, however, that it can be solved in pseudo-polynomial time.
A FPTAS for the problem is easily obtained by scaling.

Theorem 13. The OR-version of the bicriteria shortest path decision problem
with integer edge lengths can be solved in O(nmW log(nW)) time, where W =
maxe∈E w1(e).

Proof. The OR-version of the problem can be easily reduced to the AND-version
of the problem by replacing each edge e having a weight vector (w1(e), w2(e))
by two parallel edges e′ and e′′ having weight vectors (w1(e), 0) and (0, w2(e)).
The standard, AND-version, of the problem can be solved using an algorithm of
Hansen [7] within the claimed time bound.
�

4.2 Minimum Spanning Trees

Next we consider the OR-version of the bicriteria minimum spanning tree prob-
lem. The input is an undirected graph G = (V,E), two weight functions w1, w2 :

Multicriteria Global Minimum Cuts 75

E → R, and two bounds b1 and b2. The question is whether there exist a span-
ning tree T and a choice function α : T → {1, 2} such that w1(α−1(1)) ≤ b1 and
w2(α−1(2)) ≤ b2.

The OR-version of the bicriteria minimum spanning tree problem is again
easily seen to be NP-hard. We provide a polynomial time algorithm for a special
case of the problem, and a pseudo-polynomial time algorithm for the general
case.

Theorem 14. The OR-version of the minimum spanning tree problem in which
one of the weight functions is constant, i.e., w2(e) = c, for every e ∈ E, can be
solved by solving a single standard minimum spanning tree problem.

Proof. We simply solve the standard minimum spanning tree problem with re-
spect to the weight function w1 and obtain a minimum spanning tree T . For the
�b2/c� heaviest edges of T we choose to pay the w2 cost, and for all the others we
pay the w1 cost. The correctness of this procedure follows from the well known
fact that if the weights of the edges of T are a1 ≤ a2 ≤ · · · ≤ an−1, and if T ′ is
any other spanning tree of the graph G with edge weights a′

1 ≤ a′
2 ≤ · · · ≤ a′

n−1,
then ai ≤ a′

i, for 1 ≤ i ≤ n− 1.
�

Theorem 15. The OR-version of the bicriteria minimum spanning tree deci-
sion problem with integer edge lengths can be solved in O(n4b1b2 log(b1b2)) time.

Proof. The OR-version of the problem can be easily reduced to the AND-version
of the problem by replacing each edge e having a weight vector (w1(e), w2(e))
by two parallel edges e′ and e′′ having weight vectors (w1(e), 0) and (0, w2(e)).
The standard, AND-version, of the problem can be solved using an algorithm of
Hong et al. [8] within the claimed time bound.
�

5 Concluding Remarks

We showed that the standard (i.e., the AND-version) multicriteria global min-
imum cut problem can be solved in polynomial time for any fixed number k of
criteria. The running time of our algorithm, which is O(mn2k), is fairly high,
even for a small number of criteria. Improving this running time is an inter-
esting open problem. We also considered the OR-version of the problem and
showed that it is NP-hard even for just two criteria. It can be solved, however,
in pseudo-polynomial time, and it also admits an FPTAS, for any fixed number
of criteria. Finally, we considered the OR-versions of the bicriteria shortest path
and minimum spanning tree problems, and showed that both of them are NP-
hard but can be solved in pseudo-polynomial time. It will also be interesting to
study OR-versions of other multicriteria optimization problems.

76 A. Armon and U. Zwick

References

1. M. Bruglieri, M. Ehrgott, and H.W. Hamacher. Some complexity results for k-
cardinality minimum cut problems. Technical Report 69/2000, Wirtschaftsmath-
ematik, University of Kaiserslautern, 2000.

2. M. Bruglieri, F. Maffioli, and M. Ehrgott. Cardinality constrained minimum cut
problems: Complexity and algorithms. Discrete Applied Mathematics, 137(3):311–
341, 2004.

3. J. Climacao. Multicriteria Analysis. Springer-Verlag, 1997.
4. M. Ehrgott. Multicriteria optimization. Lecture Notes in Economics and Mathe-

matical Systems. Springer-Verlag, 2000.
5. M. R. Garey and D. S. Johnson. Computers and Intractability – A Guide to the

Theory of NP-Completeness. Freeman, San Francisco, 1979.
6. R.E. Gomory and T. C. Hu. Multiterminal network flows. Journal of the Society

for Industrial and Applied Mathematics, 9(4):551–570, 1961.
7. P. Hansen. Bicriterion path problems. In G. Fandel and T. Gal, editors, Multiple

Criteria Decision Making: Theory and Applications, LNEMS 177, pages 109–127.
Springer-Verlag, Berlin, 1980.

8. S.P. Hong, S.J. Chung, and B.H. Park. A fully-polynomial bicriteria approximation
scheme for the constrained minimum spanning tree problem. Operations Research
Letters, 32(3):233–239, 2004.

9. E. Horowitz and S. Sahni. Exact and approximate algorithms for scheduling non-
identical processors. Journal of the ACM, 23:317–327, 1976.

10. K. Jansen and L. Porkolab. Improved approximation schemes for scheduling unre-
lated parallel machines. In Proceedings of the thirty-first annual ACM Symposium
on Theory of Computing, pages 408–417, 1999.

11. D. R. Karger. Random sampling in cut, flow, and network design problems. Math-
ematics of Operations Research, 24(2):383–413, 1999.

12. D. R. Karger. Minimum cuts in near-linear time. Journal of the ACM, 47(1):46–76,
2000.

13. D. R. Karger and C. Stein. A new approach to the minimum cut problem. Journal
of the ACM, 43(4):601–640, 1996.

14. J.K. Lenstra, D.B. Shmoys, and E. Tardos. Approximation algorithms for schedul-
ing unrelated parallel machines. Mathematical Programming, 46:259–271, 1990.

15. H. Nagamochi and T. Ibaraki. Computing edge-connectivity in multigraphs and
capacitated graphs. SIAM Journal on Discrete Mathematics, 5(1):54–66, 1992.

16. H. Nagamochi, K. Nishimura, and T. Ibaraki. Computing all small cuts in an
undirected network. SIAM J. Discrete Mathematics, 10(3):469–481, 1997.

17. C. H. Papadimitriou and M. Yannakakis. On the approximability of trade-offs and
optimal access of web sources. In IEEE Symposium on Foundations of Computer
Science, pages 86–92, 2000.

18. K. Schloegel, G. Karypis, and V. Kumar. A new algorithm for multi-objective
graph partitioning. In European Conference on Parallel Processing, pages 322–
331, 1999.

19. M. Stoer and F. Wagner. A simple min-cut algorithm. Journal of the ACM,
44(4):585–591, 1997.

Polyline Fitting of Planar Points Under Min- um
Criteria

Boris Aronov1,�, Tetsuo Asano2,��, Naoki Katoh3,
Kurt Mehlhorn4, and Takeshi Tokuyama5

1 Polytechnic University
aronov@cis.poly.edu

2 Japan Advanced Institute of Science and Technology
t-asano@jaist.ac.jp

3 Kyoto University
naoki@archi.kyoto-u.ac.jp
4 Max-Planck-Institut für Informatik
mehlhorn@mpi-sb.mpg.de

5 Tohoku University
tokuyama@dais.is.tohoku.ac.jp

Abstract. Fitting a curve of a certain type to a given set of points in the plane is
a basic problem in statistics and has numerous applications. We consider fitting
a polyline with k joints under the min-sum criteria with respect to L1- and L2-
metrics, which are more appropriate measures than uniform and Hausdorff metrics
in statistical context. We present efficient algorithms for the 1-joint versions of
the problem, and fully polynomial-time approximation schemes for the general
k-joint versions.

1 Introduction

Curve fitting aims to approximate a given set of points in the plane by a curve of a
certain type. This is a fundamental problem in statistics, and has numerous applications.
In particular, it is a basic operation in regression analysis. Linear regression approximates
a point set by a line, while non-linear regression approximates it by a non-linear function
from a given family.

In this paper, we consider the case where the points are fitted by a polygonal curve
(polyline) with k joints, see Figure 1. This is often referred to as polygonal approx-
imation or polygonal fitting problem. It is used widely. For example, it is commonly
employed in scientific and business analysis to represent a data set by a polyline with
a small number of joints. The best representation is the polyline minimizing the error
of approximation. Error is either defined as the maximum (vertical) distance of any

� Work of B.A. on this paper was supported in part by NSF ITR Grant CCR-00-81964. Part of
the work was carried out while B.A. was visiting JAIST.

�� Work of T.A. was partially supported by the Ministry of Education, Science, Sports and Culture,
Grant-in-Aid for Scientific Research (B).

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 77–88, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

S

78 B. Aronov et al.

e1

v1

e2

v2

e3

v3

e4

v4

e5

Fig. 1. A 4-joint polyline fitting a set of points

input point from the polyline (min-max-optimization) or the sum of vertical distances
(min-sum-approximation). In either case, distance is measured in some norm. We follow
common practice and restrict ourselves to norms L1 and L2.

In this paper, we focus on the L1- and L2-fitting problems when the desired curve
is a k-joint polyline; in other words, it is a continuous piecewise-linear x-monotone
curve with k+1 linear components. We assume that a coordinate system is fixed, and
the input points are sorted with respect to their x-coordinate values. To the authors’
knowledge, the computational complexity of the optimal k-joint problem under either
of these minimization criteria has not been previously investigated. More specifically, it
seems that an efficient solution of the L1-fitting problem extending the result of Imai et
al. [8] is theoretically challenging even for the 1-joint problem.

In this paper, we begin by considering the 1-joint problem. We give algorithms of
complexity O(n) and Õ(n4/3) time for the L2 and L1 criteria, respectively.1 The L2-
fitting algorithm is simple and practical, whereas the L1-fitting algorithm depends on
using a semi-dynamic range search data structure and parametric search. For general k,
we present two approximation schemes. Let zopt be the minimum fitting error for a k-
joint polyline and let ε be a positive constant. We give a polynomial-time approximation
scheme (PTAS) to compute a �(1+ε)k�-joint fitting whose error is at most zopt and we
describe a fully polynomial-time approximation scheme (FPTAS) to compute a k-joint
polyline with (1+ε)zopt fitting error, and consequently show that the problems cannot
be strongly NP-hard, although their NP-hardness remains open.

2 Preliminaries

A k-joint polyline is an alternating sequence P = (e1,v1,e2,v2, . . . ,ek,vk,ek+1) of line
segments (links) and joint vertices (joints), where es and es+1 share the endpoint vs,
for s = 1,2, . . . ,k, and e1 and ek+1 are infinite rays. We denote the link es on line
y = asx− bs by (as, bs) if the interval of the values of x corresponding to the link is
understood. A joint vs is represented by the pair (us,vs) of its coordinate values. Thus,

1 We write f(n) = Õ(g(n)) if there exists an absolute constant c ≥ 0 such that f(n) =
O(g(n) logc n).

Polyline Fitting of Planar Points Under Min- um Criteria 79

the connectivity and monotonicity of the polyline can be guaranteed by requiring that
vs = asus− bs = as+1us− bs+1, for s= 1,2, . . . ,k+1, and u1 < .. . < uk.

We now formulate the problem of fitting a k-joint polyline to an n-point set. Given a
set of pointsS = {p1 = (x1,y1),p2 = (x2,y2), . . . ,pn = (xn,yn)}with x1 <x2 < .. . <
xn and an integer k, and settingu0 =−∞ anduk+1 =∞ for convenience, find a polyline
P = ((a1, b1),(u1,v1),(a2, b2), (u2,v2), . . . ,(uk,vk), (ak+1, bk+1)) minimizing one of
the following three quantities for L1-, L2-, and uniform metric fitting, respectively:

L1 :
k+1∑
s=1

∑
us−1<xi≤us

|asxi− bs−yi|, (1)

L2 :
k+1∑
s=1

∑
us−1<xi≤us

(asxi− bs−yi)2, (2)

Uniform metric : max
s=1,... ,k+1

{
max

us−1≤xi≤us
|asxi− bs−yi|

}
. (3)

For k = 0, the problems are linear regression problems. The L2-linear regression is
well known as the Gaussian least-squares method. Once we compute An =

∑n
i=1xi,

Bn =
∑n

i=1 yi, Cn =
∑n

i=1x
2
i , Dn =

∑n
i=1x

2
i , and En =

∑n
i=1xiyi in linear time, we

can construct an optimal fitting line y = ax− b by considering the partial derivatives
of the objective function and solving a 2× 2 system of linear equations. The linear
regression problem with respect to the uniform error is to find a pair of parallel lines at
the minimum vertical distance that contain all the given points between them. This can
be done by applying the rotating caliper method that computes antipodal pairs of points
on the convex hull of the point set. For an x-sorted point set this can be done in O(n)
time [15]. The L1-linear regression problem is more involved; however, a linear-time
algorithm has been devised by Imai et al. [8] based on Megiddo’s prune-and-search
paradigm.

3 Fitting a 1-Joint Polyline

We consider the problem of fitting a 1-joint polyline to a set of points. We proceed in
two steps. We first assume that the joint vertex lies in a fixed interval [xq,xq+1] and later
eliminate this assumption. Let S1(q) = {p1,p2, . . . ,pq} and S2(q) = {pq+1, . . . ,pn}.
Our objective polyline consists of two links lying on lines �1 : y = a1x−b1 and �2 : y =
a2x−b2, respectively. We call a tuple (a1, b1,a2, b2) feasible if the two lines y= a1x−b1
and y = a2x− b2 meet at a point whose x-coordinate u = b1−b2

a1−a2
lies in the interval

[xq,xq+1]. Our goal here is to find a feasible tuple (a1, b1,a2, b2) representing a 1-joint
polyline minimizing

q∑
i=1

|a1xi− b1−yi|+
n∑

i=q+1

|a2xi− b2−yi| and (4)

q∑
i=1

(a1xi− b1−yi)2 +
n∑

i=q+1

(a2xi− b2−yi)2, (5)

S

80 B. Aronov et al.

for L1- and L2-fitting, respectively. Minimizing (4) is equivalent to, provided a1 �= a2,
minimizing

∑n
i=1wi subject to

−wi ≤ a1xi− b1−yi ≤ wi, for i≤ q,
−wi ≤ a2xi− b2−yi ≤ wi, for i≥ q+1, and

xq ≤
b1− b2
a1−a2

≤ xq+1,

(6)

where the last line represents the feasibility condition.

Lemma 1. For eitherL1- orL2-fitting criterion, the 1-joint problem for a fixed q reduces
to solving two convex programming problems.

We omit the proof due to space limitations. From the above lemma, it is clear that
the optimal 1-joint polyline can be computed by using linear/quadratic programming.
However, we aim to design combinatorial algorithms for these problems. Indeed, we
can classify the solution into two types: (1) The joint is either on the line x = xq or
x= xq+1. (2) The joint lies strictly in the interior of the interval [xq,xq+1]. We call the
solution fixed in the former case and free otherwise. We now have the following simple
observation.

Lemma 2. If the solution is fixed, the joint is located on either of the two vertical lines
x= xq, x= xq+1.

If the joint is on the line x= xq+1, we can regard it as a solution for the partition into
S1(q+1) = S1(q)∪{pq+1} and S2(q+1) = S2(q)\{pq+1}. Thus, for each partition,
we essentially need to solve two subproblems: (1) the free problem and (2) the fixed
problem where the joint is on the vertical line x= xq. This leads to the following generic
algorithm: For each partition of S into two intervals S1 and S2, we first consider the free
problem ignoring the feasibility constraint, and check whether the resulting solution is
feasible or not, i.e., we verify that the intersection point lies in the strip between pq and
pq+1. If it is feasible, it is the best solution for the partition. Otherwise, we consider the
fixed solution adding the constraint that the joint lie on x= xq, and report the solution
for the partition. After processing all n− 1 possible partitions, we report the solution
with the smallest error.

If it takes O(f(n)) time to process a subproblem for each partition, the total time
complexity isO(nf(n)). For efficiency, we design a dynamic algorithm to process each
partition so that f(n) is reduced in the amortized sense.

3.1 The L2 1-Joint Problem

We show how to construct an optimalL2-fitting 1-joint polyline in linear time.We process
the partitions (S1(q),S2(q)) starting from q = 1 to q = n− 1, in order. We maintain
the sums, variances, and covariances Aq =

∑q
i=1xi, Bq =

∑q
i=1 yi, Cq =

∑q
i=1x

2
i ,

Dq =
∑q

i=1 y
2
i , and Eq =

∑q
i=1xiyi incrementally, at constant amortized cost. They

also provide us with the corresponding values for S2(q) if we precompute those values
for S, i.e.,

∑n
i=q+1xi = An−Aq etc.

81

For the free case, the objective function is separable, in the sense that the optimal
solution can be identified by finding (a1, b1) minimizing

∑q
i=1(a1xi− b1− yi)2 and

(a2, b2) minimizing
∑n

j=q+1(a2xj − b2− yj)2 independently. Each can be computed
in O(1) time from the values of Aq, . . . ,Eq as explained in section 2. The feasibility
check of the solution is done in O(1) time by computing the intersection point of the
corresponding pair of lines. It remains to solve the subproblems with the additional
constraint that the joint is at x= xq. Put

f(a1, b1,a2, b2) =
q∑

i=1

(a1xi− b1−yi)2 +
n∑

j=q+1

(a2xj− b2−yj)2, (7)

g(a1, b1,a2, b2) = a1xq− b1−a2xq + b2, and (8)

L(a1, b1,a2, b2) = f(a1, b1,a2, b2)−λg(a1, b1,a2, b2), (9)

so that f(·) is the function to be minimized and the joint constraint can be expressed as
g(·) = 0. Now, a standard Lagrange multiplier method solves the problem, and we have
a linear equation whose coefficients can be expressed in terms of xq,Aq, . . . ,Eq. Thus,
we have the following

Theorem 1. L2-optimal 1-joint fitting can be computed in linear time.

3.2 The L1 1-Joint Problem

Semi-dynamic L1 Linear Regression. We start with the problem of computing the
optimal linear L1-fitting (i.e., linear regression) of the input point set, i.e., we seek the
line �opt : y = ax− b minimizing

∑n
i=1 |axi− b−yi|.

The difficulty with the L1-fitting problem is that, written in linear programming
terms (as in (6)), it has n+2 variables, in contrast to the least-squares case where the
problem is directly solved as a bivariate problem. Nonetheless, Imai et al. [8] devised an
optimal linear-time algorithm for computing �opt based on the multidimensional prune-
and-search paradigm using the fact that the optimal line bisects the point set. In order to
design an efficient algorithm for the 1-joint fitting problem, we consider a semi-dynamic
version of theL1 linear regression for a point set P with low amortized time complexity,
where we dynamically maintain P with insertions and deletions under an assumption
that P is always a subset of a fixed universe S of size n that is given from the outset. (In
fact, for our application, it is sufficient to be able to start with P = ∅ and handle only
insertions, and to start with P = S and handle only deletions. Moreover, the order of
insertions and deletions is known in advance. The data structure we describe below is
more general.)

Consider the dual space, with pi = (xi,yi) transformed to the dual line Y = fi(X)
where fi(X) = xiX− yi. The line y = ax− b is transformed to the point (a,b) in the
dual space. The kth level of the arrangementA=A(S∗) of the set S∗ of dual lines is the
trajectory of the kth largest value among fi(X).2 We call the �n/2�th level the median
level.

2 We use an asterisk to denote geometric dual of a point, line, or a set of lines/points.

Polyline Fitting of Planar Points Under Min- um CriteriaS

82 B. Aronov et al.

Lemma 3 (Imai et al. [8]). If the optimal L1-fitting line is given by y = aoptx− bopt,
its dual point (aopt, bopt) is on the median level if n is odd, and between the n

2 th level
and the (n

2 +1)th level if n is even.

Now, given X-value t, consider the point (t,fi(t)) for each i = 1,2, . . . ,n, and let
F (t) be the sum of the �n/2� largest values in {fi(t) : i= 1,2, . . . ,n} and G(t) be the
sum of the �n/2� smallest values in the same set. Put H(t) = F (t)−G(t). H(t) gives
the L1 fitting error of the dual line of any point (t,y) on the median level (or between
the two median levels if n is even). Thus, by Lemma 3, H(t) is minimized at t= aopt.

Lemma 4. F (t) is a convex function, while G(t) is concave. As a consequence, H(t)
is also convex. H(t) has either slope 0 at t= aopt or its slope changes from negative to
positive at t= aopt.

Proof. The convexity follows directly from the fact that, in any line arrangement, the
portions of the lines lying on or below (resp. on or above) any fixed level k can be
decomposed into k non-overlapping concave (resp. convex) chains; see, for example, [2].

Suppose a fixed universe S∗ of lines is given. We need a data structure that maintains
a subset P ∗ ⊆ S∗ and supports the following operations:

Median-Location Query. For a query value t, return the point on the �n/2�th highest
line at X = t.

Slope-Sum Query. For a query point p = (t,y), return the sum of the slopes of lines
below p at X = t.

Height-Sum Query. For a query value p= (t,y), return the sum of the Y -coordinates
of the lines below p at X = t. The height-sum query reduces to a slope-sum query
plus a constant-term-sum query.

Update. A line in S∗ is added to or removed from P ∗.

Suppose a data structure supporting such queries on a setP ∗⊆S∗ of lines inO(τ(n))
time is available, where n = |S∗|. Then we can query the slopes of F and G at t, and
hence compute the slope ofH at t inO(τ(n)) time. Because of convexity ofH , we have
the following:

Lemma 5. Given t, we can decide whether t < aopt, t > aopt, or t= aopt in O(τ(n))
time.

Thus, we can perform binary search to find aopt. We show below how to make this
search strongly polynomial. Once we know aopt, we determine bopt by the median-
location query at t= aopt.

Semi-dynamic Data Structure for the Queries. We show how to realize semi-dynamic
median-location query and sum-queries. As a preliminary step, we describe a semi-
dynamic data structure for vertical ray queries, i.e., queries of the form: Given a vertical
upward ray starting at (t,z) determine the number of lines in P ∗ intersected by the ray,
the sum of their slopes, and the sum of their constant terms. A dual line Y = xiX−yi is
above (t,z) iff the primal point (xi,yi) is above the line y = tx−z. Thus our problems

83

reduce to half-space queries in the primal plane. We use the partition-tree data structure
of Matoušek [3, 11, 13]. It supports half-space queries on sets with n points in time
O(
√
n), linear space, and preprocessing time O(n logn).

We build a partition tree T (S) on the set S of points dual to the lines in S∗ (in fact,
these are the points to which a line is being fitted). A standard construction proceeds as
follows: With each node v of the partition tree we associate a point set S(v)⊆ S and a
triangleΔ(v)⊃ S(v), where S(v)⊂ S(parent(v)) at any node v other than the root and
S(v) = S at the root. In addition we also store at v the size |S(v)| of S(v) and the sums
ξ(S(v)) =

∑
pi∈S(v)xi and χ(S(v)) =

∑
pi∈S(v) yi of the slopes and constant terms of

the corresponding dual lines. Since the point sets S(v), over all children v of a node w
in the tree, by definition of a partition tree, partition the set S(w), and |S(v)| is at most a
fraction of |S(w)|, this tree has linear size and logarithmic depth. For our purposes, we
modify the partition tree to obtain a new tree T (S,P) where the same Δ(v) as in T (S)
is associated with every node v, but v stores P (v) = S(v)∩P , ξ(P (v)) and χ(P (v))
instead of the corresponding values for S(v). This data structure enables us to execute
the half-plane range query in P , and thus the vertical ray query in P ∗.

Our data structure is semi-dynamic. When P changes, with a point p being added
or removed, what we need to update is just values |P (v)|, ξ(P (v)), and χ(P (v)) for
each node v where p is relevant. Since the sets S(v) for all nodes v at a fixed level of
the partition tree form a partition of S, only one node must be updated at each level; to
facilitate the update one might associate with each point p ∈ S a list of length O(logn)
containing the nodes v of the tree with p ∈ S(v). Thus, the update can be performed
in O(logn) time. This ends the description of the semi-dynamic vertical ray query data
structure. Our sum-queries can be done by using the vertical ray query.

We next turn to the median-location query data structure. For a given t, let m(t) =
(t,y(t)) be the intersection of the vertical line X = t and the median level of the dual
arrangement A(S∗). We can use the vertical query data structure to compare any given
η with y(t). We perform a vertical ray query to find the number of lines above (t,η). If it
is less than �n/2�, y(t)< η; otherwise y(t)≥ η. This suggests computing y(t) by some
kind of binary search. If we had the sorted list of intersections between the vertical line
X = t and the lines in S∗ available, we could perform a binary search on L by using
O(logn) ray queries. However, it takesO(n logn) time to compute the list, which is too
expensive since we aim for a sublinear query time. Instead, we construct a data structure
which can simulate the binary search without explicitly computing the sorted list.

Lemma 6. We can construct a randomized data structure in time O(n logn) such that,
given t, we can compute y(t) in Õ(

√
n) time. The query time bound holds for every

vertical line X = t with high probability.

Proof. We fix a small constant ε > 0, and randomly select cn1−ε lines from Ψ0 = S∗,
to have a set Ψ1 of lines, where c is a suitable constant. From the results of Clarkson and
Shor [5], if the constant c is sufficiently large, with high probablity every vertical segment
intersecting no line of Ψ1 intersects at most nε logn lines of S∗. In other words, Ψ1 is the
dual of an (nε−1 logn)-net of S. Similarly, we construct Ψi+1 from Ψi such that Ψ∗

i+1

is an (nε logn
|Ψi|)-net ofΨ∗

i if |Ψi|>nε logn. Thus, we have a filtrationΨ0 ⊃ Ψ1 ⊃ . . .⊃ Ψk,

Polyline Fitting of Planar Points Under Min- um CriteriaS

84 B. Aronov et al.

and |Ψk| ≤ nε. The number k of layers is a function of ε and c only, so the construction
takes O(n) time.

Additionally, we construct a dual range-searching data structure for Ψi such that for
a query vertical interval I we can report all lines in Ψi meeting I in O(

√
n+K) time,

whereK is the number of reported lines. In primal space a vertical interval corresponds
to a strip bounded by two parallel lines and hence we may use partition trees as described
above to implement reporting queries. The preprocessing time is O(n logn).

Now, our algorithm for finding y(t) is as follows: Given t, we first compute all the
intersections between X = t and the lines of Ψk, sort them, and perform binary search
for y(t) on them. Each step of the search requires a vertical ray query and hence time
O(
√
n). As the result of the binary search, we obtain a vertical interval I containing

y(t) such that no line of Ψk crosses the interior of I . By using the dual range-searching
data structure, we extract, in time O(

√
n+K), the set of K lines in Ψk−1 intersecting

I;K =O(nε logn) with high probability. Proceeding recursively, we obtain y(t), since
at the last level of the filtration we arrive at an interval I ′ containing y(t), with no line
of Ψ0 = S∗ crossing its interior. The total time is O(nε log2n+

√
n logn) = Õ(

√
n).

At this point, we have a Õ(
√
n) realization of the semi-dynamic query data structure,

i.e., τ(n) =
√
n. We finally come to the strongly polynomial method for determining

aopt. We use parametric search [16]. We use a parallel version of the ray-query algorithm,
i.e., the parallel traversal of the partition tree, for the guide algorithm (see [9]). Since
the depth of a partition tree is O(logn), the parallel time complexity of the ray query is
O(logn). Thus, the parallel time complexity of sum queries isO(log2n) usingO(τ(n))
processors. Therefore, using standard parametric search paradigm, we can compute the
optimal L1 linear fitting in Õ(τ(n)).

We remark that we do not employ parametric search to computey(t) for a fixed t, since
it is not always possible to use it in a nested fashion, and there are technical difficulties
in applying multi-dimensional parametric search paradigm [14] to our problem.

To speed up the query time τ(n) and thus the overall algorithm, we generalize the data
structure to allow it to use super-linear storage based on Matoušek’s construction [12].
If we can use O(m) space for n < m < n2, we first select r = O(m/n) points from
S and construct a dual cutting, i.e., a decomposition of the dual plane into cells, such
that each cell C is intersected by at most n/r lines dual to points of S; the number
of cells required is O(r2) and the computation time is O(nr). Let S(C) be the set of
lines intersecting C. We construct a point-location data structure on the cutting. For
each cell C, we store the cumulative statistics (the sum of slopes etc.) for the set of lines
passing belowC, and construct the partition tree for S(C). The query time of each tree is
Õ(
√
n/r). WhenP changes, we need to update the data stored in each of theO(r2) cells

of the arrangement, and also theO(r) partition trees corresponding to sets containing the
updated point. Thus, update time is O(r2 +r logn). Update time can be sped up by not
storing the statistics for each cell explicitly, but rather retrieving them when needed at a
cost of O(logr). This reduces the time needed for an update to O(r logn) and the total
time of all updates toO(nr logn); we omit the details in this version. If we set r= n1/3,
the update time and query time are both Õ(n1/3). The space and preprocessing time is
Õ(n4/3). The parallel time complexity is not affected by the space-time trade-off.

85

Algorithm for L1 1-Joint Fitting. Finally, we describe the algorithm to find the L1-
optimal 1-joint polyline fitting a set S of n points in the plane. Recall that there are two
different types of solutions:

Type 1. There is an index q such that the 1-joint polyline consists of the optimal L1-
fitting line of S1(q) = {p1,p2, . . . ,pq} and that of S2(q) = {pq+1,pq+2, . . . ,pn}.

Type 2. There is an index q such that the joint lies on the vertical line x= xq.

If the optimal solution is of type 1, we compute an optimal L1-fitting line for S1(q)
andS2(q) separately, for every q= 1,2, . . . ,n, by using the semi-dynamic algorithm with
S as the universe. If we use quasi-linear space Õ(n), the time complexity is Õ(n1.5),
and if we use O(n4/3) space, the time complexity is Õ(n4/3).

Otherwise, the optimal solution is of type 2. For each q, we guess the y-coordinate
value η of the joint vertex (xq,η). Then, we can compute the best line, in the sense of L1
fitting, approximating S1(q) going through the (for now, fixed) joint by using almost the
same strategy as in section 3.2. Indeed, it suffices to determine the slope of this line. In
the dual space, we just need to compute a point p= (a(p), b(p)) on the line Y = xqX−η
such that

∑q
i=1 |a(p)xi−b(p)−yi| is minimized. We observe that the above function is

convex if it is regarded as a function of a, and hence θ(p) = θ+(p)−θ−(p) is monotone
and changes the sign at p, where θ+(p) (θ−(p)) is the sum of slopes of lines above p
(resp. below p). Thus, we can apply binary search by using slope-sum query, and this
binary search can be performed in O(logn) steps by using the filtration as described in
Lemma 6.

Moreover, because of the convexity of the objective function, once we know the
optimal solution for a given η0, we can determine whether the global optimal value η is
greater than η0 or not by using the height-sum query. Indeed, when we infinitesimally
slide η0, the gain (or loss) of the objective function can computed from the slope sums
and height sums of dual lines associated with each of the sets of points lying above,
below, and on the current polyline (for each of S1(q) and S2(q)).

Thus, we can apply binary search for computing the optimal value of η. In order to
construct a strongly polynomial algorithm, we apply parametric search. Note that given
η, our algorithm has a natural parallel structure inherited from the range-searching algo-
rithms, and runs in polylogarithmic time using Õ(τ(n)) processors. Thus, the parallel
search paradigm [16] is applicable here. Therefore, for a fixed q, the second case of the
problem can be handled in Õ(τ(n)) time. Thus, we have the following:

Theorem 2. The optimal L1-fitting 1-joint polyline is computed in Õ(n1.5) randomized
time using quasi-linear space, and Õ(n4/3) randomized time using O(n4/3) space.

4 Fitting a k-Joint Polyline

The k-joint fitting problem is polynomial-time solvable if k is a fixed constant. We de-
scribe the algorithm in a non-deterministic fashion. We guess the partition of x1, . . . ,xn

into k intervals each of which corresponds to a line segment in the polyline. Also, we
guess whether each joint is free or fixed. We decompose the problem at the free joints

Polyline Fitting of Planar Points Under Min- um CriteriaS

86 B. Aronov et al.

and have a set of subproblems. In each subproblem, we add the linear constraints cor-
responding to the fixed condition (i.e., each joint is located on a guessed vertical line).
Thus, each subproblem is a convex programming problem: a linear program for L1, and
a quadratic program for L2. We solve each subproblem separately to obtain the solution
of the whole problem. Note that this strategy works because of the convexity of each
subproblem. There areO((3n)k) different choices of the guesses, thus we can be replace
guessing by a brute-force search to have a polynomial-time deterministic algorithm if k
is a constant.

For a general k, we do not know whether the problem is in the class P or not. Thus,
we would like to consider approximation algorithms. One possible approach is to relax
the requirement that number of joints be exactly k. We can design a PTAS for it.

Theorem 3. Let zopt be the optimal L1 (or L2) error of a k-joint fitting. Then, for any
constant ε > 0, we can compute a �(1+ε)k�-joint fitting whose error is at most zopt in
polynomial time.

Proof. We ignore continuity and approximate the points by using a piecewise-linear (not
necessarily continuous) function with k linear pieces. This can be done by preparing
the optimal linear regression for each subinterval of consecutive points of S, and then
applying dynamic programming. We can restore the continuity by inserting at most k
steep (nearly vertical) line segments. The resulting polyline has at most 2k joints and
error at most zopt. We can improve 2k to � 3k

2 � by applying the 1-joint algorithm instead
of linear regression algorithm, and further improve it to �(1+ε)k� by using the r-joint
algorithm mentioned above for r = �ε−1�.

Another approach is to keep the number of joints at k and approximate the fitting
error. We give a FPTAS for it. We only discuss theL1 case, since theL2 case is analogous.
Let zopt be the optimal L1-error, and we aim to find a k-joint polyline whose error is
at most (1 + ε)zopt. We remark that if zopt = 0, our solution is exactly the same as
the solution for the uniform metric fitting problem, and thus we may assume zopt > 0.
Recall that the uniform metric fitting problem can be solved inO(n logn) time [6]. The
following is a trivial but crucial observation:

Lemma 7. Let z∞ be the optimal error for the uniform metric k-joint fitting problem.
Then, z∞ ≤ zopt ≤ nz∞.

Proof. The sum of the errors in the uniform-metric–optimal polyline is at most nz∞.
Hence nz∞ ≥ zopt. On the other hand, every k-joint polyline has a data point in S such
that the vertical distance to the polyline is at least z∞, so zopt ≥ z∞.

Our strategy is as follows: We call the n vertical lines through our input points the
column lines. We give a set of portal points on each column line, and call a k-joint
polyline a tame polyline if each of its links satisfies the condition that the line containing
the link goes through a pair of portal points.

On each column line, the distance between its data point and the intersection point
with the optimal polyline is at most zopt, thus at most nz∞. Thus, on the ith column
line, we place the portals in the vertical range [yi−nz∞,yi +nz∞]. The portal points
are placed symmetrically above and below yi. The jth portal above yi is located at the

87

y-value yi +(1+ ε
2)j−1δ, where δ = z∞ε

2n and j = 1,2, . . . ,M . We choose the largestM
satisfying (1+ ε

2)Mδ ≤ nz∞, and henceM =O(ε−1 log(n+ε−1)). We also put portals
at heights yi and yi±nz∞. In this way the number of portals in any column is at most
2M +3.

Lemma 8. There exists a tame polyline whose L1 error is at most (1+ε)zopt.

We omit the proof of above lemma in this version. Thus, it suffices to compute
the optimal tame polyline. There are Mn portals, and thus N = O(M2n2) lines going
through a pair of portals. Let L be the set of these lines. We design a dynamic program-
ming algorithm. For the ith column, for each line � ∈ L and each m≤ k, we record the
approximation error of the best m-joint tame polyline up to the current column whose
(rightmost) link covering pi is on �. When we proceed to the (i+ 1)th column, each
approximation error is updated. We omit the details of the analysis in this version, and
only show the result.

Theorem 4. An (1+ε)-approximation, i.e., a k-joint polyline with error 1+ε times the
optimal, for each of theL1 andL2 k-joint problems can be computed inO(kn4ε−4 log4(n+
ε−1)) time.

5 Concluding Remarks

A major open problem is to determine the complexity class of the k-joint problem for
L1- and L2-fitting. The corresponding L1 or L2 polyline approximation problem where
the input is a curve is also interesting.

Acknowledgment: The authors would like to thank Jirı́ Matoušek for a stimulating dis-
cussion on convexity.

References

1. A. Aggarwal, B. Schieber, and T. Tokuyama, “Finding a minimum-weight k-link path in
graphs with the concave Monge property and applications,” Discrete Comput. Geom., 12
(1994) 263–280.

2. P. Agarwal, B. Aronov, T. Chan, M. Sharir, “On Levels in Arrangements of Lines, Segments,
Planes, and Triangles,” Discrete Comput. Geom., 19 (1998) 315–331.

3. P. Agarwal and J. Matoušek, “Ray shooting and parametric search,” SIAM J. Comput., 22
(1993) 794–806.

4. J. Chun, K. Sadakane, and T. Tokuyama, “Linear time algorithm for approximating a curve
by a single-peaked curve,” Proc. 14th Internat. Symp. Algorithms Comput. (ISAAC 2003),
LNCS 2906, 2003, pp. 6–16.

5. K. L. Clarkson and P. W. Shor, “Application of Random Sampling in Computational Geom-
etry,” Discrete Comput. Geom., 4 (1989) 423–432.

6. M. Goodrich, “Efficient piecewise-linear function approximation using the uniform metric,”
Discrete Comput. Geom., 14 (1995) 445–462.

Polyline Fitting of Planar Points Under Min- um CriteriaS

88 B. Aronov et al.

7. S. Hakimi and E. Schmeichel, “Fitting polygonal functions to a set of points in the plane,”
Graphical Models and Image Processing, 53 (1991) 132–136.

8. H. Imai, K. Kato, and P. Yamamoto: “A linear-time algorithm for linear L1 approximation of
points,” Algorithmica, 4 (1989) 77–96.

9. N. Katoh and T. Tokuyama, “Notes on computing peaks in k-levels and parametric spanning
trees,” Proc. 17th ACM Symp. on Computational Geometry, 2001, pp. 241–248.

10. S. Langerman and W. Steiger, “Optimization in arrangements.” Proc. Symp. Theor. Aspects
Computer Science (STACS2003), LNCS 2607, 2003, pp. 50–61.

11. J. Matoušek, “Efficient partition trees,” Discrete Comput. Geom., 8 (1992) 315–334.
12. J. Matoušek, “Range searching with efficient hierarchical cutting,” Proc. 8th ACM Symp. on

Comput. Geom., (1992) 276–287.
13. J. Matoušek, “Geometric range searching,” ACM Computing Surveys, 26 (1994) 421–461.
14. J. Matoušek and O. Schwarzkopf, “Linear optimization queries,” Proc. 8th Annual ACM Symp.

Comput. Geom., 1992, pp. 16–25.
15. F. P. Preparata and M. I. Shamos, Computational Geometry, an Introduction, Springer-Verlag,

New York, 1985.
16. J. Salowe, “Parametric Search,” Chapter 37 of Handbook of Discrete and Computational

Geometry (eds. J. Goodman and J. O’Rourke), CRC Press, 1997.

A Generalization of Magic Squares with
Applications to Digital Halftoning

Boris Aronov1,�, Tetsuo Asano2,��, Yosuke Kikuchi3, Subhas C. Nandy4,
Shinji Sasahara5, and Takeaki Uno6

1 Polytechnic University, Brooklyn, NY 11201-3840, USA
http://cis.poly.edu/˜aronov
2 JAIST, Tatsunokuchi, 923-1292 Japan

t-asano@jaist.ac.jp
3 ERATO QCI Project, JST, Tokyo 113-0033, Japan

kikuchi@qci.jst.go.jp
4 Indian Statistical Institute, Kolkata 700 108, India

nandysc@isical.ac.in
5 Fuji Xerox Co., Ltd., Kanagawa 259-0157, Japan
shinji.sasahara@fujixerox.co.jp

6 National Institute of Informatics (NII), Tokyo, 101-8430 Japan
uno@nii.jp

Abstract. A semimagic square of order n is an n × n matrix containing the
integers 0, . . . ,n2 − 1 arranged in such a way that each row and column add up
to the same value. We generalize this notion to that of a zero k ×k-discrepancy
matrix by replacing the requirement that the sum of each row and each column
be the same by that of requiring that the sum of the entries in each k ×k square
contiguous submatrix be the same. We show that such matrices exist if k and n
are both even, and do not if k and n are are relatively prime. Further, the existence
is also guaranteed whenever n = km, for some integers k,m ≥ 2. We present a
space-efficient algorithm for constructing such a matrix.

Another class that we call constant-gap matrices arises in this construction.
We give a characterization of such matrices.

An application to digital halftoning is also mentioned.

1 Introduction

A semimagic square is an n×n matrix filled with the numbers 0, . . . ,n2− 1 in such
a way that the sum of the numbers in each row and each column are the same. Magic
squares and related classes of integer matrices have been studied extensively (for an
exhaustive bibliography, see [8] and the references therein).

This paper generalizes the notion of a semimagic square by replacing the requirement
that all row and column sums be the same by the analogous requirement for all k×k
contiguous square submatrices; we call such n×nmatrices zero k×k-discrepancy ma-
trices of order (k,n). Let N(k,n) be the set of all such matrices. In this paper we prove

� Part of the work on the paper has been carried out when B.A. was visiting JAIST. Work of B.A.
on this paper was supported in part by NSF ITR Grant CCR-00-81964.

�� Work of T.A. was partially supported by the Ministry of Education, Science, Sports and Culture,
Grant-in-Aid for Scientific Research (B).

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 89–100, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

90 B. Aronov et al.

that N(k,n) is non-empty if k and n are both even, and empty if they are relatively prime.
Further, we show by an explicit construction that N(k,km) �= ∅ for any integers k,m≥ 2.

Another property plays an important role in the latter construction of zero k× k-
discrepancy matrices. A characterization of matrices with this property is also given in
this paper.

Our investigation is motivated by an application described below, but intuitively we
seek a matrix filled with distinct integers in an as uniform a manner as possible. The
analogous geometric problem of distributingn points uniformly in a unit square has been
studied extensively in the literature [6, 12]. Usually, a family of regions is introduced
to evaluate the uniformity of a point distribution. If the points of an n-point set P are
uniformly distributed, for any region R in the family the number of points in R should
be close to 1

n area(R), where 1
n is the point density of P in the entire square. Thus, the

discrepancy of P in a regionR is defined as the difference between this value and the ac-
tual number of points ofP inR. The discrepancy of the point distributionP with respect
to the family of regions is defined by the maximum such difference, over all regions.

The problem of establishing discrepancy bounds for various classes of regions has
been studied extensively [10]. One of the simplest families is that of axis-parallel rect-
angles for which Θ(logn) bound is known [6, 12]. In the context of digital halftoning,
a family of axis-parallel squares (contiguous square submatrices) over a matrix is ap-
propriate for measuring the uniformity since human eye perception is usually modeled
using weighted sum of intensity levels with Gaussian coefficients over square regions
around each pixel [3]. Thus, the matrices discussed in this paper can be used as dither
matrices in which integers are arranged in an apparently random manner to be used as
variable thresholds. Small matrix size tends to generate visible artifacts. In this sense
the dither matrix of size 8×8 designed by Floyd and Steinberg [7] may be too small. A
common way to construct a larger dither matrix is to use local search under some crite-
rion based on spatial frequency distribution of the resulting matrix. Such dither matrices
are called blue-noise masks [13, 15, 16, 17]. One disadvantage of a blue-noise mask is
its high space complexity. There appears to be no way to avoid storing the entire matrix.
The zero k×k-discrepancy matrices of order (k,km) we construct, on the other hand,
are such that we can generate any one element by a simple integer calculation requiring
only m seed matrices, each of size k×k.

2 Problem Statement

Generalizing the notion of a semimagic square, we consider an n×nmatrix containing
all the integers 0, . . . ,n2− 1 such that the entries contained in every contiguous k×k
submatrix add up to the same value.

More formally, for integers m,n > 1, let Z(n,m) be the class of all n×n integer
matrices with entries from the set {0, . . . ,m−1} and let Z(n)⊂ Z(n,n2) be the set of
those n×n matrices which contain every value 0, . . . ,n2−1 exactly once.

A contiguous k×k submatrix (or region, hereafter) Ri,j = R
(k)
i,j with its upper left

corner at (i, j) is defined by

R
(k)
i,j = {(i′, j′) | i′ = i, . . . , i+k−1 and j′ = j, . . . , j+k−1},

A Generalization of Magic Squares with Applications to Digital Halftoning 91

where indices are calculated modulo n.1 Given a matrix P and a region Ri,j of size k,
P (Ri,j) denotes the sum of the elements of P in locations given by Ri,j . Analogously,

define a Ci,j = C
(k)
i,j to be the k×1 region of a matrix starting at (i, j) and P (Ci,j) to

be the sum of elements of P in the locations given byCi,j . We are interested in all k×k
regions in an n×n matrix:

Fk,n = {R(k)
i,j | i, j = 0,1, . . . ,n−1}.

The k×k-discrepancyDk,n(P) of ann×nmatrixP for the familyFk,n is defined as

Dk,n(P) = max
R∈Fk,n

P (R)− min
R′∈Fk,n

P (R′).

In this paper we focus on the existence of matrices P ∈Z(n) with k×k-discrepancy
Dk,n(P) = 0. In other words, we are interested in the existence and construction of
matrices in Z(n) all of whose contiguous k×k submatrices have equal sums. Let N(k,n)
be the set of all such zero-k×k-discrepancy matrices of order (k,n).

Theorem 1. The set N(k,n) of zero-k×k-discrepancy matrices of order (k,n) has the
following properties:

(a) N(k,n) is non-empty if k and n are both even.
(b) N(k,n) is empty if k and n are relatively prime.
(c) N(k,n) is empty if k is odd and n is even.
(d) N(k,km) is non-empty for any integers k and m, k ≥ 2,m≥ 2.

Proof (Theorem 1, parts (a)–(c)). To prove part (a), it suffices to show N(2,n) �= ∅ if n
is even since any k×k region can be partitioned into 2×2 regions if k is even. (More
generally, if k′ divides k, N(k′,n)⊂ N(k,n).)

Let P = (pi,j) ∈ Z(n) be the matrix in which the numbers are arranged in the row-
major order, that is, pi,j = in+ j, i, j = 0,1, . . . ,n−1. We classify matrix elements by
their parity and rotate all the elements of odd parity by 180 degrees, i.e., for every (i, j)
with i+ j odd, we swap pi,j and pn−1−i,n−1−j . It is easily checked that the sum of
elements in any 2×2 region is always 2n2−2. An example for n= 8 is shown in Fig. 1.

⎡⎢⎢⎣
0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55
56 57 58 59 60 61 62 63

⎤⎥⎥⎦ ⇒

⎡⎢⎢⎣
0 62 2 60 4 58 6 56
55 9 53 11 51 13 49 15
16 46 18 44 20 42 22 40
39 25 37 27 35 29 33 31
32 30 34 28 36 26 38 24
23 41 21 43 19 45 17 47
48 14 50 12 52 10 54 8
7 57 5 59 3 61 1 63

⎤⎥⎥⎦
Fig. 1. Parity rotation used in the proof of Theorem 1(a)

Turning to part (b), for a contradiction, assume that there exists a matrix P ∈Z(n) in
which the sum P (Ri,j) of elements of P over a k×k region Ri,j is independent of i, j.

1 Throughout this paper, index arithmetic is performed modulo matrix dimensions unless other-
wise noted.

92 B. Aronov et al.

In particular, P (Ri,j) = P (Ri,j+1) = c for some constant c and therefore P (Ci,j) =
P (Ci,j+k) = c/k, for all i, j.

Since k andn are relatively prime, the last relation implies that in factP (Ci,j) is inde-
pendent of j. Similar reasoning leads to the conclusion that it is independent of i as well.
In particular, P (C0,0) = P (C1,0), and therefore, by definition ofC0,0 andC1,0, we must
have pi,0 = pi+k,0, contradicting our assumption that all the elements of P are distinct.

Finally, we consider part (c) of Theorem 1. Let P ∈ Z(n) and let k be odd and n be
even. For a contradiction, assume that the values in any k×k region add up to the same
number, say S, which must clearly be an integer. Summing P (Ri,j) over all i and j and
observing that every entry inP appears preciselyk2 times in these sums, we conclude that

n2S = k2(0+1+ · · ·+n2−1) = k2n
2

2
(n2−1),

and therefore S = k2(n2−1)/2, which cannot be an integer if n is even and k is odd.
This contradiction concludes the proof of Theorem 1(a)–(c).
�

3 Construction of a km×km-Matrix of Zero k×k-Discrepancy

In this section we finish the proof of Theorem 1 by designing a km×km matrix from
Z(km) for any positive integer m such that its k× k-discrepancy is zero; in fact we
present a proof of a stronger statement, see Theorem 3. We first show that there exists a
k2×k2 matrix in Z(k2) whose k×k discrepancy is zero, and then extend the result to
km×km matrices.

Definition 1. The simple expansion P̃ of a k× k matrix P is the matrix formed by
repeating P k×k times, as follows:

P̃ =

⎡⎢⎢⎢⎣
P P · · · P
P P · · · P

...
P P · · · P

⎤⎥⎥⎥⎦ .
Note that the k×k-discrepancy of P̃ is zero, as every k×k region contains the same
set of numbers.

Definition 2. A cyclic column shift of a matrix P is the matrix obtained by shifting
each column of P to the right (i.e., shifting the jth column to the (j+1)st column) and
moving the last column to the first column. A cyclic row shift is similarly defined: It
means shifting each row of P down to the next lower row (i.e., shifting ith row to the
(i+1)st row) and moving the bottom row to the top row.

We denote the matrix obtained by applying cyclic column shift c times and cyclic
row shift r times to a k× k matrix P by P (c,r). That is, element (i, j) in P moves to
position ((i+r) mod k,(j+c) mod k) in P (c,r). The cyclic expansion P̂ = (p̂i,j) of a
k×k matrix P is a k2×k2 matrix defined by

A Generalization of Magic Squares with Applications to Digital Halftoning 93

P̂ =

⎡⎢⎢⎢⎣
P (0,0) P (0,1) · · · P (0,k−1)

P (1,0) P (1,1) · · · P (1,k−1)

...
P (k−1,0) P (k−1,1) · · · P (k−1,k−1)

⎤⎥⎥⎥⎦ .
An easy calculation shows that, for all i, j, p̂i,j = pi′,j′ , with

i′ = i+ �j/k� and j′ = j+ �i/k� (mod k). (1)

Definition 3. A constant-gap matrix P = (pi,j) is one for which

pi,j−pi,j′ = pi′,j−pi′,j′ (2)

holds for all choices of i, i′, j, and j′.

Intuitively, this means that for any two columns j and j′ the gap between elements
in the same row is independent of the row, hence the “constant gap” name. Since (2) can
be rewritten as

pi,j−pi′,j = pi,j′ −pi′,j′ or pi,j +pi′,j′ = pi,j′ +pi′,j ,

rows and columns play symmetric roles in the definition. Moreover, a constant-gap
matrix has the strong Monge property [1] since the sum of the main diagonal elements
is equal to that of the off diagonal elements in any 2×2 submatrix.

Lemma 1. The constant-gap property is preserved (1) under exchange of any two rows,
(2) under exchange of any two columns, and, for square matrices, (3) under mirror
reflection across the main diagonal.

Proof. Immediate from the definition.
�

The following lemma is a key to our construction of zero discrepancy matrices.

Lemma 2. If P is a k× k constant-gap matrix, the k× k-discrepancy of its cyclic
expansion P̂ is zero.

Proof. Recall that Ri,j and Ci,j denote k×k and k× 1 contiguous submatrices of P̂ ,
and P̂ (Ri,j) and P̂ (Ci,j) the sums of the corresponding elements in P̂ , respectively.
We aim to prove P̂ (Ri,j) = P̂ (Ri,j+1), for all i, j. Together with P̂ (Ri,j) = P̂ (Ri+1,j),
which is proven by a symmetric argument, this implies the statement of the theorem. By
definition, P̂ (Ri,j+1)− P̂ (Ri,j) = P̂ (Ci,j+k)− P̂ (Ci,j); recall that all indices in P̂ are
calculated modulo k2.

Put i0 = k�i/k� and j0 = k�j/k�. To prove P̂ (Ci,j) = P̂ (Ci,j+k) we compare the
two columns.As illustrated in Fig. 2, the part above the element (i0+k−1, j) and the one
above the element (i+k−1, j) in Ci,j both appear in Ci,j+k. Differences between Ci,j

and Ci,j+k comprise only four elements: a = p̂i0+k−1,j , b = p̂i+k−1,j , c = p̂i,j+k,d =
p̂i0+k,j+k. By cyclic row and column shifts, the four elements move in P̂ as follows:

94 B. Aronov et al.

a

b

c

d

a

a

b c

i

jj0

i0

j + k

i + k

Ri,j

Ci,j Ci,j+k

Fig. 2. Illustration to the proof of Lemma 2

a= p̂i0+k−1,j →r p̂i0,j+k →c p̂i0+k,j+k+1,

b= p̂i+k−1,j →r p̂i+k,j+k,

c= p̂i,j+k →c p̂i+k,j+k+1,

d= p̂i0+k,j+k,

where→x represents the cyclic x shift and indices are calculated modulo k2.
When j �= k−1 (mod k) and i �= k−1 (mod k), all four elements d : p̂i0+k,j+k,

a : p̂i0+k,j+k+1, b : p̂i+k,j+k, and c : p̂i+k,j+k+1 belong to the same submatrix, namely,
to P (
i0/k�+1,
j0/k�+1). Since the constant gap property is preserved by cyclic row and
column shifts, we have d− b= a− c, and thus a+ b= c+d. The cases when j �= k−1
(mod k) and/or i �= k−1 (mod k) are handled by a variant of this argument; we omit
the details in this version. This completes the proof of P̂ (Ci,j) = P̂ (Ci,j+k) and of the
lemma.
�

Lemma 3. Let P = (pij) and Q= (qij) be matrices in Z(k). Combine P̂ and Q̃ into a
single matrix in two different ways, namely, put C(1) = C(1)(P,Q) = (cij) = Q̃+k2P̂

andC(2) =C(2)(P,Q) = (c′ij) = P̂ +k2Q̃. In other words, ci,j = q̃i,j +k2p̂i,j or c′i,j =
p̂i,j +k2q̃i,j , for all i, j. If P has the constant gap property, then

(a) C(1) and C(2) are in Z(k2), and
(b) their k×k-discrepancy is zero.

In addition, C(1) and C(2) are distinct if P �=Q. Thus |N(k,k2)| ≥ 2.

Proof. The resulting matrices obviously belong to Z(k2,k4) and have zero discrepancy,
as linear combinations of matrices of zero discrepancy. It is easy to check thatC(1) �=C(2)

if P �=Q.
Thus to prove (b), it suffices to show that the elements of the matrices are all distinct.

We focus onC(1), the argument forC(2) is analogous. Since P̂ , Q̃∈Z(k2,k2), cij = ci′j′

A Generalization of Magic Squares with Applications to Digital Halftoning 95

implies p̂ij = p̂i′j′ and q̃ij = q̃i′j′ . In other words, for a repeated value to occur in C(1),
there must exist two positions (i, j) and (i′, j′) so that in P̂ the same number occurs at
(i, j) and (i′, j′), and this also happens in Q̃. We argues that this is impossible. Indeed,
since Q̃ is defined by just repeating the same matrix (with all entries distinct) k2 times,
each element stays in the same relative position in each submatrix. On the other hand, no
element in a submatrix P (c,r) of P̂ occurs in the same position in any other submatrix.

�
We now prove a stronger version of Theorem 1d.

Theorem 2. N(k,km) �= for any integersk,m≥ 2. Moreover, a zero-discrepancy matrix
in N(k,km) can be explicitly computed in time linear in its size using O(mk2) space.

Proof. We generalize the construction presented in Lemma 3. A matrix M ∈ Z(km)
with zero discrepancy is defined using m−1 constant-gap matrices P0,P1, . . . ,Pm−2
of size k and one arbitrary matrix Pm−1 of the same size (all in Z(k)) as follows:

M(i, j) = k2(m−1)P
(
i/km−1�,
j/km−1�)
0 (i mod k,j mod k)

+k2(m−2)P
(
i/km−2�modk,
j/km−2�modk)
1 (i mod k,j mod k)

· · ·

+k2P
(
i/k�modk,
j/k�modk)
m−2 (i mod k,j mod k)

+Pm−1(i mod k,j mod k).

For example, when k = 3 and m= 3, M is constructed as follows, where we have used
R,Q,P for P0,P1,P2, respectively, to avoid cumbersome notation.

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

P (0,0) P (0,0) P (0,0) P (0,1) P (0,1) P (0,1) P (0,2) P (0,2) P (0,2)

P (0,0) P (0,0) P (0,0) P (0,1) P (0,1) P (0,1) P (0,2) P (0,2) P (0,2)

P (0,0) P (0,0) P (0,0) P (0,1) P (0,1) P (0,1) P (0,2) P (0,2) P (0,2)

P (1,0) P (1,0) P (1,0) P (1,1) P (1,1) P (1,1) P (1,2) P (1,2) P (1,2)

P (1,0) P (1,0) P (1,0) P (1,1) P (1,1) P (1,1) P (1,2) P (1,2) P (1,2)

P (1,0) P (1,0) P (1,0) P (1,1) P (1,1) P (1,1) P (1,2) P (1,2) P (1,2)

P (2,0) P (2,0) P (2,0) P (2,1) P (2,1) P (2,1) P (2,2) P (2,2) P (2,2)

P (2,0) P (2,0) P (2,0) P (2,1) P (2,1) P (2,1) P (2,2) P (2,2) P (2,2)

P (2,0) P (2,0) P (2,0) P (2,1) P (2,1) P (2,1) P (2,2) P (2,2) P (2,2)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

+k2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q(0,0) Q(0,1) Q(0,2) Q(0,0) Q(0,1) Q(0,2) Q(0,0) Q(0,1) Q(0,2)

Q(1,0) Q(1,1) Q(1,2) Q(1,0) Q(1,1) Q(1,2) Q(1,0) Q(1,1) Q(1,2)

Q(2,0) Q(2,1) Q(2,2) Q(2,0) Q(2,1) Q(2,2) Q(2,0) Q(2,1) Q(2,2)

Q(0,0) Q(0,1) Q(0,2) Q(0,0) Q(0,1) Q(0,2) Q(0,0) Q(0,1) Q(0,2)

Q(1,0) Q(1,1) Q(1,2) Q(1,0) Q(1,1) Q(1,2) Q(1,0) Q(1,1) Q(1,2)

Q(2,0) Q(2,1) Q(2,2) Q(2,0) Q(2,1) Q(2,2) Q(2,0) Q(2,1) Q(2,2)

Q(0,0) Q(0,1) Q(0,2) Q(0,0) Q(0,1) Q(0,2) Q(0,0) Q(0,1) Q(0,2)

Q(1,0) Q(1,1) Q(1,2) Q(1,0) Q(1,1) Q(1,2) Q(1,0) Q(1,1) Q(1,2)

Q(2,0) Q(2,1) Q(2,2) Q(2,0) Q(2,1) Q(2,2) Q(2,0) Q(2,1) Q(2,2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+k4

⎡⎢⎢⎢⎣
R R R R R R R R R
R R R R R R R R R
R R R R R R R R R
R R R R R R R R R
R R R R R R R R R
R R R R R R R R R
R R R R R R R R R
R R R R R R R R R
R R R R R R R R R

⎤⎥⎥⎥⎦ .

96 B. Aronov et al.

The remainder of the proof proceeds just as in that of Lemma 3; we omit the details.
Recall that P (a,b)

m (i, j) = Pm((i+ b) mod k,(j + a) mod k). Thus we can generate
every entry of such a matrix without explicitly storing any information besides the m
k×kmatricesP0, . . . ,Pm−1; the computation requires at mostO(m) additional working
space.
�

4 The Class of Constant-Gap Matrices

We have described a scheme for constructing matrices with zero k×k-discrepancy. A
key ingredient in the recipe is a constant-gap matrix in Z(k). It is easily checked that
a different choice of such a matrix produces a different zero-discrepancy matrix. Thus
a natural question arises: How many different constant-gap matrices of a given size are
there? In this section we, in a sense, completely characterize the class of constant-gap
matrices in Z(n). In fact, we discuss a somewhat more general class of matrices. Let
M(m,n) be the set of all integer m×n matrices with entries 0, . . . ,mn−1, each used
exactly once. A matrix M = (mij) ∈ M(m,n) has constant-gap property if, for all
i, j, i′, j′, mij +mi′j′ =mi′j +mij′ . It is clear from the definition that this property, as
already observed in Lemma 1, is invariant under a number of operations:

Lemma 4. The constant-gap property is preserved (1) under an arbitrary permutation
of rows of a matrix, (2) under an arbitrary permutation of columns of a matrix, and, for
square matrices, (3) under mirror reflection through its main diagonal.

Two constant-gap matrices are equivalent if one of them is derived from the other
by a sequence of operations listed in the statement of the lemma.2 We are interested in
counting the number of these equivalence classes.

Lemma 5. Every equivalence class can be represented by a matrixP = (pi,j)∈M(m,n)
in canonical form, which satisfies the following additional properties:

(a) Every row of P is sorted, i.e., pi,0 < pi,1 < · · ·< pi,n−1; for convenience we define
cj = p0,j for j = 0, . . . ,n−1.

(b) Every column of P is sorted, i.e., p0,j < p1,j < · · ·< pn−1,j; we put rj = pj,0, for
j = 0, . . . ,n−1.

(c) Generally, pi,j < pi′,j′ if i≤ i′, j ≤ j′, and (i, j) �= (i′, j′).
(d) p0,0 = c0 = r0 = 0, pm,n =mn−1.
(e) P is completely specified by (cj), (ri): for all i, j, pi,j = ri + cj .

Proof. We argue that all the properties can be satisfied without leaving the equivalence
class. Columns can be permuted to sort the top row and then rows can be permuted to
sort the leftmost column. Because of the constant-gap property, this sorts all rows and
columns. Properties (c) and (d) follow from this ordering. The next property follows
from the constant-gap condition, namely pi,j = p0,0 +pi,j = pi,0 +p0,j = ri + cj .
�

2 To avoid cumbersome wording, we will henceforth not discuss the case of square matrices
separately. The reasoning there is entirely analogous, with the exception of an occasional
invocation of diagonal symmetry to further reduce the number of equivalence classes. We omit
further details.

A Generalization of Magic Squares with Applications to Digital Halftoning 97

⎡⎣1 2 3
4 5 6
7 8 9

⎤⎦
⎡⎢⎢⎣

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

⎤⎥⎥⎦
⎡⎢⎢⎣

0 1 4 5
2 3 6 7
8 9 12 13
10 11 14 15

⎤⎥⎥⎦
⎡⎢⎢⎣

0 1 8 9
2 3 10 11
4 5 12 13
6 7 14 15

⎤⎥⎥⎦
(a) (b)

Fig. 3. The only equivalence class of constant-gap matrices for n = 3 (a), and the three classes for
n = 4 (b)

It is not difficult to see that there exists only one equivalence class (up to diagonal
reflection) of constant-gap matrices in Z(n) when n = 3; for n = 4, there are three
equivalence classes, refer to Fig. 3. For n = 5 there exists only one equivalence class,
whereas there are many when n= 6. These observations can be generalized as follows.

The set of all constant-gap matrices in M(m,n) in canonical form is denoted by
K(m,n). In this section we give a characterization of the sets K(m,n), for allm,n > 0.
We begin with some additional terminology and then state our characterization.

We define another operation on matrices. Given matrices P = (pi,j) ∈ K(m,n)
and Q = (qi,j) ∈ K(m′,n′), their expansion product P ⊗Q is the mm′×nn′ matrix
H = (hi,j) defined byhi,j =m′n′p
i/m′�,
j/n′� +qimodm′,j modn′ . In addition, define a
simple row of length k to be the 1×kmatrix filled with consecutive numbers 0, . . . ,k−1,
in this order. Define a simple column analogously.

The following facts are easily verified.

Fact 1. K(1,m) consists of a single matrix, which is a simple row of lengthm. An anal-
ogous statement holds for K(m,1). Both row- and column-major order filled members
of M(m,n) have constant-gap property. In particular, |K(m,n)| ≥ 2, form,n > 1. The
two matrices have the same canonical form in K(n), so |K(n)| ≥ 1 for n≥ 1.

Fact 2. If P ∈K(m,n) and Q ∈K(m′,n′), then P ⊗Q ∈K(mm′,nn′).

Surprisingly, in the sense made more precise by the following theorem, Facts 1 and 2
describe K(m,n) completely. The remainder of the section is devoted to the proof of
this assertion.

Theorem 3. K(m,n) can be characterized as follows.

(a) A matrix P ∈K(m,n) can be written uniquely as

P = P1⊗·· ·⊗Pk,

where P1, . . . ,Pk is an alternating sequence of simple rows and columns, each of
length at least two; k = 0 if m= n= 1.

(b) K(m,n) �= ∅, for m,n > 0. |K(m,n)| = 1 if and only if n = 1 or m = 1. In this
case, K(m,n) consists just a simple row or column.

A column differencep0,j−p0,k = pi,j−pi,k, for some j �= k, is the difference between
corresponding entries of two columns; it is independent of the row where the difference is
taken, by the constant-gap property. Similarly, a row difference pi,0−pk,0 = pi,j−pk,j ,
for i �= k, is the difference between corresponding entries of two rows.

98 B. Aronov et al.

0 �− 1
0 �− 1

� 2�− 1

max h-runs

0
�

Fig. 4. Partition of a matrix by vertical boundaries of h-runs

Lemma 6. No row difference equals a column difference. In other words, for any 0 ≤
i < k ≤ n−1 and 0≤ j < �≤ n−1, p0,k−p0,i �= p�,0−pj,0.

Proof. By the constant-gap property, p0,k− p0,i = p�,k− p�,i and p�,0− pj,0 = p�,k−
pj,k. Their equality would imply p�,i = pj,k contradicting the assumption that no entry
in P is repeated.
�

Proof (Theorem 3). We start with the existence proof for part (a). If n = 1 or m = 1,
we are done, so assume m,n > 1. Without loss of generality, assume that p0,1 < p1,0,
so that p0,1 = 1. By induction, it is sufficient to argue that in this case P can be written
as a product of a smaller matrix and a simple row of length at least two.

Let P = (pi,j) ∈K(m,n). A horizontal run in P (an h-run, for short) is a maximal
sequence of consecutive integers appearing in adjacent entries of a row of P ; the length
of an h-run is the number of such integers. Each h-run is associated with an interval
defined by its first and last column indices. The initial h-run is the one starting at the
upper left corner p0,0 of the matrix; by our assumption its length � is at least two. The
value � must be contained in p0,1, for it cannot lie in p0,� by maximality of the run and
it is the smallest value in the matrix outside of the run. Thus we have the row difference
p1,0−p0,0 = �.

Lemma 7. No h-run is longer than the initial run.

Proof. If there existed such an h-run, we would have a column difference equal to
� appear within the run. However, we already identified a row difference of � in the
matrix. This would contradict Lemma 6.
�

Recall that in P the differences between consecutive elements in the row are equal
to the corresponding differences in the top row, so in terms of presence and length of
runs, every row behaves exactly the same. Thus P can be partitioned by vertical lines
corresponding to boundaries of h-runs, as shown in Fig. 4.

Lemma 8. All h-runs have the same length.

A Generalization of Magic Squares with Applications to Digital Halftoning 99

Proof. By Lemma 7, no h-run is longer than the initial h-run of length �. For a con-
tradiction, let j be the first column at which an h-run of length �′ < � starts. Such an
h-run in the top row is a sequence p0,j ,p0,j +1, . . . ,p0,j + �′− 1. Where in the matrix
is the next integer, namely the value q = p0,j + �′? By definition of an h-run, it cannot
be located in the same row. So, it must lie before column j, say in location pk,s�, for
some s� < j. Since all the h-runs located to the left of column j are of length �, the
h-run starting at pk,s� must consist of values q, . . . , q+ �−1. However, since the differ-
ence between rows zero and one is �, p1,j must have value r = p0,j + � > q. Moreover,
r = q− �′ + � < q+ �− 1, so the value r occurs both at p1,j and in the run starting at
value q, which is impossible.
�

This property implies the following structure of the matrix P . The number � > 1
is a divisor of n. The entire matrix consists of h-runs of length �. The first element
of each run is a multiple of �. If L is a simple row of length �, we can easily verify
that indeed P = P ′⊗ � for the matrix P ′ = (p′

i,j) defined by p′
i,j = pi,�j/�. We claim

that P ′ ∈K(m,n/�). It is easily checked that P ′ ∈M(m,n/�), while properties (a)–(e)
follow from the corresponding properties for P .

We now address the question of uniqueness. We have shown that any matrix in
K(m,n) can we written as an expansion product of some number of simple rows and
columns. Since the expansion product of two simple rows (resp. columns) is a simple row
(resp. column), by consolidating products of consecutive rows (resp. columns) we can
express P as a product of alternating rows and columns. This representation is unique,
since the type and size of the last factor can be “read” directly from the matrix—the
factor is a simple row if p0,1 = 1 and a simple column if p1,0 = 1; its length � is the
length of the initial run, which is horizontal in the former case and vertical in the latter
one.

It remains to note that a matrix from K(m,n) can always be produced as a product
of a simple row of length n and a simple column of lengthm, thus constant-gap matrices
of all orders exist. Reversing the order of multiplication produces a different matrix,
provided m,n > 1, proving part (b) of the theorem.
�

5 Concluding Remarks

We have introduced a discrepancy-based measure of uniformity of an n× n square
matrix containing 0,1, . . . ,n2− 1 as a generalization of a semimagic square. We have
succeeded in obtaining matrices of even dimension with zero discrepancy for families
of 2k×2k contiguous submatrices. For arbitrary k, we can construct a km×km matrix
of k×k-discrepancy zero. Moreover, such a matrix can be explicitly computed in time
linear in its size using onlyO(mk2) space, which is a great advantage over the heuristic
algorithms used for designing blue-noise masks in digital halftoning. This paper serves
as a starting point of this type of investigation. A number of issues are still left open. One
of the most interesting and attractive problems is to find low-discrepancy matrices, when
n (dimension of the matrix) and k (the dimension of submatrix) are relatively prime to
each other.

100 B. Aronov et al.

References

1. A. Aggarwal, M. Klawe, S. Moran, P. Shor, and R. Wilber: “Geometric Applications of a
Matrix Searching Algorithm,” Proc. 2nd ACM Symposium on Computational Geometry,
pp. 285–292, 1986.

2. T. Asano, N. Katoh, K. Obokata, and T. Tokuyama, “Combinatorial and Geometric Prob-
lems Related to Digital Halftoning,” Theoretical Foundations of Computer Vision: Geometry,
Morphology, and Computational Imaging, LNCS 2616, Springer, 2003.

3. T. Asano, “Digital Halftoning: Algorithm Engineering Challenges,” IEICE Trans. on Inf. and
Syst., E86-D, 2, 159–178, 2003.

4. T. Asano, K. Obokata, N. Katoh, and T. Tokuyama: “Matrix rounding under the Lp-
discrepancy measure and its application to digital halftoning,” Proc. ACM-SIAM Symposium
on Discrete Algorithms, pp. 896–904, San Francisco, 2002.

5. B.E. Bayer: “An optimum method for two-level rendition of continuous-tone pictures,” Con-
ference Record, IEEE International Conference on Communications, 1, pp. (26-11)–(26-15),
1973.

6. B. Chazelle: The Discrepancy Method: Randomness and Complexity, Cambridge University
Press, 2000.

7. R.W. Floyd and L. Steinberg: “An adaptive algorithm for spatial gray scale,” SID 75 Digest,
Society for Information Display, pp. 36–37, 1975.

8. H.D. Heinz: “Magic Squares, Magic Stars & Other Patterns” web site,
http://www.geocities.com/CapeCanaveral/Launchpad/4057/.

9. R.L. Graham, B.D. Lubachevsky, K.J. Nurmela, P.R.J. Östergård: “Dense packings of con-
gruent circles in a circle,” Discrete Math., 181, 139–154, 1998.

10. D.E. Knuth, The Art of Computer Programming, volume 1, Fundamental Algorithms, 3rd ed.
(Reading, Massachusetts: Addison-Wesley, 1997.

11. Kodera Ed.: Practical Design and Evaluation of Halftoned Images, (in Japanese) Trikepps,
2000.

12. J. Matoušek: Geometric Discrepancy, Springer, 1991.
13. T. Mitsa and K.J. Parker: “Digital halftoning technique using a blue-noise mask,” J. Opt. Soc.

Am., A/Vol. 9, No. 11, 1920–1929, 1992.
14. K.J. Nurmela and P.R.J. Östergård: “Packing up to 50 Equal Circles in a Square,” Discrete

Comput. Geom., 18, 111–120, 1997.
15. R.A. Ulichney: “Dithering with blue noise,” Proc. IEEE, 76, 1, 56–79, 1988.
16. R. Ulichney: “The void-and-cluster method for dither array generation,” IS&T/SPIE Sym-

posium on Electronic Imaging Science and Technology, Proceedings of Conf. Human Vi-
sion, Visual Processing and Digital Display IV, (Eds. Allebach, John Wiley), SPIE vol.1913,
pp. 332–343, 1993.

17. M. Yao and K.J. Parker: “Modified approach to the construction of a blue noise mask,”
J. Electronic Imaging, 3, 92–97, 1994.

Voronoi Diagrams with a Transportation
Network on the Euclidean Plane�

Sang Won Bae and Kyung-Yong Chwa

Division of Computer Science, Department of EECS,
Korea Advanced Institute of Science and Technology, Daejeon, Korea

{swbae, kychwa}@jupiter.kaist.ac.kr

Abstract. This paper investigates geometric and algorithmic properties
of the Voronoi diagram with a transportation network on the Euclidean
plane. With a transportation network, the distance is measured as the
length of the shortest (time) path. In doing so, we introduce a needle,
a generalized Voronoi site. We present an O(nm2 log n + m3 log m) al-
gorithm to compute the Voronoi diagram with a transportation network
on the Euclidean plane, where n is the number of given sites and m is
the complexity of the given transportation network.

1 Introduction

With a transportation network, like streets in a city, subway or bus networks, or
a highway over a nation, people have become capable to move faster. Finding a
shortest (time) path using such transportation is very important due to the ten-
dency of people trying to move with the shortest duration. In this situation, let us
imagine a set of sites or service stations, and suppose that one should visit any of
them; here, the Voronoi diagram problem arises. This paper considers geometric
and algorithmic issues about the Voronoi diagram under the above situation.

The Voronoi diagram on the plane with a transportation network has been
studied by several researchers. Hurtado et al. [1] and Abellanas et al. [2] discussed
a single infinite road network as a straight line on the Euclidean plane; the
currently best known results about the Voronoi diagram on the Euclidean plane
with a transportation network. In addition, transportation networks on the L1
plane have been dealt with; Abellanas et al. [3] dealt with isothetic and monotone
networks and, more generally, Aichholzer et al. [4] introduced the city Voronoi
diagram, the Voronoi diagram with an isothetic transportation network on the
L1 plane.

All the previous work has assumed that every roads in a transportation net-
work have the same speed. But, as mentioned at the beginning, several kinds of
transportation networks are established on our surroundings and, hence, trans-
portation networks with diverse speeds need to be considered. This paper is the
first result dealing with transportation networks with multiple roads, possibly
having arbitrary directions and diverse speeds, on the Euclidean plane.

� This work is supported by grant No.R01-2003-000-11676-0 from KOSEF.

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 101–112, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

102 S.W. Bae and K.-Y. Chwa

1.1 The Model

A transportation network consists of several roads as non-intersecting line seg-
ments on the plane, which may share a node, or an endpoint, in common. The
roads have individual supporting speeds. This structure can be generally repre-
sented as a planar straight-line graph G = (V,E) with speed v on each road,
where V is a set of nodes and E is a set of roads.

In our model, one can enter into and exit from G at any point of roads or
nodes. Along any road e ∈ E, one can move at fixed speed v(e). Off the network
G, one can move at unit speed in any direction. We assume that v(e) > 1 for
all roads e ∈ E, since, if v(e) ≤ 1, the road e does not contribute any shortest
paths. Restricting entry points to fixed points on the roads yields an instance
of Voronoi diagrams for additively weighted points, easily solvable (mentioned
in [4]).

Given a transportation network G, the distance with the transportation net-
work G, called dG, is measured as the length (duration) of the shortest (time)
path when using roads in G. In fact, dG induces a metric on R2 as a shortest
path metric. We call the metric induced on R2 by dG the transportation metric
with G.

1.2 The Results

We present an algorithm for constructing the Voronoi diagram under the trans-
portation metric with G, VG(S), for a set S of n sites. The algorithm runs in
O(nm2 log n+m3 logm) time and requires O(m(n+m)) space, where m is the
number of roads in G. Throughout this paper, we will denote the number of
roads by m and the number of sites by n.

As a special case, we can reduce the runtime when the given transportation
network is with the constraint that all roads have the same speed and their pos-
sible directions are finitely fixed. In this situation, we can compute the diagram
in O(nm log n+m2 logm) time with linear space.

In doing so, we introduce a generalized site, a needle. A needle can be repre-
sented as a set of additively weighted points, lying on a line and weighted linearly.
A Voronoi diagram for needles with a certain condition, so called non-piercing,
on the Euclidean plane can be computed in O(n log n) time and in O(n) space.
Arguments and details about needles are presented in Section 3.

Under the transportation metric, it is not so easy any more to plan a shortest
path, even if a source and a destination are determined. We simply state our
results about the path planning under the transportation metric in Section 6.

2 Basic Idea

In this section, we describe our basic idea to solve the problem through an
observation on the plane with a transportation metric.

The transportation metric has some bad properties so that computing Voronoi
diagrams under it is not so easy. For example, we can easily construct a cyclic

Voronoi Diagrams with a Transportation Network on the Euclidean Plane 103

bisector with Ω(m) segments between two points; a transportation network with
cyclic roads and two sites, one of which is much closer to a road than the other.
This violates one of necessary conditions to apply the abstract Voronoi diagram,
one of the most popular and useful tools to compute Voronoi diagrams (see
Subsection 3.2). Thus, we should find a different approach to solve the problem.

Fig. 1. Illustrations of t-neighborhood sets when G has a single road

To find such a different approach, we have to investigate the plane with a
transportation network more carefully. Let us consider a simplest case, a single
road transportation network. Given a single road on the Euclidean plane, we
know how to find a shortest path by Hurtado et al. [1] and Abellanas et al. [2].
We draw the following observation from their results.

Observation 1. To reach the destination as quickly as possible, in accessing a
road e,

1. The entering or exiting angle with e should be π/2±α, where sinα = 1/v(e)
[1].

2. If above is impossible, access the road e through the closer node of e.

By Observation 1, we can find the t-neighborhood set of p under the trans-
portation metric with G, defined as {x|dG(x, p) < t}, for any point p on the
plane and t ≥ 0. We shall denote it by NG(p, t). Figure 1 shows four illustrations
for the boundary of NG(p, t) when G is a single road network.

Note that NG(p, t) can be represented as a union of one large disk centered
at p and two needle-shaped regions along the road, each of which is a union of
a set of disks whose radii are linearly assigned along the road. This provides an
intuition to analyze the transportation metric from a different view. Our strategy
is to consider such a needle-shaped region produced from p as an independent
Voronoi site under the Euclidean metric. In Section 3, we define such a Voronoi
site, called a needle. Then, we can compute the distance with more roads by
using needles on the roads, if we can compute the distance to a needle from any
point under the Euclidean metric. We will show how to compute a set of needles
from given sites S, which allows us to properly analyze the given transportation
network G, in Section 4 and 5.

104 S.W. Bae and K.-Y. Chwa

3 Needle: A Generalized Site

In this section, we introduce a needle as a more generalized Voronoi site. Needles
play a very important role in computing diagrams under the transportation
metric. In Subsection 3.1, we define a needle formally and show that the distance
from any point to a needle can be computed. In Subsection 3.2, we discuss
Voronoi diagrams for needles on the Euclidean plane.

3.1 Definition of a Needle

A needle is generalized from a line segment with an additive weight. Note that
a line segment can be viewed as a set P of points on it and the distance to a
line segment from any point q on the plane is represented by minp∈P d(p, q).
Similarly, a needle is a set of weighted points lying on a line segment. Note
that a weighted point p with weight w can be represented as a pair (p, w) and
the distance to (p, w) from any point q is equal to d(p, q) + w. One necessary
condition for a needle is that the weight on a needle is assigned linearly. With
this property, a needle is suitable to represent NG(p, t), as noted in Section 2.
The following is a definition of a needle.

(a) t1 < t < t2 (b) t = t2 (c) t > t2

Fig. 2. t-neighborhood sets of a needle

Definition 1. A needle p is a set of all points on a line segment s(p), whose
endpoints are p1 and p2, with weight function wp. The weight wp(x) is given
linearly from t1 to t2, for each x ∈ s(p) and 0 ≤ t1 ≤ t2, such that wp(p1) = t1
and wp(p2) = t2. The needle p is represented by a 4-tuple, (p1, p2, t1, t2). We
may use the terms p1(p), p2(p), t1(p) and t2(p), instead of p1, p2, t1 and t2,
respectively.

Figure 2 shows t-neighborhood sets N(p, t) of a needle p under the Eu-
clidean metric, when t1 < t < t2, t = t2 and t > t2, case by case. As t
increases from 0, N(p, t) grows from a point p1(p) at t = t1(p) and reaches
p2(p) at t = t2(p) along s(p). We also define the speed of a needle p as
v(p) = d(p1(p), p2(p))/(t2(p)−t1(p)) and its direction as direction toward p2(p)
from p1(p). Note that if v(p) ≤ 1, N(p, t) is of shape of a disk, and thus we can
regard p as a point p1(p) with weight t1(t).

Throughout this paper, we will draw a needle as an arrow headed in its
direction, as shown in Figure 2.

Voronoi Diagrams with a Transportation Network on the Euclidean Plane 105

We now discuss the distance from any point on the plane to a needle under
the Euclidean metric. For any point x ∈ R2 and any needle p, the distance is
represented as follows:

d(x,p) = min
y∈s(p)

{d(x, y) + wp(y)},

where wp(y) is the weight assigned to y. wp(y) can be computed by the definition
of a needle as follows:

wp(y) = t1(p) + (t2(p)− t1(p))
d(p1(p), y)

d(p1(p), p2(p))
= t1(p) + d(p1(p), y)/v(p),

for all y ∈ s(p).
We define some terms associated with a needle p. Without loss of generality,

we assume that p is horizontal and p1 is to the left of p2. Let l1 denote a line,
whose slope is tanα and which meets p1, and l2 denote a line, whose slope is
tan(π/2+α) and which meets p2, where α = sin−1(1/v(p)). We define s+(p) to
be a line segment associated with p whose endpoints are p1 and the intersection
point between l1 and l2. Symmetrically, we define s−(p); see Figure 3. Next, we
let p+ be a set of points above s(p) such that, for any point x ∈ p+, a line,
which is perpendicular to s−(p) and meets x, intersects s−(p). In this manner,
we also define p−, symmetrically. Note that p+ and p− decompose R2 into four
disjoint and connected regions as shown in Figure 3.

α

s−(p)

s+(p)

p+

p−

s(p)

α

l1
l2

Fig. 3. Plane decomposition around a needle p

Lemma 1. Let p be a needle represented by (p1, p2, t1, t2). Then, the distance
from any point x ∈ R2 to p is as follow.

d(x,p) =

⎧⎨⎩
d(x, s−(p)) + t1 if x ∈ p+

d(x, s+(p)) + t1 if x ∈ p−

min{d(x, p1) + t1, d(x, p2) + t2} otherwise

By the above lemma, we can easily compute the distance from any point to
a needle in constant time.

3.2 Voronoi Diagrams for Needles Under the Euclidean Metric

In this subsection, we compute the Voronoi diagram for a set of needles. In order
to do so, we recall the abstract Voronoi diagram introduced by Klein [5]. In this
model, a system of bisecting curves for S, (S, {J(p, q)|p, q ∈ S, p �= q}) is given,
which is called admissible if the following conditions are fulfilled:

106 S.W. Bae and K.-Y. Chwa

1. J(p, q) is homeomorphic to a line or empty.
2. The intersection of any two bisectors consists of finitely many components.
3. R(p, q) ∩R(q, r) ⊂ R(p, r).
4. For any subset S′ ⊆ S and p ∈ S′, R(p, S′) is path-connected if it is

nonempty.

where R(p, q) = {x ∈ R2|d(x, p) < d(x, q)}, R(p, S) =
⋂

q∈S,p�=q R(p, q) and
J(p, q) is the bisecting region between p and q.

However, needles violate condition 1 and condition 4, since needles generalize
line segments. Note that the bisector between two needles p and q is defined
as J(p,q) = {x|d(x,p) = d(x,q)}, which is computable in constant time by
Lemma 1.

We suggest another condition restricting needles so that the bisector system
is admissible. We consider the following four cases for each needle p with respect
to another needle q.

1. R(p,q) ∩ s(q) = ∅

2. R(p,q) ∩ s(q) �= ∅ and R(p,q) ∩ s(q) includes either p1(q) or p2(q), not
both.

3. R(p,q) ∩ s(q) �= ∅ and R(p,q) ∩ s(q) includes both p1(q) and p2(q).
4. R(p,q) ∩ s(q) �= ∅ and R(p,q) ∩ s(q) includes neither p1(q) nor p2(q).

We call two needles, p and q, non-piercing if and only if, for each with respect
to the other, the fourth case does not occur. Otherwise, we call two needles pierc-
ing. Now, we consider only a set of pairwise non-piercing needles that leads to
our goal, sufficiently. Note that the non-piercing for needles condition generalizes
the disjointness for line segments.

Theorem 1. Let S be a set of pairwise non-piercing needles. Then, the system
of bisecting curves for S, (S, {J(p,q)| p,q ∈ S, p �= q}) is admissible.

Constructing abstract Voronoi diagrams has been dealt with by several re-
searchers, Klein [5], Mehlhorn et al. [6], Klein et al. [7], and Dehne and Klein [8].
All presented algorithms take an optimal time and an optimal space. Thus, we
conclude the following corollary as a result of this section.

Corollary 1. Let S be a set of pairwise non-piercing needles. Then, the Voronoi
diagram for S on the Euclidean plane can be computed in O(n log n) time and
O(n) space.

In fact, Aichholzer et al.[4] introduced the concept similar to non-piercing
needles. The authors discussed their concepts in the wavefront model and they
defined a needle as a figure produced by the wavefront of a site while touching
road segments. In the wavefront model, each site p sends out a wavefront and
the interference pattern of these wavefronts contributes the diagram. In contrast
with their approach, we define a needle as an independent Voronoi site.

Voronoi Diagrams with a Transportation Network on the Euclidean Plane 107

4 Relation Between a Transportation Network and
Needles

In this section, we draw a relation between a given transportation network and
a set of needles.

Theorem 2. Given a transportation network G and a set of sites S, there exists
a set S of needles such that V(S) induces VG(S), i.e., for any p ∈ S, there exists
a site q ∈ S such that R(p,S) ⊆ RG(q, S).

Proof. First, a point p produces at most two new needles on a road e (see
Figure 1). These needles are born at a node of e or at an intersection point
of the road with the line, whose slope is tan(π/2 ± α) and which meets p by
Observation 1. One important fact is that the produced needles are also Voronoi
sites and thus they possibly produce new needles on other roads. We will call
such a newly produced needle a needle produced on a road from a (parent) needle.

Note that, generally, a needle produces at most two new needles on a road.
Suppose that a needle produces three needles on a road. Then, two of the three
should be in the same direction and one of these two needles must be dominated
by the original needle or other newly produced ones, since the speeds of the
three needles are the same and their neighborhood sets are convex under the
Euclidean metric (see Figure 1 and 2).

More formally, we define σG(p) to be a set of needles produced from a needle
p on all roads in G. For a set X of needles, σG(X) =

⋃
p∈X σG(p). In order

to obtain all needles produced from a site p, we apply σG(·), repeatedly. We let
σk

G(p) = σG(σk−1
G (p)) and σ0

G(p) = {p}. We then let Sk
p be

⋃k
i=0 σ

i
G(p) and Sp

be S∞
p . Moreover, we let dk

G(p, q) be the length of a shortest path from p to q
where the path passes through at most k roads. Surely, dG(p, q) = d∞

G (p, q).
We claim that dk

G(p, q) = d(p,Sk
q), which directly implies the theorem.

There exists a needle q ∈ Sk
q such that d(p,q) = d(p,Sk

q) and q ∈ σl
G(q),

for any point p and 0 ≤ l ≤ k. Let us consider a sequence of needles, ql =
q,ql−1, · · · ,q1, such that qi is produced from qi−1 and qi ∈ σi

G(q). With these
needles, we construct a path P from p to q passing through l roads. P starts p
and goes to the points yl on s(ql) which obeys the rule of Observation 1. Next,
P passes p1(ql) along the road, on which ql is produced. Recursively, P passes
yi and p1(qi) next to p1(qi+1) and finally reaches q from p1(q1). Since each qi

is produced on a road, P passes through l roads, which is at most k, hence,
dk

G(p, q) ≤ d(p,Sk
q).

Let us consider a path P of length dk
G(p, q) from p to q and assume that P

passes through l roads, for 0 ≤ l ≤ k. We then construct l needles, q1, · · · ,ql,
inductively, such that qi ∈ σi

G(q) and d(p,ql) = dk
G(p, q).

P consists of l segments on roads, el, el−1, · · · , e1, in order, each of which
starts at yi and ends at xi on road ei. Also, vi denotes a node of ei in direc-
tion toward yi from xi. Note that roads indicated by ei may not be disjoint.
We construct qi as follows: q1 = (x1, v1, d(x1, q), d(x1, q) + 1

v(e1)
d(x1, v1)) and

qi = (xi, vi, d(xi,qi−1), d(xi,qi−1) + 1
v(ei)

d(xi, vi)). For convenience, let q0 be

108 S.W. Bae and K.-Y. Chwa

q. Then, qi ∈ σi
G(q), since P is a shortest path and it obviously obeys the

rule of Observation 1. We are sure that d(x1,q0) = d0
G(x1, q) = d(x1, q). If

d(xi,qi−1) = di
G(xi, q), a sub-path P ′ of P from xi to q is a shortest path pass-

ing through i roads. We construct a path P ′′ of length d(xi+1,qi) from xi+1
to q. P ′′ is obtained by adding the path xi+1 → yi → xi at the beginning of
P ′. Then, d(xi+1,qi) = di+1

G (xi+1, q), since P ′′ passes through i + 1 roads and
a sub-path of P. By induction, d(p,ql) = dl

G(p, q) = dk
G(p, q), implying that

dk
G(p, q) ≥ d(p,Sk

q).
Finally, we show that dk

G(p, q) = d(p,Sk
q), and thus dG(p, q) = d(p,Sq). With

taking S =
⋃

p∈S Sp, this says that, for any p ∈ S, there exists a site q ∈ S such
that R(p,S) ⊆ RG(q, S).

�
Theorem 2 shows the existence of a set of needles noted at the end of Section 2.

But, S may not be pairwise non-piercing and further have infinitely many needles
by the construction from the proof of Theorem 2. Thus, we should reduce the
number of needles and make them pairwise non-piercing. For any p ∈ S, we call
p effective if R(p,S) �= ∅, otherwise we call p ineffective.

Lemma 2. There exists a set S∗ of needles, which are effective and pairwise
non-piercing, such that V(S∗) = V(S).

Proof. First, we remove all ineffective needles from S. We let Se ⊆ S be the set
of all effective needles in S. Trivially, V(Se) = V(S). We will construct S∗ from
Se by making it pairwise non-piercing without any change in its diagram.

We can partition S into S0,S1, · · · ,Sm such that S0 = {(p, p, 0, 0)|p ∈ S}
and all needles in Si lie on ei, for 1 ≤ i ≤ m, if all roads in G are given as
{e1, · · · , em}. For each needle p ∈ Si, 1 ≤ i ≤ m, we can find (at most) one
needle, q ∈ Si, the closest needle in the direction of p from p1(p). p stretches to
a node of ei but the part over p1(q) does not contribute V(S), since both p and
q are effective and their speeds are the same as v(ei). We thus cut p by setting
p2(p) to be p1(q) and t2(p) to be t1(p)+ 1

v(ei)
d(p1(p), p1(q)). We denote the set

of these new needles from Si by S∗
i and S0 ∪ S∗

1 ∪ · · · ∪ S∗
m by S∗. Since we cut

only a useless part of every needle from Se, V(S∗) = V(Se).
Now, we show that S∗ is pairwise non-piercing. S0 is surely pairwise non-

piercing, since it is a set of points. S∗
i is also pairwise non-piercing, since all

needles in S∗
i lie on a line including a road ei and they are disjoint.

We assume that p pierces q in S∗ and q is produced on a road ei. q is not a
needle produced from p, since p and q are non-piercing if q is a needle produced
from p. If a needle p′ produced on ei from p is effective, q cannot dominate
any point on ei over p1(p′), and thus q is not pierced. Hence, no needles on
ei from p are effective. This implies that q dominates two possible starting
points of needles produced from p, and thus q dominates all points between the
two points. Consequently, p does not pierce q, a contradiction. Therefore, S∗ is
pairwise non-piercing.
�

Voronoi Diagrams with a Transportation Network on the Euclidean Plane 109

5 Algorithm

In this section, we consider more algorithmic issues. A simple algorithm for com-
puting S∗ from S is presented. The algorithm runs in O(nm2 log n+m3 logm)
time.

5.1 Computing S∗

We recall the wavefront model. In the wavefront model, each site starts sending
out a wavefront at time 0 and the interference pattern between each wavefront
constitutes the Voronoi diagram. A wavefront at time t from each site p can
be interpreted as the set {x|dG(x, p) = t}, the boundary of NG(p, t) under the
transportation metric with G.

It is too hard to compute S∗ from S, since S can include possibly infinitely
many needles, as noted earlier. However, the effectiveness of a needle p can
be tested only with effective needles already emitting wavefronts at time t1(p).
Thus, we simulate the wavefront model with sweeping the plane with the wave-
fronts. During simulating the wavefront model, at time t1(p), we test the effec-
tiveness of p and we do some processes for p, only if p is effective. In this way,
we compute S∗ directly, not from S. Lemma 4 reduces the number of applying
σG(·).
Lemma 3. Needles produced on e′ from a needle p are at most two of six nee-
dles; four needles produced from weighted points (p1(p), t1(p)) or (p2(p), t2(p)),
and two needles starting from a node of e′.

Lemma 4. Let p be a needle produced on a road e from a needle q. For another
road e′ ∈ E, if p does not dominate any node of e or e′, no needles produced on
e′ from p are effective.

Our algorithm runs with handling events, defined as certain situations in the
wavefront model. Two kinds of events are defined; one occurs when a needle
produced on a road from another effective needle starts growing, which we call a
birth event; and the other occurs when a wavefront sent out from a needle reaches
a node, called a node event. From each event, we can ascertain the occurring time,
the occurring place, the associated site, and so on. We will call an event effective
if its associated needle dominates the point where the event occurs. To handle
these events, we need two types of data structures:

– Q is an event queue implemented as a priority queue. The priority of an
event e is its occurring time. Q supports inserting, deleting, and extracting-
minimum in logarithmic time with linear space.

– T1, T2, · · · , Tm are balanced binary search trees, each associated with ei,
where the road set E is given as {e1, e2, · · · , em}. Each Ti stores needles
on ei in order. The precedence is the position of the starting point of a
needle and ties are broken by the growing direction. Ti supports inserting
and deleting of a needle in logarithmic time, and also a linear scan for needles
currently in T in linear time with linear space.

110 S.W. Bae and K.-Y. Chwa

At the beginning of the algorithm, we initialize Q and Ti, for 1 ≤ i ≤ m. We
then compute the associating birth events with σG(p) for all p ∈ S and insert
them into Q. And, for each node v ∈ V , we compute the node event for the
nearest site from v, insert it into Q, and set the variable event(v) to be the node
event.

Once the initialization is done, we extract the upcoming event from Q and
process it as follows, repeatedly, while Q is not empty.

– If a birth event b on ei occurs, we first test the effectiveness of its associated
needle p, and then insert it to Ti. The effectiveness checking can be accom-
plished by checking with at most two neighbor needles in Ti. More precisely,
we find two neighbors around p1(p) from Ti, and test whether two neigh-
bors dominate p1(p). (Note that this test is necessary but not sufficient, i.e.
ineffective needles may pass this test. This however does not increase the
asymptotic number of needles; we will discuss about this argument in the
next subsection.) Once the effectiveness test is passed, we insert p into Ti

and compute node events from p. Note that event(v) is the currently earliest
node event on v in Q. We let a be the node event on v newly computed from
p. Then, only if a will occur earlier than event(v), we delete event(v) from
Q, insert a into Q and set event(v) as a.

– When a node event a on a node v occurs, we compute σG(p), where p is the
needle associated with a. Then, from all needles in σG(p), we compute the
associating birth events and insert them into Q.

After the event processing, all effective needles are stored in each Ti. We then
extract them with proper cutting, as described in the proof of Lemma 2.

We denote by S∗
a the resulting set of needles after running the algorithm and

by Sa S ∪
⋃

1≤i≤m Ti. The following lemma guarantees the correctness of the
algorithm.

Lemma 5. Let Se be a set of effective needles in S. Then, S∗
a is pairwise non-

piercing and
Se ⊆ Sa ⊆ S.

Proof. During running the algorithm, all needles inserted into Ti are obtained
by applying σG(·) from any site p ∈ S, which implies that Sa ⊆ S.

The algorithm filters ineffective needles efficiently by Lemma 4 and by the
effectiveness testing in processing a birth event, which is necessary. Hence, all
needles in S \ Sa are ineffective and Se ⊆ Sa.

Note that all ineffective needles are totally dominated by other effective ones.
To effective needles in S∗

a , we can apply an analogue to the proof of Lemma 4.
Thus, S∗

a is pairwise non-piercing.
�

5.2 Analysis

Our algorithm depends on the number of handled events and on the number
of needles in S∗

a . In fact, the number of events is O(m(n+m)) and also |S∗
a | =

Voronoi Diagrams with a Transportation Network on the Euclidean Plane 111

O(m(n+m)), since the algorithm applies σG(·) exactly n+m times and |σG(p)| =
O(m) for any needle p. This implies the following lemma.

Lemma 6.

|S∗
a | = O(m(n+m)) and |S∗| = O(m(n+m)),

where n is the number of sites and m is the number of roads in G.

Finally, we conclude a main theorem.

Theorem 3. Let G be a transportation network with m roads and S be a set of
n point sites. The Voronoi diagram VG(S) for S under the transportation metric
with G can be computed in O(nm2 log n+m3 logm) time and O(m(n+m)) space.

Proof. Handling an event takes O(m log(n+m)) time. Thus, computing S∗
a takes

O(m2(n+m) log(n+m)) time and this is a bottleneck of the algorithm. For any
other processes of the algorithm, O(m(n+m) log(n+m)) time is sufficient.

For the space complexity, the algorithm uses only a linear space on the num-
ber of handled events and produced needles, which is O(m(n+m)).
�

Fig. 4. Illustration of a Voronoi diagram VG(S) with the transportation network on
the Euclidean plane. Dashed lines depict Voronoi edges in V (S)

112 S.W. Bae and K.-Y. Chwa

6 Concluding Remarks

In previous sections, we consider only a set of point sites but our framework
is also applicable to different types of sites, since we handle needles, more gen-
eralized sites. We showed that, for points additive weight or for disjoint line
segments, our algorithm does work properly with minor modification and no
gains for the runtime.

As mentioned in the introduction, it is not trivial to plan a shortest path
under the transportation metric. We also showed that a shortest path to the
nearest site from a given point can be reported in O(log(n + m) + r) time by
point location over V(S∗), where r is the path complexity, bounded by O(m).
And a shortest path between given two points can be reported in O(m3 logm)
time by constructing the shortest path map, in fact, the Voronoi diagram of
needles produced from one of the two given points; this is a special case of the
weighted region problem by Mitchell and Papadimitriou [9], which is solved in
O(N8L) time whereN is the complexity of the polygonal partition and L denotes
the precision of the problem instance.

Our algorithm is easy to implement (We have implemented it in practice;
Figure 4 is obtained by our program) but the asymptotical complexity is not
optimal. A future work is to improve the algorithm in runtime while retaining
the ease of implementation.

References

1. Hurtado, F., Palop, B., Sacristán, V.: Diagramas de voronoi con funciones tempo-
rales. VIII Encuetos en Geometria Computacional (1999)

2. Abellanas, M., Hurtado, F., Sacristán, V., Palop, B.: Voronoi diagram for services
neighboring a highway. IPL: Information Processing Letters 86 (2003)

3. Abellanas, M., Hurtado, F., Icking, C., Klein, R., Langetepe, E., Ma, L., Palop, B.,
Sacristán, V.: Proximity problems for time metrics induced by the l1 metric and
isothetic networks. IX Encuetros en Geometria Computacional (2001)

4. Aichholzer, O., Aurenhammer, F., Palop, B.: Quickest paths, straight skeletons,
and the city voronoi diagram. In: Proceedings of the 8th SoCG, (June, 5-7, 2002),
New York, ACM Press (2002) 151–159

5. Klein, R.: Concrete and Abstract Voronoi Diagrams. Number 400 in Lecture Notes
in Computer Science, LNCS. Springer-Verlag, Berlin, Germany (1989)

6. Mehlhorn, K., Meiser, S., O’Dunlaing, C.: On the construction of abstract Voronoi
diagrams. Discrete Comput. Geom. 6 (1991) 211–224

7. Klein, R., Mehlhorn, K., Meiser, S.: Randomized incremental construction of ab-
stract voronoi diagrams. Computational Geometry: Theory and Applications 3
(1993) 157–184

8. Dehne, F., Klein, R.: “the big sweep”: On the power of the wavefront approach to
Voronoi diagrams. Algorithmica 17 (1997) 19–32

9. Mitchell, J.S.B., Papadimitriou, C.H.: The weighted region problem: Finding short-
est paths through a weighted planar subdivision. Journal of the ACM 38 (1991)
18–73

Structural Alignment of Two RNA Sequences
with Lagrangian Relaxation

Markus Bauer and Gunnar W. Klau

Institute of Computer Graphics and Algorithms,
Vienna University of Technology, Austria
{markus, gunnar}@ads.tuwien.ac.at

Abstract. RNA is generally a single-stranded molecule where the bases
form hydrogen bonds within the same molecule leading to structure for-
mation. In comparing different homologous RNA molecules it is usually
not sufficient to consider only the primary sequence, but it is important
to consider both the sequence and the structure of the molecules. Tradi-
tional alignment algorithms can only account for the sequence of bases,
but not for the base pairings. Considering the structure leads to signif-
icant computational problems because of the dependencies introduced
by the base pairings and the presence of pseudoknots. In this paper we
address the problem of optimally aligning two given RNA sequences ei-
ther with or without known structure (allowing for pseudoknots). We
phrase the problem as an integer linear program and then solve it using
Lagrangian relaxation. In our computational experiments we could align
large problem instances—18S and 23S ribosomal RNA with up to 1500
bases within minutes while preserving pseudoknots.

1 Introduction

Unlike DNA, an RNA molecule is generally single-stranded and folds in space due
to the formation of hydrogen bonds between its bases. While similarity between
two nucleic acid chains is usually determined by sequence alignment algorithms,
these can only account for the primary structure and thus ignore structural as-
pects. However, the problem of producing RNA alignments that are structurally
correct has emerged as one of the central obstacles for the computational study
of functional RNAs. To date, the available tools for computing structural align-
ments are either based on heuristical approaches and thus produce suboptimal
alignments or cannot attack instances of reasonable input size.

In this paper we deal with the comparison of two RNA sequences together
with their structure. Indeed, we do not necessarily require the actual knowledge
of either structure, but will infer a common structure based on the computation
of preserved hydrogen bonds. In the presence of pseudoknots, the problem be-
comes NP-hard even when only two sequences have to be aligned (Evans gives
an NP-hardness proof for a special case of this problem in [7]).

The computational problem of considering sequence and structure of an RNA
molecule simultaneously was first addressed by Sankoff [15] who proposed a
dynamic programming algorithm that aligns a set of RNA sequences while at

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 113–123, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

114 M. Bauer and G.W. Klau

the same time predicting their common fold. Algorithms similar in spirit were
proposed later on for the problem of comparing one RNA sequence to one or more
of known structure. Corpet and Michot [5] align simultaneously a sequence with
a number of other, already aligned, sequences using both primary and secondary
structure. Their dynamic programming algorithm requires O(n5) running time
andO(n4) space (n is the length of the sequences) and thus can handle only short
sequences. They propose an anchor-point heuristic to divide large alignment
problems by fixed alignment regions into small subproblems that the dynamic
programming algorithm can then be applied to.

Bafna et al. [2] improved the dynamic programming algorithm to a running
time of O(n4) which still does not make it applicable to real-life problems. Com-
mon motifs among several sequences are searched by Waterman [16]. Eddy and
Durbin [6] describe probabilistic models for measuring the secondary structure
and primary sequence consensus of RNA sequence families. They present algo-
rithms for analyzing and comparing RNA sequences as well as database search
techniques. Since the basic operation in their approach is an expensive dynamic
programming algorithm, their algorithms cannot analyze sequences longer than
150-200 nucleotides. Gorodkin et al. [8] and Mathews and Turner [12] published
simplified versions of Sankoff’s original algorithm.

Hofacker et al. [10] give a different approach to structural alignments: instead
of folding and aligning sequences simultaneously, they present a dynamic pro-
gramming approach to align the corresponding base pair probability matrices,
computed by McCaskill’s partition function algorithm [13], and therefore take
the structural information into account.

Reinert et al. [11] presented a Branch-and-Cut algorithm for aligning an
RNA molecule of known sequence and known structure to an RNA molecule of
known sequence but unknown structure. The algorithm computes an (optimal)
alignment that maximizes sequence and structure consensus simultaneously and
is based on the Branch-and-Cut technique. The method can handle pseudoknots
and is able to solve already problems up to a size of 1400 bases. However, for
problems of that size their implementation starts to require prohibitive time.

We start with a similar integer linear programming (ILP) formulation as given
by Reinert et al., but instead of using a Branch-and-Cut approach, we resort to
Lagrangian relaxation which was already successfully applied by Lancia et al. to
the contact map problem [4] which is similar to the RNA alignment problem.

The structural alignment of RNA molecules is central to the various RNA
similarity or structure prediction problems defined in the above cited papers. If
the two molecules are functionally related and have a similar structure, the RNA
structural alignment allows, e. g., to draw conclusions about the structure of the
unknown molecule. The techniques we will put forward can be modified such
that incremental or simultaneous computations of multiple structural sequence
alignments are possible.

Since the traditional approaches cannot solve middle sized or large instances
of the structural RNA alignment problem without using ad hoc heuristics, biol-
ogists still have to carry out large structural alignments by hand. Furthermore,

Structural Alignment of Two RNA Sequences with Lagrangian Relaxation 115

most algorithms are not able to integrate tertiary structure interactions like
pseudoknots, or need prohibitive ressources.

We tested a first version of our proposed algorithm with 23S rRNA sequences
from [17] and 18S rRNA sequences from Drosophila melanogaster (1995 bases)
and human (1870 bases). We could, for example, optimally align the 23S rRNA
sequences of Pyrodictium occultum (1497 bases) and Sulfolobus shibatae (1495
bases). The result was a structural alignment that is a very good approximation
of the “hand-made” optimal structural alignment and is, in particular, much
better than the purely sequence-based optimal alignment. In the 18S rRNA
dataset it is well known that the first 1200 bases contain pseudoknots. We can
show that our approach correctly preserves these pseudoknots. To our knowledge,
no other algorithm is capable of doing this.

The paper is structured as follows: Section 2 gives basic definitions and a
mathematical formulation of the problem. In Sect. 3 we study how to relax
the ILP in order to make it efficiently solvable, whereas Sect. 4 shows how we
solve the original problem by means of Lagrangian relaxation. The results of our
computational experiments are given in Sect. 6. Finally, we discuss our results
in Sect. 7.

2 Basic Definitions and Mathematical Formulation

Before presenting a graph-theoretic model of aligning two RNA sequences and a
corresponding integer linear programming (ILP) formulation we start with some
basic definitions:

Definition 1. Let S be a sequence s1, . . . , sn of length n over the alphabet Σ =
(A,G,U,C,−). A paired base (i, j) is called an interaction, if si �= − and sj �= −
and if (i, j) forms a Watson-Crick-pair. The set P of interactions is called the
annotation of sequence S. Two interactions are said to be in conflict, if they
share one base. A pair (S, P) is called an annotated sequence.

Note that a structure where no pair of interactions is in conflict with each
other forms a valid secondary structure of an RNA sequence.

We are given two annotated sequences (S1, P1) and (S2, P2). In graph-theoretic
terms the input can be modeled as a graph G = (V,A ∪ I) where the set V de-
notes the vertices of the graph, in this case the letters of the two sequences, a
set A of edges between vertices of the two input sequences (the alignment edges)
and I the set of interaction edges between vertices of the same sequence. The
left side of Fig. 1 shows such an input graph. Dashed lines are interaction edges,
solid lines are alignment edges.

Two alignment edges (a1, b1) and (a2, b2) are said to be in conflict, if a1 <
a2 → b1 < b2 or a1 > a2 → b1 > b2 is not satisfied. Visually stated, align-
ment edges that are in conflict cross or touch each other. A subset A of A is
called an alignment, if no alignment edges are in conflict. Graph-theoretically,
an alignment is a non-crossing matching.

Two interaction edges i = (i1, i2) ∈ P1 and j = (j1, j2) ∈ P2 are said to be
realized by an alignment A if and only if the alignment edges (i1, j1) and (i2, j2)

116 M. Bauer and G.W. Klau

Fig. 1. Input graph for structural alignments and realized interaction matches

are realized by A. The pair (i, j) is called an interaction match. Note that (i, j)
is an ordered tuple, that is, (i, j) is distinct from (j, i). The right side of Fig. 1
shows four interaction matches that are realized by the alignment (indeed it
shows a preserved pseudoknot).

Each alignment edge and interaction match is assigned a positive weight rep-
resenting the benefit of realizing this edge or the match. In the case of interaction
edges we could choose the score for realizing the interaction match (i, j), e. g.,
as the number of hydrogen bonds between the bases or the base pair probability
computed by means of McCaskill’s algorithm [13].

Traditional sequence alignments aim at maximizing the score of edges realized
by an alignment. A structural alignment, however, takes the structural informa-
tion (the information contained within the interaction edges) into account as
well. The problem of structurally aligning two annotated sequences (S1, P1) and
(S2, P2) calls for an optimal solution of max

∑
a∈A wa +

∑
i∈P1,j∈P2

wij , that is,
the score achieved by the weight of the alignment and interaction edges. Three
properties, however, have to be satisfied in order to form a valid RNA secondary
structure:

1. Every vertex is incident to at most one interaction edge.
2. Each interaction match has to be realized.
3. No alignment edges are in conflict.

Then, an ILP formulation follows directly:

max
∑
m∈A

∑
l∈A

wlmylm +
∑
m∈A

wmxm (1)

∑
l∈I

xl ≤ 1 ∀I ∈ I (2)

ylm = yml ∀l,m ∈ A, l < m (3)∑
l∈A

ylm ≤ xm ∀m ∈ A (4)

x, y ≥ 0 integer (5)

The variable xm equals one, if alignment edge m is part of the alignment,
whereas ylm = 1 holds, if the alignment edges l and m realize the interaction

Structural Alignment of Two RNA Sequences with Lagrangian Relaxation 117

match (l,m). The set I contains all subsets of alignment edges, such that all
pairs of elements of a specific subset are crossing each other. One can easily verify
that all properties for a structural alignment are satisfied: inequalities (3) and
(4) guarantee that interaction matches are realized by alignment edges and that
every node is incident to at most one interaction edge, whereas (2) guarantees
the alignment edges to be non-crossing.

The order l < m within the equality constraints (3) denotes an arbitrary order
defined on the elements of A (otherwise identical constraints show up twice, that
is, yml = ylm and ylm = yml were part of the ILP). Due to the NP-hardness of
the problem, we cannot hope to solve the ILP above directly. Therefore, we drop
some constraints and show how the relaxed ILP can be solved efficiently.

3 Relaxation and Efficient Solution

We call the ILP (1)-(5) without the constraints (3) the relaxed problem and
show how to solve it efficiently. Later we show how to incorporate the dropped
constrained again in order to solve our original problem. Our algorithm proceeds
in two stages. First, we compute for each m ∈ A the maximal profit that the
realization of m can possibly yield. Then, we use the maximal profit of each edge
to compute a conventional alignment.

Lemma 1. The relaxed problem can be solved in time O(|A|2).

Proof. Suppose the variable xm = 0, then due to (4) all ylm = 0 as well. For
xm = 1, however, the optimal choice for all m ∈ A is given by

max
∑
l∈A

wlmylm + wm∑
l∈I

xl ≤ 1 ∀I ∈ I

∑
l∈A

ylm ≤ 1

x, y ≥ 0 integer

To put it differently: For each m ∈ A we compute the maximal profit that
the alignment edge can possibly realize. The maximum profit consists of its own
weight wm plus the best interaction match that can be realized, if m is part of
the solution. Let pm be the maximum profit of alignment edge m and let ŷlm be
the realized interaction match.

In the second step, we compute the optimal overall profit by solving

max
∑
m∈A

pmxm∑
l∈I

xm ≤ 1 ∀I ∈ I

x ≥ 0 integer

118 M. Bauer and G.W. Klau

Let x̄ be the solution to the alignment problem above. We claim that the
solution of the relaxed problem is given by ȳlm = ŷlmx̄m for all l,m ∈ A.

Assume that (ȳlm, x̄) is not the optimal solution to the relaxed problem, but
another solution that does not realize the maximal profit. Then, according to
the objective function, there exist yvw = 0 and/or xw = 0 that would realize a
higher score. There are two possibilities: (a) yvw = 0 and xw = 1 (with yxw = 1
being the interaction match chosen to be realized by alignment edge w): This
implies that wvw > wxw. In this case, however, yvw = 1 holds and not yxw = 1,
since the interaction match with the highest score is chosen in the first step of
the algorithm. Therefore, there cannot be an yvw = 0 whose realization would
yield a higher score. (b) xw = 0: This implies that for an element c from the set I
(remember that pairs of elements of the same set I are crossing each other) holds
pc > pw, because otherwise w would have been realized. Again, there cannot be
an xw = 0 yielding a higher score in case of xw = 1.

For analyzing the running time of the entire algorithm, two things have to be
taken into account: First, choosing the interaction match that realizes the maxi-
mal profit. Second, computing an alignment, given the single profits p. If the set
of all interaction matches that could possibly be realized by alignment edge m is
being computed in a preprocessing phase, selecting the best possible interaction
match can be accomplished in constant time by means of priority queues (regard
the weight of the interaction matches as the priority, then extracting the element
with the highest priority can be done in constant time).

Computing the alignment dominates the overall running time and can be
done in O(|A|2) with the Needleman-Wunsch algorithm.
�

4 Lagrangian Relaxation

We solve the original problem by moving the dropped constraints (3) into the
objective function and by penalizing its violation. We assign a Lagrangian mul-
tiplier λ to the constraint. The task is then to find Lagrangian multipliers that
provide the best bound to the original problem. The Lagrangian problem is given
by:

max
∑
m∈A

∑
l∈A

wlmylm+
∑
m∈A

wmxm +
∑
l∈A

∑
m∈A,l<m

λlm(ylm − yml)∑
l∈I

xl ≤ 1 ∀I ∈ I

∑
l∈A

ylm ≤ xm ∀m ∈ A

x, y ≥ 0 integer

By setting λml = −λlm for l < m and λll to 0, the objective function can be
rewritten as

max
∑
m∈A

∑
l∈A

(λlm + wlm)ylm +
∑
m∈A

wmxm (6)

Structural Alignment of Two RNA Sequences with Lagrangian Relaxation 119

A common and highly efficient way to compute optimal (or near-optimal)
Lagrangian multipliers is by employing iterative subgradient optimization. First,
compute the subgradients within the i-th iteration:

si
lm = ȳlm − ȳml for all l,m ∈ A, l < m .

Then, using these subgradients, a series of λi
lm with i = 1, . . . , n is given by

λi+1
lm =

⎧⎪⎨⎪⎩
λi

lm if si
lm = 0

max(λi
lm − γi,−wlm) if si

lm = 1
min(λi

lm + γi, wlm) if si
lm = −1

(7)

and λ0
lm = 0 for all m, l ∈ A

The speed of convergence to the optimal value of the Lagrangian relaxed
problem depends heavily on the proper choice of the step size γ. A fundamental
result [14] states that for lim

i→∞
γi = 0 and

∑∞
i γi = ∞ the value always converges

to the optimal value. The harmonic series γi = 1
i with i = 1, . . . ,∞ satisfies

both conditions; it is not being used in practice, however, since the speed of
convergence turns out to be rather poor.

Another well-known formula, given in [9] and also applied by Lancia et al.
[4], computes the step size γi of the i-th iteration by

γi = μ
UB− LB∑
m,l∈A(si

lm)2

where UB and LB denote the best upper and lower bound computed so far, μ
is a common parameter used within subgradient optimization and si

lm are the
subgradients evaluated in the i-th iteration.

5 Computing Feasible Solutions

The formula for computing the series of γi contains the term LB, the best lower
bound found so far. In the following, we describe how to derive such a lower
bound given given a traditional sequence alignment and a set of interaction
edges.

Since the set of alignment edges in the alignment A is given, we only need to
compute the best possible set of interaction edges such that no pair is in conflict.

It turns out that this problem can be reduced to the general weighted match-
ing problem. Consider the edges of A as nodes and every pair of interaction edges
(i1, i2) whose endpoints are adjacent to a pair (l,m) ∈ A × A as the edges of
the graph. We call the resulting graph the interaction matching graph with edge
weights given by the sum of the corresponding interaction edges in G. Figure 2
shows an alignment (dashed lines are interaction edges) with the corresponding
interaction matching graph.

Lemma 2. A matching of maximum weight in the interaction matching graph
corresponds to the structural alignment of maximum weight in the original graph.

120 M. Bauer and G.W. Klau

a

a b c d e f g h

b c d e f g h

Fig. 2. Alignment and interaction matching graph

Proof. Recall the definition of a matching of maximum weight. In a matching
every node is incident to at most one edge, the sum of the weights of the matching
edges is maximal. It is not hard to see that the two properties for a structural
alignment are satisfied:

1. Every node in the original graph is incident to (at most) one interaction edge
(remember that nodes in the interaction matching graph are in one-to-one
correspondence to alignment edges of the original graph).

2. The sum of weights of the interaction edges is maximal.
�

It is trivial to recover the realized interaction edges from the solution of the
matching problem, since each edge in the interaction matching graph corresponds
to an interaction match.

6 Computational Results

We implemented our algorithm in C++ using the LEDA library [1] and used a
2.8 GHz Pentium IV with 2 GB of main memory for the computations.

Constructing the Input. We adapted the approach of Reinert et al. [11]. For
generating the alignment edges we are starting from a conventional sequence
alignment with affine gap costs (gap open and gap extension penalty are set to
6 and 2, respectively) and insert all alignment edges realized by any subopti-
mal alignment scoring better than a fixed threshold s below the optimal score.
Matches and mismatches have a score of 4 and 1, one single interaction match
counts 8.

Evaluating the Results. In order to evaluate our approach we made two different
kinds of experiments. First, we test our implementation with the same data set

Structural Alignment of Two RNA Sequences with Lagrangian Relaxation 121

Table 1. Comparison Lagrange vs. Branch-and-Cut

Inst. Branch-and-Cut Lagrange Inst. Branch-and-Cut Lagrange

1 12563 12609 9 11975 12034
2 11566 11611 10 12055 12141
3 11744 11814 11 11618 11649
4 12260 12298 12 11611 11692
5 11709 11734 13 11491 11572
6 11569 11719 14 11521 11605
7 12193 12263 15 12067 12101
8 11586 11752 16 11804 11863

as used in [11]. Reinert et al. could align 23S ribosomal RNA sequences of length
1400 with suboptimality 3 (≈ 1500-1600 alignment edges) in 2 minutes, but with
suboptimality 10 (≈ 2000-2100 alignment edges) they already needed over one
hour. Table 1 shows the structural alignment scores that we compute for the
same instances with suboptimality 50 (≈ 16000-21000 alignment edges) in only
about 10 minutes which is a significant improvement.

Secondly, to test whether our approach can preserve pseudoknots, we use 18
rRNA sequences from Drosophila melanogaster (GenBank: M21017) and human
(GenBank: K03432) having 1870 and 1995 bases, respectively. The structure
files were obtained from [3]. There are three parts within the sequence that form
pseudoknots: (a) bases 4-6 fold with 16-20 and 12-14 with 1198-1200, (b) 601-
603 with 620-622 and 6 bases between 608-618 with bases from 623-635, and
(c) bases 666-667 fold with 1145-1146 and parts of the sequence from 1090-1142
with some bases ranging from 1152-1161.

A traditional sequence alignment with affine gap costs was not able to realize
the entire conserved structures, that is, some base pairs forming the pseudoknots
are not realized. Our algorithm, however, aligned all base pairs forming the
pseudoknots. To be precise: the traditional sequence alignment has a structural
score of 12031, realizing 366 interaction matches, whereas the Lagrange method
computes a score of 12662, realizing 409 interaction matches. Not only could we
solve this alignment including several pseudoknots, but the program needed only
15 minutes and very moderate memory (≈ 300 MB).

Despite the very good computational results we have to remark that in the
majority of problem instances—especially instances of 23S rRNA sequences—we
could observe gaps between the lower and the upper bound: these gaps range
from 2 to several hundred and therefore these instances were not solved to prov-
able optimality (although the comparison with exact techniques like Branch-and-
Cut shows that the scores are optimal or near-optimal). Our approach, however,
could be easily integrated into a Branch-and-Bound framework to obtain prov-
able optimal solutions.

122 M. Bauer and G.W. Klau

7 Conclusion

In this paper we gave an ILP formulation of the RNA structural alignment
problem and presented an efficient way to solve the problem by means of La-
grangian relaxation in O(|A|2), A being the number of alignment edges. Our
computational results show that we are able to compute structural alignments
with a higher score within much shorter time than previous algorithms. Another
advantage of our method is that, unlike most of the dynamic programming for-
mulations, arbitrary pseudoknots can be handled in our framework and therefore
the algorithm is able to detect conserved structures containing pseudoknots (as
demonstrated in Sect. 6). Furthermore, the approach can be combined with other
combinatorial optimization techniques, e. g., Branch-and-Bound or Branch-and-
Cut. Besides this, we plan to extend the method to multiple sequence alignment
and to integrate different gap scoring schemes.

Last but not least, our formulation is easy to implement (the actual algorithm
is just a few hundred lines of code) and does not depend on third-party software
like commercial optimization libraries.

References

1. Algorithmic Solutions. The LEDA User Manual Version 4.5, 2004.
http://www.algorithmic-solutions.com.

2. V. Bafna, S. Muthukrishnan, and R. Ravi. Computing similarity between RNA
strings. In Z. Galil and E. Ukkonen, editors, Proc. of the 6th Annual Symp. on
Combinatorial Pattern Matching, number 937 in LNCS, pages 1–16. Springer, 1995.

3. J. J. Cannone, S. Subramanian, M. N. Schnare, J. R. Collett, L. M. D’Souza,
Y. Du, B. Feng, N. Lin, L. V. Madabusi, K. M. Muller, N. Pande, Z. Shang, N. Yu,
and R. R. Gutell. The comparative RNA web (CRW) site: an online database of
comparative sequence and structure information for ribosomal, intron, and other
RNAs. BMC Bioinformatics, 3(1), 2002.

4. A. Caprara and G. Lancia. Structural Alignment of Large-Size Proteins via La-
grangian Relaxation. In Proceedings of the Sixth Annual International Conference
on Computational Biology, pages 100–108. ACM Press, 2002.

5. F. Corpet and B. Michot. RNAlign program: alignment of RNA sequences using
both primary and secondary structures. CABIOS, 10(4):389–399, 1994.

6. S. Eddy and R. Durbin. RNA sequence analysis using covariance models. Nucleic
Acids Research, 22(11):2079–2088, 1994.

7. P. A. Evans. Finding common subsequences with arcs and pseudoknots. In
M. Crochemore and M. Patterson, editors, Proc. Combinatorial Pattern Match-
ing (CPM’99), volume 1645 of LNCS, pages 270–280. Springer, 1999.

8. J. Gorodkin, L. J. Heyer, and G. D. Stormo. Finding the most significant com-
mon sequence and structure motifs in a set of RNA sequences. Nucl. Acids Res.,
25:3724–3732, 1997.

9. M. Held and R. Karp. The traveling-salesman problem and minimum spanning
trees: Part II. Mathematical Programming, 1:6–25, 1971.

10. I. L. Hofacker, S. H. F. Bernhart, and P. F. Stadler. Alignment of RNA base
pairing probability matrices. Bioinformatics, 2004. In press.

Structural Alignment of Two RNA Sequences with Lagrangian Relaxation 123

11. H.-P. Lenhof, K. Reinert, and M. Vingron. A Polyhedral Approach to RNA Se-
quence Structure Alignment. Journal of Comp. Biology, 5(3):517–530, 1998.

12. D. H. Mathews and D. H. Turner. Dynalign: An algorithm for finding secondary
structures common to two RNA sequences. J. Mol. Biol., 317:191–203, 2002.

13. J. S. McCaskill. The Equilibrium Partition Function and Base Pair Binding Prob-
abilities for RNA Secondary Structure. Biopolymers, 29:1105–1119, 1990.

14. B. Poljak. A general method of solving extremum problems. Soviet Mathematics
Doklady, 8:593–597, 1967.

15. D. Sankoff. Simultaneous solution of the RNA folding, alignment, and proto-
sequence problems. SIAM J. Appl. Math., 45:810–825, 1985.

16. M. Waterman. Consensus methods for folding single-stranded nucleic adds. Math-
ematical Methods for DNA Sequences, pages 185–224, 1989.

17. J. Wuyts, Y. Van de Peer, T. Winkelmans, and R. De Wachter. The European
database on small subunit ribosomal RNA. Nucleic Acids Res, 30:183–185, 2002.

Poly-APX- and PTAS-Completeness in
Standard and Differential Approximation

(Extended Abstract)

Cristina Bazgan, Bruno Escoffier, and Vangelis Th. Paschos

LAMSADE, Université Paris-Dauphine, Place du Maréchal De Lattre de Tassigny,
75775 Paris Cedex 16, France

{bazgan, escoffier, paschos}@lamsade.dauphine.fr

Abstract. We first prove the existence of natural Poly-APX-complete
problems, for both standard and differential approximation paradigms,
under already defined and studied suitable approximation preserving
reductions. Next, we devise new approximation preserving reductions,
called FT and DFT, respectively, and prove that, under these reduc-
tions, natural problems are PTAS-complete, always for both standard
and differential approximation paradigms. To our knowledge, no natural
problem was known to be PTAS-complete and no problem was known
to be Poly-APX-complete until now. We also deal with the existence
of intermediate problems under FT- and DFT-reductions and we show
that such problems exist provided that there exist NPO-intermediate
problems under Turing-reduction. Finally, we show that min coloring
is APX-complete for the differential approximation.

1 Introduction

Many NP-complete problems are decision versions of natural optimization prob-
lems. Since, unless P = NP, such problems cannot be solved in polynomial time,
a major question is to find polynomial algorithms producing solutions “close
to the optimum” (in some pre-specified sense). Here, we deal with polynomial
approximation of NPO problems (see [1] for a formal definition), i.e., of opti-
mization problems the decision versions of which are in NP. As usual, we deal
with problems the solution-values (or objective values) of which are integer.

For a problem Π in NPO, we distinguish three different versions of it: in
the constructive version denoted also by Π, the goal is to determine the best
solution y∗ of an instance x; in the evaluation version Πe, we are only interested
in determining the value of y∗; finally, the decision version Πd is as dealt in [2].

A polynomial approximation algorithm A for an optimization problem Π is
a polynomial time algorithm that produces, for any instance x of Π, a feasible
solution y = A(x). The quality of y is estimated by computing the so-called
approximation ratio. Two approximation ratios are commonly used in order to
evaluate the approximation capacity of an algorithm: the standard ratio and the
differential ratio. Given an instance x of an optimization problem Π, let opt(x)

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 124–136, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Poly-APX- and PTAS-Completeness 125

be the value of an optimal solution, and ω(x) be the value of a worst feasi-
ble solution. This value is the optimal value of the same optimization prob-
lem (with respect to the set of instances and the set of feasible solutions for
any instance) defined with the opposite objective (minimize instead of maxi-
mize, and vice-versa) with respect to Π. For a feasible solution y of x, denote
bym(x, y) its value. The standard approximation ratio of y is defined as r(x, y) =
m(x, y)/opt(x). The differential approximation ratio of y is defined as δ(x, y) =
|m(x, y)− ω(x)|/|opt(x)− ω(x)|. Following the above, standard approximation
ratios for minimization problems are greater than, or equal to, 1, while for max-
imization problems these ratios are smaller than, or equal to 1. On the other
hand, differential approximation ratio is always at most 1 for any problem.

By means of approximation ratios, NPO problems are classified with re-
spect to their approximability properties. Particularly interesting approximation
classes are, for the standard approximation paradigm, the classes Poly-APX
(the class of the problems approximated within a ratio that is a polynomial, or
the inverse of a polynomial when dealing with maximization problems, on the size
of the instance), APX (the class of constant-approximable problems), PTAS
(the class of problems admitting polynomial time approximation schemata) and
FPTAS (the class of problems admitting fully polynomial time approximation
schemata). We are referred to [1] for formal definitions. Analogous classes can be
defined under the differential approximation paradigm: Poly-DAPX, DAPX,
DPTAS and DFPTAS, are the differential counterparts of Poly-APX, APX,
PTAS and FPTAS, respectively. Note that FPTAS � PTAS � APX �

Poly-APX, and DFPTAS � DPTAS � DAPX � Poly-DAPX; these in-
clusions are strict unless P = NP.

During last two decades, several approximation preserving reductions have
been introduced and, using them, hardness results in several approximability
classes have been studied. We quote here four approximation preserving reduc-
tions that are central to our paper: PTAS, DPTAS, F and E (see also [3] for short
definitions of them).

The P-reduction defined in [4] and extended in [5, 6] (been renamed PTAS-
reduction) allows existence of APX-complete problems as max independent
set-B, or min metric tsp, etc (see [1, 2] for formal definitions about NPO
problems mentioned in the paper).

In differential approximation, analogous results have been obtained in [7]
under DPTAS-reduction. Natural problems such as max independent set-B,
or min vertex cover-B are shown to be DAPX-complete.

Under F-reduction ([4]), only one (not very natural) problem (derived from
max variable-weighted sat) is known to be PTAS-complete. DPTAS-
completeness has been done until now, but in any case F-reduction does not
allow it.

Finally, the E-reduction ([8]) allows existence of Poly-APX-PB-complete
problems but the existence of Poly-APX-complete problems has been left open.

An NPO problem Π is polynomially bounded if and only if there exists
a polynomial q such that, for any instance x and for any feasible solution

126 C. Bazgan, B. Escoffier, and V. Th. Paschos

y ∈ Sol(x), m(x, y) � q(|x|). It is diameter polynomially bounded if and only if
there exists a polynomial q such that, for any instance x, |opt(x)−ω(x)| � q(|x|).
The notion of diameter boundness is very useful and intuitive when dealing with
the differential approximation paradigm. The class of polynomially bounded
NPO problems will be denoted by NPO-PB, while the class of diameter poly-
nomially bounded NPO problems will be denoted by NPO-DPB. Analogously,
for any (standard or differential) approximation class C, we will denote by C-PB
(resp., C-DPB) the subclass of polynomially bounded (resp., diameter polyno-
mially bounded) problems of C.

The main results of this paper deal with the existence of complete problems
for Poly-APX, Poly-DAPX, FPTAS and DFPTAS. Poly-APX-complete-
ness is shown via PTAS-reduction ([6]), while Poly-DAPX-completeness is
shown via DPTAS-reduction ([7, 9]). We define two new reductions, called FT
and DFT, respectively, and show that, using them, natural problems as max
planar independent set, min planar vertex cover, or bin packing are
complete for PTAS (the two first ones), or for DPTAS (all the three). Next, we
study the existence of intermediate1 problems for these reductions. We prove that
such problems exist provided that there exist intermediate problems in NPO
under the seminal Turing-reduction (see [1] for its definition). Finally, we prove
that min coloring is DAPX-complete under DPTAS-reduction. This is the
first problem that is DAPX-complete but not APX-complete.

Results are given here without detailed proofs which can be found in [3].

2 Poly-APX-Completeness

As mentioned in [8], the nature of the E-reduction does not allow transformation
of a non-polynomially bounded problem into a polynomially bounded one. In
order to extend completeness in the whole Poly-APX we have to use a larger
(less restrictive) reduction than E. In what follows, we show that PTAS-reduction
can do it. Before continuing, we need the following notions defined in [8].

A problem Π ∈ NPO is said additive if and only if there exist an operator ⊕
and a function f , both computable in polynomial time, such that:

– ⊕ associates with any pair (x1, x2) ∈ IΠ × IΠ an instance x1 ⊕ x2 ∈ IΠ

with opt(x1 ⊕ x2) = opt(x1) + opt(x2);
– with any solution y ∈ solΠ(x1⊕x2), f associates two solutions y1 ∈ solΠ(x1)

and y2 ∈ solΠ(x2) such that m(x1 ⊕ x2, y) = m(x1, y1) +m(x2, y2).

Let Poly be the set of functions from N to N bounded by a polynomial.
A function F : N → N is hard for Poly if and only if for any f ∈ Poly,
there exist three constants k, c and n0 such that, for any n � n0, f(n) �
kF (nc).

1 For two complexity classes C1 and C2, C1 ⊆ C2, and a reduction R preserving
membership in C1, a problem is called C2-intermediate, if it is neither C2-complete
under R, nor it belongs to C1.

Poly-APX- and PTAS-Completeness 127

A maximization problem Π ∈ NPO is canonically hard for Poly-APX if
and only if there exist a transformation T from 3sat to Π, two constants n0
and c and a function F , hard for Poly, such that, given an instance x of 3sat
on n � n0 variables and a number N � nc, instance x′ = T (x,N) belongs to IΠ

and verifies the following properties:

1. if x is satisfiable, then opt(x′) = N , otherwise opt(x′) = N/F (N);
2. given a solution y ∈ solΠ(x′) such that m(x′, y) > N/F (N), one can poly-

nomially determine a truth assignment satisfying x.

Note that, since 3sat is NP-complete, a problem Π is canonically hard for
Poly-APX, if any decision problem Π ′ ∈ NP reduces to Π along Items 1 and 2
just above.

Theorem 1. If Π ∈ NPO is additive and canonically hard for Poly-APX,
then any problem in Poly-APX PTAS-reduces to Π.

Proof (Sketch). Let Π ′ be a maximization problem of Poly-APX and let A be
an approximation algorithm for Π achieving approximation ratio 1/c(·), where
c ∈ Poly (the case of minimization will be dealt later). Let Π be an additive
problem, canonically hard for Poly-APX, let F be a function hard for Poly
and let k and c′ be such that (for n � n0, for a certain value n0) nc(n) �
k(F (nc′

) − 1). Let, finally, x ∈ IΠ′ , ε ∈]0, 1[and n = |x|. Set m = m(x, A(x));
then m � optΠ′(x)/c(n). We uniformly partition the interval [0,mc(n)] of pos-
sible values for optΠ′(x) into q(n) = 2c(n)/ε sub-intervals (remark that q is
a polynomial). Consider, for i ∈ {1, . . . , q(n)}, the set of instances Ii = {x :
optΠ′(x) � imc(n)/q(n)}.

Set N = nc′
. We construct, for any i, an instance χi of Π such that: if x ∈ Ii,

then optΠ(χi) = N , otherwise, optΠ(χi) = N/F (N). We define f(x, ε) = χ =
⊕1�i�q(n)χi. Observe that c(n)/q(n) = ε/2.

Let y be a solution of χ and let j be the largest i for which m(χi, yi) >
N/F (N), where yi is the track of y on χi. Then, one can compute a solution ψ′

of x such that m(x, ψ′) � jmε/2. We define

ψ = g(x, y, ε) = argmax {m (x, ψ′) ,m(x, A(x))}

Note that m(x, ψ) � max{m, jmε/2}.
We show in [3] that r(x, ψ) � r(χ, y)(1− (3ε/4)), i.e., reduction just sketched

is a PTAS-reduction with c(ε) = ε/(4− 3ε).

For the case where the problem Π ′ (in the proof of Theorem 1) is a minimiza-
tion problem, one can reduce it to a maximization problem (for instance using
the E-reduction of [8], p. 12) and then one can use the reduction of Theorem 1.
Since the composition of an E- and a PTAS-reduction is a PTAS-reduction, the
result of Theorem 1 applies also for minimization problems.

Combination of Theorem 1, of remark just above and of the fact that max in-
dependent set is additive and canonically hard for Poly-APX ([8]), produces
the following concluding theorem.

128 C. Bazgan, B. Escoffier, and V. Th. Paschos

Theorem 2. max independent set is Poly-APX-complete under PTAS-
reduction.

3 Poly-APX-Completeness Under the Differential
Paradigm

The fact that function f (instance-transformation) of DPTAS-reduction ([7]) is
multi-valued allows us to relax the constraint that a Poly-DAPX-complete
problem has to be additive; we simply impose that it is canonically hard for
Poly-APX.

Theorem 3. If a (maximization) problem Π ∈ NPO is canonically hard for
Poly-APX, then any problem in Poly-DAPX DPTAS-reduces to Π.

Proof (Sketch). Let Π be canonically hard for Poly-APX, for some function F
hard for Poly, letΠ ′ ∈ Poly-DAPX be a maximization problem and let A be an
approximation algorithm forΠ ′ achieving differential approximation ratio 1/c(·),
where c ∈ Poly. Finally, let x be an instance of Π ′ of size n.

We will use the central idea of [7] (see also [9] for more details). We define a
set Π ′

i,l of problems derived from Π ′. For any pair (i, l), Π ′
i,l has the same set of

instances and the same solution-set as Π ′; for any instance x and any solution y
of x, set mi,l(x, y) = max{0, �m(x, y)/2i� − l}. Considering x as instance of
any of the problems Π ′

i,l, we will build an instance χi,l of Π, obtaining so a
multi-valued function f . Our central objective is, informally, to determine a set
of pairs (i, l) such that we will be able to build a “good” solution for Π ′ using
“good” solutions of χi,l.

Let ε ∈]0, 1[; set Mε = 1 + �2/ε� and let c′ and k be such that (for n � n0
for some n0) nc(n) � kF (nc′

) (both c′ and k may depend on ε). Assume finally,
without loss of generality, that n � k and set N = nc′

. Then, 1/F (N) � 1/c(n).
Set m = m(x, A(x)). In [7], a set F of pairs (i, l) is built such that: |F| is
polynomial with n and, furthermore, there exists a pair (i0, l0) in F such that:

δi0,l0(x, y) � 1− ε =⇒ δ(x, y) � 1− 3ε (1)
opti0,l0(x, y) � Mε (2)

Let q be an integer. Consider, for any pair (i, l) ∈ F , the set of instances
Iq

i,l = {x ∈ IΠ′
i,l

: opti,l(x) � q}. More precisely, consider these instance-sets
for q ∈ {0, . . . ,Mε}. For any pair (i, l) ∈ F and for any q ∈ {0, . . . ,Mε}, one
can build an instance χq

i,l of Π such that: optΠ(χq
i,l) = N if opti,l(x) � q,

optΠ(χq
i,l) = N/F (N), otherwise. We set f : f(x, ε) = (χq

i,l, (i, l) ∈ F , q ∈
{0, . . . ,Mε}).

Let y = (yq
i,l, (i, l) ∈ F , q ∈ {0, . . . ,Mε}) be a solution of f(x, ε). Set Ly =

{(i, l, q) : m(χq
i,l, y

q
i,l) > N/F (N)}. For each (i, l, q) ∈ Ly, one can determine

a solution ψq
i,l of x (seen as instance of Π ′

i,l) with value at least q. Set ψ =
g(x, y, ε) = argmax{m(x, A(x)),m(x, ψq

i,l), (i, l, q) ∈ Ly}.

Poly-APX- and PTAS-Completeness 129

Consider now a pair (i0, l0) verifying (1) and (2) and set q0 = opti0,l0(x). We
can show ([3]) that if δ(χq0

i0,l0
, yq0

i0,l0
) � 1− 3ε, then δ(x, ψ) � 1− 3ε. Considering

ε′ = 3ε and c(ε′) = ε′, the reduction just sketched is a DPTAS-reduction.

Using the fact that max independent set is canonically hard for Poly-
APX, Theorem 3 directly exhibits the existence of a Poly-DAPX-complete
problem.

Theorem 4. max independent set is Poly-DAPX-complete under DPTAS-
reduction.

Note that we could obtain the Poly-DAPX-completeness of canonically
hard problems for Poly-APX even if we forbade DPTAS-reduction to be multi-
valued. However, in this case, we should assume (as in Section 2) that Π is
additive (and the proof of Theorem 3 would be much longer).

4 PTAS-Completeness

In order to study PTAS-completeness, we introduce a new reduction, called
FT-reduction, preserving membership in FPTAS.

Let Π and Π ′ be two NPO maximization problems. Let �Π′

α be an oracle
for Π ′ producing, for any α ∈]0, 1] and for any instance x′ of Π ′, a feasible
solution �Π′

α (x′) of x′ that is an (1− α)-approximation for the standard ratio.

Definition 1. Π FT-reduces to Π ′ (denoted by Π ≤FT Π ′) if and only if, for
any ε > 0, there exists an algorithm Aε(x,�Π′

α) such that:

– for any instance x of Π, Aε returns a feasible solution which is a (1 − ε)-
standard approximation;

– if �Π′

α (x′) runs in time polynomial in both |x′| and 1/α, then Aε is polynomial
in both |x| and 1/ε.

For the case where at least one among Π and Π ′ is a minimization problem
it suffices to replace 1− ε or/and 1− α by 1 + ε or/and 1 + α, respectively.

Clearly, FT-reduction transforms a fully polynomial time approximation sche-
ma for Π ′ into a fully polynomial time approximation schema for Π, i.e., it
preserves membership in FPTAS.

The F-reduction is a special case of FT-reduction since the latter explic-
itly allows multiple calls to oracle �. Also, FT-reduction seems allowing more
freedom in the way Π is transformed into Π ′; for instance, in F-reduction, func-
tion g transforms an optimal solution for Π ′ into an optimal solution for Π,
i.e., F-reduction preserves optimality; this is not the case for FT-reduction.
This freedom will allow us to reduce non polynomially bounded NPO prob-
lems to NPO-PB ones. In fact, it seems that FT-reduction is larger than F.
This remains to be confirmed. Such proof is not trivial and is not tackled
here.

130 C. Bazgan, B. Escoffier, and V. Th. Paschos

In what follows, given a class C ⊆ NPO and a reduction R, we denote by C
R

the closure of C under R, i.e., the set of problems in NPO that R-reduce to some
problem in C.

The basic result of this section (Theorem 5) follows immediately from
Lemmata 1 and 2. Lemma 1 introduces a property of Turing-reduction for
NP-hard problems. In Lemma 2, we transform (under certain conditions) a
Turing-reduction into a FT-reduction. Proofs of the two lemmata are given for
maximization problems. The case of minimization is completely analogous.

Lemma 1. If an NPO problem Π ′ is NP-hard, then any Π ∈ NPO Turing-
reduces to Π ′.

Proof. Let Π be an NPO problem and q be a polynomial such that |y| �
q(|x|), for any instance x of Π and for any feasible solution y of x. Assume
that encoding n(y) of y is binary. Then 0 � n(y) � 2q(|x|) − 1. We consider the
following problem Π̂ (see also [5]) which is the same as Π up to its objective
function that is defined by mΠ̂(x, y) = 2q(|x|)+1mΠ(x, y) + n(y).

Clearly, if mΠ̂(x, y1) � mΠ̂(x, y2), then mΠ(x, y1) � mΠ(x, y2). So, if y is an
optimal solution for x (seen as instance of Π̂), then it is also an optimal solution
for x (seen, this time as instance of Π).

Remark now that for Π̂, the evaluation problem Π̂e and the constructive
problem Π̂ are equivalent. Indeed, given the value of an optimal solution y, one
can determine n(y) (hence y) by computing the remainder of the division of this
value by 2q(|x|)+1.

Since Π ′ is NP-hard, we can solve the evaluation problem Π̂e if we can solve
the (constructive) problem Π ′. Indeed, we can solve Π̂e using an oracle solving,
by dichotomy, the decision version Π̂d of Π̂; Π̂d reduces to the decision versionΠ ′

d

of Π ′ by a Karp-reduction (see [1, 2] for a formal definition of this reduction);
finally, one can solve Π ′

d using an oracle for the constructive problem Π ′. So,
with a polynomial number of queries to an oracle for Π ′, one can solve both Π̂e

and Π̂, and the proof of the lemma is complete.

We now show how, starting from a Turing-reduction (that only preserves
optimality) between two NPO problems Π and Π ′ where Π ′ is polynomially
bounded, one can devise an FT-reduction transforming a fully polynomial time
approximation schema forΠ ′ into a fully polynomial time approximation schema
for Π.

Lemma 2. Let Π ′ ∈ NPO-PB. Then, any NPO problem Turing-reducible
to Π ′ is also FT-reducible to Π ′.

Proof. Let Π be an NPO problem and suppose that there exists a Turing-
reduction betweenΠ andΠ ′. Let �Π′

α be an oracle computing, for any instance x′

of Π ′ and for any α > 0, a feasible solution y′ of x′ such that r(x′, y′) � 1− α.
Moreover, let p be a polynomial such that for any instance x′ of Π ′ and for any
feasible solution y′ of x′, m(x′, y′) � p(|x′|).

Poly-APX- and PTAS-Completeness 131

Let x be an instance of Π. The Turing-reduction claimed gives an algo-
rithm solving Π using an oracle for Π ′. Consider now this algorithm where we
use, for any query to the oracle with the instance x′ of Π ′, the approximate
oracle �Π′

α (x′), with α = 1/(p(|x′|) + 1). This algorithm produces an optimal
solution, since a solution y′ being an (1− (1/(p(|x′|) + 1)))-approximation for x′

is an optimal one (recall that we deal with problems having integer-valued ob-
jective functions). Indeed,

mΠ′ (x′, y′)
optΠ′ (x′)

� 1− 1
p (|x′|) + 1

=⇒ mΠ′ (x′, y′) > optΠ′ (x′)− 1

=⇒ mΠ′ (x′, y′) = opt (x′)

It is easy to see that this algorithm is polynomial when �Π′

α (x′) is polynomial
in |x′| and in 1/α. Furthermore, since any optimal algorithm for Π can be a
posteriori seen as a fully polynomial time approximation schema, we immediately
conclude Π ≤FT Π

′ and the proof of the lemma is complete.

Combination of Lemmata 1 and 2, immediately derives the basic result of
the section expressed by the following theorem.

Theorem 5. Let Π ′ be an NP-hard a problem of NPO. If Π ′ ∈ NPO-PB,
then any NPO problem FT-reduces to Π ′.

From Theorem 5, one can immediately deduce the two corollaries that follow.

Corollary 1. PTAS
FT

= NPO.

Corollary 2. Any polynomially bounded problem in PTAS is PTAS-complete
under FT-reduction.

For instance, max planar independent set and min planar vertex
cover are in both PTAS ([10]) and NPO-PB. What has been discussed in
this section concludes then the following result.

Theorem 6. max planar independent set and min planar vertex co-
ver are PTAS-complete under FT-reduction.

Remark that the results of Theorem 6 cannot be trivially obtained using the
F-reduction of [4].

5 DPTAS-Completeness

In order to study DPTAS-completeness we will again use a new reduction called
DFT-reduction. Since it is very similar to the FT-reduction of Section 4 (up
to consideration differential ratios instead of standard ones), its definition is
omitted.

132 C. Bazgan, B. Escoffier, and V. Th. Paschos

Let us note that one of the basic features of differential approximation ra-
tio is that it is stable under affine transformations of the objective functions
of the problems dealt. In this sense, problems for which the objective functions
of the ones are affine transformations of the objective functions of the others
are approximate equivalent for the differential approximation paradigm (this
is absolutely not the case for standard paradigm). The most notorious case of
such problems is the pair max independent set and min vertex cover.
Affine transformation is nothing else than a very simple kind of differential-
approximation preserving reduction, denoted by AF, in what follows. Two prob-
lems Π and Π ′ are affine equivalent if Π ≤AF Π ′ and Π ′ ≤AF Π. Obviously
affine transformation is both a DPTAS- and a DFT-reduction (as this latter one
is derived from Definition 1).

Results of this section are derived analogously to the case of the PTAS-
completeness of Section 4: we show that any NP-hard problem, that belongs to
both NPO-DPB and DPTAS, is DPTAS-complete. The basic result of this
paragraph (Theorem 7) is an immediate consequence of Lemma 1 and of the
following Lemma 3, differential counterpart of Lemma 2 (see [3] for the proof).

Lemma 3. If Π ′ ∈ NPO-DPB, then any NPO problem Turing-reducible
to Π ′ is also DFT-reducible to Π ′.

Theorem 7. Let Π ′ ∈ NPO-DPB be an NP-hard problem. Then, any problem
in NPO is DFT-reducible to Π ′.

Corollary 3. DPTAS
DFT

= NPO.

Corollary 4. Any NPO-DPB problem in DPTAS is DPTAS-complete un-
der DFT-reductions.

The following concluding theorem deals with the existence of DPTAS-
complete problems.

Theorem 8. max planar independent set, min planar vertex cover
and bin packing are DPTAS-complete under DFT-reductions.

Proof. For DPTAS-completeness of max planar independent set, just ob-
serve that, for any instance G, ω(G) = 0. So, standard and differential approx-
imation ratios coincide for this problem; moreover, it is in both NPO-PB and
NPO-DPB. Then, the inclusion of max planar independent set in PTAS
suffices to conclude its membership in DPTAS and, by Corollary 4, its DP-
TAS-completeness.

max planar independent set and min planar vertex cover are affine
equivalent; hence, the former AF-reduces to the latter. Since AF-reduction is a
particular kind of DFT-reduction, the DPTAS-completeness of min planar
vertex cover is immediately concluded.

Finally, since bin packing ∈ DPTAS ([11]) and also bin packing belongs
to NPO-DPB, its DPTAS-completeness immediately follows.

Poly-APX- and PTAS-Completeness 133

6 About Intermediate Problems Under FT- and
DFT-Reductions

FT-reduction is weaker than the F-reduction of [4]. Furthermore, as mentioned
before, this last reduction allows existence of PTAS-intermediate problems. The
question of existence of such problems can be posed for FT-reduction too. In this
section, we handle it via the following theorem.

Theorem 9. If there exists an NPO-intermediate problem for the Turing-re-
duction, then there exists a problem PTAS-intermediate for FT-reduction.

Proof (Sketch). Let Π ∈ NPO be intermediate for the Turing-reduction. Sup-
pose that Π is a maximization problem (the minimization case is completely
similar). Let p be a polynomial such that, for any instance x and any feasible so-
lution y of x, m(x, y) � 2q(|x|). Consider the following maximization problem Π̃
where:

– instances are the pairs (x, k) with x an instance of Π and k an integer
in {0, . . . 2q(|x|)};

– for an instance (x, k) of Π̃, its feasible solutions are the feasible solutions of
the instance x of Π;

– the objective function of Π̃ is:

mΠ̃((x, k), y) =
{
|(x, k)| if m(x, y) � k
|(x, k)| − 1 otherwise

It suffices now to show the three following properties:

1. Π̃ ∈ PTAS;
2. if Π̃ were in FPTAS, then Π would be polynomial;
3. if Π̃ were PTAS-complete, then Π would be NPO-complete under Turing-

reductions2.

Obviously, if Properties 1, 2 and 3 hold ([3]), then the theorem is concluded
since their combination deduces that if Π is NPO-intermediate under Turing-
reductions, then Π̃ is PTAS-intermediate, under FT.

We now state an analogous result about the existence of DPTAS-interme-
diate problems under DFT-reduction.

Theorem 10. If there exists an NPO-intermediate problem under Turing-redu-
ction, then there exists a problem DPTAS-intermediate, under DFT-reduction.

Proof. The proof is analogous to one of Theorem 9, up to modification of defi-
nition of Π̃ (otherwise, Π̃ /∈ DPTAS, because the value of the worst solution
of an instance (x, k) is |(x, k)| − 1). We only have to add, for any instance (x, k)
of Π̃, a new feasible solution y0

x with value mΠ̃((x, k), y0
x) = 0. Then, the result

claimed is got in exactly the same way as in the proof of Theorem 9.

2 We emphasize this expression in order to avoid confusion with usual NPO-
completeness considered under the strict-reduction ([12]).

134 C. Bazgan, B. Escoffier, and V. Th. Paschos

7 A New DAPX-Complete Problem Not APX-Complete

All DAPX-complete problems given in [7] are also APX-complete under the
E-reduction ([8]). An interesting question is if there exist DAPX-complete prob-
lems that are not also APX-complete for some standard-approximation preserv-
ing reduction. In this section, we positively answer this question by the following
theorem.

Theorem 11. min coloring is DAPX-complete under DPTAS-reductions.

Proof. Consider problem max unused colors. For this problem, standard and
differential approximation ratios coincide and coincide also with differential ratio
of min coloring. So, max unused colors ≤AF min coloring.

As proved in [13], max unused colors is MAX-SNP-hard under L-redu-
ction, a particular kind of E-reduction. Also, MAX-SNP

E
= APX-PB ([8]).

max independent set-B belongs to APX-PB, so, max independent set-B
E-reduces to max unused colors. E-reduction is a particular kind of PTAS-
reduction, so, max independent set-B ≤PTAS max unused colors.

Standard and differential approximation ratios for max independent set-
B, on the one hand, standard and differential approximation ratios for max
unused colors, and differential ratio of min coloring, on the other hand,
coincide. So, max independent set-B ≤DPTAS min coloring.

DPTAS- and AF-reductions just exhibited, together with the fact that their
composition is obviously a DPTAS-reduction, establish immediately the DAPX-
completeness of min coloring.

As we have already mentioned, min coloring is, until now, the only prob-
lem known to be DAPX-complete but not APX-complete. In fact, in standard
approximation paradigm, it belongs to the class Poly-APX and is inapprox-
imable, in a graph of order n, within n1−ε, ∀ε > 0, unless NP coincides with the
class of problems that could be optimally solved by slightly super-polynomial
algorithms ([14]).

8 Conclusion

We have defined suitable reductions and obtained natural complete problems for
important approximability classes, namely, Poly-APX, Poly-DAPX, PTAS
and DPTAS. Such problems did not exist until now. This work extends also
the ones in [7, 9] further specifying and completing a structure for differential
approximability. The only among the most notorious approximation classes for
which we have not studied completeness is Log-DAPX (the one of the problems
approximable within differential ratios of O(1/ log |x|)). This is because, until
now, no natural NPO problem is known to be differentially approximable within
inverse logarithmic ratio. Work about definition of Log-DAPX-hardness is in
progress.

Poly-APX- and PTAS-Completeness 135

Another point that deserves further study, is the structure of approxima-
bility classes beyond DAPX that are defined not with respect to the size of
the instance but to the size of other parameters as natural as |x|. For example,
dealing with graph-problems, no research is conducted until now on something
like Δ-APX-, or Δ-DAPX-completeness where Δ is the maximum degree of
the input graph. Such works miss to both standard and differential approxima-
tion paradigms. For instance, a question we are currently trying to handle is
if max independent set is, under some reduction, Δ-APX-complete, or Δ-
DAPX-complete. Such notion of completeness, should lead to achievement of
inapproximability results (in terms of graph-degree) for several graph-problems.

Finally, the existence of natural PTAS-, or DPTAS-intermediate problems
(as bin packing for APX under AP-reduction) for F-, FT- and DFT-reductions
remains open.

References

1. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A.,
Protasi, M.: Complexity and approximation. Combinatorial optimization problems
and their approximability properties. Springer, Berlin (1999)

2. Garey, M.R., Johnson, D.S.: Computers and intractability. A guide to the theory
of NP-completeness. W. H. Freeman, San Francisco (1979)

3. Bazgan, C., Escoffier, B., Paschos, V. Th.: Completeness in standard and differ-
ential approximation classes: Poly-(D)APX- and (D)PTAS-completeness. Cahier
du LAMSADE 217, LAMSADE, Universit Paris-Dauphine (2004) Available on
http://www.lamsade.dauphine.fr/cahiers.html.

4. Crescenzi, P., Panconesi, A.: Completeness in approximation classes. Information
and Computation 93 (1991) 241–262

5. Ausiello, G., Crescenzi, P., Protasi, M.: Approximate solutions of NP optimization
problems. Theoret. Comput. Sci. 150 (1995) 1–55

6. Crescenzi, P., Trevisan, L.: On approximation scheme preserving reducibility and
its applications. Theory of Computing Systems 33 (2000) 1–16

7. Ausiello, G., Bazgan, C., Demange, M., Paschos, V. Th.: Completeness in differ-
ential approximation classes. In: Mathematical Foundations of Computer Science,
MFCS’03. Number 2747 in Lecture Notes in Computer Science, Springer-Verlag
(2003) 179–188

8. Khanna, S., Motwani, R., Sudan, M., Vazirani, U.: On syntactic versus computa-
tional views of approximability. SIAM J. Comput. 28 (1998) 164–191

9. Ausiello, G., Bazgan, C., Demange, M., Paschos, V. Th.: Completeness in differen-
tial approximation classes. Cahier du LAMSADE 204, LAMSADE, Universit Paris-
Dauphine (2003) Available on http://www.lamsade.dauphine.fr/cahiers.html.

10. Baker, B.S.: Approximation algorithms for NP-complete problems on planar
graphs. J. Assoc. Comput. Mach. 41 (1994) 153–180

11. Demange, M., Monnot, J., Paschos, V. Th.: Bridging gap between standard and
differential polynomial approximation: the case of bin-packing. Appl. Math. Lett.
12 (1999) 127–133

12. Orponen, P., Mannila, H.: On approximation preserving reductions: complete prob-
lems and robust measures. Technical Report C-1987-28, Dept. of Computer Sci-
ence, University of Helsinki, Finland (1987)

136 C. Bazgan, B. Escoffier, and V. Th. Paschos

13. Halldórsson, M.M.: Approximating discrete collections via local improvements. In:
Proc. Symposium on Discrete Algorithms, SODA. (1995) 160–169

14. Feige, U., Kilian, J.: Zero knowledge and the chromatic number. In: Proc. Con-
ference on Computational Complexity. (1996) 278–287

Efficient Algorithms for k Maximum Sums

Fredrik Bengtsson and Jingsen Chen

Department of Computer Science and Electrical Engineering,
Lule̊a University of Technology,

S-971 87 Lule̊a, Sweden

Abstract. We study the problem of computing the k maximum sum
subsequences. Given a sequence of real numbers 〈x1, x2, · · · , xn〉 and an
integer parameter k, 1 ≤ k ≤ 1

2n(n−1), the problem involves finding the

k largest values of
j∑

�=i

x� for 1 ≤ i ≤ j ≤ n. The problem for fixed k = 1,

also known as the maximum sum subsequence problem, has received
much attention in the literature and is linear-time solvable. Recently,
Bae and Takaoka presented a Θ(nk)-time algorithm for the k maximum
sum subsequences problem. In this paper, we design efficient algorithms
that solve the above problem in O

(
min{k + n log2 n, n

√
k}
)

time in the

worst case. Our algorithm is optimal for k ≥ n log2 n and improves over
the previously best known result for any value of the user-defined param-
eter k. Moreover, our results are also extended to the multi-dimensional
versions of the k maximum sum subsequences problem; resulting in fast
algorithms as well.

1 Introduction

One frequently used pedagogical example of optimizing computer programs for
speed is the maximum sum subsequence problem [1]. Given a sequence of real
numbers 〈x1, x2, · · · , xn〉, the objective is to find a subsequence of consecutive
elements with the maximum sum among all such subsequences 〈xi, · · · , xj〉 for
1 ≤ i ≤ j ≤ n. This problem is a special one-dimensional version of the maximum
sum subarray problem that serves as a maximum likelihood estimator for some
patterns when processing digital pictures [2, 3]. For the latter problem, a two-
dimensional array of real numbers is given, and the task is to find a rectangular
subarray with the largest possible sum among all such subarrays. The problem
arises in data mining and graphics as well [4, 5].

The maximum sum subsequence problem has a linear time sequential solution
[6, 7]. For an m × n matrix of real numbers, the maximum subarray problem
can be solved in O

(
m2n

)
time (assuming that m ≤ n) [6, 7, 8]. By reducing

the problem to graph distance matrix multiplications, Tamaki and Tokuyama
[9] present the first sub-cubic time algorithm for the maximum sum subarray
problem. Following the same strategy, Takaoka [10] gives a modified algorithm
with a slightly better time complexity. In the context of parallel computations,
optimal speed-up algorithms on different models of parallel computations have
been developed [8, 11, 12, 13].

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 137–148, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

138 F. Bengtsson and J. Chen

A natural extension of the above problems is to compute the k largest sums
over all possible subsequences/subarrays. As mentioned above, the maximum
sum subsequence problem can be solved in Θ(n) time [6, 7]. Closer inspection
reveals that a similar approach (by scanning the input array and updating the
maximum sum subsequence encountered so far) seemingly will not work for
our generalized problem (since the number of candidate subsequences becomes
Θ(n2)). Recently, a Θ(nk)-time algorithm for computing the k maximum sum
subsequences has been presented in [14]. In this paper, we will develop faster
algorithms to solve these problems. Our results improve over the previously best
known algorithms.

In the next section, the computational problems to be solved are defined and
the main results of this paper are described. Efficient algorithms for solving the
k maximum sum subsequences problem are developed in Section 3. For small
values of the parameter k, we show in Section 4 how to solve the problem even
faster. An extension of our results to higher dimensions are presented in Section
5. Finally, we conclude the paper with some open problems.

2 Problem Settings and Main Results

Given a sequence X of real numbers 〈x1, x2, · · · , xn〉 and an integer k, 1 ≤ k ≤
1
2n(n−1), the k maximum sum subsequences problem is to select k pairs of indices
{(i�, j�) : 1 ≤ i� ≤ j�, � = 1, 2, · · · , k} such that the (range) sums

∑j�

p=i�
xp, � =

1, 2, · · · , k, are the k largest values among all the possible sums
∑j

�=i x� for 1 ≤
i ≤ j ≤ n. Notice that we do not require that the sums are sorted. The algorithms
presented in this paper compute only the range sums without pointing out the
subsequences explicitly; extending the algorithms to output the subsequences
computed as well is straightforward.

The k maximum sum subsequences problem becomes trivial if k = Θ(n2): In
this case, an optimal algorithm for the problem runs in Θ(n2) time in the worst
case. To achieve this, first compute all possible sums

∑j
�=i x� (1 ≤ i ≤ j ≤ n)

and then select the kth largest sum. Then, traverse the list of sums and pick all
sums larger than or equal to the kth sum in order to get all the k largest sums.
For arbitrary value of the parameter k, we first propose an algorithm running
in O

(
k + n log2 n

)
time in the worst case. Then, we show that the problem can

also be solved in O
(
n
√

k
)

time; which is even faster for small values of the
user-specified parameter k. Combining these two algorithms results in a worst-
case running time O

(
min{k + n log2 n, n

√
k}
)
. This time complexity is the best

possible for k ≥ n log2 n. Previously, the optimal methods were known only
for two extreme cases: k = O(1) and k = Θ(n2). Notice that the previously
best known result for this problem is Θ (nk) [14] for 1 ≤ k ≤ 1

2n(n − 1). Our
algorithms are faster for any value of k.

The 2-dimensional version of the k maximum sum subsequences problem
is as follows: Given two-dimensional array of order m × n, find k orthogo-
nal continuous subregions that has a sum at least as large as the kth largest

Efficient Algorithms for k Maximum Sums 139

sum. The sums are chosen from the set of all continuous subarrays of the
given array. A straightforward solution would cost Θ

(
m2n2

)
via an enumer-

ation of all possible sums. We will show how to reduce the time complexity
for this problem to O(min{m2C, m2n2}) in the worst case in Section 5, where
C = min{k + n log2 n, n

√
k}. Extending the algorithms to higher dimensions

results in a O
(
n2d−2 min{C, n2}

)
-time solution for a given d-dimension array

with size n in each dimension.
In processing our algorithms for the above problems, we need to perform the

selection and the search operation in the Cartesian Sum A + B of a sequence
A = 〈a1, a2, · · · , am〉 and a sequence B = 〈b1, b2, · · · , bn〉 of real numbers, where
A + B is the set {ai + bj |1 ≤ i ≤ m and 1 ≤ j ≤ n}; optimal algorithms have
been developed for those problems [15, 16]. The set, A $ B, of all the good
elements in A + B is defined as {ai + bj |1 ≤ i ≤ j ≤ n} assuming that n = m.
The elements of A + B that are not good will be referred to as bad elements.

Definition 1. The rank of an element x in a given set A is defined as
rank(x;A) � ‖{a|a ∈ A, a ≤ x}‖. For a given matrix M = [ai,j] of order
n×m, rank(x;M) � ‖{ai,j |ai,j ≤ x, 1 ≤ i ≤ n, 1 ≤ j ≤ m}‖.

Definition 2. The relative rank, rankG(x;M), of x with respect to the good
elements in a matrix M = [ai,j]n×n is the size of the set {ai,j |ai,j ≤ x, 1 ≤ i ≤
j ≤ n}.

Throughout the paper we assume that either the input array is already resi-
dent in internal memory, or each element can be computed as needed in constant
time. All logarithms are to the base 2.

3 K Maximum Sums Algorithm

In this section, we present an algorithm for solving the k maximum sum subse-
quences problem on a given sequence of length n. Our algorithm consists of five
phases. In the first phase, the problem is reduced to finding the top k maximum
values over all the good elements in some matrix of order n×n. The second phase
performs repeated constraint searches which decreases the number of candidate
elements to O(kn). A procedure of range reduction will be carried out in the
third phase. This procedure is able to reduce the number of candidates further
to Θ(k). In the fourth phase, a worst-case linear-time selection algorithm is done
on the remaining candidates. The output of this phase is an element, x, that is
the kth largest range sum. The final phase involves finding the good elements
whose values are not less than x.

3.1 Problem Transformation

Given an input instance X = 〈x1, · · · , xn〉 of the k maximum sum subsequences
problem, we can construct the prefix-sum sequence P = 〈p1, · · · , pn〉 of X in
O(n) time in the worst case: p1 = x1, pi+1 = pi + xi+1 for 1 ≤ i ≤ n− 1. Let Q

140 F. Bengtsson and J. Chen

be the set {−p|p ∈ P}, where −0 = 0. It is clear that any range sum
∑j

l=i xl of
the sequence X is equal to pj−pi−1, for i ≤ j. Hence, the goal of the k maximum
sum subsequences problem becomes finding the k largest values among all the
good elements in the Cartesian sum set Q + P . Although selection, search, and
ranking problems in matrices are well studied, previous algorithms on matrices
and Cartesian sum sets are not directly applicable due to the goodness of the
elements. In the subsections that follow, we will solve the selection, search, and
ranking problems in Cartesian sum sets, which are of their own interests. Given
two sequences A and B, we assume for simplicity that all the elements in A + B
are distinct and our algorithms operate on the matrix M of the form A + B
(whenever such an interpretation is needed, observing that M is not actually
constructed). We will describe our algorithms for the k smallest elements in the
sets under consideration. It is straightforward to adapt the algorithms when the
largest elements are requested.

3.2 Constraint Search and Ranking

Let A = 〈a1, a2, · · · , an〉 and B = 〈b1, b2, · · · , bn〉 be two sequences of numbers.
Consider the problem of computing the number of bad elements in A+B that are
less than or equal to a given number x. Namely, we are interested in calculating
the value rank(x;A+B)−rankG(x;A+B). This rank computation can be done
by a search in A + B with respect to the good elements.

Notice that each column in the matrix M = Â + B is sorted if Â is the
sorted output when sorting A in non-decreasing order. We first perform a binary
search on each column j to compute the number of elements less than x in that
column. Let ij be the largest index such that M [ij , j] ≤ x. That is, all elements
in column j above ij are smaller than or equal to x. Since we have not rearranged
or reordered the sequence B, the nth column of M contains no bad elements.
Column n − i will contain i bad elements for 1 ≤ i ≤ n − 1. Observing that
if column j has a bad element at row i, then every column �, 1 ≤ � ≤ j − 1,
will have a bad element at row i as well. To locate the position of these bad
elements with respect to positions {i1, · · · , ij}, we scan the matrix column by
column from the right to the left and process one bad element at a new position
in each column when going left.

For this purpose, let π be the permutation that sorts A; i.e., A[π(i)] = Â[i] for
i = 1, 2, · · · , n. Now, construct an array, L, of length m to store the information
about the positions and the number of bad elements when scanning. Initially, L
is an array of zeros. Consider one column at a time. Upon processing columns
n, n− 1, · · · , j + 1, we will assign 1 to L[π(j)] if the current column j has a bad
element at row π(j) (that is, π(j) < j). Hence, L has value 1’s at the positions
corresponding to the rows where the elements are bad for the current column.
Therefore, the number of bad elements in column j that is less than or equal
to x is nj =

∑ij

i=1 L[i]. The only difference between column j + 1 and column j
is that column j may contain one more bad element. As mentioned above, the
location of this bad element can be computed with the help of the permutation
π in constant time. Moreover, the computation of nj can be done in O(log n)

Efficient Algorithms for k Maximum Sums 141

time using an algorithm for computing dynamic prefix sums [17]. The number of
bad elements computed for each column could be accumulated as a real number
over all columns. Since the number of columns is n and each column requires
O(log n) time which gives a total time of O(n log n) for the whole matrix. The
pseudo-code for our algorithm is as follows.

1. Initiate array L of length n with all zeros.
2. Let l = 0.
3. for j = n−1 downto 1 do locate the position for x in column j by a standard

binary search. Let ij be the largest index such that M [ij , j] ≤ x.
4. for j = n downto 1 do

(a) Compute s =
∑ij

i=1 L[i] using the prefix sums algorithm in [17].
(b) Let l = l + s.
(c) If π(j) < j, then let L[π(j)] = 1 and update the data structure by

employing the algorithm in [17].
5. return l.

The above algorithm assumes that the sequence, A, is sorted. Since the length
of A is n, the sorting takes O(n log n) time. We have proven the following:

Lemma 1. Let A = 〈a1, a2, · · · , an〉 and B = 〈b1, b2, · · · , bn〉 be two sequences
of numbers. Given a number x, we can compute the number of bad elements in
A + B whose values are less than or equal to x in O(n log n) time in the worst
case.

3.3 Range Reduction and Listing

The problem considered in this subsection is to find and list out all the good
elements in A + B that are less than or equal to a given number x, where
A = 〈a1, a2, · · · , an〉 and B = 〈b1, b2, · · · , bn〉 are two given sequences of num-
bers. When employing the result here in our solution to the k maximum sum
subsequences problem, the range of the candidates is decreased and the proce-
dure is repeated until the sub-problems can be solved in desired time bounds.

Similar to the previous subsection, consider the matrix M = Â + B where Â
is the sorted output when sorting A in non-decreasing order. In this case, each
column in M is sorted. As discussed above, each column, except the rightmost
one, will contain a number of bad elements. Moreover, column j can contain one
and at most one more bad element than column j + 1. Again, this bad element
can be found with the help of the sort permutation π of A. That is, A[π(i)] = Â[i]
for i = 1, 2, · · · , n.

Our algorithm uses two lists: A list L for storing all the good elements
searched for and a doubly linked list, called jump list, in order to jump over
all the bad elements during the search. It is important that the bad elements are
not scanned, since there can be Θ(n2) of them. We will implement the jump list
with two arrays of indices, the forward array, F , and the backward array, G.
Each element of the forward array is the index of the next good element in the

142 F. Bengtsson and J. Chen

current column. Each element in the backward array is the index of the previous
good element in the same column. The same forward and backward arrays will
be used for each column, but updated appropriately.

Starting from the rightmost column, we will process the columns of the matrix
as follows: Begin with the smallest element of the column, if it is less than or
equal to x, add it to L and continue to process the next good element in the
same column. If not, we are done with the column. Initially, F [i] = i + 1 and
G[i] = i − 1. Before listing and storing the good elements (≤ x) in the current
column, we compute the new bad element for this column (by using π). Notice
that the number of such bad elements is at most one. Then we update F and G
as follows: Let the index of the new bad element in the current column be i. Let
F [G[i]] = F [i] and G[F [i]] = G[i]. We search for good elements smaller than or
equal to x in the order of F [1], F [F [1]], F [F [F [1]]], Assume that the number
of good elements in column j whose values are less than or equal to x is rj . Thus,
the time used in processing column j will be rj plus a constant amount of work
(for F , G, and an extra element scanned), which is O(rj + 1). The total time

required will, therefore, equal O
(∑n

j=1(rj + 1)
)

= O(rankG(x;A + B) + n).
Next, we present the pseudo-code:

1. Initiate F [i] = i + 1, 0 ≤ i ≤ n− 1.
2. Initiate G[i] = i− 1, 1 ≤ i ≤ n.
3. Initiate empty list L.
4. for j = n downto 1 do

(a) Let i = F [0]. while M [i, j] ≤ x do
i. Add M [i, j] to L.
ii. Let i = F [i].

(b) Let i = π(j).
(c) Let F [G[i]] = F [i] and G[F [i]] = G[i].

Since sorting the sequence A takes O(n log n) time, we have

Lemma 2. Let A and B be two sequences of numbers each of length n. Given
a number x, finding all the good elements in A + B that are less than or equal
to x takes time at most O(rankG(x;A + B) + n log n).

3.4 Putting Things Together

Now, we are ready to present our algorithm for the k maximum sum subsequences
problem. Given a sequence X = 〈x1, · · · , xn〉 of numbers and an integer k ≥ 1.

1. If k = Ω(n2), then enumerate all the possible range sums of X and select
the min{k, 1

2n(n− 1)} largest ones; Exit.
2. Compute the prefix sums sequence, P , of X: P = 〈p1, · · · , pn〉, where pi+1 =

pi + xi+1, i = 1, · · · , n− 1 and p1 = x1.
3. Let Q = −P = {−p|p ∈ P}.

Efficient Algorithms for k Maximum Sums 143

4. Sort Q in non-decreasing order; denote the sorted output by A.
Sort P in non-decreasing order; denote the sorted output by B.

5. a ← 1
b ← k

6. Repeat
(a) Select the bth largest element, x, in A+B.
(b) Compute the number, m, of the good elements in Q + P that is ≥ x.
(c) If m < k, then a ← b and b ← 2b.
until m ≥ k.

7. while m > 2k do
(a) x ← the

⌊
a+b
2

⌋th
largest element in A + B.

(b) m ← the number of good elements ≥ x in Q + P .
(c) if m < k then a ←

⌊
a+b
2

⌋
else b ←

⌊
a+b
2

⌋
8. Let S be the set of all good elements in Q+P whose values are greater than

or equal to x.
9. Find all the k largest elements in S.

After the problem transformation, our algorithm searches for an element, x,
by repeated range reductions so that the relative rank of x in Q + P is between
k and 2k. Next, the algorithm discards all the good elements whose values ≥ x
and all the bad elements in Q + P . Then, the k maximum range sums of X are
the first k largest values among the remaining elements.

3.5 Complexity Analysis

The above algorithm runs in O(k+n log2 n) time in the worst case. In fact, Step
1 is done in O(n2) = O(k) time. Steps 2 and 3 runs in linear time. Step 4 takes
O(n log n) time.

During each iteration of Step 6, (a) can be performed with O(
√

b) = O(n)
operations [16] since both A and B are sorted; (b) takes O(n log n) time with
the help of the sorted sequence A of Q by Lemma 1. The number of iterations
can easily be computed from the following lemma.

Lemma 3. Given an element x and a set, A, of N elements: If rank(x;A) = r,
then r ≤ rank(x;B) ≤ N + r, where B = {b|b ∈ A or − b ∈ A}.

Proof. Let all the elements in A whose values are less than or equal to x
be a1, a2, · · · , ar. Assume, without loss of generality, that all of a1, · · · , ai are
strictly less than 0 and all of ai+1, · · · , ar are greater than or equal to 0, where
0 ≤ i ≤ r. Obviously, rank(x;B) ≥ r for the set B defined in the lemma. On
the other hand, the size of the following set: {b|b ∈ B or b ≤ x}, is at most
r + (r − i) + (N − r) = N + r − i ≤ N + r. The lemma follows.
�

Notice that in Step 6(c), the value of b is doubled each time. Therefore, when
Step 6 is done, we have a = 2�k and b = 2�+1k for some integer � ≥ 0. Let
N = 1

2n(n − 1) and r = k. From the above lemma, we have 2�k ≤ N + k and
thus, � = O(log N

k) = O(log n). Hence, Step 6 takes at most O(n log2 n) time.

144 F. Bengtsson and J. Chen

Step 7 performs a binary-search-like operation, where each step does a se-
lection and a computation of relative rank. Similar to that of Step 6, the time
complexity of this step equals O(n log n log(b − a)) = O(n log2 n). Step 8 re-
quires O(rankG(x;Q + P) = O(k) from Lemma 2 since we have already sorted
the sequence Q before this step. Finally, Step 9 takes O(k) time as well.

Theorem 1. The k maximum sum subsequences problem can be solved in O(k+
n log2 n) time in the worst case.

4 Fast Computation When k Is Small

An obvious lower bound for the k maximum sum subsequences problem is
Ω(k + n). Thus, the algorithm presented in the previous section gives the best
possible running time when k = Ω(n log2 n), but it does not give the fastest
algorithm for small values of k. Observing that if the input sequence is divided
into two blocks of consecutive elements, all the subsequences having the k
largest range sums must be entirely located in the left block, in the right block,
or cross the border between the left and the right block. By crossing the border
we mean that the left endpoint of the subsequence is located in the left block
and the right endpoint in the right block.

In order to efficiently find the range sums crossing the border between the
blocks, we will precompute all the suffix sums S of the left block and all the
prefix sums P of the right block. After that, all the range sums crossing the
border are now elements in the Cartesian sum of S + P . The k largest elements
in S +P can be found fast if we first sort the sets S and P , respectively. In fact,
our algorithm produces not only the k maximum sum subsequences, but also the
k largest prefix sums, the k largest suffix sums (in sorted order), and the sum of
the given sequence. That is, our algorithm indeed solves the following problem:

maxSum(X, k):
Input: A sequence X of n reals and an integer k, 1 ≤ k ≤ 1

2n(n− 1).
Output: KX : the set of the k largest range sums of X

PX : the set of the min{k, n} largest prefix sums of X
SX : the set of the min{k, n} largest suffix sums of X
w(X): the sum of X

Notice first that if k = Θ(n2), the above problem can be solved by first
computing all the possible range sums of X and then select the k largest ones.
This can be done in Θ(n2) time in the worst case. Similarly, w(X), PX and SX

can be computed in O(n log n) = O(n2) time. Therefore, we have

Lemma 4. The k maximum sum subsequences problem, when k = Θ(n2), can
be solved in Θ(n2) time in the worst case.

The above observations lead us to a divide-and-conquer approach to solving
the given problem. However, in order to speed up the computation, the recursion
will be forced to stop when the size of the underlying block drops below Θ

(√
k
)
.

In that case, we will apply the method from the above lemma to that block.

Efficient Algorithms for k Maximum Sums 145

Algorithm: AlgoMaxSum(X, k)
Input: A sequence X of n real numbers and an integer k ≥ 1
Output: (KX , PX , SX , w(X))

1. If k = Ω(n2) then let k′ = min{k, 1
2n(n−1)}, compute (K, P, S, w) according

to Lemma 4 with the parameter integer k′, and exit.
2. Divide X into two blocks of equal size: L = X[1..n/2] and R = X[n/2+1..n].
3. Recursively solve the problem maxSum on L and R, respectively, and let

– (KL, PL, SL, w(L)) ← AlgoMaxSum(L, k),
– (KR, PR, SR, w(R)) ← AlgoMaxSum(R, k).

4. Find the set, C, of all the largest elements in SL + PR.
5. Select the k largest elements in KL ∪ C ∪KR resulting in the set KX .
6. Assign the k largest elements in PL ∪ (PR + {wL}) to PX .
7. Assign the k largest elements in (SL + {wR}) ∪ SR to SX .
8. Compute w(X) = w(L) + w(R).

The correctness of the algorithm follows directly from the above description
and the observation at the beginning of this section. We will analyze the time
complexity step by step. Let T (n, k) be the worst-case running time of the al-
gorithm AlgoMaxSum(X, k). In the case when k = Ω(n2), the algorithm (now
Step 1) costs O(n2) time. Step 2 takes O(1) time and Step 3 requires 2T (n/2, k)
time. Step 4 can be done by first finding the kth largest element, x, in SL + PR

and then searching for all the elements in SL + PR that are larger than x. Here
we may assume without loss of generality that all the elements in SL + PR are
distinct. Notice that both SL and PR are sorted. Thus, x can be found in O(k)
time [15] and the search procedure above can be solved in Θ(k) time [16]. Step 5
takes Θ(k) time using any standard worst-case linear time selection algorithm.
One way to implement Step 6 is to first merge PL and PR + {wL} and then
choose the k largest elements in the resulting sorted set, which can be done in
Θ(k) time. Similarly, Step 7 runs in Θ(k) time. The last step needs only constant
time. To sum up, we have the following recurrence

T (n, k) =

{
2T

(
n
2 , k

)
+ O(k) , if k = o(n2)

O(n2) , if k = Ω(n2)
.

With the substitution method, we have T (n, k) = 2iT
(

n
2i , k

)
+O

(∑i−1
j=0 k2j

)
.

Letting (n/2i)2 = k results in 2i = n/
√

k. Hence, T (n, k) =(
n/
√

k
)

T
(√

k, k
)

+ O(n
√

k) =
(
n/
√

k
)

O(k) + O(n
√

k) =O(n
√

k). Therefore,

Theorem 2. The k maximum sum subsequences problem can be solved in
O(n

√
k) time in the worst case.

Combining Theorems 1 and 2, we have

Corollary 1. Given a sequence of length n and an integer parameter, k, the k
maximum sum subsequences problem can be solved in O(min{k+n log2 n, n

√
k})

time in the worst case.

146 F. Bengtsson and J. Chen

In the next section, we will show how to solve the high-dimensional problems
incrementally by using our fast algorithms developed in Sections 3 and 4.

5 Higher Dimensional Cases

We first study the two-dimensional version of the problem; that is, to find all
the orthogonal continous subregions whose sums are at least as large as the kth

largest sum among all continuous subarrays of a given two-dimensional array.
The following algorithm simply reduces the dimension parameter in the problem.
Actually, for a given array X = [xi,j]1≤i≤m,1≤j≤n of real numbers, we transform
the problem into Θ(m2) one-dimensional k maximum sum subsequences prob-
lems, and the later problems are solved using our one-dimensional algorithms.

Algorithm: AlgoMaxSum2D(X, k)
Input: A two-dimensional array X = [xi,j]1≤i≤m,1≤j≤n of real num-

bers and an integer k ≥ 1.
Output: The set KX of the k largest sums among all possible sums∑j2

i1=j1

∑j4
i2=j3

xi1,i2 for 1 ≤ j1 ≤ j2 ≤ m, 1 ≤ j3 ≤ j4 ≤ n

1. Compute a new array, Y = [yi,j] of order m× n, where yi,j =
∑j

l=1 xi,l.
2. For each i and j, 1 ≤ i ≤ j ≤ m,

(a) Create an array Ai,j = 〈a1, · · · , an〉 such that al = yj,l − yi−1,l for
l = 1, 2, · · · , n.

(b) Solve the k maximum sum subsequences problem on Ai,j with the pa-
rameter k; output KAi,j

.
3. Let KX be the k largest elements in the union of KAi,j

for 1 ≤ i ≤ j ≤ m.

Clearly, this algorithm computes the k largest range sums. Notice that Step
1 actually computes the prefix sums for each column of X; which can be done
in Θ(mn) time. Step 2 requires O(C) operations for every fixed i and j from
Corollary 1, where C = min{k +n log2 n, n

√
k}. Since the total number of index

combinations is Θ(m2), the time complexity of this step is thus Θ(m2C). Note
that the size of the union of KAi,j

, 1 ≤ i ≤ j ≤ m, is Θ(m2k). Hence, the
selection (Step 3) requires Θ(m2k) time in such a set. Therefore, the algorithm
AlgoMaxSum2D takes O(m2C + m2k) time. If k = o(n2), then m2C + m2k =
O(m2n

√
k). If k = Ω(n2), however, we can run a straightforward algorithm

running in O(m2n2) time that enumerates all possible range sums and selects
the k largest ones, instead of AlgoMaxSum2D. Therefore, we have

Theorem 3. Given a two-dimensional array, X, of order m × n and an in-
teger, k ≥ 1, the k maximum sum subarrays problem can be computed in
O(min{m2C, m2n2}) in the worst case, where C = min{k + n log2 n, n

√
k}.

An algorithm for the k maximum sum subarrays problem with a running time
of Θ(m2nk) has been presented in [14]. Notice that the value of the parameter
k is between 1 and Θ(m2n2). Our algorithm improves over the above result for
every value of k.

Efficient Algorithms for k Maximum Sums 147

It is possible to extend our approach to the d-dimensional version of the
maximum sum subarrays problem. Given a d-dimensional array of real numbers,
with size n in each dimension, we can solve the k maximum sum subarrays
problem in O(n2d−2 min{C, n2}) time; the details can be found in [18].

6 Conclusions

We have addressed the problem of computing k maximum sum subse-
quences/subarrays and proposed efficient algorithms. The bounds that we ob-
tain improve substantially on previous results and our algorithms are optimal
for some non-constant values of the parameter k (k ≥ n log2 n). Previously, only
for two extreme cases when k = O(1) and k = Θ(n2), the problem investigated
could be solved optimally. We have made some progress in designing optimal
algorithms. However, any algorithm that computes the k largest range sums re-
quires at least Ω(n+k) operations in the worst case. It is an interesting problem
to see whether this lower bound is achievable. Moreover, some new ideas will be
needed in order to handle the higher-dimensional problems optimally.

References

1. Weiss, M.: Data Structures and Algorithm Analysis (2nd Edition). Addison-Wesley
(1995)

2. Bentley, J.: Programming pearls: Algorithm design techniques. Communications
of the ACM 27 (1985) 865–871

3. Grenander, U.: Pattern Analysis. Springer-Verlag, New York (1978)
4. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of

items in large databases. In: Proceedings of the 1993 ACM SIGMOD International
Conference on Management of Data. (1993) 207–216

5. Fukuda, T., Morimoto, Y., Morishita, S., Tokuyama, T.: Data mining using two-
dimensional optimized association rules: Scheme, algorithms, and visualization. In:
Proceedings of the 1996 ACM SIGMOD International Conference on Management
of Data. (1996) 13–23

6. Bentley, J.: Programming pearls: Perspective on performance. Communications of
the ACM 27 (1985) 1087–1092

7. Gries, D.: A note on the standard strategy for developing loop invariants and
loops. Science of Computer Programming 2 (1982) 207–214

8. Smith, D.: Applications of a strategy for designing divide-and-conquer algorithms.
Science of Computer Programming 8 (1987) 213–229

9. Tamaki, H., Tokuyama, T.: Algorithms for the maximum subarray problem based
on matrix multiplication. In: Proceedings of the Ninth Annual ACM-SIAM Sym-
posium on Discrete Algorithms. (1998) 446–452

10. Takaoka, T.: Efficient algorithms for the maximum subarray problem by distance
matrix multiplication. In: Proceedings of the 2002 Australian Theory Symposium.
(2002) 189–198

11. Akl, S., Guenther, G.: Application of broadcasting with selective reduction to the
maximal sum subsegment problem. International Journal of High Speed Comput-
ing 3 (1991) 107–119

148 F. Bengtsson and J. Chen

12. Perumalla, K., Deo, N.: Parallel algorithms for maximum subsequence and maxi-
mum subarray. Parallel Processing Letters 5 (1995) 367–373

13. Qiu, K., Akl, S.: Parallel maximum sum algorithms on interconnection networks.
Technical Report No. 99-431, Jodrey School of Computer Science, Acadia Univer-
sity, Canada (1999)

14. Bae, S.E., Takaoka, T.: Algorithms for the problem of k maximum sums and
a VLSI algorithm for the k maximum subarrays problem. In: Proceedings of the
7th International Symposium on Parallel Architectures, Algorithms and Networks.
(2004) 247–253

15. Frederickson, G., Johnson, D.: The complexity of selection and ranking in X + Y
and matrices with sorted columns. Journal of Computer and System Sciences 24
(1982) 197–208

16. Frederickson, G., Johnson, D.: Generalized selection and ranking: Sorted matrices.
SIAM Journal on Computing 13 (1984) 14–30

17. Riedewald, M., Agrawal, D., Abbadi, A.E.: Flexible data cubes for online aggre-
gation. In: International Conference on Database Theory. LNCS (2001) 159–173

18. Bengtsson, F., Chen, J.: Computing the k maximum subarrays fast. Technical
Report No. 2004:07, Lule̊a University of Technology, Lule̊a, Sweden (2004)

Equipartitions of Measures by 2-Fans

Sergey Bereg

Department of Computer Science,
University of Texas at Dallas, Box 830688,

Richardson, TX 75083,USA
besp@utdallas.edu,

http://www.utdallas.edu/~besp

Abstract. We study the problem of computing an equitable 2-fan for
three masses distributed on the 2-sphere. The existence of an equitable
2-fan was shown by Bárány and Matoušek [3]. The contribution of this
paper is two-fold. (i) We prove the existence of an infinite set of equitable
2-fans. (ii) We present an efficient algorithm for finding an equitable 2-
fan when the mass distributions are discrete, i.e. finite sets of points.
Both (i) and (ii) can be easily extended to mass distributions in the
plane instead of the sphere.

1 Introduction

Balanced partitions of sets of points and disssections of mass distributions are
a fundamental topic in Combinatorial Geometry [23] and received attention re-
cently [3, 4, 6, 7, 22]. An equipartition of a mass distribution (measure) μ defined
on a space X is a finite collection K = {K1, . . . , Kq} of measurable sets forming
a partition (dissection) of X such that μ(Ki) = μ(Rd)/q for each i = 1, . . . , q.
We assume that the space X is either the plane R2 or the unit 2-sphere. We are
interested in the partitions by k-fans [3], see Fig. 1 for examples. Equipartitions
find applications in computer science [19] (for example, geometric range search-
ing), in statistics [5] (for example, regression depth) and in “practice” [1] (for
example, cutting a cake).

3-fan. Kaneko and Kano [15] conjectured that, for any qn red and qm blue
points (q, n, m > 0 are integers) in the plane in general position, there are q
disjoint convex polygons with n red and m blue points in each of them. The
conjecture of Kaneko and Kano has been independently proven by Bespamyat-
nikh et al. [6], Ito et al. [14] (the case q = 3), Sakai [20]. If q = 3, the partition
is a 3-fan with convex wedges.

Bárány and Matoušek [3] established a number of results concerning the
existence (and non-existence) of balanced k-fans. In particular, they proved the
existence of a 2-fan equipartitioning three masses on the sphere and a 3-fan
equipartitioning two masses on the sphere.

Equipartitioning by a k-fan is related to the Ham Sandwich Theorem [2,
23]. The Ham Sandwich problem is well studied from the algorithmic point of

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 149–158, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

150 S. Bereg

(a) (b) (c)

σ1

σ2
σ3

σ4

σ5

σ1

σ2

σ3

σ3

σ1
σ2

p p
−p

d1

Fig. 1. (a) 5-fan in the plane with the center p, (b) 3-fan in the plane, and (c) 2-fan
on the sphere with the center p

view [10, 12, 13, 17, 21, 24]. An optimal algorithm of Lo et al. [17] finds a Ham
Sandwich cut in linear time. Very recently, Bose et al. [7] studied the problem of
finding a geodesic ham-sandwich cut which can be viewed as a generalization of
the classical one.

We consider the problem of finding an equitable 2-fan for three discrete
masses defined as finite sets of points. The brute-force approach based on the
existence of 2-fan [3] is to check all posssible 2-fans. There are O(n5) combina-
torially different 2-fans for a set of n points. It would be useful for designing
an efficient algorithm to prove the existence of an equatable 2-fan that satisfies
some property. Mikio Kano conjectured [16] that every line contains the center
of an equitable 2-fan. In this paper we prove the conjecture.

Theorem 1. Given a set of points in the plane colored in red/blue/green such
that (i) the points are in general position, and (ii) the number of points of each
color is even, there exists an equitable 2-fan with center on a given line.

We prove Theorem 1 in a slightly stronger form. We assume that points on a
sphere are in general position if (i) no three points lie on the same great circle,
and (ii) no two points are antipodal (i.e. their midpoint is the sphere center).

Theorem 2. Given a set of points on the unit 2-sphere colored in red/blue/green
such that (i) the points are in general position, and (ii) the number of points of
each color is even, there exists an equitable 2-fan with center on a given great
circle.

This result can be stated in a more general setting: For any three finite Borel
measures on the 2-sphere S, any Jordan curve on S whose ends are antipodal
points contains the center of an equitable 2-fan.

The proof of Theorem 2 allows us to reduce the problem of finding an eq-
uitable 2-fan to the well-known problem of the slope selection [9]. The slope
selection can be solved optimally in O(n log n) time using a deterministic algo-
rithm [8, 9] and a randomized algorithm (and somewhat simpler) [11, 18]. We
present an algorithm for finding an equitable 2-fan on the unit 2-sphere. The
algorithm runs in O(N log2 N) time where 2N is the total number of points.

Equipartitions of Measures by 2-Fans 151

2 Preliminaries

Let S = {p | p2
x + p2

y + p2
z = 1} be the unit sphere in R3. Let p be a point of S.

For a direction d perpendicular to Op, we denote by c(p, d) the great half-circle
between p and −p in the direction d. Let d1 and d2 be two distinct directions
perpendicular to Op. The two great arcs c(p, d1) and c(p, d2) are considered to
be a 2-fan f = (p; d1, d2). They partition the sphere into two regions – lunes of
the sphere – denoted as σ1(f) and σ2(f), see Fig. 1 (c).

Continuous masses. Suppose that λ1, λ2, λ3 are absolutely continuous Borel
probabilities on S such that all the measures are positive on non-void open sets
(as in [4]). For a point p and a direction d1, there is a unique 2-fan f(p; d1, d2)
such that λ1(σ1(f)) = 1/2 (also there is a unique 2-fan such that λ1(σ1(f)) +
λ2(σ1(f)) + λ3(σ1(f)) = 3/2). Let X be the set of all such 2-fans. We can
associate a 2-frame (or just frame) with a 2-fan. Thus, the space of 2-fans is
homeomorphic to Stiefel manifold V2(R3) ∼= SO(3) of all orthonormal 2-frames
in R3.

Discrete masses. From now on, we assume that the masses are discrete and
colored: let R,B and G be sets of red, blue and green points on the sphere S,
respectively. We assume that the set of each color contains an even number of
points, namely |R| = 2n, |B| = 2m and |G| = 2k. Let P = R ∪B ∪G be the set
of all given points and let N = n + m + k.

Let A be the sphere arrangement generated by the great circles passing
through pairs of points of P . Let p be a point from the interior of a face in
A and let d be a direction such that c(p, d) avoids P . We define a canonical
2-fan f = (p; d, d′) for the pair (p, d) so that the number of points in P ∩ σ1(f)
is N (note that the direction d′ is not unique but the set P ∩ σ1(f) is unique).
For simplicity, we call the canonical 2-fan just 2-fan, denote it by φ(p, d), and
denote its lunes by σ1(p, d) and σ2(p, d). We call p a center of the 2-fan and d a
starting direction of the 2-fan.

Two 2-fans φ = (p, d) and φ′ = (p, d′) are called neighbors if the interior of
one of the two lunes between c(p, d) and c(p, d′) contains exactly one data point.
Let σ(p, d, d′) denote the lune between c(p, d) and c(p, d′) obtained by rotating
c(p, d) about the line passing through the origin O and p in clockwise order
when we look from p towards O. A 2-fan φ′ = (p, d′) is called a CW-neighbor
of φ = (p, d) if exactly one data point lies in the interior of σ(p, d, d′). A 2-fan
φ′ = (p, d′) is called a CCW-neighbor of φ = (p, d) if exactly one data point lies
in the interior of σ(p, d′, d).

Let δ(x) =
{

0, x = 0
x/|x|, x �= 0 .

3 The Existence of an Equitable 2-Fan

To evaluate the quality of a 2-fan (p, d) ∈ X we define a map μ : X → Z2 by
μ(p, d) = (μ1(p, d), μ2(p, d)) where μ1(p, d) is the number of red points in σ1(p, d)
and μ2(p, d) is the number of blue points in σ1(p, d). For detecting if a 2-fan is

152 S. Bereg

equitable we introduce a map α : X → Z2 by α(p, d) = (α1(p, d), α2(p, d)) where
α1(p, d) = δ(μ1(p, d)− n) and α2(p, d) = δ(μ2(p, d)−m). Clearly, a 2-fan (p, d)
is equitable if and only if α(p, d) = (0, 0).

p
pa

d

d′

d1

d′
1

pb

Fig. 2. The 2-fans φ = (p; d, d1) and φ′ = (p; d′, d′
1)

Lemma 1. Let p be a point in the interior of a face f ∈ A and let φ = (p, d)
and φ′ = (p, d′) be two neighbor frames. If α(φ) �= 0 and α(φ′) �= 0, then α(φ)
and α(φ′) are either equal or adjacent vertices in the label diagram depicted in
Fig. 3 (a).

Proof. Without loss of generality we assume that φ′ is the CW-neighbor of φ.
Let μ(p, d) = (n1, n2) and μ(p, d′) = (n′

1, n
′
2). Let Σ = σ1(p, d) ∩ P and Σ′ =

σ1(p, d′) ∩ P . The sets Σ and Σ′ differs by two points, say pa and pb, such that
Σ ∪ {pb} = Σ′ ∪ {pa}, see Fig. 2.

(1,1)(0,1)(-1,1)

(-1,0)

(-1,-1) (0,-1) (1,-1)

(1,0)

(1,1)

(0,1)

(-1,1)

(-1,0)

(-1,-1)

(0,-1)

(1,-1)

(1,0)

(a) (b)

Fig. 3. Label diagram for 2-fans. (a) Transitions. (b) Circular diagram

If pa and pb have the same color, then μ(p, d) = μ(p, d′) and α(φ) = α(φ′). We
assume that pa and pb have different colors. Then |ni−n′

i| ≤ 1 for i = 1, 2. There
are eight possible values for α(p, d) and α(p, d′) — the vertices of the diagram in
Fig. 3 (a). It can be easily verified that the edges of the label diagram represent
all possible transitions from α(p, d) to α(p, d′).

Equipartitions of Measures by 2-Fans 153

We associate a circular diagram with the labels α() by placing them at the
vertices of the regular 8-gon on the unit circle as shown in Fig. 3 (b). Let p be
a point in the interior of a face f ∈ A. Let π(p) be the closed path of α(p, d)
on the circular diagram, when d rotates 360◦ in clockwise order. We define the
winding number ω(p) as the number of clockwise turns of the path π(p).

Lemma 2. Let p be a point in the interior of a face f ∈ A. If there is no
equitable 2-fan with center p, then ω(p) is well defined and is odd.

Proof. Suppose that there is no equitable 2-fan with center p. The winding num-
ber is well defined since every transition is represented in the circular diagram as
±1/8 or ±1/4 of the one clockwise turn. We show that ω(p) is odd. Let (p; d1, d

′
1)

be a 2-fan. Let π1 = α(p, d1), α(p, d2), . . . α, (p, dl) be the path on the label dia-
gram when the starting direction of a 2-fan rotates from d1 to dl = d′

1 in clockwise
order. Note that α(p, dl) = −α(p, d1). Thus, the path π1 makes t + 1/2, t ∈ Z

clockwise turns on the label diagram. Let π2 be the path on the label diagram
when the starting direction of a 2-fan rotates from dl to d1 in clockwise order. It
has property that π2 = α(p, dl) = −α(p, d1),−α(p, d2), . . . ,−α(p, dl) = α(p, d1).
Thus, π2 makes t+1/2, t ∈ Z clockwise turns on the label diagram. The winding
number ω(p) is 2t + 1. The lemma follows.

Lemma 2 allows us to define the winding number of a face f , denoted by
ω(f), assuming that an equitable 2-fan does not exist. Since the paths π(p) are
the same for all points p in the face f , we denote it by π(f).

Lemma 3. Let e be an edge of the arrangement A and let f1 and f2 be two
faces incident to e. If neiter f1 nor f2 contains the center of an equitable 2-fan,
then ω(f1) and ω(f2) are equal.

Proof. The edge e is an arc on a great circle C passing through two points of P ,
say pa and pb. The points pa and pb partition the great circle C into two great
arcs A1 and A2 such that one, say A1, is shorter than the other. If e is a part of
A1, then the paths π(f1) and π(f2) are equal. Suppose that e ⊆ A2.

e

p1

p2

pa

pb

pc

pd d1

d2

d3
d′
1

d′
2

d′
3

d1d2

d3

d′′
1

d′′
2d′′

3

f1

f2

Fig. 4. Lemma 3

154 S. Bereg

Let pi, i = 1, 2 be a point in the face fi. Let φj = (p1; dj , d
′
j), j = 1, 2, 3 be

three consecutive 2-fans (φj+1 is the CW-neighbor of φj) with center p1 such
that the lune σ1(p1, d

′
1, d

′
2) contains pa, see Fig. 4. Let pc and pd be two other

points that change σ1 of these three 2-fans. The points of P in the lunes σ1
transform between 2-fans of the path π(f1) as follows:

Σ ∪ {pc, pd}→ Σ ∪ {pa, pc}→ Σ ∪ {pa, pb}

where Σ is the set of points in P that stay in σ1. The corresponding transfor-
mations for the point p2 are

Σ ∪ {pc, pd}→ Σ ∪ {pb, pc}→ Σ ∪ {pa, pb},

see Fig. 4.
If pa and pb have the same color then the transformations for p1 are the same

as for p2 and, thus, the paths π(p1) and π(p2) are equal. Suppose that the colors
of pa and pb are different. Without loss of generality we assume that pa is red
and pb is not red. Let n1 = μ1(p1, d1). It is easily verified that,

(i) if pd is red, then μ1(pi, dj) ∈ {n1 − 1, n1} for all i = 1, 2 and j = 1, 2, 3,
and

(i) if pd is not red, then μ1(pi, dj) ∈ {n1, n1+1} for all i = 1, 2 and j = 1, 2, 3.
Therefore, the numbers α1(pi, dj), i = 1, 2, j = 1, 2, 3 either all avoid -1 or all

avoid +1. This implies that the paths α(p1, d1), α(p1, d2), α(p1, d3) and α(p2, d1),
α(p2, d2), α(p2, d3) make the same (possibly fractional) number of turns.

Note that the path π(p1) may differ from π(p2) in two places since the arc A1
can be swept by either of great half-circles of a 2-fan (p; d, d′). The case where
c(p, d′) intersects A1 is similar. The lemma follows.

The arrangement A is defined using
(2N

2

)
great circles. Clearly, for each face

f of A, its symmeric image about the center of the sphere is a face of A. We call
it the opposite face of f .

Theorem 3 (Antipodal Mapping). Let f1 and f2 be two faces of the ar-
rangement A such that f2 is the opposite face of f1. If the widning numbers
ω(f1) and ω(f2) are defined, then ω(f1) = −ω(f2).

Proof. Let p1 be a point of the face f1. Then p2 = −p1 is the point of the face f2.
Let q0, q1, . . . , q2N−1 be the points of P in clockwise order from the point of view
p1. Let Pi, 0 ≤ i < 2N be the set {qi, qi+1, . . . , qi+N} (we assume that the indices
are modulo 2N). Let πi denote (δ(|Pi ∩R| − n), δ(|Pi ∩B| −m)). Then π(p1) =
π0, π1, . . . , π2N−1. On the other hand π(p2) = π2N−1, π2N−2, . . . , π0 since the
clockwise order of the points of P from the point of view p2 is q2N−1, q2N−2, . . . , q0.
Therefore the path π(p2) makes −ω(p1) number of turns. The theorem follows.

Lemma 3 and Theorem 3 imply Theorem 2. The continuous versions of The-
orem 1 and 2 can be shown using standard techniques, see for example [3, 6, 19].

Equipartitions of Measures by 2-Fans 155

4 Algorithm for Finding 2-Fans

We show that an equitable 2-fan whose existence is guaranteed by Theorem 2
can be computed efficiently.

Theorem 4. Given a set of 2N points on the 2-sphere colored in red/blue/green
such that (i) the points are in general position, and (ii) the number of points of
each color is even, an equitable 2-fan with center on a given great circle can be
found in O(N log2 N) time using O(N) space.

Proof. By rotating the points on the sphere we can assume that the given great
circle is {p ∈ S | pz = 0}. Theorem 2 implies that the great half-circle γ =
{(cos ψ, sin ψ, 0) | π/2 ≤ ψ ≤ 3π/2} contains the center of an equitable 2-fan.
Let γ0 = (0, 1, 0) and γ1 = (0,−1, 0) be the endpoints of γ.

Winding number. Let p be a point on the sphere S. The winding number of
p can be found in O(N log N) time by (i) sorting the points of P in clockwise
order, and (ii) computing the path π(p) on the label diagram (note that the
algorithm can stop here if α() = 0 is found), and (iii) computing ω(p).

Binary search. There are N(2N −1) great circles in the arrangement A since
every two points of P lie on the unique great circle. The great circles of A
intersect γ in at most N(2N − 1) points. These points partition γ into the arcs
A1, A2, . . . , AM where M ≤ N(2N − 1) + 1. One can apply the binary search
on the arcs. Let Ai, i = �M/2� be the median arc and let p be a point in Ai.
Compute ω(p) and compare it with ω(γ0) and ω(γ1). One of the arcs γ0p or
pγ1 (or both) satisfies the property that its endpoints have different winding
numbers. We can proceed with this arc. By Lemma 3 the algorithm finds an
equitable 2-fan.

We actually apply the binary search for two sub-arrangements of A. Let A+,
resp. A−, be the arrangement of the great circles passing through pairs of points
P ∩S+, resp. P ∩S−, where S+ = {(x, y, z) ∈ S | z > 0} is the upper hemisphere
of S and S− = {(x, y, z) ∈ S | z < 0} is the lower hemisphere of S. The binary
search used in the algrithm is a combination of two searches in A+ and A−,
see details later. Our algorithm relies on the fact that the great circle γ(pa, pb)
generated by a point pa in S+ and a point pb in S− can be ignored since the
path π(p) does not change when p crosses γ∩γ(pa, pb). Therefore we can restrict
ourself to the arrangements A+ and A− only. The question now is how to find
the i-th arc on γ generated by A+ or A−. We show that this can be done using
the slope selection.

Slope selection. The points on the upper hemisphere S+ can be mapped to
the plane Π = {(x, y, z) | z = 1} using the gnomonic projection η : S+ → Π
defined as η(x, y, z) = (x/z, y/z, 1). Let pa = (xa, ya, za) and pb = (xb, yb, zb)
be two points on the upper hemisphere and let γ(pa, pb) denote the great circle
containing pa and pb. The great circle γ(pa, pb) is mapped to the line l(pa, pb)
passing through the points η(pa) and η(pb). We show that the sorted order of
the lines l(pa, pb) by slope is in the one-to-one correspondence with the order of
the points γ ∩ γ(pa, pb) on the half-circle γ. The slope of the line l(pa, pb) is

156 S. Bereg

s =
yb/zb − ya/za

xb/zb − xa/za
.

Let pγ(x, y, 0) be the intersection point of the arc γ and the great circle γ(pa, pb).
Since the points pγ , 0, pa and pb are coplanar we have∣∣∣∣∣∣∣∣

0 0 0 1
x y 0 1
xa ya za 1
xb yb zb 1

∣∣∣∣∣∣∣∣ = 0.

Then x(yazb− ybza) = y(xazb−xbza) and the slope is s = y/x. Note that y/x is
tan ψ where ψ is the angle of 0pγ . The one-to-one correspondence between the
slopes of the lines l(pa, pb), pa ∈ S+, pb ∈ S− and the points γ ∩ γ(pa, pb) follows
from the fact that ψ ∈ (π/2, 3π/2) and tan() is the monotone function in this
interval.

O X

Y

γ

A+
i

A−
j

(a)

O X

Y

γ

(b)

γ0

γ1

γ0

γ1

p

p+
i+1

p+
i

p−
j

p−
j+1

p+
i

p+
i+1

p−
j

p−
j+1

p

Fig. 5. The binary search step

Let A+
1 , A+

2 , . . . , A+
m+ be the arcs on γ into which γ is partitioned by the great

circles of A+. Similarly, let A−
1 , A−

2 , . . . , A−
m− be the arcs generated by A−. We

assume that the arcs A+
i (and the arcs A−

j) are in counterclockwise order. Using
the slope selection we can find the i-th arc A+

i . The slope selection can be done
in O(n log n) time [8, 9] (a randomized algorithm can be found in [11, 18]).

Binary search in two arrangements. In the binary search step, we have the
sequence of arcs A+

i1
, A+

i1+1, . . . , A
+
i2

and the sequence of arcs A−
j1

, A−
j1+1, . . . , A

−
j2

.
At the beginning the indices are i1 = j1 = 1, i+2 = m+ and j−

2 = m−. Using
the slope selection we find two arcs A+

i = (p+
i , p+

i+1) and A−
j = (p−

j , p−
j+1) where

i = �(i1 + i2)/2� and j = �(j1 + j2)/2�. Notice that the arc A+
i may contain

many arcs generated byA. Therefore the points of A+
i may have different winding

numbers.

Equipartitions of Measures by 2-Fans 157

Suppose that A+
i and A−

j are disjoint. If the sequence of arcs of A+ is nar-
rowed to just the arc A+

i , i.e. i1 = i2, then we make the decision for A−. In the
example depicted in Fig. 5 (a), the indices of the arcs in A− should be less than
j. If the sequence of arcs of A+ has more than one segment then we pick a point
p in the arc A+

i infinitesimally close to p+
i+1 and test it. If ω(p) = ω(γ0) then we

prune the arcs in A+ with indices less than i. Otherwise we prune the arcs in
A+ with indices greater than i and the arcs in A− with indices greater than j.

If the arcs A+
i and A−

j intersect then we select any point p from their in-
tersection, see Fig. 5 (b). Note that all the points of A+

i ∩ A−
j have the same

winding number since the path π(p) does not change when p crosses γ∩γ(pa, pb)
for any pa ∈ S+, pb ∈ S−. The binary search test for p prunes either the arcs of
A+ or A− (or both).

The total number of the binary search tests is O(log N) since every time the
arcs of A+ or A− are pruned. The theorem follows.

The problem of finding an equitable 2-fan on the sphere is more general than
the one in the plane since we can map the plane Π = {(x, y, z) | z = 1} to
the sphere S using the inverse gnomonic projection η−1 which maps a plane
point (x, y, 1) to the sphere point (xz, yz, z), where z = 1/

√
x2 + y2 + 1. As an

immediate consequence we obtain the following result.

Theorem 5. Given a set of 2N points in the plane colored in red/blue/green
such that (i) the points are in general position, and (ii) the number of points of
each color is even, an equitable 2-fan with center on a given line can be found
in O(N log2 N) time using O(N) space.

5 Conclusion

We proved that any three mass measures on the 2-sphere admit an equitable
partition by a 2-fan whose center lies on a given great circle. Based on our proof
we showed that an equitable 2-fan can be computed in O(N log2 N) time for
discrete masses. The complexity of the problem is an interesting open question:
one can either improve the running time (a new proof may be needed for this)
or/and find a non-trivial lower bound.

References

1. J. Akiyama, A. Kaneko, M. Kano, G. Nakamura, E. Rivera-Campo, S. Tokunaga,
and J. Urrutia. Radial perfect partitions of convex sets in the plane. In Proc.
Japan Conf. Discrete Comput. Geom.’98, volume 1763 of Lecture Notes Comput.
Sci., pp. 1–13. Springer-Verlag, 2000.

2. I. Bárány. Geometric and combinatorial applications of Borsuk’s theorem. In
J. Pach, editor, New Trends in Discrete and Computational Geometry, volume 10
of Algorithms and Combinatorics, pp. 235–249. Springer-Verlag, 1993.

3. I. Bárány and J. Matoušek. Simultaneous partitions of measures by k-fans. Discrete
Comput. Geom., 25(3):317–334, 2001.

158 S. Bereg

4. I. Bárány and J. Matoušek. Equipartition of two measures by a 4-fan. Discrete
Comput. Geom., 27(3):293–301, 2002.

5. M. W. Bern and D. Eppstein. Multivariate regression depth. Discrete Comput.
Geom., 28(1):1–17, 2002.

6. S. Bespamyatnikh, D. Kirkpatrick, and J. Snoeyink. Generalizing ham sand-
wich cuts to equitable subdivisions. Discrete Comput. Geom., 24(4):605–622,
2000, http://springerlink.metapress.com/openurl.asp?genre=article&issn=
0179-5376&volume=24&issue=4&spage=605.

7. P. Bose, E. D. Demaine, F. Hurtado, J. Iacono, S. Langerman, and P. Morin.
Geodesic ham-sandwich cuts. In Proc. 20th Annu. ACM Sympos. Comput. Geom.,
2004, http://www-ma2.upc.es/∼hurtado/ham.pdf.

8. H. Brönnimann and B. Chazelle. Optimal slope selection via cuttings. Comput.
Geom. Theory Appl., 10(1):23–29, 1998.

9. R. Cole, J. Salowe, W. Steiger, and E. Szemerédi. An optimal-time algorithm for
slope selection. SIAM J. Comput., 18(4):792–810, 1989.

10. M. Dı́az and J. O’Rourke. Ham-sandwich sectioning of polygons. In Proc. 2nd
Canad. Conf. Comput. Geom., pp. 282–286, 1990.

11. M. B. Dillencourt, D. M. Mount, and N. S. Netanyahu. A randomized algorithm
for slope selection. Internat. J. Comput. Geom. Appl., 2:1–27, 1992.

12. D. P. Dobkin and H. Edelsbrunner. Ham-sandwich theorems applied to intersection
problems. In Proc. 10th Internat. Workshop Graph-Theoret. Concepts Comput.
Sci., pp. 88–99, 1984.

13. H. Edelsbrunner and R. Waupotitsch. Computing a ham-sandwich cut in two
dimensions. J. Symbolic Comput., 2:171–178, 1986.

14. H. Ito, H. Uehara, and M. Yokoyama. 2-dimension ham sandwich theorem for
partitioning into three convex pieces. In Proc. Japan Conf. Discrete Comput.
Geom.’98, volume 1763 of Lecture Notes Comput. Sci., pp. 129–157. Springer-
Verlag, 2000.

15. A. Kaneko and M. Kano. Balanced partitions of two sets of points in the plane.
Comput. Geom. Theory Appl., 13:253–261, 1999.

16. M. Kano. Personal communication.
17. C.-Y. Lo, J. Matoušek, and W. L. Steiger. Algorithms for ham-sandwich cuts.

Discrete Comput. Geom., 11:433–452, 1994.
18. J. Matoušek. Randomized optimal algorithm for slope selection. Inform. Process.

Lett., 39:183–187, 1991.
19. J. Matoušek. Using the Borsuk-Ulam Theorem. Springer-Verlag, Heidelberg, 2003.
20. T. Sakai. Balanced convex partitions of measures in R2. Graphs and Combinatorics,

18(1):169–192, 2002.
21. W. Steiger. Algorithms for ham sandwich cuts. In Proc. 5th Canad. Conf. Comput.

Geom., p. 48, 1993.
22. S. T. Vrećica and R. T. Živaljević. Conical equipartitions of mass distributions.

Discrete Comput. Geom., 25(3):335–350, 2001.
23. R. T. Živaljević. Topological methods. In J. E. Goodman and J. O’Rourke, editors,

Handbook of Discrete and Computational Geometry, chapter 11, pp. 209–224. CRC
Press LLC, Boca Raton, FL, 1997.

24. R. T. Živaljević and S. T. Vrećica. An extension of the ham sandwich theorem.
Bull. London Math. Soc., 22:183–186, 1990.

Augmenting the Edge-Connectivity
of a Spider Tree�

Davide Bilò and Guido Proietti

Dipartimento di Informatica, Università di L’Aquila, Italy
{davide.bilo, proietti}@di.univaq.it

Abstract. Given an undirected, 2-edge-connected, and real weighted
graph G, with n vertices and m edges, and given a spanning tree T of G,
the 2-edge-connectivity augmentation problem with respect to G and T
consists of finding a minimum-weight set of edges of G whose addition
to T makes it 2-edge-connected. While the general problem is NP-hard,
in this paper we prove that it becomes polynomial time solvable if T
can be rooted in such a way that a prescribed topological condition with
respect to G is satisfied. In such a case, we provide an O(n(m + h + δ3))
time algorithm for solving the problem, where h and δ are the height and
the maximum degree of T , respectively. A faster version of our algorithm
can be used for 2-edge connecting a spider tree, that is a tree with at
most one vertex of degree greater than two. This finds application in
strengthening the reliability of optical networks.

Keywords: Graph Algorithms, Edge-Connectivity Augmentation, NP-
hardness, Spider Tress, Network Survivability.

1 Introduction
Let G = (V,E) be a connected, undirected graph, modelling the sites and the
potential links of the layout of a communication network. Let us assume that
a real weight is associated with each edge e ∈ E, representing the cost for
activating the link. Clearly, the cheapest network that allows all the sites to
communicate is a minimum spanning tree of G. However, such a network is
highly susceptible to failures, since it cannot survive even if just one link or site
fails. Given current attention to network reliability, one desires to build more
resilient networks.

A network having edge-connectivity λ > 1 continues to allow communication
between functioning sites even after as many as λ − 1 links have failed. The
extension of these definitions for the vertex-connectivity case is straightforward.
In this paper, we give attention to the problem of strengthening the reliability of
an already existing network, in the link failure case. More precisely, given a tree
T , our purpose is to make it 2-edge-connected by simply adding a minimum-
weight set of edges different from the ones in T . This optimization problem is
NP-hard and 2-approximable for general graphs. But, as we will show in this

� Work partially supported by the Research Project GRID.IT, funded by the Italian
Ministry of Education, University and Research.

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 159–171, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

160 D. Bilò and G. Proietti

paper, it becomes polynomial if the given graph has a special structure with
respect to the tree T .

A classical formulation of a λ-edge-connectivity augmentation problem (λECAP
for short) is the following: Given a k-edge connected weighted graph G, given an
h-edge connected spanning subgraph H of G, with h < k, and given an integer
h < λ ≤ k, find a minimum-weight set of edges of G, say Augλ(H,G), whose
addition to H increases its edge-connectivity to λ.

For λ > 1, the problem is NP-hard. A particular instance of the problem
occurs when H has no edges. Such a problem, called minimum λ-edge-connected
spanning subgraph problem, is APX-hard and not approximable within 68569

68564−ε,
for any constant ε > 0, even for λ = 2 [1]. Thus, a large amount of work has been
done on designing approximation algorithms. When h = 1 and λ = 2, which is
of interest for this paper, the best known approximation result for the general
weighted case is 2. The first algorithm, by Frederickson and JáJá [5] was simpli-
fied later by Khuller and Thurimella [10] and recently, Galluccio and Proietti [8]
have lowered the time complexity of the algorithm. For the unweighted case, al-
gorithms with a best approximation ratio are known. More precisely, Nagamochi
developed a (1.875 + ε)-approximation algorithm, for any constant ε > 0 [11],
then improved to 3/2 by Even et al. [4].

Besides, by adding additional constraints on the structure of H and/or G,
researchers have characterized polynomial time solvable cases of the problem.
First, Eswaran and Tarjan proved that Aug2(H,G) can be found in polynomial
time if G is a complete unweighted graph [3]. This result has been extended to
any desired edge-connectivity value by Watanabe and Nakamura [12], and faster
algorithms can be found in [7]. For the weighted case, Galluccio and Proietti [8]
have recently developed a fast polynomial time algorithm finding an optimal
2-edge-connectivity augmentation of a depth-first search tree of G.

In this paper, we move one step forward along this direction. More precisely,
we show that if H is actually a spanning tree T of G, then the 2ECAP is polyno-
mial time solvable if T can be rooted in such a way that the following property
holds: For any edge e = (u, v) of T , with u closer than v to the root of T , let T (v)
be the subtree of T rooted at v; then, the endvertices in T (v) of all the non-tree
edges having only one endvertex in T (v) lie along the same root-leaf path.

As we will show, this is not just a very special case. Indeed, a faster version
of our algorithm can be used to 2-edge-connect at minimum cost a spider tree,
that is a tree with at most one vertex having a degree greater than two. This
is related to a reliability problem in optical communication networks. Further-
more, with opportune but realistic constraints on the structure of G, the above
property captures several widespread network topologies, like caterpillar trees,
bus networks, spider networks with appended spider trees, and many others,
that will be extensively treated in the full version of this paper.

The paper is organized as follows: in Section 2 we give some basic definitions
that will be used throughout the paper; in Section 3 we show our polynomial
case of the 2ECAP, and we provide a corresponding solving algorithm; finally,
in Section 4 we apply these results to augment a spider tree.

Augmenting the Edge-Connectivity of a Spider Tree 161

2 Basic Definitions

Let G = (V,E) be an undirected graph, where V is the set of vertices and
E ⊆ {(u, v)|u, v ∈ V ∧ u �= v} is the set of edges. If (u, v) ∈ E we say that u is
joined to v. G is said to be weighted if there exists a real function w : E �→ R

(to simplify the notation, we denote by w(u, v) the weight of the edge (u, v)).
Note that the definition of graph permits no loop, i.e., no edge joining a vertex
to itself. In a multigraph, no loops are allowed, but more than one edge can join
two vertices (parallel edges). If both loops and parallel edges are permitted, we
have a pseudograph. Given v ∈ V , the number of adjacent vertices to v with
respect to the graph G, is the degree of v in G and it is denoted by δG(v).

Consider a set of edges E. The graph induced from E is the graph G = (V,E),
where each v ∈ V is an endvertex of some f ∈ E. A graph H = (V (H), E(H))
is a subgraph of G if V (H) ⊆ V and E(H) ⊆ E. If V (H) = V , then H is a
spanning subgraph of G. The weight of H is defined as w(H) =

∑
e∈E(H) w(e).

A simple path (or a path for short) in G is a subgraph H of G with V (H) =
{v0, . . . , vk|vi �= vj for i �= j} and E(H) = {(vi, vi+1)|0 ≤ i < k}, also denoted as
P (v0, vk). The size of a path is the number of its edges. A graph G is connected
if, ∀u, v ∈ V , there exists a path P (u, v) in G. The connected components of a
graph G are the maximal (w.r.t. vertex inclusion) connected subgraphs of G.

A rooted tree T is a connected acyclic graph with a privileged vertex r called
root. Let T denote a spanning tree of G rooted at r. Edges in T are called
tree edges, while edges in E \ E(T) are called non-tree edges. A non-tree edge
(u, v) covers all the tree edges along the (unique) path from u to v in T . By
C(e1, e2, . . . , ek), with k ≥ 1, we denote the set of non-tree edges such that each
member covers the tree edges e1, e2, . . . , ek.

Let P (r, v) denote the unique path in T between r and v ∈ V (T). Any vertex
u in P (r, v) is an ancestor of v in T , while v is a descendant of u. By Anc(v)
we denote the set of all ancestors of v. The (unique) vertex u in P (r, v), r �= v,
preceding v is the parent of v and it is denoted by p(v). Clearly, v is a child of u.
A vertex with no child is a leaf of T . The height of T is the size of a maximum-
size path out of the paths from r to each leaf of T . A connected subgraph of T is
called subtree of T . Given v ∈ V (T), by T (v) we denote the subtree of T rooted
at v containing all descendants of v. A graph whose connected components are
trees, is a forest.

A graph G is said to be 2-edge-connected if the removal of any edge from
G leaves it connected. Given a spanning subgraph H of a 2-edge-connected
graph G, solving the 2-edge-connectivity augmentation problem (2ECAP) of H
in G means to select a minimum-weight set of edges in E \ E(H), denoted as
Aug2(H,G), such that the spanning subgraph H ′ = (V,E(H) ∪ Aug2(H,G))
of G is 2-edge-connected. The extension of above definitions to multigraphs and
pseudographs are straightforward.

In the rest of the paper, we will restrict our attention to the case in which H
is connected. Notice that if H is connected, then, w.l.o.g., we can assume that H
is a tree. Indeed, each 2-edge-connected component of H can be contracted into

162 D. Bilò and G. Proietti

a single vertex. This transforms the graph G into a multigraph G and the graph
H into a tree T whose edges are the bridges of H. It is then easy to see that
finding Aug2(H,G) is equivalent to finding Aug2(T,G). Based on that, we will
restrict ourselves to the problem of finding 2-edge-connectivity augmentation
of trees over multigraphs. Trivially, we can also restrict ourselves to instances
such that the weight of each non-tree edge is strictly positive, and in the case of
parallel non-tree edges, we have to maintain only the cheapest one.

3 A Polynomial Case of the 2ECAP

Let T be a rooted spanning tree of G = (V,E). In this section, we examine
the 2ECAP of T in G, restricted to a special class of polynomial instances. To
describe such a class, we need some new definitions.

Definition 1. Given e = (p(v), v) ∈ E(T), the dual graph of e is the graph Ge

such that V (Ge) = {ve′ |e′ = (v, u) ∈ E(T)}, and (ve′ , ve′′) ∈ E(Ge) iff there
exists a non-tree edge that covers both e′ and e′′.

Simply observing the definition above, we have that in [8] the authors op-
timally solve the 2ECAP over instances such that each tree edge has a dual
graph made up by a forest of stars (i.e., trees of height 1) and/or single vertices.
Another interesting polynomial time class of instances arises when each dual
graph is bipartite [2]. Our discussion restricted to still another class of instances,
satisfying the following:

Property 1. ∀e ∈ E(T), ve has degree at most 1 in Ge.

Before describing the optimal algorithm solving the problem for the class of
instances satisfying Property 1, we introduce some new notations. For fixed v ∈
V \{r}, by e0 we denote the tree edge (p(v), v). Moreover, by v1, v2, . . . , vδT (v)−1
we denote the children of v. We denote the tree edge (v, vj), 1 ≤ j < δT (v), by
ej . W.l.o.g., we can assume that in the dual graph, the vertex adjacent to the
representative of e0 is the representative of e1.

3.1 Graph Topology

Our first step in designing an optimal polynomial time algorithm is to formalize
some new properties related to Property 1. This can be done by analyzing the
topological structure of G with respect to T .

Lemma 1. Let G, T satisfy Property 1. For any fixed v ∈ V , ∀f1 = (u1, w1), f2 =
(u2, w2) ∈ C(e0, e1), let u1, u2 be vertices in T (v1). Then the proposition u1 ∈
Anc(u2) ∨ u2 ∈ Anc(u1) is always true.

Proof. Suppose the lemma is not true, that is u1 /∈ Anc(u2) ∧ u2 /∈ Anc(u1).
As u1, u2 ∈ V (T (v1)), we have that the least common ancestor u for u1 and u2
in T is a vertex of T (v1). Since ê = (p(u), u) ∈ E(T (v)), then f1, f2 ∈ C(ê).

Augmenting the Edge-Connectivity of a Spider Tree 163

Let s1 (resp., s2) be the child of u in P (u, u1) (resp., P (u, u2)). Let ê1 =
(u, s1) and ê2 = (u, s2). As s1 �= s2, it follows that ê1 �= ê2. Consider the
dual graph Gê and let û, û1, û2 be the vertices in the dual graph corresponding
to ê, ê1, ê2, respectively. We have that (û, û1) ∈ E(Gê), since f1 ∈ C(ê, ê1).
Moreover, (û, û2) ∈ E(Gê) since f2 ∈ C(ê, ê2). Hence, such a dual graph does
not satisfy Property 1. From this contradiction the claim follows.
�

From Lemma 1, the next two corollaries follow:

Corollary 1. Let G, T satisfy Property 1. For any fixed v ∈ V , ∀(u1, w1), (u2, w2)
∈ C(ej , ek), with 1 ≤ j < k < δT (v), let u1, u2 (resp., w1, w2) be vertices in T (vj)
(resp., T (vk)). Then the proposition (u1 ∈ Anc(u2) ∨ u2 ∈ Anc(u1)) ∧ (w1 ∈
Anc(w2) ∨ w2 ∈ Anc(w1)) is always true.
�

Corollary 2. Let G, T satisfy Property 1. For any fixed v ∈ V , ∀(u1, w1) ∈
C(ej , ek) and ∀(u2, w2) ∈ C(ek, ei), with 1 ≤ j < k < i < δT (v), let u2, w1 be
vertices in T (vk). Then the proposition w1 ∈ Anc(u2)∨u2 ∈ Anc(w1) is always
true.
�

Lemma 1 and Corollaries 1 and 2 characterize the topological structure of G
with respect to T , when Property 1 holds. Basically, they point out that, given
any subtree T (v) of T , the endvertices of all non-tree edges having only one
endvertex in T (v) are such that these endvertices lie along the same (unique)
path P (v, u), where u is a leaf of T (v). We will call this path the v-path.

3.2 Basic Idea

By simply considering our class of instances, it is easy to see that every weighted
multigraph defined over a star satisfies Property 1, so is a member of our class.
Let us start by solving such simple instance. Consider the weighted pseudograph
P obtained from a copy of G by contracting each tree edge ei into a node νi (see
Figure 1). Clearly, edges parallel to tree edges become loops in P.

Now, it is not hard to see that an augmentation for T in G is represented
in P by an edge cover C, i.e., a set of edges that spans all vertices of P. More-
over, an edge cover C for P represents an augmentation for T in G. Since the
transformation described above preserves the weights, we have that:

Lemma 2. Each minimum-cost edge cover (MCEC) for P represents an opti-
mal augmentation for T in G, and viceversa.
�

3.3 The Algorithm

We aim to use the idea described in the previous subsection to realize an optimal
algorithm solving a general instance.

High-Level Description. Our algorithm works in a bottom-up manner with
respect to the height of the subtrees. It starts by finding a cover for the subtrees
of T of height 1, then it proceeds with those of height 2, and so on, until it finds
a cover for T itself (we will see later that we must do more).

164 D. Bilò and G. Proietti

1 32

6

1 32

3 1
13 ⇔e3 e4e1 e2

ν1

6

ν3 ν4ν2

Fig. 1. An example of the transformation from the 2ECAP of a star versus an MCEC
problem over a pseudograph and viceversa. Bold edges represent tree-edges, while
dashed edges represent an optimal solution for both problems

Let h be the height of T . For t = 1, 2, . . . , h, consider the set Vt = {v ∈
V |T (v) has height t}. Now fix a vertex v ∈ Vt. Since we have already found a
solution for each T (vj), 1 ≤ j < δT (v), we can transform T (v) into a rooted star
T (v) by contracting each T (vj) into a leaf of T (v), while the set of all the other
vertices are contracted into the root of T (v). If we apply this transformation to
G, all non-tree edges covering ej , for some 1 ≤ j < δT (v), are kept.

By applying the same idea of Section 3.2, we find an optimal cover for
e1, e2, . . . , eδT (v)−1. Now it is easy to see that this cover together with a cover
for each T (vj), 1 ≤ j < δT (v), is a cover for T (v). Moreover every cover for T (v)
contains edges forming a cover for T (v). However, this transformation does not
guarantee optimality (see Figure 2). To avoid this problem we simply need to
adjust the weights of non-tree edges before the contraction phase.

4
2

3

r

v

(a)

2 4

(b)

T (v)

3

4

T (r)

(c)

T (v)

r
T (r)

T (v)

r

(d)

4

3 + 2

Fig. 2. A simple execution of the algorithm with and without tuning the weight. For
each example, bold edges are tree edges, while dashed edges represent optimal solution.
In (a), the input instance, where the optimum has weight 4; in (b), the star representing
T (v); in (c), the star representing T (r) without adjusting the weights: notice that the
returned cover for T has weight 5; in (d), the star representing T (r) after tuning the
weights: note that the returned cover for T has weight 4 (equal to the optimum in (a))

Tuning the Weights. Let T (v, i), 0 ≤ i ≤ t, be the forest induced by the set
of edges of T (v) deprived of the first i edges of the v-path, starting from v (see
Figure 3). Now, fix a node v ∈ Vt, and consider f ∈ C(ej), with 1 ≤ j < δT (v).
The non-tree edge f covers a subpath of the vj-path containing vj . Assume that
the size of this path is i. The tree edges in T (vj) not covered by f induce the
forest T (vj , i). We say that T (vj , i) is appended to f in T (vj). If f ∈ C(ej , ek),
then the forest appended to f in T (v) is the union of the forests appended to f
in T (vj) and T (vk), respectively.

Augmenting the Edge-Connectivity of a Spider Tree 165

A natural way for updating the weight of f , is charging f with the weight
of the solution computed for the appended forest w.r.t the considered tree (see
Figure 2). So, for any v ∈ Vt, we need to find a cover for T (v, i), with 0 ≤ i ≤
t, denoted as Sol(v, i). Observe that T (v) = T (v, 0). To save memory space,
Sol(v, i) will not be computed explicitly, but we associate with T (v, i) a set
X(v, i) ⊆ Sol(v, i), which will allow to rebuild Sol(v, i) by simply merging it
with the solutions computed at previous steps.

vk

ek
ej

vj

f

T (vk, 1)T (vj, 1)

v

Fig. 3. An example of appended forest. Bold and dashed edges represent tree-edges
while dashed triangle represent subtrees. Left and right shaded area are the forests
T (vj , 1), T (vk, 1) appended to f in T (vj), T (vk), respectively. The graph induced by
T (vj , 1) ∪ T (vk, 1) is the forest appended to f in T (v)

To simplify notations, if f ∈ C(ej), then by Sol(f, ej) we denote the com-
puted solution for the forest appended to f in T (vj) (if this forest is the empty
graph, then we assume that the weight of its cover is 0). If f ∈ C(ej , ek), then
by Sol(f) = Sol(f, ej) ∪ Sol(f, ek) we denote the computed solution for the
forest appended to f in T (v). The updating rule is formally defined as follows:

Definition 2. Let v ∈ Vt, and let f ∈ C(ej), with 1 ≤ j < δT (v). Let

φ(ej , f) := w(f) + w(Sol(f, ej)). (1)

Then, a selected edge in C(ej) is an edge ε(ej) such that

φ(ej , ε(ej)) = min
f∈C(ej)

{
φ(ej , f)

}
. (2)

Definition 3. Let v ∈ Vt, and let f ∈ C(ej , ek), with 1 ≤ j < k < δT (v). Let

ϕ(f) := w(f) + w(Sol(f)). (3)

Then, a selected edge in C(ej , ek) is an edge ε(ej , ek) such that

ϕ(ε(ej , ek)) = min
f∈C(ej ,ek)

{
ϕ(f)

}
. (4)

Note that for each non-tree edge f ∈ C(ej , ek) = C(ej)∩C(ek), we compute
φ(ej , f), φ(ek, f), ϕ(f). This is a useful trick that allows us to see f as a cover
for either of ej , ek, or both edges.

166 D. Bilò and G. Proietti

Building the Pseudographs. Now we can apply the same transformation
described in Section 3.2. Remember that we have to compute a cover for T (v, i),
with 0 ≤ i ≤ t. Moreover, observe that if i > 0, then T (v, i) does not contain
the edge e1. In this case, a cover for T (v1, i− 1) can be used.

So, for each 0 ≤ i ≤ t, we build a weighted pseudograph Pi = (Vi, Ei),
such that Vi = {ν1, ν2, . . . , νδT (v)−1} and Ei = {(νj , νj)|1 ≤ j < δT (v)} ∪
{(νj , νk)|C(ej , ek) �= ∅, j �= k}. With each edge in Ei, we associate a real weight
in the following way:

ωi(f) :=

⎧⎪⎨⎪⎩
ϕ(ε(ej , ek)) if f = (νj , νk) ∈ Ei, j �= k;
w(Sol(v1, i− 1)) if f = (ν1, ν1) and i > 0;
φ(ej , ε(ej)) if f = (νj , νj) ∈ Ei.

Let Ci be the solution of the minimum-cost edge cover problem (MCECP)
defined over the weighted pseudograph Pi. The setX(v, i) is given by the selected
edges represented by the edges in Ci. More formally, X(v, i) = A(v, i) ∪ B(v, i)
is given by:

A(v, i) =
⋃

(νj ,νk)∈Ci

j �=k

{ε(ej , ek)}; B(v, i) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⋃
(νj ,νj)∈Ci

{ε(ej)} if i = 0;

⋃
(νj ,νj)∈Ci

j �=1

{ε(ej)} if i �= 0.

The set Sol(v, i) can be obtained from X(v, i) in the following way:

Sol(v, i) = X(v, i) ∪
⋃

f∈A(v,i)

Sol(f) ∪
⋃

(νj ,νj)∈Ci

Sol(ε(ej), ej).

It is easy to see that ω(Ci) = w(Sol(v, i)).

3.4 Correctness of the Algorithm

At the end of the execution, the algorithm clearly returns a covering for T , so the
set Sol(r, 0) is a 2-edge-connectivity augmentation of T . Then, we must prove
that Sol(r, 0) is optimal.

Theorem 1. Sol(r, 0) is an optimal 2-edge-connectivity augmentation for T .

Proof. The proof proceeds by induction on the height of T . For t = 1, 2, . . . , h,
we will show that ∀v ∈ Vt, Sol(v, i) is an optimal covering for T (v, i), 0 ≤ i ≤ t.

Basic step (t = 1). T (v, i) is a tree of height at most 1. Moreover, ∀f ∈ C(ej),
1 ≤ j < δT (v), we have that φ(ej , f) = w(f), and ∀f ∈ C(ej , ek), 1 ≤ j < k <
δT (v), we have ϕ(f) = w(f). Moreover, if i > 0, then w(Sol(v1, i − 1)) = 0
since T (v1) is a tree made by a single vertex. Then, the claim follows from the
correctness of the minimum-cost edge cover algorithm over pseudographs.

Augmenting the Edge-Connectivity of a Spider Tree 167

Inductive step (t > 1). Suppose that ∀v ∈ Vs, with 1 ≤ s < t ≤ h, Sol(v, i),
0 ≤ i ≤ s, is an optimal solution for T (v, i). This explains why at edges (ν1, ν1)
in Pj , 1 ≤ j ≤ t, we assign the weight of the computed cover for T (v1, i − 1)
(by induction this weight is optimal!). Now consider a node v ∈ Vt. We want
to prove that, it suffices to choose only one non-tree edge from each C(ej , ek),
1 ≤ j < k < δT (v). For the sake of contradiction, suppose this assertion is not
true. Then, ∃f1 = (u1, w1), f2 = (u2, w2) ∈ C(ej , ek) such that:

ϕ(f1), ϕ(f2) > w(f1) + w(f2) + min{w(Sol(f1, ej)), w(Sol(f2, ej))}+
+ min{w(Sol(f1, ek)), w(Sol(f2, ek))}.

(5)

From Corollary 1, we can consider the following cases:

1. u1 ∈ Anc(u2) ∧ w1 ∈ Anc(w2) (the case u2 ∈ Anc(u1) ∧ w2 ∈ Anc(w1) is
symmetric).
The forest appended to f2 in T (v) is a subgraph of the forest appended to
f1 in T (v). From (5) and by induction it follows that

w(f2) + w(Sol(f2)) = ϕ(f2) > w(f1) + w(f2) + w(Sol(f2))

from which we derive that w(f1) < 0. As w(f1) > 0, we get a contradiction.
2. u1 ∈ Anc(u2) ∧ w2 ∈ Anc(w1) (the case u2 ∈ Anc(u1) ∧ w1 ∈ Anc(w2) is

symmetric).
The forest appended to f2 in T (vj) is a subgraph of that appended to f1
in T (vj), while the forest appended to f1 in T (vk) is a subgraph of that
appended to f2 in T (vk). Since by induction w(Sol(f2, ek)) ≤ w(f1) +
w(Sol(f1, ek)), from (5) it follows that

ϕ(f2) > w(f1) + w(f2) + w(Sol(f2, ej)) + w(Sol(f1, ek))
≥ w(f2) + w(Sol(f2)) = ϕ(f2).

We have then obtained a contradiction.

Analogously we can prove that it suffices to choose only one edge from each
C(ej), with 1 ≤ j < δT (v). Now, since every edge cover for Pi can be transformed
into a cover for T (v, i) with the same overall weight (and viceversa), the claim
follows.
�

3.5 Analysis of the Algorithm

The following lemma helps us to improve the performance of the algorithm.

Lemma 3. Let h be the height of T . For any fixed 1 ≤ t ≤ h and for any fixed
v ∈ Vt, let P0,P1, . . . ,Pt be the pseudographs built as described in Section 3.3.
Let Ci be an MCEC for Pi, with 1 ≤ i ≤ t. Then, the sets C0, C1, . . . , Ct can be
computed by solving at most two instances of MCECP as large as P0.

Proof. Some important properties of the built pseudographs are the following:

168 D. Bilò and G. Proietti

(i) Vi = Vj and Ei = Ej , with 0 ≤ i < j ≤ t;
(ii) ∀(νj , νk) ∈ Ei, with 0 ≤ i ≤ t, ωi(νj , νj), ωi(νk, νk) ≤ ωi(νj , νk);
(iii) ωj(ν1, ν1) ≤ ωi(ν1, ν1), with 0 ≤ i < j ≤ t (it follows from the correctness of

the algorithm);
(iv) For every edge f �= (ν1, ν1), ωi(f) = ωj(f), with 0 ≤ i < j ≤ t, (in this case

we will omit the index of ω).

Let P′ be the weighted pseudograph obtained from a copy of P0 by removing
vertex ν1 and all its incident edges. Let C′ be an optimal edge cover for P′. We
can consider the following cases:

1. (ν1, ν1) ∈ C0. Since C0 = C′ ∪ {(ν1, ν1)}, then from property (iii) and (iv)
it trivially follows that C0 is an MCEC for P0,P1, . . . ,Pt, and the claim is
true.

2. (ν1, νi) ∈ C0, for some 1 < i < δT (v). Note that if (ν1, νi), (ν1, νj) ∈ C0
(i �= j), then from property (ii) we have that C0 ∪ (νj , νj) minus (ν1, νj) is
an optimal edge cover for P0. Let C∗ an optimal edge cover for P0 with only
one edge (say (ν1, νi)) incident to ν1. Let P′′ be the weighted pseudograph
obtained from a copy of P0 by deleting vertices ν1, νi and all their incident
edges. Let C′′ be an optimal edge cover for P′′. Now, we have that

ω(C∗) = ω(ν1, νi) + ω(C′′) ≤ ω0(ν1, ν1) + ω(C′).

To decrease the cost of the edge cover, we must necessarily have that ω(ν1, νi)
+ω(C′′) > ωj(ν1, ν1)+ω(C′), for some 0 < j ≤ t. Since ωj(ν1, ν1) ≤ ω0(ν1, ν1)
implies ωj(ν1, ν1) + s = ω0(ν1, ν1), with s ≥ 0, and since ω(C′′) ≤ ω(C′)
implies ω(C′′) + s′ = ω(C′), with s′ ≥ 0, it follows that

ωj(ν1, ν1) + ω(C′) + s′ = ω0(ν1, ν1)− s+ ω(C′) + s′

< ω(ν1, νi) + ω(C′′) + s′ = ω(ν1, νi) + ω(C′),

from which it follows that

ω(ν1, νi)− ω0(ν1, ν1) > s′ − s. (6)

Thus, by computing C0, C∗ and C′, we can compute ω(C′′) = ω(C∗)−ω(ν1, νj)
and so we can compute s′. Since from (6) we can compute s, we can find the
minimum 0 < j∗ ≤ t such that ωj∗(ν1, ν1) + s ≤ ω0(ν1, ν1). Therefore, we
have that C0 is an MCEC for P0,P1, . . . ,Pj∗−1, while Cj∗ = {(ν1, ν1)} ∪ C′

is an MCEC for Pj∗ ,Pj∗+1, . . . ,Pt. The claim follows.
�

Now we can prove the following:

Theorem 2. Let G = (V,E) be a 2-edge-connected multigraph with n vertices,
m edges and with a real weight on the edges. Let T be a rooted tree of height
h which spans G and satisfies Property 1. Let δ be the maximum degree of T .
Then, Aug2(T,G) can be computed in O(n(m+ h+ δ3)) time.

Augmenting the Edge-Connectivity of a Spider Tree 169

Proof. We can use the algorithm described in Section 3.3 to compute Aug2(T,G).
The correctness of the algorithm derives from Theorem 1.

To establish the time complexity of the algorithm, first note that an MCECP
over a weighted pseudograph with n vertices andm edges can be solved optimally
(see [13]) in O(n(m + n lg n)) time and space [6]. Now observe that, ∀v ∈ V ,
the algorithm selects the edges ε(ej), for every 1 ≤ j < δT (v), and the edges
ε(ej , ek), for every 1 ≤ j < k < δT (v). This task can be accomplished in O(m)
time and space. Let h′ be the height of T (v). The algorithm creates at most
h′ weighted pseudographs with at most δT (v) − 1 = O(δ) vertices. Since these
pseudographs have no multiple edges, it follows that the number of edges is
O(δ2). For each pseudograph, the algorithm computes a minimum-cost edge
cover. Using Lemma 3, this task can be accomplished in O(h′ + δ3) = O(h+ δ3).
Therefore, the total running time is O(n(m+ h+ δ3)).
�

4 Augmenting a Spider Tree

The results of the previous sections have an interesting application for solving
the 2ECAP of a spider tree, i.e., a tree with at most one vertex, called center,
with degree greater than 2.

The problem of finding a spanning spider of a given graph G, which is NP-
hard, arises from a problem in optical networks [9]. The wavelength division
multiplexing technology of optical communication, supports the propagation of
multiple laser beams through a single optical fiber, as long as each beam has a
different wavelength. A new technology in optical networks allows a switch to
replicate the optical signal by splitting light, thus allowing to extend the light-
path concept as to incorporate optical multicasting capability. Multicast is the
ability to transmit information from a single source node to multiple destina-
tion nodes, and many bandwidth-intensive applications, such as worldwide web
browsing, video conferencing, video on demand services, etc., require multicast-
ing for efficiency purposes.

The switches correspond then to nodes of degree greater than two (called
branch vertices). However, typical optical networks will have a limited number
of these sophisticate switches, and one has to settle them in such a way that all
possible multicasts can be performed. Thus, we are led to the problem of finding
spanning trees with as few branch vertices as possible. A spider tree is exactly
a spanning tree with a minimum number of branch vertices.

But, as observed in the introduction, a spider tree structure is not resilient
to edge failures. Hence, it makes sense to consider the problem of increasing its
edge-connectivity to 2, by adding a minimum-cost (with respect to some given
weight function) set of edges, chosen among a set of possible candidates. This
corresponds to solve a 2ECAP for a spider tree T rooted at the center. We can
prove the following:

Theorem 3. Let G = (V,E) be a 2-edge-connected multigraph with n vertices,
m edges and with real weights on the edges. Let T be a spanning spider tree
of G rooted at the center with degree δ, and let m′ = O(δ2) be the number of

170 D. Bilò and G. Proietti

edges in the instance of the MCECP when considering the center r of T . Then,
Aug2(T,G) can be computed in O(m ·α(n, n)+δ(m′+δ log δ)) time, where α(·, ·)
is the functional inverse of the Ackermann’s function.

Proof. Trivially, T satisfies Property 1. Thus, we can optimally solve the problem
in polynomial time (see Theorem 2).

About the time complexity, note that every possible appended forest in G, is
made up of subtrees of T , so it suffices to compute only the value T (v, 0) = T (v),
for each v ∈ V . Let us consider the root r. Subtrees T (v1), T (v2), . . . , T (vb),
are simply disjoint paths. For path of n vertices, one can find an optimal 2-
edge-connectivity augmentation in O(m · α(m,n)) time and space [8], where
m is the number of additional edges. Let n1, n2, . . . , nδ denote the number of
vertices of T (v1), T (v2), . . . , T (vδ), respectively. Let m1,m2, . . . ,mδ denote the
number of edges having an endvertex in T (v1), T (v2), . . . , T (vδ), respectively. For
each tree T (vi), with 1 ≤ i ≤ δ, we find an optimal cover using the algorithm
described in [8]. Since

∑b
i=1 ni = n − 1 and

∑b
i=1mi ≤ 2m, it follows that∑b

i=1O(mi · α(mi, ni)) = O(m · α(n, n)). Finally, we consider the vertex r, and
we use our algorithm. First, we update the non-tree edges and select a subset of
them (let m′ be the cardinality of such set), and then we find an MCEC over a
pseudograph with δ vertices and m′ edges in O(δ(m′ + δ log δ)) time [6].
�

References

1. H.-J. Böchenhauer, D. Bongartz, J. Hromkovič, R. Klasing, G. Proietti, S. Seib-
ert and W. Unger, On the hardness of constructing minimal 2-connected span-
ning subgraphs in complete graphs with sharpened triangle inequality, Theoret-
ical Computer Science, to appear. A preliminary version was presented at 22nd
Conf. on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS’02), Vol. 2556 of Lecture Notes in Computer Science, Springer-Verlag,
59–70.

2. M. Conforti, A. Galluccio, and G. Proietti, Augmentation problems and network
matrices, 30th International Workshop on Graph-Theoretic Concepts in Computer
Science (WG’04). Proceedings will appear on Lecture Notes in Computer Science,
Springer-Verlag.

3. K.P. Eswaran and R.E. Tarjan, Augmentation problems, SIAM Journal on Com-
puting, 5(4) (1976), 653–665.

4. G. Even, J. Feldman, G. Kortsarz, and Z. Nutov, A 3/2-approximation algorithm
for augmenting the edge-connectivity of a graph from 1 to 2 using a subset of a
given edge set, 4th Int. Workshop on Approximation Algorithms For Combinatorial
Optimization (APPROX 2001), Vol. 2129 of Lecture Notes in Computer Science,
Springer-Verlag, 90–101.

5. G.N. Frederickson and J. JàJà, Approximation algorithms for several graph aug-
mentation problems, SIAM Journal on Computing, 10(2) (1981), 270–283.

6. H.N. Gabow, Data strucutures for weighted matching and nearest common ances-
tors with linking, 1st Symp. on Discrete Algorithms (SODA 1990), 434–443.

7. H.N. Gabow, Application of a poset representation to edge-connectivity and graph
rigidity, 32nd IEEE Symp. on Found. of Computer Science (FOCS’91), 812–821.

Augmenting the Edge-Connectivity of a Spider Tree 171

8. A. Galluccio and G. Proietti, Polynomial time algorithms for 2-edge-connectivity
augmentation problems, Algorithmica, 36(4) (2003), 361–374.

9. L. Gargano, P. Hell, L. Stacho, and U. Vaccaro, Spanning trees with bounded num-
ber of branch vertices, 29th Int. Coll. on Automata, Languages and Programming
(ICALP ’02), Vol. 2380 of Lecture Notes in Computer Science, Spinger-Verlag,
355–365.

10. S. Khuller and R. Thurimella, Approximation algorithms for graph augmentation,
Journal of Algorithms, 14(2) (1993), 214–225.

11. H. Nagamochi, An approximation for finding a smallest 2-edge-connected subgraph
containing a specified spanning tree, Discrete Applied Mathematics, 126(1) (2003)
83–113.

12. A. Nakamura and T. Watanabe, Edge-connectivity augmentation problems, Jour-
nal of Computer and System Science, 35(1) (1987), 96–144

13. C.H. Papadimitriou and K. Steiglitz, Combinatorial optimization: algorithms and
complexity, Prentice-Hall, New Jersey, 1982.

On Nash Equilibria for Multicast Transmissions
in Ad-Hoc Wireless Networks

Vittorio Bilò, Michele Flammini, Giovanna Melideo, and Luca Moscardelli

Dipartimento di Informatica,
Università di L’Aquila,

Via Vetoio, Coppito 67100 L’Aquila
{bilo, flammini, melideo, moscardelli}@di.univaq.it

Abstract. We study a multicast game in ad-hoc wireless networks in
which a source sends the same message or service to a set of receiving
stations via multi-hop communications and the overall transmission cost
is divided among the receivers according to given cost sharing methods.
Receivers enjoy a benefit equal to the difference between the utility they
get from the transmission and the shared cost they are asked to pay.
Assuming a selfish and rational behavior, each user is willing to receive
the transmission if and only if his shared cost does not exceed his utility.
Moreover, given the strategies of the other users, he wants to select a
strategy of minimum shared cost. A Nash equilibrium is a solution in
which no user can increase his benefit by seceding in favor of a differ-
ent strategy. We consider the following reasonable cost sharing methods:
the overall transmission cost is equally shared among all the receivers
(egalitarian), the cost of each intermediate station is divided among its
downstream receivers equally (semi-egalitarian) or proportionally to the
transmission powers they require to reach their next-hop stations (pro-
portional), and finally each downstream user at an intermediate station
equally shares only his required next-hop power among all the receivers
asking at least such a level of power (Shapley value). We prove that,
while the first three cost sharing methods in general do not admit a Nash
equilibrium, the Shapley value yields games always converging to a Nash
equilibrium. Moreover, we provide matching upper and lower bounds for
the price of anarchy of the Shapley game with respect to two different
global cost functions, that is the overall cost of the power assignment,
that coincides with the sum of all the shared costs, and the maximum
shared cost paid by the receivers. Finally, in both cases we show that
finding the best Nash equilibrium is computationally intractable, that is
NP-hard.

1 Introduction

Wireless networks have received significant attention during recent years. In par-
ticular, they emerged due to their potential applications in emergency disaster
relief, battlefield, etc [19, 24]. Unlike traditional wired networks or cellular net-
works, they do not require the installation of any wired backbone infrastructure.

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 172–183, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

On Nash Equilibria for Multicast Transmissions 173

Any station of the network has a fixed position and is equipped with an omni-
directional antenna which is responsible for sending and receiving signals. Com-
munications occur by assigning to each station a transmission power. In order
to minimize the overall energy consumption, communications between stations
may require multi-hop transmissions, that is relaying on intermediate stations.
Thus, a naturally arising issue is that of supporting communication patterns that
are typical of traditional networks with minimum cost (see [3] for a survey). We
are mainly interested in one-to-many communications or multicasting, in which
the message or service of a given source station s must be forwarded to users
residing at a subset of receiving stations.

Multicasting data to a large population is likely to incur significant costs that
is natural to be shared in some fashion among receivers. We assume that each
receiving station t has a certain utility ut representing the benefit he gets from
receiving the service from the source. Moreover, receivers act selfishly and thus
they are only interested in maximizing their own benefit and will agree to pay
for the transmission if and only if they are charged a cost not exceeding the
benefit they get from it.

There is a vast literature on implementation paradigms in which cost-sharing
mechanisms are designed to achieve the socially desirable outcomes in spite
of users selfishness. Namely, a cost sharing mechanism determines which users
receive the service and at what price. Many of these approaches assume that the
network does not a priori know utilities ut, because they are considered private
properties of receivers, and that, as receivers are selfish, they may misreport
utilities in order to maximize their benefit. In such a case the network can
discourage such deception by using strategy-proof cost sharing mechanisms, that
is mechanisms in which the optimal (dominant) strategy for each receiver is to
truthfully reveal his utility no matter how the other receivers behave, and group
strategy-proof mechanisms, where this holds for coalitions as well.

The multicast cost sharing problem has been largely investigated in standard
networks in [8, 9, 10, 13], where the cost shared among the receivers is the total
cost of the links of a multicast subtree connecting the source to all the receivers
and the cost of a network link is equally shared among its down-streaming users.
Recently, the problem has been also considered in wireless networks [1, 18], where
the cost shared among the receivers is the overall power consumption.

In this paper we focus on the Nash implementation approach in a context
where receivers’ utilities ut are considered properties of the wireless network
and, as a consequence, are a priori well-known. Unlike strategy-proofness above,
where a mechanism leads to an equilibrium in which no receiver can improve its
utility by deviating no matter how the other receivers behave, Nash equilibria
assume that selfish receivers reach a self-consistent equilibrium, called the Nash
equilibrium, in which no one can improve its own benefit, given the behavior of
the others. Indeed, each user is interested in receiving from the source with a
minimum shared cost, given the choices of the other users. For such reasons, the
evolution of the interactions among the receivers’ choices gives rise to a multi-
player game in which each player (station) t has a set of strategies equal to the

174 V. Bilò et al.

set of all the directed (s, t)-paths in the network and a payoff function equal
to the difference between his utility and the shared cost according to its chosen
path and the ones of the other receivers. Called a path system the set of the
chosen (s, t)-paths for every receiving station t, a set of feasible solutions N for
a multi-player game G is the set of its Nash equilibria [17], that is the set of
the path systems such that no player has an incentive to secede in favor of a
different solution.

The main new algorithmic issues coming from this model are the following:

1. Proving the non-emptiness of N ; 1

2. Proving the convergence to a Nash equilibrium from any initial configuration
of the players’ strategies and estimating the convergence time;

3. Finding Nash equilibria having particular properties (for instance, the one
minimizing the global cost);

4. Measuring the price of anarchy [14], that is the ratio between the worst Nash
equilibrium and the social optimum, that is the optimal solution that could
be achieved if all players cooperated.

Several games [6, 7, 11, 16, 20, 23] have been shown to possess pure Nash equi-
libria or to converge to a pure Nash equilibrium independently from their starting
state. An interesting work estimating the convergence time to Nash equilibria
is [5] and in [4] finding Nash equilibria having particular properties has been
shown to be NP-complete. Finally, considerable research effort has been also
devoted to analyzing the price of anarchy in different settings [2, 15, 21].

In this paper we consider the games induced by four reasonable cost sharing
methods M which distribute the cost of the transmission powers of the inter-
mediate stations among the receivers as follows:

1. in an egalitarian way, that is by equally distributing the overall cost among
receivers;

2. in a semi-egalitarian way, that is by equally distributing the transmission
cost of each station t among its down-streaming receivers;

3. in a proportional way, that is by distributing the transmission cost of each
station t among its down-streaming receivers proportionally to the transmis-
sion powers they require to reach their next-hop stations;

4. by applying the definition of the Shapley Value [22], depending on the dif-
ferent levels of power necessary for exchanging messages between t and the
next-hop stations (see Section 2); more precisely, the cost up to a given
transmission power is equally shared among all the receivers requiring at
least such a level of power for transmitting to their next-hop stations.

We prove that, while the first three cost sharing methods in general do not
admit a Nash equilibrium, the Shapley value yields games always converging
to a Nash equilibrium starting from any initial configuration. Then, we provide

1 Indeed, Nash proved that a randomized equilibrium always exists, while we are
interested in pure Nash equilibria.

On Nash Equilibria for Multicast Transmissions 175

matching upper and lower bounds for the price of anarchy of the Shapley game
with respect to two different global cost functions, that is the overall cost of
the power assignment, which coincides with the sum of all the shared costs, and
the maximum shared cost paid by the receivers. Unfortunately, in both cases
the price of anarchy is the worst possible one, that is equal to the number of
receivers. Finally, in both cases we show that finding the best Nash equilibria is
computationally intractable, that is NP-hard.

The paper is organized as follows. In the next section we present the basic
definitions and notation. In Section 3 we prove the results on the non existence of
Nash equilibria for the egalitarian, semi-egalitarian and proportional cost sharing
methods and the convergence of the Shapley value one. In Section 4 we bound
the price of anarchy of the Shapley game according to the two above mentioned
global functions and in Section 5 we show the intractability of determining the
best Nash equilibrium. Finally, in Section 6 we give some conclusive remarks
and discuss some open questions.

2 Definitions and Notation

A wireless network is usually modelled as a complete graph G(S, c) in which
S = {1, . . . , n} is a set of radio stations and c : S×S �→ IR+ is a symmetric cost
function associating to each pair of stations t and t′ in S a transmission cost,
that is the power necessary for exchanging messages between t and t′. Clearly,
c(t, t) = 0 for every station t ∈ S. Since each user potentially interested in
receiving the transmission resides in some station t, from now on we identify
each user with a corresponding receiving station.

Given a distinguished source station s ∈ S, for any station t ∈ S, let Pt be
the set of all the possible directed (s, t)-paths in G and pt be any (s, t)-path in
Pt.

A power assignment ω : S �→ IR+ to the stations induces a directed weighted
graph Gω = (S,A), called the transmission graph, such that an arc (t, t′) belongs
to A if and only if the transmission power of t is at least equal to the transmission
cost from t to t′, i.e., ω(t) ≥ c(t, t′). The cost of a power assignment ω is the
overall power consumption yielded by ω, i.e.,

cost(ω) =
∑
t∈S

ω(t).

Given a set P of directed paths in G from the source s, also called a path
system, let ωP be the power assignment of minimal cost such that GωP contains
all the paths in P. Namely, denoted as A(P) the set of the arcs belonging to at
least a path in P, ωP(t) = max(t,t′)∈A(P) c(t, t′) for every t ∈ S. For the sake of
simplicity we denote ωP as ωp when P = {p}.

Once a path system P has been fixed for a subset of receivers R, with a
little abuse of notation we often consider each pt ∈ P as the set of the stations
met along pt, thus writing t′ ∈ pt if t′ is in the directed path of t. We define as
l(P, t′) = |{t ∈ R | t′ ∈ pt}| the number of downstream receivers of station t′

176 V. Bilò et al.

and as l(P, t′, �) = |{t ∈ R | t′ ∈ pt∧ωpt
(t′) ≥ �}| the number of such receivers

requiring a transmission of power greater or equal to � at t′.
Let P (t) = {� ∈ IR+ | ∃t′ ∈ S : c(t, t′) = �} be the set of the possible

power assignments for station t, Pi(t) be the i-th smallest element of P (t) (that
is the i-th one in increasing order), and Li(t) = Pi(t)−Pi−1(t) (with P0(t) = 0)
for 2 ≤ i ≤ |P (t)|, be the marginal power assignment needed for station t to
increase its transmission power from Pi−1(t) to Pi(t).

A cost-sharing method M is a function that, given any subset of receivers R
with an associated path system P, defines the amount of power consumption or
cost M(P, t) attributed to each receiver t ∈ R.

Definition 1. A cost sharing method is a function M which, given a subset of
receivers R with an associated path system P, distributes the cost of the power
assignment ωP in such a way that, given a station t ∈ S, M(P, t) = 0 if t �∈ R
and

∑
t∈RM(P, t) = cost(ωP).

We will consider four fundamental cost sharing methods M1, M2, M3 and
M4 defined as follows:

• The cost charged to each receiver t ∈ R according to M1 is M1(P, t) =
cost(ωP)

|R| , that is the overall cost of the power assignment is equally shared
among all the receivers.

• The cost charged to each receiver t ∈ R according to M2 is M2(P, t) =∑
t′∈pt

ωP(t′)
l(P,t′) , that is the cost of a given t′ ∈ S is equally shared among all

the receivers using t′ as intermediate station.
• The cost charged to each receiver t ∈ R according to M3 is M3(P, t) =∑

t′∈pt
ωP(t′) ωpt (t′)∑

t′′:t′∈p
t′′

ωp
t′′ (t′)

, that is the cost of a given t′ ∈ S is shared

among all the receivers using t′ as intermediate station proportionally to
power they require.

• The cost charged to each receiver t ∈ R according to M4 is M4(P, t) =∑
t′∈pt

∑
i:Pi(t′)≤ωpt (t′)

Li(t′)
l(P,t′,Pi(t′)) , that is the marginal power Li(t′) is

equally shared among all the receivers using t′ as intermediate station and
having next-hop transmission cost at least equal to Pi(t′).

Given a utility profile u = 〈u1, . . . , u|S|−1〉, the individual benefit of any sta-
tion t ∈ S \ {s} is bt(u,P,M) = ut −M(P, t) if t ∈ R, otherwise (t does not
receive service) M(P, t) = 0 and its benefit is zero.

The multicast transmission game G = (G, u,M) is a (|S| − 1)-player game,
where each player t ∈ S \ {s} has:

• a set of strategies Pt ∪ {⊥} where ⊥ denotes the “empty” path, meaning
that t is not interested in receiving the transmission (i.e., pt = ⊥ iff t �∈ R),
and

• a payoff function bt(u,P,M) = ut−M(P, t) with P =
⋃

t∈S\{s}(Pt ∪ {⊥}).

Such a game requires the selection of a (s, t)-path pt ∈ Pt ∪{⊥} for each station
t ∈ S \ {s} and, given the set of receivers R = {t | t ∈ S \ {s} ∧ pt �= ⊥}

On Nash Equilibria for Multicast Transmissions 177

and the path system P = {pt|t ∈ R}, the adoption of the corresponding power
assignment ωP .

A Nash equilibrium for G is a path system P such that, for a given set of
receivers R:

(a) ∀t ∈ R, bt(u,P,M) ≥ 0,
(b) ∀t ∈ R and path p′

t ∈ Pt inducing a new path system P ′ = P \ {pt} ∪ {p′
t},

it holds M(P, t) ≤M(P ′, t),
(c) ∀t �∈ R and pt ∈ Pt, M(P ∪ {pt}, t) ≥ ut.

Consider the directed graph having a node for any possible path system P
and an arc (P,P ′) whenever P and P ′ differ only for the choice of one receiver
t and bt(u,P,M) > bt(u,P ′,M). If such a graph is acyclic, then every possible
evolution of the game, also called Nash dynamics, converges, since a Nash equi-
librium is always reached after a finite number of steps from any initial power
assignment.

Denoting withN the set of all the possible Nash equilibria for the game G, the
price of anarchy ρ(G, g) with respect to a given global function g is defined as the
worst case ratio among the Nash versus optimal performance, that is ρ(G, g) =
maxP∈N

g(P)
g(P∗) when g has to be minimized and ρ(G, g) = minP∈N

g(P)
g(P∗) in case

of maximization, where P∗ is an optimal path system with respect to g.

3 Existence of Nash Equilibria

In this section we first show that there are instances for which the three games
G = (G, u,M1), G = (G, u,M2) and G = (G, u,M3) do not admit any Nash
equilibrium. Due to lack of space we omit the proof.

Theorem 1. The three multicast transmissions games G = (G, u,M1), G =
(G, u,M2) and G = (G, u,M3) may not possess a Nash equilibrium.

We now prove that the multicast transmissions game yielded by the cost
sharing method M4 defined in the previous section is always guaranteed to
converge to a Nash equilibrium starting from any initial power assignment for
the stations in S.

Theorem 2. The game G = (G, u,M4) always converges to a Nash equilibrium,
for any wireless network G(S, c) and utility profile u = 〈u1, . . . , u|S|−1〉.

Proof. We prove the claim by showing that the Nash dynamics is acyclic. Assume
in fact by contradiction that there exists a cycle, that is a sequence of path
systems < Pi > with a corresponding sequence of power assignments < ωPi >,
for which there are two indexes j and k with j < k such that Pj = Pk and thus
ωPj = ωPk .

According to the cost sharing method

M4(P, t) =
∑
t′∈pt

∑
q:Pq(t′)≤ωpt (t′)

Lq(t′)
l(P, t′, Pq(t′))

,

178 V. Bilò et al.

the choice performed at the generic step i by user t defines an inequality in(i)
which can be one of the following three possible types:

(1) ut >
∑

t′∈pi+1
t

∑
q:Pq(t′)≤ωi+1

pt
(t′)

Lq(t′)
l(P,t′,Pq(t′))

(2)
∑

t′∈pi
t

∑
q:Pq(t′)≤ωi

pt
(t′)

Lq(t′)
l(P,t′,Pq(t′)) >

∑
t′∈pi+1

t

∑
q:Pq(t′)≤ωi+1

pt
(t′)

Lq(t′)
l(P,t′,Pq(t′))

(3)
∑

t′∈pi
t

∑
q:Pq(t′)≤ωi

pt
(t′)

Lq(t′)
l(P,t′,Pq(t′)) > ut.

The first inequality models the case in which user t, who was not receiving
the transmission, detects a path pi+1

t ∈ Pt yielding a new path system Pi+1 =
Pi∪{pi+1

t } such thatM4(Pi+1, t) < ut. The second inequality models the case in
which user t decides to change his transmission path pi

t ∈ Pi in favor of a cheaper
one pi+1

t ∈ Pt, thus yielding a new path system Pi+1 = Pi \ {pi
t} ∪ {pi+1

t } such
that M4(Pi+1, t) <M4(Pi, t). Finally, the third inequality models the case in
which user t decides to secede from the solution since the cost of his transmission
path pi

t ∈ Pi has risen up to exceed his utility ut, thus yielding a new path system
Pi+1 = Pi \ {pi

t} such that M4(Pi+1, t) = 0.
The k−j path choices performed from the path system Pj to the path system

Pk thus define a consistent system of k − j inequalities. The effects of a generic
choice of user t at step i on the quantities l(Pi+1, t′, �) may be of the following
types:

• if t′ ∈ pi
t ∩ pi+1

t then l(Pi+1, t′, �) = l(Pi, t′, �)− 1 for any � ∈ P (t′) such
that ωpi+1

t
(t′) < � ≤ ωpi

t
(t′) and l(Pi+1, t′, �) = l(Pi, t′, �) + 1 for any

� ∈ P (t′) such that ωpi
t
(t′) < � ≤ ωpi+1

t
(t′);

• if t′ ∈ pi
t \ pi+1

t then l(Pi+1, t′, �) = l(Pi, t′, �) − 1 for any � ∈ P (t′) such
that � ≤ ωpi

t
(t′);

• if t ∈ pi+1
t \ pi

t then l(Pi+1, t′, �) = l(Pi, t′, �) + 1 for any � ∈ P (t′) such
that � ≤ ωpi+1

t
(t′).

Since Pj = Pk, we must have that for any t ∈ S and � ∈ P (t), it holds
l(Pj , t,�) = l(Pk, t,�). If we plot the curve representing the evolution of the
quantities l(Pi, t,�) for any� ∈ P (t) for j ≤ i ≤ k and draw an up-going (down-
going) arrow at step i when l(Pi, t,�) increases (decreases) at step i as shown in
Figure 1, we can easily see that for each up-going arrow from the value x to the
value x+ 1 there is always a down-going one from the value x+ 1 to the value x
and viceversa. An up-going arrow at step i from the value x to the value x+ 1
means also that the marginal transmitting power Lq(t) appears in the righthand
side of the summary of in(i) with denominator equal to l(Pi, t, Pq(t)) = x + 1,
while a down-going arrow at step i from the value x + 1 to the value x means
also that the marginal transmitting power Lq(t) appears in the lefthand side of
the summary of in(i) with denominator equal to l(Pi, t, Pq(t)) = x+ 1. Finally,
the absence of arrows at step i (l(Pi, t, Pq(t)) stays the same) means that either
t appears in both the lefthand and the righthand side of in(i) with the same
denominator or t does not appear in in(i). This proves that for any station t and
� ∈ P (t), the number of marginal power assignments Lp(t) with a denominator

On Nash Equilibria for Multicast Transmissions 179

equal to x appearing in the lefthand side of all the inequalities defining the
system is exactly equal to the number of marginal power assignments Lp(t) with
denominator equal to x appearing in the righthand side of all the inequalities
defining the system. Moreover, Pj = Pk implies that for any user t the same
number of inequalities of type 1 and 3 must occur in the system, thus the same
argument applies also to the values ut. Hence, by summing up all the inequalities
in(i) for j ≤ i ≤ k we obtain a strict inequality whose lefthand and the righthand
sides are equal which is clearly unsatisfiable: a contradiction.
�

Fig. 1. Evolution of the quantities l(Pi, t,
) in a cycle

Since our results show that the only converging game is yielded by the cost
sharing method M4, in the sequel of the paper we will restrict our attention
only on the multicast transmission game G = (G, u,M4).

The following theorem characterizes the structure of any path system at Nash
equilibrium for the game G = (G, u,M4).

Theorem 3. For any wireless network G(S, c) and utility profile u =
〈u1, . . . , u|S|−1〉, any path system P at Nash equilibrium for the game G =
(G, u,M4) is a tree.

4 Bounding the Price of Anarchy

In this section we provide an upper and a lower bound on the price of anarchy
for the game G = (G, u,M4).

180 V. Bilò et al.

s

1 |R|

v|R|-2

a) b) c)

….

…………

M

1 1

M

M

M

M

v1

v2

v|R|

v|R|-1

s

1 |R|

v|R|-2

….

…………

1 1

M

M

M

M

v1

v2

v|R|

v|R|-1

s

1 |R|…………

M

1 1

v|R|

Fig. 2. a) The wireless network S; b) The worst Nash equilibrium; c) The social opti-
mum

In order to be consistent with the definition of price of anarchy, we restrict
to global functions never assigning a null cost to a feasible solution. Moreover,
we compare costs of solutions for fixed sets of receivers so as to obtain more
realistic estimations.

Thus we focus on instances of the game in which the set R is part of the input,
i.e. the receivers are interested in receiving the transmission at any cost, that is
ut = ∞ for any t ∈ R and ut = 0 for any t ∈ S \ R. The game G = (G,R,M4)
is defined accordingly.

We define the following two global functions gsum(P) =
∑

t∈RM4(P, t) =
cost(ωP) and gmax(P) = maxt∈RM4(P, t).

Theorem 4. The price of anarchy ρ(G, g) of the multicast transmission game
G = (G,R,M4) is at most |R| for g ∈ {gsum, gmax}.

Proof. Consider a path system at Nash equilibrium P. For each t ∈ R, let s∗(t)
be the cost of a shortest (s, t)-path in G. Clearly, as P is an equilibrium, it holds
M4(P, t) ≤ s∗(t). Since the total cost of a power assignment is exactly the sum
of the costs charged to each receiver, we obtain cost(ωP) =

∑
t∈RM4(P, t) ≤∑

t∈R s
∗(t) ≤ |R| · s∗(t), where t = arg maxt∈R s

∗(t) is the receiver at maximum
distance from s. Since it holds that s∗(t) ≤ gsum(P∗), where P∗ is an optimum
path system, we obtain the claim for g = gsum. The claim for g = gmax follows
directly by considering that for any t ∈ R, it holds s∗(t) ≤ |R| · gmax(P∗).
�

Even though the above result is quite negative, in the following theorem we
show a matching lower bound.

On Nash Equilibria for Multicast Transmissions 181

Theorem 5. There exists an instance of the game G = (G,R,M4) for which
ρ(G, g) = |R| for g ∈ {gsum, gmax}.

Proof. Consider the graph depicted in Figure 2a where R = {1, . . . , |R|}. It can
be easily checked that the path system P in Figure 2b is a Nash equilibrium of
cost gsum(P) = |R|M + 1 and gmax(P) = M + 1

|R| , while the optimal solution
P∗ for multicasting to R depicted in Figure 2c costs exactly gsum(P∗) = M + 1
and gmax(P∗) = M+1

|R| . Letting M going to infinity, we obtain the claim.
�

5 Computing the Best Nash Equilibrium

In this section we prove that it is computationally hard to determine the best
Nash equilibrium for the game G = (G,R,M4).

Theorem 6. A minimum global cost Nash equilibrium according to a function
g ∈ {gsum, gmax} for the multicast transmission game G = (G,R,M4) is not
polynomially computable unless P = NP .

Proof. We prove the claim by exploiting a reduction from the Exact 3-Cover
problem [12]. In this problem we are given a universe X = {x1, . . . , x3n} of 3n
elements and a collection C = {C1 . . . , Cm} of m subsets of X such that |Ci| = 3
for any 1 ≤ i ≤ m and

⋃m
i=1 Ci = X. The objective is to find a collection of

subsets F ⊆ C such that F = {F1, . . . , Fn} and
⋃n

i=1 Fi = X.
Given an instance (X, C) of Exact 3-Cover, we construct an instance of

the multicast transmission game G = (G,R,M4) in the following way. S =
{s, C1, . . . , Cm, x1, . . . , x3n}, the set of edges connecting two stations at distance
less than infinity is E(S) = E1 ∪ E2, where E1 = {(s, Ci), 1 ≤ i ≤ m} and
E2 = {(Ci, x), (Ci, y), (Ci, z),∀Ci = {x, y, z} ∈ C}. Finally, we set c(e) = 1, for
any e ∈ E(S) and R = {xi|1 ≤ i ≤ 3n}.

Since in no Nash equilibrium a receiver can be reached by using two consecu-
tive edges belonging to E2, every Nash equilibrium uses at least n edges belonging
to E1 and exactly 3n edges belonging to E2. Moreover, an exact 3-cover induces
(and is induced by) a Nash equilibrium using exactly n edges belonging to E1.
Thus, an equilibrium P∗ of minimum global cost is such that gsum(P∗) = 1 + n
and gmax(P∗) = n+1

3n if and only if there exists an exact 3-cover for X.
�

6 Conclusions

We have considered multicast transmission games in wireless ad-hoc networks
induced by different cost-sharing methods. We have given positive and negative
existential proofs, bounded the price of anarchy and shown the intractability of
determining good equilibria.

Unfortunately, even if not explicitly claimed, the rate of convergence for the
only convergent method, the Shapley value, is exponential, unless specific choices
for the players are selected. However, it is still open the determination of choices

182 V. Bilò et al.

yielding a convergence in a polynomial number of steps. To this aim, the strategy
in which at each step a player chooses the best possible path is a good candidate.
The answer to this question would also solve another interesting open problem,
that is the determination of any Nash equilibrium, even non optimal.

Are there convergent cost sharing methods yielding a better price of anarchy?
Finally, it would be worth to extend all our results to particular cases, like

the one of stations lying in Euclidean spaces with transmission costs induced by
their distances.

References

1. V. Bilò, C. Di Francescomarino, M. Flammini, and G. Melideo. Sharing the cost
of multicast transmissions in wireless networks. In Proceedings of the 16th ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA), 2004.

2. V. Bilò and L. Moscardelli. The price of anarchy in all-optical networks. In
Proceedings of the 11th Colloquium on Structural Information and Communication
Complexity (SIROCCO), 2004.

3. A.E.F. Clementi, H. Huiban, P. Penna, G. Rossi, and P. Vocca. Some recent theo-
retical advances and open questions on energy consumption in static ad-hoc wire-
less networks. In Proceedings of the 3rd International Workshop on Approximation
and Randomization (ARACNE), pages 23–38, 2002.

4. V. Conitzer and T. Sandholm. Complexity results about nash equilibria. In Pro-
ceedings of the 18th International Joint Conference on Artificial Intelligence (IJ-
CAI), pages 765–771, 2003.

5. E. Even-Dar, A. Kesselman, and Y. Mansour. Convergence time to nash equilibria.
In Proceedings of the 30th Annual International Colloquium on Automata, Lan-
guages and Programming (ICALP). Lecture Notes in Computer Science, Springer-
Verlag, 2003.

6. A. Fabrikant, A. Luthra, E. Maneva, C. H. Papadimitriou, and S. Shenker. On a
network creation game. In Proceedings of the 22nd ACM Symposium on Principles
of Distributed Computing (PODC), pages 347–351, 2003.

7. A. Fabrikant, C. H. Papadimitriou, and K. Talwar. The complexity of pure equi-
libria. In Proceedings of the 36th Annual ACM Symposium on the Theory of Com-
puting (STOC), 2004.

8. J. Feigenbaum, A. Krishnamurthy, R. Sami, and S. Shenker. Approximation and
collusion in multicast cost sharing. In Proceedings of the 4th ACM Conference on
Electronic Commerce (EC). ACM, 2003.

9. J. Feigenbaum, A. Krishnamurthy, R. Sami, and S. Shenker. Hardness results for
multicast cost sharing. Journal of Public Economics, 304(1-3):215–236, 2003.

10. J. Feigenbaum, C. Papadimitriou, and S. Shenker. Sharing the cost of multicast
transmissions. In Proceedings of 32nd ACM Symposium on Theory of Computing
(STOC), pages 218–227. ACM, 2000.

11. D. Fotakis, S. Kontogiannis, E. Koutsoupias, M. Mavronicolas, and P. Spirakis.
The structure and complexity of nash equilibria for a selfish routing game. In
Proceedings of the 29th International Colloquium on Automata, Languages and
Programming (ICALP), pages 123–134, 2002.

12. Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W.H. Freeman and Co., 1979.

On Nash Equilibria for Multicast Transmissions 183

13. K. Jain and V.V. Vazirani. Applications of approximation algorithms to cooper-
ative games. In Proceedings of 33rd ACM Symposium on Theory of Computing
(STOC), pages 364–372. ACM, 2001.

14. E. Koutsoupias and C.H. Papadimitriou. Worst-case equilibria. In Proceedings of
the 16th Annual Symposium on Theoretical Aspects of Computer Science (STACS),
volume 1563 of LNCS, pages 387–396, 1999.

15. M. Mavronicolas and P. Spirakis. The price of selfish routing. In Proceedings of
the 33rd Annual ACM Symposium on the Theory of Computing (STOC), pages
510–519, 2001.

16. I. Milchtaich. Congestion games with player-specific payoff functions. Games and
Economic Behavior, 13:111–124, 1996.

17. J. F. Nash. Equilibrium points in n-person games. In Proceedings of the National
Academy of Sciences, volume 36, pages 48–49, 1950.

18. P. Penna and C. Ventre. Sharing the cost of multicast transmissions in wireless
networks. In Proceedings of the 11th Colloquium on Structural Information and
Communication Complexity (SIROCCO), 2004.

19. T.S. Rappaport. Wireless communications: principles and practice. Prentice-Hall,
Englewood Cliffs, NY, 1996.

20. R. W. Rosenthal. A class of games possessing pure-strategy nash equilibria. In-
ternational Journal of Game Theory, 2:65–67, 1973.

21. T. Roughgarden and E. Tardos. How bad is selfish routing? Journal of ACM,
49(2):236–259, 2002.

22. L.S. Shapley. The value of n-person games. Contributions to the theory of games,
pages 31–40, Princeton University Press, 1953.

23. A. Vetta. Nash equilibria in competitive societies, with applications to facility
location, traffic routing and auctions. In Proceedings of the 43rd Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pages 416–425, 2002.

24. J. E. Wieselthier, G. D. Nguyen, and A. Ephremides. On the construction of
energy-efficient broadcast and multicast trees in wireless networks. In Proceedings
of the 19th Annual Joint Conference of the IEEE Computer and Communications
Societies (INFOCOM), pages 585–594. IEEE Computer Society, 2000.

Structural Similarity in Graphs�

A Relaxation Approach for Role Assignment

Ulrik Brandes and Jürgen Lerner��

Department of Computer & Information Science, University of Konstanz

Abstract. Standard methods for role assignment partition the vertex
set of a graph in such a way that vertices in the same class can be
considered to have equivalent roles in the graph. Several classes of equiv-
alence relations such as regular equivalence and equitable partitions have
been proposed for role assignment, but they all suffer from the strictness
of classifying vertices into being either equivalent or not. It is an open
problem how to allow for varying degrees of similarity. Proposals include
ad-hoc algorithmic approaches and optimization approaches which are
computationally hard.

In this paper we introduce the concept of structural similarity by
relaxation of equitable partitions, thus providing a theoretical foundation
for similarity measures which enjoys desirable properties with respect to
existence, structure, and tractability.

1 Introduction

Role assignment is an important tool in the analysis of, e.g., social networks
and food webs. Given a graph one tries to assign roles to vertices by looking for
partitions of the vertex set such that equivalent vertices can be considered to
occupy the same kind of structural position [20].

Whether a vertex partition yields a “meaningful” role assignment is up to
some notion of compatibility with the edges of the graph. In their seminal paper,
Lorrain and White [18] proposed that vertices have the same role if they are
structurally equivalent, i.e. have identical neighborhoods. This rather restrictive
requirement has later been weakened in many ways (see [21, 12] for an overview).

Vertex partitions are well investigated in some areas of computer science or
graph theory. E.g. equitable partitions in algebraic graph theory [15] serve to find
quotients of graphs and to determine the spectrum of highly symmetric, huge
graphs. Stable partitions (also bisimulations or regular equivalences) are used to
determine equivalent states of finite state processes in the calculus of commu-
nicating systems [19]. Shortly, a vertex coloring is called regular (equitable) if
equivalent vertices have the same (number of each) colors in their neighborhood.

However, practical applicability of these kinds of vertex partitions to social
networks or other irregular graphs is severely limited. Firstly it is NP-complete

� We gratefully acknowledge financial support from Deutsche Forschungsgemeinschaft
(DFG, grant Br 2158/1-2)

�� Corresponding author, lerner@inf.uni-konstanz.de

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 184–195, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Structural Similarity in Graphs 185

to decide whether a graph has a regular, or equitable, partition with a given
quotient graph (see Theorem 7). Secondly, most graphs analyzed in the social
sciences have small or even trivial automorphism groups, irregularly distributed
vertex degrees, etc., so that they hardly ever admit a non-trivial equitable parti-
tion anyway, while tractable regular partitions are often trivial as well (e.g. the
maximal regular equivalence of an undirected graph is simply the division into
isolates and non-isolates). Finally, while it makes sense that small perturbations
like adding or deleting single edges destroy or establish the equivalence of ver-
tices in, e.g., finite state processes, this is counterintuitive in the case of social
networks, which often contain measurement errors and are expected to display
regular patterns only approximately. In the case of irregular graphs we expect
that small perturbations cause vertices to be more or less similar but do not
decide about equivalence or non-equivalence.

We summarize these remarks by observing that the real obstacle in applying
role assignment methods to empirical grpahs is not an inappropriate formulation
of compatibility of equivalence and graph structure, but the equivalence relation
itself. In social networks and other graphs in which many pairs of vertices are
somehow related, but not exactly equivalent, we need a notion of similarity of
vertices, rather than equivalence.

Other attempts to introduce degrees of similarity have been unsatisfactory
so far: Algorithmic approaches like REGE and CATREGE lack “a theoretical
rationale for the measure of similarity produced” [7–p. 375], while optimization
approaches (e.g. [3]) are computationally hard and suffer from the existence of
many local optima.

We therefore propose the notion of similarities as relaxations of equivalence
relations. From a compatibility requirement generalizing equitability, we obtain
the subset of structural similarities which displays highly desirable mathematical
properties. Our main results are that the set of all structural similarities can be
described compactly by the eigenvalue decomposition of the adjacency matrix
and that, in this framework, a graph R is a quotient of a graph G if and only if
the characteristic polynomial of R divides the characteristic polynomial of G. In
particular, this implies an efficient algorithm for the role assignment problem.

This paper is organized as follows. Basic notation is provided in Sect. 2. In
Sect. 3 we derive similarities as relaxations of equivalence relations and intro-
duce the condition for similarities to be compatible with a graph’s structure. A
characterization and some interesting properties of the set of edge-compatible
similarities are given in Sect. 4. Computational issues are addressed in Sect. 5
and are illustrated on a well-studied dataset [14] in Sect. 6.

2 Preliminaries
2.1 Basic Notation

In this paper we consider undirected graphs, possibly with multiedges, loops, or
edge weights. For background on graph theory see, e.g., [11].

186 U. Brandes and J. Lerner

We also need some definitions from linear algebra (see, e.g., [1]). In particular
we need the notions of Euclidean vectorspaces, i.e. real vectorspaces V supplied
with an inner product or dot product 〈·, ·〉 : V ×V → IR, and eigendecomposition
of symmetric linear mappings in such spaces.

2.2 Graph Spaces

As in [4], we associate with a graph G = (V,E) the vertex space V := V(G) :=
{f : V → IR}, that is the vectorspace of all real-valued functions on the vertex
set. V has standard basis (fv)v∈V , where fv(v) := 1 and fv(u) := 0 if u �= v. An
element fv of the standard basis can be associated with the vertex v. Further,
we define α(G) : V → V to be the endomorphism determined by the action of
the adjacency matrix A(G) on the standard basis. This immediately generalizes
to weighted graphs. Finally, we get an inner product 〈·, ·〉 on V which is uniquely
defined by 〈fv, fv〉 := 1 and 〈fu, fv〉 := 0, if u �= v, for u, v ∈ V .

Definition 1. Given a graph G, the pair G(G) = (V(G), α(G)) is called the
graph space of G. For two vectors u, v ∈ V the weight of the pair (u, v) is
defined to be w(u, v) := 〈u, α(v)〉.

Conversely, suppose we are given a pair G = (V, α), where V is a Euclidean
vectorspace and α : V → V a symmetric endomorphism. Then G induces a
complete, weighted graph G = (V,E) by choosing an orthonormal basis of V
as the vertex set V , and defining the weight of an edge e = {u, v} by w(e) :=
〈u, α(v)〉 . Thus a graph space might be seen as a collection of graphs. We stress
that different bases will lead to different, possibly non-isomorphic, graphs.

Two graph spaces are identical if and only if the underlying vectorspaces and
endomorphisms are the same. But, as for graphs, it is reasonable to identify graph
spaces which differ only by a renaming of the vertex space. If G = (V,E) and
H = (W,F) are graphs then an isomorphism from G to H is a bijection φ : V →
W such that for all u, v ∈ V , A(G)uv = A(H)φ(u)φ(v), i.e., the adjacency matrices
are, after appropriate ordering of vertices, identical. In the following definition,
we relax the condition that isomorphisms have to be bijections between discrete
sets to the condition that they have to be vectorspace-isomorphisms.

Definition 2. Let G = (V, α) and H = (W, β) be two graph spaces. An isomor-
phism from G to H is an orthogonal linear isomorphism ϕ : V → W, such that
for all u, v ∈ V

〈u, α(v)〉 = 〈ϕ(u), β(ϕ(v))〉 .

This is true if and only if α = ϕTβϕ. In this case G and H are called isomorphic
graph spaces.

Graph isomorphisms are special, more restrictive types of graph space iso-
morphisms.

Structural Similarity in Graphs 187

3 Structural Similarities

Relaxing (boolean) equivalence, we introduce a (continuous) notion of similarity.
It is derived from projections that relax the surjective mapping associated with
an equivalence relation (i.e. which maps elements to their equivalence classes).
We show that for each projection there is a unique associated similarity and
vice versa. A natural generalization of equitability then ensures that similarities
respect the structure of a graph.

Let us start by considering the discrete case. For an equivalence relation
∼ on the vertex set V of a graph G = (V,E), let W := V/ ∼ be its set of
equivalence classes. The associated surjective mapping φ : V → W , that maps
vertices to their equivalence class, defines a binary |W | × |V | matrix P where
for v ∈ V , w ∈W , Pwv = 1 iff φ(v) = w. Such a matrix P satisfies the equation
PPT = id W , for boolean matrix multiplication.

Relaxations of such class mappings allow for the entries pwv, instead of 1’s
(“v is in class w”) and 0’s (“v is not in class w”), real numbers (“v’s degree of
membership to w is pwv ∈ IR”).

Definition 3. Let V and W be two euclidian vectorspaces. A surjective linear
homomorphism π : V → W is called a projection, if ππT = id W .

These generalized mappings to classes suggest the following generalization of
quotients of graphs to quotients of graph spaces. Considering the discrete case, let
P be the (binary) characteristic matrix of a surjective mapping of the vertices of
G onto the setW of equivalences classes. Then, following [15–Sect. 9.6], we obtain
a (directed, weighted) graph H = (W,F) (called the quotient of G modulo ∼)
that is defined by its adjacency matrix A(H) := (PPT)−1PAPT, where A is
the adjacency matrix of G. This definition is motivated by the fact that for two
classes, say w,w′ ∈W , A(H)ww′ is the average number of edges between vertices
in w and vertices in w′. The translation to projections is straight-forward:

Definition 4. For a graph space G = (V, α) and a projection π : V → W to a
euclidian vectorspace W, π and α induce an endomorphism β : W →W by

β := παπT .

The resulting graph space G/π = (W, β) is called the quotient of G modulo π.

Note that, since α is symmetric, β is symmetric.
We are now ready to define similarities as relaxations of equivalence relations,

such that similarities and projections are associated with each other just like
equivalence and class membership relations. Reconsidering the discrete case, let
φ : V →W be a surjective mapping and P be the (binary) characteristic matrix
of φ. The equivalence relation induced by φ has characteristic matrix S = PTP ,
since two vertices u and v are equivalent, iff the corresponding columns of P
have the 1 in the same row, iff suv = 1.

If we relax P to a projection π, then σ := πTπ is symmetric, i.e. σT = σ, and
idempotent, i.e. σ2 = σσ = σ and these properties serve to define our relaxation
of equivalence relations.

188 U. Brandes and J. Lerner

Definition 5. For a euclidian vectorspace V an endomorphism σ : V → V is
called a similarity if it is symmetric, i.e. σT = σ, and idempotent, i.e. σ2 = σ.

An equivalence relation ∼ induces a similarity represented by the matrix S∼,
called here the normalized matrix of ∼, which is given by

(S∼)uv :=

{
0 if u �∼ v

1/c if u ∼ v and c is the size of the equivalence class of v
.

For example, the partition {{1, 2, 3}, {4, 5}} of {1, . . . , 5} has normalized matrix

S =

[[1
3

]
3×3 [0]3×2

[0]2×3

[1
2

]
2×2

]
.

Note that, when multiplying normalized matrices, idempotency corresponds
to transitivity. For a mapping σ, idempotency means that σ restricted to its
image imσ is the identity.

Like equivalence relations and their associated surjective mappings, similar-
ities and projections are just two points of view of the same concept: Let V
and W be two euclidian vectorspaces and π : V → W a projection. Then,
σπ := πTπ is symmetric and idempotent, i.e., a similarity. Conversely, let V
be a euclidian vectorspace and σ : V → V a similarity. Set W := imσ. Then,
πσ = (v �→ σ(v)) : V → W is a projection.

The next theorem states that σ �→ πσ and π �→ σπ are mutually inverse (up
to isomorphism).

Theorem 1. Let (V, α) be a graph space and σ : V → V a similarity. Then
σ = σπσ

. Conversely, let (V, α) be a graph space, W a euclidian vectorspace,
π : V → W a projection, U := imσπ and π′ := πσπ

. Then, with β := παπT and
βU := π′απ′T, (W, β) and (U , βU) are isomorphic graph spaces and π and π′ are
the same (up to this isomorphism).

Proof. For proving the second part, note that ϕ := π|U = ππ′T is an isomorphism
of the graph spaces (W, β) and (U , βU). The proof therefore follows from the
definitions and properties of the mappings in question.
�

As a consequence of Theorem 1 we conclude that for each similarity there is
a unique associated projection and vice versa.

A similarity σ defines for a pair of vectors u, v ∈ V a real number s(u, v),
which is a measure for the similarity of u and v, by:

s(u, v) := 〈π(u), π(v)〉 =
〈
u, πTπ(v)

〉
= 〈u, σ(v)〉 ,

where π := πσ. If u and v are basis vectors (vertices) then their similarity is the
uv’th entry of the matrix of σ.

Until now we have introduced similarities as relaxations of arbitrary equiva-
lence relations. The following condition is a natural generalization of equitability
and ensures that roles are based on the graph’s structure.

Structural Similarity in Graphs 189

Definition 6. Let (V, α) be a graph space, W a euclidian vectorspace and π :
V → W a projection. Then, π is called structural if, with β := παπT, the
diagram

��

�� ��
��

commutes, i.e., πα = βπ. The associated similarity σπ is called structural as
well.

4 Properties of Structural Similarities

We present several equivalent characterizations of structural similarity and show
that equitable partitions form a special, restrictive case. Moreover, we generalize
the partial order on the set of equivalence relations to a partial order on the set
of similarities and show that the set of structural similarities forms a sublattice
of the lattice of all similarities.

4.1 Characterization

Structural similarities can be characterized in several ways. A subspace U ⊂ V
is called α-invariant if α(U) ⊂ U .

Theorem 2. Let (V, α) be a graph space, W a euclidian vectorspace and π :
V → W a projection. Let σ := σπ be the associated similarity. Then the following
assertions are equivalent:

1. π is structural; 3. kerσ (or kerπ) is α-invariant;
2. σα = ασ; 4. imσ is α-invariant.

Proof. Let β := παπT. 2 implies 1 : Multiplying σα = ασ with π from the left,
we get ππTπα = παπTπ, which implies πα = βπ. 1 implies 2 : Given π with
πα = βπ we get

σα = πTπα = πTβπ = πTπαπTπ = σασ .

Taking the transpose of this equation and using symmetry of α and σ we
obtain ασ = σασ, hence σα = ασ. 3 holds iff 4 holds since, for the symmetric
endomorphism σ, imσ is α-invariant iff kerσ is α-invariant. 2 implies 3 : Assume
that α(kerσ) �⊂ kerσ. Then there is a v ∈ V such that σ(v) = 0 and σα(v) �= 0.
Then, σα(v) �= 0 = ασ(v), whence σα �= ασ. 3 implies 2 : Let v ∈ V = kerσ ⊕
imσ. We have v = u1 + u2 with u1 ∈ kerσ and u2 ∈ imσ. Then, since α(u1) ∈
kerσ and α(u2) ∈ imσ (by 3 iff 4), we have that σα(v) = α(u2) = ασ(v),
whence σα = ασ.
�

As a corollary, Theorem 2 yields a compact description of structural similar-
ities by the eigenvalue decomposition of the adjacency matrix.

190 U. Brandes and J. Lerner

Corollary 1. Let (V, α) be a graph space. A similarity σ : V → V is structural,
iff kerσ (or imσ) is generated by eigenvectors of α.

Proof. By Theorem 2, σ is structural iff kerσ (or imσ) is α-invariant. If kerσ
(imσ) is generated by eigenvectors, then kerσ (imσ) is obviously invariant.
Conversely, if U := kerσ (U := imσ) is α-invariant, then α restricted to U is a
symmetric endomorphism on U and, thus, U admits a basis of eigenvectors.
�

If follows from Theorem 2 that structural similarities are indeed a relaxation
of equitable partitions.

Theorem 3. Let G = (V,E) be a graph and S the normalized matrix of an
equivalence relation ∼ on V . Then, S defines a structural similarity for the
graph space G(G) if and only if ∼ is equitable for G.

Proof. Is a consequence of [15–Lemma 9.3.2] and the equivalence of 1. and 4. in
Theorem 2.
�

4.2 Lattice Structure

We recall the notion of a lattice (see, e.g., [16]). A lattice L is a partially ordered
set L such that for each a, b ∈ L there is a supremum (least upper bound) and
an infimum (greatest lower bound) of a and b. A lattice L is called complete if
suprema and infima exist for each subset L′ ⊂ L.

In the next lemma we establish a connection between similarities and sub-
spaces, which we use to define a partial order on the set of similarities.

Lemma 1. Let U ⊂ V be a subspace of a Euclidean vectorspace V. Then there
is a unique similarity σ : V → V such that U = kerσ.

Proof. Suppose σ is such a similarity. First we observe that, since σ has to
be symmetric, imσ is the orthogonal complement of kerσ = U , hence imσ is
determined by U . Thus, each v ∈ V admits a unique representation v = v1 + v2,
where v1 ∈ imσ and v2 ∈ U . Further, since σ is idempotent, it is the identity on
imσ. Thus

σ(v) = σ(v1 + v2) = v1, (1)

which shows the uniqueness. On the other hand, (1) can be used to define a
similarity σ, such that kerσ = U , which shows the existence.
�

By the above lemma, we get a bijection between the set of subspaces U(V) :=
{U ⊂ V} and the set of similarities S(V) := {σ : V → V ; σT = σ and σ2 = σ}.
Via this bijection S(V) can be supplied with a partial order ≤ by

σ ≤ τ ⇐⇒ kerσ ⊂ ker τ , for σ, τ ∈ S(V) .

If ∼1 and ∼2 are two equivalence relations on the vertex set V of a graph
G = (V,E) such that ∼1 is finer than ∼2, then the corresponding normalized
matrices define similarities σ1 and σ2 satisfying σ1 ≤ σ2. Thus, the embedding of

Structural Similarity in Graphs 191

equivalence relations on V into the set of similarities S(V(G)) is order-preserving
and the above-defined partial order is a generalization of the order on the set of
equivalence relations.

U(V) is a complete lattice, where the infimum is given by intersection and
the supremum by the sum of subspaces. Thus, S(V) is a complete lattice, too.
We show that the set Sα(V) of structural similarities forms a sublattice of S(V):

Theorem 4. Let (V, α) be a graph space. Then, the set Sα(V) of structural
similarities is a complete sublattice of S(V).

Proof. By Theorem 2 it suffices to show that the intersection of α-invariant
subspaces is α-invariant and that the sum of α-invariant subspaces is α-invariant.
Proving this is straightforward.
�

The above theorem implies (see Theorem 5) that, given a similarity σ, that is
not necessarily structural, there is always a smallest structural similarity above σ
and a biggest structural similarity below σ. Note, that this doesn’t hold, neither
for regular equivalence relations [9], nor for equitable partitions, which can easily
be verified.

Definition 7. Let (V, α) be a graph space, and σ : V → V be a similarity on V
(not necessarily structural). Then, a similarity τ : V → V is called a structural
hull of σ if τ is structural, σ ≤ τ , and for all τ ′ ∈ Sα(V), σ ≤ τ ′ implies τ ≤ τ ′.
A similarity τ : V → V is called a structural interior of σ if τ is structural,
τ ≤ σ, and for all τ ′ ∈ Sα(V), τ ′ ≤ σ implies τ ′ ≤ τ . If they exist, structural
hulls and interiors are unique.

Theorem 5. Let (V, α) be a graph space. Then, in S(V) there exist structural
hulls and interiors.

Proof. We utilize the fact that L1 := Sα(V) is a complete sublattice of the
complete lattice L := S(V). Let σ ∈ L then inf{τ ∈ L1 ; σ ≤ τ} is the structural
hull and sup{τ ∈ L1 ; τ ≤ σ} is the structural interior of σ.
�

5 Determining Structural Similarities

Corollary 1 yields a general procedure for determining structural projections:
Select a subset of eigenvalues and associated eigenvectors of a graph and project
its graph space onto the subspace generated by these eigenvectors. For exam-
ple, the equitable partition of the graph in Fig. 1 corresponds to a structural
similartity that is the projection onto the sum of eigenspaces corresponding to
eigenvalues 3, 1 and −2.

If no eigenvalue has multiplicity greater than one (or we demand that eigen-
spaces must not be divided into subspaces), then Corollary 1 implies that, for
fixed k, all structural projections onto k-dimensional image spaces can be listed
efficiently. As a consequence of [13], the corresponding task for discrete parti-
tions, i.e. to list all, say, regular equivalences with exactly k classes, is NP-hard.

192 U. Brandes and J. Lerner

1

2

3

4

5 6

7

8

9

10

Fig. 1. Example from [6]. The vertex coloring represents an equitable partition of
the drawn graph; the same partition can be found by a structural projection onto
eigenvalues 3, 1, and −2

The following theorem characterizes role assignability with structural simi-
larities.

Theorem 6. Let G = (V, α) and R = (W, β) be two graph spaces. Then there
is a structural projection π : V → W such that β = παπT if and only if the
characteristic polynomial of β divides the characteristic polynomial of α.

Proof. The only if part can be proved along the same lines as [15–Theorem
9.3.3]. If : Let {(λ1, ν1), . . . , (λr, νr)} be the set of different eigenvalues λi of β
with multiplicity νi. For each 1 ≤ i ≤ r choose νi linearly independent eigenvec-
tors vi1, . . . , viνi of α with eigenvalue λi. Let U ⊂ V be the subspace, generated
by (v11, . . . , v1ν1 , v21, . . . , vrνr). Then, the projection π1 : V → U is structural
and β1 := π1απ

T
1 = α|U has exactly the eigenvalues, with multiplicities, of β.

Finally define ϕ : U → W to be the isomorphism which maps (v11, . . . , vrνr
)

onto an orthonormal eigenbasis of (W, β) in such a way that the image of vij

has eigenvalue λi. The assertion follows with π := ϕπ1.
�
The above theorem implies that the role assignment problem for structural

similarities is easier than its discrete counterparts.

Theorem 7. It is NP-complete to decide for two graphs G and R whether there
is

1. a regular role assignment for G with given role graph R,
2. an equitable partition for G with quotient R.

On the other hand, it can be tested efficiently whether there exists a structural
similarity for the graph space of G with quotient G(R).

Proof. 1. is proved in [13]. 2. holds since the NP-complete decision problem,
whether a 3-regular graph has a perfect code [17], can be formulated as the
problem whether this graph has an equitable partition with given quotient. The
last statement follows immediately from Theorem 6.
�

6 Example: Southern Women Data

Theorem 6 is especially useful to determine structural projections. We illus-
trate this on a well-studied network representing 18 women who are connected

Structural Similarity in Graphs 193

by weighted edges signifying the number of co-appearance at 14 selected so-
cial events (“Southern Women” data set [10]). A meta-analysis of this data is
presented in [14].

It is a striking observation that a number of commonly used techniques can be
seen as determining structural projections onto specific role graphs. The simple
examples below mostly serve to illustrate that our method also gives a uniform
interpretation to established, but seemingly unrelated methods of network anal-
ysis. It should be obvious that there are more sophisticated uses of Theorem 6
with more complex role graphs.

Rc :
c

1
Rc1c2 :

c1
c2

1 2
Rcp : p

c

core periphery

Fig. 2. Role graphs for centrality (left), 2-way partitioning (middle) and core/periphery
structure (right)

Eigenvector Centrality. A widely-used approach to determine the structural im-
portance of vertices in a graph is eigenvector centrality [5], in which vertices are
valued by the entries of the principal eigenvector of the adjacency matrix.

Vertices are therefore central if they have central neighbors, so that centrality
can be viewed as the degree of membership in the only role present in role graph
Rc shown in Fig. 2.

From the proof of Theorem 6 we know that a similarity σ is structural with
G/σ = Rc, if and only if σ is the projection onto a 1-dimensional space generated
by an eigenvector associated with eigenvalue c > 0 of the adjacency matrix of
G. Therefore, eigenvector centrality is precisely a structural projection onto Rc,
i.e. a 1-dimensional role assignment, and the eigenvalue determines the weight
of the loop.

Spectral k-Clustering. Eigenvectors are also frequently used to partition a graph
into dense clusters. Using the spectrum of the adjacency matrix has been ad-
vocated, e.g., in [2]. Membership in a cluster can again be seen as a role, and
partitioning into two roles thus corresponds to projecting onto role graph Rc1c2

shown in Fig. 2.
Again, Theorem 6 implies that a similarity σ is structural with G/σ = Rc1c2 ,

if and only if σ is the projection onto a 2-dimensional space generated by eigen-
vectors corresponding to eigenvalues c1, c2 > 0. The result using the first two
eigenvecctors is shown in Fig. 3(left). This figure shows the usefulness of real-
valued degrees of membership: Vertices 8 and 9 are rather between the two
clusters, which is consistent with the fact that commonly used methods disagree
largely about the cluster these vertices belong to [14]. Vertices 16, 17, and 18 are
assigned to the second cluster, but only with low degrees of membership. Again,
this is a precise result consistent with [14], where many methods did not assign
these vertices at all.

194 U. Brandes and J. Lerner

1.Evelyn
2.Laura

3.Theresa4.Brenda

5.Charlotte

6.Frances

7.Eleanor

8.Pearl

9.Ruth

10.Verne

11.Myra

12.Katherin

13.Sylvia

14.Nora15.Helen

16.Dorothy

17.Olivia
18.Flora

19

20

21

Cluster 1

Cluster 2

Evelyn

Laura

Theresa

Brenda

Charlotte

Frances

Eleanor

Pearl

Ruth

Core

Periphery

Verne

Myra

Katherine

Sylvia

Nora

Helen

Dorothy

Olivia

Flora

Periphery

Core

Fig. 3. projections for 2-clustering (left) and core/periphery structure in resulting clus-
ters (middle and right)

Core/Periphery Structure. Borgatti and Everett [8] discuss intuitive ideas and
formal definitions for a frequently encountered phenomenon in social networks,
namely their division into a cohesive core of densely knit actors and a loosely
connected periphery.

The degree of membership to both core and periphery of a vertex can be
determined by a structural projection onto role graph Rcp of Fig. 2, although
the spectrum of the role graph is not as trivial as those of the other two. However,
the eigenvalues λ1, λ2 of Rcp satisfy c = λ1 + λ2 and −p2 = λ1 · λ2. Since it is
reasonable to demand c, p ∈ R≥0, these equations imply w.l.o.g. λ1 ≤ 0 ≤ λ2
and |λ1| ≤ |λ2|. Standard results in spectral graph theory imply that for loopless
connected graphs the smallest and the largest eigenvalue always satisfy these
inequalities. Thus, by Theorem 6, the projection σ onto the 2-dimensional space
generated by the corresponding eigenvectors of G is structural with G/σ = Rcp.
The resulting role assignment for the two clusters suggested by [14] of the data
set is in Fig. 3(middle and right). Observe that the more a vertex is in the core,
the more it is connected to core and to peripheral vertices, whereas vertices that
have high peripheral values are connected mostly to the core.

References

1. Artin, M.: Algebra. Prentice Hall (1991)
2. Barnes, E.R.: An algorithm for partitioning the nodes of a graph. SIAM Journal

on Algebraic and Discrete Methods 3 (1982) 541–550
3. Batagelj, V., Doreian, P., Ferligoj, A.: An optimizational approach to regular

equivalence. Social Networks 14 (1992) 121–135
4. Bollobás, B.: Modern Graph Theory. Springer (1998)
5. Bonacich, P.: Factoring and weighting approaches to status scores and clique

identification. Journal of Mathematical Sociology 2 (1972) 113–120
6. Borgatti, S.P., Everett, M.G.: The class of all regular equivalences: Algebraic

structure and computation. Social Networks 11 (1989) 65–88
7. Borgatti, S.P., Everett, M.G.: Two algorithms for computing regular equivalence.

Social Networks 15 (1993) 361–376
8. Borgatti, S.P., Everett, M.G.: Models of core/periphery structures. Social Networks

21 (1999) 375–395

Structural Similarity in Graphs 195

9. Boyd, J.P., Everett, M.G.: Relations, residuals, regular interiors, and relative reg-
ular equivalence. Social Networks 21 (1999) 147–165

10. Davis, A., Gardner, B., Gardner, M.: Deep south. The University of Chicago Press
(1941)

11. Diestel, R.: Graph Theory. Springer-Verlag, New York (2000)
12. Everett, M.G., Borgatti, S.P.: Regular equivalence: General theory. Journal of

Mathematical Sociology 19 (1994) 29–52
13. Fiala, J., Paulusma, D.: The computational complexity of the role assignment

problem. In: Proceedings of the ICALP 2003., Springer–Verlag (2003) 817–828
14. Freeman, L.C.: Finding social groups: A meta-analysis of the southern women

data. In Breiger, R., Carley, K.M., Pattison, P., eds.: Dynamic Social Network
Modeling and Analysis. The National Academies Press (2003)

15. Godsil, C., Royle, G.: Algebraic Graph Theory. Springer (2001)
16. Grätzer, G.: General Lattice Theory. Birkhäuser Verlag (1998)
17. Kratochv́ıl, J.: Perfect Codes in General Graphs. Academia Praha (1991)
18. Lorrain, F., White, H.C.: Structural equivalence of individuals in social networks.

Journal of Mathematical Sociology 1 (1971) 49–80
19. Milner, R.: A Calculus of Communicating Systems. Lecture Notes in Computer

Science, 92. Springer Verlag, Berlin (1980)
20. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications.

Cambridge University Press (1994)
21. White, D.R., Reitz, K.P.: Graph and semigroup homomorphisms on networks of

relations. Social Networks 5 (1983) 193–234

Flexibility of Steiner Trees in Uniform
Orientation Metrics

Marcus Brazil1, Pawel Winter2, and Martin Zachariasen2

1 ARC Special Research Centre for Ultra-Broadband Information Networks,
Department of Electrical and Electronic Engineering, The University of Melbourne,

Victoria 3010, Australia
brazil@unimelb.edu.au

2 Department of Computer Science, University of Copenhagen,
DK-2100 Copenhagen Ø, Denmark

{pawel, martinz}@diku.dk

Abstract. We present some fundamental flexibility properties for mini-
mum length networks (known as Steiner minimum trees) interconnecting
a given set of points in an environment in which edge segments are re-
stricted to λ uniformly oriented directions. These networks are referred
to as λ-SMTs. They promise to play an increasingly important role in
the future of optimal wire routing in VLSI physical design, particularly
for the next generation of VLSI circuits. In this paper we develop the
concept of a flexibility polygon for a λ-SMT, which is a region represent-
ing the union of all (minimum length) λ-SMTs with the same topology
on a given set of points. We show that this polygon can be constructed,
for a given point set and given topology, in linear time. We discuss some
of the future applications of this polygon, which can be thought of as a
geometric representation of the amount of flexibility inherent in a given
λ-SMT.

1 Introduction

Interconnects in VLSI design have traditionally used rectilinear (or Manhattan)
routing, in which only two perpendicular wiring directions are allowed. Recent
technological advances in microchip fabrication have seen an increasing interest
in the use of non-rectilinear interconnect architectures in VLSI design. The two
alternative architectures that have generated the most interest in recent years
are the Y-architecture [4], in which there are three directions for interconnects
differing by angles of 2π/3, and the X-architecture [9, 11], in which the rectilinear
architecture is supplemented by the pervasive use of diagonal interconnects (at an
angle of π/4 to the rectilinear interconnects). Both traditional rectilinear routing
and these new proposed architectures are examples of so-called λ-geometry, in
which a fixed set of λ ≥ 2 uniformly oriented directions are allowed.

In VLSI routing, one of the principal objectives is to minimize the total length
of interconnections in a net, that is, to compute a λ-geometry Steiner minimum
tree (or λ-SMT). This is in general an NP-hard problem. However, a powerful

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 196–208, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Flexibility of Steiner Trees in Uniform Orientation Metrics 197

exact algorithm, GeoSteiner, has recently been developed for this problem which
can find an optimal solution for hundreds of randomly distributed points for
arbitrary λ [5]. The key to this algorithm is to exploit the strong geometric
structural properties of λ-SMTs. A recent paper [3] has established canonical
forms for λ-SMTs which has lead to a further speed-up of GeoSteiner.

In this paper we use these properties to explore the notion of flexibility in a λ-
SMT. Informally, this is a measure of the extent to which edges in the minimum
length network can be perturbed without increasing the length of the network.
This has important applications in solving multi-objective optimisation problems
in VLSI physical design, involving minimising the negative effects of properties
such as congestion or signal delay as a secondary objective. The concept was
introduced for rectilinear Steiner trees in [1] and [7]. Here we provide an effective
measure of flexibility for a much wider class of minimum length networks, by
defining and constructing the flexibility polygon of a λ-SMT; this polygon is a
region representing the union of all (minimum length) λ-SMTs with the same
topology on a given set of points. Some important applications of this concept
in VLSI design are outlined in the concluding section of this paper.

2 Properties of λ-SMTs

We begin by establishing some basic definitions and notation, and reviewing
some important properties of λ-SMTs. For a more detailed discussion of these
properties, see [2] and [3].

Let λ ≥ 2 be a given integer. Given λ orientations iω (i = 1, 2, ..., λ) in the
Euclidean plane, where ω = π/λ is a unit angle, we represent these orientations
by the angles with the x-axis of corresponding straight lines. A line or line
segment with one of these orientations is said to be in a legal direction. Objects
composed of line segments in legal directions are said to belong to a λ-geometry.

Since a minimum length network is necessarily a tree, we will only discuss
networks in λ-geometry that are trees. We define a λ-tree to be a tree network
in λ-geometry interconnecting a given set of points N , also denoted terminals.
A λ-tree can contain nodes of degree 3 or more that are not terminals. These
nodes are called Steiner points. Together the terminals and Steiner points are
referred to as the vertices of the λ-tree.

The graph structure (i.e., pattern of adjacencies of the vertices) of a λ-tree
is referred to as its topology. In this paper we are concerned with λ-trees T
whose total edge length is minimum for a given set of terminals N ; these are
the λ-geometry Steiner minimum trees (λ-SMTs). If the total edge length of T
is locally minimum, in that it is minimum for a given topology T , then we say
that T is a λ-SMT for T .

Any λ-SMT T can be decomposed into a union of full subtrees meeting only
at terminals. These subtrees are referred to as the full Steiner trees (FSTs) of
T . A λ-SMT T for N is fulsome if the number of FSTs is maximized over all
λ-SMTs for N . In particular, for a full topology T , a λ-SMT T for N and T
that is fulsome cannot be replaced by two or more FSTs with the same total

198 M. Brazil, P. Winter, and M. Zachariasen

�����m �����m+2�����m+1

p

s

p

p

p

s

s

s
s

p

Fig. 1. The feasible directions (up to a rotation by a multiple of ω) for edges in a full
λ-SMT for m = 2. Exclusively primary and secondary directions are indicated by p
and s respectively

length (and, hence, fulsomeness is in a sense a property of N and T). For any
set of terminals there always exists a λ-SMT in which every full Steiner tree
is fulsome. As in [3], we will focus our attention on full and fulsome λ-SMTs,
which form the building blocks for all λ-SMTs. For a set of terminals N and
a full topology T for N , we denote by S(N, T) the set of all full and fulsome
λ-SMTs (or FSTs) interconnecting N and having topology T . In view of the
above, in the remainder of the paper we assume that S(N, T) �= ∅.

In [2, 8] it was shown that all Steiner points in a λ-SMT have degree 3 or 4.
Furthermore, if a Steiner point with degree 4 exists in the λ-SMT, then it spans
exactly four terminals (it is a cross); such a cross has no flexibility whatsoever,
since any movement of the Steiner point increases the length of the tree [3]. Thus
we will assume throughout this paper that every Steiner point has degree 3. The
topology of any λ-SMT with degree 3 Steiner points is referred to as a Steiner
topology.

Edges in a λ-SMT are geodesics (in λ-geometry) between their endpoints.
We refer to such an edge as a straight edge if it is a single straight line segment
(in a legal direction), or else as a bent edge if it consists of two or more straight
line components. It has been shown in [10] that bent edges are composed of line
segments in exactly two legal directions differing by an angle of ω. Furthermore,
although there are infinitely many ways of embedding a bent edge pq in the
Euclidean plane, there are only two embeddings composed of exactly two straight
line segments. The straight line components in such an embedding are referred
to as half-edges and their intersections as corner points.

We now consider some important edge-direction properties in full λ-SMTs.
In [3] it was shown that the straight edges and half-edges in a full λ-SMT can
be oriented and then partitioned into three equivalence classes, such that each
equivalence class contains oriented line segments in at most two directions dif-
fering by an angle of ω. In each equivalence class, the right-most edges (or
half-edges) are labelled as primary, and the left-most ones as secondary. Two
important properties of this labelling are as follows:

Flexibility of Steiner Trees in Uniform Orientation Metrics 199

– If λ is a multiple of 3 then there are exactly two feasible directions in each
equivalence class. If λ is a not multiple of 3 then one of the equivalence classes
contains two feasible directions and the other two classes each contain only
one feasible direction, which is said to be both primary and secondary. A
primary edge (or half-edge) that is not secondary is said to be exclusively
primary. Similarly, a secondary edge (or half-edge) that is not primary is
said to be exclusively secondary. This is illustrated for λ = 6, 7 and 8 in
Figure 1.

– If λ is a multiple of 3 then two exclusively primary or exclusively secondary
edges meet at a Steiner point at an angle of 2π/3. If λ is a not multiple of 3
then any pair of edges meet at a Steiner point at an angle that differs from
2π/3 by no more than ω.

Primary and secondary edges of a λ-SMT play a crucial role in determining
flexibility. This is due to their connection with the 0-shifts of the paths in the
tree, which we define below.

We define a shift of a straight edge pq to be a move of p to a new point p′ �= p
and a simultaneous move of q to a new point q′ �= q such that p′q′ ‖ pq. Similarly,
a shift of a bent edge pq is defined to be a move of p to p′ and a simultaneous
move of q to q′ such that p′q′ is either a bent edge with components in the same
directions as those in pq or a straight edge whose direction is the same as that of
one of the components of pq. The concept of a shift can be generalised to a path
P in a full λ-SMT T as follows. A shift of P = ps1s2 . . . q is a perturbation of T
that moves the internal Steiner points si of P to s′

i (and fixes all other nodes of
T) such that the following conditions are satisfied:

(1) each internal Steiner point si of P moves along the line through si con-
taining the straight edge or half-edge of T incident to si not lying on P ; and

(2) the shift of P induces a shift on each internal edge of P .
Note that the effect of a shift is that it does not change the direction of any

straight edge of T except possibly the first and last edges of P .
Given a subpath of a full λ-SMT T , we define a shift on that subpath to be

a 0-shift if the shift does not increase the length of T . One of the key results on
0-shifts proved in [3] is the following.

Proposition 1. Given an exclusively primary edge or half-edge e1 and an ex-
clusively secondary edge or half-edge e2 in a full λ-SMT, there exists a 0-shift
on the path between the e1 and e2.

We define a fundamental 0-shift to be a (non-trivial) 0-shift that moves as
few Steiner points as possible. If λ = 3m (for some positive integer m) then a
fundamental 0-shift moves one Steiner point; if λ = 3m + 1 or 3m + 2 then a
fundamental 0-shift moves two adjacent Steiner points. The fundamental 0-shifts
are illustrated in Figure 2.

Theorem 1. Let T be a full λ-SMT. Any 0-shift in T can be decomposed into
a sequence of fundamental 0-shifts in T . (Proof omitted.)

200 M. Brazil, P. Winter, and M. Zachariasen

v2

v3

v1

s

p

p

s
�

�

����

���

����

s

'v1

v2

(a) (b)

v3

v1

p

s

p

p

s

�

�

����

���

����

'v1

v2

v3

s

p

p

s

Fig. 2. The fundamental 0-shifts for λ = 3m (cases (a) and (b)) and for λ �= 3m.
Exclusively primary and exclusively secondary edges are labelled p and s respectively

Consider the set S(N, T) of full and fulsome λ-SMTs for a terminal set N
and full Steiner topology T . For T ∈ S(N, T), define p(T) to be the sum of
the lengths of all exclusively primary edges in T and s(T) to be the sum of
the lengths of all exclusively secondary edges in T . We refer to p(T) and s(T)
as, respectively, measures of the amount of exclusively primary material and
exclusively secondary material in T . The following theorem shows that p(T) and
s(T) depend only on N and T .

Theorem 2. Let T ∈ S(N, T) be a full and fulsome λ-SMT with terminal set
N and topology T . Applying a 0-shift to T does not change the value of p(T) or
s(T). Furthermore, p(T) and s(T) are dependent only on N and T , not on the
choice of T . (Proof omitted.)

3 The Flexibility Polygon and Its Properties

In this section we establish the basic properties of the flexibility polygon, a
geometric object which allows us to determine the degree of flexibility available
in a given full and fulsome λ-SMT. This polygon indicates the extent to which
edges in the tree can be moved using 0-shifts without changing the length of the
tree. More precisely, it places tight bounds on the possible positions of the edges
of the trees in S(N, T), the set of full and fulsome λ-SMTs for a given terminal
set N and full Steiner topology T . Recall that we assume that S(N, T) �= ∅;
furthermore, we assume, without loss of generality, that |N | ≥ 3 and that every
Steiner point in T has degree 3. Note that all λ-SMTs in S(N, T) use the same
set of edge directions, that is, every tree can be obtained from another tree using
0-shifts [3].

The flexibility polygon F (N, T) for terminal set N and topology T is defined
to be the union of the embeddings of all λ-SMTs in S(N, T). We will show
that this union forms a simply connected region with a polygonal boundary
whose vertices include the terminals of T . Examples of flexibility polygons for
λ = 4 and λ = 6 are given in Figure 3. Notice that in some cases parts of the

Flexibility of Steiner Trees in Uniform Orientation Metrics 201

flexibility polygon may degenerate into single edges (indicating that some edges
may exhibit no flexibility at all).

λ = 4 λ = 6

Fig. 3. Examples of λ-SMTs and flexibility polygons

Consider a counter-clockwise outer walk of T , beginning and ending at the
same terminal. This walk allows us to place a cyclic ordering, t1(= tn+1), t2, . . . , tn
on the terminals of T . We define the concave paths in T to be the paths between
ti and ti+1 (for i = 1, . . . , n). In other words, these are paths between terminals
where at each intermediate Steiner point we leave using the rightmost outgoing
edge. Clearly, the set of all concave paths of T contains every edge of T exactly
twice — once in each direction. In fact, up to the starting terminal, the order
in which edges of the tree are visited by this outer walk of the tree is unique for
a given terminal set N and topology T ; this holds since all λ-SMTs in S(N, T)
can be obtained from each other using 0-shifts which do not change the ordering
of the edges meeting at Steiner points [3].

In this section we will show that, intuitively, the flexibility polygon F (N, T)
can be constructed by pushing every concave path in T as far to the right as
possible using 0-shifts. The resulting paths are referred to as rightmost concave
paths, and in Theorem 4 it is shown that the union of all such paths is the
boundary of F (N, T).

We begin by studying the flexibility of edges and paths in T . Consider some
Steiner point or corner point w in a λ-SMT T . Let Tw be one of the maximal
subtrees of T having w as a leaf. We say that Tw is a primary subtree if all edges
in Tw are primary edges, that is, use primary edge directions only. We define
secondary subtrees analogously. Now we have the following result:

Lemma 1. Let Tw be any primary subtree of T with some Steiner point or
corner point w as root and terminals as leaves. Let uv be an oriented edge in
Tw (oriented toward the root), and let u′v′ be the embedding of the same edge in
some λ-SMT for N and T . Then no part of u′v′ is to the right of the oriented
line through u and v. (Proof omitted.)

202 M. Brazil, P. Winter, and M. Zachariasen

A similar result holds if Tw is a secondary subtree of T ; in this case no part
of u′v′ is to the left of the oriented line through u and v.

v

v

v

v

v

v

v

T

T

T

T

T

1

2

2T

v3

3

4
4

56

5
7

7
8

6

Tv

v

v

T

2

1

v

4

3

2

3T

4

T6

T5v
6

v5

v8

v7

T 7

Fig. 4. The path P r and its associated subtrees Ti. On the left is the case where the
bent edge of P r lies on P r, and on the right the case where the bent edge does not lie
on P r

Consider a path P = v1v2 . . . vk−1vk connecting two terminals v1 and vk in
T . For i = 2, . . . , k− 1, let Ti denote the maximal subtree of T rooted at Steiner
point vi and not containing any edges of P (see Figure 4). We number the m
edges of T by making a depth-first traversal from v1. At every Steiner point vi

the subtree Ti is traversed before the edge vivi+1 is traversed. We call this a
depth-first traversal from v1 along P . Note that the numbering of the edges in P
depends only on the topology T . Let T r be the λ-SMT having the distribution
of primary and secondary edges that results from this numbering 1, . . . ,m of the
edges [3]; this means that there exists an integer k, with 1 ≤ k ≤ m, such that
all edges numbered less than k are primary, and all edges numbered greater than
k are secondary. The edge numbered k is the (possibly) bent edge.

Let P r = v1v
r
2 . . . v

r
k−1vk be the path in T r from v1 to vk. As a consequence

of Theorem 2, P r is uniquely defined for any depth-first traversal of T from v1
along P . In other words, the coordinates of the vertices of P r do not depend on
the choice of depth first traversal in each of the subtrees Ti. We say that P r is
the rightmost path from v1 to vk.

Theorem 3. Consider an oriented straight edge (or half-edge) uv on a rightmost
path P r from v1 to vk; let u′v′ be the embedding of the same edge in some λ-SMT
in S(N, T). Then no part of u′v′ is to the right of the oriented line through u
and v.

Proof. The shape of a rightmost path depends on the location of the bent edge
in T r. If the bent edge is located on P r, say on edge vr

i v
r
i+1, as in Figure 4

(left), all subtrees T r
2 , . . . T

r
i will clearly be primary subtrees while all subtrees

T r
i+1, . . . , T

r
k will be secondary subtrees. Alternatively, if the bent edge is located

in some subtree Ti, all edges in P r are straight edges, all subtrees T r
2 , . . . T

r
i−1

Flexibility of Steiner Trees in Uniform Orientation Metrics 203

primary subtrees, and all subtrees T r
i+1, . . . , T

r
k secondary subtrees (see Figure 4,

right). In both cases there exists on P r a node w, which may be either a corner
point or Steiner point, such that the subtree of T having w as root and containing
v1 is primary, while the subtree containing vk is secondary. The theorem follows
by applying Lemma 1.
�

The rightmost path of a concave path is called a rightmost concave path. We
now show that the flexibility polygon F (N, T) can be described in terms of the
rightmost concave paths for N and T .

Theorem 4. Let N be a set of terminals and T a full Steiner topology for N .
Then the flexibility polygon F (N, T) is a simply connected region whose boundary
is the union of the rightmost concave paths for N and T .

Proof. It immediately follows fromTheorem 3 that the outer boundary of F (N, T)
is the union of the rightmost concave paths for N and T .

Let T be a λ-SMT such that T ∈ S(N, T). To see that F (N, T) is simply
connected, consider, for each pair of terminals ti, ti+1 which are adjacent with
respect to boundary order, the region F r(P) between the concave path P =
ti . . . ti+1 of T and the corresponding rightmost concave path P r. The region
F r(P) is enclosed by the closed curve formed by P and P r. We will now show
that there exists a λ-SMT in S(N, T) that intersects every point in F r(P).
Clearly, this holds for all points on the boundary, that is, which are on either on
P or P r.

Therefore, consider a point p in the interior of F r(P). A sequence of 0-shifts
that transforms P to P r can be considered to be a continuous “contraction”
of the closed curve given by P and P r. Since p is not contained in the region
obtained (which is P r), there must be a point in time where the curve intersects
p. Thus there exists a λ-SMT in S(N, T) that intersects every point in F r(P).

The union of all regions F r(P) taken over all concave paths P of T is the
entire region bounded the rightmost concave paths for N and T .
�

4 Construction of Flexibility Polygon

In this section we give a linear time algorithm for constructing the flexibility
polygon F (N, T) for a set of terminals N and a full Steiner topology T . The
algorithm to construct the flexibility polygon for N and T consists of three steps,
each of which can be performed in O(λn) time (where n = |N |). In the following
we describe each of these steps in detail.

Step 1: Construction of a λ-SMT for N and T
The first step of the algorithm is to construct an arbitrary λ-SMT T ∈ S(N, T).
This can be accomplished in O(λn) time using the algorithm given in [3]. Let
p(T) and s(T) denote the total amounts of respectively exclusively primary and

204 M. Brazil, P. Winter, and M. Zachariasen

exclusively secondary material in T ; by Theorem 2 p(T) and s(T) depend solely
on N and T — and not on the particular λ-SMT T .

Let E(T) denote the set of oriented edges (or arcs) in T , and consider an
edge [u, v] ∈ E(T). All λ-SMTs in S(N, T) use the same set of (at most) two
edge directions for the edge [u, v] [3]. By analysing the tree T , we obtain these
(at most) two directions, corresponding to the the primary and secondary edge
directions. Let Θp[u, v] and Θs[u, v] denote the primary and secondary edge
directions for [u, v], respectively. Note that we either have Θs[u, v] = Θp[u, v]+ω
or Θs[u, v] = Θp[u, v] (the latter is only possible when λ is not a multiple of 3).

Step 2: Construction of Primary and Secondary Subtrees

The second step of the algorithm is to construct so-called primary and secondary
subtrees. For an edge [u, v] ∈ E(T) the maximal subtree of topology T rooted
at u and not containing v is denoted by T [u, v]. The primary subtree for T [u, v]
(if it exists) is the embedding of T [u, v] such that every edge of T [u, v] uses its
primary edge direction. In addition, we require that the amount of exclusively
primary edge material p[u, v] used by the primary subtree is less than p(T), the
total amount of exclusively primary material available. If the primary subtree
for T [u, v] exists, we let Φp[u, v] denote the coordinates of the node u in this
subtree; otherwise Φp[u, v] = nil.

The algorithm ConstructSubtrees given in Figure 5 computes Φp[u, v] for
every subtree T [u, v] in O(n) time; note that there are O(n) subtrees, since there
are O(n) oriented edges in E(T). In the algorithm (Φp[u, v], Θp[u, v]) denotes the
ray with source Φp[u, v] and direction Θp[u, v]. The function d∗(q1, q2) returns
the Euclidean distance between points q1 and q1 provided that the direction
from q1 to q2 is an exclusively primary direction — otherwise d∗(q1, q2) returns
zero.

In the first phase of the algorithm (lines 1–10), we initialize Φp[u, v] for every
subtree T [u, v]. Also, every subtree T [u, v] such that u is a Steiner point with
two terminals (other than v) as neighbours is inserted into a queue Q. The queue
Q holds all subtrees T [u, v] that can be constructed at given point in time. A
subtree T [u, v] can be constructed if the children of u in T [u, v] already have been
constructed. Since any Steiner topology has at least one Steiner point with two
neighbouring terminals, the queue is non-empty when the initialization phase
finishes.

In the second phase of the algorithm (lines 11–23) we construct the subtrees
that have been inserted into Q. The subtree is only constructed if the total
amount of exclusively primary material is less than the total amount of exclu-
sively primary material in T (lines 17–18). If the construction succeeds and v is
a Steiner point, we investigate if the newly constructed subtree can be used to
construct some larger subtree (lines 20–23). This is done by checking if either of
the neighbours of v (other than u) already have had their subtree constructed;
if this is the case then subtree rooted at v is inserted into Q.

Lemma 2. Algorithm ConstructSubtrees correctly constructs all primary
subtrees in O(n) time.

Flexibility of Steiner Trees in Uniform Orientation Metrics 205

ConstructSubtrees(N , T , T)
1 // Initialization phase
2 Q = ∅ // empty queue of oriented edges (=subtrees)
3 forall [u, v] ∈ E(T) do
4 if u ∈ N then
5 Φp[u, v] = u; p[u, v] = 0
6 else
7 Φp[u, v] = nil; p[u, v] = ∞
8 Let v1 and v2 be the two neighbours of u other than v
9 if v1 ∈ N and v2 ∈ N then

10 Enqueue(Q, [u, v]) // u has two neighbouring terminals
11 // Construction phase
12 while Q �= ∅
13 [u, v] = Dequeue(Q)
14 Let v1 and v2 be the two neighbours of u other than v
15 Let r be the intersection (if any) between

the rays (Φp[v1, u], Θp[v1, u]) and (Φp[v2, u], Θp[v2, u])
16 if r exists then
17 p[u, v] = p[v1, u] + p[v2, u] + d∗(Φp[v1, u], r) + d∗(Φp[v2, u], r)
18 if p[u, v] < p(T) then
19 Φp[u, v] = r // subtree T [u, v] has now been constructed
20 if v is a Steiner point then
21 Let u1 and u2 be the two neighbours of v other than u
22 if Φp[u1, v] �= nil then Enqueue(Q, [v, u2])
23 if Φp[u2, v] �= nil then Enqueue(Q, [v, u1])

Fig. 5. Construction of primary subtrees of topology T

Proof. The running time analysis is straightforward, since each oriented edge in
E(T) is inserted into Q at most once. Processing an edge (=subtree) takes O(1)
time.

The correctness follows by induction on the depth of the constructed subtrees.
The base cases are the subtrees consisting of terminals only (that have depth
0), and Steiner points with terminals as children (that have depth 1); the latter
are inserted into the queue Q in the initializaion phase and therefore obviously
constructed. For the induction step, assume that all subtrees with depth up to
k ≥ 1 have been constructed. It is then clear that subtrees of depth k + 1 will
also be constructed, since these are inserted into Q when the smaller depth trees
are constructed.
�

By using an analogous algorithm, we can also construct all secondary subtrees
in O(n) time. Here we let Φs[u, v] denote the coordinates of the node u in the
secondary subtree T [u, v].

Step 3: Construction of the Boundary of the Flexibility Polygon

Consider the section of the flexibility polygon between a pair of consecutive ter-
minals ti and ti+1 (with respect to the terminal ordering from a counter-clockwise

206 M. Brazil, P. Winter, and M. Zachariasen

outer walk of the tree). This is a rightmost concave path. It is constructed iter-
atively by building from ti a path of edges of primary subtrees — constructed
in step 2 — until we have a sequence of consecutive nodes u, v and w such
that Φp[u, v] �= nil and Φp[v, w] = nil (or Φp[u, v] �= nil and v = ti+1). We
distinguish between two cases:

– The secondary subtree T [v, u] exists (i.e., Φs[v, u] �= nil). By Theorem 3
the intersection between the rays (Φp[u, v], Θp[u, v]) and (Φs[v, u], Θs[v, u])
must exist and defines a corner point of a bent edge. The boundary of the
flexibility polygon consists of primary edges from ti up to the corner point,
and secondary edges from the corner point to ti+1 (Figure 4, left).

– The secondary subtree T [v, u] does not exist. By Theorem 3 the secondary
subtree T [w, v] must exist. The intersectionbetweentherays(Φp[u,v],Θp[u,v])
and (Φs[w, v], Θs[w, v]) defines the position of Steiner point v on the bound-
ary of the flexibility polygon. Thus the boundary of the flexibility polygon
consists of primary edges from ti up to the Steiner point v, and secondary
edges from v to ti+1 (Figure 4, right).

Therefore, by using the information computed in steps 1 and 2, we can construct
the complete boundary of the flexibility polygon in one counter-clockwise outer
walk of T .

Theorem 5. The flexibility polygon for a set of terminals N and topology T
(where n = |N |) can be constructed in time O(λn).

5 Conclusion

The flexibility polygon is a compact description of the region in which λ-SMTs
for a given set of terminals may be embedded. In VLSI routing a huge number
of Steiner trees must be routed simultaneously on the surface of the chip. By
placing the flexibility polygons for all nets on top of each other, congested regions
are identified where many polygons overlap (Figure 6). Furthermore, this gives
the basis for a completely new routing paradigm in VLSI routing (in arbitrary
λ-geometry): Congested regions in the overlay graph associated with flexibility
polygons give an indication of which nets are in congested regions. These nets
should preferably be routed first in such a way that they avoid these regions.

Flexibility polygons have recently been used in a prototype of a new VLSI
router for nets in λ-geometry [6]. Although computational results are still lim-
ited, and the router is only a prototype, the usability of flexibility polygons is
remarkable when it comes to avoiding congested areas while keeping nets at
minimal length with very few vias (changes of routing layers).

Using similar techniques, we have also been able to describe the regions in
which individual Steiner points in a λ-SMT may be placed. This immediately
gives flexibility regions for individual edges and bounds on their lengths under
0-shifts. We believe that these results will be important in improving delay-
related measures for nets in VLSI routing. Finally, our result on the invariability

Flexibility of Steiner Trees in Uniform Orientation Metrics 207

Fig. 6. Overlay of flexibility polygons in VLSI routing. One the left is a full picture of
a small chip, and on the right a zoom-in of a region of the picture of the left. Darker
regions indicate more congested regions

of exclusively primary/secondary edge material in a full and fulsome λ-SMT has
the potential to improve existing exact algorithms for computing λ-SMTs.

Acknowledgments. This work was partially supported by a grant from the Aus-
tralia Research Council and by a grant from the Danish Natural Science Research
Council (51-00-0336).

References

1. E. Bozorgzadeh, R. Kastner, and M. Sarrafzadeh, Creating and exploiting flexibil-
ity in Steiner trees, IEEE Trans. on Computer-Aided Design, 22 (2003), 605-615.

2. M. Brazil, D. A. Thomas, and J. F. Weng, Minimum networks in uniform orienta-
tion metrics, SIAM J. Comput., 30(2000), 1579-1593.

3. M. Brazil, D. A. Thomas, J. F. Weng, and M. Zachariasen, Canonical forms and
algorithms for Steiner trees in uniform orientation metrics. Tech. Rep. 02-22, De-
partment of Computer Science, University of Copenhagen, 2002.

4. H. Chen, C. K. Cheng, A. B. Kahng, I. Mandoiu, Q. Wang and B. Yao, The Y-
architecture for on-chip interconnect: Analysis and methodology, Proc. IEEE/ACM
Intl. Conf. Computer-Aided Design, 2003, 13–19.

5. B. K. Nielsen, P. Winter, and M. Zachariasen, An exact algorithm for the
uniformly-oriented Steiner tree problem, LNCS 2461, Proceedings of the 10th Eu-
ropean Symposium on Algorithms, (2002), 760–772.

6. M. Paluszewski, P. Winter, and M. Zachariasen, A new paradigm for general ar-
chitecture routing, ACM Great Lakes Symp. on VLSI, (2004), 202–207.

7. S. Peyer, M. Zachariasen, D. G. Jørgensen, Delay-related secondary objectives for
rectilinear Steiner minimum trees. Discrete Applied Mathematics, 136(2004), 271–
298.

208 M. Brazil, P. Winter, and M. Zachariasen

8. M. Sarrafzadeh and C. K. Wong, Hierarchical Steiner tree construction in uniform
orientations, IEEE Trans. on Computer-Aided Design, 11(1992), 1095–1103.

9. S. Teig, The X Architecture, Proc. ACM/IEEE Workshop on System Level Inter-
connect Prediction, (2002), 33–37.

10. P. Widmayer, Y. F. Wu, and C. K. Wong, On some distance problems in fixed
orientations. SIAM J. Comput., 16(1987), 728–746.

11. The X Initiative, http://www.xinititive.com.

Random Access to Advice Strings and
Collapsing Results

Jin-Yi Cai and Osamu Watanabe

1 Computer Sci. Dept., Univ. of Wisconsin, Madison, WI 53706, USA
jyc@cs.wisc.edu

2 Dept. of Math. and Comp. Sci., Tokyo Inst. of Technology
watanabe@is.titech.ac.jp

Abstract. We propose a model of computation where a Turing machine
is given random access to an advice string. With random access, an ad-
vice string of exponential length becomes meaningful for polynomially
bounded complexity classes. We compare the power of complexity classes
under this model. It gives a more stringent notion than the usual model
of computation with relativization. Under this model of random access,
we prove that there exist advice strings such that the Polynomial-time
Hierarchy PH and Parity Polynomial-time ⊕P all collapse to P. Our main
proof technique uses the decision tree lower bounds for constant depth
circuits [Yao85,Cai86, H̊as86], and the algebraic machinery of Razborov
and Smolensky [Raz87, Smo87].

1 Introduction

In computational complexity theory, we cannot separate between many complex-
ity classes. It is generally believed that these separation results are very hard to
prove. Among the supporting evidence for such a pessimistic belief, people fre-
quently cite the collapsing results under relativization, especially for complexity
classes defined in non-randomized terms, such as P, NP, Σp

d , ⊕P, PSPACE, etc.
Consider, for example, the most famous P vs. NP conjecture. Baker, Gill

and Solovay [BGS75] showed that we can relativize it in both ways. That is,
there exist two oracles A and B such that PA = NPA (the collapsing) holds
and PB �= NPB (the separation) holds. Intuitively, for each oracle set X, the
relative computation model allowing oracle queries to X provides a “relativized
complexity world” where all computation is the same as our real world except
that one can use some special set of instructions, i.e., queries to the oracle set X.
It is said that most of known proofs can be relativized; that is, they are applicable
in such relativized worlds. Therefore, having the above oracles A and B means
that these proof techniques can not resolve the P vs. NP conjecture. For P vs.
NP or PSPACE, perhaps the most straightforward proof of a relativized collapse
is PQBF = NPQBF = PSPACEQBF.

However, we feel that this argument is basd on a model of computation which
is not stringent enough. This is especially true for most of the relativized col-
lapsing results. More precisely, relativized collapsing results are often proved by

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 209–220, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

210 J.-Y. Cai and O. Watanabe

allowing stronger usage of an oracle to a simulating machine than to a simulated
machine.

Consider two complexity classes C1 (such as P) and C2 (such as NP or
PSPACE). Let {Mi} be an enumeration representing the class C2, and let M
be an arbitrary machine from this enumeration. A typical proof for a relativized
collapsing result is to code the computation of M for inputs of length n, in the
oracle, in such a way that another machine M′ representing C1 can recover the
results. In order not to “interfere” with computations of M at length n, these
results are coded at locations beyond what M can access at input of length n,
andM′ is allowed a running time and oracle access greater than that ofM. This
encoding is sometimes explicitly carried out, sometimes implicitly done such as
with the proof of PQBF = PSPACEQBF. In terms of the simulation by the PQBF

machine M′ simulating the PSPACEQBF computation M on an input x, M′

will access an oracle location polynomially longer than where the corresponding
access M makes. That is, M′ is given more powerful oracle access than M. One
can argue that this asymmetry is within a polynomial factor, but it nonetheless
denies access to certain segments of the oracle to the simulated machine while
affords such access to the simulating machine. Moreover, if one actually rela-
tivizes the proofs of the few separation results such as the hierarchy theorems,
one observes that this asymmetry is not present in the relativized proof.

In order to rectify this problem we propose a model of computation that is
more stringent than the usual relativization computation. This turns out to be
equivalent to a generalization of the notion of advice strings proposed by Karp
and Lipton [KL80]. Intuitively, any relativized result can be regarded as a com-
parison between complexity classes under a certain nonuniform setting provided
by an (infinite) advice, namely an oracle. Here we generalize the advice string
formulation of Karp and Lipton by allowing random access to the advice string,
so that advice strings longer than polynomial length become meaningful for poly-
nomial time bounded computations. Then we compare complexity classes, given
such nonuniform advice strings. That is, we compare two machines M1 and M2
(from complexity classes C1 and C2 respectively) that have random access to the
same advice string sn that is a priori given for their computation of any input
of length n. Both machines will have complexity bounds that allow access to
any bit of the advice string. This way we compare them on the same footing.
Note that, since the advice string has a length accessible to both M1 and M2,
we cannot in general “preserve” the computation of one and let it be read by
another, as in the usual relativization model.

Our main results in this paper show that both parity polynomial-time ⊕P
and the polynomial-time hierarchy PH collapse to P for some exponential-size
advice strings. More precisely, for P and ⊕P (resp., P and PH), we show some
set {sn}n≥0 of advice strings of length 2(1+ε)n, i.e., each sn of length 2(1+ε)n,
with which ⊕P (resp., PH) collapses to P. We use decision tree lower bounds
for constant depth circuits [Yao85, Cai86, H̊as86] and the algebraic machinery of
Razborov and Smolensky [Raz87, Smo87]. It is open whether one can collapse
PSPACE and P with some set of advice strings of some exponential size.

Random Access to Advice Strings and Collapsing Results 211

Results of this type are mainly of value in delineating the limit of our ability
to settle some outstanding questions on complexity classes. Our model of ran-
dom access to advice strings provides a more stringent model than the usual
relativization model, and therefore it provides a more stringent perspective on
the “provability” question. The open status of a collapse of PSPACE to P un-
der random access to advice is particularly interesting in view of a result of
Kozen [Ko78]: If PSPACE �= P, then there exists a proof of this fact by diago-
nalization.

2 Random Access to Advice Strings

Recall the definition of C/poly by Karp and Lipton [KL80]. We generalize this
notion by allowing the underlying machines to have random access to an advice
string. Let us fix any “length function” � from N to N. A function s : n �→
{0, 1}�(n) is called an advice function of size �(n). Given any advice function
s of size �(n), we say a language L is in the class C/s via random access to
advice if there is some machine M representing the class C, such that x ∈ L iff
M(x; s(|x|)) accepts, where we denote the computation M on x with random
access to s(|x|) by M(x; s(|x|)). (The notion of random access is the usual one:
A machine M can write down an index to a bit of s(|x|) on a special tape and
then it gets that bit in unit time.) We denote this language as L(M; s). Clearly,
if a time bound being considered is larger than the advice size, then the random
accessibility is not necessary, and this notion is the same as the one by Karp and
Lipton. (In the following, all complexity bounds and length functions are time
and space constructible as appropriate. Furthermore, we assume that log(�(n)) is
polynomially bounded, which is reasonable for comparing with polynomial-time
classes even if we allow random access to an advice string.)

Let s be any advice function. We say collapsing occurs w.r.t. s (write as
C1/s ⊆ C2/s) if for every machine M1 representing C1, there is a machine M2
representing C2, such that L(M1; s) = L(M2; s). We say two classes are equal
w.r.t. s (write as C1/s = C2/s) if both C1/s ⊆ C2/s and C2/s ⊆ C1/s. On the
other hand, we say separation occurs w.r.t. s (write as C1/s �⊆ C2/s) if there
exists some machine M1 representing C1 such that L(M1; s) �= L(M2; s) for
any machine M2 representing C2.

Then our main results can be stated as follows.

Theorem 1. For any length bound �(n) ≥ 2(1+δ)n, where δ > 0 is any pos-
itive constant, there exists an advice function s of advice size �(n) such that
⊕P/s = P/s.

Remark. The same result is provable for the relationship between P and Modp

class, for any prime p. Also δ > 0 can be improved. We only need �(n)/2n to be
superpolynomial.

Theorem 2. For any length bound �(n) ≥ 2(1+δ)n, where δ > 0 is any pos-
itive constant, there exists an advice function s of advice size �(n) such that
PH/s = P/s.

212 J.-Y. Cai and O. Watanabe

3 Class P Versus Class ⊕P

In this section we consider the relation between P and ⊕P and prove Theorem 1.
The proof techniques will be extended in the next section to prove Theorem 2.

To simplify the presentation we will consider only log(�(n)) = (1 + δ)n. It is
easy to extend the following proof to any �(n) with log(�(n)) ≥ (1 + δ)n.

Proof of Theorem 1. Let M1,M2, . . . be a standard enumeration of all ⊕P
machines. Our goal is to construct an advice function s with s(n) ∈ {0, 1}�(n),
with which the computation of every Mi(x; s(|x|)) can be simulated by some
P computation with the common advice s(|x|). Let us fix any ⊕P machine M
and any input length n, and discuss how to design s(n) so that some P machine
can simulate M on {0, 1}n with advice s(n). It would be easy later to “paste”
together a single s(n) for all machines to be considered at length n. (Only finitely
many need to be dealt with at any finite length n. We will omit this detail.)

Let m = nO(1) be the maximum number of accesses to the advice string made
by M on any nondeterministic path on any input of length n. We assume that
n is sufficiently large.

Let L = 2(1+δ)n. We will consider the advice string s(n) of length L as being
indexed by a binary string of length I = (1 + δ)n.

For any x ∈ {0, 1}n, define Sx to be some subset of {0, 1}I of size ≈ nm.
We want {Sx}x∈{0,1}n to be a family of pair-wise disjoint subsets of {0, 1}I . For
example, for s = �log nm�, we can define

Sx = {xu0I−(n+s) |u ∈ {0, 1}s }.
Each string in

⋃
x∈{0,1}n Sx is the index of a bit in s(n). We assign Boolean

variables for these bits, and denote the set of these Boolean variables as Z. Let
M = |Z|; note that M ≤ 2nm2n) 2I . Let us name the Boolean variables in Z
as z1, z2, . . . , zM .

Assign arbitrarily the bit values for all bits in s(n) other than those in Z.
Then, for any input x ∈ {0, 1}n, M(x; s(n)) is completely determined by the
values of zi. That is, M(x; s(n)) is a function on Boolean variables z1, . . . , zM .
Furthermore, sinceM(x; s(n)) is a parity computation asking at most m queries
on each nondeterministic path, we may consider M(x; s(n)) as a parity (or its
negation) of (at most

∑m
i=0 2i

(
M
i

)
many) conjunctions of at most m literals

from z1, . . . , zM . Thus, M(x; s(n)) is expressed by a polynomial fx(z1, . . . , zM)
of degree ≤ m with integer coefficients mod 2. Note that fx(z1, . . . , zM) is mul-
tilinear, because we may assume that each bit is not queried more than once on
each nondeterministic path.

Now we would like to assign z1, . . . , zM so that the following system of equa-
tions (∗1) holds (under the mod 2 computation) for {0, 1}n = {x1, . . . , xN}
(where N = 2n).

(∗1)

⎧⎪⎪⎨⎪⎪⎩
fx1(z1, . . . , zM) = 1−

∏
zj∈Sx1

zj ,

...
fxN

(z1, . . . , zM) = 1−
∏

zj∈SxN
zj .

Random Access to Advice Strings and Collapsing Results 213

If this assignment is feasible (i.e., the advice string s(n) is constructed satisfying
(∗1)), then for any x ∈ {0, 1}n, one simply needs to check the membership of
elements of Sx;M(x; s(n)) can then be computed as 1−

∏
zj∈Sx

zj in polynomial
time.

Suppose, for a contradiction, that this is impossible to achieve. Then, since
for every 0 or 1 value of z1, . . . , zM , each fx takes a 0 or 1 value, it follows that
for every assignment to the z1, . . . , zM , there exists some x ∈ {0, 1}n such that

fx(z1, . . . , zM) =
∏

zj∈Sx

zj .

Thus, for all 0,1-assignments to z1, . . . , zM , we have

∏
1≤i≤N

⎡⎣ ∏
zj∈Sxi

zj − fxi
(z1, . . . , zM)

⎤⎦ = 0.

Then it follows from Fact 1 stated below that modulo the ideal J = (z2
1 −

z1, . . . , z
2
M − zM), the left hand side expression is identical to 0. In other words,

we have the identity ∏
1≤i≤N

∏
zj∈Sxi

zj = L(z1, . . . , zM),

in the ring Z2[z1, . . . , zM]/J , where L is a polynomial of degree at most (N −
1)2s+m. On the other hand, the degree of the lefthand side of the above equality
is N2s, which is larger than (N − 1)2s +m. A contradiction. �

Fact 1. For any prime p, let F (x1, ..., xn) be a polynomial evaluated to 0 modulo
p on all 0,1-assignments to x1, ..., xn. Then modulo the ideal J = (x2

1−x1, ..., x
2
n−

xn), i.e., in the ring Zp[x1, ..., xn]/J , F (x1, ..., xn) is identical to 0.

4 Class P Versus Class PH

We now show that there exists an advice function of advice size 2(1+δ)n, such
that the class PH collapses to P with random access to the advice strings given
by the advice function. The modification in the proof from 2(1+δ)n to larger �(n)
is obvious. For simplicity of presentation we will assume �(n) = 2(1+δ)n in what
follows. We prove the following result for a fixed level Σp

d ; the construction for
the advice string for PH follows since PH is a countable union of classes Σp

d ,
d ≥ 0.

Theorem 3. For any constant d ≥ 0, and constant δ > 0, let �(n) = 2(1+δ)n;
then there exists an advice function s of advice size �(n) such that Σp

d/s = P/s.

214 J.-Y. Cai and O. Watanabe

Before stating our proof in detail, we explain its outline and some background.
We begin by recalling the decision tree version of the Switching Lemma.

Some notions and notations first. For any Boolean function f over variables
x1, . . . , xn, a random restriction ρ is a random function that assigns each xi either
0, 1, or ∗, with probability Pr[ρ(xi) = ∗] = p (for some specified parameter p) and
Pr[ρ(xi) = 0] = Pr[ρ(xi) = 1] = (1 − p)/2, for each i independently. Assigning
∗ means to leave it as a variable. Let f |ρ denote a function obtained by this
random restriction.

The decision tree complexity of a Boolean function f , denoted by DC(f), is
the smallest depth of a Boolean decision tree computing the function. It can be
shown easily that if DC(f) ≤ t, then f can be expressed both as an AND of
OR’s as well as an OR of AND’s, with bottom fan-in at most t. Moreover, what
is crucial for our argument is the following property: If DC(f) ≤ t, then f can
be expressed as a polynomial on the variables, with integer coefficients and with
degree at most t. In fact this polynomial always evaluates to 0 or 1, for any 0-1
assignments to its variables.

Superpolynomial lower bounds for constant depth circuits were first proved by
Furst, Saxe and Sipser [FSS81], and by Ajtai [Ajt83]. Exponential lower bounds
of the form 2nΩ(1/d)

for depth d circuits were first proved by Yao [Yao85] in a
breakthrough result. Yao’s bound was further improved by H̊astad [H̊as86] to

2
1
10 n

1
d−1 , and his proof has become the standard proof. Independently, Yao’s

work was improved upon in another direction. Cai [Cai86] investigated whether
constant depth circuits of size 2nΩ(1/d)

must err on an asymptotically 50 % of
inputs against parity. To attack this problem, the decision tree point of view was
first introduced in [Cai86]. This approach in terms of inapproximability has been
found most fruitful in the beautiful work of Nisan and Wigderson [Nis91, NW94]
on pseudorandom generators.

Adapting H̊astad’s proof to the decision tree model, one can prove the fol-
lowing.

Lemma 1. For any depth d + 1 Boolean circuit C on z1, . . . , zL, with bottom
fan-in at most t,

Pr[DC(C |ρ) ≥ t] ≤ size(C)
2t

,

where ρ is a random restriction with the parameter p = Pr[zi = ∗] = 1/(10t)d.

We now explain our construction. Fix anyΣp
d machineM and any sufficiently

large input length n. We want to construct s(n), such that the computation
M(x; s(n)) can be simulated by a polynomial-time deterministic machine, for
all x of length n. Constructing the advice function s for the simulation of all Σp

d

machines can be done as before for ⊕P and is omitted here.
Thus, from now on, we are concerned with the simulation of M on 2n inputs

of length n. Let m be an integer bounding M’s running time on inputs of length
n, where m = O(nk) for some k ≥ 0. Let I = (1 + δ)n and L = 2I . Let

Random Access to Advice Strings and Collapsing Results 215

z1, z2, . . . , zL be Boolean variables denoting the bits in s(n). Let Z denote the
set of all Boolean variables z1, . . . , zL. With a slight abuse of notation we will
also let Z denote a set of corresponding indeterminants.

For any input string x ∈ {0, 1}n, consider the computation of M(x; s(n)).
The computation M(x; s(n)) is a function from the Boolean variables z1, . . . , zL

to {0, 1}. Furthermore, since M is a Σp
d machine, by a standard interpretation

(see [FSS81]) of the Σp
d query computation, we may regardM(x; s(n)) as a depth

d+1 circuit on input variables z1, . . . , zL, of size at most m2m and bottom fan-in
at most m.

Our first step is to assign a random restriction ρ to z1, . . . , zL of an appropri-
ate probability p0 = Pr[zi = ∗]. By Lemma 1, with high probability the circuit is
reduced to small depth decision trees with depth t = 2m. In fact, by choosing p0
appropriately, we can even show that with high probability, a random restriction
converts all circuits for all 2n input strings to depth t decision trees.

Then these small depth decision trees can be expressed by low degree (i.e.,
degree 2m) polynomials with integer coefficients. That is, after the random re-
striction, each computation M(x; s(n)) is expressed as a degree 2m polynomial
px. We have arrived at a similar situation to the parity computation. We will
use a similar technique to attack this. However the exact approach in the ⊕P
case does not work.

In the ⊕P case the function encoded is essentially the AND function
∧
zj .

This will not survive the random restriction. Instead we will try to encode the
parity on a suitable subset, one for each x. Our encoding is implemented as
follows. For each x ∈ {0, 1}n, we define a segment Sx ⊂ {0, 1}I of enough size,
roughly speaking, 20m/p0, which is polynomial in n. These segments are chosen
so that the family {Sx}x∈{0,1}n is pair-wise disjoint. As in the proof of previous
section, we would like to use the assignment of variables in Sx to encode the result
of M(x; s(n)). Here notice that the random restriction ρ has already assigned
values to some of the variables in Sx. But since (i) |Sx| = 20m/p0, and (ii)
variables remain unassigned with probability p0, we can prove that with high
probability, all segments Sx have at least 3m unassigned variables after the
random restriction. We use these unassigned variables for encoding.

Thus, there exists a random restriction satisfying the following.

(a) Each computation M(x; s(n)) is reduced to a decision tree Tx of depth at
most 2m.

(b) Each segment Sx has at least 3m unassigned variables, i.e., assigned ∗ by
the restriction.

Fix ρ0 to be one such restriction. Denote by Z0 the set of variables in
⋃

x∈{0,1}n Sx

that are assigned ∗ by ρ0, and rename variables so that Z0 = {z1, . . . , zM} and
Z − Z0 = {zM+1, . . . , zL}.

The restriction ρ0 may assign ∗ to some variables in Z − Z0, we now assign
all such variables to 0. Then as explained above, the result of each computation
of M(x; s(n)) is expressed as a degree 2m polynomial px(z1, . . . , zM) over the
integers Z. For each x, we try to equate px(z1, . . . , zM) to the parity of Sx, i.e.,
⊕zi∈Sxzi. (Note that Sx contains variables not in Z0 = {z1, . . . , zM} whose values

216 J.-Y. Cai and O. Watanabe

are already fixed. By the term ⊕zi∈Sx
zi, we mean the parity of all variables in

Sx including such variables.) In other words, we wish to choose an assignment
to z1, . . . , zM so that the following system of equations (∗2) holds for {0, 1}n =
{x1, . . . , xN}, where N = 2n.

(∗2)

⎧⎪⎨⎪⎩
px1(z1, . . . , zM) = ⊕zj∈Sx1

zj ,
...

pxN
(z1, . . . , zM) = ⊕zj∈SxN

zj .

Using a trick of exchanging 0,1 values by 1,−1 values, and reason about
dimensions over a finite field Z3, we can give an argument similar to the one
in the previous section, and show that it is indeed possible to find such an
assignment. Then the result follows.

Now we specify the parameters and the conditions explained above, and de-
scribe our proof precisely.

We focus on the simulation of some Σp
d machine M(x; s(n)) on N (= 2n)

inputs of length n for sufficiently large n. Let m = O(nk) be an integer bounding
M’s running time on length n inputs, and let I = (1+δ)n and L = 2I . We regard
the computation of M(x; s(n)) as a function over Boolean variables z1, . . . , zL,
where each zi is the boolean variable for a bit in s(n). Furthermore, we may
consider M(x; s(n)) as a circuit Cx of depth ≤ d+ 1, size ≤ m2m, and bottom
fan-in ≤ m.

As explained above,we consider a randomrestriction to the variables z1, . . . ,zL,
with p0 = 1/(20m)d being the probability Pr[zi = ∗]. For each x ∈ {0, 1}n,
the segment Sx is defined by Sx = {xu0�−n−n0 : u ∈ {0, 1}n0 }, where n0 =
�log2 20m/p0� = �(d + 1) log2 20m�. Clearly, any Sx and Sx′ , for x �= x′, are
disjoint, and |Sx| is of size larger than 20m/p0 but still polynomial in n.

We want some random restriction ρ, such that it satisfies the following two
conditions.
(a) For every x ∈ {0, 1}n, the circuit Cx is reduced to a depth t = 2m decision

tree.
(b) For every x ∈ {0, 1}n, the segment Sx has at least 3m unassigned variables.
By using Lemma 1 and Chernoff’s bound (see, e.g., Corollary A.1.14 of [AS00]),
it is easy to show the following claim:

Claim. Under our choice of parameters, the probability that a random restriction
ρ satisfies both (a) and (b) is not zero.

Hence, there exists some random restriction satisfying both (a) and (b).
Consider one of the restrictions ρ0 satisfying both (a) and (b). We define

s(n) based on this ρ0; that is, we will assign a bit in s(n) to 0 or 1 according
to ρ0. We will assign those variable assigned ∗ by ρ0 later. Let Z∗ be the set
of variables assigned ∗ by ρ0. From condition (b) it follows that each Sx has
at least 3m variables in Z∗. For each Sx, we pick lexicographically the first 3m
such variables, and define Z0 to be the set of those variables, over all x. Note
that Z0 has exactly 3mN variables because all Sx’s are disjoint. By renaming

Random Access to Advice Strings and Collapsing Results 217

variables, we assume that Z0 = {z1, . . . , zM}, where M = 3mN . We assign 0 to
all variables in Z∗ − Z0; thus, Z0 is the set of remaining unassigned variables.

From condition (a), the computation M(x; s(n)) for each x ∈ {0, 1}n is rep-
resented as a depth 2m decision tree Tx on z1, . . . , zM . Then we can express
Tx as a low degree polynomial px in the following way. For the trivial decision
tree of depth 0 (where no variable is accessed at all), the value is a constant
0 or 1. Inductively, suppose in the decision tree T , the first branch is on the
variable zi, and depending on its value, its left subtree is T0 for zi = 0, and its
right subtree is T1 for zi = 1. Then we see immediately that the polynomial p
= (1 − zi)p0 + zip1 evaluates to the truth value of T , where p0 and p1 are the
polynomials that correspond to the subtrees T0 and T1 respectively. In this way,
we can define the polynomial px computing the value of Tx. Note here that the
degree of p is at most 1 + max{deg p0,deg p1}. In particular, we have deg px ≤
2m for each decision tree Tx.

For these polynomials px, x ∈ {0, 1}n, we show below that there exists an
0,1-assignment to variables in Z0 satisfying (∗2) above. We complete ρ0 by using
one of such assignments, and define s(n) accordingly. Then one can compute the
value ofM(x; s(n)), for each x ∈ {0, 1}n, by asking queries on all the bits indexed
in Sx and taking the parity of the answers. Since the size of Sx is polynomially
bounded in n, this is a P computation with random access to s(n).

Now the remaining task is to prove that (∗2) has a solution. Let us first
transform (∗2) to a system of equations in Z3. Note that the polynomials px,
though defined over the integers Z, only evaluate to the values 0 or 1 when each
zi takes either 0 or 1. This fact is verified inductively by looking at the above
decomposition p = (1 − zi)p0 + zip1. Furthermore, this property is invariant
even if the polynomials are evaluated modulo q, for any prime q. Thus, we may
argue these polynomials under the modulo q computation, for any prime q. In
particular, we consider the polynomials under the modulo 3 computation, i.e.,
over the finite field Z3.

Then by a linear transformation, we can change the representation of 0 and
1 by +1 and −1 respectively; that is, 0 is represented by +1 and 1 by −1. More
specifically, for each polynomial px, we replace zi by z′

i = 1 + zi, and express
p′

x = 1 + px as polynomials in z′
i’s. Note that when zi = 0 and 1 respectively,

z′
i = 1 and −1 respectively, and similarly for px and p′

x. On the other hand, the
parity is now expressed by simply a product. (In the following we will rewrite zi

for z′
i and px for p′

x.) Thus, the system of equations (∗2) is transformed into the
following system of equations in Z3.

(∗3)

⎧⎪⎪⎨⎪⎪⎩
px1(z1, . . . , zM) =

∏
zj∈Sx1

zj = αx1 ·
∏

zj∈Z0∩Sx1
zj

...
pxN

(z1, . . . , zM) =
∏

zj∈SxN
zj = αxN

·
∏

zj∈Z0∩SxN
zj .

Where each αx ∈ {−1,+1} denotes the product of all determinate variables zi

∈ Sx − Z0.
We claim that there is at least one assignment to ±1 for all zi ∈ Z0 satisfying

(∗3). Suppose, for a contradiction, that there is no such assignment. Then, since

218 J.-Y. Cai and O. Watanabe

for every ±1 values of z1, . . . , zM , each px takes a ±1 value, it follows that for
every +1,−1-assignment (a1, . . . , aM) to the zi’s, there must be at least one x
such that

px(a1, . . . , aM) = − αx ·
∏

zi∈Z0∩Sx

ai.

Thus, we have

∏
1≤i≤N

⎡⎣αxi

∏
zj∈Z0∩Sxi

zj + pxi
(z1, . . . , zM)

⎤⎦ = 0,

for all +1,−1-assignments to z1, . . . , zM . Then it follows that the lefthand side
expression is identical to 0 modulo the ideal I = (z2 − 1 : z ∈ Z0). In other
words, we have the identity∏

1≤i≤N

∏
zj∈Z0∩Sxi

zj = L(z1, . . . , zM)

in the ring Z3[z1, . . . , zM]/I, where L is a multilinear polynomial of degree at
most 3m(N − 1) + 2m. On the other hand, the lefthand side is multilinear and
its degree is 3mN , which is larger than 3m(N − 1) + 2m. A contradiction.

This completes the proof of Theorem 3, and hence Theorem 2. With some
more work one can show

Theorem 4. For any prime p, and for any length bound �(n) ≥ 2(1+δ)n, where
δ > 0 is any positive constant, there exists an advice function s of advice size
�(n) such that ModPH

p /s = P/s.

5 Relations to the Conventional Relativized Results

Our nonuniform comparison is a restricted type relativization. Here we explain
the position of our results and proofs in the existing relativized results.

First it should be noted that most relativized separation results are proved
in a stringent way; that is, the proofs of such results can be modified easily for
proving the same separation w.r.t. some advice function of some exponential
(or super-polynomial) advice size. Most typically we can prove the following
relation.

Proposition 1. For any super-polynomial length bound �(n), there exists an
advice function s of advice size �(n) such that NP/s �⊆ P/s.

Since our nonuniform notion is a generalization of the standard nonuniform
model by Karp and Lipton, there are immediate implications for our nonuniform
comparison from some of the results for the standard nonuniform model. For
example, it has been known [Kan82] that PH �⊆ P/p(n) for any fixed polynomial

Random Access to Advice Strings and Collapsing Results 219

p(n). Since PH ⊆ PH/s for any advice function s, the following fact is immediate
from this result. This fact justifies the consideration of at least super-polynomial
advice size for obtaining a nonuniform collapsing result for P and PH.

Proposition 2. For any polynomially bounded advice �(n), there is no advice
function s of advice size �(n) for which PH/s ⊆ P/s.

While most relativized collapsing results are proved in a non stringent way,
there are some relativized collapsing proofs in the literature that also yield
nonuniform collapsing results in our context. For example, the following result
is provable by a well-known technique; see, e.g., [Wil83]. (The proof is omitted
here.)

Proposition 3. For any length bound �(n) ≥ 2(2+δ)n, for any positive con-
stant δ > 0, there exists an advice function s of advice size �(n) such that
NP/s ⊆ (P/poly)/s.

By a similar proof technique, we can in fact proves NEXP ⊆ P/poly in the
standard relativization model [He86]. This is because for any given NEXP ma-
chine M running in time 2p(n), we can consider query strings of length 3p(n);
since 2n+p(n) < 22p(n), we still have enough room in {0, 1}3p(n) to encode the re-
sults of M on all length n inputs. Some circuit of size cp(n) for some sufficiently
large c > 0 can retrieve this encoded information. On the other hand, this argu-
ment does not work in our context because the advice size cannot be bounded
even exponentially. It should be also remarked here that a higher collapse is not
immediate from a lower one in our context; for example, the relatively simple
proof of NP/s ⊆ (P/poly)/s for some advice s of some exponential advice size
bound does not give a proof of PH/s′ ⊆ (P/poly)/s′ for some s′ of some expo-
nential advice size bound. This latter result is indeed true, first proved by the
authors using complicated arguments based on Nisan-Wigderson pseudorandom
generators [CW03]. The results of the present paper give a simplified proof of a
stronger result.

We believe that this model of random access to advice strings is an interest-
ing model, which poses challenging problems. It is sufficiently different from the
conventional relativization model for specific problems. Previous known proofs
of relativized collapsing results do not, in general, imply the corresponding col-
lapsing results in this model of random access to advice. Claims to the contrary
should be first verified against the open problem of PSPACE vs. P.

References

[Ajt83] M. Ajtai, Σ1
1 -formulae on finite structures, Ann. Pure Applied Logic 24, 1–48,

1983.
[AS00] N. Alon and J. Spencer, The Probabilistic Method, John Wiley & Sons, Inc.,

2000.
[BGS75] T. Baker, J. Gill, and R. Solovay, Relativizatons of the P =? NP question,

SIAM J. Comput. 4(4), 431–442, 1975.

220 J.-Y. Cai and O. Watanabe

[BDG89] J. Balcázar, J. Dı́az, and J. Gabarró, Structural Complexity I & II, Springer,
1989 and 1990.

[Cai86] J-Y. Cai, With probability one, a random oracle separates PSPACE from the
polynomial-time hierarchy, in Proc. 18th ACM Sympos. on Theory of Comput.
(STOC’89), 21–29, 1986. (The final version appeared in J. Comp. Syst. Sci.
38(1), 68–85, 1989.)

[CW03] J-Y. Cai and O. Watanabe, On proving circuit lower bounds against the
polynomial-time hierarchy: positive and negative results, Proc. 9th Interna-
tional Computing and Combinatorics Conference (COCOON’03), LNCS 2697,
202–211, 2003.

[DK00] D. Du and K. Ko, Theory of Computational Complexity, John Wiley & Sons,
Inc., 2000.

[FSS81] M. Furst, J. Saxe, and M. Sipser, Parity, circuits, and the polynomial time hi-
erarchy, in Proc. 22nd IEEE Symposium on Foundations of Computer Science
(FOCS’81), IEEE, 260–270, 1981.

[H̊as86] J. H̊astad, Almost optimal lower bounds for small depth circuits, in Proc. 18th
ACM Symposium on Theory of Computing (STOC’86), ACM, 6–20, 1986.

[He86] H. Heller, On relativized exponential and probabilistic complexity classes,
Information and Control 71(3), 231–243, 1986.

[Kan82] R. Kannan, Circuit-size lower bounds and non-reducibility to sparse sets,
Information and Control 55, 40–56, 1982.

[KL80] R. Karp and R. Lipton, Some connections between nonuniform and uniform
complexity classes, in Proc. 12th ACM Symposium on Theory of Computing
(STOC’80), ACM, 302–309, 1980. (An extended version appeared as: Turing
machines that take advice, in L’Enseignement Mathématique (2nd series) 28,
191–209, 1982.)

[Ko78] D. Kozen, Indexing of subrecursive classes, in Proc. 10th ACM Symposium
on Theory of Computing (STOC’78), ACM, 287–295, 1978. (The final version
appeared in Theoretical Computer Science 11, 277–301, 1980.)

[Nis91] N. Nisan, Pseudorandom bits for constant depth circuits, Combinatorica
11(1), 63–70, 1991.

[NW94] N. Nisan and A. Wigderson, Hardness vs randomness, J. Comput. Syst. Sci.
49, 149–167, 1994.

[Raz87] A. Razborov, Lower bounds on the size of bounded depth networks over a
complete basis with logical addition, Mathematical Notes of the Academy of
Sciences of the USSR 41, 333–338, 1987.

[Smo87] R. Smolensky, Algebraic methods in the theory of lower bounds for Boolean
circuit complexity, in Proc. 19th ACM Symposium on Theory of Computing
(STOC’87), ACM, 77-82, 1987.

[Wil83] C.B. Wilson, Relativized circuit complexity, in Proc. 24th IEEE Symposium
on Foundations of Computer Science (FOCS’83), IEEE, 329–334, 1983.

[Yao85] A.C. Yao, Separating the polynomial-time hierarchy by oracles, in Proc. 26th
IEEE Symposium on Foundations of Computer Science (FOCS’85), IEEE,
1-10, 1985.

Bounding the Payment of Approximate Truthful
Mechanisms

Gruia Calinescu

Department of Computer Science, Illinois Institute of Technology,
Chicago, IL 60616
calinesc@iit.edu

Abstract. In a STACS 2003 paper, Talwar analyses the overpayment
the VCG mechanism incurs for ensuring truthfulness in auction. Among
other results, he studies k-Set Cover (given a universe U and a collec-
tion of sets S1, S2, . . . , Sq, each having a cost c(Si) and at most k el-
ements of U , find a minimum cost subcollection, called cover, whose
union equals U) and shows that the payment of the optimum cover
OPT is at most kc(OPT ′), where OPT ′ is the best cover disjoint
from the optimum cover. For k ≥ 3, k-Set Cover is known to be
NP-Hard, and thus truthful mechanisms based on approximation algo-
rithms are desirable. We show that the payment incurred by two ap-
proximation algorithms (including the Greedy algorithm) is bounded by
(k − 1)c(OPT) + kc(OPT ′). The same approximation algorithms have
payment bounded by k(c(OPT) + c(OPT ′)) when applied to more gen-
eral set systems, which include k-Polymatroid Cover, a problem with
applications in Steiner Tree computations. If q is such that an element
in a k-Set-Cover instance appears in at most q sets, we show that the
payment of our algorithms is bounded by qk2 times the payment of the
optimum algorithm.

1 Introduction

There has been a surge of recent interest in the intersection area of economic
sciences and computer science (see [21] for a survey). Inside this area is the field of
mechanism design, which we describe below in the particular setting we are going
to analyse in this paper. The seminal paper of Nisan and Ronen [20] introduced
the computational issues of mechanism design and gives a general overview in
a setting more general than ours. A reader with economics background will
recognize the scenario in our simplified case. A reader with computer science
background will find below all the definitions used in this paper, and is warned
that more definitions and notations are required in the general setting.

We are given a set E of elements and a family F of feasible subsets of E.
We assume the set system (E,F) is closed upwards, which means that for any
T ∈ F and any superset T ′ : T ⊆ T ′ ⊆ E, we have T ′ ∈ F . Each element e ∈ E
is controlled by a different economic agent, which we called the agent of e. The
agent of e has a private (unknown to anyone else) cost c(e) ≥ 0 for providing e

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 221–233, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

222 G. Calinescu

to a feasible subset. Finding feasible subsets is sometimes called team selection
in the literature [3, 11] dealing with mechanisms.

A direct revelation mechanism is a protocol which asks each agent to provide
a bid b(e), and then computes a feasible subset M = M(b) and a payment
function p(e) ≥ 0. If e ∈ M , the agent of e must allow e to be used by M in
exchange for the payment p(e).

The agents are selfish and could misrepresent their cost in order to increase
their payments. The field of mechanism design deals with the design of protocols
which ensure the designer’s goal are achieved by giving incentives to agents.
The revelation principle [24, 18] states that in order to prove or disprove the
existence of good mechanism for a given problem, one can consider only truthful
revelation mechanism. Thus we only use direct revelation mechanisms, which
are characterized by the computation of the feasible subset M and the payment
function p.

In this context, the economics notion of maximizing social welfare is mini-
mizing the cost of M . Minimizing the cost of M could be the goal of the designer
of the mechanism. Another reasonable goal is minimizing the sum of payments.
A mechanism is called truthful (also called strategy-proof) if every agent has
interest to bid her cost (by setting b(e) = c(e)) regardless of the other bidders’
bids.

Consider the simple case in which each element is a feasible subset, a situation
which occurs frequently in real life. Say the government needs a task to be
performed and invites sealed bids from agents (contractors). If the government
chooses the lowest bidder and pays to this agent her bid, then the agents might
bid higher then their cost with the goal of making a profit. The government can
however use the VCG mechanism [26, 9, 12]: select the lowest bidder and pay her
an amount equal to the second lowest bid. Assuming agent don’t collude, it can
be shown that in this case each agent has the interest to bid her cost. The VCG
mechanism is truthful, and minimizes cost (maximizes social welfare). However
the payment may be much larger than the cost.

The VCG mechanism can be applied to the set system setting as well [25,
3, 6], and selfish agent would bid their cost: for all e, we have b(e) = c(e).
The mechanism selects OPT , a feasible subset of minimum cost, and computes
payments with a formula we present later.

The set systems we consider are instances of problems. For example, the
elements can be the edges of a graph and feasible subsets consists of connected
spanning subgraphs: the Minimum Spanning Tree problem. Of particular interest
in routing protocols is the Shortest s-t Path problem [3, 11].

Let p(I,A) be the payment of mechanism A on instance I, that is the sum
of the payments given by the mechanism to the agents. Talwar [25] analyses the
frugality ratio of problems, which is defined as the maximum over instances I of
p(I, V CG)/c(OPT ′), where OPT ′ is the best feasible subset disjoint from OPT .
[25] characterizes the problems with frugality ratio 1. For example, Minimum
Spanning Tree has frugality ratio 1 [6, 25], and Shortest s-t Path has frugality
ratio Θ(n) [3, 25], where n is the number of vertices in the graph.

Bounding the Payment of Approximate Truthful Mechanisms 223

One interesting problem analysed by Talwar [25] is the k-Set Cover problem:
given a universe U and a collection of sets S1, S2, . . . , Sq, each having a cost c(Si)
and at most k elements of U , find a minimum cost subcollection (called cover)
whose union equals U . k-Set Cover fits the general framework as follows: each
set Si is an element of E, and covers are the feasible subsets. [25] has proved
that the frugality ratio of k-Set Cover is exactly k. Thus for k-Set Cover, VCG,
besides optimizing the cost (social welfare), guarantees a bound on the payment.

For k ≥ 3, k-Set Cover is known to be NP-Hard, and thus truthful mech-
anisms based on approximation algorithms are desirable. It is mentioned in
[3, 1] that it is known that a mechanisms is truthful if it is monotone (de-
fined later). For k-Set Cover, we analyze the monotone mechanism based on the
Greedy (G) approximation algorithms. We show that its payment is bounded
by (k−1)c(OPT)+kc(OPT ′). This bound is at most twice worse than the bound
of the VCG mechanism, which must find the optimum solution. We present an
instance of k-Set Cover where the payment of Greedy is lower than the payment
of OPT .

If q is such that an element in a k-Set-Cover instance appears in at most q
sets, then we can prove the bound on the payments: p(I,G) ≤ k2q · p(I, V CG).
We call (k, q)-Set Cover the Set Cover problem where each set has size at most k
and every element appears in at most q sets. (k, q)-Set Cover is the only problem
we are aware of where there is a nontrivial bound on the ratio of the payment
of an approximation algorithm to the payment of the exact algorithm in our
particular setting. Previous approximate truthful mechanisms [1, 2] either are
for maximization problems and look at revenue (instead of payment) or look
at a different setting in which costs are public and the agent have some other
private data.

In the k-Polymatroid Cover problem, the set system is defined by a a sub-
modular rank function r : P(E) → IN with r(e) ≤ k for all e ∈ E: a feasible set T
is a set satisfying r(T) = r(E). The k-Polymatroid Cover problem has applica-
tion for Steiner Tree computation [22, 5, 23, 28, 15, 14], and is a generalization of
k-Set Cover. The k-Polymatroid problem is NP-Hard for k ≥ 3, polynomial for
k = 1 (when the problem becomes finding a minimum-cost basis in a matroid),
while the complexity for k = 2 is unknown, but pseudopolynomial algorithms are
known for linear polymatroids [7, 22]. Wolsey [27] has shown that Greedy has
approximation ratio Hk for k-Polymatroid Cover, where Hk = 1 + 1

2 + · · ·+ 1
k is

the kth harmonic number. We show that p(I,G) ≤ k (c(OPT) + c(OPT ′)) and
use techniques from [25] to show that p(I, V CG) ≤ kc(OPT ′).

A second algorithm applies any set system with an oracle deciding whether a
set is feasible or not. Space limitations prevent us from discussing this algorithm,
and we just mention that we can prove exactly the same bounds on its payment
as we do for Greedy when the set system is given by k-Set Cover, (k, q)-Set
Cover, or k-Polymatroid Cover.

The paper is organized as follows. Section 2 gives the definition of mono-
tone mechanisms with some known associated properties, definitions related to
k-Polymatroids, and the definitions of the Greedy algorithm, with some as-

224 G. Calinescu

sociated properties. Section 3 compares the payment of Greedy to c(OPT) +
c(OPT ′). Section 4 compares the payment of the approximation algorithm di-
rectly to the payment of the optimum algorithm.

2 Preliminaries

We start by formally defining truthfulness. Let M(b) be the feasible subset com-
puted by the mechanism given bid vector b = b(e) | e ∈ E, where E is the set
of elements. For agent e and bid vector b, we define profite(b) = p(e) − c(e),
if e ∈ M(b) and profite(b) = 0 otherwise. We assume that each agent’s goal
is to maximize her profit. The algorithm which computes M(b) is known to all
before the bidding, and the payments p(e) are known to all after the bidding.
We require that our mechanisms satisfy the voluntary participation condition,
which states that the profit of an agent cannot be negative (or the agent might
decide not to participate).

Given a mechanisms as described above, let b−e denote the vector of all bids
except the one made by the agent of e, so we can write b = (b−e, b(e)). We say
that truthtelling is a (weakly) dominant strategy for the agent of e if, regardless
of b−e, bidding b(e) = c(e) maximizes profite(b). So, even if the agent of e knew
the bids of the other agents ahead of time, the best she could do is bid the truth
cost. If truthtelling is a dominant strategy for every agent we call the mechanism
truthful.

2.1 Monotone Mechanisms

Let b(e) be the bid values of the agents, and let M(b) be the subset picked by
the mechanism, which depends on the bids b. The mechanism is monotone if for
every element e ∈ M(b) a lower bid b(e) < b(e) only by the agent of e (that
is, b(f) = b(f) for f ∈ E \ {e}), also result in e ∈ M(b). In this case there is
a threshold t(e) = t(e, b−e) for every e ∈ E which depends on the algorithms
which picks M and b−e, such that:

– If b(e) < t(e, b−e), then e ∈M(b)
– If b(e) > t(e, b−e), then e �∈M(b)

One defines

p(e, b) =
{

0 if e �∈M(b)
t(e, b−e) if e ∈M(b)

If M(b) is an optimum solution, then this mechanism is monotone, and in
fact coincides with the VCG mechanism, which is defined as follows. Let b[e→ x]
denote the cost function b which is equal to b everywhere except that b(e) = x.
Let opt(b) = b(OPT), the total bid-value of the optimum solution for bids b.

Then:

p(e, b) =
{

0 if e �∈ OPT (b)
opt([b→∞])− opt([b→ 0]) if e ∈ OPT (b)

For the sake of completeness we include a proof of the folklore [3] result:

Bounding the Payment of Approximate Truthful Mechanisms 225

Theorem 1. A monotone mechanism is truthful.

Proof. First we note that since p(e, b) ≥ b(e) whenever e ∈M , and p(e, b) = 0
whenever e �∈ M(b) (this is the case when no services or money is traded), the
agent has an interest to participate in the mechanism. Why would an agent bid
other than her cost? If the agent of e bids b(e) < c(e), then three outcomes are
possible:

– e �∈M(b). The agent of e does not trade services or money, the same outcome
as in the case when b(e) = c(e) (the monotonicity of the mechanism implies
that e �∈M in when b(e) = c(e) as well)

– e ∈M(b) and c(e) > t(e, b−e). In this case the agent of e is losing money (as
p(e, b) = t(e, b−e)), while bidding b(e) = c(e) would result in no trade or a
trade with payment being equal to the cost.

– e ∈ M(b) and c(e) ≤ t(e, b−e). In this case the agent receives the same
payment as in the case when she bids b(e) = c(e)

On the other side, if the agent of e bids b(e) > c(e), then again three outcomes
are possible:

– e ∈ M(b). As t(e, b−e) ≥ b(e), the payment received by the agent of e is
the same as in the case when it bids b(e) = c(e) (the monotonicity of the
mechanism implies that e ∈M in this case as well)

– e �∈ M(b) and c(e) < t(e, b−e). In this case the agent does not trade, while
bidding b(e) = c(e) would have resulted in a payment exceeding the cost

– e �∈M(b) and c(e) ≥ t(e, b−e). In this case the agent does not trade. Bidding
b(e) = c(e) would have resulted also in a no-trade, or in a trade with payment
being equal to the cost.

In conclusion, in no case can the agent benefit from not bidding her cost.
Xiang-Yang Li and Weizhao Wang [16] have implicitly proved that the

Greedy algorithm when applied to Set Cover is monotone.

2.2 Polymatroids and Approximation Algorithms

A rank function r : P(E) → IN is called submodular if for any two sets A,B ⊆ E

r(A ∩B) + r(A ∪B) ≤ r(A) + r(B)

A k-polymatroid is given by a submodular rank function satisfying r({e}) ≤ k
for all e ∈ E. The k-Polymatroid Cover problems asks for a minimum cost
subset of E with rank equal to r(E). k-Polymatroid Cover is a generalization
of k-Set Cover by setting for a collection of sets A the rank r(A) = | ∪S∈A S|.
The Greedy algorithm for Set Cover analysed by Chvatal [8] can be used for
k-Polymatroid Cover [27] as follows: let A be the set of elements picked so far;
initially A = ∅. If r(A) < r(E), find g ∈ E such that r(A∪{g})−r(A)

c(g) is maximized,
and set A← A ∪ {g}. We generalize and simplify [16] to obtain:

Theorem 2. Greedy for k-Polymatroid Cover is monotone.

226 G. Calinescu

Proof. Assume we decrease the bid of e from b(e) to b(e), while for the other
elements f ∈ E we keep b(f) = b(f). The Greedy algorithm proceeds as before
the decrease and picks e, unless e is picked sooner.

Since we only use monotone algorithms in this paper, and truthful mecha-
nisms based on them, from now on we do not mention the bids, as we assume
the bids equal the costs.

3 The Greedy Algorithm

In this section we compare the payment of the Greedy algorithm to c(OPT ′).
We start with k-Set Cover, where some arguments of Talwar [25] help.

Theorem 3. Assume that for a k-Set-Cover instance with collection of sets T ,
there is a cover in T \OPT . Let OPT ′ be the minimum cost cover in T \OPT .
Then p(G) ≤ (k − 1)c(OPT) + kc(OPT ′), where p(G) is the payment of the
Greedy algorithm.

Proof. Let T = S1, S2, . . . , Sn be the collection of sets and let B1, B2, . . . , Bm

be the sets picked by Greedy in this order. Let Qi be the subset of Bi with
the elements first covered by Bi (that is, not covered by B1, B2, . . . , Bj−1), and
note that for 1 ≤ i < j ≤ m, we have Qi ∩Qj = ∅.

Consider a set Bi and we analyze p(Bi). We increase c(Bi) until Greedy does
not pick Bi. We reach the following situation: Greedy picks B1, B2, . . . , Bi−1,
then it might pick a several sets Hj , and then it picks Bi. However, a further
increase in c(Bi) results in Bi not being picked. Let c be this new cost function
which differs from c only for Bi, and note that p(Bi) = c(Bi). Define Qi to be
the elements first covered by Bi in the cover given by Greedy when run with
c, and note that Qi ⊆ Qi.

Assume first that Bi �∈ OPT ′. We know Qi is covered by sets R1, R2, . . . , Ra

of OPT ′, and note that Greedy did not pick any of Rj before Bi when run on
cost c. By the way Greedy operates, for j = 1, 2, . . . , a:

c(Rj) ≥
|Rj ∩Qi|
|Qi|

c(Bi). (1)

Summing up over j, we obtain that c(Bi) ≤
∑a

j=1 c(Rj), and we say that Bi

charges each Rj . Since |Rj | ≤ k and the sets Qi are disjoint, it follows that a
set R in OPT ′ can be charged at most k times. We have to do more work since
when Bi ∈ OPT ′, we cannot always find sets in OPT ′ to be charged as above
by Bi.

Now assume that Bi ∈ OPT ′. Using the argument as above, we find several
Oj ∈ OPT such that Bi charges Oj , and Oj is charged in total at most k times.
At this moment we have proven p(G) ≤ k(c(OPT ′) + c(OPT)).

If Oj from OPT is charged exactly k times, then it is charged by k sets from
OPT ′. Each of these k sets of OPT ′ is using a different element to charge Oj

Bounding the Payment of Approximate Truthful Mechanisms 227

and therefore they together cover Oj . Since Oj can be replaced by these k sets
of OPT ′, their total cost is at least c(Oj). We move the charges as follows: each
of the k sets Bi of OPT ′ which charges Oj is asked to charge only c(Oj)− c(Bi);
by the argument above this reduces the charge of Oj to at most (k−1)c(Oj). Bi

is charging c(Bi) to itself. Now Bi can be charged by other sets of G, but it can
be charged at most k − 1 times since it cannot be charged through the element
it uses to charge Oj , as that element is in Qi and not in any other Qr, with Br

in G. Thus Bi is charged in total at most k times.
With the modified charges, each set in OPT is charged at most k − 1 times

and each set of OPT ′ is charged at most k times. Thus we have p(G) ≤ (k −
1)c(OPT) + kc(OPT ′).

We do not have a tight example for the bound in Theorem 3 and suspect the
bound is not tight. We include an example (see also Figure 1) taken from [25]
which shows p(OPT) = k ·c(OPT ′) and for which p(G) = k ·c(OPT ′) too. There
are k + 1 sets S0, S1, . . . , Sk of costs c(S0) = 1 and c(Si) = 0 for i = 1, 2, . . . , k.
All the k elements e1, e2, . . . , ek are included in S0, while Si = {ei}. Greedy
(and also OPT) picks the 0-cost sets and one can check it pays 1 for each of them.

0 0 0 0

1

Fig. 1. An example where the payment p(OPT) = p(G) = k · c(OPT ′) for k = 4. The
sets are represented by circles and the elements by squares. Greedy (and also OPT)
picks the sets of cost 0 and pays 1 for each of them, while c(OPT ′) = 1

For the more general k-Polymatroid, we obtain a slightly weaker bound.

Theorem 4. Assume the set system (E,F) is given by a k-Polymatroid,
and that for given cost function c, there is a feasible subset in E \ OPT .
Let OPT ′ be the minimum cost feasible subset in E \ OPT . Then p(G) ≤
k (c(OPT) + c(OPT ′)), where p(G) is the payment of the Greedy algorithm.

Proof. Some of the arguments below are taken from the analysis of the Greedy
algorithm given in [4]. Helgason [13], McDiamid [19], and Lovasz [17] have shown
that each polymatroid (E,F) can be obtained from a matroid M with rank
function r by the following construction: An element h ∈ E corresponds to a set
Mh ∈M such that for all X ⊆ E we have r(X) = r(∪h∈XMh).

Let n := r(E) = r(M) and let g1, g2, . . . , gm be, in this order, the elements
picked by Greedy. Let Bi = Mgi

, as defined above. Let S0 := A0 := ∅, and for
i = 1, 2, . . . ,m, let Ai ⊆ M be defined by Ai = ∪i

j=1Bi. For i = 1, 2, . . . ,m, let
Qi ⊆ Bi be such that Si := ∪i

j=1Qj is a basis for Ai.

228 G. Calinescu

Consider an element gi picked by Greedy and we analyze p(gi). We increase
c(gi) until Greedy does not pick gi. We reach the following situation: Greedy
picks g1, g2, . . . , gi−1, then it might pick a set of elements H, and then it picks
gi. However, a further increase in c(gi) results in gi not being picked. Let c be
this new cost function which differs from c only for gi, Define Zi ⊆ ∪h∈HMh

such that Si−1 ∪ Zi is a basis for Ai−1 ∪ (∪h∈HMh). Now define Qi such that
Qi ⊆ Qi and Si−1 ∪ Zi ∪Qi is a basis in Ai−1 ∪ (∪h∈HMh) ∪Qi, which means
Si−1 ∪ Zi ∪ Qi is also a basis in Ai−1 ∪ (∪h∈HMh) ∪ Bi since Si−1 ∪ Qi spans
Ai−1 ∪Bi.

Let T ⊆ ∪h∈OPT ′Mh be another basis of M . For every f ∈ T choose a ψ(f) ∈
OPT ′ such that f ∈ Mψ(f). For all h ∈ OPT ′, the set ψ−1(h) is independent
and therefore:

|ψ−1(h)| ≤ r(h) ≤ k (2)

In order to analyse the payment of Greedy, we need to select from T disjoint
sets Xi, with i = 1, 2, . . . ,m, such that |Xi| = |Qi| and each Ai−1 ∪ Zi ∪ Xi

is independent. We ensure disjointness by constructing a partition of T into
sets Xi, with i = 1, 2, . . . ,m such that Xi ⊆ Xi. Borrowing again from [4], we
construct Xi and Xi one by one, but in a more involved procedure described
below. Let T0 := T and Ti := T \

(
∪i

j=1Xi

)
. We impose the invariant that for

all i = 0, 1, . . . ,m, Si ∪ Ti forms a base in M .
We process i = 1, 2, . . . ,m as follows. We complete Si−1 ∪ Zi ∪Qi to a base

using a set Wi ⊆ Ti−1; such a completion exists since Si−1 ∪ Ti−1 forms a base.
We contract Si−1 ∪ Wi, obtaining a new matroid Mi, in which we have two
bases: Zi ∪Qi and Ti−1 \Wi. Using Exercise 8.48 from [10] or its generalization
in Lemma 1 below, Ti−1 \Wi can be partition into two sets, one of them we call
Xi, such that (Ti−1 \Wi \Xi) ∪Qi and Zi ∪Xi are both bases in the matroid
Mi. Thus Si−1 ∪ Zi ∪Xi is independent and Si−1 ∪ Qi ∪

(
Ti−1 \Xi

)
is a base

in M .
Now we can use the procedure described in [4] to get Xi such that Si∪(Ti−1\

Xi) is a base. If we denote Fi := Qi\Qi, we have Si = Si−1∪Qi = Si−1∪Qi∪Fi. If
Fi = ∅, we set Xi = Xi and we can proceed to i+1. Else, let f1, . . . , fr be the ele-
ments of Fi. Starting with j = 1, we find elements tj ∈ Ti−1\Xi\{t1, t2, . . . , tj−1}
such that Si−1 ∪ Qi ∪ {f1, f2, . . . , fj} ∪

(
Ti−1 \Xi \ {t1, t2, . . . , tj}

)
is a base.

The element tj is found as follows: If fj ∈
(
Ti−1 \Xi \ {t1, t2, . . . , tj−1}

)
,

then tj = fj . Else, adding fj to the base Si−1 ∪ Qi ∪ {f1, f2, . . . , fj−1} ∪(
Ti−1 \Xi \ {t1, t2, . . . , tj−1}

)
creates a circuit C. As fj is not spanned by Si−1∪

Qi∪{f1, f2, . . . , fj−1}, we can find tj ∈ C\
(
Si−1 ∪Qi ∪ {f1, f2, . . . , fj−1}

)
. It fol-

lows that Si−1∪Qi∪{f1, f2, . . . , fj−1}∪
(
Ti−1 \Xi \ {t1, t2, . . . , tj−1}

)
\{tj}∪{fj}

is also a base. Then we set Xi = Xi ∪ {t1, t2, . . . , tj} and we note that indeed
Si ∪ Ti forms a base thus maintaining the invariant.

Thus we selected from T disjoint sets Xi, with i = 1, 2, . . . ,m, such that
|Xi| = |Qi| and each Ai−1 ∪ Zi ∪Xi is independent.

Assume first that gi �∈ OPT ′. We know Bi increases the rank of Si−1 ∪Zi by
|Qi|. Xi also increases the rank of Si−1 ∪ Zi by |Xi| = |Qi|. Let h1, h2, . . . , ha

be elements of OPT ′ such that ψ(hi) ∩Xi �= ∅, and note that Greedy did not

Bounding the Payment of Approximate Truthful Mechanisms 229

pick any of hj before gi when run on cost c. Define rj = r
(
Si−1 ∪ Zi ∪Mhj

)
−

r (Si−1 ∪ Zi). By the way Greedy operates, for j = 1, 2, . . . , a:

c(hj) ≥
rj

|Qi|
c(gi). (3)

Summing up over j and using the fact (obtained from submodularity) that∑a
j=1 rj ≥ r

(
Si−1 ∪ Zi ∪Xi

)
− r (Si−1 ∪ Zi) = |Xi| = |Qi|, we obtain that

c(gi) ≤
∑a

j=1 c(hj), and we say that gi charges each hj . From Equation 2 and
the fact that the sets Xi are disjoint we obtain that each element of OPT ′ can
be charged at most k times.

Now assume that gi ∈ OPT ′. Using the same argument, but with the basis T
derived from OPT rather than OPT ′, we charge the payment of gi to the cost of
one or more elements of OPT , and such that each element ofOPT can be charged
at most k times. At this moment we have proven p(G) ≤ k(c(OPT ′)+ c(OPT)).

The following property of matroids generalizes Exercise 8.48 of [10]. Due to
lack of space we omit the proof of the lemma and the following theorem, which
uses Talwar’s technique and the lemma.

Lemma 1. Let M be a matroid on set N and A,B bases of M . Let
X1, X2, . . . , Xq be a partition of A. Then there is a partition Y1, Y2, . . . , Yq of
B such that for all i = 1, 2, . . . , q, A \Xi ∪ Yi is a base.

Theorem 5. Assume the set system (E,F) is given by a k-Polymatroid, and
that for cost function c, there is a feasible subset in E \OPT . Let OPT ′ be the
minimum cost feasible subset in E \OPT . Then p(OPT) ≤ kc(OPT ′).

We include a k-Set-Cover example that show that the payment of Greedy
can be lower than the payment of OPT . We use k = 2; note that this problem,
also known as Edge Cover, has polynomial-time algorithms. An illustration of
the example is given in Figure 2. OPT consists of three sets: {1, 2}, {3, 4}, and
{5, 6} each of cost 1 + ε. OPT ′, which is also G, consist of four sets each of cost
1: {1, 3}, {2, 3}, {4, 5}, and {4.6}. One can check that p(OPT) = 3(2−2ε) while
p(G) = 4(1 + ε).

1+eps 1+eps1+eps

1 1

1 1

Fig. 2. An example where the payment of OPT is larger than the payment of the
approximation algorithm Greedy. The sets are the edges of this graph

230 G. Calinescu

4 Bounds in Terms of p(OPT)

In this section we analyse the payment of the approximation algorithms ver-
sus the payment of the optimum algorithm. For k-Set-Cover, the payment of
Greedy can be much higher than the payment of OPT , as shown by the fol-
lowing example, also illustrated in Figure 3. We have 1 + q(k − 1) elements
d0, d1, . . . , dq(k−1). Set S0 = {d0} and c(S0) = 1. For i = 1, 2, . . . , q(k − 1),
set Si = {di} and c(Si) = 0. For j = 1, 2, . . . , q, the set Bj = {d0} ∪
{d(j−1)(k−1)+1, d(j−1)(k−1)+2, . . . , dj(k−1)}, each of cost 1 + ε. One can check
p(OPT) = 1 + ε(1 + q(k − 1)). Greedy also finds the optimum solution, and
one can check that for each i = 1, 2, . . . , q(k − 1), Greedy pays 1+ε

2 . Thus
p(G) ≥ (1

2 − ε)(k − 1)qp(OPT) is possible.

0 0 0

1+ε

0 0 0

1+ε

0 0 0

1+ε

0 0 0 01 0 0

1+ε1+ε

Fig. 3. An example where p(G) is Ω(kq) higher than p(OPT), for k = 4 and q = 5

We can bound the payments of the approximation algorithm as follows:

Theorem 6. Let k ≥ 2 be the size of the largest set in a Set Cover instance,
and q ≥ 2 be an upper bound on the number of sets that contain an element.
Then p(G) ≤ qk2 · p(OPT).

Proof. We assume without loss of generality that p(OPT) is finite, which
implies that for every set S in the optimum cover, there is a cover without S.

We use arguments and notation from Theorem 3 repeatedly. Let
B1, B2, . . . , Bm be the sets picked by Greedy in this order. Let Qi be the
subset of Bi with the elements first covered by Bi (that is, not covered by
B1, B2, . . . , Bj−1), and note that for 1 ≤ i < j ≤ m, we have Qi ∩Qj = ∅.

Consider a set Bi and we analyze p(Bi). We increase c(Bi) until Greedy does
not pick Bi. We reach the following situation: Greedy picks B1, B2, . . . , Bi−1,

Bounding the Payment of Approximate Truthful Mechanisms 231

then it might pick a several sets Hj , and then it picks Bi. However, a further
increase in c(Bi) results in Bi not being picked. Let c be this new cost function
which differs from c only for Bi, and note that p(Bi) = c(Bi). Define Qi to be
the elements first covered by Bi in the cover given by Greedy when run with
c, and note that Qi ⊆ Qi.

Define Zi to be the set of elements not covered by OPT \ {Bi} (so Zi = ∅ if
Bi �∈ OPT). If Bi ∈ OPT , define Mi and Ni to be collection of sets such that
Mi ∪Ni is a minimum cost cover which does not use Bi and with Mi covering
Zi ∩ Qi. For convenience define Mi = ∅ if Bi �∈ OPT . Define Ui to be some
collection of sets from OPT which cover Qi \ Zi.

The arguments from Theorem 3 give:

p(G,Bi) ≤
∑

Rj∈Mi

c(Rj) +
∑

Rj∈Ui

c(Rj). (4)

Also, each Rj ∈ OPT appears for at most k indexes i in sets Ui as the sets Qi

are disjoint and Rj has at most k elements. Note that, as in the VCG mechanism,

p(OPT,Bi) = c(Mi) + c(Ni)− c(OPT)− c(Bi), (5)

where c(Mi) =
∑

Rj∈Mi
c(Rj) and c(Ni) =

∑
Rj∈Ni

c(Rj). Let Vi be the collec-
tion of sets of OPT \ {Bi} which cover ∪Rj∈Mi

Rj \Bi.
Consider the set of elements F which are not covered by any set of Vi∪{Bi}.

We have two covers for F : OPT \ Vi \ {Bi} and Ni. The optimality of OPT
implies that c(Ni) ≥ c(OPT) − c(Vi) − c(Bi). Plugging this into Equation 5
gives:

c(Mi) = p(OPT,Bi)− c(Ni) + c(OPT) + c(Bi) ≤ p(OPT,Bi) + 2c(Bi) + c(Vi).
(6)

We say that Bi charges S, for set S ∈ OPT , if S ∈ Vi. We count how many
times can S be charged. For Bi to charge S, there must be a set R and an element
e ∈ Qi ∩R such that R∩S �= ∅. There are at most k(q− 1) such sets R, and not
counting the elements of S, the cover at most k(k − 1)(q − 1) elements. Noting
that the sets Qi are disjoint and therefore no two Bi can charge S through the
same e, we obtain that S can be charged at most k(k − 1)(q − 1) times.

Now Equations 4 and 6 give

p(G,Bi) ≤ c(Ui) + p(OPT,Bi) + 2c(Bi) + c(Vi). (7)

Summing over i and taking into account the number of charges, we obtain

p(G) ≤ kc(OPT) + p(OPT) + 2c(OPT) + k(k − 1)(q − 1)c(OPT). (8)

As c(OPT) ≤ p(OPT) and k, q ≥ 2, we conclude that p(G) ≤ qk2p(OPT).

232 G. Calinescu

Acknowledgments

We are grateful to Xiang-Yang Li and Weizhao Wang for providing us with an
early draft of [16], thus inspiring this work. We also thank Bill Cunningham for
discussions on matroids.

References

1. A. Archer, C. Papadimitriou, K. Talwar and E. Tardos, “An Approximate Truthful
Mechansim for Combinatorial Auctions with Single Parameter Agents,” Proceed-
ings of the fourteenth annual ACM-SIAM symposium on Discrete algorithms , pp.
205–214, 2003.

2. A. Archer and E. Tardos. “Truthful Mechanisms for One-Parameter Agents,” Pro-
ceedings of the 42nd IEEE symposium on Foundations of Computer Science, pp.
482–491, 2001.

3. A. Archer and E. Tardos. “Frugal path mechanisms,” Proceedings of the fourteenth
annual ACM-SIAM symposium on Discrete algorithms , pp. 991–999, 2002.

4. G. Baudis, C. Gropl, S. Hougardy, T. Nierhoff, and H. J. Promel. “Approximating
minimum spanning sets in hypergraphs and polymatroids,” ICALP, 2000.

5. P. Berman and V. Ramaiyer. “Improved Approximations for the Steiner Tree Prob-
lem,” J. Algorithms, vol. 17, pp. 381-408, 1994.

6. S. Bikhchandani, S. de Vries, J. Schummer, and R. Vohra. “Linear programming
and Vickrey auctions,” IMA Volumes in Mathematics and its Applications, Math-
ematics of the Internet: E-Auctions and Markets vol. 127, pp. 75–116, 2001.

7. P.M. Camerini, G. Galbiati, and F. Maffioli. “Random pseudo-polynomial algo-
rithms for exact matroid problems,” J. Algorithms, vol. 13, pp. 258–273, 1992.

8. V. Chvatal. “A greedy heuristic for the set covering problem,” Mathematics of
Operation Research, vol. 4, pp. 233-235, 1979.

9. E. H. Clarke. “Multipart pricing of public goods,” Public Choice, vol. 8, pp. 17–33,
1971.

10. W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, and A. Schrijver. Combina-
torial Optimization. Wiley-Interscience, 1998.

11. E. Elkind, A. Sahai, and K. Steiglitz. “Frugality in path auctions,” Proceedings of
the fifteenth annual ACM-SIAM symposium on Discrete algorithms , pp. 701–709,
2004.

12. T. Groves. “Incentive in teams,” Econometrica, vol. 41(4), pp. 617–631, 1973.
13. T. Helgason. “Aspects of the theory of hypermatroids,” Hypergraph Seminar: Ohio

State University, pp. 191–213, 1974.
14. S. Hougardy and H. J. Promel. “A 1.598 approximation algorithm for the Steiner

problem in graphs,” Proceedings of the fourteenth annual ACM-SIAM symposium
on Discrete algorithms , pp. 448–453, 1999.

15. M. Karpinski and A. Zelikovsky. “New Approximation Algorithms for the Steiner
Tree Problems,” Electronic Colloquium on Computational Complexity (ECCC),
vol. 2(030), 1995.

16. X.-Y. Li and W. Wang. “Efficient Strategyproof Multicast in Selfish Networks,”
International Workshop on Theoretical and Algorithmic Aspects of Sensor, Ad Hoc
Wireless and Peer-to-Peer Networks, 2004.

17. L. Lovasz. “Flats in matroids and geometric graphs,” Sixth British combinatorial
conference, pp. 45–86, 1977.

Bounding the Payment of Approximate Truthful Mechanisms 233

18. A. Mas-Colle, W. Whinston, and J. Green. Microeconomic Theory Oxford uni-
versity press, 1995.

19. C. McDiamid. “Rado’s theorem for polymatroids,” Math. Proc. Cambridge Philos.
Soc., vol. 78, pp. 263–281, 1975.

20. N. Nisan and A. Ronen. “Algorithmic mechanism design,” Proceedings of the thirty-
first annual ACM symposium on Theory of computing , pp. 129–140, 1999.

21. C. Papadimitriou. “Algorithms, games, and the Internet,” Proceedings of the thirty-
third annual ACM symposium on Theory of computing , pp. 749–753, 2001.

22. H.J. Promel and A. Steger. “A new approximation algorithm for the Steiner tree
problem with performance ratio 5/3,” J. of Algorithms, vol. 36, pp. 89–101, 2000.

23. G. Robins and A. Zelikovsky. “Improved Steiner Tree Approximation in Graphs,”
Proc. ACM-SIAM Symposium on Discrete Algorithms, pp. 770–779, 2000.

24. A. Ronen. “Algorithms For Rational Agents,” SOFSEM, 2000.
25. K. Talwar. “The price of truth: Frugality in truthful mechanisms,” 20th Annual

Symposium on Theoretical Aspects of Computer Science , pp. 608–619, 2003.
26. W. Vickrey. “Counterspeculation, auctions and competitive sealed tenders,” Jour-

nal of Finance, vol. 16, pp. 8–37, 1961.
27. L.A. Wolsey. “Analysis of the greedy algorithm for the submodular set covering

problem,” Combinatorica, vol. 2, pp. 385–392, 1982.
28. A. Zelikovsky. “An 11/6-Approximation Algorithm for the Network Steiner Tree

Problem,” Algorithmica, vol. 9, pp. 463–470, 1993.

The Polymatroid Steiner Problems

Gruia Calinescu1 and Alexander Zelikovsky2

1 Department of Computer Science, Illinois Institute of Technology, Chicago, IL 60616
calinesc@iit.edu

2 Department of Computer Science Georgia State University, Atlanta, GA 30303
alexz@cs.gsu.edu

Abstract. The Steiner tree problem asks for a minimum cost tree spanning a
given set of terminals S ⊆ V in a weighted graph G = (V, E, c), c : E → R+.
In this paper we consider a generalization of the Steiner tree problem, so called
Polymatroid Steiner Problem, in which a polymatroid P = P (V) is defined on V
and the Steiner tree is required to span at least one base of P (in particular, there
may be a single base S ⊆ V). This formulation is motivated by the following
application in sensor networks – given a set of sensors S = {s1, . . . , sk}, each
sensor si can choose to monitor only a single target from a subset of targets Xi, find
minimum cost tree spanning a set of sensors capable of monitoring the set of all
targets X = X1 ∪ . . . ∪ Xk. The Polymatroid Steiner Problem generalizes many
known Steiner tree problem formulations including the group and covering Steiner
tree problems. We show that this problem can be solved with the polylogarithmic
approximation ratio by a generalization of the combinatorial algorithm of Chekuri
et. al. [7].

We also define the Polymatroid directed Steiner problem which asks
for a minimum cost arborescence connecting a given root to a base of a
polymatroid P defined on the terminal set S. We show that this problem can
be approximately solved by algorithms generalizing methods of Charikar et al [6].

Keywords: Wireless sensor networks, Steiner trees, polymatroid, approximation
algorithms.

1 Introduction

This paper is motivated by the following lifetime problem in energy-constrained sensor
networks. Let S be a set of (stationary) sensors which can be employed for monitoring
a set X of (possibly moving) targets. Each sensor si ∈ S can monitor at most one
target chosen from Xi ⊆ X , a subset of targets visible to si. All targets are supposed to
be simultaneously monitored by activated sensors which should continuously transmit
collected data to the base possibly using multi-hop connections through other sensors,
i.e., the activated sensors and the base should be connected with a Steiner tree. A schedule
is a set of pairs (T, t), where T a Steiner tree connecting sensors capable of monitoring
all targets and t is time during which T is used. A simple energy model assumes that
all sensors transmit with a single unit power and the Steiner tree is derived from the
unit-disk graph. Then the energy consumption of each sensor is proportional to the time
t during which it is used.

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 234–245, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

,

The Polymatroid Steiner Problems 235

Target-Monitoring Sensor Network Lifetime Problem. Find a schedule of the maxi-
mum total time span such that each sensor si ∈ S does not exceed given initial energy
supply bi.

Previously, several versions of the communication adhoc network lifetime problems
as well as sensor network lifetime problem have been explored in [4] and [3], respectively.
A provably good approach to the lifetime problems consists of the following steps:

(i) formulating the lifetime problem as a packing linear program,
(ii) approximately solving the dual covering linear program,

(iii) applying the primal-dual algorithm [11] for solving the primal packing linear pro-
gram with almost the same approximation factor as for the covering linear problem.

Therefore, our focus is on the following covering problem which is dual to the target-
monitoring sensor network lifetime problem.

Target-Monitoring Sensor Covering Problem. Find minimum cost Steiner tree span-
ning the base and a set of sensors capable of simultaneous monitoring of all targets.

Consider a bipartite graph with vertex setB = S ∪X and edges connecting sensors
with visible targets. Then any set of sensors capable of simultaneous monitoring of
all targets is a set of S-endpoints of a matching completely covering X . Therefore,
all minimal feasible sets of sensors form a set of bases of a matroid or, in general,
a polymatroid. The following problem generalizes the Steiner tree problem in a very
natural way.

Polymatroid Steiner Problem (PSP). Given a graphG = (V,E, c) with costs on edges
and a polymatroid P = P (V) on vertices of G, find minimum cost tree T within G
spanning a base of P .

Equivalently, let r : 2V → {0, 1, . . .} be a function on the set of vertices ofG (called
the rank function of the polymatroid P (V)) satisfying

– r(A ∩B) + r(A ∪B) ≤ r(A) + r(B), for all A,B ⊆ V (submodularity)
– r(∅) = 0
– if A ⊆ B then r(A) ≤ r(B) (non-decreasing).

Then PSP asks for a minimum cost tree T spanning a maximum rank subset of V .
PSP generalizes various Steiner tree problem formulations. For example, setting the

rank function r(A) = |A ∩ S|, A ⊆ V where S ⊆ V is a given set of terminals, we
obtain the classical Steiner tree problem which asks for a minimum cost tree spanning
terminals S. The group Steiner tree problem searches a tree spanning at least one vertex
from each of given groups (subsets of vertices) V1, . . . , Vk ⊆ V – it is also an instance
of PSP with the rank function r(A) = |{Vi|A ∩ Vi �= ∅}|. The covering Steiner tree
problem (see [16, 15, 8]) generalizes the group Steiner tree problem by requiring at
least ki vertices from a group Vi to be spanned – the corresponding rank function is
r(A) =

∑k
i=1 min{ki, |A∩Vi|}. Finally, the target-monitoring sensor covering problem

is reduced to PSP by adding a single auxiliary target matching the base and setting r(A)
equal to the maximum number of targets that A can match.

The complexity of PSP can be derived from the recent papers [12, 13]. Halperin and
Krauthgamer [13] showed that for every fixed ε > 0, Group Steiner Tree problem admits
no log2−ε n-approximation, unless NP has quasi-polynomial Las Vegas algorithms.

236 G. Calinescu and A. Zelikovsky

When applying primal-dual algorithm of [11] it is necessary to solve weighted target-
monitoring sensor covering problem, i.e., the version in which each sensor has a certain
weight and the cost of the solution is sum of weights of chosen sensors rather than just
number of chosen sensors. PSP does not seem to generalize the node-weighted version,
but it can be reduced to the following:

Polymatroid Directed Steiner Problem (PDSP). Given a directed graphG = (V,E, c)
with costs on edges and a polymatroid P = P (V) on vertices ofG. Find minimum cost
arborescence T within G connecting a given root r ∈ V to all vertices of at least one
base of P .

The PDSP generalizes the Directed Steiner Tree Problem which can be obtained from
PDSP by setting rank of a subset to its size. The best known approximation algorithm, due
to Charikar et. al. [6], has running timeO(nik2i) and approximation ratio i2(i−1)k1/i)
for any fixed i > 1. Thus, in polynomial time, their approximation ratio isO(kε), while
in quasipolynomial time (O(nc lg n), for constant c) they achieve a polylogarithmic
approximation ratio of O(log3 k).

The simple energy model for the target-monitoring sensor network lifetime problem
can be enhanced by allowing sensors to choose the power of transmission. Then the
energy consumption of each sensor si is proportional to the cost of the hop connecting
si to the next sensor on the path to the base as well as time t during which T is used. This
model straightforwardly reduces the target-monitoring sensor network lifetime problem
to PDSP. Note that the weighted version of PDSP is equivalent to PDSP – the cost of
each edge e should be multiplied by the weight of the beginning of e.

In the next section we show how to generalize algorithm of [6] to solve PDSP with
almost the same approximation factor. The section 3 is devoted to generalization of the
algorithm of [7] to solve PSP with the polylogarithmic approximation ratio.

2 The Polymatroid Directed Steiner Tree Problem

In this section we establish performance bounds of the generalization of the algorithm
of Charikar, Chekuri, Cheung, Dai, Goel, Guha, and Li [6] to the Polymatroid Directed
Steiner Tree problem.

First we introduce a version of Polymatroid Directed Steiner Trees which allows the
presentation of the algorithm. Without loss of generality, we assume that the directed
graph is complete and c(u, v) equals the minimum cost path from u to v. All the edges
and trees in this section are directed. Given a set of nodes X ⊆ V , we denote by rX the
rank function withX contracted; that is rX(Z) = r(X∪Z)−r(X). The rank function of
a polymatroid is submodular implying that ifX ⊆ Y , then for any T , rX(T) ≥ rY (T).
Let PDST (k, v,X) denote the problem of finding the minimum-cost tree T rooted at
v with rX(T) ≥ k. Note that the new version is in fact equivalent with the standard
version as rX is another submodular rank function. One can think of rX as the residual
rank function.

We ensure that all the nodes v with r(v) > 0 do not have outgoing edges by "du-
plicating" v as follows: if v has outgoing edges and positive rank, we introduce an-
other node v′ with r(v′) = 0, replace every edge incident to v by a corresponding

The Polymatroid Steiner Problems 237

Input: k, v, X
Output: An i-level tree T = Ti(k, v, X) rooted at v with rX(T) ≥ k

0. Let L(v) be the vertices reachable from v. If rX(L(v)) < k, return ∅.
1. If i = 0, return the tree with no edges and vertex set {v} if rX(v) ≥ k, or ∅ if rX(v) < k.
2. j ← 1; kj ← k; Xj ← X
3. while kj > 0

3.1 TBEST (j) ← ∅
3.2 for each vertex u ∈ V and each k′, 1 ≤ k′ ≤ kj

3.2.1 T ′ ← Ai−1(k′, u, Xj) ∪ {(v, u)}
3.2.2 if dXj (TBEST (j)) > dXj (T

′) then TBEST (j) = T ′

3.3 kj+1 ← kj − rXj (TBest(j)); Xj+1 ← Xj ∪ L(TBEST (j)); j ← j + 1
4. Return ∪j−1

q=1TBEST (q)

Fig. 1. Algorithm Ai(k, v, X)

edge incident to v′, and introduce the edge (v′, v) of cost 0. This allows us to write
r(T) = r(V (T)) = r(L(T)) for any directed tree T with vertex set V (T) and leafs
L(T) assuming T ′s root has rank 0 (as will be the case for all our trees: even the original
root is duplicated if it has positive rank).

Let c(T) be the cost of the directed treeT (the sum of the costs of the edges ofT). Then
we define the density of the treeT with respect to vertex setX as dX(T) = c(T)/rX(T),
where V (T) is the vertex set of the tree and L(T) is the vertex set of the leafs of the tree.

An l-level tree is a tree where no leaf is more than l edges away from the root. Robins
and Zelikovsky [14] give:

Lemma 1. For all l ≥ 1 and any tree T ⊆ G, there exists an l-level tree T ′ ⊆ G with
L(T ′) = L(T) and c(T ′) ≤ l · |L(T)| 1l c(T).

An earlier claim from [18] that c(T ′) ≤ |L(T)| 1l , used in [6], has a gap in the proof.

2.1 The Algorithm

We describe the Charikar et. al. algorithm [6], generalized for our more general problem.
The recursive algorithm Ai(k, v,X) appears in Figure 1. The parameters passed down
are the desired rank k, the desired root v, the maximum height i, and a pointer to a vector
X describing the vertices already in the tree. The algorithm returns a pointer to an i-level
tree T = Ti(k, v,X) rooted at v satisfying rX(T) ≥ k, or ∅ if no such tree exists. The
base case is i = 1 (as opposed to i = 2 in the original version), as it is NP-Hard to
compute a minimum density bunch (a tree with only one vertex with outdegree larger
than one) in the polymatroid setting. When i > 1, the recursive algorithm copies the
vector X and uses the copy during its execution, while when i = 1 the vector X is not
modified.

Note the following invariant of the algorithm: rX(Xj) = k−kj . Indeed, rX(X1) =
r(X)−r(X) = 0 = k−k1, and rX(Xj+1) = r(Xj+1)−r(X) = r(Xj+1)−r(Xj)+

238 G. Calinescu and A. Zelikovsky

r(Xj)− r(X) = rXj
(TBEST (j)) + rX(Xj) = (kj − kj+1) + (k − kj) = k − kj+1.

In particular, we have rX(Ti(k, v,X)) ≥ k, so the returned solution is valid.
Let T (i)

OPT (k, v,X) be an optimum i-level tree solving PDST (k, v,X).

Lemma 2. Far all i ≥ 1, each tree TBEST (j) chosen by algorithmAi(k, v,X) satisfies

dXj (TBESTj) ≤ i · dXj (T
(i)
OPT (kj , v,Xj))

Proof. The proof is by induction on i, with the base case i = 0 being immediate.
Assume the statement of the lemma holds for all k, v,X, and i−1. T (i)

OPT (kj , v,Xj)
consists of several edges (v, up) and subtreesTp rooted atup, such that rXj

(∪pTp) ≥ kj .
Submodularity implies that

∑
p rXj (Tp) ≥ rXj (∪pTp), and therefore by an averaging

argument and renumbering, we have

c(v, u1) + c(T1)
rXj (T1)

≤ dXj
(T (i)

OPT (kj , v,Xj)) (1)

Consider the execution of the algorithm Ai−1(kj , u1, Xj). Trees R1, R2, . . . are
selected in this order, and let Qp = ∪p

q=1Rq. Now, when Ai−1(k′, u1, Xj) is called for
k′ = rXj

(Qp), then Qp ∪ {(v, u1)} is returned and is a candidate for TBEST (j). Our
goal is to wisely choose such p and show that is has an appropriate density

c(v, u1) + c(Qp)
rXj

(Qp)
≤ i

c(v, u1) + c(T1)
rXj

(T1)
(2)

which together with Equation 1 would imply the theorem. We pick p to be the smallest
integer such that rXj

(Qp) ≥ rXj
(T1)/i, which implies

c(v, u1)
rXj

(Qp)
≤ i

c(v, u1)
rXj

(T1)
(3)

It remains to prove that
c(Qp)
rXj (Qp)

≤ i
c(T1)
rXj (T1)

(4)

as this equation together with Equation 3 implies Equation 2.
By the induction hypothesis, we have for all q ≤ p

c(Rq)
rQq−1∪Xj

(Rq)
≤ (i− 1)

c(T1)
rQq−1∪Xj

(T1)
(5)

since Rq is TBEST (q) when executing Ai−1(rXj (T1), u1, Xj). We picked p such that
rXj

(Qp−1) < 1
i rXj

(T1), and therefore rXj∪Qp−1(T1) = r(Xj ∪Qp−1∪T1)− r(Xj ∪
Qp−1) ≥ r(Xj ∪ T1)− r(Xj ∪Qp−1) = (r(Xj ∪ T1)− r(Xj))− (r(Xj ∪Qp−1)−
r(Xj)) = rXj

(T1)− rXj
(Qp−1) ≥ i−1

i rXj
(T1).

Submodularity of the rank function implies that for all q ≤ p,

rXj∪Qq−1(T1) ≥ rXj∪Qp−1(T1) ≥
i− 1
i
rXj

(T1) (6)

and, therefore,

The Polymatroid Steiner Problems 239

p∑
q=1

c(Rq) ≤
p∑

q=1

rQq−1∪Xj
(Rq)(i− 1)

c(T1)
rQq−1∪Xj

(T1)

≤ i
c(T1)
rXj

(T1)

p∑
q=1

rQq−1∪Xj
(Rq) (7)

But

rXj
(Qp) = r(Xj ∪Qp)− r(Xj)

= r(Xj ∪Qp)− r(Xj ∪Qp−1) + r(Xj ∪Qp−1)− . . .− r(Xj ∪Q0)

=
p∑

q=1

rXj∪Qq−1(Rq)

Thus Equation 7 implies Equation 4, finishing the proof of Lemma 2.

Theorem 1. For every i > 1, k ≥ 0, v ∈ V and X ⊆ V , the algorithm Ai(k, v,X)
provides an i3k1/i approximation toPDST (k, v,X) in timeO(ni+1k2i+2q(n)), where
q(n) is the time an oracle returns rX(v) for an arbitrary X ⊆ V .

Proof. The proof follows [6]. Note that TOPT (k, v,X) is a valid solution for
PDST (kj , v,Xj) since

rXj
(TOPT (k, v,X)) = r(Xj ∪ TOPT (k, v,X))− r(Xj)

≥ r(X ∪ TOPT (k, v,X))− r(X)− (r(Xj)− r(X))
≥ k − rX(Xj) = k − (k − kj) = kj

where we used the invariant of the procedure Ai(k, v,X). Therefore, by Lemma 1,
we have c(T (i)

OPT (kj , v,Xj)) ≤ ik
1/i
j c(TOPT (kj , v,Xj)) and c(TOPT (kj , v,Xj) ≤

c(TOPT (k, v,X)), and by Lemma 2, we have

dXj
(TBEST (j)) ≤ i · dXj

(T (i)
OPT (kj , v,Xj))

≤ i · i · k1/i
j · c(TOPT (k, v,X))

kj

So we know that

c(TBEST (j))
rXj

(TBEST (j))
≤ i2k

1/i
j

c(TOPT (k, v,X)
kj

Since rXj
(TBEST (j)) = kj+1 − kj , we obtain

c(TBEST (j)) ≤ i2c(TOPT (k, v,X)) (kj+1 − kj)
k

1/i
j

kj

Summing over j (cf. Lemma 1 of [6]) and using k1 = k and kj+1 < 0, we obtain

240 G. Calinescu and A. Zelikovsky

c(Ti(k, v,X)) ≤ i2c(TOPT (k, v,X))
∑

j

(kj+1 − kj)
k

1/i
j

kj

≤ i2c(TOPT (k, v,X)
∫ k

0
x1−1/idx

= i3k1/ic(TOPT (k, v,X))

The procedure Ai invokes Ai−1 at most nk2 times, and the bound on the running
time follows.

If the input is a star (directed tree with one level), the algorithm becomes the Greedy
algorithm for the Submodular Set Covering problem [17].

Corollary 1. The approximation ratio of the Greedy Algorithm applied to the Submod-
ular Set Covering problem is at most 1 + ln k.

Wolsey [17] investigated this problem and has shown that the Greedy algorithm has in
fact a slightly better approximation ratio Hq, where q = maxv | r(v)>0 r(v).

3 The Polymatroid Steiner Tree Problem

In this section we give the solution of the (undirected) Polymatroid Steiner tree Problem.
The first choice for solving this problem is to generalize the linear-program based algo-
rithms of Garg, Konjewood, and Ravi [10], Konjewood, Ravi, and Srinivasan [15], and
Zosin and Khuller [19]. Unfortunately, it is truly cumbersome to apply linear programs
to PSP. Instead, our algorithm for PSP mostly relies on the combinatorial approximation
algorithm for Group Steiner Tree of Chekuri, Even, and Korsatz [7].

The Chekuri et. al. algorithm is obtained by modifying the Charikar et. al. algorithm
[6], and is applied after the graph metric has been replaced by a tree metric [1, 2, 5, 9],
losing a factor of O(logn) in approximation ratio. Thus we also assume the input is a
rooted tree.

Chekuri et. al. [7] preprocess the tree to decrease the depth and degree. This prepro-
cessing approximately preserves the cost of any solution, so we can apply it Polymatroid
Steiner Tree as well. Precisely, every set of leaves L ⊆ L(T) induces a subtree Tl con-
sisting of the union of all paths from the root to the leaves in L. IfA andB are two trees
with the same root and the same set of leaves, the tree B is a α-faithful representation
of the tree A if

∀L ⊆ L(A) : c(AL) ≤ c(BL) ≤ αc(AL).

The preprocessing is stated in the following theorem of Chekuri et. al. [7]:

Theorem 2. Given a treeT withn leaves and integer parametersα and β > 2, there is a
linear time algorithm to transform T into aO(α)-faithful tree T ′ with heightO(logα n+
logβ/2 n) and maximum degree O(β).

Thus, by losing a factor of O(α log n) (log n comes from embedding the original
metric in a tree metric), we can assume that the instance for Polymatroid Steiner Tree is
a tree with height O(logα n+ logβ/2 n) and maximum degree O(β).

The Polymatroid Steiner Problems 241

For the reader familiar with the Chekuri et. al. paper [7], below you’ll find the
correspondence between the notions used by this previous paper and our notions. Their
theorems and proofs “translate" to PST, some of them directly.

– w(T) —- c(T)
– z′ —- k
– r′ —- v
– Tr′ (excluding the leaves already reached) —- X (the leaves already reached)
– Taug —- TBEST (j)
– zres —- kj

– γ(T) —- dX(T)
– cover —- ∪j

i=1TBEST (j)
– m(T) —- rXj

(T)
– m(cover) —- rXXj

– remove gropus covered by Taug from T res —- Xj+1 ← Xj ∪ L(TBEST (j))
– coverh —- jh
– Group-Steiner∗(T res

r′ , zres) —- TOPT (kj , v,Xj)

The Modified-Group-Steiner algorithm of Chekuri et. al. [7], as generalized for
Polymatorid Steiner Tree for trees is described in Figure 2. The recursive procedure
M(k, v,X) uses an integer parameter λ as the basis for the geometric search. We use
Tv to denote the subtree rooted at v and Cv the set of children of v. h(T ′) denotes the
height of a subtree T ′.

In the practical implementations, one can continue the while loop from Step 3 instead
of stopping in Step 3.4, returning the lowest density tree from ∪j−1

q=1TBEST (q) and

∪jh−1
q=1 TBEST (q), where jh is the value of j at the first moment rX(Xj) ≥ k/(h(Tv)+1).

The proof of the following lemma can be directly generalized from the proof of
Lemma 3.3 of [7]. We omit details but notice that in the base case (leafs) a polymatroid
oracle call must be made, which is assumed to take time q(n).

Input: k, v, X
Output: A tree T = T (k, v, X) rooted at v with rX(T) ≥ k, or ∅ if no such tree exists

0. If rX(L(Tv)) < k, return ∅.
1. If v is a leaf, return the tree with no edges and vertex set {v}
2. j ← 1; kj ← k; Xj ← X
3. while kj > 0

3.1 TBEST (j) ← ∅
3.2 for each vertex u ∈ Cv and each k′ power of (1 + λ) in

[
kj

deg(v)(1+1/λ)(1+λ) , kj

]
3.2.1 T ′ ← M(k′, u, Xj) ∪ {(v, u)}
3.2.2 if dXj (TBEST (j)) > dXj (T

′) then TBEST (j) = T ′

3.3 kj+1 ← kj − rXj (TBest(j)); Xj+1 ← Xj ∪ L(TBEST (j)); j ← j + 1
3.4 If rX(Xj) ≥ k/(h(Tv) + 1), then return ∪j−1

q=1TBEST (q)

Fig. 2. Algorithm M(k, v, X)

242 G. Calinescu and A. Zelikovsky

Lemma 3. Let Δ be the maximum degree of the tree and b = Δ(1 + 1/λ)(1 + λ). The
running time of M(k, v,X) is O((n + q(n))αh(Tv)) where α = b · h(Tv) · log k ·Δ ·
log1+λ b.

The main lemma needed for establishing the approximation ratio is a generalization
of Lemma 3.4 of [7].

Lemma 4.

dXj
(TBEST (j)) ≤ (1 + λ)2h(Tv)h(Tv)dXj

(TOPT (kj , v,Xj))

Proof. In general, the proof follows [7]. We use γ∗ = dXj
(TOPT (kj , v,Xj)). The

proof is by induction on h(Tv), the height of the subtree rooted at v. Both the base case
h(Tv) = 1 and the general case need the following argument.

Let u1, u2, . . . , ud be the children of v in TOPT (kj , v,Xj), and Ti, 1 ≤ i ≤ d, be
the subtree of TOPT (kj , v,Xj) rooted at ui. Thus rXj

(
∪d

i=1Ti

)
≥ kj . We divide the set

1, 2, . . . d into the setB giving “big" trees: those iwith rXj
(Ti) ≥ kj

deg(v)(1+1/λ) , and the

set S giving “small" trees: those i with rXj
(Ti) <

kj

deg(v)(1+1/λ) . Then rXj
(∪i∈STi) ≤∑

i∈S rXj
(Ti) <

kj

1+1/λ and, therefore,∑
i∈B

rXj (Ti) ≥ rXj (∪i∈BTi)

≥ kj − d
kj

deg(v)(1 + 1/λ)

≥ kj

1 + λ

By an averaging argument, there is a big tree (which we renumber T1) such that

c(v, u1) + c(T1)
rXj (T1)

≤
∑

i∈B c(v, ui) + c(Ti)∑
i∈B rXj (Ti)

≤ (1 + λ)
c(TOPT (kj , v,Xj))

kj

= (1 + λ)γ∗ (8)

Let z be the power of (1 + λ) such that z ≤ rXj
(T1) < (1 + λ)z and note that z

is in the range of powers of (1 + λ) considered in Line 3.2 of the algorithm. Therefore
M(z, u1, Xj) is called.

In the base case, u1 is a leaf, and therefore a candidate for TBEST (j) is the tree T ′

with only the edge (v, u1), having density dXj
(T ′) = c(v,u1)

rXj
(T1)

≤ (1 + λ)γ∗. Thus the

base case of induction holds.
In the general case, let R1, R2, . . . , Rp be the trees picked as TBEST during the

execution ofM(z, u1, Xj). LetQq = ∪q
i=0Ri and let h1 = h(Tu1). Induction gives for

i ∈ {1, 2, . . . , p}

The Polymatroid Steiner Problems 243

c(Ri)
rXj∪Qi−1(Ri)

≤ (1 + λ)2h1h1dXj∪Qi−1(TOPT (z − rXj
(Qi−1), u1, Xj ∪Qi−1))

≤ (1 + λ)2h1h1
c(T1)

rXj∪Qi−1(T1)
(9)

where the second inequality follows from the fact that rXj∪Qi−1(T1) ≥ z− rXj
(Qi−1)

(which follows from rXj
(T1) ≥ z and the submodularity of r), and, therefore, T1 is a

candidate for TOPT (z, u1, Xj ∪Qi−1).
By the return condition of the algorithm, rXj

(Qi−1) < 1
h1+1z and, therefore,

rXj∪Qi−1(T1) ≥ rXj (T1)− rXj (Qi−1)

≥ z(1− 1
h+ 1

)

=
h

h+ 1
z

Together with Equation 9, we obtain:

c(Ri)
rXj∪Qi−1(Ri)

≤ (1 + λ)2h1(h1 + 1)
c(T1)
z

≤ (1 + λ)2h1+1(h1 + 1)
c(T1)
rXj (T1)

(10)

since z was chosen such that z ≤ rXj
(T1) < (1 + λ)z. Thus,

p∑
q=1

c(Rq) ≤
p∑

q=1

rXj∪Qq−1(Rq)(1 + λ)2h1+1(h1 + 1)
c(T1)
rXj (T1)

(11)

But

rXj
(Qp) = r(Xj ∪Qp)− r(Xj)

= r(Xj ∪Qp)− r(Xj ∪Qp−1) + r(Xj ∪Qp−1)− . . .− r(Xj ∪Q0)

=
p∑

q=1

rXj∪Qq−1(Rq)

and, therefore, ∑p
q=1 c(Rq)
rXj (Qp)

≤ (1 + λ)2h1+1(h1 + 1)
c(T1)
rXj (T1)

(12)

Note that p was picked such that rXj
(Qp) ≥ 1

h1+1z ≥
1

(h1+1)(1+λ)rXj
(T1) and

therefore
c(v, u1)
rXj

(Qp)
≤ (h1 + 1)(1 + λ)

c(v, u1)
rXj

(T1)
(13)

244 G. Calinescu and A. Zelikovsky

Combining the previous equation with Equation 12 we obtain

c(u, v) +
∑p

q=1 c(Rq)
rXj

(Qp)
≤ (1 + λ)2h1+1(h1 + 1)

c(v, u1) + c(T1)
rXj

(T1)
(14)

Using Equation 8 and the fact that h(Tv) ≥ h(Tu1) + 1 = h1 + 1, we obtain

c(u, v) +
∑p

q=1 c(Rq)
rXj

(Qp)
≤ (1 + λ)2h(Tv)h(Tv)γ∗ (15)

Thus, the tree T ′ returned by M(z, u1, Xj), which is a candidate for TBEST (j) in
the execution of M(k, v,X), satisfies dxj (T

′) ≤ (1 + λ)2h(Tv)h(Tv)γ∗.

Chekuri et. al. [7] choose (and we do the same) α = (logn)ε, β = log n, 1/λ =
log n). Assuming the oracle computation is polynomial time, the proof of Theorem 3.5
and Corollary 3.6 of [7] gives our corresponding statement:

Theorem 3. There is a combinatorial polynomial-timeO(1
ε ·

1
log log n ·(logn)1+ε log k)-

approximation algorithm for Polymatroid Steiner Tree on trees with n nodes, where k is
the desired rank. For general undirected graphs, there is a combinatorial polynomial-
time O(1

ε ·
1

log log n · (logn)2+ε log k)-approximation algorithm

4 Conclusion

Motivated by applications in wireless sensor networks (when sensors can monitor only
a single target), we have introduced the Polymatroid (Directed and Undirected) Steiner
Tree Problems (PSP). These problems asks for a (directed) Steiner tree spanning a
subset of terminals of sufficiently large rank. The undirected version of PSP generalizes
all known versions of the Group Steiner Tree Problem and is shown to be solved by a
generalization of the algorithm from [7] with the polylogarithmic approximation ratio.
The directed version of PSP is a generalization of the Directed Steiner Tree Problem as
well as Polymatroid Set Cover Problem. We show that this problem can be approximately
solved by methods generalizing [6].

References

1. Y. Bartal. Probabilistic approximation of metric spaces and its algorithmic applications. In
FOCS, 1996.

2. Y. Bartal. On approximating arbitrary metrics by tree metrics. In STOC, 1998.
3. P. Berman, G. Calinescu, C. Shah, and A. Zelikovsky. Power efficient monitoring management

in sensor networks. In Proc. IEEE Wireless Communications and Networking Conference,
2004.

4. G. Calinescu, S. Kapoor, A. Olshevsky, and A. Zelikovsky. Network lifetime and power
assignment in ad-hoc wireless networks. In Proc. 11th European Symphosium on Algorithms,
2003.

The Polymatroid Steiner Problems 245

5. M. Charikar, C. Chekuri, A. Goel, and S. Guha. Approximating a finite metric by a small
number of tree metrics. In STOC, 1999.

6. Moses Charikar, Chandra Chekuri, Toyat Cheung, Zuo Dai, Ashish Goel, Sudipto Guha, and
Ming Li. Approximation Algorithms for Directed Steiner Problems. Journal of Algorithms,
33(1):73–91, 1999.

7. C. Chekuri, G. Even, and G. Kortsarz. A combinatorial approximation algorithm for the
group Steiner problem, 2002. Submitted for publication. Available on the web.

8. G. Even, G. Kortsarz, and W. Slany. On network design: fixed charge flows and the covering
Steiner problem. In SWAT 2002, pages 318–329.

9. Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating arbi-
trary metrics by tree metrics. In STOC, 2003.

10. N. Garg, G. Konjevod, and R. Ravi. A polylogarithmic approximation algorithm for the group
Steiner tree problem. J. Algorithms, 37(1):66–84, 2000.

11. Naveen Garg and Jochen Konemann. Faster and simpler algorithms for multicommodity flow
and other fractional packing problems. In IEEE Symposium on Foundations of Computer
Science, pages 300–309, 1998.

12. E. Halperin, G. Kortsarz, R. Krauthgamer, A. Srinivasan, and N. Wang. Integrality ratio for
Group Steiner Trees and Directed Steiner Trees. In 14th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 275–284, January 2003.

13. E. Halperin and R. Krauthgamer. Polylogarithmic inapproximability. In Proceedings of the
35th ACM Symposium on Theory of Computing, pages 585–594, 2003.

14. C. H. Helvig, , G. Robins, and A. Zelikovsky. Improved approximation scheme for the group
Steiner problem. Networks, 37(1):8–20, 2001.

15. G. Konjevod, R. Ravi, and A. Srinivasan. Approximation algorithms for the covering Steiner
problem. Random Structures and Algorithms, 20(3):465–482, 2002. Preliminary version by
Konjevod and Ravi in SODA 2000.

16. Goran Konjevod and R. Ravi. An approximation algorithm for the covering steiner problem.
In Proceedings of the eleventh annual ACM-SIAM symposium on Discrete algorithms, pages
338–344. Society for Industrial and Applied Mathematics, 2000.

17. L.A. Wolsey. Analysis of the greedy algorithm for the submodular set covering problem.
Combinatorica, 2:385–392, 1982.

18. A. Zelikovsky. A series of approximation algorithms for the acyclic directed Steiner tree
problem. Algorithmica, 18, 1997.

19. Leonid Zosin and Samir Khuller. On directed Steiner trees. In SODA, pages 59–63, 2002.

Geometric Optimization Problems Over Sliding
Windows�

Timothy M. Chan and Bashir S. Sadjad

School of Computer Science,
University of Waterloo,

Waterloo, Ontario, N2L 3G1, Canada
{tmchan, bssadjad}@uwaterloo.ca

Abstract. We study the problem of maintaining a (1+ε)-factor approx-
imation of the diameter of a stream of points under the sliding window
model. In one dimension, we give a simple algorithm that only needs to
store O(1

ε
log R) points at any time, where the parameter R denotes the

“spread” of the point set. This bound is optimal and improves Feigen-
baum, Kannan, and Zhang’s recent solution by two logarithmic factors.
We then extend our one-dimensional algorithm to higher constant dimen-
sions and, at the same time, correct an error in the previous solution. In
high nonconstant dimensions, we also observe a constant-factor approx-
imation algorithm that requires sublinear space. Related optimization
problems, such as the width, are also considered in the two-dimensional
case.

1 Introduction

In conventional settings an algorithm has access to the whole input at once. In
the data stream model [12, 15], however, data elements come in one by one. In this
model, we want to maintain some function over the input (for example, statistical
information) but because of space limitations, we are not allowed to store all data
in memory. In the more general sliding window model, the setting is similar but
the goal function should be maintained over a window containing the N newest
elements in the stream. In some cases the value of N is fixed in advance, but in
some applications the size of the window may be dynamic. (For example, we may
want to maintain the goal function over data received within the last one hour.)

The objective of this paper is to study some well-known optimization prob-
lems in computational geometry, e.g., the diameter and the width, under the
sliding window model. For a set P of n points in d-dimensional space, the diam-
eter Δ(P) is the distance between the furthest pair of points in P . The width
of P is the minimum distance between two parallel hyperplanes where all points
lie between them. We focus primarily on the case where d is a small constant.

� Work done by the first author was supported by an NSERC Research Grant and
a Premiere’s Research Excellence Award. This work has appeared as part of the
second author’s Master’s thesis.

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 246–258, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Geometric Optimization Problems Over Sliding Windows 247

The diameter problem has been studied extensively in the traditional model.
Although O(n log n) algorithms have been given for d = 2 [16] and d = 3 [8, 17],
only slightly subquadratic algorithms are known for higher dimensions. This has
prompted researchers [2, 4, 6] to consider approximation algorithms. For exam-
ple, with the latest algorithm [7], a (1+ ε)-factor approximation of the diameter
can be found in O(n+(1

ε)d−1.5) time. Earlier Agarwal et al. [2] observed a simple
approximation algorithm that runs in O((1

ε)(d−1)/2n) time and is in fact a data-
stream algorithm requiring just O((1

ε)(d−1)/2) space. Other data-stream approxi-
mation algorithms in the two-dimensional case were considered by Feigenbaum et
al. [10] and Hershberger and Suri [13]. (No efficient data-stream exact algorithm
is possible even in one dimension [10].) For the high-dimensional case, where d
is not a fixed constant, Goel et al. [11] have proposed a (1 + ε)-approximation
algorithm in the traditional model that runs in O(n1+1/(1+ε) + dn) time, and
Indyk [14] has developed a (c+ ε)-approximation algorithm in the data stream
model with sublinear space complexity O(dn1/(c2−1) log n) for c >

√
2.

The width problem has also been extensively studied in the traditional model,
both in terms of exact algorithms [3, 16] and approximation algorithms [6, 9]. The
recent approximation algorithm by Chan [7], for example, runs in O(n+(1

ε)d−1)
time for any fixed d. An efficient approximation algorithm in the data stream
model has also been proposed by Chan, using only O((1

ε log 1
ε)d−1) space.

The previous (and perhaps the only) approximate diameter algorithm in
the sliding window model was proposed by Feigenbaum et al. [10]. Their one-
dimensional algorithm (briefly reviewed in Section 2) requiresO(1

ε log3N(logR+
log logN + log 1

ε)) bits of space, where N is the size of the sliding window and
R is the spread of the points in the window; the spread is defined as the ra-
tio between the diameter and the minimum non-zero distance between any two
points in the window. Also Feigenbaum et al. have shown a lower bound of
Ω(1

ε logR logN) bits of space. They also claimed that their one-dimensional al-
gorithm can be used to approximate the diameter in any fixed dimension d, with
O((1

ε)(d+1)/2 log3N(logR+ log logN + log 1
ε)) bits of space.

To our knowledge, there is no existing solution for the width problem in the
sliding window model.

In this paper, we give a number of new results in the sliding window model:

– For diameter in one dimension (Section 3), we present a simpler and more
efficient algorithm that stores only Θ(1

ε logR) points. Under the assump-
tion (made also by Feigenbaum et al.) that coordinates can be encoded
with O(logN) bits, our algorithm thus uses O(1

ε logR logN) bits of space,
matching the known lower bound. Our algorithm is also faster, requiring
O(1) time per point (Feigenbaum et al.’s method requires O(logN) time per
point).

– For diameter in a fixed dimension (Section 4), we point out a small error
in Feigenbaum et al.’s previous solution. In addition, we show that our one-
dimensional algorithm can be extended to higher dimensions. The number
of points stored is O((1

ε)(d+1)/2 log R
ε), which again improves the previous

(claimed) bound.

248 T.M. Chan and B.S. Sadjad

– For diameter in a higher non-constant dimension, or more generally, in a
metric space (Section 5), we mention a (6+ ε)-approximation algorithm that
uses sublinear space. (Although a constant-factor result is trivial for the data
stream model, it is not as obvious for sliding windows.)

– We also give the first solution for the width problem in the sliding window
model in the two-dimensional case (Section 6). More generally, we show how
to maintain an ε-core-set [1]. Although the space requirement of this method
is dependent on a new variable R′, defined as the ratio between diameter
and the minimum width of a consecutive triple of points, we show such a
dependence is necessary in the sliding window model.

2 Diameter in One Dimension: The Previous Algorithm

In this section, we briefly review the previous technique of Feigenbaum et al.
[10] for maintaining the diameter of a one-dimensional point set over a sliding
window of size at most N , as the ideas here will be helpful later (in Sections 5
and 6). At any particular time we have a set of points (or numbers) P in the
sliding window, where an arrival time is associated to each point. We say that p
is newer than q if the arrival time of p is greater than the arrival time of q (older
otherwise). We want to approximate the diameter Δ(P) = maxp,q∈P ||p − q||,
where ||p− q|| denotes the distance between two points p and q.

The basic approach is similar to the logarithmic method of Bentley and Saxe
[5] (which was also used in some previous data stream algorithms, e.g., [1]). The
input is split into several clusters. Each cluster represents an interval of time
and the size of each cluster is a power of two. In each cluster C, a small subset
NC ⊆ C of points (called representative points) is recorded as an approximation
of C and obeys the following rules:

1. For each cluster C, the exact location of the newest point oC is recorded as
the center of C.

2. Each new point p forms a cluster C of size one.
3. For each point p in cluster C there exists q ∈ NC such that both p and q are

on one side of oC , q is not older than p, and

1
1 + ε

||oC − q|| ≤ ||oC − p|| ≤ (1 + ε)||oC − q||; (1)

we say that q is a representative of p (or p is rounded to q).
4. When there are more than two clusters of size k, the two older clusters C1

and C2 are combined to form a cluster C of size 2k and a merge procedure
is applied to form NC from NC1 and NC2 .

To construct a subset NC satisfying Inequality 1 from C, the basic strategy is
as follows: let o be the newest point in C and let δ be the distance of the closest
point in C from o. For each i ≥ 0, find the newest point at distance between
(1 + α)iδ and (1 + α)i+1δ (for an α to be determined later) and put this point
in NC .

Geometric Optimization Problems Over Sliding Windows 249

To merge two clusters C1 and C2, the idea is to apply the above procedure to
compute NC not from C but from just the points in NC1 ∪NC2 (ignoring details
about what δ should be for NC).

A problem that arises is that each merge may cause an additional additive
error of αΔ(P). In other words, p might be rounded to q and then after a merge,
q might be rounded to another point r. To overcome this problem, the idea is
to use α = ε

log N . Since at most logN merges can happen to a point p, it always
has a representative q with ||q − p|| ≤ (logN)αΔ(P) = εΔ(P).

In each cluster C, we keep O(log1+αR) = O(1
ε logN logR) points in NC , and

there are O(logN) clusters, so the space complexity of this method is about the
space needed for O(1

ε log2N logR) points, i.e., about O(1
ε log3N logR) bits.

3 Diameter in One Dimension: The New Algorithm

We now present a more direct algorithm for one-dimensional diameter that avoids
working with multiple clusters. To find the furthest pair in P , it is enough
to find the largest and smallest numbers, and we do this by two similar data
structures that maintain an approximate maximum and minimum of the points.
An “approximate maximum” here refers to a q ∈ P such that ||q − p|| ≤ εΔ(P)
where p ∈ P is the maximum point.

We now describe a data structure that maintains a subset of O(log1+εR)
points of P , the largest of which is an approximate maximum. The data structure
supports insertion of a new point and deletion of the oldest point. The key idea
is in the following definition:

Definition 1. Let Q = 〈q1, q2, . . . , qk〉 be a subsequence of P such that q1 <
q2 < · · · < qk. Let predQ(p) be the maximum value in Q that is at most p and
succQ(p) be the minimum value that is at least p. We call Q a summary sequence
of P if the following conditions hold:

1. The qi’s are in decreasing order of arrival time.
2. For all p, predQ(p), if it exists, is not older than p.
3. For all p, either ||p− predQ(p)|| ≤ εΔp(P) or succQ(p) is not older than p.

Here, Δp(P) denotes the diameter of all points in P not older than p.

Let us see why summary sequences are important. First notice that upon
insertion of a new point p, we can delete all points b ∈ P that are not greater
than p. This is because from now on p is a better approximation than b for the
maximum value. So, condition 1 can be guaranteed. Conditions 2 and 3 ensure
that predQ(p) or succQ(p) can be used as a “representative” of p.

Notice that the summary sequence is not unique. For example in Figure 1,
from the summary sequence a1, a2, . . . , a7, we can get another summary sequence
by deleting a3, a4, and a5 while ensuring condition 3. The interesting question
is to how to maintain small summary sequences.

250 T.M. Chan and B.S. Sadjad

p19p21p25p15 p23 p24 p13p20 p17p14p18p22 p12p17

a1 = p25 a7 = p16

f

(1 + ε)f

a5 = p19a4 = p21a2 = p24 a3 = p22 a6 = p18

q1 = p25 q2 = p24 q3 = p18

Fig. 1. An example of a summary sequence. (The index of each point is equal to its
arrival time.)

Our algorithm to maintain a summary sequence Q is remarkably simple and
is described completely in the pseudocode below. We assume that Q is stored in
a doubly linked list.

Insert(p): /* given a new point p */
1. Remove all points in Q that are less than p, and put p at the begin-

ning.
2. After every 1

ε logR insertions, run Refine.
Refine:
1. Let q1 and q2 be the first and the second points in Q respectively.
2. Let q := q2.
3. While q is not the last element of Q do
4. Let x and y be the elements before and after q in Q.
5. If (1 + ε)||q1 − x|| ≥ ||q1 − y|| then remove q from Q.
6. Continue with q equal to y.

Delete(p): /* given the oldest point p */
1. Just remove p from Q if p ∈ Q.

We prove the correctness of our algorithm:

Lemma 1. After the refine algorithm, Q is still a summary sequence of P .
Furthermore, |Q| = O(1

ε logR).

Proof: We show that conditions 1–3 remain valid each time a single point is
removed from Q. This is obvious for condition 1. Regarding condition 2, just note
that the new predecessor of a point is not older than the previous predecessor
by condition 1.

We now consider condition 3. Let p ∈ P . Before the removal, we have either
||p − predQ(p)|| ≤ εΔp(P) or succQ(p) is newer than p. Set q = predQ(p) in
the former case, and q = succQ(p) in the latter. If q is not the point being
removed, then the condition clearly remains true for the point p. Otherwise, by

Geometric Optimization Problems Over Sliding Windows 251

the design of the refine algorithm, the predecessor x and successor y of q must
satisfy (1 + ε)||q1 − x|| ≥ ||q1 − y||. This implies that ||p − x|| ≤ ||y − x|| ≤
ε||x− q1|| ≤ εΔp(P), because x and q1 are newer than q by condition 1. Since x
is the new predecessor of p, condition 3 remains true for the point p.

For the second part of the lemma, let Q = 〈q1, q2, . . . qk〉 after the refine
algorithm. Then for each 1 < i < k − 2 we have ||q1 − qi+2|| > (1 + ε)||q1 − qi||,
because otherwise we would have removed qi+1. Since ||q1 − q2|| is at least the
minimum non-zero distance δ(P), and ||q1−qk|| is at most the maximum distance
Δ(P), we have k ≤ 2 log1+ε

Δ(P)
δ(P) ≤ 2 log1+εR = O(1

ε logR). �

It is easy to check that conditions 1-3 remain true after line 1 of the insert
algorithm, or after a deletion.

Theorem 1. There is a data structure, storing O(1
ε logR) points, that main-

tains a (1+ε)-approximation of the diameter of a one-dimensional point set over
a sliding window of variable size. Insertion of a new point takes O(1) amortized
time. Deletion of the oldest point can be done in O(1) time.

Proof: The number of points in the summary sequence is O(1
ε logR) after each

refine, and we do refine after each 1
ε logR insertions. Thus, the space complexity

of this method is O(1
ε logR). Upon insertion of a new point, we may remove

O(1
ε logR) points from the current summary sequence, but each point will be

removed at most once. On the other hand, an execution of the refine algorithm
requires O(1

ε logR) time but is done once per 1
ε logR insertions. Thus, the amor-

tized insertion time is O(1). �

Remarks. The algorithm can be modified by standard techniques so that the
worst-case insertion time is O(1).

Besides being space-optimal (assuming coordinates have O(logN) bits), a
desirable new feature of our data structure is that the size of the window need
not be known in advance and can change dynamically (i.e., each insertion does
not have to be followed by one deletion, or vice versa).

4 Diameter in Higher Fixed Dimensions

Feigenbaum et al. have extended their one-dimensional diameter algorithm to
any fixed dimensions. They use the following well-known lemma:

Lemma 2. There is a set L of Θ
(
(1

ε)(d−1)/2
)

lines, in Rd such that for each
vector x ∈ Rd, the angle between x and some � ∈ L is at most arccos(1

1+ε).

Such a set L can be constructed in Θ(|L|) time, for example, by a grid method
[7]. The idea is to construct this set L and use the one-dimensional structure to
maintain the diameter of the projection of the point set to each line � ∈ L.

252 T.M. Chan and B.S. Sadjad

Lemma 3. Let L be the set of lines in Lemma 2. Assume that there is a black box
B that, given a set of one-dimensional points, returns a (1+ ε)-approximation of
its diameter. For a set of points P in Rd, project each point to each line � ∈ L and
run B on it. The maximum of the returned values is a (1 +O(ε))-approximation
of the diameter Δ of P .

Proof: Let p, q ∈ P be the furthest pair of points in P . Suppose the angle
between line←→pq and � ∈ L is at most arccos(1

1+ε). Let p′ and q′ be the projection
of p and q on �. Then ||p−q|| ≤ (1+ε)||p′−q′||. On the other hand, the maximum
returned value is at least 1

1+ε ||p′ − q′|| ≥ 1
(1+ε)2Δ. �

Feigenbaum et al. did not observe the following problem: If we naively apply
this projection approach, the spread of the one-dimensional point sets could be
much bigger than the spread R of the actual point set P (because the closest-pair
distance of the one-dimensional sets could be much smaller).

To fix this problem, we extend our one-dimensional approach using the above
lemma but in a more creative way. (Our idea can also extend the result of
Feigenbaum et al. to higher dimensions, but our data structure is more efficient.)
We always keep the location of the two newest points p1 and p2 in the current
window. If Q(�) = 〈q1, q2, . . . , qk〉 is a summary sequence of projection of the
given point set P on line �, then before line 2 of the refine algorithm, we remove
all qi’s that satisfies ||q1−qi|| ≤ ε||p1−p2|| (after the points are projected). These
points are too close to q1, and q1 can serve as their representative. Condition 3
of summary sequences is still satisfied. Let δ(P) be the closest-pair distance of
P . After the refine algorithm, |Q| would then be bounded by 2 log1+ε

Δ(P)
εδ(P) =

O(1
ε log R

ε).

Theorem 2. There is a data structure, storing O((1
ε)(d+1)/2 log R

ε) points, that
maintains a (1 + ε)-approximation of the diameter of a point set in Rd over
a sliding window of variable size. Insertion of a new point to the window takes
O((1

ε)(d−1)/2) amortized time, and deletion of the oldest point takes O((1
ε)(d−1)/2)

time.

Proof: Each of the O((1
ε)(d−1)/2) one-dimensional structures stores O(1

ε log R
ε)

points. An approximate diameter can be computed by Lemma 3. An inser-
tion/deletion of a point may cause insertions/deletions in any of these one-
dimensional structures. �

Remark. In the above theorem, we can also redefine R to be the ratio between
the diameter and the minimum distance over all consecutive pairs (instead of all
arbitrary pairs).

5 Diameter in Higher Non-constant Dimensions

Although our algorithm can work in any fixed dimension, the complexity grows
exponentially if d is not constant. If we allow a larger approximation factor,

Geometric Optimization Problems Over Sliding Windows 253

more precisely,
√
d(1 + ε), we can still apply the projection approach to each

of d main axes and get a structure that stores O(d logR) points for a fixed
constant ε > 0. To get an approximation factor independent of d, we suggest a
different approach that requires larger (though sublinear) space. This approach
in fact works for any metric space, where the distance function d(·, ·) satisfies
the triangle inequality.

Lemma 4. Let o′, o, p, q be four points. If d(o, p) ≤ αd(o, q), then there exists
q′ ∈ {o, q} such that d(o′, p) ≤ (2α+ 1)d(o′, q′).

Proof:

d(o′, p) ≤ d(o′, o) + d(o, p) ≤ d(o, o′) + αd(o, q)
≤ d(o, o′) + α[d(o, o′) + d(o′, q)] ≤ (2α+ 1) max{d(o′, o), d(o′, q)}.

�

For a sequence of points C in a metric space, let oC be the newest point in
C and let δC be the distance of the closest point in C to oC . Define QC , the
summary set of C, as follows: For each i ≥ 0, put the newest point among points
at distance between (1 + ε)iδC and (1 + ε)i+1δC into QC ; also put oC into QC .

Our algorithm proceeds as follows. We keep new points as they enter, and
after every k insertions (for a parameter k to be determined later), we let C to
be the set of k newest points (which we call a cluster) and replace C with QC .
The main property regarding the summary set is that each point p ∈ C has a
representative q ∈ QC , not older than p, such that 1

1+εd(oC , q) ≤ d(oC , p) ≤
(1 + ε)d(oC , q). Since |QC | = O(log1+εR) for each C, our data structure keeps
O(k + n

k log1+εR) points.
To approximate the diameter of the whole window, we consider the center

oC of the newest cluster C and find the furthest point from oC among all of
the points kept in our data structure. (Note that the furthest point from oC can
be updated in O(1) time after an insertion.) By the main property of summary
sets and Lemma 4, if p is the furthest point from oC in the whole window,
then we have kept a point q not older than p such that d(oC , p) ≤ (2(1 + ε) +
1)d(oC , q). Since d(oC , p) is a 2-approximation of the diameter, we have a 6+O(ε)
approximation of the diameter.

Deletion of the oldest point is easy. Setting k =
√
N yields the following

result:

Theorem 3. For any fixed ε > 0, there is a data structure, storing O(
√
N logR)

points, that maintains a (6 + ε)-approximation of the diameter over a sliding
window of N points in a metric space. Insertion takes an O(1) amortized number
of distance computations. Deletion of the oldest point requires O(logR) time.

Remark. The above method is similar to Feigenbaum et al.’s one-dimensional
method (Section 2), but instead of O(logN) levels of merging, we use only
one level. In fact, if we use multiple levels of merging, we can get better space
complexity at the expense of a bigger approximation factor. More precisely,

254 T.M. Chan and B.S. Sadjad

for any constant m, if we build a cluster for every N
1

m+1 points and merge
the summary sets of every N

1
m+1 clusters of the same size together, then we

can obtain a (2m+2− 2 + ε)-approximation algorithm by storing O(N
1

m+1 logR)
points.

6 Two-Dimensional Core-Sets

In this section, we consider geometric problems more difficult than the diameter
under the sliding window model. Specifically, we show how to maintain an ε-
core-set of a two-dimensional point set, as defined by Agarwal et al. [1]:

Definition 2. Given a point set P in Rd, the extent measure is defined as the
function ω(P, x) = maxp,q∈P (p−q)·x for each x ∈ Rd. An ε-core-set of P (under
the extent measure) is a subset E ⊆ P such that ω(E, x) ≥ 1

1+εω(P, x) for all x.

Clearly, if S is an ε-core-set of a set P , then the width of S is a (1 + ε)-
approximation of the width of P . Agarwal et al. [1] and Chan [7] gave efficient
algorithms for constructing core-sets and applied them to develop approximation
algorithms for various geometric optimization problems in both the traditional
and data stream model.

Our algorithm in this section is for a fixed window size, and unfortunately
its space bound depends on a new parameter in addition to ε, N , and R. This
new parameter is the ratio between the diameter and the smallest width of each
consecutive triple of points in the window and is denoted by R′. In Section 7 we
show that the dependence on this new parameter is necessary for any algorithm
that maintains an approximate width over a sliding window.

Our algorithm is a nontrivial combination of the diameter methods of Sec-
tions 2–4 with Chan’s core-set method for data streams [7]. We start by using
the clustering approach of Section 2 as in Feigenbaum et al. [10], i.e., we store
O(logN) clusters, and in each cluster C we attempt to keep a small subset of
points NC as the representative points of C.

The Subsets DC : For each cluster C, we first maintain a set DC of candidate
points for a constant-factor approximation of the farthest point in C to the
center oC . This is done by following the diameter structure of Section 4, with say
ε = 1/2 (which maintains a constant number of summary sequences). Whenever
two clusters C1 and C2 are combined to form C, we can compute DC from DC1

and DC2 by combining the corresponding summary sequences of DC1 and DC2 .
More precisely to combine two summary sequences both on the same line, we
put the two sequences together and run the refine algorithm. When a point is
deleted from C, we simply delete it from DC .

Lemma 5. Let p be an arbitrary point in a cluster C, then there exists a point
q ∈ DC such that q is not older than p and ||oC − p|| ≤ 3||oC − q||.

Geometric Optimization Problems Over Sliding Windows 255

Proof: Let q and r be the two furthest points in DC ; we know (1+ ε)||q− r|| ≥
Δp(C), where Δp(C) denotes the diameter of points in C that are not older than
p. Then

||oC − p|| ≤ Δp(C) ≤ (1 + ε)||q − r|| ≤ 2(1 + ε) max{||oC − q||, ||oC − r||}.

The lemma follows as we have chosen ε = 1
2 . �

The Representatives: For each q ∈ DC , consider 6
α lines perpendicular to ←→oCq

at distances 0, α||oC − q||, 2α||oC − q||, . . . , 3||oC − q|| from oC , and call this set
of lines Lq (the value of α will be specified later). For a point p and line �, let
d(p, �) be the distance between p and �. For � ∈ Lq, let C� be the set of points
p ∈ C such that ||oC − p|| ≤ 3||oC − q|| and � is the closest line to p in Lq. Let
o be the newest point in C�. Let oC , s1, and s2 be the newest, second newest,
and third newest points C respectively and let wC be the width of these three
points.

Fix a point q ∈ DC and a line � ∈ Lq. Let p′ denote the projection of
a point p to � and C ′

� = {p′ | p ∈ C�}. For each i ≥ 0, among the set of
points whose projections are at distance between (1+α)iαwC and (1+α)i+1αwc

from o′, choose the newest point as the representative of these points. Also for
points whose projection are at distance at most αwC from o′, choose o as their
representative. With this selection, each point p ∈ Cl has a representative v such
that either ||v′ − p′|| ≤ αwC or

1
1 + α

max{||o′−v′||, ||o′−p′||} ≤ ||o′−v′|| ≤ (1+α) min{||o′−v′||, ||o′−p′||}. (2)

We let vq(p) denote such a representative v. Notice that here each point may
have several representatives (possibly a different one for each q ∈ DC). Notice
that if ||p− oC || > 3||q − oC ||, then vq(p) does not exist.

The above approach and the proof of the following lemma are similar to
Chan’s approach for data streams [7].

Lemma 6. For a cluster C and a point p ∈ C there exists a point q ∈ DC such
that q is not older than p and for each vector x, |(vq(p)− p) ·x| ≤ O(α)ωp(C, x),
where ωp(C, x) = maxa,b(a − b) · x and the maximum is over all a, b ∈ C not
older than p.

Proof: By Lemma 5, pick a point q ∈ DC that is not older than p and ||oC−p|| ≤
3||oC − q||. Let v = vq(p) and o be the center of the set C� that contains p. Then
for any a ∈ C�,

|(a− a′) · x| ≤ |α
2

(o− q) · x| ≤ α

2
ωp(C, x), (3)

since neither q nor o is older than p. Applying this to p and v, we have

|(v−p) ·x| ≤ |(v−v′) ·x|+ |(v′−p′) ·x|+ |(p′−p) ·x| ≤ |(v′−p′) ·x|+αωp(C, x).

256 T.M. Chan and B.S. Sadjad

If ||v′ − p′|| ≤ αwC , then we are done. Otherwise, by Inequality 2, 1
1+α ||o′ −

v′|| ≤ ||o′ − p′|| ≤ (1 + α)||o′ − v′||, implying that |(v′ − p′) · x| ≤ α|(o′ − p′) · x|.
Then

|(o′ − p′) · x| ≤ |(o′ − o) · x|+ |(o− p) · x|+ |(p− p′) · x| ≤ (1 + α)ωp(C, x)

=⇒ |(v − p) · x| ≤ (α(1 + α) + α)ωp(C, x).
�

The Subsets NC : Whenever two clusters C1 and C2 are combined to form C, we
construct NC to be the set of all representatives of NC1 ∪ NC2 . When a point
is deleted from C, we simply delete it from NC . By Lemma 6, each merging
may cause an additive error of O(α)ωp(C, x). After a point p has experienced k
merges, the additive error is O(kα)ωp(C, x). Since there could be logN merges,
the final error will be O(α logN), so to get an ε-core-set, we set α = ε

log N .

Analysis: For the space requirement of ourmethod, observe that |DC | = O(logR),
asinTheorem2.Foreachq ∈ DC ,thereareO(1

α)lines,eachofwhichhasO(log1+α
R′

α)
representatives. So, |NC | = O(1

α logR log1+α
R′

α) = O(1
α2 logR log R′

α). Since
α = ε

log N , the number of points in each cluster isO(1
ε2 log2N logR log R′ log N

ε). As
there are logN clusters, we obtain the following theorem:

Theorem 4. Thereisadatastructure,storingO(1
ε2 log3N logR(logR′+log logN+

log 1
ε)) points, that maintains an ε-core-set of a two-dimensional point set over a

sliding window of size N .

Remark. Using core-sets, approximation algorithms can be developed for many
geometric optimization problems, including the smallest enclosing rectangle and
the smallest enclosing circle [1].

7 A Lower Bound for Width

Wenowprovea space lowerbound foranyalgorithmthatmaintainsanapproximate
width in the sliding window model. Our goal is to support Theorem 4 by showing
that the dependence of the space lower bound on R′ is necessary.

We use a proof technique similar to Feigenbaum et al.’s [10].

Theorem 5. LetA be an algorithm that maintains a c-approximation of the width
in the sliding window model. Given R′ ≤ 2O(N1−δ) for some fixed δ > 0, there are
input streams for which the spread is bounded by a polynomial inN , the ratio of the
diameter to the minimum width over all consecutive triples of points is bounded by
O(R′), butA requires at least Ω(logR′ logN) bits of space.

Proof: Pick a non-increasing sequence a1 ≥ a2 ≥ · · · ≥ aN from the set
{c−3, c−6, . . . , c−3m}withm = 1

3 logcR
′.SetaN+1 = aN+2 = · · · = 1/R′.Consider

Geometric Optimization Problems Over Sliding Windows 257

the input streamof points (−5− i/N, 0), (i/N, ai), (5+ i/N, 0) for i = 1, 2, . . . , 2N .
Since the diameter is O(1) and the closest-pair distance is Ω(1/N), the spread is
O(N). The width of any consecutive triple is at least 1/R′. If at any time we have a
c-approximation to thewidth, we can reconstructa1, . . . , aN after the point (1, aN)
is read. LetM be the number of non-increasing sequences of size N chosen from a
set of sizem. The number of bits stored by the algorithm must therefore be at least

logM = log
(
N +m− 1
m− 1

)
= Ω

(
m log

N

m

)
= Ω (logR′ logN) .

�

Remark. In contrast, if points have integer coordinates in the range {1, . . . , R}, it
is possible to replace the parameter R′ with R in Theorem 4, because the width of
any non-collinear triple of points is lower-bounded byΩ(1/R).

References

1. P. K. Agarwal, S. Har-Peled, and R. Varadarajan. Approximating extent measures
of points. Journal of the ACM, to appear.

2. P. K. Agarwal, J. Matoušek, and S. Suri. Farthest neighbors, maximum spanning
trees and related problems in higher dimensions. Computational Geometry: Theory
and Applications, 1:189–201, 1991.

3. P. K. Agarwal and M. Sharir. Efficient randomized algorithms for some geometric
optimization problems. Discrete & Computational Geometry, 16:317–337, 1996.

4. G. Barequet and S. Har-Peled. Efficiently approximating the minimum-volume
bounding box of a point set in three dimensions. Journal of Algorithms, 38:91–109,
2001.

5. J. L. Bentley and J. B. Saxe. Decomposable searching problems I: Static-to-dynamic
transformations. Journal of Algorithms, 1(4):301–358, 1980.

6. T. M. Chan. Approximating the diameter, width, smallest enclosing cylinder, and
minimum-width annulus. International Journal on Computational Geometry and
Applications, 12:67–85, 2002.

7. T. M. Chan. Faster core-set constructions and data stream algorithms in fixed
dimensions. InProceedingsofthe20thAnnualSymposiumonComputationalGeometry,
pages 152–159, 2004.

8. K. L. Clarkson and P. W. Shor. Applications of random sampling in computational
geometry, II. Discrete & Computational Geometry, 4(1):387–421, 1989.

9. C. A. Duncan, M. T. Goodrich, and E. A. Ramos. Efficient approximation and
optimization algorithms for computational metrology. In Proceedings of the Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 121–130, 1997.

10. J. Feigenbaum, S. Kannan, and J. Zhang. Computing diameter in the streaming and
sliding-window models. Algorithmica, to appear; or as Tech. Report DCS/TR-1245,
Yale University, http://cs-www.cs.yale.edu/homes/jf/FKZ.ps, 2002.

11. A.Goel,P.Indyk,andK.Varadarajan. Reductionsamonghighdimensionalproximity
problems. In Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 769–778, 2001.

12. M. Henzinger, P. Raghavan, and S. Rajagopalan. Computing on data streams.
Technical Report SRC-TN-1998-011, Hewlett Packard Laboratories, 1998.

258 T.M. Chan and B.S. Sadjad

13. J. Hershberger and S. Suri. Convex hulls and related problems in data streams. In
ACM SIGMOD/PODS Workshop on Management and Processing of Data Streams,
pages 148–168, 2003.

14. P. Indyk. Better algorithms for high-dimensional proximity problems via asymmetric
embeddings. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 539–545, 2003.

15. S.M.Muthukrishnan.Datastreams:Algorithmsandapplications.RutgersUniversity
Technical Report, http://athos.rutgers.edu/~muthu/stream-1-1.ps, 2003.

16. F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction.
Springer-Verlag, 1985.

17. E. A. Ramos. An optimal deterministic algorithm for computing the diameter of a
three-dimensional point set. Discrete & Computational Geometry, 26:233–244, 2001.

On-Line Windows Scheduling of
Temporary Items

Wun-Tat Chan1,2,� and Prudence W.H. Wong2

1 Department of Computer Science, University of Hong Kong, Hong Kong
wtchan@cs.hku.hk

2 Department of Computer Science, University of Liverpool, UK
pwong@csc.liv.ac.uk

Abstract. In this paper we study on-line windows scheduling (WS) of
temporary items. In a broadcasting system, there are some broadcast
channels, each can broadcast one item in one time unit. Upon the arrival
of an item with a window w, where w is a positive integer, the item
has to be scheduled on a channel such that it will be broadcasted in the
channel at least once every w time units until its departure. With the
on-line input of these temporary items, the problem is to minimize the
maximum number of channels used over all time. We give a 5-competitive
on-line algorithm and show that there is a lower bound of 2 − ε for any
ε > 0 on the competitive ratio of any on-line algorithm.

1 Introduction

In this paper we study on-line windows scheduling (WS) [3, 4] of temporary items
(i.e., items may depart). We are the first to consider temporary items in the
problem. A temporary item may have unknown duration, i.e., the item departs
at unpredictable time; or known duration, i.e., the departure time is known when
the item arrives. In a broadcasting system, there are some broadcast channels,
each can broadcast one item in one time unit. An item i comes with a window wi,
where wi is a positive integer. When item i arrives, it has to be scheduled on
one of the channels such that it will be broadcasted at least once every wi time
units. Reschedule of the item to other channels is not allowed. For example,
suppose two items with windows equals to 2 and 3, respectively, arrive one after
the other. Then we can schedule them in the same channel with the broadcast
sequence 〈2, 3〉 or 〈2, 2, 3〉 repeatedly. The objective of the problem is to minimize
the maximum number of channels used over all time.

WS can be applied to push-based broadcasting systems. In a push-based
system, servers broadcast pages on broadcast channels to clients. Clients who
wish to receive the pages will listen to the channels and select what information
they want to receive. If the quality of service is measured by the average response
time [1, 2], servers broadcast more popular pages more frequently. Yet, in some

� This research was supported in part by Hong Kong RGC Grant HKU-5172/03E.

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 259–270, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

260 W.-T. Chan and P.W.H. Wong

business model, the servers sell their service to information providers who request
the pages to be broadcasted regularly [5, 11]. The frequency of broadcasting a
page is proportional to the amount paid by the provider. The servers may receive
additional requests by providers over time, while a provider may withdraw from
the service at any time; this is modeled by temporary items. Another related
application is video-on-demand systems: many requests of a popular movie are
received over a short period of time. To reduce the server bandwidth requirement
without sacrificing the response time, the pyramid broadcasting paradigm [14,
15] and its variants [12, 13] are adopted. The movie is partitioned into equal size
segments, each can be broadcasted in one time unit, and segment i is broadcasted
every i time units. Then any client can view the movie uninterruptedly by waiting
for at most one time unit.

Related Work: WS with permanent items (i.e., the items never depart) was first
studied by Bar-Noy and Ladner [3], where they gave an off-line approximation
algorithm which uses H+O(lnH) channels, for H =

∑
i 1/wi. The NP-hardness

of the problem was proved later [4]. An on-line algorithm was also given which
uses H +O(

√
H) channels [4].

As pointed out in [4], WS is a restricted version of a bin packing problem,
called the unit fraction bin packing (UFBP). UFBP is to pack all items, each
with a width 1/wi for some positive integer wi, into minimum number of unit-
capacity bins.

It can be observed in the following that WS is a restricted version of UFBP.
Suppose we have three items with wi equal to 2, 3, and 6. They can be packed in
the same bin because 1/2 + 1/3 + 1/6 = 1. Yet we cannot schedule to broadcast
them in the same channel [8]. It has been shown in the pinwheel problem1 [7,
8, 10] that if the sum of 1/wi is less than or equal to 3/4, the items can be
scheduled on one channel [10], otherwise, it might not be possible to do so.
Bar-Noy et al. [4] gave an off-line algorithm for UFBP that uses H + 1 bins,
where H =

∑
i 1/wi. They also gave an on-line algorithm that uses H +O(

√
H)

bins and a lower bound of H +Ω(lnH).
Coffman et al. [9] has studied the unit-capacity bin packing problem with

temporary items, where the item width can be any real number less than or
equal to 1. When the largest item width is 1, they showed that first-fit is 2.897-
competitive and no on-line algorithm is better than 2.5-competitive. When the
largest item width is less than 1/k for an integer k, they gave a general upper
bound in terms of k for first-fit and a general lower bound in terms of k for any on-
line algorithm. Note that the upper bound of UFBP with temporary items follows
from the upper bound results of Coffman et al. but the lower bound does not.

Our Contribution: Similar to other study on on-line problems, we measure
the performance of an on-line algorithm in terms of competitive ratio (see [6]
for a survey). In this paper we give the first upper and lower bounds on the
competitive ratio of WS with temporary items. We observe that the competitive

1 The pinwheel problem is to determine whether the given items can be scheduled in
one single channel and give the schedule if the answer is yes.

On-Line Windows Scheduling of Temporary Items 261

ratios depend on a value α which is the minimum of wi. Precisely, we show that
any on-line algorithm has a competitive ratio at least 1 + 1/α− ε for any ε > 0.
In contrast to the case of permanent items in which there is an algorithm that
uses at most H + O(

√
H) channels, the 1 + 1/α − ε lower bound demonstrates

that WS with temporary items is “harder” than WS with permanent items. This
lower bound applies to both known and unknown duration, yet the adversary for
unknown duration is simpler as expected. As for upper bound, we give an on-line
algorithm W that is 5-competitive when α = 1, and (2+2/(α∗−1))-competitive
when α ≥ 2, where α∗ is the largest power of 2 that is smaller than or equal to
α. These upper bounds also hold for both known and unknown duration.

Organization of the Paper: The rest of the paper is organized as follows. In
Section 2, we give some preliminaries. In Section 3, we present the lower bound
for UFBP and WS. The lower bound for WS is based on the lower bound for
UFBP. In Section 4, we present the on-line algorithm W for WS and analyze its
performance. Finally, we give a conclusion in Section 5.

2 Preliminaries

In this section, we give a precise definition of the on-line problems of UFBP and
WS with temporary items, and the necessary notations for further discussion.

On-Line UFBP: The input is a sequence σ of items. Item i is represented as a 3-
tuple (ai, di, 1/wi), where ai, di, and wi are positive integers with ai denoting the
arrival time, di the departure time, and 1/wi the width of item i. For unknown
duration, di is not specified when item i arrives. All items are to be packed in
unit-capacity bins. The objective of the problem is to minimize the maximum
number of bins used over all time.

On-Line WS: The input is a sequence σ of items for broadcast. Item i is repre-
sented as a 3-tuple (ai, di, wi), where ai, di, and wi are positive integers denoting
the arrival time, the departure time, and the window of item i, respectively. We
assume that di ≥ ai + wi − 1, i.e., an item that arrives should be broadcasted
at least once. For unknown duration, di is not specified when item i arrives.
Each item takes one unit of time to broadcast, i.e., if an item is broadcasted
in the beginning of time t, the client can receive the item at the end of time
t. Item i must be scheduled on a broadcast channel between the time interval
[ai, di] such that for any ai ≤ t1 ≤ t2 ≤ di and t2− t1 + 1 ≥ wi, item i should be
broadcasted at least once in the sub-interval [t1, t2]. Note that in this definition,
the first broadcast of item i must be within the time interval [ai, ai + wi − 1],
i.e., there are at most wi−1 time units allowed between the arrival time and the
first broadcast of an item. Similarly, we assume that in the unknown duration
case, item i should announce its departure at or before time di − wi + 1. The
objective of the problem is to minimize the maximum number of channels used
over all time. Define the load of a channel at time t to be the sum of 1/wi for
all item i scheduled in the channel that have arrived but not yet departed.

262 W.-T. Chan and P.W.H. Wong

Both the above problems are on-line problems in the sense that at any time t,
there is no information on the items arriving after t. Given a WS (UFBP, resp.)
algorithm W, we analyze its performance using competitive analysis. Given a
sequence σ of items, let W(σ, t) be the number of channels (bins, resp.) used
by W at time t. We say that W is c-competitive if there exists a constant k such
that for any input sequence σ, we have

max
t
W(σ, t) ≤ c ·max

t
O(σ, t) + k,

where O is the optimal off-line algorithm of WS (UFBP, resp.)
Remarks: Notice that any on-line algorithm for WS with unknown duration

always maintains the load of every channel to be at most 1 because it has to
guarantee that all items scheduled on a channel can be broadcasted within their
windows (even if none of the items depart). Therefore, we also restrict our at-
tention to those off-line algorithms that maintain, at any time, the load of every
channel to be at most 1.

3 Lower Bound Results

In this section we present lower bounds for UFBP and WS with temporary
items. The lower bound for UFBP is easier to construct, based on which we can
construct the lower bound for WS. Precisely, we show that for both UFBP and
WS, no on-line algorithm is better than (1 + 1/α− ε)-competitive, for any ε > 0
and α = mini{wi}, this is true for both known and unknown duration. Yet the
adversary for known duration is more complicated as expected and is based on
the adversary for unknown duration. We will give the details of the lower bound
for UFBP, the lower bound for WS can be proved similarly and will be outlined
at the end of this section.

Lower Bound for UFBP. We first consider the case of unknown duration.
Given any on-line algorithm A, we construct a sequence of items of widths
either 1/y or 1/α for some y and α such that y is much greater than α. The
adversary works in three stages as follows.

1. Items with wi = y are released at time ai = i until at least y bins are used
by A and the number of items m released is a multiple of y. Consider the
minimum such m.

2. The adversary retains one item in each of any y occupied bins and let all the
other m− y items depart.

3. Finally, α(m− y)/y items with wi = α are released.

Notice that at most y2 items with wi = y are sufficient to force the on-line
algorithm to use at least y bins in Stage 1. Thus, m ≤ y2. The following lemma
gives a lower bound on the number of bins used by the on-line algorithm after
Stage 3.

Lemma 1. A uses at least y + max{0, (m− y)/y − y(α− 1)/α} bins.

On-Line Windows Scheduling of Temporary Items 263

Proof. Notice that after Stage 2, at most α−1 items of width 1/α can be packed
in each of the y occupied bins. The total width of the items released in Stage 3
is equal to (m − y)/y. Therefore, if (m − y)/y > y(α − 1)/α, A needs at least
(m−y)/y−y(α−1)/α additional new bins to pack all items released in Stage 3.
Hence, the number of bins used is at least y + max{0, (m− y)/y − y(α− 1)/α},
and the lemma follows.
�

The following theorem shows the lower bound on the competitive ratio for
UFBP with unknown duration. Roughly speaking, we establish the lower bound
by showing that there is an off-line algorithm that uses m/y bins at any time
and then compare the number of bins used by the on-line algorithm with m/y.

Theorem 1. Any on-line algorithm for UFBP with unknown duration is at least
(1 + 1/α− ε)-competitive for any ε > 0 and α = mini{wi}.

Proof. First we show that there is an off-line algorithm O that uses m/y bins
at any time. In Stage 1, O packs the y non-departing items (i.e., those remain
after Stage 2) in the same bin and the other m− y items in another (m− y)/y
bins. In Stage 3, α(m − y)/y items of width 1/α are released. These items are
packed by O into the (m − y)/y bins that become empty after Stage 2. Thus,
the number of bins used by O at any time is 1 + (m− y)/y = m/y.

Then, we analyze the number of bins used by any on-line algorithm A. There
are two cases to consider. (1) Suppose that (m−y)/y ≤ y(α−1)/α. By Lemma 1,
no new bins are needed in Stage 3 and the maximum number of bins used by A
at any time is y. By simple mathematics, the inequality can be rearranged as
y2/m ≥ 1/(1+1/y− 1/α). Therefore, the ratio of the maximum number of bins
used by A to that used by O is y/(m/y), which is at least 1/(1 + 1/y − 1/α) ≥
1+1/α for y ≥ (α+1)/(α+1/α−1). (2) Suppose that (m−y)/y > y(α−1)/α. The
maximum number of bins used by A at any time is y+(m−y)/y−y(α−1)/α =
m/y + y(1/α − 1/y) ≥ m/y + (m/y)(1/α − 1/y). The latter inequality holds
because m ≤ y2. Therefore, the ratio of the maximum number of bins used by A
to that used by O is at least 1 + 1/α − 1/y. By letting ε = 1/y, the ratios in
both case are at least 1 + 1/α− ε, thus, the theorem holds.
�

We then modify the adversary such that it also works for known duration. The
major issue is that we have to determine the departure time of the items when
they arrive such that at the end of Stage 2, the on-line algorithm uses y bins,
each containing exactly one item of width 1/y. Then, using a similar argument
in Theorem 1, we can prove the same lower bound for known duration. Roughly
speaking, the departure time of the item i, for i ≥ 2, depends on how the on-line
algorithm pack item (i− 1), in particular, whether item (i− 1) is packed in an
empty bin or not. The details are as follows.

To set the departure time di of item i arriving at time i, we need to consider
how the on-line algorithm A packs the items arrived so far. We capture this
information by two values βi−1 and γi−1 (to be defined). For any time t, let It
be the set of items arrived at or before t and Ft ⊆ It be the set of items that A
opens an empty bin for. We define βt = mini∈Ft

{di} and γt = maxi∈It−Ft
{di}.

264 W.-T. Chan and P.W.H. Wong

Now, we describe how to set the departure times. Firstly, we set d1 = L for
some large constant L to be defined later. Note that β1 = L and γ1 = 0. Next,
we set d2 = (β1 + γ1)/2 = L/2. If A packs item 2 in the same bin as item 1,
we have β2 = L and γ2 = L/2. Otherwise, we have β2 = L/2 and γ2 = 0. In
general, we set di = (βi−1 + γi−1)/2. Notice that Stage 2 ends at time γm and
Stage 3 starts at time γm +1. For the adversary to work, we need to ensure that
di is an integer and di > m for all 1 ≤ i ≤ m, which can be proved to hold if
L ≥ 2y+�logm+1�. The details will be given in the full paper.

The following lemma gives an invariant about the departure times.

Lemma 2. For any time 1 ≤ t ≤ γm, we have βt > γt.

Proof. We first consider the case where 1 ≤ t ≤ m. We prove the lemma by a
stronger claim that (1) if item t is packed in an empty bin by A, then βt = dt,
otherwise, γt = dt; and (2) βt > γt. We prove the claim by an induction on t. The
claim holds for t = 1 because d1 = β1 = L and γ1 = 0. Assume the claim holds
for some t < k ≤ m. At time k, item k arrives. Since dk = (βk−1 + γk−1)/2 and
βk−1 > γk−1, we have γk−1 < dk < βk−1. If item k is packed in an empty bin,
then βk = min{dk, βk−1} = dk and γk = γk−1. Otherwise, γk = max{dk, γk−1} =
dk and βk = βk−1. For both cases, we have βk > γk, thus, the claim holds.

For any m < t ≤ γm, there is no item released at time t. Therefore, we have
βt = βm > γm = γt. Combining with the above claim, the lemma follows.
�

Using the invariant of Lemma 2 and a similar argument as Theorem 1, we
have the following theorem.

Theorem 2. Any on-line algorithm for UFBP with known duration is at least
(1 + 1/α− ε)-competitive for any ε > 0 and α = mini{wi}.

Proof. Notice that with known duration, we can have an off-line algorithm using
the same number of bins as the one given in the proof of Theorem 1. As a result,
we only need to consider the number of bins used by any on-line algorithm.
By Lemma 2, we can see that at time γm + 1 each of the y occupied bins has
exactly one item of width 1/y. By Lemma 1, the on-line algorithm uses at least
y + max{0, (m − y)/y − y(a − 1)/α} bins. Following the same argument as in
Theorem 1, we can prove that every on-line algorithm for UFBP with known
duration has competitive ratio at least 1+1/α−ε for any ε > 0 and α = mini{wi}.

�

Lower Bound for WS. To prove the lower bound for WS, we modify the
adversary for UFBP such that a bin is considered as a channel and an item
of width 1/w becomes an item of window w. Then, we have an adversary for
the on-line WS. Based on the modified adversary, we can derive the following
theorem.

Theorem 3. Any on-line algorithms for WS is at least (1+1/α−ε)-competitive
for any ε > 0 and α = mini{wi}. This holds for both known and unknown
duration cases.

On-Line Windows Scheduling of Temporary Items 265

4 Upper Bound Results

In this section, we give an on-line algorithm W for the WS problem and analyze
its performance. We focus on the unknown duration case, the result carries for
the known duration case. Roughly speaking, the on-line algorithm W rounds
each item window w down to w′ which is a power of two (e.g., we round the
window of 7 down to 4) and then schedule the item according to w′. Note that
if any item is broadcasted at least once in every interval of w′, it is broadcasted
at least once in every interval of w. As a result, we can first focus on scheduling
items with windows that are powers of two.

4.1 Broadcast Trees - Representation of Schedules

Similar to the work by Bar-Noy et al. [4], we represent a broadcast schedule
on m channels by a forest of m binary trees. The schedule on each channel is
represented by a binary tree in which all nodes have exactly zero or two children.
We call this binary tree a broadcast tree. Given any broadcast tree, the schedule
is to alternately broadcast an item from the left and right subtrees; items from
each subtree T is selected alternately from the left and right subtrees of T in
a recursive manner. For example, in Figure 1, the broadcast tree represents a
schedule that alternates between the item a and the items on the right subtree;
when selecting the right subtree, we alternate between the item b and items
on the right subtree recursively. The corresponding schedule is 〈a b a c a b a d〉.
Notice that a leaf at depth d represents an item scheduled with window w = 2d.

To ease the discussion of the on-line algorithm W, we give some definitions
on broadcast trees. We say that a leaf is open if there is no item assigned to the
leaf, otherwise, it is closed. An open leaf is represented by an unfilled circle and
closed by filled circle. We label a leaf at depth d by 2d. See Figure 2 (a) for an
example. The load of a broadcast tree is defined to be the sum of reciprocal of
the labels of all closed leaves in the tree. A lace binary tree of height h is a binary
tree in which for each depth from 1 to h−1, there is a single leaf and for depth h,
there are two leaves. Note that there are more than one different lace binary tree
of height h > 2. The tree in Figure 2 (c) is a lace binary tree of height 3.

a

b
c d

Fig. 1. The schedule corresponding to this broadcast tree is 〈a b a c a b a d〉

4.2 The On-Line Algorithm W
The on-line algorithm by Bar-Noy et al. expands an existing broadcast tree or
opens a new broadcast tree when items arrive. Our on-line algorithm W handles

266 W.-T. Chan and P.W.H. Wong

8a 8c 8d

2

8b

(a)
8a 8d

2

(b)
8a

2

(c)
8d

4

Fig. 2. Appropriate rearrangement is necessary after departure of items. (a) Broadcast
tree for the sequence {8a, 8b, 8c, 8d, 2}. (b) Items 8b and 8c depart; a new item 4 cannot
be included into the tree. (c) The item 4 can be included if the tree is restructured

newly arrived items similarly. Yet when items depart, we have to rearrange a
broadcast tree wisely to make sure that new items can still be inserted to a
broadcast tree as long as the tree is not very full. We illustrate the need for
proper rearrangement in the following example. Suppose there are 4 items of
window 8 and 1 item of window 2 arriving and the broadcast tree is as shown in
Figure 2 (a). Later the second and third items of window 8 depart and another
item of window 4 arrives. Figure 2 (b) shows the broadcast tree after the items
depart if we do not rearrange the tree properly; we cannot include the item of
window 4 into the tree. Yet if we rearrange the tree as in Figure 2 (c), we are
able to include the new item into the tree.

Now, we describe the on-line algorithmW. The on-line algorithmW attempts
to maintain an invariant on the structure of the broadcast trees: for every broad-
cast tree, there is at most one open leaf at each depth. To keep this invariant,
the on-line algorithm W modifies the structure according to the arrival and
departure of items as follows.

Arrival: When an item with window w arrives, round it down to the nearest
power of 2, say w′ = 2v. If there is an open leaf at depth v in some broadcast
tree, schedule the item to that leaf. Otherwise, let u < v be the maximum value
such that there is an open leaf at depth u in some broadcast tree. If no such u
exists, open a new tree with one open leaf (in this case u = 0). Let � be the leaf
selected. Append a lace subtree of height v − u with all leaves open to the tree
to replace � and then schedule the new item to one of the open leaves at depth
v in the resulting tree. See Figure 3 (a)-(d) for examples.

Departure: When an item at depth v of a broadcast tree is going to depart
in the next 2v time, the corresponding leaf � will become open. If there is no
other open leaf at depth v of the tree, no restructuring is needed. Otherwise,
there is exactly one other open leaf f . Let �′ be the node, a closed leaf or
an internal node, that shares the same parent p with � in the tree. Detach the

On-Line Windows Scheduling of Temporary Items 267

8a 8b 8c8a 8b

8c8a 8b

(a) (b) (c)

4 4

8a

4 4

(d)

(e) (g)
8c8a 8b

(f)
8c8a 8b

Fig. 3. (a)-(d) Evolution of the broadcast tree for the sequence {4, 8a, 8b, 8c}. Note
that the lace binary trees inserted are chosen for better drawing effect only. (e)-(g)
Evolution of the broadcast tree when the item 4 departs

subtree rooted at �′ and replace f by this subtree. Remove � and make p an open
leaf. Then we repeat the restructuring similarly at depth v−1 and upper depth,
if necessary, by considering p as the new open leaf. See Figure 3 (e)-(f) for an
example.

Remarks: When we transit from the old to the new broadcast schedule, the
interval between the broadcast of an item that has been moved is altered. To
make sure that the interval is still smaller than or equal to its window size,
we will broadcast the item once more at the original time slot (which becomes
an empty slot in the new schedule), if necessary. This can be proved that the
remedy guarantees the broadcast interval to be at most the window size of the
moved item, and the transition lasts for at most 2v time units. The details will
be given in the full paper.

4.3 Analysis of the On-Line Algorithm W
In this section, we analyze the performance of the on-line algorithmW. Roughly
speaking, we show that when the on-line algorithm W opens a new broadcast
tree for an item, the load in each existing broadcast tree is reasonably close to 1.
Since the optimal off-line algorithm can schedule in each channel items with
load at most 1, we can show that the number of channels used by the on-line
algorithm W is at most a constant times that is used by the optimal off-line
algorithm. The first step is to show in Lemmas 3 and 4 that a broadcast tree is
reasonably full whenever we cannot schedule a new item in the tree.

Lemma 3. For every broadcast tree, there is at most one open leaf at each depth
at any time.

268 W.-T. Chan and P.W.H. Wong

Proof. The proof is by induction on time. Initially, there is only one open leaf
at depth zero (the root of the first broadcast tree). When a new item arrives, we
either close an open leaf or replace an open leaf � with a lace tree. Note that �
is chosen in a way that its depth is the largest among all candidate open leaves.
That means there is no open leaf on each depth corresponding to the added lace
tree. Furthermore, the lace tree only contains one single leaf in each depth except
the bottommost one in which one of the two open leaves is assigned to the new
item. As a result, adding a new item to a broadcast tree keeps the invariant.

When an item departs, a closed leaf becomes open. If there is no other open
leaf at the same depth, the number of open leave is then one. If there is another
open leaf at the same depth, the broadcast tree will be restructured so that the
two open leaves are attached to the same parent. The two open leaves will be
removed and then the number of open leaves will become zero. However, the
parent of the two open leaves is made open, thus increase the number of open
leaves at that depth. The restructuring procedure is repeated, if necessary, and
thus keeping at most one open leaf at other depth.
�

Lemma 4. If a new item with window 2v cannot be scheduled in a broadcast
tree T , the load of T is at least 1− 1/2v.

Proof. By the definition of the on-line algorithm W, there is no open leaf at
depth v′ ≤ v. By Lemma 3, there is at most one open leaf at depth greater than
v. Notice that a broadcast tree with all leaves closed has a load of 1. Therefore,
the total load of T is at least 1−

∑
u>v 1/2u ≥ 1− 1/2v.
�

Based on the above two lemmas, we can derive the competitive ratio of the
on-line algorithm W as follows.

Theorem 4. The on-line algorithm W is 2+2/(α∗−1)-competitive when α∗ ≥
2, where α∗ is the largest power of 2 smaller than or equal to mini{wi}. This
holds for both known and unknown duration cases.

Proof. Suppose the on-line algorithm W opens a new broadcast tree for a new
item with window w and w′ = 2v is the corresponding round down window.
For any broadcast tree T in the forest, by Lemma 4, the total load of T is at
least 1 − 1/2v. Thus, the total load of the corresponding channel is at least
(1− 1/2v)/2 = 1/2− 1/2v+1 (because of the round down to nearest power of 2).

Let m be the number of channels used by the on-line algorithm W. Then the
total load of items, and hence the number of channels used by the optimal off-line
algorithm is at least (m−1)(1/2−1/2v+1). Therefore, by taking an appropriate
additive constant, the competitive ratio is at most 1/(1/2−1/2v+1) = 2+2/(2v−
1) ≥ 2 + 2/(α∗ − 1). Thus, the theorem follows.
�

Theorem 5. The on-line algorithm W is 5-competitive when mini{wi} = 1.
This holds for both known and unknown duration cases.

Proof. At any instance, suppose the on-line algorithm W uses n channels for
items with window 1 and m channels for items with other window values. Then

On-Line Windows Scheduling of Temporary Items 269

the optimal off-line algorithm must use at least n channels at this instance.
Furthermore, consider the moment when the on-line algorithm W opens the
m-th channels for item with window w > 1, using a similar argument as in
Theorem 4, the optimal off-line algorithm needs at least (m − 1)/4 channels
(set α∗ = 2 in the formula in Theorem 4). In other words, the optimal off-line
algorithm uses at least max{n, (m−1)/4} channels while the on-line algorithmW
uses m+ n channels. The worst case ratio is obtained when n = (m− 1)/4; by
taking appropriate additive constant, the competitive ratio is at most 5 and the
theorem follows.
�

5 Conclusion

In this paper we study on-line windows scheduling of temporary items. We have
given a 5-competitive on-line algorithm and showed that there is a lower bound
of 2 − ε for any ε > 0 on the competitive ratio of any on-line algorithm. An
immediate open question is whether we can close the gap. Another interesting
problem is to schedule as many items as possible when the number of channels
is fixed; this involves admission control.

References

[1] S. Acharya, M. Franklin, and S. Zdonik. Dissemination-based data delivery using
broadcast disks. IEEE Personal Communications, 2(6):50–60, 1995.

[2] M. H. Ammar and J. W. Wong. The design of teletext broadcast cycles. Perfor-
mance Evaluation, 5(4):235–242, 1985.

[3] A. Bar-Noy and R. E. Ladner. Windows scheduling problems for broadcast sys-
tems. SIAM Journal on Computing, 32(4):1091–1113, 2003. (A preliminary version
appears in SODA 2002.).

[4] A. Bar-Noy, R. E. Ladner, and T. Tamir. Windows scheduling as a restricted
version of bin packing. In Proceedings of the Fifteenth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pages 224–233, 2004.

[5] A. Bar-Noy, J. Naor, and B. Schieber. Pushing dependent data in clients-providers-
servers systems. Wireless Network, 9(5):421–430, 2003.

[6] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis.
Cambridge University Press, 1998.

[7] M. Y. Chan and F. Y. L. Chin. General schedulers for the pinwheel problem
based on double-integer reduction. IEEE Transactions on Computers, 41(6):755–
768, 1992.

[8] M. Y. Chan and F. Y. L. Chin. Schedulers for larger classes of pinwheel instances.
Algorithmica, 9(5):425–625, 1993.

[9] E. G. Coffman, M. R. Garey, and D. S. Johnson. Dynamic bin packing. SIAM
Journal on Computing, 1983.

[10] P. C. Fishburn and J. C. Lagarias. Pinwheel scheduling: Achievable densities.
Algorithmica, 34(1):14–38, 2002.

[11] V. Gondhalekar, R. Jain, and J. Werth. Scheduling on airdisks: Efficient access
to personalized information services via periodic wireless data broadcast. In Pro-
ceedings of IEEE International Conference on Communications, volume 3, pages
1276–1280, 1997.

270 W.-T. Chan and P.W.H. Wong

[12] K. A. Hua and S. Sheu. Skyscraper broadcasting: A new broadcasting scheme for
metropolitan video-on-demand systems. In Proceedings of ACM SIGCOMM con-
ference on Applications, Technologies, Architectures, and Protocols for Computer
Communications, pages 89–100, 1997.

[13] L.-S. Juhn and L.-M. Tseng. Harmonic broadcasting for video-on-demand service.
IEEE Transactions on Broadcasting, 43(3):268–271, 1997.

[14] S. Viswanathan and T. Imielinski. Pyramid broadcasting for video-on-demand
service. In Proceedings of Conference on Multimedia Computing and Networking,
pages 66–77, 1995.

[15] S. Viswanathan and T. Imielinski. Metropolitan area video-on-demand service
using pyramid broadcasting. ACM Journal of Multimedia Systems, 4(3):197–208,
1996.

Generalized Geometric Approaches for Leaf
Sequencing Problems in Radiation Therapy�

Danny Z. Chen1, Xiaobo S. Hu1, Shuang Luan2,��, Shahid A. Naqvi3,
Chao Wang1, and Cedric X. Yu3

1 Department of Computer Science and Engineering,
University of Notre Dame,

Notre Dame, IN 46556, USA
{chen, hu, cwang1}@cse.nd.edu

2 Department of Computer Science,
University of New Mexico,

Albuquerque, NM 87131, USA
sluan@unm.edu.

3 Department of Radiation Oncology,
University of Maryland School of Medicine,

Baltimore, MD 21201-1595, USA
{snaqv001, cyu002}@umaryland.edu

Abstract. The 3-D static leaf sequencing (SLS) problem arises in radia-
tion therapy for cancer treatments, aiming to deliver a prescribed radia-
tion dose to a target tumor accurately and efficiently. The treatment time
and machine delivery error are two crucial factors of a solution (i.e., a
treatment plan) for the SLS problem. In this paper, we prove that the 3-D
SLS problem is NP-hard, and present the first ever algorithm for the 3-D
SLS problem that can determine a tradeoff between the treatment time
and machine delivery error (also called the “tongue-and-groove” error in
medical literature). Our new 3-D SLS algorithm with error control gives
the users (e.g., physicians) the option of specifying a machine delivery
error bound, and subject to the given error bound, the algorithm com-
putes a treatment plan with the minimum treatment time. We formulate
the SLS problem with error control as computing a k-weight shortest
path in a directed graph and build the graph by computing g-matchings
and minimum cost flows. Further, we extend our 3-D SLS algorithm to
the popular radiotherapy machine models with different constraints. In
our extensions, we model the SLS problems for some of the radiother-
apy systems as computing a minimum g-path cover of a directed acyclic
graph. We implemented our new 3-D SLS algorithm suite and conducted
an extensive comparison study with commercial planning systems and
well-known algorithms in medical literature. Some of our experimental
results based on real medical data are presented.

� This research was supported in part by the National Science Foundation under Grant
CCR-9988468.

�� Corresponding author. The research of this author was supported in part by a faculty
start-up fund from the Department of Computer Science, University of New Mexico.

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 271–281, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

272 D.Z. Chen et al.

1 Introduction

In this paper, we study the 3-D static leaf sequencing (SLS) problem in intensity-
modulated radiation therapy (IMRT). IMRT is a modern cancer therapy tech-
nique and aims to deliver a high radiation dose that is as conformal to a tumor
as possible. Performing IMRT is based on the ability to accurately and efficiently
deliver prescribed discrete dose distributions of radiation, called intensity maps
(IMs). An IM is a dose prescription specified by a set of nonnegative integers on
a 2-D grid (see Figure 1(a)). The value in each grid cell indicates the amount
(in units) of radiation to be delivered to the body region corresponding to that
IM cell.

One of the most advanced tools today for delivering intensity maps is the
multileaf collimator (MLC) [11]. An MLC consists of up to 60 pairs of tungsten
leaves (see Figure 1(b)). The leaves can move up and down to form a rectilinear
region, called an MLC-aperture. To reduce radiation leakage, two pairs of backup
metal diaphragms (along the x and y axes) are used to form a “bounding box”
of each rectilinear MLC-aperture.

Currently, there are three popular MLC systems in clinical use. They are
the Elekta, the Siemens, and the Varian MLC systems [11]. Depending on the
specific MLC in use, there are some differences among the geometric shapes of
the “deliverable” MLC-apertures. In this abstract, we will focus on the Elekta
MLC system, and leave the details of Siemens and Varian MLCs to the full paper.
(Section 2 describes the geometric properties of an Elekta MLC-aperture.)

There are several techniques for delivering IMRT [18, 19]. The most popular
one is called the static leaf sequencing (SLS) or the “step-and-shoot” technique
[9, 19, 20]. In the SLS approach, an IM is delivered as follows: Form an MLC-
aperture, turn on the beam source to deliver radiation to the area of the IM
exposed by the MLC-aperture, turn off the beam source, reposition MLC leaves
to form another MLC-aperture, and repeat until the entire IM is done. In this
setting, the boundary of each MLC-aperture does not intersect the interior of
any IM cell. In delivering a beam shaped by an MLC-aperture, all the cells inside
the region of the MLC-aperture receive the same integral amount of radiation
dose (say, one unit), i.e., the numbers in all such cells are decreased by the same
integer value. The IM is done when each cell has a value zero.

A treatment plan for a given IM consists of a set of MLC-apertures for de-
livering the IM. (Each MLC-aperture is associated with an integral value that
represent the amount of radiation prescribed to it.) Two key criteria are used to
evaluate the quality of an IMRT treatment plan:

(1) Treatment Time (the efficiency): Minimizing the treatment time is im-
portant because it not only lowers the patients’ costs but also enables more pa-
tients to be treated. Since the overhead associated with turning the beam source
on/off and repositioning MLC leaves dominates the total treatment time [9, 20],
we like to minimize the number of MLC-apertures used for delivering an IM.

(2) Machine Delivery Error (the accuracy): Ideally, an IM is partitioned
into a set of MLC-apertures that delivers the IM perfectly. However, in reality,

Generalized Geometric Approaches for Leaf Sequencing Problems 273

0 10
00

0 0

00
0 0

0 0
0

0

0
0

02

1
11

1 1

11
1 1 1 1 1

1
1 1

1

(a) (b)

Fig. 1. (a) An IM. (b) Illustrating the Elekta MLC systems. The shaded rectangles rep-
resent the MLC leaves, and the unshaded rectangles represent the backup diaphragms

due to the special geometric shape of the MLC leaves [21], an MLC-aperture
cannot be delivered as perfectly as its geometry. This gives rise to an error be-
tween the prescribed dose and actually delivered dose. We call this error the
machine delivery error, which is also called the “tongue-and-groove” error in
medical literature [17, 20, 21] (Section 2 discusses more on its nature). Mini-
mizing the machine delivery error is important because the maximum machine
delivery error can be up to 10% [10], which is well beyond the allowed 3–5%
limit. Carefully choosing MLC-apertures to use can reduce the error.

The 3-D Static Leaf Sequencing (SLS) Problem is: Given an IM and an
error bound E , find a set S of MLC-apertures for delivering the IM such that the
total machine delivery error incurred by S is ≤ E , and the size |S| is minimized.
Note that the key to the problem is to find a good tradeoff between the accuracy
(error) and efficiency (treatment time).

The 3-D SLS problem has received a great deal of attention from medical
physics community [4, 5, 6, 9, 17, 20], computational geometry [7, 8, 15], and op-
erations research [1, 3, 13]. An influential paper is by Xia and Verhey [20] for
solving the 3-D SLS problem without error control (i.e., the machine delivery
error is ignored). Their algorithm has been implemented by many researchers
and used as a widely accepted benchmark program for leaf sequencing software.
However, none of the known approaches so far can solve the 3-D SLS problem
with machine delivery error control (i.e., determining a good tradeoff between
the error and time).

The main results of this paper are summarized as follows:

(1) We prove that the 3-D SLS problem is NP-hard under all three popular MLC
models, and with or without machine delivery error control.
(2) We present the first ever modeling of the 3-D SLS problem with a tradeoff
between the error and treatment time, and an efficient algorithm for the problem
on the Elekta model. In our solution, the 3-D SLS problem is formulated as a k-
weight shortest path problem on a directed graph, in which each edge is defined
by a minimum weight g-cardinality matching. Every such k-weight path specifies
a set S of k MLC-apertures for delivering the given IM, and the cost of the path
indicates the machine delivery error of the set S of MLC-apertures.
(3) We extend our 3-D SLS algorithm to other MLC models, such as Siemens
and Varian. Our extensions are based on computing a minimum g-path cover of
a directed acyclic graph.

274 D.Z. Chen et al.

(4) We also solve the 2-D case of the 3-D SLS problem in which the given IM
consists of entries of only 1 or 0. Our solution is based on computing a minimum
cost flow in a special graph.
(5) We implemented our algorithm suite and carried out experimental studies
using medical data.

Due to space limit, we will focus on results (2) and (5) in this extended
abstract, and leave the details of results (1), (3) and (4) to the full paper.

2 Preliminaries and Problem Statement

2.1 Constraints of Multileaf Collimators and Their Geometry

The mechanical constraints of an MLC preclude certain aperture shapes from
being used [11]. One such constraint is called the minimum leaf separation, which
requires the distance between the opposite leaves of any MLC leaf pair to be ≥ a
given value δ (say, δ = 1cm). Another constraint is called the no-interleaf motion,
which forbids the tip of each MLC leaf to surpass those of its neighboring leaves
on the opposite leaf bank. These constraints prevent opposite MLC leaves from
colliding into each other and being damaged. The Elekta MLC (i.e., the default
MLC system in this paper) is subject to both the leaf separation and the no-
interleaf motion constraint, hence geometrically, each Elekta MLC-aperture is
a rectilinear x-monotone simple polygon whose minimum vertical “width” is ≥
the minimum separation value δ (see Figure 1(b)).

2.2 Machine Delivery Errors

On most current MLCs, the sides of the leaves are designed to have a “tongue-
and-groove” (TG) feature (see Figure 2(a)). This design reduces the radiation
leakage through the gap between two neighboring MLC leaves [21]. But, it also
causes an unwanted underdose and leakage situation when an MLC leaf is used
for blocking radiation (see Figures 2(b) and 2(c)). Geometrically, the underdose
and leakage error caused by the tongue-and-groove feature associating with an
MLC-aperture is a set of 3-D axis-parallel boxes w · li · h, where w is the (fixed)
width of the tongue or groove side of an MLC leaf, li is the length of the portion
of the i-th leaf that is actually involved in blocking radiation, and h = α ·r is the
amount of radiation leakage with α being the (fixed) leakage ratio and r being
the amount of radiation delivered by that MLC-aperture. Figure 2(b) illustrates
the height of the underdose and leakage error, and Figure 2(c) illustrates the
width and length of the underdose and leakage error.

We distinguish two types of errors caused by the tongue-and-groove feature
of MLC leaves:

Tongue-or-Groove Error: The tongue-or-groove error of an MLC-aperture
is defined as the amount of underdose and leakage error occurred whenever the
tongue side or groove side of an MLC leaf is used for blocking radiation. The
tongue-or-groove error of an IMRT plan (i.e., a set of MLC-apertures) is the sum
of the errors of all its MLC-apertures.

Generalized Geometric Approaches for Leaf Sequencing Problems 275

C

B

Z

X
Y

A

Tongue

Groove

Y

Y

Z

Dose
Actual

Ideal
Dose

Dose

Dose

Y

B

Radiation

A
Area
Underdose
Machine

Machine

Areas
Underdose

MLC leaves

CBA

(a) (b) (c)

Fig. 2. (a) Illustrating the tongue-and-groove (TG) interlock feature of the MLC in
3-D, where leaf B is used for blocking radiation. (b) When leaf B is used for blocking
radiation, there is an underdose and leakage in the tongue or groove area. (c) The
underdose and leakage areas of an MLC-aperture region

CBCBA

(a) (b) (c)

T and G
Error

(d)

Dose
X

X
Dose

B

X

Z

X
Dose

C

X

Z

Final Dose

Fig. 3. Illustrating the tongue-and-groove error. (a) and (b): Two MLC-apertures (the
shaded rectangles represent MLC leaves). (c) When delivering the two MLC-apertures
in (a) and (b) (one by one), the groove side of leaf B and tongue side of leaf C are both
used for blocking radiation, causing a tongue-and-groove error in the area between the
leaves B and C. (d) Illustrating a dose “dip” in the final dose distribution where a
tongue-and-groove error occurs

Tongue-and-Groove Error: Unlike the tongue-or-groove error which is de-
fined on each individual MLC-aperture, the tongue-and-groove error is defined
by the relations between different MLC-apertures. The tongue-and-groove error
occurs whenever the tongue side of an MLC leaf and the corresponding groove
side of its neighboring leaf are both used for blocking radiation in any two
different MLC-apertures of an IMRT plan (see Figure 3). Clearly, the tongue-
and-groove error is a subset of the tongue-or-groove error. Note that minimizing
the tongue-and-groove error is also important because it usually occurs in the
middle of the delivered intensity maps [20], and is actually the most damaging
part of the tongue-or-groove error.

Geometrically, for a set of MLC-apertures, the errors caused by using the
tongue sides of the MLC leaves for blocking radiation are a set of 3-D axis-
parallel boxes, denoted by VT . Similarly, the errors by using the groove sides
of the leaves for blocking radiation are another set of 3-D axis-parallel boxes,

276 D.Z. Chen et al.

denoted by VG. Then the tongue-or-groove error for the MLC-aperture set is the
sum of the volume values of these two sets (i.e., |VT | + |VG|), and the tongue-
and-groove error is equal to twice the volume value of the intersection between
VT and VG (i.e., 2 · |VT ∩VG|). We can also view the given IM as a 3-D rectilinear
terrain (mountain), denoted by V ∗. Then the magnitude of the tongue-or-groove
(resp., tongue-and-groove) error can be quantified by the percentage |VT |+|VG|

|V ∗|

(resp., |VT ∩VG|
|V ∗|).

If we view each MLC-aperture as a rectilinear polygonal region on the xy-
plane, then the tongue-or-groove error occurs along every vertical boundary edge
of this region, except its leftmost and rightmost vertical edges. The leftmost and
rightmost vertical edges are excluded (i.e., no error on them) since they are
defined by the backup diaphragms along the x-axis, not by the MLC leaves.

2.3 The Static Leaf Sequencing Problem

The 3-D Static Leaf Sequencing (SLS) Problem is: Given an IM and an
error bound E , find a set S of MLC-apertures for delivering the IM, such that
the machine delivery error (i.e., either the tongue-or-groove error or the tongue-
and-groove error) is ≤ E and the size |S| is minimized.

Interchangeably, we also call such MLC-apertures the B-segments[7] (for
block-segments). Each B-segment is of a rectilinear x-monotone polygonal shape
of a uniform height h ≥ 1 (h is the number of dose units delivered by the MLC-
aperture).

A key special case of the 3-D SLS problem is the basic 3-D SLS problem
[4, 5, 6]. This case is similar to the general 3-D SLS problem, except that the
height of each of its B-segments must be one. Note that in the general 3-D SLS
problem, the uniform height of each B-segment can be any integer ≥ 1. Studying
the basic case is important because the maximum heights of the majority of IMs
used in the current clinical treatments are around 5, and an optimal solution for
the basic case on such an IM is often very close to an optimal solution for the
general case.

3 3-D SLS Algorithms with Error Control

This section presents our SLS algorithms with error control. Due to space limit,
we will use our basic 3-D SLS algorithms with error control for the Elekta model
to illustrate some of the key ideas of our approach, and leave the details of our
complete SLS algorithm suite to the full paper.

3.1 Algorithm for Basic 3-D SLS Problem with Tongue-or-Groove
Error Control

Let S be a solution for the basic 3-D SLS problem with tongue-or-groove error
control (S = {Si | i ∈ I} is a set of B-segments of height 1 for the given IM,
where I is an index set). Consider a B-segment Si ∈ S. Observe that since each

Generalized Geometric Approaches for Leaf Sequencing Problems 277

B-segment Si has a unit height and an x-monotone rectilinear simple polygonal
shape, Si actually builds a continuous block of a unit height on every IM column
Cj that intersects the projection of Si on the IM grid [7]. We denote such a
continuous block by an interval Bi,j on the column Cj . (Interchangeably, we
also call Bi,j a block). Note that when delivering a B-segment Si, each of its
blocks Bi,j is delivered by the pair of MLC leaves that is aligned with Cj .

Let B(Si) = {Bi,j | Bi,j = Si ∩Cj , j = ei, ei + 1, . . . , ki} be the set of blocks
that form Si, where Si “runs” consecutively from the IM columns Cei

to Cki
.

As discussed in Section 2.2, the tongue-or-groove error of Si occurs along every
vertical boundary edge of the polygonal region of Si, except its leftmost and
rightmost vertical edges. Let |Bi,j ⊕Bi,j+1| denote the length of the symmetric
difference between the two intervals of Bi,j and Bi,j+1, j = ei, ei + 1, . . . , ki − 1.
Thus, the total tongue-or-groove error TorG(Si) of Si is the sum of a set of 3-D
error volumes, TorG(Si) =

∑ki−1
j=ei

w · li,j · hi, where w is the (fixed) width of
the tongue or groove side of an MLC leaf, li,j = |Bi,j ⊕ Bi,j+1| is the length
of the leaf portion that is actually used for blocking radiation between blocks
Bi,j and Bi,j+1, and hi = α · ri is the amount of radiation leakage associated
with Si with ri being the “height” of Si. Since in the basic 3-D SLS problem,
the B-segments are all of a height one (i.e., ri = 1,∀i ∈ I), the tongue-or-groove
error of S is TorG(S) = w · α ·

∑
i∈I

∑ki−1
j=ei

li,j . Observe that
∑ki−1

j=ei
li,j is the

sum of the lengths of all non-extreme vertical edges of the B-segment Si (e.g.,
see Figure 2(c)).

Thus, we have the following geometric version of the basic 3-D SLS problem
with tongue-or-groove error control: Given an IM and an error bound E∗, find
a set S = {Si | i ∈ I} of B-segments of height one, such that the value C(S) =∑

i∈I

∑ki−1
j=ei

li,j ≤ E∗ and the size |S| is minimized. Note that here, E∗ = E/(w·α)
for the error bound E in the definition of the SLS problems in Section 2.3.

For each B-segment Si ∈ S, now let B(Si) = {Bi,j | j = 1, 2, . . . , n}, such that
n is the number of columns of the given IM and some intervals Bi,j may be empty.
Then we have C(S) =

∑
i∈I

∑ki−1
j=ei

|Bi,j ⊕ Bi,j+1| =
∑n−1

j=1
∑

i∈I |Bi,j ⊕ Bi,j+1|.
Note that for each j = 1, 2, . . . , n−1, the value

∑
i∈I |Bi,j⊕Bi,j+1| is actually the

tongue-or-groove error for “stitching” the two block-sets BS(Cj) and BS(Cj+1)
for the IM columns Cj and Cj+1 to form the B-segments as defined by S. Suppose
g pairs of blocks are stitched together by S between BS(Cj) and BS(Cj+1). To
minimize the error of S, the error incurred for such a stitching configuration
(i.e.,

∑
i∈I |Bi,j ⊕ Bi,j+1|) must be the smallest among all possible stitching

configurations with exactly g stitched block pairs between BS(Cj) and BS(Cj+1)
defined by S.

Now we can relate the tongue-or-groove error to the number of B-segments,
by associating an error to each stitching configuration between the block-sets
for any two consecutive IM columns. Specifically, for any two block-sets BS(Cj)
and BS(Cj+1) for columns Cj and Cj+1 and each g = 1, 2, . . . , |Mj |, where Mj

is a maximum size matching between BS(Cj) and BS(Cj+1), we stitch together
exactly g pairs of blocks with the minimum total error. Note that every stitching
configuration of exactly g block pairs between BS(Cj) and BS(Cj+1) with the

278 D.Z. Chen et al.

minimum error corresponds to a matching of exactly g pairs of intervals with the
minimum total weight between the two interval sets of BS(Cj) and BS(Cj+1).
We call such a bipartite matching of intervals (subject to the MLC constraints)
an optimal g-matching. Hence, an optimal solution for the basic 3-D SLS problem
with error control is specified by a list of block-sets (one for each IM column)
and an optimal gj-matching between two such block-sets BS(Cj) and BS(Cj+1)
for any consecutive columns Cj and Cj+1 (for some value gj).

To find the sought block-sets and gj-matchings, we construct the following di-
rected acyclic graph G∗: (1) Generate all distinct block-sets for each IM column,
and let every vertex of G∗ correspond to exactly one such block-set. (2) For any
two vertices of G∗ corresponding to two block-sets BS(Cj) and BS(Cj+1) for two
consecutive IM columns Cj and Cj+1, compute a minimum weight g-matching
for each g = 1, 2, . . . , |Mj |, where Mj is a maximum size matching between
BS(Cj) and BS(Cj+1). For each such g-matching, put a left-to-right edge be-
tween the two vertices in G∗, and assign the edge a weight of (|BS(Cj+1)| − g)
and a cost equal to the minimum weight of the g-matching. (3) Add a source
vertex s to G∗ and connect s to all block-sets for the first IM column; add a sink
t and connect all block-sets for the last IM column to t (all edges added here
have weight zero and cost zero).

Lemma 1. An s-to-t path in the graph G∗ with a weight k and a cost C specifies
a set of k B-segments of a unit height for the given IM whose total tongue-or-
groove error is C.

Lemma 1 implies that for the basic 3-D SLS problem with a given error bound
E∗, we can obtain a minimum B-segment set for the given IM subject to this
error bound, by finding a minimum weight s-to-t path in G∗ with a total cost
≤ E∗. This is called the constrained shortest path problem [12].

To compute such a set of B-segments, several issues must be resolved: (1)
How to generate all distinct block-sets for each IM mountain slice? (2) How
to compute an optimal g-matching between two block-sets? (3) How to find a
minimum weight s-to-t path in G∗ with a total cost ≤ E∗?

To generate all distinct block-sets for an IM column, we use the algorithm in
[14], whose running time is linear in terms of the number of output block-sets. To
find a desired k-weight shortest s-to-t path in G∗, we use Lawler’s dynamic pro-
gramming algorithm for constrained shortest paths [12]. The sought path can be
easily obtained from the dynamic programming table once it becomes available.

Now we show how to compute the optimal g-matchings. Given two block-sets
BSr and BSb for any two consecutive IM columns, we construct a bipartite graph
G = (R∪B, E) as follows: Each block in BSr (resp., BSb) corresponds to a red
(resp., blue) vertex in G, and every stitchable block pair corresponds to an edge
between the corresponding red and blue vertices. Here, a red block and a blue
block are stitchable if they satisfy the (machine model specific) MLC constraints.
For each edge e(u, v) in G, let their corresponding intervals be Iu = [lu, ru] and
Iv = [lv, rv]; then the cost of e(u, v) is assigned as |lu − lv| + |ru − rv|, i.e., the
length of the symmetric difference between Iu and Iv.

Generalized Geometric Approaches for Leaf Sequencing Problems 279

To compute an optimal g-matching in the bipartite graph G for each g =
1, 2, . . . , |M |, where M is the maximum size matching of G, we transform G
into a unit-capacity flow network and formulate the task as a minimum cost
flow problem with a flow value g. The |M | optimal g-matchings can be com-
puted efficiently by the successive shortest path algorithm [2], i.e., at the end
of the g-th stage of the algorithm (1 ≤ g ≤ |M |), a desired optimal g-matching
is produced. Since the single source shortest paths in G at each stage can be
computed in O(m + n log n) time, the total time for computing all the |M | op-
timal g-matchings (1 ≤ g ≤ |M |) is O(|M |(m + n log n)), where m = |E| and
n = |R ∪B|.

Theorem 1. The basic 3-D SLS problem with tongue-or-groove error control is
solvable in O(

∑n−1
j=1 Πj ·Πj+1 ·Γ +K) time, where n is the number of columns of

the input IM, Πj is the number of block-sets used for column Cj, Γ is the time
for computing all optimal g-matchings between two block-sets, and K is the time
for computing the minimum cost k-weight s-to-t paths in G∗.

3.2 3-D Basic SLS Algorithms with Tongue-and-Groove Error
Control

As discussed in Section 2.2, the tongue-and-groove error for an IMRT plan is
the intersection |VT ∩ VG|, where VT (resp., VG) is the error set (i.e., a set of
3-D axis-parallel boxes) caused by the tongue sides (resp., groove sides) of the
MLC leaves. At first sight, due to the nonlinearity, it might appear that the
tongue-and-groove error is much harder to handle than the tongue-or-groove
error. Interestingly, we are able to show that handling the tongue-and-groove
error is in fact equivalent to handling the tongue-or-groove error. The key to our
solution is the next lemma which implies that our SLS algorithms for tongue-or-
groove error control are also applicable to the case of tongue-and-groove error
control.

Lemma 2. Let M be the input IM and S be a B-segment set that builds the
IM M. Then the difference between the values of the tongue-or-groove error and
tongue-and-groove error of S is merely a value F(M) that depends only on the
input IM M.

4 Implementation and Experiments

To further examine the clinical feasibility of our new 3-D SLS algorithms, we
implemented them using C on the Linux systems and conducted extensive exper-
imental studies using real medical data. We performed Monte Carlo simulations
[16] on the treatment plans computed by our software, which proved the correct-
ness of our algorithms/software. We also compared our new 3-D SLS algorithms
with the current most popular commercial planning system CORVUS (version
5.0), which showed significant improvements. E.g., on a head and neck cancer

280 D.Z. Chen et al.

case consisting of 7 IMs, to eliminate tongue-and-groove error, CORVUS would
need 262 B-segments, in contrast to the 142 B-segments computed by our new
SLS program.

References

1. R.K. Ahuja and H.W. Hamacher. Minimizing Beam-on Time in Radiation Therapy
Treatment Planning Using Network Flows. submitted to Networks.

2. R.K. Ahuja, T.L. Magnanti, and J.B. Orlinr. Network Flows: Theory, Algorithms,
and Applications. Prentice Hall, Inc., 1993.

3. N. Boland, H.W. Hamacher, and F. Lenzen. Minimizing Beam-on Time in Cancer
Radiation Treatment Using Multileaf Collimators. Report, Department of Math-
ematics, University Kaiserslautern, 2002.

4. T.R. Bortfeld, A.L. Boyer, W. Schlegel, D.L. Kahler, and T.L. Waldron. Realiza-
tion and Verification of Three-Dimensional Conformal Radiotherapy with Modu-
lated Fields. Int. J. Radiat. Oncol. Biol. Phys., 30:899–908, 1994.

5. T.R. Bortfeld, D.L. Kahler, T.J. Waldron, and A.L. Boyer. X-ray Field Compen-
sation with Multileaf Collimators. Int. J. Radiat. Oncol. Biol. Phys., 28:723–730,
1994.

6. A.L. Boyer. Use of MLC for Intensity Modulation. Med. Phys., 21:1007, 1994.
7. D.Z. Chen, X.S. Hu, S. Luan, C. Wang, and X. Wu. Geometric Algorithms for

Static Leaf Sequencing Problems in Radiation Therapy. In Proc. of 19th ACM
Symposium on Computational Geometry (SoCG’03), pages 88–97, 2003.

8. D.Z. Chen, X.S. Hu, S. Luan, X. Wu, and C.X. Yu. Optimal Terrain Construc-
tion Problems and Applications in Intensity-Modulated Radiation Therapy. In
Lecture Notes in Computer Science, Springer-Verlag, Proc. 10th Annual European
Symposium on Algorithms (ESA’02), volume 2461, pages 270–283, 2002.

9. J. Dai and Y. Zhu. Minimizing the Number of Segments in a Delivery Sequence
for Intensity-Modulated Radiation Therapy with Multileaf Collimator. Med. Phys.,
28(10):2113–2120, 2001.

10. J. Deng, T. Pawlicki, Y. Chen, J. Li, S.B. Jiang, and C.-M. Ma. The MLC Tongue-
and-Groove Effect on IMRT Dose Distribution. Physics in Medicine and Biology,
46:1039–1060, 2001.

11. T.J. Jordan and P.C. Williams. The Design and Performance Characteristics of a
Multileaf Collimator. Phys. Med. Biol., 39:231–251, 1994.

12. E. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart
and Winston, 1976.

13. F. Lenzen. An Integer Programming Approach to the Multileaf Collimator Prob-
lem. Master’s thesis, University of Kaiserslautern, June 2000.

14. S. Luan, D.Z. Chen, L. Zhang, X. Wu, and C.X. Yu. An Optimal Algorithm for
Computing Configuration Options of One-dimensional Intensity Modulated Beams.
Phys. Med. Biol., 48(15):2321–2338, 2003.

15. S. Luan, C. Wang, S.A. Naqvi, D.Z. Chen, X.S. Hu, C.L. Lee, and C.X. Yu. A New
MLC Segmentation Algorithm/Software for Step and Shoot IMRT. Med. Phys.,
31(4):695–707, 2004.

16. S.A. Naqvi, M. Earl, and D. Shepard. Convolution/Superposition Using the Monte
Carlo Method. Phys. Med. Biol., 48(14):2101–2121, 2003.

17. R.A.C. Siochi. Minimizing Static Intensity Modulation Delivery Time Using an
Intensity Solid Paradigm. Int J. Radiat. Oncol. Biol. Phys., 43(3):671–680, 1999.

Generalized Geometric Approaches for Leaf Sequencing Problems 281

18. S. Webb. The Physics of Three-Dimensional Radiation Therapy. Bristol, Institute
of Physics Publishing, 1993.

19. S. Webb. The Physics of Conformal Radiotherapy — Advances in Technology.
Bristol, Institute of Physics Publishing, 1997.

20. P. Xia and L.J. Verhey. MLC Leaf Sequencing Algorithm for Intensity Modulated
Beams with Multiple Static Segments. Med. Phys., 25:1424–1434, 1998.

21. C.X. Yu. Design Considerations of the Sides of the Multileaf Collimator. Phys.
Med. Biol., 43(5):1335–1342, 1998.

An Efficient Exact Algorithm for the Minimum
Ultrametric Tree Problem

Hsin-Fu Chen and Maw-Shang Chang

Department of Computer Science and Information Engineering,
National Chung Cheng University,
Ming-Shiun, Chiayi 621, Taiwan

{chf91, mschang}@cs.ccu.edu.tw

Abstract. The minimum ultrametric tree problem is an NP-hard evo-
lutionary tree construction problem. Wu et al. proposed a branch-and-
bound algorithm that solves the minimum ultrametric tree problem to
optimality in [11]. In this paper, we use a look-ahead approach to com-
puting a tighter lower bound for a subproblem. Besides we propose to
use the persistent data structure to speedup the branch-and-bound al-
gorithm. Experimental results show that our algorithm outperforms the
previous one. We believe that the approach used in the paper can be
adapted to speedup other branch-and-bound algorithms.

1 Introduction

Evolutionary trees (also called phylogenetic trees, or more simply, phyloge-
nies) are useful tools to model evolutionary history (or relationship) of a set
of species. According to the following two common assumptions of evolution:
(1) All present-day species were evolved from one common ancestor, and (2)
The rate of evolution is constant, we can model the evolutionary relationship of
a set of present-day species by an edge-weighted binary tree that satisfies the
following properties: (1) Leaves represent present-day species. (2) Internal nodes
represent hypothesis ancestors of present-day species, and the root represents the
common ancestor from which all species evolved. (3) Weights of edges represent
the evolutionary distances, e.g., evolutionary time, between the corresponding
two species. Thus, all weights must be greater than or equal to zero. (4) For any
subtree, the lengths of the paths from the root to its leaves are all the same,
where the length of a path is defined to be the sum of weights of edges of the path.

Given a set of species and the evolutionary distance between every two
species, constructing an “optimal” evolutionary tree for those species is an im-
portant problem in computational biology. The constructed evolutionary tree
must satisfy the basic criterion: For any two species, the length of the path con-
necting the two species in the evolutionary tree must be greater than or equal to
the given evolutionary distance between them. In this paper, we deal with a spe-
cial type of evolutionary trees satisfying an extra criterion: The sum of weights
of all edges is minimized. We call a tree satisfying this criterion a minimum (size)

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 282–293, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

An Efficient Exact Algorithm for the Minimum Ultrametric Tree Problem 283

ultrametric tree, or MUT for short. See [9] for an introduction to evolutionary
trees in general, and [4, 5] for several other models of evolutionary trees.

Given a set of species and the evolutionary distance between every two
species, the minimum ultrametric tree problem, or the MUT problem for short,
is to find a minimum ultrametric tree for those species. The MUT problem will
be formally defined in Section 2. Farach et al. proved that the MUT problem is
NP-hard, and there exists an ε such that the MUT problem cannot be approxi-
mated in polynomial time within ratio nε unless P = NP, where n is the number
of species [4].

There is a variation of the MUT problem—the metric minimum ultrametric
tree problem, or the ΔMUT problem for short. The problem is introduced by Wu
et al. in [11]. The ΔMUT problem has the same definition as the MUT problem,
except the input is a metric, i.e., the distances satisfy the triangle inequality.
Wu et al. proved that the ΔMUT problem is NP-hard and can be approximated
in polynomial time with error ratio 1.5(1 + �log n�) [11]. Later, Huang et al.
improved the result by proposing another polynomial time approximation algo-
rithm, with error ratio ≤ logα n+1 ∼= 1.44�log n�+1, where α = (

√
5+1)/2 [6].

Wu et al. proposed a branch-and-bound algorithm that solves the MUT prob-
lem, as well as the ΔMUT problem [11]. Their algorithm can solve the MUT
problem instances and ΔMUT problem instances of size no greater than 19 and
25 species, respectively, in reasonable time. In this paper, we improve the branch-
and-bound algorithm by giving a new algorithm for computing a tighter lower
bound on the optimal value of a subproblem and adopting a persistent data
structure [3] to store subproblems. Using a persistent data structure for storing
subproblems allows us to compute a tighter lower bound on the optimal value
of a subproblem and to generate subproblems efficiently.

The rest of this paper is organized as follows: In Section 2, we formally define
the MUT problem and review the branch-and-bound algorithm for the MUT
problem proposed by Wu et al. [11]. In Section 3, we propose an algorithm for
computing a tighter lower bound on the optimal value of a subproblem and
introduce a persistent data structure for storing subproblems. Finally, in Sec-
tion 4, we show the experimental results of our implementation, compared with
the implementation by Wu et al. [11].

2 Preliminaries

First we formally define the MUT problem.

Definition 1. Let Sn = {1, 2, . . . , n} be a set of n species, where n ≥ 2. A
distance matrix of Sn is a symmetric n×n matrix M such that M [i, j] = M [j, i]
and M [i, j] ≥ 0 for all 1 ≤ i, j ≤ n and M [i, i] = 0 for all 1 ≤ i ≤ n.

In the rest of the paper, Sn = {1, 2, . . . , n} is a set of n species, S is a subset
of Sn, and M is a distance matrix of Sn. Besides, all trees mentioned are binary
trees if we do not explicitly specify.

284 H.-F. Chen and M.-S. Chang

Definition 2. Let T be a tree. We use V (T) and E(T) to denote the sets of
vertices and edges in T , respectively. For v ∈ V (T), we use Tv to denote the
subtree of T rooted at v. A tree T is leaf-labelled if each leaf of T is labelled with
a distinct positive integer. For simplicity, we will refer to a leaf in a leaf-labelled
tree as its label and use L(T) to denote the set of labels of leaves of T .

Definition 3. An edge-weight function of a tree T is a function from E(T) to
non-negative real numbers. An edge-weighted tree T is a two-tuple (T,w), where
T = (V,E) is a tree and w is an edge-weight function of T . For vertex s ∈ V ,
the weight of Ts in T , denoted by w(T , s), is defined to be

∑
e∈E(Ts) w(e) if s is

an internal node and w(T , s) = 0 otherwise. The weight of T , denoted by w(T),
is defined to be

∑
e∈E w(e). Clearly w(T) = w(T , r) where r is the root of T .

Definition 4. Let (T,w) be an edge-weighted tree where T = (V,E). Let u and
v be two distinct nodes in V and 〈v0 = u, v1, . . . , vk = v〉 be the simple path from
u to v in T . The distance between u and v in T , denoted by dT (u, v), is defined
to be

∑k−1
i=0 w(vi, vi+1). Notice that dT (v, v) = 0.

Definition 5. An ultrametric tree is an edge-weighted leaf-labelled tree T =
(T,w) with dT (r, i) = dT (r, j) for all i, j ∈ L(T), where r is the root of T .

Let T = (T,w) be an ultrametric tree. It is easy to see that, for any internal
node v, (Tv, w

′), where w′(e) = w(e) for e ∈ E(Tv), is an ultrametric tree too.

Definition 6. An ultrametric tree for S with respect to M is an ultramet-
ric tree T = (T,w) such that T is a leaf-labelled tree with L(T) = S and
dT (i, j) ≥ M [i, j] for all i, j ∈ L(T). We refer to tree T as the topology of
T . For simplicity, we refer to an ultrametric tree for S with respect to M as an
ultrametric tree for S.

Definition 7. A minimum ultrametric tree for S is an ultrametric tree for S
of minimum weight over all ultrametric trees for S. The problem of finding a
minimum ultrametric tree for Sn is called the minimum ultrametric tree problem,
or the MUT problem for short.

In the rest of this section, we review some properties about (minimum) ul-
trametric trees and the branch-and-bound algorithm in [11]. The algorithm is
listed in Algorithm 1 for reference. See [11] for details of the algorithm, such as
the maxmin permutation, UPGMM, and the modified best-first search strategy,
which we will not explain here because of the limitation of space.
Theorem 1. [11] If M [1, 2] ≥ M [i, j] for all 1 ≤ i, j ≤ n, then there exists a
minimum ultrametric tree T = (T,w) for Sn such that 1 ∈ L(Tu) and 2 ∈ L(Tv),
where u and v are the two children of the root of T .

Definition 8. Let T = (V,E) be a leaf-labelled tree with L(T) = S. A minimum
ultrametric function of T with respect to M is an edge-weight function of T such
that T = (T,w), denoted by MUT (T), is an ultrametric tree for S of minimum
weight over all ultrametric trees for S with topology T . For simplicity, we use
W (T, s) for w(T , s) where s ∈ V and W (T) for w(T).

An Efficient Exact Algorithm for the Minimum Ultrametric Tree Problem 285

Algorithm 1. The branch-and-bound algorithm for the MUT problem
Input: A distance matrix M of Sn.
Output: A minimum ultrametric tree for M .
1: Relabel the species such that (1, 2, . . . , n) is a maxmin permutation.
2: Let U be an ultrametric tree for M obtained by using UPGMM.
3: UB ← w(U).
4: T S ← {T}, where T is the leaf-labelled tree with L(T) = {1, 2}. � See Theorem 1.
5: while T S �= φ do
6: T S ← {T ∈ T S : LB0(T) < UB}.
7: Extract a leaf-labelled tree T from T S by the modified best-first search strategy.
8: Assume that L(T) = {1, 2, . . . , i}.
9: Compute W (T) and LB0(T). � See Theorem 2 and Theorem 6.

10: if i = n then
11: if W (T) < UB then
12: U ← MUT (T).
13: UB ← W (T).
14: end if
15: else if LB0(T) < UB then
16: T S ← T S ∪ I(T, i + 1).
17: end if
18: end while
19: Return U .

Definition 9. Let T = (V,E) be a leaf-labelled tree with L(T) = S, i ∈ Sn \ S,
e = (u, v) ∈ E, and u be the parent of v in T . The leaf-labelled tree T ′ = I(T, e, i)
is the leaf-labelled tree with L(T ′) = S ∪ {i} obtained by inserting a new leaf
labelled i into T at e. To insert the leaf labelled i at e, replace e with two edges
(u, x) and (x, v), and insert an edge (x, i), in which i is the new leaf labelled i.
Use I(T, i) to denote the set {I(T, e, i) : e ∈ E}.

Definition 10. Let T and T ′ be two leaf-labelled trees. The relation “contain”
between T and T ′ is defined recursively. We say that T ′ contains T , denoted by
T ⊂ T ′, if either T ′ = I(T, e, i) for some edge e in T and i ∈ Sn \ L(T) or T ′

contains another leaf-labelled tree which contains T .

Definition 11. Let T be a leaf-labelled tree with L(T) = S. An ultrametric tree
for Sn containing T is an ultrametric tree for Sn whose topology contains T . A
minimum ultrametric tree for Sn containing T is an ultrametric tree T = (T ′, w)
for Sn with T ′ containing T and w(T) is minimum among all ultrametric trees
for Sn containing T .

Definition 12. [11] The lower bound array for M , denoted by LBA, is defined
as follows: LBA[n] = 0, and for i = 2, 3, . . . , n − 1, LBA[i] is defined to be∑n

j=i+1 min{M [j, k]/2 : k ∈ {1, 2, . . . , j − 1}}.

Theorem 2. [11] Let T be a leaf-labelled tree with L(T) = {1, 2, . . . , i}, where
2 ≤ i < n. If T is an ultrametric tree for Sn containing T , then w(T) ≥
LB0(T) = W (T) + LBA[i].

286 H.-F. Chen and M.-S. Chang

The above theorem provides a lower bound for the branch-and-bound algo-
rithm given in [11]. Clearly the lower bound array can be computed in O(n2)
time in the preprocessing stage. We now review the O(n2)-time algorithm used
in [11] for computing W (T). In other words, the running time of the algorithm
used in [11] for computing LB0(T) is O(n2).

Definition 13. Let T = (T,w) be an ultrametric tree with T = (V,E). For
v ∈ V , the height of v in T , denoted by h(T , v), is the distance from v to any
leaf in the subtree Tv, i.e., h(T , v) = dT (v, u) for any u ∈ L(Tv). Notice that
h(T , v) = 0 for v ∈ L(T).

The following two theorems show the properties of the heights of vertices in
an ultrametric tree and the relationship between the weight of an ultrametric
tree and the heights of all vertices in the ultrametric tree.

Theorem 3. [11] Let T = (T,w) be any ultrametric tree with T = (V,E) and
root r. Then w(T) = h(T , r) +

∑
v∈V h(T , v).

Let T = (T,w) be an ultrametric tree with T = (V,E) and root r. Im-
mediately follows from the above theorem, we have that w(T) = 2h(T , r) +∑

v∈V \{r} h(T , v) and
∑

v∈V h(T , v) = w(T)− h(T , r).

Definition 14. Let T = (V,E) be a leaf-labelled tree with L(T) ⊆ Sn and T =
MUT (T). Use H(T, v) to denote h(T , v).

Theorem 4. [11] Let T = (V,E) be a leaf-labelled tree with L(T) ⊆ Sn and
T = MUT (T). For v ∈ V \ L(T), H(T, v) = 1

2 max{M [i, j] : i, j ∈ L(Tv)}.

Definition 15. Let A and B be nonempty subsets of Sn and A ∩ B = φ. The
maximum distance between A and B, denoted by md(A,B), is defined to be
1
2 max{M [i, j] : i ∈ A, j ∈ B}. For simplicity, we use md(A, j) to denote
md(A, {j}) for j ∈ Sn \A.

Immediately following from Theorem 4, we have the following theorem

Theorem 5. Let T be a leaf-labelled tree with L(T) ⊆ Sn and T = MUT (T).
For any internal node s of T with children u and v, we have
H(T, s) = max{H(T, u), H(T, v),md(L(Tu), L(Tv))}.

Given a leaf-labelled tree T with L(T) ⊆ Sn, we compute a minimum ultra-
metric function for T with respect to M as follows. First we compute H(T, v)
for every internal node v in T from M by a postorder traversal of tree T accord-
ing to Theorem 5. This can be done in O(n2) time. For all e = (u, v) ∈ E(T),
where u is the parent of v, let w(e) be H(T, u) − H(T, v). Therefore, we have
the following theorem.

Theorem 6. [11] Let T = (V,E) be a leaf-labelled tree with L(T) ⊆ Sn. Then
a minimum ultrametric function w of T with respect to M can be computed in
O(n2) time.

Given the minimum ultrametric function of T with respect to M , W (T) can
be computed in O(n) time. Given T , W (T) can be computed in O(n2) time.

An Efficient Exact Algorithm for the Minimum Ultrametric Tree Problem 287

3 The Efficient Implementation

In Algorithm 1, W (T) and LB0(T) are computed for each tree T generated in
O(n2) time. To improve the branch-and-bound algorithm, we propose a tighter
lower bound LB1(T) and show how to compute it in O(n) time. A revised version
of Algorithm 1 is sketched in Algorithm 2.

Algorithm 2. The revised branch-and-bound algorithm for the MUT problem
Input: A distance matrix M of Sn.
Output: A minimum ultrametric tree for M .
1: Relabel the species such that (1, 2, . . . , n) is a maxmin permutation.
2: Let U be an ultrametric tree for M obtained by using UPGMM.
3: UB ← w(U).
4: T S ← {T}, where T is the leaf-labelled tree with L(T) = {1, 2}. � See Theorem 1.
5: while T S �= φ do
6: Extract a tree T , from T S by the depth-first search strategy.
7: Assume that L(T) = {1, 2, . . . , i}.
8: if i = n then
9: if W (T) < UB then

10: U ← T .
11: UB ← W (T).
12: end if
13: else
14: Compute md(L(Tv), i + 1) for every node v of T .
15: for every edge e ∈ E do
16: T ′ ← I(T, e, i + 1).
17: Let x be the vertex in T ′ generated by the insertion that divides edge e.
18: Compute H(T ′, v) for every node v ∈ {x} ∪ {v : v is an ancestor of x}.
19: Compute H̃(T ′, v) for every internal node v of T ′.
20: if i = n − 1 then
21: LB ← W (T ′).
22: else
23: Compute md(L(T ′

v), i + 2) for every node v of T ′.
24: Compute W (T ′

v, i + 2) for every node v of T ′.
25: LB ← W (T ′, i + 2) + LBA[i + 2]. � See Theorem 7.
26: end if
27: if LB < UB then
28: T S ← T S ∪ {T ′}.
29: end if
30: end for
31: end if
32: end while
33: Return U .

3.1 The New Lower Bound

We use a look-ahead approach to obtaining a better lower bound. We show this
approach can be implemented efficiently. We believe that this approach can be

288 H.-F. Chen and M.-S. Chang

adapted to obtain tighter lower bounds for other branch-and-bound algorithms.
We first describe the new lower bound LB1(T) and then show how to compute
LB1(T) in O(n) time.
Definition 16. Let T = (V,E) be a leaf-labelled tree with L(T) ⊂ Sn, i ∈
Sn \ L(T), v be an internal node of T , and r be the root of T . For simplicity,
use MW (T, v, i) to denote min{W (I(T, e, i)) : e ∈ E(Tv)} and use MW (T, i) to
denote MW (T, r, i). For technical reasons, let MW (T, v, i) = ∞ if v ∈ L(T).

By the above definition, the following lemma can be verified easily.
Lemma 1. Let T = (V,E) be a leaf-labelled tree with L(T) ⊂ Sn, i ∈ Sn \L(T),
r be the root of T , and u, v be the two children of r. Then we have
MW (T, i) = min{W (I(T, (r, u), i)),W (I(T, (r, v), i)),MW (T, u, i),MW (T, v, i)}.

Theorem 7. Let T = (V,E) be a leaf-labelled tree with L(T) = {1, 2, . . . , i− 1}
where 2 ≤ i < n. If T is a minimum ultrametric tree for Sn containing T where
w is the edge-weight function of T , then w(T) ≥ LB1(T) = MW (T, i)+LBA[i].

Proof. By definition, there exists an edge e ∈ E such that T contains I(T, e, i)
and W (I(T, e, i))) ≥MW (T, i). By Theorem 2, we have w(T) ≥W (I(T, e, i))+
LBA[i] ≥MW (T, i) + LBA[i].
�

Lemma 2. Let T = (V,E) be a leaf-labelled tree with L(T) ⊂ Sn, i ∈ Sn \L(T).
Let (u, v) ∈ E, v be a child of u, and x be the vertex in I(T, (u, v), i) generated
by the insertion that divides edge (u, v). Use T ′ for I(T, (u, v), i). Then

H(T ′, s) =

⎧⎨⎩
max{H(T, s),md(L(Ts), i)} if s is an ancestor of x,
max{H(T, v),md(L(Tv), i)} if s = x,
H(T, s) otherwise.

Proof. We first prove the case that s is an ancestor of x holds. By Theorem 4,
we have

H(T ′, s) = max{M [k, l]/2 : k, l ∈ L(T ′)}
= max{M [k, l]/2 : k, l ∈ L(Ts) ∪ {i}}
= max{M [k, l]/2,M [m, i]/2 : k, l,m ∈ L(Ts)}
= max{H(T, r),md(L(Ts), i)}.

The other two cases can be proved in the same way.
�
Definition 17. Let T = (V,E) be a leaf-labelled tree with L(T) ⊆ Sn, v be an
internal node of T . Use H̃(T, v) to denote

∑
s∈V (Tv)H(T, s). Clearly we have

H̃(T, v) = W (T, v)−H(T, v).

Lemma 3. Let T = (V,E) be a leaf-labelled tree with L(T) ⊂ Sn, i ∈ Sn \L(T),
r be the root of T , u, v be the two children of r. Then we have

W (I(T, (r, u), i)) = 2 max{H(T, r),md(L(T), i)}+ max{H(T, u),md(L(Tu), i)}
+H̃(T, u) + H̃(T, v)

An Efficient Exact Algorithm for the Minimum Ultrametric Tree Problem 289

Proof. For simplicity use T ′ for I(T, (r, u), i). Assume that x ∈ V (T ′) is the new
vertex generated by the insertion that divides edge e. By Lemma 2, we have
H(T ′, r) = max{H(T, r),md(L(T), i+ 1)} and
H(T ′, x) = max{H(T, u),md(L(Tu), i)}. Therefore, by Theorem 3, the lemma
holds.
�

Lemma 4. Let Let T = (V,E) be a leaf-labelled tree with L(T) ⊂ Sn, i ∈
Sn \L(T), r be the root of T , and u, v be the two children of r. If u is not a leaf,
then we have

MW (T, u, i) = 2 max{H(T, r),md(L(T), i))}+ H̃(T, v)
+MW (Tu, i)−max{H(T, u),md(L(Tu), i)}

Proof. Let T ′ ∈ T S = {I(T, e, i) : e ∈ E(Tu)}. By Lemma 2, we know that
H(T ′, r) and H(T ′, u) are max{H(T, r),md(L(T), i)} and
max{H(T, u),md(L(Tu), i)}, respectively. By Theorem 3, we have

W (T ′) = 2H(T ′, r) + H̃(T ′, v) + H̃(T ′, u)

= 2 max{H(T, r),md(L(T), i)}+ H̃(T, v) +W (T ′, u)−H(T ′, u)

= 2 max{H(T, r),md(L(T), i)}+ H̃(T, v)
+W (T ′, u)−max{H(T, u),md(L(Tu), i)}

By Theorem 4,H(T ′, s) = H(T ′
u, s) for s ∈ V (Tu). ThusMW (Tu, i) = min{W (T ′, u) :

T ′ ∈ T S} and hence the lemma holds.
�

Theorem 8. Given a leaf-labelled tree T = (V,E) with L(T) = {1, 2, . . . , i− 1}
where 2 ≤ i < n and H(T, v) for every v ∈ V , we can compute md(L(Ts), i),
H̃(T, s), W (Ts, i) for every internal node s of T in O(n) time.

Proof. First it is easy to see that we can compute md(L(Ts), i) and H̃(T, s) for
every internal node s of T in O(n) time by a postorder traversal of tree T . By
Lemma 1, 3, and 4, we can compute MW (Ts, i) for every internal node s of T
in O(n) time by a postorder traversal of tree T too.
�

3.2 An Efficient Persistent Data Structure

In Algorithm 2, all trees are stored in T S. For every internal node v of a tree T ,
we associate a variable storing H(T, v). To speedup the computation of I(T, e, i)
from T and save space, we use a persistent data structure. See [3] for studies
on persistent data structures. The persistent data structure used here can let all
trees in T S share the common part. We believe that this data structure is very
suitable for the branch-and-bound algorithm to store subproblems generated.
By using this data structure, we can save time in generating subproblems and
computing their lower bounds.

Figure 1 illustrates how we create I(T, e, i) from T . Assume that e = (u, v) ∈
E(T), i �∈ L(T), 〈v0 = v, v1 = u, v2, . . . , vk = r〉 is the path from v to r in T , and

290 H.-F. Chen and M.-S. Chang

uj is the sibling of vj in T for j = 0, 1, . . . , k − 1. To create T ′ = I(T, e, i), we
first create k+1 new nodes v′

0, v
′
1, . . . , v

′
k. Then we let v′

k be the root of T ′, v′
i−1

and ui−1 be the two children of v′
i for 1 ≤ i ≤ k, and v0 and i be the two children

of v′
0. Then we compute H(T ′, s) for s ∈ {v′

0, v
′
1, . . . , v

′
k} according to Lemma 2.

We can see that T ′ and T share a common part and T ′ can be obtained from
T in O(n) time. The advantage of such implementation is that the number of
nodes required for T S is dramatically reduced. Only at most �|V (T)|/2�+1 new
nodes are created for T ′.

Fig. 1. Creating T ′ = I(T, e, i) from T

After a tree being extracted according to the search strategy, it should be
destroyed. All nodes in the tree cannot be destroyed directly, because some
nodes may also be used by other trees. Since there exists no cycle in our data
structure, this problem can easily be tackled by applying a well-known technique
in garbage collection—reference counting. The principle of the technique is quite
simple: Each node contains a variable that keeps the number of nodes pointing
to it. (We say that node u points to node v if v is a child of u in a tree.) A node
can be destroyed only if there exists no node pointing to it.

4 Experimental Results

We implemented Algorithm 2 in C programming language. We compare the
performance of our implementation (BBMUT) with the program (BBU) imple-
mented by Wu in [11]. The platform on which the two programs ran is a PC
with AMD Athlon 850 MHz CPU. Both BBMUT and BBU were compiled from
the source codes using GCC 3.2 with optimization option -O2 enabled and ran
on Red Hat Linux 9. The test data were generated randomly and the distances
in the test data are integers between 2 and 100. The running time for non-metric
and metric are shown in Fig. 2 and Fig. 3, respectively. Note that y-axises are
log-scaled. Experimental results show that our algorithm outperforms the pre-
vious one. Larger problem instances can be solved in reasonable time.

To compare the performance of the two lower bounds LB0 and LB1, we
implement two branch-and-bound programs. Both of them use the depth-first

An Efficient Exact Algorithm for the Minimum Ultrametric Tree Problem 291

1

10

100

1000

10000

100000

1e+06

17 18 19 20 21 22 23 24

R
un

ni
ng

T
im

e
(U

ni
t:

Se
co

nd
)

Problem Size (Number of Species)

BBU worst case
BBMUT worst case

BBU average
BBMUT average

BBU median
BBMUT median

Fig. 2. Running time for non-metric input. (The number of instances for problem size
17 to 24 are 50, 50, 30, 30, 10, 10, 10, and 10, respectively)

0.01

0.1

1

10

100

1000

10000

100000

1e+06

21 22 23 24 25 26 27 28 29 30 32 34 36 38

R
un

ni
ng

T
im

e
(U

ni
t:

Se
co

nd
)

Problem Size (Number of Species)

BBU worst case
BBMUT worst case

BBU average
BBMUT average

BBU median
BBMUT median

Fig. 3. Running time for metric input. (The number of instances for each problem size
is 50)

292 H.-F. Chen and M.-S. Chang

Table 1. Comparisons of Lower Bounds for non-metric input

The number of trees in millions for non-metric input
of species 17 18 19 20 21
of instances 50 50 30 30 10

worst case LB0 279.35 1,534.51 3,117.90 4,195.21 3,983.80
LB1 120.64 622.91 1,951.28 3,038.54 2,763.47

average LB0 46.70 127.46 252.52 1,024.77 2,271.09
LB1 18.27 49.01 164.95 541.53 1,479.75

median LB0 22.26 49.30 82.49 782.77 2,326.76
LB1 8.27 19.85 34.13 321.95 1,056.36

Table 2. Comparisons of Lower Bounds for metric input

The number of trees in millions for metric input
of species 21 22 23 24 25 26 27 28 29
of instances 50 50 50 50 50 50 50 50 50

worst case LB0 5.05 127.96 13.28 62.58 256.07 274.51 643.98 555.47 2,996.82
LB1 2.67 46.66 6.87 21.88 125.23 144.10 138.37 336.39 1,347.37

average LB0 0.62 4.23 2.06 2.86 18.45 22.73 43.39 75.25 263.72
LB1 0.32 1.77 1.04 2.40 8.03 11.42 16.68 36.56 121.46

median LB0 0.22 0.52 0.45 1.40 2.11 9.89 9.53 25.30 47.68
LB1 0.12 0.27 0.24 0.78 0.99 4.83 4.65 13.68 22.46

search strategy. But one use LB0 and the other use LB1 for bounding. We then
count the numbers of trees generated by the two programs, respectively. Table 1
and 2 show the numbers of trees generated by each of them for nonmetric and
metric input respectively. From the table we can see that, in most of cases, the
number of trees generated by the program using LB1 for bounding is about half
of the number of trees generated by the program using LB0 for bounding.

Though the program using LB1 for bounding generates less trees than the
one using LB0, the running time of the program is still proportional to the
running time for generating a tree and computing the LB1 of the tree. Therefore
the O(n) time algorithm for generating a tree and computing its lower bound
LB1 remains the key of the success of program BBMUT.

References

1. S.R. Arikati and C.P. Rangan, Linear algorithm for optimal path cover problem
on interval graphs, Inform. Process. Lett. 35 (1990) 149–153.

2. Charles H. Bennett and Ming Li and Bin Ma: Chain letters and evolutionary
histories. Scientific American (2003) 76–81

3. James R. Driscoll, Neil Sarnak, Daniel D. Sleator, and Robert E. Tarjan: Making
data structures persistent. Journal of Computer and System Sciences 38 (1989)
86–124

An Efficient Exact Algorithm for the Minimum Ultrametric Tree Problem 293

4. Martin Farach, Sampath Kannan, and Tandy Warnow: A robust model for finding
optimal evolutionary trees. Algorithmica 13 (1995) 155–179

5. M. D. Hendy and David Penny: Branch and bound algorithms to determine mini-
mal evolutionary trees. Mathematical Biosciences 59 (1982) 277–290

6. Chia-Mao Huang and Chang-Biau Yang: Approximation algorithms for construct-
ing evolutionary trees. In: Proceedings of 2001 National Computer Symposium,
Taipei, Taiwan (2001) A099–A109

7. C. D. Michener and R. R. Sokal: A quantitative approach to a problem in classifi-
cation. Evolution 11 (1957) 130–162

8. D. Penny and M. D. Hendy and M. A. Steel: Progress with methods for constructing
evolutionary trees. Trends in Ecology and Evolution 7 (1992) 73–79

9. João Setubal and João Meidanis: Introduction to computational molecular biology.
PWS Publishing Company (1997)

10. N. Saitou and M. Nei:, The neighbor-joining method: a new method for recon-
structing phylogenetic trees. Molecular Biology and Evolution 4 (1987) 406–425

11. Bang Ye Wu,Kun-Mao Chao, and Chuan Yi Tang: Approximation and exact algo-
rithms for constructing minimum ultrametric trees from distance matrices. Journal
of Combinatorial Optimization 3 (1999) 199–211

On the Range Maximum-Sum Segment Query
Problem

Kuan-Yu Chen1 and Kun-Mao Chao1,2

Department of Computer Science and Information Engineering,
Institute of Networking and Multimedia,

National Taiwan University, Taipei, Taiwan 106
{r92047, kmchao}@csie.ntu.edu.tw

Abstract. We are given a sequence A of n real numbers which is to
be preprocessed. In the Range Maximum-Sum Segment Query (RMSQ)
problem, a query is comprised of two intervals [i, j] and [k, l] and our goal
is to return the maximum-sum segment of A whose starting index lies in
[i, j] and ending index lies in [k, l]. We propose the first known algorithm
for this problem in O(n) preprocessing time and O(1) time per query
under the unit-cost RAM model. We also use the RMSQ techniques to
solve three relevant problems in linear time. These variations on the basic
theme demonstrate the utilities of the techniques developed in this paper.

Keywords: Algorithm, RMQ, maximum-sum interval, sequence analysis.

1 Introduction

Sequence analysis in bioinformatics has been studied for decades. One important
line of investigation in sequence analysis is to locate the biologically meaningful
segments, like conserved regions or GC-rich regions in DNA sequences. A com-
mon approach is to assign a real number (also called scores) to each residue, and
then look for the maximum-sum or maximum-average segment [3, 4, 9, 10].

Huang [8] used the expression x−p · l to measure the GC richness of a region,
where x is the C+G count of the region, p is a positive constant ratio, and l
is the length of the region. Huang [8] extended the well-known recurrence rela-
tion used by Bentley [2] for solving the maximum-sum consecutive subsequence
problem, and derived a linear time algorithm for computing the optimal seg-
ments of lengths at least L. Lin, Jiang, and Chao [10] and Fan et al. [4] studied
the maximum-sum segment problem of length at least L and at most U . Ruzzo
and Tompa [11] gave a linear time algorithm for finding all maximal-sum sub-
sequences. Wang and Xu [14] proposed a linear time algorithm for finding the
longest segment with lower-bound average.

In this paper, we consider a more general problem in which we wish to find
the maximum-sum segment whose starting and ending indices lie in given inter-
vals. By preprocessing the sequence in O(n) time, each query can be answered
in O(1) time. We also show that it can be easily utilized to yield alternative

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 294–305, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

On the Range Maximum-Sum Segment Query Problem 295

linear-time algorithms for finding the maximum-sum segment with length con-
straints, finding all maximal-sum subsequences, and finding the longest segment
with lower-bound average. These variations on the basic theme demonstrate the
utilities of the techniques developed here.

The rest of the paper is organized as follows. Section 2 gives a formal def-
inition of the RMSQ problem and introduces the RMQ techniques [5]. Section
3 considers a special case of the RMSQ problem (called the SRMSQ problem).
Section 4 gives an optimal algorithm for the RMSQ problem. Section 5 uses the
RMSQ techniques to solve three relevant problems in linear time.

2 Preliminaries

The input is a nonempty sequence A = 〈a1, a2, . . . , an〉 of real numbers. The
maximum-sum segment of A is simply the contiguous subsequence having the
greatest total sum. For simplicity, throughout the paper, the term “subsequence”
will be taken to mean “contiguous subsequence”. To avoid ambiguity, we disallow
nonempty, zero-sum prefix or suffix (also called ties) in the maximum-sum seg-
ments. For example, consider the input sequence A = 〈4,−5, 2,−2, 4, 3,−2, 6〉.
The maximum-sum segment of A is M = 〈4, 3,−2, 6〉, with a total sum of 11.
There is another subsequence tied for this sum by appending 〈2,−2〉 to the left
end of M , but this subsequence is not the maximum-sum segment since it has a
nonempty zero-sum prefix.

Definition 1. Let A(i, j) denote the subsequence 〈ai, . . . , aj〉 of A. Let S(i, j)
denote the sum of A(i, j), defined as S(i, j) =

∑
i≤k≤j ak for 1 � i � j � n. Let

C[i] denote the cumulative sum of A, defined as C[i] =
∑

1≤k≤i ak for 1 � i � n
and C[0] = 0. It’s easy to see that S(i, j) = C[j]− C[i− 1] for 1 � i � j � n.

2.1 Problem Definitions

We start with a special case of the RMSQ problem, called the SRMSQ problem.

Problem 1. A Special Case of the RMSQ problem (SRMSQ)
Input to be Preprocessed: A nonempty sequence of n real numbers
A = 〈a1, a2, . . . , an〉.

Online Query: For an interval [i, j], 1 � i � j � n, SRMSQ(A, i, j) returns a
pair of indices (x, y) with i � x � y � j such that A(x, y) is the maximum-sum
segment of A(i, j).

A näıve algorithm is to build an n× n table storing the answers for all pos-
sible queries. Each entry (i, j) in the table represents a querying interval [i, j].
Since i ≤ j, we only have to fill in the upper-triangular part of the table. By
applying Bentley’s linear time algorithm for finding the maximum-sum segment
of a sequence, we have an O(n3)-time preprocessing algorithm. Notice that an-
swering an SRMSQ query now requires just one lookup to the table. To achieve

296 K.-Y. Chen and K.-M. Chao

O(n2)-time preprocessing rather than the O(n3)-time näıve preprocessing, we
take advantage of the online manner of the algorithm, filling in the table row-
by-row. The total time required is therefore equivalent to the size of the table
since each entry can be computed in constant time. In the paper, we give an
algorithm that achieves O(n) preprocessing time, and O(1) time per query.

Problem 2. The Range Maximum-Sum Segment Query problem (RMSQ)
Input to be Preprocessed: A nonempty sequence of n real numbers A =
〈a1, a2, . . . , an〉.
Online Query: For two intervals [i, j] and [k, l], 1 � i � j � n and 1 � k �
l � n, RMSQ(A, i, j, k, l) returns a pair of indices (x, y) with i � x � j and
k � y � l that maximizes S(x, y).

This is a generalized version of the SRMSQ problem because when i = k and
j = l, we are actually querying SRMSQ(i, j). A näıve algorithm is to build a 4-
dimensional table and the time for preprocessing is Ω(n4). We give an algorithm
that achieves O(n) preprocessing time and O(1) time per query for this problem.

2.2 The RMQ Techniques

Now we describe an important technique, called RMQ, used in our algorithm. We
are given a sequence A = 〈a1, a2, . . . , an〉 to be preprocessed. A Range Minima
Query (RMQ) specifies an interval [i, j] and the goal is to find the index k with
i � k � j such that ak achieves minimum.

Lemma 1. The RMQ problem can be solved in O(n) preprocessing time and
O(1) time per query under the unit-cost RAM model. [1, 5]

The well known algorithm for the RMQ problem is to first construct the
Cartesian tree (defined by Vuillemin in 1980 [13]) of the sequence, then be pre-
processed for LCA (Least Common Ancestor) queries [12, 7]. This algorithm can
be easily modified to output the index k for which ak achieves the minimum or
the maximum. We let RMQmin denote the minimum query and RMQmax denote
the maximum query. That is, RMQmin(A, i, j) returns index k with i � k � j
such that ak achieves the minimum, and RMQmax(A, i, j) returns index k such
that ak achieves the maximum. For correctness of our algorithm if there are more
than one minimum (maximum) in the querying interval, it always outputs the
rightmost (leftmost) index k for which ak achieves the minimum (maximum).
This can be done by constructing the Cartesian tree in a particular order.

3 Coping with the SRMSQ Problem

The SRMSQ problem is to answer queries comprised of a single interval. Our
strategy for preprocessing is to first find the “good partner” for each index of the
sequence such that every index and its partner constitute a candidate solution for
the maximum-sum segment. Then by applying RMQ techniques one can retrieve
the pair with the greatest total sum within any given interval in constant time.
Our first attempt for preprocessing is described as follows.

On the Range Maximum-Sum Segment Query Problem 297

1. Intuitively, one may pick index p with 1 � p � k that minimizes C[p−1] as a
partner of k, since the sum S(p, k) = C[k]−C[p−1] will then be maximized.
Record the partner of each index k in an array of length n, say P [·], and the
sum S(p, k) in an array of length n, say M [·].

2. Apply RMQmax preprocessing to array M [·] for later retrieve.

It’s not hard to see that the maximum-sum segment of subsequence A(1, j)
for all 1 � j � n can be retrieved by simply querying RMQmax(M, 1, j). But
when it comes to an arbitrary subsequence A(i, j) for all 1 � i � j � n, the
partners we found might go beyond the left end of [i, j]. In this case, we have to
“update” these partners since they no longer constitute candidate solutions for
the maximum-sum segment of the subsequence A(i, j). Such updates may cost
linear per query in the worst case. Hence, the challenge now is to find a somehow
“better” partner such that updates for arbitrary queries can be done in constant
time.

Definition 2. We define the “left bound” L[k] of A at index k to be the largest
index l with 1 � l � k − 1 such that C[l] ≥ C[k]. But if no such l exists, i.e.
C[k] > C[k′] for all 1 � k′ � k − 1, we assign L[k] = 0.

Definition 3. We define the “good partner” P [k] of A at index k to be the
largest index p with L[k] + 1 � p � k that minimizes C[p− 1].

Definition 4. A(P [k], k) is called a “candidate segment” of A at index k. We
define M [k] to be the sum of the candidate segment A(P [k], k), i.e. M [k] =
S(P [k], k) for 1 � k � n.

Instead of finding the partner for each index k of A within the range [1, k],
we slightly narrow down the range from [1, k] to [L[k] + 1, k]. The relationship
between L[·] and P [·] defined above is illustrated in Fig. 1. The three arrays C[·],
P [·], and M [·] can be computed by COMPUTE-CPM in Fig. 2.

Lemma 2. The algorithm COMPUTE-CPM correctly computes C[·], P [·], and
M [·] in O(n) time.

Proof. The correctness of the values of C[·] is trivial, and the values of M [·]
are correct if the values of P [·] are correct. We first show by induction on
k that the algorithm correctly computes array L[·]. The basis, k = 0, is im-
mediate. In the algorithm, L[k] is the current working pointer scanning from
right to left, searching for the largest index whose cumulative sum is greater
than or equals to C[k]. Since by induction L[1], L[2],. . . , L[k − 1] have been
computed correctly, the while-loop examines monotonically increasing values,
C[L[k]], C[L[L[k]]],. . . ,C[L[. . . L[L[k]] . . .]], until it finally finds one or reaches 0.

Now we discuss the correctness of the values of P [·]. By definition, P [k] is the
largest index lying in [L[k] + 1, k] that minimizes C[P [k]− 1]. In each iteration
of the while-loop, the range where P [k] lies in, i.e. [L[k] + 1, k], is about to be
extended to [L[L[k]] + 1, k]. Since by induction P [L[k]] is the largest index lying

298 K.-Y. Chen and K.-M. Chao

A
1 nL[k] P [k] − 1 k

L[k] + 1 P [k] k

C[L[k]]

C[k]

min→ C[P [k] − 1]×

1 nP [k] − 1 k

L[k] + 1 P [k] k

C[k]

×min→ C[P [k] − 1]

Fig. 1. An illustration for L[·] and P [·]. Note that y-axis is the value C[k] for the various
k’s. The left side shows the case that there exists a largest index l with 1 � l � k − 1
such that C[l] ≥ C[k]. And the right side shows the case that C[k] is the unique
maximum of C[k′] for all 1 � k′ � k − 1

Algorithm Compute-cpm
Input: An nonempty array of n real numbers A[1 . . . n].
Output: An array C[·] of length n + 1 and two arrays P [·] and M [·] of length n.
1 C[0] ← 0;
2 for k ← 1 to n do
3 C[k] ← C[k − 1] + A[k];
4 L[k] ← k − 1; P [k] ← k;
5 while C[L[k]] < C[k] and L[k] > 0 do
6 if C[P [L[k]] − 1] < C[P [k] − 1] then P [k] ← P [L[k]];
7 L[k] ← L[L[k]];
8 end while
9 M [k] ← C[k] − C[P [k] − 1];

10 end for

Fig. 2. Algorithm for computing C[·], P [·], and M [·]

in [L[L[k]] + 1, L[k]] that minimizes C[P [L[k]]− 1], the algorithm checks if P [k]
needs to be updated in line 6 to guarantee that C[P [k]− 1] is minimized for the
extended range. Hence, when the while-loop terminates both the values of L[k]
and P [k] will be correctly computed.

The total number of operations of the algorithm is clearly bounded by O(n)
except for the while-loop body of lines 5-7. In the following, we show that the
amortized cost of the while-loop is a constant. Let Φ(k) be the number of times
L[k] may advance forward before it reaches 0, i.e. Φ(k) is the minimal integer

such that

Φ(k) times︷ ︸︸ ︷
L[...L[L[k]]...] = 0. In each iteration Φ(k) is increased by one and then

possibly decreased a bit; however since Φ(k) can at most be increased by n in

On the Range Maximum-Sum Segment Query Problem 299

total, and can never be negative, it cannot be decreased by more than n times.
Thus the while loop is bounded by O(n).
�

The following two lemmas show that each pair (P [k], k) constitutes a candi-
date solution, i.e. A(P [k], k), for the maximum-sum segment of A.

Lemma 3. For two indices p and k, p ≤ k, if A(p, k) is the maximum-sum
segment of A then p = P [k].

Proof. Suppose not, then either p lies in [1, L[k]] or p lies in [L[k] + 1, k] but
C[p − 1] is not the rightmost minimum of C[k′] for all L[k] � k′ � k − 1. We
discuss both cases in the following.

1. Suppose index p lies in the interval [1, L[k]]. Then S(p, L[k]) = C[L[k]] −
C[p − 1] ≥ C[k] − C[p − 1] = S(p, k). The equality must hold for otherwise
A(p, k) cannot be the maximum-sum segment of A. It follows S(L[k]+1, k) =
C[k]−C[L[k]] = 0. Hence A(L[k]+1, k) would be a zero-sum suffix of A(p, k),
which contradicts to the definition of the maximum-sum segment.

2. Suppose index p lies in the interval [L[k] + 1, k]. We know C[p − 1] must
be minimized for otherwise A(p, k) cannot be the maximum-sum segment.
If C[p − 1] is not the rightmost minimum, i.e. there exists an index k′ > p
such that C[k′ − 1] = C[p − 1] is also a minimum, then S(p, k′ − 1) =
C[k′−1]−C[p−1] = 0, which means A(p, k) has a zero-sum prefix A(p, k′−1).

Hence, index p must be the largest index with L[k]+1 � p � k that minimizes
C[p− 1], i.e. p = P [k].
�

Lemma 4. If index r satisfies M [r] ≥ M [k′] for all 1 � k′ � n, then A(P [r], r)
is the maximum-sum segment of A.

Proof. Suppose on the contrary that segment A(p, k) is the maximum-sum seg-
ment of A and (p, k) �= (P [r], r). By Lemma 3, we have p = P [k]. So

M [k] = S(P [k], k) = S(p, k) > S(P [r], r) = M [r]

which contradicts to M [r] is the maximum value.
�

Therefore, once we have computed M [·] and P [·] for each index of A, to
find the maximum-sum segment of A, we only have to retrieve index r such that
M [r] is the maximum value of M [k′] for all 1 � k′ � n. Then, candidate segment
A(P [r], r) is the maximum-sum segment of A.

Lemma 5. For an index k, if P [k] < k then C[P [k]− 1] < C[k′] < C[k] for all
P [k] � k′ � k − 1.

Proof. Suppose not. That is, there exists an index k′′ which lies in [P [k], k − 1]
such that C[k′′] ≤ C[P [k] − 1] or C[k′′] ≥ C[k]. By the definition of P [k], we
know that C[k′′] ≤ C[P [k]− 1] cannot hold. If C[k′′] ≥ C[k], then again by the
definition of P [k], we know P [k] must lie in [k′′ + 1, k]. Thus, k′′ < P [k] ≤ k′′.
A contradiction occurs.
�

300 K.-Y. Chen and K.-M. Chao

In other words, C[P [k]− 1] is the unique minimum of C[k′] for all P [k]− 1 �
k′ � k and C[k] is the unique maximum. The following key lemma shows the
nesting property of the candidate segments. (See Fig. 4 for an illustration of
the nesting property. This important property makes “update in constant time”
possible as we will show in later proof.)

Lemma 6. For two indices k and l, k < l, it cannot be the case that P [k] <
P [l] ≤ k < l.

Proof. Suppose P [k] < P [l] ≤ k < l holds. By Lemma 5, we have C[P [k]− 1] <
C[k′] < C[k] for all P [k] � k′ � k − 1 and C[P [l] − 1] < C[k′′] < C[l] for all
P [l] � k′′ � l − 1. Since the two intervals [P [k] − 1, k] and [P [l] − 1, l] overlap,
it’s not hard to see that C[P [k]− 1] < C[k′′′] < C[l] for all P [k] � k′′′ � l− 1. It
follows that L[l] < P [k]−1. Thus, C[P [k]−1] < C[P [l]−1] with L[l]+1 � P [k] � l
is a contradiction to that C[P [l]− 1] is minimized with L[l] + 1 � P [l] � l.
�

Now, we are about to establish the relationship between sequence A and its
subsequence A(i, j). The following lemma shows that some good partners of A,
say P [s], do not need to be “updated” for the subsequence A(i, j) if [P [s], s]
doesn’t go beyond [i, j].

Lemma 7. For an index s, if i ≤ P [s] ≤ s ≤ j, then P [s] is still the good
partner of A(i, j) at index s.

Proof. Let C∗[k] be the cumulative sum of A(i, j). Then we have C∗[k] = C[k]−
C[i − 1] for i − 1 � k � j. Let L∗[k] be the left bound of A(i, j) at index k for
i � k � j and P ∗[k] be the good partner of A(i, j) at index k.

If L[s] ≥ i, we have L∗[s] = L[s] since L[s] is the largest index l with i ≤
l ≤ s − 1 such that C∗[L[s]] = C[L[s]] − C[i − 1] ≥ C[s] − C[i − 1] = C∗[s].
Otherwise, i.e. L[s] < i, we have L∗[s] = i − 1. Therefore we can conclude that
L[s] ≤ L∗[s]. Moreover, since minimizing C[P [s] − 1] minimizes C∗[P [s] − 1] =
C[P [s]− 1]−C[i− 1], it’s not hard to see that P [s] is still the largest index with
L∗[s] + 1 � P [s] � s that minimizes C∗[P [s]− 1], i.e. P ∗[s] = P [s].
�

Corollary 1. For an index s, if i ≤ P [s] ≤ s ≤ j then M [s] is still the sum of
the candidate segment of A(i, j) at index s.

Proof. A direct result of Lemma 7.
�

Now, we are ready to present our main algorithm for the SRMSQ problem,
which is given in Fig. 3. As an example, in Fig. 4, the input sequence A has
15 elements. Suppose we are querying SRMSQ(A, 3, 7). QUERY OF SRMSQ in
Fig. 3 first retrieves index r such that M [r] is maximized with 3 � r � 7 (line
1). In this case, r = 5, which means candidate segment A(P [5], 5) has the largest
sum compared with other candidate segments whose ending indices lie in [3, 7].
Since A(P [5], 5) doesn’t go beyond interval [3, 7], the algorithm outputs (P [5], 5),
which means segment A(3, 5) is the maximum-sum segment of the subsequence
A(3, 7).

On the Range Maximum-Sum Segment Query Problem 301

Suppose we are querying SRMSQ(A, 6, 12). Since [P [9], 9] goes beyond the
left end of [6, 12], lines 3-9 are executed. In line 3, RMQmin(c, 5, 8) retrieves index
8. In line 4, RMQmax(m, 10, 12) retrieves index 11. In line 5, since C[9]−C[8] =
6 < M [11] = 8, the algorithm outputs (P [11], 11), which means A(11, 11) is the
maximum-sum segment of the subsequence A(6, 12).

Algorithm Preprocess of SRMSQ(A)
1 Run COMPUTE-CPM to compute C[·], P [·], and M [·] of A.
2 Apply RMQmin preprocessing to array C[·].
3 Apply RMQmax preprocessing to array M [·].

Algorithm Query of SRMSQ(A, i, j)
1 r ← RMQmax(M, i, j)
2 if P [r] < i then
3 p ← RMQmin(C, i − 1, r − 1) + 1;
4 s ← RMQmax(M, r + 1, j);
5 if C[r] − C[p − 1] < M [s] then
6 OUTPUT (P [s],s);
7 else
8 OUTPUT (p, r);
9 end if

10 else
11 OUTPUT (P [r], r);
12 end if

Fig. 3. Algorithm for the SRMSQ problem

Lemma 8. Algorithm QUERY OF SRMSQ(A, i, j) outputs the maximum-sum
segment of the subsequence A(i, j).

Proof. Let C∗[k], P ∗[k], and M∗[k] be the cumulative sum, the good partner,
and the sum of candidate segment of A(i, j) at index k for i � k � j, respectively.
In addition, we let index r satisfy M [r] ≥ M [k] for all i � k � j (line 1).

1. If i ≤ P [r] ≤ r ≤ j (lines 10-11): Our goal is to show that M∗[r] ≥ M∗[k]
for all i � k � j, and then by Lemma 4 A(P [r], r) is the maximum-sum
segment of A(i, j).
(a) First, we consider each index k′ where i ≤ P [k′] ≤ k′ ≤ j. By corollary

1, we have M∗[k′] = M [k′] ≤ M [r] = M∗[r].
(b) Next, we consider each index k′′ where P [k′′] < i � k′′ � j. By Lemma

5 we have C[P [k′′]− 1] < C[k] < C[k′′] for all P [k′′] � k � k′′ − 1. Since
by definition P ∗[k′′]−1 must lie in [i−1, k′′−1], we have C[P [k′′]−1] <
C[P ∗[k′′]−1]. Hence, we can deduce that M∗[k′′] = C∗[k′′]−C∗[P ∗[k′′]−
1] = C[k′′] − C[P ∗[k′′] − 1] < C[k′′] − C[P [k′′] − 1] = M [k′′] ≤ M [r] =
M∗[r].

302 K.-Y. Chen and K.-M. Chao

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ak - 9 −10 4 −2 4 −5 4 −3 6 −11 8 −3 4 −5 3

C[k] 0 9 −1 3 1 5 0 4 1 7 −4 4 1 5 0 3
L[k] - 0 1 1 3 1 5 5 7 1 9 9 11 9 13 13
P [k] - 1 2 3 4 3 6 7 8 3 10 11 12 11 14 15
M [k] - 9 −10 4 −2 6 −5 4 −3 8 −11 8 −3 9 −5 3

9 -10 4 -2 4 -5 4 -3 6 -11 8 -3 4 -5 3

Fig. 4. The candidate segment A(P [k], k) of A at each index k. Notice that, the pointer
at each index k points to the position of P [k]

Thus, by (a) and (b) we conclude that M∗[r] ≥M∗[k] for all i � k � j.
2. If P [r] < i ≤ r ≤ j (lines 2-9):

(a) First, we consider each index k′ where i � k′ � r − 1. By Lemma 5, we
have C[P [r]− 1] < C[k] < C[r] for all P [r] � k � r− 1. For any index p′

with i � p′ � k′, since S(p′, k′) = C[k′]−C[p′] < C[r]−C[p′] = S(p′, r),
k′ cannot be the right end of the maximum-sum segment of A(i, j).

(b) Next, we consider each index k′′ where r + 1 � k′′ � j. By Lemma 6,
we know that it cannot be the case P [r] < P [k′′] ≤ r < k′′. Suppose
P [k′′] ≤ P [r] < r < k′′, then by Lemma 5 we have C[P [k′′]−1] < C[r] <
C[k′′] and C[P [k′′] − 1] ≤ C[P [r] − 1] < C[k′′]. It follows that M [k′′] =
C[k′′] − C[P [k′′] − 1] > C[r] − C[P [r] − 1] = M [r] which contradicts
to that M [r] ≥ M [k] for all i � k � j. Thus, it must be the case
r < P [k′′] ≤ k′′ ≤ j. Therefore by Corollary 1 we have M∗[k′′] = M [k′′].

Let p be the largest index that minimizes C[p − 1] with i � p � r (line 3).
Let index s satisfy M [s] ≥ M [k] for all r + 1 � k � j (line 4). One can
easily deduce by (a), (b), and Lemma 4 that either A(p, r) or A(P [s], s) is
the maximum-sum segment of A(i, j) (lines 5-9).
�

As you can see, if A(P [r], r) does not go beyond i then we are done. Otherwise,
it turns out that for each index k′ which lies in [i, r − 1], k′ cannot be the right
end of the maximum-sum segment of A(i, j). On the other hand, for each index
k′′ which lies in [r + 1, j], the good partner of k′′ doesn’t need to be updated.
Hence, only the good partner of index r needs to be updated. The time required
for each query can therefore achieve constant. We summarize our main result in
the following theorem.

Theorem 1. The SRMSQ problem can be solved in O(n) preprocessing time
and O(1) time per query under the unit-cost RAM model.

4 Coping with the RMSQ Problem

The RMSQ problem is to answer queries comprised of two intervals [i, j] and
[k, l], where [i, j] specifies the range of the starting index of the maximum-sum

On the Range Maximum-Sum Segment Query Problem 303

segment, and [k, l] specifies the range of the ending index. It is meaningless if
the range of the starting index is in front of the range of the ending index, and
vice versa. Therefore we assume, without loss of generality, that i ≤ k and j ≤ l.
We give our main result of the RMSQ problem as follows.

Theorem 2. The RMSQ problem can be solved in O(n) preprocessing time and
O(1) time per query under the unit-cost RAM model.

Proof. We discuss it under two possible conditions.

1. Nonoverlapping case (j ≤ k): Suppose the intervals [i, j] and [k, l] do not
overlap. Since S(x, y) = C[y]−C[x− 1], maximizing S(x, y) is equivalent to
maximizing C[y] and minimizing C[x− 1] with i ≤ x ≤ j and k ≤ y ≤ l. By
applying RMQ techniques to preprocess C[·], the maximum-sum segment can
be located by simply querying RMQmin(C, i−1, j−1) and RMQmax(C, k, l).

2. Overlapping case (j > k): When it comes to the overlapping case, just to
retrieve the maximum cumulative sum and the minimum cumulative sum
might go wrong if the minimum is on the right of the maximum in the
overlapping region. There are three possible cases for the maximum-sum
segment A(x, y).
(a) Suppose i ≤ x ≤ k and k ≤ y ≤ l, which is a nonoverlapping case. To

maximize S(x, y), we retrieve the minimum cumulative sum by querying
RMQmin(C, i− 1, k− 1) and the maximum cumulative sum by querying
RMQmax(C, k, l).

(b) Suppose k+1 ≤ x ≤ j and j ≤ y ≤ l. This is also a nonoverlapping case.
(c) Otherwise, i.e. k+1 ≤ x ≤ j and k+1 ≤ y ≤ j. This is exactly the same

as an SRMSQ(A, k + 1, j) query.
The maximum-sum segment A(x, y) must be the one of these three possible
cases which has the greatest sum.
�

5 Solving Three Relevant Problems in Linear Time

Given a sequence of n numbers, a lower bound L, and a upper bound U , the first
problem is to find the maximum-sum segment of length at least L and at most
U [10, 4]. It’s not hard to see that it suffices to find for each index k ≥ L the
maximum-sum segment whose starting index lies in [max(1, k−U +1), k−L+1]
and ending index is k. Since our RMSQ algorithm can answer each such query
in O(1) time, the total running time is therefore linear.

The second problem is to find those nonoverlapping, contiguous subsequences
having greatest total sum. The highest maximal-sum subsequence is simply the
maximum-sum segment of the sequence. The kth maximal-sum subsequence is
defined to be the maximum-sum segment disjoint from the k − 1 maximal-
sum subsequences. Additionally, we stop the process when the next best sum is
nonpositive. By applying Bentley’s linear time algorithm, all maximal-sum sub-
sequences can be found in O(n2) time in the worst case. Ruzzo and Tompa
[11] proposed a genius linear time algorithm for this problem. In the paper,
our SRMSQ techniques immediately suggest an alternative divide-and-conquer

304 K.-Y. Chen and K.-M. Chao

algorithm for finding all maximal-sum subsequences in linear time: query the
maximum-sum segment of the sequence, remove it, and then apply the SRMSQ
query recursively to the left of the removed portion, and then to the right. Since
our SRMSQ algorithm can answer each such query in O(1) time, the total run-
ning time is therefore linear.

The third problem is to identify the longest segment with lower-bound aver-
age [14]. Given a sequence of n numbers and a lower bound N , the goal is to find
the longest consecutive subsequence with the average value of those numbers
in the subsequence at least N . First, we obtain a new sequence of n numbers
B = 〈b1, b2, . . . , bn〉 by subtracting N from each of the numbers in the given
sequence. It’s not hard to see that it suffices to find the longest segment in
B with nonnegative sum. Our strategy is to compute for each index k of B
the longest nonnegative segment starting at position k. The key idea is that
if A(k, l) has nonnegative sum, then by appending the maximum-sum segment
starting at index l + 1 and ending in [l + 1, n] to the right end of A(k, l) we get
a longer segment A(k, l′). Again, our RMSQ techniques can achieve this in con-
stant time. We repeat the process until the sum of the next extended segment
is negative. In this way we can find A(k,R[k]), the longest segment starting at
k with nonnegative sum. Another trick to achieve linear running time is the key
observation proposed by Wang and Xu in [14]. Let k and l be the current work-
ing pointer scanning from left to right. Assume that we have computed R[k1]
for some index k1. For each index k2 lying in [k1 + 1, R[k1]], if C[k2] ≥ C[k1]
then we have R[k2] ≤ R[k1] since otherwise we would get a longer nonnega-
tive segment starting at k1 by appending A(R[k1] + 1, R[k2]) to A(k1, R[k1]).
Therefore we can bypass the computation of k2 and move k forward from k1
until C[k] < C[k1]. Next we can move l forward from max(R[k1] + 1, k) by ap-
pending the maximum-sum segment, since A(k,R[k1]) certainly has nonnegative
sum when C[k] < C[k1] with k < R[k1]. The procedure terminates when k or l
reaches the end of B. It is clear that the total running time is linear since either
the value of k or l increases by at least one in each iteration, and never decreases.

Acknowledgments. We thank Yu-Ru Huang, Rung-Ren Lin, Hsueh-I Lu, and
An-Chiang Chu for helpful conversations. Kuan-Yu Chen and Kun-Mao Chao
were supported in part by an NSC grant 92-2213-E-002-059.

References

1. M. A. Bender, and M. Farach-Colton. The LCA Problem Revisited. In Proceedings
of the 4th Latin American Symposium on Theoretical Informatics, 17: 88–94, 2000.

2. J. Bentley. Programming Pearls - Algorithm Design Techniques, CACM, 865–871,
1984.

3. K. Chung and H.-I. Lu. An Optimal Algorithm for the Maximum-Density Segment
Problem. In Proceedings of the 11th Annual European Symposium on Algorithms
(ESA 2003), LNCS 2832, 136–147, 2003.

4. T.-H. Fan ,S. Lee, H.-I Lu, T.-S. Tsou, T.-C. Wang, and A. Yao. An Optimal Al-
gorithm for Maximum-Sum Segment and Its Application in Bioinformatics. CIAA,
LNCS 2759, 251–257, 2003.

On the Range Maximum-Sum Segment Query Problem 305

5. H. Gabow, J. Bentley, and R. Tarjan. Scaling and Related Techniques for Geometry
Problems. Proc. Symp Theory of Computing(STOC), 135–143, 1984.

6. D. Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press, 1999.

7. D. Harel and R. E. Tarjan. Fast Algorithms for Finding Nearest Common Ances-
tors. SIAM J Comput., 13: 338–355, 1984.

8. X. Huang. An Algorithm for Identifying Regions of a DNA Sequence that Satisfy
a Content Requirement. CABIOS, 10: 219–225, 1994.

9. Y.-L. Lin, X. Huang, T. Jiang, and K.-M. Chao, MAVG: Locating Non-Overlapping
Maximum Average Segments in a Given Sequence, Bioinformatics, 19:151-152,
2003.

10. Y.-L. Lin, T. Jiang, and K.-M. Chao. Efficient Algorithms for Locating the Length-
constrained Heaviest Segments with Applications to Biomolecular Sequence Anal-
ysis. Journal of Computer and System Sciences, 65: 570–586, 2002.

11. W. L. Ruzzo and M. Tompa. A Linear Time Algorithm for Finding All Maximal
Scoring Subsequences. In 7th Intl. Conf. Intelligent Systems for Molecular Biology,
Heidelberg, Germany, 234–241, 1999.

12. B. Schieber and U. Vishkin. On Finding Lowest Common Ancestors: Simplification
and Parallelization. SIAM J Comput., 17: 1253–1262, 1988.

13. J. Vuillemin. A Unifying Look at Data Structures. CACM, 23: 229–239, 1980.
14. L. Wang and Y. Xu. SEGID:Identifying Interesting Segments in (Multiple) Se-

quence Alignments. Bioinformatics, 19: 297–298, 2003.

An Efficient Algorithm for Finding Maximum
Cycle Packings in Reducible Flow Graphs

Xujin Chen and Wenan Zang�,��

Department of Mathematics, The University of Hong Kong,
Hong Kong, China
wzang@maths.hku.hk

Abstract. Reducible flow graphs occur naturally in connection with
flow-charts of computer programs and are used extensively for code op-
timization and global data flow analysis. In this paper we present an
O(n2m log(n2/m)) algorithm for finding a maximum cycle packing in
any weighted reducible flow graph with n vertices and m arcs.

Keywords: feedback set, cycle packing, network flow, algorithm, com-
plexity.

1 Introduction

Let G be a digraph with a nonnegative integral weight w(e) (resp. w(v)) on each
arc e (resp. vertex v). A collection C of cycles (repetition is allowed) of G is
called a cycle packing if each arc e (resp. vertex v) of G is used at most w(e)
(resp. w(v)) times by members of C; a set X of arcs (resp. vertices) in G is called
a feedback arc (resp. vertex) set if G − X contains no cycle. The cycle packing
problem is to find a cycle packing with maximum size, and the feedback arc (resp.
vertex) set problem consists in finding a feedback set with minimum total weight.
These two problems clearly form a primal-dual pair in integer programming and
thus are closely tied to each other. While the latter is a well-known NP -hard
problem [13] and has been studied extensively, the present paper concerns itself
with the former, which also arises in a variety of applications. Recently, Caprara,
Panconesi, and Rizzi [7] gave a thorough and detailed analysis of the hardness
and approximablity of the cycle packing problem on undirected graphs. We point
out that a slight modification of their approaches can lead to essentially the same
statements for the problem on digraphs; that is, it admits no fully polynomial
time approximation scheme unless P = NP , and can be approximated within a
factor of 1

2 log n , where n is the number of vertices in the input digraph and the
base of log is 2. We focus our study of the cycle packing problem on reducible
flow graphs in this paper.

Reducible flow graphs (or simply reducible graphs) occur naturally in con-
nection with flow-charts of computer programs and are used extensively for code

� Corresponding author.
�� Supported in part by the Research Grants Council of Hong Kong.

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 306–317, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

An Efficient Algorithm for Finding Maximum Cycle Packings 307

optimization and global data flow analysis, so they have attracted tremendous
research efforts in the past three decades. Hopcroft and Ullman1 obtained the
first efficient algorithm for recognizing reducible flow graphs, which was im-
proved by Tarjan [23]. The reader is referred to Hecht and Ullman [16] for good
characterizations of all reducible flow graphs. In [21], Shamir gave a linear time
algorithm for finding minimum feedback vertex sets in reducible graphs, and an
O(n2m log(n2/m)) algorithm was discovered by Ramachandran [18] for finding a
minimum weighted feedback arc set in weighted reducible graphs and for finding
a minimum weighted feedback vertex set in vertex-weighted reducible graphs
with n vertices and m arcs. vertices and m arcs. In [19], Ramachandran proved
that the cardinality of a minimum feedback arc set in a reducible flow graph is
equal to the cardinality of a maximum collection of arc disjoint cycles, thereby
establishing a conjecture of Frank and Gyarfas [12]; her proof also leads to an
O(m2) algorithm for finding the corresponding set of arc disjoint cycles. We
remark that Ramachandran’s method [19] can be further extended to find maxi-
mum weighted cycle packings in weighted reducible flow graphs. One subroutine
of this approach, called O(n) times, is a maximum flow algorithm, in which the
so-called newly added arcs must be saturated by the flows at each step, so the
augmenting path method for the maximum flow has to be applied; this leads to a
gap between the time complexity of the algorithm for the cycle packing problem
and that for feedback arc set problem in weighted reducible flow graphs as, to the
best of our knowledge, none of the most efficient maximum flow algorithms cur-
rently known for general networks is based on this method directly. The purpose
of this paper is to bridge this complexity gap and present an O(nf(n,m) +m2)
algorithm for finding a maximum cycle packing in any weighted reducible flow
graph, where f(n,m) is the optimal time complexity of an algorithm for finding
a maximum flow in any flow network with n vertices and m arcs, which is at
most O(nm log(n2/m)). Our algorithm assembles several ideas introduced by
Ramachandran [18, 19] and heavily relies on the laminar structure of reducible
flow graphs. Moreover, it can use any fastest (integral) maximum flow algorithm
as its subroutine.

The remainder of this paper is organized as follows. In section 2, we give some
preliminary results on reducible flow graphs and network flows. In section 3, we
present the algorithm and establish its correctness. In section 4, we conclude this
paper with some remarks and open problems.

2 Preliminaries

Let us now introduce some notions and terminologies. Let G = (V,A) be a
digraph. We denote by (u, v) an arc in A from its tail u to its head v. A walk in
G is a finite sequence W = v0e1v1 . . . ekvk, whose terms are alternately vertices
and arcs, such that ei = (vi−1, vi) for 1 ≤ i ≤ k. If v0, v1, . . . , vk are distinct, W

1 in: Proc. 6th Annual Princeton Conference on Information Sciences and Systems,
Princeton, NJ, 1972, pp. 119-122.

308 X. Chen and W. Zang

is called a path from v0 to vk or a v0 − vk path; if v0, v1, . . . , vk−1 are distinct,
vk = v0, and k ≥ 2, W is called a cycle. We call G acyclic if G contains no cycles.
For convenience, we let P [u, v] denote the section of a path P from u to v, and
set P (u, v] = P [u, v]\{u} and P [u, v) = P [u, v]\{v}.

A rooted directed graph or a flow graph is a digraph G with a distinguished
vertex r, called its root, such that there is a path in G from r to every vertex in
G. Let G = (V,A, r) be a flow graph, and let u, v ∈ V . We say that u dominates
v (or u is a dominator of v) if every path r− v path in G passes through u. Let
R be a subgraph of G. A vertex v in R is called an entry vertex of R if v = r
or if there is an arc (u, v) of G with u outside R. A DAG of G is a maximal
acyclic subgraph of G rooted at r. A depth first search DAG of G is a DAG
containing a directed spanning tree with root r grown by the depth first search
(DFS) algorithm [22, 24]. Graph G is called reducible if the depth first search
DAG of G is unique. Unless G is acyclic, DFS also discovers back arcs, which
are arcs of G not included in the depth first search DAG.

The following characterizations of reducible flow graphs will be used repeat-
edly in this paper.

Theorem 2.1. Let G = (V,A, r) be a flow graph, and let D = (V,AD, r) be an
arbitrary depth first search DAG of G with back arc set B = A\AD. Then the
following statements are equivalent.

(i) G is reducible;
(ii) G contains no F as a subgraph (see Fig. 1);
(iii) D is the unique DAG of G;
(iv) The arc set A of G can be partitioned into two sets A1 and A2 such that

(V,A1, r) is a DAG of G and u dominates v in G for each (v, u) in A2;
(v) Every cycle C of G contains exactly one back arc e ∈ B. Moreover, the head

of e is an entry vertex of C which dominates all vertices in C.

Proof. The equivalence of (i)-(iv) can be found in [16, 17]. The implication
(i)⇒(v) is contained in [21], and the converse (v)⇒(i) follows from (ii) and
the fact that no vertex of the cycle in F dominates all vertices in this cycle.

v

r u

w

Fig. 1. The Forbidden Subgraph F

An Efficient Algorithm for Finding Maximum Cycle Packings 309

As shown by Aho and Ullman [3], the dominator relation in a flow graph
G = (V,A, r) can be represented in the form of a tree rooted at r. Let Vh denote
the set of heads of all back arcs in G. The head dominator tree Th of G, defined
by Ramachandran [18], represents the domination relation restricted to Vh∪{r}.
For each u ∈ Vh∪{r}, its region R(u) is defined to be the subgraph of G induced
by all vertices that are dominated by u (see Fig. 2). Clearly, R(r) = G.

The following lemma will play a crucial role in the design and analysis of our
algorithm.

Lemma 2.2. Let G = (V,A, r) be a reducible flow graph and let u, v be two
vertices in Vh. Then the following statements hold.

(i) R(u) is a reducible flow graph rooted at u;
(ii) u is the unique entry vertex of R(u) in G;
(iii) Any back arc with head in R(u) is contained in R(u);
(iv) If R(u) and R(v) have a common vertex, then either u dominates v or v

dominates u.

Proof. Omitted.

r

u u

r

v1 v2

v
v1 v2

v
u

w w

x y v1 v2

x y

z

G Th R(u)

Fig. 2. The Head Dominator Tree Th and Region R(u)

Lemma 2.3. Let G = (V,A, r) be a reducible flow graph. Then there is an
O(n log n+m) algorithm for finding a DFS order π of the head dominator tree
Th such that, for any two vertices u and v on Th with π(u) < π(v), every path
from v to u in G contains a back arc, where n = |V | and m = |A|.

Proof. Omitted.

To solve the maximum cycle packing problem on reducible flow graphs, Ra-
machandran [18, 19] made extensive use of network flow techniques, and we shall

310 X. Chen and W. Zang

apply her basic ideas and develop the techniques. As usual, a flow network
N = (V,A, s, t, c) is a digraph G = (V,A) with two distinguished vertices, a
source s and a sink t, and a nonnegative integral capacity c(u, v) on each arc
(u, v). See Ahuja, Magnanti and Orlin [1] and Ford and Fulkerson [11] for in-
depth accounts of network flows. It is clear that any subgraph (V ′, A′) of G
with {s, t} ⊆ V ′ corresponds to a subnetwork N ′ = (V ′, A′, s, t, c) of N . For
convenience, we let |x| denote the value of a flow x.

Lemma 2.4. Let N ′ = (V ′, A′, s, t, c) be a subnetwork of a flow network N =
(V,A, s, t, c), and let μ and μ′ be the maximum s − t flow values of N and N ′,
respectively. Suppose λ and λ′ are two nonnegative integers satisfying λ′ ≤ μ′

and λ′ ≤ λ ≤ μ. Then there is an O(nm log(n2/m)) algorithm for finding an
s− t flow x of N such that |x| = λ ≥

∑
(u,t)∈A′ x(u, t) ≥ λ′, where n = |V | and

m = |A|.
Proof. Let us construct a network N̄ = (V̄ , Ā, s, q, c) from N as follows: first

add two new vertices p and q and two new arcs (p, q) and (t, q) with capacities
c(p, q) = λ′ and c(t, q) = λ − λ′, then subdivide each arc (u, t) with u ∈ V ′

into two arcs (u, ū), (ū, t) and add one arc (ū, p) such that c(u, ū) = c(u, t) and
c(ū, t) = ∞ = c(ū, p). The construction of N̄ is complete. In N̄ , vertex s remains
to be the source while q becomes the sink. We claim that the maximum s − q
flow value of N̄ is λ.

To justify the claim, by the max-flow min-cut theorem we may turn to prove
that the capacity of a minimum s− q cut of N̄ is λ. Since [V̄ \{q}, {q}] is clearly
an s− q cut of N̄ with capacity λ, it suffices to prove that any s− q cut [U, Ū] in
N̄ is of capacity at least λ, where s ∈ U and q ∈ Ū . To this end, let us distinguish
among the following three cases. If t ∈ Ū , then from the construction of N̄ we
deduce that either [U, Ū] is of capacity ∞ or [U, Ū] corresponds to an s− t cut
of N whose capacity is at least μ (≥ λ) by the max-flow min-cut theorem; if
t ∈ U and p ∈ Ū , then [U, Ū] contains arc (t, q) with capacity c(t, q) = λ − λ′,
and [U, Ū]\{(t, q)} corresponds to an s − t cut in N ′ with capacity at least μ′

(≥ λ′); if {t, p} ⊆ U , then both (p, q) and (t, q) are contained in [U, Ū]. So in all
three cases the capacity of [U, Ū] is at least λ, as claimed.

Now let x̄ be a maximum s − q flow in N̄ . It follows from the construction
of N̄ that x̄ corresponds to an s − t flow x of N with the desired properties.
Since a maximum flow in N̄ can be found [14] in time O(|V̄ ||Ā| log(|V̄ |2/|Ā|)) =
O(nm log(n2/m)), we are done.

To establish the correctness of our algorithm, we need to decompose a flow in
a network into flows on paths. So the following theorem (see [1]) will be applied.

Theorem 2.5 (Flow Decomposition Theorem). Let x be an integral s − t
flow with value k in an acyclic network N = (V,A, s, t, c). Then there is an
O(nm) algorithm for finding s − t paths P1, P2, . . . , P� and corresponding non-
negative integers y1, y2, . . . , y�, such that
• � ≤ m,
•
∑�

i=1 yi = k, and

An Efficient Algorithm for Finding Maximum Cycle Packings 311

•
∑

i: (u,v)∈Pi
yi = x(u, v) for any (u, v) ∈ A,

where n = |V | and m = |A|.
For simplicity, we denote the above path flow decomposition of x by

{y1P1, y2P2, . . . , y�P�}.

3 Algorithm

Let G = (V,A, r) be a reducible flow graph with a nonnegative integral weight
w(e) on each arc e ∈ A, and let Vh, Th, and R(u) be as defined in the preceding
section. In [18, 19], Ramachandran transformed the cycle packing problem on a
reducible flow graph into a maximum flow problem. Let us present Ramachan-
dran’s construction of the corresponding flow network. For each u ∈ Vh ∪ {r},
let G(u) denote the network obtained from R(u) by first splitting each head v
in R(u) ∩ Vh into two vertices v and v′ and then adding a new vertex t. Each
DAG arc entering (resp. leaving) the original head v in G corresponds to one
that enters (resp. leaves) the newly formed head v, and each back arc entering
the original v corresponds to one that enters v′ in G(u). Moreover, there is an
arc (v′, t) with infinity capacity. The capacity of any other arc in G(u) is equal
to its corresponding weight in G. We propose to call v′ the image of v.

Let us now inductively construct a new network N(u) for each u ∈ Vh ∪ {r}
as follows2: If u is a vertex with no child in Th, set N(u) = G(u); else, let
v1, v2, . . . , vk be all the children of u on Th, and let the maximum flow value
of N(vi) be ci for 1 ≤ i ≤ k. Then the vertex set of N(u) is the same as that
of G(u), and the arc set of N(u) is the union of all arcs in G(u), N(vi) for
i = 1, 2, . . . , k, and {(u, vi) : i = 1, 2, . . . , k}. The capacity of each arc (u, vi) is
set to be ci.

For G = (V,A, r) in Fig. 2, the construction of G(u) and N(u) is illustrated
in Fig. 3.

Using the laminar structure of reducible flow graphs, we shall get an improved
algorithm for finding a maximum cycle packing in any arc-weighted reducible
graph.

Lemma 3.1. Let π be the DFS search order as described in Lemma 2.3 and let
a and b be two vertices in Vh with π(a) < π(b). Then

(i) a′ (the image of a) is not contained in N(b), and b′ is contained in N(a)
iff a dominates b;

(ii) There is no path from b to a in N(r);
(iii) Either N(a)\{t} and N(b)\{t} are vertex disjoint or N(b) is contained in

N(a).

Proof. (i) follows instantly from the construction of N(r); (ii) can be seen from
Lemma 2.3; and (iii) can be deduced from Lemma 2.2(iv), (i) and the construc-
tion of N(r).

2 We note that G(u) is essentially Gm(u) in [18], and N(u) is very similar to Gmm(u).

312 X. Chen and W. Zang

r

u u u

c1 c2 c1 c2

v1 v2 v1 v2 v1 v2

v v v

w w w

x y x y x y

z

v
′
1

v
′
2

v
′
1

v
′
2

v
′
1

v
′
2u

′
u
′

u
′

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

t t t

G(u) N(u) N(r)

Fig. 3. The Construction of G(u) and N(u)

From the above construction we see that N(u) is obtained from G(u) by
adding all arcs in the subtree of Th rooted at u. An arc of N(u) is called a
newly added arc if it is outside G(u). An r − t flow x in N(r) is called good if
x(u, v) ≤

∑
a′∈N(v) x(a

′, t) holds for any newly added arc (u, v) of N(r).

Lemma 3.2. There is an O(n2m log(n2/m)) algorithm for finding a good integral
maximum r − t flow x in N(r), where n = |V | and m = |A|.
Proof. Let x be an arbitrary integral maximum r − t flow in N(r). We may
assume that x is not good and so

(1) some newly added arc (p, q) of N(r) satisfies

x(p, q) >
∑

a′∈N(q)

x(a′, t).

Let π be the DFS order of Th exhibited in Lemma 2.3, and let (u, v) be a
newly added arc among all those (p, q) described in (1) such that

(2) π(v) is minimized, that is, π(v) ≤ π(q) for any above-mentioned arc (p, q).

Notice that N(r) is acyclic, so, by Theorem 2.5, x admits a path flow de-
composition {y1P1, y2P2, . . . , y�P�}. Without loss of generality, we assume that
P1, P2, . . . , Pα are all the paths in this decomposition that passes through v.
Using flow conservation, we get

(3)
∑α

j=1 yj ≥ x(u, v) for the above newly added arc (u, v).

Set Qj = Pj [v, t] (the subpath of Pj from v to t) for 1 ≤ j ≤ α. It follows
from Lemma 2.2(ii), the definition of N(v), and Theorem 2.5 that

(4) for each arc (a, b) of N(v), we have x(a, b) =
∑α

j=1: (a,b)∈Qj
yj .

We extract fromN(r) a flow networkN ′(v) with source v, sink t, and capacity
function c′ as follows: N ′(v) is the union of N(v) and all Qj for j = 1, 2, . . . , α,
and the capacity

An Efficient Algorithm for Finding Maximum Cycle Packings 313

(5) c′(a, b) is set to be c(a, b) if (a, b) is an arc in N(v) and to be∑α
j=1: (a,b)∈Qj

yj if (a, b) is in N ′(v)\N(v).

Since {y1Q1, y2Q2, . . . , yαQα} is a path flow decomposition of a v− t flow in
N ′(v) of value

∑α
i=1 yi, and x(u, v) is no more than the maximum flow value

of network N(v) (recall the construction of N(r)), (3), (5), and Lemma 2.4
(with N(v), N ′(v),

∑α
j=1 yj and x(u, v) in place of N ′, N , λ and λ′ over there,

respectively) guarantee the existence of an integral v − t flow z in N ′(v) such
that

(6)
∑α

j=1 yj = |z| ≥
∑

a′∈N(v) z(a
′, t) ≥ x(u, v).

Define an integral vector x′ on the arcs of N(r) by
(7) x′(a, b) = x(a, b) if (a, b) is outside N ′(v) and x′(a, b) = z(a, b)+x(a, b)−∑α

j=1:(a,b)∈Qj
yj otherwise.

It is easy to see from (5) and (7) that
(8) x′ is also an integral maximum r − t flow in N(r).

(9) x′(a′, t) ≤ x(a′, t) for any vertex a′ ∈ N ′(v)\N(v).
Indeed, since (a′, t) is contained in N ′(v) for a′ ∈ N ′(v)\N(v), from (7) we

deduce that x′(a′, t) = z(a′, t)+x(a′, t)−
∑α

j=1: (a′,t)∈Qj
yj ≤ c′(a′, t)+x(a′, t)−∑α

j=1: (a′,t)∈Qj
yj = x(a′, t) by (5), as desired.

We propose to prove that
(10) for any newly added arc (p, q) of N(r) with π(q) ≤ π(v),

x′(p, q) ≤
∑

a′∈N(q)

x′(a′, t).

Suppose the contrary: the above inequality is violated by some newly added
arc (p, q) with π(q) ≤ π(v). Since the newly added arcs form the edge set of
the head dominator tree Th, (u, v) is the unique newly added arc entering v.
By (6) and (7), we have π(q) < π(v). Note that N ′(v) is a digraph rooted at
v, by Lemma 3.1(ii), N ′(v) does not contain any a ∈ Vh ∪ {r} with π(a) <
π(v). So x′(p, q) = x(p, q) ≤

∑
a′∈G(q) x(a

′, t), implying
∑

a′∈G(q) x
′(a′, t) <∑

a′∈G(q) x(a
′, t). Hence, N(q) and N ′(v) must have some vertex b other than t

in common. We claim that N(v) ⊆ N(q). For this purpose, by Lemma 3.1(iii),
suppose the contrary: N(q) ∩ N(v) = {t}. Considering a path in N ′(v) − {t}
from v to b , we deduce from Lemma 3.1(ii) that this path contains an entry
vertex of N(q)\{t} other than q. However, it follows from Lemma 2.2(ii), (iii)
and the construction of N(q) that q is the unique entry vertex of N(q)\{t}, a
contradiction. So the claim is justified. Thus,

0 >
∑

a′∈N(q)

x′(a′, t)−
∑

a′∈N(q)

x(a′, t) =
∑

a′∈N(q)∩N ′(v)

[x′(a′, t)− x(a′, t)]

=
∑

a′∈N(v)

[x′(a′, t)− x(a′, t)] +
∑

a′∈N(q)∩(N ′(v)\N(v))

[x′(a′, t)− x(a′, t)] (by claim)

≥
∑

a′∈N(v)

[x′(a′, t)− x(a′, t)] +
∑

a′∈N ′(v)\N(v)

[x′(a′, t)− x(a′, t)] (by (9))

314 X. Chen and W. Zang

=
∑

a′∈N ′(v)

x′(a′, t)−
∑

a′∈N ′(v)

x(a′, t)

=
∑

a′∈N ′(v)

⎡⎣z(a′, t) + x(a′, t)−
α∑

j=1: a′∈Qj

yj

⎤⎦− ∑
a′∈N ′(v)

x(a′, t) (by (7))

= |z| −
α∑

j=1

yj = 0 (by (6)),

this contradiction completes the proof of (10).

Let us replace x by x′ and repeat the process. From (2), (8) and (10) we
conclude that a good integral maximum r − t flow in N(r) can be obtained
after at most n iterations. Since the initial maximum flow x and x′ in (7) can
both be found in O(nm log(n2/m)) time [14], the whole algorithm runs in time
O(n2m log(n2/m)).

Lemma 3.3. Given a good integral r − t flow x in N(r), there is an O(m2)
algorithm for finding a cycle packing of G with size |x| and with at most m
cycles, where m = |A|.
Proof. The statement clearly holds if x is a zero flow. So we assume x is nonzero.
Let p(u) denote the parent of u on Th for each u ∈ Vh\{r}, let π be the DFS
order of Th specified in Lemma 2.3, and let v′, the image of v, be the vertex of
N(r) (recall the construction) such that

(i) x(v′, t) > 0, and
(ii) subject to (i), π(v) is maximized.

Condition (i) guarantees the existence of an r−t path P through v′ in N(r) such
that x(e) > 0 for any arc e on P . Now let Q = u0u1 . . . uk denote the path from
r to v on Th, where u0 = r, uk = v, and ui = p(ui+1) for i = 0, 1, . . . , k − 1. By
Lemma 2.2(ii), (iii), and the construction of N(r), ui is the only entry vertex of
N(ui)\{t} for 0 ≤ i ≤ k. Hence vertices u0, u1, . . . , uk appear sequentially on P .

Using Lemma 3.1(i), we have

(1) v′ is contained in no N(u) with π(u) > π(v), and v′ is contained in N(u)
with π(u) < π(v) iff u dominates v.

We claim that
(2) P [v, v′] contains no arc (p(u), u) of Th with π(p(u)) ≥ π(v).

Suppose to the contrary that such u exists. Since x(p(u), u) > 0 and x is a
good flow, x(a′, t) > 0 for some vertex a′ in N(u). Thus π(a) ≥ π(u) > π(v),
contradicting the selection (ii) of v′.

Now let R be the path obtained from P by replacing P [ui, ui+1] with the
newly added arc (ui, ui+1) whenever x(ui, ui+1) > 0 for i = 1, 2, . . . , k− 1. Then
x(e) > 0 for each arc e on R. Let δ denote the minimum x(e) on R. We define
a vector x′ on the arc set of N(r) as follows: x′(e) = x(e)− δ if e is an arc on R
and x(e) otherwise. ¿From (1) and (2), we can conclude that x′ remains to be
a good flow of N(r). Let e′ denote the arc of P entering v′, let C be the cycle

An Efficient Algorithm for Finding Maximum Cycle Packings 315

of G uniquely contained in the union of P [v, v′] and the back arc corresponding
to e′, and let C contain C such that the multiplicity of C is δ. Replace x by x′

and repeat the process until x becomes a zero flow. Clearly, C is a cycle packing
with size equal to the value of the initial r − t flow.

Since P can be found by breadth first search in O(m) time and there are at
most m iterations according to the definition of C, the algorithm runs in O(m2)
time.

Lemma 3.4. For any cycle packing C of G with k cycles, where k ≤ m, there is
an integral r − t flow x of N(r) such that |x| equals the size of C.

Proof. Let C1, C2, . . . , Ck be all cycles in C such that the multiplicity of each Ci

is yi. Recall Theorem 2.1(v), each Ci contains precisely one back arc (vi, ui). Let
Pi be the unique path from r to ui on Th, and let Qi denote the concatenation
of Pi, Ci\{(vi, ui)}, (vi, u

′
i), and (u′

i, t) for i = 1, 2, . . . , k. We aim to show that
{y1Q1, y2Q2, . . . , ykQk} is a path flow decomposition of a flow x in N(r). For
this purpose, it suffices to check the capacity constraint.

Suppose to the contrary that the capacity constraint is violated on some arc
(u, v). Then (u, v) must be a newly added arc. We select such an arc so that
π(v) is maximized. Thus

(i)
∑

i: (u,v)∈Pi
yi > c(u, v) and

(ii)
∑

i: (a,b)∈Pi
yi ≤ c(a, b) for all arcs (a, b) of N(v).

Among Q1, Q2, . . . , Qk, we see from their construction that only those, say
Q1, Q2, . . . , Qα, with α ≤ k, that contain a vertex in N(v)\{v} can pass through
(u, v). It follows from Theorem 2.1(v) and the definition of N(v) that Qi[v, t]
is entirely contained in N(v) for each i. In view of (ii), {y1Q1, y2Q2, . . . , yαQα}
is a path flow decomposition of a v − t flow in N(v). Observe that

∑α
i=1 yi is

bounded above by the maximum flow value of N(v) which is c(u, v) by the con-
struction of N(r). Hence,

∑
i:(u,v)∈Qi

yi =
∑α

i=1 yi ≤ c(u, v), contradicting (i).
This completes the proof.

We are ready to present our algorithm for finding a maximum cycle packing
in any arc-weighted reducible flow graph.

Algorithm for Finding a Maximum Cycle Packing
Input: An arc-weighted reducible flow graph G = (V,A, r).
Output: A maximum cycle packing C of G.

Step 0. Construct the flow network N(r) as defined at the beginning of this
section.
Step 1. Find a good integral maximum r − t flow x in N(r) as described in
Lemma 3.2.
Step 2. Convert x to a cycle packing C of G as described in Lemma 3.3 and
return C.

The correctness of this algorithm follows instantly from Lemma 3.2-3.4. Since
the dominator tree can be constructed in linear time [15], so can be the under-

316 X. Chen and W. Zang

lying digraph of N(r). By calling the maximum flow algorithm [14] at most n
times, we can get the capacities of all newly added arcs in N(r). In view of
the complexity stated in each lemma, we conclude that the algorithm runs in
O(n2m log(n2/m)) time.

4 Concluding Remarks

In this paper we have obtained a polynomial time algorithm for finding a max-
imum weighted cycle packing in any arc-weighted reducible flow graph. We re-
mark that our algorithm can also be employed to solve the maximum cycle
packing problem in the vertex weighted case as the latter can be easily trans-
formed into the former. Furthermore, there is a linear time algorithm for finding
maximum vertex-disjoint cycles in any reducible flow graph (the dual of Shamir’s
problem [21]).

Ramachandran [19] contains a beautiful minimax arc theorem for reducible
flow graphs. Although her theorem is concerning the unweighted case, her proof
implicitly yields a stronger statement; that is, in any arc-weighted reducible flow
graph, the maximum size of a cycle packing is equal to the minimum total weight
of a feedback arc set, which also implies the minimax relation for the vertex-
weighted case (this unweighted case is due to Frank and Gyafas [12]). Minimax
relations play important roles in combinatorics and optimization. In addition
to their great theoretical interest, they often yield polynomial-time solutions
of the corresponding problems. Major open problems in this direction are to
characterize all digraphs with the minimax arc (resp. vertex) relation on packing
and covering cycles, for any nonnegative integral weight function defined on the
arc (resp. vertex) set. See Cai et al. [4, 5, 6] for a complete characterization of all
tournaments and bipartite tournaments and Ding et al. [8, 9] for the description
of all undirected graphs.

Ramachandran [20] came up with parallel algorithms for recognizing re-
ducible flow graphs, for finding dominators, and for finding a minimum feedback
vertex set in an unweighted reducible flow graph. Certainly, parallel algorithms
for the general cycle packing and feedback set problems on reducible flow graphs
also deserve good research efforts.

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows – Theory, Algorithms,
and Applications. Prentice Hall, Englewood Cliffs, New Jersey (1993)

2. Ahuja, R.K., Orlin, J.B., Tarjan, R.E.: Improved time bounds for the maximum
flow problem. SIAM J. Comput. 18 (1989) 939-954

3. Aho, A.V., Ullman, J.D.: Principle of Compiler Design. Addison-Wesley Reading,
MA (1977)

4. Cai, M.C., Deng, X.T., Zang, W.: A TDI system and its application to approxi-
mation algorithms. in: Proc. 39th IEEE Symposium on Foundations of Computer
Science, Palo Alto, CA (1998) pp. 227-233

An Efficient Algorithm for Finding Maximum Cycle Packings 317

5. Cai, M.C., Deng, X.T., Zang, W.: An approximation algorithm for feedback vertex
sets in tournaments. SIAM J. Comput. 30 (2001) 1993-2007

6. Cai, M.C., Deng, X.T., Zang, W.: A min-max theorem on feedback vertex sets.
Math. Oper. Res. 27 (2002) 361-371

7. Caprara, A., Panconesi, A., Rizzi, R.: Packing cycles in undirected graphs. J. Al-
gorithms 48 (2003) 239-256

8. Ding, G., Zang, W.: Packing cycles in graphs. J. Combin. Theory Ser. B 86 (2002)
381-407

9. Ding, G., Xu, Z., Zang, W.: Packing cycles in graphs, II. J. Combin. Theory Ser.
B 87 (2003) 244-253

10. Dinits, E.A.: Algorithms for solution of a problem of maximum flow in a network
with power estimation. Soviet Mathematics Doklady 11 (1970) 1277-1280

11. Ford, L.R. Jr., Fulkerson, D.R.: Flows in Networks. Princeton Univ. Press, Prince-
ton, NJ (1962)

12. Frank, A., Gyarfas, A.: Directed graphs and computer programs. in: Problemes
Combinatoires et Theorie des Graphes, Colloque Internationaux C.N.R.S. 260
(1976) pp. 157-158

13. Garey, M.R., Johnson, D.S.: Computers and Intractability. W.H. Freeman and
Company, New York (1979)

14. Goldberg, A. and Tarjan, R.E.: A new approach to the maximum flow problem.
in: Proc. 18th Annu. ACM Symp. on Theory of Computing (1985) pp. 136-146

15. Harel, D.: A linear algorithm for finding dominators in flow graphs and related
problems. in: Proc. 17th Annual ACM Symp. on Theory of Computing (1984) pp.
185-194

16. Hecht, M.S., Ullman, J.D.: Flow graph reducibility. SIAM J. Comput. 1 (1972)
188-202

17. Hecht, M. S., Ullman, J.D.: Characterizations of reducible graphs. J. Assoc. Com-
put. Mach. 21 (1974) 367-375

18. Ramachandran, V.: Finding a minimum feedback arc set in reducible flow graphs.
J. Algorithms 9 (1988) 299-313

19. Ramachandran, V.: A minimax arc theorem for reducible flow graphs. SIAM J.
Discrete Math. 3 (1990) 554-560

20. Ramachandran, V.: Parallel algorithms for reducible flow graphs. J. Algorithms 23
(1997) 1-31

21. Shamir, A.: A linear time algorithm for finding minimum cutsets in reducible
graphs. SIAM J. Comput. 8 (1979) 645-655

22. Tarjan, R.E.: Depth-first search and linear graph algorithm. SIAM J. Comput. 1
(1972) 146-160

23. Tarjan, R.E.: Testing flow reducibility. J. Comput. System Sci. 9 (1974) 355-365
24. Tarjan, R.E.: Data Structure and Network Algorithms. SIAM, Philadelphia, PA,

(1983)

Efficient Job Scheduling Algorithms with
Multi-type Contentions�

Zhenming Chen, Vikas Singh, and Jinhui Xu

Department of Computer Science and Engineering,
State University of New York at Buffalo,

Buffalo, NY 14260, USA
{zchen4, vsingh, jinhui}@cse.buffalo.edu

Abstract. In this paper, we consider an interesting generalization of
the classic job scheduling problem in which each job needs to compete
for not only machines but also other types of resources. The contentions
among jobs for machines and resources could interfere with each other,
which complicates the problem dramatically. We present a family of ap-
proximation algorithms for solving several variants of the problem by
using a generic algorithmic framework. Our algorithms achieve a con-
stant approximation ratio (i.e., 3) if there is only one type of resources
or certain dependency relation exists among multiple types of resources.
For the case that r unrelated resources are given, the approximation ra-
tio of our algorithm becomes k + 2, where k ≤ r is a constant depending
on the problem instance. As an application, we also show that our tech-
niques can be easily applied to optical burst switching (OBS) networks
for deriving more efficient wavelength scheduling algorithms.

1 Introduction

Job scheduling problem is a fundamental problem in theoretical computer science
and finds numerous applications in many different areas. Extensive research [1,
2, 3, 5, 6, 7, 8, 9, 10, 14] has been done on different variants of this problem. One
commonly used model of this problem is the so called job interval selection (JIS)
problem in which a set of jobs, J1, J2, · · · , Jn, with each Ji, 1 ≤ i ≤ n, associated
with a profit and a set of intervals representing its possible schedulings, and a
set of machines M1,M2, · · · ,Mm are given, and the objective is to schedule a
subset of the jobs on them machines so that the total profit of the scheduled jobs
is maximized. Such a model captures the essence of many scheduling problems,
and has led to a number of efficient solutions [5, 7, 10]. In general, this problem is
NP-hard, and its hardness mainly comes from the contentions among jobs while
competing for machines.

In some applications, it is quite common that jobs need to compete not only
for machines, but also for other critical (or exclusive) resources. Some jobs may

� This research was supported in part by an IBM faculty partnership award, and an
IRCAF award from SUNY Buffalo.

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 318–329, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Efficient Job Scheduling Algorithms with Multi-type Contentions 319

need to obtain other resources before becoming executable on machines. For
example, in optical burst switching (OBS) networks[11], a burst (or packet) can
either be scheduled directly on a wavelength (or channel) if there is one available
at the arrival time of the burst or be delayed by a fiber delay line (FDL) so
that the burst can be scheduled in a different time slot. In such applications,
bursts need to compete for both wavelengths (which can be viewed as machines)
and FDLs. The multiple types of contentions among jobs are in general quite
different and cannot be handled similarly. They could interfere with each other
and dramatically change the nature of the scheduling problem.

To develop efficient techniques for solving such problems, we consider a gen-
eralization of the job interval selection problem called job interval selection with
multi-type contentions (JISMC). In the JISMC problem, besides the sets of jobs
and machines, we are also given a set of resources for the jobs to compete for.
Each job may require a subset of the resources and the resources may change
some parameters associated with the job, such as profit, starting and ending time.
Dependency relation may exist among resources, and a dependency graph can
be derived. Different dependency graphs need different scheduling algorithms. In
this paper, we first give a general model of this problem and then generalize the
technique developed in [1, 3, 4] for solving the JIS problem to derive approxima-
tion algorithms for our JISMC problem. We consider three types of dependency
relations among resources and give approximation algorithm for each of them.
More specifically, we present a 3-approximation algorithm for the JISMC prob-
lem in which there is only one type of resources. In the case that r (≥ 1) types of
resources exist, we show that a 3-approximation is possible if certain dependency
relation exists among all the resources. For the most general case in which all r
types of resources are unrelated, our algorithm achieves a (k+2)-approximation,
where k ≤ r is a constant depending on problem instances.

Due to the space limit, lots of details and proofs are omitted from this ex-
tended abstract.

2 Problem Description

In the JISMC problem, the input is a set of n jobs J = {J1, J2, · · · , Jn}, a
set of m machines M = {M1,M2, · · · ,Mm}, and a set of r resources R =
{R1, R2, · · · , Rr}, the objective is to schedule a subset of jobs on the machines
so that the total profit of the scheduled jobs is maximized. Each job Ji, 1 ≤
i ≤ n, is associated with a positive profit wi, a set of starting times Si =
{si1, si2, · · · , sici

}, and a set of durations Li = {li1, li2, · · · , lim} on each of
the m machines. Si and Li together define a set of machine intervals IMj

i =
{(si1, si1 + lij), (si2, si2 + lij), · · · , (sici

, sici
+ lij)} for all possible schedulings

of job Ji on machine Mj . Each job Ji may also request a subset of resources
Ri ⊆ R and Ri could change the profit, starting time, and/or duration of Ji

by a modification vector vi = {Δw
i , Δ

s
i , Δ

l
i}. Corresponding to each machine

interval Iijk = (sik, sik + lij), 1 ≤ j ≤ m, 1 ≤ k ≤ ci, and each requested re-
source Rl ∈ Ri, there is a reservation interval IRl

ijk indicating the period of Iijk

320 Z. Chen, V. Singh, and J. Xu

using Rl. In general, the reservation interval should be the same as the corre-
sponding machine interval. But a resource such as an FDL in OBS could change
the starting time of a job and therefore make the two intervals different.

In the JISMC problem, we assume that the schedulings on both machines
and resources are non-preemptive and the resources are exclusive (i.e., no two
jobs can access a resource simultaneously). When the machines are identical, the
machine intervals on all machines will be the same.

A resource Rj depends on another resource Rl if for each job Ji ∈ J , Rj ∈ Ri

implies Rl ∈ Ri and the reservation intervals of (every interval of) Ji on Rj

and Jl are the same. Based on this relation, a dependency graph GR can be
constructed among all resources by adding a directed edge from each resource
to every resource depending on it. For a set of resources, the dependency graph
could be an arbitrary graph.

Our techniques for solving the JISMC problem are generalized from an inter-
esting and powerful technique developed by Berman and DasGupta in [3, 4] for
solving the JIS and related problems. Their technique contains two main phases:

Evaluation: All intervals are evaluated in a non-decreasing order of their ending
times. Based on its contention with other intervals, each interval is given a value
to indicate its potential profit. A subset of “profitable” intervals are kept for the
next phase.

Selection: A subset of intervals is selected from the kept intervals to avoid any
possible contention.

Their technique achieves a 2-approximation for the JIS problem with m non-
identical machines and an (m+1)m

(m+1)m−mm -approximation for m identical machines.
The success of their algorithm relies on a key fact that the contentions among
intervals can be sorted by the ending time of the intervals and resolved by using
such an order. This is because in the JIS problem there is only one kind of
contention: jobs competing for machines. But in our JISMC problem, more than
one type of contention exists, and different types of contentions may not be
consistent with each other, making it much more difficult to apply their technique
to our problem.

Our main idea for the JISMC problem is to “emulate” the two-phase algo-
rithm in such a way that contentions on resources can be made consistent with
that of the machines. We illustrate our ideas by first showing how to solve the
scheduling problem with single resource and then extending it to the problem of
multiple resources.

3 Scheduling Algorithm for Single Resource

In this section, we consider the case in which only one type of optional resource
R is available. Resource R has r ≥ 1 copies, R1, R2, · · · , Rr, each of them is
independent from the others. We first consider the case in which the m machines
are identical. The cases of non-optional resources and non-identical machines can
be handled with minor modifications.

Efficient Job Scheduling Algorithms with Multi-type Contentions 321

In this problem, each job Ji has ci intervals, which can be scheduled on
any of the m machines, with or without any of the r copies of R. Thus a job
can be executed in a total of ci × m × (r + 1) different ways. To capture all
possible schedulings and contentions for each job Ji, we first form a family of
machine intervals IM

i = {Ii1, Ii2, · · · , Iici} for Ji according to its starting times
and duration. The set of machine intervals represents all possible schedulings of
Ji without using the resource R. If Ji requests R as its resource, then for each
interval Iij ∈ IM

i , we make r copies of resource intervals by using Iij and the
modification vector vi associated with Ji. Each resource interval corresponds to
a particular copy of the resource R and defines a possible scheduling of Ji on a
machine. Let IR

i denote the set of resource intervals of Ji and Ii = IM
i ∪ IR

i

denote the family of intervals of job Ji.
Clearly, each job needs to compete with others for both machines and re-

sources. To resolve the two types of contentions, ideally we should handle them
separately. But the interference between them could be rather complicated and
make it very difficult to achieve quality guaranteed solutions. To simplify the
problem, our main idea is to establish a linear order based on one type of con-
tention (e.g., the contention on machines) and use it as the primary order to
schedule jobs. We also build proper data structures to maintain a secondary lin-
ear order for the other type of contention. Whenever there is a contention that
needs to be resolved, we use either the primary, the secondary, or both orders.

Below are the main steps of our algorithm.

Evaluation: 1. Sort all intervals in
⋃n

i=1(Ii) in a non-decreasing order of the
ending times.

2. Initialize a stack SMj
, 1 ≤ j ≤ m, for each machine Mj and a stack

SRk
, 1 ≤ k ≤ r, for each copy Rk of the resource R.

3. Scan all intervals according to the sorted order, and for each interval
I ∈ Ji and each machine Mj ,
– find the set C(I) of intervals in the stacks SMj , 1 ≤ j ≤ m which

conflict with I and partition them into three subsets of intervals
Cf (I), Cmj

(I) and Cr(I), where
(a) Cf (I) is the set of intervals which are from the same job of I and

pushed into any stack of the m machines before evaluating I,
(b) Cmj

(I) is the set of intervals from different jobs which are in SMj

and overlap with I on time,
(c) Cr(I) is the set of intervals which compete with I on the resource

Rk in stack SRk
, where Rk is the resource corresponding to I. If

I is not a resource interval, then Cr(I) is an empty set.
– Compute the potential of I on machine Mj as follows.

I.value(j) = wi +Δw
i −

∑
I′∈Cf (I)∪Cmj

(I)∪Cr(I)

I ′.value,

where Δw
i is the change of profit due to the use of resource R. If I

is not a resource interval, then Δw
i = 0.

322 Z. Chen, V. Singh, and J. Xu

4. Compute the value of I as I.value = maxm
j=1{I.value(j)}.

5. If I.value > 0, the interval I is pushed into the stack SMp , where Mp is
the machine which has the maximum potential I.value(p) for I among
all machines. If I is a resource interval, then I is also pushed into the
corresponding stack SRk

.
6. Repeat the above procedure until all intervals are done.

Selection: 1. Mark all intervals in the m stacks of machines as free.
2. In the reverse order of ending time, keep popping from one of the m

stacks of machines the interval I of the largest ending time (among all
intervals in the m stacks).

3. If I is free, then assign the corresponding job Ji of I to the machine Mj

whose stack contains I, and assign the resource Rk to Ji, where Rk is
the resource corresponding to the interval I.

4. Mark all intervals in Cf (I), Cmj
(I) and Cr(I) as occupied.

5. If there are other intervals �∈ Cr(I) conflicting with I on Rk, mark them
as occupied.

6. Repeat the above procedure until no interval is in any stack.

Next, we will show that our algorithm generates a feasible scheduling which is
a 3-approximation of the optimal solution under some easily satisfied conditions.

Let S = {SM1 , SM2 , · · · , SMm} be the set of stacks of the m machines after
the evaluation phase, and Cf ,Cm,Cr be defined as above. Let V (X) be the sum
of the values of all intervals in the set X, and A be any feasible scheduling.
Let CF = ∪I∈ACf (I), CM = ∪I∈ACmj

(I), CR = ∪I∈ACr(I), where Mj is the
machine scheduled to execute I by A. Let P (A) be the sum of the profits of all
jobs in A.

Definition 1. Let R be a resource, M be a machine, and I1 and I2 be a pair
of resource intervals corresponding to R. We say R is consistent with M with
respect to I1 and I2 if the following two conditions are satisfied. (1) The order
(according to the ending time) of the reservation intervals of I1 and I2 on R is
the same as the order of them on M ; (2) If I1 and I2 are not conflicting on M ,
then they are not conflicting on R. We say R is consistent with M if they are
consistent with respect to any possible pair of intervals.

Notice that in our JISMC problem, although a resource might be inconsistent
with machines as both the reservation intervals and the modification vectors
of jobs could be different for different intervals, it is quite unusual for that
to happen in practice. This is because in practice most of the resources are
either used jointly with the machine or used immediately before or after the
machine. Thus the reservation intervals of jobs are either exactly the same as
their corresponding intervals on machines or have the same order. This implies
that they are consistent with the machines.

Definition 2. An evaluation is said to be effective if the subset of intervals
chosen by the evaluation phase enables the selection phase to select a set of
non-conflicting intervals whose total profit is at least the sum of value of all the
intervals chosen by the evaluation.

Efficient Job Scheduling Algorithms with Multi-type Contentions 323

Lemma 1. If R is consistent with all machines, then the evaluation is effective.

Proof. For each interval I ∈ Ji selected during the selection phase, we associate
it with the set of intervals in Cf (I)∪Cmj

(I)∪Cr(I). Since I is pushed into the
stack of machine Mj during the evaluation phase, I.value > 0. Thus, wi +Δw

i ≥
V (Cf (I)∪Cmj

(I)∪Cr(I))+I.value. The selection phase considers every interval
in the non-increasing order of the ending times of intervals. If an interval I ′ is not
marked as occupied, it will be included as part of the solution. By the consistency
assumption, we know that the order of the set of inserted intervals in the stacks
of resources will be the same as those in the stacks of machines. Thus an interval
can be marked as occupied only if it is in Cf (I)∪Cmj

(I)∪Cr(I) for some selected
interval I. Hence every interval in the stacks of machines will be associated with
at least one selected interval, and the lemma follows.

Lemma 2. Let I1 and I2 be two intervals in any feasible scheduling A. If the
resource is consistent with all machines, then the pairs of sets Cf (I1) and Cf (I2),
Cmj1

(I1) and Cmj2
(I2), Cr(I1) and Cr(I2) are all disjoint, where Mj1 and Mj2

are the machines executing I1 and I2, respectively, in A.

Proof. Since I1 and I2 are in a feasible solution, they must belong to different
jobs, thus Cf (I1) ∩ Cf (I2) = φ. If Mj1 and Mj2 are different machines, then
Cmj1

(I1)∩Cmj2
(I2) = φ. Otherwise, since I1 and I2 are from a feasible schedul-

ing, they do not overlap on time, thus Cmj1
(I1) ∩ Cmj2

(I2) = φ. If I1 and I2
are using different copies of R, clearly Cr(I1) ∩ Cr(I2) = φ. Otherwise, by the
consistency assumption, the reservation intervals of I1 and I2 on R are disjoint,
therefore Cr(I1) ∩ Cr(I2) = φ.

Lemma 3. If R is consistent with all machines, then V (S)+V (CF)+V (CR) ≥
P (A).

Proof. By Lemma 2, it is sufficient to prove that for each interval I ∈ A of job
Ji, V (Cf (I)) + V (Cmj

(I)) + V (Cr(I)) ≥ wi + Δw
i , where Mj is the machine

scheduled by A to execute I.
When evaluating I, since the value of interval I comes from the machineMmin

whose V (Cmmin
(I)) is the smallest, we have V (Cmj

(I)) ≥ V (Cmmin
). Thus it is

sufficient to prove that V (Cf (I))) + V (Cmmin(I)) + V (Cr(I)) ≥ wi +Δw
i .

Let S′ be the set of intervals pushed into the stacks of the m machines before
evaluating interval I. If I.value ≤ 0, then we have wi + Δw

i − V (Cf (I)) −
V (Cmmin

(I))−V (Cr(I)) ≤ 0. Otherwise, I will be pushed into the stack SMmin
.

Let S be S′ ∪ {I}. Let V1 = V (Cf (I)) before pushing I into the stack and
V2 = V (Cf (I)) after pushing I. We have V2 ≥ V1 + I.value = V1 + (wi +Δw

i)−
V1 − V (Cmmin(I)) − V (Cr(I)) = wi + Δw

i − V (Cmmin(I)) − V (Cr(I)). Thus,
V (Cf (I))) + V (Cmmin(I)) + V (Cr(I)) ≥ wi +Δw

i .

Theorem 1. If R is consistent with all machines, the above algorithm is a 3-
approximation.

324 Z. Chen, V. Singh, and J. Xu

Proof. Let V be the total profit of the obtained scheduling, and A be an optimal
solution. By Lemma 1, V ≥ V (S), and it is also easy to see that V (CF) ≤ V (S)
and V (CR) ≤ V (S). Thus 3V ≥ V (S) + V (CF) + V (CR) ≥ P (A).

Lemma 4. If there is only one machine and the resource is used at the same
time as the machine, the above algorithm achieves an approximation ratio of 2.

The running time of the above algorithm is given by the following theorem,
due to the space limit, the proof is left for the full version.

Theorem 2. It is possible to run the above algorithm in O(N logN) time, where
N =

∑n
i=1 ci ×m× (r + 1).

Notice that although in the JIS problem, a multi-machine scheduling problem
can be converted into a single-machine scheduling problem without affecting the
quality of solutions [3], in JISMC problem such a conversion in general does not
work as it will violate the consistency condition.

4 Scheduling Algorithm for Multi-type of Resources
with Dependency Relation

In this section, we consider the scheduling problem for multiple types of resources
among which a dependency relation exists. For simplicity, we assume that all
machines are identical and there is only one copy in each type of resource (such
assumptions can be easily removed without affecting the quality of solution).

Let R = {R1, R2, · · · , Rr} be the set of r resources. Recall that a resource Rj

depends on another resource Rl if for each job Ji ∈ J , Rj ∈ Ri implies Rl ∈ Ri

and every reservation intervals of Ji on Rj and Rl are the same. Based on the
dependency relation, a dependency graph GR can be formed by connecting a
directed edge from each Rj ∈ R to every resource which Rj directly depends
on. Without loss of generality, we can assume that GR is a directed acyclic
graph (DAG). Otherwise, if there is a cycle C in GR, then by the definition of
dependency relation, for each job Ji either all resources on C will be in Ri or
none of them will be in Ri. Thus all resources on C can be collapsed as a single
resource.

A resource Rj is called the anchor resource of a job Ji if Rj depends on every
other resource directly or indirectly in Ri. In general, a job may not have an
anchor resource. In this paper, we only consider the case in which each job has
exactly one anchor resource.

To solve this version of scheduling problem, our main idea is to generalize
our algorithm for the case of single resource. For each job Ji, we first generate
a set of machine intervals IM

i and a set of resource intervals IR
i based on the

requested resources Ri.
In the evaluation phase, we consider the linear order of all intervals based on

their ending times. This linear order captures all possible contentions among in-
tervals while competing for machines. Similar to the algorithm for single resource,

Efficient Job Scheduling Algorithms with Multi-type Contentions 325

the evaluation phase first initializes a stack SMj
for each machineMj , 1 ≤ j ≤ m,

and a stack SRk
for each resource Rk for 1 ≤ k ≤ r. Then it processes all in-

tervals according to this linear order. For each interval I ∈ Ji, the algorithm
identifies a conflicting set C(I) of all conflicting intervals from all stacks. C(I)
includes three types of intervals: (a) Intervals from the same family (i.e., the
same job); (b) Intervals overlapping with I on the same machine; (c) Intervals
conflicting with I on any resource required by I. Based on all intervals in C(I),
the algorithm computes a potential value I.value(j) for I on each machine Mj

by subtracting the values of all conflicting intervals in C(I) from the profit of I
(i.e., I.value(j) = wi +Δw

i −
∑

I′∈C(I) I
′.value), and sets the value I.value to

be the maximum potential value among the m machines. If I.value is positive,
then I is pushed into the stack of the machine which has the maximum poten-
tial value for I, and into stacks of the resources in Ri. The evaluation procedure
repeats this procedure until all intervals are finished.

The selection phase is similar to the one for the case of single resource. The
only difference is that when an interval I is selected, it blocks all intervals in the
stacks which conflict with I on the family of I, on the machine executing I, and
on all resources requested by I.

To estimate the quality of the obtained scheduling, we first partition the
conflicting set C(I) of each interval I ∈ Ji into 3 subsets, Cf (I), CMj

(I) and
CR(I), where Cf (I) includes all intervals in C(I) which are from the same family
of Ji, CMj

(I) is the set of intervals in C(I) \ Cf (I) which are conflicting with
I on machine Mj , and CR(I) is the set of intervals in C(I) \ (Cf (I) ∪ CMj (I))
which are conflicting with I on some resources. The following lemma is a key to
prove the quality of our scheduling.

Lemma 5. Let I1 ∈ Ji1 and I2 ∈ Ji2 be two intervals in any feasible scheduling
A. Then if the resources are consistent with all machines, the sets Cf (I1) and
Cf (I2), CMj1

(I1) and CMj2
(I2), CR(I1) and CR(I2) are pairwise disjoint, where

Mj1 and Mj2 are the machines scheduled to execute I1 and I2 respectively by A.

Proof. The proof for Cf (I1) ∩ Cf (I2) = φ and CMj1
(I2) ∩ CMj2

(I2) = φ is the
same as in Lemma 2. To prove CR(I1) ∩ CR(I2) = φ, we consider two cases:
(1) Ri1 ∩ Ri2 = φ and (2) Ri1 ∩ Ri2 �= φ. For the first case, clearly we have
CR(I1) ∩ CR(I2) = φ. For the second case, let Rj be any resource in Ri1 ∩Ri2 .
Then, since I1 and I2 are two intervals from a feasible scheduling, the reservation
intervals of I1 and I2 on Rj must be disjoint. By the consistency property,
reservation intervals on Rj will have the same order as that of the corresponding
resource intervals on any machine. Thus intervals conflicting with I1 on Rj will
not conflict with I2 on Rj . Thus CR(I1) ∩ CR(I2) = φ.

Similar to the lemma 1 and 3, we have the following lemmas and theorems.

Lemma 6. If R is consistent with all machines, then the evaluation is effective.

Lemma 7. If R is consistent with all machines, then V (S)+V (CF)+V (CR) ≥
P (A).

326 Z. Chen, V. Singh, and J. Xu

Theorem 3. If each resource is consistent with all machines, then the approx-
imation ratio of the above algorithm is 3.

Theorem 4. It is possible to run the above algorithm in O(N logN) time, where
N =

∑n
i=1 ci ×m× (|Ri|+ 1).

5 Scheduling Algorithm for Multi-types of Resources
with No Dependency Relation

In this section, we consider the scheduling problem of multiple types of resources
with no dependency relation. We assume the same settings as in last section
except for the dependency relation. The algorithm for solving this version of
problem is the same as the one given in last section. The main difference is on
the analysis.

To estimate the quality of the scheduling, the key is to be able to show that
the conflicting set C(I) can be partitioned into classes such that the total value
of all intervals in each class can be bounded. For this purpose, we partition all
intervals in C(I) as follows.

1. Cf (I): the set of intervals generated from the same job as I and are pushed
into any of the m stacks of machines before evaluating I.

2. CMj
(I): the set of intervals inserted into SMj

before evaluating I and over-
lapping with I on time.

3. CR1(I): the set of intervals which compete for resource R1 with I, if R1 is
not requested by I, then it is an empty set.

4. CR2(I): the set defined similarly as CR1(I) but competing for resource R2.
5. . . . :
6. CRr (I): the set defined similarly as CR1(I) but competing for Rr.

Notice that in the above definition, an interval in C(I) could belong to more
than one subsets if it has multiple contentions with I. To avoid this problem, we
give an order to them as Cf (I), CMm

(I), CMm−1(I), · · · , CM1(I), CR1(I), · · · , CRr
(I).

To partition C(I), we first pick intervals for Cf (I) from C(I), then for CMm
(I)

from the set C(I) \ Cf (I), and so on in this order. In this way, no interval in
C(I) will appear in more than one subset.

With the above partition, we have the following lemma.

Lemma 8. Let I1 and I2 be two intervals in any feasible scheduling A. Then
if the resources are consistent with all machines, the sets Cf (I1) and Cf (I2),
CMj1

(I1) and CMj2
(I2), CRk

(I1) and CRk
(I2) are pairwise disjoint, where Mj1

and Mj2 are the machines scheduled to execute I1 and I2 respectively by A, and
Rk is any resource.

With the above lemma, we are able to prove the following theorem.

Theorem 5. If the resources are consistent with all machines, the above algo-
rithm achieves an approximation ratio of 2+r where r is the number of different
types of resources.

Efficient Job Scheduling Algorithms with Multi-type Contentions 327

Although the above ratio holds for the most general case, it may not reflect
the actual quality of some schedulings. To obtain a better approximation ratio,
we consider the following undirected graphGC

R, called potential conflicting graph.
For each job Ji, connect all resources in Ri into a tree in an arbitrary order. The
union of the n trees forms the potential conflicting graph. The following lemma
gives some nice properties of such graphs.

Lemma 9. Let C1 and C2 be any two maximal connected components of GC
R,

and Rj1 and Rj2 be two arbitrary resources in C1 and C2 respectively. Then for
any two intervals I1 ∈ Ji1 and I2 ∈ Ji2 from a feasible scheduling A, CRj1

(I1)
and CRj2

(I2) are disjoint if the resources are consistent with the machines.

Proof. First we can assume that Rj1 is requested by I1 since otherwise CRj1
(I1)

would be an empty set and the lemma will be trivially true. Similarly, we assume
that Rj2 is requested by I2. Let I3 be any interval which competes with I1
for resource Rj1 . Then all the resources I3 requested will come from the same
connected component C1. Since if otherwise it uses a resource outside C1, C1
will not be a maximal connected component of GC

R. By the same argument, any
interval that competes with I2 for resource Rj2 can only use resources in C2,
which means that I3 does not belong to CRj2

(I2). The other direction can be
proved similarly. Hence the two sets are disjoint.

With the above lemma, we have the following packing lemma.

Lemma 10. Let A be any feasible scheduling, and CRj
=
⋃

I∈A CRj
(I) for 1 ≤

j ≤ r. Let C be the largest connected component in cardinality of GC
R. Then the

r sets of intervals CRj can be packed into |C| sets so that each set is a subset of
S, where S is the set of intervals in the m stacks of machines after finishing the
evaluation phase.

Proof. Let R1, R2, · · · , Rk be the k resources in C. For any interval I in A, it
can only use resources from a single connected component. If CRi

(I) �= ∅ and
Ri ∈ Ci, then for any resource Rj �∈ Ci, CRj

(I) = ∅. The k sets of intervals can
be constructed as follows. Initially, let CRi

=
⋃

I∈I CRi
(I), 1 ≤ i ≤ k, where I

is the set of intervals in A which use at least one resource in C. Note that I will
not use any resource outside Ri, 1 ≤ i ≤ k.

Let C2 be another connected component of size l (l ≤ k) and Rp, Rp+1, · · · ,
Rp+l−1 be its resources. By Lemma 9, for any interval I using resource Rp, CR1∩
CRp

(I) = ∅. We can merge CRp
(I) into CR1 , i.e., CR1 = CR1 ∪CRp

(I). Similarly,
we can also merge CRp+1(I) into CR2 , CRp+2(I) into CR3 , . . ., CRp+l−1(I) into
CRl

. Since l ≤ k, each set CRp+i
can be merged into one of the k sets CRi+1 ,

1 ≤ i ≤ l − 1.
Repeating the same procedure for all other components, we can eventually

pack each interval in S into one of the k sets. Clearly, CRi ⊆ S, 1 ≤ i ≤ k.

With the packing lemma, we can reduce approximation ratio from r + 2 to
k + 2.

328 Z. Chen, V. Singh, and J. Xu

Theorem 6. If the resources are consistent with the machines, then the above
algorithm has an approximation ratio of k + 2, where k is the size of largest
connected component in the potential conflicting graph GC

R.

6 Application in Optical Burst Switching Networks

In this section, we show that our JISMC model and its techniques can be easily
applied to Optical Burst Switching (OBS) networks for developing more effecient
algorithms for an important channel scheduling problem.

As a promising paradigm for the next-generation Internet, OBS [11, 15] has
attracted a great deal of attentions in recent years. A major problem in such net-
works is to efficiently assign channels (wavelength) to incoming bursts (packets)
so that the total bandwidth utility is maximized and consequently the burst loss
rate is minimized. In an OBS network, an ingress OBS node assembles data into
data bursts, and sends out a control packet for each burst. The control packet
precedes the corresponding data burst by an offset time. Based on the informa-
tion contained in the control packet, a reservation for a period of time equal to
the burst length (starting at the expected burst arrival time) can be made at
each node. Due to high burst loss rate in OBS, Fiber Delay Lines (FDL) are
often used to delay bursts by a fixed amount of time. If an FDL of d unit(s) of
delay is assigned to a burst, then the scheduler can reserve the time slot which
is d unit time later.

A number of channel scheduling algorithms [12, 13, 14] have been proposed
to tackle this problem. Among them Min-SV algorithm proposed by Xu et al. in
[14] has so far the best performance w.r.t both the scheduling time and loss rate.
One common feature of the above algorithms is that they all use certain greedy
strategies to schedule bursts in a purely on-line fashion. That is, they schedule
each burst immediately upon receiving its corresponding control packet without
using any information about future bursts. Due to this reason, a “wrongly”
scheduled burst could block a number of future incoming bursts, making the
overall quality of scheduling rather poor. This is especially the case when links are
heavily loaded. Hence, certain global optimization based scheduling is desired.

In OBS networks, we can model channels as identical machines, bursts as
jobs of fixed starting and ending time, and the FDLs as resources. Clearly, the
resources are consistent with the machines because each burst use an FDL imme-
diately before using an outgoing channel. The only problem is that bursts come in
an online fashion, the scheduling is based only on past information, and nothing
is known about future bursts. Our approximation algorithms, however, assume
that all the jobs are known in advance. To overcome this difficulty, the main idea
is to collect bursts “periodically”, form a batch of bursts based on their timing,
and schedule each batch of bursts as a whole by our algorithm in Section 5.

Experiments show that our batching-based algorithm significantly outper-
forms Min-SV [14] by a factor of almost 20% and consistently outperforms the
other batching-based algorithm. (More experimental results and the details of
our scheduling algorithm are left for the full paper.)

Efficient Job Scheduling Algorithms with Multi-type Contentions 329

References

1. Karhan Akcoglu, James Aspnes, Bhaskar DasGupta, and Ming-Yang Kao. Op-
portunity cost algorithms for combinatorial auctions. In Applied Optimization:
Computational Methods in Decision-Making, Economics and Finance, pages 455–
479. Kluwer Academic Publishers, 2002.

2. Amotz Bar-Noy, Reuven Bar-Yehuda, Ari Freund, Joseph Naor, and Baruch
Schieber. A unified approach to approximating resource allocation and schedul-
ing. In Proceedings of the thirty-second annual ACM symposium on Theory of
computing, pages 735–744. ACM Press, 2000.

3. Piotr Berman and Bhaskar DasGupta. Improvements in throughout maximization
for real-time scheduling. In Proceedings of the thirty-second annual ACM sympo-
sium on Theory of computing, pages 680–687. ACM Press, 2000.

4. Piotr Berman, Bhaskar DasGupta, and S. Muthukrishnan. Simple approximation
algorithm for nonoverlapping local alignments. In Proceedings of the thirteenth
annual ACM-SIAM symposium on Discrete algorithms, pages 677–678, 2002.

5. Julia Chuzhoy, Rafail Ostrovsky, and Yuval Rabani. Approximation algorithms
for the job interval selection problem and related scheduling problems. In IEEE
Symposium on Foundations of Computer Science, pages 348–356, 2001.

6. B. DasGupta and M. A Palis. Online real-time preemptive scheduling of jobs with
deadlines on multiple machines. Journal of Scheduling, 4(6):297–312, 2001.

7. Thomas Erlebach and Frits C.R. Spieksma. Simple algorithms for a weighted in-
terval selection problem. Eleventh Annual International Symposium on Algorithms
And Computation (ISAAC 2000), pages 228–240, 2000.

8. D. S. Hochbaum and D. B. Shmoys. Using dual approximation algorithms for
scheduling problems: practical and theoretical results. Journal of the ACM, 34:144–
162, 1987.

9. Spyros Kontogiannis. Lower bounds & competitive algorithms for online scheduling
of unit-size tasks to related machines. In Proceedings of the thiry-fourth annual
ACM symposium on Theory of computing, pages 124–133. ACM Press, 2002.

10. Richard J. Lipton and Andrew Tomkins. Online interval scheduling. In Proceedings
of the fifth annual ACM-SIAM symposium on Discrete algorithms, pages 302–311.
ACM Press, 1994.

11. Chunming Qiao and Myungsik Yoo. Optical burst switching(obs) - a new paradigm
for an optical internet. In Journal High Speed Networks, volume 8, pages 69–84,
1999.

12. J. Turner. Terabit burst switching. Journal High Speed Networks, 8:3–16, 1999.
13. Yijun Xiong, Marc Vandenhoute, and Hakki C. Cankaya. Control architecture

in optical burst-switched wdm networks. In IEEE Journal On Selected Areas in
Communications, volume 18, pages 1838–1851, Oct 2000.

14. Jinhui Xu, Chunming Qiao, Jikai Li, and Guang Xu. Efficient channel scheduling
algorithms in optical burst switched networks. In INFOCOM 2003, 22nd Annual
Joint Conference of the IEEE Computer and Communications Societies, San Fran-
cisco, March 2003.

15. M. Yoo and C. Qiao. A high speed protocol for bursty traffic in optical networks.
SPIE’s All-Optical Communication Systems:Architecture, Control and Protocol Is-
sues, 3230:79–90, Nov, 1997.

Superimposing Voronoi Complexes for Shape
Deformation

Chao Chen and Ho-Lun Cheng

National University of Singapore, Singapore

Abstract. Edelsbrunner et al. defined a framework of shape deforma-
tions with shapes bounded by skin manifold. We prove that the infinitely
many synthesized shapes in the deformation sequence share finitely many
common Voronoi complexes. Therefore, we propose a new algorithm to
compute the common Voronoi complexes efficiently for the deformations,
and use these common complexes to compute the synthesized shapes in
real time. This makes generating, visualizing, and customizing shape de-
formations feasible.

1 Introduction

Edelsbrunner et al. defined a framework of shape space construction [2]. See
Figure 1 for an example. Given two reference shapes which are represented by
the skin surfaces, a smooth deformation can be computed automatically and
robustly. This shape space construction provides a new paradigm for geometric
modeling, animation designs and molecular motion simulation. However, it is
limited to only two shapes, and also, not feasible for real time visualization.

In this work, we extend this blending of shapes to n reference shapes in any
dimension. Imagine that given three faces represented by skin surfaces, we can
synthesize any new face with features of the reference faces. Moreover, because
of the extension to n shapes, we are able to customize the shape deformations by
introducing additional reference shapes. In the example of Figure 2, we influence
the deformation of the shape X to I with a shape O. By applying a positive
influence of the shape O, we can create a hole during the deformation. On the
contrary, if we apply a negative influence of the shape O, we can compact the
deforming shape.

We also make the visualization feasible for real time applications. The bot-
tleneck lies on the generation of the Voronoi complex of each instance of the
deforming shapes. The reason is that the shapes are represented by the skin
surfaces and they are built on the Delaunay complexes of weighted point sets.
It means that for each instance in the morphing, a Voronoi complex (or its
Delaunay triangulation) is required. See Figure 1 for an example. The defor-
mation of a shape X into another shape I requires a sequence of intermediate
shapes (1− t)X+ tI, for t ∈ [0, 1]. For each instance in the deformation, it takes
O(m lgm+m�d/2�) time to construct its Voronoi complex in Rd, in which m is

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 330–341, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Superimposing Voronoi Complexes for Shape Deformation 331

the cardinality of the weighted point set. Moreover, we usually need a lot of in-
stances in the sequence of deformation to generate a smooth visualization effect.
Thus, it is infeasible to compute the intermediate shapes in real time.

Contribution. In this paper, we improve the efficiency of the intermediate
shapes computation and extend the works of Edelsbrunner:

1. For each Voronoi complex construction, we improve the bound to O(m3) in
any dimension, if the Voronoi complexes of the initial shapes are given.

2. We prove that all the infinite number of intermediate shapes share finitely
many Voronoi complexes.

3. We generalize Edelsbrunner’s framework to more than two shapes, together
with the additional combinatorial structures required in the new type of
degenerated Voronoi complexes.

The first two points make it feasible for visualizing the deformation in real time.
For example, the Voronoi complexes for the shapes in Figure 1 are identical for
0 < t < 1. Thus, we generate only one Voronoi complex for all the shapes in the
deformation sequence.

Naive Implementation

Our Improvement

VC(I)VC(X)

VC2VC1 VC3 VC4 VC5 VC(I)VC(X)

VC

Fig. 1. A deformation of the shape X into I in R
3

(a)

X I

X+I−O

O

(b)

Fig. 2. Three deformations of X into I influenced by O in three different ways

332 C. Chen and H.-L. Cheng

Outline. In Section 2, we introduce the skin and its construction. In Section 3,
we define the the intermediate shape, and present a theorem stating that there
are only finitely many Voronoi complexes for all the intermediate shapes. Finally,
in Section 4, we design a new algorithm to compute the Voronoi complexes of
the intermediate shapes.

2 Backgrounds

We introduce the geometric foundation of the skin body that is bounded by
the skin surface, a compact manifold without boundary in any dimension. It
is defined by a weighted point set, its Voronoi and Delaunay complexes. This
section serves for the purpose of stating the notations for later sections. Readers
who want to know more details about the skin surface should refer to [4]. At
the end of this section, we will also introduce the notation of furthest-neighbor
Voronoi complex, which is useful in later sections when we extend the morphing
with n reference shapes.

Delaunay and Voronoi Complexes. The skin surface is built on the struc-
tures of Delaunay and Voronoi complexes of a weighted point set. We first define
some notations for the Delaunay and Voronoi complexes.

A weighted point in Rd can be written as bi = (zi, wi) ∈ Rd × R, where
zi ∈ Rd is its position and wi ∈ R is its weight. We can also view a weighted
point, bi, as a ball in Rd with center zi and radius

√
wi. For any B0 ⊆ Rd×R, we

denote z(B0) as the set of the centers of the weighted points in B0. The weighted
distance of a point x ∈ Rd from a weighted point, bi, is defined as

πbi(x) = ‖xzi‖2 − wi. (1)

Given a finite set B0 of n weight points, the Voronoi region, νi, for each weighted
point, bi ∈ B0, is

νi = {x ∈ Rd | πbi
(x) ≤ πbj

(x), bj ∈ B0}.

We define the non-empty intersection of m Voronoi regions as the Voronoi cell
of a set of weighted points X ⊆ B0, namely, νX =

⋂
bi∈X νi. The collection of

all the non-empty Voronoi cells is called the Voronoi complex of B0, denoted as ,
VB0 . For each νX ∈ VB0 , its corresponding Delaunay cell, δX , is the convex hull
of the set of centers of X, namely, conv(z(X)). The collection of all the Delaunay
cells is called the Delaunay complex of B0, denoted as DB0 .

Given a Delaunay cell δX , its dimension, dim(δX), is that of the affine hull
of δX . If dim(δX) is no more than card(X)−1, δX is a simplex. If this is true for
all cells in DB0 , it is a simplicial complex. The Delaunay complex is simplicial
under the following general position assumption in Rd.

Assumption 1 (General positions) ∀νX ∈ VB0 , card(X) = dim(δX) + 1.

The dimension of νX , dim(νX), is d− dim(δX). We call νX a simplicial Voronoi
cell if its corresponding Delaunay cell is a simplex.

Superimposing Voronoi Complexes for Shape Deformation 333

3

2

1
b b

b

b
4

(a) V0 and D0 of B0.

b

b

b

b1

2

3

4

(b) The skin of B0. (c) A skin in R
3.

Fig. 3. The left subfigure is the Voronoi and Delaunay complexes of a weighted point set
in R

2, B0 = {b1, b2, b3, b4}. The center subfigure is the skin of B0, which is constructed
on the complexes of B0. The right subfigure is the skin body of a molecule in R

3

We can define a new Voronoi complex using a different distance function.
If we employ −πbi

(x) as the distance function, the resulting Voronoi complex
is the furthest-neighbor Voronoi complex. Each of its elements contains points
with the longest weighted distances from the weighted points. The furthest-
neighbor Voronoi complex will be used to construct the Voronoi complex of the
intermediate shape in the next section.

Skin. A skin surface is Specified by a set of weighted points B0 = {bi ∈ Rd×R |
i = 1..n0}. Before defining the skin, three operations on weighted points (or
balls) are given. The aim is to establish the operations for linear combinations
of weighted points [4] as in points in Rd. Also, these operations are useful in
the proof in later sections. For bi, bj ∈ B0 and γ ∈ R, the addition, scalar
multiplication and square root of weighted points are defined as

bi + bj = (zi + zj , wi + wj + 2〈zi, zj〉),
γbi = (γzi, γwi + (γ2 − γ)‖zi‖2), and√
bi = (zi, wi/2),

respectively, in which 〈zi, zj〉 is the scalar product of two vectors zi and zj . A
linear combination of B0 is

∑n0
i=1 γibi with γi ∈ R and i = 1..n0. It is a convex

combination if
∑n

i=1 γi = 1 and all γi ≥ 0. Thus, we can define the convex hull
of B0 as conv(B0), namely, the set of all the convex combinations of B0.

Now, we are ready to define the skin surface. We first shrink all the balls in
conv(B0) by the square root operations. Then, the skin surface is the envelop of
the underlying space of these shrunken balls, formally,

skin(B0) = ∂

(⋃√
conv(B0)

)
.

For the space bounded by the skin surface, we call this the skin body, denoted
as body(B0) =

⋃√
conv(B0). Figure 3(c) shows an example of the skin body in

R3.

334 C. Chen and H.-L. Cheng

Skin Decomposition. Here, we discuss the skin decomposition and give the
reason why we need the Delaunay and Voronoi complexes for the skin construc-
tion. The skin of B0 can be decomposed by mixed cells. A mixed cell, μX , is a
Minkowski sum of a Delaunay cell and its corresponding Voronoi cell, namely,
μX = (νX + δX)/2. All the mixed cells partition Rd and decompose the skin
surface. Within each mixed cell, skin(B0)∩μX is a quadratic surface in the form
of
∑d

i=1±x2
i = wX/2 after translation to the center of μX . The center and size

of μX is defined as

zX = aff(δX) ∩ aff(νX), and (2)

wX = wi − ‖zXzi‖2, (3)

respectively. In R2, there are three types of mixed cell and the ‘patch’ is either
a portion of a circle or a hyperbola clipped with a mixed cell. See Figure 3(b)
for a decomposed skin.

3 Intermediate Shapes and Their Voronoi Complexes

In deformation, we start with some reference shapes and generate some mixtures
of them, namely, intermediate shapes. After discussing how they are generated,
we present the theorem of all the intermediate shapes share finitely many Voronoi
complexes.

Intermediate Shapes. Given a finite set of given shapes, namely, the refer-
ence shapes, an infinite family of intermediate shapes can be constructed. Each
intermediate shape is the mixture of the reference shapes, with a set of weights
signaling the similarities between the mixture and the reference shapes.

Let the number of reference shapes be n. Let B = {B1, . . . , Bn} be the set
of weighted point sets defining the set of reference shapes, S = {body(Bi) |
Bi ∈ B}. To define the intermediate shapes of S, we firstly define the affine
combinations of B, namely, B(c).

Given two weighted point sets, B0 and B1, we define the addition, and scalar
multiplication of them as

B0 +B1 = {bi + bj | bi ∈ B0, bj ∈ B1}, and
γB0 = {γbi | bi ∈ B0}, for γ ∈ R,

respectively. With these operations, we can define the linear combination of B as
B(c) =

∑n
i=1 γiBi with the coefficient vector, c = (γ1, . . . , γn) ∈ Rn. If

∑n
i=1 γi =

1, B(c) is an affine combination of B, namely, the intermediate weighted point
set. Note that the cardinality of B(c) is no more than Πn

i=1card(Bi). We do
not limit the weights to be positive for a convex combination because negative
weights play an interesting role in shape mixing.

An intermediate shape is defined as the skin shape bounded by the skin of
B(c), namely, body(B(c)). Each intermediate shape corresponds to a coefficient

Superimposing Voronoi Complexes for Shape Deformation 335

vector, c, which states the weights of all these reference shapes in this mixture.
All the coefficient vectors of the intermediate shapes form a hyperplane Γ ⊆ Rn.
A deformation of one intermediate shape into another is parameterized with a
path connecting the two corresponding coefficient vectors in Γ . Note that each
reference shape is also an intermediate shape, whose corresponding coefficient
vector is a unit basis vector in Rn.

Intermediate Voronoi Complexes. We denote the Voronoi complex of B(c)
as V (c), namely, the intermediate Voronoi complex. To compute an intermediate
shape, body(B(c)), the corresponding intermediate Voronoi complex, V (c), is
required. However, it is computationally expensive if we compute V (c) for each
individual value of c, especially in deformation of the intermediate shapes. On the
other hand, we will show that Γ can be divided into finite number of partitions,
and in each partition, the intermediate Voronoi complexes are the same for all
the possible values of c.

Each weighted point b(c) ∈ B(c) is an affine combination of n weighted points
from the n given Bi ∈ B, namely, b(c) =

∑n
i=1 γibi, for some bi ∈ Bi. In order

to define the Voronoi region of b(c) with respect to B(c), we firstly derive the
weighted distance of any point x ∈ Rd from b(c).

Lemma 1. Let b(c) =
∑n

i=1 γibi, such that
∑n

i=1 γi = 1. The weighted distance
of any point x ∈ Rd from b(c) is the affine combination of the weighted distances
of x from b1, . . . , bn, namely,

πb(c)(x) =
n∑

i=1

γiπbi
(x).

Proof. We prove this lemma by induction on the number n. For n = 1, it is true
since γ1 = 1 and B(c) = B1. When n = 2, we have

πb(c)(x) = γ1πb1(x) + (1− γ1)πb2(x), (4)

by using Equation (1). The claim is true for n = 2.
Assume the claim is true for n = k. When n = k+1, without loss of generality,

we assume γk+1 �= 1. Let B′ = B− {Bk+1} and

c′ = (
γ1

1− γk+1
,

γ2

1− γk+1
, ..,

γk

1− γk+1
).

Let B′(c′) be the affine combination of B′, and b′(c′) ∈ B′(c′). Then, b(c)
can be expressed as the affine combination of b′(c′) and bk+1, namely,

b(c) = (1− γk+1)b′(c′) + γk+1bk+1.

Follow Equation (4), the weighted distance of any point x ∈ Rd from b(c) is

πb(c)(x) = (1− γk+1)πb′(c′)(x) + γk+1πbk+1(x) =
k+1∑
i=1

γiπbi
(x),

as required.
�

336 C. Chen and H.-L. Cheng

We are now ready to give a new method to determine the Voronoi region of
b(c) with respect to B(c). We start constructing V (c) from a simple situation,
in which γi > 0 for all i.

Lemma 2. For any b(c) ∈ B(c) with all γi > 0, its Voronoi region with respect
to B(c) is the intersection of the Voronoi regions of b1, . . . , bn with respect to
B1, . . . , Bn, respectively, namely,

νb(c) =
n⋂

i=1

νbi . (5)

Proof. It is easy to see that
⋂n

i=1 νbi ⊆ νb(c), because γiπbi(x) ≤ γiπb′
i
(x) for all

b′i ∈ Bi. Next, we prove νb(c) ⊆
⋂n

i=1 νbi
. We will show that for k = 1..n, and

any point x ∈ Rd, x ∈ νb(c) implies that x ∈ νbk
. For any b′k ∈ Bk, let

b′(c) =
i �=k∑

i=1..n

γibi + γkb
′
k.

We have πb(c)(x) ≤ πb′(c)(x) if x ∈ νb(c), that is,

n∑
i=1

γiπbi
(x) ≤

i �=k∑
i=1..n

γiπbi
(x) + γkπb′

k
(x).

Simplifying this inequality, we have γkπbk
(x) ≤ γkπb′

k
(x), which implies x ∈

νbk
, as required.
�

Next, we generalize this lemma to any possible values of c in Γ . We assume
γi �= 0 for any i, because for any γk = 0,

B(c) =
i �=k∑

i=1..n

Bi.

If γi < 0, the lemma is true if we substitute γk with −γk, and πbk
(x) with

−πbk
(x). That means, the lemma remains true if we use −πbk

(x) as the distance
function, and the furthest-neighbor Voronoi region as νbk

.
For convenience, we assign signs to the Voronoi complex and its elements. For

a weighted point set, B0, its Voronoi complex with ‘+’ sign, V +
B0

, is the nearest-
neighbor Voronoi complex of B0, and V −

B0
is the furthest-neighbor Voronoi com-

plex of B0. The same rule applies to the Voronoi cells ν+
X and ν−

X .
Therefore, the Voronoi cell of b(c) with respect to B(c) is the intersection of

the signed Voronoi cells of bi with respect to Bi, whose signs are determined by
the signs of the corresponding γi, namely,

νb(c) =
n⋂

i=1

ν
Sign(γi)
bi

.

This leads to the following Theorem about the intermediate Voronoi complex.

Superimposing Voronoi Complexes for Shape Deformation 337

Theorem 1. The intermediate Voronoi complex is the superimposition of all
the signed Voronoi complexes, V Sign(γi)

Bi
, that is,

V (c) = {νX(c) =
n⋂

i=1

ν
Sign(γi)
Xi

| νX(c) �= ∅, X(c) =
n∑

i=1

γiXi, Xi ⊆ Bi}.

According to this theorem, an intermediate Voronoi cell is the collection of
the non-empty intersections of n signed Voronoi cells, from the n signed Voronoi
complexes of the reference shapes, respectively. See Figure 4 for an example
of superimposing two signed Voronoi complexes when all the coefficients are
positive.

1

2

b
3

b

b

(a) The com-
plexes of
B0 = {b1, b2, b3}.

ν26

ν24ν34

ν17 ν14
ν15

ν25

ν36

ν37

(b) The Voronoi
complex of tB0 +
(1 − t)B1 for t ∈
(0, 1).

6

4

7
b

b

b

b

5

(c) The com-
plexes of B1 =
{b4, b5, b6, b7}.

17
p

p

p
p
37

36
p

p
34

p
16

p
14

15

24
p

25

26
p

p
27

35
p

(d) The complexes
of 0.75B0 +0.25B1.

17

p

37
p

p
36

34
p p

27

p 14

15
p

16
p

24
p

25
p

26
p

35
p

(e) The complexes
of 0.50B0 +0.50B1.

15

14

p
17

37
p p

27

p
36

24
p

34
p

p

p

25
p35

pp
16

26
p

(f) The complexes
of 0.25B0 +0.75B1.

Fig. 4. Deformation of the Delaunay complexes. The Voronoi complex remains the
same and it the superimposition of two signed Voronoi complexes

The intermediate Voronoi complexes, V (c0) and V (c1), are the same if
Sign(γ0,i) = Sign(γ1,i) for all i, in which γ0,i, γ1,i are the i-th coordinates of c0
and c1 respectively. By this, we can divide Γ into 2n−1 convex partitions with re-
spect to the signs of the coefficients. The number of partitions is 2n−1 rather than
2n, because the coordinates of a coefficient vector c ∈ Γ can not be all negative.

338 C. Chen and H.-L. Cheng

Each partition covers all the values of coefficient vectors, c = (γ1, . . . , γn), with
the same (Sign(γ1), . . . ,Sign(γn)). For any two coefficient vectors in the same
partition, their corresponding intermediate Voronoi complexes are the same.

For a deformation of one intermediate shape into another, its parameterizing
path is also divided into finitely many pieces. For all the coefficient vectors lie in
a same piece, their corresponding intermediate shapes share a same intermediate
Voronoi complex. See Figure 4.

Enumerating Voronoi Cells in V (c). In Rd, a Voronoi cell, νX , is the non-
empty intersection of m Voronoi regions. If m > d + 1 − dim(νX), we call νX

degenerate. Otherwise, it is simplicial as we defined in the background section.
In the intermediate Voronoi complex, the degenerate case is unavoidable. See
Figure 4 for an example in R2. When n = 2 and d = 2, the intersection of two
Voronoi edges is a Voronoi vertex, which is the common intersection of the four
Voronoi regions of the four weighted points in the intermediate weighted point
set. It is degenerate because it is the intersection of four Voronoi regions while
its dimension, dim(νX(c)) = 0. There are three such degenerate Voronoi cells in
the intermediate Voronoi complex in Figure 4.

We classify all the Voronoi cells in V (c), each of which is either simplicial or
degenerate, with regard to the dimensions of their contributors. Let τj be the
number of contributors whose dimensions are j. We define the type of a Voronoi
cell as a tuple, (τ0, . . . , τd−1). The variable τd is omitted, because it is dependent,
namely, τd = n −

∑d−1
j=0 τj . Enumerating all the types of νX(c) is equivalent to

enumerating all the tuples, (τ0, . . . , τd−1), with the constraint

d−1∑
j=0

((d− j)τj) ≤ d. (6)

Next, we are going to explain why this constraint is sufficient. For conve-
nience, we denote the dimension of νX(c) as d(c), and the dimension of the con-
tributor, νXi

, as di, namely, di = dim(νXi
). Generally, the dimension of the inter-

section of two Voronoi cells, νX and νY , is dim(νX∩νY) = dim(νX)+dim(νY)−d.
The Voronoi cell, νX(c), which is the intersection of n Voronoi cells, has the di-
mension

d(c) =
n∑

i=1

di − (n− 1)d. (7)

We can get the Constraint (6) by substituting d(c) ≥ 0,
∑n

i=1 di =
∑d

j=0(jτj),

and n =
∑d

j=0 τj into the Inequality (7).
To list out all the possible tuples in Rd, we firstly list out all the possible

values of τ0 under the Constraint (6). We get all the possible values of τ1 for
each value of τ0. Repeating this progress from τ1 to τd−1 under the Constraint
(6), we can enumerate all the possible tuples. For example, there are seven
types of Voronoi cells in R3, under the constraint 3τ0 +2τ1 + τ2 ≤ 2. The tuples,

Superimposing Voronoi Complexes for Shape Deformation 339

(1, 0, 0), (0, 1, 0), (0, 0, 1) and (0, 0, 0), represent the four simplicial types, Voronoi
vertex, edge, polygon, and polytope, respectively. The tuples, (0, 0, 2), (0, 0, 3),
and (0, 1, 1) represent three degenerate types.

4 Algorithm for Computing Intermediate Complexes

An intermediate shape, body(B(c)), is immediate once the intermediate Voronoi
complex, V (c), is determined. In this section, we introduce the algorithm to
compute V (c).

An intuitive yet time consuming approach is to compute the Voronoi complex
of B(c). Assuming card(Bi) ≤ m, i = 1..n, the cardinality of B(c) is no more
thanmn. Therefore, the time for computing the Voronoi complex of B(c) directly
is

O(nmn logm+mn×�d/2�) (8)

[1, 3, 6].
On the other hand, according to Theorem 1, we can compute V (c) by super-

imposing the signed Voronoi complexes of the reference shapes. We prove that
when d > 2, computing V (c) by superimposing is faster than computing it from
B(c) directly.

Assuming the value of c is fixed, we simplify the notations V Sign(γi)
Bi

to VBi
,

and νSign(γi)
Xi

to νXi in the rest of the paper.

Superimposing Two Voronoi Complexes. Let V0 and V1 be two intermedi-
ate Voronoi complexes. We construct their superimposition, V0,1 by computing
each of its Voronoi region νi,j = νi ∩ νj , for νi ∈ V0 and νj ∈ V1. We can com-
pute V0,1 by brute force, namely, testing all the possible pairs of νi and νj for
non-empty intersection. This can be achieved by linear programming algorithms.

However, we can improve the construction by a breath-first search manner.
Given one Voronoi region νi,j ∈ V0,1, we can compute the neighbors of νi,j by
considering all neighbors of νi and νj in V0 and V1 respectively. The time for
this breadth-first search algorithm is output sensitive. The worst case is that we
tested all the possible pairs of Voronoi cells, namely m2 pairs. Testing whether
two Voronoi regions have non-empty intersection needs O(d!m) time by the linear
programming method [5]. Thus, the total time complexity of superimposing V0
and V1 is O(d!m3).

Superimposing n Voronoi Complexes. Next we introduce the algorithm of
computing V (c) by superimposing n Voronoi complexes, which is based on the
algorithm of superimposing two Voronoi complexes.

For convenience, let k = �log2(n)� and η = 2k−1 and we have η < n ≤ 2η. We
divide the way of superimposing n Voronoi complexes into three cases, namely,
η < n ≤ 9η/8, 9η/8 < n ≤ 3η/2, and 3η/2 < n ≤ 2η. We prove that when d > 2,
our algorithm can achieve better efficiency than computing the Voronoi complex
of B(c) directly.

340 C. Chen and H.-L. Cheng

We will prove the case for 3η/2 < n ≤ 2η first. We superimpose the n Voronoi
complexes according to a binary superimposing tree. See Figure 5. In the first

Round 1

Round 2

Round k V(c)

V1

12V

V3

V34

V4V2 V2η

V(2η−1)2η

Fig. 5. Superimposing n Voronoi complexes when 3η/2 < n ≤ 2η

round, we superimpose V2j−1 and V2j for j = 1..η. The time complexity for
this round is O(d!2k−1m3). In the second round, we superimpose V(4j−3)(4j−2)
and V(4j−1)(4j) for j = 1..η/2. In either V(4j−3)(4j−2) or V(4j−1)(4j), there are
no more than m2 Voronoi regions. Thus, the time complexity for the second
round is O(d!2k−2m3×2). Generally, for the i-th round, the time complexity is
O(d!2k−im3×2i−1

), i = 1..k. After k rounds of such superimposition, we can
get V (c). Therefore, the total time complexity to superimpose the n Voronoi
complexes, V1, V2, ... and Vn, is

O(
k∑

i=1

(d!2k−im3×2i−1
)).

Since m is greater than 2 in practice, we have (d!2k−i1m3×2i1−1
) < (d!2k−i2

m3×2i2−1
) for any i1 < i2. Thus, the total time complexity is equivalent to

O(kd!m3×2k−1
). For a fixed d, we can ignore the d! and only consider the time

complexity as O(km3×2k−1
). Adding in the time of computing V1, .., Vn, the

overall time complexity to compute V (c) is

O(km3×2k−1
+ nm logm+ nm�d/2�). (9)

When d > 2 and n > 1, the time complexity of the intuitive way in Equation
8 is dominated by O(mn×�d/2�), and the time complexity of our algorithm in
Equation 9, is dominated by O(km3×2k−1

+nm�d/2�). In practice, we can assume
that n, k, and d are smaller than m. Under such assumption, our algorithm has
better efficiency if we can show that m3×2k−1

< mn�d/2�. Since n > 3η/2 and
d > 2, we have

m3×2k−1
= m3×η < m2n ≤ mn�d/2�,

as required.
When 9η/8 < n ≤ 3η/2 and η < n ≤ 9η/8, we can build the superimposing

tree in two similar ways, both of which has better efficiency than the intuitive
way.

Superimposing Voronoi Complexes for Shape Deformation 341

5 Conclusion

In this paper, we designed a new algorithm to compute the Voronoi complex
of an intermediate shape basing on Theorem 1. We prove that when d > 2,
our algorithm is faster than computing the Voronoi complex from B(c) directly.
Moreover, since all the intermediate shapes share finitely many common Voronoi
complexes, we are able to compute intermediate shapes in real time, by reusing
the generated common Voronoi complexes. This makes it possible to generate,
visualize, and customize shape deformations.

About the future direction, we want to save the time complexity of superim-
posing n Voronoi complexes by rearranging the order of the pairwise superim-
positions. We may solve this problem with dynamic programming. The goal is
to change the superimposing order so that the cardinalities of the intermediate
superimposing results are as small as possible.

References

[1] Chazelle, B. An optimal convex hull algorithm in any fixed dimension. In Discrete
Comput. Geom. (1993), pp. 10:377–409.

[2] Cheng, H., Edelsbrunner, H., and Fu, P. Shape Space from Deformation.
Proc. 6th Pacific Conf.. Comput. Graphics Appl. (1998), 104–113.

[3] Clarkson, K. L., and Shor, P. W. Applications of random sampling in compu-
tational geometry, II. Discrete and Computational Geometry 4, 1 (1989), 387–421.

[4] Edelsbrunner, H. Deformable Smooth Surface Design. Discrete Comput. Geom
21 (1999), 87–115.

[5] Seidel, R. Linear programming and convex hulls made easy. In Proc. 6th Annu
ACM Sympos. Coput. Geom. (1990), pp. 211–215.

[6] Seidel, R. Small-dimensional linear programming and convex hulls made easy. In
Discrete Comput. Geom. (1991), pp. 6:423–434.

On Partial Lifting and the Elliptic Curve
Discrete Logarithm Problem

(Extended Abstract)

Qi Cheng1,� and Ming-Deh Huang2,��

1 School of Computer Science,
The University of Oklahoma,

Norman, OK 73019, USA
qcheng@cs.ou.edu

2 Computer Science Department,
University of Southern California,

Los Angeles, CA 90089
huang@cs.usc.edu

Abstract. It has been suggested that a major obstacle in finding an
index calculus attack on the elliptic curve discrete logarithm problem
lies in the difficulty of lifting points from elliptic curves over finite fields
to global fields. We explore the possibility of circumventing the problem
of explicitly lifting points by investigating whether partial information
about the lifting would be sufficient for solving the elliptic curve dis-
crete logarithm problem. Along this line, we show that the elliptic curve
discrete logarithm problem can be reduced to three partial lifting prob-
lems. Our reductions run in random polynomial time assuming certain
conjectures are true. These conjectures are based on some well-known
and widely accepted conjectures concerning the expected ranks of ellip-
tic curves over the rationals.

Keywords: Elliptic curve cryptosystem, discrete logarithm, partial
lifting.

1 Introduction

The discrete logarithm problem over elliptic curves is a natural analog of the
discrete logarithm problem over finite fields. It is the basis of elliptic curve cryp-
tosystems proposed independently by Koblitz and Miller [9, 10]. Steady progress
has been made in constructing better and more sophisticated, albeit subexpo-
nential time algorithms for the discrete logarithm problem over finite fields. In
contrast, no subexponential attacks have been found for the elliptic curve dis-
crete logarithm problem except in very special cases [4, 5, 13, 14]. Consequently

� This research is supported in part by NSF career award CCR-0237845.
�� This research is supported in part by NSF grant CCR-9820778.

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 342–351, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

On Partial Lifting and the Elliptic Curve Discrete Logarithm Problem 343

elliptic curve cryptosystems have attracted considerable attention, especially in
cryptographic applications where key length needs to be kept to the minimal.

Most subexponential algorithms for discrete logarithms over finite fields have
been based on the index calculus method (see [20] for a survey). This method
involves lifting elements from a finite field to a global field to take advantage of
the arithmetic structures in the global field. The lifting of elements is simple and
straightforward. For example in the case of a finite prime field Fp, an element
a mod p ∈ Fp with 0 < a < p is simply lifted to a ∈ Z. However extending this
method to the elliptic curve discrete logarithm problem seems to be difficult.
It has been suggested [10] that a major obstacle in finding an index calculus
attack on the elliptic curve discrete logarithm problem lies in the difficulty of
lifting points from elliptic curves over finite fields to global fields. The reason
behind such difficulty is that elliptic curves over Q usually have very small rank
– at least heuristically and practically speaking. As a result rational points with
reasonably bounded heights are severely limited in number, rendering the lifting
problem difficult. (See the next section for an illustration, and [7, 8, 19] for more
in-depth discussion .)

In this paper we explore the possibility of circumventing the problem of ex-
plicitly lifting points by investigating whether partial information about the lift-
ing would be sufficient for solving the elliptic curve discrete logarithm problem.
We show that the elliptic curve discrete logarithm problem can be reduced to
three partial lifting problems. These partial lifting problems have the same basic
setup as the explicit lifting problem, namely, an elliptic curve E/Fp a nonzero
point S ∈ E(Fp), an elliptic curve E/Q having E as its good reduction mod p,
and X ∈ E(Q) which reduces to S mod p. Moreover we assume that E(Fp) is
cyclic of prime order, so that every point in E(Fp) is liftable to E(Q). For the
first partial lifting problem, we are given T ∈ E(Fp), a height bound h ∈ Q,
and the goal is to decide whether T can be lifted to a point in E(Q) of height
bounded by h. We call this problem the height decision problem. Note that if
the height bound h is around p, it may take exponential time just to write down
a lift of T . However in the height decision problem all that we ask is whether
such a lift exists or not. For the second partial lifting problem, we are given
T ∈ E(Fp) and a prime r, and the goal is to find the reduction mod r of any
one lift of T to E(Q). We call this problem the shifting prime problem. Note that
a lift of T can again be large, but its reduction modulo r has length O(log r).
For the third partial lifting problem, we are given T ∈ E(Fp), and the goal is
to construct a straight-line description of any lift of T to E(Q). We call this
problem the straight-line description problem. (As will be observed in the next
section that a small straight-line description of a lift of T usually does exist .)

Our reductions run in random polynomial time assuming certain conjectures
are true. These conjectures are based on some well-known and widely accepted
conjectures concerning the expected ranks of elliptic curves over the rationals.
They are stated explicitly in the next section. Our results lead to the following
open question: can partial information on lifting as described above be extracted
in subexponential time? An affirmative answer will lead to a subexponential algo-

344 Q. Cheng and M.-D. Huang

rithm for the the elliptic curve discrete logarithm problem. On the other hand,
should the elliptic curve discrete logarithm problem admit no subexponential
time attack, then our results suggest that gaining partial information about
lifting would be just as hard.

2 Statements of Results

An elliptic curve is a smooth cubic algebraic curve. Let k be a field. An elliptic
curve over k can be given as an equation of the form:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where ai ∈ k, 1 ≤ i ≤ 6. Denote by E(k) the set of points (x, y) ∈ k2 that satisfy
this equation, along with a point O at infinity. If the characteristic of k is neither
2 nor 3, we may assume that the elliptic curve is given by an equation of the
form

y2 = x3 + ax+ b, a, b ∈ k
The discriminant of this curve is defined as the discriminant of polynomial x3 +
ax+ b, which is −4a3−27b2. The curve is smooth iff its discriminant is not zero.

The set E(k) forms an additive group. Let S, T ∈ E(k) be two points on
the curve. The discrete logarithm of T with base S is an integer m such that
T = mS, if such an m exists.

A lot of theoretical and experimental evidence shows that most elliptic curves
would have as small a rank as allowed by the sign of their functional equations[2,
3]. In particular most elliptic curves over the rationals with a rational point of
infinite order are expected to be either of rank 1 or 2. Parts of our proofs are
based on such a heuristic assumption. An explicit statement of the assumption
sufficient for our purposes is given below.

Conjecture 1. Let E : y2 = x3 + ax + b be an elliptic curve over Z/(n). Let P
be a point on the E all of whose coordinates are in (Z/(n))∗ and let X be the
natural lift of P to Q. Consider the family of curves over Q

F(E,X) = {E(α, β)||α|, |β| ≤ n2, E pass X and E reduce to E modulo n}

where E(α, β) is defined by the equation y2 = x3 +αx+ β. Then for sufficiently
large n, a random curve in the family has rank 1 with probability greater than
some constant.

In light of the general heuristic assumption, it would be reasonable to expect
that a random curve in F(E,X) has rank 1 with probability around 1/2, and
rank 2 with probability around 1/2.

Now to illustrate the difficulty of lifting points, let us consider an elliptic
curve E/Fp with a nonzero point S ∈ E(Fp) which generates a cyclic group
< S > of large prime order r. It is not difficult to construct an elliptic curve
E/Q with E as its reduction at p, and X ∈ E(Q) which reduces to S modulo p.

On Partial Lifting and the Elliptic Curve Discrete Logarithm Problem 345

In practical terms E(Q) would most likely be of rank one or two. For simplicity
suppose it is of rank one. Now suppose we want to lift a point T in the group
< S > to a point in E(Q). Suppose E(Q) has trivial torsion part and, to our
advantage, S is the image of the a generator X of E(Q) upon reduction mod p.
Then for m < r, mX is the lift of T = mS of minimum possible canonical height.
However ĥ(mX) = m2ĥ(X) (where ĥ denotes the canonical height function),
which is Ω(p2) in the worst case. Therefore it is infeasible even to write down
the coordinates of the lifting points of T .

Y = m X ∈ E(Q)
⇑ ⇑
T = m S ∈ E(Fp)

On the other hand, though the coordinates of Y are huge they actually have
very short straight-line description essentially because multiplication of a point
by m can be performed in O(logm) additions of points. So instead of trying
to lift points explicitly we consider three partial lifting problems whose formal
definitions are given below together with theorems concerning their relation to
the elliptic curve discrete logarithm problem.

The Height Decision Problem:
Input: p, E, S, E , X, T and h where p is a prime, E/Fp is an elliptic curve such
that E(Fp) is cyclic of prime order, S is a nonzero point in E(Fp), E/Q is an
elliptic curve having E as its good reduction mod p, X ∈ E(Q) which reduces
to S mod p, T ∈ E(Fp) and h ∈ Q (a height bound).
Output: ”Yes” if T can be lifted to a point in E(Q) of height bounded by h,
and ”no” otherwise.

Theorem 1. Assuming Conjecture 1, then there is a random polynomial time
reduction from the elliptic curve discrete logarithm problem to the height decision
problem.

The Shifting Prime Problem:
Input: p, r, E , B and P where p and r are prime numbers, E/Q is an elliptic
curve, B is a nontorsion rational point on the curve, P is a point on E1 where E1
is the reduction of E modulo p. We require that B doesn’t reduce to O modulo
p or r.
Output: A point R ∈ P2(Fr) which is the reduction of X ∈ E(Q) modulo r,
where X is any lift of P to Q.

Theorem 2. Assuming Conjecture 1, then there is a random polynomial time
reduction from the elliptic curve discrete logarithm problem to the shifting prime
problem.

The Straight-Line Description Problem:
Input: p, r, E , B and P where p is a prime number, E/Q is an elliptic curve, B
is a nontorsion rational point on the curve, P is a point on E1 where E1 is the
reduction of E modulo p. We require that B doesn’t reduce to O modulo p.

346 Q. Cheng and M.-D. Huang

Output: Straight-line programs of length polynomial in the size of input for the
projective coordinates of any lift of P on E .

Theorem 3. Assuming Conjecture 1, then there is a random polynomial time
reduction from the elliptic curve discrete logarithm problem to the straight-line
description problem.

3 Reduction to the Height Decision Problem

In this section, we prove Theorem 1 by demonstrating a random polynomial
time reduction from the elliptic curve discrete logarithm problem to the height
decision problem.

Suppose for the rest of this section that p is a prime larger than 3 and E is
an elliptic curve defined over Fp given by y2 = x3 +ax+ b with a, b ∈ Fp, E(Fp)
is cyclic of prime order r, and S, T ∈ E(Fp). In the discrete logarithm problem
we are to find m so that T = mS on E(Fp).

First we observe that if p is sufficiently large, then any lift E of E with good
reduction cannot have any nontrivial rational torsion point. Indeed by a result
of Mazur [11, 12], we know that E(Q) has at most 16 torsion points. Since the
torsion subgroup injects into E(Fp) and since the order of E(Fp) is prime, it
follows that the torsion part of E(Q) must be trivial. From now on we assume
that p is large enough.

Let X = (x0, y0) be the natural lift of S to Z.
In the first step of our reduction we construct a lift of E to some E/Q passing

through X, given by y2 = x3 + αx + β with α, β ∈ Z, and (α, β) = 1. To this
end we choose α = a + ip with |i| < p so that (α, y2

0 − x3
0) = 1, then set

β = y2
0 − x3

0 − αx0. It is easy to see that E passes through X. Moreover one can
show that a substantial fraction of integers i satisfies the requirement, so that
(α, β) = 1. It then follows from the results in [16, 17, 18] that one can compute
h0 ∈ Q in time polynomial in log p so that |ĥ(X)− h0| < 1

r2 .
Since X ∈ E(Q) is non-torsion, E(Q) is of rank at least one. Moreover the

reduction map from E(Q) to E(Fp) is surjective, since S = X mod p and E(Fp)
is cyclic of prime order. Therefore every point in E(Fp) has a lift to E(Q). In
particular, T has a lift of the form mX.

Suppose E(Q) is of rank one and G is a generator of E(Q). (We will not
actually compute the rank nor a generator.) Then X = lG for some l ∈ Z, and
if nG mod p = T (n < r), lT has a lift nX. From l and n, the discrete logarithm
problem is solved, since upon reduction we get lT = nS.

Since X = lG, ĥ(X) = l2ĥ(G). Now by construction, ĥ(X) = (log p)O(1).
On the other hand, by Lang’s conjecture, ĥ(G) > c logΔ where c is an absolute
constant and Δ is the discriminant of E . It follows that l = (log p)O(1).

By the result in [16, 17, 18], we have |2ĥ(Y)−h(Y)| < c for Y ∈ E(Q), where
c is a constant independent of Y and E . In particular for positive integers i < r,

|1
2
h(iX)− i2h0| ≤ |

1
2
h(iX)− ĥ(iX)|+ |ĥ(iX)− i2h0| < c/2 + 1.

On Partial Lifting and the Elliptic Curve Discrete Logarithm Problem 347

Set c′ = c/2 + 1.Then it follows that if 1
2h(nX) < i2h0, then n ≤ i + c′. This

implies that using a binary search technique beginning with the query asking
if lT is liftable to a point of height no greater than 2r2h0, we can determine n
within O(1) in O(log p) queries.

Consequently, for the constructed lift E and each value of l up to (log p)O(1),
we will attempt to find an n < r so that lT has a lift to E(Q) of the form nX.
When we succeed to find such n for an l, we then verify if lT = nS and if so, the
discrete logarithm is solved. If we fail for all possible values of l, then it must
be the case that the rank of E(Q) is greater than one. In that case we construct
another random lift and apply the same procedure all over again. By our heuristic
assumption, a randomly constructed E(Q) has rank one with probability about
1/2, hence we expect to succeed within two trials. Hence Theorem 1 follows.

4 The Shifting Prime Problem

In this section, we show that the shifting prime problem is equivalent to the
discrete logarithm problem on elliptic curves. The main idea in the proof is to
lift an elliptic curve E/Fp to an elliptic curve E/Q of rank one with additive
reduction modulo r, where r is the prime order of E(Fp). We demonstrate that,
with the help of an oracle for the shifting prime problem, the discrete logarithm
problem on E(Fp) can be shifted over to the group of nonsingular Fr-points on
E mod r, which is isomorphic to the addition group of Fr, and the corresponding
discrete logarithm problem is easy to solve.

First we review some facts about additive reduction. Let E(Q) : y2 = x3 +
ax + b, a, b ∈ Z, be an elliptic curve over Q. It is possible that when modulo
some prime p, the reduction curve E/Fp is not smooth anymore. If E has a cusp,
we say that E is an additive reduction of E at p.

Let E(ns) be the set of non-singular points on E, we can define “addition”
on E(ns) in very much the same way as in the smooth case [15]. Moreover,

E(ns) ∼= F+
p

by sending (x, y) to x
y . (Note that since (x, y) is not a singular point, y �= 0.)

Hence the discrete logarithm problem on E(ns) is easy to solve.
For example, if E is defined by

y2 = x3 + ax+ b

where a, b ∈ Z. p �= 2, 3. E has additive reduction at p if and only if p|a and p|b.
Let E(Q) be an elliptic curve with rank 1 and with no rational torsion point

other than O, and let G be the generator for E(Q). Let E1/Fp be the reduction
of E modulo p. Suppose the order of E1(Fp) is a prime r. Moreover suppose E
has additive reduction mod r, and let E2/Fr be the resulting curve. Let G1 and
G2 be the reduction of G on E1 and E2 respectively. Moreover suppose that G1
and G2 are neither points at infinity nor singular. It follows that all the points
on E(Q) reduce to smooth points on E1 and E2. Let E(ns)

2 denote the set of non-

348 Q. Cheng and M.-D. Huang

singular points on the curve E2. Then E(Q) → E1(Fp) and E(Q) → E
(ns)
2 (Fr)

are group homomorphisms.

E(Q)

↙ ↘
E1(Fp) ψ−→ E

(ns)
2 (Fr)

Since E1(Fp) and E(ns)
2 (Fr) have same order, there is a well-defined isomor-

phism ψ between E1(Fp) and E(ns)
2 (Fr) determined by

ψ(iG1) = iG2.

Suppose T, S ∈ E(Fp), T = mS and we want to find m. Certainly ψ(T) =
mψ(S). If we cansolve the shifting primeproblemefficiently,wewill getψ(T),ψ(S).
Hence we have reduced the discrete logarithm problem in E1(Fp) to the discrete
logarithm problem in E

(ns)
2 (Fr). Since E2 is an additive reduction of E , the

discrete logarithm on E2 is simply division in finite fields.
Suppose E1 : y2 = x3 + ax + b is an elliptic curve over Fp with r points. S

and T are the input points for the discrete logarithm. Assume that r > 3 is a
prime. The reduction algorithm is as follows:
Algorithm 1. 1. Let E2 : y2 = x3 over Fr.
2. Combine E1 and E2 to construct an elliptic curve E3 over ring Z/(pr) using

Chinese Remaindering.
3. Lift curve E3 to a random curve E over Q, passing a point X, where X is

natural lift of a random point B on E3. Make sure that B doesn’t reduce to
O on E1 and E2. Otherwise, we repeat this step.

4. Ask shifting prime problems for S and T with input prime r.
5. If the output points are S′ and T ′, we solve the discrete logarithm of T ′ base
S′ on E2. Let the result be m′.

6. Check whether T = m′S. If yes, output m′ and terminate the algorithm.
Otherwise, go back to step 3.

Step 2 can be done very efficiently. By Conjecture 1 we expect the curve
constructed in step 3 to be of rank one with reasonable probability. With the
same probability, we will get the correct discrete logarithm of T , once the shifting
prime problem is solved. Thus Algorithm 1 reduces the elliptic curve discrete
logarithm problem to the shifting prime problem in random polynomial time,
and Theorem 2 follows.

As in the previous reduction, we note that the reduction here is a Turing
reduction. Since discrete logarithm is easily to check for correctness, there is no
need to verify if the lifting curve is of rank one.

5 Straight-Line Program for the Lifting Points

In this section, we will derive theorem 3 from theorem 2. We first give a formal
definition of a straight-line program.

On Partial Lifting and the Elliptic Curve Discrete Logarithm Problem 349

Definition 1. A straight-line program for an integer m(integers m1,m2,· · · ,mn)
is a sequence of instructions

z ← xαy

where z is a new symbol. α ∈ {∗,+,−} and x, y are two previously appeared
symbols or 1, such that after we run the program, the last symbol (the last n
symbols) stores the value m (m1,m2, · · · ,mn).

In some cases, a straight-line program is a compact description of a integer.
It can represent a huge number in small length. For example, mn has a straight-
line program of length (logmn)O(1). It is an important open problem whether
n! has a short straight-line program.

It seems hard to compute with straight-line programs. For example, given
straight-line programs for the integers x and y, it is not a trivial problem to
decide whether x = y. However, from a straight-line program of integer i, we
can read out the reduction of i modulo any prime p, by performing every step
of the straight-line program modulo p. Similarly, if we have the straight-line
program for the coordinates of a global point P = (x : y : z) ∈ P2(Q), we
usually can calculate the reduction of P at p for any given prime p.

However, there is some subtlety here. Let x, y, z be the integers output by
a straight-line program. If p � |gcd(x, y, z), we can compute the reduction of
(x : y : z) at p efficiently. If x, y, z share a lot of p’s, after executing the straight-
line program modulo p(or pi for i small), we get the point (0 : 0 : 0), which is not
well-defined in the projective space. This motivates us to define properly reduced
coordinates. Without lose of generality, let E/Q be an elliptic curve of rank one
with no rational torsion point other than O.

Definition 2. Let x′, y′, z′ be three integers, where (x′ : y′ : z′) = m(x : y : z) ∈
E(Q) and (x : y : z) is the generator of Mordell-Weil group of E(Q). If p � |z′,
whenever the order of (x : y : z) modulo p is greater than m, we call x′, y′, z′ the
properly reduced coordinates.

Let E be the reduction of E at p. Assume that every point on E is liftable to
E . Let P, r be the remaining input of shifting prime problem. Given an algorithm
which can solve the straight-line description problem with properly reduced out-
put, we can lift P to X, which is represented by a straight-line program of length
polynomial in the size of the input. Then making use of the fact that the output
of the straight-line program is properly reduced, we can compute X modulo r
for any prime r, hence provide answers to the shifting prime queries. This means
that we have reduction from shifting prime problem to straight-line description
problem. Thus Theorem 3 follows from theorem 2.

Theorem 3 raises the question of the existence of a “short” straight-line pro-
gram for properly reduced coordinates of a point on the elliptic curve. We give
an affirmative answer to this question.

Proposition 1. Given m,x, y, z, a, b ∈ Z where gcd(x, y, z) = 1 and (x : y : z)
is a point on the elliptic curve E defined by y2 = x3 + ax + b, we can write

350 Q. Cheng and M.-D. Huang

a straight-line program for properly reduced coordinates x′, y′, z′ ∈ Z in length
logO(1)(xyzmab), where (x′ : y′ : z′) = m(x : y : z) ∈ E(Q).

Proof: First, we consider the explicit formulas for addition of two points and
for doubling a point.

Let (x1 : y1 : z1) and (x2 : y2 : z2) be two points on an elliptic curve
E : y2 = x3 + ax + b, x1, y2, z1, x2, y2, z2 ∈ Z. Assume that GCD(x1, y1, z1) =
GCD(x2, y2, z2) = 1. If x1z2 �= x2z1, then according to the addition law on
elliptic curves, (x1 : y1 : z1) + (x2 : y2 : z2) = (x3 : y3 : z3), where

x3 = z1z2(y2z1 − y1z2)2(x2z1 − x1z2)− (x1z2 + x2z1)(x2z1 − x1z2)3

y3 = (y2z1 − y1z2)(z1z2(y2z1 − y1z2)2 − (x1z2 + x2z1)(x2z1 − x1z2)2)
−z1z2(y1x2 − y2x1)(x2z1 − x1z2)2

z3 = z1z2(x2z1 − x1z2)3

Lemma 1. p �= 2, 3.If (x1 : y1 : z1) and (x2 : y2 : z2) are not the infinite point
and (x1 : y1 : z1) �≡ −(x2 : y2 : z2) mod p, then p � |z3.

If (x1 : y1 : z1) = (x2 : y2 : z2) and y1z1 �= 0, then

x3 = 2y1z1(3x2
1 + az2

1)− 16x1y
3
1z

2
1

y3 = −(3x2
1 + az2

1)((3x2
1 + az2

1)− 8x1y
2
1z1)− 4y2

1z1(x
3
1 + ax1z

2
1 + 2bz3

1)
z3 = 8y3

1z
3
1

Lemma 2. p �= 2, 3. If (x1, y1, z1) is not a torsion point of order 2 modulo p
nor O modulo p, then p � |z3.

Let m =
∑a

i=1 2ei , e1 < e2 < · · · < ea, then

m(x : y : z) =
a∑

i=1

2ei(x : y : z).

When we apply the squaring technique to write straight-line program for
m(x : y : z), we first use the doubling formula to compute 2e1(x : y : z),
2e2(x : y : z),· · ·, 2ea(x : y : z). Then we use formula for addition of two different
points to sum them up. It is not possible that some of the intermediate points
will be equal, as long as (x : y : z) is not a torsion point. This concludes the
proof of proposition 1.

Let E/Q : y2 = x3 + ax + b, a, b ∈ Z, be an elliptic curve with rank 1.
Every liftable point on its reduction curve has a short straight-line program.
More precisely, we have

Corollary 1. let E be the reduction of E modulo prime p. If Q ∈ E/Fp is liftable
to E(Q), then it can be lifted to some X ∈ E(Q) which has a properly reduced
straight-line program of length logO(1)(abp).

On Partial Lifting and the Elliptic Curve Discrete Logarithm Problem 351

References

1. L.M. Adleman, A subexponential algorithm for the discrete logarithm problem
with applications to cryptography. In FOCS 79.

2. A. Brumer, The average rank of elliptic curves I, Invent. Math. 109(1992), 445-472.
3. J.E. Cremona, Algorithms for modular elliptic curves, Cambridge University Press

1992.
4. G. Frey, Applications of arithmetical geometry to cryptographic constructions, Pro-

ceedings of the Fifth International Conference on Finite Fields and Applications,
Springer-Verlag, 2001.

5. P. Gaudry, F. Hess and N. Smart, Constructive and destructive facets of Weil
descent on elliptic curves, J. of Cryptology 15 (2002), 19-46.

6. M. Jacobson, A. Menezes and A. Stein, Solving elliptic curve discrete logarithm
problems using Weil descent, Journal of the Ramanujan Mathematical Society, 16
(2001), 231-260.

7. M.-D. Huang, K.L. Kueh and K.-S. Tan, Lifting elliptic curves and solving the
elliptic curve discrete logarithm problem, Proc. Algorithmic Number Theory Symp.
(ANTS IV), (2000), 377-384.

8. M.J. Jacobson, N. Koblitz, J.H. Silverman, A. Stein, and E. Teske, Analysis of the
Xedni Calculus Attack, Designs, Codes and Cryptography, 20, 2000.

9. N. Koblitz, elliptic curve cryptosystems, Mathematics of Computation, 48(1987),
203-209.

10. V. Miller, Uses of elliptic curves in cryptography, Advances in Cryptology: Proceed-
ings of Crypto’85, Lecture Notes in Computer Science, 218(1986), Springer-Verlag,
417-426.

11. B. Mazur, Modular curves and the Eisenstein ideal, IHES publi. Math. 47 (1977).
12. B. Mazur, Rational isogenies of prime degree, Invent. Math. 44(1978).
13. A. Menezes and M. Qu, Analysis of the Weil descent attack of Gaudry, Hess and

Smart, CT-RSA 2001, LNCS 2020.
14. A. Menezes, E. Teske and A. Weng, Weak fields for ECC, Topics in Cryptology –

CT-RSA 2004, Lecture Notes in Computer Science, 2964 (2004), 366-386.
15. J.H. Silverman, The arithmetic of elliptic curves, Spring-Verlag, 1986.
16. J.H. Silverman, Computing Heights on elliptic curves, Mathematics of computation,

Vol 51, 1988.
17. J.H. Silverman, the difference between the Weil height and the canonical height

on elliptic curves, Mathematics of computation, Vol 55, 1990.
18. J.H. Silverman, Computing canonical heights with little(or no) factorization, Math-

ematics of computation, Vol 66, 1997.
19. J.H. Silverman and J. Suzuki, Elliptic curve discrete logarithms and the index

calculus, Advances in Cryptology-Asiacrypt’98, Spring-Verlag, 1998, 110-125.
20. O. Schirokauer, D. Weber and Th. Denny, Discrete logarithms: The effectiveness

of the index calculus method, ANTS II, LNCS 11122, Spring-Verlag, 1996.

Guarding Art Galleries by Guarding Witnesses
(Extended Abstract)

Kyung-Yong Chwa1, Byung-Cheol Jo2, Christian Knauer3, Esther Moet4,
René van Oostrum4, and Chan-Su Shin5

1 Department of Computer Science, KAIST, Daejon, Korea
kychwa@tclab.kaist.ac.kr

2 Taff System, Co. Ltd., Seoul, Korea
mrjo@taff.co.kr

3 Freie Universität Berlin, Takustraße 9, D-14195 Berlin, Germany
knauer@inf.fu-berlin.de

4 Institute of Information & Computing Sciences, Utrecht University,
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

{esther,rene}@cs.uu.nl
5 School of Electronics and Information Engineering,
Hankuk University of Foreign Studies, Yongin, Korea

cssin@hufs.ac.kr

Abstract. Let P be a simple polygon. We define a witness set W to
be a set of points such that if any (prospective) guard set G guards W ,
then it is guaranteed that G guards P . Not all polygons admit a finite
witness set. If a finite minimal witness set exists, then it cannot contain
any witness in the interior of P ; all witnesses must lie on the boundary of
P , and there can be at most one witness in the interior of every edge. We
give an algorithm to compute a minimum witness set for P in O(n2 log n)
time, if such a set exists, or to report the non-existence within the same
time bounds.

1 Introduction

Visibility problems have been studied extensively in the Computational Geom-
etry literature, and the so-called Art Gallery Problems form an important sub-
category within this field. The problem of how many points or guards are always
sufficient to guard any polygon with n vertices was posed by Victor Klee in 1976.
Chvátal [1] showed soon thereafter that �n

3 � guards are always sufficient, and
sometimes necessary. Since then, a lot of research in this field has been carried
out, and in 1987 O’Rourke published a whole book on the topic [2], while many
new results that had been achieved after the publication of O’Rourke’s book
have appeared in surveys by Shermer [3] and Urrutia [4].

Most of the papers related to the Art Gallery Problem research consider the
computation of the location of the guards under various restrictions on the shape
of the polygon (i.e., orthogonal polygons, polygons with holes, etc.) or on the
placement of the guards (i.e., edge guards, vertex guards, mobile guards, etc.).

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 352–363, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Guarding Art Galleries by Guarding Witnesses 353

Except for the case of a single guard, only few papers consider the computation
of the guarded region for a given set of guards [5, 6].

Approximately seven years ago, Joseph Mitchell posed the Witness Problem
to Tae-Cheon Yang during a research visit of the latter: “Given a polygon P ,
does it admit a witness set, i.e., a set of objects in P such that any (prospective)
guard set that guards the witnesses is guaranteed to guard to whole polygon?”
The simplest kind of witnesses are points, possibly constrained to lie on the
vertices or on the boundary of P . The idea, of course, is that in the case of a
set of moving guards, or of a guard set that permits the addition or removal
of guards, it is easier to check point-to-point (i.e., guard-to-witness) visibility,
than to update the complete visibility region of all guards. Other possible types
of witnesses are edges of the polygon. Yang showed this problem to a student,
and they made an initial effort to classify polygons that can be witnessed by
guards placed at vertices at the polygons, and polygons that can be witnessed
by (partial) edges of the polygon; see [7] (in Korean).

In this paper, we consider point witnesses that are allowed to lie anywhere
in the interior or on the boundary of the polygon. We want to determine for
a given polygon P whether a finite witness set exists, and if this is the case,
to compute a minimum witness set. The main contribution of our paper is the
combinatorial/geometrical result that a finite minimum size witness set for a
polygon (if it exists) contains only witnesses on the boundary, and there are at
most n of them, where n is the number of vertices of the polygon. Furthermore,
we show that for any n ≥ 4 there is a polygon that can be witnessed by no less
than n− 2 witnesses. The results are not trivial: there are polygons that are not
witnessable by a finite witness set, but that need an infinite number of witnesses
on their boundary or in their interior. There are also polygons for which there are
witness sets that witness the boundary, but not the whole interior of the polygon.
Examples of such polygons can be found in the full version of this paper, and
in a preliminary version [8]. Note that in this preliminary version we only give
results concerning minimal (but not necessarily minimum size) witness sets.

For completeness, we also outline an algorithm to compute a minimum size
witness set for a polygon if such a set exists, or to report the non-existence
otherwise. The running time of this algorithm is O(n2 log n).

The paper is organized as follows: in the next section we introduce the formal
definition of witness sets, and we prove some interesting basic properties of them.
Using the results from Section 2, we study properties of finite witness sets in
Section 3. In Section 4, we discuss the cardinality of minimum size witness sets. In
Section 5 we give an algorithm for computing minimum size witness sets, and we
wrap up in Section 6 with a brief discussion on our results and on open problems.

2 Preliminaries

Throughout this paper, P denotes a simple polygon with n vertices. We as-
sume that P ’s vertices V (P) = {v0, v1, . . . , vn−1} are ordered in counterclock-
wise direction. We also assume that the vertices of P are in general position,

354 K.-Y. Chwa et al.

that is, no three vertices of P are collinear1. The edges of P are denoted with
E(P) = {e0, e1, . . . , en−1}, with ei = (vi, v(i+1) mod n). Geometrically, we con-
sider the edge ei to be the closed line segment between its incident vertices, i.e.,
an edge includes its endpoints. Edges ei are directed from vi to vi+1, so that the
interior of P lies locally to the left of ei. We say that a point p lies in P if p
lies in the interior of P (denoted with int(P)) or on its boundary (denoted with
∂P), i.e., we consider P to be a closed subset of E2.

A point p in P sees a point q in P if the line segment pq is contained in P .
Since polygons are closed regions, the line-of-sight pq is not blocked by grazing
contact with the boundary of P ; this definition of visibility is commonly used
in the Art Gallery literature [2]. We say that a point p in P sees past a reflex
vertex v of P if p sees v, and the edges incident to v do not lie on different sides
of the line through p and v (i.e., one of the edges may lie on this line).

Let e be an edge e of P . Let �(e) be the directed line through e such that
�(e) has the same orientation as e. The positive halfspace induced by �(e) is the
region of points in E2 to the left of �(e), and we denote it by �+(e). The negative
halfspace �−(e) is defined analogously. The closure of a (possibly open) region of
points R ⊂ E2 is the union of R and its boundary ∂R; we denote it with cl(R).

For an edge e ∈ E(P), �(e)∩P consists of one or more connected parts (seg-
ments) that lie completely in P or on its boundary. The segment that contains
e is denoted by s(e). Similarly, for a point p in P and a vertex v of P , �(p, v)
is defined as the line through p and v, and �(p, v) ∩ P consists of one or more
connected parts (segments) that lie completely in P or on its boundary. The
segment that contains p and v is denoted by s(p, v).

The kernel of a polygon P is the set of points from which every point in P
is visible. If the kernel is nonempty, we call P star-shaped. It is well-known that
the kernel of a polygon P can be described as

⋂
e∈E(P) cl(�

+(e)).
Let p be a point in P . The visibility polygon of p is the set of points in P

that are visible to p. We denote the visibility polygon by VP(p). We define the
visibility kernel of a point p to be the kernel of its visibility polygon and we
denoted it by VK(p). The visibility polygon VP(p) of a point p in P is star-
shaped by definition (the kernel contains at least p).

Definition 1. A witness set for a polygon P is a point set W in P for which
the following holds: if, for any arbitrary non-empty set of points G in P , each
element of W is visible from at least one point in G, then every point in P is
visible from at least one point in G.

The elements of G in the above definition are commonly referred to as guards,
and we call the elements of a witness set witnesses. Note that a guard set always
is nonempty, but that a witness set is allowed to be empty (namely, the empty
set is a witness set for any convex polygon).

The following theorem states the necessary and sufficient conditions on wit-
ness sets:

1 This assumption is only used in the proof of Lemma 17.

Guarding Art Galleries by Guarding Witnesses 355

Theorem 1. A point set W is a witness set for a polygon P if and only if the
union of the visibility kernels of the elements of W covers P completely.

Proof. Let W = {w1, . . . , wk} be a set of points in P such that ∪w∈W VK(w)
covers P completely. Let G be an arbitrary set of points in P such that every
element wi ∈ W is visible from at least one gj ∈ G. Since gj lies in VP(wi), we
have that all points in VK(wi) are visible from gj . Since there is such a gj for
every wi, and ∪w∈W VK(w) covers P completely, it follows that every point in
P is visible from at least one gj ∈ G, and therefore W is a witness set for P .

Conversely, let W be an arbitrary witness set for P . Let us assume for the
sake of contradiction that ∪w∈W VK(w) does not cover P completely.

Let us first consider the case where the union of the visibility polygons (as
opposed to the visibility kernels) of all elements of W do not cover P completely.
In this case, a contradiction is easily derived: place a guard gi at every witness
wi. Now every witness is seen by at least one guard, but the guards do not see
the whole polygon, so W is not a witness set for P .

It remains to consider the more interesting case where the union of the visi-
bility polygons of all elements of W does cover P completely. Then we pick an
arbitrary point p in the region of P that is not covered by any of the visibility
kernels of the witnesses. For any wi ∈ W , p may or may not lie in VP(wi), but
in either case, since p does not lie in VK(wi), p cannot see all points in VP(wi).
This means that for each wi ∈ W we can place a guard gi in VP(wi) such that
gi does not see p. So every witness wi is seen by at least one guard (namely, gi),
but the guards do not see every point in P (for none of the guards sees p). This
means that W is not a witness set for P , and we have a contradiction again.

We also apply the concept of witnesses to individual points. For two points
p and q in a polygon P , we say that p is a witness for q (or alternatively, that p
witnesses q), if any point that sees p also sees q.

The following lemma is analogous to Theorem 1, and we omit the proof
(which is much simpler than the proof of the theorem):

Lemma 1. If p and q are points in a polygon P , then p witnesses q if and only
if q lies in VK(p).

The following two lemmas show that witnessing is transitive:

Lemma 2. Let P be a polygon. A point p in P witnesses a point q in P if and
only if VP(p) ⊆ VP(q).

Proof. If a point p witnesses a point q, then q ∈ VK(p) by the preceding lemma.
This implies that everything that is visible from p is also visible from q, which
means that VP(p) ⊆ VP(q).

Conversely, if VP(p) ⊆ VP(q), then any point that sees p, and therefore lies
in VP(p), also lies in VP(q), and consequently sees q.

Lemma 3. Let P be a polygon, and let p, q, and r be points in P . If p witnesses
q and q witnesses r, then p witnesses r.

356 K.-Y. Chwa et al.

Proof. If p witnesses q and q witnesses r, then by the preceding lemma, VP(p) ⊆
VP(q) and VP(q) ⊆ VP(r). This means that VP(p) ⊆ VP(r) and thus that p
witnesses r.

This leads to the notion of minimal witness sets. A set W is called a minimal
witness set for P if W is a witness set for P and, for any w ∈ W , W \ {w} is
not a witness set for P . The proofs of the lemmas in the rest of this section are
straightforward, and we omit them here. The interested reader can find them in
a preliminary version of this paper [8], as well as in the full version.

Lemma 4. Let P be a polygon, and let W be a witness set for P . W is a minimal
witness set for P if and only if for any w ∈ W , w does not lie in VK(w′) for
any w′ ∈W,w′ �= w.

Lemma 5. Let P be a polygon. If W is a witness set for P , then (i) there exists
a subset W ′ ⊆W such that W ′ is a minimal witness set for P , and (ii) for any
superset W ′′ ⊇W , W ′′ is a witness set for P .

Lemma 6. For a star-shaped polygon P and any point p in P , VK(p) contains
the kernel of P .

Lemma 7. Let p and q be points in a polygon P . If q lies outside VK(p), then
q sees past at least one reflex vertex v ∈ V (P).

Lemma 8. If a point p in a polygon P sees past a reflex vertex v ∈ V (P), then
p lies on the boundary of VK(p).

Lemma 9. Let P be a polygon, and let p be a point in its interior. Then P is
convex if and only if p witnesses all points in P .

By combining Lemmas 4, 7 and 8, we get the following lemma:

Lemma 10. Let P be a polygon. If W is a minimal witness set for P , with
|W | > 1, and w is an element of W , then w lies on the boundary of VK(w).

3 Finite Witness Sets

In this section we bound the number of witnesses of a finite minimal witness set
W for a polygon P from above. We show first that the elements of W can only
lie on the boundary of P (Lemma 11), and next, that any edge of P has at most
one element of W in its interior (Lemma 13).

We denote the regions of points in P witnessed by any of the elements of
a set S of points in P by R(S). If S is finite, then R(S) consists of one or
more closed polygonal regions, since it is the union of a finite set of kernels of
visibility polygons, which are closed. Note that in degenerate cases, a region in
R(S) may be a single point or a line segment. The regions of points that are not
witnessed by any of the elements of S are denoted by Q(S) = P \ R(S), and

Guarding Art Galleries by Guarding Witnesses 357

these are called the unwitnessed regions. Q(S) consists of one or more connected
(but not necessarily simply connected) polygonal regions that are either open (if
the region lies in int(P)) or neither open nor closed (if the region contains part
of ∂P). The important fact is that no part of ∂Q(S) that lies in int(P) belongs
to Q(S) itself.

Lemma 11. Let P be a simple polygon. If W is a finite minimal witness set for
P , then no element of W lies in int(P).

Proof. If W is the empty set, then the lemma holds trivially.
W cannot have only one element. Otherwise, by Lemma 9, P would be convex,

and since the empty set is also a valid witness set for convex polygons, this would
contradict the minimality of W .

It remains to show that the lemma holds in case W has more than one
element. In this case, consider any witness w ∈ W . Note that Q(W \ {w})
cannot be a point or a one-dimensional region; otherwise, R(W \ {w}) would
not be closed, and this is only possible is W is an infinite set. From Lemma 4
we deduce that w lies in Q(W \ {w}). Since no part of of ∂Q(W \ {w}) that
lies in int(P) belongs to Q(W \ {w}) itself, w can only lie in int(Q(W \ {w}))
or on Q(W \ {w}) ∩ ∂P . By Lemma 10, w lies on the boundary of VK(w).
Since w cannot lie simultaneously on the boundary of VK(w) (which is closed)
and in the open set int(Q(W \ {w})), the conclusion is that w can only lie on
Q(W \ {w}) ∩ ∂P .

We established that witnesses of a finite minimal witness set W lie on the
boundary of P . Using the following lemma, we show in Lemma 13 that every
edge of P has at most one element of W in its interior.

Lemma 12. Let P be a simple polygon, let W be a finite minimal witness set
for P , and let w be an element of W . If w sees past any reflex vertex v of P ,
then w must lie on an edge e of P such that v lies on �(e).

Proof. Since W is a finite witness minimal witness set for P , any w ∈W lies on
some edge e of P by Lemma 11. Note that w lies on two such edges if it lies on
a vertex. Now suppose, for the sake of contradiction, that w does see past one
or more reflex vertices v of P that do not lie on �(e). Then there is at least one
reflex vertex v such that w sees past v and VK(w) is contained in cl(�+(w, v)).

We now regard only the boundary of P . The intersection of any visibility
kernel (which is convex) with ∂P consists of one or more parts that are home-
omorphic to a point or a to a closed line segment. Similarly, since W is finite,
R(W \ {w}) ∩ ∂P consists of one or more parts that are homeomorphic to a
point or a closed line segment, and Q(W \ {w}) ∩ ∂P consists of one or more
parts that are homeomorphic to an open line segment.

The remainder of the proof is essentially a one-dimensional version of the
proof of Lemma 11. Since (i) w lies on the intersection of e and �(w, v), (ii) VK(w)
is contained in cl(�+(w, v)), and (iii) w sees past v, w must be the endpoint of
one of the parts of VK(w)∩∂P . Since W is a minimal witness set, by Lemma 4,
w must also lie in Q(W \ {w}). But w cannot lie simultaneously in an open

358 K.-Y. Chwa et al.

subset and on the boundary thereof, so we conclude that w does not see past
any reflex vertex that does not lie on �(e).

Note that the above lemma does not contradict Lemma 7. A witness w on
an edge e sees the vertices of P that lie on �(e), and combining Lemmas 7 and
12 implies that w must see past at least one of these vertices.

f

f ′ u

u′

V K(w)

v w′ p w p′ v′

Fig. 1. Illustration to the proof of Lemma 13. Any point w′ in between v and p sees
past u or (not shown) past another reflex vertex in the triangle formed by w′, u, and p

Lemma 13. Let P be a simple polygon, and let W be a finite minimal witness
set for P . If an edge e of P contains a witness w ∈ W in its interior, then no
other witness w′ ∈W can lie on e.

Proof. Let e be an edge of P that contains a witness w ∈ W in its interior. Let
e′ be the closed segment e ∩VK(w), and let p and p′ be the endpoints of e′. No
other witness w′ ∈ W can lie on e in between p and p′ (otherwise, w′ would lie
in VK(w), and by Lemma 4 this contradicts the minimality of W). Therefore, if
p and p′ coincide with the vertices v and v′ incident to e, then the lemma holds.

So let us consider the situation that not both of p and p′ coincide with v
and v′, respectively, and let us assume without loss of generality that p does not
coincide with v; see Figure 1. Since p lies on the boundary of VK(w), p must be
the intersection of e and s(f) (the extension of an edge f , as defined in Section 2)
for some edge f of P , visible from w. Let u and u′ be the vertices incident to
f , with u the one closest to e. Let f ′ be the other edge incident to u. Note that
f ′ must also be visible from w, otherwise, w would see past u, and that would
contradict Lemma 12. Now, for the sake of contradiction, suppose that there is
a witness w′ ∈ W that lies in the half-open segment from (and including) v to
(but not including) p. If w′ sees u, then w′ also sees past u. Otherwise, if w′

doesn’t see u, there must be a reflex vertex u′′ on the shortest geodesic path
from w′ to u such that w′ sees past u′′ (note that in the latter case, u′′ must lie
in the interior of the triangle formed by w′, u, and p). In either case we derive a
contradiction with Lemma 12, and the conclusion is that the half-open segment
from v to p cannot contain any witness. Analogously, if p′ doesn’t coincide with
v′, then the half-open segment from v′ to p′ cannot contain a witness either.

We omit the proof of the following lemma; it can be found in a prelimi-
nary version of this paper [8] and in the full version. The main arguments use

Guarding Art Galleries by Guarding Witnesses 359

Lemma 12. The lemma itself is used to prove Lemma 15, which in turn is applied
in Section 4.3, where we investigate the possible locations of the witnesses on
the boundary of P .

Lemma 14. Let P be a simple polygon, and let W be a finite minimal witness
set for P . If a witness w ∈ W that does not lie on an edge e of P witnesses a
point in the interior of e, then there cannot be a witness w′ ∈W that lies on e.

Lemma 15. Let P be a simple polygon, and let W be a finite minimal witness
set for P . If w ∈W lies in the interior of an edge e of P , then w witnesses the
whole edge e.

Proof. If w does not witness e completely, there must be at least one other witness
w′ that witnesses a part of e. By Lemma 13, w′ cannot lie on e. We know that w′

witnesses at least one point on the interior of e, since the part of e that does not
lie in VK(w) cannot consist of only one or both vertices of e (because visibility
kernels are closed regions). But then by Lemma 14, there cannot be a witness
that lies on e – and this contradicts the fact that w lies on e.

Note that the situation depicted in Figure 1, where the points p and p′ lie in
between the vertices v and v′, cannot occur if W is a finite witness set.

Lemma 16. Let P be a simple polygon and let W be a finite minimal witness
set for P . Then no element of W lies on a reflex vertex of P .

Proof. Suppose, for the sake of contradiction, that there is an element w of W
that lies on a reflex vertex v of P . Observe that VK(w) does not contain any
points on the edges e and e′ incident to v, except v itself. This means that all
points on e and e′ (except v) must be witnessed by the elements of W \ {w}.
However, the union of the visibility kernels of these witnesses is a closed region,
since W is finite, and therefore v is also covered by these visibility kernels. This
means that w is witnessed by another witness w′ ∈W , and this contradicts the
minimality of W .

4 Minimum Size Witness Sets

In this section we classify the edges of P into three categories, depending on
whether their incident vertices are convex or not: we distinguish reflex-reflex
edges, convex-reflex (or reflex-convex) edges, and convex-convex edges. In Sec-
tion 4.1 we show that each reflex-reflex and convex-reflex edge of P contains
exactly one witness, and in the following section we show that no witness lies on
a convex-convex edge, except possibly at its vertices that are also incident to a
convex-reflex edge. In Section 4.3 finally, we show where to place witnesses on
reflex-reflex and convex-reflex edges, namely: for each reflex-reflex edge we can
place a witness anywhere in its interior, and for each convex-reflex edge we can
place a witness on its convex edge. This placement strategy establishes a mini-
mum size witness set for P—if a finite witness set for P exists. Testing whether
the candidate witness set is indeed a witness set is the subject of Section 5.

360 K.-Y. Chwa et al.

4.1 Reflex-Reflex and Convex-Reflex Edges

Lemma 17. Let P be a simple polygon, let W be a finite minimal witness set
for P and let e be an edge of P that is incident to at least one reflex vertex.
Then there is exactly one witness w ∈W located on e.

Proof. Let v be a reflex vertex of e. There must be a witness w of W that
witnesses a point p in the interior of e, as well as v itself, since VK(w) is a closed
region, and we have only finitely many witnesses.

We first show that w must lie on s(e) (recall from Section 2 that s(e) is the
single piece of �(e) that lies in int(P) and that contains e). Suppose, for the sake
of contradiction, w does not lie on s(e). Obviously, both v and p are visible from
w, so w must lie in �+(e), and by Lemma 11 w lies on the boundary of P . We
have two cases to consider:

– w sees past v. However, according to 12, this is only allowed if v lies on �(f),
where f is the edge on which w lies. However, f cannot be incident to v
(otherwise v would not be reflex), so this violates the assumption made in
Section 2 that no three vertices of P are collinear.

– w does not see past v. Since w sees v, we have that w sees both edges e and
e′ incident to v and VK(w) is completely contained in cl(�+(e))∩ cl(�+(e′)).
But since v is reflex, this means that the only point on e that is contained
in VK(w) is v, contradicting the fact that w also witnesses p.

Since both cases lead to a contradiction, we conclude that w lies on s(e).
Since w lies on the boundary of P by Lemma 11, w lies either on e or on one

the endpoints of s(e). Let q be an endpoint of s(e). q is either a convex vertex of
e, or it does not lie on e. In the latter case, q sees a reflex vertex v′ of e as well
as both edges e and e′ incident to v′ (v′ may or may not be v). Were w located
on q in that case, then we argue again that the only point on e that is contained
in VK(w) is v′, contradicting the fact that w also witnesses p. We conclude that
w lies on e.

By Lemma 16 w does not lie on a reflex vertex of e, and therefore we consider
the following two cases:

– w lies in the interior of e. By Lemma 13, no other witness besides w can lie
on e;

– w lies on the convex vertex of e (this case is only applicable if e is a convex-
reflex edge). By Lemma 13, no other witness can lie in int(e). By Lemma
16, the remaining reflex vertex of e also cannot contain a witness, so w is
the only witness on e.

In both cases, w is the only witness on e and thus the proof is completed.

4.2 Convex-Convex Edges

No witness of a minimal witness set is located on a convex-convex edge, except
possible at a vertex that is also incident to a convex-reflex edge:

Guarding Art Galleries by Guarding Witnesses 361

Lemma 18. Let P be a simple polygon and let W be a finite minimal witness
set for P . Then no element of W is located in the interior of a convex-convex
edge or on a vertex incident to two convex-convex edges.

Proof. If W is the empty set, then the lemma holds trivially.
W cannot have only one element. Otherwise, by Lemma 9, P would be convex,

and since the empty set is also a valid witness set for convex polygons, this would
contradict the minimality of W .

It remains to show that the lemma holds in case W has more than one
element. In this case, suppose for the sake of contradiction, that there is a witness
w ∈W that lies either in the interior of a convex-convex edge e, or on a convex
vertex that is shared by two convex-convex edges e and e′. There is at least one
other witness w′ ∈ W , and w lies outside VK(w′); otherwise, w′ would witness
w, and this contradicts the minimality of W . By Lemma 7 w sees past at least
one reflex vertex v of P , and by Lemma 12 v lies on �(e) (or on �(e′)). However,
all vertices incident to e (and e′) are convex, so this is impossible.

4.3 Placement of Witnesses

By Lemma 17, every finite minimal witness set W for P contains exactly one
element w located on a convex-reflex or reflex-reflex edge. The following lemma
shows to be useful in constructing a minimum size witness set for a polygon.

Lemma 19. Let P be a simple polygon, and let W be a finite minimal witness
set for P . Furthermore, let e be a convex-reflex or reflex-reflex vertex of P , and
let w be the witness located on e. If w lies in int(e), then {w′}∪W \ {w} is also
a witness set for P , where w′ �∈ W is an replacement witness placed anywhere
in int(e) or on the convex vertex of e (if any).

Proof. If w′ and w coincide, the lemma follows trivially. If on the other hand
w and w′ lie on different points on e, then we argue that w′ witnesses w, and
therefore, w′ can replace w, as by Lemma 3, any point that is witnessed by w is
also witnessed by w′.

Suppose, for the sake of contradiction, that w′ does not witness w, or in
other words, that w does not lie in VK(w′). This means that the boundary of
VK(w′) intersects e in a point p that lies in between w and w′. This point p is
the endpoint of some segment s(f), (partially) visible from w′, but not visible
from w. Let u be the vertex of f closest to p. We have that u is a reflex vertex,
and moreover, u lies in �+(e). Now, if u is visible from w, then w sees past u.
Otherwise, if u is not visible from w, there must be a reflex vertex u′ on the
shortest geodesic path from w to u such that w sees past u (note that in the
latter case, u′ must lie in the interior of the triangleformed by w, u, and p). In
either case, we derive a contradiction with lemma 12, and the conclusion is that
w′ indeed witnesses w.

Combining the lemmas in Sections 3 and 4 we derive our main theorem:

362 K.-Y. Chwa et al.

Theorem 2. Let P be a simple polygon. If P is witnessable by a finite witness
set, then a minimum size witness set for P can be constructed by placing a
witness anywhere in in the interior of every reflex-reflex edge and by placing a
witness on the convex vertex of every convex-reflex edge.

Furthermore, we have that for every n ≥ 4 there is a polygon that is witness-
able with no less than n− 2 witnesses, as is illustrated in Figure 2.

Fig. 2. For any n ≥ 4 there is a polygon with n vertices that is witnessable with no
less than n − 2 witnesses

5 Algorithm

In this section, we outline an algorithm that computes a minimum size witness
set W for a simple polygon P with n vertices, if such a set exists, or reports
the non-existence of such a set otherwise. The idea is straightforward: we place
witnesses according to Theorem 2, giving W , and check whether the union of
the visibility kernels of the witnesses covers the whole polygon. This can be done
by computing the arrangement induced by the visibility kernels and by P itself,
using a sweepline algorithm [9]. During the sweep, we maintain for every cell in
the arrangement whether it is covered by at least one visibility kernel, or only
by P . In the latter case, we report that P is not witnessable by a finite witness
set. Otherwise, we report that W is a witnessset for P .

Since each visibility kernel has O(n) edges and we have O(n) witnesses, we
have O(n2) edges in total, and the arrangement has O(n4) complexity. However,
we can show that every visibility kernel has at most two edges that are not (part
of the) edges of P . This leads to an arrangement of O(n2) complexity, and gives
a running time of O(n2 log n) for our algorithm. Details can be found in the full
version of this paper, as well as in a preliminary version [8].

6 Concluding Remarks

We showed that if a polygon P admits a finite witness set, then no minimal
witness set W for P has any witnesses in the interior of P , and a minimum
size witness set for P can be constructed in linear time. If it is not known
in advance whether P is witnessable with a finite witness set, then checking

Guarding Art Galleries by Guarding Witnesses 363

whether the constructed (candidate) witness set witnesses the polygon can be
done in O(n2 log n) time.

An interesting direction for further research is to consider other types of
witnesses, such as (a subset of) the edges of the polygon. We believe that we can
extend our current lemmas, theorems, and algorithms to test whether a polygon
is witnessable by an minimal infinite witness set, where all the witnesses lie on
the boundary of the polygon.

References

1. Chvátal, V.: A combinatorial theorem in plane geometry. J. Combin. Theory Ser.
B 18 (1975) 39–41

2. O’Rourke, J.: Art Gallery Theorems and Algorithms. The International Series of
Monographs on Computer Science. Oxford University Press, New York, NY (1987)

3. Shermer, T.C.: Recent results in art galleries. Proc. IEEE 80 (1992) 1384–1399
4. Urrutia, J.: Art gallery and illumination problems. In Sack, J.R., Urrutia, J., eds.:

Handbook of Computational Geometry. North-Holland (2000) 973–1027
5. Cheong, O., van Oostrum, R.: The visibility region of points in a simple polygon.

In: Proc. 11th Canad. Comf. Comp. Geom. (1999) 87–90
6. Gewali, L., Meng, A., Mitchell, J.S.B., Ntafos, S.: Path planning in 0/1/∞ weighted

regions with applications. ORSA J. Comput. 2 (1990) 253–272
7. Yang, T.C., Shin, C.S.: Guard sufficiency set for polygons. Journal of Korean

Information Science and Technology 28 (2001) 73–79
8. Chwa, K.Y., Jo, B.C., Knauer, C., Moet, E., van Oostrum, R., Shin, C.S.: Guarding

art galleries by guarding witnesses. Report UU-CS-2003-044, Institute for Infor-
mation & Computing Sciences, Utrecht University, Utrecht, Netherlands (2003)

9. Bentley, J.L., Ottmann, T.A.: Algorithms for reporting and counting geometric
intersections. IEEE Trans. Comput. C-28 (1979) 643–647

10. Joe, B., Simpson, R.B.: Correction to Lee’s visibility polygon algorithm. BIT 27
(1987) 458–473

11. Hershberger, J., Suri, S.: A pedestrian approach to ray shooting: Shoot a ray, take
a walk. J. Algorithms 18 (1995) 403–431

12. Mulmuley, K.: A fast planar partition algorithm, I. J. Symbolic Comput. 10 (1990)
253–280

On p-Norm Based Locality Measures of
Space-Filling Curves

H. K. Dai and H. C. Su�

Computer Science Department, Oklahoma State University,
Stillwater, Oklahoma 74078, U.S.A.

{dai, suh}@cs.okstate.edu

Abstract. A discrete space-filling curve provides a linear indexing or
traversal of a multi-dimensional grid space. We present an analytical
study on the locality properties of the 2-dimensional Hilbert curve family.
The underlying locality measure, based on the p-normed metric dp, is the
maximum ratio of dp(v, u)m to dp(ṽ, ũ) over all corresponding point-pairs
(v, u) and (ṽ, ũ) in the m-dimensional grid space and (1-dimensional)
index space, respectively. Our analytical results close the gaps between
the current best lower and upper bounds with exact formulas for p ∈
{1, 2}, and extend to all reals p ≥ 2.

1 Preliminaries

Discrete space-filling curves have many applications in databases, parallel com-
putation, algorithms, in which linearization techniques of multi-dimensional ar-
rays or grids are needed. Sample applications include heuristics for Hamiltonian
traversals, multi-dimensional space-filling indexing methods, image compression,
and dynamic unstructured mesh partitioning.

For positive integer n, denote [n] = {1, 2, . . . , n}. An m-dimensional (discrete)
space-filling curve of length nm is a bijective mapping C : [nm] → [n]m, thus
providing a linear indexing/traversal or total ordering of the grid points in [n]m.
An m-dimensional grid is said to be of order k if it has side-length n = 2k; a
space-filling curve has order k if its codomain is a grid of order k. The generation
of a sequence of multi-dimensional space-filling curves of successive orders usually
follows a recursive framework (on the dimensionality and order), which results in
a few classical families, such as Gray-coded curves, Hilbert curves, Peano curves,
and z-order curves (see, for examples, [1] and [8]).

Denote by Hm
k and Zm

k an m-dimensional Hilbert and z-order, respectively,
space-filling curve of order k. Figure 1 illustrates the recursive constructions
of H2

k and Z2
k for m = 2, and k = 1, 2. The locality preservation of a space-

filling curve family reflects proximity between the grid points of [n]m, that is,
close-by points in [n]m are mapped to close-by indices/numbers in [nm], or vice

� Current address: Department of Computer Science, Arkansas State University, State
University, Arkansas 72467, U.S.A.

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 364–376, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

On p-Norm Based Locality Measures of Space-Filling Curves 365

versa. Clustering performance measures the distribution of continuous runs of
grid points (clusters) over identically shaped subspaces of [n]m, which can be
characterized by the average number of clusters and the average inter-cluster
distance (in [nm]) within a subspace.

(f)(e)(d)(c)(a) (b)

Fig. 1. Recursive constructions of Hilbert and z-order curves of higher order (Hm
k and

Zm
k , respectively) by interconnecting symmetric (via reflection and rotation) subcurves

of lower order (Hm
k−1 and Zm

k−1, respectively) along an order-1 subcurve (Hm
1 and Zm

1 ,
respectively): (a) H2

1 ; (b) H2
2 ; (c) H3

1 ; (d) Z2
1 ; (e) Z2

2 ; (f) Z3
1

Empirical and analytical studies of clustering performances of various low-
dimensional space-filling curves have been reported in the literature (see [8], and
[3] for details). Generally, the Hilbert and z-order curve families exhibit good per-
formance in this respect. Moon, Jagadish, Faloutsos, and Saltz [8] prove that in
a sufficiently large m-dimensional Hm

k -structural grid space, the mean number of
clusters over all rectilinear polyhedral queries with surface area Sm,k approaches
1
2

Sm,k

m as k approaches ∞. They also obtain the exact formula for the mean num-
ber of clusters over all rectangular 2q×2q subgrids of an H2

k -structural grid space.
The space-filling index structure can support efficient query processing (such

as range queries) provided that we minimize the average number of external
fetch/seek operations, which is related to the clustering statistics. Asano, Ran-
jan, Roos, Welzl, and Widmayer [2] study the optimization of range queries over
space-filling index structures, which aims at minimizing the number of seek oper-
ations (not the number of block accesses) — tradeoff between seek time to proper
block (cluster) and latency/transfer time for unnecessary blocks (inter-cluster
gap). Good bounds on inter-clustering statistics translate into good bounds on
the average tolerance of unnecessary block transfers.

Dai and Su [3] obtain the exact formulas for the following three statistics for
H2

k and Z2
k : (1) the summation of all inter-cluster distances over all 2q×2q query

subgrids, (2) the universe mean inter-cluster distance over all inter-cluster gaps
from all 2q × 2q subgrids, and (3) the mean total inter-cluster distance over all
2q × 2q subgrids.

The studies above show that the Hilbert curve family manifests good data
clustering properties, robust mathematical formalism, and viable indexing tech-
niques for querying multi-dimensional data, when compared with other curve
families. This paper presents an analytical study on the locality properties of
the 2-dimensional Hilbert curve family. The underlying locality measure, based
on the p-normed metric dp, is the maximum ratio of dp(v, u)m to dp(ṽ, ũ) over

366 H.K. Dai and H.C. Su

all corresponding point-pairs (v, u) and (ṽ, ũ) in the m-dimensional grid space
and (1-dimensional) index space, respectively. Our analytical results close the
gaps between the current best lower and upper bounds with exact formulas for
p ∈ {1, 2}, and extend to all reals p ≥ 2. We also verify the results with computer
programs over various p-values and grid-orders.

2 Locality Measures and Related Work

To analyze the locality of a space-filling curve family, we need to rigorously define
its measures that are practical — good bounds (lower and upper) on the locality
measure translate into good bounds on the declustering (locality loss) in one
space in the presence of locality in the other space. A few locality measures have
been proposed and analyzed for space-filling curves in the literature. Denote by
d and dp the Euclidean metric and p-normed metric (Manhattan (p = 1) and
maximum metric (p = ∞)), respectively.

Let C denote a family of m-dimensional curves of successive orders. For quan-
tifying the proximity preservation of close-by points in the m-dimensional space
[n]m, Pérez, Kamata, and Kawaguchi [9] employ an average locality measure:

LPKK(C) =
∑

i,j∈[nm]|i<j

|i − j|
d(C(i), C(j))

for C ∈ C,

and provide a hierarchical construction for a 2-dimensional C with good but
suboptimal locality with respect to this measure.

Mitchison and Durbin [7] use a more restrictive locality measure parameter-
ized by q:

LMD,q(C) =
∑

i,j∈[nm]|i<j and d(C(i),C(j))=1

|i − j|q for C ∈ C

to study optimal 2-dimensional mappings for q ∈ [0, 1]. For the case q = 1, the
optimal mapping with respect to LMD,1 is very different from that in [9]. For the
case q < 1, they prove a lower bound for arbitrary 2-dimensional curve C:

LMD,q(C) ≥
1

1 + 2q
n

1+2q + O(n2q),

and provide an explicit construction for 2-dimensional C with good but subopti-
mal locality. They conjecture that the space-filling curves with optimal locality
(with respect to LMD,q with q < 1) must exhibit a “fractal” character.

Dai and Su [5] consider a locality measure similar to LMD,1 conditional on a
1-normed distance of δ between points in [n]m:

Lδ(C) =
∑

i,j∈[nm]|i<j and d1(C(i),C(j))=δ

|i − j| for C ∈ C.

They derive exact formulas for Lδ for the Hilbert curve family {Hm
k | k =

1, 2, . . .} and z-order curve family {Zm
k | k = 1, 2, . . .} for m = 2 and arbitrary δ

that is an integral power of 2, and m = 3 and δ = 1:

On p-Norm Based Locality Measures of Space-Filling Curves 367

Lδ(H2
k) =

⎧⎨⎩
17
2·7 · 23k − 5

2·3 · 22k − 23
3·7 if δ = 1

17
2·7 · 23k+2 log δ − 23·3·52·7(k−log δ)+5·7·383

24·33·5·7 · 22k+3 log δ

+ 2·3·5(k−log δ)−1
22·33 · 22k+log δ − 22·41

33·5·7 · 25 log δ − 2
33

· 23 log δ − 2
3·5 · 2log δ otherwise

Lδ(Z2
k) =

⎧⎪⎨⎪⎩
23k − 2k if δ = 1
23k+2 log δ − (2

32
(k − log δ) + 1949

25·33·7)22k+3 log δ

+ (2
32

(k − log δ) + 7
22·33)22k+log δ + 19

22·3·7 · 22k − 22
7 · 2k+4 log δ

− 3
7 · 2k+log δ + 2·5

33·7 · 25 log δ − 22

33
· 23 log δ + 2

3·7 · 22 log δ otherwise

L1(H
3
k) =

67
2 · 31

· 25k −
11

2 · 7
· 23k −

26

7 · 31

L1(Z
3
k) = 25k − 22k

With respect to the locality measure Lδ and for sufficiently large k and δ)
2k, the z-order curve family performs better than the Hilbert curve family for
m = 2 and over the δ-spectrum of integral powers of 2. When δ = 2k, the
domination reverses. The superiority of the z-order curve family persists but
declines for m = 3 with unit 1-normed distance for Lδ.

For measuring the proximity preservation of close-by points in the indexing
space [nm], Gotsman and Lindenbaum [6] consider the following measures for
C ∈ C:

LGL,min(C) = min
i,j∈[nm]|i<j

d(C(i), C(j))m

|i − j|
, and LGL,max(C) = max

i,j∈[nm]|i<j

d(C(i), C(j))m

|i − j|
.

They show that for arbitrary m-dimensional curve C,

LGL,min(C) = O(n1−m), and LGL,max(C) > (2m − 1)(1 −
1
n

)m
.

For the m-dimensional Hilbert curve family {Hm
k | k = 1, 2, . . .}, they prove

that:

LGL,max(Hm
k) ≤ 2m(m + 3)

m
2 .

For the 2-dimensional Hilbert curve family, they obtain tight bounds:

6(1 − O(2−k)) ≤ LGL,max(H2
k) ≤ 6

2
3

.

Alber and Niedermeier [1] generalize LGL,max to LAN,p by employing the p-
normed metric dp in place of the Euclidean metric d. They improve and extend
the above tight bounds for the 2-dimensional Hilbert curve family to:

LAN,1(H
2
k) ≤ 9

3
5

, 6(1 − O(2−k)) ≤ LAN,2(H
2
k) ≤ 6

1
2

, and 6(1 − O(2−k)) ≤ LAN,∞(H2
k) ≤ 6

2
5

.

We focus our analytical study on the locality measure LAN,p for the 2-dimen-
sional Hilbert curve family, and obtain exact formulas for LAN,p(H2

k) for p = 1
and all reals p ≥ 2.

368 H.K. Dai and H.C. Su

3 Exact Formulas for LAN,p(H2
k) with p ≥ 2

For 2-dimensional Hilbert curves, the self-similar structural property guides us to
decompose H2

k into four identical H2
k−1-subcurves (via reflection and rotation),

which are amalgamated together by an H2
1 -curve. Following the linear order

along this H2
1 -curve, we denote the four H2

k−1-subcurves (quadrants) as Q1(H2
k),

Q2(H2
k), Q3(H2

k), and Q4(H2
k).

We extend the notations to identify all Hm
l -subcurves of a structured Hm

k for
all l ∈ [k] inductively on the order. Let Qi(Hm

k) denote the i-th Hm
k−1-subcurve

(along the amalgamating Hm
1 -curve) for all i ∈ [2m]. Then for the i-th Hm

l−1-
subcurve, Qi(Hm

l), of Hm
l , where 2 < l ≤ k and i ∈ [2m], let Qj(Qi(Hm

l))
denote the j-th Hm

l−2-subcurve of Qi(Hm
l) for all j ∈ [2m]. We write Qq+1

i (Hm
l)

for Qi(Q
q
i (H

m
l)) for all l ∈ [k] and all positive integers q < l. The notation

Ql
i(H

m
l) identifies the i-th grid point in the Hm

1 -subcurve Ql−1
i (Hm

l).
For a 2-dimensional Hilbert curve H2

k indexing the grid [2k]2, with a canonical
orientation shown in Figure 2(a), we denote by ∂1(H2

k) and ∂2(H2
k) the entry

and the exit, respectively, grid points in [2k]2 (with respect to the canonical
orientation). Figure 2 depicts the decomposition of H2

k and the ∂1- and ∂2-labels
of four H2

k−1-subcurves.

�

(a) H2
k

∂1(H2
k
) ∂2(H2

k
)

(b) H2
1 -interconnection

∂1 ∂2 ∂1 ∂2

∂2 ∂1

∂2∂1(Q1(H2
k
))

= ∂1(H2
k−1)

Q1(H2
k
)

Q2(H2
k
) Q3(H2

k
)

Q4(H2
k
)

Q2(H2
k
)

Q1(H2
k
)

Q3(H2
k
)

Q4(H2
k
)

Fig. 2. Generation of H2
k from a H2

1 -interconnection of four H2
k−1-subcurves

For an Hm
l -subcurve C of a 2-dimensional Hilbert curve Hm

k in Cartesian
x-y coordinates, where l ∈ [k], notice that ∂1(C) and ∂2(C) differ in exactly one
coordinate, say z ∈ {x, y}. We say that the subcurve C is z+-oriented (respec-
tively, z−-oriented) if the z-coordinate of ∂1(C) is less than (respectively, greater
than) that of ∂2(C). Note that for a 2-dimensional Hilbert curve Hm

k , its two
subcurves Q2(Hm

k) and Q3(Hm
k) inherit the orientation from their supercurve

H2
k .
For a space-filling curve C indexing an m-dimensional grid space, the notation

“v ∈ C” refers to “grid point v indexed by C”, and C−1(v) gives the index of v
in the 1-dimensional index space. The locality measure in our study is:

LAN,p(C) = max
indices i,j∈[nm]

dp(C(i), C(j))m

dp(i, j)
= max

v,u∈C

dp(v, u)m

|C−1(v) − C−1(u)|
.

On p-Norm Based Locality Measures of Space-Filling Curves 369

When m = 2, we write LC,p(v, u) = dp(v,u)2

δC(v,u) , where δC(v, u) denotes the
index-difference |C−1(v) − C−1(u)|. We generalize the notations LAN,p(C) and
LC,p for a subcurve C (of a space-filling curve) in an obvious manner. A pair of
grid points v and u is representative for C with respect to LAN,p if LC,p(v, u) =
LAN,p(C).

In order to obtain exact formulas for LAN,p(H2
k) for all reals p ≥ 2, it suffices

to consider identifying all representative pairs (v, u) that yield LH2
k
,2(v, u) =

LAN,2(H2
k), due to the monotonicity of the underlying p-normed metric. A refined

analysis based on the upper-bound argument in [6] reveals that the representative
pair resides in a subcurve C composed of four linearly adjacent Hilbert subcurves.
In the following two sections, we derive the exact formula for LAN,2(C), which is
used to deduce that for LAN,2(H2

k)

3.1 Locality of Four Linearly Adjacent Hilbert Subcurves

For a 2-dimensional Hilbert curve H2
l with l ≥ 3, there exists a subcurve C that is

composed of four linearly adjacent H2
k -subcurves with k ≤ l−3. Figure 3 depicts

the arrangement in Cartesian coordinates. Denote the leftmost and rightmost
(first and fourth in the traversal order) H2

k -subcurves by 1H
2
k (y−-oriented) and

4H
2
k (y+-oriented), respectively.

�

�

�

x

�

y

1H2
k 4H2

k

Q2(1H2
k
) Q1(1H2

k
)

Q3(1H2
k
) Q4(1H2

k
)

Q4(4H2
k
) Q3(4H2

k
)

Q1(4H2
k
) Q2(4H2

k
)

Fig. 3. Four linearly adjacent H2
k-subcurves

For a grid point v, denote by X(v) and Y (v) the x- and y-coordinate of v,
respectively, and by (X(v), Y (v)) the grid point v in the coordinate system. In
this subsection, we assume that the lower-left corner grid point of 1H

2
k is the

origin (1, 1) of the coordinate system. In the following analysis, we identify a pair
of grid points v′ ∈ 1H

2
k and u′ ∈ 4H

2
k such that LC,2(v′, u′) = max{LC,2(v, u) |

v ∈ 1H
2
k and u ∈ 4H

2
k}. Later we see that (v′, u′) serves as the representative

pair for C with respect to LAN,2.
To locate a potential representative pair v ∈ 1H

2
k and u ∈ 4H

2
k , the following

two lemmas and theorem show that the possibility “v ∈ Q3(1H2
k) and u ∈

Q3(4H2
k)” is reduced to seeking v in successive Q3-subcurves of 1H

2
k .

370 H.K. Dai and H.C. Su

Lemma 1. For all v ∈ Q3(1H2
k) − Q3(Q3(1H2

k)) and all u ∈ Q3(4H2
k), there

exists v′ ∈ Q3(Q3(1H2
k)) such that LC,2(v′, u) ≥ LC,2(v, u).

Proof. Noting that Q3(1H2
k)−Q3(Q3(1H2

k)) = Q1(Q3(1H2
k)) ∪Q2(Q3(1H2

k)) ∪
Q4(Q3(1H2

k)), we consider the following three cases.
Case 1: v ∈ Q2(Q3(1H2

k)). Consider v′ ∈ Q3(Q3(1H2
k)) with X(v′) = X(v),

then d2(v′, u)2 > d2(v, u)2 and δC(v′, u) < δC(v, u), and we have LC,2(v′, u) >
LC,2(v, u).

Case 2: v ∈ Q1(Q3(1H2
k)). Consider v′′ ∈ Q2(Q3(1H2

k)) with Y (v′′) = Y (v),
then LC,2(v′′, u) ≥ LC,2(v, u). From Case 1, there exists v′ ∈ Q3(Q3(1H2

k)) such
that LC,2(v′, u) > LC,2(v′′, u) > L2(v, u).

Case 3: v ∈ Q4(Q3(1H2
k)). Consider v′ ∈ Q3(Q3(1H2

k)) with X(v′) = 1 and
Y (v′) = Y (v), we have:

d2(v
′
, u)2δC(v, u) − d2(v, u)2δC(v′

, u)

= ((X(u) − X(v′))2 + (Y (u) − Y (v′))2)(δC(v, ∂2(1H
2
k)) + 2 · 22k + δC(u, ∂1(4H

2
k)) + 1)

−((X(u) − X(v))2 + (Y (u) − Y (v))2)(δC(v′
, ∂2(1H

2
k)) + 2 · 22k + δC(u, ∂1(4H

2
k)) + 1)

= ((X(u) − 1)2)(δC(v, ∂2(1H
2
k)) + 2 · 22k + δC(u, ∂1(4H

2
k)) + 1)

+(Y (u) − Y (v))2(δC(v, ∂2(1H
2
k)) + 2 · 22k + δC(u, ∂1(4H

2
k)) + 1)

−((X(u) − X(v))2)(δC(v′
, ∂2(1H

2
k)) + 2 · 22k + δC(u, ∂1(4H

2
k)) + 1)

−(Y (u) − Y (v))2(δC(v′
, ∂2(1H

2
k)) + 2 · 22k + δC(u, ∂1(4H

2
k)) + 1)

= X(u)2(δC(v, ∂2(1H
2
k)) − δC(v′

, ∂2(1H
2
k))) + (−2X(u) + 1 + 2X(u)X(v) − X(v)2)(2 · 22k + 1)

+(−2X(u) + 1 + 2X(u)X(v) − X(v)2)(δC(v′
, ∂2(1H

2
k)) + δC(u, ∂1(4H

2
k)))

+(Y (u) − Y (v))2δC(v, ∂2(1H
2
k)) − (Y (u) − Y (v))2δC(v′

, ∂2(1H
2
k))

= X(u)2(δC(v, ∂2(1H
2
k)) − δC(v′

, ∂2(1H
2
k))) + (2X(u) − 1)(X(v) − 1)(2 · 22k + 1)

+(2X(u) − 1)(X(v) − 1)(δC(v′
, ∂2(1H

2
k)) + δC(u, ∂1(4H

2
k)))

+(Y (u) − Y (v))2(δC(v, ∂2(1H
2
k)) − δC(v′

, ∂2(1H
2
k))).

Noting that u ∈ Q3(4H2
k), and v ∈ Q4(Q3(1H2

k)) and its corresponding v′ ∈
Q3(Q3(1H2

k)), we have:
4 · 2k ≥ X(u) ≥ 7

2 · 2k + 1, 1
2 · 2k ≥ X(v) ≥ 1

4 · 2k + 1,

2k ≥ Y (u) ≥ 1
2 · 2k + 1; 1

4 · 2k ≥ Y (v) ≥ 1;
5
16 · 22k > δC(v, ∂2(1H2

k)) ≥ 1
4 · 22k,

6
16 · 22k > δC(v′, ∂2(1H2

k)) ≥ 5
16 · 22k.

These bounds yield the following lower bounds for the four terms appearing in
d2(v′, u)2δC(v, u)− d2(v, u)2δC(v′, u):
X(u)2(δC(v, ∂2(1H2

k)) − δC(v′, ∂2(1H2
k))) ≥ −2 · 24k,

(2X(u) − 1)(X(v) − 1)(2 · 22k + 1) ≥ (7 · 2k + 1)(1
4 · 2k)(2 · 22k + 1) > 7

2 · 24k,

(2X(u) − 1)(X(v) − 1)(δC(v′, ∂2(1H2
k)) + δC(u, ∂1(4H2

k))) ≥ (7 · 2k + 1)(1
4 · 2k)(9

16 · 22k) > 0, and
(Y (u) − Y (v))2(δC(v, ∂2(1H2

k)) − δC(v′, ∂2(1H2
k))) ≥ (2k − 1)2(− 2

16 · 22k) > − 1
8 · 24k.

These give that d2(v′, u)2δC(v, u) − d2(v, u)2δC(v′, u) > 0, hence LC,2(v′, u) >
LC,2(v, u).

Combining the three cases, the lemma is proved.

Lemma 2. For all integers h with 1 ≤ h < k, and all v ∈ Qh
3 (1H2

k)−Qh+1
3 (1H2

k)
and all u ∈ Q3(4H2

k), there exists v′ ∈ Qh+1
3 (1H2

k) such that LC,2(v′, u) >
LC,2(v, u).

Proof. Similar to the proof of the previous lemma.

On p-Norm Based Locality Measures of Space-Filling Curves 371

Theorem 3. For all integers h with 1 ≤ h < k, and all v ∈ Qh
3 (1H2

k) −
Qk

3(1H2
k) and all u ∈ Q3(4H2

k), there exists v′ ∈ Qk
3(1H2

k) such that LC,2(v′, u) >
LC,2(v, u).

Proof. By induction on k− h. For the basis of the induction (k− h = 1), apply
Lemma 2 with h = k − 1.

For the induction step, suppose that the statement in the lemma is true
for all integers h with 1 ≤ k − h < n, where n > 1. Consider the case when
k − h = n. Let v ∈ Qh

3 (1H2
k) − Qk

3(1H2
k) and u ∈ Q3(4H2

k) be arbitrary. Since
Qh

3 (1H2
k) = Q3(Qh

3 (1H2
k)) ∪ (Q1(Qh

3 (1H2
k)) ∪ Q2(Qh

3 (1H2
k)) ∪ Q4(Qh

3 (1H2
k))) =

Qh+1
3 (1H2

k) ∪ (Qh
3 (1H2

k)−Qh+1
3 (1H2

k)), we consider the following two cases.
Case 1: v ∈ Qh+1

3 (1H2
k). Notice that k − (h + 1) < n. Apply the induction

hypothesis for the case of k − (h + 1), we obtain a desired v′.
Case 2: v ∈ Qh

3 (1H2
k)−Qh+1

3 (1H2
k). By Lemma 2, there exists v′ ∈ Qh+1

3 (1H2
k))

such that LC,2(v′, u) > LC,2(v, u). If v′ ∈ Qk
3(1H2

k), then v′ is a desired grid
point. Otherwise (v ∈ Qh+1

3 (1H2
k)−Qk

3(1H2
k)), this is reduced to Case 1.

This completes the induction step, and the lemma is proved.
Theorem 3 says that the lower-left corner grid point v′ with coordinates (1, 1)

is unique in Q3(1H2
k) such that LC,2(v′, u) = max{LC,2(v, u) | v ∈ Q3(1H2

k)} for
arbitrary u ∈ Q3(4H2

k).
The search for a potential representative pair can be reduced to a case analysis

for all possible pair-combinations (Qi(1H2
k), Qj(4H2

k)) for all i, j ∈ {1, 2, 3, 4}.
After eliminating symmetrical cases and grouping, it suffices to analyze five
major cases: (Q3(1H2

k), Q2(4H2
k)), (Q3(1H2

k), Q3(4H2
k)), (Q3(1H2

k), Q4(4H2
k)),

(Q4(1H2
k), 4H

2
k), and (Q1(1H2

k) ∪Q2(1H2
k), Q3(4H2

k) ∪Q4(4H2
k)). We show that

the analysis for each pair is reduced to that for the pair (Q3(1H2
k), Q2(4H2

k)) in
the following four theorems.

Theorem 4. For all v ∈ Q3(1H2
k) and all u ∈ Q3(4H2

k), there exist v′ ∈
Q3(1H2

k) and u′ ∈ Q2(4H2
k) such that LC,2(v′, u′) > LC,2(v, u).

Proof. Consider v′ ∈ Qk
3(1H2

k) (= (1, 1)) and u′ ∈ Q2(4H2
k) with X(u′) = X(u)

and Y (u′) = 1. A case analysis for u ∈ Qi(Q3(4H2
k)) with i ∈ {1, 2, 3, 4} shows

that LC,2(v′, u′) > LC,2(v′, u). By Theorem 3, LC,2(v′, u) ≥ LC,2(v, u); therefore
LC,2(v′, u′) > LC,2(v, u).

Theorem 5. For all v ∈ Q3(1H2
k) and all u ∈ Q4(4H2

k), there exist v′ ∈
Q3(1H2

k) and u′ ∈ Q2(4H2
k), such that LC,2(v′, u′) > LC,2(v, u).

Proof. Consider u′′ ∈ Q3(4H2
k) with Y (u′′) = Y (u). Notice that d2(v, u′′) >

d2(v, u) and δC(v, u′′) < δC(v, u), we have LC,2(v, u′′) > LC,2(v, u). By The-
orem 4, there exist v′ ∈ Q3(1H2

k) and u′ ∈ Q2(4H2
k) such that LC,2(v′, u′) >

LC,2(v, u′′) > LC,2(v, u).

Lemma 6. For all v ∈ Q4(1H2
k) and all u ∈ 4H

2
k (= Q1(4H2

k) ∪ Q2(4H2
k) ∪

Q3(4H2
k)∪Q4(4H2

k)), there exists v′ ∈ Q3(1H2
k) such that LC,2(v′, u) > LC,2(v, u).

Proof. Consider v′ ∈ Q3(1H2
k) with Y (v′) = Y (v) and X(v′) = 1. A case anal-

ysis for u ∈ Qi(4H2
k) with i ∈ {1, 2, 3, 4} shows that LC,2(v′, u) > LC,2(v, u).

372 H.K. Dai and H.C. Su

Theorem 7. For all v ∈ Q4(1H2
k) and all u ∈ 4H

2
k , there exists v′ ∈ Q3(1H2

k)
and u′ ∈ Q2(4H2

k) such that LC,2(v′, u′) > LC,2(v, u).

Proof. Lemma 6 says that there exists v′ ∈ Q3(1H2
k) such that LC,2(v′, u) >

LC,2(v, u). Since u ∈ 4H
2
k = Q1(4H2

k) ∪ Q2(4H2
k) ∪ Q3(4H2

k) ∪ Q4(4H2
k), con-

sider four pair-combinations for (v′, u): (Q3(1H2
k), Qi(4H2

k)) with i ∈ {1, 2, 3, 4}.
The analysis for the pair (Q3(1H2

k), Q1(4H2
k)) is equivalent to that for the pair

(Q4(1H2
k), Q2(4H2

k)), which is reduced to (Q3(1H2
k), Q2(4H2

k)) by Lemma 6. The
pair (Q3(1H2

k), Q3(4H2
k)) is reduced to (Q3(1H2

k), Q2(4H2
k)) by Theorem 4, and

the pair (Q3(1H2
k), Q4(4H2

k)) is reduced to (Q3(1H2
k), Q2(4H2

k)) by Theorem 5.

Theorem 8. For all v ∈ Q1(1H2
k) ∪Q2(1H2

k) and all u ∈ Q3(4H2
k) ∪Q4(4H2

k),
there exist v′ ∈ Q3(1H2

k) and u′ ∈ Q2(4H2
k) such that LC,2(v′, u′) > LC,2(v, u).

Proof. Consider v′′ ∈ Q3(1H2
k) ∪ Q4(1H2

k) with X(v′′) = X(v) and Y (v′′) =
Y (v) − 2k−1, and u′′ ∈ Q1(4H2

k) ∪ Q2(4H2
k) with X(u′′) = X(u) and Y (u′′) =

Y (u) − 2k−1. Since d2(v′′, u′′) = d2(v, u) and δC(v′′, u′′) < δC(v, u), we
have LC,2(v′′, u′′) > LC,2(v, u). It suffices to consider two pair-combinations for
(v′′, u′′): (Q3(1H2

k), Q1(4H2
k)) and (Q4(1H2

k), Q1(4H2
k)∪Q2(4H2

k)). The analysis
for the pair (Q3(1H2

k), Q1(4H2
k)) is equivalent to that for (Q4(1H2

k), Q2(4H2
k)),

which is reduced to (Q3(1H2
k), Q2(4H2

k)) by Lemma 6. The pair (Q4(1H2
k),

Q1(4H2
k) ∪ Q2(4H2

k)) is a subcase of Theorem 7. Consequently, for these two
pair-combinations for (v′′, u′′), there exist v′ ∈ Q3(1H2

k) and u′ ∈ Q2(4H2
k) such

that LC,2(v′, u′) > LC,2(v′′, u′′) > LC,2(v, u), as desired.
An immediate consequence of the previous four theorems is summarized be-

low — a representative pair must reside in (Q3(1H2
k), Q2(4H2

k)).

Theorem 9. For all v ∈ 1H
2
k − Q3(1H2

k) and all u ∈ 4H
2
k − Q2(4H2

k), there
exist v′ ∈ Q3(1H2

k) and u′ ∈ Q2(4H2
k) such that LC,2(v′, u′) > LC,2(v, u).

The following lemma and theorem complement Lemma 2 and Theorem 3, re-
spectively, with similar proofs. Having reached the pair (Q3(1H2

k), Q2(4H2
k)) for

seeking a potential representative pair (v′, u′), they guide the search into succes-
sive Q3-subcurves of 1H

2
k for v′. The symmetry in the pair (Q3(1H2

k), Q2(4H2
k))

leads the search into successive Q2-subcurves of 4H
2
k for u′.

Lemma 10. For all integers h with 1 ≤ h < k, and all v ∈ Qh
3 (1H2

k) −
Qh+1

3 (1H2
k) and all u ∈ Q2(4H2

k), there exists v′ ∈ Qh+1
3 (1H2

k) such that
LC,2(v′, u) > LC,2(v, u).

Theorem 11. For all integers h with 1 ≤ h < k, and all v ∈ Qh
3 (1H2

k) −
Qk

3(1H2
k) and all u ∈ Q2(4H2

k), there exists v′ ∈ Qk
3(1H2

k) such that LC,2(v′, u) >
LC,2(v, u).

The following theorem summarizes our analysis above, and asserts that the
unique representative pair reside at the lower-left and lower-right corners of C.

Theorem 12. For all v ∈ 1H
2
k − Qk

3(1H2
k) and all u ∈ 4H

2
k − Qk

2(4H2
k), there

exist v′ ∈ Qk
3(1H2

k) and u′ ∈ Qk
2(4H2

k) such that LC,2(v′, u′) > LC,2(v, u) and
LC,2(v′, u′) = 6 · 22k+3−2k+2+2−1

22k+3+1 .

On p-Norm Based Locality Measures of Space-Filling Curves 373

Proof. By Theorems 9 and 11 (and its symmetry), we have v′ ∈ Qk
3(1H2

k) with
coordinates (1, 1) and u′ ∈ Qk

2(H2
k) with coordinates (2k+2, 1), which maximizes

the LC,2-value.
Notice that δC(v′, u′) = 2(

∑k−1
i=0 22i + 1 + 2 · 22k) − 1, hence LC,2(v′, u′) =

d2(v′,u′)2

δC(v′,u,) = 6 · 22k+3−2k+2+2−1

22k+3+1 .

3.2 Exact Formula for LAN,2(H2
k)

The current best bounds for the 2-dimensional Hilbert curve family with respect
to LAN,2(H2

k) [1] is: 6(1 − O(2−k)) ≤ LAN,2(H2
k) ≤ 6 1

2 . Following the argument
in [6] with a refined analysis, together with the exact formula for LC,2(v′, u′) in
Section 3.1, we close the gaps between the two bounds with an exact formula
for LAN,2(H2

k).

Theorem 13. There exists a positive integer k0 such that, for all k ≥ k0,

LAN,2(H
2
k) = 6 ·

22k−3 − 2k−1 + 2−1

22k−3 + 1
.

Proof. In the upper-bound argument in [6], an arbitrary subcurve/subpath P
of length l along H2

k is considered. Note that for arbitrary l, there exists a
sufficiently large positive integer r such that (2r−1)2 < l ≤ (2r)2. This gives that
P is contained in two adjacent quadrants Q′ and Q′′, each with size (2r)2 (grid
points). Let D denote the diameter (Euclidean) of the set of grid points in P .
A case analysis of subpath containment (of P) in subquadrants of size (2r−1)2

within Q′ ∪Q′′ results in the following six cases:
1. 4

164r < l ≤ 5
164r: D2 < 5

4 4r, hence D2
l ≤ 5. 2. 5

16 4r < l ≤ 6
164r: D2 < 29

164r, hence D2
l ≤ 5 4

5 .
3. 6

164r < l ≤ 7
164r: D2 < 10

4 4r , hence D2
l ≤ 6 2

3 . 4. 7
16 4r < l ≤ 8

164r: D2 < 10
4 4r, hence D2

l ≤ 5 5
7 .

5. 8
164r < l ≤ 12

164r: D2 < 13
4 4r , hence D2

l ≤ 6 1
2 . 6. 12

16 4r < l ≤ 4r: D2 < 5 × 4r, hence D2
l ≤ 6 2

3 .

In order to obtain the desired LAN,2-bound, it suffices to refine the analysis of
subpath containment in Cases 3, 5, and 6 in subquadrants of size (2r−2)2. The
refined analysis for Case 3 yields the upper bounds on D2

l : 29
6 , 137

25 , 141
26 , and 160

27

(maximum is 160
27 < 5.93). For Case 6, the upper bounds on D2

l are: 68
12 , 73

13 , 80
14 ,

and 80
15 (maximum is 80

14 < 5.72).
The analysis for Case 5 reveals that all but one arrangement (of subquadrants

of size (2r−2)2) yield upper bounds that are bounded above and away from 6. The
exception structure is given by the subcurve C (described in Section 3.1) of four
linearly adjacent Hilbert subcurves H2

k−3 (of order k − 3). By Theorem 12, the

maximum D2

l -value for this case is 6· 22(k−3)+3−2(k−3)+2+2−1

22(k−3)+3+1 (= 6· 22k−3−2k−1+2−1

22k−3+1).

Observe that 22k−3−2k−1+2−1

22k−3+1 is strictly increasing (in k) and approaching 1 (as
k → ∞). This establishes the theorem.

For an x+-oriented Hilbert curve H2
k with ∂1(H2

k) = (1, 1), where k ≥ k0,
the representative pair for H2

k with respect to LAN,2 reside at the lower-left
corner (with coordinates (2k−2 + 1, 2k−1 + 1)) and the lower-right corner (with
coordinates (2k− 2k−2, 2k−1 +1)) of four linearly adjacent largest subquadrants
(H2

k−3-subcurves).

374 H.K. Dai and H.C. Su

3.3 Exact Formulas for LAN,p(H2
k) with p > 2

In order to study LAN,p for arbitrary real p, we first investigate the monotonicity
of the underlying p-normed metric.

Lemma 14. The function f : (0,+∞) → (1,+∞) defined by f(p) = (1 + αp)
1
p ,

where α is a positive real constant, is strictly decreasing over its domain.

Proof. It is equivalent to show that the function g : (0,+∞) → (0,+∞) defined
by g(p) = log f(p) (“log” denotes the natural logarithm) is strictly decreasing
over its domain. We consider the first derivative of g, which is defined on (0,+∞):

g
′(p) =

αp

1+αp log αp − log(1 + αp)

p2
=

log αp − log(1 + αp) − log αp

1+αp

p2
.

Clearly, g′(p) < 0 for 0 < α < 1 (from the first equality above), and g′(p) < 0
for 1 ≤ α (from the second equality above). This proves the strictly decreasing
property of f over its domain.

An immediate corollary of the previous lemma is that for all grid points v
and u, the p-normed metric dp(v, u) is decreasing in p ∈ (0,+∞). Hence for
a space-filling curve C, LC,p(v, u) = dp(v,u)2

δC(v,u) is decreasing in p ∈ (0,+∞), as
δC(v, u) is independent of p.

Theorem 15. There exists a positive integer k0 such that, for all k ≥ k0,

LAN,p(H2
k) = 6 ·

22k−3 − 2k−1 + 2−1

22k−3 + 1
, for all reals p ≥ 2.

Proof. Let (v′, u′) be the representative pair for H2
k with respect to LAN,2,

with their coordinates v′ = (2k−2 + 1, 2k−1 + 1) and u′ = (2k − 2k−2, 2k−1 +
1). Consider an arbitrary real p ≥ 2. We show that (v′, u′) also serves as the
unique representative pair for H2

k with respect to LAN,p, that is, LH2
k
,p(v′, u′) >

LH2
k
,p(v, u) with (v, u) �= (v′, u′).

Observe that Y (v′) = Y (u′), which implies that dp(v′, u′) = d2(v′, u′). Then
for arbitrary grid points v, u ∈ H2

k with (v′, u′) �= (v, u), we have:

L
H2

k
,p

(v′
, u

′) =
dp(v′, u′)2

δ
H2

k
(v′, u′)

=
d2(v′, u′)2

δ
H2

k
(v′, u′)

= L
H2

k
,2(v

′
, u

′)

> L
H2

k
,2(v, u) (as (v′, u′) is a representative pair with respect to L

H2
k

,2)

≥ L
H2

k
,p

(v, u) (by the monotonicity of L
H2

k
,p

).

3.4 Exact Formula for LAN,1(H2
k)

Following an argument similar to the one in Sections 3.1 and 3.2 to establish
LAN,2(H2

k), we obtain the exact formula for LAN,1(H2
k).

Theorem 16. There exists a positive integer k0 such that, for all k ≥ k0,

LAN,1(H
2
k) = 9 − 3 · 2−k+3 + 2−2k+4

.

On p-Norm Based Locality Measures of Space-Filling Curves 375

There are two (symmetrical) representative pairs for H2
k with respect to

LAN,1; namely (v′, u′) and (v′′, u′′). For an x+-oriented Hilbert curve H2
k with

∂1(H2
k) = (1, 1), where k ≥ k0, the coordinates of (v′, u′) and (v′′, u′′) are

((2k−1, 1), (1, 2k)) and ((2k−1 + 1, 1), (2k, 2k)), respectively. Thus d1(v′, u′) =
2k + 2k−1 − 2 and δH2

k
(v′, u′) = 22k−2, and LAN,1(H2

k) = LH2
k
,1(v′, u′) = 9 − 3 ·

2−k+3 + 2−2k+4.

4 Conclusion

Our analytical study of the locality properties of the Hilbert curve family, {H2
k |

k = 1, 2, . . .}, is based on the locality measure LAN,p, which is the maximum
ratio of dp(v, u)m to dp(ṽ, ũ) over all corresponding point-pairs (v, u) and (ṽ, ũ)
in the m-dimensional grid space and index space, respectively. Our results close
the gaps between the current best lower and upper bounds with exact formulas
for p ∈ {1, 2}, and extend to all reals p ≥ 2. In addition, we identify all the rep-
resentative pairs (which realize LAN,p(H2

k)) for p = 1 and all reals p ≥ 2. We also
verify the results with computer programs over various p-values (p ∈ {1, 2, 3})
and grid-orders (k ∈ {4, 5, . . . , 10}). For all reals p ∈ [1, 2] with sufficiently small
granularity, our empirical study in [4] reveals two major sources of representa-
tive pairs (v, u) that give LH2

k
,p(v, u) = LAN,p(H2

k). A practical implication of
our results on LAN,p(H2

k) is that the exact formulas provide good bounds on
measuring the loss in data locality in the index space, while spatial correlation
exists in the 2-dimensional grid space.

References

1. J. Alber and R. Niedermeier. On multi-dimensional curves with Hilbert property.
Theory of Computing Systems, 33(4):295–312, 2000.

2. T. Asano, D. Ranjan, T. Roos, E. Welzl, and P. Widmayer. Space-filling curves and
their use in the design of geometric data structures. Theoretical Computer Science,
181(1):3–15, 1997.

3. H. K. Dai and H. C. Su. Approximation and analytical studies of inter-clustering
performances of space-filling curves. In Proceedings of the International Confer-
ence on Discrete Random Walks (Discrete Mathematics and Theoretical Computer
Science, Volume AC (2003)), pages 53–68, September 2003.

4. H. K. Dai and H. C. Su. An empirical study of p-norm based locality measures of
space-filling curves. In Proceedings of the 2003 International Conference on Parallel
and Distributed Processing Techniques and Applications, pages 1434–1440. Com-
puter Science Research, Education, and Applications Press, June 2003.

5. H. K. Dai and H. C. Su. On the locality properties of space-filling curves. In
T. Ibaraki, N. Katoh, and H. Ono, editors, Lecture Notes in Computer Science
(2906): Algorithms and Computation: 14th International Symposium, ISAAC 2003
Proceedings, pages 385–394, Springer-Verlag, Berlin Heidelberg, 2003.

6. C. Gotsman and M. Lindenbaum. On the metric properties of discrete space-filling
curves. IEEE Transactions on Image Processing, 5(5):794–797, 1996.

376 H.K. Dai and H.C. Su

7. G. Mitchison and R. Durbin. Optimal numberings of an N ×N array. SIAM Journal
on Algebraic and Discrete Methods, 7(4):571–582, 1986.

8. B. Moon, H. V. Jagadish, C. Faloutsos, and J. H. Saltz. Analysis of the clustering
properties of the Hilbert space-filling curve. IEEE Transactions on Knowledge and
Data Engineering, 13(1):124–141, 2001.

9. A. Pérez, S. Kamata, and E. Kawaguchi. Peano scanning of arbitrary size images. In
Proceedings of the International Conference on Pattern Recognition, pages 565–568.
IEEE Computer Society, 1992.

Composability of Infinite-State Activity Automata�

Zhe Dang1, Oscar H. Ibarra2,��, and Jianwen Su2

1School of Electrical Engineering and Computer Science,
Washington State University,

Pullman, WA 99164, USA
2Department of Computer Science,

University of California,
Santa Barbara, CA 93106, USA
ibarra@cs.ucsb.edu

Abstract. Let M be a class of (possibly nondeterministic) language acceptors
with a one-way input tape. A system (A; A1, ..., Ar) of automata in M, is com-
posable if for every string w = a1...an of symbols accepted by A, there is an
assignment of each symbol in w to one of the Ai’s such that if wi is the sub-
sequence assigned to Ai, then wi is accepted by Ai. For a nonnegative integer
k, a k-lookahead delegator for (A; A1, ..., Ar) is a deterministic machine D in
M which, knowing (a) the current states of A, A1, ..., Ar and the accessible “lo-
cal” information of each machine (e.g., the top of the stack if each machine is a
pushdown automaton, whether a counter is zero on nonzero if each machine is a
multicounter automaton, etc.), and (b) the k lookahead symbols to the right of the
current input symbol being processed, can uniquely determine the Ai to assign
the current symbol. Moreover, every string w accepted by A is also accepted by
D, i.e., the subsequence of string w delegated by D to each Ai is accepted by Ai.
Thus, k-lookahead delegation is a stronger requirement than composability, since
the delegator D must be deterministic. A system that is composable may not have
a k-delegator for any k. We look at the decidability of composability and existence
of k-delegators for various classes of machines M. Our results have applications to
automated composition of e-services. When e-services are modeled by automata
whose alphabet represents a set of activities or tasks to be performed (namely,
activity automata), automated design is the problem of “delegating” activities of
the composite e-service to existing e-services so that each word accepted by the
composite e-service can be accepted by those e-services collectively with each ac-
cepting a subsequence of the word, under possibly some Presburger constraints on
the numbers and types of activities that can be delegated to the different e-services.
Our results generalize earlier ones (and resolve some open questions) concerning
composability of deterministic finite automata as e-services to finite automata that
are augmented with unbounded storage (e.g., counters and pushdown stacks) and
finite automata with discrete clocks (i.e., discrete timed automata).

� The research of Oscar H. Ibarra and Jianwen Su was supported in part by NSF Grants IIS-
0101134 and CCR02-08595.

�� Corresponding author.

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 377–388, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

378 Z. Dang, O.H. Ibarra, and J. Su

1 Introduction

In traditional automata theory, an automaton is a language acceptor that is equipped
with finite memory and possibly other unbounded storage devices such as a counter, a
stack, a queue, etc. The automaton “scans" a given input word in a one-way/two-way
and nondeterministic/deterministic manner while performing state transitions. As one of
the most fundamental concept in theoretical computer science, automata are also widely
used in many other areas of computer science, in particular, in modeling and analyzing
distributed and concurrent systems. For instance, one may view a symbol a in an input
word that is read by the automaton as an input/output signal (event). This view naturally
leads to automata-based formal models like I/O automata [18]. On the other hand, when
one views symbol a as an (observable) activity that a system performs, the automaton
can be used to specify the (observable) behavior model of the system; i.e., an activity
automaton of the system. For instance, activity automata have been used in defining
an event-based formal model of workflow [23]. Recently, activity (finite) automata are
used in [4] to model e-services, which are an emerging paradigm for discovery, flexible
interoperation, and dynamic composition of distributed and heterogeneous processes on
the web or the Internet. An important goal as well as an unsolved challenging problem
in service oriented computing [19] such as e-services is automated composition: how to
construct an “implementation” of a desired e-service in terms of existing e-services.

To approach the automated composition problem, the technique adopted in [4] has
two inputs. One input is a finite set of activity finite automata, each of which models
an “atomic” e-service. The second is a desired global behavior, also specified as an
activity finite automaton, that describes the possible sequences of activities of the e-
service to be composed. The output of the technique is a (deterministic) delegator that
will coordinate the activities of those atomic e-services through a form of delegation.
Finding a delegator, if it exists, was shown to be in EXPTIME. The framework was
extended in [12] by allowing “lookahead” of the delegator, i.e., to have the knowledge
of future incoming activities.A procedure was given which computes a sufficient amount
of lookahead needed to perform delegation; however, the procedure is not guaranteed to
terminate.

The models studied in [4, 12] have significant limitations:only regular activities are
considered since the underlying activity models are finite automata. In reality, more
complex and non-regular activity sequences are possible. For instance, activity se-
quences describing a session of activities releaseAs, allocateAs, releaseBs
and allocateBs satisfying the condition that the absolute difference between the
number of releaseAs and the number of allocateAs, as well as the absolute differ-
ence between the number of releaseBs and the number of allocateBs, is bounded
by 10 (the condition can be understood as some sort of fairness) are obviously non-
regular (not even context-free). Therefore, in this paper, we will use the composition
model of [12] but focus on, instead of finite automata, infinite-state (activity) automata.
Additionally, automata-theoretic techniques are used in our presentation, which are dif-
ferent from the techniques used in [4, 12]. Notice that the problem is not limited only to
e-services. In fact, similar automated design problems were also studied in the workflow
context [24, 17] and verification communities (e.g., [5, 1, 21, 16]). In the future, we will
also look at how our techniques and results can be applied to these latter problems.

Composability of Infinite-State Activity Automata 379

In this paper, we use A1, ..., Ar to denote r activity automata (not necessary finite-
state), which specify the activity behaviors of some r existing e-services. We use A
to denote an activity automaton (again, not necessary finite-state), which specifies the
desired activity behavior of the e-service to be composed from the existing e-services.

The first issue concerns composability. The system (A;A1, ..., Ar) is composable
if for every string (or sequence) w = a1...an of activities accepted by A, there is an
assignment (or delegation) of each symbol in w to one of the Ai’s such that if wi is the
subsequence assigned to Ai, then wi is accepted by Ai. The device that performs the
composition is nondeterministic, in general. We start our discussion with A,A1, ..., Ar

being restricted counter-machines (finite automata augmented with counters, each of
which can be incremented/decremented by 1 and can be tested against 0). One of the
restrictions we consider is when the counters are reversal-bounded [14]; i.e., for each
counter, the number of alternations between nondecreasing mode and nonincreasing
mode is bounded by a given constant, independent of the computation. As an exam-
ple, the above mentioned release-allocate sequences can be accepted by a deterministic
reversal-bounded counter-machine with 4 reversal-bounded counters. We use notations
like DFAs or NFAs (deterministic or nondeterministic finite automata) and DCMs or
NCMs (deterministic or nondeterministic reversal-bounded counter-machines). In [12],
it was shown that composability is decidable for a system (A;A1, .., Ar) of DFAs. We
generalize this result to the case when A is an NPCM (nondeterministic pushdown au-
tomaton with reversal-bounded counters) and the Ai’s are DFAs. In contrast, we show
that it is undecidable to determine, given DFAs A and A1 and a DCM A2 with only
one 1-reversal counter (i.e., once the counter decrements it can no longer increment),
whether (A;A1, A2) is composable. We also look at other situations where compos-
ability is decidable. Further, we propose alternative definitions of composition (e.g.,
T-composability) and investigate decidability with respect to these new definitions.

When a system is composable, a composer exists but, in general, it is nondetermin-
istic. The second issue we study concerns the existence of a deterministic delegator
(i.e., a deterministic composer) within some resource bound. We adopt the notion of
k-lookahead delegator (or simply k-delegator) from [12] but for infinite-state automata.
(We note that [4] only studied 0-lookahead delegators.) This special form of a delegator
is assumed to be efficient, since in its implementation, the delegator does not need to
look back to its delegation history to decide where the current activity shall be dele-
gated. For a nonnegative integer k, a k-delegator for (A;A1, ..., Ar) is a DCMD which,
knowing (1) the current states of A,A1, ..., Ar and the signs of their counters (i.e., zero
or non-zero), and (2) the k lookahead symbols (i.e., the k “future" activities) to the right
of the current input symbol being processed, can deterministically determine the Ai to
assign the current symbol. Moreover, every string w accepted by A is also accepted by
D, i.e., the subsequence of stringw delegated byD to eachAi is accepted byAi. Clearly,
if a system (A;A1, ..., Ar) has a k-delegator for some k, then it must be composable.
However, the converse is not true – a system may be composable but it may not have a
k-delegator for any k.

In [4], the decidability of the existence of a 0-lookahead delegator (i.e., no lookahead)
when the automata (i.e., A,A1, ..., Ar) are DFAs was shown to be is in EXPTIME.
The concept of lookahead was introduced in [12] where the focus was still on DFAs;

380 Z. Dang, O.H. Ibarra, and J. Su

algorithms for deciding composability and determining an approximate upper bound on
k (if it exists) were obtained. A question left open in [12] is whether there is a decision
procedure for determining for a given k, whether a system of DFAs has a k-lookahead
delegator. We answer this question positively in this paper, even for the more general
case when the automata are not necessarily finite-state (e.g., DCMs). Specifically, we
show that it is decidable to determine, given a system (A;A1, ..., Ar) of DCMs and a
nonnegative integer k, whether the system has a k-lookahead delegator.

Our results generalize to composition and lookahead delegation when we impose
some linear constraints on the assignments/delegations of symbols. Doing this allows us
to further specify some fairness linear constraint on a delegator. For instance, suppose
that we impose a linear relationship, specified by a Presburger relationP , on the numbers
and types of symbols that can be assigned to A1, ..., Ar. We show that it is decidable to
determine for a given k, whether a system (A;A1, ..., Ar) of DCMs has a k-delegator
under constraintP . However, it is undecidable to determine, given a system (A;A1, A2),
whether it is composable under constraint P , even when A,A1, A2 are DFAs and P
involves only the symbols assigned to A2.

Composability and existence of k-lookahead delegators for systems consisting of
other types of automata can also be defined and we study them as well. In particular, we
show that composability is decidable for discrete timed automata [2].

The paper has four sections, in addition to this section. Section 2 defines (actually
generalizes) the notion of composability of activity automata and proves that it is un-
decidable for systems (A;A1, A2), where A,A1 are DFAs and A2 is a DCM with one
1-reversal counter. It is also undecidable when A,A1, A2 are DFAs when a Presburger
constraint is imposed on the numbers and types of symbols that can be delegated to
A1 and A2. In contrast, composability is decidable for systems (A;A1, ..., Ar) when
A1, ..., Ar are DFAs (even NFAs) and A is an NPCM. Decidability holds for other re-
stricted classes of automata as well. Section 3 introduces T -composability and shows
that T -composability is decidable for various automata. Section 4 looks at the decid-
ability of the existence for a given k of a k lookahead delegator and shows, in particular,
that it is decidable to determine, given a system (A;A1, ..., Ar) of NCMs and a non-
negative integer k, whether the system has a k-delegator (even when A is an NPCM).
The decidability holds, even if the delegation is under a Presburger constraint. Section
5 investigates composability of discrete timed automata. Because of space limitation,
no proofs are given in this extended abstract. They will be presented in a forthcoming
paper.

2 Composability

Recall that, throughout this paper, we will use the following notations: a DFA (NFA)
is a deterministic (nondeterministic) finite automaton; DCM (NCM) is a DFA (NFA) aug-
mented with reversal-bounded counters; NPCM (DPCM) is a nondeterministic
(deterministic) pushdown automaton augmented with reversal-bounded counters.

Machines with reversal-bounded counters have nice decidable properties (see, e.g.,
[14, 15, 10]), and the languages they accept have the so-called semilinear property. They

Composability of Infinite-State Activity Automata 381

have been useful in showing that various verification problems concerning infinite-state
systems are decidable [7, 6, 8, 11, 9, 20].

Assumption: For ease in exposition, we will assume that when we are investigating the
composability and k-delegability of a system (A;A1, ..., Ar) that the machines operate
in real-time (i.e., they process a new input symbol at every step). The results can be
generalized to machines with a one-way input tape with a right input end marker, where
the input head need not move right at every step, and acceptance is when the machine
eventually enters an accepting state at the right end marker. This more general model
can accept fairly complex languages. For example, the language consisting of all binary
strings where the number of 0’s is the same as the number of 1’s can be accepted by a
DCM which, when given a binary input, uses two counters: one to count the 0’s and the
other to count the 1’s. When the input head reaches the right end marker, the counters
are simultaneously decremented, and the machine accepts if the two counters reach zero
at the same time. Note that the DCM has two 1-reversal counters. In the constructions in
proofs of the theorems, we will freely use these non-real-time models with the input end
marker. It is known that nondeterministic such machines have decidable emptiness and
disjointness problems but undecidable equivalence problem; however, the deterministic
varieties have a decidable containment and equivalence problems [14].

Definition 1. Let (A;A1, ..., Ar) be a system of activity automata that are DCMs over
input (or activity) alphabet Σ. Assume that each DCM starts in its initial state with its
counters initially zero. We say that a word (or a sequence of activities) w = a1a2...an

is composable if there is an assignment of each symbol ai to one of the A1, ..., Ar such
that if the subsequence of symbols assigned to Ai is wi, then wi is accepted by Ai (for
1 ≤ i ≤ r). We say that the system (A;A1, ..., Ar) is composable if every word w
accepted by A is composable.

A

A1

r a

s
a

A2

a

a

c

r a

s|c
a

r|a|s

A3

Fig. 1. Four e-Services

Example 1. Consider an online club that offers its customers to first register (represented
by r), and then pay for their accesses (a) with either cash (s) or credit cards (c). The e-
Service is shown asA in Figure 1, which accepts the language (r|(aa∗(s|c)))∗. Assume
that there are three existing e-Services, A1, A2, and A3, where A1 handles registration,
cash payments for one or more accesses,A3 is similar toA1 except that some customers

382 Z. Dang, O.H. Ibarra, and J. Su

may use promotion for free accesses, and A2 can also handle accesses and make credit
card transactions. Clearly, the system (A;A1, A2) is composable where processing of
accesses will be done by whoever collects the payment, cash (A1) or credit card (A2).

The system (A;A2, A3) is also composable, but in this case, the delegator need only
know if the customer will make a credit card payment in the next activity; if so A2 will
perform a, otherwise A3 does it. Thus this system has a 1-lookahead delegator (to be
defined more precisely later).

It is known that it is decidable whether a system (A;A1, ..., Ar) of DFAs is compos-
able [12]. Somewhat unexpectedly, the following result says that it becomes undecidable
when one of the Ai’s is augmented with one 1-reversal counter.

Theorem 1. It is undecidable to determine, given a system (A;A1, A2), where A and
A1 are DFAs and A2 is a DCM with one 1-reversal counter, whether it is composable.

Remark 1. Obviously, if the machines are NCMs, composability is undecidable. In fact,
take A to be the trivial machine that accepts Σ∗ (the universe). Take A1 to be an an
arbitrary NCM with one 1-reversal counter. Then the system (A;A1) is composable
iff Σ∗ is contained in L(A1). But the latter problem is known to be undecidable [3].
However, unlike NCMs, equivalence of DCMs is decidable.

Theorem 2. If A is an NPCM and A1, ..., Ar are DFAs (or even NFAs), then compos-
ability of (A;A1, ..., Ar) is decidable.

It is of interest to determine the complexity of the composability problem. For exam-
ple, a careful analysis of the proof of the above theorem and the use of Savitch’s theorem
that a nondeterministic S(n) space-bounded TM can be converted to an equivalent de-
terministic S2(n) space-bounded TM [22], we can show the following:

Corollary 1. Composability of a system (A;A1, ..., Ar) of NFAs can be decided in
deterministic exponential space (in the sum of the sizes of the machines).

There are other cases when composability becomes decidable, if we apply more
restrictions to A,A1, . . . , Ar. A language L is bounded if L ⊆ w∗

1 ...w
∗
k for some given

k and strings w1, ..., wk (which may not be distinct).

Theorem 3. Composability is decidable for a system (A;A1, ..., Ar) of NCMs when A
accepts a bounded language. The result holds even ifA and one of theAi’s are NPCMs.

Another restriction on the Ai’s is the following. We assume that Σi is the input
alphabet of Ai. An input symbol a is shared if a ∈ Σi ∩ Σj for some i �= j. We say
that (A;A1, . . . , Ar) is n-composable if every word w accepted by A and containing at
most n appearances of shared symbols is composable. Then we have:

Theorem 4. The n-composability of (A;A1, ..., Ar) is decidable when A is an NPCM
and each Ai is a DCM.

Composability of Infinite-State Activity Automata 383

For our next result, we recall the definitions of semilinear set and Presburger relation
[13]. A set R ⊆ Nn is a linear set if there exist vectors v0, v1, . . . , vt in Nn such that
R = {v | v = v0 + a1v1 + . . . + atvt, ai ∈ N}. The vectors v0 (referred to as the
constant vector) and v1, v2, . . . , vt (referred to as the periods) are called the generators
of the linear set R. A set R ⊆ Nn is semilinear if it is a finite union of linear sets. It
is known that R is a semilinear set if and only if it is a Presburger relation (i.e., can be
specified by a Presburger formula).

Let Σ = {a1, a2, . . . , an} be an alphabet. For each string w in Σ∗, define the
Parikh map of w to be ψ(w) = (numa1(w), ..., numan

(w)), where numai
(x) is the

number of occurrences of ai in w. For a language L ⊆ Σ∗, the Parikh map of L is
ψ(L) = {ψ(w) | w ∈ L}.

Let A,A1, ..., Ar is a system of DFAs over input alphabet Σ, and P be a Presburger
relation (semilinear set). Suppose that we want to check whether the system is compos-
able under constraintP on the numbers and types of symbols that are assigned/delegated
to the Ai’s. The constraint is useful in specifying a fairness constraint over the delega-
tions (e.g., it is never true that the absolute value of the difference between the number
of activities a assigned to A1 and the number of activities a assigned to A2 is larger
than 10). Let Σ = {a1, ..., an} and P be a Presburger relation (formula) over (r + 1)n
nonnegative integer variables (note that n is the cardinality ofΣ and r+1 is the number
of the DFAs, including A). The P -composability problem might take the the following
form:

Presburger-Constrained Composability Problem: Given a system (A;A1, ..., Ar) of
DFAs, is the system composable subject to the constraint that for every stringw ∈ L(A),
there is an assignment of the symbols in w such that if w1, ..., wr are the subsequences
assigned to A1, ..., Ar, respectively,

(1) Ai accepts wi (1 ≤ i ≤ r).
(2) (ψ(w), ψ(w1), ..., ψ(wr)) satisfies the Presburger relation P .

Unfortunately, because of Theorem 1, the above problem is undecidable:

Corollary 2. The Presburger-constrained composability problem is undecidable for
systems (A; A1, A2) of DFAs and a Presburger formula P (even if the formula only
involves symbols assigned to A2).

3 T-Composability

From the above results, it seems difficult to obtain decidable composability for a system
(A;A1, ..., Ar) when one or more ofA1, . . . , Ar are beyond DFAs. Below, we will apply
more restrictions on how A1, . . . , Ar are going to be composed such that a decidable
composability can be obtained. We define a mapping T : Σ → 2{1,...,r} such that each
symbol a ∈ Σ is associated with a type T (a) ⊆ {1, . . . , r}. For a ∈ Σ and 1 ≤ i ≤ r,
let (a)i = a if i ∈ T (a) and (a)i = ε (the null string) if i �∈ T (a). For a string
w = a1 . . . an, we use (w)i to denote the result of (a1)i . . . (an)i. For each Ai, its input
alphabet Σi consists of all a’s with i ∈ T (a). Therefore, (w)i is the result of projecting

384 Z. Dang, O.H. Ibarra, and J. Su

w under the alphabet of Ai. We now modify the definition of composability as follows.
(A;A1, . . . , Ar) is T -composable if, for every string w accepted by A, each (w)i is
accepted by Ai. Notice that this definition is different from the original one in the sense
that every symbol a in w is assigned to each Ai with i ∈ T (a). Therefore, assignments
of symbols in w is deterministic in the new definition (there is a unique way to assign
every symbol). One can show:

Theorem 5. The T -composability of (A;A1, . . . , Ar) is decidable in the following
cases:

– A is an NPCM and each Ai is a DCM;
– A is an NCM and each Ai is a DPCM.

Theorem 5 does not generalize to the case when one of the Ai’s is an NCM, for the
same reason as we stated in Remark 1.

We may take another view of the composition ofA1, . . . , Ar. As we have mentioned
earlier, each activity automaton Ai is understood as the behavior specification of an
e-service. Each sequence wi of activities accepted by Ai is an allowable behavior of
the service. In the original definition of composability, the activity automataA1, . . . , Ar

are composed through interleavings between the activities in the sequences w1, . . . , wr.
Clearly, if activities between two services are disjoint, the original definition of com-
posability becomes T -composability with T (a) being a singleton set for every symbol a
(i.e., each activity a belongs to a unique activity automaton). When the activity automata
share some common activities (e.g., a belongs to both A1 and A2; i.e., T (a) = {1, 2}),
the T -composability definition implies that an a-activity in A1 must be synchronized
with an a-activity in A2. This is why in T -composability, such a symbol a must be
assigned to bothA1 andA2. Notice that the assignments of each symbol (activity) is de-
terministic in T -composability. The determinism helps us generalize the above theorem
as follows.

A reset-NCM M is an NCM that is equipped with a number of reset states and is
further augmented with a number of reset counters (in addition to the reversal-bounded
counters). The reset counters are all reset to 0 wheneverM enters a reset state. (As usual,
we assume that initially the counters start with 0, i.e., with a reset state) We further require
that on any execution, the reset counters are reversal-bounded between any two resets.
One may similarly define a reset-NPCM. Notice that an NCM (resp. NPCM) is a special
case of a reset-NCM (resp. reset-NPCM) where there is no reset counter.

Theorem 6. The emptiness problem for reset-NCMs is decidable.

We use reset-NPM to denote a reset-NPCM that contains only reset counters and a
stack. One can show that the emptiness of reset-NPMs is undecidable.

Theorem 7. The emptiness problem for reset-NPMs and hence reset-NPCMs is unde-
cidable.

Now, we generalize Theorem 5 as follows.

Theorem 8. T -composability of (A;A1, . . . , Ar) is decidable when A is an NCM and
each Ai is a reset-DCM.

Composability of Infinite-State Activity Automata 385

Let NPDA (DPDA) denote a nondeterministic (deterministic) pushdown automaton.
Thus, an NPDA is a special case of a reset-NPM, one that does not have reset counters.
Using Theorem 7, one can show,

Theorem 9. T -composability of (A;A1, ..., Ar) is undecidable whenA is a DPDA and
each Ai is a reset-DCM, even for the case when r = 1.

4 Lookahead Delegator

Given k, a k-lookahead delegator (or simply k-delegator) for the system of NCMs
(A;A1, ..., Ar) is a DCM D which, knowing the current states of A,A1, ..., Ar and the
statuses (i.e., signs) of their counters (i.e., zero or non-zero), and thek lookahead symbols
to the right of the current input symbol being processed, D can uniquely determine the
transition of A, the assignment of the current symbol to one of A1, ..., Ar, and the
transition of the assigned machine. Moreover, for every string x accepted by A, D also
accepts, i.e., the subsequence of string x delegated by D to each Ai is accepted by
Ai. Clearly, if a system has a k-delegator (for some k), then it must be composable.
However, the converse is not true, in general. For example, the system in Figure 1(a) is
composable, but it does not have a k-delegator for any k.

Example 2. Consider again Example 1 and in particular the system (A;A1, A2). It is
easy to see that all a activities immediately preceding an s or c has to be delegated toA1
or A2, respectively. Without knowing which letter, s or c, will be coming, the delegator
cannot correctly determine whether A1 or A2 should perform the activities a. Thus, the
system has no k-delegator for any k. On the other hand, the system (A;A2, A3) has a
1-delegator. It is straightforward to generalize this example (by adding additional states)
to show that for every k, there exists a system that has a (k + 1)-delegator but not a
k-delegator.

So that we can always have k lookahead, let $ be a new symbol and f be a new state.
Extend the transition function of A by defining the transition from any state, including
f , on symbol $ to f . Then make f the only (unique) accepting state. Thus the new NCM
accepts the language L(A)$+ and it has only one accepting state f . We can do the same
thing for A1, ..., Ar with f1, ..., fr their unique accepting states. For convenience, call
the new machines also A,A1, ..., Ar.

For ease in exposition, in what follows, we assume that r = 2, and each ofA,A1, A2
has only one reversal-bounded counter. Generalizations to any r ≥ 2 and machines
having multiple reversal-bounded counters is straightforward. Note that the transition
of A has the form: δA(q, a, s) = {..., (p, d), ...}, which means that if A in in state q and
the input is a and the sign of its counter is s (zero or non-zero), then A can change state
to p and increment the counter by d where d = 0, + 1, − 1, with the constraint that
if s = 0, then d = 0, + 1. The same holds for transitions δ1 and δ2 of A1 and A2. We
assume that the counters are initially zero.

Let k be a nonnegative integer. We can construct a candidate k-delegator DCMD as
follows: each state ofD is a tuple (q, p1, p2, u), where q is a state ofA, pi is a state ofAi,
and u is a string of length k. However, in the case (q0, p0

1, p
0
2, u), where q0 is the initial

386 Z. Dang, O.H. Ibarra, and J. Su

state of A and p0
i the initial state of Ai, the length of u can be less that k, including zero

length, in which case u = ε. Then the initial state of D is (q0, p0
1, p

0
2, ε). The transition

δ of D is defined as follows:

1. δ((q0, p0
1, p

0
2, ε), 0, 0, 0, a) = ((q0, p0

1, p
0
2, a), 0, 0, 0) for all symbol a.

2. δ((q0, p0
1, p

0
2, v), 0, 0, 0, a) = ((q0, p0

1, p
0
2, va), 0, 0, 0) for all string v such that |v| <

k and symbol a.
3. δ((q, p1, p2, av), s, s1, s2, b) = ((q′, p′

1, p
′
2, vb), d, d1, d2) for all q, p1, p2, s, s1, s2,

all string v such that |v| = k and symbols a, b, where:

(a) (q′, d) ∈ δA(q, a, s);
(b) either p′

1 = p1, d1 = 0, and (p′
2, d2) ∈ δ2(p2, a, s2)

or p′
2 = p2, d2 = 0, and (p′

1, d1) ∈ δ1(p1, a, s1).

Moreover, the choice ((q′, p′
1, p

′
2), d, d1, d2) once made is unique for the parameters

((q, p1, p2, av), s, s1, s2). (Note that, in general, there are many choices that can be
made for the given parameters.)

4. Note that in (q, p1, p2, u), any suffix of u may be a string of $’s.
5. Then (f, f1, f2, $k) is the accepting state of D, where f, f1, f2 are the unique ac-

cepting states of A,A1, A2.

Now D is a DCM. Since the class of languages accepted by DCMs is effectively closed
under complementation, we can construct a DCME accepting the complement ofL(D).
Then D is a k-delegator of (A;A1, A2) iff L(A) ∩ L(E) = ∅. We can construct from
NCM A and DCM E an NCM F accepting L(A) ∩ L(E). We can then check the
emptiness of L(F) since the emptiness problem for NCMs is decidable. Now D is just
one candidate for a k-delegator. There are finitely many such candidates. Every choice
that can be made in item 3) above corresponds to one such candidate. By exhaustively
checking all candidates, we either find a desired k-delegator or determine that no such
k-delegator exists. Thus, we have shown the following:

Theorem 10. It is decidable to determine, given a system of NCMs (A;A1, ..., Ar) and
a nonnegative integer k, whether the system has a k-delegator.

Since the emptiness problem for NPCMs is also decidable, we can generalize the
above result to:

Corollary 3. It is decidable to determine, given a system (A;A1, ..., Ar), where A is
an NPCM and A1, ..., Ar are NCMs, and a nonnegative integer k, whether the system
has a k-delegator.

Corollary 4. If we impose some Presburger constraint P on the delegation of symbols
by the k-delegator (e.g., some linear relationships on the number of symbols delegated
toA1, ..., Ar), then the existence of such a P -constrained k-delegator is also decidable.

Open Question: Is it decidable to determine, given a system of DCMs (A,A1, ..., Ar),
whether it has a k-delegator for some k?

Composability of Infinite-State Activity Automata 387

Corollary 5. It is decidable to determine, given a system (A;A1, ..., Ar) and a nonneg-
ative integer k, where A is a DPDA (deterministic pushdown automaton), A1 is a PDA
(nondeterministic pushdown automaton) and A2, ..., Ar are NFAs, whether the system
has a DPDAk-delegator. (Here, the delegation depends also on the top of the stack ofA1.)

For the special case when the machines are NFAs, we can prove the following (from
the proof of Theorem 10 and Savitch’s theorem):

Corollary 6. We can decide, given a system (A;A1, ..., Ar) of NFAs and a nonnegative
integer k, whether the system has a k-delegator in nondeterministic exponential time (in
k and the sum of the sizes of the machines) and hence, also, in deterministic exponential
space.

5 Composability of Timed Automata

In this section, we study composability of discrete timed automata (DTA) A, which are
NFAs augmented with discrete-valued clocks [2]. We say that a word w is accepted by
Awhenw is provided on the input tape, ifA is able to enter a designated accepting state.
We use L(A) to denote the set of words accepted by A. For DTAs, one may develop
a similar definition of composability as in Section 2. However, the definition does not
justify the intended meaning of composability. For instance, letA1 andA2 be two DTAs,
and suppose ac (resp. bd) are accepted by A1 (resp. A2). Observe that an interleaving
like abcd of the two words is not necessarily accepted by the DTA composed from A1
and A2. This is because, when composing, A1 and A2 share the same global clock. To
devise a proper definition of composability for DTAs, we introduce timed words [2]. A
timed word is a sequence of pairs

(a1, t1) . . . (an, tn) (1)

such that each ai ∈ Σ, ti ∈ N+, and t1 ≤ . . . ≤ tn. We say that the timed word
is accepted by A if w = a1 . . . an is accepted by A and this fact is witnessed by
some accepting run of A such that each ti is the timestamp (the value of the global
clock) when symbol ai is read in the run. Thus, the timed word not only records the
sequence of symbols a1 . . . an accepted by A but also remembers the timestamp when
each symbol is read. Let A,A1, . . . , Ar be DTAs. A timed word in the form of (1) is
timed composable if there is an assignment of each pair (aj , tj) to one of the A1, ..., Ar

such that, for 1 ≤ i ≤ r, the subsequence (also a timed word) of pairs assigned to Ai is
accepted by Ai. We say that (A;A1, . . . , Ar) is timed composable if every timed word
accepted by A is timed composable. The main result of this section is the following:

Theorem 11. The timed composability of discrete timed automata (A;A1, . . . , Ar) is
decidable.

References

1. M. Abadi, L. Lamport, and P. Wolper. Realizable and unrealizable specifications of reactive
systems. In Proc. 16th Int. Colloq. on Automata, Languages and Programming, 1989.

388 Z. Dang, O.H. Ibarra, and J. Su

2. R.Alur and D. Dill. Automata for modeling real-time systems. Theoretical Computer Science,
126(2):183–236, 1994.

3. B. Baker and R. Book. Reversal-bounded multipushdown machines. Journal of Computer
and System Sciences, 8:315–332, 1974.

4. D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Mecella. Automatic com-
position of e-services that export their behavior. In Proc. 1st Int. Conf. on Service Oriented
Computing (ICSOC), volume 2910 of LNCS, pages 43–58, 2003.

5. J. Buchi and L. Landweber. Solving sequential conditions by finite-state strategies. Transac-
tions of the American Mathematical Society, 138:295–311, 1969.

6. Z. Dang. Pushdown time automata: a binary reachability characterization and safety verifi-
cation. Theoretical Computer Science, 302:93–121, 2003.

7. Z. Dang, O. Ibarra, T. Bultan, R. Kemmerer, and J. Su. Binary reachability analysis of discrete
pushdown timed automata. In Proc. Int. Conf. on Computer-Aided Verification (CAV), pages
69–84, 2000.

8. Z. Dang, O. H. Ibarra, and R. A. Kemmerer. Generalized discrete timed automata: decidable
approximations for safety verification. Theoretical Computer Science, 296:59–74, 2003.

9. Z. Dang, O. H. Ibarra, and P. San Pietro. Liveness Verification of Reversal-bounded Mul-
ticounter Machines with a Free Counter. In FSTTCS’01, volume 2245 of Lecture Notes in
Computer Science, pages 132–143. Springer, 2001.

10. Z. Dang, O. H. Ibarra, and Z. Sun. On the emptiness problems for two-way nondeterministic
finite automata with one reversal-bounded counter. In ISAAC’02, volume 2518 of Lecture
Notes in Computer Science, pages 103–114. Springer, 2002.

11. Z. Dang, P. San Pietro, and R. A. Kemmerer. Presburger liveness verification for discrete
timed automata. Theoretical Computer Science, 299:413–438, 2003.

12. C. E. Gerede, R. Hull, and J. Su. Automated composition of e-services with lookahead.
Technical report, UCSB, 2004.

13. S. Ginsburg and E. Spanier. Semigroups, presburger formulas, and languages. Pacific J. of
Mathematics, 16:285–296, 1966.

14. O. H. Ibarra. Reversal-bounded multicounter machines and their decision problems. Journal
of the ACM, 25(1):116–133, January 1978.

15. O. H. Ibarra, T. Jiang, N. Tran, and H. Wang. New decidability results concerning two-way
counter machines. SIAM J. Comput., 24:123–137, 1995.

16. O. Kupferman and M. Y. Vardi. Synthesizing distributed systems. In Proc. IEEE Symposium
on Logic In Computer Science, 2001.

17. S. Lu. Semantic Correctness of Transactions and Workflows. PhD thesis, SUNY at Stony
Brook, 2002.

18. N. Lynch and M. Tuttle. Hierarchical correctness proofs for distributed algorithms. In Proc.
6th ACM Symp. Principles of Distributed Computing, pages 137–151, 1987.

19. M. Papazoglou. Agent-oriented technology in support of e-business. Communications of the
ACM, 44(4):71–77, 2001.

20. P. San Pietro and Z. Dang. Automatic verification of multi-queue discrete timed automata. In
COCOON’03, volume 2697 of Lecture Notes in Computer Science, pages 159–171. Springer,
2003.

21. A. Pnueli and R. Rosner. Distributed reactive systems are hard to synthesize. In Proc. IEEE
Symp. on Foundations of Computer Science, 1990.

22. W. Savitch. Relationship between nondeterministic and deterministic tape complexities.
Journal of Computer and System Sciences, 4:177–192, 1970.

23. M. Singh. Semantical considerations on workflows: An algebra for intertask dependencies.
In Proc. Workshop on Database Programming Languages (DBPL), 1995.

24. W. M. P. van der Aalst. On the automatic generation of workflow processes based on product
structures. Computer in Industry, 39(2):97–111, 1999.

Error Compensation in Leaf Root Problems�

Michael Dom, Jiong Guo, Falk Hüffner, and Rolf Niedermeier

Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, Sand 13,
D-72076 Tübingen, Fed. Rep. of Germany

{dom, guo, hueffner, niedermr}@informatik.uni-tuebingen.de

Abstract. The k-Leaf Root problem is a particular case of graph
power problems. Here, we study “error correction” versions of k-Leaf
Root—that is, for instance, adding or deleting at most l edges to gener-
ate a graph that has a k-leaf root. We provide several NP-completeness
results in this context, and we show that the NP-complete Closest 3-
Leaf Root problem (the error correction version of 3-Leaf Root) is
fixed-parameter tractable with respect to the number of edge modifica-
tions in the given graph. Thus, we provide the seemingly first nontrivial
positive algorithmic results in the field of error compensation for leaf root
problems with k > 2. To this end, as a result of independent interest,
we develop a forbidden subgraph characterization of graphs with 3-leaf
roots.

1 Introduction

Graph powers are a classical concept in graph theory (cf. [2–Section 10.6]) with
recently increased interest from an algorithmic point of view. The k-power of
a graph G = (V,E) is the graph Gk = (V,E′) with (u, v) ∈ E′ iff there is a
path of length at most k between u and v in G. We say G is the k-root of Gk;
deciding whether a graph is a power of some other graph is called the graph
root problem. It is NP-complete in general [18], but one can decide in O(|V |3)
time whether a graph is a k-power of a tree for any fixed k [12]. In particular,
it can be decided in linear time whether a graph is a square of a tree [17, 14].
Very recently, Lau [14] shows that it can be found in polynomial time whether a
graph is a square of a bipartite graph, but it is NP-complete to decide whether
a graph is a cube of a bipartite graph. Moreover, Lau and Corneil [15] give a
polynomial-time algorithm for recognizing k-powers of proper interval graphs
for every k and show that, contrariwise, recognizing squares of chordal graphs
and split graphs is NP-complete. Here, we concentrate on certain variants of
tree powers. Whereas Kearney and Corneil [12] study the problem where ev-
ery tree node one-to-one corresponds to a graph vertex, Nishimura, Ragde, and
Thilikos [21] introduced the notion of leaf powers where exclusively the tree

� Supported by the Deutsche Forschungsgemeinschaft (DFG), Emmy Noether research
group PIAF (fixed-parameter algorithms), NI 369/4.

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 389–401, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

390 M. Dom et al.

leaves stand in one-to-one correspondence to the graph vertices. Motivated by
applications in computational biology, Lin, Kearney, and Jiang [16] and Chen,
Jiang, and Lin [4] examine the variant of leaf powers where all inner nodes of
the root tree have degree at least three. The corresponding algorithmic prob-
lems to decide whether a graph has a k-root are called k-Leaf Root [21] and
k-Phylogenetic Root [16], respectively. For k ≤ 4, both problems are solv-
able in polynomial time [21, 16]. The complexities of both problems for k ≥ 5
are still open. Moreover, Chen et al. [4] show that, under the assumption that
the maximum degree of the phylogenetic root is bounded from above by a con-
stant, there is a linear-time algorithm that determines whether a graph has a
k-phylogeny for arbitrary k.

What to do if the given input graph has no k-leaf root? In particular, the input
graph might be “close” to having a root but due to certain “errors” (as occur in
many practical applications), the graph structure would need some “correction”
first before the computation of a k-leaf root is doable. This problem was already
recognized by Kearney and Corneil [12], and they introduced the Closest k-
Tree Power problem. In this “error correction setting” the question is whether
a given graph can be modified by adding or deleting at most l edges such that
the resulting graph has a k-tree root. Unfortunately, this problem turns out to
be NP-complete for k ≥ 2 [12, 10]. One also obtains NP-completeness for the
corresponding problems Closest k-Phylogenetic Root [4] and, as we point
out here, Closest k-Leaf Root. In addition, for Closest k-Leaf Root we
study other edge modification problems—namely, only to allow edge deletions
or only to allow edge insertions—and we show NP-completeness. See Table 1 in
Section 4 for an overview concerning complexity results for Closest k-Leaf
Root and its variants.

To the best of our knowledge, the above error correction scenario so far
only led to results showing hardness of complexity. We are not aware of any
results concerning approximation or non-trivial exact algorithms. In contrast,
we show the seemingly first positive algorithmic results in this context, proving
fixed-parameter tractability with respect to the number l of edge modifications
for Closest 3-Leaf Root and all its variants mentioned above. To achieve
our fixed-parameter results, we develop a novel forbidden subgraph character-
ization of graphs that are 3-leaf powers—a result that may be of interest on
its own: A graph is a 3-leaf power iff it is chordal and it contains none of the
5-vertex graphs bull, dart, and gem as induced subgraph (see Section 3 for de-
tails). A much simpler characterization of graphs that are 2-leaf powers is already
known by forbidding an induced path of three vertices [23]. This characteriza-
tion finds direct applications in corresponding fixed-parameter algorithms [7]
(fixed-parameter tractability is also implied by a more general result of Leizhen
Cai [3]), whereas our new characterization of 3-leaf powers requires a more tricky
approach. Due to the lack of space, many proofs are deferred to the full version
of this paper.

Error Compensation in Leaf Root Problems 391

2 Preliminaries, Basic Definitions, and Previous Work

We consider only undirected graphs G = (V,E) with n := |V | and m := |E|.
Edges are denoted as tuples (u, v). For a graph G = (V,E) and u, v ∈ V , let
dG(u, v) denote the length of the shortest path between u and v in G. With
E(G), we denote the edge set E of a graph G = (V,E). We call a graph G′ =
(V ′, E′) an induced subgraph of G = (V,E) if V ′ ⊆ V and E′ = {(u, v) | u, v ∈
V ′ and (u, v) ∈ E}. An edge between two vertices of a cycle that is not part of
the cycle is called chord. An induced cycle of length at least four is called hole.
A chordal graph is a graph that contains no hole. For two sets A and B, A �B
denotes the symmetric difference A \B ∪B \A.

Closely related to the well-known graph power concept (cf. [2–Section 10.6])
is the notion of a k-leaf power of a tree, introduced by Nishimura, Ragde, and
Thilikos [21]:

Definition 1. Given an unrooted tree T with leaves one-to-one labeled by the
elements of a set V . The k-leaf power of T is a graph, denoted T k, with T k :=
(V,E), where E := {(u, v) | u, v ∈ V and dT (u, v) ≤ k}.

The following problem is inspired by the problem of forming a phylogenetic
tree1 based on a binary similarity measure.

k-Leaf Root (LRk)
Instance: A graph G.
Question: Is there a tree T such that T k = G?
Nishimura et al. [21] show that k-Leaf Root can be solved in polynomial

time for k ≤ 4. As already Nishimura et al. point out, in practice phylogenetic
problems involve errors in distance estimators. This motivates the following.

Closest k-Leaf Root (CLRk)
Instance: A graph G = (V,E) and a nonnegative integer l.
Question: Is there a tree T such that T k and G differ by at most l edges,

that is, |E(T k) � E(G)| ≤ l?
This problem is also denoted more precisely as CLRk Edge Editing. In this

paper we also study two variations, where the distance estimator is assumed to
have only one-sided errors:

– CLRk Edge Insertion: Only inserting edges intoG is allowed to obtain T k;
– CLRk Edge Deletion: Only deleting edges fromG is allowed to obtain T k.

CLR2 Edge Editing has been studied under various names in the litera-
ture. The first proof of its NP-completeness is due to Křivánek and Morávek [13],
where it is called Hierarchical-Tree Clustering. Independently, the prob-
lem was studied by Shamir, Sharan, and Tsur as Cluster Editing [23] and
by Bansal, Blum, and Chawla as Correlation Clustering [1]. CLR2 Edge
Deletion (also known as Cluster Deletion) was shown to be NP-complete
by Natanzon [19].

1 That is, a tree where leaves correspond to species and internal nodes represent
evolutionary events.

392 M. Dom et al.

gembull dart

Fig. 1. 5-vertex graphs that occur as forbidden induced subgraphs

Lin, Kearney, and Jiang [16] consider a variant of k-Leaf Root where the
inner nodes of the output tree are not allowed to have degree 2. They call this
problem k-Phylogenetic Root (PRk), and show that PRk can be solved in
linear time for k ≤ 4.2 As for leaf roots, the generalization that allows for the
input graph to contain errors is a better match for the biological motivation,
and one can ask for the Closest k-Phylogenetic Root (CPRk), defined
analogous to Closest k-Leaf Root. CPRk is examined by Chen, Jiang, and
Lin [4], who show that it is NP-complete for k ≥ 2.

Among other things, we show that CLR3 is fixed-parameter tractable with
respect to parameter l. That is, we show that CLR3 can be solved in f(l) ·nO(1)

time, where f is an (exponential) function only depending on l. For small l,
as might be naturally expected since l refers to the number of errors, effi-
cient (polynomial-time) algorithms are possible. Two recent surveys on fixed-
parameter tractability can be found in [6, 20].

3 Forbidden Subgraph Characterization for 3-Leaf
Powers

It is not hard to see that graphs that are 2-leaf powers are exactly the graphs
where every connected component is a clique. Shamir et al. [23] note that these
graphs are characterized by a forbidden induced subgraph, namely a path of three
vertices (P3). In this section we derive a similar, but far less evident forbidden
subgraph characterization of 3-leaf powers: they are chordal graphs that contain
no induced bull, dart, or gem (see Figure 1).

Forbidden subgraph characterizations can be valuable in various ways. For in-
stance, they can lead to fixed-parameter algorithms for the corresponding graph
modification problems. Leizhen Cai [3] shows that with a finite set of forbidden
subgraphs, finding the l edges to be modified is fixed-parameter tractable with
respect to l. Using the single forbidden subgraph P3, this immediately applies
to the case of 2-leaf powers; for 3-leaf powers, exploiting the subsequent for-
bidden subgraph characterization is one of the decisive ingredients of the fixed-
parameter algorithms presented in Section 5. Note, however, that here Cai’s

2 For k = 4, they show this only for connected graphs.

Error Compensation in Leaf Root Problems 393

u v

w

x

x

y

y

(a) (b)

u

v w

Fig. 2. Neighborhood of 3 vertices u, v, w from 3 different critical cliques

result does not apply directly, since chordal graphs do not admit a characteriza-
tion by a finite set of forbidden subgraphs.

As we will see, 3-leaf powers are closely connected to the concept of a critical
clique, which was introduced by Lin et al. [16].

Definition 2. A critical clique of a graph G is a clique K where the vertices
of K all have the same set of neighbors in G \K, and K is maximal under this
property.

In other words, a critical clique is a module that is maximal and a clique.
The following connection to 3-leaf powers can be shown:

Lemma 1. If a graph G is a 3-leaf power, then every clique in G consists of at
most two critical cliques.

Lemma 2. For a chordal graph G, the following are equivalent:

(1) There is a clique K in G that consists of at least three critical cliques.
(2) G contains a bull, dart, or gem (see Figure 1) as induced subgraph.

Proof. (1) ⇒ (2): Let u, v, w be three vertices from K that belong to different
critical cliques. We distinguish two cases.
(a) There is a vertex x which is connected to exactly one of u, v, w, say to u

(see Figure 2 (a)). Since v and w belong to different critical cliques, there
must be a vertex y which is connected to only one of them, say to v.
The edges (y, u) and (y, x) can be present or not, except that if (y, x)
is present, then (y, u) must also be present, because otherwise x, y, v, u
induce a hole. This leaves 3 possibilities, where we get the induced sub-
graphs bull, dart, and gem, respectively.

(b) There is no vertex which is connected to exactly one of u, v, w (see Fig-
ure 2 (b)). Then there is a vertex x which is connected to exactly two
of u, v, w, say to u and v (otherwise, u, v, w would have identical neigh-
borhood, and would be in the same critical clique). Since u and v belong
to different critical cliques, there is a vertex y which is adjacent to only
one of them, say to u. By the precondition of this case, y is connected
to w. The vertices x and y cannot be connected, since otherwise x, y, w, v
induce a hole. We get an induced gem.

394 M. Dom et al.

(2) ⇒ (1): Assume G contains a forbidden subgraph. Let u, v, w be the vertices
of a triangle in the forbidden subgraph (in the case of the gem, the triangle
which contains both degree-3 vertices). Then u, v, w form a clique. Let x
and y be the remaining two vertices in the subgraph. Since each of u, v, w
is adjacent to a different combination of x and y, they belong to 3 different
critical cliques.
�
Since between the vertices of two critical cliques either all pairwise or no

connections are present, the concept of a critical clique graph [16] comes up
naturally. As we will see, the structure of the critical clique graph is already
close to the structure of the 3-leaf roots we are looking for. For easier distinction
from the elements of G, we use the term nodes for vertices in the critical clique
graph.

Definition 3. Given a graph G = (V,E). Let C be the collection of its critical
cliques. Then the critical clique graph CC(G) is a graph (C,EC) with

(Ki,Kj) ∈ EC ⇐⇒ ∀u ∈ Ki, v ∈ Kj : (u, v) ∈ E.

That is, the critical clique graph has the critical cliques as nodes, and two nodes
are connected iff the corresponding critical cliques together form a larger clique.

Since every vertex of G belongs to exactly one critical clique, the critical
clique graph of G can be constructed in O(n ·m) time by iterating through the
vertices and constructing the critical clique they are part of by comparing their
neighborhood to that of all adjacent vertices.

The following lemma reveals details of the structure of a critical clique graph.

Lemma 3. If every clique of a graph G consists of at most two critical cliques,
then CC(G) does not contain a clique of three or more vertices.

Utilizing Lemmas 1, 2, and 3, we can obtain the main theorem of this section.

Theorem 1. For a graph G, the following are equivalent:

(1) G has a 3-leaf root.
(2) G is chordal and contains no bull, dart, or gem as induced subgraph.

Proof. (1) ⇒ (2): If G is a leaf power, then G must be chordal [16]. Then, by
Lemma 1 and Lemma 2, it does not contain any of the forbidden subgraphs.

(2) ⇒ (1): If G is chordal, then so is CC(G), since if CC(G) contained a hole,
we could also find a hole in G by taking one arbitrary vertex from each
critical clique on the cycle. With Lemma 3, it follows that CC(G) is a forest.
For each connected component of CC(G), construct a leaf root by attaching
to each node a new leaf node for each vertex of the corresponding critical
clique. Finally, create a new node and connect this node to an arbitrary
inner node of each newly constructed tree. Then, the resulting tree T is a
3-leaf root of G. To see this, consider two vertices u, v, u �= v of G. They
are connected in G iff they are in the same critical clique, or they are in two
adjacent critical cliques. This is equivalent to the distance of u and v in T
being 2 and 3, respectively.
�

Error Compensation in Leaf Root Problems 395

Table 1. Complexity of Closest k-Leaf Root. The polynomial-time solvability of
CLR2 Edge Insertion is trivial; the results for k ≥ 3 are discussed in Section 4. The
main new result is NP-completeness of CLRk Edge Insertion for k ≥ 3

k = 2 k ≥ 3

Edge editing NP-complete [13] NP-complete
Edge deletion NP-complete [19] NP-complete
Edge insertion P NP-complete

4 NP-Completeness Results

In Table 1 we summarize known and new results on the classical complexity (P
vs. NP) of Closest k-Leaf Root problems. The NP-completeness of CLRk
Edge Editing and CLRk Edge Deletion for k ≥ 3 can be shown by an
adaption of the NP-completeness proof for CPRk by Chen et al. [4]. We refer
to the full version of this paper for details on how to adapt their proof.

CLR2 Edge Insertion can be trivially solved in polynomial time, since it is
exactly the problem of adding edges to a graph so that each connected component
becomes a clique. However, it can be shown that for k ≥ 3 this problem becomes
NP-complete by giving a reduction from Maximum Edge Biclique [22]; we
defer the proof to the full version of this paper.

Theorem 2. CLRk Edge Insertion is NP-complete for k ≥ 3.

5 Fixed-Parameter Tractability Results for CLR3

In this section we show fixed-parameter tractability with respect to the number
of editing operations l for CLR3 Edge Insertion, CLR3 Edge Deletion,
and CLR3 Edge Editing. According to the characterization of 3-leaf powers
from Theorem 1, the algorithms have two tasks to fulfill:

(1) Edit the input graph G to get rid of the forbidden subgraphs bull, dart, and
gem.

(2) Edit G to make it chordal.

Lin et al. [16] show the usefulness of the critical clique graph for the construc-
tion of the 3-leaf root (see also Section 3). The following lemma demonstrates
that the critical clique graph is also of crucial importance for our algorithms
solving CLR3: our algorithms work with the critical clique graph CC(G) in-
stead of G. We defer the proof of the lemma to the full version of this paper
since it is similar to the proof of Lemma 2. We use C4 to denote a chordless cycle
of four vertices.

Lemma 4. If a graph G contains no bull, dart, gem, or C4 as induced subgraph,
then there is no triangle in its critical clique graph.

396 M. Dom et al.

Following from Lemma 4, if we can show that there is an optimal solution for
CLR3 problems which can be represented as editing operations on the critical
clique graph, then the two above tasks can be fulfilled in two independent phases:
First, eliminate each induced bull, dart, gem, and C4 in the critical clique graph
using a search tree of bounded depth. Then, edit each of the resulting critical
clique graphs to make it a forest. The optimal solution is then the solution with
minimum total number of editing operations in the two steps. The following two
lemmas show that it is indeed correct to work only with CC(G) instead of G.

Lemma 5. Graph G contains a bull, dart, gem, or C4 iff its critical clique graph
CC(G) contains a bull, dart, gem, or C4, respectively.

Lemma 6. Given a graph G. Then there is always an optimal solution for
CLR3 Edge Editing that is represented by edge editing operations on CC(G).
That is, one can find an optimal solution that does not delete any edges within a
critical clique; furthermore, in this optimal solution, between two critical cliques
either all or no edges are inserted or deleted.

Based on Lemmas 5 and 6, we can now consider a critical clique of G as
a single vertex and work on CC(G) instead of G. One more benefit of this
approach is that we can eliminate several forbidden subgraphs in G by only
one modification operation in CC(G). A modification operation on CC(G) can
decrease the parameter l by more than one since it can correspond to more than
one modification operation on G. Then, our algorithm scheme is as follows:

(0) Construct CC(G) from G.
(1) Edit CC(G) to get rid of the forbidden subgraphs bull, dart, gem, and C4.
(2) Edit CC(G) to make it a forest.

Note that after modifying CC(G), two or more nodes in CC(G) might obtain
identical neighborhoods. Since each node in CC(G) has to represent a critical
clique in G, a merge operation is needed, which replaces these nodes in CC(G)
by a new node with the same neighborhood as the original nodes. Therefore, in
the following, we assume that after each modification operation, we check for
every pair of nodes whether a merge operation between them is possible, which
can be done in O(n ·m) time.

We now examine the running time of the respective steps. As mentioned in
Section 3, CC(G) can be constructed in O(n·m) time. By Cai’s result [3], there is
a fixed-parameter algorithm for Step (1). More specifically, because of Lemma 4,
we know that each triangle in CC(G) is either part of a bull, dart, or gem,
or it has one edge in common with a C4. We can then determine a forbidden
subgraph by first finding a triangle in O(n · m) time, and then partitioning
the n− 3 nodes not in the triangle into eight sets depending on to which of the
three nodes in the triangle they are connected. This allows to find a bull, dart,
gem, or C4 in additional O(n) time. If we do not find a triangle, we can find

Error Compensation in Leaf Root Problems 397

a C4 by determining the shortest cycle in O(n ·m) time [9]. In summary, we find
a forbidden subgraph in O(n ·m) time.3

Therefore, we can employ a search tree which finds a forbidden subgraph and
branches into several cases corresponding to each editing operation that destroys
it. As an example, for edge deletion, this will lead to anO(7l·nm) time algorithm,
since the highest number of edges occurring in any forbidden subgraph is seven
(gem). We mention in passing that the techniques applied by Gramm et al. [7, 8]
for CLR2 could be adapted to improve the base 7 of the exponential component
of the running time. In the descriptions of the respective algorithms, we now
only need to deal with Step (2) to show fixed-parameter tractability.

As shown in the proof of Theorem 1, if CC(G) has more than one connected
component, we can solve the problem for each component independently, and
then connect the generated leaf roots by adding a new inner node and connecting
it to an arbitrary inner node of each leaf root. This allows us in the following
without loss of generality to only consider connected graphs. Note that this
property does not hold for Closest k-Phylogenetic Root, which makes it
considerably harder to obtain analogous results.

5.1 Edge Deletion

As stated above, the task of Step (2) is to transform a bull-, dart-, gem-, and
C4-free CC(G), which does not contain a triangle as an induced subgraph, into
a forest by edge deletions. Observe that after getting rid of all forbidden sub-
graphs in Step (1), throughout Step (2) CC(G) always remains bull-, dart-, gem-,
and C4-free when only edge deletions are allowed. Hence, Step (2) of our algo-
rithm scheme can be handled with a polynomial-time algorithm, as stated in the
following lemma.

Lemma 7. Given a critical clique graph CC(G) that contains no induced bull,
dart, gem, or C4. Then we can find an optimal solution for CLR3 Edge Dele-
tion by finding a maximum weight spanning tree for CC(G), where edges are
weighted by the product of the sizes of the critical cliques corresponding to their
two endpoints.

Theorem 3. CLR3 Edge Deletion with l edge deletions allowed is fixed-
parameter tractable with respect to l.

Proof. We employ a search tree of height bounded by l. In each inner node of the
search tree, we find a forbidden subgraph and branch into at most seven cases
corresponding to the edges of the forbidden subgraph. At each leaf of the search
tree, we find a maximum weight spanning tree in O(m log n) time. In summary,
we have a running time of O(7l · nm).
�

3 Note that using algorithms based on matrix multiplication, we can alternatively do
this in O(n2.38) time [5].

398 M. Dom et al.

5.2 Edge Insertion

If CC(G) after Step (1) contains no cycle, i.e., it is a tree, then there is no edge
insertion required. For a CC(G) containing at least one cycle, the only possible
way to make it a tree by edge insertions is to trigger a merge operation for
some nodes on this cycle such that the remaining nodes induce no cycle. Recall
that two nodes can be merged iff they are adjacent and they have the same
neighborhood. Thus, in order to merge two nodes Ki and Kj , we have to insert
an edge between them if they are not already adjacent; furthermore, we need to
connect Ki to all neighbors of Kj and connect Kj to all neighbors of Ki. Since
each cycle of CC(G) has length at least four, two nodes Ki and Kj on the same
cycle either are not adjacent or there are at least two neighbors which are not
common to Ki and Kj . Hence, we need at least one edge insertion to merge two
nodes on a cycle.

We show the fixed-parameter tractability of CLR3 Edge Insertion with
respect to l by giving a simple search tree algorithm that tries all possible pairs
of nodes to merge in a cycle. For this, it suffices to determine an upper bound for
the length of a cycle in CC(G) that depends only on l. We achieve this by giving
a connection between the triangulation of a hole and the merge operations that
turn a cycle into a tree.

A triangulation of a hole C = (VC , EC), where VC denotes the set of the
vertices on this cycle and EC the set of the edges, is a set D of chords of C such
that there is no hole in C ′ = (VC , EC ∪D). A triangulation F of a graph G is
minimal if no proper subset of F triangulates G.

Lemma 8. Each set of edges inserted into a cycle C of a critical clique graph
to transform C into a tree is a triangulation of C.

Kaplan, Shamir, and Tarjan [11] show that a minimal triangulation D of
an n-cycle C consists of n − 3 chords, which implies that a graph G that can
be triangulated by at most l edge insertions cannot have a chordless cycle of
length more than l+ 3. This is also the key idea of one of their fixed-parameter
algorithms for Minimum Fill-In, which is the problem to make a graph chordal
by edge insertion. With Lemma 8, we conclude that the maximum cycle length
of CC(G) is bounded above by l + 3; otherwise, there is no solution to CLR3
Edge Insertion using only l insertion operations.

Altogether, we get the following theorem.

Theorem 4. CLR3 Edge Insertion on a graph G = (V,E) with l edge in-
sertions allowed is fixed-parameter tractable with respect to l.

5.3 Edge Editing

In this section we extend the algorithm for CLR3 Edge Insertion from Sec-
tion 5.2 to solve CLR3 Edge Editing by additionally taking edge deletions
into account. We distinguish two types of cycles: the long cycles having length
greater than l + 3, and the short cycles having length at most l + 3.

Error Compensation in Leaf Root Problems 399

We can destroy a short cycle in CC(G) by deleting at least one edge from it,
or by merging some critical cliques. This means we have at most l + 3 possible
edge deletions and at most (l + 3)2 possible merge operations. However, merge
operations with both edge deletion and edge insertion are more complicated
than merge operations with only edge insertion. Suppose that we merge a pair
of critical cliques Ki and Kj on a cycle. As with only edge insertions allowed,
we insert an edge between Ki and Kj if they are not adjacent. There may be
some critical cliques which are neighbors of Ki but not of Kj or vice versa. To
satisfy the neighborhood condition of a critical clique, for each of these neigh-
bors which are not common to Ki and Kj , we have to either insert an edge to
make it a common neighbor of both critical cliques, or delete an edge to make it
nonadjacent to both critical cliques. However, there may be at most l such non-
common neighbors, since there are at most l edge editing operations allowed. A
merge operation between Ki and Kj is then possible only if they have at most l
noncommon neighbors. Thus, we have at most 2l different ways to merge these
two critical cliques. Altogether, we now have (l+ 3) + (l+ 3)2 · 2l branchings to
transform a short cycle into a tree.

Theorem 5. CLR3 Edge Editing on a graph G = (V,E) with l edge editing
operations allowed is fixed-parameter tractable with respect to l.

6 Concluding Remarks

Our algorithmic results fall into the broad category of complexity for graph mod-
ification problems. In addition, we recently obtained a fixed-parameter tracta-
bility result for CLR3 Vertex Deletion, the NP-complete problem that asks
for the least number of vertices to delete to make a graph a 3-leaf root. The
line of research initiated in our work offers several future challenges. We only
mention four points.

– In ongoing work we examine the generalization of our fixed-parameter trac-
tability results for Closest 3-Leaf Root to Closest 4-Leaf Root.
For k ≥ 5 the question is completely open. The difficulty here lies in the
more complicated structure of the critical clique graph; for example, it is no
longer required to be a tree.

– It remains open to provide a problem kernel for 3-Leaf Root [6, 20].
– One challenge is to investigate whether similar fixed-parameter tractability

results can be achieved for the closely related phylogenetic root problems
studied in [4, 16]. Forbidding degree-2 nodes there in the output trees seems
to make things more elusive, though.

– From a more applied point of view, it would be interesting to see how small
the combinatorial explosion for CLR3 and its variants in the parameter l
(denoting the number of modifications) can be made. Encouraging results
for the “simpler” but still NP-complete Closest 2-Leaf Root problem are
obtained in [7, 8] (where the problem is referred to as Cluster Editing).

400 M. Dom et al.

References

1. N. Bansal, A. Blum, and S. Chawla. Correlation clustering. In Proc. 43rd FOCS,
pages 238–247. IEEE Computer Society, 2002.

2. A. Brandstädt, V. B. Le, and J. P. Spinrad. Graph Classes: a Survey. SIAM
Monographs on Discrete Mathematics and Applications, 1999.

3. L. Cai. Fixed-parameter tractability of graph modification problems for hereditary
properties. Information Processing Letters, 58:171–176, 1996.

4. Z.-Z. Chen, T. Jiang, and G. Lin. Computing phylogenetic roots with bounded
degrees and errors. SIAM Journal on Computing, 32(4):864–879, 2003.

5. D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progres-
sions. Journal of Symbolic Computation, 9:251–280, 1990.

6. M. R. Fellows. New directions and new challenges in algorithm design and com-
plexity, parameterized. In Proc. 8th WADS, volume 2748 of LNCS, pages 505–520.
Springer, 2003.

7. J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier. Graph-modeled data clustering:
Fixed-parameter algorithms for clique generation. In Proc. 5th CIAC, volume 2653
of LNCS, pages 108–119. Springer, 2003. Long version to appear in Theory of
Computing Systems.

8. J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier. Automated generation of search
tree algorithms for hard graph modification problems. Algorithmica, 39(4):321–347,
2004.

9. A. Itai and M. Rodeh. Finding a minimum circuit in a graph. SIAM Journal on
Computing, 7(4):413–423, 1978.

10. T. Jiang, G. Lin, and J. Xu. On the closest tree kth root problem. Manuscript,
Department of Computer Science, University of Waterloo, 2000.

11. H. Kaplan, R. Shamir, and R. E. Tarjan. Tractability of parameterized completion
problems on chordal, strongly chordal, and proper interval graphs. SIAM Journal
on Computing, 28(5):1906–1922, 1999.

12. P. E. Kearney and D. G. Corneil. Tree powers. Journal of Algorithms, 29(1):111–
131, 1998.

13. M. Křivánek and J. Morávek. NP-hard problems in hierarchical-tree clustering.
Acta Informatica, 23(3):311–323, 1986.

14. L. C. Lau. Bipartite roots of graphs. In Proc. 15th ACM-SIAM SODA, pages
952–961. ACM/SIAM, 2004.

15. L. C. Lau and D. G. Corneil. Recognizing powers of proper interval, split, and
chordal graphs. SIAM Journal on Discrete Mathematics, 18(1):83–102, 2004.

16. G. Lin, P. E. Kearney, and T. Jiang. Phylogenetic k-root and Steiner k-root. In
Proc. 11th ISAAC, volume 1969 of LNCS, pages 539–551. Springer, 2000.

17. Y. L. Lin and S. S. Skiena. Algorithms for square roots of graphs. SIAM Journal
on Discrete Mathematics, 8(1):99–118, 1995.

18. R. Motwani and M. Sudan. Computing roots of graphs is hard. Discrete Applied
Mathematics, 54(1):81–88, 1994.

19. A. Natanzon. Complexity and approximation of some graph modification problems.
Master’s thesis, Department of Computer Science, Tel Aviv University, 1999.

20. R. Niedermeier. Ubiquitous parameterization—invitation to fixed-parameter al-
gorithms. In Proc. 29th MFCS, volume 3153 of LNCS, pages 84–103. Springer,
2004.

21. N. Nishimura, P. Ragde, and D. M. Thilikos. On graph powers for leaf-labeled
trees. Journal of Algorithms, 42(1):69–108, 2002.

Error Compensation in Leaf Root Problems 401

22. R. Peeters. The maximum edge biclique problem is NP-complete. Discrete Applied
Mathematics, 131(3):651–654, 2003.

23. R. Shamir, R. Sharan, and D. Tsur. Cluster graph modification problems. In Proc.
28th WG, volume 2573 of LNCS, pages 379–390. Springer, 2002. Long version to
appear in Discrete Applied Mathematics.

On Compact and Efficient Routing in Certain
Graph Classes (Extended Abstract)

Feodor F. Dragan1 and Irina Lomonosov2

1 Department of Computer Science, Kent State University, Kent, Ohio, USA
dragan@cs.kent.edu

2 Department of Computer Science, Hiram College, Hiram, Ohio, USA
lomonosovi@hiram.edu

Abstract. In this paper we refine the notion of tree-decomposition by
introducing acyclic (R, D)-clustering, where clusters are subsets of ver-
tices of a graph and R and D are the maximum radius and the maximum
diameter of these subsets. We design a routing scheme for graphs admit-
ting induced acyclic (R, D)-clustering where the induced radius and the
induced diameter of each cluster are at most 2. We show that, by con-
structing a family of special spanning trees, one can achieve a routing
scheme of deviation Δ ≤ 2R with labels of size O(log3 n/ log log n) bits
per vertex and O(1) routing protocol for these graphs. We investigate also
some special graph classes admitting induced acyclic (R, D)-clustering
with induced radius and diameter less than or equal to 2, namely, chordal
bipartite, homogeneously orderable, and interval graphs. We achieve the
deviation Δ = 1 for interval graphs and Δ = 2 for chordal bipartite and
homogeneously orderable graphs.

1 Introduction

Routing is one of the basic tasks that a distributed network of processors must
be able to perform. A routing scheme is a mechanism that can deliver packets of
information from any node of the network to any other node. More specifically,
a routing scheme is a distributed algorithm. Each processor in the network has
a routing daemon (known also as a message passing algorithm or a forwarding
protocol) running on it. This daemon receives packets of information and has
to decide whether these packets have already reached their destination, and if
not, how to forward them towards their destination. A network can be viewed
as a graph, with the vertices representing processors and the edges representing
direct connections between processors. It is naturally desirable to route messages
along paths that are as short as possible.

Routing scheme design is a well-studied subject. For a general overview we
refer the reader to [14]. Most routing schemes are labeling schemes that assign
two kind of labels to every vertex of a graph. The first label is the address of
the vertex, the second is a data structure called local routing table. These labels
are assigned in such a way that at every source vertex x its routing daemon can
quickly decide, based on the two labels stored locally in x and the address of

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 402–414, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

On Compact and Efficient Routing in Certain Graph Classes 403

any destination node y, whether the packet has reached its destination, and if
not, to which neighbor of x to forward the packet.

A straightforward approach to routing is to store a complete routing table
at each vertex of the graph, specifying for each destination y the first edge (or
identifier of that edge, indicating the output port) along some shortest path from
x to y. While this approach guarantees optimal (shortest path) routing, it is too
expensive for large systems since it requires total O(n2 log δ) memory bits for
an n-vertex graph with maximum degree δ. Thus, for large scale communication
networks, it is important to design routing schemes that produce short enough
routes and have sufficiently low memory requirements.

Unfortunately, for every shortest path routing strategy and for all δ, there is a
graph of degree bounded by δ for which Ω(n log δ) bit routing tables are required
simultaneously on Θ(n) vertices [11]. This matches the memory requirements of
complete routing tables. To obtain routing schemes for general graphs that use
o(n) of memory at each vertex, one has to abandon the requirement that packets
are always delivered via shortest paths, and settle instead for the requirement
that packets are routed on paths that are relatively close to shortest. The effi-
ciency of a routing scheme is measured in terms of its additive stretch, called
deviation (or multiplicative stretch, called delay), namely, the maximum surplus
(or ratio) between the length of a route, produced by the scheme for a pair of
vertices, and the shortest route. There is a tradeoff between the memory require-
ments of a routing scheme and the worst case stretch factor it guarantees. Any
multiplicative t-stretched routing scheme must use Ω(

√
n) bits for some vertices

in some graphs for t < 5 [18], Ω(n) bits for t < 3 [9], and Ω(n log n) bits for
t < 1.4 [11]. These lower bounds show that it is not possible to lower memory re-
quirements of a routing scheme for an arbitrary network if it is desirable to route
messages along paths close to optimal. Therefore it is interesting, both from a
theoretical and a practical view point, to look for specific routing strategies on
graph families with certain topological properties.

One way of implementing such routing schemes, called interval routing, has
been introduced in [16] and later generalized in [13]. In this special routing
method, the complete routing tables are compressed by grouping the destination
addresses which correspond to the same output port. Then each group is encoded
as an interval, so that it is easy to check weather a destination address belongs to
the group. This approach requires O(δ log n) bit labels and O(log δ) forwarding
protocol, where δ is the maximum degree of a vertex of the graph. A graph
must satisfy some topological properties in order to support interval routing,
especially if one insists on paths close to optimal. Routing schemes for many
graph classes were obtained by using interval routing techniques. The classical
and most recent results in this field are presented in [8].

New routing schemes for interval graphs, circular-arc graphs and permutation
graphs were presented in [5]. The design of these simple schemes uses properties
of intersection models. Although this approach gives some improvement over
existing earlier routing schemes, the local memory requirements increase with
the degree of the vertex as in interval routing.

404 F.F. Dragan and I. Lomonosov

Graphs with regular topologies, as hypercubes, tori, rings, complete graphs,
etc., have specific routing schemes using O(logn)-bit labels. It is interesting to
investigate which other classes of graphs admit routing schemes with labels not
depending on vertex degrees, that route messages along near-optimal path. A
shortest path routing scheme for trees of arbitrary degree and diameter is de-
scribed in [7, 17]. It assigns each vertex of an n-vertex tree a O(log2 n/ log log n)-
bit label. Given the label of a source vertex and the label of a destination vertex
it is possible to determine in constant time the neighbor of the source vertex
that leads towards the destination. These routing schemes for trees serve as a
base for designing routing strategies for more general graphs. Indeed, if there is
a family of spanning trees such that for each pair of vertices of a graph, there is
a tree in the family containing a low-stretch path between them, then the tree
routing scheme can be applied within that tree. This approach was used in [4]
to obtain a routing scheme of deviation 2 with labels of size O(log3 n/ log log n)
bits per vertex and O(1) routing protocol for chordal graphs. The scheme uses
the notion of tree-decomposition introduced in [15]. There, a family of spanning
trees is a collection of Breadth-First-Search trees associated with each node of
the tree-decomposition. It is shown that, despite the fact that the size of the
family can be O(n), it is enough for each vertex to keep routing labels of only
O(logn) trees and, nevertheless, for each pair of vertices, a tree containing a
low-stretch path between them can be determined in constant time.

In this paper we refine the notion of tree-decomposition by introducing acyclic
(R,D)-clustering, where clusters are subsets of vertices of a graph and R and D
are the maximum radius and diameter of these subsets. We develop a routing
scheme for graphs admitting induced acyclic (R,D)-clustering where the induced
radius and the induced diameter of each cluster are at most 2. We show that, by
constructing a family of special spanning trees, one can produce a routing scheme
of deviation Δ ≤ 2R with labels of size O(log3 n/ log log n) bits per vertex and
O(1) routing protocol for these graphs. Our routing strategy is inspired by and
based on the work of Dourisboure and Gavoille [4]. Recently we learned that [3],
too, generalizes the approach taken in [4] and obtains a routing scheme of devi-
ation Δ ≤ 2D with labels of size O(D log3 n) bits per vertex and O(log(Dlogn))
routing protocol for the so-called tree-length D graphs [3] (which turns out to
be equivalent to the class of graphs admitting acyclic (D,D)-clustering).

We investigate some special graph classes admitting induced acyclic (R,D)-
clustering with induced radius and diameter less than or equal to 2, namely,
chordal bipartite, homogeneously orderable, and interval graphs. We achieve
the deviation Δ = 1 for interval graphs and Δ = 2 for chordal bipartite and
homogeneously orderable graphs, while the routing schemes of [3, 4] produceΔ =
2 for interval graphs and Δ = 4 for chordal bipartite graphs. To the best of our
knowledge this is the first routing scheme that is presented for homogeneously
orderable graphs. Note that they include such well known families of graphs as
distance-hereditary graphs, strongly chordal graphs, dually chordal graphs as
well as homogeneous graphs (see [2]). Additionally, we achieve a constant time
routing protocol and slightly lower memory requirements for chordal bipartite

On Compact and Efficient Routing in Certain Graph Classes 405

graphs (from [3] one could infer for chordal bipartite graphs a scheme with labels
of size O(log3 n) bits per vertex and O(loglogn) routing protocol).

2 Preliminaries

All graphs occurring in this paper are connected, finite, undirected, loopless,
and without multiple edges. For a subset S ⊆ V of vertices of G, let G(S) be
a subgraph of G induced by S. By n = |V | we denote the number of vertices
in G. The distance distG(u, v) between vertices u and v of a graph G = (V,E)
is the smallest number of edges in a path connecting u and v. The distance
between a vertex u ∈ V and a set S is distG(u, S) = minv∈S{distG(u, v)}. The
radius of a set S in G is radG(S) = minv∈S{maxu∈S{distG(v, u)}} and the
diameter is diamG(S) = maxv,u∈S{distG(v, u)}. The induced radius of a set
S is rad(S) = minv∈S{maxu∈S {distG(S)(v, u)}} and the induced diameter is
diam(S) = maxv,u∈S{distG(S)(v, u)}. A vertex v ∈ S such that distG(S)(u, v) ≤
rad(S) for any u ∈ S, is called a central vertex of S. Also, we denote by NG(v) =
{u ∈ V : uv ∈ E} the neighborhood of a vertex v inG and byNG[v] = NG(v)∪{v}
the closed neighborhood of v in G. The kth neighborhood Nk(v) of a vertex v of
G is the set of all vertices of distance k to v: Nk

G(v) = {u ∈ V : distG(u, v) = k}.
Our concept of acyclic (R,D)-clustering is a tree decomposition introduced

by Robertson and Seymour [15], except that clusters have to satisfy bounds on
the radius and the diameter.

Definition 1. A graph G = (V,E) admits an acyclic (R,D)-clustering if there
exists a tree T whose nodes C = {C1, C2, ..., Cκ} are subsets of V , called clusters,
such that the following holds:

1.
⋃

C∈C C = V ;
2. For any edge uv ∈ E, there exists C ∈ C such that u, v ∈ C;
3. For all X,Y, Z ∈ C, if Y is on the path from X to Z in T then X ∩ Z ⊆ Y ;
4. maxC∈C{radG(C)} ≤ R and maxC∈C{diamG(C)} ≤ D, where R and D are

non-negative integers.

T is called a tree-decomposition of G. The value κ = |C| is called the size of
the clustering, R and D are called the radius of clustering and the diameter of
clustering, respectively. We assume that acyclic clustering is reduced, meaning
that no cluster is contained in any other cluster (clearly any acyclic clustering
can be reduced).

We say that a graph G = (V,E) admits an induced acyclic (R,D)-clustering
if maxC∈C {rad(C)} ≤ R and maxC∈C{diam(C)} ≤ D, where R and D are non-
negative integers called the induced radius of clustering and the induced diameter
of clustering, respectively. An example of a graph admitting an induced acyclic
(1,2)-clustering is given in Fig. 1.

Note that the notion of acyclic (R,D)-clustering and the well-known notion
of tree-width of a graph (see [15]), are not related to each other. For instance, any
clique has an acyclic (1,1)-clustering but is of unbounded tree-width, whereas

406 F.F. Dragan and I. Lomonosov

18

17 13

15 5 21 11

14 2 9 22

6 19

8

1

4

3 12 2320

716

25

10

24

10, 20, 21

6, 17, 19

8, 17, 19

12, 21, 23

9, 17, 19, 21, 22

11, 21, 22, 23

5, 15, 17, 18, 20, 21

13, 22, 24, 25

2, 14, 15, 17 1, 14, 15

7, 16, 18

3, 15, 16, 18

4, 15, 18

Fig. 1. A graph admitting an induced acyclic (1,2)-clustering and its tree-
decomposition

any cycle of length k has tree-width 2 but admits only acyclic (Ω(k), Ω(k))-
clustering.

We will use the following property of acyclic clustering. It is proved in the full
version of the paper [6]. Recall that a graph is chordal if it does not contain any
induced cycles of length greater than 3. A vertex v is simplicial in G if NG(v) is
a clique in G.

Lemma 1. The following statements are equivalent.

1. A graph G = (V,E) admits an acyclic (R,D)-clustering.
2. For a graph G = (V,E) there exists a graph G+ = (V,E+) such that E ⊆ E+,
G+ is chordal, and for any maximal clique X of G+, diamG(X) ≤ D and
radG(X) ≤ R.

Since a chordal graph can have at most n maximal cliques [12], from Lemma
1 we obtain that any acyclic (R,D)-clustering has at most n clusters, i.e., κ ≤ n.

3 Routing Scheme

Let G be a graph that admits an acyclic (R,D)-clustering and T be a tree-
decomposition associated with it. We assume that T is rooted (say, at C1). In
a rooted tree T , ncaT (X,Y) denotes the nearest common ancestor of nodes X
and Y of T .

Definition 2. For every vertex u of G, the ball of u, denoted by B(u), is a node
Z of T with minimum depth such that u ∈ Z.

It is well known that any tree T with κ nodes has a node C, called a centroid
and computable in O(κ) time, such that any maximal by inclusion subtree of T ,
not containing C, (i.e., any connected component of T \C) has at most κ/2 nodes.
For the tree T of acyclic clustering we build a hierarchical tree H recursively as
follows. All nodes of T are nodes in H. The root of H is C, a centroid of T , and

On Compact and Efficient Routing in Certain Graph Classes 407

the children are the roots of the hierarchical trees of the connected components
of T \ C. Note that the height of H is O(log κ). The hierarchical tree for the
graph in Fig. 1 is given in Fig. 2.

13, 22, 24, 25

1, 14, 15 9, 17, 19, 21, 22 10, 20, 21 3, 15, 16, 18

2, 14, 15, 17 8, 17, 19 11, 21, 22, 23 4, 15, 18 7, 16, 18

6, 17, 19 12, 21, 23

5, 15, 17, 18, 20, 21

Fig. 2. A hierarchical tree H for the graph in Fig. 1

Let G = (V,E) be a graph that admits an induced acyclic (R,D)-clustering
with R ≤ 2 and D ≤ 2. Let X be a node of H and u be a vertex of G such that
u /∈ X and B(u) is a descendant ofX inH. Let P = {u = z0, z1, z2, . . . , zk = x∗},
x∗ ∈ X, be a shortest path of G from u to X.

Let C0 = B(u) and Ci be the cluster closest to Ci−1 in T such that zi−1, zi ∈
Ci, 1 ≤ i ≤ k. Note that such clusters exist by condition 2 of Definition 1. Let
Qi be the shortest path in T between Ci−1 and Ci, 1 ≤ i ≤ k. Let Qk+1 be the
shortest path in T between Ck and X. Observe that, by condition 3 of Definition
1, zi−1 ∈ Y for all Y ∈ Qi. Let Q(P) =

⋃k+1
i=1 Qi be a path between B(u) and

X and Q′ be the shortest path between B(u) and X in T . Note that, in general,
Q(P) is not a simple path, and Q′ ⊆ Q(P) for any path P between u and X.

For any two clusters Y and Z such that Y,Z ∈ Q′, we say that Y precedes
Z, denoted by Y ≺ Z, if Y is closer to B(u) in T than Z. We use a notation
Y , Z if Y ≺ Z or Y = Z.

Lemma 2. There exists a shortest path P = {u = z0, z1, z2, . . . , zk = x∗} be-
tween u and X such that Q(P) = Q′.

Proof. Obviously, C0 = B(u) ∈ Q′ for any P . Assume, by induction, that there
exists a path P = {z0, z1, z2, . . . , zk} between u and X such that Cl ∈ Q′ for
0 ≤ l ≤ i − 1 < k and C0 , C1 , . . . , Ci−1. We will show that there exists a
path P ′ between u and X such that C ′

l ∈ Q′ for 0 ≤ l ≤ i and C ′
0 , C ′

1 , . . . ,
C ′

i−1 , C ′
i as follows. Let C be a cluster closest to Ci in T such that C ∈ Q′.

Since X ∈ Q′, there exists an integer p such that i < p ≤ k + 1 and C ∈ Qp.
Let j > 0 be the smallest number such that C ∈ Qi+j . Notice that zi+j−1 ∈ C.
Since zi−1 ∈ C and C has diameter 2, we immediately obtain that 1 ≤ j ≤ 2.

408 F.F. Dragan and I. Lomonosov

Note that zi /∈ C, otherwise C = Ci ∈ Q′, a contradiction with Ci /∈ Q′. Thus,
j = 2, and C contains zi+1.

We claim that Ci−1 ≺ C. Otherwise, Ci−1 would contain either zi, meaning
Ci = Ci−1 ∈ Q′, a contradiction, or zq, q > i, which is not possible, since Ci−1
has diameter 2 and P is a shortest path. Let C∗ be the cluster closest to Ci−1
in T such that zi+1 ∈ C∗. Since zi+1 /∈ Ci−1, we have Ci−1 ≺ C∗ , C. Since
C∗ is on the path in T between Ci−1 and Ci, by condition 3 of Definition 1,
zi−1 ∈ C∗. Recall that P is a shortest path and, therefore, zi−1 and zi+1 are not
adjacent in G. Since C∗ has induced diameter 2, there exists a vertex z∗ ∈ C∗

such that z∗ is adjacent to both zi−1 and zi+1. We replace zi with z∗ in P and
obtain a new shortest path P ′ = {z0, z1, . . . , zi−1, z

∗, zi+1, . . . , zk}. Clearly, the
paths Q(P ′) and Q(P) have a common prefix

⋃i−1
i=1Qi.

Let C ′
i be the cluster closest to Ci−1 such that zi−1, z

∗ ∈ C ′
i. We will prove

that C ′
i ∈ Q′ and Ci−1 , C ′

i as follows. Assume, by contradiction, that C ′
i /∈ Q′.

Let C ′′
i be the cluster closest to C ′

i in T such that C ′′
i ∈ Q′. Since C ′′

i is on the
path in T between C ′

i and C∗, z∗ ∈ C ′
i and z∗ ∈ C∗, by condition 3 of Definition

1, z∗ ∈ C ′′
i . Similarly, since C ′′

i is on the path in T between C ′
i and Ci−1,

zi−1 ∈ C ′
i and zi−1 ∈ Ci−1, by condition 3 of Definition 1, zi−1 ∈ C ′′

i . Obviously,
C ′′

i is closer to Ci−1 than C ′
i. Since z∗, zi−1 ∈ C ′′

i , we obtain a contradiction,
which proves C ′

i ∈ Q′.
It remains to prove that Ci−1 , C ′

i. Consider other possibilities. If Ci−2 ≺
C ′

i ≺ Ci−1, then, by condition 3 of Definition 1, zi−2 ∈ C ′
i. In this case, C ′

i is the
cluster containing zi−2 and zi−1 and closer to Ci−2 than Ci−1, a contradiction.
If C ′

i , Ci−2, then C ′
i contains a vertex zi−j , j > 2, which is not possible since

z∗ ∈ C ′
i, C

′
i has diameter 2, and P is a shortest path. Thus, Ci−1 , C ′

i.
�

In the full version of this paper [6], we show that such a path P , which we
call a Q-simple path, can be constructed in O(n2) time.

Lemma 3. Let P be a Q-simple shortest path between u and X. Let W = {w ∈
P : B(w) /∈ Q′ = Q(P)}. Then |W | ≤ 3.

Proof. By Lemma 2, for each w ∈ P there exists a cluster Cw ∈ Q′ such that
w ∈ Cw. By Definition 2, for w ∈ W , B(w) ∈ Q∗ holds, where Q∗ is the path
between Cw and the root of T . Clearly, B(w) /∈ Q′ ∩Q∗, otherwise B(w) ∈ Q′.
Thus, B(w) is on the path between ncaT (B(u), X) and the root of T . Since
w ∈ Cw, w ∈ B(w), and ncaT (B(u), X) is on the path between Cw and B(w),
by condition 3 of Definition 1, w ∈ ncaT (B(u), X) for all w ∈ W . Since the
diameter of clusters is 2, and P is a shortest path, |P ∩ ncaT (B(u), X)| ≤ 3.
Thus, |W | ≤ 3.
�

Corollary 1. Let P be a Q-simple shortest path from u to X in G. There are
no more than 3 vertices z of P such that B(z) is not a descendant of X in H.

Proof. Let z be a vertex of P . Assume that B(z) ∈ Q′ = Q(P) and consider
possible arrangements of nodes X, B(u), and B(z) in H, taking into account
that X is an ancestor of B(u) in H. First, note that B(z) cannot be an ancestor

On Compact and Efficient Routing in Certain Graph Classes 409

of X in H, otherwise during the construction of hierarchical subtree rooted at
B(z), B(u) andX would belong to different connected components of T \{B(z)},
and, therefore, X could not be an ancestor of B(u) in H. Second, if there exists
a node Y such that X and B(z) are descendants of Y in H, then Y ∈ Q′, and,
again, during the construction of hierarchical subtree rooted at Y , B(u) and
X would belong to different connected components of T \ {Y }, and, therefore,
X could not be an ancestor of B(u) in H. Thus, if B(z) ∈ Q′, then the only
possible arrangement is that B(z) is a descendant of X in H. If B(z) /∈ Q′, then,
by Lemma 3, the number of such vertices z is bounded by 3.
�

Lemma 4. Let u and v be two vertices of G and X = ncaH(B(u), B(v)), then
X is a separator between u and v in G.

Proof. Let P = {u = z0, z1, z2, . . . , zk = v} be a path from u to v and C0 = B(u).
Let Ci be the cluster closest to Ci−1 in T such that zi−1, zi ∈ Ci, 1 ≤ i ≤ k. Note
that such clusters exist by condition 2 of Definition 1. Let Qi be the shortest
path in T between Ci−1 and Ci, 1 ≤ i ≤ k. Let Qk+1 be the shortest path in
T between Ck and B(v). Let Quv(P) =

⋃k+1
i=1 Qi be a path between B(u) and

B(v) and Q′
uv be the shortest path between B(u) and B(v) in T . Note that

Q′
uv ⊆ Quv(P) for any path P between u and v. By condition 3 of Definition 1,

zi−1 ∈ Y for all Y ∈ Qi, 1 ≤ i ≤ k+1. Thus, any node of Quv(P) and, hence, any
node of Q′

uv contains a vertex of any path P between u and v. By construction
of H, X ∈ Q′

uv and, therefore, X is a separator between u and v.
�

For any node X of H, we construct a tree in G in the following way. Let U be
a set of vertices of G such that U ⊆ {V \X} and B(u) is a descendant of X in
H for u ∈ U . First, for each u ∈ U , we construct a Q-simple shortest path P (u)
from u to X. Second, we construct a tree t(X) spanning X such that its diame-
ter diamt(X) = maxx1,x2∈X{distt(x1, x2)} is minimal. Clearly, diamt(X) ≤ 2R.
Finally, we build a graph GX =

⋃
u∈U P (u)

⋃
t(X) and construct in a Breadth-

First-Search manner starting from t(X) a special spanning tree T of GX .

Lemma 5. A spanning tree T of GX can be constructed in such a way that for
any u ∈ U , the path of T from u to X contains at most 3 vertices z such that
B(z) is not a descendent of X in H.

Proof. Let P (u) be a path in GX from u ∈ U to X and W (P (u)) = {z ∈ P (u) :
B(z) is not a descendant of X in H}. Let Li = {v ∈ V (GX) : distGX

(v,X) = i},
i ≥ 0, be the BFS-layers of GX with respect to X. A spanning tree T of GX

can be constructed starting from t(X) in the following way. For all u ∈ L1, the
parent(u) is a vertex x ∈ X such that |W (P (u))| is minimum, where P (u) is
the path {u, x} of GX . For all u ∈ Li, i > 1, parent(u) is a neighbor v ∈ Li−1 of
u in GX such that |W (P (u))| is minimum, where P (u) = {u, P (v)}. The above
construction guarantees that u is connected to X in T via a path P (u) with
minimum possible |W (P (u))|. Since there is a path in GX between u ∈ U and
X that is Q-simple, by Corollary 1, |W (P (u))| ≤ 3 for any u ∈ U .
�

410 F.F. Dragan and I. Lomonosov

Lemma 6. Let u, v be two vertices of G, X = ncaH(B(u), B(v)), T be the tree
associated with X, and PT be a path from u to v in T . Then there are no more
than 7 vertices z, such that z ∈ PT and B(z) is not a descendant of X in H.

Proof. By Lemma 5, there are at most 3 such vertices on the path between u
and X and there are at most 3 more such vertices on the path between v and
X. Since X has induced diameter 2, there is at most 1 other such vertex of X
that is on the path between u and v in T .
�

Lemma 7. Let u and v be two vertices of G, X = ncaH(B(u), B(v)), and T
be the tree associated with X, then distT (u, v) ≤ distG(u, v) + Δ, where Δ ≤
diamt(X).

Proof. By Lemma 4, X is a separator between u and v. Let PG be a short-
est path from u to v in G. Let u′ ∈ PG be the vertex closest to u such
that u′ ∈ X and let v′ ∈ PG be the vertex closest to v such that v′ ∈ X.
Clearly, distG(u, v) = distG(u, u′)+distG(u′, v′)+distG(v′, v). Similarly, let PT
be the path from u to v in T . Let u′′ ∈ PT be the vertex closest to u such
that u′′ ∈ X and let v′′ ∈ PT be the vertex closest to v such that v′′ ∈ X.
Clearly, distT (u, v) = distT (u, u′′) + distT (u′′, v′′) + distT (v′′, v). Therefore, we
have distT (u, v) = distG(u, v) + [distT (u, u′′) − distG(u, u′)] + [distT (u′′, v′′) −
distG(u′, v′)] + [distT (v′′, v)− distG(v′, v)].

We observe that, by construction of T , distT (v′′, u′′) ≤ diamt(X), distT (u, u′′)
≤ distG(u, u′), and distT (v′′, v) ≤ distG(v′, v). Thus, we immediately conclude
that distT (u, v) ≤ distG(u, v) +Δ where Δ ≤ diamt(X).
�

Theorem 1. If a graph G admits an induced acyclic (R,D)-clustering with R ≤
2 and D ≤ 2, then G has a loop-free routing scheme of deviation Δ ≤ 2R with
addresses and routing labels of size O(log3 n/ log log n) bits per vertex and O(1)
routing protocol.

Proof. We associate a tree T (X), constructed as described above, with each node
X of the hierarchical tree H. Each vertex u of G only stores routing information
for trees T (X) such that B(u) is a descendant of X. Since the height of H is
at most log n, there are at most log n such trees. For every pair of vertices u
and v we can find X = ncaH(B(u), B(v)). This can be done in constant time by
introducing a binary label of O(logn) bits in the address of each vertex [10]. By
Lemma 7, we have distT (u, v) ≤ distG(u, v) +Δ, where Δ ≤ diamt(X) ≤ 2R.

To implement the routing in the tree T (X) we use the scheme presented in
[7]. This scheme uses addresses and labels of length O(log2 n/ log log n) bits and
runs in constant time.

Along the route between u and v in T (X), there might be vertices w such
that B(w) is not a descendant of X in H and therefore w does not have the
routing label for the tree T (X). By Lemma 6, the number of such vertices is
constant. We store in advance port numbers for such vertices in routing labels,
which requires each vertex u to have an additional O(logn)-bit label for each of
log n trees.
�

On Compact and Efficient Routing in Certain Graph Classes 411

Corollary 2. If G admits an induced acyclic (R,D)-clustering with R = 1 and
D ≤ 2, then G has a loop-free routing scheme of deviation 2 with addresses
and routing labels of size O(log3 n/ log log n) bits per vertex and O(1) routing
protocol.

The proofs of the lemmas from the following sections are omitted and can be
found in the full version of the paper [6].

4 Chordal-Bipartite Graphs and Interval Graphs

A bipartite graph is chordal bipartite if it does not contain any induced cycles of
length greater than 4 [12]. Let G = (X ∪ Y,E) be a chordal bipartite graph. We
construct a graph G+ = (X ∪ Y,E+) by adding edges between any two vertices
x1, x2 ∈ X for which there exists a vertex y ∈ Y such that x1y, x2y ∈ E.

Lemma 8. Any chordal-bipartite graph G admits an induced acyclic (R,D)-
clustering with R = 1 and D = 2. Moreover, C = {C1, C2, ..., C|Y |}, where
Ci = NG[yi], yi ∈ Y .

Theorem 2. Any chordal-bipartite graph G admits a loop-free routing scheme
of deviation Δ = 2 with addresses and routing labels of size O(log3n/ log log n)
bits per vertex and O(1) routing protocol.

A graph G is an interval graph if it is the intersection graph of a finite set
of intervals (line segments) on a line. It is well known [12] that interval graphs
form a proper subclass of chordal graphs. Hence, we have

Lemma 9. Any interval graph G admits an induced acyclic (R,D)-clustering
with R = D = 1, where clusters are the maximal cliques of G.

This lemma and Theorem 1 already imply for interval graphs existence of a
loop-free routing scheme of deviation Δ = 2 with addresses and routing labels
of size O(log3n/ log log n) bits per vertex and O(1) routing protocol. In what
follows, we show that even a deviation Δ = 1 can be achieved.

Lemma 10. For any maximal clique X of an interval graph G = (V,E) there
exist two vertices xl and xr such that distG(v,X) = distG(v, xl) or distG(v,X) =
distG(v, xr) for any vertex v ∈ V \X.

Let H be a hierarchical tree for G. For any node X of H, we construct a
spanning tree T of GX in the following way. Let U be a set of vertices of G such
that U ⊆ {V \X} and B(u) is a descendant of X in H for any u ∈ U . For each
u ∈ U , we construct a Q-simple shortest path P (u) = {u, z1, . . . , zk, x} from u
to X such that x is either xl or xr. Since X is a clique, a spanning tree t(X)
is a star with center at xl. Finally, we build a graph GX =

⋃
u∈U P (u)

⋃
t(X)

and construct in a Breadth-First-Search manner starting from t(X) a special
spanning tree T of GX (see Lemma 5).

412 F.F. Dragan and I. Lomonosov

Lemma 11. Let u and v be two vertices of an interval graph G, X = ncaH(B(u),
B(v)), and T be a tree associated with X. Then, distT (u, v) ≤ distG(u, v) +Δ
with Δ = 1.

Theorem 3. Any interval graph G admits a loop-free routing scheme of devia-
tion Δ = 1 with addresses and routing labels of size O(log3n/ log log n) bits per
vertex and O(1) routing protocol.

5 Homogeneously Orderable Graphs

A nonempty set U ⊆ V is homogeneous in G = (V,E) if all vertices of U have
the same neighborhood in V \ U . The disk of radius k centered at v is the set
of vertices of distance at most k from v: D(v, k) = {u ∈ V : distG(u, v) ≤ k} =⋃k

i=0N
i(v). For U ⊆ V we define D(U, k) =

⋃
u∈U D(u, k). The kth power Gk of

a graph G = (V,E) is the graph with vertex set V and edges between vertices u
and v with distance distG(u, v) ≤ k. A subset U of V is a k-set of G if U induces a
clique in Gk. A vertex v of G with |V | > 1 is h-extremal if there is a proper subset
H ⊂ D(v, 2) which is homogeneous in G and for which D(v, 2) ⊆ D(H, 1) holds.
A vertex ordering v1, .., vn is a homogeneous elimination ordering of vertices
of G if for every i, vi is h-extremal in the induced subgraph Gi = G(vi...vn).
G is homogeneously orderable if it has a homogeneous elimination ordering. As
it was shown in [1], homogeneously orderable graphs include such well known
classes of graphs as distance-hereditary graphs, strongly chordal graphs, dually
chordal graphs, and homogeneous graphs (for the definitions see [2]). Let U1, U2
be disjoint sets in V . If every vertex of U1 is adjacent to every vertex of U2 then
U1 and U2 form a join, denoted by U1 #� U2. A set U ⊆ V is join-split if U is the
join of two non-empty sets, i.e. U = U1 #� U2. The following theorem represents
a well-known characterization of homogeneously orderable graphs.

Theorem 4. [1] G is homogeneously orderable if and only if G2 is chordal and
every maximal 2-set of G is join-split.

Taking into account Lemma 1 and considering G+ = G2, we conclude.

Corollary 3. Any homogeneously orderable graph G admits an induced acyclic
clustering with R = 2 and D = 2. The cluster set C is the collection of all
maximal 2-sets of G.

This corollary and Theorem 1 already imply for homogeneously orderable
graphs existence of a routing scheme of deviation Δ = 4 with addresses and
routing labels of size O(log3n/ log log n) bits per vertex and O(1) routing pro-
tocol. In what follows, we show that, in fact, the scheme described in Section 3
gives for homogeneously orderable graphs a routing scheme of deviation Δ = 2.

Let T be a tree decomposition of a homogeneously orderable graph G =
(V,E) and H be its hierarchical tree. With each node X = U1 #� U2 of H we
associate a spanning tree T of GX as described in Section 3, where a spanning
tree t(X) ofX is constructed as follows. Beginning at an arbitrary vertex s1 ∈ U1,

On Compact and Efficient Routing in Certain Graph Classes 413

we visit all vertices in U2, then continuing from any vertex s2 ∈ U2, we visit all
vertices in U1 \ {s1}. Clearly, diamt(X) = 3.

Lemma 12. Let u and v be two vertices of a homogeneously orderable graph
G, X = ncaH(B(u), B(v)), and T be a tree associated with node X. Then
distT (u, v) ≤ distG(u, v) +Δ with Δ = 2.

Theorem 5. Any homogeneously orderable graph G admits a loop-free routing
scheme of deviation Δ = 2 with addresses and routing labels of size O(log3n/
log log n) bits per vertex and O(1) routing protocol.

Acknowledgment. The authors would like to thank Cyril Gavoille for careful
reading the preliminary draft of this paper and pointing out an error in that ver-
sion. As he has shown, our old method - without considering special (Q-simple)
paths - could result in a scheme with labels of size O(log3n) bits per vertex and
O(loglogn) routing protocol even on chordal bipartite graphs (although with
deviation 2, not 4 as in [3]). We are grateful to him also for communicating to
us the results of [3].

References

1. A. Brandstädt, F.F. Dragan, and F. Nicolai, Homogeneously orderable graphs,
Theoretical Computer Science, 172 (1997) 209–232.

2. A. Brandstädt, V.B. Le, J. Spinrad, Graph Classes: A Survey, SIAM Monographs
on Discrete Math. Appl., (SIAM, Philadelphia, 1999)

3. Y. Dourisboure, Routage compact et longueur arborescente, December 2003, PhD
Thesis, LaBRI, University of Bordeaux I.

4. Y. Dourisboure and C. Gavoille, Improved Compact Routing Scheme for Chordal
Graphs, In Proc. of the 16th Intern. Conf. on Distr. Comp. (DISC 2002), Toulose,
France, October 2002, Lecture Notes in Computer Science 2508, Springer, 252–264.

5. F.F. Dragan and I. Lomonosov, New Routing Schemes for Interval Graphs,
Circular-Arc Graphs, and Permutation Graphs, In Proc. of the 14th IASTED In-
tern. Conf. on Paral. and Distr. Comp. and Syst., Cambridge, USA, 2003, 78–83.

6. F.F. Dragan and I. Lomonosov, On Compact and Efficient Routing in Certain
Graph Classes, TechReport TR-KSU-CS-2004-03, CS Dept., Kent State University,
http://www.cs.kent.edu/∼dragan/TR-KSU-CS-2004-03.pdf

7. P. Fraigniaud and C. Gavoille, Routing in trees, In Proc. of the 28th Intern. Colloq.
on Automata, Languages and Program. (ICALP 2001), Lecture Notes in Computer
Science 2076 , 757–772.

8. C. Gavoille, Routing in distributed networks: Overview and open problems, ACM
SIGACT News - Distributed Computing Column, 32 (2001).

9. C. Gavoille and M. Gengler, Space-efficiency of routing schemes of stretch factor
three, Journal of Parallel and Distributed Computing, 61 (2001), 679–687.

10. C. Gavoille, M. Katz, N. Katz, C. Paul, and D. Peleg, Approximate distance la-
beling schemes, Research Report RR-1250-00, LaBRI, University of Bordeaux, De-
cember 2000.

11. C. Gavoille and S. Pérennès, Memory requirements for routing in distributed net-
works, In Proc. of the 15th Annual ACM Symp. on Principles of Distr. Comp.,
Philadelphia, Pennsylvania, 1996, pp. 125–133.

414 F.F. Dragan and I. Lomonosov

12. M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press,
New York, 1980.

13. J. van Leeuwen and R.B. Tan, Interval routing, The Computer Journal, 30 (1987),
298–307.

14. D. Peleg, Distributed computing – A locality-sensitive approach, Society for Indus-
trial and Applied Mathematics (SIAM), Philadelphia, PA, 2000.

15. N. Robertson and P.D. Seymour. Graph minors. Algorithmic aspects of tree-width.
Journal of Algorithms, 7 (1986), 309–322.

16. N. Santoro and R. Khatib, Labeling and implicit routing in networks, The Com-
puter Journal, 28 (1985), 5–8.

17. M. Thorup and U. Zwick, Compact routing schemes, In 13th Ann. ACM Symp. on
Par. Alg. and Arch., July 2001, pp. 1–10.

18. M. Thorup and U. Zwick, Approximate distance oracles, In 33rd Ann. ACM Symp.
on Theory of Computing (STOC), July 2001, pp. 183–192.

Randomized Insertion and Deletion in Point
Quad Trees�

Amalia Duch

Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de,
Catalunya, E-08034 Barcelona, Spain

duch@lsi.upc.es.

Abstract. In this work we introduce randomized insertion and deletion
algorithms for quad trees. These algorithms are simple and they are
defined for any dimension K (where K is a natural number), in contrast
with the fact that standard deletion in quad trees is rather complicated
and becomes more cumbersome as K increases [12]. In addition, in online
applications, where long sequences of random interleaved insertions and
deletions are performed, quad trees built and dynamically maintained
by the randomized algorithms presented here (randomized quad trees)
preserve their expected path length, a measure that augments when,
in similar circumstances, the standard deletion algorithm is used [4].
Moreover, the expected values of random variables (such as internal path
length, depth, cost of successful or unsuccessful search, cost of partial
match queries, between others) given in the literature for random quad
trees are valid for the randomized quad trees introduced in this work.

Keywords: Randomized Algorithms, Quad trees.

1 Introduction

The quad tree, first introduced by Finkel and Bentley [5], is a data structure
widely used in several computer applications, such as geographical information
systems, databases or computer graphics [13]. Such applications require the dy-
namic maintenance of a set (or file) of multidimensional records. Each multi-
dimensional record contains an ordered K-tuple of values that constitute its
K-dimensional (or multidimensional) key and associated information.

Informally, a quad tree T stores multidimensional keys as follows. Given a
sequence of n points in a K-dimensional space, say [0, 1]K , the first point is taken
as root of the quad tree. The hyper planes parallel to the axes through this point
cut the space into 2K hyper quadrants corresponding to the 2K subtrees of T .
All the points that belong to the same hyper quadrant will be stored in the same
subtree. The procedure continues recursively in each hyper quadrant until there

� This research was partially supported by the Future and Emergent Technologies
programme of the EU under contract IST-1999-14186 (ALCOM-FT) and the Spanish
Min. of Science and Technology project TIC2002-00190 (AEDRI II).

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 415–426, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

416 A. Duch

are no remaining points. The term point quad tree has been coined to distinguish
the tree just described from other kinds of quad trees [13]. In this work the term
quad tree will be used to mean point quad tree.

Quad trees are frequently used in applications because they support a large
set of operations with simple algorithms (except for deletions) and reasonable
time requirements. As long as the dimension K is not too big (less or equal
than 3), the space requirements are also acceptable. The efficient expected case
performance of quad trees holds under the assumption that they are random. A
quad tree is random if it is incrementally built by inserting keys drawn indepen-
dently from a continuous distribution in [0, 1]K . However, in dynamic and on-line
settings, where long sequences of interleaved insertions and deletions must be
performed over a quad tree, its total path length (a measure of the average cost
of accessing a node) augments significantly, even if the quad tree was random
or perfectly balanced [4]. This happens even if every node of the tree is equally
likely to be deleted. After some updates (insertions and deletions), the tree may
need to be rebuilt to preserve its efficient expected performance.

In this work we present one possibility to overcome dynamically the problem
of poor performance by means of randomized algorithms. We draw upon the
ideas of [3, 10] to randomize quad trees, in order to present update algorithms
that preserve the randomness of the tree, independently of the order of previ-
ous insertions and deletions. The difference between these algorithms and the
ones for binary trees depends only on the intrinsic characteristics of quad trees.
The resulting update algorithms are simple and defined for any dimension K.
The case of deletions is of particular interest because the classic deletion algo-
rithm over quad trees [12] is rather complex and its description becomes more
complicated as the dimension increases.

This work is organized as follows. In Section 2 we give the definition and
preliminaries of quad trees, with special emphasis in insertion and deletion algo-
rithms. In Section 3 we introduce randomized insertion and deletion algorithms
and we give their properties in Section 4, where we prove that the randomized
algorithms presented here always produce random quad trees.

2 Quad Trees

In this work, for the sake of simplicity, we identify a multidimensional record
with its corresponding K-dimensional key x = (x0, x1, . . . , xK−1), where each
xi, (0 ≤ i ≤ K − 1), refers to the value of the i-th attribute of the key x.
Each xi belongs to some totally ordered domain Di, and x is an element of
D = D0 × D1 × . . . × DK−1. Therefore, each (multidimensional) key may be
viewed as a point in a K-dimensional space, and its i-th attribute can be viewed
as the i-th coordinate of such a point. Without loss of generality, we assume that
Di = [0, 1], for all 0 ≤ i ≤ K − 1, and hence that D is the hypercube [0, 1]K [8].

We say that two K-dimensional keys x and y are compatible if, for every i =
0, 1, . . . ,K − 1, their i-th attributes are different. Note that any two keys drawn
uniformly and independently from [0, 1]K are compatible, since the probability
that xi = yi is zero.

Randomized Insertion and Deletion in Point Quad Trees 417

Given a bit string w = w0w1 · · ·wK−1 of length K (that is, w ∈ {0, 1}K) we
define the binary relation ≺w between K-dimensional keys that are compatible
as follows.

Definition 1. Given two compatible K-dimensional keys x and y, we say that
x is related to y under the relation ≺w, and we denote it x ≺w y, if and only
if, for all i ∈ {0, 1, . . . ,K − 1}, xi < yi whenever wi = 0 and xi > yi whenever
wi = 1. Otherwise we say that x �≺w y.

Note that for every w ∈ {0, 1}K the relation ≺w is antisymmetric and transitive.
Note also that if x ≺w y, then y ≺w x, where w is the complementary bit string
of w in {0, 1}K , that is, wi = 0 iff wi = 1 (i ∈ {0, 1, . . . ,K − 1}). Furthermore,
x ≺w y for exactly one bit string w ∈ {0, 1}K and x �≺w y for all other bit
strings. We are now ready to give the definition of K-dimensional quad trees
that we will use in this work.

Definition 2. A quad tree T for a set of compatible K-dimensional keys is a
tree in which:

1. Each node contains a K-dimensional key and pointers to 2K subtrees, namely
tw for all w ∈ {0, 1}K .

2. For every node with key y the following invariant is true: any record with
key x in the w-th subtree of y satisfies x ≺w y.

Abusing language, we will say w-th subtree or w-th quadrant referring to
subtree w or quadrant w, irrespectively.

The standard insertion algorithm immediately follows from the previous def-
inition: compare the new elements’ key with the key at the root of the quad
tree and obtain the index w of the subtree where the insertion must recursively
proceed.

The deletion algorithm, first introduced by Samet [12], is not so straight-
forward. Analogous to deletion in binary search trees, the goal is to replace the
deleted node with the closest possible one. But in quad trees it is not clear which
of the remaining nodes is the closest in all dimensions simultaneously, and no
matter which one is chosen, a reorganization of some nodes will be required. Here
is the description of the algorithm for the two-dimensional case (it becomes more
complex as the dimension increases): let x be the node to be deleted and y the
node that is going to replace it. Ideally we would like to choose y such that the
region R (see Figure 1(a)) between the orthogonal lines passing through x and y
is empty. Unfortunately, this is not always possible. In a two-dimensional quad
tree there are four nodes (one for each subtree of x) that are candidates to be
closest to x (see [12]). So, the first step of the algorithm is to find them. For each
subtree w of x, the candidate node corresponding to subtree w is found starting
the search at the root node of w and systematically following the w-th subtree
until a node with empty w-th subtree is reached (the node we are looking for).
Such a node is shown in Figure 1(b). The second step of the algorithm consists
of choosing from these four candidates the node y that will replace the deleted
node x. This is done applying the following criteria.

418 A. Duch

(b) (c)

R

y

x

y

x

(a)

Fig. 1. Some aspects of Samet’s deletion algorithm: (a) the desired empty area R
(in grey), (b) the traversal of one quadrant for finding a replacement node, (c) the
processed sub-quadrants by the adjquad procedure (in grey), when node x is deleted
and replaced by node y

– Criterion 1. Choose the node that is closer to each of its bordering axes
than any other candidate on the same side of these axes, if such a candidate
exists.

– Criterion 2. If no candidate satisfies Criterion 1, then the candidate with
the minimum L1 metric value (sum of the displacements from the bordering
axes) should be chosen.

Once the replacement node y is chosen, the next step of the algorithm is to
determine which are the nodes of the tree that require reinsertion. This is done
by means of two procedures: adjquad (adjacent quadrant) and new root.

Let w be the subtree of x (the node to be deleted) that contains y (the
replacement node). Note that no node of subtree w needs reinsertion. But the
two sub-quadrants adjacent (w is the opposite) to subtree w must be processed
separately by the adjquad procedure (in grey in Figure 1(c)). Once the nodes in
quadrants adjacent to quadrant w have been processed, it is the turn of nodes in
quadrant w. Clearly all nodes in sub-quadrant w of quadrant w will retain their
position. So, procedure new root is applied to the remaining sub-quadrants of
quadrant w.

Theoretical and empirical results for the above deletion algorithm [12] show
that, comparing against the complete reconstruction of the subtree beneath the
deleted node, for independently and uniformly distributed data in [0, 1]K , the
average number of nodes requiring reinsertion is reduced by a factor of 5/6 (83%)
when the replacement node satisfies Criteria 1 and 2. When the replacement node
is chosen randomly among the four possible candidates the average number of
nodes requiring reinsertion is reduced by a factor of 2/3 (67%). This implies that
this deletion algorithm has the same order of growth as a complete reconstruction
of the subtree whose root is to be deleted. The expected cost is thus O(logn ·
log log n) for a tree of size n, since the size of the subtree beneath the deleted
node is O(logn) [9].

Randomized Insertion and Deletion in Point Quad Trees 419

Empirical tests show that the number of comparisons required to locate the
deleted node in a quad tree of n nodes is proportional to logn and that the total
path length of the tree after a single deletion decreases slightly. However, as it is
shown in [4], for long sequences of insertions and deletions the total path length
augments and so do the deletion costs.

3 Randomized Insertions and Deletions in Quad Trees

The randomized insertion and deletion algorithms presented here require that
each node stores the size of the subtree beneath it [10], because their behavior
depends on the size of the (sub)trees to which they are applied.

Without loss of generality, we assume in what follows that randomized algo-
rithms have free access to a source of random bits and that the cost of generating
a random number of O (logn) bits is constant [11].

Informally, we would like insertion and deletion algorithms that produce quad
trees that behave as if they were built by successive insertions of uniformly and
independently generated multidimensional keys.

In order to produce such quad trees it is required that any new inserted key
has some probability of becoming the root of the tree, or the root of one of the
subtrees of the root, and so forth. In the same vein, when a node is deleted it
is required that all the remaining nodes in the subtree beneath it have some
probability of replacing it. The randomized insertion and deletion algorithms
that we present now provide these capabilities.

The randomized insertion algorithm of x in a tree T (insert(T, x), where x is
compatible with T), proceeds as follows.
1. If the tree T is the empty tree, then the algorithm insert produces a tree

with root node x and 2K empty subtrees.
2. If the tree T is not empty and has size n, then, with probability 1

n+1 the
key x must be placed at the root of the new tree using the insert at root
algorithm (since the new tree will have size n + 1). Otherwise, we insert x
recursively in the corresponding w-th subtree of T depending on ≺w (x’s
order relation with the root of T).
The algorithm insert requires the possibility of inserting the key x at the

root of any subtree of a quad tree T . If T is empty, then, insert at root(T, x)
(described as Algorithm 1) gives as a result a tree with root node x, and empty
subtrees. When T is not empty, insert at root(T, x) = T ′ where, by definition,
the root of T ′ is x and, its w-th subtree consists of all those elements z of T such
that z ≺w x. To obtain the subtrees of T ′ we use the split algorithm which we
present later on.

We use the notation p→ field to refer to the field field in the node pointed
to by p. Usually, a quad tree is represented by a pointer to its root node and
nodes have fields key, size and subtrees w (for all w ∈ {0, 1}K).

The deletion of a record from a random quad tree involves searching the key
x to be deleted in the tree, and then joining its corresponding 2K subtrees. Since

420 A. Duch

Algorithm 1. The insertion at the root of randomized quad trees
{Initial call: T := insert at root(T, x)}
function insert_at_root(T, x)

for (w ∈ {0, 1}K)
Sw := split_w(T, x);

end
T → key := x;
T → w := Sw;
return T ;

end

it is required that all the nodes in these subtrees have some probability of taking
the place of the deleted node, we require the join algorithm (introduced below)
which achieves this capability.

Observe that both, insertions and deletions, consist of two different steps.
A first step in which one must follow a path in the tree in order to locate the
place where the key must be inserted or deleted and, a second step in which the
update is performed.

The expected cost of insertions and deletions in a random quad tree of n
nodes is O(logn), since both the insertion at the root of any element and the
deletion of any element occur near the leaves on the average and the expected
size of a random subtree in a random quad tree of size n is O(logn). As we
will see below the cost of the required operations is linear with respect to the
size of the trees to which they are applied, hence the claimed cost follows. In
contrast, the average cost of Samet’s deletion algorithm isO(logn log log n) when
it is applied to trees of size O(logn). Unfortunately we only have empirical
evidence of this fact, because a theoretical approach has proven to be extremely
difficult. The reason is that, contrary to the one-dimensional case, the analysis
implies the solution of a non-linear system of recurrences derived from interleaved
randomized operations.

The insertion of a key x at the root of a tree T (the task that performs -
insert at root(T, x)) is accomplished in two steps: a first step in which the tree T
is partitioned with respect to x producing the 2K trees T ′

u, for all u ∈ {0, 1}K ,
where T ′

u contains all those keys z of T such that z ≺u x; and a second step in
which the 2K subtrees are attached to the new root x. Clearly the main cost of
insert at root(T, x) lies in the partitioning or splitting process split(T, x).

To simplify the description of the split algorithm we will see it as a 2K-tuple
of functions splitu, for each u ∈ {0, 1}K , with T ′

u = splitu(T, x). In practice all
the T ′

u trees can be simultaneously computed. This algorithm is depicted by
Algorithm 2.

The algorithm splitu works in the following way. When T is the empty tree,
the splitu algorithm returns the empty tree. Otherwise, let T have root y and
subtrees Tw for all w ∈ {0, 1}K . For each u ∈ {0, 1}K we have the following cases
to consider.

Randomized Insertion and Deletion in Point Quad Trees 421

1. If y ≺w x and w = u, then y belongs to T ′
u, all the elements of Tw do as well

(because ≺w is transitive), and the operation proceeds recursively in the rest
of subtrees in order to complete the result;

2. If y ≺w x and w �= u, then y does not belong to T ′
u, neither do all the elements

of Tw (because ≺w is transitive), and the operation proceeds recursively in
the remaining subtrees producing 2K − 1 subtrees that must be brought
together by means of the join algorithm;

It is not difficult to see that all the splitu(T, x) compare x against the keys of
2K − 1 subtrees of T while the split algorithm compares x against all the keys of
T . The additional cost of the join algorithm must be also taken into account. So,
the split algorithm has running time at least linear, but smaller than a complete
reconstruction of a (sub)tree. Moreover, in the average, it is applied to relatively
small subtrees, i.e., of size O(logn) [9].

Algorithm 2. The splitu algorithm for randomized quad trees
{Initial call: T ′

u := split u(T, x)}
function split_u(T, x)

y := T → key;
for (w ∈ {0, 1}K)

if (y ≺w x) then
if (w = u) then

T ′
u → key := y;

T ′
u → w := Tw;

for (v ∈ {0, 1}K , v �= w)
T ′

u → v := split_u(T → v, x);
end

else
T ′

u := join(split_u(T → 00 . . . 0, x), . . . , split_u(T → 11 . . . 1, x));
fi

fi
end
return T ′

u;
end

We now describe the algorithm join(Tw0 , Tw1 , . . . , Tw2K −1
) depicted in Algo-

rithm 3. By definition this algorithm is applied only when the keys in the trees
Tw are related to a key y by relations ≺w respectively.

As we have already pointed out, in order to produce random quad trees, each
node of the trees Tw0 , Tw1 , . . . , Tw2K −1

must have some probability of becoming
the root of the new tree.

If Tw0 , Tw1 , . . . , Tw2K −1
have sizes n0, n1, . . . , n2K−1 respectively, then, T =

join(Tw0 , Tw1 , . . . , Tw2K −1
) has size n = n0 + n1 + . . . + n2K−1. Thus, the join

algorithm selects, with probability ni

n the root of Twi
as root of T . We have the

following.

422 A. Duch

1. If the trees Tw0 ,Tw1 ,. . . ,Tw2K −1
are all empty, then the result of joining them,

T = join(Tw0 , Tw1 , . . . , Tw2K −1
), is the empty tree;

2. If at least one of them is not empty, then let Tw0 , Tw1 , . . . , Tw2K −1
have

roots y0, y1, . . . , y2K−1 and subtrees t0uj
, t1uj

, . . . , t2
K−1

uj
(j = 0, . . . , 2K − 1),

respectively. In this situation, if the tree T has root node yi, we have the
following.
(a) All the keys of the tree tiuj

should be members of the wj-th subtree of T
for all j ∈ {0, 1, . . . , 2K − 1}.

(b) The whole tree Twi
becomes part of the wi-th subtree of T , since, for

every z ∈ Twi , z ≺wi y ≺wi yi (where y is the deleted node).
(c) The 2K − 2 remaining trees must be split with respect to yi and the

corresponding trees joined together.

Algorithm 3. The join algorithm for randomized quad trees
{Initial call: T := join(Tw0 , Tw1 , . . . , Tw2K −1

)}
function join(Tw0 , Tw1 , . . . , Tw2K −1

)
for (i = 0, . . . , 2K − 1)

yi := Twi → key; ni := Twi → size;
for (j = 0, . . . , 2K − 1)

ti
uj

= Twi → uj ;
end

end
total := n0 + n1 + . . . + n2K−1; n−1 := 0; n2K := total;
r := rand(0, total − 1);
for (i = 0, . . . , 2K − 1)

if (ni ≤ r < ni+1) then
T → key := yi;
for (j = 0, . . . , 2K−1 − 1)

Sw0 := split_{w_j}(Tw0 , yi));
Sw1 := split_{w_j}(Tw1 , yi));
...
Sw2K −1

:= split_{w_j}(Tw2K −1
, yi));

T → wj := join(Sw0 , . . . , ti
uj

, . . . , Sw2K −1
);

end
fi

end
return T ;

end

Observe that, the join algorithm traverses the tree in a similar way than
the splitu algorithm, since the join algorithm is continued recursively in 2K − 1
subtrees. The additional cost of the split algorithm in 2K − 2 subtrees should

Randomized Insertion and Deletion in Point Quad Trees 423

also be taken into account. But once again, since the join algorithm is applied
near the leaves in the average, its expected cost is O(logn) [9].

We say that a quad tree is a randomized quad tree if it is the result of a
sequence of update operations performed by means of the randomized algorithms
introduced below, applied to an initially empty tree. We shall show in the next
section that any tree obtained this way is a random quad tree.

4 Properties of Randomized Quad Trees

In this section we prove that the result of any arbitrary sequence of randomized
insertions and deletions starting from an initially empty quad tree is always
a randomized quad tree. This result implies that the theoretical results given
in the literature for random quad trees hold in practice when the randomized
algorithms presented here are used.

We have previously mentioned that a quad tree of size n is random if it is built
by n insertions of multidimensional keys independently drawn from a continuous
distribution in [0, 1]K (for simplicity let us assume a uniform distribution). This
assumption about the distribution of the input implies that the n!K distinct
configurations of input sequences are equally likely. In particular, in a random
quad tree of size n, each of the n possible K-dimensional keys are equally likely
to appear in the root, and once the root is fixed, the 2K subtrees are independent
random quad trees.

Observe that, unlike binary search trees, the external nodes of aK-dimensional
quad tree are not equally likely to be the position of the next insertion. However,
observe that, for n > 2, in an input sequence of n K-dimensional keys, the last
key can not be in the root of a quad tree, it must belong to one of the 2K sub-
trees. Given nj , the size of the j-th subtree after n insertions (j = 0, 1, . . . , 2K),
any of the nj keys could be the last one and thus the last key is in the j-th
subtree with probability nj/(n− 1) [8].

The randomized split and join algorithms preserve the randomness of their
input (Lemma 1 below). In other words, when applied to random quad trees,
both the split and the join algorithms produce random quad trees. Moreover,
since this happens, the insert and delete algorithms when applied to random
quad trees produce random quad trees. These claims are formalized as follows.

Lemma 1. i) Let T be a quad tree and let Tui (for all ui ∈ {0, 1}K) be the quad
trees produced by split(T, x), where x is any key compatible with T . Then, if T
is a random quad tree, the Tui

trees are independent random quad trees.
ii) Let T ′ be the quad tree produced by join(Tw0 , Tw1 , . . . , Tw2K −1

), where Twi
and

Twi are quad trees such that, for all keys x of Twi and all keys y of Twi , x ≺wi y.
If the Twi trees are independent random quad trees then T ′ is a random quad tree.

Proof. We prove the two parts of this lemma by induction on the size n of T to
show that split preserve randomness, and on the joint size n = |Tw0 | + |Tw1 | +
. . . + |Tw2K −1

| of T ′ to show that join also preserves randomness. Observe that
to prove the two parts of the lemma for size n, we will need to inductively and

424 A. Duch

simultaneously assume that both statements are true if T (T ′) is of size smaller
than n. The reason for that is the mutual recursion between the splitu operations
and join.

If T is empty (n = 0) then splitu(T, x) is an empty tree for all u ∈ {0, 1}K ,
and hence the first part of the lemma trivially holds for the basis of the induction.
Also, if Tw0 , Tw1 , . . . , Tw2K −1

are empty (n = |Tw0 |+ |Tw1 |+ . . .+ |Tw2K −1
| = 0)

then T ′ is empty and hence random.
Let us consider the case where n > 0, assuming now that both parts of the

lemma are true for all sizes smaller than n.
We start with the split process, and let n denote the size of T , the quad tree

to be partitioned. Let the root of T be y and let tu0 , tu1 , . . . , tu2K −1
denote its

subtrees.
If y ≺ui

x, then y is the root of the tree Tui
and tui

its ui-th subtree. To
complete Tui

we apply recursively the split algorithm to the subtrees tu0 , tu1 , . . . ,-
tui−1 , tui+1 , . . . , tu2K −1

. Since |tui
| < n, by the inductive hypothesis, we obtain

the 2K − 1 random and independent subtrees of Tui . Moreover, these subtrees
are independent of tui

since they are obtained from the subtrees tu0 , tu1 , . . . ,-
tui−1 , tui+1 , . . . , tu2K −1

, which, by hypothesis are independent of tui
. Simultane-

ously, from subtrees tu0 , tu1 , . . . , tui−1 , tui+1 , . . . , tu2K −1
, we obtain 2K − 1 trees

for each subtree Tu0 , Tu1 , . . . , Tui−1 , Tui+1 , . . . , Tu2K −1
. These trees are of size

smaller than n and by inductive hypothesis, they are random and independent,
so, also by inductive hypothesis, the result of joining them is a random quad tree,
and thus Tu0 , Tu1 , . . . , Tu2K −1

are all random and independent. To complete the
proof for this case, we need only show that for every key z of Tui

the probability
that z is at the root of Tui

is 1
m , where m is the size of Tui

. Indeed,

P [{z is root of Tui | y ≺ui x}] = P[{z is root of T and z≺ui
x}]

P[{z≺ui
x}]

= 1/n
m/n = 1

m .

Now we tackle the second part of the lemma and show that join preserves
randomness when n > 0. If exactly one of the trees Tw0 ,Tw1 ,. . .,Tw2K −1

is
not empty, then join returns the non-empty tree which, by hypothesis, is ran-
dom. We consider now the case where at least two of the trees Tw0 , Tw1 , . . . ,-
Tw2K −1

are not empty. Let Twi have root yi, and subtrees tiwj
, (for all j ∈

{0, 1, . . . , 2K − 1}). If we select the key yi to become the root of T ′, then we will
recursively join tiwj

with the corresponding trees that result from splitting the
trees Tw0 , Tw1 , . . . , Twi−1 , Twi+1 , . . . , Tw2K −1

with respect to yi. By the inductive
hypothesis, from this splitting process result independent and random trees of
sizes smaller than n. Thus, again by the inductive hypothesis joining some of
them together produces a random quad tree. Thus, we have that the wi-th sub-
tree of T ′ is tiwi

, which is a random quad tree and that the other subtrees are also
random since they are the result of splitting and joining subtrees of size smaller
than n. All the subtrees are independent of each other and the probability that
yi was the root of Twi times the probability that it is selected as root of T ′ is

1
|Twi

| ×
|Twi

|
n = 1

n . �

Randomized Insertion and Deletion in Point Quad Trees 425

Theorem 1. If T is a random quad tree that contains the set of compatible keys
X and x is any key compatible with X, then insert(T, x) returns the random quad
tree containing the set of keys X ∪ {x}.
Proof. By induction on the size n of T . If n = 0, then T is the empty tree (a
random quad tree), and insert(T, x) returns a random quad tree with root x, and
2K empty subtrees. We assume now that T is not empty and that the theorem is
true for all sizes smaller than n. The insertion of x in T has two possible results,
with probability 1

(n+1) , x is the root of T ′ = insert(T, x) and with complementary
probability x is recursively inserted in the corresponding wi-th subtree of T .

Let us consider first the case in which x is not inserted at the root of T .
Consider an record y ∈ T . The probability that y is the root of T before the
insertion of x is 1

n , since by hypothesis T is a random quad tree. The probability
that y is at the root of T ′ is the probability that x is not at the root of T ′ and
y was at the root of T , which is 1

n ×
n

n+1 , resulting in the desired probability.
Moreover, since x is not inserted at the root of T ′ in the first step, the insertion
proceeds recursively in one of the subtrees of T , which are independent random
quad trees of sizes smaller than n. Thus, T ′ is a random quad tree of size n+ 1.

Finally, with probability 1
n+1 , x is the root of T ′. The tree T , which by

hypothesis is a random quad tree, must be split with respect to x, and because
of Lemma 1 this step produces 2K independent random quad trees which are
the subtrees of T ′, thus T ′ is also a random quad tree. �

Theorem 2. If T is a random quad tree that contains the set of keys X, then,
delete(T, x) produces a random quad tree T ′ that contains the set of keys X\{x}.
Proof. If the key x is not in T , then the algorithm does not modify the tree, which
is random. Let us now suppose that x is in T , this case is proved by induction on
the size of the tree. If n = 1, x is the only key in the tree and after deletion we
obtain the empty tree which is a random quad tree. We now assume that n > 1
and that the theorem is true for all sizes smaller than n. If x was not the key at
the root of T we proceed recursively in one of the 2K subtrees, and by inductive
hypothesis we obtain a randomly built subtree. If x was the key at the root of T ,
the tree after deletion is the result of joining the 2K subtrees of T , which produce
a random quad tree because of Lemma 1. Finally, after deletion, each node has
probability 1

(n−1) of being the root. Let y be any key in T such that y �= x, then

P [{y is the root of T ′}] = P [{y is the root of T ′ | x was not the root of T}]
×P [{x was not the root of T}]
+ P [{y is the root of T ′ | x was the root of T}]
×P [{x was the root of T}]

= 1
n−1 ×

n−1
n + 1

n−1 ×
1
n

= 1
n−1

Thus, we obtain the desired probability. �

Combining the two previous theorems we obtain the following important
corollary.

426 A. Duch

Corollary 1. The result of any arbitrary sequence of randomized insertions and
deletions, starting from an initially empty tree is always a random quad tree.

Several random variables over random quad trees, which hold also for random-
ized quad trees, have been studied in the literature. For instance, the expected
depth of insertion Dn of the n-th multidimensional key is in probability asymp-
totic to (2/K) logn [2]. The expected height Hn of a K-dimensional quad tree of
size n is in probability asymptotic to (c/K) logn, where c = 4.31107 . . . [1]. The
cost of a random search has logarithmic mean and variance and is asymptotically
distributed as a normal variable [7]. The cost of a partial match query with s
coordinates specified is Θ(n1−s/K+θ(s/K)), where the function θ(x) is defined as
the solution θ ∈ [0, 1] of the equation (θ + 3− x)x(θ + 2− x)1−x − 2 = 0 [6].

The deletion algorithm here presented is not only asymptotically more effi-
cient than the standard one, but it is also simpler and scales smoothly for larger
dimensions.

References

1. Devroye, L., Branching processes in the analysis of the height of trees. Acta Infor-
matica, 24:277-298, 1987.

2. Devroye, L. and Laforest, L., An Analysis of Random d-Dimensional Quadtrees.
SIAM Journal of Computing, 19(5):821-832, 1990.

3. Duch, A., Estivill-Castro V. and Mart́ınez, C., Randomized K-Dimensional Bi-
nary Search Trees. Algorithms and Computation 9th International Symposium,
ISAAC’98, Taejon, Korea, LNCS(1533):199-208, 1998.

4. Eppinger, J. L., An empirical study of insertion and deletion in binary search trees.
Communications of the ACM, 26(9):663-669, 1983.

5. Finkel, R. A. and Bentley, J. L., Quadtrees, a Data Structure for Retrieval on
Composite Keys. Acta Informatica, 4:1-9, 1974.

6. Flajolet, Ph., Gonnet, G., Puech, C. and Robson, J. C., Analytic Variations on
Quadtrees. Algorithmica, 10:473-500, 1993.

7. Flajolet, Ph. and Lafforgue, T., Search Costs in Quadtrees and Singularity Pertur-
bation Analysis. Discrete and Computational Geometry, 12(4):151-175, 1993.

8. Mahmoud, H. M., Evolution of Random Search Trees. Wiley Interscience Series,
1992.

9. Mart́ınez, C., Panholzer, A. and Prodinger, H., On the number of descendants and
ascendants in random search trees. Electronic Journal on Combinatorics, 5(1),
1998.

10. Mart́ınez, C. and Roura, S., Randomized binary search trees. Journal of the ACM,
45(2):288-323, 1998.

11. Motwani, R. and Raghavan, P., Randomized Algorithms. Cambridge University
Press, Cambridge, USA, 1995.

12. Samet, H., Deletion in Two-Dimensional Quadtrees. Communications of the ACM,
23(12):703-710, 1980.

13. Samet, H., The Design and Analysis of Spatial Data Structures. Addison-Wesley,
1990.

Diagnosis in the Presence of Intermittent Faults�

Bin Fu1,2 and Richard Beigel3

1 Computer Science Department,
University of New Orleans, New Orleans, LA 70148, USA

fu@cs.uno.edu
2 Research Institute for Children,

200 Henry Clay Avenue, New Orleans, LA 70118, USA
3 Dept. of Computer and Information Sciences,
Temple University, Philadelphia, PA 19122, USA

beigel@cis.temple.edu

Abstract. Several constant-time parallel algorithms for fault diagnosis
have been given for the classical static-fault model. We extend those
algorithms to tolerate intermittent faults.

1 Static Fault Diagnosis

Imagine a robot surveying a nuclear accident. As it collects data in radioactive
hot spots, its processors tend to get fried. Before too many processors fail, the
robot retreats to a safe spot in order to heal. During the healing process, the
robot’s processors test each other and communicate test results (some correct,
some incorrect) to an external controller in a very safe location as far as possible
from the accident. The controller determines which processors are really faulty
and sends instructions to deactivate them. Then the robot may return to its
mission.

The robot’s “healing” process is called system level fault diagnosis, as pro-
posed initially by Preparata, Metze, and Chien [9]. In their model, when a good
processor tests another processor it reports the testee’s status correctly to the
controller. But when a faulty processor tests another processor it may report the
testee’s status correctly or incorrectly. Such testing protocols have been usefully
implemented, see [4, 3].

Fault diagnosis is not possible in general unless a strict majority of the pro-
cessors are good [9]. We will assume that throughout this paper.

In adaptive serial fault diagnosis (proposed by Nakajima [8] as an extension
to Preparata et al’s model), we assume a complete interconnect like an ethernet,
so any processor can test any other. The testing process is divided into rounds,
during which exactly one test may be performed. The controller dictates which

� Research is supported from the National Science Foundation under grants CCR-
9796317 and CCR-9700417, and Louisiana Board Regent under grant LEQSF(2004-
07)-RD-A-35.

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 427–441, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

428 B. Fu and R. Beigel

test is performed in each round, and then receives the result of that test. After
a finite number of rounds, the controller must determine which processors are
really faulty. We assume that the fault status of processors is constant throughout
the testing (in our example the robot remains in a safe haven throughout the
testing process). The controller is, of course, assumed to be reliable as well.

This led naturally to adaptive parallel fault diagnosis, where each processor
may participate in at most one test per round. Adaptive parallel fault diagnosis
can be performed in 10 rounds [1].

A related problem, posed by Manber [7], is to identify one faulty processor,
rather than all of them. This is called “diagnosis with repair” because the faulty
processor can be replaced and then the process can be repeated with one fault
fewer.

2 Dynamic Faults and Errors

Preparata et al’s model fails to address at least two practical issues:

(1) processors may fail during the diagnosis procedure
(2) faults may be intermittent

Hurwood [5] addressed the first of these issues by extending Manber’s
diagnosis-with-repair model. In his model, all processors are initially good; at
most t processors can fail per round and at most t processors can be repaired
per round. Hurwood gives an algorithm that maintains indefinitely a dynamic
equilibrium in which the number of faulty processors is O(t log t).

A processor is intermittent if the test result is arbitrary whenever it is involved
in a test – either as tester or testee. Formally we allow three distinct kinds
of processors: good, faulty, and intermittent. A good processor always gives a
correct answer when it tests a good processor or a faulty processor, but gives an
arbitrary answer when it tests an intermittent processor. A faulty processor gives
an arbitrary answer when it tests any processor. An intermittent processor also
gives an arbitrary answer when it tests any processor. Throughout this paper,
we consider a set of processors P . We will let good(P) denote the set of good
processors in P , intermittent(P) the set of intermittent processors in P , and
faulty(P) the set of faulty processors in P . For a set A, |A| denotes the number
of elements in it. We will assume that |good(P)| > |faulty(P)|+|intermittent(P)|.
Note that good(P), faulty(P), and intermittent(P) are pairwise disjoint sets.

In our model, we cannot guarantee to diagnose intermittent processors, be-
cause they might, for example, behave as good in every test. While intermittent
processors may be misdiagnosed, we guarantee to correctly diagnose all consis-
tently faulty processors and all good processors.

t-Intermittent Diagnosis. Assuming that |intermittent(P)| ≤ t, find a set S such
that faulty(P) ⊆ S ⊆ faulty(P) ∪ intermittent(P).

We give an O(t5)-rounds algorithm for t-Intermittent Diagnosis.

Diagnosis in the Presence of Intermittent Faults 429

3 Fault Diagnosis with a Bounded Number of
Intermittent Processors

In this section we permit three kinds of processors: good, faulty, and intermittent.
An intermittent processor may act good or faulty at any time. It makes the
situation more complicated. We describe an algorithm for diagnosis assuming
that a strict majority of the processors are good and that there are no more
than t intermittent processors.

Definition 1

• Let p, q be two processors. p likes q if the result is good when p tests q. p and
q like each other if both results are good when p tests q and q tests p.

• A super-node is a set of 2k processors for some number k ≥ 0. For two
super-nodes A,B, 〈A,B〉 is a pair. For a pair (A,B), partner(A) = B and
partner(B) = A.

• Let S be a set of equal-size super-nodes and G′ ⊆ S. If |G′| ≥ 1
6 |S|, G′ is

called a giant node of S.
• For two sets of processors A and B, a k-mutual test takes k processors
p1, . . . , pk from A and k processors q1, . . . , qk from B and pi and qi test each
other for i = 1, . . . , k. The result is called (k, t)-good if at least t of the k pairs
like each other.

• For two sets of processors A and B, a k-test from A to B is to select k
processors p1, . . . , pk from A and k processors q1, . . . , qk from B and let pi test
qi. The result is (k, t)-good if at least t of the k tests are good.

• For a finite set A and an integer m, an m-partition is a sequence of sets
A1, . . . , Ak such that |A1| = · · · = |Ak−1| = m, |Ak| ≤ m, Ai ∩ Aj = ∅ for
i �= j, and

⋃k
i=1Ai = A.

• If H is a processor, then δ(H) = {H}. If H is a super-node, δ(H) = H.
If H a set of super-nodes H, δ(H) is the set of all processors in the super-
nodes of H. If H consists of processors, super-nodes, and sets of super-nodes,
δ(H) =

⋃
A∈H δ(A).

• For two sets of processors A,B, if there are p ∈ A and q ∈ B such that p, q do
not like each other, then (A,B) is called a faulty pair. Otherwise, (A,B) is a
good pair.

• A super-node is good if it does not contain faulty processor. A good super-node
may contain both good and intermittent processors. A super-node is faulty if
it does not contain good processor. A pure good super-node is a good super-
node without any intermittent processor. A pure faulty super-node is a faulty
super-node without any intermittent processor.

We define some polynomial-bounded functions that will be used in Theorem 1
and its proof.

u(t) = 2�log (2t+1)�, where �a� is the least integer larger than a
w(t) = 100t+ 201

430 B. Fu and R. Beigel

x(t) = u(t)w(t)
y(t) = x(t) + 2u(t) + t · u(t)

z(t) =
1
2
y(t) + t

p(t) = t · u(t) + 2u(t)

q(t) =
1
4
w(t)u(t)

ε(t) =
p(t)

w(t)u(t)
< 0.01

Lemma 1. Let A,B be two sets of processors. Every processor in A can test
every processor in B in max(|A|, |B|) rounds.

Proof: Let A = {a1, . . . , am} and B = {b1, . . . , bn}. Test as follows:
If m ≤ n then
for i := 0 to n− 1 do

j := 1 to m do in parallel
aj tests b(j+i) mod n

else
for i := 0 to m− 1 do

j := 1 to n do in parallel
a(j+i) mod n tests bj

Theorem 1. Let P be a set of n processors such that |good(P)| > 1
2n and

|intermittent(P)| ≤ t. There is an O(t5)-rounds algorithm to determine a set
A ⊆ P such that

faulty(P) ⊆ A ⊆ faulty(P) ∪ intermittent(P).

Proof: If n ≤ 8z(t)(2t + 1), let each processor test every other processor; di-
agnose a processor as faulty iff a majority of the others say it is faulty. Clearly
this algorithm diagnoses all but the intermittent processors correctly. The total
number of rounds is n ≤ 8z(t)(2t+ 1) = O(t5).

Henceforth, we assume n > 8z(t)(2t + 1). The remainder of our algorithm
is based on the method of Beigel, Hurwood, and Kahale [1], who build “super-
nodes,” each consisting of processors with identical fault status. However, in
order to tolerate intermittent faults, we have made many modifications to their
algorithm. Our algorithm is composed of 7 stages. We will write ri(t) to denote
the number of rounds in Stage i.

In stage 1, we build up supernodes to size u(t) such that every two processors
in one supernode like each other. Each super node is either good or faulty. In
other words, each super node does not contain both good and faulty processors,
but it may contain both good and intermittent processors or both faulty and
intermittent processors. The unpaired node is put into set J when forming the
super node of size 2k from k.

Diagnosis in the Presence of Intermittent Faults 431

In stage 2, we build up chains from the supernodes pairs that do not like each
other so that every chain does not contain both good and faulty processors. A
chain may contain both good and intermittent processors.

If the number of super nodes of size u(t) is small, stage 3 is executed. Some
large chains are selected. One of them will contain only good nodes. Build two
sets GOODi and FAULTYi from each chain Ci. The large chain Ci with only
good super nodes can collect all of the good processors in its GOODi and all of
the faulty processors in its FAULTYi. For a chain with only faulty super nodes,
its GOODi does not contain any good processor. We can finally judge which
chain is good from the size of its GOODi.

If the number of super nodes of size u(t) is large, we execute stages 4-8. Stage
4 applies the test graph to the super nodes of size u(t). Select some giant sets
G1, . . . , Gm of super nodes of size u(t). Each giant set only contain the same
type of super nodes (good or faulty). At least one of them only contains good
super nodes. Each Gi will build up its GOODi and FAULTYi such that if Gi

only contains good super nodes, its GOODi will contain all good processors in
P and its FAULTYi only contains all faulty processors in P after stages 5-8.
If Gi only contains faulty super nodes, its GOODi does not contain any good
processor.

Stage 5 uses the giant sets to classify processors in all super nodes of size
u(t). Stage 6 uses the giant sets to classify all super nodes in the unpaired nodes
in J . Stages 7 and 8 uses the giant sets to classify the chains.

Stage 1
let each processor constitute one super-node of size 1
k := 1
C := ∅
J := ∅
repeat

if the number of super-nodes of size k is odd
then put one of them into J
arbitrarily pair up the others
for each such pair 〈A,B〉 do

let each p ∈ A and each q ∈ B test each other
if all of those test results are good
then let A ∪B constitute a super-node of size 2k
else C := C ∪ {〈A,B〉}

k := 2k
until k = u(t)

End of Stage 1

Lemma 2

i. r1(t) ≤ 2(u(t)− 1)
ii. Every super-node in Stage 1 cannot contain both good and faulty processors.

In other words, every super-node generated in Stage 1 is either good or faulty.
iii. |δ(J)| ≤ 2u(t)− 1.

432 B. Fu and R. Beigel

Proof: i. If A and B have size k, then all processors in A can test all processors
in B in k rounds. The reverse tests can be performed in an additional k rounds.
Thus the total number of rounds for Stage 1 is 2 · 20 +2 · 21 + · · ·+2 · (u(t)/2) =
2(u(t)− 1).

ii. Suppose A is a smallest super-node that contains a good processor p and
a faulty processor q. A must be formed from the union of two super-nodes in a
pair 〈A′, B′〉. Since A is the smallest super-node, p and q cannot be at the same
super-node in {A′, B′}. Hence it is impossible for p and q like each other. This
is a contradiction.

iii. For each k in Stage 1, J contains at most one super-node of size k. Hence,
|δ(J)| ≤ 20 + 2 + 22 + · · ·+ u(t) = 2u(t)− 1.

After Stage 1, let S be the set of all super-nodes of size u(t); J be the set of
all unpaired super-nodes; and C be the set of all faulty pairs. Arrange all pairs
in C sequentially: 〈A1,0, A1,1〉, 〈A2,0, A2,1〉, . . . , 〈Ak,0, Ak,1〉.

Definition 2

• A chain is a series of super-nodes Ai,ai
, Ai+1,ai+1 , . . . , Aj,aj

in the pairs of C,
where am ∈ {0, 1} for i ≤ m ≤ j. Such a chain does not contain both good
and faulty processors.

• For two processors p, q in C, let dist(p, q) denote the number of pairs between
p and q. In other words, if p ∈ Ai,ai and q ∈ Aj,aj , dist(p, q) = |j − i| − 1.

• A pair in C is special if at least one of its two super-nodes contains intermittent
processors.

• A chain K is good (resp., faulty) if it contains only good (resp., faulty) pro-
cessors.

• A pair in C is faulty–faulty if both of its super-nodes contain only faulty
processors.

• A pair in C is faulty–good if one of its super-nodes contains only faulty pro-
cessors and the other one contains only good processors.

• For a chain K in C, if K begins with super-node Ai,a and ends with Aj,b,
then the pair 〈Ai−1,0, Ai−1,1〉 and 〈Aj+1,0, Aj+1,1〉 are called the top pair and
bottom pair of K respectively.

• For a chain H in C and a super-node A in a pair of C, we say H likes A
if for every processor p in the super-nodes of H, and every q in A such that
dist(p, q) ≤ t+ 1, p and q like each other.

We partition the super-nodes in C into chains via a simple greedy algorithm:

Stage 2
for all p, q in C with dist(p, q) ≤ t+ 1 do

let p and q test each other
C0 := {A1,0}
C1 := {A1,1}
i := 1
Chains := ∅

Diagnosis in the Presence of Intermittent Faults 433

repeat
i := i+ 1
if C0 likes Ai,j for some j ∈ {0, 1} then

choose such a j
C0 := C0 ∪ {Ai,j}
if C1 likes Ai,1−j then

C1 := C1 ∪ {Ai,1−j}
else

Chains := Chains ∪ {C1}
C1 := {Ai,1−j}

else
Chains := Chains ∪ {C0}
if C1 likes Ai,j for some j ∈ {0, 1} then

choose such a j
C1 := C1 ∪Ai,j

C0 := {Ai,1−j}
else

Chains := Chains ∪ {C1}
C0 := {Ai,0}
C1 := {Ai,1}

until i = k
End of Stage 2

Lemma 3

i. r2(t) ≤ 4(t+ 1)u(t).
ii. For each chain K in set Chains, K does not contain both faulty and good

processors.
iii. For every chain K in C, if every super-node in K is purely good, then the

top and bottom pairs of K do not contain any purely good super-node.

Proof: i. The tests can be performed in t+1 substages. In the ith substage, every
processor in Aj,0 ∪ Aj,1 test each other with every processor in Aj+i,0 ∪ Aj+i,1
for 1 ≤ j ≤ k − i. By Lemma 1, r2(t) ≤ 4(t+ 1)u(t).

ii. Assume K contains a good processor and a faulty processor. Since there
are at most t intermittent processors, there are a faulty processor p and a good
processor q in K with dist(p, q) ≤ t + 1. Hence p, q do not like each other and
will not be in the same chain of C.

iii. Suppose the top pair of K contains a purely good super-node. Then K
has to contain a purely good super-node from its top pair in Stage 2. This is a
contradiction. Similarly, the bottom pair does not contain a purely good super-
node.

Let Cchains be the set of all chains built at stage 2. The Lemma 3 shows every
chain in Cchains is either good or faulty. We consider two cases which depend on
the size of S, where S is the set of all super-node of size u(t) as defined before.

434 B. Fu and R. Beigel

Case 1: |S| ≤ w(t). The number of processors in S is no more than u(t)w(t) =
x(t). The number of processors in the super-nodes in J is no more than 2u(t).
The number of processors in special pairs is bounded by tu(t). The number of
processors in J , S and special super-nodes in C ≤ x(t) + 2u(t) + tu(t) = y(t).
Since more than half processors are good, the number of processors in faulty–
faulty pairs in C is ≤ y(t). Good chains are separated by faulty–faulty pairs
and special pairs. The number of faulty–faulty pairs is at most 1

2y(t). Hence the
number of faulty–faulty pairs and special pairs is at most 1

2y(t)+ t = z(t). Since
the number of good processors is more than 1

2n, there is a chain K in Cchains that

contains at least
1
2 n−y(t)
z(t)+1 ≥ n

4z(t) good processors. The total number of chains
with more than n

4z(t) processors is no more than 4z(t). Let K1, . . . ,Km be all of
the chains in C with at least n

4z(t) processors, where m ≤ 4z(t).

Stage 3
for i := 1 to m do

GOODi := δ(Ki)
partition δ(Ki) into A1, . . . , Ar+1 such that |Ai| = 2t + 1 for 1 ≤ i ≤ r

and |Ar+1| ≤ 2t+ 1
partition P − δ(Ki) into P1, . . . , Pr such that ||Pj | − |Pk|| ≤ 1 for each

j, k
for j := 1 to r do

for each p ∈ Pj do
for each q in Aj do

let p and q test each other
if p and most q’s in Aj like each other then

put p into GOODi

if |GOODi| > 1
2n then output A = P −GOODi.

End of Stage 3

Lemma 4. i. r3(t) ≤ 64z(t)2(2t+ 1)
ii. If Ki is a good chain, δ(Ki) does not contain any faulty processor and contain

all good processors.
iii. If Ki is a faulty chain,δ(Ki) does not contain any good processor.

Proof: (i) Since each Ki has at least n
4z(t) elements and n > 8z(t)(2t+ 1),

r ≥ n

4z(t)(2t+ 1)
− 1 ≥ n

8z(t)(2t+ 1)
.

Therefore, |Pi| ≤ 8z(t)(2t+1). For each i ≤ m, we use at most 16z(t)(2t+1)
rounds by Lemma 1. Hence Stage 3 takes at most

m · 16z(t)(2t+ 1) ≤ 64z(t)2(2t+ 1)

rounds in all.
(ii) If Ki is a good chain, Ki does not contain any faulty processor. For

a processor p ∈ P − δ(Ki), p can not be faulty if the most results are good

Diagnosis in the Presence of Intermittent Faults 435

among the 2t + 1 mutual tests with every processors in some Aj ⊆ δ(Ki) and
|Aj | = 2t+ 1.

(iii) Similar to the proof of (ii).

Case 2: |S| > w(t). Since the number of processors in special pairs and super-
nodes of J is ≤ tu(t) + 2u(t) = p(t), the number of good processors in the pure
good super-nodes of S is at least

1
2
|S|u(t)− p(t) ≥ (

1
2
− ε(t))|S|u(t) > 0.49|S|u(t) > q(t). (1)

Thus, S contains at least 0.49|S| pure good super-nodes.

Lemma 5. [[2],[6]] Let 0 < γ, λ < 1. Let N be a set of m vertices and Hd be
the union of d random Hamiltonian paths of N . For any subset N ′ of N with
size λm, the probability that Hd fails to induce a strongly connected component
of size γλm in N ′ is less than

21+λ

(
2
(m− αm)!(m− βm)!
m!(m− αm− βm)!

)d

,

where α = (1+γ)
2 m and β = (1−γ)

2 m.

Stage 4
Identify the elements of S with nodes in H16.
Construct another graph G with vertex set S as follows:
for every two super-nodes A,B of S with an edge from A to B in H16

let A and B perform a u(t)-mutual test
if the test result is (u(t), u(t)/2) good
then place an edge an edge from A to B in G

Partition S according to the strongly connected components G′
1, . . . , G

′
m′ in

G.
End of Stage 4

Lemma 6

i. Let G′ be a strongly connected component of G. If G′ contains a good super-
node, then every super-node in G′ is good. If G′ has a faulty super-node, then
every super-node in G′ is faulty.

ii. r4(t) = 64

Proof: i. Suppose G′ has a good super-node N0. Let N be a super-node of G′.
There is a path N0, N1, . . . , Nk = N in G′ since G′ is a strongly connected com-
ponent. Each super node in S can not contain both good and faulty processors.
If N1 is a faulty super-node, there are at least 1

2u(t) ≥ t + 1 intermittent pro-
cessors in N0 ∪ N1 since N0 is good and the u(t)-mutual test between them is
(u(t), 1

2u(t))-good. Therefore, N1 has to be good. Similarly, we can show that
N2, . . . , Nk = N are all good.

436 B. Fu and R. Beigel

ii. A single u(t)-mutual test can be performed in two rounds. For a Hamil-
tonian path with nodes in S, it takes 4 rounds to take u(t)-mutual tests for
the super nodes in S. For 16 Hamiltonian path, it needs 4 × 16 = 64 rounds.
Therefore, r4(t) = 64.

Let G1, . . . , Gm be all the giant nodes among G′
1, . . . , G

′
m′ in S. Then each

|Gi| > 1
6 |S| and m ≤ 5 (For the details of the probability and size calculation

based on Lemma 5, see [2],[6]). Since there are more than 0.49|S|u(t) good pro-
cessors in S, by Lemma 5, one of the giant nodes, say Gi0 , only contains good
super-nodes.

Stage 5
for i := 1 to m do

GOODi := FAULTYi := ∅
Let B1, . . . , Br be super-nodes in Gi.
Partition S − Gi into Q1, . . . , Qr such that ||Qk| − |Qj || ≤ 1 for 1 ≤

k, j ≤ r.
For each super-node D′ ∈ Qj , let D′, Bj take u(t)-mutual test.
If most results are good, put D′ into GOODi

else put D′ into FAULTYi.
End of Stage 5

Lemma 7

i. r5(t) ≤ 50
ii. If Gi contains good super-nodes, GOODi contains every good super-node in

S and FAULTYi contains every faulty super-node in S after Stage 5. If Gi

contains faulty super-nodes, GOODi does not contain any good super-node
after Stage 5.

Proof: i. Since |S−Gi| ≤ 5
6 |S| and |Gi| ≥ 1

6 |S|, we have |Qj | ≤ 5 for 1 ≤ j ≤ r.
Therefore, each Bj takes at most 2 · 5 rounds to process Qj . Thus the total
number of rounds is at most 50.

ii. Every super-node N in S − Gi takes u(t)-mutual test with a super-node
in Gi. If most results are good, N is put into GOODi. Otherwise, N is put into
FAULTYi. For two super-nodes A1, A2 of size u(t), if they are both good, most
results will be good in the u(t)-mutual test between. This is because there are
no more than t intermittent processors in A1∪A2 and u(t) ≥ 2t+1. It is easy to
see that if one of A1, A2 is faulty and the other is good, most results are faulty
in the u(t)-mutual test between them.

There is a GOODj containing all good super-nodes in S which is more than
0.49|S| . We use the good processors in S to find out all good processors in J and
C. The method is similar to the method in [1]. As the number of good processors
in S is big enough, it can be done in small number of parallel rounds.

Let b be the number of faulty–faulty pairs in C, the set of paired super-
nodes from Stage 1. We can find at most 2(b + t) + 1 chains to cover all C

Diagnosis in the Presence of Intermittent Faults 437

(every pair in C has one of its two super-nodes in one of the those chains). Let
D = {D1, . . . , Dc} ⊆ Cchains be the set of chains covering C, where c ≤ 2(b+t)+1.
D can be determined via greedy algorithm, i.w., we choose a chain from C
covering largest number of uncovered pairs until C is covered.

Let x be the number of good processors in S. Since most processors in P are
good and there are at most t super-nodes in S containing intermittent processors,
we have x+ |δ(J)|+ tu(t) ≥ 2b. Therefore, x ≥ 2b− 2u(t)− tu(t).

Without lose generality, let GOOD1, . . . ,GOODd are of size ≥ 0.49|S| (d = 1
or 2). One of the GOODi’s, say GOODi0 , does not contain any super-node with
faulty processors and has ≥ q(t) good processors (by inequality (1)).

Stage 6
for i = 1 to d do

let B be a super-node in Gi

let every processor p in δ(J) take mutual test with every processor in B.
if p likes each other with most processors in B
then put p into GOODi

else put p into FAULTYi.
End of Stage 6

Lemma 8

i. r6(t) ≤ 4(2u(t)− 1).
ii. If GOODi contains good super-nodes after Stage 5, then after Stage 6

δ(GOODi) contains all of the good processors in δ(J) and FAULTYi con-
tains all of the faulty processors in δ(J). If GOODi after Stage 5 contains
faulty super-nodes in S, then δ(GOODi) does not contain any good processor
in δ(J).

Proof: i. Since |δ(J)| ≤ 2u(t) − 1 (by Lemma 2) and |B| = u(t), Stage 6 costs
no more than 2(2u(t) − 1) for any fixed i (by Lemma 1). Therefore, r6(t) ≤
4(2u(t)− 1) since d ≤ 2.

ii. If B is a good super-node of size u(t), most results are good when all
processors in B test a good processor in δ(J), and most results will be faulty
when all processors in B test a faulty processor. This is because u(t) ≥ 2t + 1
and there are no more than t intermittent processors in B.

Stage 7
(1) for i := 1 to d do
(2) let B1, . . . , Bmi be the super-nodes in GOODi.
(3) let F1 be the set of all chains Dj ∈ D with |Dj | < u(t).
(4) let F2 be the set of all chains Dj ∈ D with |Dj | ≥ u(t).
(5) partition F1 into F1,1, . . . , F1,mi

such that ||F1,l| − |F1,k|| ≤ 1 for
1 ≤ l, k ≤ mi.

(6) partition F2 into F2,1, . . . , F2,mi such that ||F2,l| − |F2,k|| ≤ 1 for
1 ≤ l, k ≤ mi.

(7) if |Fa,b| ≤ 4u(t) for 1 ≤ a ≤ 2 and 1 ≤ b ≤ mi then
(8) for j := 1 to mi do in parallel

438 B. Fu and R. Beigel

(9) every processor in Bj take mutual test with every processor
q ∈ δ(F1,j).
if q likes each other with most processors in Bj

then put q into GOODi.
else put q into FAULTYi.

(10) for j := 1 to mi do in parallel
(11) let Bj take u(t)-mutual test with every chain Dk ∈ F2,j .

if most results are good
then put Dk into GOODi

else put Dk into FAULTYi.
End of Stage 7

Lemma 9

i. r7(t) = O(t2)
ii. If GOODi contains good super-nodes in S before Stage 7, then after Stage 7

good(δ(D)) ⊆ δ(GOODi) and faulty(δ(D)) ⊆ δ(FAULTYi). If GOODi con-
tains faulty super-nodes before Stage 7, then δ(GOODi) does not contain any
good processor in δ(D).

Proof: i. Assume |Fa,b| ≤ 4u(t). We have |δ(F1,j)| ≤ |F1,j |u(t) ≤ 4u(t)2. The
loop ((8)–(9)) costs 12u(t)2 rounds (by Lemma 1). Since each Dk takes 2 rounds
for the mutual test with Bj , the loop ((10)–(11)) costs ≤ 12u(t) rounds. Since
d ≤ 2, we have r7(t) ≤ 2(12u2(t) + 12u(t)).

ii. If b > q(t) − t, then x ≥ 2b − 2u(t) − tu(t) > b + t. If b < q(t) − t,
then x > q(t) > b + t (by inequality (1)). Therefore, x > b + t holds in every
case. Suppose GOODi contains all good super-nodes in S. mi ≥ x

u(t) >
b+t
u(t)

super-nodes from S. Since c ≤ 2(b+ t) + 1 < 3(b+ t), we have

|F1,j |, |F2,j | ≤
c

mi
+ 1 ≤ 3(b+ t)

mi
+ 1 ≤ 3u(t) + 1 < 4u(t) for j = 1, . . . ,mi.

Therefore, the condition at the if statement (7) is satisfied. It is easy to see
that every good processor in δ(D) is in δ(GOODi) and every faulty processor in
δ(D) is in δ(FAULTYi).

Stage 8
(1) for i := 1 to d do
(2) let B1, . . . , Bmi

be the super-nodes of size u(t) in GOODi.
(3) let F1 = {Dj : Dj ∈ (GOODi ∩D) and |Dj | ≥ u(t)} and

F ′
1 = {K : partner(K) ∈ Dj for some Dj in F1}.

(4) for each Dj ∈ F1 do in parallel
(5) let Dj,1, . . . , Dj,ij+1 be a u(t)-partition of δ(Dj).
(6) let D′

j = {K : partner(K) ∈ Dj}
(7) partition δ(D′

j) into E1,1, . . . , E1,ij
such that ||E1,l|−|E1,k|| ≤ 1.

(8) for l = 1 to ij do in parallel

Diagnosis in the Presence of Intermittent Faults 439

(9) let every processor p ∈ E1,l take mutual test with every
processor in Dj,l.
if p likes each other with most processors in Dj,l

then put p into GOODi

else put p into FAULTYi.
(10) let F2 = {Dj : Dj ∈ D and δ(Dj) ⊆ δ(GOODi) and |Dj | < u(t)},

and
let F ′

2 = {K : partner(K) ∈ Dj for some Dj ∈ F2}
(11) partition δ(F ′

2) into E2,1, . . . , E2,mi
such that ||E2,l| − |E2,k|| ≤ 1

for 1 ≤ l, k ≤ mi.
(12) let N0 be the set of all super-nodes in the chains in C −D
(13) let N1 = (N0 − F1)− F2.
(14) let F3 be the set of all chains M such that M contains some super-

nodes in N1 and
|M | < u(t).

(15) let F4 be the set of all chains M such that M contains some super-
nodes in N and
|M | ≥ u(t).

(16) partition δ(F3) into E3,1, . . . , E3,mi
such that ||E3,l| − |E3,k|| ≤ 1

for 1 ≤ l, k ≤ mi.
(17) partition F4 into E4,1, . . . , E4,mi such that ||E4,l| − |E4,k|| ≤ 1

for 1 ≤ l, k ≤ mi.
(18) if |Ea,b| ≤ 4u(t) for 2 ≤ a ≤ 4 and 1 ≤ b ≤ mi then
(19) for j := 1 to mi do in parallel
(20) let every processor p ∈ E2,j take mutual test with every

processor in Bj .
if most results are good
then put p into GOODi

else put it into FAULTYi.
(21) for j := 1 to mi do in parallel
(22) let every processor p ∈ E3,j take mutual test with every

processor in Bj .
if most results are good
then put p into GOODi

else put it into FAULTYi.
(23) for j := 1 to mi do in parallel
(24) let each chain Dk ∈ E4,j take u(t)-mutual test with Bj .

if most results are good
then put Dk into GOODi

else put Dk into FAULTYi.
(25) if |δ(GOODi)| > n

2 , output A = δ(FAULTYi).
End of Stage 8

Lemma 10

i. r8(t) = O(t2)

440 B. Fu and R. Beigel

ii. If GOODi contains good super-nodes, Super-node set

H = {K : partner(K) is in some Dj ∈ D and

(Dj ∈ FAULTYi or partner(K) ∈ FAULTYi or K has some processors in

FAULTYi)}
is in no more than 2(b+ t) + 1 chains in Cchains −D.

iii. If GOODi contains all good super-nodes in S, then good(δ(Cchains −D)) ⊆
δ(GOODi) and faulty(δ(Cchains − D)) ⊆ δ(FAULTYi) after Stage 8. If
FAULTYi contains some faulty super-nodes in S, then good(δ(FAULTYi))
= ∅.

Proof: i. Let us fix an integer i at the first loop of Stage 8.
Phase 1 ((8)-(9)): Since |δ(Dj)| = |δ(D′

j)| ≥ u(t), |E1,k| ≤ 2u(t). This phase
costs ≤ 4u(t) rounds (by Lemma 1).
Phase 2 ((19)-(20)): Since |E2,k| ≤ 4u(t), this phase costs ≤ 8u(t)2 rounds
(by Lemma 1).
Phase 3 ((21)-(22)): Since |E3,k| ≤ 4u(t), this phase costs ≤ 8u(t)2 rounds
(by Lemma 1).
Phase 4 ((23)-(24)): Since |E4,k| ≤ 4u(t), this phase costs ≤ 8u(t) rounds.
ii. Suppose GOODi contains all super-nodes in S. For every super-node K ∈

H, partner(K) is not a purely good super-nodes. Each super-node of H is either
in a faulty-faulty pair, special pair, or a good chain in Cchains−D. The set C has
≤ b+t mixed super-nodes and pure faulty super-nodes which are in faulty–faulty
pairs. Good chains are separated by mixed pairs and faulty–faulty pairs. Thus,
the super-nodes of H are in no more than 2(b+ t) + 1 chains in Cchains −D.

iii. As the proof of Lemma 9, we have mi ≥ b+t
u(t) and |E2,k|, |E3,k|, |E4,k| ≤

4u(t)2. Therefore the condition at if (18) can be always satisfied. Everything else
is similar.

Combining those lemmas, we have the total number of rounds is O(t5) and
faulty(P) ⊆ A ⊆ faulty(P) ∪ intermittent(P).

4 Conclusion

In this paper we give a O(t5) parallel rounds algorithm to tolerate at most t
intermittent processors. We feel there is still some space to decrease the upper
bound. An interest open problem is deriving non-linear lower bound for tolerat-
ing t intermittent processors.

Acknowledgement

We would like to thank the anonymous referees for their helpful comments to
the earlier version of this paper.

Diagnosis in the Presence of Intermittent Faults 441

References

1. R. Beigel, W. Hurwood, and N. Kahale. Fault diagnosis in a flash. In Proceedings
of the 36th IEEE Symposium on Foundations of Computer Science, pages 571–580,
1995.

2. R. Beigel, R. Kosaraju, and G. Sullivan. Locating faults in a constant number
of parallel testing rounds. In Proceedings of the 1st Annual ACM Symposium on
Parallel Algorithms and Architectures, pages 189–198, 1989.

3. R. P. Bianchini, Jr. and R. Buskens. An adaptive distributed system-level diagnosis
algorithm and its implementation. In Proceedings 21st Int. Symp. Fault Tolerant
Computing, pages 222–229, 1991.

4. R. P. Bianchini, Jr., K. Goodwin, and D. S. Nydick. Practical application and
implementation of distributed system-level diagnosis theory. In Proceedings 20th
Int. Symp. Fault Tolerant Computing, pages 332–339, 1990.

5. W. Hurwood. Ongoing diagnosis. In Proceedings 15th IEEE Symp. Reliable Dis-
tributed Systems, 1996.

6. W. Hurwood. System Level Fault Diagnosis under Static, Dynamic, and Distributed
Models. PhD thesis, Yale University, Dept. of Computer Science, New Haven, CT,
1996.

7. U. Manber. System diagnosis with repair. IEEE Trans. Comput., C–29:934–937,
1980.

8. K. Nakajima. A new approach to system diagnosis. In Proceedings 19th Ann.
Allerton Conf. Commun. Contr. and Comput., pages 697–706, 1981.

9. F. P. Preparata, G. Metze, and R. T. Chien. On the connection assignment problem
of diagnosable systems. IEEE Trans. Electron. Comput., EC–16:848–854, 1967.

Three-Round Adaptive Diagnosis
in Binary n-Cubes

Satoshi Fujita1,� and Toru Araki2

1 Department of Information Engineering,
Graduate School of Engineering, Hiroshima University
2 Department of Computer and Information Sciences,

Faculty of Engineering, Iwate University

Abstract. In this paper, we consider the problem of adaptive fault-
diagnosis in binary n-cubes, and propose a scheme that completes a
diagnosis in at most three test rounds, provided that n ≥ 3 and the
number of faulty vertices is at most n. The proposed scheme is optimal
in the sense that: 1) three rounds are necessary for the adaptive diagnosis,
2) there exists a set of n + 1 faulty vertices that can not be located by
any diagnosis scheme, and 3) to identify n faulty vertices, the system
must contain at least 2n + 1 vertices. Note that n = 3 is the smallest
integer satisfying 2n ≥ 2n + 1.

1 Introduction

The system-level fault-diagnosis is one of the main issues to realize highly de-
pendable parallel processing systems. The concept of system-level fault-diagnosis
has first been proposed by Preparata, Metze, and Chien [12]. They consider a
multiprocessor system that could be modeled as a collection of processing el-
ements called units, and assume that each of the units has the capability of
testing the other units to report the test results to a central observer. By an-
alyzing the complete collection of the test results, the observer identifies which
unit is faulty and which is fault-free. A key point of the Preparata et al.’s diag-
nosis model, that is commonly referred to as the PMC model in the literature,
is that the test result reported by a faulty unit is unreliable, whereas the result
reported by a fault-free unit is always correct.

In the original PMC model, the test phase is conducted exactly once; thus
the main objective of the problem is to identify a minimum number of faulty
units that is consistent with the given collection of the test results (note that
the minimality is necessary to exclude trivial answers such that “all units are
faulty”). A system is said to be t-diagnosable if there exists a collection of tests
such that all faulty units are identified, provided that the number of faulty units

� This research was partially supported by the Japan Society for the Promotion of
Science Grant-in-Aid for Scientific Research (C), 13680417, and Priority Areas (B)(2)
16092219.

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 442–451, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Three-Round Adaptive Diagnosis in Binary n-Cubes 443

does not exceed t. It is well known that a t-diagnosable system must contain
at least 2t + 1 units, and each unit of the system must be tested by at least t
other units; thus it needs at least Nt tests altogether where N is the number of
units in the system [12]. A characterization of t-diagnosable systems is given by
Hakimi and Amin [5].

In [9], Nakajima proposed an adaptive diagnosis model to improve the effi-
ciency of the diagnosis process. An adaptive fault-diagnosis proceeds in several
test rounds, and the objective of the problem is to reduce the number of rounds
as well as the total number of tests. It has been shown that by applying the
adaptive model to a completely connected system, the number of tests that is
necessary and sufficient to identify at most t faults reduces from Nt to N + t−1
[3] and the number of test rounds that is necessary to identify all faults could
be bounded by a constant even when simultaneous participation of a unit to
several tests is not allowed [1, 6]. The power of adaptive diagnosis has also been
investigated for several classes of sparse network topologies such as trees, cycles,
and tori [7], butterfly networks [11], and cube-connected cycles [10]. Among
them, Feng et al. [4] considered the adaptive fault-diagnosis in binary n-cubes
with at most n faults, and proposed an (n + 4)-round algorithm with at most
2n(�log n�+ 2) tests (note that since an n-cube can be factorized into n perfect
matchings, a trivial upper bound is 2n rounds with n2n+1 tests). This result was
improved to 11 rounds with at most 2n + 3n/2 tests by Kranakis and Pelc [7],
and to four rounds by Björklund [2] (in addition to this improvement, Björklund
proved that for the adaptive diagnosis of n-cubes, 2n +n− 1 tests are necessary
and sufficient). Note that a lower bound on the number of test rounds is three
[2]. Recently, Nomura et al. showed that three test rounds are necessary and
sufficient if the number of faults is at most n−�log(n− �log log n�+ 4)�+2 [10].

In this paper, we prove that for any n ≥ 3, an adaptive diagnosis in binary
n-cube takes at most three test rounds, provided that the number of faults does
not exceed n. The proposed scheme is optimal in the sense that: 1) three rounds
are necessary, 2) there exists a fault set with n+1 units that can not be identified
by any scheme, and 3) to identify n faulty units, the system must contain at least
2n+ 1 units; i.e., n = 3 is the smallest integer satisfying 2n ≥ 2n+ 1.

The remainder of this paper is organized as follows. In Section 2, a formal
definition of the adaptive diagnosis model and binary n-cubes will be provided.
The proposed three-round scheme is given in Section 3. Section 4 concludes the
paper with future problems.

2 Preliminaries

2.1 Diagnosis Model

LetG = (V,E) be an undirected graph that models the topology of an underlying
parallel processing system, where vertices in V represent processors and edges
in E represent communication links between them. A vertex can test the status
of its adjacent vertices via the communication link connecting them. A test of v
by u is denoted by an ordered pair (u, v), and an outcome of the test is denoted

444 S. Fujita and T. Araki

by r(u, v); i.e., r(u, v) = 0 if u judges v is fault-free and r(u, v) = 1 if u judges v
is faulty. It should be noted that the result of a test conducted by a faulty unit
is unreliable, whereas the result of a test conducted by a fault-free unit is always
correct.

In this paper, we assume that a diagnosis process proceeds in several rounds,
and in each round, each vertex can participate at most one test; i.e., if two tests
(u, v) and (x, y) are conducted in the same round, four vertices u, v, x and y must
be distinct. A test assignment is a set of tests that is conducted in a round.
By definition, a test assignment for G = (V,E) is a matching in directed graph
(V, {(u, v) | {u, v} ∈ E}). A diagnosis process is a sequence of test assignments.
In this paper, we assume that there is an observer who can collect all test
results conducted by the vertices. A collection of test results with respect to
a given test assignment is referred to as a syndrome. The main role of the
observer is, given a sequence of syndromes, to determine the test assignment to
be conducted in the next round, as well as the identification of faulty vertices
from the syndromes. In the following, for brevity, a test with result 0 (resp. 1)
is referred to as a 0-arrow (resp. 1-arrow).

2.2 Binary n-Cube

A binary n-cube Qn = (V (Qn), E(Qn)) is a bipartite graph constructed as
follows: 1) each vertex in V (Qn) corresponds to a binary string of length n,
and 2) two vertices in V (Qn) are connected by an edge iff the corresponding
binary strings differ in exactly one bit position. It is widely known that Qn is
Hamiltonian. A typical way to construct a Hamiltonian cycle in Qi is described
as follows:

function Hamilton(i: dimension)
begin
if i = 1 then return (0, 1) as Hi

else begin
Let Hi−1 = (v1, v2, . . . , v2i−1) be the output of Hamilton(i− 1);
return (0v1, 0v2, . . . , 0v2i−1 , 1v2i−1 , 1v2i−1−1, . . . , 1v1) as Hi

end
end.

By using the procedure, H2, H3, and H4 are constructed as follows:

H2 = (00, 01, 11, 10)
H3 = (000, 001, 011, 010, 110, 111, 101, 100)
H4 = (0000, 0001, 0011, 0010, 0110, 0111, 0101, 0100

1100, 1101, 1111, 1110, 1010, 1011, 1001, 1000)

By construction, Hi is a Hamilton path in Qn and the first and the last vertices
in Hi are adjacent in Qn. In addition, Hi is a concatenation of two Hamilton

Three-Round Adaptive Diagnosis in Binary n-Cubes 445

paths in two copies of Qn−1; i.e., the first one is a subcube of Qn to have prefix
0 and the latter is a subcube of Qn to have prefix 1.

In the next section, we propose an adaptive diagnosis scheme with three
rounds. In the proposed scheme, we repeatedly use the following simple lemma:

Lemma 1. For any subset U ⊆ V (Qn) of cardinality n, there is a set of vertices
W (⊂ V (Qn)−U) of cardinality n such that there is a matching of size n between
U and W in Qn.

Proof. Since Qn is bipartite, V (Qn) can be partitioned into two subsets, say V1
and V2, such that every edge in E(Qn) connects a vertex in V1 with a vertex
in V2. Let Ui = U ∩ Vi for i = 1, 2. Assume U1 �= ∅, without loss of generality.
Since the degree of Qn is n, each vertex in U1 is connected with at least n−|U2|
vertices in V (Qn)−U . Since n−|U2| = |U1|, by Hall’s theorem, there is a subset
W1(⊆ V (Qn) ∩ V2) of cardinality at least |U1| such that there is a matching of
size |U1| between U1 and W1 in Qn. Hence the lemma follows.

3 Scheme

3.1 First Partitioning

Suppose n ≥ 3. Let m = �log2(n+ 1)�. Note that 2m ≥ n + 1 and m < n, for
any n ≥ 3. We first partition the given n-cube Qn into 2n−m small m-cubes,
P1, P2, . . . , P2n−m , where vertices in each m-cube is identified by the prefix of
length n−m. We then construct a Hamiltonian cycle in each m-cube by function
Hamilton given in the last section. In the first two rounds, we conduct tests along
those 2n−m Hamiltonian cycles independently in parallel. Since |V (Qm)| ≥ n+1,
any m-cube with no 1-arrows must be fault-free. Hence, at most n subcubes
can contain 1-arrows, since we are assuming that there are at most n faulty
vertices. Let x denote the number of m-cubes containing 1-arrows, and let Q =
{P1, P2, . . . , Px} be the set of those m-cubes.

3.2 Overview of the Scheme

If x ≤ n−m, we can complete the diagnosis by spending one more round, in the
following manner: Consider an (n−m)-cube Q̂n−m whose vertices correspond to
the 2n−m m-cubes constructed above. Let U be a subset of V (Q̂n−m) consisting
of x vertices corresponding to m-cubes in Q. Since x ≤ n−m, by Lemma 1, there
is a set W ⊂ V (Q̂n−m) − U such that there is a matching of size |U | between
U and W in V (Q̂n−m). Since each m-cube corresponding to a vertex in W have
been known to be fault-free in the first two rounds, by using (parallel) test arcs
connecting those m-cubes, we can complete the fault-diagnosis by spending one
more round. Hence in the following, we will assume that it holds n −m + 1 ≤
x ≤ n, without loss of generality.

Each m-cube in Q contains at least one and at most m faulty vertices (in fact,
if it contains more than m faulty vertices, the total number of faulty vertices

446 S. Fujita and T. Araki

Q

Hamiltonian cycle in Q

m=6, l=3

Dirty blocks

u

Fig. 1. Dirty blocks

becomes at leastm+1+(x−1) ≥ n+1, a contradiction). This implies that for each
1-arrow, we may check the fault-freeness of the consecutive m vertices starting
from the head of the 1-arrow. This idea could be generalized by introducing
parameter m′ to the overall system to indicate that for each 1-arrow, we may
check the fault-freeness of m′ consecutive vertices from the head of the arrow.
Parameter m′ is initialized to m, and during the execution of the algorithm, it
will be decreased monotonically or it will be guaranteed (in some way) that the
check for the current m′ completes by spending one more round.

3.3 Reduction

In this subsection, we assume m ≥ 5. The discussion about smaller m’s will be
given in the next subsection. Given parameterm′, let � = �log2m

′�. We partition
each m-cube in Q into 2m−� smaller �-cubes (note that m−� ≥ m−�log2m� ≥ 2
for anym ≥ 4). Consider a Hamiltonian cycle constructed in the first two rounds.
A (consecutive) part of the Hamiltonian cycle contained in an �-cube is called a
block, and a block is said to be “dirty” if it contains vertices to be tested (note
that each Hamiltonian cycle is divided into 2m−� blocks). Figure 1 illustrates
dirty blocks in a Hamiltonian cycle of 6-cube for m′ = 6 and � = 3. In this
example, we have to check six (= m′) consecutive vertices painted black that is
starting from a vertex pointed by a 1-arrow, i.e., vertex u. Note that any non-
dirty block painted white is fault-free. As is shown in the figure, each 1-arrow in
a Hamiltonian cycle generates at most two dirty blocks, while they may overlap
with dirty blocks generated by the other 1-arrows.

Three-Round Adaptive Diagnosis in Binary n-Cubes 447

In the following, we will consider the following three fault-diagnosis proce-
dures separately: 1) for m-cubes in Q with at most two dirty blocks (Case A),
2) for m-cubes with at least three and at most m− � dirty blocks (Case B), and
3) for m-cubes with at least m− �+ 1 and at most 2m dirty blocks (Case C).

Case A. In the proposed scheme, we use several m-cubes with at most one
faulty vertex for the testing of other m-cubes. Note that an m-cube can contain
exactly one faulty vertex only when either 1) it contains a single 1-arrow, or 2) it
contains two consecutive 1-arrows. Note that in each of the cases, a faulty vertex
generates at most two dirty blocks in an m-cube. Since m− � ≥ 2 for m ≥ 5, a
dirty block in such m-cubes can be tested by other blocks contained in the same
m-cube. In addition, when m ≥ 6, we can select such a “testing block” from at
least two candidates in the same m-cube, since it holds m− � ≥ 3.

Case B. Next, let us focus on m-cubes that is known to contain more than
one faulty vertices by the outcome of the first two rounds (i.e., m-cubes that
contain at least two non-adjacent 1-arrows). Let Q′ (⊆ Q) be the set of such
m-cubes. Since it can contain at most m faulty vertices, and a faulty vertex
can generate at most two dirty blocks, the number of dirty blocks in an m-
cube in Q′ is at most 2m. Let y denote the number of dirty blocks in an
m-cube in Q′. If y ≤ m − �, we can complete the diagnosis for the corre-
sponding m-cube by spending one more round, in a similar way to the case
of x ≤ n−m (note that the diagnosis process can be completed locally in each
m-cube).

Case C. When m ≥ 5, there are at most three such m-cubes in Q′ that contain
at least m− �+1 dirty blocks. Let Q′′ (⊆ Q′) be the set of those m-cubes. Since
|Q′| ≤ m− 1, each m-cube in Q′′ has at least (n−m)− (m− 2) = n− 2m+ 2
adjacent m-cubes each of which is not a member of Q′ (recall that an m-cube
not in Q′ contains at most two dirty blocks); more specifically, when n ≥ 8,
there are at least six such m-cubes. Hence we can assign two such m-cubes for
each member of Q′′.

Let P1 be a member of Q′′ and P4 and P5 be two m-cubes assigned to
P1, without loss of generality. Recall again that each of P4 and P5 contains at
most two consecutive dirty blocks. We examine the following two cases sepa-
rately:

– When m ≥ 6, by selecting “testing blocks” in P4 and P5 appropriately, we
can prepare at least 2m−� − 2 fault-free blocks for testing dirty blocks in P1
(we could not cover at most two blocks, and such a situation occurs only
when the dirty blocks in P4 and P5 are adjacent with those in P1). See
Figure 2 for illustration.

– When m = 5, since x ≥ n−m+1 and there is an m-cube containing at least
two faulty vertices, we have m′ ≤ 3. Thus, � = �log2m

′� ≤ 2; i.e., m− � ≥ 3.
Hence the same argument to the above case holds.

448 S. Fujita and T. Araki

P

P

P

Fig. 2. Case C

Let P1,1 and P1,2 be dirty blocks that are not covered by fault-free blocks
in P4 and P5. Note that those blocks correspond to two neighboring �-cubes
in P1. If P1,1 is adjacent with a fault-free block in P1, the diagnosis process
completes in one more round, and the same is true for P1,2. On the other hand,
if all blocks adjacent with P1,1 in P1 are dirty, it implies that P1 contains at
least m − � faulty vertices belonging to different �-cubes (a faulty vertex not
in P1,1 ∪ P1,2 does not affect to both P1,1 and P1,2 simultaneously, since Qn is
bipartite); i.e., the number of identified faulty vertices in the overall system is
at least (n−m+ 1) + (m− �) = n− �+ 1, and this fact implies that the value
of m′ could be reduced to �log2m

′� (= �).

Base Case. For the new m′, we repeat the same checking process, and the
repetition continues until: 1) it finds that the diagnosis completes by spending
one more round, or 2) it becomes m′ = 2. However, if there is a block that does
not adjacent with a fault-free block in P1 for m′ = 2, since m′ = 2 implies � = 1,
there must exist n − � + 1 = n “nonadjacent” faulty vertices, and all of those
faulty vertices could be uniquely identified.

Hence in every case, we can complete the diagnosis by spending one more
round.

3.4 Small m’s

In this subsection, for completeness, we provide concrete diagnosis schemes for
m ≤ 4. Recall that m = 4 when 8 ≤ n ≤ 15, m = 3 when 4 ≤ n ≤ 7 and m = 2
when n = 3.

m = 4. Suppose again that Q denotes the set of m-cubes containing at least
one 1-arrow, and Q′ denotes the set of m-cubes that have been known to contain
at least two faulty vertices. When m = 4, since each element in Q′ can contain
at most 4 faulty vertices, we can initialize parameters as m′ = 4 and � = 2; i.e.,

Three-Round Adaptive Diagnosis in Binary n-Cubes 449

initially, each Hamiltonian cycle of size 16 (= 24) is partitioned into four blocks
of size four each.

When � = 2, Q′′ denotes the set of 4-cubes containing at least 3 (= m−�+1)
dirty blocks. Without loss of generality, we may assume Q′′ contains either one,
two, or three elements, since if |Q′′| = ∅, we can immediately complete the
diagnosis (See Subsections 3.3 and 3.3).

– If |Q′′| = 3, all of n faulty vertices can be uniquely identified, since |Q| ≥
n−m+ 1 = n− 3 and each element in Q′′ is known to contain at least two
faulty vertices. More concretely, every vertex pointed by 1-arrow is identified
as a faulty one.

– If |Q′′| = 2, the value of m′ could be reduced to two since n−1 faulty vertices
has already been identified. For the new m′, we can directly apply the same
procedure given in Subsection 3.3.

– If |Q′′| = 1, the unique element in Q′′ contains at least two faulty vertices,
and is adjacent with n − 4 m-cubes in the given n-cube. Without loss of
generality, we may assume that each of the n − 4 neighbors belongs to Q′

and contains at most two consecutive 1-arrows in it (since otherwise, we
can directly apply the procedure given in Subsection 3.3). Hence, we can
decrease � to 1, and for the reduced parameter �, we can directly apply the
same procedure, as well.

m = 3. When m = 3, we may assume that each m-cube in Q′ contains at
most three faulty vertices. Thus, we can set parameters as m′ = 3 and � = 2.
If Q′′ contains either zero, two, or three elements, a similar method to the case
of m = 4 can be used. Thus we may assume Q′′ contains exactly one element.
If |Q′′| = 1, the unique element in Q′′ contains at least two faulty vertices, and
is adjacent to n− 3 m-cubes in the given n-cube. Without loss of generality, we
may assume that each of the n−3 neighbors belongs to Q′ and contains at most
two consecutive 1-arrows in it. Hence, we can decrease � to 1, and can apply the
procedure given in Subsection 3.3, as well.

m = 2. When m = 2 (i.e., when n = 3), two directed Hamiltonian cycles with
four vertices are constructed in the first two rounds. Let A = (a1, a2, a3, a4)
and B = (b1, b2, b3, b4) be syndromes obtained in the first two rounds, where
ai, bi ∈ {0, 1} for each i (for brevity, two rotated syndromes will be regarded as
an identical one).

If either A or B contains no 1-arrows, i.e., if it is (0, 0, 0, 0), all vertices
contained in the cycle must be fault-free, and in the third round, they can be
used to test four other vertices (if necessary). Hence in the following, we assume
that each syndrome contains at least one 1-arrow, i.e., each Hamiltonian cycle
contains at least one and at most two faulty vertices (recall again that we are
assuming that the total number of faults does not exceed three).

A Hamiltonian cycle contains exactly one faulty vertex only when the cor-
responding syndrome is either (0, 0, 1, 0) or (0, 0, 1, 1), and in each case, two
vertices pointed by the first two 0-arrows must be fault-free since it can contain

450 S. Fujita and T. Araki

Case 1 Case 3Case 2

Fig. 3. Possible three test assignments placed in the third round

at most two faulty vertices. Without loss of generality, we assume that syndrome
A is (0, 0, 1, ∗), where ∗ denotes 0 or 1.

Consider the following three cases separately:
– If B = (0, 0, 1, 0) or (0, 0, 1, 1), we can complete the diagnosis as is shown in

Case 2 in Figure 3 (b).
– Suppose B is either (0, 1, 0, 1), (0, 1, 1, 1), or (1, 1, 1, 1). Since it must contain

more than one faulty vertices, and of course, since it can contain at most two
faulty vertices, the pattern of faulty vertices follows one of four possible ways
of selecting two faulty vertices from the cycle. In addition, we can uniquely
identify the actual fault pattern by testing the fault-freeness of only two
vertices in the cycle, as is shown in Case 3 in Figure 3. It should also be
worth noting that, for such B’s, the cycle corresponding to syndrome A
contains exactly one fault, that results in the fault-freeness of the last vertex
in the cycle, as is illustrated in the same figure.

4 Concluding Remarks

In this paper, we consider the problem of adaptive fault-diagnosis in binary n-
cubes with at most n faulty vertices, and propose a scheme that completes a
diagnosis in at most three test rounds, provided n ≥ 3. The basic idea of the
proposed scheme could be applied to other classes of sparse network topologies,
such as star graphs and pancake graphs, that is probably the most interesting
open problem. An extension of the fault model of each unit is an important
direction of further research.

References

1. R. Beigel, W. Hurwood, N. Kahale, “Fault diagnosis in a flash,” in Proc. 36th
FOCS , pp. 571–580 (1995).

Three-Round Adaptive Diagnosis in Binary n-Cubes 451

2. A. Björklund, “Optimal adaptive fault diagnosis of hypercubes,” in Proc. SWAT
2000, LNCS 1851, pp. 527–534 (2000).

3. P. M. Blecher, “On a logical problem,” Discrete Math., 43: 107–110 (1983).
4. C. Feng, L. N. Bhuyan, and F. Lombardi, “Adaptive system-level diagnosis for

hypercube multiprocessors,” IEEE Trans. Comput., 45(10): 1157–1170 (Oct. 1996).
5. S. L. Hakimi, A. T. Amin, “Characterization of connection assignment of diagnos-

able systems,” IEEE Trans. Comput., C-23(1): 86–88 (Jan. 1974).
6. S. L. Hakimi, K. Nakajima, “On adaptive system diagnosis,” IEEE Trans. Comput.,

C-33(3): 234–240 (March 1984).
7. E. Kranakis, A. Pelc, and A. Spatharis, “Optimal adaptive diagnosis for simple

multiprocessor systems,” Networks, 34: 206–214 (1999).
8. E. Kranakis and A. Pelc, “Better adaptive diagnosis of hypercubes,” IEEE Trans.

Comput., 49(19): 1013–1020 (Oct. 2000).
9. K. Nakajima, “A new approach to system diagnosis,” in Proc. 19th Allerton Conf.

Commun. Control and Computing, pp. 697–706 (1981).
10. K. Nomura, T. Yoshida, S. Ueno, “On adaptive fault diagnosis for multiprocessor

systems,” in Proc. ISAAC 2001, LNCS 2223, pp. 86–98 (2001).
11. A. Okashita, T. Araki, Y. Shibata, “An optimal adaptive diagnosis of butterfly

networks,” IEICE Trans. Fundamentals, E86-A(5): 1008–1018 (May 2003).
12. F. P. Preparata, G. Metze, and R. T. Chien, “On the connection assignment prob-

lem of diagnosable systems,” IEEE Trans. Electron. Comput., EC-16(6): 848–854
(Dec. 1967).

Fast Algorithms for Comparison of Similar
Unordered Trees

Daiji Fukagawa1 and Tatsuya Akutsu2

1 Department of Intelligence Science and Technology, Graduate School of Informatics,
Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606–8501 Japan

2 Bioinformatics Center, Institute for Chemical Research, Kyoto University,
Gokasho, Uji, Kyoto 611–0011 Japan

{daiji, takutsu}@kuicr.kyoto-u.ac.jp

Abstract. We present fast algorithms for computing the largest com-
mon subtree (LCST) and the optimal alignment when two similar un-
ordered trees are given. We present an O(4Kn) time algorithm for the
LCST problem for rooted trees, where n is the maximum size of two
input trees and K is the minimum number of edit operations to ob-
tain LCST. We extend this algorithm to unrooted trees and obtain an
O(K4Kn) time algorithm. We also show that the alignment problem for
rooted and unordered trees of bounded degree can be solved in linear
time if K is bounded by a constant.

1 Introduction

The problem of comparison of two labeled trees occurs in several diverse ar-
eas such as computational biology, computational chemistry, image recognition,
and structured text databases. Therefore, extensive studies have been done on
this.

In particular, many studies have been done on computing the edit distance
between two ordered trees [7, 9, 14, 18] because this is useful in comparing RNA
secondary structures. Tai [14] defined the edit distance between two ordered trees
and developed an O(n2D4) time algorithm, where n denotes the maximum size
(i.e., maximum number of nodes) of two input trees and D denotes their max-
imum depth. Shasha and Zhang [18] developed an improved O(n2 min{L,D}2)
time algorithm (where L denote the number of leaves) and Klein [9] further de-
veloped an O(n3 log n) time algorithm. Jiang et al. considered the problem of
computing the optimal alignment of two trees [8] and developed an O(n2Δ2)
time algorithm for two ordered trees, where Δ denotes the maximum number of
children of any node in two input trees.

Although many existing studies have focused on ordered trees, comparing
unordered trees is also important because chemical structures are usually un-
ordered. Although chemical structures are not necessarily trees, algorithms for
tree-like structures have been developed [2, 16] based on algorithms for com-

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 452–463, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Fast Algorithms for Comparison of Similar Unordered Trees 453

paring unordered trees. Furthermore, glycans have unordered and rooted tree
structures in general, which conform to a special but important family of chem-
ical compounds [4]. In comparing unordered trees, the problem of finding the
largest common subtrees (LCST) is important. the LCST between two un-
ordered trees can be computed in O(n3) time [11, 15]. If the maximum degree
is bounded by a constant, it works in O(n2) time. Shamir and Tsur [12] devel-
oped an O(n2.5/ log n) time algorithm for a closely related problem (the subtree
isomorphism problem). Several hardness results are also known for comparing
unordered trees. Zhang and Jiang [17] proved that the edit distance problem is
MAX SNP-hard for unordered trees (even if Δ = 2) whereas Zhang et al. [19]
developed an O(n2) algorithm when the number of leaves is constant. Jiang et
al. [8] proved that the alignment problem is MAX SNP-hard in general whereas
it can be solved in polynomial time if the maximum degree is bounded by a
constant. Akutsu and Halldórsson [3] proved that the LCST problem for many
trees is very hard to approximate.

Here, we consider special cases in which there are at most K differences
between two input trees, inspired from O(nK) time algorithms developed for
approximate string matching [10]. Our objective is to develop linear time algo-
rithms for small K, which may decrease the gaps between the linear time algo-
rithm for tree isomorphism [1] and the algorithm for LCST [11, 15] and other
algorithms for comparing trees. For these special cases, Shasha and Zhang [13]
developed an O(K2nH) time algorithm for the unit cost edit distance problem
for ordered trees where H is the minimum height of two input trees, and Jansson
and Lingas [7] developed an O(n log nΔ4K2) time algorithm for the alignment
problem for ordered trees. However, it seems difficult to extend these algorithms
to unordered trees because both are based on some properties such as the left-
to-right post order numbers of corresponding nodes cannot differ very much. In
comparing unordered trees, we cannot use these properties. Indeed, Jansson and
Lingas wrote in [7] that it is an interesting open problem whether substantial
speed-up in the construction of an optimal alignment between similar unordered
trees of bounded degree is achievable.

In this paper, we present an O(4Kn) time algorithm for the LCST problem for
two rooted and unordered trees. It should be noted that this algorithm works in
linear time for constant K and in subquadratic time forK = o(logn). We extend
this algorithm to undirected trees and obtain an O(K(4Kn)) time algorithm.
We show that the alignment problem with unit cost editing operations for two
unordered binary trees can be solved in O(4.45Kn) time, which can be extended
to a linear time algorithm for constantK and unordered trees of bounded degree.
This result partially answers the question posed by Jansson and Lingas. Alhough
the proposed algorithms are not practical, the results are non-trivial and novel
techniques are introduced. Almost all existing algorithms for comparing trees
are based on dynamic programming and thus employ a bottom-up approach,
whereas our proposed algorithms employ a top-down approach. We also present
faster algorithms for special cases of the LCST problem.

454 D. Fukagawa and T. Akutsu

2 Preliminaries

For a graph G, we denote the set of nodes and edges by V (G) and E(G) respec-
tively. Let T be a rooted tree. The root of T is denoted by root(T). The size of T ,
denoted by |T |, is defined as |V (T)|. The depth of a node v ∈ V (T), depth(v), is
the number of edges on the path from v to root(T), therefore depth(root(T)) = 0.
The degree of a node v, deg(v), is the number of children of v.

For a node v in T , we write T [v] to denote the subtree of T rooted at v.
Therefore, T [v] includes v and all nodes in T that are descendants of v. If T
is a unordered tree, we use T [U] to denote the subforest of T that consists of
subtrees rooted at any node in U , where U is a subset of V (T) and any node in
U is not a descendant of the other node in U .

Unrooted Case: For unrooted trees, we can consider the parental relation be-
tween edges, as well as nodes in the rooted case. For a pair of directed edges
(u, v), (v, w) ∈ E(T) such that u �= w, (v, w) is called a child of (u, v) and (u, v) is
called a parent of (v, w). We can define a subtree of T , denoted by T [(u, v)], as the
rooted subtree including all edges descended from (u, v) where u /∈ V (T [(u, v)]).

2.1 Signatures for Rooted Trees

A linear time algorithm is known for testing the isomorphism of two rooted
trees [1]. It assigns an integer to each node in a bottom-up way so that the same
integer number is assigned to two nodes iff subtrees induced by the nodes and
their descendants are isomorphic.

Let T be an unlabeled rooted tree. We define the level of node v ∈ V (T),
denoted by level(v), as follows: (i) level(v) = 0 if v is a leaf, and (ii) level(v) is
the smallest integer that is exactly larger than the level of any child of v. Note
that the level of a node may be different from that of another node at the same
depth in our definition. We write level(T) to refer to the maximum level of any
node v in T . The level of a forest F is the maximum level of any trees in F .

Definition 1. Let F = {T1, . . . , Tp} be a forest that consists of rooted trees. For
each subtree in Ti ∈ F rooted at v (denoted by F [v]), we write σ(v) to refer
to the signature of the subtree F [v], satisfying the following conditions: for any
u, v ∈ V (F), σ(u) = σ(v) iff rooted subtrees F [u] and F [v] are isomorphic to
each other.

Lemma 1. We can construct signatures of all subtrees in F in linear time so
that each of them is an integer between 0 and the number of nodes in F .

Proof. Since we adopted the random access machine (RAM) model as used in
many other studies, we can assume that any integer of O(logN) bits can be
stored in one word and accessed in a unit time where N is the length of the
input.

We assign an integer to each node in F as follows. First, we assign 0 to each
leaf, i.e., each node at level 0. At each step h, we assign an integer to node v if

Fast Algorithms for Comparison of Similar Unordered Trees 455

T1 T2
LCST(T1,T2)

Fig. 1. Example of largest common subtree (LCST). The LCST between T1 and T2 is
indicated by thick edges. In this case, d̂(T1, T2) = 3

level(v) = h according to the signatures of v’s children. It should be noted that
there is a one-to-one correspondence between nodes and subtrees, hence at most
n integers suffice where n is the number of nodes in F .
�

2.2 Problems

Various distance measures for trees have been proposed to compute similarity
between trees. In this paper, we will consider the following distance measures.

Definition 2. Difference d̂(T1, T2) is the minimum number of operations turn-
ing T1 to T2, where we consider the following operations: (i) delete an existing
leaf, and (ii) insert a node and make it a child of an existing node. (See Fig. 1)

d̂(T1, T2) is a special case of the edit distance of trees, except for the difference
that the edit distance admits the contraction of internal nodes. In particular,
we write d̂K(T1, T2) to denote d̂(T1, T2) within K differences, i.e., d̂K(T1, T2) is
equal to d̂(T1, T2) if d̂(T1, T2) ≤ K and +∞ otherwise.

Definition 3 (Jiang et al., [8]). An alignment of two trees, T1 and T2, is
defined as follows. First, we insert nodes labeled with spaces into T1 and T2 so
that the two trees become isomorphic to each other if the labels are ignored. Note
that we can insert nodes at any position (between any connected nodes, directly
above the root, or directly beneath a leaf). A tree given by combining two resulting
trees is called an alignment tree of T1 and T2. Each node of an alignment tree
has a pair of labels. The cost of an alignment is the sum of costs of all pairs
for some given cost function. The optimal alignment is an alignment tree with
the minimum cost. The alignment distance between two trees is the cost of the
optimal alignment. (See Fig. 2)

Note that we only consider unlabeled trees and define the cost of alignment as
the number of spaces although all the results (even for LCST problems) are valid
for labeled trees with unit mismatch costs. We refer to the alignment distance
between T1 and T2 as d̃(T1, T2).

For each distance measure, d≤K(T1, T2) denotes d(T1, T2) if it is not larger
than K and ∞ otherwise. Each of these measures is a distance metric, since

456 D. Fukagawa and T. Akutsu

T1 T2
a

e bc

d c

a

b

e

c

d c

(a,a)

(-,b)

(e,e)

(b,c)

(d,d) (c,c)

(c,-)

Fig. 2. Example of tree alignment with labeled nodes. Here, d̃(T1, T2) = 3

the following requirement for distances are clearly satisfied: (i) isolation, (ii)
symmetry, and (iii) triangular inequality.

We define the k-differences problem for trees:

LCST-kDIFF (Largest Common Subtree with K-Differences). Given
two trees, T1 and T2, and an integer K, output d̂≤K(T1, T2).

We call this problem the LCST-kDIFF (largest common subtree problem)
with k differences because it is equivalent to the LCST problem under the re-
striction that there is a common subtree with a size of at least |T1|+|T2|−K

2
between T1 and T2.

LCST-kDIFF is a subproblem of the LCST, therefore it can be solved in
polynomial time [11, 2]. While there is no linear time algorithm for LCST, our
algorithm for LCST-kDIFF runs in linear time if both K and Δ are bounded
by fixed constants. We define the k-differences problem for tree alignment in the
same way.

TALI-kDIFF (Tree Alignment Within K-Distance). Given two trees T1, T2
and an integer K, output the alignment distance d̃≤K(T1, T2).

3 Largest Common Subtree with K Differences

For two trees, we can easily see that LCST-kDIFFcan be solved in at most O(n3

time (O(n2) time if the degree is bounded) by computing the LCST between
them [2, 4, 11, 12, 15].

For rooted trees, let R[u,w] denote the size of the LCST between T1[u] and
T2[w]. We can compute R’s with the dynamic programming technique:

R[u, ∅] = R[∅, w] = 0, R[u,w] = 1 + max
ψ∈M(u,w)

⎧⎨⎩ ∑
parent(ui)=u

R[ui, ψ(ui)]

⎫⎬⎭ ,

where M denotes the set of mappings from the set of children of u to the set of
children of v.

Although there are an exponentially large number of mappings, the maximum
matching can be computed in polynomial time. The combination of maximum
matching and dynamic programming can also be found in a study on the sym-
metry number problem [5].

)

Fast Algorithms for Comparison of Similar Unordered Trees 457

Algorithm LCST-kDiff
Input: T1[u], T2[w], k
Output: d̂≤ k(T1[u], T2[w])

Assume w.l.o.g. that deg(u) ≤ deg(w).
U, W ← u’s and w’s children.
Sort U and W in ascending order of σ.
i ← 1, j ← 1, U ′ ← ∅, W ′ ← ∅
while i ≤ |U | and j ≤ |W | do

if σ(ui) = σ(wj) then i ← i + 1, j ← j + 1
elseif σ(ui) < σ(wj) then U ′ ← U ′ ∪ {ui}, i ← i + 1
else W ′ ← W ′ ∪ {wj}, j ← j + 1 end

end
U ′ ← U ′ ∪ {ui, . . . , u|U|}, W ′ ← W ′ ∪ {wj , . . . , w|W |}
if ||T1[U ′]| − |T2[W ′]|| > k or |W ′| > k then output ∞ end
if |U ′| = 0 then output |T2[W ′]| end
if |U ′| = |W ′| = 1 then output LCST-kDiff(T1[ui], T2[wj], k) end

(ui ∈ U ′, wj ∈ W ′)
for each pair ui ∈ U ′ and wj ∈ W ′ do

if σ(ui) = σ(wj) then diff (ui, wj) ← 0 end
diff (ui, wj) ← LCST-kDiff(T1[ui], T2[wj], k − |W ′| + 1)

end
Find minimum cost assignment α from U ′ to W ′ using cost function diff .
Output

∑
ui∈U diff (ui, α(ui)) +

∑
wj∈W\α(U) |T2[w]| if it is not larger than k,

otherwise output ∞.

Fig. 3. Algorithm for the k differences problem for unordered and rooted trees

3.1 Rooted Case

First, let us consider a rooted case for the problem.
We give here a fast algorithm for the unlabeled and rooted case of LCST-

kDIFF (Fig. 3). We consider that all trees are unlabeled because our algorithm
can be easily extended to labeled cases.

The correctness of the algorithm follows from the following lemma.

Lemma 2. Let u1, u2, . . . , up be the children of u in T1. Let w1, w2, . . . , wq be
the children of w in T2. Suppose that u is mapped to w in LCST. Then, ui can
be mapped to wj in LCST if σ(ui) = σ(wj).

Proof. We can match an arbitrary pair (ui, wj) with cost 0 (i.e., σ(ui) = σ(wj))
because the triangular inequality holds for d̂(ui, wj).
�

Executing LCST-kDiff(T1[root(T1)], T2[root(T2)],K), we can compute dis-
tance d̂≤K(T1, T2). Fig. 4 is an example of executing LCST-kDiff for two
rooted trees. Now we will analyse the time complexity of our algorithm. R =
〈u1, w1, k1〉, 〈u2, w2, k2〉, . . . denotes the sequence of all recurrence calls that ex-
ecute the “for” loop (we refer to them as nondegenerate recurrence calls) in
computing LCST-kDiff(T1[root(T1)], T2[root(T2)],K).

458 D. Fukagawa and T. Akutsu

(11,10,k)

(5,6,k-1)

1

2 3

4

5

6 7 8

9

10

11

1

2 3 4

5

6

7

8

9

10

(4,5,k-1)

(5,9,k-1) (10,6,k-1) (10,9,k-1)

(1,8,k-2) (4,8 k-2)

1 1 1

(9,8,k-1) 1

2

T1 T2

Fig. 4. Example of execution of algorithm LCST-kDiff. LCST is indicated by shaded
nodes. In figure at right, each node denotes recursive call, and nondegenerate calls are
underlined

Proposition 1. For any u ∈ V (T1), w ∈ V (T2), LCST-kDiff(T1[u], T2[w], k)
is only called for pairs where u and w are at the same depth and is called at most
once for each such pair.

Note that each nondegenerate recurrence call with some u, w and k can
directly call LCST-kDiff with k − |W ′| + 1 (< k) at most min{|W ′|2, k2}
times. Therefore, we can easily see that LCST-kDiff with k can call LCST-
kDiff with k − 1 at most 4 times, and also call (directly and/or indirectly)
LCST-kDiff with k − 2 at most 42 times, and so on.

Proposition 2. Each k ≤ K appears at most 4K−k times in R. Thus, the size
of R is at most

∑K
k=1 4K−k = O(4K).

Theorem 1. LCST-kDiff takes at most O(4Kn) time to compute d̂(T1, T2)
between similar trees within K differences.

Proof. We need linear time preprocessing to compute the signatures.
First, we consider the latter part of the algorithm (computing “for” loop and

minimum cost assignment). This part of each recursive call 〈u,w, k〉 excepting
the inside of recursive calls can be computed in polynomial time regarding k.
Using Prop. 2, the total time cost for this part is

∑K
k=0 4K−kpoly(k) = O(4K).

Then, we prove that computation of the remaining part can be done in
O(4Kn) time. Let us consider a list of recursive calls 〈u0, w0, k0〉, . . . , 〈up, wp, kp〉
such that 〈ui, wi, ki〉 is called by 〈ui−1, wi−1, ki−1〉 for each 1 ≤ i ≤ p, there are no
recursive calls called by 〈up, wp, kp〉 and u0 = root(T1), w0 = root(T2), k0 = K.
The total time cost in computing all recursive calls in this list except the latter
part of the algorithm is

∑p
i=0O(deg(u) + deg(w)) = O(n). Note that both sort-

ing U and W and removing isomorphic pairs can be done in O(deg(u)+deg(w))
time. Using Prop. 2, the number of such lists in R is at most 4K−1. Thus, the
time cost for the remaining part is at most O(4Kn).

Hence, the algorithm takes at most O(4Kn) time in total.
�

Corollary 1. LCST-kDIFF for rooted trees can be solved in linear time if K is
bounded by a constant and in subquadratic time if K = o(logn).

Fast Algorithms for Comparison of Similar Unordered Trees 459

3.2 Unrooted Case

Now, we extend LCST-kDiff to unrooted trees.

Theorem 2. LCST-kDIFF can be solved in O(K4Kn) time.

Proof. We can assume K is sufficiently small (e.g., K = o(n)), otherwise O(4Kn)
time can be achieved with the existing algorithm [11, 15]. Since LCST-kDIFF
can be solved in O(4Kn) time once the roots of T1 and T2 are known, we will
show how to search the root pair.

We prove that there is a node in T1 such that it is included in LCST and it
corresponds to at most O(K) nodes in T2.

Let u ∈ T1 be a node such that |T1[(u,w)]| ≤ n
2 holds for any w adjacent

to u. We can easily see that any tree T1 has either one such node u, or two
adjacent nodes u, u′ for which |T1[(u, u′)]| = |T1[(u′, u)]| = n

2 holds. Note that u
is included in LCST as for we assumed that K is small. Let u (either of u and
u′ in the latter case) correspond to the root of LCST.

For k = 0, 1, . . . ,K, let Ck be the set of nodes such that |T2[(u,w)]| ≤ n
2 + k

holds for any u ∈ Ck and any w adjacent to u. Clearly, C0 ⊆ C1 ⊆ · · · ⊆ CK ⊆
V (T2). Furthermore, CK construct a path in T2 and |Ck \ Ck−1| ≤ 2 for any
1 ≤ k ≤ K if K is sufficiently small.

Let us consider another tree T ′ such that d̂(T ′, T2) = 1 holds. Similarly, let
C ′

k (k = 0, 1, . . . ,K) be the set of nodes such that |T ′[(u,w)]| ≤ n
2 + k holds

for any u ∈ C ′
k and any w adjacent to u. It is obvious that the set of nodes

corresponding to Ck is included in C ′
k+1 (and C ′

k is included in the set of nodes
corresponding to Ck+1) since only one node differs between them. By repeating
this, we can see that the node corresponding to the root of LCST is included
in CK ⊆ V (T2) if d̂(T1, T2) ≤ K. Therefore, we need to examine at most O(K)
pairs, and the theorem follows.
�

4 Faster Algorithms for Special Cases of LCST

4.1 Rooted Ordered Case

LCST-kDIFF for two rooted ordered trees can easily be solved with dynamic
programming using the technique proposed in [13].

Let id1(u) (resp. id2(w)) denote the left-to-right postorder number of node
u in T1 (resp. node w in T2). The following lemma can be proven as in [13].

Lemma 3. Suppose that node u ∈ T1 corresponds to node w ∈ T2. Then,
|id1(u)− id2(w)| ≤ K.

For each pair of nodes (u,w) such that |id1(u) − id2(w)| ≤ K, we compute
d̂(T1[u], T2[w]) in a bottom-up manner where we also use d̂(T1, T2) for rooted
ordered trees. Suppose that u has children u1, u2, . . . , up and w has children
w1, w2, . . . , wq, respectively. We compute d̂(T1[u], T2[w]) by using the following
DP procedure, where d̂(T1[u], T2[w]) = D(p, q) (for unlabeled trees).

460 D. Fukagawa and T. Akutsu

D(0, 0) := 0, D(i, 0) :=
∑
i′≤i

|T1[ui′]|, D(0, j) :=
∑
j′≤j

|T2[wj′]|,

D(i, j) := min

⎧⎨⎩
D(i− 1, j) + |T1[ui]|,
D(i, j − 1) + |T2[wj]|,
D(i− 1, j − 1) + d̂(T1[ui], T2[wj])

Since D(p, q) must be at most K, we only need to compute D(p, q) for (p, q)’s
satisfying |p− q| ≤ K.

Theorem 3. LCST-kDIFF can be solved in O(K2n) time for rooted ordered
trees.

Proof. Since we only need to compute D(p, q) for (u,w) such that |deg(u) −
deg(w)| ≤ K, computation of D(p, q) takes O(deg(u)K) time per (u,w). For
each u, we need to compute d̂(T1[u], T2[w]) for at most 2K nodes w. Therefore,
the total time is∑

u∈T1

O(deg(u)K2) = K2
∑
u∈T1

O(deg(u)) = O(K2n).

�

4.2 When Siblings Have Distinct Labels

Here, we consider a special case of rooted ordered trees, in which all children
of each node have distinct labels. This special case is often considered in tree
pattern matching [6].

Let r1 and r2 be the roots of the subtrees of T1 and T2, each of which corre-
sponds to the root of LCST. We assume w.l.o.g. that the size of LCST is greater
than 3n

4 (i.e., K < n
4) because we are going to show an O(Kn) time algorithm.

Proposition 3. r1 (resp. r2) must be on a path from the root of T1 (resp. T2)
where the length of the path is at most K.

Proof. Let u1, . . . , ud be the children of an arbitrary node u. Then, |T1[ui]| ≥ 3n
4

holds at most one node ui.
�

If we know the pair of the roots (r1, r2), LCST can be computed in linear time
by traversing both trees simultaneously. It follows from the above proposition
that LCST can be computed in O(K2n) time. However, we can further reduce
the computation time. Let P1 (resp. P2) be the path for T1 (resp. T2) in the
proposition.

Proposition 4. Suppose that u ∈ P1 corresponds to w ∈ P2 in LCST. Then,
u′ ∈ P1 must correspond to w′ ∈ P2 in LCST, where u′ (resp. w′) is a child of
u (resp. w).

Proof. Since |T1[u′]| ≥ 3n
4 and |T2[w′]| ≥ 3n

4 , u′ must correspond to w′ in order
to have an LCST whose size is larger than 3n

4 .
�

Fast Algorithms for Comparison of Similar Unordered Trees 461

It follows from the proposition that traversal for all pairs (u,w) ∈ P1×P2 such
that depth(u)−depth(w) = h can be done in O(n) time for each h ∈ [−K . . .K].

Theorem 4. LCST-kDIFF can be solved in O(Kn) time for rooted ordered trees
in which all siblings have distinct labels.

5 Tree Alignment Problem

We apply the technique in Sect. 3 to the tree alignment problem (TALI-kDIFF)
for similar, unordered, and rooted trees.

For rooted tree T and V ′ ⊆ V (T), let T [V ′] denote the forest of subtrees
{T [u] | u ∈ V ′}. For two rooted trees T1 and T2, we refer to the alignment dis-
tance of subtrees as d̃(T1[U], T2[W]) = maxψ∈M(u,w)

{∑
i d̃(T1[ui], T2[ψ(ui)]

}
,

where U (W resp.) is the set of u’s (w’s resp.) children.
First, let us consider the binary case. Jiang et al. [8] proposed an algorithm

to align unordered trees. The time complexity of their algorithm is O(|T1| · |T2|)
especially for unordered binary trees. They used dynamic programming based
on the recurrence relation, which we present below the unit cost version, where
DT (u,w) = d̃(T1[u], T2[w]), DF (u,w) = d̃(T1[U], T2[W]) and U and W are the
sets of children of u and w.

DF (u,w) = min{DF (u2, w) + |T1[u1]|+ 1, DF (u1, w) + |T1[u2]|+ 1,
DF (u,w2) + |T2[w1]|+ 1, DF (u,w1) + |T2[w2]|+ 1,
DT (u1, w1) +DT (u2, w2), DT (u1, w2) +DT (u2, w1)}

DT (u,w) = min{DF (u,w),
DT (u1, w) + |T1[u2]|+ 1, DT (u2, w) + |T1[u1]|+ 1,
DT (u,w1) + |T2[w2]|+ 1, DT (u,w2) + |T2[w1]|+ 1}

Note that alignment distance d̃ satisfies the triangular inequality:

Proposition 5. For any X, Y , and Z, d̃(X,Y) + d̃(Y,Z) ≥ d̃(X,Z) holds.

Therefore, we have the following lemma, as in LCST-kDIFF.

Lemma 4. If a subtree T1[ui] of T1[u] is isomorphic to a subtree T2[wj] of T2[w],
then d̃(T1[U], T2[W]) = d̃(T1[U\{ui}], T2[W \{wj}]) where ui and wj are children
of u and w.

Now, we will present our algorithm TreeAlign-kDiff-Bin for the binary
case of TALI-kDIFF in Fig. 5. Executing TreeAlign-kDiff-Bin(T1[root(T1)],
T2[root(T2)],K), we can compute d̃≤K(T1, T2). The time complexity of the algo-
rithm can be proved as in Sect. 3 using the following lemma.

Lemma 5. For binary trees T1 and T2, and any K, 0 ≤ k ≤ K, there are at
most O((2+

√
6)K−k) recursive calls with k in computing d̃≤K(T1, T2) excepting

degenerate calls (i.e., recursive calls at fourth line in TreeAlign-kDiff-Bin).

462 D. Fukagawa and T. Akutsu

Algorithm ForestAlign-kDiff-Bin
Input: T1[u], T2[w], k
Output: d̃≤k(T1[{u1, u2}], T2[{w1, w2}])

if k < 0 then output ∞ end

k′ ← min
i=1,2

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ForestAlign-kDiff-Bin(T1[ui], T2[w], k − |T1[u3−i]| − 1)
+ |T2[u]| − |T2[ui]|,

ForestAlign-kDiff-Bin(T1[u], T2[wi], k − |T2[w3−i]| − 1)
+ |T2[w]| − |T2[wi]|,

TreeAlign-kDiff-Bin(T1[u1], T2[wi], k′ − 1)
+ TreeAlign-kDiff-Bin(T1[u2], T2[w3−i], k′ − 1)

Output k′ if k′ ≤ k, otherwise output ∞.

Algorithm TreeAlign-kDiff-Bin
Input: T1[u], T2[w], k
Output: d̃≤k(T1[u], T2[w])

if σ(u) = σ(w) and k ≥ 0 then output 0 end
if k ≤ 0 then output ∞ end
if there exists a pair (i, j) such that σ(ui) = σ(wj) then

output TreeAlign-kDiff-Bin(T1[u3−i], T2[w3−j], k) end

k′ ← min

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ForestAlign-kDiff-Bin(T1[u], T2[w], k),

min
i=1,2

⎧⎪⎪⎨⎪⎪⎩
TreeAlign-kDiff-Bin(T1[ui], T2[w], k − |T1[u3−i]| − 1)

+ |T1[u]| − |T1[ui]|,
TreeAlign-kDiff-Bin(T1[u], T2[wi], k − |T2[w3−i]| − 1)

+ |T2[w]| − |T2[wi]|
Output k′ if k ≤ k, otherwise output ∞.

Fig. 5. Algorithm for TALI-kDIFF for unordered binary trees

Using this lemma, we can prove the following theorem as in Theorem 1.

Theorem 5. For any binary trees T1 and T2, d̃≤K(T1, T2) can be computed in
O(4.45Kn) time.

We can extend our technique to any constant Δ although the proof has been
omitted.

Theorem 6. For rooted trees T1 and T2, and any constant K, we can compute
d̃≤K(T1, T2) in linear time if the maximum degree of any nodes in T1 and T2 is
bounded by a constant.

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The design and analysis of computer
algorithms. Addison-Wesley (1974)

2. Akutsu, T.: A Polynomial Time Algorithm for Finding a Largest Common Sub-
graph of Almost Trees of Bounded Degree. IEICE Trans. on Information and
Systems, E76-A (1992) 1488–1493

3. Akutsu, T., Halldórsson, M.M.: On the approximation of largest common subtrees
and largest common point sets. Theoretical Computer Science 233 (2000) 33–50

Fast Algorithms for Comparison of Similar Unordered Trees 463

4. Aoki, K.F., Yamaguchi, A., Okuno, Y., Akutsu, T., Ueda, N., Kanehisa, M.,
Mamitsuka, H.: Efficient tree-matching methods for accurate carbohydrate
database queries. In: Genome Informatics. Volume 14. (2003) 134–143

5. Chin, K., Yen H.: The symmetry number problem for trees. Information Processing
Letters 79 (2001) 73–79

6. Cole, R., Hariharan R.: Tree pattern matching to subset matching in linear time.
SIAM J. Computing 32 (2003) 1056–1066

7. Jansson, J., Lingas, A.: A fast algorithm for optimal alignment between similar
ordered trees. Fundamenta Informaticae 56 (2003) 105–120

8. Jiang, T., Wang, L., Zhang, K.: Alignment of trees — an alternative to tree edit.
Theoretical Computer Science 143 (1995) 137–148

9. Klein, P.N.: Computing the edit-distance between unrooted ordered trees. In
Bilardi, G., Italiano, G.F., Pietracaprina, A., Pucci, G., eds.: ESA. Volume 1461
of Lecture Notes in Computer Science., Springer (1998) 91–102

10. Landau, G.M., Vishkin, U.: Fast parallel and serial approximate string matching.
J. Algorithms 10 (1989) 157–169

11. Matula, D.W.: Subtree isomorphism in O(n5/2). In Alspach, B., Hell, P., Miller,
D.J., eds.: Algorithmic Aspects of Combinatorics. Volume 2 of Ann. Discrete Math.
North-Holland (1978) 91–106

12. Shamir, R., Tsur, D.: Faster subtree isomorphism. J. Algorithms 33 (1999) 267–
280

13. Shasha, D., Zhang, K.: Fast algorithms for the unit cost editing distance between
trees. J. Algorithms 11 (1990) 581–621

14. Tai, K.C.: The tree-to-tree correction problem. J. ACM 26 (1979) 422–433
15. Valiente, G.: Algorithms on trees and graphs. Springer (2002)
16. Yamaguchi, A., Mamitsuka, H.: Finding the maximum common subgraph of a

partial k-tree and a graph with a polynomially bounded number of spanning trees.
In Ibaraki, T., Katoh, N., Ono, H., eds.: ISAAC. Volume 2906 of Lecture Notes in
Computer Science., Springer (2003)

17. Zhang, K., Jiang, T.: Some max snp-hard results concerning unordered labeled
trees. Information Processing Letters 49 (1994) 249–254

18. Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between
trees and related problems. SIAM J. Computing 18 (1989) 1245–1262

19. Zhang, K., Statman, R., Shasha, D.: On the Editing Distance Between Unordered
Labeled Trees. Information Processing Letters 42 (1992) 133–139

GCD of Random Linear Forms

Joachim von zur Gathen1 and Igor E. Shparlinski2

1 Fakultät für Elektrotechnik, Informatik und Mathematik,
Universität Paderborn,

33095 Paderborn, Germany
gathen@upb.de

http://www-math.upb.de/~aggathen
2 Department of Computing, Macquarie University,

NSW 2109, Australia
igor@comp.mq.edu.au

http://www.comp.mq.edu.au/~igor

Abstract. We show that for arbitrary positive integers a1, . . . , am, with
probability at least 6/π2 + o(1), the gcd of two linear combinations of
these integers with rather small random integer coefficients coincides
with gcd(a1, . . . , am). This naturally leads to a probabilistic algorithm
for computing the gcd of several integers, with probability at least 6/π2+
o(1), via just one gcd of two numbers with about the same size as the
initial data (namely the above linear combinations). Naturally, this al-
gorithm can be repeated to achieve any desired confidence level.

1 Introduction

For a vector u = (u1, . . . , um) ∈ Rm we define its height as

h(u) = max
i=1,...,m

|ui|.

We let a = (a1, . . . , am) ∈ Nm be a vector of m ≥ 2 positive integers, x =
(x1, . . . , xm),y = (y1, . . . , ym) ∈ Nm be two integer vectors of the same length,
where N = {1, 2, . . .}, and consider the linear combinations

a · x =
m∑

i=1

aixi and a · y =
m∑

i=1

aiyi.

Then clearly gcd(a1, . . . , am) divides gcd(a · x,a · y), and we want to show
that in fact, equality holds quite often.

For an integer M , we denote by ρa(M) the probability that, for x,y chosen
uniformly in Nm with height at most M ,

gcd(a1, . . . , am) = gcd(a · x,a · y). (1)

Assuming that a · x and a · y behave as independent random integer multi-
ples of gcd(a1, . . . , am), it is reasonable to expect that (1) holds with probability

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 464–469, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

GCD of Random Linear Forms 465

ζ(2)−1 = 6/π2 where ζ(s) is the Riemann zeta function. Here we obtain a lower
bound for ρa(M) which for a very wide range of m, M , and N = h(a) shows that
this quantity is asymptotically at least that big. The range in which this is estab-
lished improves quite substantially the corresponding result of [2]. In particular,
our result implies that one can choose M of order lnN in the algorithm of [2]
rather than of order N as in Corollary 3 of [2], thus reducing quite dramatically
the size of the operands which arise in the algorithm of [2].

The lower bound on ρa(M) plays a crucial role in the analysis of a fast
probabilistic algorithm for computing the gcd of several integers which has been
studied in [2]. This algorithm, for any δ > 0, requires only about

1
ln(π2/(π2 − 6))

ln δ−1 = 1.06802 . . . ln δ−1 (2)

pairwise gcd computations, to achieve success probability at least 1 − δ (where
ln z is the natural logarithm of z > 0). For comparison, it is noted that the
naive deterministic approach may require up to m − 1 gcd computations. A
drawback of the algorithm of [2] is that for its proof of correctness to work, the
arguments given to the gcd computations have to be substantially larger than
the original inputs. Our results now imply that one may choose the operands
of that algorithm of approximately the same size as the inputs. An exact cost
analysis depends on the cost of the particular gcd algorithm, a variety of which
can be found in [3].

A well-known fact says that gcd(a1, . . . , am) equals 1 with probability ζ−1(m)
for random integers a1, . . . , am; see [4], Theorem 332, for a precise formulation in
the casem = 2. It is important to not confuse our result which holds for arbitrary
(“worst-case”) inputs with the “average-case” result which follows from this fact.

2 Main Result

We show that for a wide choice of parameters ρa(M) ≥ 0.607. More precisely,
we have the following.

Theorem 1. Let a ∈ Zm be of height at most N . Then for any M > m, we
have ρa(M) ≥ ζ(2)−1 −Δ, where Δ = O

(
ln−1(M/m) +M−1 ln(MN)

)
.

Proof. Without loss of generality we can assume that M/m is large enough
because otherwise the result is trivial. As in [2], we remark that it is enough to
consider only the case gcd(a1, . . . , am) = 1.

We define Q as the largest integer with the condition∏
p≤Q

p ≤ (M/m)1/2,

where the product is taken over all primes p ≤ Q. By the Prime Number Theo-
rem, see Theorem 4.4 of [1], we have Q = (1/2 + o(1)) ln(M/m).

466 J. von zur Gathen and I.E. Shparlinski

Let L be the set of all pairs of integer vectors x,y ∈ Nm with h(x), h(y) ≤M .
For an integer k ≥ 2, we denote by P (k) the largest prime divisor of k, and set
P (1) = 1. We define the following subsets:

• Q = {(x,y) ∈ L | Q ≥ P (gcd(a · x,a · y)) > 1},
• R = {(x,y) ∈ L | M > P (gcd(a · x,a · y)) > Q},
• S = {(x,y) ∈ L | P (gcd(a · x,a · y)) ≥M},
• T = {(x,y) ∈ L | p| gcd(a · x,a · y) for some p ≤ Q}.

Obviously Q ⊆ T , and

1− ρa(M) = M−2m (#Q+ #R+ #S) ≤M−2m (#T + #R+ #S) .

For an integer d ≥ 1, let us denote by Ud(M) the set of all integer vectors
x ∈ Nm with h(x) ≤ M and d|a · x, and put Ud(M) = #Ud(M). Because
gcd(a1, . . . , am) = 1 , we obviously have Up(p) = pm−1 for any prime p. Then, for
any squarefree d, by the Chinese Remainder Theorem, we conclude that Ud(d) =
dm−1, and Ud(dK) = Kmdm−1 for any integer K. Finally, using Ud(d �M/d�) ≤
Ud(M) ≤ Ud(d �M/d�), we obtain that for d = o(M/m),

Ud(M) = (M/d+O(1))mdm−1 =
Mm

d
(1 +O(d/M))m

=
Mm

d
exp (O(dm/M)) =

Mm

d
(1 +O(md/M)) .

(3)

It is also clear that for any prime p

Up(M) ≤ (M/p+ 1)Mm−1 = Mm/p+Mm−1. (4)

By the inclusion exclusion principle we have

M2m −#T =
∑
d≥1

1≤P (d)≤Q

μ(d)Ud(M)2

where μ is the Möbius function. We recall that μ(1) = 1, μ(d) = 0 if d ≥ 2 is not
squarefree, and μ(d) = (−1)ν(d) otherwise, where ν(d) is the number of prime
divisors of d; see Section 2.1 of [1]. From the definition of Q we see that any
squarefree d with P (d) ≤ Q does not exceed (M/m)1/2. Now from (3) we derive
that for such d,

Ud(M)2 =
M2m

d2 (1 +O(md/M)) =
M2m

d2 +O
(
mM2m−1/d)

)
.

GCD of Random Linear Forms 467

Therefore

M2m −#T (M) =
∑
d≥1

1≤P (d)≤Q

μ(d)
(
M2m

d2 +O
(
mM2m−1/d)

))

= M2m
∑
d≥1

1≤P (d)≤Q

μ(d)
d2 +O

⎛⎝mM2m−1
∑

d≤(M/m)1/2

d−1

⎞⎠
= M2m

∏
p≤Q

(
1− 1

p2

)
+O

(
mM2m−1 ln(M/m)

)
.

We now recall that∏
p≤Q

(
1− 1

p2

)
=
∏
p

(
1− 1

p2

)
+O(Q−1) = ζ(2)−1 +O(Q−1)

see Section 11.4 of [1]. Thus

#T = (1− ζ(2)−1)M2m +O
(
M2mQ−1 +mM2m−1 ln(M/m)

)
.

When 2M/ ln2M ≥ m, then the last term is smaller than the last but one
term.

Thus
#T = (1− ζ(2)−1)M2m +O

(
M2mQ−1) .

For #R, using (4), and the inequality (a+ b)2 ≤ 2(a2 + b2) we get

#R ≤
∑

Q<p<M

Up(M)2 ≤ 2
∑

Q<p<M

(
M2m

p2 +M2m−2
)

≤ 2M2m
∑
k>Q

1
k2 + 2M2m−2

∑
k<M

1

= O
(
M2mQ−1 +M2m−1) = O

(
M2mQ−1) .

Finally, using (4) again, we derive

#S ≤
∑
p≥M

Up(M)2 ≤Mm−1
∑
p≥M

Up(M)

= Mm−1
∑

h(x)≤M

∑
p≥M
p|a·x

1 = Mm−1
∑

h(x)≤M

ν(a · x)

= O

⎛⎝Mm−1
∑

h(x)≤M

lna · x

⎞⎠ ,

468 J. von zur Gathen and I.E. Shparlinski

because for any integer k ≥ 2 we have ν(k) = O(ln k/ ln ln k). Taking into
account that a · x ≤ mMN we finish the proof.
�

Corollary 2 Let a ∈ Zm be of height at most N . Then for any M such that
M/max{m, lnN} → ∞, we have

ρa(M) ≥ ζ(2)−1 + o(1).

3 Algorithmic Implications

It is easy to see that Corollary 2 implies that for any a1, . . . , am one can compute
gcd(a1, . . . , am) probabilistically as the gcd of two integers of asymptotically the
same bit lengths as the original data, while the result of [2] only guarantees the
same for two integers of bit lengths twice more. The probability of success in
both cases is, asymptotically, at least ζ(2)−1 = 6/π2 = 0.6079 Repeating this
several times and choosing the smallest result one gets an efficient and reliable
algorithm to compute the above gcd which is an attractive alternative to the
m-step (deterministic) chain of computation

gcd(a1, . . . , am) = gcd(gcd(a1, a2), a3, . . . , am)
= gcd(. . . (gcd(gcd(a1, a2), a3), . . . , am).

For illustration, we take l-bit primes p1, . . . , pm, a = p1 · · · pm, and ai = a/pi

for i ≤ m. Then indeed m− 1 steps are necessary until the gcd, which equals 1,
is found.

After i−1 steps, the current value of the gcd has about (m− i)l bits, and the
reduction of the (m− 1)l-bit ai+1 modulo this gcd takes about 2l2(m− i)(i− 1)
operations in naive arithmetic; see [3], Section 2.4. This comes to a total of about
l2m3/3 operations. If one gcd of n-bit integers costs about cn2 operations, for
a constant c, then all the gcds required amount to cm3/3, for a grand total of
l2m3(1 + c)/3 operations.

In our algorithm, we can choose xi and yi of ln(ml) bits. The inner products
together cost just over 2lm2 ln(ml) operations, and the single gcd about cl2m2.
The latter is the dominant cost, and thus our algorithm is faster by a factor of
about m/3 than the standard one.

In other words, if k < m/3, maybe k ≈
√
m, and confidence at least 1−ζ(2)−k

is sufficient, then the k-fold repetition of our algorithm is faster. (In practice, one
would not just repeat, but reduce the inputs modulo the gcd candidate obtained
so far, and either find that it divides all of them and thus is the true gcd, or
continue with the smaller values.)

The advantage of our method evaporates when one uses fast arithmetic.
The worst-case example is not quite as esoteric as it may look. In resultant

and subresultant computations with several integer polynomials in several vari-
ables, nontrivial gcds occur with definite patterns.

GCD of Random Linear Forms 469

4 Conclusion and Open Questions

It would be interesting to evaluate the constant implicit in the bound of The-
orem 1. This should be possible, but may involve some nontrivial amount of
technical details.

We believe that in fact ρa(M) ∼ ζ(2)−1 under the condition of Corollary 2
(or some similar conditions maybe marginally more restrictive). We believe that
better sieving technique should produce such a result. Although it may have no
algorithmic application it is a natural question which would be interesting to
resolve.

Finally, we remark that the approach of [2] leads to an algorithm for an
the extended gcd problem; see [3] for the background on this problem. Namely,
solving the the extended gcd problem for a · x and a · x we obtain a relation

c1a1 + . . .+ cnan = d

for some integers c1, . . . , cn, d with d > 0. Repeating this the appropriate number
of times, given by (2), and choosing the relation with the smallest value of d, we
solve he extended gcd problem with probability at least 1− δ.

References

1. T. M. Apostol, Introduction to analytic number theory , Springer-Verlag, NY, 1976.
2. G. Cooperman, S. Feisel, J. von zur Gathen and G. Havas, ‘GCD of many integers’,

Lect. Notes in Comp. Sci., Springer-Verlag, Berlin, 1627 (1999), 310–317.
3. J. von zur Gathen and J. Gerhard, Modern computer algebra, Cambridge Univer-

sity Press, Cambridge, 2003.
4. G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Oxford

Univ. Press, Oxford, 1979.

On the Hardness and Easiness of Random 4-SAT
Formulas

Andreas Goerdt and André Lanka

Technische Universität Chemnitz, Fakultät für Informatik,
Straße der Nationen 62, 09107 Chemnitz, Germany

{goerdt, lanka}@informatik.tu-chemnitz.de

Abstract. Assuming random 3-SAT formulas are hard to refute, Feige
showed approximation hardness results, among others for the max bi-
partite clique. We extend this result in that we show that approximating
max bipartite clique is hard under the weaker assumption, that random
4-SAT formulas are hard to refute. On the positive side we present an
efficient algorithm which finds a hidden solution in an otherwise random
not-all-equal 4-SAT instance. This extends analogous results on not-all-
equal 3-SAT and classical 3-SAT. The common principle underlying our
results is to obtain efficiently information about discrepancy (expansion)
properties of graphs naturally associated to 4-SAT instances. In case
of 4-SAT (or k-SAT in general) the relationship between the structure
of these graphs and that of the instance itself is weaker than in case of
3-SAT. This causes problems whose solution is the technical core of this
paper.

1 Introduction and Results

1.1 Some Terminology

Given a standard set of n propositional variables Var = Varn a k-clause is an
ordered k-tuple l1 ∨ · · · ∨ lk where li = x or li = ¬x for an x ∈ Varn. We
denote the variable underlying the literal l by Var(l). Litn is the set of literals
over Varn. Altogether we have 2knk different k-clauses. A k-SAT formula F
simply is a set of k-clauses. Given a truth value assignment a, a satisfies F if
each clause of F becomes true under a. A clause C is true in the not-all-equal
sense under the truth value assignment a if it contains one literal which evaluates
to true and another one which evaluates to false under a. The problem to decide
satisfiability in the not-all-equal sense for 3-SAT formulas is NP-complete.

Considering any high probability event, that is whose probability goes to 1
when n goes to infinity, where we have an underlying family of probability spaces,
one for each n, the following certification problem naturally arises: Given a ran-
dom instance, how can we be sure that this event really holds for the instance at
hand? This question can usually be answered running appropriate (inefficient)
algorithms with the given instance. We however are interested in an efficient algo-
rithm satisfying the following requirements: It always stops in polynomial time.

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 470–483, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

On the Hardness and Easiness of Random 4-SAT Formulas 471

It says that the instance belongs to the event considered or it gives an incon-
clusive answer. If the answer is not the inconclusive one the answer must always
be correct, that is we have a certificate for the event. Moreover the algorithm
must be complete, in that it gives the correct answer with high probability with
respect to the random instance. In this case we speak of “efficient certification”.

1.2 The Hardness Result

Given p = p(n) with 0 ≤ p ≤ 1 the random formula Formn,k,p is obtained
as follows: Pick each of the 2knk k-clauses independently with probability p.
Formn,k,c/nk−1 is unsatisfiable with high probability when c > ln 2 is a constant.
This follows from a simple first moment calculation of the number of satisfy-
ing assignments. Thus almost all (that is with high probability) formulas are
unsatisfiable, but we have no efficient algorithm to certify this. Feige [6] intro-
duces the random 3-SAT hardness hypothesis: For any constant c > ln 2 there
is no efficient certification algorithm of the unsatisfiability of Formn,3,c/n2 . The
truth of this hypothesis is supported by the fact that for p(n) = o(1/n3/2) no
progress concerning the efficient certification of unsatisfiability of Formn,3,p has
been made. The best result known is efficient certification of unsatisfiability of
Formn,3,c/n3/2 for some sufficiently large constant c, cf. [7]. Feige shows that the
random 3-SAT hardness hypothesis implies several lower bounds on the approx-
imability of combinatorial problems for which such bounds could not be obtained
from worst-case assumptions like P �= NP. As a random hardness hypothesis is
much stronger than a mere worst-case hypothesis like P �= NP it is particularly
important to weaken it as much as possible. This motivates to consider random
4-SAT instead of 3-SAT. The random 4-SAT hardness hypothesis reads: For any
constant c > ln 2 there is no efficient certification algorithm of the unsatisfia-
bility for Formn,4,c/n3 . The trivial reduction: Given F = Formn,3,c/n2 place a
random literal into each clause of F to obtain a 4-SAT instance G, shows, that
the 3-SAT hypothesis is stronger than the 4-SAT hypothesis.

Among the problems considered by Feige is the max clique problem for bipar-
tite graphs. Let G = (V1, V2, E) be a bipartite graph. V1 and V2 are the sets of
vertices (V1 is the left hand side and V2 is the right hand side) and E ⊆ V1 × V2
is the set of edges. A (bipartite) clique in G is a subgraph H = (W1,W2, F) of
G with Wi ⊆ Vi such that F = W1 ×W2. Sometimes we denote such a clique
simply by (W1,W2). We are interested in the optimization problem maximum
clique, that is to determine the maximum size of a clique in G. When the size
of H is measured as # of vertices of H = |W1| + |W2| the problem is solvable
in polynomial time [9], problem GT24. If however the size of H is measured as
of edges of H = |W1 ×W2| = |W1| · |W2| the problem interestingly becomes
NP-hard [16] and approximation algorithms are of interest. This is the version
of the problem we consider. The approximation ratio of an algorithm for a max-
imization problem is the maximum size of a solution divided by the size of the
solution found by the algorithm. For the classical clique problem no approxima-
tion ratio below n1−ε for any constant ε > 0 is possible by a polynomial time
algorithm (unless P = NP), cf. [13]. Interesting enough, such results are not

472 A. Goerdt and A. Lanka

known for the bipartite case. Feige shows in [6] that there is a constant δ > 0
such that the bipartite clique problem cannot be approximated with a ratio be-
low nδ, provided the random 3-SAT hardness hypothesis holds. Our hardness
result is

Theorem 1. Under the random 4-SAT hardness hypothesis there is no polyno-
mial time approximation algorithm for the bipartite clique problem with a ratio
below nδ for some constant δ > 0, where n is the number of vertices.

The technical heart of the proof of Theorem 1 is the subsequent Theorem 2 from
which Theorem 1 is obtained by means of the derandomized graph product [1].
For the proof see [12].

Theorem 2. Under the random 4-SAT hardness hypothesis there exist two con-
stants ε1 > ε2 > 0 such that no efficient algorithm is able distinguish between
bipartite graphs G = (V1, V2, E) with |V1| = |V2| = n which have a clique of size
≥ (n/16)2(1 + ε1) and those in which all cliques are of size ≤ (n/16)2(1 + ε2).

1.3 The Easiness Result

Given an assignment φ we let CTi = CTi,φ be the set of all clauses with exactly
i literals true (= 1) under φ and 4− i false (= 0). We have that |CTi| =

(4
i

)
n4.

We let CTnae = CTnae,φ = CT1 ∪ CT2 ∪ CT3 be the set of all clauses satisfied
by φ in the not-all-equal sense. We describe the way to generate our random
formula I. To this end let 0 < η1, η2, η3 < 1 with η1 + η2 + η3 = 1 be three
constants and let d = dη1,η2,η3 be a (large) constant. We let pi = ηid/n

3 be three
probabilities.

1. We pick any assignment φ of Varn. (This is the hidden solution.) Note that
φ need not be a random assignment, just any assignment. Let M = CTnae,φ.

2. Pick a uniform random clause C ∈ M and delete it from M. Include C in
the random instance I with probability pi iff C ∈ CTi,φ.

3. Repeat 2. until M = ∅.
All instances generated are satisfiable in the not-all-equal sense and we are

left with a classical certification problem. Such certification problems have a long
tradition. Seminal work has been done by [2] in that spectral techniques have
been introduced to find a hidden 3-coloring in a sparse random graph, that is with
a linear number of edges. Note that usually hidden solutions in denser instances
are easier to find because the structure gives more information. This approach
has been further developed to 2-colorings of random 3-uniform hypergraphs (or
not all equal 3-SAT instances) with a linear number of edges (clauses) [3] and –
recently – to hidden satisfying assignments in a random 3-SAT formula [8]. By
developing this approach further we show

Theorem 3. Let 0 < ηi < 1 be constants and d = dη1,η2,η3 be a (large) constant.
There is an efficient certification algorithm which finds an assignment π satisfy-
ing a random instance I as above in the not-all-equal sense with high probability.
(Note that we fix ηi first then d is a sufficiently large constant and then n gets
large.)

On the Hardness and Easiness of Random 4-SAT Formulas 473

2 Proof of Theorem 2

2.1 Discrepancy Certification in Random Bipartite Graphs

Let B = (V1, V2, E) be a bipartite graph on 2n vertices with |V1| = |V2| = n. Let
E(X,Y) = {{x, y} ∈ E | x ∈ V1, y ∈ V2} be the set of edges with one endpoint in
X ⊆ V1 and the other one in Y ⊆ V2. We abbreviate |E(X,Y)| with e(X,Y). We
say B as above is of low discrepancy with respect to ε iff for all X ⊆ V1, |X| = αn
and all subsets Y ⊆ V2, |Y | = βn we have that |e(X,Y)− αβ · |E|| ≤ ε|E|.

The random bipartite graph Bn,c/n has the set of vertices V1 = {1, . . . , n}
and V2 = {n + 1, . . . , 2n}. Each each edge {x, y} with x ∈ V1 and y ∈ V2 is
picked with probability c/n independently. Item (a) of the following fact follows
by a simple Chernoff bound consideration, (b) is from [4].

Fact 4. (a) Given ε > 0 an arbitrarily small constant and c = c(ε) sufficiently
large but constant Bn,c/n has low discrepancy with respect to ε with high proba-
bility.

(b) There is an efficient certification algorithm BipDisc for the low discrep-
ancy of Bn,c/n for any constant ε and c = c(ε) large enough.

2.2 Proof of Theorem 2

Now let P = P (F) be the set of positive clauses of F , i.e. clauses in F containing
only non-negated variables. The clauses containing only negated variables form
the setN = N(F) and are called negative clauses. For the truth value assignment
a let Ta be the set of variables set to true by a and Fa be the set of variables
false under a. In order that a satisfies F we must have that Ta ∩ C �= ∅ for all
C ∈ P (F) and Fa ∩ C �= ∅ for all C ∈ N(F).

A simple Chernoff bound argument shows that Ta ≥ (1−ε)n and Fa ≥ (1−ε)n
in order that that the preceding properties hold for F = Formn,4,c/n3 with high
probability if c = c(ε) is large enough. But of course we cannot certify this, only
a weaker property. Consider the following algorithm: Pick any clause C ∈ P ,
delete all clauses D ∈ P with C ∩D �= ∅ from P , and continue in this way until
P = ∅.

Now let S be the set of variables belonging to the clauses picked, then S∩C �=
∅ for any C ∈ P . Thus with high probability S ≥ (1− ε)n. Each set T ⊆ S such
that T ∩D �= ∅ for all clauses D picked must satisfy |T | ≥ |S|/4. Proceeding in
the same way for N = N(F) we can efficiently certify the following property: If
a satisfies F = Formn,4,c/n3 then |Ta|, |Fa| ≥ n/5.

The proof of Theorem 2 relies on the certification of low discrepancy of certain
bipartite projection graphs of Formn,4,c/n3 . Let F be a 4-SAT formula and S ⊆ F
an arbitrary set of clauses from F . Then we define 6 projection graphs Bij =
(V1, V2, Eij), 1 ≤ i < j ≤ 4, of S. The sets V1 and V2 are copies of the variables
Var of F . We have the edge {x, y} ∈ Eij with x ∈ V1 and y ∈ V2 if and only if
we have a clause l1 ∨ l2 ∨ l3 ∨ l4 ∈ S with Var(li) = x and Var(lj) = y.

474 A. Goerdt and A. Lanka

Algorithm 5.
Input: A 4-SAT formula F and ε > 0.

1. Check that |Ta| ≥ n/5 and |Fa| ≥ n/5 for any satisfying assignment a of F .
Give an inconclusive answer if one inequality cannot be certified as above.

2. Check that |P | = cn · (1 + o(1)) and |N | = cn · (1 + o(1)). Construct the 6
projection graphs of N and the 6 projection graphs of P . Check for every
projection that the number of edges is ≥ |N | · (1 − o(1)) for N and ≥ |P | ·
(1− o(1)) for P . Give an inconclusive answer if this is not the case.

3. Apply the Algorithm BipDisc from Section 2 to certify low discrepancy
with respect to ε > 0 for all these projection graphs. Give an inconclusive
answer if one application gives an inconclusive answer. Give a positive answer
otherwise.

A simple estimate using Chernoff’s bound and Markov’s inequality shows
that Step 2 is complete for Formn,4,c/n3 . So Algorithm 5 gives almost surely a
positive answer for Formn,4,c/n3 .

ForXi ⊆ Var we say that a clause C = l1∨l2∨l3∨l4 is of type (X1, X2, X3, X4)
iff Var(li) ∈ Xi for all i. For a set of clauses S we let (X1, X2, X3, X4)S = {C ∈
S | type(C) = (X1, X2, X3, X4)} .

We let % = |P | = |P (F)| and ν = |N | = |N(F)|. Then %i = %i,a is the
number of clauses of P which contain exactly i literals true under a. We use the
analogous notation νi = νi,a for N .

Theorem 6. Given ε > 0 a arbitrarily small constant Algorithm 5 certifies
that for any assignment a with |Fa| = αn satisfying Formn,4,c/n3 the following
equations, hold:

(a)
%0 = 0 %3 = (−12α2 + 4α)%+ 3%1 +O(ε)%
%2 = 6α2%− 3%1 +O(ε)% %4 = (6α2 − 4α+ 1)%− %1 +O(ε)%

(b) The equations for the νi are analogous with 1− α instead of α:

ν0 = 0 ν3 = (−12(1 − α)2 + 4(1 − α))ν + 3ν1 + O(ε)ν
ν2 = 6(1 − α)2ν − 3ν1 + O(ε)ν ν4 = (6(1 − α)2 − 4(1 − α) + 1)ν − ν1 + O(ε)ν

(c) 1/3 − O(ε) ≤ α ≤ 2/3 + O(ε)

Note that (a) implies that %2, %3 and %4 are determined by α and %1 up to
the O(ε)-terms. The same applies to the νi. Note, the claim of Theorem 6 is
only useful if α is substantial larger than ε. This shows the relevance of Step 1
in Algorithm 5. It certifies that α is bounded away from 0 by a fixed constant.
This fact allows us to find a sufficiently small constant ε > 0.

Proof. To show that Algorithm 5 correctly certifies the properties of Theorem 6
let ε > 0 be a constant and F be a 4-SAT formula which passes the algorithm
successfully. Let a satisfy F with |Fa| = αn. The first equation %0 = 0 trivially
holds.

On the Hardness and Easiness of Random 4-SAT Formulas 475

By low discrepancy we get for any projection B of P = P (F) that eB(Fa, Fa)
= α2 · % + O(ε)%. No clause from %3 induces an edge belonging to EB(Fa, Fa).
Looking at all 6 projections each clause from %2 induces one edge in one pro-
jection and each clause from %1 induces one edge in three projections. Thus we
have

6α2%+O(ε) · % =
∑
B

eB(Fa, Fa) = 3%1 + 1%2 + o(%), (1)

where B ranges over all 6 projection of P . The o(%) term accounting for those
pairs of clauses inducing the same edge. In each projection B of P we have
eB(Ta, Ta) = (1− α)2 · %+O(ε)% and therefore

6(1− α)2 · % = 6%4 + 3%3 + %2 +O(ε)%. (2)

Finally
% = %4 + %3 + %2 + %1. (3)

Remember, %0 = 0 as a is a satisfying assignment. The equations from (a)
now follow by the equations (1), (2) and (3).
(b) follows analogously with N and |Ta| = (1− α)n.
(c) The upper bound can be obtained by % ≥ %1 + %4 and the lower bound by
ν ≥ ν1 + ν4.

�

To extend the construction from Section 4.1 of [6] from 3-SAT to 4-SAT is
the purpose of

Definition 7. Given two sets V1 and V2 of 4-clauses, the bipartite graph
BG(V1, V2) = (V1, V2, E) is defined by: For C ∈ V1, D ∈ V2 we have an edge
{C,D} ∈ E iff C = u1 ∨ u2 ∨ u3 ∨ u4, D = v1 ∨ v2 ∨ v3 ∨ v4 and for all i
Var(ui) �= Var(vi).

As we consider clauses as ordered it can be well that {x1∨x2∨x3∨x4 , ¬x2∨
¬x1 ∨ x4 ∨ x3} ∈ E provided the xi are all distinct. However we never have that
{x1 ∨ x2 ∨ x3 ∨ x4 , ¬x1 ∨ v1 ∨ v2 ∨ v3} ∈ E as Var(x1) = Var(¬x1) = x1.

For a set of clauses S and 1 ≤ i ≤ 4 the rotations of S are:

ROT1(S) = {v2 ∨ v3 ∨ v4 ∨ v1 | v1 ∨ v2 ∨ v3 ∨ v4 ∈ S}
ROT2(S) = {v3 ∨ v4 ∨ v1 ∨ v2 | v1 ∨ v2 ∨ v3 ∨ v4 ∈ S}
ROT3(S) = {v4 ∨ v1 ∨ v2 ∨ v3 | v1 ∨ v2 ∨ v3 ∨ v4 ∈ S}
ROT4(S) = S

Corollary 8. There exists a small constant δ > 0 (e.g. δ = 1/50) such that
Algorithm 5 certifies the following property for Formn,4,c/n3 where c is sufficiently
large: If F = Formn,4,c/n3 is satisfiable there must be a bipartite clique of size
≥ (cn/16)2 · (1 + δ) in one of the following eight graphs:

BG(P, ROTi(N)), BG(P, ROTj(P)), BG(N, ROTj(N)), with i = 1 . . . 4 and j = 1, 2.

476 A. Goerdt and A. Lanka

Proof. We only need to show that Algorithm 5 correctly certifies the property
claimed. To this end let F be a 4-SAT formula which passes Algorithm 5 suc-
cessfully. We distinguish two cases. In the first case is %2 ≤ 3/8 · % · (1 + δ) and
ν2 ≤ 3/8 · ν · (1 + δ). In the second case at least one inequality is violated. We
start with the second case.

Assume %2 > 3/8 · %(1 + δ). Note that %2 refers to six subsets of clauses con-
taining two variables true and two variables false under a. So there is at least
one subset with cardinality ≥ 1/16 · %(1 + δ). Let for example (Ta, Fa, Fa, Ta)P

be this subset. Then BG(P,ROT2(P)) has a large bipartite clique. For the
left side of the clique take all clauses of type (Ta, Fa, Fa, Ta)P in P . The right side
is the rotated set of these clauses. Through the rotation the clauses
change to (Fa, Ta, Ta, Fa)ROT2(P). As Ta ∩ Fa = ∅, (Ta, Fa, Fa, Ta)P and
(Fa, Ta, Ta, Fa)ROT2(P) form a bipartite clique. The size of the clique is bounded
below by

(1/16 · %(1 + δ))2 ≥ (cn/16)2 · (1 + δ)2 · (1− o(1)) > (cn/16)2 · (1 + δ).

For any of the five other types we get the same bound maybe using
BG(P,ROT1(P)). If ν2 > 3/8 · ν(1 + δ) use BG(N,ROT1(N)) resp. BG(N,
ROT2(N)) in the same way.

Now we come to the case %2 ≤ 3/8 · %(1+ δ) and ν2 ≤ 3/8 · ν(1+ δ) From the
equations for %2 and ν2 in Theorem 6 we get

%1 = 2α2%− %2/3 +O(ε)% ≥ 2α2%− 1/8 · %(1 + δ) +O(ε)%

and
ν1 ≥ 2(1− α)2ν − 1/8 · ν(1 + δ) +O(ε)ν.

As %1 consists of four subsets of clauses having exactly one variable true
under a we have one subset with cardinality ≥ (α2/2− (1 + δ)/32 +O(ε))%. For
example this is (Fa, Ta, Fa, Fa)P . Also we get one subset in N having exactly
one variable false under a with at least ((1−α)2/2− (1+δ)/32+O(ε))ν clauses.
Let this subset be (Fa, Ta, Ta, Ta)N . Looking at BG(P,ROT3(N)) we see that
these two subsets form a bipartite clique with at least(

α2

2
− 1 + δ

32
+O(ε)

)
% ·
(

(1− α)2

2
− 1 + δ

32
+O(ε)

)
ν (4)

edges. Conceive (4) as a function of α. Then it is concave for 1/5 ≤ α ≤ 4/5.
Theorem 6 gives us 1/3−O(ε) ≤ α ≤ 2/3+O(ε) as a is a satisfying assignment.
Because of the concavity we only have to check these both limits to lower bound
(4). For ε and δ sufficiently small we are able to lower bound both cases by
(cn)2 · (1 + o(1))/250 > (cn/16)2 · (1 + δ).
�

Theorem 9. Let ε > 0 be an arbitrarily small constant and c = c(ε) large
enough. For F = Formn,4,c/n3 the maximum clique size in the graphs below is
with high probability bounded above by (cn/16)2 · (1 + ε). This applies to the
graphs BG(R, T) where R and T each are one among the sets ROTi(N(F)),
ROTi(P (F)) for 1 ≤ i ≤ 4 (R = T is also possible).

On the Hardness and Easiness of Random 4-SAT Formulas 477

The proof follows by a Chernoff bound argument and can be found in [12].
Corollary 8 and Theorem 9 shows the correctness of Theorem 2. If we would have
an approximation algorithm with ratio for example 1.01, we could distinguish
between the satisfiable formulas inducing graphs with cliques ≥ (cn/16)2 · (1.02)
(Corollary 8) and the typical formulas whose graphs only have cliques of size e.g.
(cn/16)2 · (1.001) from Theorem 9. This means we could refute random 4-SAT.

3 Proof of Theorem 3

3.1 The Algorithm

For Ui ⊆ Var we say that a clause l1 ∨ l2 ∨ l3 ∨ l4 is of type {U1, U2, U3, U4} if
there is a permutation g1 ∨ g2 ∨ g3 ∨ g4 of the li such that Var(gi) ∈ Ui. Remem-
ber Var(gi) denotes the variable underlying the literal gi. Note, the definition of
the type is slightly different to that above Theorem 6. Given a 4-SAT formula
F , {U1, U2, U3, U4}F is the set of clauses of type {U1, U2, U3, U4} in F. We write
{U1, U2,−,−} = {U1, U2,Var,Var} and {U1, U2,−,−}F then stands for the sub-
set of clauses C of F in which we have two positions one of which is filled with
a literal over U1 and the other one with a literal over U2. (Note that the literals
in the two positions can be equal.)

Given a formula F and an assignment φ we let CTi(F) = CTi,φ(F) = F ∩
CTi,φ be the set of those clauses of F with exactly i literals true under φ. The
support in CT1 of the variable x with respect to F and φ is

Supp1,F,φ(x) = |{C ∈ CT1,φ(F) |x ∈ C and φ(x) = 1 or¬x ∈ C, φ(x) = 0}|.

Similarly for CT3 we have

Supp3,F,φ(x) = |{C ∈ CT3,φ(F) |x ∈ C and φ(x) = 0 or¬x ∈ C, φ(x) = 1}|.

Thus SuppF,φ(x) = Supp1,F,φ(x) + Supp3,F,φ(x) is the number of clauses of F
which have exactly one literal true or exactly one literal false under φ and this
literal is either x or ¬x. OccF (x) = OccF (¬x) = |{C ∈ F |x ∈ C or ¬x ∈ C}|
is the number of clauses of F which contain x or ¬x. Note that Occ(x) need not
be equal to the number of actual occurrences of x,¬x as x, ¬x can occur several
times inside a clause.

Recall the generation procedure of our formulas from Subsection 1.3. Let φ
be the assignment picked in Step 1, then we have that |CTi,φ(I)| follows the
binomial distribution with parameters |CTi,φ| and pi. For the expectation we
have E[|CTi(I)|] = pi · 4n4 for i = 1, 3 and E[|CT2(I)|] = p2 · 6n4. For x ∈ Var
we can decompose OccI(x) = X1 + X2 + X3 where Xi follows the binomial
distribution with parameters 4n4− 4(n− 1)4 = 16n3 +O(n2) and pi for i = 1, 3.
X2 follows the binomial distribution with 6n4 − 6(n− 1)4 = 24n3 + O(n2). We
have that

E[OccI(x)] = (16η1 + 24η2 + 16η3)d+O(1/n).

We let μ = 16η1+24η2+16η3 and di = ηid throughout. SuppF,φ(x) = Y1+Y3
where Yi follows the binomial distribution with parameter 4n3 + O(n2) and pi.

478 A. Goerdt and A. Lanka

Then E[Supp(x)] = 4ηd + O(1/n) where η = η1 + η3 throughout. R(I) is the
subset of those variables for which OccI(x) and SuppI,φ(x) are approximately
right (like the expectation). Given an assignment φ and ε > 0 we define

R(I) = Rφ,ε(I) = {x ∈ V | |OccI(x)− μd| ≤ εd , |SuppI,φ(x)− 4ηd| ≤ εd}.

Concerning R′(I) ⊇ R(I) we are slightly more generous concerning the support:

R′(I) = R′
φ,ε(I) = {x ∈ V | |OccI(x)− μd| ≤ εd , |SuppI,φ(x)− 4ηd| ≤ 4εd}.

Given a set of variables W ⊆ V , the boundary of W with respect to a (ran-
dom) instance I and ε > 0 is ∂(W) = ∂I,ε(W) = {x ∈ W | |{x,W,W,W}I | ≤
(μ− 2ε)d}. (Recall that E[Occ(x)] ∼ μd.) The core of W with respect to I and
ε > 0, C(W) = CI,ε(W), is the largest subset W ′ ⊆ W with ∂(W ′) = ∅. It can
be obtained by the following algorithm which iteratively deletes a variable from
the current boundary:

W ′ := W
while ∂(W ′) �= ∅: Pick any x ∈ ∂(W ′); W ′ := W ′ \ {x}.
The correctness follows with the invariant C(W) ⊆W ′.

The following algorithm to find a satisfying assignment in the not-all-equal
sense yields the main result. It is inspired by the algorithm in [8] for 3-SAT.

Algorithm 10. Input: Constants d, ηi, ε and a 4-SAT formula I over Varn

(generated as above).

1. Construct the graph G = GI = (V,E) with V = Litn. For l �= k ∈ Litn we
have {l, k} ∈ E iff we have a clause C ∈ I with C = l∨ k ∨ x∨ y. (Note that
we have no loops or multiple edges.)

2. Construct G′ = (V,E′) by deleting all edges incident with vertices l ∈ V
with dl ≥ 180d. Here dl is the degree of l. Compute the eigenvalues λ1 ≥
λ2 ≥ · · · ≥ λ2n of the adjacency matrix A of G′. Let e2n = (a1, . . . , a2n)t

(t for transpose) be the eigenvector of the most negative eigenvalue λ2n.
Let ai be the entry corresponding to the variable xi and an+i be the entry
corresponding to ¬xi.

3. We construct the assignment π: For the variable xi we let π(xi) := 1 if the
entry ai > an+i. Otherwise we set π(xi) := 0.

4. For i = 1, 2, . . . , log n do
W := {x ∈ V | |{C ∈ F | (x ∈ C or ¬x ∈ C) and C false under π}| ≥

5εd}.
For all x ∈W do π(x) := 1− π(x).

5. We consider the core CI,ε(R′
π,ε(I)). (For R′

π,ε(I) recall the definition above.)
Modify π to a partial assignment by unassigning all variables not belonging
to the core C′ = CI,ε(R′

π,ε(I)).
6. Construct the graph Γ = (Var, E) where {x, y} ∈ E iff x, y ∈ V \ C′ and
{x, y,−,−}I �= ∅. (Note that π(x), π(y) is undefined at present.) Determine
the connected components of Γ. If any of these has more that logn vertices
the algorithm fails. Otherwise it searches for a satisfying assignment by trying
out all possibilities for each connected component by itself and assigning the

On the Hardness and Easiness of Random 4-SAT Formulas 479

unassigned variables of π such that a not-all-equal solution of I is obtained, if
possible. If no such assignment is found the inconclusive answer is given.

3.2 Proof of Theorem 3

For the subsequent analysis of this algorithm we let φ be the assignment fixed in
Step 1 of the generation algorithm. Usually we denote by I a random instance.

Theorem 11. For every constant δ > 0 and for all sufficiently large constants d
we have for the assignment π after Step 3 of the algorithm that |{x ∈ Var |π(x) �=
φ(x)}| ≤ δn}, or the symmetric statement |{x ∈ Var |π(x) �= 1− φ(x)}| ≤ δn}.

Proof (outline). The proof is based Flaxman’s work [8] but is somehow simpler.
The details can be found in [12].

Let G′ be the graph constructed from the random instance I in Step 2 of
Algorithm 10. Let φ be the satisfying assignment we want to find. The set of
literals true under φ are denoted by Tφ. Then Fφ = Litn \ Tφ are the literals
false under φ. We divide the adjacency matrix A of G′ into 4 blocks AT,T , AF,T ,
AT,F and AF,F . The block AF,F contains all rows and all columns of A that
corresponds to literals from Fφ. The other blocks are defined analogously. The
expected number of 1’s in AF,F is by the construction 2 · (2d1 + d2)n · (1+ o(1)).
In AT,T we can expect 2 · (d2 + 2d3)n · (1 + o(1)) and in each of AF,T and AT,F

we expect 2(d1 + 2d2 + d3)n · (1 + o(1)) times a 1.
Take the all-1-vector 1 then we can expect for 1tA1 the value

(2·(d2+2d3)+2·(2d1+d2)+4·(d1+2d2+d3))n·(1+o(1)) = (8d1+12d2+8d3)n·(1+o(1)).

Now take the vector v of dimension |Litn| with vi = 1 if i ∈ Tφ and vi = −1
if i ∈ Fφ. Note, v is perpendicular to 1. The expected value of vtAv is

(2 · (d2 + 2d3) + 2 · (2d1 + d2) − 4 · (d1 + 2d2 + d3)) · n · (1 + o(1)) = −4d2 · n · (1 + o(1)).

Note that the expectation of both 1tA1 and vtAv grows linear in d. One can
show that all vectors u of length

√
n perpendicular to 1 and v have an expected

value for utAu of O(
√
d · n). So, the eigenvector e2n belonging to the smallest

eigenvalue of A must be nearly a linear combination of 1 and v. Following this
idea one can show that almost all signs of v (and so almost the assignment φ)
can be reconstructed from e2n. The fraction of signs we can not reconstruct is
constant but can be made arbitrarily small by increasing d.
�

The remaining part of the algorithm is also analyzed based on Flaxman’s
work, but some subtle details have to be taken care of. With Theorem 11 we
assume that for the assignment π after Step 3 |{π(x) = φ(x)}| ≥ (1 − δ)n. If
|{π(x) = 1−φ(x)}| ≥ (1− δ)n we proceed analogously. We pick an ε sufficiently
small (for this d must be sufficiently large.)

Lemma 12.

1. With probability 1− e−Ω(n) we have |Rφ,ε(I)| ≥ (1− e−d/C)n for a constant
C independent of d.

480 A. Goerdt and A. Lanka

2. If δ = δ(ε) is a sufficiently small constant, then we have with probability
1−O(n−

√
d) for all U ⊂ Var, |U | ≤ 2δn that |{U,U,−,−}I | ≤ 1/9 · εd|U |.

The correctness follows from standard calculations which can be found in
[12].

Lemma 13. If I fulfils the properties of Lemma 12, then we have

|CI,ε(Rφ,ε(I))| ≥ (1− 2−d/C)n.

Note, that the lemma means that we have |CI,ε(Rφ,ε(I))| ≥ (1 − 2−d/C)n
with probability at least 1−O(n−

√
d).

Proof. Let R = Rφ,ε(I) and C = CI,ε(R) and recall the algorithm from Subsec-
tion 3.1 to generate C. We show that the while loop of this algorithm is executed
m ≤ e−d/Cn-times. Then the result follows, for |Var \ C| = |Var \ R| + m ≤
2e−d/Cn ≤ 2−d/Cn.

Assume that the loop of the algorithm is executed at least m-times and
consider the first m executions of the loop. (We specify m further below.) Let
xi = x after the i’th execution of the loop and let C0 = R and Ci = Ci−1 \ {xi}.
Then Ci is the value of W ′ of the algorithm after the i’th execution of the while
loop. Let Ui = Var \ Ci. As xi ∈ ∂(Ci−1) ⊆ R we have that |{xi,−,−,−}I | ≥
(μ − ε)d. As xi ∈ ∂(Ci−1) we have that |{xi, Ci−1, Ci−1, Ci−1}I | ≤ (μ − 2ε)d.
Therefore |{xi, Ui−1,−,−}I | ≥ εd and thus

∑m
i−1 |{xi, Ui−1,−,−}I | ≥ mεd.

Clauses from {xi, xi+1, xi+2, Ui−1}I are counted 3-times in the sum. No clause
is counted 4 or more times. Thus the number of different clauses contributing
to the sum is ≥ 1/3mεd. As for all i {xi, Ui−1,−,−}I ⊆ {Um, Um,−,−}I we
get that |{Um, Um,−,−}I | ≥ 1/3mεd. Now assuming m = e−d/Cn we have that
|Um| = 2m ≤ 2δn and |{Um, Um,−,−}I | ≥ 1/6|Um|εd contradicting item 2 of
Lemma 12.
�

Lemma 14. Let C = CI,ε(Rφ,ε(I)), πi = the assignment π after the i’th execu-
tion of the loop in step 4 of the algorithm, and let Bi = {x ∈ C |πi(x) �= φ(x)}.
If the properties of Lemma 12 hold for I then we have for all i ≤ log n that
|Bi| ≤ |Bi−1|/2.

This lemma directly implies that after Step 4 all variables from C have the
right truth value.

Corollary 15. With high probability we have after step 4 that for the core C as
above C ⊆ {x ∈ Varn |π(x) = φ(x)}.

Proof of Lemma 14. From Theorem 11 we know that |B0| ≤ δn. Further below
we show that for all x ∈ Bi we have |{x,Bi−1,−,−}I | ≥ 2εd. This implies the
claim as follows. By induction we can assume that |Bi−1| ≤ δn. Assuming that
|Bi| > |Bi−1|/2 we let B′ ⊆ Bi with |B′| = �|Bi−1|/2�+ 1. From the statement
above we get that

∑
x∈B′ |{x,Bi−1,−,−}I | ≥ |B′|2εd. For x1, . . . , x4 ∈ B′ ∩

Bi−1 all distinct a clause like x1 ∨ x2 ∨ x3 ∨ x4 is counted 4-times. No clause is

On the Hardness and Easiness of Random 4-SAT Formulas 481

counted more than 4-times. This implies that |{B′, Bi−1,−,−}I | ≥ |B′|2εd/4.
Now consider B = B′∪Bi−1, then we have that |B| ≤ 2δn, but |{B,B,−,−}I | ≥
|{B′, Bi−1,−,−}I | ≥ |B|2εd/16 as |B′| ≥ |B|/4 in contradiction to item 2 of
Lemma 12.

We now show the statement above by the case distinction that for x ∈ Bi

either x ∈ Bi−1 or x /∈ Bi−1. Let

a = |{C ∈ F |(x ∈ C or ¬x ∈ C) and C false under πi}|.

If x ∈ Bi and x ∈ Bi−1 we have that πi−1(x) = πi(x) = ¬φ(x). Moreover,
as the value of x has not been changed by the loop we know that a ≤ 5εd. As
x ∈ C ⊆ R(I) we have that SuppI,φ(x) ≥ (4η − ε)d. Therefore we have at least
(4η−ε)d − 5εd = (4η−6ε)d clauses C ∈ F with the property: There is a literal
l ∈ C which makes C true under πi−1, but for the underlying variable y we have
that πi−1(y) �= φ(y). As x ∈ C we have that |{x,−,−,−}I | ≤ (μ + ε)d and
|{x, C, C, C}I | ≥ (μ − 2ε)d. Therefore |{x,Var \ C,−,−}I | ≤ 3εd. Hence, among
the (4η − 6ε)d clauses containing x above, we have at least (4η − 6ε)d− 3εd =
(4η − 9ε)d ≥ 2εd (ε sufficiently small) clauses which contain a literal over a
variable y from C which is false under πi−1. For this y we clearly have y ∈ Bi−1.

If x ∈ Bi and x /∈ Bi−1 the value of x has been changed in the loop of the
algorithm and we know that a ≥ 5εd. Each of these a clauses obviously contains a
literal over a variable y such that πi−1(y) = ¬φ(y). We show that for at least 2εd
of these a clauses we have that y ∈ Bi−1. This follows as |{x,−,−,−}I | ≤ (μ+ε)d
and |{x, C, C, C}I | ≥ (μ− 2ε)d. Therefore |{x,Var \ C,−,−, }I | ≤ 3εd and we get
|{x,Bi−1,−,−, }I | ≥ 2εd.
�

The following lemma implies that after Step 5 of the algorithm the core C
remains correctly assigned. Its proof can be found in [12].

Lemma 16. Let π be the partial assignment obtained after executing Step 5. If
I complies with the items of Lemma 12 then we have:

1. C = CI,ε(Rφ,ε(I)) ⊆ {x |π(x) defined }.
2. For all x with π(x) defined we have π(x) = φ(x).

Each connected component of Γ of size ≥ log n contains a connected compo-
nent of size log n. We show that the expected value of such components goes to
0. To this end let T ′ = (V (T ′), E(T ′)) be a fixed tree (connected graph without
cycles) with V (T ′) ⊆ Var and |V (T ′)| = logn. Let T ⊆ CTnae,φ be a fixed set of
4-clauses such that for each {x, y} ∈ E(T ′) we have a clause C ∈ {x, y,−,−}T .
Let T be a minimal set with this property. The tree T ′ induced by T occurs only
then in Γ if firstly V (T ′) ∩ CI(R(I)) = ∅ and secondly T ⊆ I. Thus we have to
bound

Pr[T ⊆ I and V (T ′) ∩ CI(R(I))] = Pr[T ⊆ I] · Pr[V (T ′) ∩ CI(R(I)) |T ⊆ I].

482 A. Goerdt and A. Lanka

Lemma 17. Let T and T ′ be fixed as above then

1. Pr[T ⊆ I] ≤ (d/n3)|T |

2. Pr[V (T ′) ∩ CI(R(I)) |T ⊆ I] = O
(
n−

√
d
)

The first item is easy to see as each of the |T | clauses is chosen with probability
at most d/n3. The second one is more difficult to show – not only because of the
condition T ⊆ I. We omit the proof and refer to [12].

Lemma 18. With high probability we have that Γ contains no connected com-
ponent of size larger than log n.

Proof. We bound the probability that Γ has a connected component by the
expected value of such components. This expectation can be bounded above by

∑
T,T ′

Pr[T ⊆ I and V (T ′) ∩ C = ∅] ≤
∑
T,T ′

(
d

n3

)|T |
·O(n−

√
d) (5)

where the sums goes over all trees T ′ with V (T ′) ⊆ Var and all minimal sets of
clauses T so that for any edge {x, y} ∈ E(T ′) we have a clause in {x, y,−,−}T .

By an appropriate calculation of the number of such pairs T and T ′ one can
show that (5) is bounded above by nO(log d) · O(n−

√
d), cf. [12]. This bound is

o(1) for d large enough but still constant and we are done.
�

References

1. Alon N., Feige U., Widgerson A., Zuckerman D.: Derandomized Graph Products.
Computational Complexity 5 (1995), 60–75.

2. Alon N., Kahale N.: A spectral technique for coloring random 3-colourable graphs.
DIMACS TR 94-35, 1994.

3. Chen H., Frieze A.: Coloring bipartite hypergraphs. Proc. 5th IPCO 1996, LNCS,
345–358.

4. Coja-Oghlan A., Goerdt A., Lanka A.: Strong Refutation Heuris-
tics for Random k-SAT. RANDOM 2004. To appear. (http://www.tu-
chemnitz.de/informatik/HomePages/TI/publikationen.php)

5. Coja-Oghlan A., Goerdt A., Lanka A., Schädlich F.: Techniques from combinatorial
approximation algorithms yield efficient algorithms for random 2k-SAT. Theoreti-
cal Computer Science. To appear.

6. Feige U.: Relations between average case complexity and approximation complex-
ity. Proc. 24th STOC (2002), 534–543.

7. Feige U., Ofek E.: Easily refutable subformulas of large random 3CNF formulas.
(http://www.wisdom.weizmann.ac.il/˜erano/)

8. Flaxman A.: A spectral technique for random satisfiable 3CNF formulas. Proc.
SoDA 2002, SIAM.

9. Garey M.R., Johnson D.S.: Computers and Intractability. 1979.
10. Goerdt, A., Jurdzinski, T.: Some results on random unsatisfiable k-SAT instances

and approximation algorithms applied to random structures. Combinatorics, Prob-
ability and Computing 12 (2003) 245–267

On the Hardness and Easiness of Random 4-SAT Formulas 483

11. Goerdt A., Lanka A.: Recognizing more random unsatisfiable 3-SAT instances effi-
ciently. Proc. Typical Case Complexity and Phase Transitions, Satellite Workshop
of Logic in Computer Science 2003 (Ottawa). To appear.

12. Goerdt A., Lanka A.: The algorithmic hardness and easiness
of random 4-SAT formulas. Technical report. (http://www.tu-
chemnitz.de/informatik/HomePages/TI/publikationen.php)

13. H̊astad J.: Clique is Hard to Approximate within n1−ε. Acta Mathematica 182
(1999) 105–142

14. Janson S., �Luczak T., Ruciński A.: Random graphs. John Wiley and Sons 2000.
15. Lubotsky A., Phillips R., Sarnak P.: Ramanujan Graphs. Combinatorica 8 (3),

1988 261–277
16. Peeters R.: The maximum edge biclique problem is NP-complete. Research Mem-

orandum 789, Faculty of Economics and Business Administration, Tilberg Univer-
sity, 2000. (http://econpapers.hhs.se/paper/dgrkubrem/2000789.htm)

17. Strang G.: Linear Algebra and its Applications. Harcourt Brace Jovanovich. 1988.

Minimum Common String Partition Problem:
Hardness and Approximations

Avraham Goldstein1, Petr Kolman2,�, and Jie Zheng3,��

1 avi goldstein@netzero.net
2 Institute for Theoretical Computer Science, Charles University, Malostranské nám.

25, 118 00 Praha 1, Czech Republic
kolman@kam.mff.cuni.cz

3 Department of Computer Science, University of California, Riverside, CA 92521
zjie@cs.ucr.edu

Abstract. String comparison is a fundamental problem in computer
science, with applications in areas such as computational biology, text
processing or compression. In this paper we address the minimum com-
mon string partition problem, a string comparison problem with tight
connection to the problem of sorting by reversals with duplicates, a key
problem in genome rearrangement.

A partition of a string A is a sequence P = (P1, P2, . . . , Pm) of strings,
called the blocks, whose concatenation is equal to A. Given a partition
P of a string A and a partition Q of a string B, we say that the pair
〈P, Q〉 is a common partition of A and B if Q is a permutation of P. The
minimum common string partition problem (MCSP) is to find a common
partition of two strings A and B with the minimum number of blocks.
The restricted version of MCSP where each letter occurs at most k times
in each input string, is denoted by k-MCSP.

In this paper, we show that 2-MCSP (and therefore MCSP) is NP-hard
and, moreover, even APX-hard. We describe a 1.1037-approximation for
2-MCSP and a linear time 4-approximation algorithm for 3-MCSP. We
are not aware of any better approximations.

1 Introduction

String comparison is a fundamental problem in computer science, with applica-
tions in areas such as computational biology, text processing or compression. Typ-
ically, a set of string operations is given (e.g., delete, insert and change a character,
move a substring or reverse a substring) and the task is to find
the minimum number of operations needed to convert one string to the other. Edit
distance or permutation sorting by reversals are two well known examples. In this
paper we address, motivated mainly by genome rearrangement applications, the

� Research done while visiting University of California at Riverside. Partially sup-
ported by project LN00A056 of MŠMT ČR, and NSF grants CCR-0208856 and
ACI-0085910.

�� Supported by NSF grant DBI-0321756.

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 484–495, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Minimum Common String Partition Problem: Hardness and Approximations 485

minimum common string partition problem (MCSP). Though MCSP takes a static
approach to string comparison, it has tight connection to the problem of sorting
by reversals with duplicates, a key problem in genome rearrangement.

A partition of a string A is a sequence P = (P1, P2, . . . , Pm) of strings whose
concatenation is equal to A, that is P1P2 . . . Pm = A. The strings Pi are called
the blocks of P. Given a partition P of a string A and a partition Q of a string
B, we say that the pair π = 〈P,Q〉 is a common partition of A and B if Q is a
permutation of P. The minimum common string partition problem is to find a
common partition of A, B with the minimum number of blocks. The restricted
version of MCSP where each letter occurs at most k times in each input string,
is denoted by k-MCSP. We denote by #blocks(π) the number of blocks in a
common partition π. We say that two strings A and B are related if every letter
appears the same number of times in A and B.

In this paper, we show that 2-MCSP (and therefore MCSP) is NP-hard and,
moreover, even APX-hard. We also describe a 1.1037-approximation for 2-MCSP
and a linear time 4-approximation algorithm for 3-MCSP. We are not aware of
any better approximations. For the lack of space, we have to omit several proofs;
they will appear in the full version of the paper.

The signed minimum common string partition problem (SMCSP) is a
variant of MCSP in which each letter of the two input strings is given a “+” or
“−” sign. For a string P with signs, let −P denote the reverse of P , with each
sign flipped. A common partition of two signed strings A and B is the pair π =
〈P,Q〉 of a partition P = (P1, P2, . . . , Pm) of A and a partition Q = (Q1, Q2, . . . ,
Qm) of B together with a permutation σ on [m] such that for each i ∈ [m], either
Pi = Qσ(i), or Pi = −Qσ(i). All of our results apply also to signed MCSP.

Related Work. 1-MCSP coincides with the breakpoint distance problem of two
permutations [12] which is to count the number of pairs of symbols that are ad-
jacent in the first string but not in the other; this problem is obviously solvable
in polynomial time. Similarly as the breakpoint distance problem does, most of
the rearrangement literature works with the assumption that a genome contains
only one copy of each gene. Under this assumption, a lot of attention was given
to the problem of sorting by reversals which is solvable in polynomial time for
strings with signs [9] but is NP-hard for strings without signs [3]. The assump-
tion about uniqueness of each gene is unwarranted for genomes with multi-gene
families such as the human genome [10]. Chen et al. [4] studied a generalization
of the problem, the problem of signed reversal distance with duplicates (SRDD);
according to them, SRDD is NP-hard even if there are at most two copies of
each gene. They also introduced the signed minimum common partition prob-
lem as a tool for dealing with SRDD. Chen et al. observe that for any two related
signed strings A and B, the size of a minimum common partition and the min-
imum number of reversal operations needed to transform A to B, are within a
multiplicative factor 2 of each other. (In the case of unsigned strings, no sim-
ilar relation holds: the reversal distance of A = 1234 . . . n and B = n . . . 4321
is 1 while the size of minimum common partition is n − 1.) They also give a
1.5-approximation algorithm for 2-MCSP. Christie and Irving [5] consider the

486 A. Goldstein, P. Kolman, and J. Zheng

problem of (unsigned) reversal distance with duplicates (RDD) and prove that
it is NP-hard even for strings over binary alphabet.

Chrobak et al. [6] analyze a natural heuristic for MCSP, the greedy4 algo-
rithm: iteratively, at each step extract a longest common substring from the
input strings. They show that for 2-MCSP, the approximation ratio is exactly 3,
for 4-MCSP the approximation ratio is Ω(logn); for the general MCSP, the ap-
proximation ratio is between Ω(n0.43) and O(n0.67). The same bounds apply for
SMCSP.

Closely related is the problem of edit distance with moves in which the al-
lowed string operations are the following: insert a character, delete a character,
move a substring. Cormode and Muthukrishnan [7] describe an O(logn log∗ n)-
approximation algorithm for this problem. Shapira and Storer [11] observed that
restriction to move-a-substring operations only (instead of allowing all three op-
erations listed above) does not effect the edit-distance of two strings by more than
a constant multiplicative factor. Since the size of a minimum common partition
of two strings and their distance with respect to move-a-substring operations
differ only by a constant multiplicative factor, the algorithm of Cormode and
Muthukrishnan yields an O(logn log∗ n)-approximation for MCSP.

1.1 Preliminaries

Throughout the paper, we assume that the two strings A,B given as input to
MCSP are related. This is a necessary and sufficient condition for the existence
of a common partition.

Given a string A = a1 . . . an, for the sake of simplicity we will use the symbol
ai to denote two different things. First, ai may denote the specific occurrence of
the letter ai in the string A, namely the occurrence on position i. Alternatively,
ai may denote just the letter itself, without any relation to the string A. Which
alternative we mean will be clear from context.

Common Partitions and Independent Sets. Let Σ denote the set of all letters
that occur in A. A duo is an ordered pair of letters xy ∈ Σ2 that occur con-
secutively in A or B (that is, there exists an i such that x = ai and y = ai+1,
or x = bi and y = bi+1). A specific duo is an occurrence of a duo in A or B.
The difference is that a duo is just a pair of letters whereas a specific duo is
a pair of letters together with its position. A match is a pair (aiai+1, bjbj+1)
of specific duos, one from A and the other one from B, such that ai = bj and
ai+1 = bj+1. Two matches (aiai+1, bjbj+1) and (akak+1, blbl+1), i ≤ k, are in
conflict if either i = k and j �= l, or i + 1 = k and j + 1 �= l, or i + 1 < k and
{j, j + 1} ∩ {l, l + 1} �= ∅.

We construct a conflict graph G = (V,E) of A and B as follows. The set of
nodes V consists of all matches of A and B and the set of edges E consists of

4 Shapira and Storer [11] also analyzed the greedy algorithm and claimed an O(log n)
bound on its approximation ratio; unfortunately, the analysis was flawed, it applies
only to a special subclass of MCSP problems.

Minimum Common String Partition Problem: Hardness and Approximations 487

abc ab
ab abc

abc ab
ab abc

ab abc
ab c ab

ab ab c
ab c ab

abc ab
ab ab c

Fig. 1. Conflict graph for MCSP instance A = abcab and B = ababc

all pairs of matches that are in conflict. Figure 1 shows an example of a conflict
graph. The number of vertices in G can be much higher than the length of the
strings A and B (and is trivially bounded by n2).

Lemma 1. For A = a1 . . . an and B = b1 . . . bn, let MIS(G) denote the size
of the maximum independent set of the conflict graph G of A and B and m
denote the number of blocks in a minimum common partition of A and B. Then,
n−MIS(G) = m .

Proof. Given an optimal solution for MCSP, let S be the set of all matches
that are used in this solution. Clearly, S is an independent set in G and |S| =
n− 1− (m− 1).

Conversely, given a maximum independent set S, we cut the string A between
ai and ai+1 for every specific duo aiai+1 that does not appear in any match in
S, and similarly for B. In this way, n− 1− |S| duos are cut in A and also in B,
resulting in n− |S| blocks of A and n− |S| blocks of B. Clearly, the blocks from
A can be matched with the blocks from B, and therefore m ≤ n− |S|. �

Maximum independent set is an NP-hard problem, yet, two approximation
algorithms for MCSP described in this paper make use of this reduction.

MCSP for multisets of strings. Instead of two strings A,B, there are two mul-
tisets A,B of strings on input. Similarly as before, a partition of the multisetA =
{A1, . . . , Al} is a sequence of strings A1,1, . . . , A1,k1 , A2,1, . . . , A2,k2 , . . . , Al,1, . . . ,
Al,kl

, such that Ai = Ai,1 . . . , Ai,ki for i ∈ [l]. For two multisets of strings, the
common partition, the minimum common partition and the related-relation are
defined similarly as for pairs of strings.

Let A = {A1, . . . , Al} and B = {B1, . . . , Bh} with h ≤ l, be two related
multisets of strings, and let x1, y1, . . . , xl−1, yl−1 be 2l − 2 different letters that
do not appear in A and B. Considering two strings

A = A1x1y1A2x2y2A3 . . . xl−1yl−1Al ,

B = B1y1x1B2y2x2B3 . . . yh−1xh−1Bhyhxh . . . yl−1xl−1 , (1)

it is easy to see that an optimal solution for the classical MCSP instance A,B
yields an optimal solution for the instance A,B of the multiset version, and vice
versa. In particular, if m′ denotes the size of a MCSP of the two multisets of
strings A and B, and m denotes the size of a MCSP of the two strings A and
B defined as above, then m = m′ + 2(l − 1). Thus, if one of the variants of the
problems is NP-hard, so is the other.

488 A. Goldstein, P. Kolman, and J. Zheng

2 Hardness of Approximation

Theorem 1. 2-MCSP and 2-SMCSP are APX-hard problems.

We start by proving a weaker result.

Theorem 2. 2-MCSP and 2-SMCSP are NP-hard problems.

Since an instance of MCSP can be interpreted as an instance of SMCSP with
all signs positive, and since a solution of SMCSP with all signs positive can be
interpreted as a solution of the original MCSP and vice versa, it is sufficient to
prove the theorems for MCSP only.

The proof is by reduction from the maximum independent set problem on
cubic graphs (3-MIS) [8]. Given a cubic graph G = (V,E) as an input for 3-MIS,
for each vertex v ∈ V we create a small instance Iv of 2-MCSP. Then we process
the edges of G one after another, and, for each edge (u, v) ∈ E, we locally modify
the two small instances Iu, Iv. The final instance of 2-MCSP, denoted by IG, is
the union of all the small (modified) instances Iv. We will show that a minimum
common partition of IG yields easily a maximum independent set in G.

The small instance Iu = (Xu, Yu) for a vertex u ∈ V is defined as follows (cf.
Figure 2):

Xu = {du, aubu, cudueu, bueufugu, fuhuku, gulu, hu} (2)
Yu = {bu, cudu, aubueu, dueufuhu, fugulu, huku, gu}

where au, bu, . . . , lu, av, bv, . . . , lv are distinct letters in the alphabet. It is easy to
check that Iu has a unique minimum common partition, denoted by Ou, namely:

Ou = 〈(du, aubu, cudu, eu, bu, eufu, gu, fu, huku, gulu, hu)
(bu, cudu, aubu, eu, du, eufu, hu, fu, gulu, huku, gu)〉

We observe that for XG =
⋃

u∈V Xu and YG =
⋃

u∈V Yu, IG = (XG, YG) is
an instance of 2-MCSP, and the superposition of all Ou’s is a minimum common
partition of IG. For the sake of simplicity, we will sometimes abuse the notation
by writing IG =

⋃
u∈V Iu.

The main idea of the construction is to modify the instances Iu, such that
for every edge (u, v) ∈ E, a minimum common partition of IG =

⋃
u∈V Iu

coincides with at most one of the minimum common partitions of Iu and Iv.

3hu3du 3cu 3du 3eu3bu

3cu 3du3bu 3au 3bu

3fu 3gu3eu

3eu 3fu 3hu3du

3fu 3hu 3ku

3fu 3gu 3hu

3gu 3lu

3gu3eu

3bu

3lu 3ku

3au

Fig. 2. An instance Iu: the lines represent all matches, with the bold lines corresponding
to the matches in the minimum common partition Ou

Minimum Common String Partition Problem: Hardness and Approximations 489

This property will make it possible to obtain a close correspondence between
maximum independent sets in G and minimum common partitions of IG: if Ov

denotes a minimum common partition of (the modified) Iv and O′
v denotes the

common partition of (the modified) Iv derived from a given minimum common
partition of IG, then U = {u ∈ V | O′

u = Ou} will be a maximum independent
set of G. To avoid the need to use different indices, we use IG to denote

⋃
u∈V Iu

after any number of the local modifications; it will always be clear from context
to which one are we referring.

For description of the modifications, a few terms will be needed. The letters
au and cu in Xu are called left sockets of Iu and the letters ku and lu in Xu are
right sockets. We observe that all the four letters au, cu, ku, lu appears only once
in XG (and once in YG). Given two small instances Iu and Iv and a socket su of
Iu and a socket sv of Iv, we say that the two sockets su and sv are compatible,
if one of them is a left socket and the other one is a right socket. Initially, all
sockets are free.

For technical reasons, we orient the edges of G in such a way that each vertex
has at most two incoming edges and at most two outgoing edges. This can be
done as follows: find a maximal set (with respect to inclusion) of edge-disjoint
cycles in G, and in each cycle, orient the edges to form a directed cycle. The
remaining edges form a forest. For each tree in the forest, choose one of its nodes
of degree one to be the root, and orient all edges in the tree away from the root.
This orientation will clearly satisfy the desired properties.

We are ready to describe the local modifications. Consider an edge
−−−→
(u, v) ∈ E

and a free right socket su of Iu and a free left socket sv of Iv. That is, Rsu ∈ Xu

and svS ∈ Xv, for some strings R and S. We modify the instances Iu = (Xu, Yu)
and Iv = (Xv, Yv) as follows

Xu ← Xu ∪ {RsuS} − {Rsu} , Xv ← Xv ∪ {su} − {svS} ,
Yu ← Yu , Yv ← Yv with sv renamed by su .

(3)

(the symbols ∪ and − denote multiset operations).
After this operation, we say that the right socket su of Iu and the left socket

sv of Iv are used (not free). Note that in Yv, the letter sv is renamed to su. All
other sockets of Iu and all other sockets of Iv that were free before the operation
remain free. We also note that Iu and Iv are not 2-MCSP instances. However, for
every letter, the number of its occurrences is the same in XG and in YG, namely
at most two. Thus, IG is still a 2-MCSP instance.

The complete reduction from a cubic graph G = (V,E) to a 2-MCSP instance
is done by performing the local modifications (3) for all edges in G. Since the
in-degree and the out-degree of every node is bounded by two, and since every
instance Iu has initially two right and two left sockets, there will always be the
required free sockets.

It remains to prove that a minimum common partition for the final IG (that
is, when modifications for all edges are done) can be used to find a maximum
independent set in G.

490 A. Goldstein, P. Kolman, and J. Zheng

Lemma 2. Let G be a cubic graph on N vertices. Then, there exists an inde-
pendent set I of size l in G if and only if there exists a common partition of IG
of size 12N − l.

Proof. Let GC be the conflict graph of IG; GC has 9N vertices. The crucial
observation is that each small instance Iu can choose independently on all other
small instances four of its nine possible matches in such a way that all these 4N
matches form an independent set in GC (in Figure 2, these four matches are
represented by the thin lines). Let O′

u denote the four matches chosen by u.
Given an independent set I of G, construct a common partition of IG as

follows. For u ∈ I, use the five matches from Ou, and for u �∈ I, use the four
matches from O′

u. The resulting solution will use 5l + 4(N − l) matches which
corresponds to 9N − (5l+ 4(N − l)) = 5N − l new breaks and 7N + 9N − (5l+
4(N − l)) = 12N − l blocks.

Conversely, given a common partition of IG of size m, let I consist of all
vertices u such that Iu contributes 5 matches (i.e., 11 blocks) to the common
partition. Then, l ≥ 12N −m, and the proof is completed. �

Since the reduction can clearly be done in polynomial time (even in linear),
with respect to n = |V | and m = |E|, the proof of NP-hardness is completed.

The proof of APX-hardness relies on the same reduction. Berman and Karpin-
ski [2] proved that it is NP-hard to approximate 3-MIS within 140

139 − ε, for every
ε > 0. The relation between the size of an independent set and the size of a
common partition in our reduction, given in Lemma 2, implies therefore that
2-MCSP for multisets of string is also APX-hard problem. Transforming the
multiset MCSP instance into an instance with just two strings affects only the
factor of inapproximability.

3 Algorithms

3.1 2-MCSP Reduces to MIN 2-SAT

Theorem 3. An α-approximation algorithm for MIN 2-SAT yields α-
approximations for both 2-MCSP and 2-SMCSP.

Plugging in a recent 1.1037-approximation algorithm of Avidor and Zwick [1],
we get the following result.

Corollary 1. There exist polynomial 1.1037-approximation algorithms for 2-
MCSP and 2-SMCSP problems.

Proof. (Theorem 3)
Let A and B be two related (unsigned) strings. We start the proof with two

assumptions that will simplify the presentation:

(1) no duo appears at the same time twice in A and twice in B, and that
(2) every letter appears exactly twice in both strings.

Minimum Common String Partition Problem: Hardness and Approximations 491

Concerning the first assumption, the point is that in 2-MCSP, the minimum
common partition never has to break such a duo. Thus, if there exists in A and B
such a duo, it is possible to replace it by a new letter, solve the modified instance
and then replace the new letter back by the original duo. Concerning the other, a
letter that appears only once can be replaced by two copies of itself. A minimum
common partition never has to use a break between these two copies, so they
can be easily replaced back to a single letter, when the solution for the modified
instance is found.

The main idea of the reduction is to represent a common partition of A and
B as a truth assignment of a (properly chosen) set of binary variables. With each
letter a ∈ Σ we associate a binary variable Xa. For each letter a ∈ Σ, there are
exactly two ways to map the two occurrences of a in A onto the two occurrences
of a in B: either the first a from A is mapped on the first a in B and the second
a from A on the second a in B, or the other way round. In the first case, we say
that a is mapped straight, and in the other case that a is mapped across. Given
a common partition π of A and B, if a letter a ∈ Σ is mapped straight we set
Xa = 1, and if a is mapped across we set Xa = 0. In this way, every common
partition can be turned into truth assignment of the variables Xa, a ∈ Σ, and
vice versa. Thus, there is one-to-one correspondence between truth-assignments
for the variables Xa, a ∈ Σ, and common partitions (viewed as mappings) of A
and B.

With this correspondence between truth assignments and common partitions,
our next goal is to transform the two input strings A and B into a boolean
formula ϕ such that

– ϕ is a conjunction of disjunctions (OR) and exclusive disjunctions (XOR),
– each clause contains at most two literals, and
– the minimal number of satisfied clauses in ϕ is equal to the number of breaks

in a minimum common partition of A and B.

The formula ϕ consists of n − 1 clauses, with a clause Ci for each specific
duo aiai+1, i ∈ [n − 1]. For i ∈ [n − 1], let si = 1 if ai is the first occurrence of
the letter ai in A (that is, the other copy of the same letter occurs on a position
i′ > i), and let si = 2 otherwise (that is, if ai is the second occurrence of the
letter ai in A). Similarly, let ti = 1 if bi is the first occurrence of the letter bi in
B and let ti = 2 otherwise. We are ready to define ϕ. There will be three types
of clauses in ϕ.

If the duo aiai+1 does not appear in B at all, we define Ci = 1. Let b be the
number of clauses of this type.

If the duo aiai+1 appears once in B, say as bjbj+1, let Y = Xi if si �= tj , and
let Y = ¬Xi otherwise; similarly, let Z = Xi+1 if si+1 �= tj+1 and let Z = ¬Xi+1
otherwise. We define Ci = Y ∨Z. In this way, the clause Ci is satisfied if and only
if i, i+ 1 is a break in a common partition consistent with the truth assignment
of Xi and Xi+1.

Similarly, if the duo aiai+1 appears twice in B, we set Ci = Xi ⊕ Xi+1 if
si = si+1, and we set Ci = ¬Xi⊕Xi+1 otherwise, where ⊕ denotes the exclusive
disjunction. Again, the clause Ci is satisfied if and only if i, i+ 1 is a break in a

492 A. Goldstein, P. Kolman, and J. Zheng

common partition consistent with the truth assignment of Xi and Xi+1. Let k
denote the number of these clauses.

By the construction, a truth assignment that satisfies the minimum number
of clauses in ϕ = C1 ∧ . . . ∧ Cn−1 corresponds to a minimum common partition
of A and B. In particular, the number of satisfied clauses is equal to the number
of breaks in the common partition which is by one smaller than the number of
blocks in the partition.

The formula ϕ resembles an instance of 2-SAT. However, 2-SAT formulas do
not allow XOR clauses. One way to get around this is to replace every XOR
clause by two OR clauses. This increases the length of the formula which in turn
increases the resulting approximation ratio for 2-MCSP. To avoid this drawback,
we observe that for each XOR clause there is a unique inherent break. For the
lack of space, we omit the details how this yields the α-approximation. �

3.2 Linear Time 4-Approximation for 3-MCSP

In this section we exploit again the relation of MCSP and MIS in the conflict
graph. The main idea of the algorithm is to cut the strings A and B into few
pieces in such a way that the conflict graph of the modified instance becomes
simple, making it possible to find MIS in polynomial time. Similarly as in Sec-
tion 3.1 we assume, without loss of generality, that no duo has three occurrences
in A and in B at the same time. We augment both strings by a new character
an+1 = bn+1 = $.

A duo ab is good if the number of its occurrences in A equals the number of
its occurrences in B, and is bad otherwise. As before, let m denote the size of a
minimum common partition of a given pair of strings A and B.

Observation 4 In every common partition of A and B, for every bad duo ab
there must be at least one break immediately after some occurrence of a in A and
at least one break immediately after some occurrence of a in B.

In the first phase of the algorithm, for every bad duo ab, we cut both strings
A and B after every occurrence of a. We charge the cuts of ab to the breaks that
appear by Observation 4 in the optimal partition, that is, to the breaks after
letter a. At most three cuts are charged to a single break. Let A and B denote
the two multisets of strings we obtain from A and B after performing all these
cuts.

At this point, every specific duo of A and B has either one or two matches.
In the first case, we talk about a unique duo and a unique match, in the later
case about an ambiguous duo and an ambiguous match. There are four vertices
in the conflict graph corresponding to matches of an ambiguous duo and they
are connected in a 4-cycle. The 4-cycle will be called a square ab; a vertex
corresponding to a match of a unique duo will be called a single. We say that
two duos interfere if a match of the first duo is in a conflict with a match of the
other duo.

Let G1 be the conflict graph of A and B. The edges of G1 can be classified
into three groups: edges between two ambiguous matches, between an ambiguous

Minimum Common String Partition Problem: Hardness and Approximations 493

match and a unique match, and, between two unique matches. We are going to
have a closer look on these three cases.

Consider two ambiguous duos that interfere, say ab and bc. There are only
two ways how the two occurrences of ab and the two occurrences of bc can appear
in A: either there are two occurrences of a substring abc, or a single occurrence
of each of bc, abc and ab, in any order. There are the same possibilities for B.
Thus, there are only three basic ways how the duos ab and bc can appear in
the strings A and B (up to symmetry of A and B and up to permutation of the
depicted substrings):

A = . . . abc . . . abc . . . , B = . . . abc . . . abc . . . (1.1)
A = . . . bc . . . abc . . . ab . . . , B = . . . bc . . . abc . . . ab . . . (1.2)
A = . . . abc . . . abc . . . , B = . . . bc . . . abc . . . ab . . . (1.3)

We observe several things. If we want to keep all occurrences of ab and bc in
case (1.1) and it is already given how to match the ab duos (bc, resp.), then it
is uniquely given how to match the bc duos (ab, resp.). If we want to keep all
occurrences of ab and bc in case (1.2), then there is only one way how to match
them all; we say that the duos have a preference and we call these matches the
preferred matches of ab and bc. Concerning case (1.3), in any common partition
of A and B at least one occurrence of the duos ab and bc must be broken.

Let ab be an ambiguous duo and bc a unique duo. There are two possibilities
how they may interfere:

A = . . . abc . . . ab . . . ,B = . . . abc . . . ab . . . (2.1)
A = . . . ab . . . abc . . . ,B = . . . ab . . . ab . . . bc . . . (2.2)

Similarly as before, there is only one way how to match all duos in case (2.1).
We sat that the duos have a preference and we call these matches the preferred
matches of ab and bc. Concerning (2.2), in any common partition of A and B at
least one of ab and bc must be broken.

Finally, let ab and bc be two unique duos. There is only one way how they
may interfere.

A = . . . abc . . . ,B = . . . ab . . . bc . . . (3.1)

Again, in any common partition of A and B, ab or bc must be a break.
In the second phase of the algorithm, we cut all occurrences of duos ab and

bc that have an interference of type (1.3), (2.2) or (3.1). We charge these cuts to
the breaks that appear, by the above observations, in the optimal solution. At
most four cuts are charged to a single break.

Let A2 and B2 denote the two sets of strings after performing all cuts of phase
two, and let G2 be the corresponding conflict graph. Note that a duo might have
more than one preferred match. The problem we are facing now is to decide
which preferences to obey and which not since the more preferences we obey the
less breaks we need.

494 A. Goldstein, P. Kolman, and J. Zheng

By definition, a duo ab without preference has interferences of type (1.1) only,
and therefore interferes with at most two other duos. We already observed that if
a duo ab has an interference of type (1.1), say with a duo bc, and two matches of
the duo bc are already fixed, and no new breaks are allowed, then the matches of
the duo ab are uniquely given. In this way, a duo without preference transmits
a fixed preference of a neighboring duo on one side to a neighboring duo on
its other side, etc. A difficulty arises when a preference of one duo, say bc, is
transmitted by a sequence of duos without preferences to another duo with a
preference, say xy, and the preference transmitted to xy is different from the
preference of xy. Then, in every common partition, at least on specific duo bc, or
xy, or one of the transmitting duos, must be a break. We say that the preferences
of bc and xy are inconsistent. Similarly, if bc has two different preferences, we
also say that bc is inconsistent with bc.

We define the graphH = (VH , EH) of inconsistent preferences. The vertex set
VH consists of all duos with a preference and the set of edges EH consists of all
pairs of duos with inconsistent preferences (which includes loops for duos incon-
sistent by themselves). By the above discussion, the graph H can be constructed
in time linear in the number of duos.

Lemma 3. The size of a minimum vertex cover for H is a lower bound for the
number of breaks in a minimum common partition of A2 and B2.

In phase three, the algorithm cuts all duos corresponding to a minimum
vertex cover of H (resp., to 2-approximation of a minimum vertex cover). And
we charge these cuts to the breaks in the minimum vertex cover, by the above
Lemma. Let A3 and B3 denote the two sets of substrings we are left with, and
let G3 be the corresponding conflict graph.

Lemma 4. The pair A3, B3 is a common partition of A and B.

Proof. We are going to construct a maximum independent set in G3, correspond-
ing to a common partition of A3 and B3 with no additional breaks. We take to
our independent set
– all singles, and,
– from every duo with preference, the two vertices corresponding to the pre-

ferred matches, and,
– from every duo without preference the two vertices corresponding to the

matches that are forced by a neighboring duo.

In this way, every single from G3 appears in the independent set, and for
every duo with four possible matches, two of them are in the independent set.
This is a maximum independent set corresponding to a common partition with
no additional breaks. �

Since the cuts of the algorithm are charged in every phase to different breaks
in the optimal solution, at most 4m breaks were used in all three phases, resulting
in a 4-approximation.

Minimum Common String Partition Problem: Hardness and Approximations 495

Using a hash table, Phases 1 and 2 can be implemented in time O(n). We
already noted that the graph H can be constructed in linear time. Since the
number of edges in H is O(n), a 2-approximation of the vertex cover can be
computed in time O(n), yielding a total time O(n).

For signed MCSP, the algorithm goes along the same lines, it only has to
consider +a+ b and −b− a as the occurrences of the same duo.

Theorem 5. There exist linear time 4-approximation algorithms for both un-
signed and signed 3-MCSP.

Acknowledgment. We thank Xin Chen for introducing us the MCSP; this
motivated our work. We wish to thank Tao Jiang, Marek Chrobak, Neal Young
and Stefano Lonardi for many useful discussions. We also gratefully acknowledge
comments given to us by Jǐŕı Sgall on early version of the paper.

References

1. A. Avidor and U. Zwick. Approximating MIN k-SAT. In Proc. of 13th International
Symposium on Algorithms and Computation (ISAAC), volume 2518 of Lecture
Notes in Computer Science, pages 465–475, 2002.

2. P. Berman and M. Karpinski. On some tighter inapproximability results. In Proc.
of the of 26th International Colloquium on Automata, Languages and Programming
(ICALP), pages 200–209, 1999.

3. A. Caprara. Sorting by reversals is difficult. In Proc. of the First International
Conference on Computational Molecular Biology, pages 75–83, 1997.

4. X. Chen, J. Zheng, Z. Fu, P. Nan, Y. Zhong, S. Lonardi, and T. Jiang. Assignment
of orthologous genes via genome rearrangement. Submitted, 2004.

5. D. A. Christie and R. W. Irving. Sorting strings by reversals and by transpositions.
SIAM Journal on Discrete Mathematics, 14(2):193–206, 2001.

6. M. Chrobak, P. Kolman, and J. Sgall. The greedy algorithm for the minimum
common string partition problem. In Proc. of the 7th International Workshop on
Approximation Algorithms for Combinatorial Optimization Problems (APPROX),
2004.

7. G. Cormode and S. Muthukrishnan. The string edit distance matching problem
with moves. In Proc. of the 13th Annual ACM-SIAM Symposium On Discrete
Mathematics (SODA), pages 667–676, 2002.

8. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman & Company, San Francisco, 1978.

9. S. Hannenhalli and P. A. Pevzner. Transforming cabbage into turnip: polyno-
mial algorithm for sorting signed permutations by reversals. Journal of the ACM,
46(1):1–27, Jan. 1999.

10. D. Sankoff and N. El-Mabrouk. Genome rearrangement. In T. Jiang, Y. Xu, and
M. Q. Zhang, editors, Current Topics in Computational Molecular Biology. The
MIT Press, 2002.

11. D. Shapira and J. A. Storer. Edit distance with move operations. In 13th Sympo-
sium on Combinatorial Pattern Matching (CPM), 2002.

12. G. A. Watterson, W. J. Ewens, T. E. Hall, and A. Morgan. The chromosome
inversion problem. Journal of Theoretical Biology, 99:1–7, 1982.

On the Complexity of Network Synchronization

Darin Goldstein1 and Kojiro Kobayashi2

1 Department of Computer Engineering and Computer Science,
California State University, Long Beach

daring@cecs.csulb.edu
2 Department of Information Systems Science,

Soka University
kobayasi@t.soka.ac.jp

Abstract. We show that if a minimal-time solution to a fundamen-
tal distributed computation primitive, synchronizing a network path of
finite-state processors, exists on the three-dimensional, undirected grid,
then we can conclude the purely complexity-theoretic result P = NP .

Every previous result on network synchronization for various network
topologies either demonstrates the existence of fast synchronization so-
lutions or proves that a synchronization solution cannot exist at all. To
date, it is unknown whether there is a network topology for which there
exists a synchronization solution but for which no minimal-time synchro-
nization solution exists. Under the assumption that P �= NP , this paper
solves this longstanding open problem in the affirmative.

1 Introduction

The Firing Squad Synchronization Problem (or FSSP, for short) is a famous
problem originally posed almost half a century ago. A prisoner is about to be
executed by firing squad. The firing squad is made up of soldiers who have
formed up in a straight line with muskets aimed at the prisoner. The general
stands on the left side of the line, ready to give the order, but he knows that he
can only communicate with the soldier to his right. In fact, each soldier can only
communicate with the soldier to his immediate left and/or right, but nobody
else. Soldiers have limited memory and can only pass along simple instructions.
Is it possible to come up with a protocol, independent of the size of the line, for
getting all of the soldiers to fire at the prisoner simultaneously if their only means
of communication are small, whispered instructions only to adjacent soldiers?
(The possibility of counting the number of soldiers in the line can be discounted
because no soldier can remember such a potentially large amount of information;
each soldier can only remember messages that are independent of the size of the
line.)

The problem itself is interesting as a mathematical puzzle. More importantly,
there are also applications to the synchronization of small, fast processors in large
networks. In the literature on the subject (e.g. [18, 12]), the problem has been re-
ferred to as “macrosynchronization given microsynchronization” and “realizing

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 496–507, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

On the Complexity of Network Synchronization 497

global synchronization using only local information exchange.” The synchroniza-
tion of multiple small but fast processors in general networks is a fundamental
problem of parallel processing and a computing primitive of distributed compu-
tation.

The FSSP has a rich history; solutions to various subproblems have been
discovered over a period of decades. J. Mazoyer provides an overview of the
problem (up to 1986, at least) in addition to some of its history in [15]. We
summarize the history here. J. Myhill introduced the problem in 1957, though
the first published reference is [17] from 1962. J. McCarthy and M. Minsky
first solved the problem for the bidirectional line (as described above) in [16].
Later, the problem was considered for directed networks of automata. Honda
and Nishitani[7] and Kobayashi[10] solved the FSSP for specific subtypes of
networks, the directed ring– that is, a firing squad in the shape of a circle with
the caveat that soldiers may only listen to the man on their left and speak to
the man on their right– and the “ring-of-trees” – that is, networks which include
a loop, containing the root, whose length is at least as great as the maximum
distance from the root to any processor. Even, Litman, and Winkler[3] used
this, and their invention of network-traversing “snakes” to create a protocol that
would fire any strongly-connected directed network in O(N2) time. Ostrovsky
and Wilkerson[18] were able to improve this to O(ND) (where D refers to the
diameter of the network) in 1995, which remains the best today.

Results in the area of network synchronization tend to mainly focus on in-
troducing solutions for various network topologies and improvements in running
time for these solutions. For example, after an exponential-time algorithm for
firing the arbitrary directed network was discovered, Even, Litman, and Winkler
in [3] were the first to show that a polynomial-time solution exists for the general
directed network; Ostrovsky and Wilkerson [18] then proposed an improvement
which reduced that running time. To the author’s knowledge, there are only a
couple of “lower bound” results in the literature. The first is an impossibility
result for the specific topology in which processors may have unbounded fan-out
from any given out-port (proved in [11]); there cannot exist any solution at all
for this particular topology. Additionally, a result by T. Jiang in [9, 8] indicates
that there can be no solution for the case where there are multiple generals
(root nodes) in the network. It has been a longstanding open problem to deter-
mine whether there is a network topology for which a synchronization solution is
known to exist but a minimal-time synchronization solution provably does not
exist. After many years, the contribution of this paper is to finally answer this
question in the affirmative under the assumption that P �= NP .

1.1 The Model

As mentioned previously, we wish to model the operation of a large network
of processors whose computations are all governed synchronously by the same
global clock. The model is intended to mathematically abstract a physical switch-
ing network or a very large-scale parallel processing machine. The processors are
designed to be small, fast, and unable to access large memory caches. Each pro-

498 D. Goldstein and K. Kobayashi

cessor is identical and assumed to have a fixed constant number of ports which
can both send and receive a constant amount of data per clock cycle. (“Constant”
quantities must be independent of the size and topology of the network.)

More formally, the problem is to construct a deterministic finite-state au-
tomaton with a transition function that satisfies certain conditions. We assume
that each processor in the network is identical and initially in a special “qui-
escent” state, in which, at each time-step, the processor sends a “blank” char-
acter through all of its ports. A processor remains in the quiescent state until
a non-blank character is received by one of its in-ports. We consider connected
networks of such identical synchronous finite-state automata with vertex degree
uniformly bounded by a constant. These automata are meant to model very
small, fast processors. The network itself may have a specific topology (see be-
low) but potentially unbounded size. The network is formed by connecting ports
of a given automaton to those of other automata with wires. Not all ports of a
given automaton need necessarily be connected to other automata. The network
has a global clock, the pulses between which each processor performs its com-
putations. Processors synchronously, within a single global clock pulse, perform
the following actions in order: read in the inputs from each of their ports, pro-
cess their individual state changes, and prepare and broadcast their outputs. As
mentioned, our network structure is specifically designed to model the practical
situation of many small and fast processors performing a synchronous distributed
computation. The goal of the protocol is to cause every process in the network
to enter the same special “firing” state for the first time simultaneously.

A solution A for a given network topology (e.g. the bidirectional line, as
above) is defined to be the instantiation of an automaton with a transition
function that satisfies the firing conditions outlined above for any network size.
(So, by this definition, a solution for the bidirectional line must function for
a bidirectional line of any size.) Assuming a solution A is specified, the firing
time of A on a given network will refer to the number of clock cycles it takes
for this network of processors programmed with the solution A to complete the
protocol and simultaneously fire. The minimum firing time of a given network (of
a specified topology) will refer to the minimum over all solutions A of the firing
time of the network of processors programmed with solution A. A minimal -time
solution Amin for a given network topology will be a solution such that the firing
time for a network of any given size (with the given topology) programmed with
the algorithm Amin will equal the minimum firing time of the network. Note
that even though the network can be of arbitrary size, the size of the algorithm
Amin must be fixed.

1.2 Further Background and Paper Outline

Kobayashi [12] has an outline of the current research situation of minimal-time
solutions to the synchronization problem for various increasingly difficult net-
work topologies. Currently, of Kobayashi’s ten variations (lowest to highest indi-
cating “easiest” to “hardest”), 1 through 5 have provably minimal-time solutions,
and it has been shown that no solution at all can exist for variation 10. Though

On the Complexity of Network Synchronization 499

variations 6 through 9 are known to have solutions, the problem of whether
minimal-time solutions exist are considered open problems.

The purpose of this paper is to prove the following Theorem.

Theorem 1. If P �= NP , then there does not exist a minimal-time solution
to FSSP for the network topology introduced below as Variation 71

2 , the direct
three-dimensional analogue of Kobayashi’s Variation 7 from [12].

Note that, by this Theorem, the straightforward complexity-theoretic state-
ment P �= NP implies a result about the absence of minimal-time solutions (i.e.
instantiations of automata) for synchronization, two seemingly unconnected sub-
jects. Or, equivalently, the existence of a minimal-time solution for a distributed
computation synchronization primitive implies the purely complexity-theoretic
result P = NP .

In order to prove this theorem, we need to define the three-dimensional equiv-
alent to a problem proposed in [12, 13], the three-dimensional path extension
problem (or 3-PEP), which we define rigorously below in Section 3. The proof
proceeds in steps as follows.

1. We show that a minimal-time solution for FSSP on variation 71
2 implies

that there exists a deterministic Turing machine that can solve the problem
3-PEP in polynomial time.

2. We prove that if 3 − PEP ∈ P , then two simpler versions of the 3-PEP
problem, 1CUBE and 2CUBE, are also solvable in polynomial time.

3. Given the result in Step 2, we show that 3 − PEP ∈ P → HAM ∈ P
where HAM represents a restricted NP-complete version of the Hamilton
Path Problem.

Aside from being theoretically interesting, this result is important to the field
of parallel processing, as fast network processor synchronization is a fundamental
computing primitive. Indeed, decades of research have focused on extending the
network topologies for which there exist solutions [3, 7, 10, 18], minimizing the
time- and space-complexity [6, 14, 19, 20], and even proving the asymptotic time-
equivalence of a number of other common network problems to FSSP [5].

The rest of the paper is organized as follows. In Section 2, we rigorously
define our new variation 71

2 . In Section 3, we outline the proofs of Steps 1, 2,
and 3.

2 Variation 71
2

In this section, we will introduce the new network topology that will interest
us for the rest of the paper. We will refer to this as variation 71

2 because it is
slightly more difficult than Kobayashi’s variation 7 but not quite as general as
variation 8.

We can place a processor on any point (x1, x2, x3) ∈ Z3 in the three-
dimensional grid. We say that two processors in positions (x1, x2, x3) and

500 D. Goldstein and K. Kobayashi

(y1, y2, y3) are adjacent if and only if |xi − yi| = 1 for exactly one value of i
and ∀j �= i, xj = yj . Note that processors have 6 available ports for adjacent
processors: North, South, East, West, Up, and Down.

We can abstract this type of network by a three-dimensional orthogonal grid
graph in which certain vertices are marked. Each marked vertex corresponds
to the position of a processor, and each edge correspond to a bidirectional link
between processor ports. Mathematically, the processors are abstracted by iden-
tical finite-state automata. At the outset, each automaton except a single, unique
root, the beginning of the path, is in the quiescent state Q. Q is a special “sleep-
ing” state: an automaton in the state Q does not send any messages and can
become non-quiescent only if it receives a message from one of its ports. The
root is the automaton that is initially non-quiescent. Its purpose is to begin the
algorithm. (Intuitively, the root has the job of the “general.”)

Definition 1 (Variation 71
2): We define a path in the infinite three-dimensional

orthogonal grid Z3 as follows. A path is a sequence of distinct vertices p1,
p2, . . . , pn ∈ Z3 that satisfy the following properties. For any 1 ≤ i < n, pi

is adjacent to pi+1. With the exception of p1 and pn, all vertices in the path
must have exactly two adjacent vertices. p1 and pn must have exactly one ad-
jacent vertex each. The root processor must be placed at p1. If two processors are
placed in adjacent positions, we assume that the adjacent port is connected by a
bidirectional wire; only adjacent processors can be connected.

This definition corresponds to the intuitive definition of a self-avoiding net-
work path in three-dimensions. A solution to this variation of the FSSP trivially
exists because solutions have been found for arbitrary undirected (and directed)
networks. The same solutions will function on this sub-variation, just not in
minimal-time.

3 The Results

In this section, we will outline Steps 1, 2, and 3 of the proof of Theorem 1.

3.1 A Minimal-Time Solution to Variation 71
2 Implies 3−PEP ∈ P

This section will be devoted to Step 1 of the proof of Theorem 1. First, we need
to define the problem 3-PEP.

Definition 2 (3-PEP): A problem instance will be a path as in Definition 1.
We assume that p1 = (0, 0, 0) and represent a path as a sequence of directions:
North, South, East, West, Up, and Down. The decision problem 3 − PEP is:
Is it possible to extend the given path instance from the endpoint to double its
length (and still remain a path as in Definition 1) or not?

This is precisely the three-dimensional analogue of the two-dimensional path
problem presented in [12, 13].

On the Complexity of Network Synchronization 501

We also define the problems 1CUBE and 2CUBE though they will not be
used until Section 3.2.

Definition 3 (1CUBE): A problem instance will be a number n represented in
unary1 and a positive integer K. The decision problem 1CUBE is: Does an
n × n × n cube in Z3 admit an avoiding2 path (as in Definition 1) of length at
least K that starts at the middle of the top face and extends inside the cube?
(If n is odd, we adjust the definition of “middle” appropriately. Obviously, by
symmetry, it makes no difference which face the path enters from.)

Definition 4 (2CUBE): A problem instance will be a number n represented
in unary and a positive integer K. The decision problem 2CUBE is: Does an
n × n × n cube in Z3 admit an avoiding path (as in Definition 1) of length at
least K that starts and ends in the following specified positions? The path must
start at the middle of the top face, extend into the cube, and end at the middle
of a face adjacent to the top. (If n is odd, we adjust the definition of “middle”
appropriately. Again, by symmetry, it makes no difference which face the path
enters from as long as it leaves from an adjacent face.)

The proof that a minimal-time FSSP solution to variation 71
2 implies 3 −

PEP ∈ P is a direct three-dimensional adaptation of that given in [12, 13]. Due
to space constraints, we are unable to present a complete proof. For a thorough
treatment, we recommend consulting the stated references.

Theorem 2. (Step 1 in the proof of Theorem 1). If a minimal-time FSSP so-
lution to variation 71

2 exists, then 3− PEP ∈ P .

3.2 3−PEP ∈ P → 1CUBE ∈ P and 3−PEP ∈ P → 2CUBE ∈ P

In this section, we complete Step 2 of Theorem 1.
Before proceeding to the statement of Theorem 3, we need to take note of

the following fact. Paths can, in many cases, carve out “solid” structures; we
recommend glancing at Figure 1 for the rough definitions of the basic building
blocks we will use.

Theorem 3. 3−PEP ∈ P → 1CUBE ∈ P and 3−PEP ∈ P → 2CUBE ∈ P

Due to space constraints, we omit the proof of this theorem. Note that because
the 1CUBE and 2CUBE decision problems are solvable in polynomial time, it

1 The reason we represent the number n in unary here and below in Definition 4 is
that we wish to be able to construct the cube in Z3 as a polynomial-time part of the
problem instance. Note that in Definition 2, the path is also explicitly constructed.

2 The term avoiding refers to the fact that the path must not only avoid itself but the
walls of the cube as well. The path is not allowed to become adjacent to any wall.
We assume that the opening in the cube is just large enough to accept a single path
entry that manages to avoid the walls, an opening of edge length 4 × 4. We use this
term in the same manner in Definition 4.

502 D. Goldstein and K. Kobayashi

is trivial to construct a polynomial time algorithm to determine the length of
the longest path that enters an n×n×n cube once through the middle of a face
and remains inside and a polynomial time algorithm for determining the length
of the longest path completely enclosed by the n × n × n cube that is required
to begin at the “entrance” and end at the “exit”.

3.3 3 − PEP ∈ P → HAM ∈ P

In this section, we will justify Step 3 in the proof of Theorem 1.
In order to do so, we need to introduce an operation on graphs in Z3 called

a blow-up by a factor of k. The idea behind this operation is simple. We apply
the linear map (x1, x2, x3) �→ (kx1, kx2, kx3) to every point in Z3. Note that the
blow-up operation preserves slopes of lines, but increases distances by a factor
of k.

Theorem 4 (Step 3 in the proof of Theorem 1). Let HAM be the fol-
lowing special case of the Hamilton Path Problem. As stated in [4], the Hamilton
Path Problem [GT39] remains NP-complete under the assumption that the graph
G is planar, cubic, 3-connected, and has no face with fewer than 5 edges. (We
will not need these latter two properties.) Then we have the following result:
3− PEP ∈ P → HAM ∈ P

Proof Sketch. Assume that we are given a planar, cubic graph G and that
3 − PEP ∈ P . We first choose two vertices in G, vstart and vend, and remove
two edges from each vertex, leaving only one edge remaining per vertex. These
vertices will correspond to the start and end of a potential Hamilton Path in the
graph G. Call the new graph G′.

Our first nontrivial goal will be to illustrate how it is possible to build a
three-dimensional connected structure out of a single path that has the same
connectivity properties as G′. The structure will contain an “inside” and an
“outside” such that a path originating on the inside of the structure cannot
possibly make it to the outside and vice versa. The beginning of the path (root)
will be required to be outside the structure and the end of the path will be inside
the structure. We will then show how it is possible to solve the Hamilton Path
Problem on G utilizing a solution to the 3− PEP problem.

A integer-grid straight-line drawing of a planar graph G is an embedding of
G in the two-dimensional integer grid such that the vertices of G are grid points
and the edges of G are non-crossing straight lines. In [2, 1], it is shown how an
n-vertex planar graph can be embedded as an integer grid straight-line drawing
into the plane in O(n2) space and polynomial time. Embed the graph G′ in the
xy plane (i.e. z = 0) in Z3 in this way.

In the following discussion, we will assume that n is large enough to dwarf
all constants hidden by the asymptotic notation.

We now have a planar graph in Z3 with no crossing edges. Blow-up Z3 by a
factor of n5. Note that, by elementary geometry, any vertex or line without an
endpoint at v must have been at least distance Ω(1

n) from v before the blow-
up. Blow-ups increase distances by factors. Thus, for any vertex v, we can be

On the Complexity of Network Synchronization 503

Fig. 1. This figure illustrates some of the simple building blocks we will use to create
the more complicated structures below. The leftmost picture is a closed wall formed by
a single path. Note that even though there is not a solid mass of vertices, a continuation
of the path could not possibly pass through the wall, as it would violate the definition
of a path (Definition 1). In the center is an “open” wall. Note that because the height
of the hole in the center is 6 edges tall and 4 edges wide, it is possible for the path to
pass through the center of this structure without violating any path properties. Finally,
the rightmost picture is an illustration of a “one-way street.” Note that, if necessary,
the path could potentially pass through the dead center of the 4 edge by 4 edge cross-
section of the passage without being adjacent to any other processors. However, the
path could only pass through once (i.e. in a single direction)

guaranteed that all other vertices and lines without an endpoint at v are at least
a distance Ω(n4) from v. Around each vertex v, we can draw the following figure:
(a) an “inner” 3D cube with v at the center, two 4 × 4 openings on adjacent
sides, and with edge size Θ(n3) and (b) a “surrounding” 3D cube with v at the
center, three 4 × 4 openings on adjacent sides (i.e. all sides having an opening
meet at a single vertex), and with edge size Θ(1) larger than the first cube.
(The outer cubes of vstart and vend will only have one opening each.) To form
each cube, we make use of our building blocks from Figure 1. The formation of
a small surrounding cube can be seen in Figure 3. We are guaranteed that no
surrounding cube comes within a distance of Ω(n4) of any other surrounding
cube. Once the cubes have been drawn, delete the vertex v. (In other words, we
are replacing vertices with cubes.)

At this point, we have a three-dimensional situation in which the vertices
are represented by two large cubes, one inside the other, and are connected by
straight line segments. We now concentrate on replacing the edges of the original
straight-line drawing with three-dimensional structures. Our goal is to replace
the straight lines that would otherwise enter the vertices with three-dimensional
one-way streets. See Figure 2. Of course, these straight line segments do not
necessarily proceed along a rectilinear path, as the three-dimensional one-way
paths do, and we are therefore required to use the third dimension: If a one-way
path needs to make a rectilinear turn, we simply direct it into a small Θ(1)-sized

504 D. Goldstein and K. Kobayashi

Fig. 2. This figure illustrates the connection of an open cube face via a one-way street,
one of the building blocks in Figure 1. Note that the one-way street stops at a distance
of 2 units away from the face of the cube. If there were a cube connector passing down
the front of the cube face, it would have to make a detour around the one-way street
so as not to interfere. Placing a one-way street at the entrance of a cube forces the 6
by 4 entrance to also be one-way

Fig. 3. This figure illustrates the formation of a cube using two of the building blocks
(closed and open walls) from Figure 1. Notice the opening in the front face (made
from the open wall, first picture). We can make an opening in any face of the cube
in this way. We have made openings in the front, right, and bottom faces of the cube
(second picture). The back, left, and top faces are all closed, completing the final cube
(third picture). Note also that connectors are necessary between the faces; this entire
structure is made from a single path. The path begins at the top of the front face
and ends at the top of the left side. In the bottom two pictures, we emphasize the
connectors by whiting out the left, back, and top walls and displaying the resulting
half-cube from different angles. Obviously, much larger cubes are possible using the
same basic structures. Note that the connectors make detours around the openings in
the cube on the right and bottom so that one-way streets can fit on the openings

On the Complexity of Network Synchronization 505

box3 and open a second face of the box in the direction that we wish to turn,
continuing a second one-way path out of this new opening. We replace every
straight line segment by an appropriate string of one-way streets that turn as
necessary.

In order to make the new three-dimensional structure have the same connec-
tivity properties as G′, we need to guarantee that all one-way streets are able
to enter and leave the appropriate cubes without crossing or interfering with
the rest of the structure. Recall that the original graph G′ was embedded in the
xy plane in Z3. Number each of the O(n2) edges of G′. Note that if we pro-
ceed upwards in the z direction, after Θ(n3) distance (the maximum distance
that any cube stretches outwards), the space is structure-free. Assign each edge
a unique space in which to maneuver from cube to cube. Let the edge size of
the “turn” box for the one-way streets be cturn = Θ(1). Edge i will receive the
grid space between (cturn + 4) ∗ i + Θ(n3) and (cturn + 4) ∗ (i + 1) + Θ(n3) in
the z direction. (i.e. Edge i receives all grid points of the form (x, y, z) where
(cturn + 4) ∗ i + Θ(n3) ≤ z < (cturn + 4) ∗ (i + 1) + Θ(n3).) To connect Cubes A
and B with one-way streets: upon leaving Cube A, we simply make a turn di-
rectly upwards (if necessary), move to the appropriate maneuver space, proceed
to the spot above Cube B using only at most 2 more turns, turn downwards
towards Cube B, and then turn towards Cube B (if necessary) to enter. In this
way, the new three-dimensional graph has the same connectivity properties as
the original graph G′.

At this point, we have a three-dimensional structure that is broken into many
separate pieces. We connect these pieces into one long path by connecting the
beginning of one structure with the end of the next structure. Let the end of the
path terminate at the one of the holes of the inner cube of vstart, forcing any
extension into the cube. We now have a connected three-dimensional structure
G′

3D that represents the graph G′ in three-dimensions, where the vertices are
large cubes, edges are three-dimensional one-way streets, and the entire structure
is drawn with a single path originating outside the structure and terminating in
such a way that any extension must continue inside the structure.

We now examine the structure G′
3D. Because 3−PEP ∈ P by assumption, we

know from Theorem 3 that 1CUBE ∈ P and 2CUBE ∈ P . By the subsequent
remarks, we can determine the maximum path length that a given cube of either
type admits in polynomial time in n. Let this maximum path length be L1(n)
for a one-holed inner cube and L2(n) for a two-holed inner cube. Both quantities
are clearly Θ(n9).

Because the path originates outside the structure G′
3D we have formed, we

can extend the beginning (the root) out as far as we like. Extend the beginning
of the path so that the length of the path structure G′

3D ends up being (n −

3 Terminology: Note that a “box” is used for a turn and are always constant-sized.
“Cubes” are the structures that replaced the vertices above and all have edge size
Θ(n3). We use to different words to distinguish between these two even though both
shapes are the same; their size and utility are different.

506 D. Goldstein and K. Kobayashi

1)L2(n)+L1(n)−�L2(n)
2 �. We then ask the following question (3-PEP): Can we

extend the path given by G′
3D to double its length? (i.e. Can we extend G′

3D

by length at least (n − 1)L2(n) + L1(n) − �L2(n)
2 � and still have the resulting

structure satisfy the properties for a path in Definition 1?)
We claim that there exists two vertices vstart and vend and two removed edges

per vertex such that the answer to this question for G′
3D is YES if and only if a

Hamilton path exists in the graph G.
There are two cases to consider.

1. Assume that there is a Hamilton path in the graph G that starts at vstart,
uses the edge from vstart that was not removed, and terminates at vend via
the single edge not removed. Then G′

3D has a path extension that enters and
exits exactly n− 1 inner cubes and enters and remain inside one additional
inner cube. The length of this path extension is at least (n−1)L2(n)+L1(n)
and is therefore greater than (n− 1)L2(n) + L1(n)− �L2(n)

2 �.
2. Assume that there is NOT a Hamilton path in the graph G that starts at

vstart, uses the edge from vstart that was not removed, and terminates at
vend via the single edge not removed. In this case, because the graph is cubic,
any path in G′ that visits every vertex must start at vstart, end at vend, and
traverse at least one edge more than once. To see this, assume the contrary.
Obviously there cannot exists a vertex other than vstart and vend that uti-
lizes only one of its edges. If every vertex other than these two uses exactly
two edges, then we have a Hamilton path. Thus, there must exist at least
one vertex that uses exactly three edges. But this is also clearly impossible.

Because our construction specifically forbids this, a maximal path exten-
sion cannot possibly visit every cube. Consider an extension to G′

3D that
does not enter every inner cube in the drawing. The total length of all of the
“one-way street” edges is at most O(n8) because there are at most O(n2)
edges, each of which has “length” at most O(n6). If we skip at least one
cube, then the most the path can be is (n − 2)L2(n) + L1(n) + O(n8) <

(n− 1)L2(n) + L1(n)− �L2(n)
2 �.

We need to check each possibility for combinations of edge removals, a poly-
nomial number in n. If a single one gets a YES result, then the answer to HAM
is YES. Otherwise, the answer is NO.

�

References

1. H. de Fraysseix, J. Pach, and R. Pollack. Small sets supporting straight-line em-
beddings of planar graph. In Proc. of the 20th Annual ACM Symp. on Theory of
Computing, pages 426–433, 1988.

2. H. de Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on a grid.
Combinatorica, 10:41–51, 1990.

3. S. Even, A. Litman, and P. Winkler. Computing with snakes in directed networks
of automata. J. Algorithms, 24(1):158–170, 1997.

On the Complexity of Network Synchronization 507

4. M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, New York, 1979.

5. D. Goldstein and N. Meyer. The wake up and report problem is asymptotically
time-equivalent to the firing squad synchronization problem. In Proceedings of the
Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 578–587,
San Francisco, CA, 6–8 January 2002.

6. E. Goto. A minimal time solution of the firing squad problem. Course Notes for
Applied Mathematics 298, Harvard University, pages 52–59, 1962.

7. N. Honda and Y. Nishitani. The firing squad synchronization problem for graphs.
Theoretical Computer Science, 14(1):39–61, 1981.

8. T. Jiang. The synchronization of nonuniform networks of finite automata. In
Proc. of the 30th Annual ACM Symp. on Foundations of Computer Science, pages
376–381, 1989.

9. T. Jiang. The synchronization of nonuniform networks of finite automata. Infor-
mation and Computation, 97:234–261, 1992.

10. K. Kobayashi. The firing squad synchronization problems for a class of polyau-
tomata networks. J. Comput. System Sci., 17(3):300–318, 1978.

11. K. Kobayashi. On the minimal firing time of the firing squad synchronization
problem for polyautomata networks. Theoretical Computer Science, 7:149–167,
1978.

12. K. Kobayashi. A complexity-theoretical approach to the firing squad synchroniza-
tion problem. In Proceedings of JIM ’99 (Journée de l’Informatique Messine (Days
of Metz Informatics)), “NP-Completeness and Parallelism”, Metz University, In-
stitute of Technology, 17–18 May 1999.

13. K. Kobayashi. On time optimal solutions of the firing squad synchronization prob-
lem for two-dimensional paths. Theoretical Computer Science, 259:129–143, 28 May
2001.

14. J. Mazoyer. A six states minimal time solution to the firing squad synchronization
problem. Theoretical Computer Science, 50:183–238, 1987.

15. J. Mazoyer. An overview of the firing synchronization problem. In Automata
Networks, LITP Spring School on Theoretical Computer Science, Angelès-Village,
France, May 12-16, 1986, Proceedings, volume 316 of Lecture Notes in Computer
Science. Springer, 1988.

16. M. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, Englewood
Cliffs, NJ, 1967.

17. E. F. Moore. Sequential Machines, Selected Papers. Addison Wesley, Reading,
MA, 1962.

18. R. Ostrovsky and D. Wilkerson. Faster computation on directed networks of au-
tomata. In Proceedings of the Fourteenth Annual ACM Symposium on Principles
of Distributed Computing, pages 38–46, Ottawa, Ontario, Canada, 2–23 August
1995.

19. A. Waksman. An optimum solution to the firing squad synchronization problem.
Information and Control, 9:66–78, 1966.

20. J.-B. Yunes. Seven states solutions to the firing squad synchronization problem.
Theoretical Computer Science, 127(2):313–332, 1993.

Counting Spanning Trees and Other Structures
in Non-constant-jump Circulant Graphs�

(Extended Abstract)

Mordecai J. Golin, Yiu Cho Leung, and Yajun Wang

Department of Computer Science, HKUST, Clear Water Bay,
Kowloon, Hong Kong

{golin, cho, yalding}@cs.ust.hk

Abstract. Circulant graphs are an extremely well-studied subclass of
regular graphs, partially because they model many practical computer
network topologies. It has long been known that the number of spanning
trees in n-node circulant graphs with constant jumps satisfies a recur-
rence relation in n. For the non-constant-jump case, i.e., where some
jump sizes can be functions of the graph size, only a few special cases
such as the Möbius ladder had been studied but no general results were
known.

In this note we show how that the number of spanning trees for all
classes of n node circulant graphs satisfies a recurrence relation in n
even when the jumps are non-constant (but linear) in the graph size.
The technique developed is very general and can be used to show that
many other structures of these circulant graphs, e.g., number of Hamil-
tonian Cycles, Eulerian Cycles, Eulerian Orientations, etc., also satisfy
recurrence relations.

The technique presented for deriving the recurrence relations is very
mechanical and, for circulant graphs with small jump parameters, can
easily be quickly implemented on a computer. We illustrate this by de-
riving recurrence relations counting all of the structures listed above for
various circulant graphs.

1 Introduction

The purpose of this note is to develop techniques for counting structures, e.g.,
Spanning Trees, Hamiltonian Cycles, Eulerian Cycles, Eulerian Orientations,
Matchings, etc., in circulant graphs with non-constant jumps. We start off by
defining circulant graphs and reviewing the large literature on counting spanning
trees in constant-jump circulant graphs and then the much lesser literature on
counting spanning trees in non-constant-jump ones.

� The work of the first two authors was partially supported by HK CERG grants
HKUST6162/00E, HKUST6082/01E and HKUST6206/02E. The third author was
partially supported by HK CERG grant HKUST 6190/02E.

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 508–521, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Counting Spanning Trees and Other Structures 509

Definition 1. The n-node undirected circulant graph with jumps s1, s2, . . . sk,
is denoted by Cs1,s2,···,sk

n . This is the regular graph with n vertices labelled
{0, 1, 2, · · · , n− 1}, such that each vertex i (0 ≤ i ≤ n− 1) is adjacent to the
vertices i± s1, i± s2, · · · , i± sk mod n. Formally, Cs1,s2,...,sk

n = (V (n), EC(n))
where

V (n) = {0, 1, . . . , n− 1} and EC(n) =
{
{i, j} : i− j mod n ∈ {s1, s2, . . . , sk}

}
.

The simplest circulant graph is the n vertex cycle C1
n. The next simplest

is the square of the cycle C1,2
n in which every vertex is connected to its two

neighbors and neighbor’s neighbors. The lefthand sides of figures 1, 2 and 3
illustrate various circulant graphs. Circulant graphs (sometimes known as “loop
networks”) are very well studied structures, in part because they model practical
data connection networks [12, 3].

One frequently studied parameter of circulant graphs is the number of span-
ning trees they have. For connected graph G, T (G) denotes the number of span-
ning trees in G. T (G) is a examined both for its own sake and because it has
practical implications for network reliability, e.g., [8, 9]. For any fixed graph G,
Kirchhoff’s Matrix-Tree Theorem [13] efficiently permits calculating T (G) by
evaluating a co-factor of the Kirchoff matrix of G (this essentially calculates the
determinant of a matrix related to the adjacency matrix of G.) The interesting
problem, then, is not in calculating the number of spanning trees in a partic-
ular graph, but in calculating the number of spanning trees as a function of a
parameter, in graphs chosen from classes defined by a parameter.

The first result in this area for circulant graphs was the fact that T (C1,2
n) =

nF 2
n , Fn the Fibonacci numbers, i.e., Fn = Fn−1 + Fn−2 with F1 = F2 = 1.

This result, originally conjectured by Bedrosian [2] was subsequently proven by
Kleitman and Golden [14]. (The same formula was also conjectured by Boesch
and Wang [5] without knowledge of [14].)

Later proofs of T (C1,2
n) = nF 2

n , and analyses of T (Cs1,s2,···,sk
n) as a function

of n for special fixed values of s1, s2, · · · , sk can be found in [1, 21, 6, 24, 19, 23]. A
general result due to [21] and later [25] is that, for any fixed, constant 1 ≤ s1 <
s2 < · · · < sk, T (Cs1,s2,···,sk

n) satisfies a constant coefficient linear recurrence
relation of order 22sk−2 − 1.

Knowing the existence and order of the recurrence relation permits explicitly
constructing it by using Kirchoff’s theorem to evaluate T (Cs1,s2,···,sk

n) for enough
values of n to solve for the coefficients of the recurrence relation.

With the exception of [14], which was a combinatorial proof using techniques
very specific to the C1,2

n case, all of the results above were algebraic. That is
they all worked by evaluating the co-factor of the Kirchoff matrix of the graphs.
These co-factors could be expressed in terms of the eigenvalues of the adjacency
matrices of the circulant graphs and the eigenvalues of these adjacency matrices
(also known as circulant matrices) are well known [4]. All of the results men-
tioned took advantage of these facts and essentially consisted of clever algebraic
manipulations of these known terms. The recurrence relations for T (Cs1,s2,···,sk

n)

510 M.J. Golin, Y.C. Leung, and Y. Wang

0

1

2

3

4

5

0

0,0

1

0,1

2

0,2

3

1,0
4

1,1
5

1,2

0

1 2

3

4

56

7

0

0,0

1

0,1

2

0,2

3

0,3

4

1,0
5

1,1
6

1,2
7

1,3

Fig. 1. The Möbius ladder C1,n
2n for n = 3, 4 drawn in both circulant form and lattice

form. The solid edges in the figures on the right are L1,2
n . The dashed edges are EC(n)−

EL(n). The bold edges are EL(n) − EL(n − 1). The diamond vertices are L(n) while
the square vertices are R(n)

popped out of these manipulations but did not possess any explicit combinatorial
meaning.

In a recent paper [11] two of the authors of this note introduced a new
technique, unhooking, for counting spanning trees in circulant graphs with con-
stant jumps. This technique was purely combinatorial and therefore permitted
a combinatorial derivation of the recurrence relations on T (Cs1,s2,···,sk

n). It also
permitted deriving recurrence relations for the number of Hamiltonian Cycles,
Eulerian Cycles, Eulerian Orientations and other structures in circulant graphs
with constant jumps.

An open question in [11] was whether there was any general technique, com-
binatorial or otherwise, for counting structures in circulant graphs with non-
constant jumps, i.e., graphs in which the jumps are a function of the graph size.
The canonical example of such graphs is the Möbius ladder C1,n

2n . (See Figure 1;
Two other non-constant-jump circulant graphs, C1,n

3n and C1,n
3n+1, are illustrated

in Figures 2 and 3.) It is well known that

T
(
C1,n

2n

)
=
n

2

[(
2 +

√
3
)n

+
(
2−

√
3
)n

+ 2
]

(1)

According to [6] this result is due to [18]. Other proofs can be found in [15, 17]
(combinatorial) and [6] (algebraic). The combinatorial proofs are very specially
crafted for the Möbius ladder and do not seem generalizable to other circulant

Counting Spanning Trees and Other Structures 511

0

1

2
3

4

5

6
7

8

0
0,0

1
0,1

2
0,2

3
1,0

4
1,1

5
1,2

6
2,0

7
2,1

8
2,2

0

1

2
3

4

5

6

7

8
9

10

11

0
0,0

1
0,1

2
0,2

3
0,3

4
1,0

5
1,1

6
1,2

7
1,3

8
2,0

9
2,1

10
2,2

11
2,3

Fig. 2. C1,n
3n and L1,n

3n for n = 3, 4

graphs. The technique of [6] again consisted of using algebraic techniques, this
time clever manipulation of Chebyshev polynomials, to evaluate a co-factor of the
Kirchoff-Matrix. [10] showed how to push this Chebyshev polynomial technique
slightly further to count the number of spanning trees in a small number of very
special non-constant-jump circulant graphs.

The major result of this paper is a general technique for counting structures
in circulant graphs with non-constant linear jumps. More specifically,

Theorem 1. Let

A ∈ {Spanning Trees, Hamiltonian Cycles, Eulerian Cycles, Eulerian Orientations}

For graph G let A(G) be the set of A structures in G. Now let p, s, p1, p2, . . . , pk

and s1, s2, . . . , sk be fixed nonnegative integral constants such that ∀i, pi < p. Set

Cn = Cp1n+s1,p2n+s2,···,pkn+sk
pn+s

to be the circulant graph with pn+ s vertices and the given jumps. Set TA(n) =
|A(Cn)| to be the number of A structures in Cn. Then

TA(n) satisfies a linear recurrence relation with constant coefficients in n.

Note that if A is Spanning Trees, p = 1, s = 0 and ∀i, pi = 0 then this
collapses to the known fact [21, 25] that the number of spanning trees in circulant
graphs with constant jumps satisfies a recurrence relation.

512 M.J. Golin, Y.C. Leung, and Y. Wang

0

1

2

3 4 5

6

7

8

9

10

111213

14

15

0
0,0

1
0,1

2
0,2

3
0,3

4
0,4

5
1,0

6
1,1

7
1,2

8
1,3

9
1,4

10
2,0

11
2,1

12
2,2

13
2,3

14
2,4

15
2,5

0

1

2
3 4

5

6

7

8

910
11

12

0
0,0

1
0,1

2
0,2

3
0,3

4
1,0

5
1,1

6
1,2

7
1,3

8
2,0

9
2,1

10
2,2

11
2,3

12
2,4

All circulant graphs are shown in circulant form and lattice form. The solid edges in
the figures on the right are the corresponding lattice graphs. The dashed edges are
EC(n) − EL(n). The bold edges are EL(n) − EL(n − 1). The diamond vertices are
L(n) while the square vertices are R(n). Note that all edges in EC(n) − EL(n) are in
R(n)× L(n). Also note that all edges in EL(n+1)− EL(n) are in (R(n+1)− R(n))×
(R(n) ∪ R(n + 1)).

Fig. 3. C1,n
3n+1 and L1,n

3n+1 for n = 4, 5

The proof of Theorem 1 is “constructive”. That is, it shows how to build
such a recurrence relation. The construction is also mechanical; that is, it is
quite easy to program a computer to derive the recurrences. As examples, we
have calculated the recurrence relations for various graphs which are presented in
Table 1. We point out, though, that the main contribution of Theorem 1 is the
existence of such recurrence relations. The recurrence relations (and therefore
the construction) can grow exponentially in p, s and the si and can therefore
quickly become infeasible to implement.

Technically, the major contribution of this paper is a new representation of
non-constant-jump circulant graphs in terms of lattice graphs. This new repre-
sentation will permit using the machinery developed in [11] to derive recurrence
relations.

In the next section we introduce lattice graphs and describe how to represent
circulant graphs in terms of them. We also prove properties of lattice graphs
that will enable us to use them to derive recurrence relations on the number of
structures. In Section 3 we then use these properties to prove Theorem 1 when

Counting Spanning Trees and Other Structures 513

Table 1. Some sample results derived using Theorem 1. Note that for C1,n
2n , the Möbius

ladder, T (n) is equivalent to (1) and was already derived in [18, 15, 17, 6] while H(n)
was given in [15]. The other results in the table all new. Note that the number of
Eulerian Orientations and Cycles of the Möbius ladder was not calculated. This is
because, as a 3-regular graph, it does not have any Eulerian Orientations or Cycles

Cn Number of structures in Cn as function of n

Spanning trees

C1,n
2n

T(n) = 10T(n − 1) − 35T(n − 2) + 52T(n − 3) − 35T(n − 4)
+10T(n − 5) − T(n − 6)

with initial values 16, 81, 392, 1815, 8112, 35301 for n = 2, 3, 4, 5, 6, 7

C1,n
2n+1

T(n) = 16T(n − 1) − 80T(n − 2) + 130T(n − 3) − 80T(n − 4)
+16T(n − 5) − T(n − 6)

with initial values 125, 1183, 10404, 87131, 705757, 5581500
for n = 2, 3, 4, 5, 6, 7

C1,n
3n

T(n) = 58T(n − 1) − 1131T(n − 2) + 8700T(n − 3) − 29493T(n − 4)
+43734T(n − 5) − 29493T(n − 6) + 8700T(n − 7)
−1131T(n − 8) + 58T(n − 9) − T(n − 10)

with initial values 384, 12321, 371712, 10634460, 292771602,
7840133364, 205687578624, 5312055930723, 135495271297920,
3421537009450692 for n = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

Hamiltonian cycles

C1,n
2n

H(n) = H(n − 1) + H(n − 2) − H(n − 3) with initial values 3, 6, 5 for
n = 2, 3, 4

=
{

n + 1 n even
n + 3 n odd

C1,n
2n+1

H(n) = 3H(n − 1) − H(n − 2) − 2H(n − 3) + H(n − 5)
with initial values 12, 23, 41, 79, 158 for n = 2, 3, 4, 5, 6

Eulerian cycles

C1,n
3n

EC(n) = 47EC(n − 1) − 742EC(n − 2) + 4796EC(n − 3)
−13144EC(n − 4) + 12320EC(n − 5)

with initial values 372, 8924, 209228, 4798236, 108376972
for n = 2, 3, 4, 5, 6

Eulerian orientations

C1,n
3n

EO(n) = 7EO(n − 1) − 14EO(n − 2) + 8EO(n − 3)
with initial values 38, 142, 542 for n = 2, 3, 4

A is “Spanning Trees”. The proof is actually constructive; in the Appendix we
walk through this construction to rederive the number of spanning trees in C1,n

2n

as a function of n.

Note: In this extended abstract we only derive recurrence relations for the number
of Spanning Trees. Derivation of the number of Hamiltonian Cycles, Eulerian
Orientations and Eulerian Cycles is very similar but each derivation requires its
own set of parallel definitions, lemmas and proofs, tailored to the specific problem
being addressed. Due to lack of space in this extended abstract we therefore do
not address them here and leave them for the full paper.

514 M.J. Golin, Y.C. Leung, and Y. Wang

We finish this section by pointing out that counting the number of Hamil-
tonian Cycles, Eulerian Orientations and Eulerian Cycles in general undirected
graphs is, in a qualitative way, very different from counting the number of span-
ning trees. While the Kirchoff matrix technique provides a polynomial time al-
gorithm for counting the number of spanning trees, it is known that counting
Hamiltonian Cycles [20], Eulerian Orientations [16] and Eulerian Cycles [7] in
a general undirected graph is #P -complete. When the problem is restricted to
circulant graphs, with the exception of [15] which counts the number of Hamil-
tonian Cycles in the Möbius ladder and [22], which analyzes Hamiltonian cycles
in constant jump circulant digraphs with k = 2 we know of no results (other
than the previously mentioned [11]) counting these values.

2 Lattice Graphs

The major impediment to deriving recurrence relations relating the number of
structures in circulant graphs to the number of structures in smaller circulant
graphs is that it is difficult to see how to decompose Cn in terms of Cm where
m < n, i.e., big cycles can not be built from small cycles.

The main result for this section is a way of visualizing a circulant graph
Cn = Cp1n+s1,p2n+s2,···,pkn+sk

pn+s as a lattice graph Ln plus a constant number of
extra edges where the constant does not depend upon n.

The reason for taking this approach is that, unlike the circulant graph, the
lattice graphs are built recursively with Ln+1 being Ln with the addition of a
constant (independent of n) set of edges.

Before starting we will first have to rethink the way that we define circulant
graphs.

Definition 2. Let p, s, p1, p2, . . . , pk and s1, s2, . . . , sk be given nonnegative in-
tegral constants. For u, v and integer n, set f(n;u, v) = un+ v. Define

Ĉn =
(
V̂C(n), ÊC(n)

)
where

V̂ (n) = { (u, v) : 0 ≤ u ≤ p − 1, 0 ≤ v ≤ n − 1} ∪ { (p − 1, v) | n ≤ v ≤ n + s − 1}

ÊC(n) =
k⋃

i=1

{
{(u1, v1), (u2, v2)} : (u1, v1), (u2, v2) ∈ V̂ (n) and

f(n; u2, v2)−f(n; u1, v1)≡pin + si (mod pn + s)

}

Directly from the definition we see Ĉn is isomorphic to Cn =
Cp1n+s1,p2n+s2,···,pkn+sk

pn+s . Figures 1 2 and 3 illustrate this isomorphism; the graphs
on the left are the circulant graphs drawn in the normal way; the graphs on the
right, the new way, with node labelling showing the isomorphism.

Since the graphs are isomorphic, counting structures in Cn is equivalent to
counting structures in Ĉn. Therefore, for the rest of this paper we will replace Cn

by Ĉn. That is Cn will refer to Ĉn, V (n) to V̂ (n) and EC(n) to ÊC(n). Given
this new representation we can now define

Counting Spanning Trees and Other Structures 515

Definition 3 (Lattice Graphs). Let p, s, p1, p2, . . . , pk and s1, s2, . . . , sk be
given nonnegative integral constants. Define the Lattice Graph

Ln = Lp1n+s1,p2n+s2,···,pkn+sk
pn+s

to be the graph Ln = (V (n), EL(n)) where V (n) is the vertex set defined in
Definition 2 and

EL(n) =
k⋃

i=1

⎧⎨⎩{(u1, v1), (u2, v2)} : (u1, v1), (u2, v2) ∈ V̂ (n),
f(n; u2, v2)−f(n; u1, v1)≡pin + si (mod pn + s),
and u2 − u1 ≡ pi (mod p)

⎫⎬⎭
In Figures 1, 2 and 3 the solid edges in the graphs on the right form the

Lattice Graphs. By comparing the definition of EL(n) in this definition to that of
EC(n) = ÊC(n) given in Definition 2 we immediately have that EL(n) ⊆ EC(n).
Referring back to the examples in Figures 1, 2 and 3 again we see that the edges
in EC(n)−EL(n), the dashed edges, always seem to connect vertices on the left
(diamonds) with vertices on the right (squares). This simple observation will be
at the core of our analysis. We first need the following definition:

Definition 4. Set smax = max{s, s1, s2, · · · , sk}. Then

L(n) =
{

(u, v) : 0 ≤ u ≤ (p− 1), 0 ≤ v ≤ s+ smax − 1
}
, Left Vertices

R(n) =
{

(u, v) : 0 ≤ u ≤ (p− 1), v ≥ n− smax

}
, Right Vertices

In order to make our analysis work we will require that L(n)∩R(n) = ∅. To
ensure this we will, from now on, require that n > s+ 2smax − 1.

Suppose e = {(u1, v1), (u2, v2)} ∈ EC(n) is a jump pin + si from (u1, v1).
There are two cases:

1. The jump does not “cross” vertex (p− 1, n+ s− 1):

u2n+ v2 − (u1n+ v1) = pin+ si. (2)

If e ∈ EL(n), we have u2 − u1 = pi and v2 − v1 = si. If e ∈ EC(n)−EL(n),
because n > s + 2smax − 1, we will have v2 − v1 − si = (pi − u2 + u1)n, so
u2 − u1 = pi ± 1.

2. The jump crosses vertex (p− 1, n+ s− 1):

u2n+ v2 − (u1n+ v1) + pn+ s = pin+ si. (3)

If e ∈ EL(n), we have v2 − v1 + s = si and u2 − u1 + p = pi. If e ∈
EC(n) − EL(n), we have v2 − v1 + s − si = (pi − u2 + u1 − p)n, where
pi − u2 + u1 − p = ±1.

We can now prove a simple structural lemma on the relationship between
circulant graphs and lattice graphs:1

1 For sets A, B we use the notation A × B to denote {{a, b} : a ∈ A, b ∈ B}.

516 M.J. Golin, Y.C. Leung, and Y. Wang

Lemma 1. Given the above definitions

EC(n)− EL(n) ⊆ R(n)× L(n)

Furthermore, as functions of n, EC(n)− EL(n) is constant.

As examples of this lemma note that, for C1,n
2n (Figure 1)

EC(n)− EL(n) =
{
{(0, 0), (1, n− 1)}, {(1, 0), (0, n− 1)}

}
while for C1,n

3n+1 (Figure 3)

EC(n)−EL(n)=
{

{(0, 0), (2, n)}, {(1, 0), (0, n−1)}, {(2, 0), (2, n)}, {(2, 0), (1, n−1)}
}

Proof. Suppose edge e = {(u1, v1), (u2, v2)} ∈ EC(n) − EL(n). The analysis
above gives us |v2 − v1| ≥ n− smax. But on the other hand , from Definition 4,
if e /∈ L(n)×R(n), |v2 − v1| ≤ n− smax − 1. Thus e ∈ R(n)× L(n).

For the constant property, we show that the condition that an edge e =
{(u1, v1), (u2, n− v2)} ∈ EC(n)−EL(n) does not depend on n, where (u1, v1) ∈
L(n) and (u2, n− v2) ∈ R(n). Note that v2 can be negative and v1 ≤ s+ smax−
1, |v2| ≤ smax.

There are four cases:

1. e is a jump from (u1, v1) by pin+si and does not cross vertex (p−1, n+s−1):
We will have n± n− v1 − v2 = si. Because v1 ≤ s+ smax − 1, |v2| ≤ smax,
the ±n term must be −n, si + v1 + v2 = 0 and u2 − u1 = pi − 1. The fact
that e ∈ EC(n)− EL(n), is therefore independent of n.

2. e is a jump from (u1, v1) by pin+ si and crosses vertex (p− 1, n+ s− 1):
We will have n±n+s−v1−v2 = si. The ±n term must be −n, s−v1−v2 = si,
and pi − u2 + u1 − p = 1. The fact that e ∈ EC(n) − EL(n), is therefore
independent of n.

3. e is a jump from (u2, n− v2) and does not cross vertex (p− 1, n+ s− 1):
We have n± n+ v1 + v2 = si. The ±n term must be −n, v1 + v2 = si, and
u1−u2 = pi + 1. The fact that e ∈ EC(n)−EL(n), is therefore independent
of n.

4. e is a jump from (u− 2, n− v2) and crosses vertex (p− 1, n+ s− 1):
We have n±n+v1 +v2 +s = si. The ±n term must be −n, v1 +v2 +s = si,
and u1 − u2 + p = pi + 1. The fact that e ∈ EC(n) − EL(n), is therefore
independent of n.

All conditions above are independent of n. So the edge set EC(n)−EL(n) is
constant (independent of n).

We have just seen that Cn can be built from Ln using a constant set of edges.
We will now see that Ln+1 can also be built from Ln using a constant set of
edges.

Counting Spanning Trees and Other Structures 517

Lemma 2.

EL(n+ 1)− EL(n) ⊆ (R(n+ 1)−R(n))× (R(n) ∪R(n+ 1)).

Furthermore, as functions of n, the edge set EL(n+ 1)− EL(n) is constant.

As examples of this lemma note that, for C1,n
2n (Figure 1)

EL(n+ 1)−EL(n) =
{
{(0, n− 1), (0, n)}, {(1, n− 1), (1, n)}, {(0, n), (1, n)}

}
while for C1,n

3n+1 (Figure 3)

EL(n+ 1)− EL(n) =
{
{(0, n), (1, n)}, {(0, n− 1), (0, n)}, {(0, n), (2, n+ 1)}

, {(1, n− 1), (1, n)}, {(2, n), (2, n+ 1)}, {(1, n), (2, n)}
}

Proof. Equations (2),(3) do not depend on n when e = {(u1, v1), (u2, v2)} ∈
EL(n). Thus if e ∈ EL(n + 1) and both vertices of e are in VL(n), e ∈ EL(n).
So if e ∈ EL(n + 1)− E(n), e must contain one vertex in VL(n + 1)− VL(n) =
R(n + 1) − R(n). Furthermore we have |v2 − v1| ≤ smax from the equations,
which means the other node is in R(n) ∪R(n+ 1).

For the constant property, from Equations (2) and Equation (3), e(n) =
{(u1, n − v1), (u2, n − v2)} ∈ EL(n) does not depend on n. If e(n) ∈ EL(n) −
EL(n − 1), e(n) contains at least one vertex in R(n)− R(n − 1) which directly
implies that e(n + 1) contains one vertex in R(n + 1) − R(n). Thus e(n) ∈
EL(n)−EL(n− 1) does not depend on n. So EL(n+1)−EL(n) is constant.
�

3 Spanning Trees

In this section A objects are spanning trees and our problem is to count the num-
ber of spanning trees in Cn. Recall that, given a graph G = (V,E), a spanning
tree T ⊆ E is a subset of the edges that forms a connected acyclic graph.

Let p, s, p1, p2, . . . , pk and s1, s2, . . . , sk be given nonnegative integral con-
stants with ∀i, pi ≤ p. Set Cn = Cp1n+s1,p2n+s2,···,pkn+sk

pn+s to be the circular
graph, Ln = Lp1n+s1,p2n+s2,···,pkn+sk

pn+s to be the lattice graph, and T (n) = T (Cn)
to be the number of spanning trees in Cn.

In [11] tools were developed for constructing recurrence relations on struc-
tures of constant-jump circulant graphs. The difficulty in extending that result
to non-constant-jump circulants was the lack of some type of recursive decompo-
sition of non-constant-jump circulants. Given the Lattice graph representation
of circulant graphs of Lemma 1 and the recursive construction of Lattice graphs
implied by Lemma 2 we can now plug these facts into the tools developed in [11]
and develop recurrence formulas for T (n). Since the proofs are rather straightfor-
ward and follow those of [11] we do not give them here. In the appendix we will
show how to use these techniques to rederive the exact solution for T

(
C1,n

2n

)
.

518 M.J. Golin, Y.C. Leung, and Y. Wang

Let T be a spanning tree of circulant graph Cn. Removing all edges of EC(n)−
EL(n) from T leaves a forest T ∩EL in Lattice graph Ln. Lemma 1 tells us that
all endpoints of edges in EC(n)−EL(n) are in L(n)∪R(n), so every component
of the forest T ∩ EL must contain at least one node from L(n) ∪ R(n). This
motivates the following definition of legal forests:

Definition 5. Let n > s+ 2smax− 1. Set W (n) = L(n)∪R(n). Let Par(W) be
the collection of all set partitions of set W, e.g.,
Par({1, 2, 3}) = { {{1, 2}{3}}, {{1, 3}{2}}, {{2, 3}{1}}, {{1}{2}{3}}, {{1, 2, 3}} } .

Then

1. A legal forest F in Ln is one in which every connected component of F
contains at least one node in W (n).

2. P = Par(W (n)) is the collection of all set partitions of W (n).
3. Let F be a legal forest of Ln. Then C(F), the classification of F is X ∈ P

such that ∀u, v ∈ W (n), u, v are in the same connected component of F iff
u, v are in the same set in X.

4. For X ∈ P set TX(n) = |{F : F is a legal forest of Ln with C(F) = X}}|

Note: The reason for requiring n > s+2smax −1 is to guarantee that L(n)∩R(n) = ∅.
We are now interested in how to reconstruct spanning trees from legal forests.

Define

Definition 6. S = {S : S ⊆ (EC − EL)}.

Note that, given a legal forest F , it may not always possible to find S ∈ S
such that F ∪S is a spanning tree of Cn. We make the following straightforward
observation

Lemma 3. Let F, F ′ be two legal forests of Ln such that C(F) = C(F ′) and
S ∈ S. Then F ∪ S is a spanning tree of Cn if and only if F ′ ∪ S is a spanning
tree of Cn.

This permits the following definition

Definition 7. For X ∈ P and S ∈ S set

αS,X =
{

1: if adding S to forest F with C(F)=X yields a spanning tree of Cn.
0:otherwise

βX =
∑
S∈S

αS,X and β = (βX)X∈P ,

where vector β is ordered using some fixed arbitrary ordering of the elements P.

The crucial observation in the above definitions is that Lemma 3 implies that
αS,X is independent of n and can be easily evaluated just by looking at S and X.

As an example, suppose we are given C1,n
2n and its L1,n

2n and, for some n, F
is a legal forest of L1,n

2n with C(F) = X = {(0, 0), (0, n− 1), (1, 0)}, {(1, n− 1)}.
That is, F has exactly two connected components partitioning the nodes in

Counting Spanning Trees and Other Structures 519

W (n) = L(n)∪R(n); one of the components contains (0, 0), (0, n− 1), (1, 0) and
the other contains (1, n − 1). Now, if S = {{(0, 0), (1, n − 1)}} then αS,X = 1
since the single edge in S connects the two components to form a spanning tree
while if S = {{(0, n−1), (1, 0)}} then αS,X = 0 since the single edge in S creates
a cycle in the component containing (0, 0), (0, n− 1), (1, 0).

Since, by definition, every spanning tree of Cn is uniquely decomposable into
a legal forest F of Ln plus some S ∈ S we immediately find

Lemma 4

T (Cn) =
∑
X∈P

(∑
S∈S

αS,X

)
TX(n) =

∑
X∈P

βXTX(n). (4)

Letting T (Ln) be the column vector (TX(n))X∈P , this can also be written as
T (Cn) = β · T (Ln) .

So far we have only shown that the number of spanning trees of a circulant
graph is a linear combination of the number of different legal forests of the asso-
ciated lattice graph. We will now show the the number of different legal forests
can be written as a system of linear recurrences in n. The main observation is
the following lemma:

Lemma 5. Let F be a legal forest in Ln+1 and U = F ∩
(
EL(n+ 1)−EL(n)

)
.

Then F − U is a legal forest in Ln.

Note that this lemma implies that every legal forest of Ln+1 can be built
from a legal forest of Ln. To continue we will need the following observation:

Lemma 6. Let F, F ′ be legal forests in Ln such that C(F) = C(F ′).
Let U ⊆ EL(n+ 1)− EL(n). Then

– F ∪ U is a legal forest of Ln+1 if and only if F ′ ∪ U is a legal forest of Ln

and
– if both F ∪U and F ′∪U are legal forests of Ln+1 then C(F ∪U) = C(F ′∪U).

Before continuing we should emphasize a subtle point concerning the clas-
sification of a legal forest in Ln, which is that it strongly depends upon n. For
example, in lattice graph L1.n

2n , when n = 3, a legal forest D with classifica-
tion C(D) = {(0, 0), (0, n− 1)}, {(1, 0), (1, n− 1)} implies that D has two com-
ponents with one containing nodes (0, 0) and (0, 2) and the other containing
nodes (1, 0) and (1, 2). Now suppose n = 4 with no edges added to D, in the
new lattice graph, the new forest D′ contains four components, which means
C(D′) = {(0, 0)}, {(0, n−1)}, {(1, 0)}, {(1, n−1)}. When calculating how adding
vertices and edges to legal forests in Ln changes them into different legal forests
in Ln+1 we must take account of this fact.

Lemma 6 permits the next definition

Definition 8. For X,X ′ ∈ P and U ⊆ EL(n+ 1)− EL(n) set

γX′,X,U =

⎧⎨⎩
1 : if adding U to forest F with C(F) = X ′ yields a forest F ′

with C(F ′) = X ′

0 : otherwise

.

520 M.J. Golin, Y.C. Leung, and Y. Wang

αX′,X =
∑

U⊆EL(n+1)−EL(n)

γX′,X,U and A = (aX′,X)X′,X∈P

where, in the last equation, A is a square matrix whose columns/rows are ordered
using the same ordering as in the definition of β in Definition 7.

Note: As in the observation following Lemma 7 we point out that the values of γX′,X,U

and thus αX′,X and A are independent of n. It is therefore possible to mechanically
calculate all of the βX and αX′,X .

Combining Lemmas 5 and 6 then yield

Lemma 7. ∀X ′ ∈ P,

TX′(n+ 1) =
∑
X∈P

aX′,XTX(n) or, equivalently, T (Ln+1) = AT (Ln)

Combining everything in this section gives our main theorem on spanning
trees of circulant graphs, proving Theorem 1 for the case A = Spanning Trees.

Theorem 2. Let T (n) denote the number of spanning trees in Cn. Let P =
Par(L(n) ∪ R(n)), TX(n) denote the number of legal forests with classification
X and T (L(n)) be the column vector (TX(n))X∈P Then, for n ≥ s+ 2smax− 1,

T (C(n)) = β · T (L(n))
T (L(n+ 1)) = AT (L(n))

where β is the constant vector defined in Definition 7 and A is the constant
square matrix defined in Definition 8.

This theorem implies that T (C(n)) satisfies a linear recurrence recurrence
relation with constant coefficients of order rank of the matrix A.

Since the size of matrix A is |P| = B(p(s+2smax)+s) where B(m) is the Bell
number2 of order m the order of the recurrence is at most B(p(s+ 2smax) + s).

References

1. G. Baron, H. Prodinger, R. F. Tichy, F. T. Boesch and J. F. Wang. “The Number
of Spanning Trees in the Square of a Cycle,” Fibonacci Quarterly, 23.3 (1985),
258-264.

2. S. Bedrosian. “The Fibonacci Numbers via Trigonometric Expressions,” J. Franklin
Inst. 295 (1973), 175-177.

3. J.-C. Bermond, F. Comellas, D.F. Hsu. “Distributed Loop Computer Networks: A
Survey , Journal of Parallel and Distributed Computing, 24, (1995) 2-10.

4. N. Biggs, Algebraic Graph Theory, London: Cambridge University Press, Second
Edition, 1993.

2 B(m) counts the number of set partitions of m items.

Counting Spanning Trees and Other Structures 521

5. F. T. Boesch, J. F. Wang. “A Conjecture on the Number of Spanning Trees in the
Square of a Cycle,” In: Notes from New York Graph Theory Day V, New York:
New York Academy Sciences, 1982. p. 16.

6. F. T. Boesch, H. Prodinger. “Spanning Tree Formulas and Chebyshev Polynomi-
als,” Graphs and Combinatorics, 2, (1986), 191-200.

7. Graham R. Brightwell and Peter Winkler. “Note on Counting Eulerian Circuits,”
lanl.arXiv.org, cs.CC/0405067 (May 19 2004).

8. C. J. Colbourn. The combinatorics of network reliability, Oxford University Press,
New York, (1987).

9. D. Cvetkovič, M. Doob, H. Sachs. Spectra of Graphs: Theory and Applications,
Third Edition, Johann Ambrosius Barth, Heidelberg, (1995).

10. M. J. Golin, Y.P. Zhang. “Further applications of Chebyshev polynomials in the
derivation of spanning tree formulas for circulant graphs,” in Mathematics and
Computer Science II: Algorithms, Trees, Combinatorics and Probabilities, 541-552.
Birkhauser-Verlag. Basel. (2002)

11. M. J. Golin and Yiu Cho Leung. “Unhooking Circulant Graphs: A Combinatorial
Method for Counting Spanning Trees and Other Parameters,” To appear in the
Proceedings of the 30’th International Workshop on Graph-Theoretic Concepts in
Computer Science (WG’2004) (2004).

12. F.K. Hwang. “A survey on multi-loop networks,” Theoretical Computer Science
299 (2003) 107-121.

13. G. Kirchhoff. “Über die Auflösung der Gleichungen, auf welche man bei der Un-
tersuchung der linearen Verteilung galvanischer Ströme geführt wird,” Ann. Phys.
Chem. 72 (1847) 497-508.

14. D. J. Kleitman, B. Golden. “Counting Trees in a Certain Class of Graphs,” Amer.
Math. Monthly, 82 (1975), 40-44.

15. John P. McSorley. “Counting structures in the Möbius ladder,” Discrete Mathe-
matics 184 (1998), 137-164 .

16. M. Mihail and P. Winkler. “On the number of Eulerian orientations of a graph,”
Algorithmica, 16 (1996) 402-414.

17. Martin Rubey. Counting Spanning Trees, Diplomarbeit, Universitat Wein, Mai
2000.

18. J. Sedlacek. “On the skeletons of a Graph or Digraph,” in R.K. Guy et al., (Eds.),
Combinatorial Structures and their Applications, (387-391.) 1970.

19. J. A. Sjogren. “Note on a formula of Kleitman and Golden on spanning trees in
circulant graphs,” Proceedings of the Twenty-second Southeastern Conference on
Combinatorics, Graph Theory, and Computing, Congr. Numer. 83 (1991), 65–73.

20. L.G. Valiant. “The complexity of enumeration and reliability problems,” SIAM J.
Comput, 8 (1979) 410-421.

21. R. Vohra and L. Washington. “Counting spanning trees in the graphs of Kleitman
and Golden and a generalization,” J. Franklin Inst., 318 (1984), no. 5, 349–355

22. Q.F. Yang, R.E. Burkard, E. Cela and G. Woeginger. “Hamiltonian cycles in cir-
culant digraphs with two stripes,” Discrete Math., 176 (1997) 233-254.

23. X. Yong, Talip, Acenjian. “The Numbers of Spanning Trees of the Cubic Cycle C3
N

and the Quadruple Cycle C4
N ,” Discrete Math., 169 (1997), 293-298.

24. X. Yong, F. J. Zhang. “A simple proof for the complexity of square cycle C2
p ,” J.

Xinjiang Univ., 11 (1994), 12-16.
25. Y. P. Zhang, X. Yong, M. J. Golin. “The number of spanning trees in circulant

graphs,” Discrete Math., 223 (2000) 337-350.

Adaptive Spatial Partitioning for
Multidimensional Data Streams�

John Hershberger1, Nisheeth Shrivastava2, Subhash Suri2, and Csaba D. Tóth2

1 Mentor Graphics Corp., 8005 SW Boeckman Road, Wilsonville, OR 97070, USA,
and (by courtesy) Computer Science Dept., University of California, Santa Barbara

john hershberger@mentor.com
2 Computer Science Dept., University of California, Santa Barbara, CA 93106, USA

{nisheeth, suri, toth}@cs.ucsb.edu

Abstract. We propose a space-efficient scheme for summarizing multi-
dimensional data streams. Our scheme can be used for several geometric
queries, including natural spatial generalizations of well-studied single-
dimensional queries such as icebergs and quantiles.

1 Introduction

Many current and emerging technologies generate data streams, data feeds at
very high rates that require continuous processing. There are many sources of
such data: sensor networks monitoring environments such as industrial com-
plexes, hazardous sites, or natural habitats; scientific instruments collecting as-
tronomical, geological, ecological, or weather-related observation data; as well
as measurement data for monitoring complex distributed systems such as the
Internet. Despite their obvious differences, there are many similarities and com-
monalities among these data: they are all multidimensional; they have large
volume; much of the data is routine and uninteresting to the user; and the user
typically is interested in detecting unusual patterns or events.

As a result, there has been enormous interest in designing data-processing
algorithms that work over continuous data streams; these algorithms look at the
data only once and in a fixed order (determined by the stream-arrival pattern).
We assume that the algorithm has access to only a small amount of memory,
which is significantly smaller than the size of the full stream, n. The algorithm
must therefore represent the data in a concise “summary” that can fit in the
available memory and can be used to provide guaranteed-quality approximate
answers to user queries.

We propose a novel, versatile, and space-efficient scheme for summarizing
the spatial distribution of a d-dimensional point stream. Our adaptive space
partitioning (ASP) scheme is fully deterministic and combines three basic data

� Research by the last three authors was partially supported by National Science
Foundation grants CCR-0049093 and IIS-0121562.

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 522–533, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Adaptive Spatial Partitioning for Multidimensional Data Streams 523

structures: a quadtree-like ASP-tree and two search trees. Specifically, given a
stream of d-dimensional points p1, p2, . . . , pn, . . . , drawn from the domain [0, R]d,
the ASP is an O(1

ε logR) size data structure, where ε is a user-specified param-
eter. It can answer a variety of geometric queries with a guaranteed error bound
(and no low-frequency false positives). Some examples of such queries are spatial
hot and cold spots and rank and range queries (please see Section 3 for details).

Our ASP scheme also works for weighted point streams, where each point
has a (positive) weight, and the approximation error is measured as a fraction of
the total weight. It extends easily to the sliding window model of a data stream,
with an O(log εn) factor blowup in space, where n is the window size. All space
bounds in this paper (including references to previous work) assume the RAM
model of computation, where each counter value can be stored in a single word.
If the space is measured in bits, then the size of our data structure grows by a
factor of log εn.

1.1 Related Previous Work

One of the best-studied problems in data streams is finding frequent items;
variants of this problem are also called iceberg queries [13] in databases and
heavy hitters [12] in networking. The best deterministic stream algorithm for this
problem is the lossy counting scheme of Manku and Motwani [18], which uses
O(1

ε log εn) space. (There are simpler schemes, using O(1/ε) space, by Misra and
Gries [21], Karp, Shenker, and Papadimitriou [17] and Demaine, López-Ortiz,
and Munro [11], but they suffer from the false positive problem—they cannot
guarantee any lower bound on the frequency of the items found.) Cormode et
al. [7] consider a hierarchical version of the one-dimensional heavy hitter problem
using O(h

ε log εn) space, where h is the depth of the hierarchy.
Approximate quantile computation is another well-studied problem in data

streams. For this problem, a classical result of Munro and Paterson [22] shows
that any algorithm for computing exact quantiles in p passes requires Ω(n/p)
space; thus, any single-pass, sublinear-space algorithm must resort to approxi-
mation. The best deterministic stream algorithm for ε-approximate quantiles is
due to Greenwald and Khanna [15], and uses O(1

ε log εn) space. Just recently,
Arasu and Manku [3] have extended the Greenwald-Khanna algorithm to the
sliding window model; their algorithm uses O(1

ε log 1
ε log n) space, where n is

the window size.
Multidimensional stream processing is less well-developed, but there is grow-

ing literature on several interesting problems. For instance, Cormode and
Muthukrishnan [8], Agarwal, Har-Peled, and Varadarajan [1], and Hershberger
and Suri [16] have proposed stream algorithms for extremal geometric structures,
such as convex hull, diameter, width, etc. The challenge in maintaining such ob-
jects is that any data point can change the output dramatically and has to be
accounted for; none of these schemes summarizes the density distribution of the
stream. Charikar, O’Callaghan, and Panigrahy [6] have considered the k-median
problem; Thaper et al. [25] have considered multidimensional histograms; both
use randomized techniques. In [12], Estan, Savage, and Varghese propose the no-

524 J. Hershberger et al.

tion of hierarchically defined multidimensional hotspots for network monitoring.
However, their solutions are offline, and so do not work in the streaming model.

Random sampling is an intuitively appealing idea for summarizing multidi-
mensional point streams. Indeed, the sticky counting scheme of Manku and Mot-
wani [18] uses a random sample of sizeO(1

ε log εn) to maintain single-dimensional
heavy-hitters with high probability. If one wants high probability frequency es-
timates of any interval, then we need to use the concept of ε-approximation.
A Θ(1

ε2 log 1
ε) size random sample is an ε-approximation with high probabil-

ity [26]. A randomized algorithm of Manku, Rajagopalan, and Lindsay [19, 20]
can maintain an ε-approximate φ-quantile for any fixed φ ∈ (0, 1) in O(1

ε log2 1
ε)

space. A very recent randomized algorithm of Suri, Tóth, and Zhou [24] can
maintain an ε-approximation of size O(1

ε log2d+1 1
ε) for axis-aligned boxes in Rd

with constant probability. This algorithm is, however, only of theoretical inter-
est because it requires substantial working space (i.e., solving O(1

ε log 1
ε log(εn))

linear programs in O(1
ε log2d+1 1

ε) variables).

2 Adaptive Spatial Partitioning

In this section, we describe our summary scheme and establish its space and
update complexity. We describe the scheme for 2-dimensional points for ease of
exposition, but the ideas generalize readily to d dimensions, for any fixed d ∈ N,
with an O(2d) factor increase in space.

We assume that the input stream consists of points from the universe [0, R]2 ⊂
R2. The point coordinates can have arbitrary precision, but our resolution is lim-
ited to 1; that is, only the most significant logR bits matter. (In some applica-
tions, such as network monitoring, the space is naturally discrete: R = 232 is the
size of the IP address space. In other, non-discrete domains, such as astronomy
or geological data, the resolution may be user-defined.) We make no assumption
about the order in which points arrive. Without loss of generality, we assume
that the ith point arrives at time i. We denote the number of elements seen so
far by n.

2.1 Data Structure

Our summary is based on a hierarchical decomposition of the space, which is
represented in a data structure called the Adaptive Spatial Partitioning tree. It
is complemented by two auxiliary structures, a min-heap and a point location
tree, that are used to perform merge and point location operations efficiently.
We now describe the details of these data structures.

The adaptive spatial partitioning tree (ASP tree) T is a 4-ary (in d dimen-
sions, a 2d-ary) tree. Each node v ∈ T is associated with a grid-aligned region
of the plane. We denote this region by Bv, and call it the box associated with
v. We also maintain a counter for v, denoted count(v). The box associated with
the root r of T is the entire universe Br = [0, R]2. The boxes follow the tree
hierarchy: u ∈ children(v) implies Bu ⊂ Bv and the side length of Bu is at most

Adaptive Spatial Partitioning for Multidimensional Data Streams 525

half the side length of Bv. Because the maximum box size shrinks by half at
every level, and the minimum resolution is one, the depth of the ASP tree is at
most �logR�.

The ASP tree adapts to changes in the distribution of data over time. High
density regions require a fine box subdivision, while for low density regions, a
rougher subdivision is sufficient. For every point insertion, we increment n, the
total stream size, and the counter of the smallest box B containing the new
element. Thus every point is counted at exactly one node. If the counter of a
node is above a split threshold αn, for a parameter α to be specified later, then
we refine B by subdividing it into smaller boxes. Since n keeps increasing, the
sum of the counts of a box B and its children may later be below this threshold,
and so the refinement is no longer necessary. We can unrefine B, by merging it
with its children, to save memory.

The ASP tree is a compressed version of the standard quad-tree; in a quad-
tree, the four children of a node have boxes with half the side length of the
parent box, but in the ASP tree, though every node has four children, the boxes
associated with the children may be much smaller. We maintain the invariant
that the four children’s boxes partition the box of v or one of its quad-tree
descendants. This implies that we may only unrefine nodes with at most one
non-leaf child. We call such nodes mergeable.

While refinement is directly linked with the point being inserted, unrefine-
ment is not. Näıvely, at every point arrival, we should check all the mergeable
nodes for possible unrefinement. Instead, we use a standard min-heap to main-
tain a priority queue of all the mergeable nodes; the top of the heap is the node
that will become unrefinable earliest. The nodes in the merge heap M are ex-
actly the internal nodes with at least three children that are leaves in T . The key
of each node v is

key(v) = count(v) +
∑

x∈children(v)

count(x).

The merge heap can be updated after an insert or delete in O(log |M |) =
O(log |T |) time.

The insertion of every point p requires searching in the ASP tree for the
smallest box containing p. Using the ASP tree, the point location might take
O(logR) time, the depth of the ASP tree. We can improve the time spent on
point location among the |T | nodes of the ASP tree to the optimal O(log |T |)
per insertion with an approximate centroid tree C, a standard binary search tree
defined on top of T . Every node u ∈ C corresponds to a connected subtree Tu

of T . If Tu has more than one node, then u stores an approximate centroid edge
eu of Tu that divides Tu into two roughly balanced parts; that is, each subtree
must have size at least cd · |Tu|, for some constant cd. The two subtrees, in turn,
correspond to the two children of u in C.

The query time to find the minimal box of T containing a point q is the
depth of C(T), which is O(log |T |) because the size of the subtrees decreases by
a constant factor with the depth in C. Every internal node u ∈ C corresponds
to an edge vw of T which, in turn, corresponds to the pair of boxes Bw ⊂ Bv

526 J. Hershberger et al.

b

c
d

a

e f

t

g
d

g

ec

b

d

c

g

fe b

a

(a) Boxes of ASP (b) ASP−Tree

bc

dg

ab

ae

dg

d c

g

ea

e

(c) Merge Heap (d) Centroid−Tree

Fig. 1. The boxes of the ASP for a distribution of input data points, the ASP tree, the
corresponding merge heap, and centroid tree. The boxes in the ASP are drawn with
solid lines. Dotted lines indicate boxes that were in the ASP tree at some time but
have been removed by unrefinement operations. Box Bt was once the great grandchild
of Be, but in our current ASP tree, the children of t are stored as direct children of e.
The nodes b, c, d, e, g are in the merge heap, since each has at least three leaf children

in Rd. At node u, we test q ∈ Bw and continue searching q in the left or right
subtree of u accordingly. The search returns a leaf of C, which corresponds to a
node v(q) ∈ T and a box Bv(q). The tests performed along the search prove that
q ∈ Bv(q), but q �∈ Bw for any Bw ⊂ Bv(q), w ∈ T . Figure 1 shows an example
of our data structure.

2.2 Maintaining the ASP

We initialize the ASP with a one-node ASP tree, with box Br corresponding to
the root, count(r) set to zero, an empty merge heap, and a one-node approximate
centroid tree C.

When a new point p arrives, we find the smallest box in the ASP tree containing
p and increment its count by one. This changes at most two keys in the merge heap
(of the box and its parent), and we update the heap accordingly. For the majority
of point insertions, this is all the work needed to update the ASP. Occasionally,
however, we need to adjust the tree structures as well. We use two basic operations
to maintain our summary, refinement and unrefinement, described below:

The refinement operation occurs when the counter of a node v exceeds a
split threshold value αn. That is, if count(v) > αn and the box Bv is not a unit
(minimum resolution) box, then we split Bv into four congruent boxes, and add
edges from node v to the new children corresponding to the four half-size sub-
boxes. (If v already had four children that did not cover Bv, then those children
are detached from v and re-attached as children of one of v’s four newly-created
children.) As long as v’s children cover Bv, the new point only increments the
counter of one of the descendants of v, and count(v) remains fixed.

Adaptive Spatial Partitioning for Multidimensional Data Streams 527

The unrefinement is performed when the key of a node in the merge heap is
exceeded by the merge threshold. We set the merge threshold to be half of the
split threshold, though this is tunable. Specifically, if v is a node in M and

key(v) <
αn

2
, (1)

then we merge the children of v into v, and set count(v) := key(v). (Recall
that key(v) is defined as count(v)+

∑
x∈children(v) count(x).) That is, we simply

redirect the parent pointers of v’s grandchildren to point to v, thereby deleting
v’s children, and fold the counters of v’s children into v. It is worth noting that
the updated v has at most four children, because no node in M can have more
than four grandchildren.

Due to lack of space, we omit from this extended abstract the details of how
these operations affect the merge heap and centroid tree.

2.3 Complexity Analysis

We now prove that the space complexity of our data structures is O(1
α), where

α is the threshold parameter defined above. We also show that the amortized
update time for point insertion is O(log 1

α).

Theorem 1. Given a split threshold α, the size of the ASP is O(1
α), independent

of the size of the data stream.

Proof. We argue that the number of internal nodes in T is O(1
α). Since every

node has at most four (2d, in Rd) children, this implies that the space complexity
is O(1

α). We first bound the number of nodes in the merge heap. No node in
M satisfies the Merge Inequality (1)—otherwise, the unrefinement operation
would have deleted that node from M . Thus, for each v ∈ M , we must have
key(v) ≥ αn

2 . The value count(w) of a node w ∈ T contributes to at most two
keys, and so we have the following inequality:

|M | · αn
2
≤
∑
v∈M

key(v) <
∑
v∈T

key(v) =
∑
v∈T

⎛⎝count(v) +
∑

x∈children(v)

count(x)

⎞⎠
≤ 2

∑
w∈T

count(w) = 2n.

Thus the merge heap has at most 2n/(αn
2) = 4/α nodes.

Any internal node that is not in M has at least two children that are also
internal nodes of T . These are branching nodes of the tree on paths to nodes in
the merge heap. This implies that the total number of internal nodes in T is at
most 8/α. This completes the proof.

We show next that the amortized updates require O(log 1
α) time.

Theorem 2. Given a split threshold α, the amortized time to update the ASP
summary after a point insertion is O(log 1

α), assuming that the data stream has
size at least n = Ω(1

α).

528 J. Hershberger et al.

Proof. When a new point p arrives, we find the smallest box in the ASP tree
containing p in O(log |T |) = O(log 1

α) time using the point location tree. After
the insertion, we perform at most one refinement, which requires O(1) time in
the ASP tree, and update M , which requires O(log |M |) = O(log 1

α) time.
We can also update the approximate centroid tree in amortized O(log 1

α)
time. Suppose e is the exact centroid edge of a tree Tu. Then e remains an ap-
proximate centroid as long as fewer than κ|Tu| refinements and unrefinements
modify Tu, for some constant κ. After Ω(|Tu|) events, it may be necessary to
recompute the exact centroid tree of Tu, which takes O(|Tu|) time. Thus, re-
balancing the approximate centroid tree requires O(k) time after k refinements
or unrefinements at each of the O(log |T |) = O(log 1

α) levels of C. Hence the
amortized cost of the rebalancing is O(log 1

α).
To bound the total number of unrefinements, we note that each refinement

increases the number of nodes in T by 4, and each unrefinement decreases the
number of nodes by the same amount. The total number of nodes is positive,
and so there can be no more unrefinements than refinements. Like a refinement,
an unrefinement takes O(log 1

α) amortized time, and so the proof is complete.

3 Applications and Extensions

Our approximations will have an absolute εn error. Just as in iceberg queries and
quantile summaries, this error guarantee is the best possible for schemes using
roughly O(1/ε) space. Specifically, Alon, Matias, and Szegedy [2] prove that,
given a data stream in a domain of size R, any (randomized or deterministic)
algorithm that approximates the frequency of the most frequent item to within
a constant relative error must use Ω(R) space. Because hot spots and range
counting problems are strict generalizations of iceberg and quantile summaries,
these approximation quality lower bounds apply to ASP as well.

3.1 Applications

Hot Spots. We define a hot spot in Rd as an integer unit cube containing at
least εn points of the stream. Hot spots are a natural spatial analogue of iceberg
queries: in multidimensional data streams, none of the individual points may
occur with large frequency, yet a closely clustered set of points may signal unusual
or suspicious activity. Formally, an integer unit cube is defined as

∏d
i=1[xi, xi+1)

where each xi is an integer in the range {0, 1, . . . , R − 1}. Hypercubes of larger
granularity or more general rectangular templates are easy to handle as well.

To compute ε-hot spots, we maintain a d-dimensional ASP with parameter
α = ε

2 log R , and report every leaf node that corresponds to a unit cube and whose
counter exceeds ε

2n. By choosing α = εδ
log R , for any δ ∈ (0, 1), we can track hot

spots where each cell is guaranteed to contain at least (1 − δ)εn points. One
can also extract hypercube regions of larger granularity from our data structure.
Due to lack of space, we omit the detailed analysis.

Adaptive Spatial Partitioning for Multidimensional Data Streams 529

Cold Spots. A natural definition of the cold spot is the largest box with at
most εn points. Since the leaf cells of our ASP are precisely the boxes with fewer
than εn points, we can track the cold spot by, say, keeping these boxes sorted in
descending order of size to population ratio.

Hierarchical Hot Spots. Hierarchical hot spots are a spatial generalization
of the heavy hitter hierarchy, introduced by Cormode et al. [7] for 1-dimensional
data. In a rooted tree representation of the data, the hierarchical heavy hit-
ters are defined recursively in a bottom-up order: each node whose subtree has
frequency more than εn, not counting the frequencies of its heavy hitter descen-
dants, is a heavy hitter.

In order to maintain hierarchical hot spots using ASP, we add a counter
des(v) at each node v to track the total population of all the descendants of
v. That is, des(v) =

∑
w∈descendants(v) count(w). This increases the worst-case

per-point update time of the ASP from O(log 1
α) to O(logR), which is the depth

of T . To determine the heavy hitters at each level of T , we set α = ε
2 log R and

report every node of T such that the value des(v)−
∑
{des(w) : w is a descendant

of v and a heavy hitter} is above ε
2n.

Rank and Range Queries. In a set of d-dimensional points, the rank of a
point p is the number of points dominated by p on all coordinates. This is a nat-
ural generalization of the rank in one dimension, where the rank of an element
x is the number of elements less than x. The rank and quantiles are intimately
related: quantiles are elements of specified ranks; on the other hand, given the
quantiles, the rank of an element can be located between two consecutive quan-
tiles. Thus, the 1-dimensional ASP with α = ε

log R can also be interpreted as
an ε-approximate quantile summary, and thus offers an alternative deterministic
scheme for this well-studied problem.

Determining the rank in more than one dimension is equivalent to range
counting for grounded query rectangles, which are defined as

∏d
i=1[0, bi]. This

is so because every (axis-parallel) rectangle can be expressed with 2d grounded
rectangles using inclusion-exclusion. We can use the ASP directly for multi-
dimensional range counting with the following simple algorithm: Given a query
box Q, we report the sum of all counters count(v) weighted with the fraction
of the volume of each box Bv lying in the query box, that is,

∑
v count(v) ·

vol(Bv ∩ Q)/vol(Bv). Although the theoretical approximation quality of this
simple scheme can be arbitrarily bad in the worst case, our experiments show
that it performs well in practice.

With a recursive construction, we can use ASP to provide good theoretical
guarantees for multidimensional range queries; however, the space bound for the
construction grows asO(1

ε log2d−1R). Due to lack of space, we omit further details.

3.2 Extensions of the Streaming Model

In some applications, the data stream is infinite, but only the “recent” portion
of the stream is relevant. The sliding window model of data streams is motivated

530 J. Hershberger et al.

by these applications [4, 10, 23]. Let n denote the size of the window; that is, we
want to maintain a summary over the last n points. A point pi that is inserted
at time i is deleted at time i+ n, which we refer to as its expiration time.

In the full version of the paper, we show that the ASP extends to the sliding
window model, with an O(log εn) factor increase in space, where n is the window
size. The (amortized) per-point processing cost is unaffected. We also discuss ex-
tensions to weighted point streams, and a restricted class of the turnstile model.

4 Experimental Results

We implemented the adaptive spatial partitioning both for single- and multi-
dimensional streams. In this section, we briefly report on some of our experi-
mental results.

For two-dimensional adaptive spatial partitioning, we used three different
data sets: random, which consisted of n points generated uniformly at random
inside the box [0, R]2; k-peaks, which included k Gaussian distributions concen-
trated around k randomly chosen centers, against a background of low density
uniformly scattered points (noise); and the gazetteer data from UCSB’s Alexan-
dria Digital Library (see Figure 2), which consists of the locations of 107 geo-
graphical features. In each case we used R = 220.

Fig. 2. Input datasets: gazetteer (left) and k-peaks with k = 100 (right). The gray
scale reflects the density of data points in each region. The inset picture on the right
figure shows a Gaussian distribution at a single peak

4.1 Memory Usage of ASP

Table 1 shows the space needed for ASP as a function of n and ε. The main
point to note is that, for a fixed value of ε, the size of the ASP is essentially
independent of n. It increases linearly with 1

ε , as predicted by the theoretical
analysis. For the k-peaks data the size depends more on k than ε, because ASP
quickly “zooms” into the k-centers and maintains partitions only for the regions
around them.

Adaptive Spatial Partitioning for Multidimensional Data Streams 531

Table 1. ASP tree size for different exper-
imental data

ASP tree size
points ε = 0.01 0.001 0.0001

100-peaks 106 2269 3433 9457
107 2237 3265 4229
108 2237 3261 4061

random 106 5461 83093 492269
107 5461 87381 387749
108 5461 87381 349525

gazetteer 106 5965 56169 532933
107 5853 55989 530585

10 50 100 200
00

25
50
75

100
125
150
175
200
225
250
275
300
325
350
375
400
425

True
Hotspots

Reported

Number of Peaks

C
o
u
n
t

Fig. 3. True versus reported hot spots

4.2 Detecting Hot Spots with ASP

Figure 3 shows how well ASP detects hot spots in the k-peaks data. In our
experiment, a total of n = 106 points were streamed, and we fixed ε = 10−3.
Given a specific value of k, 106/(k + 1) points were generated in each of the k
Gaussian clusters, and the final 106/(k + 1) points were distributed uniformly
inside the square (as background noise).

Our algorithm detects all the true hot spots, and a small number of false
positives as well. The false positives are within a factor of two of being hot.
We also note (data not shown) that the size of the ASP tree grows essentially
linearly with k, assuming that ε < 1/k, as is the case in these experiments.

4.3 Computing Quantiles

Although ASP is a general-purpose representation of multidimensional data, it is
interesting to compare its performance on 1-dimensional data to that of problem-
specific 1-dimensional algorithms. We used ASP to compute 1-dimensional quan-
tiles, using a stream of integer values randomly chosen from the range [1, 220].
We compared the results with two specialized schemes for quantile computa-
tion: Greenwald-Khanna’s algorithm [15] (GK) and Manku, Rajagopalan, and
Lindsay’s algorithm [19] (MRL).

We fix ε = 10−3 and maintain the ASP summary for streams of size n=105,
106 and 107. We compute the quantiles of the input at rank i

16n for i = [1..15].

Table 2. Quantile approximation for streams

MRL ASP GK
n Size Error (×10−4) Size Error (×10−4) Size Error (×10−4)
105 8334 4.69 2027 5.59 919 8.48
106 15155 3.27 2047 4.01 919 8.00
107 27475 2.35 2047 6.60 919 7.82

532 J. Hershberger et al.

The error in computed rank is (trueRank−computedRank). We take the average
of these errors for each scheme. Table 2 shows the variation of the size and the
average error with n. Each error is shown as a fraction of stream size n. (The value
4.01 in the second row of ASP means the rank error was 4.01×10−4×n = 401).
It is clear from the comparison that ASP outperforms the MRL algorithm, and
shows comparable performance to the GK algorithm, even though it is not tuned
for the quantiles problem.

Additional experimental results including range queries, etc., are omitted
from this extended abstract due to lack of space.

5 Closing Remarks

We have proposed a novel summary for a stream of multidimensional points. This
scheme provides a general-purpose summary of the spatial distribution of the
points and can answer a wide variety of queries. In particular, ASP can be used
to solve spatial analogues of several classical data stream problems, including hot
spots and approximate range counting. When specialized to single-dimensional
data, adaptive spatial partitioning provides alternative schemes for finding the
most frequent items and approximate quantiles, with performance comparable
to previous algorithms. Our scheme extends to the sliding window model with a
log(εn) factor increase in space.

References

1. P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. Approximating extent mea-
sures of points. J. ACM 51 (2004), pp. 606–635.

2. N. Alon, Y. Matias, M. Szegedy. The space complexity of approximating the fre-
quency moments. J. Comput. Syst. Sci. 58 (1999), 137–147.

3. A. Arasu and G. Manku. Approximate counts and quantiles over sliding windows.
In Proc. 23rd PODS, 2004, ACM Press, pp. 286–296.

4. B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues in
data stream systems. In 21st PODS, 2002, ACM Press, pp. 1–16.

5. J.L. Bentley. Multidimensional divide-and-conquer. Communications of the ACM
23 (4) (1980) 214–229.

6. M. Charikar, L. O’Callaghan, and R. Panigrahy. Better streaming algorithms for
clustering problems. In Proc. 35th STOC, 2003, pp. 30–39.

7. G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava. Finding hierarchical
heavy hitters in data streams. In Proc. 29th Conf. VLDB, 2003.

8. G. Cormode and S. Muthukrishnan. Radial histograms for spatial streams. Tech-
nical report DIMACS TR 2003-11, 2003.

9. G. Cormode and S. Muthukrishnan. What is hot and what is not: Tracking most
frequent items dynamically. Proc. 22nd PODS, 2003, 296–306.

10. M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining stream statistics over
sliding windows. SIAM Journal of Computing 31 (6) (2002), 1794–1813.

11. E. D. Demaine, A. López-Ortiz, and J.I. Munro. Frequency estimation of internet
packet streams with limited space. Proc. 10th ESA, LNCS 2461, 2002, pp. 348–360.

Adaptive Spatial Partitioning for Multidimensional Data Streams 533

12. C. Estan, S. Savage and G. Varghese. Automatically inferring patterns of resource
consumption in network traffic. In Proc. SIGCOMM, ACM Press, 2003, pp. 137–48.

13. M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, and J.D. Ullman. Com-
puting iceberg queries efficiently. In Proc. 24rd Conf. VLDB, 1998, pp. 299–310.

14. A. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss. How to summarize the
Universe: Dynamic maintenance of quantiles. In Proc. 28th Conf. on VLDB, 2002.

15. M. Greenwald and S. Khanna. Space-efficient online computation of quantile sum-
maries. In Proc. 20th SIGMOD, 2001, pp. 58–66.

16. J. Hershberger and S. Suri. Adaptive sampling for geometric problems over data
streams. In Proc. 23rd PODS, 2004, ACM Press, pp. 252–262.

17. R.M. Karp, S. Shenker, and C.H. Papadimitriou. A simple algorithm for finding
frequent elements in streams and bags. ACM Transactions on Database Systems
28 (1) (2003), 51–55.

18. G. Manku and R. Motwani. Approximate frequency counts over data streams. In
Proc. 28th Conf. VLDB, 2002, pp. 346–357.

19. G. S. Manku, S. Rajagopalan, and B. G. Lindsay. Approximate medians and other
quantiles in one pass and with limited memory. In Proc. 17th SIGMOD, 1998,
pp. 426–435.

20. G. Manku, S. Rajagopalan, and B. G. Lindsay. Random sampling techniques for
space efficient online computation of order statistics of large datasets. Proc. 18th
SIGMOD, 1999, pp. 251–262.

21. J. Misra and D. Gries. Finding repeated elements. Sci. Comput. Programming 2
(1982), 143–152.

22. J.I. Munro and M.S. Paterson. Selection and sorting with limited storage. Theo-
retical Computer Science 12 (1980), 315–323.

23. S. Muthukrishnan. Data streams: Algorithms and applications. Preprint, 2003.
24. S. Suri, Cs.D. Tóth, and Y. Zhou, Range counting over multi-dimensional data

streams. Proc. 20th ACM Symp. Comput. Geom., ACM Press, 2004, pp. 160- 169.
25. N. Thaper, S. Guha, P. Indyk, and N. Koudas. Dynamic multidimensional his-

tograms. In Proc. SIGMOD Conf. on Management of Data, ACM Press, 2002,
428–439.

26. V.N. Vapnik and A.Y. Chervonenkis. On the uniform convergence of relative fre-
quencies of events to their probabilities. Theory Probab. Appl. 16 (1971), 264–280.

27. J.S. Vitter. Random sampling with a reservoir. ACM Trans. Math. Software 11
(1985), 37–57.

Paired Pointset Traversal

Peter Hui1 and Marcus Schaefer2

1 Department of Computer Science, DePaul University, Chicago, Illinois 60604
phui@students.depaul.edu

2 Department of Computer Science, DePaul University, Chicago, Illinois 60604
mschaefer@cti.depaul.edu

Abstract. In the Paired Pointset Traversal problem we ask if,
given two sets A = {a1, . . . , an} and B = {b1, . . . , bn} in the plane,
there is an ordering π of the points such that both aπ(1), . . . , aπ(n) and
bπ(1), . . . , bπ(n) are self-avoiding polygonal arcs? We show that Paired
Pointset Traversal is NP-complete. This has consequences for the
complexity of computing the Fréchet distance of two-dimensional sur-
faces. We also show that the problem can be solved in polynomial time
if the points in A and B are in convex position, and derive some combi-
natorial estimates on lct(A, B), the length of a longest common traversal
of A and B.

1 Introduction

Suppose we are given two sets of points A = {a1, . . . , an} and B = {b1, . . . , bn}
in the plane. How hard is it to determine whether we can traverse both A and
B in the same order such that the resulting polygonal arcs do not self-intersect?
Phrased differently, is there a permutation π such that both aπ(1), . . . , aπ(n) and
bπ(1), . . . , bπ(n) are self-avoiding polygonal arcs? We call this problem the Paired
Pointset Traversal problem, and call such a permutation a common traversal
of A and B. In Section 2 we show that deciding Paired Pointset Traversal
is NP-complete.

In Section 3 we study a variant of the Paired Pointset Traversal prob-
lem, in which instead of straight lines we allow curves to connect the points, but
restrict the curves to lie within the convex hull of their pointsets. This version
can be solved in polynomial time. If we define lct(A, B) to be the length of a
longest common traversal of A and B, we show that in the convex hull case,
lct(A,B) is of order

√
n.

The Paired Pointset Traversal problem is of interest in relation to a
notion from geometry, the Fréchet distance. Intuitively, the Fréchet distance
between two geometric objects is the largest distance between two points in a si-
multaneous “smooth” traversal of both objects. For example, for one-dimensional
curves f : [0, 1] → R and g : [0, 1] → R, the Fréchet distance is

δF (f, g) = inf
α,β

max
s∈[0,1]

d(f(α(s)), g(β(s))),

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 534–544, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Paired Pointset Traversal 535

where α and β range over all continuous and monotone parameterizations of
[0, 1]. The Fréchet distance captures, better than the more familiar Hausdorff
distance does, the notion of similarity in shape.

The Fréchet distance between two polygonal arcs can be found in polynomial
time [1]. However, computing the Fréchet distance between two two-dimensional
objects (even if restricted to the Euclidean plane) is NP-complete [5]. One possi-
ble approach to approximating the Fréchet distance would be through sampling:
selecting pairs of points from the two objects at random, reordering them so
both of them form a polygonal arc, and then computing the Fréchet distance
between the two arcs. This procedure is still NP-hard, however, since the re-
ordering of the pairs of points is the same as finding a common traversal of
two pointsets.1 This connection with the Fréchet distance makes approximation
results of interest, and we take some initial steps in that direction in Section 3.2.

2 Paired Pointset Traversal

We formally define our problem Paired Pointset Traversal:

INSTANCE: Two planar pointsets A = {a1, . . . , an}, B = {b1, . . . , bn}.
QUESTION: Is there a permutation π such that (aπ(1), aπ(2), . . . , aπ(n)) and
(bπ(1), bπ(2), . . . , bπ(n)) both form self-avoiding polygonal paths?

Note that we do not prevent the two paths (aπ(1), aπ(2), . . . , aπ(n)) and (bπ(1),
bπ(2), . . . , bπ(n)) from intersecting each other— the only restriction that we place
upon the paths is that neither path may intersect itself. We refer to such paths
as matched self-avoiding paths.

Theorem 1. Paired Pointset Traversal is NP-complete.

Proof. We show NP-hardness by a reduction from the following version of
Hamiltonian Path:

INSTANCE: A plane graph G = (V,E) (that is a graph embedded in the
plane without intersections), and two of its vertices, s and t.

QUESTION: Does G contain a Hamiltonian path from s to t.

This problem is well-known to be NP-complete [4], even if we assume that
s and t are on the boundary of the convex hull formed by V (an assumption we
will need later).

Given the plane graph G = (V,E) and two vertices s and t, we construct
vertex sets A = {a1, a2, . . . , an} and B = {b1, b2, . . . , bn} in the plane such that
there is Hamiltonian path from s to t in G if and only if A and B allow a matched
self-avoiding path. This immediately shows that Paired Pointset Traversal
is NP-complete.

1 This connection was pointed out to us by Binhai Zhu, who also supplied us with the
problem in the first place [10].

536 P. Hui and M. Schaefer

Let G = (V,E) be a plane graph with two special vertices s and t. We start
by adding the vertices of V to both A and B. We refer to these vertex sets as
VA and VB , respectively. Then, for each vertex pair (u, v) �∈ E, we select a point
on the straight line uv and add it to B, making sure that the point does not lie
on any other straight line ab with a, b ∈ V ; we call the set of these vertices NB .
These points will assure that we cannot traverse B by going directly from u to
v for any edge (u, v) that is absent from E. We then add a corresponding set of
vertices, NA to A. The vertices in NA have the same relative position to each
other as the vertices in NB , but they appear translated significantly beneath
the vertices of VA so as to allow space for another gadget that will be placed
between VA and NA. We also add to NA and NB another set TA and TB , which
we will specify later in the proof. TA and TB will be necessary to ensure that a
simultaneous traversal is possible.

Finally, we need a third set of vertices to prevent traversals of A that include
edges going back and forth between VA to NA. More precisely, we will add sets
IA and IB such that any pair of matched self-avoiding paths of A and B will (i)
have to start in IA (IB) and traverse all of IA (IB) with the exception of a single
vertex iA (iB), then (ii) traverse all of VA (VB), (iii) go to iA (iB), and finally (iv)
traverse all of NA (of course the traversal could be in the reverse order). We will
show how to construct this anti-interference gadget later, and first prove the cor-
rectness of the construction. Figure 1 illustrates the construction up to this point.

A

VA

B

Anti-interference gadget (IA)

NA

VB , NB

IB

Fig. 1. Reduction from Planar Hamiltonian Path

Assuming then that the interference gadget works correctly, and we can
choose TA and TB to make a traversal of NA and NB possible, we can prove
the correctness of the construction. First suppose that there is a Hamiltonian

Paired Pointset Traversal 537

path in G. We can then traverse A and B simultaneously as follows. Begin with
IA − {iA} in A (IB − {iB} in B). Continue to s, and follow a Hamiltonian path
through VA (VB) to t. From t go to iA (iB), and then on to NA (NB). We will
show later how to build NA and NB such that they can be traversed simultane-
ously. For the other direction, suppose there is a pair of matched self-avoiding
path. Since we assumed that the anti-interference gadget works in that case,
we know that the paths traverse all of VA (VB) before they begin traversing
NA (NB). Furthermore, The vertices in NB ensure that the path through VB

does not use any edges outside of E. Hence, the traversal of VB constitutes a
Hamiltonian path in G, which is what we had to show.

We still owe the reader two details of the construction: how to build the
anti-interference gadget, and how to ensure that NA and NB can be traversed
simultaneously.

Let us first show how to build the anti-interference gadget IA and IB . Our
goal is to arrange the vertices of IA and IB such that all the points in VA (VB)
get traversed before the points in NA (NB), or vice versa. We accomplish this
by arranging the vertices of IA in a series of nested wedges, and the vertices of
IB in a line (see Figure 2).

We claim that there is only one simultaneous traversal of IA and IB, namely
the one shown in the figure: IA must be traversed starting at a1, continuing
outwards forming a series of nested wedges to ak+1. If the claim is true, then
the anti-interference gadget performs its function: it separates the traversal of
VA from the traversal of NA, and, furthermore, its vertices do not interfere with
the traversals of VA and NA.

We will establish the claim in several steps. We choose k = 5(|VB |+ |NB |)+4.
Consider the vertices along the line b1, b2, . . . , bk−1. These vertices can only be
traversed in order, unless a traversal uses a vertex outside of that line. Now
there are at most |VB | + |NB | + 3 vertices other than b1, b2, . . . , bk−1. This
means a traversal must contain four neighboring vertices (bi, bi+1, bi+2, bi+3)
(since k is large enough). This, in turn implies that IA contains a wedge, namely
(ai, ai+1, ai+2) if i is odd, or (ai+1, ai+2, ai+3) if i is even. The subsequent ver-
tices, ai+3, . . . , ak−2 (or ai+4, . . . , ak−2 as the case might be), are entirely shielded
from NA and VA, which means, since the corresponding b vertices form a line,
that they have to be traversed in order, ending with ak−2. The arrangement of
the vertices ensures that ak−1 is the only point that we can connect to next.
Therefore, (bk−2, bk−1) must be present as well. Observe that (bk−2, bk−1) sepa-
rates bk from VB and NB .

We now show that from ak−1, the only possible next vertex is ak.

1. We cannot proceed from ak−1 to ak+1, since doing so would result in a
self-intersection in B.

2. We cannot proceed from ak−1 to any vertex in VA, since doing so would
eventually require one of the following next steps:
(a) Moving to ak+1. From ak+1 we could then only continue on to VA, since

NA, and iA are shielded from it. From VA we would then have to con-
tinue to iA. At this point, both bk and the vertices of NB have yet to

538 P. Hui and M. Schaefer

a1

a2

s t

ak−1

ak
iA

ak+1

To NA

To VB , NB

s t

b1 b2 bk−2

bk−1

iB

bk

bk+1

Fig. 2. Anti-interference gadget for pointsets A (top) and B (bottom), along with their
sole legal traversal

be visited. We have already proven that we cannot traverse between bk

and NB , so regardless of whether we decide to visit bk or NB , it will be
impossible to visit the other.

(b) Moving to iA. At this point we can continue to either NA or VA∪{ak+1},
but we can no longer traverse both.

3. We cannot proceed from ak−1 to iA, since doing so would make it impossible
to traverse both VA and NA (as above).

This leaves ak as the sole possible next vertex from ak−1, which in turn
implies that the vertices of IA are traversed as a complete sequence of nested
wedges (since (ak−1, ak) separates VA from the wedges.

Finally, we have to show how to wire NA and NB using additional vertex
sets TA and TB such that a simultaneous traversal is possible. Remember that
NB contains vertices chosen to obstruct edges that do not occur in E. Now once
VA and VB (and the anti-interference device) have been traversed, we need to
pick out these vertices. To this end, we think of the area of VB being sepa-

Paired Pointset Traversal 539

rated into polygonal regions by the complete graph (drawn using straight lines)
on the vertices VB . To each resulting line segment we add four vertices, two
on each side of the line segment. Furthermore, if the line segment contains an
obstruction point, we make sure it is in the middle between the new vertices.
Finally, we add vertices surrounding VA, so we can pick up any region that is
not visible from IA. Figure 3 illustrates the construction. It shows a particu-
lar Hamiltonian path having been chosen (in bold), and, based on that, the
subsequent traversal of NB to pick up all remaining vertices. Since NA is a
translation of NB , and does not interact with VA, any legal traversal of NB is a
legal traversal of NA. Hence, we only need to show that there is a legal traver-
sal of NB . The Hamiltonian path separates the faces of the complete graph
into a number of connected regions, all of which are visible from the outside
(a path cannot enclose a region). We can therefore trace a path around the
graph, and traverse each connected region we see in a depth-first manner (not
entering a face if it has been entered before). In this way we can reach all the
points of NB .

This completes the construction.

�

ib
I
B

s t

Fig. 3. A graph containing a Hamiltonian path (in bold) with vertices NB added, along
with its traversal (dotted)

540 P. Hui and M. Schaefer

3 The Convex Hull Case

Next, we consider a version of the problem in which we allow arbitrary curves
(rather than straight lines) between points. This change by itself would make
the pointset problem trivial: there always is a solution. However, the situation
changes, if we require the curves to be contained within the convex hull formed
by their respective pointsets. In that case, a simultaneous traversal is not always
possible.

If the pointsets contain points (ai, bi) such that either ai is interior to the
convex hull of A, or bi interior to the convex hull of B (or both), then we can
ignore these points, since they do not affect the existence of a paired pointset
traversal: at least one of ai or bi can be positioned arbitrarily by distorting the
interiors. The only problem these points pose is finding them; this can be done
in time O(n log n) using a standard convex hull algorithm.

From this point onwards, we assume that the points in A and B are in convex
position; that is, all the points of A and B lie on the boundary of their convex
hulls.

While the initial problem is NP-complete, we show that the convex hull
variant can be solved in linear time using a combination of greedy choice and
dynamic programming.

3.1 Recognition

Let us first concentrate on legal traversals within a single set in convex position.
For example, Figure 4 shows a legal traversal of a set in convex position.

7
1

2 3

4

56

Fig. 4. A pointset with a legal traversal, (6, 7, 1, 5, 4, 2, 3). We allow arbitrary curves
between points, provided that all curves lie within the convex hull of their pointsets

Let (v1, v2, . . . , vn) be a clockwise ordering of the vertices of A on the border
of the convex hull. We claim that any legal traversal of all the vertices in A
which starts with v1 can be obtained as follows: beginning with the sequence
(v2, . . . , vn) keep removing either the first or the last vertex from the sequence
and add it to the traversal.

Example 1. We start with the clockwise ordering (6, 7, 1, 2, 3, 4, 5) in Figure 4,
and continue (7, 1, 2, 3, 4, 5), (1, 2, 3, 4, 5), (2, 3, 4, 5), (2, 3, 4), (2, 3), (3), (), ob-
taining the legal traversal (6, 7, 1, 5, 4, 2, 3).

Paired Pointset Traversal 541

The proof of the claim is easy: if we begin with v1 and then select a vertex
vi other than v2 or vn, we disconnect v2, . . . , vi−1 from vi+1, . . . , vn (both non-
empty sets). On the other hand, any traversal obtained in the fashion described
leads to a legal traversal, that is, a self-avoiding path.

The situation becomes more involved if instead of a traversal of one set, we
consider simultaneous traversals of two sets, A and B. If we assume, for the
moment, that we know the starting points a1 and b1 of the traversals in both A
and B, then we know that in each set there are at most two ways of continuing
a self-avoiding path. There are three possibilities: if there is no common way
to continue the traversals, we have run into a dead end. If there is exactly one
common way to continue the traversal, we choose that continuation. The only
problem arises if both ways of continuing the current traversal work are legal in
both A and B. The following lemma shows that in that case it does not matter
which choice we make: if we have a choice between two vertices to select, then
choosing one of the vertices will enable us to complete a pair of self-avoiding
paths if and only if choosing the other will as well.

Lemma 1. Let A = (a1, a2, a3 . . . , an) and B = (b1, bπ(2), bπ(3), . . . , bπ(n)) be
clockwise orderings of A and B respectively, where π is a permutation of {2, . . . ,
n} such that either (i) π(2) = 2 and π(n) = n, or (ii) π(2) = n and π(n) = 2.
Then there is a simultaneous traversal of A and B beginning with a1, a2 (b1, b2)
if and only if there is one beginning with a1, an (b1, bn).

Proof. We only consider the case π(2) = 2 (the other being symmetric: take
a mirror image of one of A or B). If there is a simultaneous traversal, we can
without loss of generality assume that there is one starting with a1, a2 and,
therefore, b1, b2. Follow the traversal, until it chooses an, bn; that is, we pick
a1, a2, . . . , ai, an and b1, b2, . . . , bi, bn. But then we might as well pick a1, an,
a2, . . . , ai and b1, bn, b2, . . . , bi. In both cases we are left with the same set of re-
maining vertices: (ai+1, . . . , an−1 and (bi+1, . . . , bn−1. Hence, if we have a choice
of how to continue after picking a1 (b1) it does not matter which choice we
select.
�

At this point, we can write an algorithm which, given index i and length l,
determines in linear time whether or not a paired self-avoiding path fragment of
length l exists traversing A and B and starting at ai and bi (see Algorithm A in
the appendix). We could then extend this algorithm by a brute force approach
and try each (ai, bi), 1 ≤ i ≤ n, to determine whether a complete simultaneous
traversal exists in quadratic time. However, with a slight extension of this al-
gorithm, we can tighten this bound to make the entire algorithm run in linear
time. We do this by using dynamic programming. We build segments of a path
starting at an arbitrary (ai, bi), saving the computed path for subsequent at-
tempts at a different (aj , bj) in the event that this one fails. In this manner, no
subpath will ever need to be recomputed. For lack of space we do not include
details.

542 P. Hui and M. Schaefer

3.2 Optimization

If Algorithm A determines that A and B do not have a common pointset traver-
sal, we could still try to optimize the length of a longest common traversal,
lct(A,B). We suspect that this problem will turn out to be NP-complete, hence
approximation results would be of interest. A simple approximation result fol-
lows from the following observation:

Lemma 2. If A and B are in convex position then lct(A, B) ≥
√

n.

Proof. Assume the vertices are labelled clockwise as a1, . . . , an, and the vertices
of b as bπ(1), . . . , bπ(n)) for some permutation π of {1, . . . , n}. Then a longest
monotone subsequence of (π(1), . . . , π(n) will be a common legal traversal of A
and B. An old result of Erdős and Szekeres shows that any sequence of distinct
real numbers contains a monotone subsequence of length at least

√
n [2, 9].
�

The lemma allows us to approximate lct(A,B) to within a factor of n1/4 by
simply predicting it to be n3/4. We also note that the lemma is asymptotically
optimal:

Lemma 3. There are A and B in convex position such that lct(A, B) ≤ 2
√

n+1.

Proof. Consider two sets A and B, each in convex position, and a common (not
necessarily full) traversal. Without loss of generality we can assume that the
vertices of A are labelled a1, . . . , an in a clockwise ordering, and the common
traversal begins with a1 and b1. If we consider the sequence of indexes of this
traversal it has the property that it alternatingly increases and decreases, without
ever going beyond any earlier values. That is if i < j < k, then either ai, aj , ak

is monotone, or ak lies between ai and aj . We call such a sequence a telescope
sequence. For example, 1, 3, 13, 11, 9, 5, 8, 7 is a telescope sequence. If we split a
telescope sequence into its increasing and its decreasing parts, it is clear that
every telescope sequence of length m contains a monotone sequence of length at
least m/2. Returning to our traversal, we see that if the traversal has length m,
then it contains a monotone traversal of length at least m/2 whose indices form
a monotone sequence. Hence, if we order B in such a way that it does not have
a monotone subsequence of length

√
n + 1 (which is possible, since the result by

Erdős and Szekeres is sharp), then lct(A,B) ≤ 2
√

n + 1.
�

The convex case gives us a first break into the general case.

Corollary 1. If A and B are two sets of points chosen uniformly and inde-
pendently at random in a circle, then the expected value of lct(A, B) is at least
n1/18.

Proof. By a result of Raynaud [8–Theorem 4.2] the convex hull of A has an
expected number of n1/3 vertices on its boundary. If we restrict B to the cor-
responding vertices, those n1/3 vertices are still uniformly distributed over the
circle, hence their convex hull has an expected number of n1/9 vertices on the
boundary. If we restrict A to the corresponding vertices, we are now in a situa-
tion where both A and B are in convex position, and we can apply Lemma 2 to
conclude that we expect lct(A,B) to be at least n1/18.
�

Paired Pointset Traversal 543

4 Open Questions

As far as we know this is the first time the common pointset traversal problem
has been formalized and studied, so open questions still abound, even though
the convex hull case seems to be closely tied to results from geometric Ramsey
theory.

In the general case, the most important open problem is the complexity of
approximating lct(A,B). The construction in our NP-hardness result is very
fragile, and it seems tricky to even extend it to claiming that approximating
lct(A,B) to within an additive constant is still NP-hard.

We did show that lct(A,B) is at least n1/18 for points chosen at random in
a circle; the result relied on finding large subsets of points in convex positions.
By a well-known result of Erdös and Szekeres [3, 7] there are pointsets such that
the largest subset of points in convex position is of order log n. Hence using
the same idea as in the random case, the best result we can obtain is that
lct(A,B) ≥

√
log log n, which cannot possibly be anywhere near the truth.

In the convex hull case, the most immediate problem is to settle the com-
plexity of the optimization problem. However, there are several other questions
that also suggest themselves: how fast can we solve the paired pointset traversal
problem if we allow up to k intersections. Is the resulting problem NP-complete?
If so (and we conjecture that this is the case), how does the complexity vary with
k? More precisely, taking the parameterized complexity view, can we show that
the paired pointset traversal problem can be solved in time O(nc) for any fixed
k, where c does not depend on k. A recent, comparable result, of Martin Grohe
shows that we can determine in quadratic time, whether the crossing number of
a graph is at most k (for any fixed k) [6].

Acknowledgment. We would like to thank Binhai Zhu for suggesting the
problem to us, and explaining its application to measuring similarity of two-
dimensional surfaces.

References

1. Helmut Alt and Michael Godau. Measuring the resemblance of polygonal curves.
In Proceedings of the 8th Annual Symposium on Computational Geometry, pages
102–109. ACM Press, 1992.

2. Paul Erdős and George Szekeres. A combinatorial problem in geometry. Compositio
Math., 2:463–470, 1935.

3. Paul Erdős and George Szekeres. On some extremum problems in elementary
geometry. Ann. Univ. Sci. Budapest Eotvos Soc. Math., 3-4:53–62, 1961.

4. M. R. Garey, D. S. Johnson, and R. Endre Tarjan. The planar Hamiltonian circuit
problem is NP-complete. SIAM Journal on Computing, 5(4):704–714, December
1976.

5. Michael Godeau. On the complexity of measuring the similarity between geometric
objects in higher dimensions. PhD thesis, Freie Universität Berlin, 1998.

6. Martin Grohe. Computing crossing numbers in quadratic time. In Proceedings of
the 32nd ACM Symposium on Theory of Computing, pages 231–236, 2001.

544 P. Hui and M. Schaefer

7. W. Morris and V. Soltan. The Erdős-Szekeres problem on points in convex
position—a survey. Bull. Amer. Math. Soc. (N.S.), 37(4):437–458, 2000.

8. Franco P. Preparata and Michael Ian Shamos. Computational geometry. An intro-
duction. Texts and Monographs in Computer Science. Springer-Verlag, New York,
1985.

9. J. Michael Steele. Variations on the monotone subsequence theme of Erdős and
Szekeres. In Discrete probability and algorithms (Minneapolis, MN, 1993), vol-
ume 72 of IMA Vol. Math. Appl., pages 111–131. Springer, New York, 1995.

10. Binhai Zhu, 2004. Personal Communication.

A Convex Hull Algorithm (Given Starting Points)

Algorithm 1 Linear-time algorithm for deciding if a matched self-avoiding path
of length l through A and B exists starting at points ai and bi

1: PATH ← λ
2: CA ← ClockwiseOrdering(A, ai)
3: CB ← ClockwiseOrdering(B, bi)
4: while (|PATH| < l) do
5: if ((CA[first] = CB [first]) OR (CA[first] = CB [last])) then
6: newV ertex ← CA[first]
7: add newV ertex to PATH
8: delete newV ertex from CA

9: delete newV ertex from CB

10: else if ((CA[last] = CB [first]) OR (CA[last] = CB [last])) then
11: newV ertex ← CA[last]
12: add newV ertex to PATH
13: delete newV ertex from CA

14: delete newV ertex from CB

15: else
16: return false cannot proceed any farther
17: end if
18: end while
19: return true both orderings have been consumed

Approximated Two Choices
in Randomized Load Balancing

Kazuo Iwama� and Akinori Kawachi��

Graduate School of Informatics, Kyoto University
Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan

{iwama, kawachi}@kuis.kyoto-u.ac.jp

Abstract. This paper studies the maximum load in the approximated
d-choice balls-and-bins game where the current load of each bin is avail-
able only approximately. In the model of this game, we have r thresholds
T1, ..., Tr (0 < T1 < · · · < Tr) for an integer r (≥ 1). For each ball, we
select d bins and put the ball into the bin of the lowest range, i.e., the bin
of load i such that Tk ≤ i ≤ Tk+1−1 and no other selected bin has height
less than Tk. If there are two or more bins in the lowest range (i.e., their
height is between Tk and Tk+1 −1), then we assume that those bins can-
not be distinguished and so one of them is selected uniformly at random.
We then estimate the maximum load for n balls and n bins in this game.
In particular, when we put the r thresholds at a regular interval of an ap-
propriate Δ, i.e., Tr −Tr−1 = · · · = T2−T1 = T1 = Δ, the maximum load

L(r) is given as (r + O(1)) r+1

√
r+1

(d−1)r ln n/ ln
(

r+1
(d−1)r ln n

)
. The bound

is also described as L(Δ) ≤ {(1 + o(1)) ln ln n + O(1)}Δ/ ln((d − 1)Δ)
using parameter Δ. Thus, if Δ is a constant, this bound matches the
(tight) bound in the original d-choice model given by Azar et al., within
a constant factor. The bound is also tight within a constant factor when
r = 1.

1 Introduction

Suppose that we put n balls into n bins by selecting a bin uniformly at random
for each ball. This simple model, often called the balls-and-bins game, has been
quite popular for studying several properties in both mathematics and computer-
science fields (see, e.g., [14]). The best known property in this model is that
the load of the highest bin, or the maximum number of balls in any bin, is
approximately lnn/ ln lnn with high probability when the game is finished. In [2],
Azar, Broder, Karlin and Upfal showed that the situation changes dramatically
if we are allowed to select two bins instead of one for each ball: Suppose that
two bins are selected uniformly at random and the ball is put into the lower
bin of the two. Then, the maximum load is approximately ln lnn with high

� Supported in part by Scientific Research Grant, Ministry of Japan, No. 13480081,
No. 15630001, No. 16300003, and No. 16092101.

�� Supported in part by the 21st Century COE Program (Grant No. 14213201).

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 545–557, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

546 K. Iwama and A. Kawachi

probability, which is exponentially smaller than the one-choice case. (This result
also stimulated the research and was followed by several other results [1, 15, 4, 9,
5, 10].

This remarkable improvement is obviously due to the fact that we can select
two bins instead of one, but the following fact should be equally important as
well: Namely, we can tell which of the two selected bins is lower than the other
accurately, even if the difference of the height is only one. In this paper, we
study the case where we can tell the difference of the height of the two bins
approximately, i.e., only if the difference is larger than some value.

There are two reasons why we are interested in such a model which we call
approximated two-choice, or more in general approximated d-choice. The first
reason is related to its application: Among others, the most natural application
of the balls-and-bins game is load balancing. Suppose that a sequence of tasks
is assigned to servers. Then the one-choice model corresponds to selecting one
server at random for each task and the two-choice model to selecting two servers
and assigning the task to the server which is less loaded than the other. By using
the latter, we can obtain an exponentially better load balance among the servers.
To make this possible, however, we have to know the exact loading-factor of each
server at each moment, which does not seem easy in some situations. The second
reason is more theoretical: The large gap in the maximum load between the two
models naturally leads us to consider an intermediate model which bridges the
two models rather continuously. This approach is popular and usually gives us
useful insights on why those two models are so different. (For instance, see [13] for
the difference in the satisfiability threshold between random 2SAT and random
3SAT.)

Our Contribution. Suppose that we can tell which bin is less loaded than the
other iff the number of balls currently loaded in the two bins differs by at least
Δ. Then our main result shows that the maximum load heavily depends on this
value Δ. Actually in this paper, we analyze the more general d-choice model and
for technical reason we use the following “threshold model.” Let r be an integer
(≥ 1) and T1, ..., Tr be r different integers (0 < T1 < T2 < · · · < Tr) called
thresholds. For each ball, we select d bins and put the ball into the bin of the
lowest range, i.e., the bin of load i such that Tk ≤ i ≤ Tk+1 − 1 and no other
selected bin has height less than Tk. If there are two or more bins in the lowest
range (i.e., their height is between Tk and Tk+1 − 1), one of them is selected
uniformly at random. (See Fig. 1.) Then the maximum load L(r) is given as

L(r) ≤ (r +O(1)) r+1

√√√√√ r+1
(d−1)r lnn

ln
(

r+1
(d−1)r lnn

) .
The bound is also described as

L(Δ) ≤ {(1 + o(1)) ln lnn+O(1)} Δ

ln((d− 1)Δ)

Approximated Two Choices in Randomized Load Balancing 547

using parameter Δ. Thus, if Δ is a constant, this bound matches the (tight)
bound in the original d-choice model given by Azar et al., within a constant
factor. The bound is also tight within a constant factor when r = 1.

Thus we can obtain a rather continuous change depending on the simple
parameter r, which was our main target of the research. Some remarks are as
follows: (1) Although our main theorem is more general, the above particular
bounds (both for L(r) and L(Δ)) are obtained when the thresholds are set
regularly, namely such that T1 = T2 − T1 = · · · = Tr − Tr−1 = Δ. Note that we
can prove that this is the way of getting the best load balance when d = 2 and
it is probably true also for a general d. Under this regularity assumption, there
must be at least one threshold between the heights h1 and h2 of the two bins if
|h1 − h2| ≥ 2Δ, and so the above bound for L(Δ) immediately follows. (2) By
increasing d, we can obtain a better load balance. This merit is given as (i) a
factor of 1/

√
d when d = 2, (ii) a factor of 1/dr/r+1 when r is a constant, and

(iii) the factor approaches to 1/ ln d when r is large. (Details are omitted but it
is not hard to calculate these factors from the bound for L(r).) Thus the merit
of increasing d reaches a maximum for some value of r. (See below for other
analysis of this merit.) (3) This upper bound for L(r) is tight within a constant
factor when r = 1. Our strong conjecture is that it is also similarly tight for a
general r, but the lower-bound analysis appears to get much more complicated.

Fig. 1. Approximated d-choice balls-and-bins game

Related Results. The first analytical results on the power of multiple choices
were demonstrated by Karp, Luby and Meyer auf de Heide [6] in the context
of the PRAM simulations. As mentioned before, [2] is a seminal paper which
showed that the maximum load in the d-choice (d ≥ 2) is ln ln n

ln d +Θ(1) with high
probability. Furthermore, Vöcking showed an improvement of the maximum load
in the d-choice model using asymmetric allocations [15, 16]: If we select two or
more bins with the same height by d-choice, we always put a ball into the left-
most bin among them in his modified model. Then, such a slight modification
of the d-choice model yields a maximum load of approximately ln ln n

d with high
probability, an exponential improvement in terms of d. Berenblink, Czumaj, Ste-
ger and Vöcking also investigated the power of multiple choices and asymmetric

548 K. Iwama and A. Kawachi

allocations with n bins and m balls when m - n, i.e., the balls-and-bins game
in the heavily loaded case [4].

Many settings of the balls-and-bins game have been also considered besides
the sequential multiple-choice models. Adler, Chakrabarti, Mitzenmacher and
Rasmussen, for example, explored parallel and distributed settings [1] (we can
also find their results in [8]). In their settings, each ball must simultaneously
decide its destination through communication with other balls. Thus the model
(and the analysis as well) is quite different from the sequential model, but inter-
estingly, their results look somehow similar to ours: They proved that the lower
bounds of the maximum load is Ω

(
r+1
√

lnn/ ln lnn
)

through r rounds of com-
munication for a wide class of parallel models, and also gave a constant upper
bound of the maximum load with ln lnn/ ln d+ O(d) rounds of communication
for the d-choice model.

There are plenty of other settings such as the feedback model [5], and the
memory model [10]. The paradigm of the multiple choices has been applied to
several dynamic models, and they succeeded in achieving improvements like ones
in the standard setting. [2] actually analyzed a dynamic model with multiple
choices in the sequential balls-and-bins game. Mitzenmacher [8, 7, 9] and Vven-
denskaya, Dobrushin and Karpelevich [17] proposed queuing theoretic models
with multiple choices and gave the analysis of the power of multiple choices in
the queuing theory. Mitzenmacher and Vöcking [12] also showed the improved
queuing theoretic model by introducing asymmetric allocations.

2 Notations and Useful Lemmas

Most notations in this paper are similar to [2, 11]: B(n, p) is the binomial distri-
bution with parameters n and p. h(t) denotes the random variable of the height
of the t-th ball, i.e.,“ h(t) = k with probability p” means that the t-th ball is
put into a bin of height k − 1 with probability p. μA

i (t) and νA
i (t) denote the

number of the balls whose heights are at least i and the number of the bins
whose heights are at least i, respectively, at time t under model A. In particular,
we define μA

i and νA
i as μA

i (n) and νA
i (n). We omit the name of the model A in

μA
i (t) and νA

i (t) if it is clear from the context. Let AdC be our Approximated
d-Choice model and 1C(m,n) be the conventional one-choice model with m balls
and n bins.

The following three lemmas will be used in the rest of the paper. The first
lemma is the Chernoff-type bound, also given in [2].

Lemma 1. If Xi (1 ≤ i ≤ n) are independent binary random variables such
that Pr[Xi = 1] = p, then

Pr

[
n∑

i=1

Xi ≥ enp

]
≤ exp(−np), and Pr

[
n∑
Xi ≤ np/e

]
≤ exp ((2/e− 1)np) .

The next lemma [1, 8] is convenient when we approximate 1C(m,n) by the
Poisson distribution.

i=1

Approximated Two Choices in Randomized Load Balancing 549

Lemma 2. Let E(X1, ..., Xn) be an event that depends solely on the heights by
1C(m,n), where Xi (i = 1, ..., n) indicates the number of balls in the i-th bin.
Also, let Y1, ..., Yn be independent Poisson random variables with mean m/n.
Then,

Pr[E(X1, ..., Xn)] ≤ 4 Pr[E(Y1, ..., Yn)]

if Pr[E(X1, ..., Xn)] is monotonically increasing with m.

It is well known that the following bounds hold for tails of the Poisson dis-
tribution (e.g., [3]).

Lemma 3. For any positive integer m and any real λ, if m+ 1 > λ,

λme−λ

m!
≤

∞∑
k=m

λke−λ

k!
≤ m+ 1
m+ 1− λ

λme−λ

m!
.

3 Main Results

The following theorem is a general form on the upper bound of the maximum
load by AdC.

Theorem 1. Let Sr =
∏r−1

l=1 ((d− 1)(Tl+1 − Tl) + 1), and suppose d is a con-
stant and T1 > C for a sufficient large constant C. Then the maximum load
achieved by AdC is at most

Tr +
lnn− 2 ln lnn

(d− 1)SrT1(lnT1 −O(1))
+O(1)

with probability at least 1− o(1) if SrT1 = o(lnn/ ln lnn) and Sr = ω(ln ln lnn).

The conditions that SrT1 = o(lnn/ ln lnn) and Sr = ω(ln ln lnn) are always
met in the following argument. The proof is given in the following Sections 3.1–
3.4. Several corollaries follow: Corollary 1 is for the case that we set the thresholds
regularly, Corollary 2 if we use parameter Δ (= the size of each range) instead
of r, and Corollary 3 for the case that Δ is a constant, which is similar to the
original d-choice model. We omit the proofs of these corollaries.

Corollary 1. If we set Tk = kΔ = k r+1

√
r+1

(d−1)r lnn/ ln
(

r+1
(d−1)r lnn

)
for 1 ≤

k ≤ r and Δ > C for a sufficiently large constant C, then the maximum load
L(r) achieved by AdC is at most

(r +O(1))Δ = (r +O(1))

⎛⎝ r+1
(d−1)r lnn

ln
(

r+1
(d−1)r lnn

)
⎞⎠

1
r+1

with probability 1− o(1) if d is a constant.

550 K. Iwama and A. Kawachi

Corollary 2. If we set Tk = kΔ = k r+1

√
r+1

(d−1)r lnn/ ln
(

r+1
(d−1)r lnn

)
for 1 ≤

k ≤ r and Δ > C for a sufficiently large constant C, then the maximum load
L(Δ) achieved by AdC is at most

{(1 + o(1)) ln lnn+O(1)} Δ

ln((d− 1)Δ)
.

with probability 1− o(1) if d is a constant.

Corollary 3. Suppose that Δ = C for a sufficiently large constant C, then the
maximum load achieved by AdC is at most (1 + o(1))C ln ln n

ln(C(d−1)) + O(1) with
probability 1− o(1) if d is a constant.

3.1 Proof of Theorem 1

Our main tool for the proof is the so-called layered induction [2]. The layered
induction is based on the following idea. Let pi be the maximum probability that
we put a ball into one of the bins whose heights are i or more. Obviously νi+1(n) is
bounded above by cn·pi with high probability for some constant c. Note that the
probability pi depends on the value of νi(n). We therefore construct a recurrence
{αi}i that bounds νi(n) above for every i from the relation αi+1 = cnpi where
pi depends on αi. We can thus find the maximum load by estimating i such that
αi < 1.

Our proof consists of three stages. In the first stage, we bound νT1 , i.e.,
the number of bins whose height is at least the value of the first threshold.
For this purpose, we cannot use the layered induction since the probability pi

for i < T1 is too large to use the technique. (As mentioned above, we use the
recurrence αi+1 = cnpi, which is obviously not too tight since the total number
cn · r of balls is (much) larger than n. Thus the recurrence can be used only
when pi is sufficiently small.) Instead we use the 1C(dn, n) model, i.e., we put
dn balls into n bins uniformly at random and evaluate the number ν1C(dn,n)

T1

of bins whose height is at least T1 under this model. Note that dn bins are
selected in total uniformly at random in both AdC and 1C(dn, n). So suppose
that s1, s2, ..., sdn are a sequence of selected bins for both AdC and 1C(dn, n).
Then the number of balls received by an arbitrary bin under AdC is obviously
at most the number of balls received by the bin under 1C(dn, n). Thus we can
conclude that νAdC

T1
≤ ν

1C(dn,n)
T1

.
The second stage is a main part of the layered induction. Note that it is

more like a double induction because of the existence of thresholds: Defining
an appropriate sequence {αi}Tk≤i≤Tk+1 for any k, we first prove that νi < αi

with high probability for the height i between Tk and Tk+1. Next, we prove that
νTk

< αTk
for a sequence {αi}i=T1,T2,...,Tr

with high probability. Finally, in the
third stage, we consider the number of the bins whose heights are more than the
last threshold Tr. The proof in the third stage can be done by almost the same
argument as [2].

Approximated Two Choices in Randomized Load Balancing 551

3.2 First Stage

We first prove the following lemma.

Lemma 4. The following inequality holds:

Pr

[
νAdC

T1
≥ en

(
ed

T1

)T1
]
≤ 4 exp

(
− 1
ed

(
d

T1

)T1

n

)
.

Proof. As described in Sec 3.1, AdC can be replaced by 1C(dn, n) in this stage.
More formally, we can claim that

Pr

[
νAdC

T1
≥ en

(
ed

T1

)T1
]
≤ Pr

[
ν

1C(dn,n)
T1

≥ en

(
ed

T1

)T1
]

for any T1 ∈ {1, ..., n}. Now it suffices to show an upper bound of the right-side
probability by the Poisson approximation. For a random variable X, let

pT1 = Pr
X∈(0,∞)

[X ≥ T1 : X has the Poisson distribution with mean d].

Then we have

Pr[ν1C(dn,n)
T1

≥ enpT1] ≤ 4 Pr[B(n, pT1) ≥ enpT1] ≤ 4 exp(−npT1)

by Lemmas 2 and 1. Also,

1
ed

(
d

T1

)T1

≤ pT1 ≤
(
ed

T1

)T1

by Lemma 3 if d is a constant and T1 is larger than some constant. Therefore,

Pr

[
ν

1C(dn,n)
T1

≥ en

(
ed

T1

)T1
]
≤ 4 exp

(
− 1
ed

(
d

T1

)T1
)
.

�
3.3 Second Stage

For i ≥ T1, we define a sequence {αi}i≥T1 as follows:

αT1 = en

(
ed

T1

)T1

, αi+1 =

⎧⎨⎩
c1eαd−1

Tk
αi

nd for Tk ≤ i < Tk+1, k = 1, ..., r,
c2eαd−1

Tr
αi

nd for i ≥ Tr.

Then by a simple calculation, we have

αi =

{(
c1e
n

)i−Tk αi−Tk+1
Tk

for Tk ≤ i < Tk+1,(
c2e
n

)i−Tr
αi−Tr+1

Tr
for i ≥ Tr.

552 K. Iwama and A. Kawachi

When we let c′1 = (c1e)1/(d−1), we have

αTk
=
(
c′1
n

)(d−1)(Tk−Tk−1)

α
(d−1)(Tk−Tk−1+ 1

d−1)
Tk−1

,

=
(
c′1
n

)(d−1)k−1 ∏k−1
l=1 (Tl+1−Tl+ 1

d−1)−1

α
(d−1)k−1 ∏k−1

l=1 (Tl+1−Tl+ 1
d−1)

T1
.

Also, let

Sk =

{
1 for T1 ≤ i < T2,

(d− 1)k−1∏k−1
l=1

(
Tl+1 − Tl + 1

d−1

)
for Tk ≤ i < Tk+1, k = 2, ..., r − 1.

Then, we can represent αTk
as follows:

αTk
=
(
c′1
n

)Sk−1

αSk

T1
.

Now we can prove that νi is bounded above by αi with high probability.

Lemma 5. The following inequality holds:

Pr[νAdC
Tr

≥ αTr] ≤ (Tr − T1) exp

⎛⎝− c1
c′d1
n

(
c1e

(
ed

T1

)T1
)Sr

⎞⎠+ Pr[νAdC
T1

≥ αT1].

Proof. We first consider Pr[h(t) > i], i.e., the probability that we put the t-th
ball into the bins whose heights are i or more. Suppose that d is a constant and
Tk ≤ i ≤ Tk+1 − 1 for some k. Recall that d bins are selected at random for the
t-th ball. If a bin whose height is less than Tk is selected, then this probability
is obviously zero. In the following, we assume that out of d bins, y bins are of
height between Tk and i−1, x bins of height between i and Tk+1−1, and d−x−y
bins of height Tk+1 or more (see Fig. 2).

Pr[h(t) > i] =
(

νi(t − 1)
n

)d

+
∑

x≥1,y≥0,x+y≤d

d!
x!y!(d − x − y)!

x

x + y
×

(
νTk+1(t−1)

n

)d−x−y(νi(t−1)−νTk+1(t−1)
n

)x(
νTk (t−1)−νi(t−1)

n

)y

≤
(

νi(t − 1)
n

)d

+
d∑

x=1

d−x∑
y=0

d!
x!y!(d − x − y)!

x

x + y

(
νi(t − 1)

n

)d−y (
νTk (t − 1)

n

)y

≤
(

νi(t − 1)
n

)d

+

(
d∑

x=1

d−x∑
y=0

d!
x!y!(d − x − y)!

x

x + y

)(
νi(t − 1)

n

)(
νTk (t − 1)

n

)d−1

≤ c1
νi(t − 1)νTk (t − 1)d−1

nd
(1)

for some constant c1. Since we can prove this lemma by a similar argument to
[2] with the above estimation of Pr[h(t) > i], we omit the rest of this proof.
�

Approximated Two Choices in Randomized Load Balancing 553

Fig. 2 he estimation of Pr[h(t) > i]

3.4 Third Stage

For i > Tr, we can imply the following inequality just as (1) for some constant
c2. (Recall that we are assuming that d is a constant.)

Pr[h(t) > i] =
d∑

x=1

(
d

x

)
x

d

(
νi(t− 1)

n

)x(
νTr (t− 1)− νi(t− 1)

n

)d−x

≤ c2
νi(t− 1)νTr

(t− 1)d−1

nd
.

Based on this probability, we can show

Pr[¬Ei+1 | Ei+1 ∧ ETr] ≤
exp(−qin)
Pr[Ei ∧ ETr]

using an argument similar to the proof of Lemma 5, where we let

qi = c2
αd−1

Tr
αi

nd
. (2)

In the range of i satisfying that exp(−qin) ≤ 1
(ln n)2 ,

Pr[¬Ei | ETr
] ≤ i− Tr

(lnn)2 Pr[ETr
]
,

which implies that

Pr[¬Ei] ≤
i− Tr

(lnn)2
+ Pr[¬ETr

].

Let i∗ be the minimum i such that exp(−qin) ≥ 1
(ln n)2 . From (2) and the values

of αi and αd−1
Tr

which were obtained in the second stage, we can imply

i∗ ≤ Tr +
lnn− ln ln(lnn)2

(d− 1)
{
SrT1 ln T1

ed − Sr ln c′1 − Sr + ln c′1
} +O(1)

= Tr +
lnn− ln ln(lnn)2

(d− 1)SrT1(lnT1 − ln d−O(1))
+O(1).

T.

554 K. Iwama and A. Kawachi

Again as was done in the proof of Lemma 5, we can show that

Pr[νi+1 ≥ e ln(lnn)2] ≤ i∗ − Tr + 1
(lnn)2

+ Pr[¬ETr
].

Note that

Pr[νi∗+2 ≥ 1 | νi∗+1 ≤ e ln(lnn)2 ∧ ETr] ≤
Pr[B(n, e ln(ln n)2

αTr

(αTr

n

)d) ≥ 1]

Pr[νi∗+1(n) ≤ e ln(lnn)2 ∧ ETr
]

and

Pr
[
B

(
n,

e ln(ln n)2

αTr

(αTr

n

)d
)

≥1
]
=1−

(
1−e ln(ln n)2

αd−1
Tr

nd

)n

≤e ln(ln n)2
(αTr

n

)d−1
.

(3)
Therefore,

Pr[νi∗+2 ≥ 1 | νi∗+1 ≤ e ln(lnn)2 ∧ ETr
] ≤

e ln(lnn)2
(αTr

n

)d

Pr[νi∗+1(n) ≤ e ln(lnn)2 ∧ ETr
]
,

which implies that

Pr[νi∗+2≥1] ≤ Pr[νi∗+2≥1 | νi∗+1≤e ln(lnn)2 ∧ ETr
] Pr[νi∗+1≤e ln(lnn)2 ∧ ETr

]
+ Pr[¬(νi∗+1 ≥ e ln(lnn)2 ∧ ETr

)]

≤ e ln(lnn)2
(αTr

n

)d−1
+ Pr[νi∗+1 ≤ e ln(lnn)2] + Pr[¬ETr

]

≤ e ln(lnn)2
(αTr

n

)d−1
+
i∗ − Tr + 1

(lnn)2
+ Pr[¬ETr

].

Since the second term is o(1), we can claim that the maximum load is at most
i∗ + 1 with probability at least

1 − 4 exp

(
− 1
ed

(
d

T1

)T1

n

)
− (Tr − T1) exp

⎛⎝− c1
c′d1
n

(
c1e

(
ed

T1

)T1
)Sr

⎞⎠
− 2e ln lnn

c′d−1
1

(
c′1e

(
ed

T1

)T1
)(d−1)Sr

− o(1)

by Lemmas 4 and 5. This probability is 1 − o(1) if SrT1 = o(lnn/ ln lnn) and
Sr = ω(ln ln lnn).
�

4 Lower Bounds

We next show a lower bound of the maximum load by AdC when we have only
one threshold T1.

Approximated Two Choices in Randomized Load Balancing 555

Theorem 2. If r = 1 and d = o(lnn/ ln lnn), the maximum load achieved by
AdC is Ω

(√
lnn/d ln lnn

)
with probability 1− o(1).

Proof. Since if T1 > lnn/ ln lnn then we directly obtain a lower bound of
Ω(lnn/ ln lnn) by the argument of the one-choice model, we assume that T1 ≤
lnn/ ln lnn throughout this proof.

We divide the process of the approximated d-choice balls-and-bins game into
two periods: The first is from time 1 to n/2 and the second is from n/2+1 to n.
In the first period, we will estimate a lower bound l of the number νAdC

T1
(n/2) of

the “high” bins, namely, the bins of height T1 or more using approximation by
the one-choice model. Next, in the second period, we will estimate the number
m of balls that are put into the l “high” bins through the remaining n/2 balls,
and then estimate a lower bound of the maximum load in the l bins. Note that
any balls behave like those in the one-choice model under the condition that
they are put into one of the l bins since such l bins are no longer distinguished.
Therefore, we can exploit the standard argument to estimate a lower bound T ′

of the maximum load for l bins and m balls in the one-choice model. We thus
obtain a lower bound T1 + T ′ of the maximum load achieved by AdC.

First Period: In the first period, we wish to bound νAdC
T1

(n/2) below by the
Poisson approximation of the one-choice model. To compare AdC with 1C, we
consider the following model: For each ball, select d bins uniformly at random
and put the ball into the bin which is selected uniformly at random again from
the d bins. (Thus this new model is obviously equivalent to 1C(n, n).) As before,
let us assume that we have the same sequence of dn bins for the new model and
AdC. Then, if some bin of height at most T1−1 receives a ball in the new model,
AdC must put the ball into a bin whose height is also at most T1 − 1. Thus one
can conclude that νAdC

T1
≥ ν

1C(n,n)
T1

always holds. Therefore, it holds that

Pr[νAdC
T1

(n/2) ≤ (n/e)p′
T1

] ≤ Pr[ν1C
T1

(n/2) ≤ (n/e)p′
T1

],

where, for a random variable X,

p′
T1

= Pr
X∈(0,∞)

[X ≥ T1 : X has the Poisson distribution with mean 1/2].

By Lemmas 2 and 1, we have

Pr[ν1C
T1

(n/2) ≤ (n/e)p′
T1

] ≤ 4 Pr[B(n, p′
T1

) ≤ (n/e)p′
T1

] ≤ 4 exp(−(1− 2/e)p′
T1
n).

Since p′
T1
≥ e−1/2

(
1

2T1

)T1

by Lemma 3, we have

Pr

[
νAdC

T1
(n/2) ≤ n

e3/2

(
1

2T1

)T1
]
≤ 4 exp

(
−(1− 2/e)e−1/2

(
1

2T1

)T1

n

)
def= P1.

(4)

556 K. Iwama and A. Kawachi

Therefore, νAdC
T1

(n/2) > n
e3/2

(
1

2T1

)T1

with probability at least 1− P1. As men-
tioned at the beginning of this proof, we denote this lower bound by l, namely,

l
def=

n

e3/2

(
1

2T1

)T1

.

Second Period: Let m be the number of balls that are put into the l bins of
height T1 or more through the remaining n/2 balls. By Lemma 1,

Pr

[
m ≤ n

2e

(
l

n

)d
]
≤ exp

((
2
e
− 1

)
n

2

(
l

n

)d
)

def= P2. (5)

By the standard analysis for the one-choice model (e.g., [8]), the lower bound of
the maximum load achieved by 1C(m, l) is

T ′ = Ω

(
ln l

ln(l/m)

)
(6)

with probability at least 1−O(1/n). We therefore obtain a lower bound by AdC
of

T1 + T ′ = T1 +Ω

(
ln l

ln(l/m)

)
= Ω

(
T1 +

lnn
dT1 lnT1

)
= Ω

(√
lnn

d ln lnn

)
with probability at least 1−P1−P2−O(1/n) by (3), (4) and (5). This probability
is 1− o(1) if d = o(lnn/ ln lnn).
�

5 Concluding Remarks

Recall that the primary motivation of this work was to bridge between the one-
choice and two-choice models. In fact, however, our analysis is based on the
more general d-choice model, which gives us byproducts such as the interesting
property on the merit of increasing d. It should be noted that this also gives us
what remains to be done. For example, we assumed that d is constant for our
upper bounds. It would be much better if this restriction is removed.

References

1. M. Adler, S. Chakrabarti, M. Mitzenmacher, and L. Rasmussen. Parallel random-
ized load balancing. Random Structures and Algorithms, 13(2):159–188, 1998.

2. Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal. Balanced allocations. SIAM
Journal on Computing, 29(1):180–200, 2000.

3. A. D. Barbour, L. Holst, and S. Janson. Poisson Approximation. Oxford University
Press, 1992.

4. P. Berenbrink, A. Czumaj, A. Steger, and B. Vöcking. Balanced allocations: the
heavily loaded case. In Proceedings of the 32nd annual ACM Symposium on Theory
of Computing, pages 745–754, 2000.

Approximated Two Choices in Randomized Load Balancing 557

5. E. Drinea, A. Frieze, and M. Mitzenmacher. Balls and bins models with feedback.
In Proceedings of the 11th annual ACM-SIAM Symposium on Discrete Algorithms,
pages 308–315, 2002.

6. R. Karp, M. Luby, and F. Meyer auf de Heide. Efficient PRAM simulation on a
distributed memory machine. Algorithmica, 16(4/5):517–542, 1996.

7. M. Mitzenmacher. Load balancing and density dependent jump markov processes.
In Proceedings of the 37th IEEE Symposium on Foundations of Computer Science,
pages 213–222, 1996.

8. M. Mitzenmacher. The power of two choices in randomized load balancing. PhD
thesis, University of California, Berkeley, 1996.

9. M. Mitzenmacher. The power of two choices in randomized load balancing. IEEE
Transactions on Parallel and Distributed Systems, 12(10):1094–1104, 2001.

10. M. Mitzenmacher, B. Prabhakar, and D. Shah. Load balancing with memory. In
Proceedings of the 43rd IEEE Symposium on Foundations of Computer Science,
pages 799–808, 2002.

11. M. Mitzenmacher, A. W. Richa, and R. Sitaraman. The power of two random
choices: a survey of techniques and results. In Handbook of Randomized Computing,
volume 1, pages 255–312. Kluwer Press, 2001.

12. M. Mitzenmacher and B. Vöcking. The asymptotics of selecting the shortest of
two, improved. In Analytic Methods in Applied Probability: In Memory of Fridrih
Karpelevich, pages 165–176. American Mathematical Society, 2002.

13. R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, and L. Troyansky. Deter-
mining computational complexity from characteristic phase transitions. Nature,
400:133–137, 1999.

14. R. Motowani and P. Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

15. B. Vöcking. How asymmetry helps load balancing. In Proceedings of the 40th IEEE
Symposium on Foundations of Computer Science, pages 131–140, 1999.

16. B. Vöcking. Symmetric vs. asymmetric multiple-choice algorithms (invited paper).
In Proceedings of the 2nd ARACNE workshop, pages 7–15, 2001.

17. N. D. Vvendenskaya, R. L. Dobrushin, and F. I. Karpelevich. Queuing systems
with selection of the shortest of two queues: An asymptotic approach. Problems of
Information Transmission, 32(1):15–27, 1996.

Space-Efficient and Fast Algorithms for
Multidimensional Dominance Reporting and

Counting

Joseph JaJa1, Christian W. Mortensen2,�, and Qingmin Shi1

1 Institute of Advanced Computer Studies, University of Maryland, College Park,
MD 20742, USA

{joseph, qshi}@umiacs.umd.edu
2 IT University of Copenhagen, Rued Langgaardsvej 7, 2300 København S, Denmark

cworm@itu.dk

Abstract. We present linear-space sub-logarithmic algorithms for han-
dling the 3-dimensional dominance reporting and the 2-dimensional dom-
inance counting problems. Under the RAM model as described in [M. L.
Fredman and D. E. Willard. “Surpassing the information theoretic bound
with fusion trees”, Journal of Computer and System Sciences, 47:424–
436, 1993], our algorithms achieve O(log n/ log log n + f) query time for
the 3-dimensional dominance reporting problem, where f is the output
size, and O(log n/ log log n) query time for the 2-dimensional dominance
counting problem. We extend these results to any constant dimension d ≥
3, achieving O(n(log n/ log log n)d−3) space and O((log n/ log log n)d−2+
f) query time for the reporting case and O(n(log n/ log log n)d−2) space
and O((log n/ log log n)d−1) query time for the counting case.

1 Introduction

The d-dimensional dominance reporting (resp. counting) problem for a set S of
d-dimensional points is to store S in a data structure such that given a query
point q the points in S that dominate q can be reported (resp. counted) quickly.
A point p = (p1, p2, . . . , pd) dominates a point q = (q1, q2, . . . , qd) if pi ≥ qi for
all i = 1, . . . , d. A number of geometric retrieval problems involving iso-oriented
objects can be reduced to these problems (see for example [EO82]). For the rest
of the introduction we let n denote the number of points in S, f denote the
number of points reported by a dominance reporting query, and ε > 0 be an
arbitrary small constant. The results of this paper can be summarized by the
following two theorems.

Theorem 1. For any constant d ≥ 3 there exists a data structure for the d-
dimensional dominance reporting problem using O(n(logn/ log log n)d−3) space
such that queries can be answered in O((logn/ log log n)d−2 + f) time.

� Part of this work was done while the author was visiting the Max-Planck-Institut
für Informatik, Saarbrücken, as a Marie Curie doctoral fellow.

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 558–568, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Space-Efficient and Fast Algorithms 559

Theorem 2. For any constant d ≥ 2 there exists a data structure for the d-
dimensional dominance counting problem using O(n(logn/ log log n)d−2) space
such that queries can be answered in O((logn/ log log n)d−1) time.

Note that a d-dimensional range counting query (in which each coordinate
of a point to be reported is bounded from two sides instead of one as in domi-
nance counting) can be handled by combining the results of a constant number
(depending on d) of dominance counting queries of the same dimension. Hence
the results in Theorem 2 are valid for range counting queries as well.

In this paper, we assume the RAM model as described by Fredman and
Willard in [FW93], which allows the construction of q-heaps [FW94] (to be
discussed in Section 2). In both Theorems 1 and 2 we assume coordinates of
points are integer valued. But for d ≥ 4 in Theorem 1 and d ≥ 3 in Theorem 2
our results actually hold for real-valued coordinates.

Our success in proving the above theorems is based on a novel generalization
of the concept of dimensions. This definition, given in Section 2, allows a k-
dimensional point (k ≤ d) in the standard sense to be appended with d − k
“special” coordinates, each of which can take only �logε n� different values. Our
approach is based on the fact that we can prove more general results for k-
dimensional reporting (see Lemma 1) and counting queries (see Lemma 4) than
what has been done before. That is, in addition to the constraints on the first k
coordinates specified by a standard dominance query, our solutions satisfy the
additional constraints on the d − k “special” coordinates. These results will in
turn lead to efficient extensions to higher dimensions.

1.1 Relation to Prior Work

In [CE87], Chazelle and Edelsbrunner proposed two linear-space algorithms for
the 3-dimensional dominance reporting problem. The first achieves O(logn +
f log n) query time and the second achieves O(log2 n + f) query time. These
two algorithms were later improved by Makris and Tsakalidis [MT98] to yield
O((log logU)2 log log logU + f log logU) query time for a special case where
coordinates of the points are integers from a bounded universe [0, . . . , U] and
O(logn+ f) query time for the general case. The previous best linear-space al-
gorithm for the 2-dimensional dominance counting problem is due to Chazelle
[Cha88] and achieves O(logn) query time. An external version of Chazelle’s
scheme was proposed by Govindarajan, Arge, and Agarwal [GAA03], which
achieves linear space and O(logB n) I/Os (B being the disk block size) for han-
dling range counting queries inR2. They also extended their algorithm to handle
higher dimensional range counting queries, introducing a factor of O(logB n) to
both the space and the query complexity for each additional dimension.

In [SJ03a], Shi and JaJa achieved O(logn/ log log n + f) query time for the
reporting case and O(logn/ log log n) query time for the counting case, but at
the expense of increasing the space cost in both cases by a factor of logε n. Like
our solution, these solutions require coordinates of points to be integers.

It follows that, compared with previous solutions that require linear space
and, for the reporting case, constant time per reported point, our results improve

560 J. JaJa, C.W. Mortensen, and Q. Shi

the query time by a factor of log log n. Further, the standard techniques for
extending the structures into higher dimensions either require a logn factor on
both the query time and the space usage for each dimension [Ben80] or a log1+ε n
factor on the space usage and a logn/ log log n factor on the query time for each
dimension [ABR00] (while still only using constant time for each reported point).
In this paper, we improve the cost of extensions to higher dimensions to a factor
of O(logn/ log log n) per dimension for both query time and space usage.

1.2 Paper Outline

We start with preliminaries in Section 2. In Section 3 we give a solution to our
generalized 3-dimensional dominance reporting problem, thus proving Theorem 1
for d = 3. In Section 4 we give a solution to our generalized 2-dimensional
dominance counting problem and prove Theorem 2 for d = 2. Finally, we extend
our results to higher dimensions in Section 5.

2 Preliminaries

If an array A is indexed by a set M we will use the notation A[m] for the element
of A at index m ∈M . For integers i and j we let [i..j] denote the set of integers
k for which i ≤ k ≤ j. If M is a set and k ≥ 0 is an integer we let Mk denote
the set M × · · · ×M where M is repeated k times. When stating theorems, we
define i/0 = ∞ when i > 0.

For the rest of this paper, we assume n is the number of points for the
dominance reporting or counting structure we are ultimately designing. While
developing the ultimate structures, we will construct structures with fewer than
n points. We will assume we can use time O(n) to precompute a constant number
of tables with size O(n) which only depend on the word size and on n.

We say a point p = (p1, . . . , pd) has dimension (d′, d, ε) if pd′+1, . . . pd ∈
[1..�logε n�]. Here we assume 1 ≤ d′ ≤ d and 0 < ε < 1 are all constants. We
refer to pi, 1 ≤ i ≤ d, as the i-coordinate of p. We say a set S has dimension
(d′, d, ε) if all the elements of S are (d′, d, ε)-dimensional points. When creating
a data structure containing a set S with dimension (d′, d, ε), we assume without
loss of generality that no two different points in S share any of their first d′

coordinates. That is, if p = (p1, . . . , pd) ∈ S and r = (r1, . . . , rd) ∈ S and p �= r
then p1 �= r1, . . . , pd′ �= rd′ . We define the i-successor of an integer s as the point
p = (p1, . . . , pd) ∈ S such that pi ≥ s and pi is minimized. We define the i-rank
of an integer s as the number of points (p1, . . . , pd) ∈ S for which pi ≤ s, and the
i-rank of a point in S as the i-rank of its i-coordinate. We say the i-coordinate is
in rank space if for all points p = (p1, . . . , pd) ∈ S the i-rank of pi is equal to pi.

We will use the q-heap data structure of Fredman and Willard [FW94]. A
q-heap allows a set S of words where S has cardinality O(log1/4 n) to be stored
such that elements can be inserted in and deleted from S in constant time and
such that given a query integer q the largest element of S smaller than q can be
identified in constant time. The q-heap requires a precomputed table with size
O(n) computable in O(n) time. The size of this table only depends on the word
size and on n.

Space-Efficient and Fast Algorithms 561

3 Three-Dimensional Dominance Reporting

The purpose of this section is to design a data structure to solve the dominance
reporting problem for a set with dimension (3, d, ε) for d ≥ 3, in particular
proving Theorem 1 for d = 3. We give this structure in Section 3.2. First, we
give, in Section 3.1, a solution to a variant of the dominance reporting problem
for a set with dimension (2, d, ε), where d ≥ 2.

3.1 (2, d, ε)-Dimensional 3-Sided Reporting

We define the 3-sided reporting problem for a set S with dimension (2, d, ε) as a
generalization of the dominance reporting problem as follows. A query must have
the form ((q1, q′

1), q2, . . . , qd) where q1 ≤ q′
1. The answer to such a query is the set

of points p = (p1, . . . , pd) ∈ S for which q1 ≤ p1 ≤ q′
1 and p2 ≥ q2, . . . , pq ≥ qd.

We have:

Lemma 1. Let d ≥ 2 and 0 < ε < 1/(d−2) be constants and let S be a (2, d, ε)-
dimensional point set of size m ≤ n, where the 1-coordinate is in rank space.
Then there exists a solution to the 3-sided reporting problem for S using O(m)
space such that queries reporting f points can be answered in O(1 + f) time.

For d = 2 this problem is well studied (see the survey by Alstrup et al.
[AGKR02]). We show the lemma for any d ≥ 2 by using an extension of a
technique mentioned in [AGKR02]. Actually, we show Lemma 1 as a corollary
to Lemma 2:

Lemma 2. Under the assumptions of Lemma 1, we can create a structure using
O(m) space such that, given a query ((q1, q′

1), q3, . . . qd), we can, in constant time,
either find the point (p1, . . . , pd) ∈ S with q1 ≤ p1 ≤ q′

1 and p3 ≥ q3, . . . , pd ≥ qd
such that p2 is maximized, or determine that no such point exists.

We obtain Lemma 1 from Lemma 2 as follows. Suppose we are given a query
((q1, q′

1), q2, . . . qd) in Lemma 1. We then ask the query ((q1, q′
1), q3, . . . qd) in

Lemma 2. If we do not get a point we stop, else let p = (p1, . . . , pd) ∈ S be the
point we get. If p2 < q2 we stop. Otherwise, we report p and recursively ask the
two queries ((q1, p1 − 1), q3, . . . , qd) and ((p1 + 1, q′

1), q3, . . . , qd) in Lemma 2.
The rest of this section is devoted to the proof of Lemma 2. We assume m is

a power of two and define c = �logε n�. We sort the points in increasing order by
their 1-coordinates and group them into blocks each with cd−2 logm elements.
We define for each block b a 1-range [b.l..b.r], where b.l (resp. b.r) is the smallest
(resp. largest) 1-coordinate of a point in b. We create a binary tree T built on
the blocks b sorted in increasing order by b.l. We associate with each leaf v of T
two arrays v.left and v.right, both indexed by [0.. logm]× [1..c]d−2. Let u be the
ancestor of v whose height is h (the height of a leaf is 0). Then v.left[h, q3, . . . qd]
(resp. v.right[h, q3, . . . qd]) stores the point p = (p1, . . . , pd) such that (i) p belongs
to a block corresponding to a leaf between v and the leftmost (resp. rightmost)
leaf node of the subtree rooted at u; (ii) p3 ≥ q3, . . . pd ≥ qd; and (iii) p2 is

562 J. JaJa, C.W. Mortensen, and Q. Shi

maximized, provided that such a point p exists. We note that, since each of
the O(m/(cd−2 logm)) leaves of T contains two arrays both with O(cd−2 logm)
elements, the total space used so far is O(m).

The data structure we just described has enabled us to answer a query
((q1, q′

1), q3, . . . qd) where q1 = b.l and q′
1 = b′.r for two blocks b �= b′. We first

locate, in constant time, the nearest common ancestor u of the two leaves corre-
sponding to b and b′. This can be done in constant time using table lookup. Let
h be the height of u. Then the point that satisfies the query (if any) must be in
either b.right[h− 1, q3, . . . , qd] or b′.left[h− 1, q3, . . . , qd].

In order to be able to answer general queries where the range [q1, q′
1] may

partially intersect the 1-ranges of some blocks, we create an extra structure
for each block b as follows. We build a constant-height tree b.T with degree
Θ(logδ n), for a constant δ > 0 to be determined later, over the points of b
sorted in increasing order by their 1-coordinates. At each internal node v ∈ b.T
we keep for each pair (v1, v2) of its children, where v1 is to the left of v2, an array
v.R(v1,v2) indexed by [1..c]d−2. The entry (q3, . . . , qd) of this array identifies the
point p = (p1, . . . , pd) in b such that (i) p is in a leaf below a child of v between v1
and v2; (ii) p3 ≥ q3, . . . , pd ≥ qd; and (iii) p2 is maximized, provided that such a
point exists. Since within b a point can be uniquely identified using O(log log n)
bits, the total bit-cost of each internal node of v.T is O(cd−2 log log n log2δ n).
It follows that an internal node fits into a single word (and thus the total space
usage will be linear), if 2δ + (d − 2)ε < 1, which can be satisfied by choosing
δ = (1−(d−2)ε)/3. Our assumption ε < 1/(d−2) ensures that δ will be positive.

We now describe how to answer a query of the form ((q1, q′
1), q3, . . . , qd) where

q1, q
′
1 ∈ [b.l..b.r] for some block b. Let u be the nearest common ancestor of the

leaves in b.T corresponding to q1 and q′
1, and let Π1 and Π2 be respectively the

paths from u to these two leaves. The answer to the query can be chosen from a
constant number of “candidate points”, each picked at a node on Π1 or Π2 from
one of its associated arrays. For example, without loss of generality, consider the
node u. Suppose its ith and jth children are respectively on paths Π1 and Π2,
and assume i < j − 1. Then the candidate point contributed by u can be found
in constant time at u.R(v1,v2)[q3, . . . , qd], where v1 and v2 are respectively the
(i+ 1)th and (j − 1)th children of u.

Finally suppose we are given a query ((q1, q′
1), q3, . . . , qd) where q1 ∈ [b.l..b.r]

and q′
1 ∈ [b′.l..b′.r] for two different blocks b and b′, which can be easily identi-

fied in constant time. The output of the query is then one of the three points
returned by the queries ((q1, b.r), q2, . . . , qd), ((b′.l, q′

1), q2, . . . , qd), and (b.r +
1, b′.l − 1, q2, . . . , qd), the handling of which has already been described.

3.2 (3, d, ε)-Dimensional Dominance Reporting

In this section we show the following lemma:

Lemma 3. Let d ≥ 3 and 0 < ε < min(1/4, 1/(d− 2)) be constants and assume
S is a (3, d, ε)-dimensional point set of size m ≤ n. Then there exists a solution
to the dominance reporting problem for S using O(m) space such that a query
reporting f points can be answered in O(logm/ log log n+ f) time.

Space-Efficient and Fast Algorithms 563

We say a point p = (p1, . . . , pd) 2-dominates a point q = (q1, . . . , qd) if pi ≥ qi,
for 1 ≤ i ≤ 2. We say a subset M of a point set P is 2-maximal if p ∈M , q ∈ P
and p �= q implies that p does not 2-dominate q.

We build a search tree T with degree c = �logε n� and height O(logm/
log log n) over the points from S sorted in increasing order by their 3-coordinates.
At each internal node v ∈ T we store the keys to guide the search in T in a q-heap.
For each internal or leaf node v ∈ T we define M(v) to be the largest 2-maximal
set of the points stored in the leaves of the subtree rooted at v, excluding those
in M(v′) for any ancestor v′ of v. We keep each point (p1, . . . , pd) ∈M(v) as the
(2, d−1, ε)-dimensional point (p1, p3, p4, . . . , pd) in the 3-sided reporting structure
D(v) of Lemma 1. For the moment we ignore the requirement in Lemma 1 that
the 1-coordinate must be in rank space. At each internal node v, we also store
another data structure G(v) containing the points in M(v′) for all the children
v′ of v. A point (p1, . . . , pd) from the ith child of v (counted from the left)
is stored in G(v) as the (2, d, ε)-dimensional point (p1, p2, i, p4, . . . , pd). G(v) is
also a 3-sided reporting structure of Lemma 1, again ignoring the rank space
requirement.

Now suppose we are given a query q = (q1, . . . , qd). We first identify the path
Π in T from the root to the leaf corresponding to the 3-successor of q3. We
can find Π in time O(logm/ log log n) by using the q-heaps associated with the
nodes of T . We then visit the root of T as described in the following. Actually,
we will describe how to visit an arbitrary node v ∈ T . We first report the points
from M(v) which dominate q by performing a query q′ = ((q1, q′

1), q3, q4, . . . , qd)
in D(v), where q′

1 is the 1-coordinate of the 2-successor of q2 in M(v) (we will
explain later how to find this 2-successor in constant time). The points returned
by this query are exactly the points in M(v) that dominate q. This is due to the
fact that for any two points r = (r1, r2, . . . , rd) and s = (s1, s2, . . . , sd) in M(v),
r1 > s1 if and only if r2 < s2 (see [MT98] for more details). Next, suppose the
kth child of v is on Π (we set k = 0 if v is not on Π). We then perform the
query q′′ = ((q1,∞), q2, k + 1, q3, . . . , qd) in G(v). If the answer to q′′ contains a
point (p1, p2, i, p4, . . . , pd), we recursively visit the ith child of v. If v has a child
on Π we also recursively visit that child (such child exists if and only if v is an
internal node on Π).

We now address the issue that the 1-coordinate of the points in M(v) and
G(v) for a node v in T has to be in rank space in order for Lemma 1 to be
applicable, and that the 2-successor of q2 in M(v) has to be identified in constant
time. The first issue is resolved by replacing the 1-coordinate of each point in
M(v) (resp.G(v)) with its 1-rank with respect toM(v) (resp.G(v)). Accordingly,
before the query q′ (resp. q′′) is applied to M(v) (resp. G(v)) we replace q1 with
its 1-rank in M(v) (resp. G(v)) (and, in the case of query q′, replace q′

1 with
the 1-rank of the 2-successor of q2). Computing the 1-rank and the 2-successor
of an integer in M(v) and G(v) for each node visited is exactly the iterative
search problem defined in [CG86], which can be handled in O(1) time if v is
not the root of T and in O(logm/ log log n) time if v is the root, using the fast
fractional cascading technique of [SJ03b], which requires O(m) space. (Notice

564 J. JaJa, C.W. Mortensen, and Q. Shi

that the standard fractional cascading technique described in [CG86] will not
work here because the degree of T is not a constant.)

Note that a point in S is stored at most twice, once in D(v) for a node v
and once in G(u), where u is the parent of v. The data structures of types D
and G are all linear-space data structures. Therefore the overall space usage
is O(m). Further, it is easy to see that the number of nodes of T visited is
O(logm/ log log n + f) and that searching D(v) and G(v) at each such node v
takes O(1) time per reported point, hence the claimed querying complexity.

4 Two-Dimensional Dominance Counting

The goal of this section is to design a data structure to solve the dominance
counting problem for a set with dimension (2, d, ε) for d ≥ 2, thus proving The-
orem 2 for d = 2. We give this structure in Section 4.2. But first, we give,
in Section 4.1, a solution with sub-linear space usage for a set with dimension
(1, d, ε), for d ≥ 1, where the 1-coordinate is in rank space.

4.1 (1, d, ε)-Dimensional Dominance Counting

This section is devoted to the proof of the following lemma:

Lemma 4. Let d ≥ 1 and 0 < ε < 1/(d − 1) be constants and assume S is an
(1, d, ε)-dimensional point set of size m ≤ n, where the 1-coordinate is in rank
space. Then there exists a solution to the dominance counting problem for S
using O(m log log n) bits of space such that queries can be answered in constant
time.

We assume m is a power of two and define c = �logε n�. We sort the points
in increasing order by their 1-coordinates and group them into blocks each with
cd−1 logm elements. Further, we partition each block into subblocks each with
cd−1 elements. We label each block (resp. subblock) with the largest 1-coordinate
of a point in that block (resp. subblock). For each block or subblock b we keep an
array b.count indexed by [1..c]d−1. For each block b we set b.count[q2, . . . , qd] to
be the number of points in S dominating (i+1, q2, . . . , qd) where i is the label of
b. For each subblock b′ of a block b we set b′.count[q2, . . . , qd] to be the number
of points in b dominating (i + 1, q2, . . . , qd) where i is the label of b′. Finally,
we encode the points of a subblock b′ in O(cd−1 log c) = o(logn) bits which we
keep in a single word. This is possible since each of the cd−1 points in b′ can be
encoded in O(log c) bits.

Suppose we are given a query q = (q1, . . . , qd). We first identify, in constant
time, the block (resp. subblock) b (resp. b′) with the smallest label greater than
or equal to q1. We now describe how to find the number e of points in b′ that
dominate q. Notice that a query q with respect to a subblock can be described
in O(log log n) bits. To compute e in constant time, all we need is to append q to
the description of b′ and use the result to look up a global table, which requires
O(n) words since O(cd−1 log c log log n) = o(logn). The answer to the query q is
then e+ b.count(q2, . . . , qd) + b′.count(q2, . . . , qd).

Space-Efficient and Fast Algorithms 565

We now analyze the space usage of the structure. Each array of the m/(cd−1

logm) blocks contains cd−1 elements each of logm bits. It follows that the space
used by these arrays is O(m) bits. Each array of the m/cd−1 subblocks also
contains cd−1 elements but each element is at most cd−1 logm. It follows that
each element can be represented by O(log log n) bits so the total space used
by the arrays associated with the subblocks is O(m log log n) bits. Finally, each
point of a subblock can be represented by O(log log n) bits and it follows that
the total space usage becomes O(m log log n) as claimed.

4.2 (2, d, ε)-Dimensional Dominance Counting

In this section we show:

Lemma 5. Let d ≥ 2 and 0 < ε < min(1/4, 1/(d − 1)) be constants and let S
be a (2, d, ε)-dimensional point set of size m ≤ n. Then there exists a solution to
the dominance counting problem for S using O(m) space such that queries can
be answered in O(logm/ log log n) time.

We will prove the lemma under the assumption that the first coordinate is
in rank space. Since the targeted query time is O(logm/ log log n) time, we can
easily remove this assumption by transforming the 1-coordinates of the points
in S as well as the 1-coordinate of the query point into rank space by creating a
search tree with degree (logδ n) on the 1-coordinates of the points, where δ < 1/4,
and storing the keys at each node of this tree in a q-heap.

We create a search tree T with degree c = �logε n� and height O(logm/
log log n) over the points from S sorted in increasing order by their 2-coordinates.
At each internal node v ∈ T we store the keys to guide the search in v in a q-
heap. We define G(v) to be the set of points stored in the subtree rooted at v.
Let p = (p1, . . . , pd) ∈ G(v) be a point stored at a leaf descendant of the jth
child of v, and let i be the 1-rank of p in G(v). Then we store p as (i, j, p3, . . . , pd)
in a structure v.D of Lemma 4 with dimension (1, d, ε).

Now assume that we are given a query q = (q1, . . . , qd). We first identify the
path Π in T from the root to the leaf storing the 2-successor of q2. We can find
Π in time O(logm/ log log n) by using the q-heaps stored at the nodes of T . The
answer to q is the sum of the answers to Θ(logm/ log log n) (1, d, ε)-dimensional
dominance counting queries, each applied to the structure v.D for a node v on
Π. For the root w, suppose the jth child of w is also on Π. Then the query
applied to w.D is (q1, j + 1, q3, . . . , qd). For the leaf that is on Π, we check the
point stored there directly. Now consider a non-root internal node v on Π. Let
u be its parent. (Note that u is also on Π.) Suppose the jth child of v is also on
Π. Note that we already know the 1-rank r1(u) of q1 in G(u) (r1(w) = q1). The
query applied to v.D is (r1(v), j + 1, q3, . . . , qd), where r1(v) is the 1-rank of q1
in G(v). The value of r1(v) can be computed by performing a constant number
of (1, d, ε)-dimensional dominance queries in u.D. In fact, let G>(v) denote the
union of G(v′) for all the right siblings v′ of v, and let G≥(v) = G(v) ∪G>(v).
Then r1(v) is the difference between the 1-rank of q1 in G≥(v) and the 1-rank
of q1 in G>(v). The 1-rank of q1 in G≥(v) is |G≥(v)| − k≥(v) + 1, where k≥(v)

566 J. JaJa, C.W. Mortensen, and Q. Shi

is the number of points in G≥(v) whose 1-coordinate is greater than or equal
to q1. |G≥(v)| can be computed by performing the query (0, j, q3, . . . , qd) in u.D
and k≥(v) can be computed by performing the query (r1(u), j, q3, . . . , qd) in u.D.
The 1-rank of q1 in G>(v) can be computed similarly.

Since we only use constant time at each node of Π, the overall query time is
O(logm/ log log n). Furthermore, we store each of the m points of S in O(logm/
log log n) structures, each of which uses O(log log n) bits. Therefore the total
space usage becomes O(m) as claimed.

5 Higher Dimensional Dominance Reporting and
Counting

In this section we give a general construction in Lemma 6 which can be used
to obtain a structure for a (d, d, 0)-dimensional point set from a structure for a
(d′, d, ε)-dimensional point set, where d′ < d. We then use this construction to
prove Theorem 1 and 2 from Lemma 3 and 5 respectively. A similar construction
was given in [Mor03] for orthogonal range reporting for a dynamic set of points.

Let (G,+) be a semi-group and let S be a set with dimension (d′, d, ε). As-
sume each point p ∈ S has an associated semigroup element g(p) ∈ G. The
(d′, d, ε)-dimensional dominance semigroup problem is defined as follows. Given a
(d′, d, ε)-dimensional query point q, find the semigroup sum

∑
p∈S:p dominates q g(p).

We will show:

Lemma 6. Assume 2 ≤ d′ ≤ d and 0 < ε < 1/4 are constants. Assume we
have a data structure structure D′ for a (d′ − 1, d, ε)-dimensional dominance
semigroup problem of size m′ for any m′ ≤ n. Then, we can derive a structure
D for the (d′, d, ε)-dimensional dominance semigroup problem of size m ≤ n.
Further:

1. For every point in D we store O(logm/ log log n) points in structures of type
D′.

2. Given a query in D we can answer it by performing O(logm/ log log n)
queries in the structures of type D′ and return the semigroup sum as the
result.

The space usage besides the space usage in item 1 is O(n) and the queries to
be performed in item 2 can be determined in constant time per query.

The dominance reporting problem can be seen as a special case of the domi-
nance semigroup problem if we define the elements in G as point sets, g(p) = {p},
and select + to be the union operator on sets. Theorem 1 then follows by apply-
ing Lemma 6 d−3 times to Lemma 3. Similarly, the dominance counting problem
can be seen as a special case of the dominance semigroup problem, where the
elements in G are non-negative integers, g(p) = 1, and + is the integer addition.
Theorem 2 then follows by applying Lemma 6 d− 2 times to Lemma 5.

We now prove Lemma 6. Let S be a set of m (d′, d, ε)-dimensional points.
We build a tree T with degree c = �logεm� over the points in S sorted by their

Space-Efficient and Fast Algorithms 567

d′-coordinates. At each internal node v ∈ T we keep a dominance semigroup
structure v.D′ with dimension (d′ − 1, d, ε) containing the points stored in the
subtree rooted at v. A point p = (p1, . . . , pd) from the ith child of v is stored in
v.D′ as p′ = (p1, . . . , pd′−1, i, pd′+1, . . . , pd) with g(p′) = g(p). Suppose now we
are given a query q = (q1, . . . , qd) in D with dimension (d′, d, ε). We first identify
the path Π in T from the root to the leaf corresponding to the d′-successor
of qd′ , which can be found in time O(logn/ log log n) using the q-heaps in the
nodes of T . For each internal node v ∈ Π, assume that the jvth child of v is also
on Π. The answer to the query in D is then the semigroup sum of the queries
(q1, . . . , qd′−1, jv + 1, qd′+1, . . . , qd) in v.D′ for every v ∈ Π. This finishes the
proof of Lemma 6.

References

[ABR00] Stephen Alstrup, Gerth Støling Brodal, and Theis Rauhe. New data struc-
tures for orthogonal range searching. In Proceedings of IEEE Symposium
on Foundations of Computer Science, pages 198–207, Redondo Beach, CA,
2000.

[AGKR02] S. Alstrup, C. Gavoille, H. Kaplan, and T. Rauhe. Nearest common an-
cestors: A survey and a new distributed algorithm. In Proceedings of the
14th ACM Symp. on Parallel Algorithms and Architecture (SPAA), pages
258–264, August 2002.

[Ben80] Jon Louis Bentley. Multidimensional divide-and-conquer. Communica-
tions of the ACM, 23(4):214–229, April 1980.

[CE87] Bernard Chazelle and H. Edelsbrunner. Linear space data structures for
two types of range search. Discrete Comput. Geom., 3:113–126, 1987.

[CG86] Bernard Chazelle and Leonidas J. Guibas. Fractional Cascading: I. A data
structure technique. Algorithmica, 1(2):133–162, 1986.

[Cha88] Bernard Chazelle. A functional approach to data structures and its use in
multidimensional searching. SIAM Journal on Computing, 17(3):427–463,
June 1988.

[EO82] H. Edelsbrunner and M.H. Overmars. On the equivalence of some rectangle
problems. Information Processing Letters, 14:124–127, 1982.

[FW93] Michael L. Fredman and Dan E. Willard. Surpassing the information the-
oretic bound with fusion trees. Journal of Computer and System Sciences,
47:424–436, 1993.

[FW94] Michael L. Fredman and Dan E. Willard. Trans-dichotomous algorithms
for minimum spanning trees and shortest paths. Journal of Computer and
System Sciences, 48:533–551, 1994.

[GAA03] Sathish Govindarajan, Pankaj K. Agarwal, and Lars Arge. CRB-Tree: an
efficient indexing scheme for range-aggregate queries. In Proceedings of
the 9th International Conference on Database Theory, Siena, Italy, 2003.

[Mor03] Christian Worm Mortensen. Fully-dynamic orthogonal range reporting
on RAM (Preliminary version). Technical Report TR-2003-22, The IT
University of Copenhagen, 2003.

[MT98] C. Makris and A. K. Tsakalidis. Algorithms for three-dimensional domi-
nance searching in linear space. Information Processing Letters, 66(6):277–
283, 1998.

568 J. JaJa, C.W. Mortensen, and Q. Shi

[SJ03a] Qingmin Shi and Joseph JaJa. Fast algorithms for 3-d dominance report-
ing and counting. Technical Report CS-TR-4437, Institute of Advanced
Computer Studies (UMIACS), University of Maryland, 2003.

[SJ03b] Qingmin Shi and Joseph JaJa. Fast fractional cascading and its appli-
cations. Technical Report CS-TR-4502, Institute of Advanced Computer
Studies (UMIACS), University of Maryland, 2003.

Local Gapped Subforest Alignment and Its
Application in Finding RNA Structural Motifs

Jesper Jansson, Ngo Trung Hieu, and Wing-Kin Sung

School of Computing, National University of Singapore, 3 Science Drive 2,
Singapore 117543

{jansson, ngotrung, ksung}@comp.nus.edu.sg

Abstract. We consider the problem of computing an optimal local align-
ment of two labeled ordered forests F1 and F2 where ni and di, for
i ∈ {1, 2}, denote the number of nodes in Fi and the degree of Fi, re-
spectively; and its applications in finding RNA structural motifs. A pre-
vious result is the local closed subforest alignment problem, which can
be solved in O(n1n2d1d2(d1 + d2)) time and O(n1n2d1d2) space. This
paper generalizes the concept of a closed subforest to a gapped subforest
and then presents an algorithm for computing the optimal local gapped
subforest alignment of F1 and F2 in O(n1n2d1d2(d1 + d2)) time and
O(n1n2d1d2) space. We show that our technique can improve the com-
putation of the optimal local closed subforest alignment in O(n1n2(d1 +
d2)2) time and O(n1n2(d1 + d2)) space. Furthermore, we prove that a
special case of our local gapped subforest alignment problem is equiva-
lent to a problem known in the literature as the local sequence-structure
alignment problem (lssa). The previously best algorithm for lssa uses
O(n2

1n
2
2(n1 +n2)) time and O(n1n2) space; here, we show how to modify

our main algorithm to obtain an algorithm for lssa running in
O(n1n2(d1 + d2)2) time and O(n1n2(d1 + d2)) space.

1 Introduction

Many areas of computer science use labeled ordered trees to represent hierarchi-
cally structured information. It is often useful to measure the similarity between
two or more such trees or to find parts of the trees that are similar. In computa-
tional molecular biology, labeled ordered trees are used to represent RNA molecules’
secondary structures [14]. By measuring and comparing the similarity of secondary
structure trees, researchers who investigate structural or evolutionary relation-
ships between RNA molecules may obtain additional clues [4]. Furthermore, com-
paring RNAs lead to automated methods for discovering frequently recurring pat-
terns in their secondary structures (also known as motifs) which are helpful when
investigating the various functions in the cell of different types of RNA [8] or when
predicting the secondary structure of a newly found RNA molecule.

Two ways to measure the similarity between two labeled ordered trees are
by using the tree edit distance [15] or alignments of trees [11]. The problem
of computing the optimal alignment of two trees can be viewed as a special

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 569–580, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

570 J. Jansson, T.H. Ngo, and W.-K. Sung

case of the tree edit distance problem [11]; indeed, the fastest known algorithms
for optimal alignment between two trees have lower time complexities than the
fastest known algorithms for the tree edit distance, both for unordered trees
whose degrees are bounded by a constant [11, 19] and for ordered trees whose
degrees are much smaller than their depths [11, 20].

Alignments between trees as defined in [11] consider similarities on global level
only, in the sense that every node in the input trees must be paired off with either
a node in the other tree or a space. [8] and [16] extended the concept of a global
alignment of trees to a local alignment of trees by introducing problems in which
the objective is to find two substructures of the input having the highest possible
similarity, where the similarity between two substructures is defined using the
maximum score of a global alignment between them.

In this paper, we improve the time and space complexities of the main al-
gorithm presented in [8]. Moreover, we further extend the set of mathematical
definitions and notations for local similarity in labeled forests by generalizing
the concept of a closed subforest used in [8] to what we call a gapped subforest.
Based on this new concept, we define a computational problem called the local
gapped subforest alignment problem (lgsf) that can express even more general
patterns of local similarities in two labeled ordered forests than the problem
considered in [8], and give an efficient algorithm for solving it. Finally, we prove
that a special case of lgsf referred to as lgsfβ is in fact equivalent to the local
sequence-structure alignment problem (lssa) presented in [2], implying that a
slightly modified version of our algorithm for lgsf can be applied to solve lssa
much faster than the algorithm given in [2].

1.1 Problem Definitions

We first introduce some terminologies and notations used in this paper.
Let Σ be a set of symbols, the alphabet. A rooted ordered forest whose nodes

are labeled by symbols in Σ is called a Σ-labeled forest (in short, forest). For
any two nodes u and v in F , u and v are called siblings if and only if they have
the same parents or both of them are roots of some trees in F . For any node
u in F , let e(u) be the rightmost sibling of u; let l(u) and r(u) be the sibling
immediately to the left and to the right of u, respectively. uL and uR denote
the leftmost and the rightmost children of u respectively. Given two siblings u
and v, define u..v as a sibling interval, i.e., the set of siblings which are to the
right of u and to the left of v. If u and v are not siblings or if u is a right sibling
of v, u..v is an empty interval. Let S(F) be the set of all sibling intervals of F .
Note that the number of sibling intervals in S(F) is O(|F |deg(F)) since, for each
node u, there are at most deg(F) sibling intervals u..v. Let F [u..v] be the forest
consisting of the subtrees rooted at the nodes in u..v.

Definition 1 (Closed Subforest). Let F and F ′ be two Σ-labeled forests. F ′

is called a closed subforest of F if and only if F ′ = F [u..v] for some siblings u, v
in F . (see Fig. 1.)

Local Gapped Subforest Alignment and Its Application 571

uu u u u u u u u u

(b)

u14 15 16 17 18 19 20 21 226

2 3 4 5

1

(a)

13 u u u uu

u u u

u

u

u

7 8 9 10 11 12

u14 u16 u17

u4

u6 u7 u 13 u20 u21 u22

u5

u8u u u u

u

uu u u

u3 u2

u1

(c)

14 15 16 17

4

1310 11 12

Fig. 1. (a) is an example of tree/forest F ; (b) shows the closed subforest F [u3..u4]; (c)
shows a gapped subforest at F [u1..u1]. This gapped subforest is formed by excluding
the closed subforests F [u3..u3], F [u9..u9], F [u15..u15], and F [u18..u19]. The forest in
(b) is an α-gapped subforest at F [u3..u5] since it only excludes F [u5..u5]. Also, (b) and
(c) are β-gapped subforests at F [u3..u4] and F [u1..u1], respectively

Definition 2 (Gapped Subforest). Let F and F ′ be two Σ-labeled forests. F ′

is called a gapped subforest of F if and only if there exists a sibling interval u..v
and k sibling intervals xi..yi, for i = 1, 2, . . . , k, whose parents are pi such that
pi �= pj for all i, j; and the forest F ′ can be formed from F by excluding all k
closed subforests F [xi..yi] from F [u..v]. F ′ is called a gapped subforest at F [u..v].
We denote gsf(F [u..v]) or gsf∗(F [u..v]) as the set of all gapped subforests at
F [u..v].

F ′ is called an α-gapped subforest at F [u..v] if and only if we will not exclude
any closed subforest F [x..y] where x = u. We denote gsfα(F [u..v]) as the set of
all α-gapped subforests at F [u..v].

F ′ is called a β-gapped subforest at F [u..v] if and only if we will not exclude
any closed subforest F [x..y] where x..y ⊆ u..v. We denote gsfβ(F [u..v]) as the
set of all β-gapped subforests at F [u..v]. (see Fig. 1.)

Lemma 1. gsf(F [u..u′]) = gsfα(F [u..u′])
⋃

(∪u′′∈u..u′gsfβ [u′′..u′]))

Given twoΣ-labeled forests F andG, one way to measure their similarity is to
compute their optimal global alignment score. The definition of global alignment
of forests follows Jiang et al. [11]. Basically, a global alignment A of F and G is
obtained by first inserting nodes labeled with spaces ‘-’ into F and G such that
the two resulting ordered forests F ′ and G′ have the same structure, and then
overlaying them. Here is the formal definition of the global alignment.

Definition 3 (Global Forest Alignment). [8] Let F , G be two Σ-labeled
forests. A (Σ ∪ {−})2-labeled forest A is called a global alignment of F and G
if and only if F = π(A1) and G = π(A2), where A1 and A2 are left and right

572 J. Jansson, T.H. Ngo, and W.-K. Sung

projections of A and π(Ai) is a forest formed by successive deleting nodes labeled
with ‘-’ from Ai for i = 1, 2.

For every pair of labels (u, v) ∈ (Σ ∪ {−})2, we define a score σ(u, v). The
score of an alignment A is the sum of the scores of all pairs in the nodes of
A, that is, Σ(u,v)∈Aσ(u, v). The similarity sim(F,G) of F and G is the score of
optimal global alignment of F and G.

The local forest alignment problems focus on finding two local subforests
of orginal forests such that they have optimal global alignment score. Here we
define three problems of local forest alignment.

The Local Gapped Subforest Alignment Problem is to find two gapped sub-
forests F ′ and G′ of F and G, respectively, such that the global alignment score
sim(F ′, G′) is maximized.

lgsf(F,G) = max{sim(F ′, G′) | F ′ ∈ gsf(F), G′ ∈ gsf(G)}

The Local β-Gapped Subforest Alignment Problem is to find two β-gapped
subforests F ′ and G′ of F and G, respectively, maximizing the global alignment
score sim(F ′, G′).

lgsfβ(F,G) = max{sim(F ′, G′) | F ′ ∈ gsfβ(F), G′ ∈ gsfβ(G)}

The Local Closed Subforest Alignment Problem is to find two closed sub-
forests F ′ and G′ of F and G, respectively, such that the global alignment score
sim(F ′, G′) is maximized.

lcsf(F,G) = max{sim(F [u..u′], G[v..v′]) | u..u′ ∈ S(F), v..v′ ∈ S(G)}

1.2 Previous Results

RNAs can be modeled as annotated sequences [5] or labeled ordered trees. For
comparing annotated sequences, a number of results have been done on global
edit distance and global alignment [1, 3, 5, 6, 7, 10, 12, 13]. The only known local
alignment result is given in [2].

This paper focuses on labeled ordered trees comparison. For global tree edit
distance, results include [15, 19, 20]. The first algorithm for global alignment of
labeled ordered trees was proposed by Jiang, Wang, and Zhang [11]. Their al-
gorithm computes the optimal global alignment between two labeled ordered
trees T1 and T2 in O(|T1| · |T2| · (deg(T1) + deg(T2))2) time, where |Ti| and
deg(Ti) for i ∈ {1, 2} denote the number of nodes in Ti and the degree of Ti,
respectively. It was extended without affecting the asymptotic running time to
the problem of optimally aligning two labeled ordered trees with gap penalties
by Wang and Zhao [17]. In [17], Wang and Zhao also showed how to reduce the
space complexity of the resulting algorithm from O(|T1|·|T2|·(deg(T1)+deg(T2)))
to O(log(|T1|) · |T2| · (deg(T1) + deg(T2)) · deg(T1)) at the expense of increasing
the running time to O(|T1|2 · |T2| · (deg(T1) + deg(T2))2). A modification to the
algorithm of Jiang et al. which yields a lower running time for similar trees was
given in [9].

Local Gapped Subforest Alignment and Its Application 573

As for computing local alignments of labeled ordered trees, Höchsmann et
al. [8] gave an algorithm for lcsf (they termed it as the local closed subforest
similarity problem). Backofen and Will [2] studied a problem that are called the
local sequence-structure alignment problem (this problem is equivalent to our
lgsfβ , as we prove in Section 4). The following table summarizes the complexities
of the previously most efficient algorithms for lcsf , lgsf , and lgsfβ .

Problem Time complexity Space complexity

lcsf O
(
|F | · |G| · deg(F) · deg(G)· O

(
|F | · |G| · deg(F) · deg(G)

)
(See [8]) (deg(F) + deg(G))

)
lgsf Not studied before Not studied before
lgsfβ O

(
|F |2 · |G|2 · (|F |+ |G|)

)
O
(
|F | · |G|

)
(See [2])

1.3 Our Results and Organization of the Paper

In Section 2, we introduce some additional notations and derive a number of
recursive formulas which form the basis of our main dynamic programming-
based algorithm for solving lgsf , presented in Section 2.4. Next, in Sections 3.1
and 3.2 we refine our algorithm for lgsf to solve lgsfβ and lcsf even more
efficiently. In Section 4, we prove that lgsfβ is equivalent to the local sequence-
structure problem considered in [2] and describe practical applications of lgsf
related to finding structural motifs in RNA molecules. Finally, in Section 5, we
discuss possible future extensions of our work.

The table below summarizes the complexities of our algorithms.

Problem Time complexity Space complexity

lcsf O
(
|F | · |G|· O

(
|F | · |G| · (deg(F) + deg(G))

)
(Section 3.2) (deg(F) + deg(G))2

)
lgsf O

(
|F | · |G| · deg(F) · deg(G)· O

(
|F | · |G| · deg(F) · deg(G)

)
(Section 2.4) (deg(F) + deg(G))

)
lgsfβ O

(
|F | · |G|· O

(
|F | · |G| · (deg(F) + deg(G))

)
(Section 3.1) (deg(F) + deg(G))2

)

2 The Local Gapped Subforest Alignment Problem

This section presents an algorithm to solve lgsf . To compute the similarity of two
forests F and G through alignment, we consider the search space in a structurally
recursive fashion. The following lemma acts as the base for our algorithm.

2.1 Base Lemma

Lemma 2. [8] Let A be an alignment of two Σ-labeled forests F,G. If F or G is
empty then the alignment A is an empty forest. If F and G are both non-empty

574 J. Jansson, T.H. Ngo, and W.-K. Sung

forests where u and v are the roots of the leftmost trees of F and G, respectively,
then the root a of the leftmost tree of A equals one of the following: (u, v), (u,−)
and (−, v). We have three cases:

1. If a = (u, v) then A[aL..aR] is an alignment of F [uL..uR] and G[uL..uR],
and A[r(a)..e(a)] is an alignment of F [r(u)..e(u)] and G[r(v)..e(v)].

2. If a = (u,−) then for some v′′ ∈ l(v)..e(v), A[aL..aR] is an alignment of
F [uL..uR] and G[v..v′′], and A[r(a)..e(a)] is an alignment of F [r(u)..e(u)]
and G[r(v′′)..e(v)].

3. If a = (−, v) then for some u′′ ∈ l(u)..e(u), A[aL..aR] is an alignment of
F [u..u′′] and G[vL..vR], and A[r(a)..e(a)] is an alignment of F [r(u′′)..u′]
and G[r(v)..e(v)].

2.2 Matrix Notations

From Lemma 1, we know that a gapped subforest at F [u..u′] can either be an
α-gapped subforest at F [u..u′] or a β-gapped subforest at F [u′′..u′], depending
on its excluded interval in u..u′. Thus, given two Σ-labeled forests F and G,
to find lgsf(F,G), our algorithm computes 9 dynamic programming matrices
depending on the types of the gapped subforests. For every a, b ∈ {α, β, ∗}, we
define the matrix Da−b as follows:

Definition 4 (Matrix). For every a, b ∈ {α, β, ∗}, for every u..u′ ∈ S(F)
and v..v′ ∈ S(G), Da−b[u..u′; v..v′] is defined to be the maximum of all the
global alignment scores of two forests F ′ and G′, where F ′ ∈ gsfa(F [u..u′]) and
G′ ∈ gsfb(G[v..v′]). Precisely, we have

Da−b[u..u′; v..v′] = max{sim(F ′, G′)|F ′ ∈ gsfa(F [u..u′]), G′ ∈ gsfb(G[v..v′])}

2.3 Recursive Formulae

Given the above matrices, the local gapped subforest alignment score and the
local β-gapped subforest alignment score of two forests F andG can be computed
based on the following lemma.

Lemma 3. Let F,G be two Σ-labeled forests. Then, we have:

lgsf(F,G) = max{D∗−∗[u..u′; v..v′] | u..u′ ∈ S(F), v..v′ ∈ S(G)}

lgsfβ(F,G) = max{Dβ−β [u..u′; v..v′] | u..u′ ∈ S(F), v..v′ ∈ S(G)}.
The next step is to derive recursive formulae. First, the general matrix D∗−∗

is computed using the following lemma. The proof follows directly from Defini-
tions 2 and 4 and together with Lemma 1, and is therefore omitted.

Lemma 4 (General Matrix).

D∗−∗[u..u′; v..v′] = max

⎧⎪⎪⎨⎪⎪⎩
Dα−α[u..u′; v..v′]

max
v′′∈v..r(v′)

{D∗−β [u..u′; v′′..v′]}

max
u′′∈u..r(u′)

{Dβ−∗[u′′..u′; v..v′]}

Local Gapped Subforest Alignment and Its Application 575

Also from Definitions 2 and 4 and Lemma 1, we can straightforwardly derive
the formulae to compute the matrices Dα−∗, D∗−α, Dβ−∗, D∗−β as follows:

Lemma 5 (Special Matrices). The recursive equations for Dα−∗, D∗−α, Dβ−∗,
and D∗−β are:
– Dα−∗[u..u′; v..v′] = max

{
Dα−α[u..u′; v..v′], max

v′′∈v..r(v′)
{Dα−β [u..u′; v′′..v′]}

}
– D∗−α[u..u′; v..v′] = max

{
Dα−α[u..u′; v..v′], max

u′′∈u..r(u′)
{Dβ−α[u′′..u′; v..v′]}

}
– Dβ−∗[u..u′; v..v′] = max

{
Dβ−α[u..u′; v..v′], max

v′′∈v..r(v′)
{Dβ−β [u..u′; v′′..v′]}

}
– D∗−β [u..u′; v..v′] = max

{
Dα−β [u..u′; v..v′], max

u′′∈u..r(u′)
{Dβ−β [u′′..u′; v..v′]}

}
Now we proceed to the computations of Dα−α, Dα−β , and Dβ−α. Because

these formulae are more complicated, we provide a sketch of the proof.

Lemma 6 (Alpha-Alpha Matrix). Dα−α[u..u′; v..v′] =

max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ(u, v) +D∗−∗[uL..uR; vL..vR] +D∗−∗[r(u)..u′; r(v)..v′]
σ(u,−) + max

v′′∈l(v)..v′
{D∗−β [uL..uR; v..v′′] +D∗−∗[r(u)..u′; r(v′′)..v′]}

σ(u,−) + max
v′′∈l(v)..v′

{D∗−α[uL..uR; v..v′′] +D∗−β [r(u)..u′; r(v′′)..v′]}

σ(−, v) + max
u′′∈l(u)..u′

{Dβ−∗[u..u′′; vL..vR] +D∗−∗[r(u′′)..u′; r(v)..v′]}

σ(−, v) + max
u′′∈l(u)..u′

{Dα−∗[u..u′′; vL..vR] +Dβ−∗[r(u′′)..u′; r(v)..v′]}

Proof. Let F ′ and G′ be two α-gapped subforests at F [u..u′] and G[v..v′] such
that their optimal global alignment A is optimal among those in gsfα(F [u..u′])
and gsfα(G[v..v′]). Let u∗, v∗, and a be the roots of the leftmost subtrees of F ′,
G′, and A respectively (i.e., u∗ = u and v∗ = v, but when we refer to u∗ and v∗

we mean the roots in F ′ and G′). From Lemma 2, we consider 3 cases:

– Case 1: When a = (u∗, v∗), by Lemma 2, F ′[u∗
L..u

∗
R] is aligned withG′[v∗

L..v
∗
R],

and F ′[r(u∗)..e(u∗)] is aligned with G′[r(v∗)..e(v∗)].
Since F ′ is an α-gapped subforest at F [u..u′], F ′[u∗

L..u
∗
R] and F ′[r(u∗)..e(u∗)]

are gapped subforests at F [uL..uR] and F [r(u)..u′] respectively. Similarly,
G′[v∗

L..v
∗
R] and G′[r(v∗)..e(v∗)] are gapped subforests at G[vL..vR] and

G[r(v)..v′] respectively. Hence, the alignment score of A equals σ(u, v) +
A[uL..uR; vL..vR] +A[r(u)..u′; r(v)..v′].

– Case 2: When a = (u∗,−), by Lemma 2, there exists some v′′ ∈ l(v∗)..e(v∗)
such that F ′[u∗

L..u
∗
R] is aligned withG′[v∗..v′′], and F ′[r(u∗)..e(u∗)] is aligned

with G′[r(v′′)..e(v∗)].
Since F ′ is an α-gapped subforest at F [u..u′], F ′[u∗

L..u
∗
R] and F ′[r(u∗)..e(u∗)]

are gapped subforests at F [uL..uR] and F [r(u)..u′] respectively.
Besides, by definition, since G′ is an α-gapped subforest of G[v..v′], G′ allows
exclusion of G[x..y] from G[v..v′] for at most one sibling interval x..y ⊆ v..v′.
Depending on whether or not x..y ⊆ v..v′′, we have two subcases.
• Case 2a: x..y ⊆ v..v′′. ThenG′[v∗..v′′] is a β-gapped subforest atG[v..v′′],

and G′[r(v′′)..e(v∗)] is a gapped subforest at G[r(v′′)..v′]. Hence, the
alignment score ofA equals σ(u,−)+maxv′′∈l(v)..v′{A∗−β [uL..uR; v..v′′]+
A[r(u)..u′; r(v′′)..v′]}.

576 J. Jansson, T.H. Ngo, and W.-K. Sung

• Case 2b: x..y �⊆ v..v′′. Then G′[v∗..v′′] is an α-gapped subforest at
G[v..v′′], and G′[r(v′′)..e(v∗)] is a β-gapped subforest at G[r(v′′)..v′].
Hence, the alignment score of A equals σ(u,−) + maxv′′∈l(v)..v′{A∗−α

[uL..uR; v..v′′] +A∗−β [r(u)..u′; r(v′′)..v′]}.
– Case 3: When a = (−, v), the proof is symmetric to the proof for Case 2.

From the above three cases, Lemma 6 thus follows.
�
In the same way as in the proof of Lemma 6, we can derive Lemmas 7 and 8

below for computing Dα−β [u..u′, v..v′], Dβ−α[u..u′, v..v′], and Dβ−β [u..u′, v..v′].

Lemma 7 (Alpha-Beta matrix). Dα−β [u..u′; v..v′] =

max

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

σ(u, v) +D∗−∗[uL..uR; vL..vR] +D∗−β [r(u)..u′; r(v)..v′]
σ(u,−) + max

v′′∈l(v)..v′
{D∗−β [uL..uR; v..v′′] +D∗−β [r(u)..u′; r(v′′)..v′]}

σ(−, v) + max
u′′∈l(u)..u′

{Dβ−∗[u..u′′; vL..vR] +D∗−β [r(u′′)..u′; r(v)..v′]}

σ(−, v) + max
u′′∈l(u)..u′

{Dα−∗[u..u′′; vL..vR] +Dβ−β [r(u′′)..u′; r(v)..v′]}

and analogously for Dβ−α[u..u′; v..v′].

Lemma 8 (Beta-Beta matrix). Dβ−β [u..u′; v..v′] =

max

⎧⎪⎪⎨⎪⎪⎩
σ(u, v) +D∗−∗[uL..uR; vL..vR] +Dβ−β [r(u)..u′; r(v)..v′]
σ(u,−) + max

v′′∈l(v)..v′
{D∗−β [uL..uR; v..v′′] +Dβ−β [r(u)..u′; r(v′′)..v′]}

σ(−, v) + max
u′′∈l(u)..u′

{Dβ−∗[u..u′′; vL..vR] +Dβ−β [r(u′′)..u′; r(v)..v′]}

2.4 The Main Algorithm and Its Complexity

From the recursive formulae, we can derive the algorithm to compute lgsf(F,G)
straightforwardly. Basically, the algorithm computes Da−b[u..u′; v..v′] for all
a, b ∈ {α, β, ∗}, u..u′ ∈ S(F), and v..v′ ∈ S(G). With the 9 matrices Da−b

for a, b ∈ {∗, α, β}, the optimal alignment can be easily found using a simple
traceback. The complexity will remain the same. The lemma below states its
time and space complexity.

Lemma 9. The algorithm Compute-lgsf runs in O(|F ||G|deg(F)deg(G)
(deg(F) + deg(G))) time and O(|F ||G|deg(F)deg(G)) space.

3 Algorithms for Two Variants of the Local Gapped
Subforest Alignment Problem

3.1 Local β-Gapped Subforest Alignment Problem

To improve the efficiency of the algorithm for the Local β-Gapped Subforest
Alignment Problem, we construct a new matrix B[u, v] as follows:

B[u; v] = max{Dβ−β [u..u′; v..v′] | u..u′ ∈ S(F), v..v′ ∈ S(G)}

From the definitions of Dβ−β [u..u′; v..v′] and of matrix B, we have:

Local Gapped Subforest Alignment and Its Application 577

Lemma 10. B[u; v] = max{sim(F ′, G′) | F ′ ∈ gsfβ [u..u′], G′ ∈ gsfβ [v..v′]}.
Together with Lemma 3, we also have:

Lemma 11. lgsfβ(F,G) = max{B[u; v] | u ∈ F, v ∈ G}.
The computation of the matrix B is formulated as:

Lemma 12. B[u; v] =

max

⎧⎪⎪⎨⎪⎪⎩
σ(u, v) +D∗−∗[uL..uR; vL..vR] + max{B[r(u); r(v)], 0}
σ(u,−) + max

v′′∈l(v)..v′
{D∗−β [uL..uR; v..v′′] + max{B[r(u); r(v′′)], 0}}

σ(−, v) + max
u′′∈l(u)..u′

{Dβ−∗[u..u′′; vL..vR] + max{B[r(u′′); r(v)], 0}}

To compute lgsfβ(F,G), we need to compute all the entries in B[u, v]. In
this situation, we observe that it is unnecessary to compute all of the entries in
Da−b[u..u′; v..v′] for all a, b ∈ {α, β, ∗}, u..u′ ∈ S(F) and v..v′ ∈ S(G). We just
need to fill in, for all a, b ∈ {α, β, ∗}, the entries of the form Da−b[u..u′; v..v′]
where u′ = e(u) or v′ = e(v). Thus, for all a, b ∈ {α, β, ∗}, each matrix
Da−b[u..u′; v..v′] is divided into two sub-matrices: D′

a−b[u; v..v
′] and

D′′
a−b[u..u

′; v], where D′
a−b[u; v..v

′] = Da−b[u..e(u); v..v′] and D′′
a−b[u..u

′; v] =
Da−b[u..u′; v..e(v)].

Lemma 13. The Local β-Gapped Subforest Alignment Problem can be solved
in O(|F ||G|(deg(F) + deg(G))2) time and O(|F ||G|(deg(F) + deg(G))) space.

3.2 Local Closed Subforest Alignment Problem

The Local Closed Subforest Alignment Problem has been proposed and solved by
[8] inO(|F ||G|deg(F)deg(G)(deg(F)+deg(G))) time andO(|F ||G|deg(F)deg(G))
space. We propose a faster and more space-saving algorithm for this problem.
Using the same technique as in Section 3.1, we construct a new matrix B[u..v]:

B[u; v] = max{sim(F [u..u′], G[v..v′]) | u..u′ ∈ S(F), v..v′ ∈ S(G)}

Therefore, we have the following lemma:

Lemma 14. csf(F,G) = max{B[u; v] | u ∈ F, v ∈ G}
The computation of the matrix B is formulated as following:

Lemma 15. B[u; v] =

max

⎧⎪⎪⎨⎪⎪⎩
σ(u, v) +GD[uL..uR; vL..vR] + max{B[r(u); r(v)], 0}
σ(u,−) + max

v′′∈l(v)..v′
{GD[uL..uR; v..v′′] + max{B[r(u); r(v′′)], 0}}

σ(−, v) + max
u′′∈l(u)..u′

{GD[u..u′′; vL..vR] + max{B[r(u′′); r(v)], 0}}

where GD[u..u′; v..v′] is the optimal global alignment score of two closed sub-
forests F [u..u′] and G[v..v′]. But we just need to fill in the entries GD[u..u′; v..v′]
where either u′ = e(u) or v′ = e(v). These entries in the GD[u..u′; v..v′] matrix-
can be computed by [11] in O(|F ||G|(deg(F) + deg(G))2) time. Therefore we
have the following analysis:

578 J. Jansson, T.H. Ngo, and W.-K. Sung

Lemma 16. The Local Closed Subforest Alignment Problem can be solved in
O(|F ||G|(deg(F) + deg(G))2) time and O(|F ||G|(deg(F) + deg(G))) space.

4 An Application to Find Local RNA Sequence-Structure
Motifs

An RNA secondary structure is a combination of an RNA sequence and a set of
base pairings called arcs binded together by hydrogen bonds. An RNA secondary
structure can be represented as an annotated sequence [1, 5, 6, 7, 10, 13], which is
a tuple (S, P) where S is a sequence of bases s1s2 . . . sn and P is a set of arcs
formed by the position pairs (i, j)’s. The majority of RNA secondary structures
has the characteristic that no two arcs cross (i.e., there exists no two arcs (i, j)
and (i′, j′) such that i < i′ < j < j′). With this condition, it is also common to
represent an RNA secondary structure as a labeled ordered forest F , where each
node in F corresponds to a free base in the sequence (i.e., a base that does not
pair with any other base) or an arc in the secondary structure such that:
– For any two nodes u and v in F , u is the parent of v iff u corresponds

to the parent arc of v (i.e., the smallest arc enclosing the base/arc that v
corresponds to).

– For any two nodes u and v in F , u is a right sibling of v iff u corresponds to
a base/arc that lies to the right of the base/arc of v.
Biologists have noticed that two RNAs sharing similar local substructure

(which is referred as motif) have similar functions. This observation motivates
the problem of computing the maximum common local substructure of two
RNAs. A number of ways to represent the local substructures of an RNA have
been proposed. Among them, the local sequence-structure motif [8] is the most
general one, because it can represent local RNA substructures whose bases are
connected when represented as a motif graph. For example, the local sequence-
structure motif can represent the putative SECIS-motif [18]. Formally, given an
RNA represented by (S, P), (S′, P ′) is called a local sequence-structure motif [8]
of (S, P) if and only if:
– S′ is a subsequence of S, and P ′ is a subset of P induced from S′;
– S′ is arc-complete for (S, P) (i.e., for every (i, j) ∈ P , either i, j ∈ S′ or
i, j �∈ S′); and

– any intervalsk . . . sk′ is called anexclusionof S′ if sk . . . sl �∈ S′ and sk−1,sl+1 ∈
S′. Every exclusion sk . . . sl of S′ has an immediate successor, which is an
arc (i, j) ∈ P ′ such that i < k < l < j and j − i is minimized. Also, no two
exclusions of S′ share the same immediate successor.

Let F and F ′ be the forest representations of (S, P) and (S′, P ′). The lemma
below shows that (S′, P ′) is a local sequence-structure motif of (S, P) iff F ′ is a
β-gapped subforest of F .

Lemma 17. Consider two annotated sequences (S, P) and (S′, P ′). Let F and
F ′ be the respective forest representations of them. We have (S′, P ′) is a sequence-
structure motif of (S, P) if and only if F ′ is a β-gapped subforest of F .

Local Gapped Subforest Alignment and Its Application 579

Proof. (⇒) Suppose (S′, P ′) is a local sequence-structure motif of (S, P). First,
every exclusion in S′ should be arc-complete. Otherwise, there exists some arc
connecting a base in S′ and a base in the exclusion, thus it contradicts to the fact
that S′ is arc-complete. Hence, every exclusion is arc-complete and corresponds
to a closed subforest F [xi..yi]. In other words, F ′ is formed by excluding some
F [xi..yi]’s from some F [u..v]. Then, since no exclusion has the same immediate
successor, we conclude that all F [xi..yi]’s do not share the same parent. Thus, F ′

should be a gapped subforest of F . Finally, as every exclusion has an immediate
successor, there is no sibling interval xi..yi that can be excluded at the root level
of F ′, because otherwise F [xi..yi] would corresponds to an exclusion in S′ with
no immediate successor. Hence, F ′ is a β-gapped subforest of F ′.

(⇐) Suppose F ′ is a β-gapped subforest of F . F ′ is formed by excluding
some closed subforests F [xi..yi]’s from a closed subforest F [u..v]. Hence, the
corresponding S′ is arc-complete. Since no sibling interval can be excluded at
the root level of F ′, an excluded sibling interval (if one exists) has a parent in F ′.
Thus the corresponding exclusion has an immediate successor. Lastly, since there
is no xi..yi’s sharing the same parent, all exclusions have different immediate
successors. Hence, (S′, P ′) is a local sequence-structure motif of (S, P).
�

Given Lemma 13 and the following lemma, the maximum local sequence-
structure motif of two annotated sequences (S1, P1) and (S2, P2) can be com-
puted in O(|F ||G|(deg(F) + deg(G))2) time and O(|F ||G|deg(F)deg(G)) space.

Lemma 18. Given two annotated sequences (S1, P1) and (S2, P2), let F1 and
F2 be their forest representations. The optimal local sequence-structure motif
alignment of (S1, P1) and (S2, P2) is equivalent to the optimal restricted gapped
subforest alignment of F1 and F2.

5 Concluding Remarks

Our proposed problem and solutions motivate future development in local align-
ment of labeled ordered forests. One of the challenges is to find even more efficient
algorithms for the local forest alignment problems. Any improvement can have a
vital impact in RNA comparison and structure prediction applications. Another
difficult task is to further generalize the local gapped subforest alignment prob-
lem by allowing exclusions of more than one closed subforest sharing the same
parent. Lastly, new alignment models could be proposed to give more effective
and efficient algorithms for RNA comparison and structure prediction problems.

References

1. J. Alber, J. Gramm, J. Guo, and R. Niedermeier. Computing the similarity of
two sequences with nested arc annotations. Theoretical Computer Science, 312(2–
3):337–358, 2004.

2. R. Backofen and S. Will. Local sequence-structure motifs in RNA. Journal of
Bioinformatics and Computational Biology, to appear.

580 J. Jansson, T.H. Ngo, and W.-K. Sung

3. V. Bafna, S. Muthukrishnan, and R. Ravi. Computing similarity between RNA
strings. In Proceedings of the 6 th Annual Symposium on Combinatorial Pattern
Matching (CPM 95), volume 937 of LNCS, pages 1–16. Springer, 1995.

4. L. J. Collins, V. Moulton, and D. Penny. Use of RNA secondary structure for
studying the evolution of RNase P and RNase MRP. Journal of Molecular Evolu-
tion, 51(3):194–204, 2000.

5. P. A. Evans. Algorithms and Complexity for Annotated Sequence Analysis. PhD
thesis, University of Victoria, Canada, 1999.

6. P. A. Evans. Finding common subsequences with arcs and pseudoknots. In Proceed-
ings of the 10 thAnnual Symposium on Combinatorial Pattern Matching (CPM 99),
volume 1645 of LNCS, pages 270–280. Springer, 1999.

7. J. Gramm, J. Guo, and R. Niedermeier. Pattern matching for arc-annotated se-
quences. In Proceedings of the 22ndConference on Foundations of Software Tech-
nology and Theoretical Computer Science (FSTTCS 2002), volume 2556 of LNCS,
pages 182–193. Springer, 2002.

8. M. Höchsmann, T. Töller, R. Giegerich, and S. Kurtz. Local similarity in RNA
secondary structures. In Proceedings of the Computational Systems Bioinformatics
Conference (CSB2003), pages 159–168, 2003.

9. J. Jansson and A. Lingas. A fast algorithm for optimal alignment between similar
ordered trees. Fundamenta Informaticae, 56(1–2):105–120, 2003.

10. T. Jiang, G. Lin, B. Ma, and K. Zhang. The longest common subsequence problem
for arc-annotated sequences. Journal of Discrete Algorithms, 2(2):257–270, 2004.

11. T. Jiang, L. Wang, and K. Zhang. Alignment of trees – an alternative to tree edit.
Theoretical Computer Science, 143(1):137–148, 1995.

12. H.-P. Lenhof, K. Reinert, and M. Vingron. A polyhedral approach to RNA sequence
structure alignment. In Proceedings of the Annual International Conference on
Computational Biology (RECOMB 1998), pages 153–162, 1998.

13. G. Lin, Z.-Z. Chen, T. Jiang, and J. Wen. The longest common subsequence
problem for sequences with nested arc annotations. Journal of Computer and
System Sciences, 65(3):465–480, 2002.

14. B. A. Shapiro and K. Zhang. Comparing multiple RNA secondary structures using
tree comparisons. Computer Applications in the Biosciences, 6(4):309–318, 1990.

15. K.-C. Tai. The tree-to-tree correction problem. Journal of the ACM, 26(3):422–
433, 1979.

16. J. T. L. Wang and K. Zhang. Identifying consensus of trees through alignment.
Information Sciences, 126(1–4):165–189, 2000.

17. L. Wang and J. Zhao. Parametric alignment of ordered trees. Bioinformatics,
19(17):2237–2245, 2003.

18. R. Wilting, S. Schorling, B. C. Persson, and A. Böck. Selenoprotein synthesis in
archaea: Identification of an mRNA element of Methanococcus jannaschii probably
directing selenocysteine insertion. Journal of Molecular Biology, 266(4):637–641,
1997.

19. K. Zhang and T. Jiang. Some MAX SNP-hard results concerning unordered labeled
trees. Information Processing Letters, 49(5):249–254, 1994.

20. K. Zhang and D. Shasha. Simple fast algorithms for the editing distance between
trees and related problems. SIAM Journal on Computing, 18(6):1245–1262, 1989.

The Maximum Agreement of
Two Nested Phylogenetic Networks

Jesper Jansson and Wing-Kin Sung

School of Computing, National University of Singapore, 3 Science Drive 2,
Singapore 117543

{jansson, ksung}@comp.nus.edu.sg

Abstract. Given a set N of phylogenetic networks, the maximum agree-
ment phylogenetic subnetwork problem (MASN) asks for a subnetwork
contained in every Ni ∈ N with as many leaves as possible. MASN can be
used to identify shared branching structure among phylogenetic networks
or to measure their similarity. In this paper, we prove that the general
case of MASN is NP-hard already for two phylogenetic networks, but
that the problem can be solved efficiently if the two given phylogenetic
networks exhibit a nested structure. We first show that the total number
of nodes |V (N)| in any nested phylogenetic network N with n leaves
and nesting depth d is O(n(d + 1)). We then describe an algorithm for
testing if a given phylogenetic network is nested, and if so, determin-
ing its nesting depth in O(|V (N)| · (d + 1)) time. Next, we present a
polynomial-time algorithm for MASN for two nested phylogenetic net-
works N1, N2. Its running time is O(|V (N1)| · |V (N2)| · (d1 +1) · (d2 +1)),
where d1 and d2 denote the nesting depths of N1 and N2, respectively.
In contrast, the previously fastest algorithm for this problem runs in
O(|V (N1)| · |V (N2)| · 4f) time, where f ≥ max{d1, d2}.

1 Introduction

Phylogenetic trees are commonly used to describe evolutionary relationships
among a set of objects (e.g., biological species, proteins, viruses, or languages)
produced by an evolutionary process, and can help scientists to understand the
mechanisms of evolution as well as to classify the objects being studied and to
organize information [15, 19]. However, evolutionary events such as horizontal
gene transfer or hybrid speciation (often referred to as recombination events)
which suggest convergence between objects cannot be adequately represented
in a single tree structure [3, 10, 11, 12, 16, 17, 18, 21]. Phylogenetic networks were
introduced in order to solve this shortcoming by allowing internal nodes to have
more than one parent so that each recombination event may be represented by
a node with indegree greater than one. Various methods for constructing and
comparing phylogenetic networks have been proposed recently [3, 4, 10, 12, 13,
16, 17, 18, 21].

Phylogenetic network comparison has many uses; one application described
in [16] is to assess the topological accuracy of different phylogenetic network con-

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 581–593, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

582 J. Jansson and W.-K. Sung

struction methods1. Another application for network comparison is to identify
a subnetwork with as many leaves as possible which is contained in all of the
networks in a given set (obtained, for example, by different construction meth-
ods or by using the same method on alternative data sets) to determine which
ancestral relationships are present in all networks. Moreover, the size of such a
subnetwork provides a measure of how similar the networks in a given set are.
This problem was formalized as a computational problem called the maximum
agreement phylogenetic subnetwork problem (MASN) and initially studied in [4].

The general case of MASN is NP-hard for three or more phylogenetic net-
works [4]. In fact, it is NP-hard even for just two networks, as we prove in this
paper. Fortunately, recombination events usually do not occur in an unrestricted
manner [10, 21]. It is therefore important to know under what structural restric-
tions on the input networks the problem becomes efficiently solvable. Here, we in-
vestigate the computational complexity of MASN for two phylogenetic networks
whose merge paths are nested, which is a natural generalization of rooted, leaf-
labeled trees and so called galled-trees previously studied in [10, 13, 17, 21] (see
below for definitions), and prove that this case can be solved by a polynomial-
time algorithm. The decomposition technique for nested phylogenetic networks
we develop here may also be applicable to other computational and combinato-
rial problems related to phylogenetic network construction and comparison.

1.1 Problem Definition and Terminology

A phylogenetic network is a connected, rooted, simple, directed acyclic graph in
which: (1) each node has outdegree at most 2; (2) each node has indegree 1 or 2,
except the root node which has indegree 0; (3) no node has both indegree 1 and
outdegree 1; and (4) all nodes with outdegree 0 are labeled by elements from a
finite set L in such a way that no two nodes are assigned the same label. From
here on, nodes of outdegree 0 are referred to as leaves and identified with their
corresponding elements in L. We denote the set of all nodes and the set of leaves
in a phylogenetic network N by V (N) and Λ(N), respectively.

Given a phylogenetic network N and a set L′, the topological restriction of N
to L′, denoted by N |L′, is defined as the phylogenetic network obtained by first
deleting all nodes which are not on any directed path from the root to a leaf in L′

along with their incident edges, and then, for every node with outdegree 1 and
indegree less than 2, contracting its outgoing edge (any resulting set of multiple
edges between two nodes is replaced by a single edge).

Given a set N = {N1, . . . , Nk} of phylogenetic networks, an agreement sub-
network of N is a phylogenetic network A such that Λ(A) ⊆

⋂
Ni∈N Λ(Ni) and

for every Ni ∈ N , A is isomorphic to a subgraph of Ni |Λ(A) in which zero or
more of the edges have been deleted and each outgoing edge from a node with

1 To evaluate a construction method M, repeat the following steps a number of times.
First, randomly generate a network N and evolve a sequence down the edges of N ac-
cording to some chosen model of evolution, then build a network N ′ for the resulting
set of sequences using M, and finally measure the similarity between N ′ and N .

The Maximum Agreement of Two Nested Phylogenetic Networks 583

0

1

1

1

1

3 3

2 0

0

0

L

u u RL

2

1

u
[] :N u N uR[] :

2 2

2

2

2 2

22

0

0

11

RLu

N :

u

Fig. 1. N is a nested phylogenetic network with nesting depth 3 and u is a split node
in N . The numbers shown next to the nodes of N are their respective nesting depths.
N2[uL] and N0[uR] are the subgraphs of N displayed on the right

resulting outdegree 1 has been contracted. A maximum agreement subnetwork
of N is an agreement subnetwork of N with the maximum possible number
of leaves. The maximum agreement phylogenetic subnetwork problem (MASN)
is: Given a set N = {N1, . . . , Nk} of phylogenetic networks, find a maximum
agreement subnetwork of N . A leaf can appear in a maximum agreement sub-
network of N only if it is present in every network in N , so we assume without
loss of generality that Λ(N1) = . . . = Λ(Nk) and call this leaf set L. Throughout
this paper, we let n denote the number of different leaves and k the number of
input networks, i.e., n = |L| and k = |N | in the problem definition above.

To describe our results, we need the following terminology. Let N be a phylo-
genetic network. Recall that nodes with outdegree 0 are called leaves. We refer to
nodes with indegree 2 as hybrid nodes. For any hybrid node h, every ancestor s
of h such that h can be reached using two disjoint directed paths starting at the
children of s is called a split node of h. If s is a split node of h then any path
starting at s and ending at h is a merge path of h, and any path starting at a
child of s and ending at a parent of h is a clipped merge path of h.

We say that N is a nested phylogenetic network if for every two merge
paths P1, P2 of two different hybrid nodes h1, h2, either P1 and P2 are disjoint,

584 J. Jansson and W.-K. Sung

one is a subpath of the other, or their intersection equals either h1 or h2. For
each node u in a nested phylogenetic network N , define the nesting depth of u,
d(u), as the number of hybrid nodes in N that have a clipped merge path passing
through u. See Fig. 1 for an example. The nesting depth of N , denoted by d(N),
is the maximum value of d(u) over all u ∈ V (N). Note that if d(N) = 0 then N
is a tree. Gusfield et al. [10] defined a galled-tree (also referred to in the literature
as a gt-network [17] or a topology with independent recombination events [21])
as a phylogenetic network in which all clipped merge paths are disjoint. For a
discussion on the biological significance of galled-trees, see [10]. Clearly, d(N) ≤ 1
if and only if N is a galled-tree. Thus, nested phylogenetic networks naturally
extend the notion of rooted, leaf-labeled trees and galled-trees.

Finally, given any phylogenetic network N , let U(N) be the undirected graph
obtained from N by replacing each directed edge by an undirected edge. N is
said to be a level-f phylogenetic network if, for every biconnected component B
in U(N), the subgraph of N induced by the set of nodes in B contains at most
f nodes with indegree 2. If f = 0 then N is a tree, and we have f = 1 if and
only if N is a nested phylogenetic network with nesting depth 1. If N is a nested
phylogenetic network with nesting depth d then f ≥ d.

1.2 Previous Results

Median-joining, split decomposition (SplitsTree), PYRAMIDS, statistical parsi-
mony (TCS), molecular-variance parsimony (Arlequin), reticulogram (T-REX),
and netting are some general methods for constructing phylogenetic networks
(see [18] for a survey). More recently presented methods include NeighborNet [3]
and Z-closure [12]. Algorithms for some reconstruction problems with additional
constraints on the networks were given in [10, 13, 17, 21]; in particular, these pa-
pers considered problems involving constructing a network with nesting depth 1.

As for comparing two given networks, one method based on the Robinson-
Foulds (RF) measure for phylogenetic trees was proposed in [16]. MASN was
introduced in [4], where it was shown to be NP-hard if restricted to k = 3 and
an O(n2)-time algorithm for the special case of two level-1 phylogenetic networks
(i.e., having nesting depth 1) was presented. [4] also showed that MASN for two
level-f networks N1 and N2 can be solved in O(|V (N1)| · |V (N2)| · 4f) time.

MASN generalizes a well-studied problem known as the maximum agreement
subtree problem (MAST)2 (see, e.g., [1, 2, 5, 7, 9, 14, 20]) in which the input is a set
of distinctly leaf-labeled trees and the goal is to compute a tree embedded in all of
the input trees with the maximum possible number of labeled leaves. The fastest
known algorithm for MAST for two trees runs inO(

√
Dn log(2n/D)) time, where

n is the number of leaves andD is the maximum degree of the two input trees [14].
Note that this is O(n log n) for two trees with D bounded by a constant and
O(n1.5) for two trees with unbounded D. MAST is NP-hard for three trees with
unbounded degrees [1], and solvable in O(kn3 + nδ) time for k ≥ 3 trees, where
δ is an upper bound on at least one of the input trees’ degrees [2, 7].

2 MAST is also known as the maximum homeomorphic subtree problem (MHT).

The Maximum Agreement of Two Nested Phylogenetic Networks 585

1.3 Our Results and Organization of Paper

In this paper, we focus on MASN for two nested phylogenetic networks. In Sec-
tion 2, we derive some useful combinatorial properties of nested networks. We
first prove that |V (N)| = O(n(d+1)) for any nested network N with n leaves and
nesting depth d and then show how to test whether a given phylogenetic network
is nested, and if so, determine its nesting depth in O(|V (N)|·(d+1)) time. In Sec-
tion 3, we present a simple and fast algorithm for solving MASN for two nested
networks N1 and N2 running in O(|V (N1)|·|V (N2)|·(d1+1)·(d2+1)) time, where
d1 and d2 are the nesting depths ofN1 andN2, respectively. (The algorithm given
in [4] could be applied here but its running time is O(|V (N1)| · |V (N2)| · 4f),
where f ≥ max{d1, d2}.) For the special case d1 = 1, d2 = 1, i.e., two level-1 net-
works, the running time of our new algorithm coincides with the running time of
O(n2) of the algorithm in [4]. Next, in Section 4, we strengthen the NP-hardness
result of [4] by proving that MASN is NP-hard already for two phylogenetic
networks3. Finally, we discuss some open problems in Section 5. Proofs omitted
due to space limitations will appear in the full-length version of this paper.

2 Preliminaries

We first state some basic properties of nested phylogenetic networks.

Lemma 1. If N is a nested network then each split node in N is a split node of
exactly one hybrid node, and each hybrid node in N has exactly one split node.

Because of Lemma 1, each hybrid node in a nested phylogenetic network
corresponds to a unique split node. For any such hybrid node h and split node s,
s is called the split node of h and h is called the hybrid node of s.

Lemma 2. Let h be a hybrid node in a nested phylogenetic network and let s be
the split node of h. Then d(h) = d(s).

We now derive an upper bound on the total number of nodes in a nested
phylogenetic network. The next two lemmas generalize Lemma 3.2 in [4].

Lemma 3. If N is a nested phylogenetic network with n leaves and nesting
depth d then the number of hybrid nodes in N is at most (n− 1) · d.

Proof. Let TN (d) be the network N . For i ∈ {0, 1, . . . , d−1}, define TN (i) as the
directed graph constructed from TN (i+1) as follows. For every hybrid node h in
TN (i+ 1) with d(h) = i, remove h’s two incoming edges, contract the split node
of h and all nodes on the two clipped merge paths of h to a single node s, and add

3 The reduction in [1] for proving the NP-hardness of MAST restricted to three trees
with unbounded degrees cannot be used directly for MASN with k = 2 because it con-
structs three trees and because here we require all nodes to have outdegree at most
two. Interestingly, MAST for two binary trees is solvable in O(n log n) time [5, 14].

586 J. Jansson and W.-K. Sung

a directed edge from s to h. TN (0) is a tree because every node with indegree 2
in N has indegree 1 in TN (0) and no contraction increases the indegree of any
node. TN (0) has n leaves, so the number of internal nodes in TN (0) with out-
degree > 1 is at most n− 1. Observe that at most d split nodes in N correspond
to each internal node in TN (0) with outdegree > 1 and that the number of hybrid
nodes in N equals the number of split nodes in N since N is nested.
�

Lemma 4. If N is a phylogenetic network with n leaves and H hybrid nodes
then the total number of nodes in N is at most 2(n+H)− 1.

Proof. Let zij denote the number of nodes in N which have i incoming edges and
j outgoing edges. By the definition of a phylogenetic network, the total number
of nodes in N is z02+z10+z12+z20+z21+z22. For every u ∈ V (N), let in(u) and
out(u) denote the number of incoming and outgoing edges incident to u. Since⎧⎪⎨⎪⎩

∑
u∈V (N)

in(u) = z02 · 0 + (z10 + z12) · 1 + (z20 + z21 + z22) · 2∑
u∈V (N)

out(u) = (z10 + z20) · 0 + z21 · 1 + (z02 + z12 + z22) · 2

and
∑

u∈V (N) in(u) =
∑

u∈V (N) out(u), we have z12 = z10 + 2z20 + z21 − 2z02.
Next, H = z20 + z21 + z22, n = z10 + z20, and z02 = 1 give us z12 ≤ n+H − 2.
Hence, |V (N)| ≤ 1 + n+ (n+H − 2) +H = 2n+ 2H − 1.
�

Theorem 1. If N is a nested phylogenetic network with n leaves and nesting
depth d then |V (N)| = O(n(d+ 1)).

Theorem 2. Let N be a phylogenetic network with n leaves and H hybrid nodes.
We can test whether N is nested in O(|V (N)| · (H + 1)) time; if N is nested,
the test takes only O(|V (N)| · (d(N) + 1)) time and its nesting depth can be
determined in the same asymptotic time bound.

Proof. Use the following method to construct a list L(u) for every u ∈ V (N)
consisting of all hybrid nodes which have a clipped merge path passing through u,
plus u itself if u is a hybrid node. Associate an initially empty list L(u) to each
u ∈ V (N), and define L(∅) = ∅. Do a postorder traversal of the nodes of N .
Whenever a non-leaf node u is visited, examine L(uL) and L(uR), where uL and
uR are the children of u (if u only has one child then let uR equal ∅). If L(uL)
is empty then let L(u) := L(uR); else if L(uR) is empty then let L(u) := L(uL).
Otherwise, check whether L(uL) equals L(uR). If no then N is not nested, and
the algorithm terminates; if yes then let L(u) := L(uL) and remove the last
element � from L(u) (here, u is in fact the split node for the hybrid node �).
Finally, if u is a hybrid node then insert u at the end of L(u). Note that a node
may be both a split node and a hybrid node. No |L(u)| can exceed the number
of hybrid nodes in N . Moreover, when the algorithm is finished, if N is a nested
phylogenetic network then its nesting depth d(N) equals the maximum length
of L(u) over all u ∈ V (N) since d(u) = |L(u)| for each non-hybrid node u.
�

The Maximum Agreement of Two Nested Phylogenetic Networks 587

3 An Algorithm for MASN for Two Nested Networks

In this section, we show how to solve MASN for two nested phylogenetic networks
N1, N2 with n leaves in O(|V (N1)| · |V (N2)| · (d1 + 1) · (d2 + 1)) time, where d1
and d2 are the nesting depths of N1 and N2, respectively.

Let N be any nested phylogenetic network. From this point onward, assume
that some arbitrary left-to-right ordering of the children of every node has been
fixed. If u ∈ V (N) has two children then let uL and uR denote the left and
right child of u, respectively, and if u only has one child c then set uL = c and
uR = ∅. For every u ∈ V (N), N [u] is the subnetwork of N rooted at u, i.e.,
the minimal subgraph of N which includes all nodes and directed edges of N
reachable from u. N [∅] refers to the empty network with no nodes or edges.

Each u ∈ V (N) belongs to d(u) different clipped merge paths. Since N is
nested, the d(u) different hybrid nodes corresponding to these clipped merge
paths have nesting depths 0, 1, . . . , d(u) − 1. For i ∈ {1, . . . , d(u)}, we define
hi(u) as the hybrid node h which has a clipped merge path passing through u and
which satisfies d(h) = i−1. Next, for i ∈ {1, . . . , d(u)}, let N i[u] be the subgraph
of N [u] where N [hi(u)] and hi(u)’s incoming edge have been removed, and let
N0[u] be N [u]. Define N i[u] for i > d(u) as N0[u] if u is not a hybrid node, and as
N [∅] if u is a hybrid node. See Fig. 1 for an example. Intuitively, the parameter i
informs us at which descendant hybrid node of u to cut N [u] to obtain N i[u].

Lemma 5. For any nested phylogenetic network N , u ∈ V (N), and 0 ≤ j <
i ≤ d(u), it holds that N i[u] is a proper subgraph of N j [u].

Lemma 6. Let N be a nested phylogenetic network. For any u ∈ V (N) and i ∈
{0, 1, . . . , d(u)}, we have: (1) N i[uL] and Nx[uR]are disjoint,and (2) Nx[uL] and
N i[uR] are disjoint, where x = d(u) + 1 if u is a split node and x = i otherwise.

Proof. If u is a split node then let h be the hybrid node of s. By Lemma 2, d(h) =
d(u). Let c1 be a child of u with c1 �= h and let c2 be the other child of u. We have
hx(c1) = hd(u)+1(c1) = h, which means that Nx[c1] does not contain any nodes
in N [h]; hence, Nx[c1] and N0[c2] are disjoint, and Lemma 5 then implies that
Nx[c1] and N i[c2] are disjoint. Similarly, N i[c1] and Nx[c2] are disjoint (if c2 �= h
then hx(c2) = hd(u)+1(c2) = h so Nx[c2] contains no nodes in N [h] and thus no
nodes in N i[c1]; if c2 = h then Nx[c2] = Nd(u)+1[h] = Nd(h)+1[h] = N [∅]).

If u is not a split node then N [uL] (= N0[uL]) and N [uR] (= N0[uR]) are
always disjoint. By Lemma 5, N i[uL] and N i[uR] are disjoint.
�

For any two phylogenetic networks N1, N2, define Masn(N1, N2) as the num-
ber of leaves in a maximum agreement subnetwork. If N1 or N2 is an empty net-
work thenMasn(N1, N2) is 0. Otherwise,Masn(N1, N2) for two nested networks
can be expressed recursively using the following lemma which is a generalization
of the main lemma in [20] for MAST. In the Match case, when trying to match
two subnetworks N i

1[uL] and Nx
1 [uR] to two subnetworks Nk

2 [vL] and Ny
2 [vR],

Lemma 6 ensures that the set of nodes in the intersection of V (N1[uL]) and
V (N1[uR]) is matched to only one of Nk

2 [vL] and Ny
2 [vR], and vice versa.

588 J. Jansson and W.-K. Sung

Lemma 7. Let N1 and N2 be two nested phylogenetic networks. For every (u, v)
∈ V (N1)× V (N2) and 0 ≤ i ≤ d(u), 0 ≤ k ≤ d(v),

Masn(N i
1[u], N

k
2 [v]) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|Λ(N i

1[u]) ∩ Λ(Nk
2 [v])|, if at least one of u and v

is a leaf

max
{
Diag(N i

1[u], N
k
2 [v]), Match(N i

1[u], N
k
2 [v])

}
,

otherwise

where

Diag(N i
1[u], N

k
2 [v]) = max

{
Masn(N i

1[u], N
k
2 [vL]), Masn(N i

1[u], N
k
2 [vR]),

Masn(N i
1[uL], Nk

2 [v]), Masn(N i
1[uR], Nk

2 [v])
}

and
Match(N i

1[u], N
k
2 [v]) =

max
{
Masn(N i

1[uL], Nk
2 [vL]) + Masn(Nx

1 [uR], Ny
2 [vR]),

Masn(N i
1[uL], Ny

2 [vL]) + Masn(Nx
1 [uR], Nk

2 [vR]),
Masn(N i

1[uL], Nk
2 [vR]) + Masn(Nx

1 [uR], Ny
2 [vL]),

Masn(N i
1[uL], Ny

2 [vR]) + Masn(Nx
1 [uR], Nk

2 [vL]),
Masn(Nx

1 [uL], Nk
2 [vL]) + Masn(N i

1[uR], Ny
2 [vR]),

Masn(Nx
1 [uL], Ny

2 [vL]) + Masn(N i
1[uR], Nk

2 [vR]),
Masn(Nx

1 [uL], Nk
2 [vR]) + Masn(N i

1[uR], Ny
2 [vL]),

Masn(Nx
1 [uL], Ny

2 [vR]) + Masn(N i
1[uR], Nk

2 [vL])
}

,

where x =
{
d(u) + 1, if u is a split node
i, otherwise

y =
{
d(v) + 1, if v is a split node
k, otherwise

Now, given two nested phylogenetic networksN1 andN2, we can use Lemma 7
to compute Masn(N i

1[u], N
k
2 [v]) for all 0 ≤ i ≤ d(u) and 0 ≤ k ≤ d(v) by ap-

plying dynamic programming in a bottom-up manner. The resulting algorithm
(Algorithm NestedMasn) is listed in Fig. 2.

Lemma 8. NestedMasn runs in O
(
|V (N1)|·|V (N2)|·(d(N1)+1)·(d(N2)+1)

)
time.

Algorithm NestedMasn can be modified to compute the set of leaves in a max-
imum agreement subnetwork without increasing the asymptotic running time by
also recording information about how each Masn-value is attained as it is com-
puted, e.g., by saving pointers. To construct an actual maximum agreement
subnetwork from such a set L′, we may use a standard traceback technique to
obtain a tree with leaf set L′ which is an agreement subnetwork. This yields:

Theorem 3. Given two nested phylogenetic networks N1 and N2 with nesting
depths d1 and d2, respectively, a maximum agreement subnetwork can be com-
puted in O(|V (N1)| · |V (N2)| · (d1 + 1) · (d2 + 1)) time.

The Maximum Agreement of Two Nested Phylogenetic Networks 589

Algorithm NestedMasn

Input: Two nested phylogenetic networks N1 and N2.

Output: The number of leaves in a maximum agreement subnetwork of {N1, N2}.

1 Compute and store d(u) and hi(u) for all u ∈ V (N1)∪V (N2), i ∈ {1, . . . , d(u)}.
2 Let O be the lexicographic ordering of V (N1)×V (N2), where the nodes in each

V (Ni) are ordered according to postorder.
3 for each (u, v) ∈ V (N1) × V (N2) in increasing order in O do

Compute Masn(N i
1[u], Nk

2 [v]) for all 0 ≤ i ≤ d(u), 0 ≤ k ≤ d(v) by using
the expression in Lemma 7.

endfor
4 return Masn(N0

1 [r1], N0
2 [r2]), where ri is the root of Ni for i ∈ {1, 2}.

End NestedMasn

Fig. 2. A dynamic programming algorithm for computing all values of Masn

4 MASN with k = 2 Is NP-Hard

To prove the NP-hardness of MASN for every fixed k ≥ 2, we provide a polyno-
mial-time reduction from the following problem.

Three-Dimensional Matching (3DM): Given a setM ⊆ X×Y×Z, whereX,
Y , and Z are disjoint sets and X = {x1, ..., xq}, Y = {y1, ..., yq}, Z = {z1, ..., zq},
is there a subset M ′ of M with |M ′| = q such that M ′ is a matching, i.e., such
that for every pair e, f ∈M ′ it holds that e and f differ in all coordinates?

3DM is NP-complete (see, e.g., [8]). Given an arbitrary instance of 3DM,
construct an instance of MASN with two phylogenetic networks N1 and N2 with
a leaf set L as described below. The elements of M are encoded in subtrees
called Sxi,zk

in N1 and in subtrees called Uyj in N2. The purpose of the subtrees
named Axi

, Bxi,zk
, and Wzk

is to make sure that for any two triples e and f
in M , a maximum agreement subnetwork of N1 and N2 can contain both of
the two leaves representing e and f if and only if e and f differ in all coordi-
nates.

Take L = M ∪ A ∪ B, where A is a set of q6 · (q + 2) elements not in M
and B is a set of q6 elements not in M or A. Let Ax0 , . . . , Axq , Axq+1 be q + 2
binary trees with q6 leaves each, distinctly labeled by A. For every (xi, zk) ∈
X × Z, let Bxi,zk

be a binary tree with q4 leaves, distinctly labeled by B.
For every (xi, zk) ∈ X × Z, define: (1) Mxi,zk

as the subset of M contain-
ing all triples of the form (xi, y, zk) where y ∈ Y ; and (2) Sxi,zk

to be a tree
obtained from a binary caterpillar tree with |Mxi,zk

| + 1 leaves distinctly la-
beled by Mxi,zk

and where one of the bottommost leaves has been replaced
by the root of Bxi,zk

. See Fig. 3. For every yj ∈ Y , define: (1) Myj
as the

subset of M containing all triples of the form (x, yj , z) where x ∈ X and
z ∈ Z; and (2) Uyj

to be a binary caterpillar tree with |Myj
| + q leaves in

which the |Myj | leaves closest to the root are distinctly labeled by Myj and
the rest are unlabeled nodes referred to as vyj ,zk

for 1 ≤ k ≤ q. Then, for

590 J. Jansson and W.-K. Sung

every zk ∈ Z, define Wzk
to be a tree obtained from the binary caterpil-

lar tree with q leaves by replacing the leaves with the roots of Bx1,zk
, . . . ,

Bxq,zk
.

Next, let P be any sorting network (see, e.g., [6]) for q elements with a
polynomial number p of comparator stages. Build a directed acyclic graph Q
from P with (p + 1) · q nodes {Qi,j | 1 ≤ i ≤ p+1, 1 ≤ j ≤ q} such that there
is a directed edge (Qi,j , Qi+1,j) for every 1 ≤ i ≤ p and 1 ≤ j ≤ q, and two
directed edges (Qi,j , Qi+1,k) and (Qi,k, Qi+1,j) for every comparator (j, k) at
stage i in P for 1 ≤ i ≤ p, as illustrated in Fig. 4. Furthermore, construct q
directed paths {G1, . . . , Gq} where each Gk = (G1,k, . . . , Gq,k).

Let N1 be a phylogenetic network (in fact, a leaf-labeled binary tree) ob-
tained by attaching to a directed path (m1,m2, . . . ,mq2+q+2), in order of non-
decreasing distance from m1, the roots of Ax0 , Sx1,z1 , Sx1,z2 , . . . , Sx1,zq

, Ax1 ,
Sx2,z1 , . . . , Sxq,zq

, Axq
, and Axq+1 , and letting m1 be the root of N1. See Fig. 5.

The phylogenetic network N2 is obtained by first attaching to a directed path
(n1, n2, . . . , n2q+2), in order of non-decreasing distance from n1, the root of
Ax0 , the node Q1,1, the root of Ax1 , the node Q1,2, the root of Ax2 , . . . , the
root of Axq

, and the root of Axq+1 , and letting n1 be the root of N2. Then,
for j ∈ {1, . . . , q}, let Qp+1,j coincide with the root of Uyj

, and for every
1 ≤ j ≤ q and 1 ≤ k ≤ q add a directed edge (vyj ,zk

, Gj,k). Next, for ev-
ery 1 ≤ k ≤ q add a directed edge from Gq,k to the root of Wzk

. Finally, for
every node in N1 and N2 having indegree 1 and outdegree 1, contract its outgo-
ing edge.

Lemma 9. There exists an agreement subnetwork of (N1, N2) with q7 + 2q6 +
q5 + q leaves if and only if M has a matching of size q.

Theorem 4. MASN is NP-hard even if restricted to k = 2.

3

8

1

3

38

3

x , y , z 4 54

348x , y , z ()

()x , y , z

B
q−1 kx , z

()

8

4

x , y , z

x , y , z

378x , y , z

x , z8 3
B

()

()

()

4yUSx , z8 3
:

2 kx , zB

x , zq k
B

x , z

v y , z4 1

v y , z4 2

v y , z4 q
v y , z4 q−1

B
1 k

: Wzk
:

Fig. 3. Assume Mx8,z3 = {(x8, y1, z3), (x8, y3, z3), (x8, y4, z3), (x8, y7, z3)} and My4 =
{(x4, y4, z5), (x8, y4, z3)}. Sx8,z3 and Uy4 are shown on the left and in the center, re-
spectively. The structure of each Wzk is shown on the right

The Maximum Agreement of Two Nested Phylogenetic Networks 591

Q
1,2

Q
1,4

Q
1,3

Q

Q

Q

Q

p+1, 1

Q

P :

i,1
Q

1

2

3

4

q
Stage Stage1 i

1,1

p+1, 2

p+1, 3

p+1, 4

Q
1,q

Q
p+1, q

Q

Q

i,3

i,4

i,q

Q
i,2

QQ :

Fig. 4. The sorting network P on the left yields a directed acyclic graph Q

mq + q + 12

y , zv
1 2

y , zv
2 3

y , zv
1 3

0x

A
qx

Axq+1

A

y1
U

y2
U

yq
U

W

n

n

n

1

2

3

Q

G2,3

G1,3

3z

2

G1,2

2

y , zq 3
v

A
1x

2xA

m1

2m

m3

mq+2

mq+1

mq+3

N 1

W

n2q

n5

n4

n2q + 1

n2q + 2

N 2:

Gq,3

G

G2,2

q,2

z

:

2 1x , zS
mq + q + 2

Axq+1

A
qx

A
1x

1 qx , zS

1 2x , zS
1 1x , zS

A
0x

Fig. 5. The phylogenetic networks N1 and N2

5 Open Problems

Does MASN for other types of structurally restricted phylogenetic networks
admit efficient algorithms? In particular, is it possible to extend our method in

592 J. Jansson and W.-K. Sung

Section 3 to two networks in which every hybrid node has exactly one split node?
An example of such a network is shown in Fig. 6. It would also be interesting to
investigate if any other problems which are hard to solve for unrestricted phylo-
genetic networks but solvable in polynomial time for galled-trees (i.e., networks
with nesting depth 1)4 can be solved efficiently for nested phylogenetic networks.

dcb

ea

Fig. 6. This network is not nested, yet every hybrid node has exactly one split node and
every split node has exactly one hybrid node, i.e., the converse of Lemma 1 is not true

We believe MASN for more than two nested phylogenetic networks can be
solved in polynomial time when k = O(1). On the other hand, if the outdegree 2
constraint in the definition of phylogenetic networks is removed, MASN seems
to be NP-hard already for two networks with nesting depth 1. The final open
question is: can the running time of our algorithm for two nested phylogenetic
networks be improved, e.g., by applying sparsification techniques?

References

1. A. Amir and D. Keselman. Maximum agreement subtree in a set of evolutionary
trees: Metrics and efficient algorithms. SIAM J.on Computing, 26:1656–1669, 1997.

2. D. Bryant. Building trees, hunting for trees, and comparing trees: theory and meth-
ods in phylogenetic analysis. PhD thesis, Univ. of Canterbury, New Zealand, 1997.

3. D. Bryant and V. Moulton.NeighborNet: an agglomerative method for the construc-
tion of planar phylogenetic networks. In Proc.of the 2nd Workshop on Algorithms in
Bioinformatics (WABI 2002), volume 2452 of LNCS, pages 375–391. Springer,2002.

4. C. Choy, J. Jansson, K. Sadakane, and W.-K. Sung. Computing the maximum agr-
eement of phylogenetic networks. In Proc.of Computing: the 10 th Australasian The-
ory Symposium (CATS 2004), volume 91 of ENTCS, pages 134–147. Elsevier, 2004.

5. R. Cole, M. Farach-Colton, R. Hariharan, T. Przytycka, and M. Thorup. An
O(n log n) algorithm for the maximum agreement subtree problem for binary trees.
SIAM J. on Computing, 30(5):1385–1404, 2000.

6. T. Cormen, C.Leiserson, and R.Rivest. Introduction to algorithms.MIT Press,1990.
7. M. Farach, T. Przytycka, and M. Thorup. On the agreement of many trees. In-

formation Processing Letters, 55:297–301, 1995.

4 For example, the perfect phylogenetic network with recombination problem is NP-
hard for unrestricted networks [21], but polynomial-time solvable for galled-trees [10].

The Maximum Agreement of Two Nested Phylogenetic Networks 593

8. M. Garey and D. Johnson. Computers and Intractability – A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, New York, 1979.

9. L. Ga̧sieniec, J. Jansson, A. Lingas, and A. Östlin. On the complexity of construct-
ing evolutionary trees. Journal of Combinatorial Optimization, 3:183–197, 1999.

10. D. Gusfield, S. Eddhu, and C. Langley. Efficient reconstruction of phylogenetic
networks with constrained recombination. In Proc. of the Computational Systems
Bioinformatics Conference (CSB2003), pages 363–374, 2003.

11. J. Hein. Reconstructing evolution of sequences subject to recombination using
parsimony. Mathematical Biosciences, 98(2):185–200, 1990.

12. D. H. Huson, T. Dezulian, T. Klöpper, and M. Steel. Phylogenetic super-networks
from partial trees. In Proc. of the 4 thWorkshop on Algorithms in Bioinformatics
(WABI 2004), to appear.

13. J. Jansson and W.-K. Sung. Inferring a level-1 phylogenetic network from a dense
set of rooted triplets. In Proc. of the 10 th International Computing and Combina-
torics Conference (COCOON 2004), to appear.

14. M.-Y. Kao, T.-W. Lam, W.-K. Sung, and H.-F. Ting. An even faster and more
unifying algorithm for comparing trees via unbalanced bipartite matchings. Journal
of Algorithms, 40(2):212–233, 2001.

15. W.-H. Li. Molecular Evolution. Sinauer Associates, Inc., Sunderland, 1997.
16. L. Nakhleh, J. Sun, T. Warnow, C. R. Linder, B. M. E. Moret, and A. Tholse.

Towards the development of computational tools for evaluating phylogenetic re-
construction methods. In Proc. of the 8 th Pacific Symposium on Biocomputing
(PSB 2003), pages 315–326, 2003.

17. L. Nakhleh, T. Warnow, and C. R. Linder. Reconstructing reticulate evolution in
species – theory and practice. In Proc.of the 8 thAnnual International Conf. on Re-
search in Computational Molecular Biology (RECOMB 2004), pages 337–346, 2004.

18. D. Posada and K. A. Crandall. Intraspecific gene genealogies: trees grafting into
networks. TRENDS in Ecology & Evolution, 16(1):37–45, 2001.

19. J. Setubal and J. Meidanis. Introduction to Comp. Molecular Biology. PWS, 1997.
20. M. Steel and T. Warnow. Kaikoura tree theorems: Computing the maximum

agreement subtree. Information Processing Letters, 48:77–82, 1993.
21. L. Wang, K. Zhang, and L. Zhang. Perfect phylogenetic networks with recombi-

nation. Journal of Computational Biology, 8(1):69–78, 2001.

Sequences of Radius k: How to Fetch Many
Huge Objects into Small Memory for Pairwise

Computations

Jerzy W. Jaromczyk1,�� and Zbigniew Lonc2

1 University of Kentucky, Lexington, KY, USA
jurek@cs.uky.edu

2 Warsaw University of Technology, Warsaw, Poland
zblonc@mini.pw.edu.pl

Abstract. Let a1, a2, . . . , am be a sequence over [n] = {1, . . . n}. We say
that a sequence a1, a2, . . . am has the k-radius property if every pair of dif-
ferent elements in [n] occurs at least once within distance at most k; the
distance d(ai, aj) = |i − j|. We demonstrate lower and (asymptotically)
matching upper bounds for sequences with the k-radius property. Such
sequences are applicable, for example, in computations of two-argument
functions for all

(
n
2

)
pairs of large objects such as medical images, bitmaps

or matrices, when processing occurs in a memory of size capable of stor-
ing k + 1 objects, k < n. We focus on the model when elements are
read into the memory in a FIFO fashion that correspond to streaming
the data or a special type of caching. We present asymptotically optimal
constructions; they are based on the Euler totient theorem and recursion.

1 Introduction

The problem that we study originated in the context of computing a two-
argument function (which we denote by g) for all pairs of n large objects, such
as medical images, bitmaps or matrices [GJ02]. The memory size is too small
to store all the objects at once; we assume it can store at most k + 1 objects
at the same time. For that reason, the simple two-loop algorithm that iterates
through the pairs of objects is not useful, as most of the objects are not readily
available. The task is to provide the shortest possible sequence of read operations
that will ensure that, for all pairs (i, j), at some point in time both oi and oj

will reside in memory and g(oi, oj) (as well as g(oj , oi), if g is non-symmetric)
can be evaluated.

The read operation assumes that, if memory is full, the next element takes
the place of one of the elements currently residing in memory. The particular

�� This work was supported in part by the University of Kentucky subcontract of
grants 5P20RR016481-03 and 2P20RR016481-04 from NCRR-NIH, and by KY NSF
EPSCOR grant EPS-0132295.

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 594–605, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Sequences of Radius k 595

selection of the element to be replaced is a part of the strategy. The replace-
ment strategy based on a FIFO queue of size k + 1 (that is, remove the first
element and append a new element to the end of the sequence) is particularly
interesting because of its applications. For example, it appears in processing a
large number of huge objects located in a remote database when locally storing
fetched data may be either impossible or impractical and where limited band-
width and time necessitate efficient scheduling of the data requests. Moreover,
FIFO-like processing allows for read-ahead requests to preemptively fetch data.
There are other applications of k-radius sequences; e.g., they may be viewed as
a systematic and efficient scheduling for the caching process [SChD02].

The problem can be formalized as follows.
Let a1, a2, . . . , am be a sequence over [n]. The distance d(ai, aj) = |i− j|.

We say that a sequence a1, a2, . . . am has the k-radius property if every pair of
different elements in [n] occurs at least once within distance at most k. In other
words, each pair of objects will appear at least once inside a window of size k+1
that slides along the sequence.

In 1 2 3 4 5 6 1 2 4 5 3 6 of length 12, each of 15 pairs of numbers
from {1, 2, 3, 4, 5, 6} occurs within a distance of at most 2. This 2-radius sequence
for n = 6 is a shortest (although not unique) such sequence, as we will see later.
Some objects, such as 1 and 2 appear in this sequence within distance not
larger than 2 more than once. We place numbers in boxes to indicate that each
element in the sequence consists of potentially huge satellite data.

We study the following questions:

Question 1. What is the least length fk(n) of a sequence over [n] = {1, 2, . . . , n}
that has the k-radius property?

Question 2. How can we construct short sequences with the k-radius property?

We prove that

f1(n) =
1
2
n2 (1 + o(1)) , f2(n) =

1
4
n2 (1 + o(1)) ,

and
1
2k
n2 (1 + o(1)) ≤ fk(n) ≤ 1

4 · �(k + 1)/3�n
2 (1 + o(1))

(for a fixed k > 2). We also show a construction of 2-radius sequences and use it
as a ground condition in a recursive algorithm for constructing asymptotically
optimal sequences with the k-radius property for k > 2. The correctness of the
construction is based on the Euler totient theorem for congruences (mod n) of
powers of the totient function φ(n): the number of numbers relatively prime with
n [GKP89].

596 J.W. Jaromczyk and Z. Lonc

2 Simple Cases, Lower Bounds and Examples

A result for all pairs appearing consecutively in a sequence (in our terminology,
the 1-radius property) was obtained by Ghosh [G75]; see also [LTT81]. It was
formulated in the context of databases and the consecutive 1 property.

Theorem 1. (Ghosh 1975)

f1(n) =

{(
n
2

)
+ 1, for n odd;(

n
2

)
+ 1

2n, for n even.

For n objects, the length of the shortest sequence with the k-radius property
depends on k and its length is bounded from below as follows:

Theorem 2.

fk(n) ≥
⌈

1
k

(
n

2

)
+
k + 1

2

⌉

Proof. There arem−i, i = 1, 2, . . . , k, pairs of objects in a sequence a1, a2, . . . , am

for which the distance is i. Hence we have

k∑
i=1

(m− i) = mk − (1 + 2 + · · ·+ k) = mk − (k + 1)k
2

pairs for which the distance is at most k. Thus, if the sequence a1, a2, . . . , am

contains all pairs over [n] within distance at most k, then(
n

2

)
≤ mk − (k + 1)k

2

fk(m) ≥ m ≥ 1
k

(
n

2

)
+
k + 1

2
.

�

The above lower bound can be slightly improved.

Theorem 3.

fk(n) ≥
⌈
n− 1
2k

⌉
n+

k∑
j=1

(⌈
n+ k − j

2k

⌉
−
⌈
n− 1
2k

⌉)

Proof. Let a1, a2, . . . , am be a sequence over [n] with the k-radius property and
m = fk(n) (i.e. the sequence is of the shortest possible length). We claim that
the first k objects a1, a2, . . . , ak are pairwise different. Indeed, if ai = aj , 1 ≤ i <
j ≤ k, then we delete ai. The resulting sequence still has the k-radius property,
in contradiction with the definition of m.

Sequences of Radius k 597

Let r(i) be the number of occurrences of i in the sequence a1, a2, . . . , am,
i = 1, 2, . . . , n. Obviously, for every i ∈ [n], 2kr(i) ≥ n− 1, so r(i) ≥

⌈
n−1
2k

⌉
.

For j = 1, . . . , k, object aj has only j− 1+ k objects within distance at most
k. Hence j − 1 + k + (r(aj)− 1) · 2k ≥ n− 1
so

r(aj) ≥
⌈
n+ k − j

2k

⌉
, j = 1, 2, . . . , k

As a1, a2, . . . , ak are pairwise different,

fk(n) = m =
n∑

i=1

r(i) ≥ (n− k)
⌈
n− 1
2k

⌉
+

k∑
j=1

⌈
n+ k − j

2k

⌉

=
⌈
n− 1
2k

⌉
n+

k∑
j=1

(⌈
n+ k − j

2k

⌉
−
⌈
n− 1
2k

⌉)
.

�

Corollary 1.

f2(n) ≥

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2

(
n
2

)
+ 1

4n+ 1, n ≡ 0 (mod 4)
1
2

(
n
2

)
+ 2, n ≡ 1 (mod 4)

1
2

(
n
2

)
+ 3

4n, n ≡ 2 (mod 4)
1
2

(
n
2

)
+ 1

2n, n ≡ 3 (mod 4)

Remark 1. The bound given by Theorem 3 is for k = 2 not worse than the bound
in Theorem 2.

For small values of n we can directly compare the lower and upper bounds.

f2(2) = 2 12
f2(3) = 3 123
f2(4) = 5 12341
f2(5) = 7 1234512
f2(6) = 12 123456124536
f2(7) = 14 12345632756147
f2(8) ≥ 17

The lower bounds follow from the Corollary 1.

3 Construction for k = 2

The presented construction of a sequence with the 2-radius property for n ele-
ments is based on the divisibility properties of numbers and their divisors, and
Euler’s theorem [GKP89].

598 J.W. Jaromczyk and Z. Lonc

We first prove several lemmas.
Let p be a positive divisor of an odd positive integer n. Define

[n]p =
{
p, 2p, . . . ,

(
n

p
− 1

)
p

}
[n]∗p =

{
ip ∈ [n]p :

(
i,
n

p

)
= 1

}
where (a, b) is the greatest common divisor of a and b.

Lemma 1. The family
{

[n]∗p : p | n and 1 ≤ p < n
}

is a partition of [n− 1].

Proof. First we show that
[n− 1] =

⋃
p|n

[n]∗p

Let m ∈ [n− 1] and define d = (m,n). Then
(

m
d ,

n
d

)
= 1, so m = m

d · d ∈ [n]∗d.
It suffices to show that [n]∗p ∩ [n]∗q = ∅, for two different positive divisors p

and q of n. Suppose it is not true and let m ∈ [n]∗p ∩ [n]∗q . Then m = ip = jq,
where (i, n/p) = 1 and (j, n/q) = 1. Denote d = (p, q). Clearly, there are positive
integers p1 and q1 such that p = dp1, q = dq1, and (p1, q1) = 1. As ip = jq,
idp1 = jdq1, so ip1 = jq1. Since (p1, q1) = 1, q1 | i. On the other hand, q | n, so
n = qn1 for some positive integer n1. Consequently,

n

p
=
qn1

dp1
=
dq1n1

dp1
= q1

n1

p1

(as n/p is an integer and (p1, q1) = 1, n1/p1 is itself an integer). Hence q1 | n/p
and q1 | i, so q1 = 1 because (i, n/p) = 1. For a similar reason p1 = 1 and
consequently p = d = q, a contradiction. �

We define a directed graph Gn on [n− 1]. A pair (i, j) is an edge in Gn if
j ≡ 2i (mod n), for i, j ∈ [n− 1]. Notice that Gn is well-defined. Indeed, suppose
that 2i ≡ 0 (mod n) for some i ∈ [n− 1]. As n is odd, it implies i ≡ 0 (mod n),
a contradiction. Clearly, for each i ∈ [n− 1], there is a unique j ∈ [n− 1] such
that (i, j) is an edge in Gn. Hence the outdegrees of vertices in Gn are all equal
to 1.

As n is odd, by Euler’s theorem [GKP89] we have 2ϕ(n) ≡ 1 (mod n), where
ϕ(n) is Euler’s function [GKP89]. Let j ∈ [n− 1] and define i ≡ 2ϕ(n)−1 · j
(mod n). Then

2i = 2 ·
(
2ϕ(n)−1 · j

)
= 2ϕ(n) · j ≡ j (mod n)

Hence the indegree of each vertex in Gn is at least 1. Since the sum of the
indegrees of all vertices in a directed graph is equal to the sum of the outdegrees,
the indegree of each vertex is 1. Therefore the components of Gn are cycles.

Lemma 2. Let p | n, 1 ≤ p < n, and let tp be the least integer t > 1 such that
2t ≡ 1 (mod n

p). The graph induced in Gn by vertices from [n]∗p is a family of
cycles of length tp.

Sequences of Radius k 599

Proof. Let s ∈ [n]∗p. Then s = ip, 1 ≤ i < n
p and (i, n/p) = 1.

If 1 ≤ i ≤ n
2p , then 2s = 2ip < n (because n is odd), so 2s ∈ [n]p. If n

2p < i < n
p

then 2s = 2ip ≡ 2ip− n = (2i− n/p)p (mod n) and 1 ≤ 2i− n
p < 2n

p −
n
p = n

p .
Hence 2s − n ∈ [n]p. We have shown that 2s (mod n) belongs to [n]p. Let
d = (2i, n/p), when 1 ≤ i ≤ n

2p and d = (2i− n/p, n/p), when n
2p < i < n

p . Since
n/p is odd and (i, n/p) = 1 we get d = 1.

We proved that the cycle in Gn containing s has all vertices in [n]∗p. The
length of this cycle is the smallest integer t such that s ≡ 2t · s (mod n). This
is equivalent to ip ≡ 2t · ip (mod n), for some 1 ≤ i < n/p, which in turn is
equivalent to (2t − 1) i ≡ 0 (mod n/p). Since (i, n/p) = 1, the last condition
is equivalent to 2t ≡ 1 (mod n/p). Hence the length of the cycle containing s,
and consequently the length of any cycle in the subgraph of Gn induced by the
vertices of [n]∗p, is tp. �

Lemma 3. The number of cycles in Gn is at most 5n
log2 n .

Proof. Let p | n, 1 ≤ p < n. Observe first that, as 2tp ≡ 1 (mod n/p) and
tp > 1, 2tp ≥ n/p + 1. Hence tp ≥ log2(n/p). Thus the number of cycles in the
subgraph of Gn induced by the set of vertices [n]∗p is at most 1

log2(n/p) · ϕ (n/p).
Consequently, the total number of cycles in Gn is at most∑

p|n
1≤p<n

1
log2

n
p

ϕ

(
n

p

)
=

∑
p|n

1<p≤n

ϕ(p)
log2 p

=
∑
p|n

1<p<n
1
3

ϕ(p)
log2 p

+
∑
p|n

n
1
3 ≤p≤n

ϕ(p)
log2 p

≤
∑
p|n

1<p<n
1
3

n
1
3 +

∑
p|n

n
1
3 ≤p≤n

ϕ(p)
log2 n

1
3
≤ n

2
3 +

1
1
3 log2 n

·
∑
p|n

1<p≤n

ϕ(p)

= n
2
3 +

3
log2 n

· n ≤ 5n
log2 n

.

�

Let Gn be a directed graph on [(n− 1)/2] such that, for i, j ∈ [(n− 1)/2],
(i, j) is an edge if

j =

{
2i, if 2i ≤ n−1

2

n− 2i, if 2i > n−1
2 .

Clearly, the outdegree of every vertex in Gn is 1. Let j ∈ [(n− 1)/2]. If j is
even, i.e. j = 2i for some i ∈ [(n− 1)/2], then (i, j) is an edge in Gn. If j is odd
then let i = (n− j)/2. Since 2i = n− j > (n− 1)/2 and n− 2i = j, (i, j) is an
edge in Gn. We have shown that every vertex in Gn has outdegree and indegree
equal to 1.

Let s ∈ [(n− 1)/2] and denote by C the cycle in Gn containing s. Let C =
{c0, c1, . . . , ct−1} be a cycle in Gn containing s, cj ≡ 2js (mod n). We shall show

600 J.W. Jaromczyk and Z. Lonc

by induction on j that cj ∈ C, where cj = min (cj , n− cj), j = 0, 1, . . . , t − 1.
Obviously, c0 = s ∈ C. Assume that c0, c1, . . . , cj−1 ∈ C, j < t. We shall show
that cj ∈ C. Let us consider four cases.

Case 1: cj−1 ≤ (n − 1)/2 and cj ≤ (n − 1)/2

Then cj−1 = cj−1, cj = cj , and 2cj−1 = cj ≤ (n− 1)/2, so (cj−1, cj) is an edge
in Gn. Consequently, cj ∈ C (as cj−1 ∈ C).

Case 2: cj−1 ≤ (n − 1)/2 and cj > (n − 1)/2

Then cj−1 = cj−1 and cj = n− cj . Observe that 2cj−1 = 2cj−1 = cj > (n− 1)/2
and n−2cj−1 = n−cj = cj , so (cj−1, cj) is an edge in Gn. Consequently, cj ∈ C.

Case 3: cj−1 > (n − 1)/2 and cj ≤ (n − 1)/2

Then cj−1 = n− cj−1 and cj = cj . Moreover 2cj−1 = n+ cj . Observe that

2cj−1 = 2(n− cj−1) = 2n− 2cj−1 = 2n− (n+ cj) = n− cj

≥ n− n− 1
2

=
n+ 1

2

and n− 2cj−1 = cj = cj , so (cj−1, cj) is an edge in Gn. Consequently, cj ∈ C.

Case 4: cj−1 > (n − 1)/2 and cj > (n − 1)/2

Then cj−1 = n− cj−1, cj = n− cj , and 2cj−1 = n+ cj . Moreover,

2cj−1 = 2n− 2cj−1 = 2n− n− cj < n− n− 1
2

=
n+ 1

2

so 2cj−1 ≤ n−1
2 . Since 2cj−1 = n− cj = cj , we have that (cj−1, cj) is an edge in

Gn, and thus cj ∈ C.
We proved that {c0, c1, . . . , ct−1} ⊆ C and that (cj−1, cj) is an edge in Gn,

for j = 1, 2, . . . , t − 1. It is easy to show (proceeding as in cases 1 and 3) that
(ct−1, c0) is an edge in Gn. Thus

{c0, c1, . . . , ct−1} = C

We have proved that the number of cycles in Gn is not larger than in Gn. By
Lemma 3 we get the next lemma.

Lemma 4. The number of cycles in Gn is at most 5n
log2 n .

Now a sequence with the 2-radius property can be defined as follows.
We choose from each cycle C in Gn

⌊ 1
2�c

⌋
pairs of vertices joined by an edge,

where �c is the length of C. This way, letting C range over the cycles of Gn, we
get at least∑

C

⌊
1
2
�c

⌋
≥
∑
C

(
1
2
�c −

1
2

)
≥ 1

2

∑
C

�c −
1
2

5n
log2 n

=
1
2
n− 1

2
− 1

2
5n

log2 n

Sequences of Radius k 601

pairwise disjoint pairs (by Lemma 4). Denote by A the set of is in the chosen
pairs.

For each such pair (i, j) we create a sequence si, which is a concatenation of
the following d sequences, where d = di = (i, n):

0, i, 2i, . . . ,
(

n
d − 1

)
i, 0, i (mod n)

1, i+ 1, 2i+ 1, . . . ,
(

n
d − 1

)
i+ 1, 1, i+ 1 (mod n)

2, i+ 2, 2i+ 2, . . . ,
(

n
d − 1

)
i+ 2, 2, i+ 2 (mod n)

. . .
d− 1, i+ d− 1, 2i+ d− 1, . . . ,

(
n
d − 1

)
i+ d− 1, d− 1, i+ d− 1 (mod n).

For α, β ∈ {0, 1, . . . , n− 1}, define the distance

dist(α, β) = dist(β, α) = min (|β − α| , n− |β − α|) .

Observe that every pair in {0, 1, . . . , n− 1} for which the distance is i occurs
in si as consecutive objects; and each pair for which the distance is j occurs in
si within a distance of 2. Moreover, the length of si is n+ 2d.

The number of vertices in Gn which are not in any of the chosen pairs (i, j)
is at most

n− 1
2

−
(
n− 1

2
− 5n

log2 n

)
=

5n
log2 n

.

For each such vertex � we create a sequence s� given by the same definition
as si (replacing i with �). Denote the set of these vertices � by B.

It is easily seen that a concatenation s of all sequences si and s� has the
2-radius property. The length of s is∑
i∈A∪B

(n+ 2di) =
∑
i∈A

(n+ 2di) +
∑
i∈B

(n+ 2di) ≤ |A| · n+ 2
∑
i∈A

di + |B| · 2n

≤ 1
2
n− 1

2
n+

5n
log2 n

· 2n+ 2
n−1∑
i=1

di =
1
2

(
n

2

)
+

10n2

log2 n
+ 2

n−1∑
i=1

di.

Let us estimate the sum
∑n−1

i=1 di.

n−1∑
i=1

di =
∑
p|n

1≤p<n

p · |{i : (i, n) = p}| =
∑
p|n

1≤p<n

p · ϕ
(
n

p

)
≤

∑
p|n

1≤p<n

p · n
p

=
∑
p|n

1≤p<n

n.

Let n = p1p2 · · · pr be a factorization of n into (not necessarily distinct)
primes. The number of divisors of n is then not larger than 2r. As n is odd, n =
p1p2 · · · pr ≥ 3r, so 2r ≤ 2log3 n = 2log2 n·log3 2 = nlog3 2 ≤ n0.64. Consequently∑n−1

i=1 di ≤ n1.64 and the length of s is at most

1
2

(
n

2

)
+

10n2

log2n
+ 2n1.64 =

1
2

(
n

2

)
(1 + o(1)) .

If n is even then we construct the sequence s for n − 1 and concatenate it
with the sequence 1, 2, n, 3, 4, 5, 6, n, 7, 8, 9, 10, n, . . . whose length is not larger
than n− 1 +

⌈
n−1

4

⌉
.

602 J.W. Jaromczyk and Z. Lonc

4 A General Construction Using a 1-Radius Sequence

Let M =
⌈

n

(k+1)/2�

⌉
and X = {x1, x2, . . . , xM}. Consider a sequence p of length

f1(M) in which each pair of elements from X occurs consecutively. We partition
the set [n] into M disjoint subsets of cardinality

⌊
k+1
2

⌋
except for at most one

of a smaller cardinality. Denote these subsets by A1, A2, . . . , AM .
Denote by si any sequence (permutation) of elements of Ai. Define s to

be the sequence obtained from p by replacing every occurrence of xi by the
sequence si (for every i = 1, 2, . . . ,M). Observe that each two elements r, t ∈ [n]
occur within distance at most k in the sequence s. Indeed, let r ∈ Ap ⊆ [n]
and t ∈ Aq ⊆ [n]. The elements xp, xq ∈ X are at least once neighbors in the
sequence p. Since |sp| ≤

⌊
k+1
2

⌋
and |sq| ≤

⌊
k+1
2

⌋
, r and t are in s within distance

at most 2
⌊

k+1
2

⌋
− 1 ≤ k.

We proved that fk(n) ≤ |s|. Let us compute |s|. If M is odd then

|s| ≤ f1(M) ·
⌊
k + 1

2

⌋
≤
((

M

2

)
+ 1

)⌊
k + 1

2

⌋
=
(

1
2
M2 − 1

2
M + 1

)⌊
k + 1

2

⌋
≤
(

1
2
· (n+ �(k + 1)/2�)2

�(k + 1)/2�2
− 1

2
· n+ �(k + 1)/2�
�(k + 1)/2� + 1

)
·
⌊
k + 1

2

⌋
=

1
2

n2

�(k + 1)/2� +
1
2
n+

⌊
k + 1

2

⌋
.

If M is even, we have

|s| ≤
((

M

2

)
+

1
2
M

)⌊
k + 1

2

⌋
=

1
2

⌈
n

�(k + 1)/2�

⌉2

·
⌊
k + 1

2

⌋
≤ 1

2
· (n+ �(k + 1)/2�)2

�(k + 1)/2�2
·
⌊
k + 1

2

⌋
=

1
2

n2

�(k + 1)/2� + n+
1
2

⌊
k + 1

2

⌋
.

Consequently, we have the following:

Theorem 4. fk(n) ≤ n2

2
(k+1)/2� + n+ 1
2

⌊
k+1
2

⌋
.

5 A General Construction Using a 2-Radius Sequence

Let M =
⌈

n

(k+1)/3�

⌉
and X = {x1, . . . , xM}. Consider the sequence p of length

f2(M) in which two elements of X occur within distance at most 2. We partition
the set [n] into M disjoint subsets of cardinality

⌊
k+1
3

⌋
, except for at most one

of a smaller cardinality. Call these subsets A1, A2, . . . , AM .
As in the previous construction we denote by si any sequence of elements of

Ai. The sequence s is defined as in the previous construction.
Observe that each two elements r, t ∈ [n] occur within distance at most k in

the sequence s. Indeed, let r ∈ Ap ⊆ [n] and t ∈ Aq ⊆ [n]. As xp and xqoccur

Sequences of Radius k 603

within distance at most 2 in p, r and t are in s within a distance of 3
⌊

k+1
3

⌋
−1 ≤ k

of each other.
We have proved that

fk(n) ≤ f2(M) ·
⌊
k + 1

3

⌋
= |s| .

Let us estimate |s|, for a fixed k.

|s| =
⌊
k + 1

3

⌋
· 1
4

(
n

�(k + 1)/3�

)2

(1 + o(1)) =
1
4

n2

�(k + 1)/3� (1 + o(1)) .

We have the following theorem.

Theorem 5.

fk(n) ≤ n2

4 �(k + 1)/3� (1 + o(1))

To illustrate the algorithm, consider a set A = {a, b, c, d, e, f, g, h, i, j, k, l}
of cardinality n = 12. Take k = 5. To construct a sequence with the 5-radius
property, we can use a sequence 1 2 3 4 5 6 1 2 4 5 3 6 with the
2-radius property for M = 6 objects. Since k = 5, we partition A into groups
of size 6

3 = 2 each, for example by taking consecutive pairs of letters, such as
A1 = {a, b}, A2 = {c, d},..., A6 = {k, l}. Following the algorithm, we replace
each number i with Ai. This results in a, b c, d e, f g, h i, j k, l a, b c, d

g, h i, j e, f k, l (i.e., abcdefghijklabcdghijefkl), which has the 5-radius
property.

The reasoning applied in the two constructions can be easily generalized to
prove the following proposition.

Proposition 1. For k ≥ m,

fk(n) ≤ fm

(⌈
n

�(k + 1)/(m+ 1)�

⌉)
·
⌊
k + 1
m+ 1

⌋
.

Corollary 2.

f1(n) =
1
2
n2 (1 + o(1)) , f2(n) =

1
4
n2 (1 + o(1)) ,

and finally

1
2k
n2 (1 + o(1)) ≤ fk(n) ≤ 1

4 · �(k + 1)/3�n
2 (1 + o(1)) ,

for a fixed k > 2.

604 J.W. Jaromczyk and Z. Lonc

6 Other Strategies

Above we have focused on a particular strategy based on a FIFO (of size k+ 1)
that removes the oldest element and places the new element at the end of the
sequence. While this strategy seems to be natural for streaming and transmission
of data, other strategies exist that can be useful for other applications. In the
general case, we could allow the removal of any element from the current sequence
of k+1 objects, placing the new element in an arbitrary position in this sequence.
Such a problem is of interest in caching when costs may depend on what locations
in the cache are affected. In a more specific case, the replacement could follow
the LIFO strategy, which replaces elements by popping one or more of the most
recently inserted objects and then pushing new elements. Such a strategy lends
itself to a simple construction of a sequence: divide the set into disjoint groups of
k elements (except perhaps for the last group that can be smaller); place a group
in the memory and add as the (k+1)st element, consecutively, all the remaining
elements from not yet processed groups; when finished, replace the group with
the next group and repeat the process until all the groups have been in the
memory. This leads to a sequence of the length similar to the FIFO strategy,
but occasionally all the elements in the memory must be replaced.

7 Conclusions

Sequences with the k-radius property are useful in scheduling the fetching of data
to process each pair of objects—e.g., to compute two-argument functions—when
the memory is limited and the objects are huge. As such they are applicable to
streaming and caching images or arrays and they help optimize the transmission
time or the number of memory rewrites when the application requires access to
every pair of objects. The presented results demonstrate asymptotically optimal
constructions for sequences with the k-property and demonstrate that the length
of such sequences approximately halves when the memory size doubles. Addi-
tional constructions based on Steiner systems and finite geometries are presented
in [JL04]. One natural generalization of the problem is to consider shortest se-
quences where all the triples, or quadruples (etc.) appear within radius k at least
once.

Acknowledgement

The first author would like to thank J. Gilkerson for discussions that let to
the formulation of the problem, N. Imam for experimental implementations for
small-radius sequencies, and N. Moore for help with typesetting and proofread-
ing.

Sequences of Radius k 605

References

[CR99] Colbourn, Ch., J., Rosa, A., Triple Systems, Clarendon Press - Oxford,
1999.

[GJ02] Gilkerson, J. W., Jaromczyk, J. W., Restoring the order of images in a
sequence of MRI slices, Manuscript, 2002.

[G75] Gosh, S.P., Consecutive storage of relevant records with redundancy, Com-
munications of the ACM 18(8):464-471, 1975.

[GGL95] Graham, R. L., Grötschel, M., Lovász, L., Handbook of Combinatorics,
The MIT Press - North Holland, 1995.

[GKP89] Graham, R. L., Knuth, D. E., Patashnik, O., Concrete Mathematics,
Addison-Wesley, 1989.

[JL04] Jaromczyk, J. W., Lonc, Z., Sequences of radius k. Technical Report TR
417-04, Computer Science - University of Kentucky, 2004.

[LTT81] Lonc Z., Traczyk T. Truszczyński, M., Optimal f -graphs for the family
of all k-subsets of an n-set. Data base file organization (Warsaw, 1981),
247–270, Notes Rep. Comput. Sci. Appl. Math., 6, Academic Press, New
York, 1983.

[SChD02] Sen, S., Chatterjee, S., Dumir, N., Towards a theory of cache-efficient al-
gorithms, Journal of the ACM, 49(6):828-858, 2002.

New Bounds on Map Labeling
with Circular Labels�

Minghui Jiang1, Sergey Bereg2, Zhongping Qin3, and Binhai Zhu1

1 Department of Computer Science, Montana State University,
Bozeman, MT 59717-3880, USA
{jiang,bhz}@cs.montana.edu

2 Department of Computer Science, University of Texas at Dallas,
Richardson, TX 75083-0688, USA

besp@utd.edu
3 College of Software, Huazhong University of Science and Technology,

Wuhan, China

Abstract. We present new approximation algorithms for the NP-hard
problems of labeling points with maximum-size uniform circles and circle
pairs (MLUC and MLUCP). Our algorithms build on the important
concept of maximal feasible region and new algorithmic techniques. We
obtain several results: a (2.98 + ε)-approximation for MLUC, improving
previous factor 3.0+ε; a (1.491+ε)-approximation for MLUCP, improving
previous factor 1.5; and the first non-trivial lower bound 1.0349 for both
MLUC and MLUCP, improving previous lower bound 1 + O(1/n).

1 Introduction

Map labeling is a geometric optimization problem: Given a set of feature sites in
the plane, and a label to be placed near each site, the goal is to label the maxi-
mum number of sites with the maximum label size such that no labels overlap.
The labels are typically axis-parallel rectangles containing textual information.
In this paper, we study map labeling with circular labels. Circular labels are
useful for conveying graphic information; their natural relation to the Euclidean
metric in planar geometry also makes them interesting for theoretical study. We
study two closely related problems: Map Labeling with Uniform Circles (MLUC)
and Map Labeling with Uniform Circle Pairs (MLUCP).
Instance: Given n point sites P = {P1, P2, . . . , Pn} in the plane, and a label
size r > 0.
MLUC: Is there a placement for n uniform open circles of radii r, one circle
for each input site Pi ∈ P, such that each site is on the boundary of its labeling
circle and no circles intersect?
MLUCP: Is there a placement for 2n uniform open circles of radii r, two circles
for each input site Pi ∈ P, such that each site is on both boundaries of its two
labeling circles and no circles intersect?

� This research is partially supported by NSF CARGO grant DMS-0138065.

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 606–617, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

New Bounds on Map Labeling with Circular Labels 607

The MLUC problem was first studied by Doddi et al. [2]; they proposed a
29.86-approximation for maximizing the label size such that all points are la-
beled. This factor was improved to 19.35 by Strijk and Wolff [10]. Later, Doddi
et al. [3] introduced the concept of feasible region, and improved the approxima-
tion factor to 3.6 + ε. Recently, Jiang et al. [5] presented a conceptually simple
(3 + ε)-approximation; this was achieved by proving a combinatorial lemma on
labeling disjoint unit circles with points, and by generalizing the concept of
feasible region further to maximal feasible region. In this paper, we present a
(2.98 + ε)-approximation for this problem; our algorithm builds on the impor-
tant concept of maximal feasible region, and handles the previous difficult cases
with new algorithmic techniques.

The MLUCP problem was first studied by Zhu and Poon [12] as part of the
research effort in multi-label map labeling. They proposed a 2-approximation
[12] for maximizing the label size. This bound was subsequently improved to 1.96
[8], 1.686 [9], and 1.5 [11]. In this paper, we use the concept of maximal feasible
region to design a remarkably simple (1.5 + ε)-approximation for MLUCP, then
improve the approximation factor to 1.491 + ε with new algorithmic techniques.

For the hardness of approximation, Strijk and Wolff [10] proved that the
MLUC decision problem is NP-hard; their proof also implied that it is NP-hard
to approximate the MLUC optimization problem (maximizing the label size)
within factor 1 +O(1/n). For labeling points with maximum-size uniform circle
pairs, a 1.37 inapproximability result [8] was claimed (no details were given);
it was later found to be actually 1 + O(1/n). In this paper, we design a new
reduction to obtain the first nontrivial lower bound of 1.0349 for both MLUC
and MLUCP. We summarize our results in the following table.

problem upper bound lower bound
MLUC 3 + ε [5] → 2.98 + ε 1 +O(1/n) [10] → 1.0349

MLUCP 1.5 [11] → 1.491 + ε 1 +O(1/n) [8] → 1.0349

2 Maximal Feasible Region and Distance Graph

In this section, we introduce some preliminary concepts. We refer to a circle of
unit radius as a unit circle. When we say that a circle has distance d to a point,
we mean that the distance from the circle center to the point is d; similarly for
the distance between two circles. When two sites have intersecting candidate
circles, we say that the two sites interfere each other.

In the MLUC problem, a site can be anywhere on the boundary of its labeling
circle—from a different perspective, the circle rotates around a fixed pivot on
its boundary that coincides with the site. The position of a circle, given its
radius, is determined by its direction: the vector from the site to the circle
center. If a circle contains a site in its interior, then it always intersects the
circle of the contained site; therefore, a circle at a feasible position contains no
site in its interior. As a circle rotates continuously from one feasible position to
another, the corresponding direction vector sweeps a cone, or, a feasible region.

608 M. Jiang et al.

We consider only maximal feasible regions, in the sense that no maximal feasible
region is a proper subset of another feasible region (this concept was introduced
by Jiang et al. [5]). Because a site is always on the boundary of its circle, which,
at a feasible position, contains no site in its interior, each site is the closest site
to its circle in a non-intersecting label placement. Maximal feasible regions are
naturally related to the Voronoi diagram: the center of a labeling circle is within
the Voronoi cell of its site if and only if the circle is at a feasible position.

The MLUCP problem can be considered as a special case of the MLUC prob-
lem where each MLUCP site is two coinciding MLUC sites. To avoid overlapping,
the two circles of each site must always be labeled in opposite directions, and
each site is at the midpoint of its two circle centers. To define maximal feasible
region for MLUCP, we first prove the following circle packing property.

Lemma 1. Given three disjoint unit circles and one point on the boundary of
each circle, if two points have distance d ≤

√
3 − 1, then the distance from the

third point to the two points is at least D(d) =
√

5− 4 cos(π
3 − φ) − 1, where

φ = cos−1 5−(1+d)2

4 .

φ

A

B C

X

Y Z

Fig. 1.

Proof. We refer to Fig. 1. Sites X, Y , and Z are on the
boundaries of three circles centered at points A, B, and C,
respectively. Y and Z have distance d ≤

√
3− 1. Without

loss of generality, we assume that XY < XZ. We show
that XY has the lower bound D(d). Imagine that a spring
connects X and Y , and that a rigid rod of length d con-
nects Y and Z. The three circles may not intersect but can
move freely otherwise. When the spring shrinks and XY
reaches minimum, the points A, X, and Y are collinear;
the points C, Z, and Y are collinear; and the three circles are tightly packed in
an equilateral triangular formation.
�

The function D(d) is monotonically decreasing in [0,
√

3−1]; it reaches maxi-
mum

√
3−1 at d = 0, and minimum 0 at d =

√
3−1. For completeness, we define

D(d) = 0 for d >
√

3 − 1. A calculation shows that the equation D(d) = d has
solution d0 . 0.24. For any distance d < d0, the decreasing property of function
D(d) guarantees that D(d) > d. This implies the following corollary:

Corollary 1. Given a set of sites labeled with disjoint unit circles, each site has
at most one neighbor with distance less than d0.

The following corollary defines feasible position for MLUCP.

Corollary 2. Given a set of sites to be labeled with disjoint unit circle pairs, a
site is at a feasible position if both its two circles have distance at least

√
3 to

other sites.

In the MLUC problem, maximal feasible regions based on the classic defini-
tion [5] exclude obviously infeasible label positions where circles contain other
sites in their interiors. The following corollary, immediate from Lemma 1, leads

New Bounds on Map Labeling with Circular Labels 609

to more restricted maximal feasible regions that exclude a broader range of in-
feasible positions.

Corollary 3. Given P, a set of sites to be labeled with disjoint unit circles, and
three sites A, B, and C in P, site A is at a feasible position if its circle has
distance at least D(BC) + 1 to B and C.

We revise our definitions of feasible position and maximal feasible region for
MLUC based on Corollary 3. We use the term revised maximal feasible region
to distinguish this new concept with the classic maximal feasible region.

Given a set of sites P and a threshold distance d, we define distance graph
GP(d) to be the graph where each site is represented by a node, and where an
edge connects two nodes if and only if their corresponding sites have distance at
most d. We use the abbreviated notation G(d) when the set of sites is clear from
context. For threshold distances strictly less than one, the distance graphs have
special combinatorial properties if P can be labeled with disjoint unit circles. An
important property on labeling disjoint unit circles with points was discovered
by Jiang et al. [5] (Lemma 1); we rephrase this property here using the concept
of distance graph:

Lemma 2. Given P, a set of sites labeled with disjoint unit circles, and a thresh-
old distance 1−δ, where 0 < δ < 1, the maximum size of a connected component
in distance graph GP(1− δ) is bounded by a constant f(δ) = O(1/δ2).

For the proof of this property, we observe that every simple path in the
distance graph G(1− δ) has size bounded by O(1/δ) (an extreme case happens
when the path is straight and has unit edge lengths, and each circle is tangent to
two consecutive nodes in the path); the O(1/δ2) bound follows immediately by
an area argument [5]. A tighter bound of O(1/δ) for the connected component
size was recently proved by Bereg [1].

3 A (2.98 + ε)-Approximation for MLUC

In this section, we present a (2.98 + ε)-approximation for MLUC. For complete-
ness, we first sketch a conceptually simple (3+ε)-approximation [5] that captures
some of the underlying ideas: If a set of sites can be labeled with disjoint unit cir-
cles, then Lemma 2 implies that, given a small constant δ, where 0 < δ < 1, the
distance graph G(1−δ) has connected components with maximum size bounded
by a constant O(1/δ2). We use a brute-force search to find a non-intersecting
label placement in each component such that each site is labeled in a feasible
position. Sites from different components may still have overlapping labels; in
the worst case, two sites from different components are labeled with two circles
that coincide and are tangent to both sites (the circles are in feasible positions
so they contain no sites in their interiors). Because the two sites have distance at
least 1− δ (by the definition of distance graph), the overlapping can be avoided
by shrinking all circles to radii 1

3+ε , where ε = O(δ). A binary search on the
label size finds a (3 + ε)-approximation.

610 M. Jiang et al.

A A′

B

C

D

E

F

O

Fig. 2.

With the classic concept of maximal feasible region,
it is difficult to improve the approximation factor 3 + ε
further. We refer to Fig. 2. The unit circle centered at
O has 6 sites A, B, C, D, E, and F on its boundary in
a regular hexagonal formation. A′ is another site outside
the circle and is very close to A. In the factor-(3 + ε)
algorithm [5], these 7 sites are grouped into 6 different
components and are labeled independently in their maxi-
mal feasible regions. A and A′ are in the same component
and have to be labeled along vectors −→AO and

−−→
OA′ (this

is the only choice in their maximal feasible regions). The
vectors −−→BO, −−→CO, −−→DO, −−→EO, and −−→FO are feasible positions of the sites B, C,
D, E, and F , respectively; in the worst case they may be labeled along these
vectors. When the circles shrink to radii 1

3 , we still obtain a non-intersecting
label placement, but there is no room for improvements. If we can label some
sites, say, B and F , along directions −−→OB and −−→OF instead, then we will have
more space for other sites (C, D, and E) to maneuver. This is exactly the idea
behind our new concept of revised maximal feasible region: B and F are close to
some closely-clustered sites (A and A′), so their feasible regions should be more
restricted.

Our improved algorithm achieves approximation factor c+ ε, where c = 2.98
and ε is a tunable constant that can be arbitrarily small. Let R∗ be the optimum
label size. Our algorithm finds a non-intersecting label placement with label size
at least R∗

c+ε by a binary search with a decision procedure. The decision procedure,
given a tentative label size r, either decides that r exceeds R = R∗(1 − δ)
and aborts, or finds a non-intersecting label placement with label size r

c . The
binary search has range [R−, R+] and interval R−δ, where R− < R∗ < R+ and
δ = ε

2(c+ε) . When the binary search converges, we have r
c ≥

R∗(1−δ)−R−δ
c ≥

R∗(1−2δ)
c = R∗

c+ε .
We first show how the search range is determined. We choose R+, the up-

per bound of the binary search range, to be (2 +
√

3)D3; it is known [2] that
R∗ ≤ (2 +

√
3)D3, where D3 is the minimum 3-diameter of P. We choose the

lower bound R− to be 1
4D3. We prove R∗ ≥ R− by construction: (1) For two

sites with distance at least D3, their size- 1
4D3 circles do not intersect regard-

less of their orientations. (2) For two sites with distance less than D3, their
circles cannot intersect circles of other sites, since the distance from other sites
to them is at least D3 (by definition); moreover, their circles do not intersect
each other when labeled in opposite directions along the line through the two
sites.

We now describe the decision procedure.

1. Compute distance graph G(r) and group the sites into components corre-
sponding to the connected components in G(r). If the size of the largest
component exceeds the bounding constant f(δ), abort.

2. With label size r, first compute the revised maximal feasible regions for all
sites, then label each component independently. Within each component,

New Bounds on Map Labeling with Circular Labels 611

label the sites by brute force, ignoring possible intersections between circles
from different components:
(a) If a site has distance less than d0r to its two nearest neighbors, abort.

Partition the revised maximal feasible regions of each site into cones of
maximum angle θδ, where θδ = d2

0
16δ. If a site P has distance less than

d0r to its nearest neighbor Q, and if a cone C of P contains an internal
(non-boundary) vector v in opposite direction to a boundary vector of a
cone of Q, divide cone C into two smaller cones using vector v.

(b) Limit possible label positions of each site to the boundary vectors of
its cones. Enumerate all possible combinations to find a non-intersecting
label placement. If no such label placement can be found, abort.

3. Make adjustment to the label placement to eliminate intersections between
circles from different components:

(a) Compute distance graph G(dcr), where dc =
√

4− (c2−3
c)2 . 0.326, and

group the sites into clusters corresponding to the connected components
in G(dcr). (We call them clusters to avoid confusion with the components
defined in step 1.) If a cluster contains only one site, we call it a single-site
cluster ; otherwise, we call it a multi-site cluster.

(b) Shrink each circle to size r
c along its direction vector. For each single-site

cluster, rotate its circle clockwise for an angle α = cos−1 c2−3
2c . 9.37◦.

If the resulting label placement has intersection, abort.

Theorem 1. If r ≤ R, then the decision procedure always finds a non-intersecting
label placement with size r

c .

The correctness of step 1 of the decision procedure is immediate from Corol-
lary 2. It remains to prove that, if r ≤ R, then step 2 always finds a non-
intersecting label placement within each component, and step 3 always trans-
forms the output of step 2 into a non-intersecting label placement for all sites.

Lemma 3. Given two sites of distance d and labeled with two disjoint unit cir-
cles, we can shrink both circles to size 1 − δ, where 0 < δ < 1, and rotate each
circle independently for an angle up to θ = d2

16δ, either clockwise or counterclock-
wise, without causing intersection.

Proof. Let P and Q be the two sites. The two circles labeling P and Q are
centered at points A and B before shrinking, and at C and D after shrinking.
Without loss of generality, we assume that the two circles at A and B touch each
other. We have PQ = d, PA = QB = 1, and AB = 2.

Let γ = max{� PAB, � QBA}. When the midpoint of AB coincides with the
midpoint of PQ, γ reaches minimum 2 sin−1 d

4 . The distance between points C
and D along the AB direction is at least 2 − δ − δ cos γ. The two small circles
at C and D are separated by a gap of at least g = (2− δ − δ cos γ)− 2(1− δ) =
δ(1− cos γ); each small circle can rotate for an angle g

2 without closing the gap.
Therefore, we have θ = g

2 = δ
2

(
1− cos(2 sin−1 d

4)
)

= d2

16δ.
�

612 M. Jiang et al.

Lemma 4. If r ≤ R, then the brute-force search in step 2 always finds a non-
intersecting label placement in each component.

Proof. We prove by construction. Given any continuous non-intersecting label
placement C with label size R∗, we construct a discrete non-intersecting label
placement C′ with label size R. Since R < R∗, each size-R∗ circle in C is labeled
in one of the cones that comprise the revised maximal feasible regions at label
size R. To obtain C′, we shrink each circle in C to size R, and relabel it along
one of the two boundary vectors of the cone that contains it.

If a site’s nearest neighbor is at least d0r away, then we choose either vector
arbitrarily. The angle between the circle’s original continuous direction and its
discrete direction is bounded by the maximum cone angle. Lemma 3 implies that,
with a rotation angle at most θδ = d2

0
16δ, there is no intersection. If a site has

distance less than d0r to its nearest neighbor, then according to Corollary 1 all
other sites are d0r away from the two sites. To label the two sites, there are four
possible pairs of boundary vectors from their two cones. If the two cones have
a pair of opposing boundary vectors, we label the two sites along the opposing
vectors; otherwise, the two cones must have no opposing vectors at all (not even
opposing non-boundary vectors) because of the dividing vectors in step 2a, and
we choose the pair of boundary vectors with the largest spreading angle.
�

We next prove the correctness of step 3, that is, if r ≤ R, then step 3 al-
ways transforms the output of step 2 into a non-intersecting label placement for
all sites. In particular, we need to show that the non-intersection within each
component is maintained, and that the possible intersections between different
components are eliminated.

Lemma 5. Given two sites of distance d, where d > dc, and labeled with two
disjoint unit circles, we can shrink both circles to size 1

c , and rotate each cir-
cle independently for an angle up to θ = cos−1 dc

4 − cos−1 cdc

4 , without causing
intersection.

A

A

B

B

C

C

D

D

P

P

Q

Q

Fig. 3.

Proof. This is a stronger form of Lemma 3. Let P and
Q be the two sites. The two circles labeling P and
Q are centered at points A and B before shrinking,
and at C and D after shrinking. Without loss of
generality, we assume that the two circles touch each
other before shrinking. We have PQ = d, PA =
QB = 1, PC = QD = 1

c , AB = 2, and CD = 2
c .

We refer to Fig. 3. It is easy to check that
the lower configuration gives the minimum θ1 =
cos−1 d

4 −cos−1 cd
4 when the two circles rotate in the

same direction. On the other hand, if the two circles
rotate in opposite directions, the upper configuration
gives the minimum θ2 = sin−1(1− d

2)−sin−1(1− cd
4).

A calculation shows that θ1 ≤ θ2.
�

New Bounds on Map Labeling with Circular Labels 613

Lemma 6. If r ≤ R, then step 3 maintains the non-intersection within each
component.

Proof. Given a site P , if it is from a multi-site cluster, then its circle does not
rotate after shrinking. If P is from a single-site cluster, then its nearest neighbor
in the same component is at least dc away. The circle of P shrinks to size r

c and
rotate for an angle α = cos−1 c2−3

2c . From Lemma 5, this rotation does not cause
intersection because dc satisfies the following equation:

cos−1 c
2 − 3
2c

= cos−1 dc

4
− cos−1 cdc

4
. (1)

�

Lemma 7. If r ≤ R, then step 3 eliminates interferences between single-site
clusters from different components.

O

O′

P Q

S
T

T ′

αα

Fig. 4.

Proof. We refer to Fig. 4. Sites P and Q are from dif-
ferent components. PQ = e ≥ r; OP = OQ = O′P =
O′Q = r. An extreme case happens when PQ = r and
when P and Q are labeled along −−→PO and −−→QO before
the rotation. Even in this extreme case, the two cir-
cles do not intersect after shrinking to size r

3 . If both
circles rotate in the same direction for an angle α,
a gap will appear between them, which allows both
circles to grow a little larger, from size r

3 to size r
c ,

without causing intersection (this is exactly the moti-
vation behind our α-rotation). A calculation confirms
this.

Another extreme case happens when Q is labeled
along

−−→
QO′ instead. By symmetry, we only need to

show that the circle centered at S do not include the midpoint of PQ. This
leads to the constraint � SPQ ≥ γ = cos−1 ce

4r . A calculation shows that
α+ γ ≤ � OPQ = cos−1 e

2r .
�

To satisfy Lemma 7, we need a constant rotation angle α ≥ cos−1 c2−3
2c for

any constant factor c < 3. On the other hand, the maximum safe rotation
angle at each site is determined by the distance d from the site to its nearest
neighbor. According to Lemma 5, we must have α ≤ cos−1 d

4 − cos−1 cd
4 (note

that limd→0 α = 0). As a compromise of these two constraints, we choose the
threshold distant dc to be the solution of Equation (1), and handle the difficult
case of multi-site clusters differently from single-site clusters.

Lemma 8. If r ≤ R, then step 3 eliminates inter-component interferences in-
volving multi-site clusters.

614 M. Jiang et al.

O
O′

P Q

S
S′ T

α

Fig. 5.

Proof. We refer to Fig. 5. Sites P and Q are from two
different components. Q is from a multi-site cluster.
PQ = e ≥ r, OP = OQ = O′P = r, and O′Q =
(D(dc)+1)r. In the worse case, P is from a single-site
cluster, Q’s circle (centered at T) is labeled along −−→QO,
and P ’s circle rotates from

−−→
PO′ for an angle α toward

Q (its center moves from S′ to S). We show that P
and Q do not interfere, that is, ST ≥ 2r

c . To simplify
the analysis, we prove a stronger claim: let Dx(X,Y)
denote the distance along the x-coordinate between points X and Y ; we show
that Dx(S, T) ≥ 2r

c .
Let β = � O′PQ. The segment S′S is horizontal (parallel to PQ) when β =

π
2 + α

2 . When β ≥ π
2 + α

2 , we have Dx(P, S) ≤ r
c sin α

2 . Since Dx(P, T) = e− e
2c ≥

r − r
2c , it follows that

Dx(S, T) = Dx(P, T)−Dx(P, S) ≥ r − r

2c
− r

c
sin

α

2
≥ 2r

c
.

The last inequality can be checked by calculation.
We next consider the case when β < π

2 + α
2 . Dx(S, T) is a function of e.

As e increases, β becomes smaller, and segment S′S tilts farther away from the
horizontal position; this implies that d

deDx(S′, S) ≤ 0. A calculation shows that
d
deDx(P, S′) ≤ 3

2c and that d
deDx(P, T) = 1− 1

2c . Therefore, we have

d
de
Dx(S, T) =

d
de
Dx(P, T)− d

de
Dx(P, S′)− d

de
Dx(S′, S) ≥ 1− 1

2c
− 3

2c
> 0.

This inequality implies that the worse case happens when e = r. In this worse
case, we have Dx(S, T) = r − r

2c −
r
c cos(β − α), where β = cos−1 2−(D(dc)+1)2

2 .
Our approximation factor c = 2.98 is the smallest c that satisfies the following
equation. Note that α and dc depend on c according to Equation (1).

r − r

2c
− r

c
cos

(
cos−1 2− (D(dc) + 1)2

2
− α

)
=

2r
c

(2)

�
The proof of Lemma 8 also explains why the revised maximal feasible region

needs to be introduced in place of the classic maximal feasible region. It is exactly
the difference between the two regions, the cone � O′PO in Fig. 5, that allows
us to handle the difficult case of multi-site clusters.

Theorem 2. Our algorithm approximates MLUC with factor 2.98 + ε and runs
in O(n log n+ n(1/ε)O(1/ε2)) time.

4 A (1.491 + ε)- pproximation for MLUCP

In this section, we present approximation algorithms for MLUCP. We first show a
very simple algorithm that achieves a 1.5-approximation. Let R∗ be the optimum

A

New Bounds on Map Labeling with Circular Labels 615

label size. Our algorithm finds a non-intersecting label placement with label
size at least R∗

1.5+ε by a binary search with a decision procedure. The decision
procedure, given tentative label size r, either decides that r exceeds R∗ and
aborts, or finds a non-intersecting label placement with label size 2

3r:
Compute maximal feasible regions for all sites. If any two sites have distance

less than 2r, or if any site has no feasible position, abort; otherwise, label each
site with a circle pair of size 2

3r in an arbitrary feasible position.

Theorem 3. If r ≤ R∗, then the decision procedure always finds a non-
intersecting label placement with size 2

3r.

(a)

P Q

S′ T ′

S T

(b)

Fig. 6.

Proof. We refer to Fig. 6(a). The solid and dashed circle
pairs have size r, and each labels a site. The large dot-
ted circle has size 2r and is centered at the site labeled
with the solid circle pair; the two small dotted circles have
size

√
3r and are concentric with the two solid circles. All

neighbors of the solid site must be outside the union of
the three dotted circles; therefore, any two sites must have
distance at least 2r.

To show that the size- 2
3r labels do not intersect as long

as all sites are labeled in feasible positions, we refer to
Fig. 6(b) for the extreme case. Sites P and Q has distance
2r; S′P = T ′Q = r, SP = TQ = 2

3r, and S′Q = T ′P =√
3r (Corollary 2). A calculation shows that ST = 4

3r; the
two size- 2

3r circles centered at S and T do not intersect.

�

P Q

S
T

S′ T ′

α2
α2

(a)

P

Q

S

T

S′

T ′

α2

α2

(b)

Fig. 7.

Our factor-(1.491+ ε) algorithm for MLUCP is almost
identical to our factor-(1.5 + ε) algorithm except that the
more sophisticated rotation technique is used, as in our
factor-(2.98 + ε) algorithm for MLUC. We refer to Fig. 7
and omit the details.

Theorem 4. Our algorithm approximates MLUCP with
factor 1.491 + ε and runs in O(n log n+ n log 1

ε) time.

5 Lower Bound for Map Labeling with
Circular Labels

In this section, we show a new reduction to prove the
NP-hardness of MLUC and MLUCP, and obtain the first
nontrivial lower bound of 1.0349.

Theorem 5. It is NP-hard to approximate MLUCP within factor 1.0349.

616 M. Jiang et al.

(a)
O

P Q

S

(b)
O

P Q

S

(c)

Fig. 8.

We reduce the NP-hard Planar-3SAT problem [7] to
MLUCP. The MLUCP instances of the reduction have unit la-
bel size. The variable gadget is a four-site cluster as shown in
Fig. 8(a). The four variable sites in the cluster are placed in a
square formation with side length d = 1+

√
3. There are only two

ways to label the cluster with unit circle pairs, thereby encoding
the boolean value. The clause gadget is shown in Fig. 8(b)(c).
Each clause has a clause circle C centered at a clause site S,
with three variable sites O, P , and Q on the boundary of C in
an equilateral triangular formation. We say that a variable site
X is labeled in critical position if site S is collinear with the
two centers of the circle-pair labeling X; the labeling position
perpendicular to a critical position is called a perpendicular po-
sition. We connect the variable gadgets to the clause gadget in
a way such that each variable site on the clause circle have only
two labeling choices, either in critical position or in perpendicu-
lar position. To complete the description for the clause gadget,
the following lemma restricts the radius of the clause circle.

Lemma 9. In order to label the clause site, the radius of the
clause circle must be at least 3+

√
13

2 . 3.303 if exactly two variable sites on the
clause circle are labeled in critical positions, and at least 2+

√
3+

√
15

2 . 3.802 if
all three variable sites are labeled in critical positions.

X

X

X

(a)

X

X

Y

Y

Z

Z

(b)

Fig. 9.

Lemma 9 implies that, with the radius of clause circle
set to 3+

√
13

2 , a Planar-3SAT clause is satisfiable if and
only if there exists a non-intersecting label placement for
the clause such that at least one of its three variable sites is
labeled in perpendicular position. As in typical reductions
from Planar-3SAT [4, 6], we model each variable as an ab-
stract segment—geometrically, a row of four-site clusters.
If a variable appears in a clause, we draw a leg from the
variable to the clause, as shown in Fig. 9(a). A technical
detail in our construction is that the three variable sites
on the clause circle must be placed in an equilateral trian-
gular formation and each must be labeled in either critical
or perpendicular position; this requirement can be satis-
fied by twisting each leg, that is, shifting each four-site
cluster in the leg by a very small constant amount (the
complexity of our construction is inversely related to this constant), such that
it eventually reaches the clause at the required position. The layout of a clause
and its three variables is shown in Fig. 9(b). Given n clauses in an input Planar-
3SAT instance, we need O(n) legs for each variable and O(n) sites to model each
variable leg due to the planarity of the input clauses. We also need O(n2) sites
to model the variables as abstract segments. In total, we need O(n2) sites to
encode the n input clauses—consequently, the reduction takes polynomial time.

New Bounds on Map Labeling with Circular Labels 617

To obtain the 1.0349 lower bound, we observe that our reduction still works
even if we shrink all the unit circle pairs by a very small amount. After shrinking
to size r = 1/1.0349, the gaps between the smaller labels allow each variable site’s
label to rotate for a maximum angle of θ = 31.6◦. Since θ < 45◦, the correctness
of variable encoding is still ensured. To examine the effect of smaller labels
on a clause gadget, we note that each variable site on the clause circle is now
labeled near (that is, at most angle θ away from) either critical or perpendicular
position. A case analysis shows that, a Planar-3SAT clause is satisfiable if and
only if there exists a non-intersecting label placement for the clause such that
at least one of its three variable sites is labeled near perpendicular position.

Finally, by replacing every site in the MLUCP problem with a pair of coin-
ciding (or sufficiently close) sites in the MLUC problem, we obtain a reduction
from Planar-3SAT to MLUC.

Theorem 6. It is NP-hard to approximate MLUC within factor 1.0349.

References

1. Sergey Bereg. Private communication, 2004.
2. Srinivas Doddi, Madhav V. Marathe, Andy Mirzaian, Bernard M. E. Moret, and

Binhai Zhu. Map labeling and its generalizations. In Proc. 8th ACM-SIAM Sym-
posium on Discrete Algorithms (SODA’97), pages 148–157, 1997.

3. Srinivas Doddi, Madhav V. Marathe, and Bernard M. E. Moret. Point set labeling
with specified positions. In Proc. 16th Annual ACM Symposium on Computational
Geometry (SoCG’00), pages 182–190, 2000.

4. Michael Formann and Frank Wagner. A packing problem with application to let-
tering of maps. In Proc. 7th Annual ACM Symposium on Computational Geometry
(SoCG’91), pages 281–288, 1991.

5. Minghui Jiang, Jianbo Qian, Zhongping Qin, Binhai Zhu, and Robert Cimikowski.
A simple factor-3 approximation for labeling points with circles. Information Pro-
cessing Letters, 87(2):101–105, 2003.

6. Donald E. Knuth and Arvind Raghunathan. The problem of compatible represen-
tatives. SIAM Journal on Discrete Mathematics, 5(3):422–427, 1992.

7. David Lichtenstein. Planar formulae and their uses. SIAM Journal on Computing,
11(2):329–343, 1982.

8. Zhongping Qin, Alexander Wolff, Yinfeng Xu, and Binhai Zhu. New algorithms
for two-label point labeling. In Proc. 8th European Symposium on Algorithms
(ESA’00), LNCS 1879, pages 368–379, 2000.

9. Michael J. Spriggs and J. Mark Keil. A new bound for map labeling with uniform
circle pairs. Information Processing Letters, 81(1):47–53, 2002.

10. Tycho Strijk and Alexander Wolff. Labeling points with circles. International Jour-
nal of Computational Geometry & Applications, 11(2):181–195, 2001.

11. Alexander Wolff, Michael Thon, and Yinfeng Xu. A better lower bound for two-
circle point labeling. In Proc. 11th Annual International Symposium on Algorithms
and Computation (ISAAC’00), LNCS 1969, pages 422–431, 2000.

12. Binhai Zhu and Chung Keung Poon. Efficient approximation algorithms for multi-
label map labeling. In Proc. 10th Annual International Symposium on Algorithms
and Computation (ISAAC’99), LNCS 1741, pages 143–152, 1999.

Optimal Buffer Management via
Resource Augmentation

Jae-Hoon Kim

Department of Computer Engineering,
Pusan University of Foreign Studies, Pusan 608-738, Korea

jhoon@pufs.ac.kr

Abstract. We study a buffer management problem in network switches
supporting QoS(Quality of Service). Each input or output port has a
buffer of limited capacity which can store up to B packets. Packets arrive
online and a buffer management policy determines which packets are
transmitted through the buffer. After admitted into the buffer by the
policy, packets are transmitted in FIFO fashion, that is, in the order
they arrive. Each packet has a value and the goal of the policy is to
maximize the total value of packets transmitted.

The main contribution is to apply resource augmentation analysis to
the problem, investigating the optimality of various online policies. The
online policy has more resources than the optimal offline policy, that
is, additional buffer and a higher transmission rate. For two types of
models, nonpreemptive and preemptive, we derive optimal online policies
with additional buffer or a higher transmission rate. Also we prove lower
bounds of the resources for any optimal online policy.

1 Introduction

Recently, the study of buffer management policies for network switches that
support the QoS (Quality of Service) has been extensively carried out. In network
switches, the input or output ports are equipped with buffers of limited capacity
where packets are stored temporarily before transmitted. When incoming traffic
exceeds the buffer capacity, packet loss can be happened. The main tasks of the
buffer management policy are to determine which arriving packets are admitted
into the buffer and which packets already accepted are dropped from the buffer.
To realize the QoS, each packet has a value, representing its guaranteed quality
of service. The goal of the buffer management policy is to maximize the total
value of packets transmitted.

In this work, we abstract the above problem as follows: At each time, an
arbitrary set of packets arrives at a buffer and each packet has a positive weight.
The buffer can hold at most B packets. At integral time, a packet in the buffer
is transmitted. We consider the FIFO model, in which packets are sent in the
same order as they arrive. The buffer management policy should decide whether
to accept or reject a packet when it arrives. If dropping packets that have been
already accepted is allowed, the policy is said to be preemptive, otherwise it

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 618–628, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Optimal Buffer Management via Resource Augmentation 619

is said to be nonpreemptive. The throughput or gain of a buffer management
policy is the total weight of packets transmitted.

We investigate online settings of the problem in which future packet arrivals
are unknown. An online buffer management policy makes a decision with no
information about packets arriving ahead. In general, no online algorithm can
have a performance as good as an optimal offline algorithm. To compensate
the online algorithm for the limit of future information, there have been several
work [5, 10, 11, 13] originated from [7] which allow the online algorithm more
resources, called resource augmentation. For our problem, the buffer may have
an extra space or a higher transmission rate. We are interested in online policies
achieving optimal competitiveness if it is given additional buffer A or it can
transmit s times as many packets as an adversary at each transmission time. In
other words, the gain of the online buffer policy is at least as much as that of an
optimal offline policy.

Related work. For the nonpreemptive policy which cannot discard packets al-
ready in the buffer, the research was initiated from the work [1], where only
two values 1 and α of packets are given. Subsequently, An Zhu [14] presented
an online policy whose competitive ratio matches the known lower bound of
2α−1

α . Also he established matching upper and lower bounds of Θ(logα) when
the values of packets are arbitrarily given with the maximum value α. For the
preemptive case that packets accepted may be dropped, Kesselman et al. [8]
gave a 2-competitive policy for arbitrary values packets. Recently, there is an
improvement [9] that beats the competitive ratio of two. For two values packets,
Zvi Lotker et al. [12] derived nearly optimal competitive ratio of approximately
1.30. In addition, the study of buffer management for a switch with multiple
buffers and one output port has been developed in [2, 3, 4, 6].

After a packet is admitted to a buffer, it may be transmitted within B time
steps. Actually, the buffer management problem is fairly related to the scheduling
problem where a job has an equal processing time, a positive weight, and an
uniform deadline. In deadline scheduling literature, if the weights of jobs are
equal to their processing times, there were results such as [10, 11] that allow
online scheduling algorithms a faster machine or more machines for optimal
competitiveness.

Our results. To the best of our knowledge, there are only results of Albers et
al. [2] that applied the resource augmentation analysis to the buffer management
problem. They studied the case that packets have uniform values and there are
multiple buffers. In this paper, we deal with the case that packets have arbitrary
values and there is a single buffer. We present optimal online policies for non-
preemptive and preemptive model. For nonpreemptive model, if the values of
packets are given just as 1 or α > 1, we construct an optimal online policy with
additional buffer of size B. Also we show a lower bound (1− 1

α)B for the size of
additional buffer of any optimal online policy, and we prove that having addi-
tional buffer of the lower bound size, any optimal online policy needs to double
a transmission rate than the optimal offline policy. So we develop an optimal

620 J.-H. Kim

online policy with additional buffer of size (1 − 1
α)B and a transmission rate

being the 2-fold of the adversary’s one. For arbitrary values packets, we derive
an optimal online policy with a buffer of size 2(�logα�+1)B and a transmission
rate of 2(�logα�+ 1) times the adversary’s one. For preemptive model, we show
that a greedy policy is optimal with additional buffer of size 1

s−1B if it has a
transmission rate being the s-fold (s ≥ 2) of the adversary’s one.

Throughout the paper, for convenience, we assume that transmissions occur
only at integral times, and no two packets arrive at each time and no packet
arrive at integral times.

2 Lower Bound

We consider a specific instance I which the adversary present. In I, all packets
arrive during a short period, i.e., before the next transmission time. First, B
packets of weight one arrive. And then B packets of weight α follow. In the
next theorems, the adversary uses the instance I to give lower bounds. The first
theorem says that any online algorithm transmitting only one packet per time
step can not be optimal if it has an arbitrarily large additional buffer.

Theorem 1. For any number k ≥ 0, no online algorithm is optimal if it has
additional buffer A = kB.

Proof. First, the adversary presents a sequence of the instance I which makes
A’s buffer full. Before the first time step, i.e., in time interval (0, 1), the adversary
presents the instance I. For the first B packets of weight one, any optimal online
algorithm A must accept all the packets, because if it rejects a packet, then the
adversary gives no packet any more and it accepts all the given packets. Then
the adversary rejects the B packets of weight one and it accepts the next B
packets of weight α. If k ≤ 1, then A accepts at most B packets of weight α
and its buffer is full. If k > 1, then A accepts B packets of weight α and it
has free spaces in its buffer. Then during B time steps, no packet arrives and B
packets in the buffer are transmitted. The adversary has the empty buffer and
A contains B packets in its buffer. Again the adversary presents the instance I
and we can repeat the above argument. Each instance I cause A to accumulate
B packets in its buffer. So after some time steps, A’s buffer is full.

After causing A’s buffer full, the adversary gives no packet while B packets
are transmitted. The adversary’s buffer is empty and A has B empty spaces in
its buffer. Before the next transmission, the adversary presents the instance I.
Then accepting the first B packets of weight one, A has the full buffer and so it
misses the B packets of weight α. But the adversary accepts all the packets of
weight α. Until the gain of A is less than that of the adversary, we can repeat
the argument.
�

Theorem 2. For any number s ≥ 1, if an online algorithm with additional
buffer A = kB and having a transmission rate being the s-fold of the adversary’s
one is optimal, then k ≥ 1− 1

α .

Optimal Buffer Management via Resource Augmentation 621

Proof. In time interval (0, 1), the adversary presents the instance I. As in, any
optimal online algorithm A accepts B packets of weight one. Then the adversary
accepts the next B packets of weight α rejecting the B packets of weight one.
So A should accept at least (1 − 1

α)B packets of the packets of weight α. That
is, A should have additinal buffer of at least size (1 − 1

α)B. It is regardless of
the transmission rate, because A should determine whether to accept or reject
before the transmission.
�

Theorem 3. If an online algorithm with additional buffer A = (1 − 1
α)B and

having a transmission rate being the s-fold of the adversary’s one is optimal,
then s ≥ 2.

Proof. Assume AL is an optimal online algorithm with additional buffer A =
(1− 1

α)B and having a transmission rate being the s-fold of the adversary’s one,
where s < 2. Then in time interval (0, 1), the adversary presents the instance I.
Then AL accepts B packets of weight one and A packets of weight α. Also the
buffers of both AL and the adversary are full. At time step one, s packets and one
packet are transmitted by AL and the adversary, respectively. Then before the
next transmission, a packet p of weight one arrives. AL should accept p, because
if it rejects, then no packet arrive any more and the adversary accepts p. Next, a
packet of weight α follows. Then AL can not accept the packet, because there is
not enough space in its buffer. But the adversary rejects p and accept the packet
of weight α. It is a contradiction.
�

3 Nonpreemptive Buffering Policy

3.1 Two Values Packets

In this subsection, we consider the case the weights of packets are given as only
two values 1 and α > 1, representing low and high priority packets, respectively.
A packet of weight one is called an 1-packet and a packet of weight α an α-
packet. First, we investigate an online policy with additional buffer A = B. Its
performance is compared with that of the optimal offline policy with a buffer of
size B, denoted by OPT . We consider an abstract buffer model, where there are
two buffers of each size B and at each integral time, the front packet of one of the
buffers is transmitted. An online policy P is devised on the model. It contains
only α-packets in one buffer, called α-buffer, and only 1-packets in the other
buffer, called 1-buffer. When a packet arrives, it is accepted if its corresponding
buffer has a free space. The online policy P always transmits a packet of α-buffer
if it is not empty. When α-buffer is empty, it transmits a packet of 1-buffer.

Theorem 4. The gain of the online policy P is at least as much as that of the
optimal offline policy.

Proof. We show that at any time, the total number of packets in P ’s buffers
is at least that of packets in OPT ’s buffer. It says that the number of packets
transmitted by P is at least that of packets transmitted by OPT . Assume that

622 J.-H. Kim

at some time, the total number of packets in P ’s buffers is less than in OPT ’s
buffer. Let t be the first such time. Then immediately before t, say at t0, the
number of packets in both buffers is same. At time t, a packet arrives, and P
rejects it while OPT accepts. Since OPT can accept the packet, there is a free
space in its buffer at t0. So at t0, P also contains packets less than B, and P
has free spaces in both α-buffer and 1-buffer. Thus P can accept the packet
regardless of its weight. It is a contradiction.

Now, we prove that all α-packets accepted by OPT are also accepted by P .
Assume that an α-packet is accepted by OPT but rejected by P . Let p be such
a packet that arrives earliest. Let E be the set of α-packets which have arrived
before p and are accepted by OPT . All packets in E are also accepted by P . Note
that the packets in E are transmitted by P earlier than by OPT , because P gives
the priority of transmission to the α-buffer. Thus when p arrives, the number of
packets in α-buffer of P is at most that of packets in OPT ’s buffer. Since OPT
accepts p, P also accepts it. It is a contradiction. Consequently, more packets
are transmitted by P than by OPT and also more α-packets are transmitted by
P than by OPT . Thus the gain of P is at least that of OPT .
�

We can develop an online policy SP with additional buffer A = B to simulate
the abstract policy P . The SP makes a decision to accept or reject the packets
based on the policy P . That is, SP follows the decisions of P . It is possible,
because both policies have the same size buffer and transmit one packet per
unit time. In nonpreemptive model, the throughput is determined only by the
admission phase. So both policies have the same throughput.

Theorem 5. The online policy SP with additional buffer A = B is optimal.

In the following, we shall try to reduce the size of buffer, preserving the opti-
mality. The lower bound of the buffer size for the optimal online policy is shown.
Also we show that matching the lower bound needs to increase the transmis-
sion rate. We consider a specific instance I which the adversary present. In I,
all packets arrive during a short period, i.e., before the next transmission time.
First, B 1-packets arrive. And then B α-packets follow. In the next theorems,
the adversary uses the instance I to give lower bounds.

Theorem 6. For any number s ≥ 1, if an online policy with additional buffer
A = kB and having a transmission rate being the s-fold of the adversary’s one
is optimal, then k ≥ 1− 1

α .

Proof. In time interval (0, 1), the adversary presents the instance I. Any optimal
online policy AL should accept the B 1-packets, because if it rejects one of the
packets, then no packet arrives any more later and its optimality is broken. Then
the adversary accepts the next B α-packets rejecting the B 1-packets. So AL
should accept at least (1 − 1

α)B α-packets. That is, A should have additional
buffer of size at least (1− 1

α)B. It is regardless of the transmission rate, because
A should determine whether to accept or reject the given packets of I before the
first transmission.
�

Optimal Buffer Management via Resource Augmentation 623

Theorem 7. If an online policy with additional buffer A = (1− 1
α)B and having

a transmission rate being the s-fold of the adversary’s one is optimal, then s ≥ 2.

Proof. Assume AL is an optimal online policy with additional buffer A = (1 −
1
α)B and having a transmission rate being the s-fold of the adversary’s one,
where s < 2. Then in time interval (0, 1), the adversary presents the instance
I. Then AL accepts B 1-packets and A α-packets. Also both buffers of AL and
OPT are full. At time one, s packets and one packet are transmitted by AL and
OPT , respectively. Before the next transmission, an 1-packet p arrives. Then AL
should accept p, because if AL rejects it, then no packet arrives any more and the
adversary accepts p. Subsequently, an α-packet follows. Then AL cannot accept
the packet, because there is not enough space in its buffer. But the adversary
rejects p and accepts the α-packet. It is a contradiction.
�

Here we shall present an optimal online policy achieving the lower bounds
given in the above theorems. For convenience of analysis, we can assume that
the transmissions of packets by the online policy result in a busy period. That
is, at each transmission time except the last, the online policy transmits exactly
two packets and at the last time, it transmits at least one packet. Note that
the online policy has a transmission rate being 2-fold of the adversary’s one.
Actually, we divide the whole schedule of online policy into busy periods, and
we can analyze the performance of the policy independently for packets arriving
in each busy period. Now we describe an online policy FP which has additional
buffer A = (1− 1

α)B and a transmission rate being the 2-fold of the adversary’s
one. It consists of phases and a phase proceeds until its buffer is full. The online
policy FP maintains three variables 1-limit, 1-accept, and FP-total. The 0-phase
starts at time 0 and initially, 1-limit is set to B, 1-accept to 0, FP-total to
2α−1

α B. The 0-phase ends when the buffer is full. Actually, at time t when a
packet arrives, the buffer is full and the 0-phase proceeds until time �t�, the
next transmission time. At time �t�, the 1-phase starts and it continues until the
next time when the buffer is full. In the i-phase (i ≥ 1), FP behaves differently
from in the 0-phase. When the i-phase starts, the variables are reset as follows:
1-limit = 1, 1-accept = 0, and FP-total = 2. When an 1-packet arrives, FP
accepts the packet if 1-accept + 1 ≤ 1-limit and then it increases the value of
1-accept one. Also when an α-packet arrives, FP accepts it if there is an empty
space in the buffer. After each transmission, i.e., each integral time, FP increases
the value of 1-limit one and the value of FP-total two. Specifically, at each time
when a packet arrives, 1-packet is accepted if the total number of accepted 1-
packets containing itself is at most 1-limit, and α-packet is greedily accepted if
there is an empty space in the buffer. The value of FP-total represents the total
number of spaces which FP provides to accept the packets in a phase. Since
FP has a transmission rate being the 2-fold of the adversary’s one, FP-total is
increased two after each transmission and also when an i-phase (i ≥ 1) starts,
FP-total is set to two. The value of 1-accept represents the total number of 1-
packets currently accepted in a phase and the value of 1-limit restricts that of
1-accept less than or equal to its value.

624 J.-H. Kim

Theorem 8. The online policy FP is optimal if it has additional buffer A =
(1− 1

α)B and a transmission rate being the 2-fold of the adversary’s one.

Proof. First we consider the case the buffer is never full at any time. Then there
is only 0-phase. We can see that all α-packets accepted by OPT are also accepted
by FP , because FP greedily accepts α-packets if there is an empty space in the
buffer. Also after any k-th transmission, at most (B+ k) 1-packets are accepted
by OPT . But the 1-limit is set to B+ k and so if an 1-packet accepted by OPT
is rejected by FP , then (B + k) 1-packets are already accepted by FP . So FP
accepts 1-packets at least as many as 1-packets accepted by OPT .

Next, we assume that the buffer is full at some time in the processing of FP .
Let t0 be the first time when the buffer is full. Then the 0-phase ends at time �t0�,
say k0. Also we see that 1-limit = B+k0−1, FP-total = 2α−1

α B+2(k0−1). Since
the buffer is full at t0, FP accepts the packets to fill all the spaces of FP-total.
But at most 1-limit 1-packets of these packets are accepted. So the gain of
FP for the packets accepted in the 0-phase is at least 1-limit + α(FP-total −
1-limit) = αB + (α + 1)(k0 − 1). Also at most (B + k0 − 1) spaces which can
accommodate packets are made by OPT in the 0-phase. So the gain of OPT is
at most α(B + k0 − 1) even if it contains only the α-packets in the spaces made
in the 0-phase. (Here note that in OPT , the packets contained in the spaces
made in the 0-phase may arrive in the next phase.) Thus the gain of FP is at
least that of OPT in the 0-phase. Now, we consider the i-phase (i ≥ 1) except
the last phase. Let ki be the time when the i-phase ends. Then we can see that
1-limit = ki − ki−1, FP-total = 2(ki − ki−1). Since FP accepts exactly FP-total
packets and at most 1-limit packets of them are 1-packets, the gain of FP is at
least (α+ 1)(ki − ki−1). But at most ki − ki−1 new spaces are made by OPT in
the i-phase, and the gain of OPT increases at most α(ki−ki−1). So FP also has
the gain at least as much as OPT in the i-phase. For the last phase, the case is
similar to the above one that the buffer is never full at any time.
�

3.2 Arbitrary Values Packets

In this subsection, we consider the case that packets have arbitrary weights. The
lowest weight is assumed to be one and the largest weight α is known. First we
show that any optimal online policy should have additional buffer of at least
Ω((logα)B). Also to match the lower bound of buffer size, it is shown that any
online policy needs to have a transmission rate being at least the logα-fold of
the adversary’s one.

Theorem 9. For any s ≥ 1, if an online policy with additional buffer A = kB
and a transmission rate being the s-fold of the adversary’s one is optimal, then
k ≥ 1

2 logα.

Proof. All packets of the instance arrive during time interval (0, 1). Let � be an
integer such that 2� = α. First, B packets of weight one arrive. The packets
should be all accepted by any optimal online policy AL as before. Next, B
packets of weight two arrive. Then AL should accept at least B

2 packets of them

Optimal Buffer Management via Resource Augmentation 625

to preserve the optimality. Specifically, for each j = 1, · · · , �, B packets of weight
2j are given by the adversary and AL accepts at least B

2 packets of those ones,
because B + B

∑j
i=1 2i−1 = 2jB. So the size of AL’s buffer should be at least

B + �B
2 = (1 + log α

2)B.
�

Theorem 10. If an online policy with additional buffer A = (1
2 logα)B and a

transmission rate being the s-fold of the adversary’s one is optimal, then s ≥
logα.

Proof. During time interval (0, 1), the adversary presents the same packets as in
Theorem 9. The buffer of any optimal online policy AL becomes full. Also the
OPT ’ buffer contains B packets of weight α. After the first transmission, AL’s
buffer has s empty spaces and OPT ’s buffer one empty space. A sequence of
packets arrives before the next transmission. For each j = 1, · · · , � (2� = α), if
AL accepts the given packets of weight from 2 to 2j−1, then a packet of weight
2j arrives. Since

∑j−1
i=1 2i < 2j , AL should accept the packet of weight 2j to

preserve the optimality. Thus AL must have empty spaces of at least �, that is,
the transmission rate of AL is at least �.
�

We will establish an optimal online policy asymptotically matching the lower
bounds given in Theorem 9 and 10. Like the online policy P introduced previ-
ously, an artificial buffer model is considered, where there are totally (�logα�+1)
buffers of size 2B and at each integral time, the front two packets from each buffer
are simultaneously transmitted. We derive an online policy R on the model as
follows: Each buffer is denoted by i-buffer, i = 0, · · · , �logα�. In R, a packet of
weight w is stored in i-buffer if 2i ≤ w < 2i+1. When a packet arrives, R greedily
accepts it if there is an empty space in its corresponding buffer.

Theorem 11. The gain of the online policy R is at least as much as that of the
optimal offline policy.

Proof. We call a packet of weight w an i-packet if 2i ≤ w < 2i+1. Then an i-
packet is stored in i-buffer in R. We consider an assignment of i-packets accepted
by R to i-packets accepted by OPT . When an i-packet arrives, if it is accepted by
both R and OPT , then it is assigned to itself. If it is rejected by R but accepted
by OPT , then the i-buffer of R is full, and two i-packets not yet assigned in the
buffer are assigned to the packet. For convenience, we reorder packets in buffers
of R as follows: The assigned packets are moved ahead such that a sequence of
assigned packets is located in the front of the buffer at any time. Then we show
that at any time and for any i-buffer of R, the number of assigned packets in
the i-buffer is at most two times the number of i-packets in the buffer of OPT .
It is shown by induction on time. Assume that until time t, it is true. At the
next time, one of two events occurs. If a transmission occurs, then the number of
assigned packets in i-buffer decreases two and the number of i-packets in OPT ’s
buffer decreases at most one. If an i-packet arrives and it is accepted by OPT ,
then there are two cases; it is also accepted by R or rejected by R. For the former

626 J.-H. Kim

case, the number of assigned packets in i-buffer increases one and the number of
i-packets in OPT ’s buffer increase one. For the later case, the i-buffer of R is full
and by the assumption of induction, there are at least two unassigned packets
in the i-buffer. So two i-packets in i-buffer can be newly assigned to. Thus the
number of assigned packets in i-buffer increases two and the number of i-packets
in OPT ’s buffer increase one. For all the cases, the invariant is maintained. It
directly says that the assignment is well-defined. Also the weight of any packet
accepted by OPT is at most the total weight of packets assigned to it. So the
gain of OPT is at most that of R.
�

We also develop an online policy SR with a buffer of size 2(�logα�+1)B and
a transmission rate being the 2(�logα� + 1)-fold of the adversary’s one which
simulates the policy R. The SR makes a decision to accept or reject the packets
based on R. Since both policies have buffers of the same size and transmit the
same number of packets per unit time, they have a same throughput. So the
online policy SR is optimal versus the offline adversary.

Theorem 12. The online policy SR is optimal if it has a buffer of size 2(�logα�+
1)B and a transmission rate being the 2(�logα�+1)-fold of the adversary’s one.

4 Preemptive Buffering Policy

In this section, we are concerned with the preemptive model, where the buffering
policy can drop packets already accepted in the buffer, in contrast to the non-
preemptive model discussed previously. Specifically, we assume that dropping
packets is allowed only when the buffer is full, as in [8]. Packets have arbitrary
positive weights, and we investigate the online policy Greedy introduced in [8].
The authors showed that Greedy is 2-competitive. Here the policy Greedy is
allowed to have additional buffer A = kB and a transmission rate being the
s-fold (s ≥ 2) of the adversary’s one. The size A of additional buffer depends
on the value of s such that the Greedy is optimal. In Greedy , an arriving packet
is accepted if there is an empty space in the buffer. Otherwise, that is, if buffer
overflow occurs, then a packet with a lowest weight among packets currently
contained in the buffer is selected and its weight is compared with that of the
arriving packet. The packet with the lower weight is dropped.

We show that the policy Greedy is optimal if k = 1
s−1 for a given s ≥ 2. The

basic idea of its proof is based on the proof given in [8].

Theorem 13. The online policy Greedy is optimal having additional buffer A =
kB and a transmission rate being the s-fold of the adversary’s one if k = 1

s−1
and s ≥ 2.

Proof. For convenience, we can assume that the transmissions of the Greedy
result in one busy period, where except the last time, exactly s packets are
transmitted at each integral time. Let D be the set of packets which are trans-
mitted by OPT but dropped by Greedy and let G be the set of packets which

Optimal Buffer Management via Resource Augmentation 627

are transmitted by Greedy but dropped by OPT . Then we construct a mapping
m from D to G as follows: The packets in D are mapped in the order of their
dropping times. Then a packet p in D is mapped to a packet m(p) in G trans-
mitted earliest among packets not yet mapped to. We prove that for each packet
p in D, the weight of p is at most that of m(p). It is sufficient to prove that the
Greedy is optimal.

We show that by induction on time when a packet in D is dropped. For the
basis of induction, if a packet p in D is the first packet to be dropped at time
t, then it is mapped to the packet transmitted at time �t�, the weight of which
is at least that of p, because at time t, the buffer is full and until �t�, all the
packets in the buffer have weights more than the weight of p.

Assume that a packet p in D is dropped at time t and all packets in D which
are dropped at time s < t are already mapped to packets in G having weights
more than their ones. Let r(t) be the latest time before or at time t such that
no packets in D dropped before r(t) are mapped to packets transmitted at or
after r(t). If no such time exists, then r(t) = 0. Let s(t) be the earliest time at
or after time t such that the buffer is full at s(t) and all packets contained in
the buffer at s(t) are transmitted. Such time s(t) exists, because the buffer is
also full at t. Let s̄(t) be �s(t)�. The packets contained in the buffer at s(t) are
transmitted during time interval [s̄(t), s̄(t) + kB], because 1+k

s = k.
We claim that the weights of packets transmitted in time interval [t, s̄(t)+kB]

are at least the weight of p, denoted by w(p). Since the buffer is full at time t and
the weights of packets contained in the buffer at t are at least w(p), the weights
of packets transmitted during time interval [�t�, �t�+ kB] are also at least w(p).
If s(t) = t, then the claim is true. Otherwise, i.e., t < s(t), let t′ ∈ [�t�, �t�+kB]
be the earliest time when a packet being in the buffer at time t is dropped. Then
the weights of packets transmitted in [�t′�, �t′� + kB] are also at least w(p). If
s(t) = t′, then the claim is true. Otherwise, continue the same argument.

We will complete the proof by proving that the packet p is mapped to a packet
in G transmitted during [t, s̄(t)+kB]. Let I be the set of packets transmitted by
OPT which are also transmitted by Greedy during [r(t), s̄+ kB] and let D[u, v]
be the set of packets in D dropped during time interval [u, v]. If a packet is
in I or D[r(t), s(t)], then it arrives in [r(t) − kB, s(t)], because no packet in I
arrives during (s(t), s̄(t) + kB] from the definition of s(t). Thus all packets in I
or D[r(t), s(t)] may be transmitted by OPT in [r(t)−kB, s̄(t)+B]. So we can see
that |D[r(t), s(t)]|+ |I| ≤ s̄(t)− r(t)+ (k+1)B. On the other hand, we consider
all packets transmitted by Greedy during [r(t), s̄(t)+kB], to which no packets in
D dropped before r(t) are mapped. The total number of such packets is at least
s(s̄(t)+kB−r(t)) = s(s̄(t)−r(t))+skB. Since sk = k+1, the number of packets
transmitted by Greedy during [r(t), s̄(t) + kB] is at least |D[r(t), s(t)]| + |I|. It
implies that the number of packets in G transmitted during [r(t), s̄(t) + kB] is
at least |D[r(t), s(t)]|. After packets in D dropped during [r(t), t) are mapped,
that is, when the packet p is mapped, the number of packets in G transmitted
during [r(t), s̄(t) + kB] and not yet mapped to is at least |D[t, s(t)]|. Also from
the definition of r(t), all such packets not yet mapped to are transmitted after t.

628 J.-H. Kim

Thus there is at least one packet in G which p can be mapped to and the packet
is transmitted during [t, s̄(t) + kB], that is, its weight is more than w(p).
�

References

[1] W.A. Aiello, Y. Mansour, S. Rajagopolan, and A. Rosen. Competitive queue
policies for differentiated services. In Proc. of the IEEE INFOCOM, pages 431–
440, 2000.

[2] S. Albers and M. Schmidt. On the performance of greedy algorithms in packet
buffering. In Proc. of 36th ACM Symposium on Theory of Computing, to appear,
2004.

[3] Y. Azar and Y. Richter. Management of multi-queue switches in QoS networks.
In Proc. of 35th ACM Symposium on Theory of Computing, pages 82–89, 2003.

[4] A. Bar-Noy, A. Freund, S. Landa, and J. Naor. Competitive on-line switching
policies. In Proc. of 13th ACM Symposium on Discrete Algorithms, pages 525–
534, 2002.

[5] M. Brehob, E. Torng, and P. Uthaisombut. Applying extra-resource analysis to
load balancing. In Proc. of 11th ACM Symposium on Discrete Algorithms, pages
560–561, 2000.

[6] R. Fleischer and H. Koga. Balanced scheduling toward loss-free packet queuing
and delay fairness. Algorithmica, 38:363–376, 2004.

[7] B. Kalyanasundaram and K.R. Pruhs. Speed is as powerful as clairvoyance. J. of
ACM, 47(4):617–643, 2000.

[8] A. Kesselman, Z. Lotker, Y. Mansour, B. Patt-Shamir, B. Schieber, and M. Sviri-
denko. Buffer overflow management in QoS switches. In Proc. of 31th ACM
Symposium on Theory of Computing, pages 520–529, 2001.

[9] A. Kesselman, Y. Mansour, and R. van Stee. Improved competitive guarantees
for QoS buffering. In Proc. of 11th European Symposium on Algorithms, pages
361–372, 2003.

[10] C.Y. Koo, T.W. Lam, J. Ngan, and K.K. To. Extra processors versus future
information in optimal deadline scheduling. In Proc. of 14th ACM Symposium on
Parallel Algorithms and Architectures, pages 133–142, 2002.

[11] T.W. Lam and K.K. To. Performance guarantee for online deadline scheduling
in the presence of overload. In Proc. of 12th ACM Symposium on Discrete Algo-
rithms, pages 755–764, 2001.

[12] Z. Lotker and B. Patt-Shamir. Nearly optimal FIFO buffer management for Diff-
Serv. In Proc. of 21th ACM Symposium on Principles of Distributed Computing,
pages 134–142, 2002.

[13] C.A. Phillips, C. Stein, E. Torng, and J. Wein. Optimal time-critical schedul-
ing via resource augmentation. In Proc. of 29th ACM Symposium on Theory of
Computing, pages 140–149, 1997.

[14] A. Zhu. Analysis of queueing policies in QoS switches. J. of Algorithms, to appear.

Oriented Paths in Mixed Graphs

Egon Wanke1 and Rolf Kötter2

1 Institute of Computer Science,
2 C. & O. Vogt Brain Research Institute, and 2Institute of Anatomy II,

Heinrich-Heine-Universität, D-40225 Düsseldorf, Germany

Abstract. We consider mixed graphs with directed and undirected
edges. A path in a mixed graph is called oriented if it has at least one
directed edge. We show that 1.) oriented paths can be found in polyno-
mial time, 2.) computing a maximal number of mutually edge-disjoint
oriented s, t-paths is NP-complete, and 3.) computing a minimal set of
edges or vertices whose removal destroys all oriented s, t-paths is NP-
complete. In mixed graphs, the gap between the maximal number of mu-
tually edge-disjoint oriented s, t-paths and the minimal number of edges
or vertices in an s, t-cut can be arbitrary large. Finally we introduce sim-
ple 2-approximation algorithms for computing vertex and edge s, t-cuts.

1 Motivation and Introduction

This work is motivated by the analysis of different parcellation schemes of the
brain. A parcellation scheme divides the cerebral cortex into a set of disjoint brain
structures. These brain structures are regarded as elementary units that form
the basis for localizing all structural and functional characteristics. Comparisons
between data from different experimental studies have always been difficult due
to the incompatibility of the many parcellation schemes used. The different par-
cellation schemes result mainly from inter-individual differences, methodological
ambiguities, and observer-dependent criteria [Ess85, Zil04]. Therefore, different
maps often differ considerably in the areal boundaries and the nomenclature
of the areas. The same name may even given to areas that are only partially
coextensive, and for many areas their relationships remain unclear.

A first systematic approach to this parcellation problem was the Objective
Relational Transformation of Stephan, Zilles and Kötter [SZK00]. This method
enables databases to handle the huge variability of parcellation schemes allowing
a conversion of the data from incongruent maps objectively and reproducibly into
any user-chosen parcellation scheme. It is based on a classification of the relations
between pairs of areas in different maps as identity, a strict inclusion, or a real
overlap. To infer new knowledge from existing knowledge, all the information
about the relations between different maps is stored in a graph whose vertices
represent the areas. Two vertices are connected by an edge if there is a known
relation between the two corresponding areas. New information is obtained by
following a path from area A along the known relations to some area B. For
example, a strict inclusion of area A into area B is obtained by a path from A to
B along edges which only represent identities and strict inclusions, but at least

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 629–643, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

630 E. Wanke and R. Kötter

one strict inclusion. We are mainly interested in simple paths, where an area is
passed at most once. In a graph theoretical context, this corresponds to finding
simple oriented paths in mixed graphs, where the undirected edges represent
identities and the directed edges represent strict inclusions.

A major additional problem is the logical inconsistency of the available data
arising from the several sources of error. Thus it is not unusual that there are
paths between two areas of which some represent identities and some represent
strict inclusions. This problem has been addressed by introducing Precision of
Description Codes (PDCs), which classify the quality of the evidence for the
relation being provided. These PDCs can be regarded as weights attached to
edges of the graph. Where several statements exist concerning the same edge,
the corresponding set of PDCs can be used in more complex weightings.

From the neuro science point of view the aims are 1.) to find as many paths
as possible to allow a conversion of information, 2.) to decide among alternative
paths based on their classification and PDC weightings, 3.) to perform the con-
version of information efficiently. Here we consider graph theoretical methods to
achieve these goals.

This paper is organized as follows. In Section 2, we introduce the basic defini-
tions for general, edge-simple, and vertex-simple mutually edge-disjoint and mu-
tually vertex-disjoint paths in mixed graphs. In Section 3, we show that general,
edge-simple, and vertex-simple oriented paths in mixed graphs with n vertices
and m edges can be found in time O(n+m), O(n ·m2), and O(n2 ·m), respec-
tively. In Section 4, we show the NP-completeness of the k oriented mutually
disjoint paths problem for the following cases.

general edge-simple vertex-simple
edge-disjoint case 1: k ≥ 2 case 3: k unbounded case 5: k ≥ 2
vertex-disjoint case 2: k ≥ 2 case 4: k ≥ 2 case 6: k unbounded

In Section 5, we consider minimal sets of edges and vertices such that a
mixed graph without these edges and vertices, respectively, has no oriented path
between two vertices s and t. We prove that minimal s, t-cut set problems are
NP-complete. The gap between the size of a minimal s, t-cut set and a maximal
number of oriented s, t-paths can be arbitrary large for general mutually vertex-
disjoint and vertex-simple mutually edge-disjoint oriented paths. For edge-simple
mutually edge-disjoint and general mutually edge-disjoint oriented paths, this
gap is at least 3 and 2, respectively. Conclusions, discussions, and simple poly-
nomial time 2-approximation algorithms for computing vertex and edge s, t-cuts
are given in Section 6. This is the first work in literature which considers oriented
paths in mixed graphs.

2 Preliminaries

A mixed graph G=(V,A,E) consists of a finite set of vertices V , a set of directed
edges A ⊆ V ×V , and a set of undirected edges E ⊆ {{u, v} | u, v ∈ V, u �= v}.
It is called undirected or directed if it has only undirected or only directed edges,

Oriented Paths in Mixed Graphs 631

respectively. A mixed graph J = (V ′, A′, E′) is a subgraph of G if V ′ ⊆ V ,
A′ ⊆ A, and E′ ⊆ E. It is an induced subgraph of G if additionally A′ =
{(u, v) ∈ A | u, v ∈ V ′} and E′ = {{u, v} ∈ E | u, v ∈ V ′}.

Let p = u0, e1, u1, . . . , ek, uk be an alternating sequence of k + 1 vertices
u0, . . . , uk ∈ V and k edges e1, . . . , ek ∈ A∪E. Sequence p is called a mixed path
of length k if ei = (ui−1, ui) for all directed edges ei of p and ei = {ui−1, ui}
for all undirected edges ei of p. A mixed path is called undirected, directed, or
oriented if it contains only undirected edges, only directed edges, or at least one
directed edge, respectively.

In this paper, we study the following path problems. Given a mixed graph
G = (V,A,E) and two vertices s, t ∈ V .

1. Find an oriented path from s to t.
2. Compute the maximal number of mutually disjoint oriented s, t-paths.
3. Compute the minimal number of edges of A ∪ E or vertices of V such that
G without these edges or vertices has no oriented s, t-path.

A mixed path p = u0, e1, u1, . . . , ek, uk is called edge-simple or vertex-simple
if all edges e1, . . . , ek or all vertices u0, . . . , uk, respectively, are distinct. Two
mixed paths p = u0, e1, u1, . . . , ek, uk and q = u′

0, e
′
1, u

′
1, . . . , e

′
k′ , u′

k′ are edge-
disjoint if {e1, . . . , ek} ∩ {e′

1, . . . , e
′
k′} = ∅ and vertex-disjoint if {u0, . . . , uk} ∩

{u′
1, . . . , u

′
k′−1} = ∅ and {u1, . . . , uk−1} ∩ {u′

0, . . . , u
′
k′} = ∅. We analyze the

complexities of the problems above for general, edge-simple, and vertex-simple
oriented mutually edge-disjoint and mutually vertex-disjoint paths.

We first observe that k edge-simple oriented paths can always be found with
an algorithm for finding k vertex-simple oriented paths applied to the k-line
graph Gk of G defined as follows.

Definition 1. For a mixed graph G = (V,A,E) let Gk = (V k, Ak, Ek) be the
k-line graph of G with vertex set V k = A ∪ E ∪ {(u, i) | u ∈ V, 1 ≤ i ≤ k} and
edge sets

– Ak = {((u1, u2), (u2, i)) | (u1, u2) ∈ A, 1 ≤ i ≤ k}
∪ {((u1, i), (u1, u2)) | (u1, u2) ∈ A, 1 ≤ i ≤ k}

and

– Ek = {{(u1, i), {u1, u2}} | {u1, u2} ∈ E, 1 ≤ i ≤ k}.

If G has n vertices andm edges then Gk hasm+k·n vertices and 2·k·m edges.
Let s and t be two vertices of G and let Gs,t be the graph G with two additional
vertices s′, t′ and two additional undirected edges {s′, s} and {t′, t}. Then the
mixed graph G has k undirected, directed, or oriented mutually edge-disjoint
s, t-paths if and only if the k-line graph Gk

s,t of Gs,t has k undirected, directed,
or oriented mutually vertex-disjoint {s′, s}, {t′, t}-paths. The k s, t-paths in G
are edge-simple if and only if the corresponding k {s′, s}, {t′, t}-paths in Gk

s,t are
vertex-simple. Thus, the k mutually edge-disjoint oriented paths problem can be
solved in polynomial time by a polynomial time algorithm for the k mutually
vertex-disjoint oriented paths problem.

632 E. Wanke and R. Kötter

3 Oriented Paths

A mixed s, t-path can obviously be found in linear time by Depth First Search.
The problem of finding an oriented s, t-path in a mixed graph is only difficult
and thus interesting if there is at least one undirected path between s and t.
Otherwise, every mixed path from s to t is oriented. In this case, G has a mixed
s, t-path if and only if it has an oriented s, t-path if and only if it has a vertex-
simple oriented s, t-path. For the rest of this paper, we assume that there is
always an undirected path between s and t, i.e, s and t are in the same connected
component of the underlying undirected graph (V,E) of G = (V,A,E).

The problem of finding an oriented s, t-path in a mixed graph G is equivalent
to the problem of finding a mixed path from vertex (s, 1) to vertex (t, 2) in the
two level graph defined as below. This shows that finding an oriented path can
be done in linear time.

Definition 2. For a mixed graph G = (V,A,E) let G′ = (V ′, A′, E′) be the two
level graph with vertex set V ′ = V × {1, 2} and edge sets

A′ = {((u, 1), (v, 2)) | (u, v) ∈ A} and E′ = {{(u, 1), (v, 1)} | {u, v} ∈ E}
∪ {((u, 2), (v, 2)) | (u, v) ∈ A} ∪ {{(u, 2), (v, 2)} | {u, v} ∈ E}

However, an edge-simple (a vertex-simple) mixed (s, 1), (t, 2)-path in the two
level graph G′ does not necessarily correspond to an edge-simple (a vertex-
simple, respectively) oriented s, t-path in G. The example of Figure 1 (to the
right) shows a mixed graph G whose two level graph G′ has a vertex-simple
(v2, 1), (v1, 2)-path although G has no vertex-simple oriented v2, v1-paths.

2

v1 v3 v5

v2 v4 v6

1 3 5(v , 1) (v , 1)(v , 1)

(v , 1)2 (v , 1)4 (v , 1)6

1 3 5(v , 2) (v , 2) (v , 2)

(v , 2)2 (v , 2)4 (v , 2)6Gs,t

ss’ t t’

Gs,t

t

G

s

{s’,s} {t’,t}

G

G’

Fig. 1. To the left: A mixed graph G with two vertices s and t, the mixed graph
Gs,t, and the 2-line graph G2

s,t. To the right: A mixed graph G and the two level
graph G′

Oriented Paths in Mixed Graphs 633

If a mixed graph G contains only one directed edge (u, v) then finding an
edge-simple or vertex-simple oriented s, t-path is equivalent to finding two edge-
disjoint or vertex-disjoint undirected paths, respectively, in an undirected graph,
one between s and u and one between v and t. The two vertex-disjoint paths
problem for undirected graphs can be solved in time O(n ·m), where n is the
number of vertices and m is the number of edges, see [Shi80]. The two edge-
disjoint paths problem for undirected graphs can be solved in time O(m2) by
the 2-line graph construction as defined in Definition 1 and an algorithm for the
two vertex-disjoint paths problem for undirected graphs.

We next consider the general case. Let G̃s,t = (Ṽ s,t, Ẽs,t), Ṽ s,t ⊆ V , Ẽs,t ⊆ E,
be the connected component of the underlying undirected graph of G = (V,A,E)
to which s and t belong. Let p = u0, e1, u1, . . . , ek, uk be an oriented path inG. We
say path p leaves connected component G̃s,t at vertex ui, 0 ≤ i ≤ k−1, if ui belongs
to Ṽ s,t and ei+1 is a directed edge. We say path p enters connected component G̃s,t

at vertex ui, 1 ≤ i ≤ k, if ui belongs to Ṽ s,t and ei is a directed edge.

Lemma 1. Let G = (V,A,E) be a mixed graph and s, t be two vertices of the con-
nected component G̃s,t of G. There is an edge-simple (a vertex-simple) oriented
path from s to t in G if and only if there is an edge-simple (a vertex-simple, re-
spectively) oriented path from s to t in G that leaves and enters G̃s,t at most once.

Proof. Let p = s, e1, u1, . . . , el, t be an edge-simple (a vertex-simple) oriented
s, t-path that leaves and enters G̃s,t more than once. Assume further path p
leaves G̃s,t the first time at vertex ui1 , enters G̃s,t the first time at vertex ui2 ,
leaves G̃s,t the second time at vertex ui3 , enters G̃s,t the second time at vertex
ui4 , and so on, see Figure 2.

Let q be any vertex-simple undirected path in G̃s,t from ui2 to t. Let v be
the first vertex of q that belongs either to the first part of p from s to ui1 or to
the last part of p from ui4 to t. Such a vertex v always exists because t is the
last vertex of p.

If v is from the first part of p from s to ui1 , then let p′ be the path that starts
with the first part of p from s to v, continuous with the vertices and edges of
q from v in reverse direction up to the first vertex w that belongs to the part
of p from ui2 to ui3 , and continuous with the last part of p from w to t. If v is
from the last part of p from ui4 to t, then let p′ be the path that starts with the
first part of p from s to ui2 , continuous with the part of q from ui2 to v, and
finishes with the last part of p from v to t. Note that in this case the last part of
p could be empty (v = t). In both cases, we get an edge-simple (a vertex-simple)
oriented path p′ from s to t that leaves and enters the connected component G̃s,t

less often than p. Thus, a simple inductive argumentation proves the lemma.

We use Lemma 1 to show that edge-simple and vertex-simple oriented paths
can be found in polynomial time.

Theorem 1. Given a mixed graph G = (V,A,E) with n vertices and m edges,
and two vertices s, t of G. An edge-simple (a vertex-simple) oriented path from
s to t can be found in time O(n ·m2) (O(n2 ·m)), if such a path exists.

634 E. Wanke and R. Kötter

u

u

i

u

i

i

u

i

t

1

32

4

w

v

s

u

u

i

u

i

i

i

v

2

4

1

3

t

w

s

u

Fig. 2. Two possible cases for constructing a shorter oriented path p′ from s to t. The
left side illustrates the case where q passes first a vertex v of the part from s to ui1 . The
right side illustrates the case where q passes first a vertex v of the part from ui4 to t

Proof. We can find an edge-simple (a vertex-simple) oriented path from s to
t as follows. Compute for every vertex u of G̃s,t = (Ṽ s,t, Ẽs,t) all vertices v
such that there is a path from u to v in mixed graph G′ = (V ′, A′, E′), where
V ′ = (V − Ṽ s,t) ∪ {u, v}, A′ = A − {(u, v) ∈ A | u ∈ V ′ ∨ v ∈ V ′}, and
E′ = E − Ẽs,t. Let G′′ be the undirected graph G̃s,t with an additional vertex
w and additional undirected edges between w and the vertices v as specified
above. Next we compute two edge-disjoint (vertex-disjoint) paths between s, u
and t, w in G′′. These two undirected paths exist for some u if and only if there
is an edge-simple (a vertex-simple) path from s to t that leaves and enters G̃s,t

exactly once. By Lemma 1, we know that such a path exists if and only if there
is an edge-simple (a vertex-simple) oriented path from s to t in G. The overall
running time is O(n ·m2) (O(n2 ·m)), because two edge-disjoint (vertex-disjoint)
paths in undirected graphs can be found in time O(m2) (O(n ·m), respectively)
and all the remaining constructions take linear time for every vertex u.

4 Disjoint Oriented s, t-Paths

Let us first discuss general paths, which are not necessarily oriented. Finding
k edge-simple mutually edge-disjoint directed s, t-paths in a directed graph G
can be done in polynomial time by using network flow technics, see for example,
[AMO93]. In a mixed graphG, k mutually edge-disjoint s, t-paths can be found as
follows. First substitute every undirected edge {ui−1, ui} by two directed edges
(ui−1, ui) and (ui, ui−1) and then compute a maximal number of edge-simple
edge-disjoint s, t-paths in the resulting directed graph G′. If there are two s, t-
paths p and q in G′ such that p has a directed edge (u, v) and q has the reverse
directed edge (v, u) then replace p and q by p′ and q′ as follows. Let p′ be the
path consisting of the first part of p from s to u and the last part of q from u to t,
and let q′ be the path consisting of the first part of q from s to v and the last part

Oriented Paths in Mixed Graphs 635

of p from v to t. After all possible replacements the resulting k paths represent
k edge-simple mutually edge-disjoint paths in the original mixed graph G.

k vertex-simple mutually vertex-disjoint paths in mixed graphs can also be
found in polynomial time. Substitute in the directed graph G′ defined above
every vertex ui by two vertices ui,1 and ui,2 and a directed edge (ui,1, ui,2), and
every directed edge (ui, uj) by directed edge (ui,2, uj,1), as shown in Figure 3 on
the left side. (The vertices s and t are replaced by s1, s2 and t1, t2, respectively.)
Then there are k vertex-simple mutually vertex-disjoint s, t-paths in the original
mixed graph G if and only if there are k edge-simple mutually edge-disjoint
s2, t1-paths in the modified graph G′.

Now we consider oriented paths in mixed graphs.

Theorem 2. Given a mixed graph G = (V,A,E) and two vertices s, t of G. The
problem to decide whether there are two edge-disjoint oriented s, t-paths in G is
NP-complete.

Proof. The problem obviously belongs to NP. Let H = (V,A) be a directed
graph and s1, t1, s2, t2 ∈ V be 4 distinct vertices of H. The problem to decide
whether there are two vertex-disjoint paths in a directed graph H, one from s1
to t1 and one from s2 to t2, is known to be NP-complete, see [FHW80]. By the
modification of H as described above and shown on the left side of Figure 3,
it follows that the two edge-disjoint paths problem for directed graphs is also
NP-complete. Let H ′ be the graph H with 6 additional vertices s, t, u1, u2, v1, v2,
6 additional undirected edges

{s, u1}, {u1, u2}, {u2, t}, {s, v1}, {v1, v2}, {v2, t},

and 4 additional directed edges

(t1, u1), (u2, s1), (t2, v1), (v2, s2),

as shown in Figure 3 on the right side. Then every s, t-path in mixed graph H ′

passes either edge {u1, u2} or edge {v1, v2}, or both of these edges. If a path uses
both of these two edges then there is no second s, t-path which is edge-disjoint
with the first one. It is now easy to see that there are two edge-disjoint oriented
s, t-paths in H ′ if and only if there are two edge-disjoint paths in directed graph
H, one from s1 to t1 and one from s2 to t2.

Note that the two edge-disjoint oriented s, t-paths in H ′, if they exist, are
not edge-simple, because edge {u1, u2} and {v1, v2} are used two times. The
NP-completeness of finding two vertex-disjoint oriented s, t-paths follows from
Theorem 2 and the construction of the 2-line graph, see Definition 1.

Corollary 1. Given a mixed graph G = (V,A,E) and two vertices s, t. The
problem to decide whether there are two vertex-disjoint oriented s, t-paths in G
is NP-complete.

Let us next consider edge-simple mutually edge-disjoint oriented paths. Even,
Itai, and Shamir have shown in [EIS76][Theorem 4] that the simple undirected

636 E. Wanke and R. Kötter

ts

1u

2u

2,2u2,1u

u1,1 u1,2

1s s2 2tt1

u

v

s2

u

t

v

2

2

21

1

s t

t 1 1s

Fig. 3. The left side shows the splitting of the vertices to modify G′ as described in the
paragraph before Theorem 2. The right side shows the additional vertices and edges
inserted into H to get H ′ in the proof of Theorem 2. Only the filled vertices are added

two commodity integral flow problem is NP-complete. In particular, they have
shown the following result. Given an undirected graph G = (V,E), 4 vertices
s1, t1, s2, t2 ∈ V , and two integers l, k, 1 ≤ l ≤ k ≤ |E|. The problem to decide
whether there are k paths between s1 and t1 and l paths between s2 and t2, all
mutually edge disjoint, is NP-complete. We use this problem to prove that finding
k edge-simple mutually edge-disjoint oriented s, t-paths is also NP-complete.

Theorem 3. Given a mixed graph G = (V,A,E), two vertices s, t, and an inte-
ger k, 1 ≤ k ≤ |A|. The problem to decide whether there are at least k edge-simple
mutually edge-disjoint oriented s, t-paths in G is NP-complete.

Proof. The problem obviously belongs to NP. Let H = (V,E) be an undirected
graph, s1, t1, s2, t2 ∈ V be 4 vertices, and l, k, 1 ≤ l ≤ k ≤ |E|, be two inte-
gers. Let H ′ be the undirected graph H with k additional vertices u1, . . . , uk,
k additional directed edges, (t1, u1), . . . , (t1, uk), l additional directed edges,
(u1, s2), . . . , (ul, s2), and k − l additional directed edges, (ul+1, t2), . . . , (uk, t2),
see also Figure 4. Then there are k edge-simple mutually edge-disjoint oriented
s1, t2-paths in H ′ if and only if there are k + l mutually edge-disjoint paths in
undirected graph H, k paths between s1 and t1 and l path between s2 and t2.
Since this problem is NP-complete, we have proved the theorem.

ts

s2 t

11

H

H’

... ...

ul+1lu1u

2

ku

Fig. 4. The additional vertices and edges inserted into H to get H ′ in the proof of
Theorem 3. Only the filled vertices are added

The NP-completeness of finding k vertex-simple mutually vertex-disjoint ori-
ented s, t-paths follows from Theorem 3 and the construction of the k-line graph,
see Definition 1.

Oriented Paths in Mixed Graphs 637

Corollary 2. Given a mixed graph G = (V,A,E), two vertices s, t, and an
integer k, 1 ≤ k ≤ |A|. The problem to decide whether there are at least k
vertex-simple mutually vertex-disjoint oriented s, t-paths in G is NP-complete.

Next we consider vertex-simple edge-disjoint and edge-simple vertex-disjoint
s, t-paths in mixed graphs.

Theorem 4. Given a mixed graph G = (V,A,E) and two vertices s, t. The
problem to decide whether there are two vertex-simple edge-disjoint oriented s, t-
paths in G is NP-complete.

Proof. The problem obviously belongs to NP. We show a reduction from the two
edge-disjoint paths problem for directed graphs. Let H = (V,A) be a directed
graph and s1, t1, s2, t2 ∈ V be 4 distinct vertices of H. Let H ′ now be the graph
H with 4 additional vertices s, t, u, v, 4 additional undirected edges

{s, u}, {u, t}, {s, v}, {v, t},

and 4 additional directed edges

(u, s1), (t2, u), (v, s2), (t1, v)

as shown in Figure 5 on the left side. Then every vertex-simple oriented path
from s to t in H ′ uses either the edges

{s, u}, (u, s1), (t1, v), {v, t}

or the edges
{s, v}, (v, s2), (t2, u), {u, t}.

There are two vertex-simple edge-disjoint oriented paths from s to t in H ′ if and
only if there are two edge-disjoint paths in directed graph H, one from s1 to t1
and one from s2 to t2. Since the transformation can be done in polynomial time,
we have proved the theorem.

s1

2 ts 1

u

v

2t

ts

s1

2 ts 2

u

v

t

t

1

s

Fig. 5. The left side shows the additional vertices and edges inserted into H to get H ′

in the proof of Theorem 4. Only the filled vertices are added

The NP-completeness of finding two edge-simple vertex-disjoint oriented s, t-
paths can be shown analogously by a reduction from the two vertex-disjoint
paths problem for directed graphs. The difference in the construction of H ′ is
shown on the right side of Figure 5.

638 E. Wanke and R. Kötter

Corollary 3. Given a mixed graph G = (V,A,E) and two vertices s, t. The
problem to decide whether there are two edge-simple vertex-disjoint oriented s, t-
paths in G is NP-complete.

Note that the two s, t-paths in mixed graph H ′ of the proof of Theorem 4
are not vertex-disjoint, and the two s, t-paths in mixed graph H ′ constructed for
Corollary 3 are not vertex-simple.

5 Finding Minimal s, t-Cut Sets

For a given mixed graph G = (V,A,E) and two vertices s, t ∈ V , let Cs,t ⊆ A∪E
be a set of edges such that G without the edges of Cs,t has no oriented path
from s to t. We call such an edge set an s, t-edge cut. An s, t-edge cut is called
minimal if there is no s, t-edge cut with fewer edges. Our aim is to compute the
size of a minimal s, t-edge cut. Let cs,t(G) be the size of a minimal s, t-edge cut,
let vd-os,t(G), vs-vd-os,t(G), and es-vd-os,t(G) be the maximal number of gen-
eral, vertex-simple, and edge-simple mutually vertex-disjoint oriented s, t-paths,
respectively, and let ed-os,t(G), vs-ed-os,t(G), and es-ed-os,t(G) be the maxi-
mal number of general, vertex-simple, and edge-simple mutually edge-disjoint
oriented s, t-paths, respectively. The following inequalities are easy to verify.

vd-os,t(G) ≤ ed-os,t(G)

≤ ≤

es-vd-os,t(G) ≤ es-ed-os,t(G)

≤ ≤

vs-vd-os,t(G) ≤ vs-ed-os,t(G)

The number of mutually edge-disjoint oriented s, t-paths is always a lower
bound on the size of a minimal s, t-edge cut Cs,t, i.e., ed-os,t(G) ≤ cs,t(G),
because every oriented s, t-path has to contain at least one edge of Cs,t. The
graph of Figure 6 shows an example where vd-os,t(G) = vs-ed-os,t(G) = 1 but
cs,t(G) = 6. Following this idea of the construction of Figure 6, it is easy to
define for every integer k a graph G such that vd-os,t(G) = vs-ed-os,t(G) = 1
and cs,t(G) = k.

For every fixed integer k, the problem to decide whether there is an s, t-edge
cut Cs,t of size at most k can be solved in polynomial time by selecting every
subset of E ∪ A of size at most k and testing whether the graph without these
edges has an oriented path from s to t. This can be done in polynomial time for
general, edge-simple, and vertex-simple oriented paths.

However, finding a minimal s, t-edge cut Cs,t is NP-complete as the next
theorem shows.

Theorem 5. Given a mixed graph G = (V,A,E), two vertices s, t ∈ V , and an
integer k, 1 ≤ k ≤ |A|. The problem to decide whether there is an s, t-edge cut
Cs,t for G of size at most k is NP-complete.

Oriented Paths in Mixed Graphs 639

s t

Fig. 6. A mixed graph G where vd-os,t(G) = vs-ed-os,t(G) = 1, es-ed-os,t(G) = 2,
ed-os,t(G) = 3, and cs,t(G) = 6

Proof. The problem obviously belongs to NP. Let H = (V,E) be an undirected
graph and u, v, w be three vertices of H. The problem to decide whether undi-
rected graph H has k edges e1, . . . , ek ∈ E such that H without the edges
e1, . . . , ek has no path between two distinct vertices of {u, v, w} is NP-complete,
see [DJP+94]. This problem is called the undirected 3-ways edge cut problem.
Let m = |E| be the number of edges of H. We now extend the given undirected
graph H by 4 · (m+ 1) + 2 additional vertices

xs,u,1, . . . , xs,u,m+1, xv,t,1, . . . , xv,t,m+1, xs,w,1, . . . , xs,w,m+1, xw,t,1, . . . , xw,t,m+1,

s, and t. Then we add 4 · (m+ 1) directed edges

(s, xs,u,1), . . . , (s, xs,u,m+1), (xs,u,1, u), . . . , (xs,u,m+1, u),
(v, xv,t,1), . . . , (v, xv,t,m+1), (xv,t,1, t), . . . , (xv,t,m+1, t)

and 4 · (m+ 1) undirected edges

{s, xs,w,1}, . . . , {s, xs,w,m+1}, {xs,w,1, w}, . . . , {xs,w,m+1, w},
{w, xw,t,1}, . . . , {w, xw,t,m+1}, {xw,t,1, t}, . . . , {xw,t,m+1, t}.

Figure 7 shows an example of this construction.
The new mixed graph H ′ has an oriented path from s to t if and only if H has

an undirected path between two distinct vertices of {u, v, w}. It is not possible
to remove all directed paths from s to u or from v to t or all the undirected paths
between s and w or w and t by removing at most m edges of H ′. Thus, there
is an s, t-cut set of size k ≤ m if and only if there are k edges in H such that
H without these k edges has no path between two distinct vertices of {u, v, w}.
The construction can obviously be done in polynomial time.

Let us finally consider vertex cuts. For a given mixed graph G = (V,A,E)
and two vertices s, t ∈ V , let Cs,t ⊆ V − {s, t} be a set of vertices such that G
without the vertices of Cs,t (and without their incident edges) has no oriented
path from s to t. We call such a vertex set an s, t-vertex cut. An s, t-vertex cut is
called minimal if there is no s, t-vertex cut with fewer vertices. Let cs,t(G) be the

640 E. Wanke and R. Kötter

u

v

w

s

x
s,u,i x

v,t,i

x
w,t,i

x
s,w,i

t

...

...

...
...

H’

H

Fig. 7. Graph H ′ constructed from H as in the proof of Theorem 5

size if a minimal s, t-vertex cut for G, then cs,t(G) ≤ cs,t(G). The gap between
vd-os,t(G) (vs-ed-os,t(G), respectively) and cs,t(G) can also be arbitrary large,
see Figure 6 where cs,t(G) = 6.

The next corollary shows that computing the size of a minimal s, t-vertex cut
is also NP-complete.

Corollary 4. Given a mixed graph G = (V,A,E), two vertices s, t ∈ V , and an
integer k, 1 ≤ k ≤ |V | − 2. The problem to decide whether there is an s, t-vertex
cut Cs,t for G of size at most k is NP-complete.

Proof. The problem obviously belongs to NP. Let Gs,t be the graph G with
two additional vertices s′, t′ and two additional undirected edges {s′, s} and
{t′, t}. Let d be the maximal vertex degree of the vertices of G, and let Gd

s,t

be the d-line graph of Gs,t, see Definition 1 and the discussion at the end of
Section 2.

Since all vertices (u, i), u ∈ V , 1 ≤ i ≤ d, of Gd
s,t have the same neighbors,

we can assume, without loss of generality, that a minimal {s′, s}, {t′, t}-vertex
cut C{s′,s},{t′,t} of Gd

s,t consists only of vertices from A ∪ E. Since these ver-
tices correspond to edges of G, C{s′,s},{t′,t} defines also an s, t-edge cut of G,
and vice versa. Thus cs,t(G) = c{s′,s},{t′,t}(Gd

s,t) and the corollary follows from
Theorem 5.

Theorem 5 and Corollary 4 also hold for edge cuts and vertex cuts defined
only for vertex-simple or edge-simple oriented paths. Let G be an undirected
graph and u, v, w be three vertices of G, let H be the mixed graph with two
vertices s, t defined by G and u, v, w as in the proof Theorem 5, and let Hd

s,t

be d-line graph defined by H and s, t as in the proof of Corollary 4. If G
has an undirected path between two vertices of {u, v, w} then H has a vertex-
simple oriented s, t-path and Hd

s,t has a vertex simple oriented {s′, s}, {t′, t}-
path. Conversely, if Hd

s,t has an oriented {s′, s}, {t′, t}-path then H has an ori-
ented s, t-path and G has an undirected path between two vertices of {u, v, w}.
This implies by the first observation that Hd

s,t has also a vertex-simple oriented
{s′, s}, {t′, t}-path.

Oriented Paths in Mixed Graphs 641

6 Concluding Remarks, Approximations,
Acknowledgments

In Section 4, we have shown the NP-completeness of the k oriented mutually
disjoint paths problem for the following cases.

general edge-simple vertex-simple
edge-disjoint case 1: k ≥ 2 case 3: k unbounded case 5: k ≥ 2
vertex-disjoint case 2: k ≥ 2 case 4: k ≥ 2 case 6: k unbounded

The complexity of the k edge-simple mutually edge-disjoint and k vertex-simple
mutually vertex-disjoint oriented s, t-paths problems for fixed k is still open.

The proofs of the NP-completeness for case 1, 2, 4, and 5 imply that there
are no polynomial time (2− ε)-approximation algorithms for the corresponding
problems. The proofs of the NP-completeness for case 3 and 6 are done by a
reduction from the undirected 3-ways edge cut problem which is MAX-SNP-
hard. Since the proofs are approximation preserving reductions, there are no
polynomial time approximation schemes for the corresponding problems, unless
P=NP, see [DJP+94].

In Section 5, Theorem 5 and Corollary 4, we have shown that computing min-
imal s, t-edge and s, t-vertex cuts for mixed graphs are NP-complete. However,
an s, t-edge cut for G of size at most 2 · cs,t(G) can be computed in polynomial
time by the following idea. Consider again the two level graph G′ of G as defined
in Definition 2. If C(s,1),(t,2) is an (s, 1), (t, 2)-edge cut for G′ then

{(u, v) | ((u, 1), (v, 2)) ∈ C(s,1),(t,2) ∨ ((u, 2), (v, 2)) ∈ C(s,1),(t,2)}
∪ {{u, v} | {(u, 1), (v, 1)} ∈ C(s,1),(t,2) ∨ {(u, 2), (v, 2)} ∈ C(s,1),(t,2)}

is an s, t-edge cut for G, and conversely, if Cs,t is an s, t-edge cut for G then

{((u, 1), (v, 2)) | (u, v) ∈ Cs,t}
∪ {((u, 2), (v, 2)) | (u, v) ∈ Cs,t}
∪ {{(u, 1), (v, 1)} | {u, v} ∈ Cs,t}
∪ {{(u, 2), (v, 2)} | {u, v} ∈ Cs,t}

is an (s, 1), (t, 2)-edge cut for G′. Thus, the size of a minimal (s, 1), (t, 2)-edge
cut is at most two times the size of a minimal s, t-edge cut for G. Since all
(s, 1), (t, 2)-paths in G′ are oriented, a minimal (s, 1), (t, 2)-edge cut for G′ is
computable in polynomial time by network flow techniques, see, for example,
[AMO93]. The same idea leads to a polynomial time 2-approximation algorithm
for computing a minimal s, t-vertex cut.

We have also shown in Section 5 that the gap between vd-os,t(G), vs-ed-os,t(G)
and cs,t(G), cs,t(G) can be arbitrary large. For edge-simple and general mutually
edge-disjoint oriented paths we conjecture the following bounds.

cs,t(G)
es-ed-os,t(G)

≤ 3,
cs,t(G)

es-ed-os,t(G)
≤ 3,

cs,t(G)
ed-os,t(G)

≤ 2, and
cs,t(G)

ed-os,t(G)
≤ 2.

642 E. Wanke and R. Kötter

As stated in the introduction, this work is motivated by tracing paths in a
graph whose vertices represent 3-dimensional areas of the macaque brain. Undi-
rected edges represent identities and directed edges represent strict inclusions.
An area B is properly contained in an area A if and only if there is an oriented
path from A to B. Another interesting problem, which we analyze in a forth-
coming paper, is to decide whether two areas definitely overlap. This is related
to the problem of finding an alternating sequence u0, e1, u1, . . . , ek, uk of vertices
u0, . . . , uk ∈ V and edges e1, . . . , ek ∈ A ∪ E such that for some i, 0 < i < k,
the two sequences u0, e1, u1, . . . , ei, ui and uk, ek, uk−1, . . . , ei+1, ui are oriented
paths. Such a sequence is called a forth-and-back path. A forth-and-back path
from s to t, not necessarily simple, can be found in linear time, by finding a
mixed path from (s, 1) to (t, 3) in the three level graph defined as follows.

Definition 3. For a mixed graph G = (V,A,E) let G′ = (V ′, A′, E′) be the
three level graph with vertex set V × {1, 2, 3} and edge sets

A′ = {((u, 1), (v, 2)) | (u, v) ∈ A}
∪ {((u, 2), (v, 2)) | (u, v) ∈ A}
∪ {((v, 2), (u, 3)) | (u, v) ∈ A}
∪ {((v, 3), (u, 3)) | (u, v) ∈ A}

and E′ = {{(u, 1), (v, 1)} | {u, v} ∈ E}
∪ {{(u, 2), (v, 2)} | {u, v} ∈ E}
∪ {{(u, 3), (v, 3)} | {u, v} ∈ E}

Here again, the corresponding s, t-forth-and-back path in G do not need to
be simple if the mixed path from (s, 1) to (t, 3) in the three level graph is simple.
A forth-and-back path in a mixed graph is a generalization of a so-called valley-
free path in a directed graph, as considered by Erlebach, Hall, Panconesi, and
Vukadinović in [EHPV03] and [Hal03]. A valley-free path in a directed graphG =
(V,A) is an alternating sequence u0, e1, u1, . . . , ek, uk of vertices u0, . . . , uk ∈ V
and edges e1, . . . , ek ∈ A such that for some i, 0 ≤ i ≤ k, the two sequences
u0, e1, u1, . . . , ei, ui and uk, ek, uk−1, . . . , ei+1, ui are directed paths.

We would like to thank Thomas Erlebach for very fruitful discussions at
the Internationales Begegnungs- und Forschungszentrum für Informatik, Schloß
Dagstuhl, Germany.

References

[AMO93] A. Ahuja, T. Magnanti, and J. Orlin. Network Flows: Theory, Algorithms,
and Applications. Wiley-Interscience Series in Discrete Mathematics and
Optimization. Prentice Hall, Englewood Cliffs, N.J., 1993.

[DJP+94] E. Dahlhaus, D. Johnson, C. Papadimitriou, P. Seymour, and M. Yan-
nakakis. The complexity of multiway cuts. SIAM Journal on Computing,
23(4):864–894, 1994.

[EHPV03] T. Erlebach, A. Hall, A. Panconesi, and D. Vukadinović. Cuts and Disjoint
Paths in the Valley-Free Path Model. Technical Report 180, Swiss Federal
Institute of Technology Zurich, Swiss, 2003.

[EIS76] S. Even, A. Itai, and A. Shamir. On the complexity of timetable and
multicommodity flow problems. SIAM Journal on Computing, 5(4):691–
703, 1976.

Oriented Paths in Mixed Graphs 643

[Ess85] D.C. Van Essen. Functional organization of primate visual cortex. In E.G.
Jones and A. Peters, editors, Cerebral cortex. III. Visual cortex, pages 259–
329, New York and London, 1985. Plenium Press.

[FHW80] S. Fortune, J. Hopcroft, and J. Wyllie. The directed subgraph homeomor-
phism problem. Theoretical Computer Science, 10:111–121, 1980.

[Hal03] A. Hall. Scheduling and Flow-Related Problems in Networks. Dissertation,
Swiss Federal Institute of Technology Zurich, Swiss, 2003.

[Shi80] Y. Shiloach. A polynomial solution to the undirected two paths problem.
Journal of the ACM, 27:445–456, 1980.

[SZK00] K.E. Stepfan, K. Zilles, and R. Kötter. Coordinate-independent mapping of
structural and functional data by objective relational transformation (ort).
Philosophical Transactions of the Royal Society London, Biological Sciences,
355:37–54, 2000.

[Zil04] K. Zilles. Architecture of the Human Cerebral Cortex. Regional and Lami-
nar Oganization. In G. Paxinos and J.K. Mai, editors, The Human Nervous
System, pages 997–1055, San Diego, CA, 2004. Elsevier. 2nd edition.

Polynomial Deterministic Rendezvous
in Arbitrary Graphs

Dariusz R. Kowalski1,2 and Andrzej Pelc3,�

1 Max-Planck-Institut für Informatik,
Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany

darek@mpi-sb.mpg.de
2 Instytut Informatyki, Uniwersytet Warszawski,

Banacha 2, 02-097 Warszawa, Poland
3 Département d’informatique, Université du Québec en Outaouais,

Hull, Québec J8X 3X7, Canada
Andrzej.Pelc@uqo.ca

Abstract. The rendezvous problem in graphs has been extensively stud-
ied in the literature, mainly using a randomized approach. Two mobile
agents have to meet at some node of a connected graph. We study deter-
ministic algorithms for this problem, assuming that agents have distinct
identifiers and are located in nodes of an unknown anonymous connected
graph. Startup times of the agents are arbitrarily decided by the adver-
sary. The measure of performance of a rendezvous algorithm is its cost:
for a given initial location of agents in a graph, this is the number of
steps since the startup of the later agent until rendezvous is achieved.
Deterministic rendezvous has been previously shown feasible in arbitrary
graphs [16] but the proposed algorithm had cost exponential in the num-
ber n of nodes and in the smaller identifier l, and polynomial in the
difference τ between startup times. The following problem was stated
in [16]: Does there exist a deterministic rendezvous algorithm with cost
polynomial in n, τ and in labels L1, L2 of the agents (or even polynomial
in n, τ and log L1, log L2)? We give a positive answer to both problems:
our main result is a deterministic rendezvous algorithm with cost poly-
nomial in n, τ and log l. We also show a lower bound Ω(n2) on the cost
of rendezvous in some family of graphs.

1 Introduction
Two mobile agents located in nodes of an undirected connected graph, have
to meet at some node of the graph. This task is known in the literature as
the rendezvous problem in graphs, and in this paper we study deterministic
algorithms to solve it efficiently. If nodes of the graph are labeled then agents
can decide to meet at a predetermined node and the rendezvous problem reduces
to graph exploration. However, if the graph models an unknown environment,
a unique labeling of nodes may not be available, or agents may be unable to
recognize node labels. Hence it is important to design rendezvous algorithms for

� Research supported in part by NSERC grant and by the Research Chair in Dis-
tributed Computing of the Université du Québec en Outaouais.

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 644–656, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Polynomial Deterministic Rendezvous in Arbitrary Graphs 645

agents operating in anonymous graphs, i.e., graphs without unique labeling of
nodes. Clearly, the agents must be capable of locally distinguishing ports at a
node: otherwise, it may even be impossible to visit all neighbors of a node of
degree 3 (after visiting the second neighbor, it is impossible to distinguish the
port leading to the first visited neighbor from that leading to the unvisited one).
Consequently, agents initially located at two such nodes, might never be able to
meet. Hence we make a natural assumption that all ports at a node are locally
labeled 1, . . . , d, where d is the degree of the node. No coherence between local
port labelings is assumed. We do not assume any knowledge of the topology of
the graph, of its size, or of the distance separating the agents.

1.1 The Model

Synchrony and Startup Times. Agents move in synchronous steps. In every
step, an agent may either remain in the same node or move to an adjacent
node. We assume that startup times of the agents are arbitrarily decided by an
adversary. Agents are not aware of the difference between startup times, and
each of them starts executing the rendezvous algorithm and counting steps since
its own startup. The agent who starts earlier and happens to visit the starting
node of the later agent before the startup of this later agent, is not aware of this
fact, i.e, we assume that agents are created at their startup time rather than
waiting in the node before it.

Adversarial Decisions and Cost of Rendezvous. An agent, currently lo-
cated at a node, is not aware of the other endpoints of yet unexplored incident
edges. If the agent decides to traverse such a new edge, the choice of the actual
edge belongs to the adversary, as we are interested in the worst-case performance.
If agents get to the same node in the same round, they become aware of it and
rendezvous is achieved. The cost of a rendezvous algorithm, for a given initial
location of agents in a graph, is the worst-case number of steps since the startup
of the later agent until rendezvous is achieved, where the worst case is taken over
all adversary decisions, whenever an agent decides to explore a new edge adjacent
to a currently visited node, and over all possible startup times. In particular,
time of local computations performed by agents does not contribute to cost.

Labels and Local Knowledge. If agents are identical, i.e., they do not have
distinct identifiers, and execute the same algorithm, then deterministic ren-
dezvous is impossible even in the simplest case of simultaneously starting agents
in a two-node graph. Hence we assume that agents have distinct labels, which are
two different integers, and that every agent knows its own label. (For technical
reasons we assume that labels are larger than 1. This assumption can be easily
omitted.) If both agents knew both labels, the problem could be again reduced to
that of graph exploration: the agent with smaller label does not move, and the
other agent searches the graph until it finds it. (This strategy is sometimes called
“wait for mommy”.) However, the assumption that agents know each other may
often be unrealistic, as they may be created in different parts of the network
in a distributed fashion, oblivious of each other. Hence we assume that each
agent knows its own label but does not know the label of the other. The only

646 D.R. Kowalski and A. Pelc

initial input of a (deterministic) rendezvous algorithm executed by an agent is
the agent’s label. During the execution of the algorithm, an agent learns the
local port number by which it enters a node and the degree of the node.

Notation. Labels of agents are denoted by L1 and L2. The agent with label
Li is called agent i. (An agent does not know its number, only the value of its
label). Labels are distinct integers larger than 1. l denotes the smaller of the
two labels. The difference between startup times of the agents is denoted by τ .
We use the word “graph” to mean a simple undirected connected graph with
local port labelings but without node labels. n denotes the number of nodes in
the graph.

1.2 Our Results

In [16], deterministic rendezvous was considered under the above described
model. The authors formulated the following two questions:

Q1. Is rendezvous feasible in arbitrary graphs?
Q2. If so, can it be performed in cost polynomial in n, τ , L1 and L2 (or even

polynomial in n, τ , log L1 and log L2)?

They gave an affirmative answer to the first question but their rendezvous
algorithm had cost exponential in n and l (and polynomial in τ). The second
question was left open.

We give a positive answer to both versions of this question. Our main result
is a deterministic rendezvous algorithm with cost polynomial in n, τ and log l.
The algorithm contains a non-constructive ingredient: agents use combinatorial
objects whose existence we prove by the probabilistic method. Nevertheless our
algorithm is indeed deterministic. Both agents can find separately the same com-
binatorial object with desired properties (which is then used in the rendezvous
algorithm). This can be done using brute force exhaustive search which may
be quite complex but in our model only moves of the agents are counted and
computation time of the agents does not contribute to cost. Moreover, it should
be noticed that finding this combinatorial object can be done a single time at
a preprocessing stage, the object can be stored in agents’ memory and subse-
quently used in many instances of the rendezvous problem. We also show a lower
bound Ω(n2) on rendezvous cost in some family of graphs.

The paper is organized as follows. In Section 2 we construct a simpler ren-
dezvous algorithm polynomial in n, τ and l (instead of log l). We do this to first
present the main idea of the algorithm and of its analysis without additional
complications needed to decrease the cost. In Section 3 we show how to modify
this algorithm, in order to decrease its cost to polynomial in n, τ and log l. In
Section 4 we establish the lower bound Ω(n2) on rendezvous cost in some family
of graphs. Section 5 contains conclusions and open problems.

1.3 Related Work

The rendezvous problem has been introduced in [23]. The vast body of re-
sults on rendezvous (see the book [4] for a complete discussion and more ref-

Polynomial Deterministic Rendezvous in Arbitrary Graphs 647

erences) can be divided into two classes: papers considering the geometric sce-
nario (rendezvous in the line, see, e.g., [11, 12, 19], or in the plane, see, e.g.,
[9, 10]), and those discussing rendezvous in graphs, e.g., [2, 5]. Most of the papers,
e.g., [2, 3, 7, 11, 20] consider the probabilistic scenario: inputs and/or rendezvous
strategies are random. In [20] randomized rendezvous strategies are applied to
study self-stabilized token management schemes. Randomized rendezvous strate-
gies use random walks in graphs, which have been widely studied and applied
also, e.g., in graph traversing [1], on-line algorithms [14] and estimating volumes
of convex bodies [17]. A natural extension of the rendezvous problem is that of
gathering [18, 20, 22, 24], when more than 2 agents have to meet in one location.

Deterministic rendezvous with anonymous agents working in unlabeled graphs
but equipped with tokens used to mark nodes was considered e.g., in [21]. In [25]
the authors considered rendezvous of many agents with unique labels. Although
one of their scenarios is deterministic, it differs from our setting in that agents
know the graph and they know a finite set containing the team of agents that
are supposed to meet. Deterministic rendezvous in unlabeled graphs, assuming
that each agent knows only its own identity, was considered in [16]. The au-
thors considered rendezvous under the scenario adopted in the present paper,
and under another scenario which additionally assumed simultaneous startup.
They gave efficient rendezvous algorithms for trees and rings and proved feasi-
bility of rendezvous for arbitrary graphs. In the case of arbitrary startup times
(which we assume in the present paper) their algorithm for arbitrary graphs was
exponential in n and l (and polynomial in τ).

2 A Rendezvous Algorithm Polynomial in n, τ and l

2.1 Deterministic Polynomial Covering of a Graph

A walk of length k in a graph is a sequence (v1, ..., vk) of nodes such that node vi+1
is adjacent to vi, for all i < k. A covering walk is a walk in which every node of the
graph appears at least once. The aim of this subsection is to give a deterministic
procedure, using a number of steps polynomial in n which, when started in any
node of an unknown graph with at most n nodes, produces a covering walk in
this graph. This procedure will be an important ingredient in our rendezvous
algorithms.

Define a random walk of an agent in graph G as a walk in which the agent,
currently located at a node of degree d, acts in the next step as follows: it
remains in the node with probability 1/2 and moves through any port with the
same probability 1/(2d). The cover time of the graph G during a random walk
starting at node v is the random variable denoting the smallest number of steps
after which the agent performing this walk visits all nodes of the graph. The
meeting time of two agents performing simultaneous random walks in graph G,
starting at nodes v and w, is the random variable denoting the smallest number
of steps after which agents performing these walks meet at some node.

We will use the following Lemma proved in [15]:

648 D.R. Kowalski and A. Pelc

Lemma 1. There exists a constant α > 0 such that the probability of each of
the following events is at least 1/2:
Event E1: the cover time of graph G with n nodes during the random walk starting
at any node, is at most αn3.
Event E2: the meeting time of two agents performing simultaneous random walks
in graph G with n nodes, is at most αn3, for any starting nodes.

Let α be the constant from Lemma 1. Let λ(n) = �2αn5 log n�. The next
lemma shows a useful property of a random walk (the proof is omitted).

Lemma 2. A random walk of length λ(n) starting at node v in a graph G with
at most n nodes is a covering walk, with probability at least 1− 2−2n2 log n.

For any positive integer n and any function hn : {1, ..., λ(n)} × {1, ..., n −
1} −→ {0, 1, ..., n− 1}, such that hn(i, d) ≤ d, we define the following procedure
describing a walk of length λ(n) in a graph G, starting at a node v (cf. the upper
bound for the length of a universal traversal sequence [1]).

Procedure GraphCover(n, hn)
In step i ≤ λ(n), the agent, currently located at a node of degree d, moves
to an adjacent node by port hn(i, d), or remains idle if hn(i, d) = 0. After
step λ(n) it stops.

Lemma 3. For any n, there exists a function hn :{1, ..., λ(n)}×{1, ..., n−1} −→
{0, 1, ..., n − 1}, such that hn(i, d) ≤ d and the Procedure GraphCover(n, hn)
starting at any node of any graph G with at most n nodes, produces a covering
walk in this graph.

Proof. Fix n. Fix a graph G with at most n nodes and fix some starting node v
in G. We can do it in at most nn2 · n ≤ 2n2(log n+1) different ways, for fixed n.
Applying Lemma 2, the probability of the event ‘there exists a graph G with at
most n nodes and a starting node v in G, such that the random walk of length
λ(n) in graph G starting in v is not a covering walk’ is at most

2−2n2 log n · 2n2(log n+1) ≤ 2−n .
Using the probabilistic argument we prove the existence of the desired func-

tion, which completes the proof. �

Note that the problem of construction of function hn satisfying Lemma 3 is
hard (cf. hardness of a construction of a universal traversal sequence even for
3-regular graphs [13]).

In our applications to rendezvous algorithms, agents will use Procedure
GraphCover(n, hn) producing a covering walk in any graph with at most n
nodes. To this end we want each of the agents to find the same function hn whose
existence is guaranteed by Lemma 3. (This can be done by exhaustive search,
ordering all such possible functions in a canonical way and checking them one
by one to find the first suitable one. Recall that, according to our model, only
moves of the agents are accounted for, and computation time of the agents does
not contribute to rendezvous cost.) Let ĥn be the first function in this canoni-
cal ordering, satisfying Lemma 3, for any n. To simplify notation, we will write
GraphCover(n) instead of GraphCover(n, ĥn), throughout the paper.

Polynomial Deterministic Rendezvous in Arbitrary Graphs 649

2.2 Construction and Analysis of Rendezvous Algorithm PA
In order to design rendezvous algorithm PA, we will use procedure Graph-
Cover(n), which takes λ(n) = �2αn5 log n� steps and produces a covering walk
in any graph with at most n nodes.

We will show that the following algorithm completes rendezvous in any n-
node graph, for agents with arbitrary labels L1, L2, with arbitrary delay τ , in
cost polynomial in n, l = min{L1, L2} and τ .
Algorithm PA (PassiveActive) for agent with label L.
For k = 1, 2, . . . do

Passive Phase: Wait for 2Lk steps
Active Phase:

– Perform GraphCover(Lk), starting from the current node in the
graph

– Perform L times GraphCover(k), always starting from the current
node in the graph

Let k0 = λ(n). The idea of the algorithm is to guarantee that one of the
agents is passive while the other agent L performs GraphCover(k0) and thus
completes rendezvous. (We refer to this situation by saying that the active agent
meets the passive agent – an asymmetric relation.) This is the reason for having
increasing time segments of activity and passivity. The turn of the “for” loop
for a given k will be called the kth epoch of the agent. The kth epoch of agent
with label L has two phases of equal length 2Lk: the passive phase and the
active phase. The active phase is composed of an execution of GraphCover(Lk)
followed by L executions of GraphCover(k). This is the subtle point in the
algorithm design: it seems that none of these parts alone (one long execution of
GraphCover or many short executions of it) permits to guarantee rendezvous
in cost polynomial in n, l and τ .

We analyze the performance of algorithm PA as a function of n, l and τ . Let
G be an n-node graph and L1, L2 the labels of agents. Without loss of generality
assume that L1 > L2 = l. We start counting time steps from the startup of the
later agent. For every step t denote by ki(t), for i = 1, 2, the number of epoch
executed by agent i in step t. We will use the following fact, which follows from
the Properties of GraphCover(k), and from the definition of k0.

Fact 1 1. If one agent starts its active phase of epoch k in time t, where
L1k ≥ 2k0, and the other agent is in the passive phase during the time segment
[t, t + k0), then rendezvous is completed by step t + k0.

2. Assume k ≥ k0. If one agent is in the second half of its active phase of
epoch k in the time segment [t, t+2k0), and the other agent is in a passive phase
during the time segment [t, t+ 2k0), for some t, then rendezvous is completed by
step t + 2k0.

3. Assume k ≥ k0. If one agent ends its active phase of epoch k in time t,
and the other agent is in a passive phase during the time segment (t−k0, t], then
rendezvous is completed by step t.

The following lemma estimates cost of rendezvous under some technical con-
ditions (the proof will appear in the full version of the paper).

650 D.R. Kowalski and A. Pelc

Lemma 4. Let t1, t2 be steps ending epochs k1(t1), k2(t2) of the first and second
agent, respectively. Assume that L1k1(t1) ≥ 40k0, k2(t2) ≥ 10k0, |t1 − t2| ≤
4k0 and |L1k1(t1) − L2k2(t2)| ≤ 2k0. Then rendezvous is completed by step
t2 + 26lk2(t2)k0.

The next three lemmas estimate the time step by which rendezvous is com-
pleted, depending on the number of epoch changes of one agent during one epoch
of the other (their proofs will appear in the full version of the paper).
Lemma 5.

1. Let t be the beginning of epoch k1(t) of the first agent and assume that
L1k1(t) ≥ 40k0 and k2(t) ≥ 10k0. If the second agent ends its epoch only once
during epoch k1(t) of the first agent, then rendezvous is completed by step t +
11lk2(t) + 26lk2(t)k0.

2. Let t be the beginning of epoch k2(t) of the second agent and assume that
L1k1(t) ≥ 40k0 and k2(t) ≥ 10k0. If the first agent ends its epoch only once
during epoch k2(t) of the second agent, then rendezvous is completed by step
t + 11lk2(t) + 26lk2(t)k0.

Lemma 6.
1. Let t be the beginning of epoch k1(t) of the first agent and assume that

L1k1(t) ≥ 40k0 and k2(t) ≥ 10k0. If the second agent ends its consecutive epochs
twice during epoch k1(t) of the first agent, then rendezvous is completed by step
t + 14lk2(t) + 26lk2(t)k0.

2. Let t be the beginning of epoch k2(t) of the second agent and assume that
L1k1(t) ≥ 40k0 and k2(t) ≥ 10k0. If the first agent ends its consecutive epochs
twice during epoch k2(t) of the second agent, then rendezvous is completed by
step t + 14lk2(t) + 26lk2(t)k0.

Lemma 7.
1. Let t be the beginning of epoch k1(t) of the first agent and assume that

L1k1(t) ≥ 40k0 and k2(t) ≥ 10k0. If the second agent ends its consecutive epochs
at least three times during epoch k1(t) of the first agent, then rendezvous is
completed by the end of epoch k2(t) + 1 of the second agent, which is at most
t + 9lk2(t).

2. Let t be the beginning of epoch k2(t) of the second agent and assume that
L1k1(t) ≥ 40k0 and k2(t) ≥ 10k0. If the first agent ends its consecutive epoch
at least three times during epoch k2(t) of the second agent, then rendezvous is
completed by the end of epoch k1(t) + 1 of the first agent, which is at most
t + 4lk2(t).

Theorem 1. Algorithm PA solves the rendezvous problem for any n-node graph
G, for any labels L1 > L2 = l of agents and any delay τ between startup times,
in cost O(

√
lτn5 log n + ln10 log2 n).

Proof. Let t1 be the first step for which L1k1(t1) ≥ 40k0. Let t2 ≥ t1 be the
first step for which k2(t2) ≥ 10k0. Observe that ti is the beginning of epoch
ki(ti) of the ith agent. Consider the step t∗ = t2 + (t2 − t1) + 8L2k2(t2) =
2t2 + 8L2k2(t2)− t1. We have t∗ > t2 ≥ t1, hence k1(t1) ≤ k1(t∗). Consider two
cases.

Polynomial Deterministic Rendezvous in Arbitrary Graphs 651

Case A. k1(t1) = k1(t∗).
We have the inclusion [t2, t2 + 4L2k2(t2)] ⊆ [t1, (t1 + t∗)/2]. Hence the epoch

k2(t2) of the second agent is included in the passive phase of epoch k1(t1) of the
first agent. We use Fact 1 point 1 to obtain that rendezvous is completed during
epoch k2(t2) of the second agent. Hence rendezvous cost is O(t2 +L2k2(t2)). By
definition of t1 we get that t1 ∈ O(k2

0) = O(n10 log2 n).
If t2 > t1 then k2(t1) < 10k0, and consequently k2(t2) = 10k0. Hence t2 =

O(L2k
2
0) ∈ O(ln10 log2 n). On the other hand, L2k2(t2) ∈ O(ln5 log n).

If t2 = t1 then t2 ∈ O(n10 log2 n). On the other hand we have

4L2(k2(1) + 1) + . . . + 4L2(k2(t2)− 1) ≤ t2 .

Hence k2(t2)− k2(1) ∈ O(
√

t2/L2). It follows that L2k2(t2) ∈ O(L2(k2(1) +√
t2/L2)). Since τ ∈ Ω(L2(k2(1))2), we get that k2(1) ∈ O(

√
τ/L2), and hence

rendezvous cost is

O(t2+L2k2(t2)) ⊆ O(t2+L2
√

τ/L2+L2
√

t2/L2) ⊆ O(n10 log2 n+
√

lτ+
√

ln5 log n).

Consequently, in both situations, rendezvous cost is O(ln10 log2 n +
√

lτ).

Case B. k1(t1) < k1(t∗).
In this case we have that t2 ∈ O(k2

0l) and k2(t2) ∈ O(
√

τ/l + k0). Below we
give the proof of this statement in all possible situations.

– L1k1(1) ≥ 40k0 and k2(1) ≥ 10k0. In this case t2 = t1 = 1. We also have
τ ∈ Ω(L2(k2(1))2), and consequently k2(t2) = k2(1) ∈ O(

√
τ/l).

– L1k1(1) ≥ 40k0 and k2(1) < 10k0. In this case t1 = 1 and t2 ∈ O(L2k
2
0) =

O(lk2
0). Also k2(t2) ∈ O(k0).

– L1k1(1) < 40k0 and k2(1) ≥ 10k0. In this case L1(k1(t1) − 1) < 40k0,
which implies that t1 ∈ O(L1(k1(t1))2) ⊆ O(k2

0/L1). Also t2 = t1, which
gives t2 ∈ O(k2

0). On the other hand, τ ∈ Ω(L2(k2(1))2), and consequently
k2(t2) ∈ k2(1) +O(k0) ⊆ O(

√
τ/l + k0).

– L1k1(1) < 40k0 and k2(1) < 10k0. In this case L1(k1(t1)− 1) < 40k0, which
implies that t1 ∈ O(L1(k1(t1))2) ⊆ O(k2

0/L1). Also t2 ∈ t1 + O(L2k
2
0) =

O(lk2
0). On the other hand, k2(t2) ≤ k2(t1)+ 10k0 ∈ k2(1)+O(k0) = O(k0).

Let t be the first step after t2 in which an epoch of the first agent starts. Notice
that, by the assumption k1(t1) < k1(t∗), we have t ≤ t2 + t∗, and consequently
t ∈ O(t2 + L2k2(t2)). Hence k2(t) ∈ O(k2(t2)). Consider times t′1, t

′
2 > t such

that t′i is the end of epoch ki(t), for i = 1, 2.
Subcase B1. t′1 ≤ t′2.
Consider epoch k2(t) of the second agent. By definition of step t, this epoch
starts not earlier than t2. Since t′1 ≤ t′2, we have that the first agent ends its
epoch at least once during epoch k2(t) of the second agent. Applying point 2 of
one of the Lemmas 5, 6 and 7, depending on the number of epoch changes of
the first agent in epoch k2(t2), we obtain that rendezvous cost is at most

t + 18lk2(t) + 26lk2(t)k0 ∈ O(t2 + L2k2(t2)) +O(lk2(t2)) +O(lk2(t2)k0) ⊆
⊆ O(k2

0l + l(
√

τ/l + k0) + l(
√

τ/l + k0)k0) = O(
√

lτn5 log n + ln10 log2 n) .

652 D.R. Kowalski and A. Pelc

Subcase B2. t′1 > t′2.
Consider epoch k1(t) of the first agent. It starts in step t ≥ t2. Since t′1 > t′2,
we have that the second agent ends its epoch at least once during epoch k1(t)
of the first agent. Applying point 1 of one of the Lemmas 5, 6 or 7, depending
on the number of epoch changes of the second agent in epoch k1(t1), we obtain
that rendezvous cost is at most

t + 18lk2(t) + 26lk2(t)k0 ∈ O(t2 + L2k2(t2)) +O(lk2(t2)) +O(lk2(t2)k0) ⊆
⊆ O(lk2

0 + l(
√

τ/l + k0) + l(
√

τ/l + k0)k0) ⊆ O(
√

lτn5 log n + ln10 log2 n) ,

the same asymptotic bound as in Subcase B1. �

3 A Rendezvous Algorithm Polynomial in n, τ and log l

In this section we design and analyze a modification of Algorithm PA which
works in cost polynomial in n, τ and log l, rather than polynomial in n, τ and l.
The modified algorithm has two non-constructive ingredients: the function de-
termining the covering walk, already used in Procedure GraphCover(n) and
another one, used in the new procedure TRAVERSE described below. (As before,
the new combinatorial object (a family of functions) whose existence we prove
using again the probabilistic method, can be found by each of the agents sepa-
rately, using local exhaustive search.) Similarly as before, our algorithm remains
deterministic.

Assume that, for every label L and positive integer k, we have a function fL,k :
{1, ..., k�log L�}×Z+ → Z+∪{0} such that fL,k(i, d) ≤ d for any positive integers
i, d. We call such a function a port-function. The interpretation of fL,k(i, d) is the
port number used by agent with label L in the ith step of graph traversal with
parameter k, if the agent is currently at a node of degree d (the value 0 indicates
that the agent remains at the current node). According to this intuition we
define the procedure TRAVERSE. For a non-negative integer t and for a positive
integer k, define T (k, t) as the set of all infinite sequences (t1, . . . , tk, . . .) of non-
negative integers such that t1 + . . . + tk = t and ti = 0 for every i > k. For a
given label L, integers k > 0 and t ≥ 0, fix t̄ ∈ T (k, t) and define:
Procedure TRAVERSE(L, k, t̄)
For i = 1, 2, . . . , k do initialize counti := ti (ti is the ith value of t̄)
For j = 1, 2, . . . , k�log L� do

Set d to the degree of the current node (if d > k and countd not initialized
then initialize countd := 0)

Set countd := countd + 1
If fL,k(countd, d) > 0 then Go using port fL,k(countd, d)
The intuition behind the parameter t̄ in the above procedure is the following.

For every d, we suppose that, before starting procedure TRAVERSE, td first port
choices in nodes of degree d, yielded by the function fL,k, were already executed.
Hence this introduces a shift of procedure TRAVERSE by t steps back, assuming
that td nodes of degree d were already visited. In the algorithm we will only use
TRAVERSE for parameter 0̄ (hence no shift at all) but in the analysis we will
consider executions of TRAVERSE shifted in time with respect to each other,
and hence this more general formulation of the procedure will become useful.

Polynomial Deterministic Rendezvous in Arbitrary Graphs 653

The following algorithm uses procedure TRAVERSE, which in turn depends
on a family of port-functions. We will use the algorithm for such a family of
functions with a specially defined property.

Algorithm MPA (Modified PassiveActive) for agent with label L.
For k = 1, 2, . . . do

Passive Phase: Wait for 2 · 2�log L�k steps
Active Phase:

First Stage: Perform GraphCover(�log L�k), starting from the cur-
rent node in the graph

Middle Stage: Perform TRAVERSE(L, k, 0̄)
Last Stage: Perform 2�log L� times GraphCover(k), always starting

from the current node in the graph

3.1 Choosing Port-Functions
As before, the turn of the “for” loop for a given k will be called the kth epoch
of the agent. Let G be an n-node graph, v1, v2 two nodes in G, t a non-negative
integer, ind ∈ {1, 2}, t̄ ∈ T (k1, t), if ind = 1 and t̄ ∈ T (k2, t) otherwise.
Execute(L1, k1, L2, k2, G, v1, v2, t̄, ind), denotes the execution of procedures

– TRAVERSE(L1, k1, t̄) and TRAVERSE(L2, k2, 0̄) if ind = 1
– TRAVERSE(L1, k1, 0̄) and TRAVERSE(L2, k2, t̄) if ind = 2

by agents operating in graph G, where procedure TRAVERSE(L1, k1, ·) starts in
node v1 and procedure TRAVERSE(L2, k2, ·) starts in node v2. We assume that
procedure Execute is performed until one of the agents completes its procedure
TRAVERSE.

Let α > 0 be the constant from Lemma 1 and let k0 = �2αn5 log n� be as in
Section 2. We say that a family of port-functions {fL,k : k ∈ Z+, L = 2, 3, . . .}
is a rendezvous family, if the following property is satisfied:

RV for all labels L1 > L2 such that �log L1� = �log L2�, all parameters k1 =
k2, for every n such that 10αn5 log n ≤ k1, every n-node graph G, for all starting
nodes v1, v2, any sequence t̄ ∈ T (k1, t), where t < 6k0, any ind ∈ {1, 2}, agents
with labels L1, L2 meet during procedure Execute(L1, k1, L2, k2, G, v1, v2, t̄, ind).

Recall that, in view of Lemma 3 and of the choice of α, procedure Graph-
Cover(n), lasting k0 steps, produces a covering walk in any graph G with n nodes.

Our goal is to show the existence of a rendezvous family. The proof uses the
probabilistic method and requires the analysis of simultaneous random walks of
two agents in a graph. The proofs of the next two lemmas will appear in the full
version of the paper.

Lemma 8. Let L be a positive integer. For a given n-node graph G, consider
two simultaneous random walks of length 10αn5 log n log L, started in any nodes
v1, v2 of graph G. The agents meet in some node with probability at least 1 −
2−10n2 log n log L.

Lemma 9. There exists a rendezvous family of port-functions {fL,k : k ∈ Z+,
L = 2, 3, . . .}.

654 D.R. Kowalski and A. Pelc

3.2 Analysis of Algorithm MPA
In view of Lemma 9 we can use a rendezvous family of port-functions as a basis
for algorithm MPA. The rest of our analysis assumes that MPA uses such a fixed
family (which agents can compute locally), and hence we assume that property
RV is satisfied. Notice that, in the proof of Lemma 9, we used the probabilistic
method for fixed k, L and n. The function fL′,k of an agent with label L′, such
that L/2 < L′ ≤ L, has the domain bounded by nk log L and the range bounded
by n. The agent may have to compute all such functions fL′′,k, for L/2 < L′′ ≤ L.
This can be done locally in time exponential in nk log L log n. Recall that local
computations do not affect rendezvous cost in our model.

Our next lemma corresponds to Lemma 4 in the analysis of algorithm PA.
The proof will appear in the full version of the paper.
Lemma 10. Let t1, t2 be steps ending epochs k1(t1), k2(t2) of the first and second
agent, respectively. Assume that �log L1� = �log L2�, |�log L1�k1(t1) − �log L2�
k2(t2)| < 2k0, k1(t1), k2(t2) ≥ 10αn5 log n and |t1 − t2| < 6k0. Then rendezvous
is completed by step t2.

Theorem 2. Algorithm MPA solves the rendezvous problem for any n-node
graph G, for any labels L1 > L2 = l of agents and for any delay τ between
startup times, in cost O(n5√τ log l log n + n10 log2 n log l).

The proof of Theorem 2 will appear in the full version of the paper.

4 A Lower Bound
The sharpest lower bound for deterministic rendezvous proved in [16] was
Ω(n log l). More precisely, the fact that rendezvous sometimes requires this cost
follows from the lower bound Ω(D log l) proved in [16] for agents starting at
distance D in a ring. We show that, in some graphs with Θ(n2) edges, the cost
of rendezvous is Ω(n2), i.e., a large part of the graph has to be explored before
agents can meet. The proof will appear in the full version of the paper.

Theorem 3. For all positive integers n and any labels L1 and L2, there exists
an n-node graph Gn such that rendezvous cost in Gn for agents with labels L1
and L2 is Ω(n2).

5 Conclusion
Our main result was the design and analysis of a deterministic rendezvous al-
gorithm polynomial in n, τ and log l. This answers affirmatively question Q2
from [16]. Our algorithm requires exhaustive local search by each agent to find
an object whose existence is proved using the probabilistic method. While local
computations (even possibly very extensive), do not affect cost in our model, it
is interesting to know if there is a deterministic rendezvous algorithm with cost
polynomial in n, τ , log l whose local computations also take polynomial time.

Another open problem concerns the dependence of rendezvous cost on the
parameter τ (the difference between startup times). We showed a lower bound

Polynomial Deterministic Rendezvous in Arbitrary Graphs 655

Ω(n2) on rendezvous cost in some graphs. It was shown in [16] that cost Ω(log l)
is required even for the two-node graph. It was also shown in [16] that, for agents
starting at distance Ω(n) in a ring, cost Ω(n log l) is required, even for τ = 0.
However, we do not know if any non-constant function of τ is a lower bound on
rendezvous cost in some graphs. (Recall that the cost of our algorithm contains
a factor

√
τ .) Hence the following problem remains open:

Does there exist a deterministic rendezvous algorithm whose cost is poly-
nomial in n and l (or even in n and log l) but independent of τ?

References
1. R. Aleliunas, R.M. Karp, R.J. Lipton, L. Lovász, and C. Rackoff, Random walks,

universal traversal sequences, and the complexity of maze problems, Proc. 20th
Annual Symposium on Foundations of Computer Science (FOCS’1979), 218-223.

2. S. Alpern, The rendezvous search problem, SIAM J. on Control and Optimization
33 (1995), 673-683.

3. S. Alpern, Rendezvous search on labelled networks, Naval Reaserch Logistics 49
(2002), 256-274.

4. S. Alpern and S. Gal, The theory of search games and rendezvous. Int. Series in
Operations research and Management Science, Kluwer Academic Publisher, 2002.

5. J. Alpern, V. Baston, and S. Essegaier, Rendezvous search on a graph, Journal of
Applied Probability 36 (1999), 223-231.

6. S. Alpern and S. Gal, Rendezvous search on the line with distinguishable players,
SIAM J. on Control and Optimization 33 (1995), 1270-1276.

7. E. Anderson and R. Weber, The rendezvous problem on discrete locations, Journal
of Applied Probability 28 (1990), 839-851.

8. E. Anderson and S. Essegaier, Rendezvous search on the line with indistinguishable
players, SIAM J. on Control and Optimization 33 (1995), 1637-1642.

9. E. Anderson and S. Fekete, Asymmetric rendezvous on the plane, Proc. 14th An-
nual ACM Symp. on Computational Geometry, 1998.

10. E. Anderson and S. Fekete, Two-dimensional rendezvous search, Operations Re-
search 49 (2001), 107-118.

11. V. Baston and S. Gal, Rendezvous on the line when the players’ initial distance is
given by an unknown probability distribution, SIAM J. on Control and Optimiza-
tion 36 (1998), 1880-1889.

12. V. Baston and S. Gal, Rendezvous search when marks are left at the starting
points, Naval Res. Log. 48 (2001), 722-731.

13. S.A. Cook and P. McKenzie, Problems complete for deterministic logarithmic
space, Journal of Algorithms 8 (5) (1987), 385-394.

14. D. Coppersmith,, P. Doyle, P. Raghavan, and M. Snir, Random walks on weighted
graphs, and applications to on-line algorithms, Proc. 22nd Annual ACM Sympo-
sium on Theory of Computing (STOC’1990), 369-378.

15. D. Coppersmith, P. Tetali, and P. Winkler, Collisions among random walks on a
graph, SIAM J. on Discrete Math. 6 (1993), 363-374.

16. A. Dessmark, P. Fraigniaud, and A. Pelc, Deterministic rendezvous in graphs, Proc.
11th European Symposium on Algorithms (ESA’2003), LNCS 2832, 184-195.

17. M. Dyer, A. Frieze, and R. Kannan, A random polynomial time algorithm for esti-
mating volumes of convex bodies, Proc. 21st Annual ACM Symposium on Theory
of Computing (STOC’1989), 375-381.

656 D.R. Kowalski and A. Pelc

18. P. Flocchini, G. Prencipe, N. Santoro, P. Widmayer, Gathering of asynchronous
oblivious robots with limited visibility, Proc. 18th Annual Symposium on Theo-
retical Aspects of Computer Science (STACS’2001), LNCS 2010, 247-258.

19. S. Gal, Rendezvous search on the line, Operations Research 47 (1999), 974-976.
20. A. Israeli and M. Jalfon, Token management schemes and random walks yield self

stabilizing mutual exclusion, Proc. 9th Annual ACM Symposium on Principles of
Distributed Computing (PODC’1990), 119-131.

21. E. Kranakis, D. Krizanc, N. Santoro and C. Sawchuk, Mobile agent rendezvous
in a ring, Proc. 23rd International Conference on Distributed Computing Systems
(ICDCS’2003), 592-599.

22. W. Lim and S. Alpern, Minimax rendezvous on the line, SIAM J. on Control and
Optimization 34 (1996), 1650-1665.

23. T. Schelling, The strategy of conflict, Oxford University Press, Oxford, 1960.
24. L. Thomas, Finding your kids when they are lost, Journal on Operational Res.

Soc. 43 (1992), 637-639.
25. X. Yu and M. Yung, Agent rendezvous: a dynamic symmetry-breaking prob-

lem, Proc. International Colloquium on Automata, Languages, and Programming
(ICALP’1996), LNCS 1099, 610-621.

Distributions of Points and Large Quadrangles
(Extended Abstract)

Hanno Lefmann

Fakultät für Informatik, TU Chemnitz, D-09107 Chemnitz, Germany
lefmann@informatik.tu-chemnitz.de

Abstract. We consider a variant of Heilbronn’s triangle problem by
asking, given any integer n ≥ 4, for the supremum Δ4(n) of the mini-
mum area determined by the convex hull of some four of n points in the
unit-square [0, 1]2 over all distributions of n points in [0, 1]2. Improving
the lower bound Δ4(n) = Ω(1/n3/2) of Schmidt [19], we will show that
Δ4(n) = Ω((log n)1/2/n3/2) as asked for in [5], by providing a determin-
istic polynomial time algorithm which finds n points in the unit-square
[0, 1]2 that achieve this lower bound.

1 Introduction

The problem of Heilbronn asks for a distribution of n points in the unit-square
[0, 1]2 (or unit-ball) such that the minimum area of a triangle determined by
three of these n points is as large as possible. Let Δ3(n) denote the supre-
mum of this minimum area of a triangle over all distributions of n points in
[0, 1]2. In considering for primes n the points 1/n · (i mod n, i2 mod n), i =
0, . . . , n− 1, on the moment-curve one easily sees that Δ3(n) = Ω(1/n2). While
for some time this lower bound was believed to be also the upper bound for
Δ3(n), Komlós, Pintz and Szemerédi [11] showed by probabilistic arguments that
Δ3(n) = Ω(logn/n2), see Bertram-Kretzberg, Hofmeister and this author [5] for
a deterministic polynomial time algorithm achieving this lower bound Δ3(n) =
Ω(logn/n2). Upper bounds on Δ3(n) were given by Roth [14, 15, 16, 17, 18] and
Schmidt [19] and, improving these earlier results, the currently best upper bound
Δ3(n) = O(2c

√
log n/n8/7), where c > 0 is a constant, is due to Komlós, Pintz

and Szemerédi [10]. Recently, Jiang, Li and Vitany [9] showed by using meth-
ods from Kolmogorov complexity that if n points are distributed uniformly at
random and independently of each other in the unit-square [0, 1]2, then the ex-
pected value of the minimum area of a triangle formed by some three of these
n random points is equal to Θ(1/n3). As indicated in [9], this result might be
of use to measure the affiancy of certain Monte Carlo methods for determining
fair market values of derivatives.

Higher dimensional extensions of Heilbronn’s triangle problem were investi-
gated by Barequet [2, 3], who considered for fixed integers d ≥ 2 the minimum
volumes of simplices among n points in the d-dimensional unit-cube [0, 1]d, max-
imized over all distributions of n points in [0, 1]d, see also [12], [13] and Brass [6].

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 657–668, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

658 H. Lefmann

A variant of Heilbronn’s problem asks, given a fixed integer k ≥ 3, for the
supremum Δk(n) of the minimum area of the convex hull of some k points
in a distribution of n points in the unit-square [0, 1]2, where the supremum
is over all distributions of n points in [0, 1]2. For k = 4, Schmidt [19] proved
the nonconstructive lower bound Δ4(n) = Ω(1/n3/2). In [5] a deterministic
polynomial time algorithm was given, which finds, given an integer k ≥ 3, for
any integer n ≥ k a configuration of n points in [0, 1]2 achieving the lower bound
Δk(n) = Ω(1/n(k−1)/(k−2)).

Here we provide for k = 4 a deterministic polynomial time algorithm which
achieves the lower bound Δ4(n) = Ω((logn)1/2/n3/2), as asked for in [5], hence
improving also the lower bound Δ4(n) = Ω(1/n3/2) of Schmidt [19] by a factor
of Θ((logn)1/2).

Theorem 1. For integers n ≥ 4 one can find deterministically in time
O(n13/2+δ) for any δ > 0 some n points in the unit-square [0, 1]2 such that
the minimum area of the convex hull determined by some four of these n points
is at least Ω((logn)1/2/n3/2).

Although the mathematics in connection with Heilbronn-type problems seems
to be hard, these problems are of interest from the algorithmic point of view as
one can test the power of certain algorithmic methods with these problems, i.e.
here we will use an approach by approximating the independence number of
linear (or uncrowded) hypergraphs. There is some vague indication that perhaps
our algorithm finds an asymptotically best possible distribution of points, but
at present only Δ4(n) = O(1/n) is known.

2 Basic Facts

For distinct points P,Q ∈ [0, 1]2 let PQ denote the line through P and Q.
Let dist (P,Q) denote the Euclidean distance between the points P and Q. For
points P1, . . . , Pl ∈ [0, 1]2 let area (P1, . . . , Pl) be the area of the convex hull of
the points P1, . . . , Pl. A strip S centered at the line PQ of width w is the set of
all points which have distance at most w/2 from the line PQ.

Lemma 1. Let P1, . . . , Pl ∈ [0, 1]2 be points. If area (P1, . . . , Pl) ≤ A, then
area (P1, . . . , Pl−1) ≤ A.

Proof. This follows by monotonicity, as by definition area (P1, . . . , Pl) is the area
of the convex hull of the points P1, . . . , Pl.
�

Lemma 2. Let P1, . . . , Pl ∈ [0, 1]2 be distinct points no three on a line such
that area (P1, . . . , Pl) ≤ A. Then for any two distinct points Pi and Pj, each
other point Pk, k �= i, j, lies in a strip centered at the line PiPj of width 4 ·
A/dist (Pi, Pj).

Proof. Otherwise, by Lemma 1 it is A ≥ area (P1, . . . , Pl) ≥ area (Pi, Pj , Pk) >
1/2 · dist (Pi, Pj) · (2 ·A)/dist (Pi, Pj) = A, a contradiction.
�

Distributions of Points and Large Quadrangles 659

Definition 1. Let G = (V, E) be a k-uniform hypergraph, i.e. |E| = k for each
edge E ∈ E. An unordered pair {E,E′} of distinct edges E,E′ ∈ E is called a
2-cycle if |E∩E′| ≥ 2. A 2-cycle {E,E′} in G is called (2, i)-cycle if |E∩E′| = i,
i = 2, . . . , k − 1. The hypergraph G is called linear if it does not contain any 2-
cycles. The independence number α(G) of G is the largest size of a subset I ⊆ V
which contains no edges from E, i.e. E �⊂ I for each edge E ∈ E.

3 A Deterministic Algorithm

Here we will prove Theorem 1. By looking at the existing literature, probabilistic
existence arguments using evaluations of certain integrals over [0, 1]2 might be
possible to get an improvement on Δ4(n) = Ω(1/n3/2), however, whether this
approach might be successful or not, due to the continuity of the calculations,
this does not result in a deterministic algorithm. Therefore, to provide a deter-
ministic polynomial time algorithm, which finds n points in the unit-square [0, 1]2

that achieve the lower bound Δ4(n) = Ω((logn)1/2/n3/2), we will discretize the
search space [0, 1]2 by considering the standard T × T -grid, where T = n1+α for
some constant α > 0, which will be specified later. However, with this discretiza-
tion we have to take care of collinear triples of grid-points in the T × T -grid.

We will transform our problem into a problem of finding in a suitably defined
hypergraph a large independent set. For some valueA > 0, which will be specified
later, we form a hypergraph G = G(A) = (V, E3 ∪ E4) which contains 3-element
and 4-element edges. The vertex set V consists of the T 2 grid-points from the
T × T -grid. The edge sets E3 and E4 are defined as follows: {P,Q,R} ∈ E3 if
and only if the grid-points P,Q,R ∈ V lie on a single line, i.e. are collinear,
and {P,Q,R, S} ∈ E4 if and only if no three of the grid-points P,Q,R, S ∈ V
are collinear and area (P,Q,R, S) ≤ A. In this hypergraph G = G(A) we want
to find a certain induced subhypergraph G∗∗ = (V ∗∗, E∗∗

4) of G, which does not
contain any 3-element edges anymore, hence no three distinct grid-points from
the vertex set V ∗∗ are collinear. An independent set I ⊆ V ∗∗ in this induced
hypergraph G∗∗ = (V ∗∗, E∗∗

4) yields |I| grid-points in the T × T -grid, such that
the area of the convex hull of each four distinct grid-points is bigger than A.

An essential tool in our arguments is the following algorithmic version from
Bertram-Kretzberg and this author [4] of a deep result of Ajtai, Komlós, Pintz,
Spencer and Szemerédi [1], see also [7] and [8].

Theorem 2. Let G = (V, E) be a k-uniform linear hypergraph with average de-
gree tk−1 = k · |E|/|V |. Then one can find for any δ > 0 in time O(|V | + |E| +
|V |3/t3−δ) an independent set I ⊆ V with |I| = Ω(|V |/t · (log t)1/(k−1)).

The difficulty in our arguments does not lie in the invention of a new algorithm
but rather to prove that the algorithm from Theorem 2 can be applied and yields
a solution with the desired quality. However, our hypergraph G = G(A) is not
linear and contains many 2-cycles. The strategy will be to find a certain induced
linear subhypergraph G∗∗ of our hypergraph G = (V, E3∪E4). Therefore, to apply
Theorem 2 we will carefully count in the hypergraph G = G(A) the numbers |E3|

660 H. Lefmann

and |E4| of 3- and 4-element edges, respectively. Also, we will give upper bounds
on the numbers of 2-cycles arising from the 4-element edges E ∈ E4. Then in a
certain induced subhypergraph G∗ of G we will destroy in one step all induced
3-element edges and all 2-cycles. The resulting induced subhypergraph G∗∗ of G
has not too few vertices and does not contain any 2-cycles anymore and at this
point we apply the algorithm from Theorem 2 to G∗∗.

For positive integers h and s let gcd (h, s) ≥ 0 denote the greatest common
divisor of h and s. For a grid-point P in the T × T -grid let px and py denote
its x- and y-coordinate, respectively. We define a lexicographic order ≤lex on the
grid-points of the T × T -grid: for grid-points P = (px, py) and Q = (qx, qy) let

P ≤lex Q⇐⇒ (px < qx) or (px = qx and py < qy) .

Notice that for grid-points P = (px, py) and Q = (qx, qy) with P ≤lex Q
there are exactly (gcd (qx − px, qy − py) − 1) grid-points on the segment [P,Q]
excluding the endpoints P and Q.

We will use the following result from [5].

Lemma 3. For two grid-points P = (px, py) and R = (rx, ry) with P ≤lex R in
the T × T -grid, where s := rx − px ≥ 0, the following hold:

(a) There are at most 4 ·A grid-points Q in the T × T -grid such that
(i) P ≤lex Q ≤lex R, and
(ii) P,Q,R are not collinear, and
(iii) area (P,Q,R) ≤ A.

(b) The number of grid-points Q in the T × T -grid which fulfill only conditions
(ii) and (iii) from (a) is at most 12 ·A · T/s for s > 0 and at most 4 ·A · T
for s = 0.

First we will estimate the numbers |E3| and |E4| of 3- and 4-element edges,
respectively, in the hypergraph G = (V, E3 ∪ E4).

Lemma 4. The number |E3| of 3-element edges in the hypergraph G = (V, E3 ∪
E4) satisfies

|E3| ≤ c3 · T 4 · log T . (1)

We remark that in [5] an upper bound of O(T 4+ε), for any ε > 0, on the
number of collinear triples of grid-points in the T × T -grid was proved.

Proof. Let P,Q,R be grid-points from the T × T -grid, where P ≤lex Q ≤lex R.
Set s =: rx − px ≥ 0 and h := ry − py. We have {P,Q,R} ∈ E3 if and only if
P,Q,R are collinear. For h = 0 or s = 0 the number of collinear triples P,Q,R
of grid-points is at most O(T 4), as we can choose one of the 2 · T horizontal or
vertical lines and on each of these at most O(T 3) triples of grid-points.

Let h, s �= 0. A grid-point P can be chosen in at most T 2 ways. Given the
grid-point P , any grid-point R is determined by a pair (s, h) of integers with
1 ≤ h ≤ s ≤ T . Those pairs (s, h) of integers with 0 ≤ −h ≤ s ≤ T or

Distributions of Points and Large Quadrangles 661

1 ≤ s < |h| ≤ T will be taken into account by an additional constant factor
using rotation symmetry.

On the segment [P,R] there are at most gcd (h, s) grid-points Q exluding P
and R. Thus, for a constant c′ > 0 the number of collinear triples of grid-points
in the T × T -grid is at most

c′ · T 2 ·
T∑

s=1

s∑
h=1

gcd (h, s) .

Each divisor d of s divides at most s/d positive integers x with x ≤ s, namely
the integers i · d, i = 1, . . . , �s/d�, hence we infer for a constant c3 > 0:

c′ · T 2 ·
T∑

s=1

s∑
h=1

gcd (h, s) ≤ c′ · T 2 ·
T∑

s=1

∑
d|s

s

d
· d ≤ c′ · T 2 ·

T∑
s=1

s
∑
d|s

1 ≤

≤ c′ · T 2 ·
T∑

d=1

T/d�∑
i=1

i · d ≤ c′ · T 2 ·
T∑

d=1

d · T
2

d2 = c′ · T 4 ·
T∑

d=1

1
d
≤

≤ c3 · T 4 · log T .
�

Lemma 5. The number |E4| of unordered quadruples {P1, P2, P3, P4} of distinct
grid-points in the T × T -grid with area (P1, P2, P3, P4) ≤ A, where no three of
the grid-points P1, P2, P3, P4 are collinear, fulfills

|E4| ≤ c4 ·A2 · T 4 . (2)

Proof. We can assume that P1 ≤lex P3 ≤lex P4 ≤lex P2. Let s := p2,x− p1,x ≥ 0
and h := p2,y − p1,y. If s = 0, then the grid-points P1, P2, P3, P4 are collinear,
hence we have s �= 0. By rotation symmetry, which we take into account by an
additional constant factor, we can assume that 0 ≤ h ≤ s ≤ T .

If area (P1, P2, P3, P4) ≤ A, then by Lemma 2 we have area (P1, P2, P3) ≤ A
and area (P1, P2, P4) ≤ A. There are T 2 choices for the grid-point P1. Given the
grid-point P1, any grid-point P2 is determined by a pair (s, h) �= (0, 0) of integers
with 0 ≤ h ≤ s ≤ T . Since P1 ≤lex P3 ≤lex P4 ≤lex P2 and since no three of
the grid-points P1, P2, P3, P4 are collinear, by Lemma 3(a) there are at most
4 · A choices for the grid-points P3 and P4 each. Thus, we obtain for constants
c′, c4 > 0 for the number |E4| of 4-element edges in the hypergraph G an upper
bound of

|E4| ≤ c′ · T 2 ·
T∑

s=1

s∑
h=0

(4 ·A)2 ≤ 16 · c′ ·A2 · T 2 ·
T∑

s=1

s∑
h=0

1 ≤ c4 ·A2 · T 4 .
�

By (2) the average degree t3 of the hypergraph G = (V, E3 ∪ E4) for the 4-
element edges E ∈ E4 satisfies

t3 =
4 · |E4|
|V | ≤ 4 · c4 ·A2 · T 4

T 2 = 4 · c4 ·A2 · T 2 := t30 . (3)

662 H. Lefmann

3.1 (2, 2)- and (2, 3)-Cycles

Let s2,i(G; E4) denote the number of (2, i)-cycles, i = 2, 3, formed by unordered
pairs of 4-element edges in the hypergraph G = (V, E3 ∪ E4). Here we will give
upper bounds on the numbers of these (2, 2)- and (2, 3)-cycles in G.

Lemma 6. The number s2,3(G; E4) of (2, 3)-cycles in the hypergraph G = (V, E3∪
E4), which arise from the 4-element edges E ∈ E4, satisfies

s2,3(G; E4) = O(A3 · T 4 · log T) . (4)

Proof. Assume that the quadruples P1, P2, P3, P4 and P1, P2, P3, P5 of grid-points
determine a (2, 3)-cycle in the hypergraph G, where no three of these five grid-
points are collinear. Then area (P1, P2, P3, P4) ≤ A and area (P1, P2, P3, P5) ≤
A. We can assume that P1 ≤lex P3 ≤lex P2. There are T 2 possibilities for the
grid-point P1. Let s := p2,x − p1,x and h := p2,y − p1,y. Given the grid-point P1,
any grid-point P2 is determined by a pair (s, h) �= (0, 0) of integers, where by
rotation symmetry w.l.o.g. 0 ≤ h ≤ s ≤ T . Clearly, we have s > 0, as for s = 0
the grid-points P1, P2, P3 are collinear. Since area (P1, P2, P3) ≤ A by Lemma 1,
and since P1, P2, P3 are not collinear, by Lemma 3(a) there are at most 4 · A
choices for the grid-point P3.

With area (P1, P2, P4) ≤ A and area (P1, P2, P5) ≤ A, and since P1, P2, P4
and P1, P2, P5 are not collinear, by Lemma 3(b) there are at most 12 · A · T/s
choices for each grid-point P4 and P5, hence for some constants c′, c′′, c′′′, c2,3 > 0
we have the following upper bound on the number s2,3(G; E4) of (2, 3)-cycles in G:

s2,3(G; E4) ≤ c′ · T 2 ·
T∑

s=1

s∑
h=0

(4 ·A) ·
(

12 ·A · T
s

)2

≤

≤ c′′ ·A3 · T 4 ·
T∑

s=1

s∑
h=0

1
s2
≤ c′′′ ·A3 · T 4 ·

T∑
s=1

1
s
≤ c2,3 ·A3 · T 4 · log T .
�

Next we will estimate the number of (2, 2)-cycles in the hypergraph G.

Lemma 7. The number s2,2(G; E4) of (2, 2)-cycles in the hypergraph G = (V, E3∪
E4), which arise from the 4-element edges E ∈ E4, fulfills

s2,2(G; E4) = O(A4 · T 9/2) . (5)

Proof. Let us denote the grid-points of two 4-element edges E,E′ ∈ E4, which
yield a (2, 2)-cycle in the hypergraph G, by P1, P2, P3, P4 and P1, P2, P5, P6,
where P1 ≤lex P2 and no three of the grid-points of these edges are collinear.
Let u := �T γ� where 0 < γ < 1 is a constant, which will be specified later.

There are T 2 choices for the grid-point P1. Given the grid-point P1, any
grid-point P2 is determined by a pair (s, h) �= (0, 0) of integers. By rotation
symmetry we can assume that s > 0 and 0 ≤ h ≤ s ≤ T . By Lemma 2 all
grid-points P3, P4, P5, P6 must lie in a strip S centered at the line P1P2 of width
4 ·A/

√
h2 + s2.

Distributions of Points and Large Quadrangles 663

Consider a parallelogram P0 = {(px, py) ∈ S | p1,x − u ≤lex px ≤lex p2,x + u}
with two of its boundaries being the boundaries of the strip S and with center
being the middle of the segment [P1, P2]. By Lemma 3(a) this parallelogram P0
contains at most 4·A·(s+2·u)/s grid-points P , where P1, P2, P are not collinear.
In the following we will distinguish whether some of the grid-points P3, P4, P5, P6
lie in the parallelogram P0 or not.
Case A: All grid-points P3, P4, P5, P6 satisfy P3, P4, P5, P6 ∈ P0.

Given the grid-points P1 and P2, there are at most 4·A·(s+2·u)/s choices for
each of the grid-points P3, P4, P5, P6 ∈ P0. Using u = �T γ�, for some constants
c, c′, c′′, c′′′ > 0 we obtain for the number of these (2, 2)-cycles arising from E4
the following upper bound

c · T 2 ·
T∑

s=1

s∑
h=0

(
4 ·A · (s+ 2 · u)

s

)4

≤ c′ ·A4 · T 2 ·
T∑

s=1

s∑
h=0

(
1 +

2 · u
s

)4

≤ c′ ·A4 · T 2 ·
T∑

s=1

s∑
h=0

(
1 +

8 · u
s

+
24 · u2

s2
+

32 · u3

s3
+

16 · u4

s4

)
≤ c′′ ·A4 · T 2 · (T 2 + T 1+γ + T 2γ · log T + T 3γ + T 4γ)
≤ c′′′ ·A4 · (T 4 + T 2+4γ) as 0 < γ < 1 is a constant. (6)

Case B: The grid-points P3, P4, P5 satisfy P3, P4 ∈ P0 and P5 �∈ P0.
Given the grid-points P1 and P2, there are at most 4 · A · (s + 2 · u)/s

choices for each of the grid-points P3 ∈ P0 and P4 ∈ P0. Considering now
the quadruple P1, P2, P5, P6 of grid-points, by Lemma 3(b) there are at most
12 ·A · T/s choices for the grid-point P5 = (p5,x, p5,y) �∈ P0, since P1, P2, P5 are
not collinear and area (P1, P2, P5) ≤ A. However, since now |p1,x−p5,x| ≥ u and
area (P1, P2, P6) ≤ A, by Lemma 3(b) the number of choices for the grid-point
P6 in the T ×T -grid, such that P1, P2, P6 are not collinear, is at most 12 ·A ·T/u.
With u = �T γ� we obtain for constants c′, c′′, c′′′ > 0 the following upper bound
on the number of these (2, 2)-cycles arising from E4:

c · T 2 ·
T∑

s=1

s∑
h=0

12 ·A · T
u

· 12 ·A · T
s

·
(

4 ·A · (s+ 2 · u)
s

)2

≤ c′ ·A4 · T 4 ·
T∑

s=1

s∑
h=0

(
1
s · u +

4
s2

+
4 · u
s3

)

≤ c′′ ·A4 · T 4 ·
T∑

s=1

(
1
T γ

+
4
s

+
4 · T γ

s2

)
≤ c′′′ ·A4 · (T 5−γ + T 4+γ) as 0 < γ < 1 is a constant. (7)

664 H. Lefmann

Case C: The grid-points P3, P5 satisfy P3, P5 �∈ P0.
Given the grid-points P1 and P2, we partition the strip S within the T×T -grid

into parallelograms P0,P+
i ,P−

i , i = 1, . . . , l ≤ T 1−γ , which are all translates of
P0, and arranged according to the order P+

l ,P
+
l−1, . . . ,P

+
1 ,P0,P−

1 , . . . ,P−
l−1,P

−
l .

Each grid-point P = (px, py) ∈ P+
i ∪ P−

i , i ≥ 1, satisfies |px − p1,x| ≥ s + u +
(i− 1) · (s+2 ·u) ≥ i · (s+u) or |px− p2,x| ≥ i · (s+u). Using Lemma 3(a), each
parallelogram P+

i or P−
i contains at most 4 ·A · (s+ 2 · u)/s grid-points P , such

that P1, P2, P are not collinear. Each grid-point P3, P5 lies in some paralelogram
P+

i or P−
i for some i ≥ 1. If P3 ∈ P+

i ∪ P−
i , i ≥ 1, then by Lemma 3(b) there

are at most 12 · A · T/(i · (s + u)) choices for the grid-point P4. Similarly, if
P5 ∈ P+

j ∪ P−
j , j ≥ 1, there are at most 12 · A · T/(j · (s + u)) choices for the

grid-point P6, and we obtain for constants c, c′, c′′, c′′′ > 0 for the number of
these (2, 2)-cycles among E4 the upper bound

c · T 2 ·
T∑

s=1

s∑
h=0

l∑
i=1

l∑
j=1

(
4 ·A · (s+ 2 · u)

s

)2

· (12 ·A · T)2

i · j · (s+ u)2

≤ c′ ·A4 · T 4 ·
T∑

s=1

s∑
h=0

(
s+ 2 · u

s

)2

·
(

1
s+ u

)2

·
l∑

i=1

1
i

l∑
j=1

1
j

≤ c′′ ·A4 · T 4 · (log T)2 ·
T∑

s=1

s∑
h=0

4
s2

≤ c′′′ ·A4 · T 4 · (log T)3 , (8)

where we used (s+ 2 · u)/(s · (s+ u)) ≤ 2/s for s, u ≥ 0.
For γ := 1/2 the estimates (6),(7), (8) yield s2,2(G; E4) = O(A4 · T 9/2).
�

3.2 Selecting a Subhypergraph

For a suitable constant c > 0 we set

A :=
c · T 2 · (logn)1/2

n3/2 > 1 . (9)

For a moment we will use a probabilistic argument to simplify the presenta-
tion. However, this argument will be made constructive shortly. With probability
p := T ε/t0 ≤ 1 for a small constant ε > 0 we pick uniformly at random and inde-
pendently of each other vertices from the set V . Let V ∗ ⊆ V be the resulting ran-
dom subset of V of the picked vertices and let G∗ = (V ∗, E∗

3 ∪E∗
4) with E∗

3 := E3∩
[V ∗]3 and E∗

4 := E4∩ [V ∗]4 be the resulting random induced subhypergraph of G.
Let E[|V ∗|], E[|E∗

3 |], E[|E∗
4 |], E[s2,2(G∗; E∗

4)], E[s2,3(G∗; E∗
4)] denote the expected

number of vertices, 3-element edges, 4-element edges, (2, 2)- and (2, 3)-cycles
arising from E∗

4 , respectively, in the random subhypergraph G∗ = (V ∗, E∗
3 ∪ E∗

4)
of G. By (1), (2), (5) and (4) we infer for constants c′1, c

′
3, c

′
4, c

′
2,2, c

′
2,3 > 0:

Distributions of Points and Large Quadrangles 665

E[|V ∗|] = p · T 2 = c′1 · T 4/3+ε/A2/3 (10)
E[|E∗

3 |] = p3 · |E3| ≤ c′3 · (T 4 · log T) · T 3ε/(A · T)2 ≤
≤ c′3 · T 2+3ε · log T/A2 (11)

E[|E∗
4 |] = p4 · |E4| ≤ c′4 · (A2 · T 4) · T 4ε/(A · T)8/3 ≤
≤ c′4 · T 4/3+4ε/A2/3 (12)

E[s2,2(G∗; E∗
4)] ≤ p6 · s2,2(G; E4) ≤ c′2,2 · (A4 · T 9/2) · T 6ε/(A · T)4 ≤
≤ c′2,2 · T 1/2+6ε (13)

E[s2,3(G∗; E∗
4)] ≤ p5 · s2,3(G; E4) ≤ c′2,3 · (A3 · T 4 · log T) · T 5ε/(A · T)10/3 ≤
≤ c′2,3 · T 2/3+5ε · log T/A1/3 . (14)

With (10), (11), (12), (13), (14) and Chernoff’s and Markov’s inequality there
exists a subhypergraph G∗ = (V ∗, E∗

3 ∪ E∗
4) of G such that

|V ∗| ≥ c′1/2 · T 4/3+ε/A2/3 (15)
|E∗

3 | ≤ 5 · c′3 · T 2+3ε · log T/A2 (16)
|E∗

4 | ≤ 5 · c′4 · T 4/3+4ε/A2/3 (17)
s2,2(G∗; E∗

4) ≤ 5 · c′2,2 · T 1/2+6ε (18)

s2,3(G∗; E∗
4) ≤ 5 · c′2,3 · T 2/3+5ε · log T/A1/3 . (19)

This probabilistic argument can be derandomized by using the method of
conditional probabilities as follows. For j = 2, 3, let Cj be the (multi-)set of
all (8 − j)-element subsets E ∪ E′ of V such that the pair {E,E′} of distinct
4-element edges E,E′ ∈ E4 yields a (2, j)-cycle in G. We enumerate the vertices
of the T × T -grid by P1, . . . , PT 2 . For each vertex Pi we associate a parameter
pi ∈ [0, 1], and we define a potential function F by

F (p1, . . . , pT 2) := 2p·T 2/2 ·
T 2∏
i=1

(
1− pi

2

)
+

∑
{i,j,k}∈E3

pi · pj · pk

5 · c′3 · T 2+3ε · log T/A2 +

+

∑
{i,j,k,l}∈E4

pi · pj · pk · pl

5 · c′4 · T 4/3+4ε/A2/3 +

∑
{i,j,k,l,m,o}∈C2

pi · pj · pk · pl · pm · po

5 · c′2,2 · T 1/2+6ε
+

+

∑
{i,j,k,l,m}∈C3

pi · pj · pk · pl · pm

5 · c′2,3 · T 2/3+5ε · log T/A1/3 .

With the initialisation p1 := · · · := pT 2 := p := T ε/t0, we infer F (p, . . . , p) <
(2/e)pT 2/2 + 4/5 < 1 for p · T 2 ≥ 11. Then, using the linearity of F (p1, . . . , pT 2)
in each pi, we minimize F (p1, . . . , pT 2) by choosing one after the other pi := 0
or pi := 1 for i = 1, . . . , T 2, and finally we obtain F (p1, . . . , pT 2) < 1. Then
the vertex set V ∗ = {i ∈ V | pi = 1} yields an induced subhypergraph G∗ =
(V ∗, E∗

3 ∪ E∗
4) of G with E∗

3 = E3 ∪ [V ∗]3 and E∗
4 = E4 ∪ [V ∗]4, which satisfies

(15), (16), (17), (18), (19), compare [4]. With (1), (2), (4), (5), (9) and using
that A > 1, the running time of this derandomization is given by

666 H. Lefmann

O(|V |+ |E3|+ |E4|+ |C2|+ |C3|) = O(A4 · T 9
2) = O(T

25
2 · (logn)2/n6).(20)

We will show next that the numbers |E∗
3 |, s2,2(G∗; E∗

4) and s2,3(G∗; E∗
4) of 3-

element edges, (2, 2)- and (2, 3)-cycles arising from E∗
4 in G∗, respectively, are

very small compared to the number |V ∗| of vertices in G∗.

Lemma 8. For 0 < ε < α/(1 + α) it is

|E∗
3 | = o(|V ∗|) . (21)

Proof. By (9), (15), (16) and using T = n1+α with α > 0 a constant we have

|E∗
3 | = o(|V ∗|) ⇐⇒ T 2+3ε · log T/A2 = o(T 4/3+ε/A2/3) ⇐⇒

⇐⇒ T 2/3+2ε · log T/A4/3 = o(1) ⇐⇒ n2 · log T
T 2−2ε · (logn)2/3 = o(1) ⇐⇒

⇐⇒ n2−(1+α)(2−2ε) · (logn)1/3 = o(1) ⇐= (1 + α) · (2− 2ε) > 2 ⇐⇒
⇐⇒ ε < α/(1 + α) .
�

Lemma 9. For 0 < ε < 1/(5 · (1 + α))− 1/10 it is

s2,2(G∗; E∗
4) = o(|V ∗|) . (22)

Proof. By (9), (15), (18) and using T = n1+α with α > 0 a constant we infer

s2,2(G∗; E∗
4) = o(|V ∗|) ⇐⇒ T 1/2+6ε = o(T 4/3+ε/A2/3) ⇐⇒

⇐⇒ A2/3/T 5/6−5ε = o(1) ⇐⇒ n(1+α)(1/2+5ε)−1 · (logn)1/3 = o(1) ⇐=
⇐= (1 + α) · (1/2 + 5 · ε) < 1 ⇐⇒ ε < 1/(5 · (1 + α))− 1/10 .
�

Lemma 10. For 0 < ε < 1/(8 · (1 + α)) it is

s2,3(G∗; E∗
4) = o(|V ∗|) . (23)

Proof. By (9), (15), (19) and using T = n1+α with α > 0 a constant we have

s2,3(G∗; E∗
4) = o(|V ∗|) ⇐⇒ T 2/3+5ε · log T/A1/3 = o(T 4/3+ε/A2/3) ⇐⇒

⇐⇒ A1/3 · log T/T 2/3−4ε = o(1) ⇐⇒ n(1+α)4ε−1/2 · (logn)7/6 = o(1) ⇐=
⇐= (1 + α) · 4 · ε < 1/2 ⇐⇒ ε < 1/(8 · (1 + α)) .
�

To satisfy p = T ε/t0 ≤ 1, we need T ε/((4 ·c4)1/3 ·A2/3 ·T 2/3) ≤ 1, which holds
by (9) for 0 < ε ≤ 2−1/(1+α). For ε := 1/(12 · (1+α)) and 1/12 < α < 1/6 all
assumptions in Lemmas 8, 9, 10 are fulfilled. We delete in G∗ = (V ∗, E∗

3 ∪E∗
4) one

vertex from each 3-element edge E ∈ E∗
3 , and from each (2, 2)- and (2, 3)-cycle in

G∗ arising from E∗
4 , and we obtain a subset V ∗∗ ⊆ V ∗ with |V ∗∗| = (1−o(1))·|V ∗|.

The on V ∗∗ induced subhypergraph G∗∗ of G∗ contains no 3-element edges or

Distributions of Points and Large Quadrangles 667

(2, 2)- or (2, 3)-cycles, i.e. G∗∗ = (V ∗∗, E∗∗
4) with E∗∗

4 = E∗
4 ∩ [V ∗∗]4 is a linear

and 4-uniform hypergraph. By (15) and (17) we have

|V ∗∗| ≥ (c′1/2− o(1)) · T 4/3+ε/A2/3

|E∗∗
4 | ≤ 5 · c′4 · T 4/3+4ε/A2/3 ,

hence the average degree t3 of the subhypergraph G∗∗ = (V ∗∗, E∗∗
4) satisfies

t3 =
|E∗∗

4 |
|V ∗∗| ≤

20 · c′4 · T 4/3+4ε/A2/3

(c′1/2− o(1)) · T 4/3+ε/A2/3 =
40 · c′4
c′1 − o(1)

· T 3ε := t31 .

Since G∗∗ is linear we can now apply Theorem 2 and, using (9), we find in
time

O

(
|V ∗∗|+ |E∗∗

4 |+
|V ∗∗|3

t3−δ
1

)
= O

(
T 4/3+4ε

A2/3 +
T 4+εδ

A2

)
= O

(
n3+δ/12

log n

)
(24)

for any δ > 0, an independent set I of size

|I| = Ω

(
|V ∗∗|
t

· (log t)
1
3

)
= Ω

(
|V ∗∗|
t1

· (log t1)
1
3

)
=

= Ω

(
T 4/3+ε/A2/3

T ε
· (log T ε)

1
3

)
= Ω

(
T 4/3

A2/3 · (log T)
1
3

)
=

= Ω

(
n

(logn)
1
3
· (log T)

1
3

)
= Ω(n) since T = n1+α and α > 0 is constant.

By choosing a sufficiently small constant c > 0 in (9), we obtain in G∗∗ and
hence in G an independent set of size n, which yields a desired set of n grid-points
in the T × T -grid such that the area of the convex hull of every four distinct of
these n points is at least A = Θ(T 2 · (logn)1/2/n3/2). After rescaling we have n
points in [0, 1]2 such that the area of the convex hull of every four distinct of these
n points is at least Ω((logn)1/2/n3/2). In comparing the running times (20) and
(24) we get the overall time bound O(T 25/2 · (logn)2/n6) for 0 < δ < 1. For α =
1/11, say, we have the time bound O(n84/11 ·(logn)2) = o(n8). Indeed, we achieve
the time bound O(n13/2+δ) for any δ > 0 by choosing ε := 1/(C · (1 + α)) and
α := 1/(C − 1), where C ≥ 12 is a large enough constant, i.e. C > 1 + 25/(2 · δ).

4 Final Remarks

It seems that our approach also works for improving algorithmically the lower
bound on Δk(n) from [5] for k = 5 by a poly-logarithmic factor, but not for
arbitrary values k ≥ 6. However, this is work in progress. To decide, whether
our algorithm yields optimal solutions, one needs an upper bound. However, at
present only Δk(n) = O(1/n) for fixed integers k ≥ 4 is known, see [19].

668 H. Lefmann

References

1. M. Ajtai, J. Komlós, J. Pintz, J. Spencer and E. Szemerédi, Extremal Uncrowded
Hypergraphs, Journal of Combinatorial Theory Ser. A, 32, 1982, 321–335.

2. G. Barequet, A Lower Bound for Heilbronn’s Triangle Problem in d Dimensions,
SIAM Journal on Discrete Mathematics 14, 2001, 230–236.

3. G. Barequet, The On-Line Heilbronn’s Triangle Problem in Three and Four Di-
mensions, Proceedings COCOON’02’, LNCS 2387, Springer, 2002, 360–369.

4. C. Bertram–Kretzberg and H. Lefmann, The Algorithmic Aspects of Uncrowded
Hypergraphs, SIAM Journal on Computing 29, 1999, 201–230.

5. C. Bertram-Kretzberg, T. Hofmeister and H. Lefmann, An Algorithm for Heil-
bronn’s Problem, SIAM Journal on Computing 30, 2000, 383–390.

6. P. Brass, An Upper Bound for the d-Dimensional Heilbronn Triangle Problem,
preprint, 2003.

7. R. A. Duke, H. Lefmann and V. Rödl, On Uncrowded Hypergraphs, Random
Structures & Algorithms 6, 1995, 209–212.

8. A. Fundia, Derandomizing Chebychev’s Inequality to find Independent Sets in
Uncrowded Hypergraphs, Random Structures & Algorithms, 8, 1996, 131–147.

9. T. Jiang, M. Li and P. Vitany, The Average Case Area of Heibronn-type Triangles,
Random Structures & Algorithms 20, 2002, 206–219.

10. J. Komlós, J. Pintz and E. Szemerédi, On Heilbronn’s Triangle Problem, Journal
of the London Mathematical Society, 24, 1981, 385–396.

11. J. Komlós, J. Pintz and E. Szemerédi, A Lower Bound for Heilbronn’s Problem,
Journal of the London Mathematical Society, 25, 1982, 13–24.

12. H. Lefmann, On Heilbronn’s Problem in Higher Dimension, Combinatorica 23,
2003, 669–680.

13. H. Lefmann and N. Schmitt, A Deterministic Polynomial Time Algorithm for
Heilbronn’s Problem in Three Dimensions, SIAM Journal on Computing 31, 2002,
1926–1947.

14. K. F. Roth, On a Problem of Heilbronn, Journal of the London Mathematical
Society 26, 1951, 198–204.

15. K. F. Roth, On a Problem of Heilbronn, II, Proc. of the London Mathematical
Society (3), 25, 1972, 193–212.

16. K. F. Roth, On a Problem of Heilbronn, III, Proc. of the London Mathematical
Society (3), 25, 1972, 543–549.

17. K. F. Roth, Estimation of the Area of the Smallest Triangle Obtained by Select-
ing Three out of n Points in a Disc of Unit Area, Proc. of Symposia in Pure
Mathematics, 24, 1973, AMS, Providence, 251–262.

18. K. F. Roth, Developments in Heilbronn’s Triangle Problem, Advances in Mathe-
matics, 22, 1976, 364–385.

19. W. M. Schmidt, On a Problem of Heilbronn, Journal of the London Mathematical
Society (2), 4, 1972, 545–550.

Cutting Out Polygons with Lines and Rays�

Ovidiu Daescu and Jun Luo

Department of Computer Science, University of Texas at Dallas,
Richardson, TX 75080, USA

{daescu, ljroger}@utdallas.edu

Abstract. We present approximation algorithms for cutting out poly-
gons with line cuts and ray cuts. Our results answer a number of open
problems and are either the first solutions or significantly improve over
previously known solutions. For the line cutting version, we prove a key
property that leads to a simple, constant factor approximation algorithm.
For the ray cutting version, we prove it is possible to compute in almost
linear time a cutting sequence that is an O(log2 n)-factor approximation.
No algorithms were previously known for the ray cutting version.

1 Introduction

About two decades ago Overmars and Welzl [6] have first considered the problem
of cutting out a polygon in the cheapest possible way. The problem falls in the
general area of stock cutting, where a given shape needs to be cut out from a
parent piece of material, and it is defined as follows: Given a polygonal piece
of material Q with a polygon P drawn on it, cut P out of Q by a sequence of
“guillotine cuts” in the cheapest possible way.

A guillotine cut is a line cut that does not cut through the interior of P and
separates Q into a number of pieces, lying above and below the cut. A guillotine
cut is an edge cut if it cuts along an edge of P . After a cut is made, Q is updated
to that piece that still contains P . A cutting sequence is a sequence of cuts such
that after the last cut in the sequence we have P = Q (see Fig. 1). The cost of
a cut is the length of the intersection of the cut with Q and the goal is to find a
cutting sequence that minimizes the total cost.

From the definition of the problem it follows that P must be convex for a
cutting sequence to exist. Overmars and Welzl [6] proved a number of properties
for the case when both P and Q are convex polygons with n and m vertices,
respectively, including: (i) There exists a finite optimal cutting sequence with at
most 5n cuts, all touching P ; (ii) There are cases in which there is no optimal
cutting sequence with all cuts along the edges of P and (iii) When only edge
cuts are allowed, an optimal cutting sequence can be computed in O(m + n3)
time by a dynamic programming algorithm. They further noted that when Q is
not convex there are cases in which there is no optimal cutting sequence with
all cuts touching P .

� This research was partially supported by NSF grant CCF-0430366.

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 669–680, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

670 O. Daescu and J. Luo

Q Q Q

Q Q

P P

P P

l

l

l

l

1

2

3

4 P

Q=P

P

Fig. 1. A cutting sequence (bold lines) {l1, l2, l3, l4} for cutting P out of Q

Overmars and Welzl [6] have also left a number of open problems including:
(1) An algorithm for computing an optimal cutting sequence when Q is convex.
Since the problem is not discrete, it might be possible that an optimal cutting
sequence cannot be computed. (2) A proof of existence of a finite optimal cutting
sequence when Q is not convex (regarding Q as an open object). (3) Algorithms
to approximate an optimal cutting sequence. (4) The situation in which guillotine
cuts are replaced by rays, where a ray runs from infinity to some point in Q.
In this case, some non-convex polygons are ray-cuttable. These polygons have
the property that every edge of the polygon must be extendible to a ray. The
problem of computing or approximating optimal cutting sequences with rays has
been left completely open.

About a decade later Bhadury and Chandrasekaran [1] have been able to
answer the first open problem in a negative sense. Specifically, they showed that
the problem has optimal solutions that lie in the algebraic extension of the field
that the input data belongs to. Due to this algebraic nature of the problem, an
approximation scheme is the best that one can achieve. They also provided an
approximation scheme that, given an error range δ, is polynomial in δ and the
encoding length of the input data in unary, and gives a cutting sequence C(δ)
with total cost at most δ more than that of an optimal cutting sequence C∗.

For the fourth open problem, it has been proven in [2] that ray-cuttability
can be tested in linear time. However, the problem itself (computing or approx-
imating an optimal sequence of ray cuts) has been again left open.

Very recently, Dumitrescu [3] has proved that there exists an O(log n)-factor
approximation algorithm, which runs in O(mn + n log n) time, for cutting out a
convex polygon P with n vertices from a convex polygon Q with m vertices. Thus,
he gives a first answer to the third open problem. He also raised the following two

Cutting Out Polygons with Lines and Rays 671

interesting questions: (1) If Q is the minimum axis-aligned rectangle enclosing
P , is an optimal edge-cutting sequence a constant factor approximation of an
optimal cutting sequence? Answering this question in an affirmative sense would
result in a constant-factor approximation algorithm for cutting P out of Q. (2)
Is it possible to extend the results for guillotine cutting to ray cutting?

Some other related problems have been studied recently [5,7]. In [5], Jarom-
czyk and Kowaluk consider cutting polyhedral shapes with a hot wire cutter and
give an O(n5) time algorithm that constructs a cutting path, if one exists. In [7],
Pach and Tardos consider the problem of separating a large family of subsets
from a family of pairwise disjoint compact convex sets drawn on a sheet of glass.

Our Results. The main contributions of this paper are summarized below.
– We affirmatively answer the first open problem in [3], by proving there exists

a sequence of edge cuts that is guaranteed to be a constant factor approxima-
tion of an optimal cutting sequence. We use this result to obtain a constant
factor approximation algorithm for cutting P out of Q, when both P and
Q are convex polygons, as follows. We first show how to cut out a trian-
gle Q containing P of about the same size as P in O((n + m) log(n + m))
time, with a sequence of cuts of total cost C only a constant factor more
that the cost of an optimal cutting sequence C∗. This part of the algorithm
is based on simple observations and a mapping to a (length,angle) domain.
Then, with an additional O(n3) time, we compute an optimal edge cutting
sequence, resulting in an O(n3 + (n + m) log(n + m)) time, constant-factor
approximation algorithm for cutting P out of Q. Alternatively, one can use
a direct approach to obtain an O(log n)-factor approximation algorithm that
requires only O((n+m) log(n+m)) time, an improvement over the solution
in [3] by nearly a linear factor in some cases.

– We address the ray-cutting version of the problem and give an approximation
algorithm that computes in almost linear time a finite sequence of ray cuts
that is guaranteed to be an O(log2 n)-factor approximation of an optimal
solution. We first show that when P is ray-cuttable and Q is the convex
hull of P we can extend the approximation results for guillotine cutting
to ray cutting, resulting in an O(n log n) time algorithm to compute an
O(log2 n)-factor approximation of the optimal ray cutting sequence. We next
give an O(log n)-approximation algorithm for cutting out an n-vertex convex
polygon P from an m-vertex convex polygon Q by a sequence of ray cuts.
The running time of this algorithm is O(n+m). Thus, when Q is convex, we
answer the second question in [3] and the fourth question in [6] by combining
the two algorithms above.

2 Cutting Out Polygons with Guillotine Cuts

Our approach for solving the problem resembles that in [3]. Specifically, the
solution involves a separation phase and a carving phase. In the separation phase,
three line cuts are used to obtain a triangle that encloses P and has perimeter

672 O. Daescu and J. Luo

roughly the same as that of P . In the carving phase, all the cuts are along the
edges of P .

2.1 Separation Phase

For a line l, let θ be the unique angle of l in the interval I = [−90◦, 90◦]. In [3],
it has been proven that there exist two line cuts l1 and l2 with the property that
(1) either the angle formed by l1 and l2 is such that |θ1 − θ2| ∈ [20◦, 160◦], or
l1 and l2 are almost parallel and tangent to P on opposite sides, (2) l1 and l2
are tangent to P and (3) |l1| + |l2| = O(|C∗|), where C∗ is an optimal cutting
sequence. Two such cuts can be found in O(nm + n log n) time [3].

In this subsection, we show how to find in O((n+m) log(n+m)) time a pair
of cuts l1 and l2 that minimizes |l1| + |l2| and satisfies the first two conditions
above. Obviously, this implies the third condition, that is |l1|+|l2| = O(C∗). The
third cut is done as in [3], resulting in three line cuts of total length O(|C∗|).

We reformulate the angle property above for cuts l1 and l2 by changing the
definition of the angle θ of a cut l as follows. The angle of the line cut that is
parallel to the x-axis and tangent to P from bellow is 0◦. The angle increases
gradually as the line cut rotates counter-clockwise along the boundary of P while
being tangent to P . Thus, we have that θ ∈ [0◦, 360◦).

The problem now is to find two cuts l1 and l2 such that (1) l1 and l2 are
tangent to P , (2) the angle between l1 and l2 is such that |θ1 − θ2| /∈ [0◦, 20◦)
and (3) |l1|+ |l2| is minimized.

Let l be a line tangent to P and along the edge vi−1vi of P , with 1 ≤ i ≤ n
and v0 = vn, and consider rotating l around vi until it overlaps with the edge
vivi+1 or it touches a vertex of Q. Then, in this angle interval θ ∈ [θ1

i , θ2
i], the

length |l| = l(θ) of l is a convex function [1].
We can compute the functions l(θ) defining the cut length |l| for all the

O(n + m) angle intervals in O(n + m) time by rotating l along the boundary
of P (similar to the rotating calipers technique [8]). The diagram of l(θ) is a
continuous function that consists of O(n+m) convex curves, and it has O(n+m)
local minima.

Our algorithm is as follows:
1: Let M = {m1,m2, . . . , mp} be the list of local minima, where p = O(m+n)

is the number of local minima. Let the corresponding angles and cuts be
A = {a1, a2, . . . , ap} and C = {c1, c2, . . . , cp}, respectively. Assume the cuts
are such that a1 < a2 < . . . < ap.

2: Find the two cuts l1, l2 ∈ C of smallest length, with |l1| ≤ |l2|. Let θ1 and θ2
be the angles of l1 and l2, respectively.

3: Set l = |l1|+ |l2|.
4: if |θ1 − θ2| ∈ [0◦, 20◦) then
5: Set l = ∞.
6: Find all the local minima with angle in (θ1−20◦, θ1+20◦), by a plane sweep

from θ1. We obtain a set {m′
1,m

′
2, . . . , m

′
q}, where q ≤ p, the corresponding

angles are {a′
1, a

′
2, . . . , a

′
q}, with a′

1 < a′
2 < . . . < a′

q, and the corresponding
cuts are {c′

1, c
′
2, . . . , c

′
q}.

Cutting Out Polygons with Lines and Rays 673

7: for i = 1 to q do
8: Find the two cuts cb1 and cb2 with angles a′

i− 20◦ and a′
i + 20◦, respec-

tively.
9: Find the smallest value m0 among {m1,m2, ...,mp} ∪ {cb1, cb2} − {m′′

1 ,
m′′

2 , ...,m′′
r}, where r ≤ p and {m′′

1 ,m′′
2 , . . . , m′′

r} is the set of local min-
ima in {m1,m2, ...,mp} with angle in (a′

i − 20◦, a′
i + 20◦).

10: if m0 + m′
i < l then

11: set l1 = c′
i and l2 = c0, where c0 corresponds to the cut of length m0

and c′
i corresponds to the cut of length m′

i.
12: set l = |l1|+ |l2|.
13: end if
14: end for
15: end if

Theorem 1. Given two convex polygons P and Q, with P ⊂ Q, we can find
two cuts l1 and l2 tangent to P with |θ1 − θ2| /∈ [0◦, 20◦) and of minimum total
length lmin = |l1|+ |l2| in O((n + m) log(n + m)) time.

Proof. Use the algorithm above. The total running time is O((n+m) log(n+m))
since finding the two smallest cuts inM takes O(n+m) time and the cost of the
for loop is O((n+m) log(n+m)) if we use plane sweep and a priority queue data
structure. We next argue that lmin = |l1| + |l2|, as computed by the algorithm
above, is of minimum length. Let θ1 and θ2 be the angles of the cuts l1 and l2,
respectively. Let θmin be the angle corresponding to the cut of smallest length.
We have θ1 ∈ (θmin−20◦, θmin +20◦) and θ2 �∈ (θ1−20◦, θ1 +20◦). Note that θ1
and θ2 could only be one of the O(n+m) local minima except that θ2 could also
be at θ1− 20◦ or θ1 + 20◦, if there is no local minima outside (θ1− 20◦, θ1 + 20◦)
or all the local minima outside (θ1−20◦, θ1 +20◦) are larger than the cut length
at θ1−20◦ or θ1 +20◦. We check all possible pairs (l1, l2) during the plane sweep
and maintain the smallest cut length for |l1|+ |l2| over all such pairs. �

2.2 Carving Phase

In this section, we affirmatively answer the conjecture in [3]. Let C∗ denote an
optimal cutting sequence and let |C∗| be its cost. Similarly, let C∗

e denote an
optimal edge cutting sequence and let |C∗

e | be its cost. Let |P | and |Q| denote
the perimeter of P and Q, respectively.

Theorem 2. If P is enclosed in a minimum axis-aligned rectangle Q, an optimal
edge-cutting sequence C∗

e is a constant, (2.5 + |Q|/|P |)-factor approximation of
an optimal cutting sequence C∗ for cutting P out of Q.

Proof. We construct an edge-cutting sequence that is a (2.5 + |Q|/|P |)-factor
approximation of C∗ as follows. For every optimal cut C ∈ C∗, in order, if C is
an edge cut then we add it to the edge-cutting sequence. Otherwise, C is tangent
to a vertex v of P and we add to the edge cutting sequence two cuts that are
along the two edges of P incident at v (see Fig 2).

Consider an optimal cut C at a vertex v of P . Then, the endpoints of C are
either on the boundary of Q or they are on some previous cuts of C∗. Let s1

674 O. Daescu and J. Luo

x
v

c

a

e

P

b

d

s1

2ss1

s2

(a)

P

(b)

v

QQ c af b d

Fig. 2. Illustration of the extra cut cost, where dash lines are optimal cuts and contin-
uous lines are edge cut. In (b), the current cuts are drawn with bold lines

and s2 be the two line segments (of Q or C∗) on which the endpoints a and b of
C lie. Then, C is opposite to an obtuse angle (≥ 90◦) in the triangle defined by
C, s1 and s2, as illustrated in Fig. 2. Let C1 and C2 be two edge cuts at v that
replace the vertex cut at v. (The endpoints of C1 and C2 are on s1 and s2. It
will become clear below that C1 and C2 give upper bounds for the actual edge
cuts we construct.) Then, v splits C1 into two line segments, cv and vd, where
cv is inside the obtuse triangle defined by C, s1 and s2. Similarly, v splits C2
into two line segments, ev and vf , where vf is inside the obtuse triangle defined
by C, s1 and s2. Clearly, |cv| + |vf | < |ab| so at least one of |cv| and |vf | is
smaller than half the length of the optimal cut C. Assuming |cv| ≤ |vf | we have
|cv| < |C|/2. Then, the edge cuts C1 and C2 are done such that C1 precedes C2
and the cost of these two edge cuts is |cv|+ |ev|+ |vd| < |C|/2+ |ev|+ |vd|. Thus,
from now on, we focus on bounding the lengths of ev and vd. These lengths give
upper bounds (see below) on the components of the two edge cuts performed
along the edges incident to v, that replace the vertex cut at v. Let Qe be the
piece of Q that contains P after the two edge cuts are performed. Note that Qe

is included in the piece Qv of Q that contains P after the optimal vertex cut
C is performed. Since after a cut is performed the problem is divided into two
independent subproblems, we need focus only on one of the two subproblems.
Consider bounding the length of vd. We have two cases, depending whether s1 is
on the boundary of Q (Fig. 2 (a)) or it is part of some optimal cut preceding C
in the optimal cutting sequence (Fig. 2 (b)). Let the cost of the optimal cut vb
which goes through the vertex v of P be Lv, and let the cost of the corresponding
edge cut in the edge cutting sequence we construct be Le. The difference of Le

and Lv is the extra cost for the edge cut over the vertex cut. In the first case, bd
is on the boundary of Q. Then, Le − Lv ≤ EQ, where EQ = |bd|. In the second

Cutting Out Polygons with Lines and Rays 675

case, if d is on a vertex cut C ′, note that the line segment vd must intersect
an edge cut in the edge cutting sequence constructed so far (that edge cut is
associated with C ′). Let x be the intersection point. Thus, |vx| ≤ |vd| and the
edge cut adds length |vx| to the edge cutting sequence. The line segment bd is on
a previous optimal cut in C∗ and Le−Lv = |vx|− |vb| ≤ |vd|− |vb| ≤ |bd| = Ev.

Since subproblems are independent, it is easy to see that for any two line
segments l1 and l2, which are on the boundary of Q or on an optimal cut and
correspond to some values EQ or Ev in the construction above, with l1 �= l2,
we have l1 ∩ l2 = φ, that is, they do not overlap. Then, the total extra cost is
bounded by |C∗| + |Q|. Let Ce be the edge cutting sequence constructed. We
have |Ce| < |C∗|/2 + |C∗| + (|C∗| + |Q|) = 2.5|C∗| + |Q| and thus |Ce|/|C∗| =
2.5 + |Q|/|C∗| < 2.5 + |Q|/|P |. To end the proof we note that |C∗

e | ≤ |Ce|. �

An optimal edge cutting sequence C∗
e can be computed in O(n3 + m) time,

where n and m are the number of vertices of P and Q, respectively. Alternatively,
using an algorithm similar to that in [3], an O(log n)-factor approximation can
be computed in O(n) time, when m = O(1) (we omit this proof due to space
constraints). Combining Theorem 1 and Theorem 2 we have:

Theorem 3. Given two convex polygons P and Q, with P ⊂ Q, an O(1)-factor
approximation of an optimal cutting sequence for cutting P out of Q can be
computed in O(n3 +(n+m) log(n+m)) time. An O(log n)-factor approximation
can be found in O((n + m) log(n + m)) time.

3 Cutting Out Polygons with Ray Cuts

In this section we consider the ray cutting version of the problem: Given a convex
polygonal piece of material Q with a ray cuttable polygon P drawn on it, cut P
out of Q by a sequence of ray cuts in the cheapest possible way.

We first observe that the dynamic programming algorithm in [6] for comput-
ing an optimal edge cutting sequence does not work in the case of ray cuts. The
dynamic programming algorithm is based on the following fact: if we consider
a pair of cuts Ci and Cj then, after these two cuts are made, the cuts on the
boundary of P between Ci and Cj , in clockwise order, are independent of the
cuts between Ci and Cj taken in counter-clockwise order. However, in general
this is not true for a ray cutting sequence. Consider Fig. 3 and suppose we have
two cuts ab and bc followed by other two cuts dg and ef . Then, the length of
the cut dg, which is on the boundary of P between ab and bc in clockwise order,
depends on whether ef is made before or after dg, where the cut ef is between
the cuts ab and bc in counter-clockwise order.

Our solution for approximating an optimal ray cutting sequence has two key
steps. In the first step, we assume that Q is the convex hull of P and show how
to cut out a pocket, where a pocket is defined by an edge e of Q, e /∈ P , and
the boundary of P interior to Q and between the endpoints of e (see Fig. 3). In
the second step, we show how to cut out a convex polygon by a sequence of ray
cuts that is a good approximation of an optimal ray cutting sequence. As in the

676 O. Daescu and J. Luo

e

a

d

c

f

b

g

as t

CHvs

e

vtCH

(a) (b)

P

Q=CH(P)

v

P’

Fig. 3. (a) Illustrating that dynamic programming may fail. (b) A pocket P ′ of P

line cutting problem, this step has two phases: a separation phase and a carving
phase. We mention that we do not address the existence of a finite optimal ray
cutting sequence. This remains an open problem.

3.1 Cutting Out Pockets by Rays

Let CH(P) be the convex hull of P . Let s and t be the end vertices of an edge
e ∈ CH(P) defining a pocket P ′ of P . For a vertex v ∈ P that is inside the
pocket P ′, let CHvs (resp. CHvt) be the portion of the boundary of the convex
hull of the vertices of P ′ between v and s (resp., between v and t) that lies in
the pocket P ′ (see Fig. 3). Note that the shortest paths from v to s and t are
the same as CHvs and CHvt and that the two subproblems of cutting out the
pockets of P defined by CHvs and CHvt are independent (when CHvs and CHvt

are seen as the boundary of Q for the subproblems).
We use the simplified edge cutting algorithm for the carving phase in Sec-

tion 2.2, with some modifications, to cut out CHvs and CHvt from the pocket of
v. We first make a ray cut va, where va is the shortest straight line segment from
v to the segment st that has empty intersection with P . Such a ray cut always
exists since the polygon P is ray cuttable, and it can be found in constant time.
After the cut va, the ray cuts we perform for CHvs or CHvt originate on st and
do not cross va. Consider cutting out the polygonal line CHvs (we can assume
Q is the triangle defined by sa, av and vs and P is CHvs ∪ {vs}). Then, every
edge cut in an edge cutting sequence of the boundary of CHvs that intersects
with va corresponds to a ray with the property above.

Theorem 4. If Q is the convex hull of P , a ray cutting sequence Cr of total
cost O(|P | log2 n) can be computed in O(n log n) time. The cost of Cr is then
|Cr| = O(|C∗| log2 n), where C∗ is an optimal ray cutting sequence.

Proof. The second part of the theorem is obvious, since |P | = O(|C∗|). We
only sketch the proof for the first part. Consider a pocket of P , defined by a
segment st as above. Let P ′ be the portion of P in this pocket. To compute
Cr we first find the middle vertex v of the pocket, compute the shortest paths
CHvs and CHvt from v to s and t, and make the ray cut av. We cut out CHvs

and CHvt using edge cuts. Note that the polygon defined by CHvs, CHvt and

Cutting Out Polygons with Lines and Rays 677

the line segment st is cut out of P ′, and P ′ is separated into two parts: a left
part, P ′

l , and a right part, P ′
r. Let vl be the middle vertex of P ′

l and let vr be
the middle vertex of P ′

r. Next, we cut out CHvls,CHvlt,CHvrs and CHvrt using
edge cuts, and proceed recursively until P ′ is cut out. It can be easily shown
that at any level of recursion the corresponding cuts av and the portions of Q
and P ′ for various subproblems have about the same size. There are O(log n)
recursion levels and at each level the cost of the cut is O(|P ′| log n) if we use the
edge cutting algorithm in the carving phase of Theorem 3. Thus, the total cost
is O(|P ′| log2 n). We can compute the shortest paths CHvs and CHvt in linear
time [4]. The time to cut CHvs and CHvt is O(nst), where nst is the number of
vertices of P ′. Then, over all pockets of P the total time is O(n log n). �

3.2 Cutting Out Convex Polygons by Rays

As in the line cutting problem, we use a two phase algorithm for cutting out a
convex polygon P from a convex polygon Q: a separation phase and a carving
phase. In the separation phase, three ray cuts are made. After those cuts, P is
enclosed by a triangle Q′ such that diam(Q′)/diam(P) = O(1), where diam(P)
(resp., diam(Q′)) denotes the diameter of P (resp., Q′). In the carving phase we
cut P from Q′ by a sequence of cuts along the edges of P .

Separation Phase. Let ∂P (resp. ∂Q) denote the boundary of P (resp. Q).
Let n be the number of vertices of P and let m be the number of vertices of Q.

Lemma 1. There exists an O(n + m) time algorithm which finds the closest
distance from ∂P to ∂Q. Alternatively, the closest distance between ∂P and ∂Q
can be found in O(m log n) time.

Let pq be the segment that gives the closest distance, where p is a vertex of P and
q is on some edge e ∈ ∂Q. Let lq be the supporting line of e. Note that the angle
between pq and lq is a right angle (see Fig. 4). Let ls be the semi-line originating
from q and going through p, splitting P into two sides (left side and right side).
Consider two ray cuts bj and bo tangent to P at vertices d and e respectively, and
ending at the same point b on ls, where j and o are the originating points of the
two ray cuts on lq. Assume that point b moves along ls and let Cb = |bj|+ |bo|.
Then, we can compute the minimum value Cbmin of Cb in O(n) time.
Lemma 2. Let Cbmin be defined as above and let C∗ be an optimal ray cut.
Then, Cbmin is a constant factor approximation of C∗, with |Cbmin| ≤ 9 · |C∗|.

Proof. Let l′q be the line tangent to P and parallel to lq, such that P is between
lq and l′q, and refer to Fig. 4. The line l′q is also orthogonal to ls. Let a, h and i be
the intersection points of l′q with ls, bj and bo, respectively. Let D = diam(P), let
|ah| = x and let D′ = |hi|. Then, |ai| = D′−x and D′ ≤ D. Let |aq| = S, |ab| = y,
l1 = |bh|, l2 = |hj|, l3 = |bi| and l4 = |io|. We then have: l1+l2

S+y = l1
y , l1 + l2 =

(S + y) l1
y , l3+l4

S+y = l3
y , l3 + l4 = (S + y) l3

y and Cbmin ≤ Cb = l1 + l2 + l3 + l4 =
S+y

y (l1+l3) = (S
y +1)(l1+l3) ≤ (S

y +1)(2y+D′) ≤ (S
y +1)(2y+D), since l1 ≤ x+y,

l3 ≤ y + D′ − x and D′ ≤ D. Let f(y) = (S/y + 1)(2y + D). f(y) is convex and

678 O. Daescu and J. Luo

,
a

b

d
e

j l

v

l

i

u

h

P

Q

q qo

p

lq

s

Fig. 4. Illustration of the ray cut construction

to minimize it we set ∂f/∂y = 0 and get y =
√

SD/2. We then obtain Cbmin ≤
(S√

SD/2
+ 1)(2

√
SD/2 + D) = (

√
2S/D + 1)(

√
2SD + D). Since S = |aq| =

|ap|+ |pq| , |pq| ≤ |C∗| and |ap| ≤ D ≤ |C∗|, we have S ≤ 2|C∗|. Then, Cbmin ≤
(
√

4|C∗|/D+1)(
√

4D|C∗|+D) = 4|C∗|+4
√
|C∗|D+D ≤ 9|C∗|, as D ≤ |C∗|. �

After the cuts bj and bo for Cbmin are made, to cut out P we cut along the
line uv, where uv is the cut through p and parallel to lq, and u and v are the
two intersection points of this line with bj and bo. Obviously, |uv| ≤ |bj|+ |bo| ≤
9·|C∗|. Thus, the total cost for the separating phase is |uv|+|bj|+|bo| ≤ 18·|C∗|,
which is a constant factor from an optimal solution. We then obtain:

Theorem 5. Given two convex polygons P and Q, with P ⊂ Q, a cutting se-
quence C of cost |C| ≤ 18 · |C∗|, where C∗ is an optimal ray cutting sequence,
to cut out a triangle Q′ such that P ⊂ Q′ and |Q′|/|P | = O(1), can be found in
O(m + n) time.

Carving Phase. We first give a number of properties of an optimal ray cutting
sequence, when Q is a convex polygon. Then, by combining the results in this
subsection with those in Section 3.1 we obtain our main approximation results.

Lemma 3. All ray cuts in an optimal ray cutting sequence must end on ∂P or
on another cut.

Proof. Suppose an optimal ray cut r1 does not end on ∂P or on another ray
cut. There are two possible cases. Case 1. The ray r1 does not intersect with
other ray cuts (see Fig. 5 (a)). Obviously we can discard r1, since r1 does not
cut off any part of Q and it has no contribution in cutting P out of Q. Case 2.
The ray r1 intersects with other optimal ray cuts but its endpoint v1 does not lie
on any other optimal ray cut (see Fig 5 (b)). Let r2 be the last ray intersected

Cutting Out Polygons with Lines and Rays 679

Q

(a) (b)

r

r

1r

2

3

v 1

v
2

P

Q

r1

r2

a
v1

v
2

3
r

P

Fig. 5. Illustrating that a ray cut r1 must end on ∂P or on another ray cut

by r1 and let a be the intersection point of r1 and r2. Then, we can discard the
line segment av1 using a similar argument as in Case 1.

Lemma 4. All ray cuts in an optimal ray cutting sequence touch P .

Proof. We make the proof by contradiction. Suppose that there is an optimal
ray cut r1 that does not touch P . From Lemma 5, we know that r1 ends on
another optimal ray cut (denote it by r2). Let v1 = r1 ∩ r2. Consider another
optimal ray cut r4 that ends on r1 (see Fig. 6). We can move r1 parallel to itself
either towards P or away from P and at the same time keep the end point v1
on r2. For the ray cut r4, which ends on r1 at v3, we let v3 move with r1. The
function that gives the total change in length for |r1|+ |r4| is a linear function.
Then, this situation is the same as in the proof that an optimal line cut must
touch P [1] and it follows that r1 either is not necessary or it must touch P . �

v

r1

v2

r2

v1

Q

P

r

r

3

4

3

Fig. 6. Illustrating that the ray cut r1 either touches P or it is not needed

680 O. Daescu and J. Luo

Lemma 5. Given a ray-cuttable polygon P with n vertices on a convex polygon
Q with m vertices, in O(n3 + m) time one can compute a ray-cutting sequence
that is an O(log2 n)-factor approximation of an optimal ray-cutting sequence.

Proof. We first use the separation algorithm in Section 3.2 to obtain a triangle
Q′ containing P such that all edges of Q′ touch P and diam(Q′) = O(diam(P)).
This takes O(m + n) time. Note that from the way we upper bound Cbmin in
Section 3.2, it also follows that |Cbmin| ≤ 9 · |C∗|, where |C∗| is the optimal cost
of cutting out a ray-cuttable polygon P from a convex polygon Q. This is true
since in the proof of Lemma 2 we only use |C∗| to upper bound the diameter of
P and the closest distance from P to Q. Then, the cost to cut out Q′ when P is
a ray-cuttable polygon is upper bounded by 18 · |C∗|, and thus by O(|C∗|).

In the carving phase, we compute an optimal edge cutting sequence to cut
out CH(P) from Q′, where CH(P) is the convex hull of P . The optimal edge
cutting sequence C∗

e has cost bounded by O(|P | log n) and can be found in O(n3)
time (see Section 2.2). We then cut out P from CH(P) using the algorithm for
cutting out pockets in Section 3.1. Adding up, the total cutting cost is O(|C∗|)+
O(|P | log n) + O(|P | log2 n) = O(|C∗| + |P | log2 n) = O(|C∗| log2 n) and the
running time is O((n + m) + n3 + n log n) = O(n3 + m). �

Theorem 6. Given a ray-cuttable polygon P with n vertices on a convex polygon
Q with m vertices, in O(m+n log n) time one can compute a ray-cutting sequence
that is an O(log2 n)-factor approximation of an optimal ray-cutting sequence.

Proof. Same as the proof of Lemma 5, except that in the carving phase, instead
of an optimal edge cutting sequence C∗

e , we compute in O(n) time an approxi-
mate edge cutting sequence Ce that has cost O(|P | log n), as in the carving phase
for Theorem 3 (see the end of Section 2.2, paragraph before Theorem 3). Then,
the total running time is O((m + n) + n + n log n) = O(m + n log n). �

References

1. Bhadury, J. and Chandrasekaran, R.: Stock cutting to minimize cutting length.
European Journal of Operational Research. 88 (1996) 69–87.

2. Demaine, E.D., Demaine, M.L. and Kaplan,C.S.: Polygons cuttable by a circular
saw. Computational Geometry: Theory and Applications. 20 (2001) 69–84.

3. Dumitrescu, A.: An approximation algorithm for cutting out convex polygons.
Procs. of the 14-th ACM-SIAM Symposium on Discrete Algorithms. (2003) 823–827.

4. Guibas, L., Hershberger, J., Leven, D., Sharir, M. and Tarjan, R.E.: Linear-time
algorithms for visibility and shortest path problems inside triangulated simple poly-
gons. Algorithmica. 2(2) (1987) 209–233.

5. Jaromczyk, J.W. and Kowaluk, M: Sets of lines and cutting out polyhedral objects.
Computational Geometry. 25 (2003) 67–95.

6. Overmars, M.H. and Welzl, E.: The complexity of cutting paper. Procs. of the 1st
Annual ACM Symposium on Computational Geometry. (1985) 316–321.

7. Pach, J. and Tardos, G.: Cutting Glass. Disc. & Comput. Geom. 24 (2000) 481–495.
8. Toussaint, G.T.: Solving geometric problems with the ‘rotating calipers’. Procs.

MELECON, Athens, Greece, 1983.

Advantages of Backward Searching — Efficient
Secondary Memory and Distributed

Implementation of Compressed Suffix Arrays

Veli Mäkinen1, Gonzalo Navarro2,�, and Kunihiko Sadakane3,��

1 Dept. of Computer Science, Univ. of Helsinki, Finland
vmakinen@cs.helsinki.fi

2 Center for Web Research, Dept. of Computer Science, Univ. of Chile, Chile
gnavarro@dcc.uchile.cl

3 Dept. of Computer Science and Communication Engineering, Kyushu Univ., Japan
sada@csce.kyushu-u.ac.jp

Abstract. One of the most relevant succinct suffix array proposals in
the literature is the Compressed Suffix Array (CSA) of Sadakane [ISAAC
2000]. The CSA needs n(H0 + O(log log σ)) bits of space, where n is
the text size, σ is the alphabet size, and H0 the zero-order entropy of
the text. The number of occurrences of a pattern of length m can be
computed in O(m log n) time. Most notably, the CSA does not need
the text separately available to operate. The CSA simulates a binary
search over the suffix array, where the query is compared against text
substrings. These are extracted from the same CSA by following irregular
access patterns over the structure. Sadakane [SODA 2002] has proposed
using backward searching on the CSA in similar fashion as the FM-index
of Ferragina and Manzini [FOCS 2000]. He has shown that the CSA can
be searched in O(m) time whenever σ = O(polylog(n)).

In this paper we consider some other consequences of backward search-
ing applied to CSA. The most remarkable one is that we do not need,
unlike all previous proposals, any complicated sub-linear structures based
on the four-Russians technique (such as constant time rank and select
queries on bit arrays). We show that sampling and compression are
enough to achieve O(m log n) query time using less space than the origi-
nal structure. It is also possible to trade structure space for search time.
Furthermore, the regular access pattern of backward searching permits
an efficient secondary memory implementation, so that the search can
be done with O(m logB n) disk accesses, being B the disk block size.
Finally, it permits a distributed implementation with optimal speedup
and negligible communication effort.

� Funded by Millennium Nucleus Center for Web Research, Grant P01-029-F, Mide-
plan, Chile.

�� Partially funded by the Grant-in-Aid of the Ministry of Education, Science, Sports
and Culture of Japan.

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 681–692, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

682 V. Mäkinen, G. Navarro, and K. Sadakane

1 Introduction

The classical problem in string matching is to determine the occurrences of a
short pattern P = p1p2 . . . pm in a large text T = t1t2 . . . tn. Text and pattern
are sequences of characters over an alphabet Σ of size σ. Usually the same text
is queried several times with different patterns, and therefore it is worthwhile to
preprocess the text in order to speed up the searches. Preprocessing builds an
index structure for the text.

To allow fast searches for patterns of any size, the index must allow access to
all suffixes of the text (the ith suffix of T is titi+1 . . . tn). These kind of indexes
are called full-text indexes. Optimal query time, which is O(m) as every character
of P must be examined, can be achieved by using the suffix tree [25, 12, 23] as
the index.

The suffix tree takes much more memory than the text. In general, it takes
O(n log n) bits, while the text takes n log σ bits1. A smaller constant factor is
achieved by the suffix array [10]. Still, the space complexity does not change.
Moreover, the searches take O(m log n) time with the suffix array (this can be
improved to O(m+ logn) using twice the original amount of space [10]).

The large space requirement of full-text indexes has raised the interest on
indexes that occupy the same amount of space as the text itself, or even less.
For example, the Compressed Suffix Array (CSA) of Sadakane [19] takes in
practice the same amount of space as the text compressed with a zero-order
model. Moreover, the CSA does not need the text at all, since the text is in-
cluded in the index. Existence and counting queries on the CSA take O(m log n)
time.

There are also other so-called succinct full-text indexes that achieve good
tradeoffs between search time and space complexity [3, 9, 7, 22, 5, 14, 18, 16, 4].
Most of these are opportunistic as they take less space than the text itself, and
also self-indexes as they contain enough information to reproduce the text: A
self-index does not need the text to operate.

Recently, several space-optimal self-indexes have been proposed [5, 6, 4], whose
space requirement depends on the k-th order empirical entropy with constant
factor one (except for the sub-linear parts). These indexes achieve good query
performances in theory, but they are complex to implement as such.

2 Summary of Results

In this paper, we concentrate on simplifying and generalizing earlier work on
succinct self-indexes. We build on the Sadakane’s CSA [19], which we briefly
review in the following.

The CSA searches the pattern by simulating a binary search over the suffix
array. The search string must be compared against some text substring at each
step of the binary search. Since the text is not stored, the CSA must be traversed

1 By log we mean log2 in this paper.

Advantages of Backward Searching 683

in irregular access patterns to extract each necessary text substring. This makes
it unappealing e.g. for a secondary memory implementation.

Sadakane [20] has proposed using backward searching on the CSA in similar
fashion as the FM-index of Ferragina and Manzini [3]. Sadakane has shown that
the CSA can be searched in O(m) time whenever σ = O(polylog(n)). The CSA
scales much better than the FM-index as the alphabet size grows.

Backward searching has also some other consequences than improved search
time, as we will show in this paper. We exploit the fact that the access pattern
becomes much more regular. The most important consequence of this is that a
simpler implementation of the CSA is possible: All previous proposals heavily
rely on sublinear structures based on the so-called four-Russians technique [1]
to support constant time rank and select queries on bit arrays [8, 13, 2] (rank(i)
to find out how many bits are set before position i, and select(j) to find out
the position of the jth bit from the beginning). We show that these structures
are not needed for an efficient solution, but rather one can do with sampling
and traditional compression. This is a distinguishing feature of our proposal.
The absence of four-Russians tricks makes our index usable on weaker machine
models and also makes it easier to implement.

Under this simpler implementation scenario, we are able to retain the original
O(m log n) search time, and improve the original n(H0 + O(log log σ)) space to
n(H0 + ε)(1 + o(1)), for any ε > 0. The search time can be reduced gradually,
to O(�m/�� log n) time, up to O(m log σ + log n). The price is that the space
requirement increases to n(

∑�−1
i=0 Hi + ε)(1 + o(1)), being Hi the order-i empir-

ical entropy of T . We also give an alternative implementation where the space
requirement depends on Hk, for any k. Furthermore, the CSA becomes amenable
of a secondary memory implementation. If we call B the disk block size, then
we can search the CSA in secondary memory using O(m logB n) disk accesses.
Finally, we show that the structure permits a distributed implementation with
optimal speedup and negligible communication effort. Table 1 compares the orig-
inal and the new CSA.

Table 1. Space and time complexities of the original and new CSA implementations

Original CSA Our CSA, version 1 Our CSA, version 2
Space (bits) n(H0 + O(log log σ)) n(

∑�−1
i=0 Hi + ε) 2n(Hk(log σ + log log n) + ε)

Search time O(m log n) O(�m/�� log n) O(m log n)
Disk search time O(m log n) O(�m/�� logB n) O(m logB n)
Remote messages m log n �m/�� m

Our solution takes about the same amount of space as Sadakane’s improve-
ment in [20]. Our search time is worse by a logn factor. However, our struc-
ture works on more general alphabets; we only assume that σ = o(n/ log n), as
Sadakane’s improvement in [20] assumes that σ = O(polylog(n)). The space-
optimal solutions [5, 6, 4] have also similar restrictions on the alphabet size.

684 V. Mäkinen, G. Navarro, and K. Sadakane

3 The Compressed Suffix Array (CSA) Structure

Let us first describe the basic suffix array data structure. Given a text T =
t1t2 . . . tn, we consider the n text suffixes, so that the j-th suffix of T is tjtj+1 . . . tn.
We assume that a special endmarker “$” has been appended to T , such that the
endmarker is smaller than any other text character. The suffix array A of T is
the set of suffixes 1 . . . n, arranged in lexicographic order. That is, the A[i]-th
suffix is lexicographically smaller than the A[i+1]-th suffix of T for all 1 ≤ i < n.

Given the suffix array, the search for the occurrences of the pattern P =
p1p2 · · · pm is trivial. The occurrences form an interval [sp, ep] in A such that
suffixes tA[i]tA[i]+1 · · · tn, sp ≤ i ≤ ep, contain the pattern as a prefix. This
interval can be searched for using two binary searches in time O(m log n).

The compressed suffix array (CSA) structure of Sadakane [19] is based on that
of Grossi and Vitter [7]. In the CSA, the suffix array A[1 . . . n] is represented
by a sequence of numbers Ψ(i), such that A[Ψ(i)] = A[i] + 1. Furthermore, the
sequence is differentially encoded, Ψ(i) − Ψ(i − 1). If there is a self-repetition,
that is A[j . . . j + �] = A[i . . . i + �] + 1, then Ψ(i . . . i + �) = j . . . j + �, and
Ψ(i′) − Ψ(i′ − 1) = 1 for i < i′ ≤ i + �. Hence the differential array is encoded
with a method that favors small numbers and permits constant time access to
Ψ . Note in particular that Ψ values are increasing in the areas of A where the
suffixes start with the same character a, because ax < ay iff x < y.

Additionally, the CSA stores an array C[1 . . . σ], such that C[c] is the number
of occurrences of characters {$, 1, . . . , c − 1} in the text T . Notice that all the
suffixes A[C[c] + 1] . . .A[C[c+ 1]] start with character c. The text is discarded.

A binary search over A is simulated by extracting from the CSA strings of the
form tA[i]tA[i]+1tA[i]+2 . . . for any index i required by the binary search. The first
character tA[i] is easy to obtain because all the first characters of suffixes appear
in order when pointed from A, so tA[i] is the character c such that C[c] < i ≤
C[c+1]. This is found in constant time by using small additional structures based
on the four-Russians technique [8, 13, 2]. Once the first character is obtained, we
move to i′ ← Ψ(i) and go on with tA[i′] = tA[i]+1. We continue until the result of
the lexicographical comparison against the pattern P is clear. The overall search
complexity is the same as with the original suffix array, O(m log n).

Note that each string comparison may require accessing up to m arbitrary
cells in the Ψ array (see Fig. 1). Hence using the CSA in secondary memory is
not attractive because of the scattered access pattern. Also, a complex part in
the implementation of the CSA is the compression of the Ψ array, since it must
support constant time direct access at any position. This is achieved in [19] by
using four-Russians techniques, in n(H0 +O(log log σ)) bits of space.

Notice that the above search only solves existence and counting queries: We
find the interval of the suffix array that would contain suffixes of the text match-
ing the pattern. The pointers to suffixes are not stored explicitly, and hence we
cannot report the occurrences or show the text context around them. The so-
lution is to sample suffixes 1, log n, . . ., and use the Ψ function to retrieve the
unsampled ones [19]. We will only consider counting queries in the sequel, since
we can use the sampling technique as is to report occurrences.

Advantages of Backward Searching 685

A C G T

Fig. 1. One step of binary search for pattern P = CCAGTA. The blocks correspond to
the areas of suffix array whose suffixes start with the corresponding letter. The straight
arrow on top indicates the suffix the pattern is compared against. Other arrows indicate
the extraction of the prefix of the compared suffix. The extraction ends at letter G,
and hence the suffix does not correspond to an occurrence, and the search is continued
to the left of the current point

4 Backward Search on CSA

Sadakane [20] has proposed using backward search on the CSA. Let us review
how this search proceeds. We use the notation R(X), for a string X, to denote
the range of suffix array positions corresponding to suffixes that start with X.
The search goal is therefore to determine R(P). We start by computing R(pm)
simply as R(pm) = [C[pm] + 1, C[pm + 1]]. Now, in the general case, given
R(P [i + 1 . . .m]), it turns out that R(P [i . . .m]) consists exactly of the suffix
array positions in R(pi) containing values j such that j + 1 appears in suffix
array positions in R(P [i + 1 . . .m]). That is, the occurrences of P [i . . .m] are
the occurrences of pi followed by occurrences of P [i + 1 . . .m]. Since A[Ψ(i)] =
A[i] + 1, it turns out that

x ∈ R(P [i . . .m]) ⇔ x ∈ R(pi) ∧ Ψ(x) ∈ R(P [i+ 1 . . .m])

Now, Ψ can be accessed in constant time, and its values are increasing inside
R(pi). Hence, the set of suffix array positions x such that Ψ(x) is inside some
range forms a continuous range of positions and can be binary searched inside
R(pi), at O(logn) cost. Therefore, by repeating this process m times we find
R(P) in O(m log n) time.

Fig. 2 gives the pseudocode of the algorithm, and Fig. 3 illustrates.
Note that the backward search (as explained here) does not improve the

original CSA search cost. However, it is interesting that the backward search
does not use the text at all, while the original CSA search algorithm is based on
the concept of extracting text strings to compare them against P . These string
extractions make the access pattern to array Ψ irregular and non-local.

In the backward search algorithm, the accesses to Ψ always follow the same
pattern: binary search inside R(c), for some character c. In the next sections
we study different ways to take advantage of this feature. This is where our
exposition differs from [20].

686 V. Mäkinen, G. Navarro, and K. Sadakane

Algorithm BackwardCSA(P, C, Ψ):
leftm+1 := 1; rightm+1 := n;
for i := m downto 1 do begin

lefti = min{j ∈ [C[pi] + 1, C[pi + 1]], Ψ(j) ∈ [lefti+1, righti+1]};
righti = max{j ∈ [C[pi] + 1, C[pi + 1]], Ψ(j) ∈ [lefti+1, righti+1]};
if lefti > righti return “no occurrences found”;

return “right1 − left1 + 1 occurrences found”

Fig. 2. Backward search algorithm over the CSA. Functions “min” and “max” stand
for binary searches

A

C

G

T

A

C

G

T

A

C

G

T

A

C

G

T

A

C

G

T

A

C

G

T

A

C

G

T

A

C

G

T

A

C

G

T

.

.

.

Fig. 3. Searching for pattern P = CCAGTA backwards (right-to-left). The situation
after reading each character is plotted. The gray-shaded regions indicate the interval
of the suffix array that contain the current pattern suffix. The computation of the new
interval is illustrated in the second step (starting from right). The Ψ values from the
block of letter G point to consecutive positions in the suffix array. Hence it is easy to
binary search the top-most and bottom-most pointers that are included in the previous
interval

5 Improved Search Complexity

A first improvement due to the regular access pattern is the possibility of reduc-
ing the search complexity from O(m log n) to O(m log σ + logn). Albeit in [20]
they obtain O(m) search time, the more modest improvement we obtain here
does not need any four-Russians technique.

The idea is that we can extend the C array so as to work over strings of
length � (�-grams) rather than over single characters. Given �-gram x, C[x] is
the number of text �-grams that are lexicographically smaller than x. The final
�− 1 suffixes of length less than � are accounted as �-grams by appending them
as many “$” characters as necessary.

With this C array, we can search for pattern P of length m in O(�m/�� log n)
time as follows. We first assume that m is a multiple of �. Let us write P =

Advantages of Backward Searching 687

G1G2 . . . Gm/�, where all Gi are all of length �. We start by directly obtain-
ing R(Gm/�) = [C[Gm/�] + 1, C[next(Gm/�)]], where next(x) is the string of
length |x| that lexicographically follows x (if no such string exists, then as-
sume C[next(Gm/�)] = n). Once this is known, we binary search in R(Gm/�−1)
the subinterval that points inside R(Gm/�). This becomes R(Gm/�−1Gm/�). The
search continues until we obtain R(P). The number of steps performed is m/�,
each being a binary search of cost O(logn).

Let us consider now the case where � does not divide m. We extend P so
that its length is a multiple of �. Let e = m − (m mod �). Then we build two
patterns out of P . The first is Pl, used to obtain the left limit of R(P). Pl is
the lexicographically smallest �-gram that is not smaller than P , Pl = P$e,
that is, P followed by e occurrences of character “$”. The second is Pr, used
to obtain the right limit of R(P). Pr is the smallest �-gram that is lexico-
graphically larger than any string prefixed by P , Pr = next(P)$e. Hence, we
search for Pl and Pr to obtain R(Pl) = [spl, epl] and R(Pr) = [spr, epr]. Then,
R(P) = [spl, spr − 1].

Note that next(x) is not defined if x is the largest string of its length. In this
case we do not need to search for Pr, as we use spr = n+ 1.

We have obtained O(�m/�� log n) search time, at the cost of a C table with
σ� entries. If we require that C can be stored in n bits, then σ� log n = n, that is,
� = logσ n − logσ log n. The search complexity becomes O(�m/ logσ n� log n) =
O(m log σ + logn) as promised.

Moreover, we can reduce the C space complexity to O(n/ logt n) for any
constant t. The condition σ� log n = n/ logt n translates to � = logσ n − (t +
1) logσ log n, and the search cost remains O(m log σ + logn).

Notice that we cannot use the original Ψ function anymore to find the subin-
tervals, since we read � characters at a time. Instead, we need to store values
Ψ �[i] = Ψ [Ψ [· · ·Ψ [i]] · · ·], where Ψ function is recursively applied � times. Next
section considers how to represent the Ψ � values succinctly.

6 A Simpler and Smaller CSA Structure

One of the difficulties in implementing the CSA is to provide constant time ac-
cess to array Ψ (or Ψ � using the search procedure from previous section). This is
obtained by storing absolute samples every O(logn) entries and differential en-
coding for the others, and hence several complex four-Russians-based structures
are needed to access between samples in constant time.

Binary Search on Absolute Samples. Our binary searches inside R(pi),
instead, could proceed over the absolute samples first. When the correct interval
between samples has been found, we decode the O(logn) entries sequentially
until finding the appropriate entry. The complexity is still O(logn) per binary
search (that is, O(logn) accesses for the initial binary search plus O(logn) for
the final sequential search), and no extra structure is needed to access Ψ (or Ψ �).
The search is illustrated in Fig. 4.

688 V. Mäkinen, G. Navarro, and K. Sadakane

G

Fig. 4. Binary search followed by sequential search. The top-most sampled value closest
to the previous interval is found using binary search (indicated by the top-most solid
arrow). Then the next Ψ values are decoded until the first value inside the interval (if
exists) is encountered (indicated by the top-most dashed arrow). The same is repeated
to find the bottom-most sampled value and then the bottom-most encoded value

We first consider how Ψ can be encoded. We store εn
2 log n = O(n/ log n) abso-

lute samples of Ψ . For each such sample, we need to store value Ψ in logn bits,
as well as a pointer to its corresponding position in the differentially encoded Ψ
sequence, in other log n bits. Overall, the absolute samples require εn bits, for
any ε > 0, and permit doing each binary search in logn + 2

ε log n = O(logn)
steps. On the other hand, array C needs o(n) bits by choosing any t > 1 for its
O(n/ logt n) entries.

The most important issue is how to efficiently encode the differences between
consecutive Ψ cells. The n(H0 + O(log log σ)) space complexity of the original
CSA is due to the need of constant time access inside absolute samples, which
forces the use of a zero-order compressor. In our case, we could use any com-
pression mechanism between absolute samples, because they will be decoded
sequentially.

Compressing Ψ Using Elias Encoding. We now give a simple encoding that
slightly improves the space complexity of the original CSA.

The differences Ψ(i) − Ψ(i − 1) can be encoded efficiently using Elias delta
coding [26]. Let b(p) be the binary string representation of a number p. We
use 1|b(r)|0b(r)b(p) to encode p, where r = |b(p)|. The length of the encoding is
log(2 log p+ 1) + 1 + log p = log p(1 + o(1)). The overall length of the codes for
all differences can be bounded using the following observation: The Ψ values are
increasing inside a suffix array region corresponding to a character c. In other
words, ∑

i,i−1∈R(c)

|Ψ(i)− Ψ(i− 1)| =
∑

i,i−1∈R(c)

Ψ(i)− Ψ(i− 1) ≤ n. (1)

To encode the differences for character c, we thus need
∑

i,i−1∈R(c)(1 +
o(1)) log(Ψ(i) − Ψ(i − 1)) bits. This becomes |R(c)|(1 + o(1)) log(n/|R(c)|) in
the worst case, where |R(c)| = r − �+ 1 is the length of the range R(c) = [�, r].

Advantages of Backward Searching 689

Summing over all characters gives∑
c∈Σ

|R(c)|(1 + o(1)) log(n/|R(c)|) = nH0(1 + o(1)). (2)

Hence the overall structure occupies n(H0 + ε)(1 + o(1)) bits.
Also, the “small additional structures” mentioned in Section 3, used to find

in constant time the character c such that C[c] < i ≤ C[c+ 1], are not anymore
necessary. These also made use of four-Russians techniques.

Let us consider how to decode a number p coded with Elias. We can read
1|b(r)|0bitwise inO(|b(r)|)= O(log r)= O(log |b(p)|)= O(log log p) = O(log log n)
time. Then we get b(r) and b(p) in constant time. The complexity can be lowered
to O(log log logn) if we code r as 1b(r′)0b(r′)b(r), where r′ = |b(r)|. Indeed, we
can apply this until the number to code is zero, for a complexity of O(log∗ n).
Alternatively, we can decode Elias in constant time by only small abuse of four-
Russians technique: Precompute the first zero of any sequence of length log log n
and search the table with the first bits of 1|b(r)|0b(r)b(p). This table needs only
O(logn log log n) space.

Due the lack of space we omit the analysis for encoding Ψ �. In the full ver-
sion we show that Ψ � can be encoded to n

∑
0≤i<�Hi bits. We also give an

alternative encoding for Ψ combining run-length encoding and Elias encoding to
achieve a 2n(Hk(H+log log n)+ε)(1+o(1)) bits representation of the structure.
(Meanwhile, these analyses appear in a technical report [15–Chapter 5].)

7 A Secondary Memory Implementation

We show now how the regular access pattern can be exploited to obtain an
efficient implementation in secondary memory, where the disk blocks can ac-
commodate B log n bits.

Let us consider again the absolute samples. We pack all the O(n/ log n) ab-
solute samples together, using O(n/(B log n)) blocks. However, the samples are
stored in a level-by-level order of the induced binary search tree: For each char-
acter c, we store the root of the binary search hierarchy corresponding to the
area C[c] + 1 . . . C[c+ 1], that is, Ψ(�((C[c] + 1) + C[c+ 1])/2�). Then we store
the roots of the left and right children, and so on. When the disk block is filled,
the subtrees are recursively packed into disk pages. Fig. 5 illustrates.

Using this arrangement, any binary search inside the area of a character
c can make the first logB accesses by reading only the first disk block. Each
new disk block read permits making other logB accesses. Overall, we find the
interval between two consecutive samples in O(log(n)/ log(B)) = O(logB n) disk
accesses.

The compressed entries of Ψ are stored in contiguous disk pages. Once we
determine the interval between consecutive samples, we sequentially read all the
necessary disk pages. This requires reading O(log(n)/B) additional disk pages,
which contributes a lower order term to the cost.

690 V. Mäkinen, G. Navarro, and K. Sadakane

Fig. 5. Packing of array cells to optimize binary search in secondary memory. The
dashed boxes indicate cells mapped to a disk block. Any binary search on the array at
the bottom is carried out with 2 disk accesses

Overall, we can maintain the CSA on disk and search it in O(m logB n) disk
accesses. The original structure requires O(m log n) disk accesses. If we can hold
O(n) bits in main memory, then we can cache all the absolute samples and pay
only O(m log(n)/B) disk accesses.

This scheme can be extended to use a table C of �-grams rather than of
individual characters. Each individual binary search takes still O(logB n) time,
but we perform only �m/�� of them.

One obstacle to a secondary memory CSA implementation might be in build-
ing such a large CSA. This issue has been addressed satisfactorily [21].

8 A Distributed Implementation

Distributed implementations of suffix arrays face the problem that not only the
suffix array, but also the text, are distributed. Hence, even if we distribute suffix
array A according to lexicographical intervals, the processor performing the local
binary search will require access to remote text positions [17]. Although some
heuristics have been proposed, logn remote requests for m characters each are
necessary in the worst case.

The original CSA does not help solve this. If array Ψ is distributed, we will
need to request cells of Ψ to other processors for each character of each binary
search step, for a total of m log n remote requests. Actually this is worse than
log n requests for m characters each.

The backward search mechanism permits us to do better. Say that one pro-
cessor is responsible for the interval corresponding to each character. Then, we
can process pattern characters pm, pm−1, . . ., p1 as follows: The processor respon-
sible for pm sends R(pm) to the processor responsible for pm−1. That processor

Advantages of Backward Searching 691

binary searches in its local memory for the cells that point inside R(pm), with-
out any communication need. Upon completing the search, it sends R(pm−1pm)
to the processor responsible for pm−2 and so on. After m communication steps
exchanging O(1) data, we have the answer.

In the BSP model [24], we need m supersteps of O(logn) CPU work and
O(1) communication each. In comparison, the CSA needs O(m log n) supersteps
of O(1) CPU and communication each, and the basic suffix array needs O(logn)
supersteps of O(m) CPU and communication each.

More or less processors can be accommodated by coarsening or refining the
lexicographical intervals. Although the real number of processors, r, is irrelevant
to search for one pattern (note that the elapsed time is still O(m logn)), it
becomes important when performing a sequence of searches.

If N search patterns, each of length m, are entered into the system, and we
assume that the pattern characters distribute uniformly overΣ, then a pipelining
effect occurs. That is, the processor responsible for pm becomes idle after the first
superstep and it can work on subsequent patterns. On average the N answers
are obtained after Nm/r supersteps and O(Nm log(n)/r) total CPU work, with
O(Nm/r) communication work.

Hence, we have obtained O(m log(n)/r) amortized time per pattern with r
processors, which is the optimal speedup over the sequential algorithm. The
communication effort is O(m/r), of lower order than the computation effort.
We can apply again the technique of Section 5 to reduce the CPU time to
O((�m/�� log n)/r).

9 Conclusions

We have proposed a new implementation of the backward search algorithm for
the Compressed Suffix Array (CSA). The new method takes advantage of the
regular access pattern to the structure, which allows several improvements over
the CSA: (i) tradeoff between search time and space requirement, (ii) simpler
and more compact structure implementation, (iii) efficient secondary memory
implementation, and (iv) efficient distributed implementation. In particular, ours
is the only succinct full-text index structure not relying on four-Russians tech-
niques.

References

1. V. L. Arlazarov, E. A. Dinic, M. A. Kronrod, and I. A. Faradzev. On economic
construction of the transitive closure of a directed graph. Dokl. Acad. Nauk. SSSR
194, 487–488, 1970 (in Russian). English translation in Soviet Math. Dokl. 11,
1209–1210, 1975.

2. D. Clark. Compact Pat Trees. PhD thesis, University of Waterloo, 1996.
3. P. Ferragina and G. Manzini. Opportunistic data structures with applications. In

Proc. FOCS’00, pp. 390–398, 2000.

692 V. Mäkinen, G. Navarro, and K. Sadakane

4. P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. An Alphabet-Friendly
FM-index. To appear in 11th Symposium on String Processing and Information
Retrieval (SPIRE 2004), Padova, Italy, October 5-8, 2004.

5. R. Grossi, A. Gupta, and J. Vitter. High-order entropy-compressed text indexes.
In Proc. SODA’03, pp. 841–850, 2003.

6. R. Grossi, A. Gupta, and J. Vitter. When indexing equals compression: Exper-
iments with compressing suffix arrays and applications. In Proc. SODA’04, pp.
636-645, 2004.

7. R. Grossi and J. Vitter. Compressed suffix arrays and suffix trees with applications
to text indexing and string matching. In Proc. STOC’00, pp. 397–406, 2000.

8. G. Jacobson. Succinct Static Data Structures. PhD thesis, CMU-CS-89-112,
Carnegie Mellon University, 1989.

9. J. Kärkkäinen. Repetition-Based Text Indexes, PhD Thesis, Report A-1999-4,
Department of Computer Science, University of Helsinki, Finland, 1999.

10. U. Manber and G. Myers. Suffix arrays: A new method for on-line string searches.
SIAM J. Comput., 22, pp. 935–948, 1993.

11. G. Manzini. An Analysis of the Burrows-Wheeler Transform. J. of the ACM
48(3):407–430, 2001.

12. E. M. McCreight. A space economical suffix tree construction algorithm. J. of the
ACM, 23, pp. 262–272, 1976.

13. I. Munro. Tables. In Proc. FSTTCS’96, pp. 37–42, 1996.
14. V. Mäkinen. Compact Suffix Array — A space-efficient full-text index. Fundamenta

Informaticae 56(1-2), pp. 191–210, 2003.
15. V. Mäkinen and G. Navarro. New search algorithms and space/time tradeoffs for

succinct suffix arrays. Technical report, C-2004-20, Dept. CS, Univ. Helsinki, April
2004. [http://www.cs.helsinki.fi/u/vmakinen/papers/ssa tech 2004.ps.gz]

16. V. Mäkinen and G. Navarro. Compressed compact suffix arrays. In Proc. CPM’04,
LNCS 3109, pp. 420–433, 2004.

17. M. Maŕın and G. Navarro. Distributed query processing using suffix arrays. In
Proc. SPIRE’03, pages 311–325, LNCS 2857, 2003.

18. G. Navarro. Indexing text using the Ziv-Lempel trie. J. of Discrete Algorithms
2(1):87–114, 2004.

19. K. Sadakane. Compressed text databases with efficient query algorithms based on
the compressed suffix array. In Proc. ISAAC’00, LNCS 1969, pp. 410–421, 2000.

20. K. Sadakane. Succinct representations of lcp information and improvements in the
compressed suffix arrays. In Proc. SODA 2002, ACM-SIAM, pp. 225–232, 2002.

21. K. Sadakane. Constructing compressed suffix arrays with large alphabets. In Proc.
ISAAC’03, LNCS 2906, pp. 240–249, 2003.

22. S. Srinivasa Rao. Time-space trade-offs for compressed suffix arrays. Inf. Proc.
Lett., 82 (6), pp. 307-311, 2002.

23. E. Ukkonen. On-line construction of suffix-trees. Algorithmica, 14, pp. 249–260,
1995.

24. L. Valiant. A bridging model for parallel computation. Comm. ACM, 33:103–111,
Aug. 1990.

25. P. Weiner. Linear pattern matching algorithms. In Proc. IEEE 14th Ann. Symp.
on Switching and Automata Theory, pp. 1–11, 1973.

26. I. Witten, A. Moffat, and T. Bell. Managing Gigabytes. Morgan Kaufmann Pub-
lishers, New York, second edition, 1999.

Inner Rectangular Drawings of Plane Graphs
(Extended Abstract)

Kazuyuki Miura, Hiroki Haga, and Takao Nishizeki

Graduate School of Information Sciences,
Tohoku University, Sendai 980-8579, Japan

{miura, haga}@nishizeki.ecei.tohoku.ac.jp
nishi@ecei.tohoku.ac.jp

Abstract. A drawing of a plane graph is called an inner rectangular
drawing if every edge is drawn as a horizontal or vertical line segment so
that every inner face is a rectangle. In this paper we show that a plane
graph G has an inner rectangular drawing D if and only if a new bipartite
graph constructed from G has a perfect matching. We also show that D
can be found in time O(n1.5/ log n) if G has n vertices and a sketch of
the outer face is prescribed, that is, all the convex outer vertices and
concave ones are prescribed.

1 Introduction

A drawing of a plane graph G is called a rectangular drawing if every edge is drawn
as a horizontal or vertical line segment so that every face boundary is a rectan-
gle. Figures 1(a) and 2(d) illustrate rectangular drawings. A rectangular drawing
often appears in VLSI floor-planning and architectural layout [DETT99, FW74,
GT97, Len90, SY99]. Each inner face of a plane graph G represents a module of a
VLSI circuit or a room of an architectural layout. Suppose that a plane graph Ga
representing the requirement of adjacency among modules is given as illustrated
in Fig. 2(a). Each vertex of Ga corresponds to a module of a VLSI circuit, and each
edge of Ga means that the two modules corresponding to the ends are required to
be adjacent in the VLSI floor-planning, that is, the two rectangular modules must
share a common boundary. A conventional method obtains a floor plan meeting
the adjacency requirement represented by Ga, as follows:

(1) add dummy edges to Ga so that every inner face of the resulting graph
Ga

′ is a triangle, as illustrated in Fig. 2(b) where dummy edges are
drawn by dotted lines;

(2) construct a new plane graph G from a dual-like graph of Ga
′ by adding

four vertices of degree two corresponding to the four corners of the
rectangular chip, as illustrated in Fig. 2(c) where Ga

′ is drawn by dotted
lines, G by solid lines, and the four added vertices by white circles;

(3) find a rectangular drawing D of G as a floor plan meeting the require-
ment of Ga, as illustrated in Fig. 2(d).

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 693–704, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

694 K. Miura, H. Haga, and T. Nishizeki

3
3

3 33

3 3

3

3

2

2

2

2

2

2

2

2

1

(a) (b)

2

2

2

22

3 3

33

33

2 2

22

1 1

(c)

2

2

3

3

3

33 32

2 2

2 2
1 1

(d)

2 2

3 3

3
3

33 3

3

3

3

3

3

2

2 2

2

(e) (f)

2

1
1

22

2

22

2 2

1

1

2

2

Fig. 1. Rectangular drawing (a), and inner rectangular drawings of (b) L-shape, (c)
T-shape, (d) U-shape, (e) Z-shape, and (f) staircase-shape

Ga (d)

A
B

G
C

H D

F E

A
B

C

D
E

F

G

H

(a)

A
B

G
C

H D

F E

(b) (c)Ga G D'

Fig. 2. (a) Adjacency requirement graph Ga, (b) inner triangulated graph Ga
′ aug-

mented from Ga, (c) dual-like graph G of Ga
′, and (d) rectangular drawing D of G

with Δ = 3

In the plane graph G appearing in the conventional method above, all vertices
have degree three except for the four vertices of degree two corresponding to the
four corners, because every inner face of Ga

′ is a triangle. Hence the maximum
degree Δ of G is three. However, some plane graphs with Δ = 4 may have
rectangular drawing, as illustrated in Fig. 3(d). Of course, Δ must be four or
less if G has a rectangular drawing. A necessary and sufficient condition for a
plane graph G with Δ ≤ 3 to have a rectangular drawing is known, and linear or
O(n2.5/ log n) algorithms to find a rectangular drawing of G is obtained [BS88,
He93, KH97, KK84, LL90, RNN02, RNN98, Tho84]. However, it has been an
open problem to obtain a necessary and sufficient condition and an efficient
algorithm for plane graphs G with Δ ≤ 4 [MMN02, RNN98].

Let Ga
′′ be a plane graph obtained from an adjacency requirement graph Ga

by adding dummy edges to Ga so that every inner face is either a triangle or a
quadrangle, as illustrated in Fig. 3(b). Let G be a plane graph obtained from a
dual-like graph of Ga

′′ by adding four vertices of degree two corresponding to
the corners. Of course, the maximum degree Δ of G may be four since Ga

′′ may

Inner Rectangular Drawings of Plane Graphs 695

A
B

G
C

H D

F E

A B

C

D
EF

G
H

A
B

G
C

H D

F E

(d)(a) (b) (c)Ga Ga G D''

Fig. 3. (a) Adjacency requirement graph Ga, (b) inner triangulated or quadrangulated
graph Ga

′′ augmented from Ga, (c) dual-like graph G of Ga
′′, and (d) rectangular

drawing D of G with Δ = 4

have a quadrangular inner face. If one can find a rectangular drawing D of G
with Δ ≤ 4 as illustrated in Fig. 3(d), then one can use D as a floor plan meeting
the requirement of Ga.

The outer face boundary must be rectangular in a rectangular drawing, as
illustrated in Fig. 1(a). However, the outer boundary of a VLSI chip or an archi-
tectural floor plan is not always rectangular, but is often a rectilinear polygon
of L-shape, T-shape, U-shape or staircase-shape, as illustrated in Figs. 1(b)–(f)
[FW74, Len90, MMN02, SS93, YS93]. We call such a drawing of a plane graph
G an inner rectangular drawing if every inner face of G is a rectangle although
the outer face boundary is not always a rectangle.

In the paper we show that a plane graph G has an inner rectangular drawing
D if and only if a new bipartite graph constructed from G has a perfect matching.
We also show that D can be found in time O(n1.5/ log n) if a “sketch” of the
outer face is prescribed, that is, all the convex outer vertices and concave ones
are prescribed, where n is the number of vertices of G. We do not assume Δ ≤ 3,
and an inner rectangular drawing is a rectangular drawing if the outer face is
sketched as a rectangle. Thus we solve the open problem above.

The reminder of the paper is organized as follows. In Section 2 we define some
terms, describe some fundamental facts, and present our main results, Theorems
1–3. In Section 3 we prove Theorem 1 for the case where a sketch of the outer face
is prescribed. In Section 4 we prove Theorem 2 for the case where the numbers
of “convex” and “concave” outer vertices are prescribed. In Section 5 we prove
Theorem 3 for a general case.

2 Preliminaries and Main Results

We assume in the paper that G is a plane undirected simple graph. We denote
by d(v) the degree of a vertex v in G. We denote by Fo the outer face of G. The
boundary of Fo is called the outer boundary, and is denoted also by Fo. A vertex
on Fo is called an outer vertex, and a vertex not on Fo is called an inner vertex.
We may assume without loss of generality that G is 2-connected and Δ ≤ 4, and
hence every vertex of G has degree 2, 3 or 4.

696 K. Miura, H. Haga, and T. Nishizeki

3

3
3

3

3

1

2

22

2

2

2

2

1

1 1

1

1

1

1

1

1

1
1

x
x

x

x
x x

x
x x

x x
x

x x

(a) (b)

2 2

2

2

G Gd (c)

3

3
3

3 3

2

1

2

2

2

2

2

2

2

2

2

2

2

2
2

2

1

1
1

1

11

11
1
1

1
1

1
1

11

11
1
1

2

D and f

Fig. 4. (a) Plane graph G, (b) decision graph Gd, and (c) inner rectangular drawing
D and regular labeling f of G

An angle formed by two edges e and e ′ incident to a vertex v in G is called an
angle of v if e and e ′ appear consecutively around v. An angle of a vertex in G is
called an angle of G. An angle formed by two consecutive edges on a boundary
of a face F in G is called an angle of F. An angle of the outer face is called an
outer angle of G, while an angle of an inner face is called an inner angle.

In any inner rectangular drawing, every inner angle is π/2 or π, and every
outer angle is π/2, π or 3π/2. Consider a labeling f which assigns a label 1, 2, or 3
to every angle of G, as illustrated in Fig. 4(c). Labels 1, 2 and 3 correspond to an-
gles π/2, π and 3π/2, respectively. We denote by ncv the number of outer angles
having label 3, and by ncc the number of outer angles having label 1. Thus ncv is
the number of “convex” outer vertices, and ncc is the number of “concave” outer
vertices. For example ncv = 5 and ncc = 1 for the labeling f in Fig. 4(c).

We call f a regular labeling of G if f satisfies the following three conditions
(a)–(c):

(a) For each vertex v of G, the labels of all the angles of v total to 4;
(b) The label of any inner angle is 1 or 2, and every inner face has exactly

four angles of label 1; and
(c) ncv − ncc = 4.

Figure 4(c) illustrates a regular labeling f of the plane graph in Fig. 4(a) and
an inner rectangular drawing D corresponding to f.

Conditions (a) and (b) imply the following (i)–(iii):

(i) If a vertex v has degree 2, that is, d(v)= 2, then the two labels of v are
either 2 and 2 or 1 and 3. In particular, if v is an inner vertex, then the
two labels are 2 and 2.

(ii) If d(v)= 3, then exactly one of the three angles of v has label 2 and the
other two have label 1.

(iii) If d(v)= 4, then all the four angles of v have label 1.

If G has an inner rectangular drawing, then clearly G has a regular labeling.
Conversely, if G has a regular labeling, then G has an inner rectangular drawing,
as can be proved by means of elementary geometric considerations. We thus have
the following fact.

Inner Rectangular Drawings of Plane Graphs 697

Fact 1. A plane graph G has an inner rectangular drawing if and only if G has
a regular labeling.

A drawing of a plane graph is called an orthogonal drawing if each edge
is drawn as an alternating sequence of horizontal and vertical line segments. A
point at which an edge changes its direction is called a bend. An inner rectangular
drawing is an orthogonal drawing with no bend such that every inner face is a
rectangle. Tamassia gives an algorithm to find an orthogonal drawing of a given
plane graph with the minimum number of bends in time O(n2 log n) by solving
the “minimum cost flow problem” of a new graph constructed from G [Tam87].
Garg and Tamassia refine the algorithm so that it takes time O(n1.75√log n)
[GT97]. Tamassia presents an “orthogonal representation” of a plane graph for
characterizing an orthogonal drawing [DETT99, Tam87]. Our regular labeling
can be regarded as a special case of his orthogonal representation. He gives also
a linear algorithm to find an orthogonal “grid” drawing from an orthogonal
representation, in which every vertex has an integer coordinate. Similarly, one
can find an inner rectangular “grid” drawing from a regular labeling in linear
time.

A sketch of the outer face Fo of a plane graph G is to assign a label 1, 2
or 3 to the outer angle α of each outer vertex v of G, as illustrated in Fig. 1.
If d(v) = 2, then the label of α must be either 2 or 3. If d(v) = 3, then the
label must be either 1 or 2. If d(v) = 4, then the label must be 1. Furthermore,
ncv − ncc = 4. For example, ncv = 5 and ncc = 1 for the sketches in Figs. 1(b)
and 4(a), and hence the sketches imply that the outer face boundary Fo must
have an L-shape.

Suppose first that a sketch of Fo is prescribed. Then one can immediately
determine some of the inner angles by Conditions (a) and (b) of a regular la-
beling, as illustrated in Fig. 4(a). The remaining undetermined inner angles are
labeled with x, which means either 1 or 2. We construct from G a new graph
Gd, called a decision graph of G, as illustrated in Fig. 4(b) where Gd is drawn
by solid lines and G by dotted lines. We then have the following theorem.

Theorem 1. Suppose that a sketch of the outer face of a plane graph G is
prescribed. Then G has an inner rectangular drawing D with the sketched outer
face if and only if the decision graph Gd of G has a perfect matching. D can
be found in time O(n1.5/ logn) whenever G has D, where n is the number of
vertices in G.

The proof of Theorem 1 and together with the construction of Gd will be given
in Section 3.

Suppose next that a sketch of Fo is not prescribed but the numbers ncv and
ncc of convex and concave outer vertices are prescribed. Of course, ncv−ncc = 4.
For example, ncv = 4 and ncc = 0 mean that Fo is rectangular as illustrated
in Fig. 1(a), while ncv = 6 and ncc = 2 mean that Fo has a T-shape, U-shape,
Z-shape or staircase-shape as illustrated in Figs. 1(c)–(f). Let Gd

∗ be a graph
constructed from G, as illustrated in Fig. 6(b). Then we have the following
theorem.

698 K. Miura, H. Haga, and T. Nishizeki

Theorem 2. Suppose that a pair of non-negative integers ncv and ncc are pre-
scribed. Then a plane graph G has an inner rectangular drawing D with ncv
convex outer vertices and ncc concave ones if and only if Gd

∗ has a perfect
matching. D can be found in time O(

√
n(n+ ncvno)/ log n) whenever G has D,

where no is the number of outer vertices.

The proof of Theorem 2 together with the construction of Gd
∗ will be given in

Section 4.
Consider finally a general case where neither a sketch of Fo nor a pair

(ncv, ncc) is prescribed. Let Gd
� be a graph constructed from G. Then we have

the following theorem.

Theorem 3. A plane graph G has an inner rectangular drawing D if and only if
Gd

� has a perfect matching. Dcanbe found in time O(
√
n(n+(no2−no4)no)/ log n)

whenever G has D, where no2 and no4 are the numbers of outer vertices of degrees
2 and 4, respectively.

The proof of Theorem 3 together with the construction of Gd
� will be given in

Section 5.
We assume that some trivial conditions for the existence of an inner rectan-

gular drawing hold in Theorems 1, 2 and 3, as we will explain in Sections 3, 4
and 5.

3 Inner Rectangular Drawing with Sketched Outer Face

In this section we prove Theorem 1.
Suppose that a sketch of the outer face of a plane graph G is prescribed, that

is, all the outer angles of G are labeled with 1, 2 or 3, as illustrated in Figs. 1 and
4(a). Of course, the number ncv of outer angles labeled with 3 and the number
ncc of outer angles labeled with 1 must satisfy ncv − ncc = 4. The outer angle of
an outer vertex v must be labeled with either 2 or 3 if d(v) = 2, with either 1
or 2 if d(v) = 3, and with 1 if d(v) = 4. Then some of the inner angles of G can
be immediately determined, as illustrated in Fig. 4(a). If v is an outer vertex of
degree 2 and the outer angle of v is labeled with 2 and 3, then the inner angle of
v must be labeled with 2 and 1, respectively. The two angles of any inner vertex
of degree 2 must be labeled with 2. If v is an outer vertex of degree 3 and the
outer angle of v is labeled with 2, then both of the inner angles of v must be
labeled with 1. On the other hand, if v is an outer vertex of degree 3 and the
outer angle of v is labeled with 1, then we label both of the inner angles of v
with x, because one cannot determine their labels at this moment although one
of them must be labeled with 1 and the other with 2. We also label all the three
angles of an inner vertex of degree 3 with x, because one cannot determine their
labels although exactly one of them must be labeled with 2 and the others with
1. We label all the four angles of each vertex of degree 4 with 1. Label x means
that x is either 1 or 2, and exactly one of the labels x’s attached to the same
vertex must be 2 and the others must be 1. (See Figs. 4(a) and (c).)

Inner Rectangular Drawings of Plane Graphs 699

We now present how to construct a decision graph Gd of G. Let all vertices
of G attached a label x be vertices of Gd. Thus all the inner vertices of degree 3
and all the outer vertices of degree 3 whose outer angles are labeled with 1 are
vertices of Gd, and none of the other vertices of G is a vertex of Gd. We then
add to Gd a complete bipartite graph inside each inner face F of G. Let nx be
the number of angles of F labeled with x. Let n1 be the number of angles of F
which have been labeled with 1. One may assume that n1 ≤ 4; otherwise, G has
no inner rectangular drawing. Exactly 4− n1 of the nx angles of F labeled with
x must be labeled with 1 by a regular labeling. We add a complete bipartite
graph K(4−n1)nx

in F, and join each of the nx vertices in the second partite set
with one of the nx vertices on F whose angles are labeled with x. Repeat the
operation above for each inner face F of G. The resulting graph is a decision
graph Gd of G. The decision graph Gd of the plane graph G in Fig. 4(a) is drawn
by solid lines in Fig. 4(b), where G is drawn by dotted lines. The idea of adding
a complete bipartite graph originates from Tutte’s transformation for finding an
“f -factor” of a graph [Tut54].

A matching of Gd is a set of pairwise non-adjacent edges in Gd. A maximum
matching of Gd is a matching of the maximum cardinality. A matching M of Gd
is called a perfect matching if an edge in M is incident to each vertex of Gd. A
perfect matching is drawn by thick solid lines in Fig. 4(b).

Each edge e of Gd incident to a vertex v attached a label x corresponds to an
angle α of v labeled with x. A fact that e is contained in a perfect matching M
of Gd means that the label x of α is 2. Conversely, a fact that e is not contained
in M means that the label x of α is 1.

We are now ready to prove Theorem 1.

[Proof of Theorem 1]
Suppose that G has an inner rectangular drawing with a sketched outer face.
Then by Fact 1 G has a regular labeling f which is an extension of the sketch,
that is, a labeling of the outer angles. We include in a set M all the edges of Gd
corresponding to angles of label x = 2, while we do not include in M the edges
of Gd corresponding to angles of label x = 1. For each vertex v of Gd attached
a label x, the labeling f assigns 2 to exactly one of the angles of v labeled with
x. Therefore exactly one of the edges of Gd incident to v is contained in M . The
labeling f labels exactly four of the angles of each inner face F with 1. Therefore
exactly 4− n1 of the nx angles of F labeled with x must be labeled with 1 by f,
and hence all the edges of Gd corresponding to these angles are not contained in
M . Including in M a number 4− n1 of edges in each complete bipartite graph,
we can extend M to a perfect matching of Gd. Thus Gd has a perfect matching.

Conversely, if Gd has a perfect matching, then G has a regular labeling which
is an extension of a sketch of the outer face, and hence by Fact 1 G has an inner
rectangular drawing with a sketched outer face.

Clearly, Gd is a bipartite graph, and 4 − n1 ≤ 4. Obviously, nx is no more
than the number of edges on face F. Let m be the number of edges in G, then we
have 2m ≤ 4n since Δ ≤ 4. Therefore the sum 2m of the numbers of edges on

700 K. Miura, H. Haga, and T. Nishizeki

all faces is at most 4n. One can thus know that both the number nd of vertices
in Gd and the number md of edges in Gd are O(n). Since Gd is a bipartite
graph, a maximum matching of Gd can be found either in time O(

√
ndmd) =

O(n1.5) by an ordinary bipartite matching algorithm [HK73, MV80, PS82] or in
time O(

√
ndmd/ log nd) = O(n1.5/ log n) by a recent pseudoflow-based bipartite

matching algorithm using boolean word operations on logn-bit words [FM91,
Hoc04, HC04].

This complete a proof of Theorem 1. �

Lai and Leinwand show that a plane graph G with Δ ≤ 3 have a rectangular
drawing if and only if a new bipartite graph constructed from G and its dual
has a perfect matching [LL90]. Their bipartite graph has an O(n) number of
vertices, but has an O(n2) number of edges. Therefore their method takes time
O(n2.5/ log n) to find a rectangular drawing of G.

We also remark that one can enumerate all inner rectangular drawings of G
by enumerating all perfect matchings of Gd.

Clearly the bipartite matching problem can be reduced to the maximum flow
problem [AMO93, PS82]. Conversely, modifying Tamassia’s formulation of the
bend-minimum orthogonal drawing problem [Tam87], one can directly reduce the
inner rectangular drawing problem to a flow problem on a new planar bipartite
network N with multiple sources and sinks. A network N for the plane graph
G in Fig. 4(a) is illustrated in Fig. 5; N is drawn by solid lines, a flow value is
attached to each arc, and an inner rectangular drawing of G corresponding to
the flow is drawn by dotted lines. Every arc of N has a capacity 1. A node of
N corresponding to a vertex of G is a source, the supply of which is written in
a circle in Fig. 5. A node of N corresponding to an inner face of G is a sink,
the demand of which is written in a square in Fig. 5. An inner angle of π/2 is
represented by an arc of flow 1, while an inner angle of π is represented by an
arc of flow 0. One can observe that G has an inner rectangular drawing with
the sketched outer face if and only if N has a feasible (single commodity) flow
satisfying all the demands. A feasible flow in such a planar network or a bipartite
network can be found either in time O(n1.5) by a planar flow algorithm [MN95]
or a bipartite flow algorithm [AMO93, ET75] or in time O(n1.5/ log n) by the
pseudoflow-based bipartite flow algorithm [Hoc04, HC04].

Thus both our matching approach and the flow approach solve the inner
rectangular drawing problem in the same time complexity. However, the bipartite
matching algorithm in [HK73] can be quite easily implemented in comparison
with the flow algorithms in [Hoc04, HC04, MN95].

4 Inner Rectangular Drawing with Prescribed Numbers
ncv and ncc

In this section we prove Theorem 2.
Suppose that an outer face of a plane graph G is not sketched but a pair

(ncv,ncc) is prescribed, where ncv is the number of convex outer vertices and
ncc is the number of concave outer vertices. If (ncv,ncc) is prescribed as ncv = 5

Inner Rectangular Drawings of Plane Graphs 701

1

2

2

2

2

2

4

1

1

1

1

1

1

1

1

1
1

0

0
10

0

0

1

Fig. 5. Network N

and ncc = 1 like in Fig. 6(a), then the outer boundary must have an L-shape as
illustrated in Fig. 6(c), but it has not been prescribed which outer vertices are
convex and which outer vertices are concave. We label all the four angles of each
vertex of degree 4 in G with 1, and label both of the angles of each inner vertex
of degree 2 with 2. The labels of all the other angles of G are not determined at
this moment, and we label them with x or y as follows:

(1) label all the three angles of any vertex v of degree 3 with x ; and
(2) label the inner angle of any outer vertex v of degree 2 with x, and label

the outer angle of v with y.

The labeling of the same plane graph as in Fig. 4(a) is depicted in Fig. 6(a).
Label x means that x is either 1 or 2, similarly as in Section 3. On the other
hand, label y means that y is either 2 or 3. Each outer vertex of degree 2 is
attached two labels x and y, and if x = 1 then y = 3 and if x = 2 then y = 2.

We now present how to construct a decision graph Gd
∗ of G. The construction

is similar to that of Gd. Let all the vertices of G attached label x or y be vertices
of Gd

∗ as illustrated in Fig. 6(b). Thus all the outer vertices of degree 2 in G
and all the vertices of degree 3 in G are vertices of Gd

∗. All the other vertices of
G are not vertices of Gd

∗: all the vertices of degree 4 and all the inner vertices
of degree 2 are not vertices of Gd

∗.
For each inner face F of G, we add a complete bipartite graph K(4−n1)nx

inside F, where nx is the number of angles of F labeled with x and n1 is the
number of angles of F labeled with 1. Of course, one may assume that n1 ≤ 4.

We then add two complete bipartite graphs inside the outer face Fo, as fol-
lows. Let nox be the number of outer angles of G labeled with x, and let noy be
the number of outer angles labeled with y. For the example in Fig. 6(a) nox = 4
and noy = 7. Let no4 be the number of outer vertices v of degree 4. For the
example in Fig. 6(a) no4 = 0. The outer angle of v must be labeled with 1, and
v must be a concave outer vertex. One may assume without loss of generality
that ncc ≥ no4; otherwise, G has no inner rectangular drawing with ncc concave
outer vertices. Exactly ncc−no4 of the nox outer angles of label x must be labeled
with 1. We add a complete bipartite graph K(ncc−no4)nox

in Fo, and joint each
of the nox vertices in the second partite set with one of the nox outer vertices of

702 K. Miura, H. Haga, and T. Nishizeki

2

2

2

2 x
x

x

x
x x

x
x x

x x
x

x x

(a) (b)

x

x

x
xx

x

x

x

x

x
x

x

x
x

y
y

y

yy

y

y xx
x

ncv = 5, ncc = 1

K(ncc - no4)noxKncvnoy

G Gd

ncv ncc - no4

*
3

3

2
1

1

1

1

(c)

22

2

222

2

2 2

2

2
2

22
2

1

11
1111 1

1

1111

1

1 1

3

3

3

1

D

Fig. 6. (a) Plane graph G and pair (ncv,ncc), (b) decision graph Gd
∗, and (c) inner

rectangular drawing D and regular labeling f of G

degree 3. Exactly ncv of the noy outer angles of label y must be labeled with 3.
We add a complete bipartite graph Kncvnoy

inside Fo, and connect each of the
noy vertices in the second partite set with one of the noy outer vertices of degree
2 via a path of length 2.

This completes a construction of Gd
∗. In Fig. 6(b) Gd is drawn by solid lines,

and G by dotted lines. A perfect matching of Gd
∗ is drawn by thick solid lines

in Fig. 6(b).
Let α be an angle of a vertex v of G labeled with x or y, and let e be the edge

of Gd
∗ which is incident to v and corresponds to α. A fact that e is contained

in a perfect matching M of Gd
∗ means that the label of α is 2 if it is x and the

label is 3 if it is y. Conversely, a fact that e is not contained in M means that
the label of α is 1 if it is x and the label is 2 if it is y. Similarly as for Theorem
1, one can easily prove that G has an inner rectangular drawing with ncv convex
outer vertices and ncc concave ones if and only if Gd

∗ has a perfect matching.
Clearly Gd

∗ is a bipartite graph. Since no ≥ ncv > ncc, Gd
∗ has an O(n) number

of vertices and an O(n + ncvno) number of edges, where no is the number of
outer vertices of G. Thus a maximum matching of Gd

∗ can be found in time
O(
√
n(n+ ncvno)/ log n).

This completes a proof of Theorem 2.

5 Inner Rectangular Drawing

In this section we prove Theorem 3.
Suppose that neither a sketch of the outer face Fo nor a pair of integers

(ncv,ncc) is prescribed for a plane graph G. Let no2, no3 and no4 be the numbers
of outer vertices having degrees 2, 3 and 4, respectively, then no = no2+no3+no4.
Since ncv ≤ no2 and ncv−ncc = 4, there are at most a number no2 of pairs which
are possible as (ncv,ncc). Examining all these pairs, one can know whether G has
an inner rectangular drawing for some pair. Such a straightforward method would
take time O(no2

√
n(n+ no2no)/ log n). However, we can show as in Theorem 3

that G has an inner rectangular drawing D for some pair if and only if a new

Inner Rectangular Drawings of Plane Graphs 703

graph Gd
� constructed from G has a perfect matching, and that D can be found

in time O(
√
n(n+ (no2 − no4)no)/ log n) whenever G has D.

We label each angle of G with 1, 2, x or y in the same way as in Section 4,
as illustrated in Fig. 6(a). There are no4 outer angles labeled with 1, no3 with x,
and no2 with y. One may assume without loss of generality that no2 ≥ no4 + 4;
otherwise, G has no inner rectangular drawing. The construction of a new graph
Gd

� is the same as Gd
∗ except for the outer face Fo. We add a complete bipartite

graph B = K(no2−no4−4)(no2+no3) in Fo, and join each of the no2 + no3 vertices
in the second partite set of B with one of the no2 + no3 outer vertices of degree
2 or 3.

Suppose that Gd
� has a perfect matching M. Let a be the number of edges

of Gd
� which correspond to outer angles of outer vertices of degree 2 and are

contained in M. Let b be the number of edges of Gd
� which correspond to outer

angles of outer vertices of degree 3 and are contained in M. Since M covers all the
no2−no4−4 vertices in the first partite set of B, we have (no2−a)+(no3− b) =
no2−no4− 4, and hence a+ b = no3 +no4 +4. We assign 2 to the b outer angles
of outer vertices which have label x and are ends of edges of M in F0, and assign
1 to the remaining (no3 − b) outer angles of label x. We assign 3 to the a outer
angles of outer vertices which have label y and are ends of edges of M in F0, and
assign 2 to the remaining (no2−a) outer angles of label y. Then we have ncv = a
and ncc = (no3 − b) + no4, and hence ncv − ncc = a− (no3 − b+ no4) = 4. One
can thus know that G has a regular labeling if Gd

� has a perfect matching.
Conversely Gd

� has a perfect matching if G has an inner rectangular drawing.
This completes a proof of Theorem 3.

Acknowledgments. We thank Ayako Miyazawa, Md. Saidur Rahman and
Xiao Zhou for fruitful discussions on an early version of the paper.

References

[AMO93] R. K. Ahuja, T. L. Magnanti and J. B. Orlin, Network Flows: Theory,
Algorithms, and Applications, Prentice Hall, Englewood Cliffs, New Jersey,
1993.

[BS88] J. Bhasker and S. Sahni, A linear algorithm to find a rectangular dual of a
planar triangulated graph, Algorithmica, 3, pp. 247-278, 1988.

[DETT99] G. Di Battista, P. Eades, R. Tamassia and G. Tollis, Graph Drawing: Al-
gorithms for the Visualization of Graphs, Prentice Hall, NJ, 1999.

[ET75] S. Even and R. E. Tarjan, Network flow and testing graph connectivity,
SIAM J. Computing, 4, pp. 507-518, 1975.

[FM91] T. Feder and R. Motowani, Clique partitions, graph compression and
speeding-up algorithms, Proc. 23rd Ann. ACM Symp. on Theory of Com-
puting, pp. 123-133, 1991.

[FW74] R. L. Francis and J. A. White, Facility Layout and Location, Prentice Hall-
CNew Jersey, 1974.

[GT97] A. Garg and R. Tamassia, A new minimum cost flow algorithm with applica-
tions to graph drawing, Proc. of Graph Drawing ’96, Lect. Notes in Computer
Science, Springer, 1190, pp. 201-206, 1997.

704 K. Miura, H. Haga, and T. Nishizeki

[He93] X. He, On finding the rectangular duals of planar triangulated graphs, SIAM
J. Comput., 22, 6, pp. 1218-1226, 1993.

[Hoc04] D. S. Hochbaum, Faster pseudoflow-based algorithms for the bipartite
matching and the closure problems, Abstract, CORS/SCRO-INFORMS
Joint Int. Meeting, Banff, Canada, p. 46, May 16-19, 2004.

[HC04] D. S. Hochbaum and B. G. Chandran, Further below the flow decomposi-
tion barrier of maximum flow for bipartite matching and maximum closure,
Working paper, 2004.

[HK73] J. E. Hopcroft and R. M. Karp, An n5/2 algorithm for maximum matching
in bipartite graphs, SIAM J. Comput., 2, pp. 225-231, 1973.

[KH97] G. Kant and X. He, Regular edge-labeling of 4-connected plane graphs and
its applications in graph drawing problems, Theoret. Comput. Sci., 172, pp.
175-193, 1997.

[KK84] K. Kozminski and E. Kinnen, An algorithm for finding a rectangular dual of
a planar graph for use in area planning for VLSI integrated circuits, Proc.
of 21st DAC, Albuquerque, pp. 655-656, 1984.

[LL90] Y.-T. Lai and S. M. LeinwandC A theory of rectangular dual graphs, Algo-
rithmica, 5, pp. 467-483, 1990.

[Len90] T. LengauerC Combinatorial Algorithms for Integrated Circuit Layout, Wi-
ley, Chichester, 1990.

[Mn95] G. L. Miller and J. S. Naor, Flows in planar graphs with multiple sources
and sinks, SIAM J. Computing, 24(5), pp. 1002-1017, 1995.

[MV80] S. Micali and V. V. Vazirani, An O(
√

|V | · |E |) algorithm for finding max-
imum matching in general graphs, Proc. 21st Annual Symposium on Foun-
dations of Computer Science, pp. 17-27, 1980.

[MMN02] K. Miura, A. Miyazawa and T. Nishizeki, Extended rectangular drawing of
plane graphs with designated corners, Proc. Graph Drawing ’02, Lect. Notes
in Computer Science, Springer, 2528, pp. 256-267, 2002.

[PS82] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optinization, Prentice
Hall, Englewood Cliffs, New Jersey, 1982.

[RNN02] M. S. Rahman, S. Nakano and T. Nishizeki, Rectangular drawings of plane
graphs without designated corners, Computational Geometry, 21, pp. 121-
138, 2002.

[RNN98] M. S. Rahman, S. Nakano and T. Nishizeki, Rectangular grid drawings of
plane graphs, Comp. Geom. Theo. Appl., 10(3), pp. 203-220, 1998.

[SY99] S. M. Sait and H. Youssef, VLSI Physical Design Automation, World Sci-
entific, Singapore, 1999.

[SS93] Y. Sun and M. Sarrafzadeh, Floorplanning by graph dualization: L-shape
modules, Algorithmica, 10, pp. 429-456, 1993.

[Tam87] R. Tamassia, On embedding a graph in the grid with the minimum number
of bends, SIAM J. Comput., 16(3), pp. 421-444, 1987.

[Tho84] C. Thomassen, Plane representations of graphs, J. A. Bondy, U. S. R. Murty
(Eds.), Progress in Graph Theory, Academic Press Canada, Don Mills, Ontario,
Canada, pp. 43-69, 1984.

[Tut54] W. T. Tutte, A short proof of the factor theorem for finite graphs, Canad.
J. Math., 6, pp. 347-352, 1954.

[YS93] K. Yeap and M. Sarrafzadeh, Floor-planning by graph dualization: 2-
concave rectilinear modules, SIAM J. Comput., 22(3), pp. 500-526, 1993.

Approximating the Minmax Subtree Cover
Problem in a Cactus

Hiroshi Nagamochi1 and Taizo Kawada2

1 Kyoto University,
Yoshida Honmachi, Sakyo, Kyoto 606-8501, Japan

nag@amp.i.kyoto-u.ac.jp
2 Toyohashi University of Technology,

Tempaku-cho, Toyohashi 441-8580, Japan
taizo@algo.ics.tut.ac.jp

Abstract. Let G = (V, E) be a connected graph such that edges and
vertices are weighted by nonnegative reals. Let p be a positive integer.
The minmax subtree cover problem (MSC) asks to find a partition X =
{X1, X2, . . . , Xp} of V and a set of p subtrees T1, T2, . . . , Tp, each Ti

containing Xi so as to minimize the maximum cost of the subtrees, where
the cost of Ti is defined to be the sum of the weights of edges in Ti and
the weights of vertices in Xi. In this paper, we propose an O(p2n) time
(4−4/(p+1))-approximation algorithm for the MSC when G is a cactus.
This is the first constant factor approximation algorithm for the MSC
on a class of non-tree graphs.

1 Introduction

Given a graph, the p–traveling salesmen problem (p–TSP) asks to find a set
of p tours that cover all vertices in the graph, minimizing a given objective
function. This type of problems arises in numerous applications such as the
multi-vehicle scheduling problem [5]. Graphs are restricted to be paths or trees
in some applications such as the task sequencing problem, the delivery scheduling
by ships on a shoreline [12] and the scheduling of automated guided vehicles. The
1–TSP or p–TSP on paths or trees and analogous routing problems have been
studied extensively (e.g., [1, 2, 6, 7, 12]).

Among these problems, this paper considers the minmax subtree cover prob-
lem, which is defined in the following.

Let G = (V,E) be an undirected graph, where we may denote the vertex
set and the edge set of G by V (G) and E(G), respectively. Let n = |V (G)|
and m = |E(G)|. We denote by (G,w, h) a graph G such that each edge e and
each vertex v are weighted by nonnegative reals w(e) and h(v), respectively. A
collection X of disjoint subsets X1, X2, . . . , Xk of V is called a partition of V if
their union is V , where some Xi may be empty. A collection X of V is called a
p-partition of V if |X | = p. We denote

∑
v∈X h(v) for a vertex set X by h(X)

and
∑

v∈F w(v) for an edge set F by w(F). For a weighted graph (H,w, h), we
may denote w(E(H)) by w(H) and w(H) + h(V (H)) by ŵ(H).

Then the minmax subtree cover problem is described as follows.

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 705–716, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

706 H. Nagamochi and T. Kawada

Minmax Subtree Cover Problem (MSC):
Input: An instance I = (G,w, h, p) which consists of a connected graph G, an

edge-weight w, a vertex-weight h and an integer p ∈ [2, n].
Feasible solution: A p-partition X = {X1, X2, . . . , Xp} of V and a set of p

subtrees T = {T1, T2, . . . , Tp} of G such that Xi ⊆ V (Ti).
Goal: Minimize cost(X , T) := max1≤i≤p{w(Ti) + h(Xi)}.

That is, the MSC asks to find a set of p subtrees such that the union of the
subtrees covers all vertices in V so as to minimize the maximum cost of the
subtrees, where the cost of a subtree Ti is the sum of the weights of edges in
Ti and the weights of vertices that are covered by Ti (each vertex is covered
by exactly one of the subtrees). Subtrees in T are not necessarily edge-disjoint
or vertex-disjoint. The MSC has an application in the multi-vehicle scheduling
problem [6]. The next problem is closely related to the MSC.

Minmax Rooted-Subtree Cover Problem (MRSC):
Input: An instance I = (G,w, h, r, p) which consists of a connected graph G,

an edge-weight w, a vertex-weight h, a vertex r designated as a root, and an
integer p ∈ [2, n].

Feasible solution: A p-partition X = {X1, X2, . . . , Xp} of V and a set of p
subtrees T = {T1, T2, . . . , Tp} of G such that Xi ∪ {r} ⊆ V (Ti).

Goal: Minimize cost(X , T) := max1≤i≤p{w(Ti) + h(Xi)}.

The MRSC asks to find a set of p subtrees such that each subtree contains
r and the union of the subtrees covers all vertices in V , where the objective
is to minimize the maximum cost of the subtrees. The MSC and MRSC are
both NP-hard. If G is a tree, then there are several approximation algorithms to
these problems. For the MSC on a tree G, Averbakh and Berman [4] presented
a (2− 2/(p+ 1))–approximation algorithm that runs in O(pp−1np−1) time, and
Nagamochi and Okada [10] recently gave a polynomial time (2 − 2/(p + 1))-
approximation algorithm with time complexity O(p2n).

Averbakh and Berman [3] have given a linear time 4/3-approximation algo-
rithm for the MRSC with p = 2 on a tree G, and Nagamochi and Okada [10]
proposed an O(n log log1+ε/2 3) time (2 + ε)-approximation algorithm for the
MRSC with any integer p ∈ [2, n] on a tree G. Very recently, Nagamochi [8] pro-
posed a (3− 2/(p+ 1))-approximation algorithm for the MRSC on an arbitrary
connected graph G.

Note that, for any solution to the MRSC, the set of edges used in the subtrees
induces a connected spanning subgraph from G, implying that, for a minimum
spanning tree T ∗ of G, (w(T ∗) + h(V))/p is a lower bound on the optimal value
to the MRSC. However, no such conventional lower bound is known for the MSC,
and no polynomial approximation algorithm has been obtained for the MSC on
any class of non-tree graphs so far.

In this paper, we establish a framework for designing approximation algo-
rithms for the MSC on arbitrary graphs, and then give an O(p2n) time (4 −
4/(p+ 1))-approximation algorithm for the MSC on a cactus G. This is the first
approximation algorithm for the MSC on a class of non-tree graphs

Approximating the Minmax Subtree Cover Problem in a Cactus 707

The rest of the paper is organized as follows. Section 2 introduces some termi-
nology and presents preliminary results on the MSC. Section 3 gives a framework
of designing approximation algorithms for the MSC. Section 4 analyzes the ratio
between lower bounds on trees and cacti in order to design a (4 − 4/(p + 1))-
approximation algorithm for the MSC on a cactus. Section 5 describes some
concluding remarks.

2 Preliminaries

We denote by (G,w) an edge-weighted graph G such that each edge e is weighted
by a nonnegative real w(e), where weight w(e) for an edge e = (u, v) with
endvertices u, v ∈ V may be denoted by w(u, v). A vertex with degree 1 is called
a leaf in G, and the set of leaves in G is denoted by L(G). For a subgraph H of
(G,w, h), (H,w) means graph H in which each edge has the same weight in G
(i.e., the edge weight of H is the restriction of w on E(H)). Similarly we define
(H,w, h) for a subgraph H of G. Let hmax = maxv∈V h(v).

u

e1
e2 e3

ed

v1
v2 v3

vd

e1

e2 e3 ed
v1

v2 v3 vd

u=u2 u3 ud-1

ed-1

vd-1

Fig. 1. Examples of cacti

Let T be a tree. For a subset X ⊆ V (T) of vertices, let T 〈X〉 denote the minimal
subtree of T that contains X (where the leaves of T 〈X〉 will be vertices in X).
In this paper, we say that T 〈X〉 is induced from T by X. A graph G is called a
cactus if no two cycles in G share more than one vertex (see Fig. 1(a)).

We call an instance I = (G,w, h, p) of the MSC a tree instance (resp., cactus
instance) ifG is a tree (resp., cactus), and denote the optimal value to I by opt(I).
We easily observe the following property. For a tree instance I = (T,w, h, p) of
the MSC,

opt(I) ≥ max
{
ŵ(T)
p

, hmax

}
, (1)

provided that there is an optimal solution (X , T) to I such that each edge is
contained in some subtree Ti ∈ T . In general, (1) does not hold. Nagamochi
and Okada [9] have introduced the following lower bound on opt(I). Given an
instance I = (G,w, h, p), a valued subtree collection of I is define to be a set S
of vertex-disjoint subtrees S1, S2, . . . , Sk ⊆ G such that each Si is weighted by a
positive integer pSi

with
∑

Si∈S pSi
= p. Define

λ(S) = max
{
ŵ(Si)
pSi

| Si ∈ S
}

708 H. Nagamochi and T. Kawada

and
λ∗(I) = min{λ(S) | all valued subtree collections S of I}.

It is a simple matter to see that the next property holds.

Lemma 1. [9] For any instance I of the MSC, opt(I) ≥ λ∗(I).
�

Nagamochi and Okada [9] have shown the following result.

Theorem 1. [9] For a tree instance I = (T,w, h, p) of the MSC, there exists a
solution (X , T) such that cost(X , T) ≤ max{(2 − 2/(p + 1))λ∗(I), hmax} holds
and any two subtrees Ti, Tj ∈ T are edge-disjoint.
�

To find such a solution in this theorem in polynomial time, they investigated
a relation between the MSC and a problem of minimizing the maximum cost of
vertex-disjoint subtrees. Based on the next result, an O(p2n) time algorithm for
constructing a solution in Theorem 1 has been obtained [10].

Theorem 2. [11] Let (T = (V,E), w, h) be a weighted tree. For a given integer
p ≥ 2, a set F of (p − 1) edges that minimizes the maximum weight ŵ(T ′) of
subtrees T ′ in (V,E − F) can be found in O(n + ρp(p + logΔ))) time, where ρ
and Δ denote the radius and the maximum degree of tree T , respectively.
�

We remark that there is a cactus instance I = (G,w, h, p) of the MSC such
that, for any optimal solution (X , T), the set of all edges in subtrees in T does
not induce a forest from G (i.e., all edges of some cycle in G are used in T).
Fig. 1(b) shows a cactus instance I = (G,w, h, p = 4) of the MSC such that an
optimal solution uses all edges in the cactus, where h(v) = 0 for non-leaves v
and h(u1) = h(u2) = 30, h(v1) = h(v2) = 70, and h(u3) = h(u4) = h(v3) =
h(v4) = 50 for leaves, and w(e) = 1 for all edges. Observe that opt(I) = 105 and
an optimal solution consists of four subtrees Ti (1 ≤ i ≤ 4) such that Ti is a
path of five edges connecting ui and vi.

To utilize Theorem 1 to approximate the MSC on a cactus G, one may try to
transform an optimal solution (X , T) of a cactus instance I = (G,w, h, p) into
an approximate solution of a tree instance I ′ = (T,w, h, p) for a spanning tree T
of G. However, there may be a subtree Ti ∈ T which contains an edge e not in T ,
and transforming Ti by replacing e with other edges in the cycle C containing
e may increase the cost of Ti by an arbitrarily large amount compared to its
original cost.

For this, we examine the relation between the lower bounds λ∗(I) and λ∗(I ′)
for cactus instances I and tree instances I ′.

Lemma 2. For an instance I = (G = (V,E), w, h, p) with a connected graph G,
there is a spanning subtree T of G such that λ∗(I ′) ≤ λ∗(I) holds for the tree
instance I ′ = (T,w, h, p).

Proof. Let S be a valued subtree collection in I such that λ(S) = λ∗(I). Since
G is connected, there is a spanning tree T of G such that E(T) ⊇

⋃
S∈S E(S).

Approximating the Minmax Subtree Cover Problem in a Cactus 709

Since λ∗(I ′) ≤ λ(S) holds for the tree instance I ′ = (T,w, h, p), we have λ∗(I ′) ≤
λ(S) = λ∗(I) for the tree T .
�

In general, it seems hard to find such a spanning tree T in Lemma 2 without
knowing an optimal valued subtree collection S of I. When G is a tree-like graph,
it might be possible to choose a spanning tree T of G such that λ∗(I ′) approxi-
mates λ∗(I). For an instance I = (G = (V,E), w, h, p), let T be a spanning tree
of G, and consider the tree instance I ′ = (T = (V,E′), w, h, p). Let α ≥ 1 be a
number such that

λ∗(I ′) ≤ α · λ∗(I). (2)

In section 4, we shall see that factor α in (2) can be chosen as 2 when G is a
cactus.

3 Algorithm for MSC

In this section, we give a framework for designing approximation algorithms for
the MSC on arbitrary graphs, based on an approximation algorithm for the MSC
on trees [10]. We first convert a given tree instance I = (T,w, h, p) into another
tree instance Ĩ = (T̃ , w, h, p) by the following procedure.

LOWER DEGREE
Step 1. For each non-leaf v ∈ V (T)− L(T), we rename v by v′, set h(v′) := 0,
and add a new leaf, which we now call v, introducing a new edge ev = (v′, v)
with w(ev) = 0, where we let the new v have the same weight h(v) as before.
Step 2. For each vertex u with degree d ≥ 4, execute the following procedure.

Let e1, e2, . . . , ed be the edges incident to u. Split u into d − 2 vertices
u2(= u), u3, . . . , ud−1 introducing new vertices u3, u4, . . . , ud−1. Replace the end
vertex u of each ei, i = 2, 3, . . . , d − 1 (resp., of e1 and ed) with ui (resp.,
with u2 and ud−1). Join the split vertices u2, u3, . . . , ud−1 by d − 3 new edges
(u2, u3), . . . , (ud−1, ud) (see Fig. 2). Let weights of all introduced vertices and
edges be zero, while the edges e1, e2, . . . , ed have the same weights as before.
�

u

e1
e2 e3

ed

v1
v2 v3

vd

e1

e2 e3 ed
v1

v2 v3 vd

u=u2 u3 ud-1

ed-1

vd-1

Fig. 2. Splitting a vertex u into d − 2 vertices of degree 3

Let Ĩ = (T̃ , w, h, p) be the resulting instance, in which every vertex has degree
at most three. Then the next two lemmas hold.

Lemma 3. For a tree instance I = (T,w, h, p), let Ĩ = (T̃ , w, h, p) be a tree
instance obtained by LOWER DEGREE. Then λ∗(Ĩ) ≤ λ∗(I).

710 H. Nagamochi and T. Kawada

Proof. Let S = {S1, S2, . . . , Sk} be a valued subtree collection of I with λ(S) =
λ∗(I), where each Si is weighted by pSi

. For each Si ∈ S, consider the subtree
S̃i = T̃ 〈V (Si)〉 of T̃ . By the construction of Ĩ, S̃i has cost w(S̃i) + h(V (S̃i)) =
w(Si) + h(V (Si)). Suppose that there is a vertex z ∈ V (T̃) − V (T) that is not
covered by any subtree S̃i. By construction, such a vertex z satisfies h(z) = 0
and is connected to a vertex u ∈ V (T) in T̃ via a path that consists of edges of
weight zero. Thus by attaching such uncovered vertices to some subtrees S̃i, we
can obtain a valued subtree collection S̃ of Ĩ with λ(S̃) = λ∗(I). This implies
λ∗(Ĩ) ≤ λ(S̃) = λ∗(I).
�

Lemma 4. [10] Let Ĩ = (T̃ , w, h, p) be a tree instance of the MSC in which every
vertex is of degree at most 3 and every internal vertex u satisfies h(u) = 0. For
a solution (X̃ , T̃) to Ĩ such that T̃ consists of edge-disjoint subtrees, there is a
solution (X ∗, T ∗) to Ĩ with cost(X ∗, T ∗) ≤ cost(X̃ , T̃) such that T̃ consists of
vertex-disjoint subtrees.
�

Based on the above properties, we obtain the following algorithm for the
MSC.

Algorithm APPROX
Input: An instance I = (G,w, h, p) of the MSC such that G is connected.
Output: A solution (X , T) to I.
Step 1. Find a spanning tree T of G, and let α be a factor such that (2) holds

for the tree instance I ′ = (T,w, h, p).
Step 2. Convert the tree instance I ′ = (T,w, h, p) of the MSC into a tree in-

stance Ĩ = (T̃ , w, h, p) by procedure LOWER DEGREE.
Step 3. Find a set of p vertex-disjoint subtrees T ∗

i , i = 1, 2, . . . , p in Ĩ that
minimizes max1≤i≤p ŵ(T ∗

i). Let X ∗ = {X∗
i = V (T ∗

i) | i = 1, 2, . . . , p}.
Step 4. Output solution (X , T) such that X = {Xi = X∗

i ∩ V (T) | i =
1, 2, . . . , p} and T = {T 〈Xi〉 | i = 1, 2, . . . , p}.
�

Theorem 3. For a given instance I = (G,w, h, p) of the MSC, APPROX de-
livers in O(τ1 + p2n) time a solution (X , T) such that

cost(X , T) ≤ α · (2− 2
p+ 1

)opt(I) (3)

and T consists of edge-disjoint subtrees, where τ1 denotes the time to execute
Step 1.

Proof. For the instance I ′ obtained in Step 1, λ∗(I ′) ≤ α · λ∗(I) ≤ α · opt(I)
holds by Lemma 1 and condition (2). By Lemma 3, λ∗(Ĩ) ≤ λ∗(I ′) holds for the
instance Ĩ in Step 2. By Theorem 1, there exists a solution (X̃ , T̃) with

cost(X̃ , T̃) ≤ max
{

(2− 2
p+ 1

)λ∗(Ĩ), hmax

}

Approximating the Minmax Subtree Cover Problem in a Cactus 711

such that T̃ consists of edge-disjoint subtrees in Ĩ. By Lemma 4, instance Ĩ
has a solution (X ∗, T ∗) such that cost(X ∗, T ∗) ≤ cost(X̃ , T̃) and T ∗ consists of
vertex-disjoint subtrees in Ĩ. Such a solution can be found in Step 3 in O(p2n)
time by using Theorem 2. Note that T in Step 4 is obtained from T ∗ in Step 3 by
contracting all edges (of zero) introduced in the construction of T̃ from T . Hence
T consists of edge-disjoint subtrees and satisfies cost(X , T) = cost(X ∗, T ∗).
Therefore, from the above inequalities and opt(I) ≥ hmax, we have (3). We
easily see that APPROX can be implemented to run in O(τ1 + p2n) time.
�

4 Factor α for Cacti

In this section, we show that every cactus G contains a spanning tree T such
that (2) holds for factor α = 2.

Lemma 5. For an instance I = (G,w, h, p) such that G is a cactus, let (T,w)
be a minimum spanning tree of the edge-weighted graph (G,w). Then λ∗(I ′) ≤
2λ∗(I) holds for the tree instance I ′ = (T,w, h, p).
�

This lemma and Theorem 3 imply the next result.

Corollary 1. For a given instance I = (G,w, h, p) of the MSC such that G is a
cactus, a solution (X , T) with cost(X , T) ≤ (4−4/(p+1))opt(I) can be obtained
in O(p2n) time.
�

In the rest of this section, we prove Lemma 5. Let λ∗ = λ∗(I), S be a valued
subtree collection to I = (G,w, h, p) with λ(S) = λ∗, and (T,w) be a minimum
spanning tree of (G,w). For notational simplicity, we assume that a given cactus
G has no bridge, i.e., G consists only of cycles (if necessary, we add to each
bridge e = (u, v) a new edge e′ = (u, v) with w(e′) = w(e), and we can assume
that no new edge is included in any subtree in S).

Let E = E(G) − E(T), where, by the minimality of T , each edge e ∈ E
has the maximum edge weight among edges in the cycle containing e. Let
E(S) = ∪S∈SE(S). Notice that S may not be a valued subtree collection of
I ′ = (T,w, h, p), i.e., some edges in E may be used in subtrees in S.

We now give an algorithm for transforming S into a valued subtree collection
S ′ of I ′. The algorithm consists of two phases. In the first phase, we break a
subtree S ∈ S into two fractions (or into a smaller subtree S and a fraction),
where a fraction is a triplet (E′, V ′, p′) of an edge set E′ ⊆ E(S), a vertex set
V ′ ⊆ V (S) and an integer p′ ∈ [0, pS]. For a fraction δ = (E′, V ′, p′), define
ŵ(δ) = w(E′) + w(V ′) and p(δ) = p′, respectively. During the first phase, we
maintain a set S of vertex-disjoint subtrees S, each weighted by a positive integer
pS such that

∪S∈S V (S) ⊆ V,
∑
S∈S

pS ≤ p, λ(S) ≤ λ∗. (4)

The resulting S after the first phase is not a valued subtree collection to I ′ if
∪S∈SV (S) �= V or

∑
S∈S pS < p. In the second phase, we modify subtrees Si ∈ S

712 H. Nagamochi and T. Kawada

by attaching fractions δ to them so that the set of the resulting subtrees becomes
a valued subtree collection S ′ of I ′ and λ(S ′) ≤ 2λ∗ holds.

4.1 Phase-1

We now describe a procedure for the first phase. For each subtree Si ∈ S, let
Δi := ∅, where Δi stores a set of fractions δ that will be added to Si in the
second phase.

Choose a cycle C0 in G as a root cycle, and define distance dist(v) for a vertex
v ∈ V to be the number of cycles which share edges with a simple path from
a vertex in C0 to v in G. For each cycle C, define dist(C) = minv∈V (C) dist(v)
and call the vertex v ∈ V (C) with dist(v) = dist(C) the parent of C. Then we
number all cycles as C0, C1, . . . , Cr such that dist(Ci) ≤ dist(Cj) for any i < j.

For each cycle C = Cr, Cr−1, . . . , C1 in this order, we apply the following
procedure CUT if there is a subtree Si ∈ S with E(Si)∩E ∩E(C) �= ∅; we skip
cycle C otherwise.

emax

Si

C

e1

Sk e2

Sj

vC

emax

Si

(a)

e1=e2

vC

C

(b)

emax

Si

e1

vC

C

(c)

Fig. 3. (a) Illustration for subtrees Si, Sj , Sk ∈ S and edges emax, e1, e2 ∈ E(C), (b)
and (c) Illustrations for Case-1 with e1 = e2

Procedure CUT Let emax be the edge in E(Si)∩E∩E(C), and vC ∈ V (C) be
the parent of C. Let e1, e2 ∈ E(C)−E(Si) be the edges incident to Si (possibly
e1 = e2), and Sk (resp., Sj) be the subtree that is adjacent to Si via edge e1
(resp., e2) (possibly Sk = Sj). See Fig. 3(a).

Case-1: e1 = e2 (hence V (Si) = V (C)) (Fig. 3(b)). Let Si be the subtree
obtained from Si by replacing emax with e1 (Fig. 3(c)).

Case-2: Sj or Sk does not contain vC ∈ V (Si) (assume vC �∈ V (Sk) without
loss of generality) (Fig. 4(a)). Let S′

i and S′′
i be two subtrees obtained from

Si by removing edge emax; S′′
i is assumed to be adjacent to Sk without loss

of generality. Let

pS′
i
:=

⌈ ŵ(S′
i)

ŵ(Si)
pSi

⌉
, pS′′

i
:= pSi

−
⌈ ŵ(S′

i)
ŵ(Si)

pSi

⌉
,

Approximating the Minmax Subtree Cover Problem in a Cactus 713

δ := (V (S′′
i), E(S′′

i) ∪ {e1}, pS′′
i
), Δk := Δk ∪ {δ},

and
Si := S′

i, pSi := pS′
i

(see Fig. 4(b)).

Case-3: Sj = Sk and vC ∈ V (Sj) (Fig. 4(c)). Let

δ := (V (Si), (E(Si)− {emax}) ∪ {e1, e2}, pSi), Δj := Δj ∪ {δ}

and
S := S − {Si}, Δj := Δj ∪Δi

(see Fig. 4(d)).
�

(a) (b)

vC

emax emax

vC

Si

Sk Sk

S'iS''i

e1

C C

e2

Sj Sj

δ − Δk

U {
(c) (d)

emax
Si

Sk=Sj

e1 e2
vC

C

emax

vC

C

δ − Δj

U

Sk=Sj

Fig. 4. (a),(b) Illustrations for Case-2; (c), (d) Illustrations for Case-3

Claim 1 A set S of subtrees obtained after Phase-1 satisfies (4).

Proof. In Cases-3, subtree Si is simply removed from the current S. In other
cases, Si and pSi will be modified. In Case-1, pSi remains unchanged, while
ŵ(Si) never increases since w(emax) ≥ w(e1). In Cases-2, subtree Si is modified
into subtree S′

i such that

ŵ(S′
i)

pS′
i

=
ŵ(S′

i)

� ŵ(S′
i
)

ŵ(Si)
p�
≤ ŵ(S′

i)
ŵ(S′

i
)

ŵ(Si)
pSi

=
ŵ(Si)
pSi

,

which preserves property λ(S) ≤ λ∗. We easily observe that the first two condi-
tions in (4) remain valid after each application of CUT.
�

Claim 2 Any fraction δ created during Phase-1 satisfies ŵ(δ)/p(δ) ≤ λ∗ if
p(δ) ≥ 1 and ŵ(δ) < λ∗ if p(δ) = 0.

Proof. By Claim 1, any subtree S ∈ S after each application of CUT satisfies
pS ≥ 1 and ŵ(S)/pS ≤ λ∗. Then a fraction δ = (V (Si), (E(Si) − {emax}) ∪
{e1, e2}, pSi

) in Case-3 satisfies

ŵ(δ)
p(δ)

=
ŵ(Si)− w(emax) + w(e1) + w(e2)

pSi

≤ ŵ(Si) + w(e2)
pSi

≤ 2
ŵ(Si)
pSi

≤ 2λ∗.

714 H. Nagamochi and T. Kawada

We next consider a fraction δ = (V (S′′
i), E(S′′

i)∪{e1}, pS′′
i
) in Case-2. Note that

pS′′
i

= pSi
− �pSi

ŵ(S′
i)/ŵ(Si)� = �pSi

(ŵ(S′′
i) + w(emax))/ŵ(Si)�. If pS′′

i
≥ 1,

then it holds

ŵ(δ)
p(δ)

=
ŵ(S′′

i) + w(e1)

� ŵ(S′′
i
)+w(emax)
ŵ(Si)

pSi
�
≤ 2 · ŵ(S′′

i) + w(emax)
ŵ(S′′

i
)+w(emax)
ŵ(Si)

pSi

= 2 · ŵ(Si)
pSi

≤ 2λ∗.

On the other hand, if pS′′
i
< 1, i.e., pSi(ŵ(S′′

i) + w(emax))/ŵ(Si) < 1, then we
have

ŵ(δ) = ŵ(S′′
i) + w(emax) <

ŵ(Si)
pSi

≤ λ∗.

This proves the claim.
�

Claim 3 For each Si ∈ S obtained after Phase-1, Δi contains at most one
fraction δ with p(δ) = 0.

Proof. Any fraction δ with p(δ) = 0 is created in Case-2 when a cycle C is
being scanned, and added to Δk of a subtree Sk with V (Sk) ∩ V (C) �= ∅ and
vC /∈ V (Sk). This implies that Sk cannot receive any other fraction δ′ with
p(δ′) = 0. Therefore, Δi contains at most one fraction δ with p(δ) = 0.
�

4.2 Phase-2

In the second phase, we paste fractions in Δi to the subtree Si ∈ S by the
following procedure.

Procedure PASTE
Let S be the set of subtrees obtained in Phase-1. For each subtree Si ∈ S with
Δi �= ∅, we modify Si as follows: For Δi = {(V ′

j , E
′
j , p

′
j) | j = 1, 2, . . . , k}, let

S∗
i := (V (Si) ∪

⋃
1≤j≤k

V ′
j , E(Si) ∪

⋃
1≤j≤k

E′
j)

and
pS∗

i
:= pSi +

∑
1≤j≤k

p′
j .

Let S∗ be the set of resulting subtrees.
�

By construction of fractions in CUT, we easily see that Si computed by
PASTE is a subtree and that the resulting set S∗ is a set of vertex-disjoint
subtrees of T such that ∪S∈S∗V (S) = V and

∑
S∈S∗ pS = p, i.e., S∗ is a valued

subtree collection of I ′ = (T,w, h, p).

Lemma 6. Let S∗ be a valued subtree collection of I ′ = (T,w, h, p) computed
after Phase-2. Then λ(S∗) ≤ 2λ∗.

Approximating the Minmax Subtree Cover Problem in a Cactus 715

Proof. Let S be a set of subtrees obtained after Phase-1. Consider a subtree
S∗

i ∈ S∗, and let Δi = {δ1, δ2, . . . , δk}, where ŵ(S∗
i) = ŵ(Si)+ŵ(δ1)+· · ·+ŵ(δk)

and pS∗
i

= pSi
+ p(δ1)+ · · ·+ p(δk) hold for Si ∈ S. Then it suffices to show that

ŵ(S∗
i)

pS∗
i

=
ŵ(Si) + ŵ(δ1) + · · ·+ ŵ(δk)
pSi

+ p(δ1) + · · ·+ p(δk)
≤ 2λ∗. (5)

If p(δj) �= 0 for all δj ∈ Δi, then it holds [ŵ(Si)+ŵ(δ1)+· · ·+ŵ(δk)]/[pSi
+p(δ1)+

· · ·+ p(δk)] ≤ max{ŵ(Si)/pSi
, ŵ(δ1)/p(δ1), . . . , ŵ(δk)/p(δk)} ≤ 2λ∗ by Claim 2.

We now consider the case where Δi contains a fraction δ with p(δ) = 0. By
Claim 3, Δi contains exactly one such fraction, say δ1 with p(δ1) = 0. Therefore,
by Claim 2, we have

ŵ(S∗
i)

pS∗
i

≤ max
{
ŵ(Si) + ŵ(δ1)

pSi

,
ŵ(δ2)
p(δ2)

, · · · , ŵ(δk)
p(δk)

}
≤ max

{
ŵ(Si) + λ∗

pSi

, 2λ∗
}
≤ 2λ∗,

as required.
�
This completes the proof of Lemma 5.

5 Concluding Remarks

In this paper, we have designed a framework for designing approximation al-
gorithms for the MSC on an arbitrary graph, and have given an O(p2n) time
(4−4/(p+1))-approximation algorithm for the MSC on a cactus. Our framework
for designing algorithms for the MSC seems effective on classes of graphs which
have a similar structure with trees. It would be interesting to investigate factors
α in (2) for those classes such as outerplanar graphs.

References

1. T. Asano, N. Katoh and K. Kawashima, A new approximation algorithm for the
capacitated vehicle routing problem on a tree, J. Combinatorial Optimization, 5
(2001) 213–231.

2. I. Averbakh and O. Berman, Sales-delivery man problems on treelike networks,
Networks, 25 (1995) 45–58.

3. I. Averbakh and O. Berman, A heuristic with worst-case analysis for minmax
routing of two traveling salesmen on a tree, Discrete Applied Mathematics, 68
(1996) 17–32.

4. I. Averbakh and O. Berman, (p−1)/(p+1)–approximate algorithm for p–traveling
salesmen problems on a tree with minmax objective, Discrete Applied Mathemat-
ics, 75 (1997) 201–216.

5. J. Desrosiers, Y. Dumas, M. M. Solomon and F. Soumis, Time constrained routing
and scheduling, In M. O. Ball, T. L. Magnanti. C. L. Monma and G. L. Nemhauser
(eds.): Handbooks in Operations Research and Management Science Volume 8:
Network Routing (North-Holland, 1995), 35–139.

716 H. Nagamochi and T. Kawada

6. Y. Karuno and H. Nagamochi, 2-approximation algorithms for the multi-vehicle
scheduling on a path with release and handling times, Discrete Applied Mathe-
matics, 129 (2003) 433–447.

7. Y. Karuno and H. Nagamochi, An approximability result of the multi-vehicle
scheduling problem on a path with release and handling times, Theoretical Com-
puter Science A, 312 (2004) 267–280.

8. H. Nagamochi, Approximating the minmax rooted-subtree cover problem (submit-
ted to a journal).

9. H. Nagamochi and K. Okada, A faster 2-approximation algorithm for the minmax
p–traveling salesmen problem on a tree, Discrete Applied Mathematics, 140 (2004)
103–114.

10. H. Nagamochi and K. Okada, Polynomial time 2-approximation algorithms for
the minmax subtree cover problem, Lecture Notes in Computer Science, 2906,
Springer-Verlag, (2003) 138–147.

11. Y. Perl and U. Vishkin, Efficient implementation of a shifting algorithm, technique
for the partitioning, Discrete Applied Mathematics, 12 (1985) 71–80.

12. H. Psaraftis, M. Solomon, T. Magnanti and T. Kim, Routing and scheduling on a
shoreline with release times, Management Science, 36 (1990) 212–223.

Boundary-Optimal Triangulation Flooding�

Richard J. Nowakowski1 and Norbert Zeh2

1 Department of Mathematics and Statistics, Dalhousie University, Halifax,
NS B3H 3J5, Canada
rjn@mathstat.dal.ca

2 Faculty of Computer Science, Dalhousie University, Halifax, NS B3H 1W5, Canada
nzeh@cs.dal.ca

Abstract. Given a planar triangulation all of whose faces are initially
white, we study the problem of colouring the faces black one by one so
that the boundary between black and white faces as well as the number
of connected black and white regions are small at all times. We call such
a colouring sequence of the triangles a flooding. Our main result shows
that it is in general impossible to guarantee boundary size O(n1−ε), for
any ε > 0, and a number of regions that is o(log n), where n is the number
of faces of the triangulation. We also show that a flooding with boundary
size O(

√
n) and O(log n) regions can be computed in O(n log n) time.

1 Introduction

We study the following triangulation flooding problem posed by Hurtado [8]:
Given a planar triangulation all of whose triangles are initially white, find an
ordering of the triangles such that, when colouring the triangles black in this or-
der, the number of connected monochromatic regions and the boundary between
white and black regions are small at all times.

In this paper, we provide an O(n log n)-time algorithm that finds an order
of colouring the triangles such that, at all times, the boundary between the
black and the white regions has size O(

√
n), there are O(logn) white regions,

and there is only one black region. We also show that the boundary size as
well as the number of white regions are best possible up to constant factors. In
particular, there cannot be any floodings with boundary size o(

√
n) in general

because, at the time when half the faces are black and half the faces are white,
we would have a 1

2 -separator of size o(
√
n); but Lipton and Tarjan [11] show

that the minimal size of such a separator is Ω(
√
n) in the worst case. As for the

number of white regions, we show that, for any ε > 0, there exists a family of
triangulations such that, if a boundary size of O(n1−ε) is desired, there have to
be Ω(logn) monochromatic regions at some point during the colouring process.

The triangulation flooding problem can be rephrased as a layout problem of
the dual of the triangulation: Given a 3-regular planar graph, find a linear layout
(v1, v2, . . . , vn) of small cutwidth and such that for every cut (Vi, V \ Vi), the

� This work was partially supported by NSERC.

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 717–728, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

718 R.J. Nowakowski and N. Zeh

number of connected components of G−Ei is small, where Vi = {v1, v2, . . . , vi}
and Ei is the set of edges with exactly one endpoint in Vi; that is, the edges in
Ei cross the cut.

Layouts of small cutwidth have applications in network reliability [9], graph
drawing [15], and rendering and stream processing of triangular meshes [1, 2, 7].
The cutwidth of a graph is also closely related to its search number, which is
relevant in VLSI design [10] and network security [3, 6, 16]. See [4] for a compre-
hensive survey of graph layout problems and their applications. Next we discuss
some results in this area that are closely related to our work.

It is well-known that every planar graph of maximal degree d has cutwidth
O(
√
dn) [5]; for 3-regular planar graphs, this implies that the cutwidth is O(

√
n).

Our result shows that 3-regular planar graphs have linear layouts of cutwidth
O(
√
n) that are “well-behaved” in the sense that their cuts do not partition the

graph into too many connected components.
In [2], the following model for rendering a triangular mesh is studied: Vertices

are pushed onto (and popped from) a vertex stack. To render a triangle, it is
necessary that all three vertices of the triangle are on the stack. The question
studied in [2] is to determine the stack size required to render any triangular
mesh while pushing every vertex onto the stack only once. It is shown that a
stack of size O(

√
n) suffices. In order to obtain this result, a recursive separator

decomposition similar to the one used in [5] for computing a layout of small
cutwidth is used. Our approach for finding a colouring sequence of the triangles
also uses a recursive separator decomposition. The main difference is that we use
simple-cycle separators [14] in our partition and that we combine these separators
carefully to keep the number of monochromatic regions small.

While keeping the number of monochromatic regions small at all times is
of limited importance for mesh rendering (apart from aesthetic concerns if the
rendering process is slow), it is important for encoding triangular meshes in a
minimal number of bits [1, 7], which is desirable for applications that need to
stream triangular meshes over communication channels of limited bandwidth
such as the internet. The encoding schemes of [1, 7] achieve a compression of
between 0.2 and 3.5 bits per vertex, depending on the regularity of the mesh.
Similar to our triangulation flooding problem, the idea is to start at a triangle
of the mesh and encode the remaining triangles one at a time so that the next
triangle to be encoded is chosen from among the triangles that share an edge
with a previously encoded triangle. If the third vertex of the triangle is a new
vertex, the degree of the vertex is encoded. If the vertex has been seen before,
the addition of the triangle may split the set of triangles yet to be encoded into
two regions. This needs to be recorded using a so-called split code whose length
is logarithmic in the length of the current boundary cycle. Thus, split codes are
much more expensive than the encoding of new vertices and should be avoided.
Using our approach, the boundary size is guaranteed to be O(

√
n), which helps

to bound the length of the split codes. We also guarantee that the number of lists
on the boundary list stack in the algorithm of [1] is O(logn); each list on this
stack represents a boundary cycle of the already encoded region. Unfortunately,

Boundary-Optimal Triangulation Flooding 719

the total number of split operations may still be linear and, other than in the
algorithm of [1], the order in which the triangles are encoded cannot easily be
determined from the degrees of the boundary vertices and, thus, needs to be
explicitly encoded.

Finally, we want to point out the relationship between our results and the
graph search problem where a number of searchers try to clean the edges of a
graph all of whose edges are contaminated. In order to clean an edge, a searcher
has to move along the edge; if there exists a path between a contaminated
edge and a clean edge that is free of searchers, the edge is recontaminated. The
search number of a graph is the minimal number of searchers that are sufficient
to clean the graph. The connected search number is the minimal number of
searchers that are sufficient to clean the graph and, in addition, guarantee that
the graph spanned by clean edges is connected at all times. Determining the
search number of a graph is NP-complete [13]. For graphs of maximal degree 3,
it is known that the search number is equal to the graph’s cutwidth [12]. Using
the result of [5], this implies that the search number of a 3-regular planar graph
is O(

√
n). In fact, the proof of [5] immediately implies that the connected search

number of a 3-regular planar graph is O(
√
n). Our result proves that, for 3-

regular planar graphs, O(
√
n) searchers suffice to clean the graph while keeping

the clean subgraph connected and keeping the number of maximal connected
contaminated subgraphs small.

2 Preliminaries

In this section, we introduce the terminology used in this paper and discuss
previous results that are used in our algorithms.

Let T be a given planar triangulation with n faces (triangles). A colouring
c of T is an assignment of a colour c(f) ∈ {black,white} to every face f of T .
Colouring c is trivial if it colours all faces black or all faces white. The boundary
∂c of a non-trivial colouring c is the set of edges in T whose two adjacent triangles
have different colours. We say that a colouring c is t(n)-bounded if |∂c| ≤ t(n).
Consider the connected components of R2\∂c. Each of these components contains
either only black or only white faces. Accordingly, we call such a region black
or white. We define W and B to be the union of all white and black faces,
respectively. We say that colouring c is (b(n), w(n))-scattered if B consists of at
most b(n) connected regions and W consists of at most w(n) connected regions.
The colouring is s(n)-scattered if the total number of monochromatic regions is
at most s(n); that is, a (b(n), w(n))-scattered colouring is also (b(n) + w(n))-
scattered. The black count of a colouring c is the number of faces f of T such that
c(f) = black. A flooding is a sequence F = (c0, c1, . . . , cn) of colourings such that,
for all 0 ≤ i ≤ n, the black count of colouring ci is i and ci(f) = black implies
that ci+1(f) = black. We say that a flooding F is t(n)-bounded, (b(n), w(n))-
scattered, or s(n)-scattered if every non-trivial colouring in F is t(n)-bounded,
(b(n), w(n))-scattered, or s(n)-scattered, respectively.

720 R.J. Nowakowski and N. Zeh

If both regions W and B are connected, the boundary of colouring c is a
simple cycle C. We call this cycle a simple-cycle separator of T . Given an as-
signment of weights to the faces of T such that the weights of all faces sum to 1,
we call cycle C a simple-cycle ε-separator if the total weight of the faces in each
of the regions W and B is at most ε. The size of a simple-cycle separator is the
number of edges on the cycle. Miller shows the following result.

Theorem 1 (Miller [14]). Given a planar triangulation T with n vertices and
a weight function that assigns non-negative weights to the faces of T such that
the total weight of all faces is at most 1 and no face has weight more than 2

3 , a
simple-cycle 2

3 -separator of size at most
√

8n for T can be found in linear time.

3 New Results

In Section 4, we prove that every planar triangulation T has an O(
√
n)-bounded

(1,O(logn))-scattered flooding. More strongly, given a face f0 of T , there exists
such a flooding F = (c0, c1, . . . , cn) such that c1(f0) = black; that is, f0 is the
first triangle coloured black and every subsequent triangle is coloured black only
after at least one of its neighbours has been coloured black. We show that such
a flooding can be computed in O(n log n) time.

In Section 5, we prove that the result from Section 4 is best possible in a very
strong sense: For any 0 < ε < 1, there exists a family of triangulations that do
not have O(n1−ε)-bounded o(logn)-scattered floodings.

4 Floodings with Small Boundary and Low Scatter

In this section, we show how to efficiently find a flooding for a given triangulation
that maintains a small boundary at all times, keeps the black region connected,
and creates only few white regions at any time. The following theorem states
this formally:

Theorem 2. For every planar triangulation T with n faces and every face
f0 of T , there exists an O(

√
n)-bounded (1,O(logn))-scattered flooding F =

(c0, c1, . . . , cn) such that c1(f0) = black. Such a flooding can be computed in
O(n log n) time.

To prove Theorem 2, we first compute a recursive partition P of T using
simple-cycle and multi-path separators and then use an ordering of the leaves of
P to compute the order in which to colour the faces of T . The subgraphs of T in
this partition are partial triangulations defined as follows: A partial triangulation
is an embedded planar graph G with the following properties:

(i) Every face of G is marked as either interior or exterior.
(ii) All interior faces are triangles.
(iii) The union of all interior faces forms a connected region.
(iv) No two exterior faces share an edge.

Boundary-Optimal Triangulation Flooding 721

The boundary ∂G of G is the set of edges on the boundaries of the exterior faces.
To compute the partition P, we make use of the following lemma.

Lemma 1. Every partial triangulation G with n ≥ 2 interior faces contains a
separator of one of the following two types:

(i) A simple cycle C of length at most
√

8n+ 16 such that at most 2n/3 inte-
rior faces are on either side of C.

(ii) A set of simple paths P1, P2, . . . , Pk of total length at most
√

8n+ 16 such
that each path has its endpoints, but no internal vertices, in ∂G and each
of the regions into which the interior of G is partitioned by these paths
contains at most 2n/3 interior faces.

Such a separator can be found in linear time.

Proof. We triangulate the exterior faces of G and give weight 1/n to every in-
terior face of G and weight 0 to every triangle produced by triangulating the
exterior faces. We use Theorem 1 to find a simple-cycle separator C of the re-
sulting triangulation T . Since the interior of T is connected, T has at most n+2
vertices. Hence, by Theorem 1, the cycle C has length at most

√
8n+ 16. If C

contains only interior edges of G, we have Case (i). Otherwise, let P1, P2, . . . , Pk

be the maximal sub-paths of C that consist of only interior edges of G. Every
path Pi is simple because C is simple. Every region in the partition of G is com-
pletely on one side of C and thus has size at most 2n/3. Thus, we have Case (ii).
The complexity of all three steps of this procedure is linear.
�

Given a partial triangulation G, a separator as in Lemma 1 partitions G
into partial triangulations G1, G2, . . . , Gh as follows: Let R1, R2, . . . , Rh be the
connected regions into which the interior of G is divided by the separator given
by the lemma. Then the partial triangulation Gi has the faces of Ri as its interior
faces. The exterior faces of Gi are bounded by the boundary edges of Ri. The
following observation is an immediate consequence of the simplicity of C.

Observation 1. If G has an exterior face, then at most one of the partial tri-
angulations G1, G2, . . . , Gh does not share an edge with an exterior face of G.

Next we define a recursive partition P of T into partial triangulations by
repeated application of Lemma 1. The root of P is T . For every non-leaf partial
triangulation G, its children are obtained by applying Lemma 1 to G. Every
non-leaf partial triangulations has more than

√
n interior faces; every leaf partial

triangulation has at most
√
n interior faces. To construct the desired flooding

F , we compute an ordering of the leaf partial triangulations of P and flood each
triangulation in turn. We obtain this ordering as the left-to-right ordering of the
leaves of P obtained by ordering the children of every internal node of P, from
the root toward the leaves. Given that the children of the ancestors of a partial
triangulation G in P have already been ordered, we give colours black and white
to the boundary edges of G as follows: Let e be such an edge, let f be the face
in G incident to e, let f ′ be the other face incident to e, and let G′ be the leaf

722 R.J. Nowakowski and N. Zeh

triangulation that contains f ′. Let H and H ′ be the ancestors of G and G′ that
are children of the LCA H ′′ of G and G′. If H ′ precedes H in the order of the
children of H ′′, edge e is black; otherwise, edge e is white. To order the children
of G, we now apply the following lemma.

Lemma 2. If a partial triangulation G in P has f0 as an interior face or has
at least one black boundary edge, then the children of G can be arranged in an
order G1, G2, . . . , Gh that satisfies the following two conditions:

(i) If f0 is an interior face of G, then f0 is an interior face of G1 and every
child Gi, i > 1, shares an edge with a child Gj, j < i. If f0 is not an
interior face of G, then every child Gi of G shares an edge with a child Gj,
j < i, or has a black boundary edge of G on its boundary.

(ii) There is at most one child Gi of G that does not share an edge with a child
Gj, j > i, and does not have a white boundary edge of G on its boundary.

Proof. We call a boundary edge of a child Gi of G black, white, or internal
depending on whether it is a black or white boundary edge of G or an edge
between two children of G. We partition the children of G into three groups: If
f0 is an interior face of G, then G2 contains the child G1 that contains f0 and all
remaining faces are in G3. G1 is empty in this case. If f0 is not an interior face of
G, then G3 contains all children whose boundary edges are white or internal. G2
contains all children that have at least one black boundary edge and at least one
boundary edge that is white or is shared with a child in G3. Group G1 contains
the remaining children, that is, those whose boundary edges are either black or
shared with other children in G1 and G2. If groups G2 and G3 are empty, we move
an arbitrary child from group G1 to group G2.

In the ordering of the children of G, the children in G1 precede the children in
G2, which in turn precede the children in G3. The children in G2 are arranged in
no particular order. The children in G3 are arranged so that each such child Gi

shares an edge with a child Gj , j < i. Since G1∪G2 is non-empty, the connectivity
of the interior of G implies the existence of such an ordering. The children in G1
are arranged so that each such child Gi shares an edge with a child Gj , j > i.
Again, the non-emptiness of G2 ∪ G3 and the connectivity of the interior of G
imply the existence of such an ordering.

If f0 is in G, then Condition (i) is trivially satisfied by the constructed or-
dering. So assume that f0 is not in G. Then every face in G1 ∪ G2 has a black
boundary edge and every child Gi in G3 shares an edge with a child Gj , j < i. To
see that Condition (ii) is satisfied, observe that, by Observation 1, at most one
child in G3 does not have a white boundary edge. Every child Gi in G1 shares an
edge with a child Gj , j > i; every child in G2 shares an edge with a child Gj in
G3 or has a white boundary edge.
�

Given the ordering of the leaf partial triangulations of P produced by top-
down application of Lemma 2, we flood these partial triangulations in this order.
The first leaf partial triangulation contains f0 and is flooded starting from f0.
Every subsequent triangulation G is flooded starting from a face that has a black

Boundary-Optimal Triangulation Flooding 723

edge of G on its boundary. A simple inductive argument shows that such a face
always exists. (Details appear in the full paper.) The following lemma shows how
to flood leaf triangulations.

Lemma 3. A leaf triangulation G can be flooded starting from any face f of G
so that the boundary between black and white interior faces of G has size at most√
n + 2, the number of black regions interior to G is one at all times, and the

number of white regions interior to G never exceeds log
√
n.

Proof. We keep the black region connected by colouring f black and subse-
quently colouring a face f ′ black only if at least one of its adjacent faces is
black. The bound on the boundary size follows immediately from the fact that
G has at most

√
n interior faces. To guarantee that there are never more than

log
√
n white regions, we choose the order in which to colour triangles using

the following recursive procedure: Let R be the current region to be coloured.
After colouring f black, R is the interior of G minus f . We choose a face f ′ in
R adjacent to a black face and colour it black. Face f ′ divides R into at most
two connected regions. We flood each of them recursively, first the smaller one,
then the bigger one. If we consider this recursive partition of the interior of G
into white regions, then at any time only log

√
n ancestors of the current region

can have siblings waiting to be flooded because each such sibling is of at least
the same size as the corresponding ancestor of the current region. Every such
sibling is completely contained in a white region of the current colouring of G,
and every white region consists of at least one such sibling. Hence, there are at
most log

√
n white regions at any time.
�

The next three lemmas establish that the computed flooding F has the desired
properties.

Lemma 4. Every colouring in F defines only one black region.

Proof. This is obvious, once we observe that F floods the children of any partial
triangulation in P in left-to-right order. Hence, for every leaf partial triangulation
G, a black boundary edge is one that already has an incident black triangle at
the time when G is being flooded. The flooding of G starts at a triangle incident
to such an edge and keeps the black region connected, by Lemma 3.
�

Lemma 5. The boundary size of every colouring in F is O(
√
n).

Proof. Consider the leaf partial triangulation G currently being flooded. Only
ancestors of G can be bichromatic. Thus, the boundary of the black region is
part of the separators computed at these ancestors. Since the separator of an
ancestor with n′ internal faces has size O(

√
n′) and the sizes of these ancestors

are geometrically decreasing, the proper ancestors of G contribute O(
√
n) to the

boundary size of the colouring. By Lemma 3, G itself also contributes O(
√
n).

�

Lemma 6. Every colouring in F defines at most O(logn) connected white re-
gions.

724 R.J. Nowakowski and N. Zeh

Proof. Consider the leaf partial triangulation G currently being flooded. As al-
ready observed, only ancestors of G can be bichromatic. It suffices to prove that
every ancestor contributes at most one white region to the current colouring.
This is sufficient because there are only O(logn) such ancestors and the flooding
of G itself contributes only O(logn) white regions to the current colouring, by
Lemma 3.

Our claim follows from Lemma 2. In particular, the second condition implies
that at most one of the white children of a partial triangulation G is not included
in the same white region as some white sibling of an ancestor of G.
�

Partition P can be computed in O(n log n) time by repeated application
of Lemma 1. In particular, every face of G is contained in exactly one partial
triangulation per level of P, so that the cost of computing every level of P
is O(n). There are at most log3/2 n = O(logn) levels in P. Once partition P is
given, the remainder of the algorithm is easily carried out in linear time. (Details
appear in the full paper.)

We have shown that an O(
√
n)-bounded (1,O(logn))-scattered flooding of

a planar triangulation can be computed in O(n log n) time. This completes the
proof of Theorem 2.

5 Families of Hard Triangulations

As already mentioned in the introduction, it is in general impossible to obtain
an o(

√
n)-bounded flooding for a given triangulation. In this section, we prove

that the scatter of the flooding in Theorem 2 is also optimal, even if we relax
the bound on the boundary size to be O(n1−ε), for any 0 < ε < 1, and we allow
more than one black region, that is, we are only interested in the total number
of monochromatic regions. The following theorem states this formally:

Theorem 3. For any 0 < ε < 1, there exists a family of triangulations that do
not have O(n1−ε)-bounded o(logn)-scattered floodings.

To prove Theorem 3, we show how to construct, for any pair of parameters n
and ε, a triangulation T of size O(n) as in Theorem 3. Then we define a tree X
that captures the structure of T ; prove that the scatter of any O(n1−ε)-bounded
flooding of T cannot be less than the minimal scatter of a flooding of X, defined
below; and finally prove that X does not have an o(logn)-scattered flooding.

To construct triangulation T , we place triangles in the plane and then trian-
gulate the regions bounded by these triangles. Every such triangle Δ is said to
be at a level (i, j). We compare levels lexicographically; that is, (i, j) < (i′, j′) if
either i < i′ or i = i′ and j < j′.

The first triangle we place is a bounding triangle at level (0, 0). All subsequent
triangles are placed inside this triangle. After placing the bounding triangle, we
iteratively place two level-(i+ 1, 0)-triangles into every level-(i, 0) triangle until
the last level (�, 0) we produce contains between nε′

and 2nε′
triangles, where ε′ =

ε/2. Observe that � ≥ log(nε′
) = ε′ · log n. We call levels (0, 0), (1, 0), . . . , (�, 0)

Boundary-Optimal Triangulation Flooding 725

Fig. 1. The construction of a triangulation as in Theorem 3. The nested triangles in
the hierarchy are shown in bold. Thin edges show a possible triangulation obtained
from this hierarchy of triangles

branching levels. Now we continue by placing triangles at non-branching levels
(i, j), j > 0. Let m = �n1−ε′�. Then we place one level-(i, j) triangle Δ, for
0 ≤ i ≤ � and 1 < j < m, into every level-(i, j − 1) triangle Δ′ so that the level-
(i+ 1, 0) triangles contained in Δ′ are also contained in Δ. We obtain our final
triangulation T by triangulating the regions between triangles at consecutive
levels (see Figure 1). To avoid confusion, we refer to the nested triangles we
place during the construction of T as triangles and to the triangular faces of T
as faces. Our first observation proves that T has the desired number of faces.

Observation 2. Triangulation T has O(n) faces.

Proof. The number of triangles at level (�, 0) is at most 2nε′
. The number of tri-

angles at all branching levels is at most twice that. Every triangle at a branching
level (i, 0) contains m = �n1−ε′� triangles at non-branching levels (i, j). Hence,
the total number of triangles is O(nε′ · n1−ε′

) = O(n). Since every triangle con-
tributes 3 vertices to the vertex set of T , T has O(n) vertices and hence, by
Euler’s formula, O(n) faces.
�

726 R.J. Nowakowski and N. Zeh

We call the region bounded by two triangles Δ and Δ′ such that Δ′ is con-
tained in Δ and these triangles are at levels (i, j) and (i, j + 1), for some i
and j, a ring. If Δ and Δ′ are at levels (i, 0) and (i,m − 1), respectively, we
call the region bounded by Δ and Δ′ a tube. The next observation establishes
that every O(n1−ε)-bounded colouring of T has to contain a sufficient number
of monochromatic rings, which is the key to lower-bounding the scatter of any
O(n1−ε)-bounded flooding of T by the scatter of floodings of certain trees.

Observation 3. Every O(n1−ε)-bounded colouring c of T colours at least one
ring in every tube completely white or completely black.

Proof. Assume that there is a tube in T none of whose rings is monochromatic;
that is, every ring contains at least one black and at least one white face. Then
there is at least one boundary edge between black and white faces in every ring in
this tube. Since there are �n1−ε′ − 1� = ω(n1−ε) rings per tube, this contradicts
the assumption that c is O(n1−ε)-bounded.
�

Next we define a tree X whose floodings lower-bound the scatter of any
O(n1−ε)-bounded flooding of T . We begin by constructing a tree X0: Tree X0
contains one node per region that is bounded by a set of triangles and does not
contain any triangle. There is an edge between two nodes if the corresponding
regions have a common triangle on their boundaries. Tree X is obtained from
X0 by replacing every maximal path whose internal nodes have degree two with
an edge. The nodes of X represent the exterior triangle of T , the regions that
are bounded by three triangles, and the triangles that do not contain any other
triangles. The edges of X represent the tubes of T .

For every O(n1−ε)-bounded colouring c of T , we define a colouring c′ of the
edges of X as follows: By Observation 3, every tube of T contains either a black
or a white ring, or both. We colour the corresponding edge of X black if there
is a black ring in the tube and white if all rings in the tube are either white or
bichromatic.

A monochromatic subtree of X under colouring c′ is a maximal subtree all of
whose edges have the same colour. We call a colouring of X s(n)-scattered if it
defines at most s(n) monochromatic subtrees of X. A flooding of X is defined
analogously to a flooding of T , the only difference being that we colour edges.
A flooding is s(n)-scattered if all its colourings are s(n)-scattered.

The next lemma proves that the number of monochromatic subtrees of X
defined by c′ is a lower bound on the number of monochromatic regions of T
defined by colouring c.

Lemma 7. For every O(n1−ε)-bounded colouring c of T with k monochromatic
regions, the corresponding colouring c′ of X defines at most k monochromatic
subtrees of X.

Proof. Let k′ be the number of monochromatic subtrees of X under colouring
c′. We prove that k ≥ k′. If there are at most two monochromatic subtrees,
the lemma is trivial because c cannot define less than one region of T and if X

Boundary-Optimal Triangulation Flooding 727

has two monochromatic subtrees, then T has two regions of different colours. So
assume that there are at least three monochromatic subtrees in X. We prove
that, for each of these subtrees, there is at least one monochromatic region in T .

Consider two black subtrees X1 and X2 and two edges e1 ∈ X1 and e2 ∈ X2.
Since X1 �= X2, there has to be at least one white edge e′ on the path connecting
e1 and e2. Since edges e1 and e2 are black, there is at least one black face in
each of the tubes represented by these edges. Call these faces f1 and f2. Edge e′

is white because there is no black ring in the tube represented by e′. Hence, by
Observation 3, this tube contains at least one white ring. Since e′ is on the path
from e1 to e2 in X, this ring separates f1 from f2. Therefore, f1 and f2 belong
to different black regions of T . This proves that, for every black subtree of X,
there is at least one black region in T . A symmetric argument shows that the
number of white regions of T is at least the number of white subtrees of X.
�

The following is an easy consequence of Lemma 7.

Corollary 1. If T has an O(n1−ε)-bounded s(n)-scattered flooding, then X has
an s(n)-scattered flooding.

We have to show thatX does not have an o(logn)-scattered flooding. Observe
that, by the construction of T and X, X has 2h nodes, for some integer h.

Lemma 8. Let X have 2h nodes. Then X does not have an �h/2�-scattered
flooding.

Proof. Observe that, if we root X at the node representing the exterior face, X
is a complete binary tree with 2h−1 leaves whose root has an extra parent. We
call such a tree a hanger. Next we use induction on h to prove that a hanger
with 2h nodes does not admit an �h/2�-scattered flooding.

If h ≤ 3, the claim holds trivially because every colouring is at least 1-
scattered and every flooding of a tree with more than one edge is at least
2-scattered. So assume that h > 3 and that the claim holds for h − 2. Let
F = (c0, c1, . . . , c2h−1) be a flooding of a hanger H with 2h nodes. By removing
the root of H, its child, and the three edges incident to these vertices, we par-
tition H into two complete subtrees; both subtrees can be partitioned into two
hangers with 2h−2 nodes. We denote these hangers as H1, H2, H3, H4. Since the
restriction of F to any Hj is a flooding of Hj with duplicate consecutive colour-
ings, there have to be colourings ci1 , ci2 , ci3 , ci4 , i1 < i2 < i3 < i4, such that the
restriction of cij to Hj defines at least �h/2� monochromatic subtrees of Hj . If,
for any colouring cij

, H−Hj is not monochromatic, cij
defines at least �h/2�+1

monochromatic subtrees of H. Now we observe that, for colouring ci2 , H −H2
cannot be monochromatic. Indeed, ci2 succeeds ci1 , so H1 contains at least one
edge that is coloured black by ci2 ; ci2 precedes ci3 , so H3 contains at least one
edge that is coloured white by ci2 . Hence, H does not have an �h/2�-scattered
flooding.
�

To complete the proof of Theorem 3, it suffices to observe that X has Θ(nε′
)

nodes. By Lemma 8, this implies that X does not have an o(logn)-scattered

728 R.J. Nowakowski and N. Zeh

flooding and, hence, by Corollary 1, that T does not have an O(n1−ε)-bounded
o(logn)-scattered flooding.

Acknowledgements. We would like to thank two anonymous referees for point-
ing out the relationship of the triangulation flooding problem to the large number
of problems discussed in the introduction.

References

1. P. Alliez and M. Desbrun. Valence-driven connectivity encoding for 3d meshes. In
Proceedings of Eurographics, pages 480–489, 2001.

2. R. Bar-Yehuda and C. Gotsman. Time/space tradeoffs for polygon mesh rendering.
ACM Transactions on Graphics, 15(2):141–152, 1996.

3. L. Barrière, P. Flocchini, P. Fraigniaud, and N. Santoro. Capture of an intruder by
mobile agents. In Proceedings of the 14th ACM Symposium on Parallel Algorithms
and Architectures, pages 200–209, 2002.

4. J. Dı́az, J. Petit, and M. Serna. A survey of graph layout problems. ACM Com-
puting Surveys, 34(3):313–356, 2002.

5. K. Diks, H. N. Djidjev, O. Sykora, and I. Vrto. Edge separators of planar and
outerplanar graphs with applications. Journal of Algorithms, 14:258–279, 1993.

6. M. Franklin, Z. Galil, and M. Yung. Eavesdropping games: A graph theoretic
approach to privacy in distributed systems. Journal of the ACM, 47(2):225–243,
2000.

7. C. Gotsman. On the optimality of valence-based connectivity coding. Computer
Graphics Forum, 22(1):99–102, 2003.

8. F. Hurtado. Open problem posed at the 15th Canadian Conference on Computa-
tional Geometry. 2003.

9. D. Karger. A randomized fully polynomial time approximation scheme for the all-
terminal network reliability problem. SIAM Journal on Computing, 29(2):492–514,
1999.

10. T. Lengauer. Black-white pebble games and graph separation. Acta Informatica,
16(4):465–475, 1981.

11. R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs. SIAM
Journal on Applied Mathematics, 36(2):177–189, 1979.

12. F. Makedon and H. Sudborough. Minimizing width in linear layout. In Proceedings
of the 10th International Colloquium on Automata, Languages, and Programming,
volume 154 of Lecture Notes in Computer Science, pages 478–490. Springer-Verlag,
1983.

13. N. Megiddo, S. Hakimi, M. Garey, D. Johnson, and C. Papadimitriou. The com-
plexity of searching a graph. Journal of the ACM, 35(1):18–44, 1988.

14. G. L. Miller. Finding small simple cycle separators for 2-connected planar graphs.
Journal of Computer and System Sciences, 32:265–279, 1986.

15. P. Mutzel. A polyhedral approach to planar augmentation and related problems.
In Proceedings of the 3rd Annual European Symposium on Algorithms, volume 979
of Lecture Notes in Computer Science, pages 497–507, 1995.

16. E. H. Spafford and D. Zamboni. Intrusion detection using autonomous agents.
Computer Networks, 34(4):547–570, 2000.

Exact Computation of Polynomial Zeros
Expressible by Square Roots

Timo von Oertzen

Saarland University
timovoe@gmx.de

Abstract. In this paper, we give an efficient algorithm to find symboli-
cally correct zeros of a polynomial f ∈ R[X] which can be represented by
square roots. R can be any domain if a factorization algorithm over R[X]
is given, including finite rings or fields, integers, rational numbers, and
finite algebraic or transcendental extensions of those. Asymptotically,
the algorithm needs O

(
Tf

(
d2)) operations in R, where Tf (d) are the

operations for the factorization algorithm over R[X] for a polynomial of
degree d. Thus, the algorithm has polynomial running time for instance
for polynomials over finite fields or the rationals.

1 Introduction

The zeros for polynomials of degree two can easily be expressed by square roots.
By the formulas of Tartaglia and Ferrari (both published in Cardanos Ars Magna
[2] in 1545), also polynomials of degree three and four can be solved by radicals,
though these of course include square and cubic roots.

By Galois Theory, N. Abel [1] showed that polynomials of degree five or
higher in general can not be solved by radicals. Nevertheless, special instances
of such polynomials can be solved. If so, such a representation is usually smaller
and easier to handle than the minimal polynomial itself.

If the radicals involved in the roots are already known beforehand, the exact
roots can be found by factoring over the respective ring extension. Algorithms
for this purpose are for example described in [3].

An algorithm for deciding whether a given polynomial is solvable by radicals
and to compute such a solution without knowing the radicals beforehand has
been proposed by Landau et al. in [8]. But, since the authors need to approximate
the zeros of the polynomial in their approach, it is restricted to polynomial rings
over fields where approximative computations are possible; furthermore, very
precise approximation of all zeros are needed. Also, this approach was based on
early factoring algorithms and therefore had a relatively high running time.

In this paper, we restrict ourselves to the case of square roots. We give an
efficient algorithm for testing whether a polynomial of any degree can be solved
by square roots and explicitly find these roots if they exist. Our algorithm is
based on factorization only, i.e. it works for polynomials over any domain if a
factorization algorithm is given, including finite rings or fields, integers, rational

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 729–741, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

730 T. von Oertzen

numbers, and algebraic or transcendental extensions of those. For a polynomial
of degree d, the algorithm needs asymptotically O(Tf (d2)) operations in the
domain, where Tf (d) are the operations for the factorization algorithm in the
domain. In the outlook, we will describe how this approach may extend to other
radicals as well.

The question of solvability by square roots arises for example in tasks of
geometric construction by ruler and compass, tasks that kept mathematicians
engaged for centuries. This is due to the fact that with ruler and compass, exactly
all square root expressions can be constructed.

Figure 1 depicts an easy example of such construction task: Given a triangle
ABC and the intersection of its heights D, is it possible to give a construction
(using ruler and compass) to acquire C if A, B and D are given?

Using algebraic means, the question can be easily answered positively. All
that has to be done is to embed the construction in a coordinate system, for
example by assigning A = (0, 0), B = (1, 0) and C = (X,Y) with two variables
X and Y . Then, we can express the coordinates of D = (hx(X,Y), hy(X,Y)) in
terms of X and Y . Assume values a, b for the Position of D are given; than C can
be reconstructed from A, B and D exactly when the polynomial equation system

hx(X,Y) = a

hy(X,Y) = b

can be solved by square roots. By means of elimination theory, we can reduce
this task to a question whether the root of a single polynomial can be repre-
sented by square roots. For a more thorough description of the interrelation of
solving polynomials with square roots and the construction problem, see [11].

A B

C

D

Fig. 1. The intersection of heights in a triangle Given the points A, B and D, then C

can be constructed be ruler and compass such that D is the intersection of heights in
the triangle ABC

In the following, we will first give a description of the Euclidian field over a
field K, i.e. the closure of K by square roots. We will talk about representing
elements in such fields and define a property called completeness shared by most,
though not all, elements of the Euclidian field. Complete elements provide some

Exact Computation of Polynomial Zeros Expressible by Square Roots 731

further properties; for example, the representation of complete elements is unique
in a certain sense.

In the third section, we will give a quick test to verify whether a given poly-
nomial has a root representable by square roots without explicitly computing
such a representation. To the end of constructing such a representation, we give
some theorems that enable us to compute the representation of a zero for a given
polynomial by square roots.

In the fourth section, we will give the algorithm in compact form and prove
time bounds of it. We give some possible improvements of the algorithm for
special situations.

Finally, we will give a discussion and outlook on possible further investiga-
tions in the field.

2 Theoretical Aspects of the Euclidian Field

In this section, a short overview is given on aspects of the Euclidian Field of a
field K, defined by

Definition 21 . Let K be a field and K its algebraic closure. Then we call EK

with K ⊆ EK ⊆ K and

EK =
⋂
{K | K ⊇ K,∀a ∈ K ∃b ∈ K : b2 = a}

the Euclidian Field over K.
For ξ ∈ EK, we denote by deg(ξ) the degree of the minimal polynomial of ξ

over K.

2.1 The Representation Theorem

Elements of the Euclidian Field can be represented as follows:

Theorem 22 (Representation Theorem) . Let R be a domain and K the
quotient field of R. Let ξ ∈ EK be of degree 2d. Then ξ can be represented by

ξ =
1
n

(
k0 +

d∑
i=1

ki
√
wi

)

where n, k0 ∈ R, wi, ki ∈ EK. Also, deg (wi) ≤ 2i−1 and deg (ki) ≤ 2i−1 for
i = 1, . . . , d.

The wi and ki are elements of the ring extension R[
√
w1, . . . ,

√
wi−1]. All

these elements can be represented, like ξ, with the square roots in the represen-
tation identical to wj for j < i.

For a proof, see [11].

Lemma 23 . For ξ ∈ EK of degree 2d, there is a representation ξ = ξ1 +
√
ξ2

like in the representation theorem such that deg(ξ2) = 2d−1.

732 T. von Oertzen

Proof (Sketch of proof). Take any representation of ξ and order the square
roots by degree. If deg(ξ2) < 2d−1, there must be two successive roots ki

√
wi +

ki+1
√
wi+1 with equal degree deg(wi) = deg(wi+1) in the representation of ξ.

Replace this term by√(
ki
√
wi + ki+1

√
wi+1

)2 =
√
k2

iwi + k2
i+1wi+1 + 2kiki+1

√
wiwi+1

As can be checked, the resulting term still is a representation as in the repre-
sentation theorem. Continuing in this way leads to a representation as desired.

�

Furthermore, it can be shown that if ξ1 and ξ2 are to be represented in the
same way, this representation is unique.

For each square root in the representation, we can choose a sign separating
the two possible branches of the square root. For ease of notation, choose any
fixed square root function for the √. symbol; then, exchanging the signs for the
square roots in the representation theorem enables us to switch between the
algebraic conjugates of whole ξ. By this, we get hold of the minimal polynomial
of ξ:

Lemma 24 . Let ξ ∈ EK, ξ = 1
n

(
k0 +

∑d
i=1 ki

√
wi

)
as in the representation

theorem. Let (v1, . . . , vd) ∈ {0, 1}d. By recursive definition, let

ξ(v1,...,vd) := k0 +
d∑

i=1

(−1)vik
(v1,...,vi−1)
i

√
w

(v1,...,vi−1)
i

We denote ξ ∼ η if η = ξ(v1,...,vd) for some vi. Then,

f =
∏
η∼ξ

(X − η)

is the minimal polynomial of ξ. Hence, ξ(v1,...,vd) are the conjugates of ξ.

Proof (Sketch of proof). The element ξ is a zero of f , and f is monic and of
degree 2d, which is the degree of the field extension [K : K(ξ)]. Therefore, it
suffices to show that f ∈ K[X]. This can be checked by an easy computation,
since for all η ∼ ξ, the X − η carry all possible signs in front of the square roots
appearing in the term and are therefore successively eliminated when computing
the product.
�

2.2 Completeness

In most cases, the representation given in the representation theorem is unique
up to quadratic factors in the square roots. Though, this does not hold if for
one of the expressions

√
wd in the representation theorem, not all square roots

of conjugates of wd are linearly independent. If this situation occurs, we call
the element incomplete. Completeness can be equivalently described in following
ways:

Exact Computation of Polynomial Zeros Expressible by Square Roots 733

Lemma 25 . Let ξ ∈ EK, ξ = k0 +
∑d

i=1 ki
√
wi. Let

Ki = K(
√
w′

j | j ≤ i, w′
j ∼ wj)

Then, Kd is the splitting field of ξ.
The following statements are equivalent:

1. [Ki+1 : Ki] = 22i ∀i
2. [Kd : K] = 22d−1

3. The Galois group of ξ is a 2-Sylow group of S2d .

In this situation, we call ξ complete (since the Galois group is the complete
2-Sylow group).

Proof. Kd contains all zeros of the minimal polynomial of ξ (i.e. all conjugates),
therefore it is a superfield of the splitting field. On the other hand, by eliminating
the square roots by appropriate adding of the conjugates, all conjugates of all√
wd can be represented by the conjugates of ξ, thus Kd is a subfield of the

splitting field. Hence, Kd is the splitting field.
The equivalence of the three characterizations of completeness can be checked

as follows. If (1), then (2) follows since

[Kd : K] =
d−1∏
i=0

22i

= 2
∑d−1

i=0 2i

= 22d−1

(2) ⇒ (3) holds since the Galois group of ξ must have 22d−1 elements, and
the factor 2 is contained exactly 2d − 1 times in 2d!. If (3) holds, (1) follows,
since the Galois group can only be of maximal size if each field extension step is
of maximal size.
�

If an element is complete, we get some additional information about it:

Lemma 26 . Let ξ ∈ EK, ξ = k0 +
∑d

i=1 ki
√
wi be complete. Then

1. The representation of the representation theorem is unique up to quadratic
factors in the square roots.

2. For 1 ≤ j ≤ d, wj is complete and of degree 2j−1.
3. For 1 ≤ j ≤ d, k0 +

∑j
i=1 ki

√
wi is complete iff kj �= 0.

Proof. If ξ is complete, then by Lemma 25 Kd is of dimension 22d−1 as a K-
vector space. Thus, the 22d−1 elements

√
w′

j for 1 ≤ j ≤ d and w′
j ∼ wj form a

basis of Kd, and the representation of ξ by the representation theorem (which is
a representation by this basis) is unique.

(2) follows immediately by the definition of completeness. (3) follows from
(2) if kj �= 0, since if √wj is complete, so is each sum of it and terms containing
only square roots

√
wi with i < j.
�

734 T. von Oertzen

3 Towards the Solving Algorithm

In the following section, a quick testing algorithm for polynomials over Q or
finite extensions of Q will be introduced to check whether the polynomial has
roots representable by square roots.

Furthermore, for a polynomial that actually has zeros representable in the
Euclidian Field over the ground field, a theorem will be given to isolate the last
square root in a representation of such a zero, in this way reducing the problem
of finding the representation to a problem of reduced polynomial degree.

First, we assume a given polynomial to be irreducible by factoring it and
finding the zeros of the factors independently. If an irreducible polynomial has a
degree which is not a power of two, it can certainly be dismissed, since by lemma
24 the degree of the minimal polynomial of a zero representable by square roots
is a power of two.

3.1 Quick Testing Over Extensions of the Rationals

For a polynomial over the rationals or a finite extension of the rationals, we can
extend the test of degree to the factors of the polynomial over finite fields. Since
if a polynomial over Q has zeros in EQ, so has its image in every finite field. But
although we assume the polynomial to be irreducible over Q, of course it may
split over a finite field. If any factor over a finite field has a degree which is not
a power of two, we can conclude that it has no zeros representable by square
roots, and thus neither the original polynomial over Q.

We use this to provide a quick pretest as follows: Take an irreducible polyno-
mial over Q (or an appropriate finite extension of Q) and factor it over several
finite fields, say over Z/pZ for the first hundred primes. If any of these factors
has a degree which is not a power of 2, dismiss the polynomial. Otherwise, the
polynomial is very likely to actually have a zero representable by square roots,
although it is not certain. In the literature, this test is often used to learn some-
thing about the structure of the Galois group of a polynomial (see [9, 10]); we
can make use of it here since the polynomial will have a root expressible by
square roots exactly if its Galois group is a 2-subgroup.

We formalize the algorithm in the following lemma:

Lemma 31 . Let K = Q(Y1, . . . , Yn) be a transcendental extension of Q, and
let p be a prime number. Let Kp = Fp(Y1, . . . , Yn), and let ϕ be the natural
homomorphism from Z(Y1, . . . , Yn) → Fp(Y1, . . . , Yn). Let furthermore f ∈ K[X]
be a Z-multiple of the minimal polynomial of a ξ ∈ EK such that f has integer
coefficients. Then, the degree of all factors of ϕ(f) over Kp is a power of two.

The proof of this lemma can be found in [11].
If a polynomial has roots representable by square roots, it will pass the test

by the above lemma. If, on the other hand, the polynomial has no such roots, the
test may fail. Yet, by Tchebotarevs density theorem (see [9, 10]), we know that
by factoring over a sufficiently general prime, the probability to get a factor of
degree not divisible by two is equal to the ratio of elements in the Galois group

Exact Computation of Polynomial Zeros Expressible by Square Roots 735

which have no cycle divisible by two. For generic polynomials of degree four (i.e.
polynomials with S4 as their Galois group), this ratio is 1

3 (8 of the 24 elements
in the S4 have a cycle of length three), i.e. the probability that the test fails
on 25 primes is about 4 · 10−3 %. For degree 8, about 3

4 of the elements of the
S8 have a cycle of length 3, 5, 6 or 7, so the probability that the test fails on 25
primes is about 9 · 10−14 %. For higher degrees, the test is even more successful.
Experiments of the test on randomly chosen polynomials (see [11]) reveal the
same results.

3.2 Constructive Algorithm for Solving Polynomials by Square
Roots

The following theorem is the core of the algorithm to find the zeros of a polyno-
mial explicitly. It shows how to find the minimal polynomial of the last square
root in the representation, in this way reducing the problem to a polynomial of
half degree.

Theorem 32 . Let ξ ∈ EK with ξ = ξ1 +
√
ξ2 as in Lemma 23. Then,

f4ξ2 :=
∏

(v1,...,vd−1)∈{0,1}d−1

X −
(
ξ(v1,...,vd−1,0) − ξ(v1,...,vd−1,1)

)2

is the minimal polynomial of 4ξ2.

Proof. As can be checked by computation (see [11]), we have

f4ξ2 =
∏

(v1,...,vd−1)∈{0,1}d−1 X −
(
ξ(v1,...,vd−1,0) − ξ(v1,...,vd−1,1)

)2

=
∏

(v1,...,vd−1)∈{0,1}d−1 X − 4ξ(v1,...,vd−1)
2

Which is the product of all conjugates of 4ξ2, thus a power of the minimal
polynomial; since Lemma 23 states that deg(ξ2) = 2d−1, it is exactly the minimal
polynomial.
�

The complete algorithm is outlined as follows: Given an irreducible polyno-
mial f , assume it is the minimal polynomial of an element ξ ∈ EK. We then
compute f4ξ2 by the way described below. It can be easily proved (see [11])
that for every ξ ∈ EK, there is one representation of ξ like in the representation
theorem such that every square root appearing in ξ also appears in ξ2.

Since deg(f4ξ2) = 1
2 deg(fξ), we can solve f4ξ2 recursively and thereby find

all square roots in ξ (namely, those appearing in ξ2 and
√
ξ2 itself).

Then, we can find the zero of f by factoring f over the extension field given
by these square roots. A description for algorithms to factor over number field
extensions can for example be found in [3].

What’s left is to compute f4ξ2 from ξ’s minimal polynomial f . To this end,
we introduce

f− =
∏

η1,η2∼ξ

X − (η1 − η2)

736 T. von Oertzen

Note that since f− contains all differences of conjugates of ξ as zeros, it is a
multiple of

f2
√

ξ2
:=

∏
(v1,...,vd−1)∈{0,1}d−1

(
X −

(
ξ(v1,...,vd−1,0) − ξ(v1,...,vd−1,1)

))
·
(
X +

(
ξ(v1,...,vd−1,0) − ξ(v1,...,vd−1,1)

))
=
∏

(v1,...,vd−1)∈{0,1}d−1 X
2 −

(
ξ(v1,...,vd−1,0) − ξ(v1,...,vd−1,1)

)2

which is f4ξ2 up to replacing X2 with X. So, we can achieve f4ξ2 by factoring
f−.

To find f− from the coefficients of f , we use a trick by defining

Definition 33 . Let η0, ..., ηm−1 be the zeros of f− . Then, let

g(k, n) :=
∑

i0 �=... �=ik

ηi0 · · · ηn
ik

where i0 �= ... �= ik is short notation for pairwise different ij.

Notice that up to a factor 1
k! , the g(k, 1) are the elementary symmetric poly-

nomials in ηi and thus the coefficients of f−, which we are interested in.
The g(k, n) can be computed from the g(1, n) by the following recursion:

Lemma 34 . For g(k, n), the following recursion holds:

g(k, n) = (−1)k−1(k − 1)! · g(1, k + n− 1)

+
k−2∑
i=0

(−1)i (k − 1)!
(k − 1− i)!g(k − 1− i, 1) · g(1, n+ i)

The proof is done by induction on the first argument k of g and can be found
in [11].

The g(f, 1) on the other hand can be easily computed from the coefficients of
the original polynomial f . To this end, we first recall Newtons Equations which
compute the power sums of a polynomial by its coefficients:

Lemma 35 (Newtons Equations) . Let f be a polynomial with zeros ξi, σk

be the kth elementary symmetric polynomial of the ξi (i.e. the coefficients of f),
and sk be the power sums of the ξi defined by:

sk =
d∑

i=1

ξk
i

Then, by the Newton Equations,

sk =

{
(−1)k−1kσk −

∑k−1
i=1 (−1)iσisk−i 1 ≤ k ≤ d

(−1)d−1σdsk−d −
∑d−1

i=1 (−1)iσisk−i k > d

Exact Computation of Polynomial Zeros Expressible by Square Roots 737

A proof of this lemma can for example be found in [4].
With the power sums, we can compute g(1, n) from the coefficients of f :

Lemma 36 . Let ξ0, ..., ξn−1 be the zeros of a polynomial f and f− as in Theorem
32. Let sk be the power sums of f . Then,

g(1, n) = dsn (1 + (−1)n)) +
n−1∑
k=1

(−1)k

(
n

k

)
sn−ksk

In particular, g(1, n) = 0 for odd n.

We combine these results to get a recursion for the coefficients of f−, which
are 1

k!g(k, 1). We denote the coefficients by γ(k). By above computation, we
know the g(1, n); then, the coefficients of f− can be computed as follows:

Lemma 37 . Let γ(k) = 1
k! g(k, 1). Then,

γ(k) = −1
k

⎛⎜⎝g(1, k) +
k−2∑
i=0

i odd

γ(k − 1− i)g(1, 1 + i)

⎞⎟⎠
and γ(k) = 0 for odd k.

For the proofs of this last two lemmata, we again refer to [11].

4 The Algorithm to Compute the Zeros Representable
by Square Roots

Algorithm to Compute All Zeros representable by Square Roots
Input: Polynomial f ∈ K[X]

1. Factor f . Return all zeros of linear factors and proceed with every irreducible
factor of f with its degree being a power of 2.

2. Normalize f to f = Xd +
∑d

i=1 σiX
d−i. Let d2 = d(d−1)

2 .
3. Compute for 1 ≤ k ≤ 2d2

sk =

{
(−1)k−1kσk −

∑k−1
i=1 (−1)iσisk−i 1 ≤ k ≤ d

(−1)d−1σdsk−d −
∑d−1

i=1 (−1)iσisk−i k > d

4. Compute for 1 ≤ n ≤ d2

g(1, 2n− 1) = 0

g(1, 2n) = 2ds2n +
2n−1∑
k=1

(−1)k

(
2n
k

)
s2n−ksk

738 T. von Oertzen

5. Compute for 1 ≤ n ≤ d2

γ(2n− 1) = 0

γ(2n) = − 1
2n

(
g(1, 2n) +

2n−2∑
i=0

γ(2n− 1− i)g(1, 1 + i)

)

6. Compute f̃− = Xd2 +
∑d2

i=1 γ−(2i)Xd2−i (Notice that this is the nontrivial

factor of f−

(√
X
)
)

7. Factor f̃−; if there is no factor with degree d
2 , return unsolvable. Else, choose

one such factor and solve recursively to a solution ξ.
8. Factor f in the number field given by the square roots in the normal form

of ξ and
√
ξ itself. If there is no linear factor, return unsolvable. Else, return

the zero of one linear factor.

Example 1. We will give a short example on how the algorithm works. Consider
the irreducible polynomial f = X4−4X3+8X+2. For the sake of completeness,
we give here the intermediate values in the algorithm σn, sn, g(1, n), and γn:

n 1 2 3 4 5 6 7 8 9 10 11 12
σn -4 0 8 2 0 0 0 0 0 0 0 0
sn -4 16 -40 120 -344 1024 -3056 9232 -28048 85696 -262816 808416
g(1, n) 0 96 0 1216 0 17280 0 262656 0 4187136 0 69025792
γn 0 -48 0 848 0 -6720 0 22592 0 -23040 0 7168

Thus, f̃− = X6 − 48X5 + 848X4 − 6720X3 + 22592X2 − 23040X + 7168,
which factors to f̃− =

(
X2 − 24X + 112

) (
X2 − 12X + 8

)2. The first factor has

the zeros 4
(
3±

√
2
)
; if we factor f over Q

(√
2,
√

3 +
√

2
)
, we find that

f = (X2 − 2X − 2 +
√

2)(X − 1 +
√

3 +
√

2)(X − 1−
√

3 +
√

2)

and thus all zeros of f are 1±
√

3±
√

2.

Theorem 41 . The algorithm returns exactly one representation with square
roots for each irreducible factor of f whichs zeros are representable by square
roots.

Let Tf (d) be the number of operations for an univariate factorization of a
polynomial of degree d in K, and assume Tf (d) ∈ θ(d). Then, the algorithm
needs O

(
Tf

(
d2
))

operations in K.

Proof. We prove by induction on the degree; for degree one, the algorithm is
clearly correct.

Assume that an irreducible polynomial f of higher degree has a zero ξ =
η1 ±

√
η2 representable by square roots. Then, all zeros of f are representable

Exact Computation of Polynomial Zeros Expressible by Square Roots 739

by square roots (for these are the conjugates of ξ), and thus also all zeros of all
factors of f−. By Theorem 32, the minimal polynomial of 4

√
η2 is among these

factors, so there is at least one factor of f̃− with degree d
2 . By the induction

hypothesis, we find η2 on this factor recursively, and hence the field extension of
all successive square roots in the representation of ξ. Thus, the final factorization
reveals a linear factor containing ξ. Of course, if f had no zeros representable
by square roots, this factorization reveals no linear factor.

The loops to compute f− take O(d2) operations, which is less than Tf

(
d2
)

if
Tf (d) ∈ θ(d). We must factor the initial polynomial, which takesO(d) operations,

and f−, which takes O
(
Tf

(
d(d−1)

2

))
operations. Finally, we must factor f over

the extension of log(d) square roots. By factoring algorithms as described for
example in [3], this can be done in Tf

(
2log(d)d

)
= Tf

(
d2
)

operations. We have
only one recursion with half the problem size, so the running time of the whole
process is bound by twice the running time of the first step of recursion.
�

Remark 42 . For incomplete elements, the factorization of f− may reveal more
than one factor of degree d

2 . Nevertheless, we only have to solve one of these
factors recursively, for if f has zeros representable by square roots, so has each
of these factors, and the final factorization of f over the number field will reveal
the exact representation.

Remark 43 . The final factorization over the number field can be skipped by
the following: Like f−, compute f+, the polynomial defined by the sum of all
zeros of f . If ξ = η1 ±

√
η2 is a zero of f representable by square roots, one

of the factors of f+ will be a power of the minimal polynomial of 2η1. Call the
algorithm recursively for all factors of p+ and p− with appropriate size, and
return all combinations.

For non complete zeros, this algorithm may be of running time O(dlog d) (since
all factors with degree d

2 , instead of only one, must be recursively solved). Though,
for complete zeros (which most zeros will likely be), this variant has the same
running time, and it is not necessary to implement a factorization over number
fields.

Remark 44 . If one works over a field where approximation arithmetics are pos-
sible (for instance Q), we can compute f− by first approximating all zeros suffi-
ciently precisely, then taking the differences of all pairs and recombining them to
f−. For smaller d, one may also prefer to find the factors of f− directly by taking
all subsets of pairs of zeros and testing whether they combine to a polynomial over
Q. Though the precision to guarantee success is quite high, chances are good that
lower precision nevertheless yields an acceptable percentage of correct results.

5 Summary and Outlook

We gave an algorithm to symbolically find all zeros of a polynomial f ∈ R[X]
representable by square roots. Here, R[X] can be any polynomial ring where

740 T. von Oertzen

a factorization algorithm exists. The algorithm is asymptotically as fast as the
factorization of a polynomial of degree d2, if d is the degree of f . We also intro-
duced a quick test for Z[X] resp. Q[X] to quickly identify whether f has zeros
representable by square roots.

The algorithm can be extend to find zeros representable by any radicals.
Instead of combining two zeros, we must combine as many zeros as necessary to
eliminate the outermost root. Consider for example ξ =

√
2 + 3

√
1 +

√
2; if ζ is

one primitive third root of unity, all conjugates of ξ are:

ξ1 =
√

2 +
3
√

1 +
√

2 ξ4 = −
√

2 +
3
√

1−
√

2

ξ2 =
√

2 + ζ
3
√

1 +
√

2 ξ5 = −
√

2 + ζ
3
√

1−
√

2

ξ3 =
√

2 + ζ2 3
√

1 +
√

2 ξ6 = −
√

2 + ζ2 3
√

1−
√

2

Here, we can eliminate the third root by adding ξ1 + ξ2 + ξ3 = 3
√

2. Isolation
of the third root is then as simple.

Radicals themselves are of course only special cases of easily representable
roots, namely roots of polynomials of the form Xd − a for d

√
a. The algorithm

might also extend to other simple roots; lets for example introduce a symbol
5
√
a, b, c that represents one root of the polynomial X5 + aX2 + bX + c. It would

be interesting to investigate possibilities to find roots representable by radicals
and this new symbol.

Note that a representation with roots is possibly much shorter than a rep-
resentation by the minimal polynomial. For example, the term 2 +

√
2 +

√
3√√

5 +
√

7 is reasonably short to write down, and it is relatively easy to work
on it symbolically. Nevertheless, its minimal polynomial is a dense polynomial
of degree 32, its highest coefficient consisting of more than 14 digits. Thus, it
seems worthwhile to consider a symbolic representation of numbers, if possible,
by radicals or extensions as mentioned above.

Acknowledgements

The author wants to thank Günter Hotz, Frank-Olaf Schreyer, Elmar Schömer,
Stavros Papadakis, Tobias Gärtner and Manuel Bodirsky for their great help on
this paper.

References

1. N.H. Abel: Beweis der Unmöglichkeit, algebraische Gleichungen von höheren
Graden als dem vierten allgemein aufzulösen. Journal der reinen und angewandten
Mathematik 1, 1826.

2. G. Cardano: Ars Magna, 1545.

Exact Computation of Polynomial Zeros Expressible by Square Roots 741

3. H.Cohen: A Course in Computational Algebraic Number Theory. Springer, 2000.
4. D. Cox, J. Little, D. O’Shea: Ideals, Varieties, and Algorithms. Springer-Verlag,

1997.
5. D. Cox, J. Little, D. O’Shea: Using Algebraic Geometry. Springer-Verlag, 1998.
6. J. v. z. Gathen, J. Gerhard: Modern Computer Algebra. Cambridge University

Press, 1999.
7. K.O. Geddes, S.R. Czapor, G. Labahn: Algorithms for Computer Algebra. Kluwer,

1992.
8. S. Landau, G. Miller: Solvability by Radicals is in Polynomial Time. Journal of

Computer and Systems Sciences, vol. 30, No. 2 (1985), s. 179-208.
9. S. Lang: Algebraic Number Theory. Springer Verlag, New York, 1986.

10. J. Neukirch: Algebraische Zahlentheorie, Springer Verlag, Berlin, 1992
11. T. v. Oertzen: Das Konstruktionsproblem. Phd Thesis at the Saarland University,

2003.
12. H.J. Reifen, G. Scheja, U. Vetter: Algebra. Verlag Bibliographisches Institut AG,

1984.

Many-to-Many Disjoint Path Covers in a Graph
with Faulty Elements�

Jung-Heum Park1, Hee-Chul Kim2, and Hyeong-Seok Lim3

1 The Catholic University of Korea, Korea
j.h.park@catholic.ac.kr

2 Hankuk University of Foreign Studies, Korea
hckim@hufs.ac.kr

3 Chonnam National University, Korea
hslim@chonnam.ac.kr

Abstract. In a graph G, k vertex disjoint paths joining k distinct source-
sink pairs that cover all the vertices in the graph are called a many-to-
many k-disjoint path cover(k-DPC) of G. We consider an f -fault k-DPC
problem that is concerned with finding many-to-many k-DPC in the
presence of f or less faulty vertices and/or edges. We consider the graph
obtained by merging two graphs H0 and H1, |V (H0)| = |V (H1)| = n,
with n pairwise nonadjacent edges joining vertices in H0 and vertices in
H1. We present sufficient conditions for such a graph to have an f -fault
k-DPC and give the construction schemes. Applying our main result to
interconnection graphs, we observe that when there are f or less faulty
elements, all of recursive circulant G(2m, 4), twisted cube TQm, and
crossed cube CQm of degree m have f -fault k-DPC for any k ≥ 1 and
f ≥ 0 such that f + 2k ≤ m − 1.

1 Introduction

One of the central issues in various interconnection networks is finding node-
disjoint paths concerned with the routing among nodes and the embedding of
linear arrays. Node-disjoint paths can be used as parallel paths for an efficient
data routing among nodes. Also, each path in node-disjoint paths can be utilized
in its own pipeline computation. An interconnection network is often modeled as
a graph, in which vertices and edges correspond to nodes and links, respectively.
In the rest of this paper, we will use standard terminology in graphs (see [1]).

Disjoint paths can be categorized as three types: one-to-one, one-to-many,
and many-to-many. One-to-one type deals with the disjoint paths joining a single
source s and a single sink t. One-to-many type considers the disjoint paths joining
a single source s and k distinct sinks t1, t2, . . . , tk. Most of the works done on
disjoint paths deal with the one-to-one or one-to-many. For a variety of networks
one-to-one and one-to-many disjoint paths were constructed, e.g., hypercubes [3],

� This work was supported by grant No. R01-2003-000-11676-0 from the Basic Re-
search Program of the Korea Science & Engineering Foundation.

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 742–753, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Many-to-Many Disjoint Path Covers in a Graph 743

star networks [2], etc. Many-to-many type deals with the disjoint paths joining k
distinct sources s1, s2, . . . , sk and k distinct sinks t1, t2, . . . , tk. In many-to-many
type, several problems can be defined depending on whether specific sources
should be joined to specific sinks or a source can be freely matched to a sink.
The works on many-to-many type have a relative paucity because of its difficulty
and some results can be found in [4, 7].

All of three types of disjoint paths in a graph G can be accommodated with
the covering of vertices in G. A disjoint path cover in a graph G is to find disjoint
paths containing all the vertices in G. A disjoint path cover problem originated
from an interconnection network is concerned with the application where the full
utilization of nodes is important. For an embedding of linear arrays in a network,
the cover implies every node can be participated in a pipeline computation. One-
to-one disjoint path covers in recursive circulants[8, 12] and one-to-many disjoint
path covers in some hypercube-like interconnection networks[9] were studied.

Given a set of k sources S = {s1, s2, . . . , sk} and a set of k sinks T =
{t1, t2, . . . , tk} in a graph G such that S ∩ T = ∅, we are concerned with many-
to-many disjoint paths P1, P2, . . . , Pk in G, Pi joining si and ti, 1 ≤ i ≤ k,
that cover all the vertices in the graph, that is,

⋃
1≤i≤k V (Pi) = V (G) and

V (Pi) ∩ V (Pj) = ∅ for all i �= j. Here V (Pi) and V (G) denote the vertex sets of
Pi and G, respectively. We call such k disjoint paths a many-to-many k-disjoint
path cover (in short, many-to-many k-DPC) of G.

On the other hand, embedding of linear arrays and rings into a faulty in-
terconnection network is one of the important problems in parallel processing
[5, 6, 11]. The problem is modeled as finding as long fault-free paths and cycles
as possible in the graph with some faulty vertices and/or edges. A graph G is
called f-fault hamiltonian (resp. f-fault hamiltonian-connected) if there exists
a hamiltonian cycle (resp. if each pair of vertices are joined by a hamiltonian
path) in G\F for any set F of faulty elements such that |F | ≤ f . For a graph G
to be f -fault hamiltonian (resp. f -fault hamiltonian-connected), it is necessary
that f ≤ δ(G)−2 (resp. f ≤ δ(G)−3), where δ(G) is the minimum degree of G.

To a graphG with a set of faulty elements F , the definition of a many-to-many
disjoint path cover can be extended. Given a set of k sources S = {s1, s2, . . . , sk}
and a set of k sinks T = {t1, t2, . . . , tk} in G\F such that S ∩ T = ∅, a many-
to-many k-disjoint path cover joining S and T is k disjoint paths Pi joining si

and ti, 1 ≤ i ≤ k, such that
⋃

1≤i≤k V (Pi) = V (G)\F , V (Pi)∩ V (Pj) = ∅ for all
i �= j, and every edge on each path Pi is fault-free. Such a many-to-many k-DPC
is denoted by k-DPC[{(s1, t1), (s2, t2), . . . , (sk, tk)}|G,F]. A graph G is called f-
fault many-to-many k-disjoint path coverable if for any set F of faulty elements
such that |F | ≤ f , G has k-DPC[{(s1, t1), (s2, t2), . . . , (sk, tk)}|G,F] for every k
distinct sources s1, s2, . . . , sk and k distinct sinks t1, t2, . . . , tk in G\F .

Proposition 1. For a graph G to be f-fault many-to-many k-disjoint path cov-
erable, it is necessary that f + 2k ≤ δ(G) + 1.

Proposition 2. (a) A graph G is f-fault many-to-many 1-disjoint path cover-
able if and only if G is f-fault hamiltonian-connected.

744 J.-H. Park, H.-C. Kim, and H.-S. Lim

(b) If G is f-fault many-to-many k(≥ 2)-disjoint path coverable, then G is f-fault
many-to-many k − 1-disjoint path coverable.

Proposition 3. If a graph G is f-fault many-to-many k(≥ 2)-disjoint path cov-
erable, then for any pair of vertices s and t and any sequence of pairwise nonad-
jacent k−1 edges ((x1, y1), (x2, y2), . . . , (xk−1, yk−1)), there exists a hamiltonian
path in G\F between s and t passing through the edges in the order given for
any set F of faulty elements with |F | ≤ f . That is, there exists a hamiltonian
path of the form of (s, . . . , x1, y1, . . . , xk−1, yk−1, . . . , t).

We are given two graphs G0 and G1 with n vertices. We denote by Vi

and Ei the vertex set and edge set of Gi, i = 0, 1, respectively. We let V0 =
{v1, v2, . . . , vn} and V1 = {w1, w2, . . . , wn}. With respect to a permutation M =
(i1, i2, . . . , in) of {1, 2, . . . , n}, we can “merge” the two graphs into a graph
G0 ⊕M G1 with 2n vertices in such a way that the vertex set V = V0 ∪ V1
and the edge set E = E0 ∪ E1 ∪ E2, where E2 = {(vj , wij

)|1 ≤ j ≤ n}. We
denote by G0 ⊕G1 a graph obtained by merging G0 and G1 w.r.t. an arbitrary
permutation M . Here, G0 and G1 are called components of G0 ⊕G1.

In this paper, we will show that by using f ′-fault many-to-many k′-DPC of
Gi for all f ′ and k′ such that f ′ + 2k′ ≤ f + 2k, and fault-hamiltonicity of Gi,
we can always construct an f + 1-fault many-to-many k-DPC in G0 ⊕ G1 and
an f -fault many-to-many k + 1-DPC in H0 ⊕ H1, where H0 = G0 ⊕ G1 and
H1 = G2 ⊕ G3. Precisely speaking, we will prove the following two theorems.
Note that δ(G0 ⊕G1) = δ + 1 and δ(H0 ⊕H1) = δ + 2, where δ = mini δ(Gi).

Theorem 1. For k ≥ 2 and f ≥ 0, or for k = 1 and f ≥ 2, let Gi be a graph
with n vertices satisfying the following conditions, i = 0, 1:
(a) Gi is f + 2j-fault many-to-many k − j-disjoint path coverable for every j,
0 ≤ j < k.
(b) Gi is f + 2k − 1-fault hamiltonian.
Then, G0 ⊕G1 is f + 1-fault many-to-many k-disjoint path coverable.

Note that the condition (a) of Theorem 1 is equivalent to that for any f ′ and
k′ such that f ′ + 2k′ ≤ f + 2k, Gi is f ′-fault k′-disjoint path coverable. In this
paper, we are concerned with a construction of f -fault many-to-many k-DPC of
a graph G such that f + 2k ≤ δ(G)− 1.

Theorem 2. For k ≥ 1 and f ≥ 0, let Gi be a graph with n vertices satisfying
the following conditions, i = 0, 1, 2, 3:
(a) Gi is f + 2j-fault many-to-many k − j-disjoint path coverable for every j,
0 ≤ j < k.
(b) Gi is f + 2k − 1-fault hamiltonian.
Then, H0 ⊕ H1 is f-fault many-to-many k + 1-disjoint path coverable, where
H0 = G0 ⊕G1 and H1 = G2 ⊕G3.

By applying the above two theorems to interconnection graphs, we will show
that all of recursive circulant G(2m, 4), twisted cube TQm, and crossed cube
CQm of degree m are f -fault many-to-many k-disjoint path coverable for every
k ≥ 1 and f ≥ 0 such that f + 2k ≤ m− 1.

Many-to-Many Disjoint Path Covers in a Graph 745

Remark 1. Even when there are p(< k) sources such that each source is identical
with its corresponding sink, that is, when si = ti for all 1 ≤ i ≤ p and S′∩T ′ = ∅,
where S′ = {sp+1, . . . , sk} and T ′ = {tp+1, . . . , tk}, we can construct f -fault
many-to-many k-DPC as follows: (a) we first define Pi = (si), 1 ≤ i ≤ p, a
path with one vertex, and then (b) regarding them as virtual faulty vertices,
find f + p-fault many-to-many k − p-DPC. Consequently, Proposition 3 can be
extended so that adjacent edges are allowed.

2 Preliminaries

Let us consider fault-hamiltonicity of G0 ⊕ G1. The following five lemmas are
useful for our purpose. The proofs for them are omitted due to space limit.

Lemma 1. For f ≥ 0, if Gi is f-fault hamiltonian-connected and f + 1-fault
hamiltonian, i = 0, 1, then G0 ⊕ G1 is also f-fault hamiltonian-connected and
f + 1-fault hamiltonian.

Lemma 2. For f ≥ 2, if Gi is f-fault hamiltonian-connected and f + 1-fault
hamiltonian, i = 0, 1, then G0 ⊕G1 is f + 1-fault hamiltonian-connected.

Lemma 3. For f = 0, 1, if Gi is f-fault hamiltonian-connected and f + 1-fault
hamiltonian, i = 0, 1, then G0⊕G1 with f +1 faulty elements has a hamiltonian
path joining s and t unless s and t are contained in the same component and all
the faulty elements are contained in the other component.

Lemma 4. For f ≥ 1, if Gi is f-fault hamiltonian-connected and f + 1-fault
hamiltonian, i = 0, 1, then G0 ⊕G1 is f + 2-fault hamiltonian.

Lemma 5. Let G be a δ-regular graph such that δ ≥ 3. If G is δ − 3-fault
hamiltonian-connected and δ − 2-fault hamiltonian, then G × K2 is δ − 2-fault
hamiltonian-connected and δ − 1-fault hamiltonian.

For a vertex v in G0⊕G1, we denote by v̄ the vertex adjacent to v which is in
a component different from the component in which v is contained. We denote
by U the set of terminals, the set of sources and sinks S ∪ T , and denote by F
the set of faulty elements.

Definition 1. A vertex v in G0⊕G1 is called free if v /∈ F and v /∈ U . An edge
(v, w) is called free if v and w are free and (v, w) /∈ F .

Definition 2. A free bridge of a fault-free vertex v is the path (v, v̄) of length
one if v̄ is free and (v, v̄) /∈ F ; otherwise, it is a path (v, w, w̄) of length two such
that w �= v̄, (v, w) /∈ F , and (w, w̄) is a free edge.

Lemma 6. Let G0⊕G1 have k source-sink pairs and at most f faulty elements
such that f + 2k ≤ Δ− 1, where Δ is the minimum degree of G0 ⊕G1.
(a) For any terminal w in G0 ⊕G1, there exists a free bridge of w.

746 J.-H. Park, H.-C. Kim, and H.-S. Lim

(b) For any set of terminals Wl = {w1, w2, . . . , wl} in G0 with l ≤ 2k, there exist
l pairwise disjoint free bridges of wi’s, 1 ≤ i ≤ l.
(c) For a single terminal w1 in G1 and a set of terminals Wl\w1 = {w2, . . . , wl}
in G0 with l ≤ 2k, there exist l pairwise disjoint free bridges of wi’s,
1 ≤ i ≤ l.

Proof. There are at least Δ candidates for a free bridge of w, and at most
f + 2k − 1 elements (f faulty elements and 2k − 1 terminals other than w) can
“block” the candidates. Since each element block at most one candidate, there
are at least Δ− (f + 2k− 1) ≥ 2 nonblocked candidates, and thus (a) is proved.
We prove (b) by induction on l. Before going on, we need some definitions. We
call vertices v and v̄ and an edge joining them collectively a column of v. When
(v, v̄) (resp. (v, w, w̄)) is the free bridge of v, we say that the free bridge occupies
a column of v (resp. two columns of v and w). We are to construct free bridges for
Wl satisfying a condition that the number of occupied columns c(l) is less than
or equal to f(l)+t(l), where f(l) and t(l) are the numbers of faulty elements and
terminals contained in the c(l) occupied columns, respectively. When l = 1, there
exists a free bridge which satisfies the condition. Assume that there exist pairwise
disjoint free bridges for Wl−1 = W\wl satisfying the condition. If (wl, w̄l) is the
free bridge of wl, we are done. Suppose otherwise. There are Δ candidates for
a free bridge, and the number of blocking elements is at most c(l − 1) plus the
number of terminals and faulty elements which are not contained in the c(l− 1)
occupied columns. Thus, the number of blocking elements is at most f + 2k− 1,
which implies the existence of pairwise disjoint free bridges for Wl. Obviously,
c(l) = c(l − 1) + 2 and f(l) + t(l) ≥ f(l − 1) + t(l − 1) + 2, and thus it satisfies
the condition.

Now, let us prove (c). If (w1, w̄1) is the free bridge of w1, it occupies one
column. If (w1, x, x̄) is the free bridge of w1 and w̄1 is not a terminal of which we
are to find a free bridge, it occupies two columns. For these cases, in the same
way as (b), we can construct pairwise disjoint free bridges satisfying the above
condition. When (w1, x, x̄) is the free bridge of w1 and w̄1 ∈Wl, letting w2 = w̄1
without loss of generality, we first find pairwise disjoint free bridges of w1 and
w2. They occupy three columns, that is, c(2) = 3. We proceed to construct free
bridges with a relaxed condition that c(l) ≤ f(l) + t(l) + 1. This relaxation does
not cause a problem since the number of blocking elements is at most f + 2k,
still less than the number of candidates for a free bridge, Δ.
�

Remark 2. According to the proof of Lemma 6 (a) and (b), we have at least two
choices when we find free bridges of terminals contained in one component.

Remark 3. If Gi satisfies the conditions of Theorem 1 or 2, then f + 2k ≤ δ− 1,
where δ = mini δ(Gi). Concerned with Theorem 1, free bridges of type Lemma 6
(b) and (c) exist in G0⊕G1 since (f +1)+2k ≤ δ(G0⊕G1)−1. Concerned with
Theorem 2, free bridges of the two types also exist in H0⊕H1 since f+2(k+1) ≤
δ(H0 ⊕H1)− 1.

Many-to-Many Disjoint Path Covers in a Graph 747

3 Construction of Many-to-Many DPC

In this section, we will prove the main theorems. First of all, we will develop five
basic procedures for constructing many-to-many disjoint path covers. They play
a significant role in proving the theorems.

3.1 Five Basic Procedures

In a graph C0 ⊕ C1 with two components C0 and C1, we are to define some
notation. When we are concerned with Theorem 1, C0 and C1 correspond to
G0 and G1, respectively. When we are concerned with Theorem 2, C0 and C1
correspond to H0 and H1, respectively. We denote by V0 and V1 the sets of
vertices in C0 and C1, respectively. We let F0 and F1 be the sets of faulty
elements in C0 and C1, respectively, and let F2 be the set of faulty edges joining
vertices in C0 and vertices in C1. Let fi = |Fi| for i = 0, 1, 2.

We denote by R the set of source-sink pairs in C0 ⊕ C1. We also denote
by ki the number of source-sink pairs in Ci, i = 0, 1, and by k2 the number
of source-sink pairs between C0 and C1. Without loss of generality, we assume
that k0 ≥ k1. We let I0 = {1, 2, . . . , k0}, I2 = {k0 + 1, k0 + 2, . . . , k0 + k2}, and
I1 = {k0 + k2 + 1, k0 + k2 + 2, . . . , k0 + k2 + k1}. We assume that {sj , tj |j ∈
I0} ∪ {sj |j ∈ I2} ⊆ V0 and {sj , tj |j ∈ I1} ∪ {tj |j ∈ I2} ⊆ V1. Among the k2
sources sj ’s, j ∈ I2, we assume that the free bridges of k′

2 sources are of length
one and the free bridges of k′′

2 (= k2 − k′
2) sources are of length two.

First three procedures DPC-A, DPC-B, and DPC-C are applicable when
k0 ≥ 1, and the last two procedures DPC-D and DPC-E are applicable when
k2 = |R| (equivalently, k0 = k1 = 0). We denote by H[v, w|G,F] a hamiltonian
path in G\F joining a pair of fault-free vertices v and w in a graph G with a set
F of faulty elements.

When we find a k-DPC or a hamiltonian path, sometimes we regard some
fault-free vertices and/or edges as faulty elements. They are called virtual faults.
For example, in step 2 of Procedure DPC-A, F ′ is the set of virtual vertex faults,
and in step 2 of DPC-C, (s2, s1) in F ′ is a virtual edge fault.

Procedure DPC-A(C0 ⊕ C1, R, F)

UNDER the condition of 1 ≤ k0 < |R|.

1. Find pairwise disjoint free bridges Bsj
= (sj , . . . , s

′
j) of sj for all j ∈ I2.

2. Find k0-DPC[{(sj , tj)|j ∈ I0}|C0, F0 ∪ F ′], where F ′ = V0 ∩
⋃

j∈I2
V (Bsj

).
3. Find k1 + k2-DPC[{(s′

j , tj)|j ∈ I2} ∪ {(sj , tj)|j ∈ I1}|C1, F1].
4. Merge the two DPC’s with the free bridges.

Procedure DPC-B(C0 ⊕ C1, R, F)

UNDER the condition of k0 = |R|.

1. Let s1 and t1 be a pair such that |X1| ≤ |Xj | for all j ∈ I0, where Xj =
V0 ∩ {V (Bsj

) ∪ V (Btj
)}. Let Bs1 = (s1, . . . , s′

1), Bt1 = (t1, . . . , t′1).

748 J.-H. Park, H.-C. Kim, and H.-S. Lim

2. Find k0 − 1-DPC[{(sj , tj)|j ∈ I0\1}|C0, F0 ∪X1].
3. Find H[s′

1, t
′
1|C1, F1].

4. Merge the k0 − 1-DPC and hamiltonian path with the free bridges.

Keep in mind that under the condition of procedure DPC-C below, for every
sj , j ∈ I2, s̄j = tj′ for some j′ ∈ I2, and thus for every other fault-free vertex v
in G0, (v, v̄) is the free bridge of v.

Procedure DPC-C(C0 ⊕ C1, R, F)

UNDER the condition that k0 ≥ 1, k1 = 0, k′
2 = 0, and all the faulty elements

are contained in C0.

1. When k0 ≥ 2, find pairwise disjoint free bridges Bt2 = (t2, t′2), Bsj
= (sj , s

′
j)

and Btj
= (tj , t′j) for all j ∈ I0\{1, 2}, and Bsj

= (sj , . . . , s
′
j) for all j ∈ I2.

When k0 = 1, find pairwise disjoint free bridges Bsj = (sj , . . . , s
′
j) for all

j ∈ I2\2.
2. Find H[s2, t1|C0, F0 ∪ F ′], where F ′ = V0 ∩ [Bt2 ∪

⋃
j∈I0\{1,2}(V (Bsj

) ∪
V (Btj

)) ∪
⋃

j∈I2
V (Bsj

)] if k0 ≥ 2; F ′ = {(s2, s1)} ∪ (V0 ∩
⋃

j∈I2\2 V (Bsj
))

otherwise. Let the hamiltonian path be (s2, Q1, z, s1, Q2, t1).
3. Let u = t′2 if k0 ≥ 2; otherwise, u = t2. Find k0 + k2 − 1-DPC[{z̄, u)} ∪
{(s′

j , t
′
j)|j ∈ I0\{1, 2}} ∪ {(s′

j , tj)|j ∈ I2\2}|C1, ∅].
4. Merge the hamiltonian path and k0 + k2 − 1-DPC with the free bridges and

the edge (z, z̄). Discard the edge (z, s1).

Procedures DPC-D and DPC-E are concerned with the case of k2 = |R|.
Without loss of generality, we assume that f0 ≥ f1. This assumption does not
conflict with the assumption of k0 ≥ k1.

Procedure DPC-D(C0 ⊕ C1, R, F)

UNDER the condition that k2 = |R| (k0 = k1 = 0).

1. If k′′
2 ≥ 1, we assume that (s1, s̄1) is not the free bridge of s1. Find pairwise

disjoint free bridges Bt1 = (t1, . . . , t′1) and Bsj
= (sj , . . . , s

′
j) for all j ∈ I2\1.

2. Find H[s1, t′1|C0, F0 ∪ F ′], where F ′ = V0 ∩
⋃

j∈I2\1 V (Bsj).
3. Find k2 − 1-DPC[{(s′

j , tj)|j ∈ I2\1}|C1, F1 ∪ F ′′], where F ′′ = V1 ∩Bt1 .
4. Merge the hamiltonian path and the k2 − 1-DPC with the free bridges.

Observe that under the condition of procedure DPC-E below, for every source
sj in G0, s̄j = tj′ for some j′ ∈ I2, and thus for any free vertex v in G0, (v, v̄) is
a free edge.

Procedure DPC-E(C0 ⊕ C1, R, F)

UNDER the condition that k2 = |R|, k′
2 = 0, and all the faulty elements are

contained in C0.

Many-to-Many Disjoint Path Covers in a Graph 749

1. Find pairwise disjoint free bridges Bt1 = (t1, . . . , t′1) and Bsj
= (sj , . . . , s

′
j)

for all j ∈ I2\{1, 2}.
2. Find H[s2, t′1|C0, F0 ∪F ′], where F ′ = {(s1, s2)}∪ (V0 ∩

⋃
j∈I2\{1,2} V (Bsj

)).
Let the hamiltonian path be (s2, . . . , z, s1, . . . , t′1).

3. Find k2 − 1-DPC[{(z̄, t2)} ∪ {(s′
j , tj)|j ∈ I2\{1, 2}}|C1, F

′′], where F ′′ =
V1 ∩ V (Bt1).

4. Merge the hamiltonian path and the k2 − 1-DPC with the free bridges.
Discard the edge (s1, z).

3.2 Proof of Theorem 1

For k = 1 and f ≥ 2, the theorem is exactly the same as Lemma 2. We assume
that

k ≥ 2, f0 + f1 + f2 ≤ f + 1, and k0 + k1 + k2 = k.

Lemmas 7, 8, and 9 are concerned with k0 ≥ 1, and Lemmas 10 and 11 are
concerned with k2 = k.

Lemma 7. When 1 ≤ k0 < k, Procedure DPC-A(G0 ⊕G1, R, F) constructs an
f + 1-fault k-DPC unless f0 = f + 1, k1 = 0, and k′

2 = 0.

Proof. The existence of pairwise disjoint free bridges in step 1 is due to Lemma 6
(b). Unless f0 = f + 1, k1 = 0, and k′

2 = 0, G0 is f0 + k′
2 + 2k′′

2 -fault k0-disjoint
path coverable since 2k0 + f0 + k′

2 + 2k′′
2 ≤ 2k + f , and thus there exists a

k0-DPC in step 2. Similarly, G1 is f1-fault k1 + k2-disjoint path coverable since
2k1 + 2k2 + f1 ≤ 2k + f . This completes the proof of the lemma.
�

Lemma 8. When k0 = k, Procedure DPC-B(G0⊕G1, R, F) constructs an f+1-
fault k-DPC unless f0 = f + 1 (k1 = 0, and k′

2 = 0).

Proof. To prove the existence of a k − 1-DPC in step 2, we will show that
f0 + |X1| ≤ f + 2. When |X1| = 2, the inequality holds true unless f0 = f + 1.
When |X1| = 3, the number f1 + f2 of faulty elements in G1 or between G0
and G1 is at least k(≥ 2), and thus f0 + 3 ≤ f0 + f1 + f2 + 1 ≤ f + 2. When
|X1| = 4, analogously to the previous case, f0 + 4 ≤ f0 + f1 + f2 < f + 2 since
f1 +f2 ≥ 2k. The existence of a hamiltonian path joining s′

1 and t′1 is due to the
fact that f1 ≤ f + 2k − 2.
�

Lemma 9. When k0 ≥ 1, f0 = f + 1, k1 = 0, and k′
2 = 0, Procedure DPC-

C(G0 ⊕G1, R, F) constructs an f + 1-fault k-DPC.

Proof. Whether k0 ≥ 2 or not, it holds true that f0+ |F ′| ≤ f+1+2(k−2)+1 =
f + 2k − 2, which implies the existence of a hamiltonian path in step 2. By the
construction, (z, z̄) is the free bridge of z. Note that z �= s2 when k0 = 1. The
existence of a k − 1-DPC in step 3 is straightforward.
�

Lemma 10. When k2 = k, Procedure DPC-D(G0 ⊕ G1, R, F) constructs an
f + 1-fault k-DPC unless f0 = f + 1 and k′

2 = 0.

750 J.-H. Park, H.-C. Kim, and H.-S. Lim

Proof. The existence of pairwise disjoint free bridges is due to Lemma 6(c).
To prove the existence of the hamiltonian path, we will show that f0 + |F ′| ≤
f + 2k − 2. When k′′

2 ≥ 1, f0 + |F ′| = f0 + 2(k′′
2 − 1) + k′

2 ≤ f + 2k − 2 unless
f0 = f + 1 and k′

2 = 0. When k′′
2 = 0, f0 + |F ′| = f0 + k′

2 − 1 ≤ f + 2k − 2. The
existence of k2 − 1-DPC in step 3 is due to that f1 + |F ′′| ≤ f + 2. Note that
the assumption that f0 ≥ f1 implies that f1 < f + 1.
�
Lemma 11. When k2 = k, f0 = f + 1, and k′

2 = 0, Procedure DPC-E(G0 ⊕
G1, R, F) constructs an f + 1-fault k-DPC.

Proof. The existence of the hamiltonian path is due to the fact that f0 + |F ′| =
f0 +2(k2− 2)+1 ≤ f +2k− 2. Note that z is different from s1 and s2, and thus
(z, z̄) is a free edge. The existence of the k2 − 1-DPC is straightforward.
�

Consequently, the proof of Theorem 1 is completed. From Theorem 1 and
Lemma 4, the following corollary is immediate.

Corollary 1. For k ≥ 2 and f ≥ 0, or for k = 1 and f ≥ 2, let Gi be a graph
with n vertices satisfying the two conditions of Theorem 1, i = 0, 1. Then,
(a) G0 ⊕G1 is f + 2j + 1-fault many-to-many k − j-disjoint path coverable for
every j, 0 ≤ j < k, and
(b) G0 ⊕G1 is f + 2k-fault hamiltonian.

3.3 Proof of Theorem 2 for k ≥ 2 and f ≥ 0 or for k = 1 and f ≥ 2

Corollary 1 implies that Hi, i = 0, 1, is f + 2j + 1-fault many-to-many k − j-
disjoint path coverable for every j, 0 ≤ j < k, and that Hi is f + 2k-fault
hamiltonian. In this subsection, by utilizing mainly these properties of Hi, we
are to prove Theorem 2 for k ≥ 2 and f ≥ 0 or for k = 1 and f ≥ 2. We assume
that

f0 + f1 + f2 ≤ f and k0 + k1 + k2 = k + 1.

Similarly to the proof of Theorem 1, Lemmas 12, 13, and 14 are concerned
with k0 ≥ 1, and Lemmas 15 and 17 are concerned with k2 = k + 1.

Lemma 12. When 1 ≤ k0 < k+1, Procedure DPC-A(H0⊕H1, R, F) constructs
an f-fault k + 1-DPC unless f0 = f , k1 = 0, and k′

2 = 0.

Proof. Unless f0 = f , k1 = 0, and k′
2 = 0, H0 is f0 + k′

2 + 2k′′
2 -fault k0-disjoint

path coverable since 2k0 + f0 + k′
2 + 2k′′

2 ≤ 2k + f + 1, and thus there exists a
k0-DPC in step 2. Similarly, H1 is f1-fault k1 + k2-disjoint path coverable since
2k1 + 2k2 + f1 ≤ 2k + f + 1.
�
Lemma 13. When k0 = k+1, Procedure DPC-B(H0⊕H1, R, F) constructs an
f-fault k + 1-DPC unless f0 = f (k1 = 0 and k′

2 = 0).

Proof. To prove the existence of a k-DPC in step 2, we will show that f0+|X1| ≤
f + 1. When |X1| = 2, the inequality holds true unless f0 = f . When |X1| = 3,
it holds true that f1 + f2 ≥ k + 1, and thus f0 + 3 ≤ f0 + f1 + f2 + 1 ≤ f + 1.
When |X1| = 4, f0 +4 ≤ f0 +f1 +f2 < f +1 since f1 +f2 ≥ 2(k+1). Obviously,
there exists a hamiltonian path in H1 joining s′

1 and t′1.
�

Many-to-Many Disjoint Path Covers in a Graph 751

Lemma 14. When k0 ≥ 1, f0 = f , k1 = 0, and k′
2 = 0, Procedure DPC-

C(H0 ⊕H1, R, F) constructs an f-fault k + 1-DPC.

Proof. There exists a hamiltonian path in H0 joining s2 and t1 since f0 + |F ′| ≤
f + 2(k − 1) + 1 = f + 2k − 1. The existence of a k-DPC is straightforward.
�

Hereafter in this subsection, k2 = k + 1 (k0 = k1 = 0). Due to Lemma 6(a)
and Remark 2, we assume that F ′′ defined in step 3 of Procedures DPC-D and
DPC-E is a subset of V (G2) or V (G3). That is, F ′′ ∩ V (G2) �= ∅ if and only if
F ′′ ∩ V (G3) = ∅.

Lemma 15. When k2 = k+1, Procedure DPC-D(H0⊕H1, R, F) constructs an
f-fault k + 1-DPC unless f0 = f and k′

2 = 0.

Proof. To prove the existence of a hamiltonian path in H0, we will show that
f0 + |F ′| ≤ f +2k−1. When k′′

2 ≥ 1, f0 + |F ′| = f0 +2(k′′
2 −1)+k′

2 ≤ f +2k−1
unless f0 = f and k′

2 = 0. When k′′
2 = 0, f0 + |F ′| = f0 + k′

2 − 1 ≤ f + 2k − 1.
Now, let us consider the existence of a k2 − 1-DPC in step 3. When f ≥ 1 or
|F ′′| = 1, there exists a k2 − 1-DPC in H1 since f1 + |F ′′| ≤ f + 1. Note that
from the assumption of f0 ≥ f1, if f ≥ 1, then f1 < f . When f = 0 and |F ′′| = 2
(k ≥ 2 by the assumption), the existence of a k2−1-DPC is due to the following
Lemma 16.
�

The proof of Lemma 16 is omitted. Of course, Lemma 16 does not say that
G0 ⊕G1 is 2-fault many-to-many k-disjoint path coverable.

Lemma 16. For k ≥ 2, let Gi be a graph with n vertices satisfying the following
conditions, i = 0, 1: (a) Gi is 2j-fault many-to-many k−j-disjoint path coverable
for every j, 0 ≤ j < k, and (b) Gi is 2k − 1-fault hamiltonian. Then, G0 ⊕ G1
with two faulty vertices in G0 and no other faulty elements is many-to-many
k-disjoint path coverable.

Lemma 17. When k2 = k + 1, f0 = f , and k′
2 = 0, Procedure DPC-E(H0 ⊕

H1, R, F) constructs an f-fault k + 1-DPC.

Proof. There exists a hamiltonian path in H0 joining s2 and t′1 since f0 + |F ′| =
f0+2(k2−2)+1 = f+2k−1. When f ≥ 1, there exists a k2−1-DPC in H1 since
|F ′′| = 2 ≤ f + 1. When f = 0 (and |F ′′| = 2), the existence of a k2 − 1-DPC is
due to Lemma 16.
�

3.4 Proof of Theorem 2 for k = 1 and f = 0, 1

In H0 ⊕ H1, H0 and H1 are called components and Gi, 0 ≤ i ≤ 3, are called
subcomponents. Contrary to the proof given in the previous subsection, we can
not employ Corollary 1. Instead, Lemma 1 and 3 are utilized repeatedly in this
subsection. We denote by v̂ the vertex which is adjacent to v and contained in
the same component with v and in a different subcomponent from v. Lemmas 18,
19, and 20 are concerned with k0 ≥ 1. It is assumed that k0 ≥ k1. All the proofs
of lemmas in this subsection are omitted.

752 J.-H. Park, H.-C. Kim, and H.-S. Lim

Lemma 18. When k0 = 1, we can construct an f-fault 2-DPC unless f0 = f ,
k1 = 0, and k′

2 = 0.

Lemma 19. When k0 = 2, we can construct an f-fault 2-DPC unless f0 = f
(k1 = 0, k′

2 = 0).

Lemma 20. When k0 ≥ 1, f0 = f , k1 = 0, and k′
2 = 0, we can construct an

f-fault 2-DPC.

Now, let us consider the case when k2 = 2 (k0 = k1 = 0). We assume that
f0 ≥ f1. Then, f1 = 0. We denote by li,j the number of edges joining vertices in
Gi and Gj , i �= j. Observe that l0,1 = n, l0,2 + l0,3 = n, l0,2 = l1,3, and l0,3 = l1,2.
Note that n ≥ f + 4 since each Gi is f + 1-fault hamiltonian.

Lemma 21. When k2 = 2, we can construct an f-fault 2-DPC unless f0 = f
and k′

2 = 0.

Lemma 22. When k2 = 2, f = 0, (s1, t1) is an edge, and k′
2 = 1, we can

construct an f-fault 2-DPC.

Lemma 23. When k2 = 2, f0 = f , and k′
2 = 0, we can construct an f-fault

2-DPC.

At last, the proof of Theorem 2 is completed. From Theorem 2, we have the
following corollary.

Corollary 2. For k ≥ 1 and f ≥ 0, let Gi be a graph with n vertices satisfying
the two conditions of Theorem 2, i = 0, 1, 2, 3. Then, H0 ⊕ H1 is f + 2j-fault
many-to-many k + 1 − j-disjoint path coverable for every j, 0 ≤ j < k, where
H0 = G0 ⊕G1 and H1 = G2 ⊕G3.

4 Hypercube-Like Interconnection Networks

A graph G is called fully many-to-many disjoint path coverable if for any k ≥ 1
and f ≥ 0 such that f + 2k ≤ δ(G) − 1, G is f -fault many-to-many k-disjoint
path coverable.

4.1 Recursive Circulants G(2m, 4)

G(2m, 4) is an m-regular graph with 2m vertices. According to the recursive
structure of recursive circulants[10], we can observe that G(2m, 4) is isomorphic
to G(2m−2, 4) ×K2 ⊕M G(2m−2, 4) ×K2 for some permutation M . Obviously,
G(2m−2, 4)×K2 is isomorphic to G(2m−2, 4)⊕M ′G(2m−2, 4) for some M ′. Fault-
hamiltonicity of G(2m, 4) was studied in [11]. By utilizing Lemma 5, we can also
obtain fault-hamiltonicity of G(2m, 4)×K2.

Lemma 24. (a) G(2m, 4), m ≥ 3, is m − 3-fault hamiltonian-connected and
m−2-fault hamiltonian[11]. (b) G(2m, 4)×K2, m ≥ 3, is m−2-fault hamiltonian-
connected and m− 1-fault hamiltonian.

Theorem 3. G(2m, 4), m ≥ 3, is fully many-to-many disjoint path coverable.

Many-to-Many Disjoint Path Covers in a Graph 753

Proof. The proof is by induction on m. For m = 3, 4, the theorem holds true by
Lemma 24. For m ≥ 5, from Corollary 2 and Lemma 24, the theorem follows
immediately.
�

4.2 Twisted Cube TQm, Crossed Cube CQm

Originally, twisted cube TQm is defined for odd m. We let TQm = TQm−1×K2
for even m. Then, TQm is isomorphic to TQm−1⊕M TQm−1 for some M . Also,
crossed cube CQm is isomorphic to CQm−1 ⊕M ′ CQm−1 for some M ′. Both
TQm and CQm are m-regular graphs with 2m vertices. Fault-hamiltonicity of
them were studied in the literature.

Lemma 25. (a) TQm, m ≥ 3, is m−3-fault hamiltonian-connected and m−2-
fault hamiltonian[6]. (b) CQm, m ≥ 3, is m−3-fault hamiltonian-connected and
m− 2-fault hamiltonian[5].

From Lemma 5, Corollary 2, and Lemma 25, we have the following theorem.

Theorem 4. TQm and CQm, m ≥ 3, are fully many-to-many disjoint path
coverable.

References

1. J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, 5th printing,
American Elsevier Publishing Co., Inc., 1976.

2. C.C. Chen and J. Chen, “Nearly optimal one-to-many parallel routing in star
networks,” IEEE Transactions on Parallel and Distributed Systems 8(12), pp.
1196-1202, 1997.

3. S. Gao, B. Novick and K. Qiu, “From hall’s matching theorem to optimal routing
on hypercubes,” Journal of Combinatorial Theory, Series B. 74, pp. 291-301, 1998.

4. Q.P. Gu and S. Peng, “Cluster fault-tolerant routing in star graphs,” Networks
35(1), pp. 83-90, 2000.

5. W.T. Huang, M.Y. Lin, J.M. Tan, and L.H. Hsu, “Fault-tolerant ring embedding
in faulty crossed cubes,” in Proc. SCI’2000, pp. 97-102, 2000.

6. W.T. Huang, J.M. Tan, C.N. Huang, L.H. Hsu, “Fault-tolerant hamiltonicity of
twisted cubes,” J. Parallel Distrib. Comput. 62, pp. 591-604, 2002.

7. S. Madhavapeddy and I.H. Sudborough, “A topological property of hypercubes:
node disjoint paths,” in Proc. of the 2th IEEE Symposium on Parallel and Dis-
tributed Processing, pp. 532-539, 1990.

8. J.-H. Park, “One-to-one disjoint path covers in recursive circulants,” Journal of
KISS 30(12), pp. 691-698, 2003 (in Korean).

9. J.-H. Park, “One-to-many disjoint path covers in a graph with faulty elements,”
in Proc. International Computing and Combinatorics Conference COCOON2004,
pp. 392-401, 2004.

10. J.-H. Park and K.Y. Chwa, “Recursive circulants and their embeddings among
hypercubes,” Theoretical Computer Science 244, pp. 35-62, 2000.

11. C.-H. Tsai, J.J.M. Tan, Y.-C. Chuang, and L.-H. Hsu, “Fault-free cycles and links
in faulty recursive circulant graphs,” in Proc. of Workshop on Algorithms and
Theory of Computation ICS2000, pp. 74-77, 2000.

12. C.-H. Tsai, J.J.M. Tan, and L.-H. Hsu, “The super-connected property of recursive
circulant graphs,” Inform. Proc. Lett. 91(6), pp. 293-298, 2004.

An O(n log n)-Time Algorithm for the
Maximum Constrained Agreement Subtree

Problem for Binary Trees

Zeshan Peng and Hingfung Ting

Department of Computer Science,
The University of Hong Kong, Hong Kong,

{zspeng, hfting}@cs.hku.hk

Abstract. This paper introduces the maximum constrained agreement
subtree problem, which is a generalization of the classical maximum
agreement subtree problem. This new problem is motivated by the un-
derstood constraint when we compare the evolutionary trees. We give an
O(n log n)-time algorithm for solving the problem when the input trees
are binary. The time complexity of our algorithm matches the fastest
known algorithm for the maximum agreement subtree problem for bi-
nary trees.

1 Introduction

A fundamental problem in Biology is to recover the evolutionary relationship of
the species in nature. One model for capturing this relationship is the evolution-
ary tree [5, 6], which is a rooted tree with its leaves labeled by a unique species.
Different theories capture different kinds of evolutionary relationship and induce
different evolutionary trees. To compare different theories and to find out how
much these theories are in common, we compare the corresponding evolutionary
trees and find some consensus of these trees.

One of the most successful approaches for finding consensus of different evolu-
tionary trees is to construct their maximum agreement subtree. Roughly speak-
ing, an agreement subtree of two evolutionary trees is an evolutionary tree which
is also a topology subtree of the two given trees. A maximum agreement subtree
(MAST) is one with the largest possible number of leaves. There are many algo-
rithms proposed for finding the MAST of two trees (e.g., [2, 3, 4, 10, 11, 12]). The
fastest algorithm for the problem is given by Kao, Lam, Sung and Ting [8, 9]; it
runs in O(n1.5) time where n is the total number of leaves. Kao [7] showed that
the time complexity can be reduced to O(n log2 n) if the degrees of the input
trees are bounded. Cole, Farach, Hariharan, Przytycka and Throup [1] showed
that the running time can be further reduced to O(n log n) when the two input
trees are binary. Note that this is the most important special case of the problem
because in nature, it is rare that more than two species evolved simultaneously
from one ancestor.

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 754–765, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

An O(n log n)-Time Algorithm for the MCAST Problem for Binary Trees 755

In this paper, we introduce the maximum constrained agreement subtree prob-
lem, which is defined as follows:

Let S and T be two evolutionary trees, and P be an agreement subtree
of S and T . Find the largest agreement subtree of S and T that contains
P as a subtree. We say that this agreement subtree is the maximum
constrained agreement subtree (MCAST) of S and T with respect to P .

Note that when P is the empty tree, our problem becomes the classical maximum
agreement subtree problem.

Following is the motivation of our problem. After decades of research, the
evolutionary relationship of many species is well understood. Any evolutionary
tree having these species should be consistent with this commonly accepted
relationship. With this additional constraint, MAST is not a good measure for
comparing evolutionary trees. For example, consider the evolutionary trees S
and T in Figure 1. Note that the maximum agreement subtree of S and T is
large, and one would consider that the two trees are similar. However, the two
trees agree on almost nothing if we insist that the agreement subtree must be
consistent with the evolutionary relationship of e, f, h, which is given by P . In
fact, if P is a correct relationship, then S and T infer different evolutionary
relationship for all other species. For example, for the species a, S suggests that
the least common ancestor of a and e is different from the least common ancestor
of a and f , while T suggests they are the same. Note that the MCAST of S and
T with respect to P is just P .

a

h

gn

m

c j kd b

e

i

f

a

kd b i

m

n f

c

kd g j i

f
h

b

ma en

e

h f

e

h f

S T

MAST(S,T) MCAST(S,T, (P))

P

L

Fig. 1. Maximum agreement and maximum constrained agreement subtrees

In this paper, we give an algorithm for constructing a MCAST of S and T
with respect to P . We focus on the most important special case when both S
and T are binary trees. The idea of our algorithm is as follows. By some careful
analysis, we observe that when P has more than two leaves, any MCAST of

756 Z. Peng and H. Ting

S and T with respect to P can be decomposed into three subtrees where each
subtree corresponds to a MCAST of some smaller trees. Furthermore, these
smaller trees can be constructed easily. Hence, we can solve any instance of the
MCAST problem by solving three smaller instances recursively. We do not have
this nice structural property when P has fewer than two leaves. Note that when
P has no leaf, then our problem becomes the classical MAST problem and we
can solve them efficiently by using the algorithm of Cole et al. [1]. When P has
a single leaf, the MCAST and MAST can be very different (see Figure 2 for an
example). However, based on a simple idea, we can reduce the problem to the
MAST problem and thus can apply Cole et al. ’s algorithm for the case when
P has one leaf.

Based on these observations and ideas, we design an O(n log n)-time algo-
rithm for constructing a MCAST of S and T with respect to P . Our algorithm
is simple; it has three recursive calls when P has more than one leaf. If P
has one leaf, it calls Cole et al. ’s algorithm. Although our algorithm is simple,
its correctness proof is not easy. It is based on a correct layout of the trees S
and T and a careful analysis of some structural properties on this layout.

The paper is organized as follows. In Section 2, we formally define the MAST
and the MCAST problem and state some facts that are useful to our discussion.
In Section 3, we show that if we only P has only one leaf, then the MCAST
problem can be reduced to the MAST problem easily. Section 4 contains the
main result of this paper; we design and analysis of an O(n log n) time algorithm
for the MCAST problem without any restriction. Section 5 gives the conclusion.

2 Definitions and Notations

An evolutionary tree S is a rooted tree with every leaf being labeled with a
unique species. We let L(S) denote the set of species labeling S. When there is
no confusion, we use the species to identify the leaves. For any two leaves a, b
in L(S), we say a node c is a common ancestor of a and b if it is the ancestor
of a and b. It is the least common ancestor of a and b if for any other ancestor
c′ of a, b, c′ is an ancestor of c. We use lcaS(a, b) to denote the least common
ancestor of a, b in S.

Let T be another evolutionary tree. We say that S and T are leaf-label pre-
serving isomorphic if L(S) = L(T) and there exits a bijection f from the nodes
of S to the nodes of T such that

1. for any leaf a of S, f(a) is the leaf in T that has the same label a, i.e.,
f(a) = a;

2. for any pair of leaves u, v of S, if w is the least common ancestor of u, v
in S, then f(w) is the least common ancestor of f(u) and f(v) in T ; i.e.,
f(lcaS(a, b)) = lcaT (a, b).

We write S = T if the two trees are label-preserving isomorphic. It is easy to
check that the bijection f exists if and only if the following holds: any two pairs
of leaves have the same least common ancestor in S if and only if they have the
same least common ancestor in T . Thus, we have the following fact.

An O(n log n)-Time Algorithm for the MCAST Problem for Binary Trees 757

Fact 1. Following is the necessary and sufficient condition for S and T being
leaf-label preserving isomorphic: for any leaves a, b, c, d, lcaS(a, b) = lcaS(c, d)
if and only if lcaT (a, b) = lcaT (c, d).

Let H ⊆ L(S) be any subset of leaves. The restricted subtree of S on H,
denoted as S‖H , is the subtree of S whose nodes includes the set of leaves in H
as well as the least common ancestors of any two leaves, and whose edges preserve
the ancestor-descendent relationship of S. Intuitively, S‖H can be constructed as
follows: Discard those leaves of S not in H, as well as those internal nodes whose
degrees eventually become one; then contract every path whose intermediate
nodes are each of degree two into an edge. The following fact comes directly
from the definition.

Fact 2. Let H ⊆ L ⊆ L(S). For any two leaves a, b ∈ H, lcaS‖H
(a, b) =

lcaS‖L
(a, b). Furthermore, (S‖L)‖H = S‖H .

Let P be any evolutionary tree. We say that P is an agreement subtree of
S and T if (1) L(P) ⊆ L(S) ∩ L(T) and (2) P = S‖L(P) = T‖L(P). Consider
another evolutionary tree A. We say that A is a constrained agreement subtree
of S and T with respect to P (1) if A is an agreement subtree of S and T , and
(2) L(P) ⊆ L(A) and P = A‖L(P). The classical maximum agreement subtree
problem asks to find an agreement subtree of S and T with the largest possible
number of leaves. The maximum constrained agreement subtree problem asks to
find a constrained agreement subtree of S and T with respect to P with the
largest possible number of leaves. As already shown in Figure 1, the output of
the two problems can be very different.

Let CAST(S, T, K) be the set of all label sets L such that K ⊆ L and S‖L =
T‖L, and let MCAST(S, T, K) be the set of label sets in CAST(S, T, K) with the
maximum size. Note that finding a maximum constrained agreement subtree of
S and T with respect to P is equivalent to finding a label set in MCAST(S, T,L(P)).
In the rest of this paper, we describe give an O(n log n)-time algorithm for finding
a label set in MCAST(S, T, K) where n = |L(S)|+ |L(T)|. We assume that S and
T are binary trees. Furthermore, we assume that S‖K = T‖K ; otherwise there
is no constrained agreement subtree of S and T with respect to K.

3 The Special Case When |K| ≤ 1

Note that when |K| = 0, the problem of finding a label set in MCAST(S, T, K) is
equivalent to finding a maximum agreement subtree of S and T , which can be
solved in O(n log n) time by the algorithm of Cole et al. [1].

The case when |K| = 1 is more difficult. As shown in Figure 2, the maximum
agreement and the maximum constrained agreement subtrees of S and T are
very different even when K has only one label κ. Interestingly, we can still use
Cole et al. ’s algorithm to solve our problem in this case. The idea is simple.

Suppose W is an evolutionary tree with |L(S)| + |L(T)| + 1 = n + 1 leaves.
Furthermore, suppose L(W) ∩ (L(S) ∪ L(T)) = ∅. Let S′ and T ′ be the evo-
lutionary trees obtained by replacing κ in S and T by W , respectively. Since

758 Z. Peng and H. Ting

a

b g

c d

e

qm n

o p

e

a

m n

o p

q

b g

c d

q

a

m n

o p eb g

c d

κ κ

b g

a

dc

e

κ

MCAST(S,T,{ })κ

S T

MAST(S,T)

Fig. 2. The agreement subtrees with and without the leaf κ

|L(W)| > |L(S)| + |L(T)|, any maximum agreement subtree R of S′ and T ′

must include W . In other words, the role of W is equivalent to the role of κ in
our problem. If we replace the subtree W in R by the leaf κ, we get a maximum
constrained agreement subtree of S and T with respect to the κ.

The following lemma proves formally the correctness of this idea.

Lemma 1. Let S′ be the tree obtained by replacing the leaf κ in S by the tree
W , and T ′ be one obtained by replacing κ in T by W . Let R be any maximum
agreement subtree of S′ and T ′. Let G = (L(R) − L(W)) ∪ {κ}. Then, G ∈
MCAST(S, T, {κ}).

Proof. Note that W is an agreement subtree of S′ and T ′ and thus |L(R)| ≥
|L(W)| = n + 1. On the other hand, |L(R) − L(W)| ≤ |L(S)| + |L(T)| = n.
Thus, R must have some leaf τ ∈ L(W). Define S′

τ→κ to be the tree obtained
by replacing this leaf τ by κ in S′. Define T ′

τ→κ similarly. By the definition of
agreement subtree, S′‖L(R) = T ′‖L(R) and this implies S′

τ→κ‖(L(R)−{τ})∪{κ} =
T ′

τ→κ‖(L(R)−{τ})∪{κ}. By Fact 2, we have

S′
τ→κ‖((L(R)−{τ})∪{κ})−L(W) = T ′

τ→κ‖((L(R)−{τ})∪{κ})−L(W).

Note that G = (L(R)− L(W)) ∪ {κ} = (L(R)− {τ} ∪ {κ})− L(W) and thus

S′
τ→κ‖G = T ′

τ→κ‖G.

An O(n log n)-Time Algorithm for the MCAST Problem for Binary Trees 759

Observe that S = S′
τ→κ‖L(S) and T = T ′

τ→κ‖L(T). Furthermore, since G ⊆
L(S), (S′

τ→κ‖L(S))‖G = S′
τ→κ‖G. Similarly, we have (T ′

τ→κ‖L(T))‖G = T ′
τ→κ‖G.

Altogether, we have

S‖G = (S′
τ→κ‖L(S))‖G = S′

τ→κ‖G = T ′
τ→κ‖G = (T ′

τ→κ‖L(T))‖G = T‖G.

Together with the fact that κ ∈ G, we conclude G ∈ CAST(S, T, {κ}).
Now, we show that G ∈ MCAST(S, T, {κ}). For any L ∈ CAST(S, T, {κ}),

(L− {κ}) ∪ L(W) corresponds to an agreement subtree of S′ and T ′ and thus

|L| − 1 + |L(W)| ≤ |L(R)|.

On the other hand,

|G| = |(L(R)− L(W)) ∪ {κ}| ≥ |L(R)| − |L(W)|+ 1.

It follows that |G| ≥ |L| and G is no smaller than any label set in CAST(S, T,
{κ}). Hence, G ∈ MCAST(S, T, {κ}).

Therefore, we can reduce the problem of finding a label set in MCAST(S, T, K)
to the problem of finding maximum agreement subtree when |K| ≤ 1. By ap-
plying the algorithm of Cole et al. , we have a procedure for solving this special
case in O(n log n) time. For ease of future referencing, we refer this procedure as
SimpleMCAST(S, T, K). In the next section, we will see how to use this procedure
to solve the general problem.

4 The General Case

In this section, we describe a simple recursive procedure for finding a label set
in MCAST(S, T, K) when the size of K is general. First, we need some definitions.

u2

ui

up

u1

Si

S1

S2

Sp

κ

Fig. 3. The spine decomposition of S at κ

Let κ be any leaf of S. Let σ = (u1, u2, . . . , up, κ) be the unique path from the
root u1 of S to κ. We say that S has the spine decomposition D(S1, S2, . . . , Sp, κ)

760 Z. Peng and H. Ting

at κ if along σ, Si(1 ≤ i ≤ p) is the subtree attached to ui (see Figure 3). We
call the path σ the κ-spine (or simply spine) and the Si’s the κ-sidetrees (or
simply sidetrees) of S. We call ui the parent of Si, and we let p(Si) to denote
Si’s parent. We say that a sidetree Sh is higher than another sidetree Sk if h < k.

Following is our procedure for finding MCAST(S, T, K). To simplify notation,
we let L(X1, X2, . . . , Xk) to denote L(X1) ∪ L(X2) ∪ · · · ∪ L(Xk).

procedure ConstMCAST(S, T, K)

1. if |K| ≤ 1, return SimpleMCAST(S, T, K);
2. Let κ be a label in K;
3. Let D(S1, S2, . . . , Sp, κ) and D(T1, T2, . . . , Tq, κ) be the spine decomposi-

tion of S and T at κ, respectively.
4. Find the highest sidetree Si of S that contains some label in K;
5. Find the highest sidetree Tj of T that contains some label in K;
6. Let Stop := S‖L(S1,S2,...,Si−1)∪{κ} and Sbot := S‖L(Si+1,Si+2,...,Sp)∪{κ};
7. Let Ttop := T‖L(T1,T2,...,Tj−1)∪{κ} and Tbot := T‖L(Tj+1,Tj+2,...,Tq)∪{κ};
8. Recursively call the procedure as follows:

A := ConstMCAST(Stop, Ttop,K ∩ L(Stop));
B := ConstMCAST(Si, Tj ,K ∩ L(Si));
C := ConstMCAST(Sbot, Tbot,K ∩ L(Sbot));

9. return A ∪B ∪ C.

The following lemma suggests that the label set returned by the procedure
is indeed in CAST(S, T, K).

Lemma 2. Suppose

1. A ∈ CAST(Stop, Ttop,K ∩ L(Stop)),
2. B ∈ CAST(Si, Tj ,K ∩ L(Si)), and
3. C ∈ CAST(Sbot, Tbot,K ∩ L(Tbot)).

Let L = A ∪B ∪ C. Then K ⊆ L and S‖L = T‖L and hence L ∈ CAST(S, T, K).

Proof. To show K ⊆ L, note that L(Stop) ∪ L(Si) ∪ L(Sbot) = L(S), and thus

K = K ∩L(S) = (K ∩L(Stop))∪ (K ∩L(Si))∪ (K ∩L(Sbot)) ⊆ A∪B ∪C = L.

To prove that S‖L = T‖L, it suffices to show that for any leaves a, b, c, d in
L, lcaS‖L

(a, b) = lcaS‖L
(c, d) if and only if lcaT‖L

(a, b) = lcaT‖L
(c, d) (see

Fact 1).
First, we consider the =⇒ direction. Suppose lcaS‖L

(a, b) = lcaS‖L
(c, d) =

u. We consider two cases.

Case 1: u is a node in some sidetree S� where 1 ≤ � ≤ p. Note that a, b, c, d are
all in S� because their ancestor is in S�. Since A ⊆ L(S1, S2, . . . , Si−1) ∪ {κ},
B ⊆ L(Si) and C ⊆ L(Si+1, . . . , Sp) ∪ {κ}, S� does not have two leaves from
two different sets in {A,B,C}. In other words, {a, b, c, d} ⊆ X where X is

An O(n log n)-Time Algorithm for the MCAST Problem for Binary Trees 761

either A, B, or C. Since X ⊆ L, by Fact 2, lcaS‖L
(a, b) = lcaS‖X

(a, b) and
lcaS‖L

(c, d) = lcaS‖X
(c, d). Hence,

lcaS‖L
(a, b) = lcaS‖L

(c, d) ⇐⇒ lcaS‖X
(a, b) = lcaS‖X

(c, d).

By the assumption of the lemma, S‖X = T‖X , and together with X ⊆ L, we
have

lcaS‖X
(a, b) = lcaS‖X

(c, d) ⇐⇒ lcaT‖X
(a, b) = lcaT‖X

(c, d)
⇐⇒ lcaT‖L

(a, b) = lcaT‖L
(c, d).

Case 2: u is on the spine, i.e., u = p(S�) for some 1 ≤ � ≤ p. Since the ancestor
of a and b is p(S�), one of the leaves, say a, must be at S�, and the other, b,
must be at some sidetree Sh below S�. Similarly, one of c, d, say c is at S� and d
is at some sidetree Sv below S�. Below, we show that a, c must be in the same
sidetree T�′ in T , and b and d must be in some sidetrees below T�′ . Then,

lcaT‖L
(a, b) = p(T�′) = lcaT‖L

(c, d).

We first prove that a and c are in the same sidetree of T . Since a, c are
at S�, {a, c} ⊆ X where X is either A, B, or C (as in Case 1). If X = B,
then {a, c} ⊆ B ⊆ L(Tj), and the two leaves are at the same sidetree of T . Now,
suppose X = A (the case when X = C is similarly). Note that κ ∈ K∩L(Stop) ⊆
A and lcaS(a, κ) = lcaS(c, κ) (= p(S�)). Then, by S‖A = T‖A, we conclude
lcaT (a, κ) = lcaT (c, κ). Note that this is possible only when the leaves a, c are
at the same sidetree T�′ of T .

Now, we show that b is at some sidetrees below T�′ , the sidetree containing
a and b. We can handle d similarly. Recall that a is at S� and b is at Sh where
� < h. Note that if a, b are in different sets of A, B, and C, say a ∈ A and
b ∈ B, then a ∈ L(T1, T2, . . . , Tj−1) and b ∈ L(Tj), and thus b is at some
sidetree below T�′ . Otherwise, {a, b} ⊆ X where X can either be A or C (they
are not be in B because a, b are at different sidetrees). Note that κ ∈ X and
lcaS‖X

(a, κ) = lcaS‖X
(a, b) (= p(S�)). Then, by S‖X = T‖X , we conclude

lcaT‖X
(a, κ) = lcaT‖X

(a, b), which is p(T�′). This is possible only when b is at
some sidetree below T�′ .

To summarize, we have proved in both cases that lcaS‖L
(a, b) = lcaS‖L

(c, d)
=⇒ lcaT‖L

(a, b) = lcaT‖L
(c, d). The other direction ⇐= can be proved simi-

larly. Then, by Fact 1, we conclude S‖L = T‖L and the lemma is proved.

To show that L is the largest label set in CAST(S, T, K). we need to prove two
nice structural properties on every label set in CAST(S, T, K).

Lemma 3. Suppose H ∈ CAST(S, T, K). Then

1. H ∩ L(Si) = H ∩ L(Tj),
2. H ∩ L(Stop) = H ∩ L(Ttop), and
3. H ∩ L(Sbot) = H ∩ L(Tbot).

762 Z. Peng and H. Ting

Proof. Since H ∈ CAST(S, T, K), we have K ⊆ H and S‖H = T‖H . We first
prove (1) by contradiction. Suppose H ∩L(Si) �= H ∩L(Tj). Recall that Si and
Tj are the highest side trees that contain some label in K. Thus, K ∩L(Si) �= ∅
and K ∩ L(Tj) �= ∅. We consider two cases.
Case 1: K ∩L(Si) = K ∩L(Tj). Then, there is a label τ ∈ K that is in both Si

and Tj . Since we assume H ∩ L(Si) �= H ∩ L(Tj), there is a label a that is in,
say H ∩ L(Si), but not in H ∩ L(Tj). It follows that a is in Si, and is in some
tree T� where � �= j. Note that

lcaS(τ, κ) = lcaS(a, κ) = p(Si),

but
lcaT (τ, κ) = p(Tj) �= p(T�) = lcaT (a, κ).

Furthermore, {a, τ, κ} ⊆ H, and thus the condition required by Fact 1 can
never be satisfied by S‖H and T‖H . Hence, the two trees cannot be leaf-label
isomorphic and hence H �∈ CAST(S, T, K); a contradiction.
Case 2: K ∩L(Si) �= K ∩L(Tj). Then, there is a label a in, say, K ∩L(Si), but
is not in K ∩ L(Tj). It follows that a is in Si, and is in some tree T�. Note that
� ≥ j because by construction of the algorithm, T1, T2, . . . , Tj−1 do not contain
any label in K. Let τ be a label in K ∩L(Tj). Suppose τ is at some sidetree Sh

of S. Again, h ≥ i because S1, S2, . . . , Si−1 do not contain any label in K. Note
that no matter whether h = i or h > i,

lcaS(τ, κ) �= lcaS(τ, a)

but
lcaT (τ, κ) = lcaT (τ, a) = p(Tj).

Similar to Case 1, we conclude H �∈ CAST(S, T, K); another contradiction.
Hence, the only possible conclusion is H ∩L(Si) = H ∩L(Tj), and (1) is proved.

Now, we prove (2) by contradiction ((3) can be proved similarly). Assume
that H∩L(Stop) �= H∩L(Ttop). Then there is a label a that is in, say, H∩L(Stop),
but not in H ∩ Ttop. Thus, a ∈ S� for some � < i, and a ∈ Th for some h ≥ j.
Since we have proved (1), we conclude there is a label τ ∈ H that are in both
Si and Tj . Note that,

lcaS(a, κ) = lcaS(a, τ) = p(S�),

and no matter whether h = j or h > j,

lcaT (a, κ) �= lcaT (a, τ).

Since {a, τ, κ} ⊆ H, S‖H �= T‖H and H �∈ CAST(S, T, K); a contradiction.

Lemma 4. Consider any H ∈ CAST(S, T, K). Let X = H ∩ L(Stop), Y = H ∩
L(Si) and Z = H ∩ L(Sbot). Then,

1. X ∈ CAST(Stop, Ttop,K ∩ L(Stop)),

An O(n log n)-Time Algorithm for the MCAST Problem for Binary Trees 763

2. Y ∈ CAST(Si, Tj ,K ∩ L(Sj)), and
3. Z ∈ CAST(Sbot, Tbot,K ∩ L(Sbot)).

Proof. Since H ∈ CAST(S, T, K), we have K ⊆ H and S‖H = T‖H . To prove (1),
it suffices to show that (i) K ∩L(Stop) ⊆ X and (ii) Stop‖X = Ttop‖X . Note that
(i) is trivial because K ⊆ H implies K ∩ L(Stop) ⊆ H ∩ L(Stop) = X. To show
(ii), we observe that

Stop‖X = (S‖L(S1,S2,...,Si−1)∪{κ})‖X = S‖X (1)

because Stop = S‖L(S1,S2,...,Si−1)∪{κ} and X ⊆ L(Stop) = L(S1, S2, . . . , Si−1) ∪
{κ}.

Furthermore,

Ttop‖X = (T‖L(T1,T2,...,Tj−1)∪{κ})‖X = T‖X (2)

because Ttop = T‖L(T1,T2,...,Tj−1)∪{κ} and X = H ∩ L(Stop) = H ∩ L(Ttop)
(Lemma 3), which is a subset of L(T1, T2, . . . , Tj−1) ∪ {κ}. Since S‖H = T‖H ,
we have

S‖X = (S‖H)‖X = (T‖H)‖X = T‖X . (3)

Combining (1),(2), and (3), we conclude Stop‖X = Ttop‖X .
We prove (2) and (3) similarly.

Now, we are ready to prove that the label set L returned by ConstMCAST is
indeed in MCAST(S, T, K), and hence the procedure ConstMCAST is correct.

Theorem 3. The label set L returned by ConstMCAST is in MCAST(S, T, K).

Proof. We prove the theorem by induction on the size of K. If |K| ≤ 1, then L
is returned by SimpleMCAST(S, T, K) correctly.

Suppose |K| > 1. Then L is the union of A,B and C, which are returned re-
cursively by ConstMCAST(Stop, Ttop,K∩L(Stop)), ConstMCAST(Si, Tj , K∩L(Si)),
and ConstMCAST(Sbot, Tbot,K ∩L(Sbot)), respectively. Note that the size of K ∩
L(Stop)), K∩L(Si), and K∩L(Sbot) are strictly smaller than |K|. By induction,
we have

1. A ∈ MCAST(Stop, Ttop,K ∩ L(Stop)),
2. B ∈ MCAST(Si, Tj ,K ∩ L(Si)), and
3. C ∈ MCAST(Sbot, Tbot,K ∩ L(Sbot)),

and Lemma 2 asserts that L ∈ CAST(S, T, K).
To show that L ∈ MCAST(S, T, K), consider any label set H ∈ MCAST(S, T, K).

Let X = H ∩ L(Stop), Y = H ∩ L(Si), and Z = H ∩ L(Sbot). By Lemma 4,
we have X ∈ CAST(Stop, Ttop,K ∩ L(Stop)), Y ∈ CAST(Si, Tj , K ∩ L(Sj)) and
Z ∈ CAST(Sbot, Tbot, K ∩L(Sbot)). Recall that A ∈ MCAST(Stop, Ttop, K ∩L(Stop))
and this implies |A| ≥ |X|. Similarly, |B| ≥ |Y | and |C| ≥ |Z|. It follows that

|L| = |A|+ |B|+ |C| ≥ |X|+ |Y |+ |Z| = |H|.

Consequently, L is no smaller than any label set in CAST(S, T, K), and hence
L ∈ MCAST(S, T, K).

764 Z. Peng and H. Ting

We now estimate the running time of ConstMCAST(S, T, K). From the design
of the procedure, it can be verified that |K∩L(Stop)| = 1. Hence, the first recur-
sive call ConstMCAST(Stop, Ttop,K ∩L(Stop)) invokes immediately the procedure
SimpleMCAST, which will stop in O(n1 log n1) time where n1 = |Stop|+ |Ttop|. In
fact, it is easy to see that the execution of ConstMCAST(S, T, K) is composed of
a sequence of calls on SimpleMCAST(Ui, Vi,Ki) and thus the total running time
is O(

∑
ni log ni) where ni = |Ui| + |Vi|. Observe that for any label that is not

in K, the label will be in exactly one Ui and one Vi. Furthermore, every Ui and
every Vi have at most one label in K. It follows that

∑
ni = O(n). Hence, we

have the following theorem.

Theorem 4. ConstMCAST(S, T, K) runs in O(
∑

ni log ni) = O(n log n) time.

5 Concluding Remarks

In this paper, we introduce the maximum constrained agreement subtree problem
and give an O(n log n) time algorithm for solving the problem when the two given
input trees are binary. The time complexity of our algorithm matches the fastest
algorithm for constructing classical maximum agreement subtree of two binary
algorithms. There are many interesting problems related to MCAST. We list
below a few of them.

1. Design efficient algorithm for constructing MCAST when the two given input
trees have degrees bounded by some constant d.

2. Design efficient algorithm for constructing MCAST when there is no con-
straint on the degree of the input tree.

3. Design efficient algorithm for constructing MCAST for unrooted evolution-
ary tree.

References

1. R. Cole, M. Farach, R. Hariharan, T. Przytycka, and M. Thorup. An O(n log n)
algorithm for the maximum agreement subtree problem for binary trees. SIAM
Journal on Computing, 30(5):1385–1404, 2000.

2. M. Farach and M. Throup. Optimal evolutionary tree comparison by sparse dy-
namic programming. In Proceedings of the 35th Annual IEEE Symposium on Foun-
dations of Computer Science, pages 770–779, 1994.

3. M. Farach and M. Throup. Fast comparison of evolutionary trees. In Proceedings
of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 481–488,
1995.

4. C. Finden and A. Gordan. Obtaining common pruned trees. Journal of Classifi-
cation, 2:255–276, 1985.

5. D. Gusfield. Efficient algorithms for inferring evolutionary trees. Networks, 21:19–
28, 1991.

An O(n log n)-Time Algorithm for the MCAST Problem for Binary Trees 765

6. S. Kannan, E. L. Lawler, and T. Warnow. Determining the evolutionary tree.
In Proceedings of the 1st Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 475–484, 1990.

7. M.Y. Kao. Tree contractions and evolutionary trees. SIAM Journal on Computing,
27:1592–1616, 1998.

8. M.Y. Kao, T.W. Lam, W.K. Sung, and H.F. Ting. A decomposition theorem
for maximum weight bipartite matchings with applications in evolution trees. In
Proceddings of the 7th Annual European Symposium on Algorithms, pages 438–449,
1999.

9. M.Y. Kao, T.W. Lam, W.K. Sung, and H.F. Ting. An even faster and more
unifying algorithm comparing trees via unbalanced bipartite matchings. Journal
of Algorithms, 20(2):212–233, 2001.

10. D. Keselman and A. Amir. Maximum agreement subtree in a set of evolutionary
trees– metrics and efficient algorithms. In Proceedings of 35th Annual Symposium
on the Foundations of Computer Sciences, pages 758–769, 1994.

11. E. Kubicka, G. Kubicki, and F. McMorris. An algorithm to find agreement subtrees.
Journal of Classification, 12:91–99, 1995.

12. M. Steel and T. Warnow. Kaikoura tree theorems: computing the maximum agree-
ment subtree. Information Processing Letters, 48(2):77–82, 1994.

Planning the Transportation of Multiple
Commodities in Bidirectional Pipeline

Networks�

Artur Alves Pessoa

PUC-Rio, Informatics Department, Rua Marquês de São Vicente 225, RDC,
4o andar, CEP 22453-900, Rio de Janeiro - RJ, Brazil

artur@inf.puc-rio.br

Abstract. PTP is a combinatorial model for oil pipeline transporta-
tion. It uses a directed graph G and a set of product batches, where
each batch has a corresponding destination node. The graph G has an
associated initial state where each arc contains a non-empty sequence of
batches and each node contains a set of batches. A valid movement is to
shift the batches of a given arc a = (i, j) in such a way that one batch
from the node i is inserted in the beginning of the arc a and another
batch, removed from the end of the arc a, is inserted in j. The goal is to
reach a state where all batches from a given subset are stored at their
destinations. For the general PTP, deciding whether or not a feasible
plan exists is proved to be NP-hard.

In this paper, we introduce the CBPTP, a new variation of PTP. In
this variation, arc contents may be shifted in both directions. Moreover,
we generalized the batch destination nodes by assigning a commodity to
each batch and defining node demands. For the general CBPTP, we give
a polynomial algorithm for constructing feasible plans for the CBPTP,
when they exist.

1 Introduction

Pipelines play an important role in the transportation of petroleum and its
derivatives, since it is the most effective way to transport large volumes over
large distances. However, planning the transportation of petroleum products
through a relatively small pipeline network may be a very hard task [2, 4, 6, 7, 3].
This scenario makes transportation through oil pipeline networks a problem of
high relevance.

The pipeline transportation problem has an unique characteristic, which dis-
tinguishes it from other transportation methods: it uses stationary carriers whose
(liquid) cargo moves rather than the more usual moving carriers of stationary
cargo. Typically, each oil pipeline is a few inches wide and several miles long.

� Partially supported by FAPERJ (Proc. E-26/150.715/2003) and by CNPQ, through
Edital Universal 01/2002 (Proc. 476817/2003-0).

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 766–777, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Planning the Transportation of Multiple Commodities 767

As a result, reasonable amounts of distinct products can be transported through
the same pipe with a very small loss due to mixing at liquid boundaries. Another
important characteristic of oil pipelines is that they must always, for safety rea-
sons, be pressurized. That is, each pipeline must be completely full of liquid.
Hence, assuming incompressible fluids, an elementary pipeline operation is the
following: pump an amount of product into the pipeline and remove the same
amount of product from the opposite side. Observe that the product inserted in
one side is not necessarily the same as the one removed from the other side, as
shown in Figure 1.(a). This figure shows the content of an oil pipeline that is
filled by the two (liquid) products B and A, from left to right. In this case, to
insert an amount of the product C in the left side, one must remove the same
amount of A from the right side. As a result, product B is shifted to the right,
inside the oil pipeline. Figure 1.(b) shows the content of the same pipeline after
this operation.

AB
C A

AC B(a) (b)

Fig. 1. (a) the content of an oil pipeline; (b) the content of the same pipeline after
inserting an amount of product C

Throughout this paper, we use the term batch to denote a contiguous amount
of some product in a pipeline network. This term is commonly used in the context
of oil pipelines. Further information about oil pipelines can be found in [8].

1.1 Previous Work

The idea to study simplified combinatorial models for the pipeline transportation
problem was introduced by Hane and Ratliff [2]. The authors propose a model
under the following assumptions: demands cyclically repeat over the time, the
network graph is a directed tree, batches have given destination nodes and no
due dates.

The Pipeline Transportation Problem (PTP) is proposed in [5, 6] for general
graphs and non-cyclic orders. PTP models a pipeline system through a directed
graph G, where each node represents a location and each directed arc represents
a pipe, with a corresponding flow direction. As in Hane’s model, the flow inside
each pipe is assumed to be unidirectional. PTP also defines a set of batches
with given destination nodes. The graph G has an associated initial state where
each arc contains a non-empty sequence of batches and each node contains a
(possibly empty) set of batches. All batches have unitary volumes. Since pipes
must always be full, some batches must be used to fill them at the end of the
transportation. These batches are not delivered. Due to this fact, PTP defines
a subset of batches, called further batches, that are not necessarily delivered at
the end of a feasible pumping sequence. In this case, a feasible solution to PTP
is a pumping sequence that delivers all non-further batches.

768 A.A. Pessoa

In [6], the problem of finding a feasible solution to PTP is proved to be
NP-hard, even if G is acyclic. Moreover, the authors introduce the Synchronous
PTP (SPTP), a special case of PTP where all further batches are initially stored
at nodes. The problem of finding a minimum pumping cost solution to SPTP is
called SPTOP. In the same work, the authors also introduce the BPA algorithm,
that finds feasible solutions to SPTP in polynomial time. If G is acyclic, then
these solutions are also optimal for the SPTOP. The authors also analyze the
complexity of finding minimum makespan solution to the SPTP in [7]. This
problem is called SPTMP. They prove that, for any fixed ε > 0, there is no
η1−ε-approximate algorithm for SPTMP unless P = NP, where η is the input
size. This result also holds if the graph G is both planar and acyclic.

Recently, another combinatorial model based on oil pipelines, called
Pipesworld, was proposed for a solver competition [3]. The authors also describe
many interesting examples of difficulties introduced by the Pipesworld model.
We point out that the Pipesworld model can be viewed as a variation of the
PTP model where pipe contents can flow in both directions, nodes have capac-
ity constraints and consecutive batches in pipes have compatibility restrictions.

1.2 The Problem

In this paper, we address a variation of PTP for planning the transportation of
multiple commodities in bidirectional pipeline networks. We refer to our model
as the Commodity Bidirectional PTP (CBPTP). As in the Pipesworld model,
CBPTP allows pipe contents to flow in both directions. On the other hand, prod-
uct batches have no capacity constraints or compatibility restrictions. Moreover,
instead of assigning destination nodes to the batches, we use a more general
model. Each batch has an associated commodity, and each node i in G has an
associated demand d(i, c) for each commodity c. In this case, a feasible solution
to the CBPTP is a pumping sequence that delivers at least d(i, c) batches of the
commodity c at the node i, for every node i and commodity c. Hence, the model
must also determine a destination node for each batch. Observe that we may
model the case where the batches’ destination nodes are given as a special case
of the CBPTP by assigning a different commodity to each batch. Let us refer to
this last case as the Assigned Bidirectional PTP (ABPTP).

We point out that, since all pipes can flow in both directions, the arc direc-
tions are merely a convention to represent the pipe contents. Hence, we define an
undirected graph Ḡ as the graph obtained from G by replacing all its directed
arcs with the corresponding (undirected) edges. For the sake of simplicity, let us
assume that G has no parallel arcs (even with different directions).

1.3 Results

For the general CBPTP, we reduce the instance feasibility to the problem of
finding a perfect matching in a bipartite graph. Moreover, we give a polynomial
algorithm for constructing feasible plans for the CBPTP, when they exist.

Planning the Transportation of Multiple Commodities 769

Our approach to solve the CBPTP is the following. First, we obtain necessary
and sufficient feasibility conditions for the ABPTP. Later, we observe that, given
a feasible instance I of the CBPTP, we can use the previous conditions to assign
destination nodes to the batches of I so that the resulting instance of the ABPTP
is feasible. For that, we show that such assignment must correspond to a perfect
matching in a bipartite graph.

To solve the ABPTP, we start with a solution for the special case where
the graph G has a single arc. This solution is generalized to handle the bridges
of the graph Ḡ. By handling a bridge e, we mean moving to a state where
every non-further batch can reach its destination node without passing by the
pipe that corresponds to e. As a result, handling a bridge involves placing all
batches that must cross the corresponding pipe at the correct side. Then, we use a
decomposition of the graph Ḡ into bridges and 2-edge-connected components [1].
Whenever the current graph Ḡ has at least one bridge, we solve the problem as
follows: choose a bridge e on Ḡ; handle e, and recursively solve the subproblems
that correspond to the two subgraphs of Ḡ connected by e. Here, we assume that
the graph Ḡ is initially connected. For the 2-edge-connected components of Ḡ, we
assign an unique flow direction for each corresponding pipe so that the resulting
directed graph is strongly connected. After that, we solve the corresponding
subproblem through a generalization of the approach introduced in [6].

We remark that bridges are usually found in the Brazilian oil pipeline net-
works, which are our motivating examples. For example, the clean oil network
in São Paulo State has two long bridges.

1.4 Paper Organization

This paper is organized as follows. In Section 2, we formalize the CBPTP model
and introduce some additional notations. In Section 3, we describe our polyno-
mial time planning algorithm. In the last section, we present our final remarks.

2 The CBPTP Model

In this section, we describe the both the CBPTP and the ABPTP models. First,
we describe the pipeline system, batches, pipe contents, and allowed operations
for the CBPTP. Then, we introduced the differences between the CBPTP and
the ABPTP.

Pipeline System

Let G = (N, A) be a directed graph, where N is the set of n nodes and A is the
set of m arcs. Given an arc a = (i, j) ∈ A, we say that i is the start node of a
and j is the end node of a. Arcs represent pipes and nodes represent locations.
Each arc a ∈ A has an associated integer capacity v(a). Moreover, we divide
each arc a into v(a) pipe positions. We also define the set of all pipe positions
A′ = {(a, l)|a ∈ A and l ∈ {1, . . . , v(a)}}.

770 A.A. Pessoa

Batches

Let L be a set of r unitary volume batches, and C a set of commodities. Each
b ∈ L has an associated commodity c(b). Moreover, each node i ∈ N has an
associated integer demand d(i, c) for each commodity c ∈ C.

Pipe Contents

Pumping a batch into a pipe requires a non negligible amount of time. However,
we only consider the instants where each arc a ∈ A contains exactly v(a) integral
batches. As a result, any solution to this model generates a discrete sequence of
states, where the positions of all batches are well-defined.

Let us use pt(b) to denote the position of batch b at state t. If pt(b) = (a, l) ∈
A′, then batch b is located at the lth position of arc a at state t. Otherwise, if
pt(b) = i ∈ N , then batch b is stored at node i. Furthermore, the content of a
given arc a at a given state t is represented by a list of batches [b1, b2, . . . , bv(a)],
where the lth batch in this list is contained at the pipe position (a, l), for l =
1, 2, . . . , v(a).

b1

b4

b2 b3b5 b 61 2 1

3

a2

2

3

a
1

(a) (b)

a2

a11 2

3

Fig. 2. (a) The contents of a pipeline system; (b) the corresponding graph

As an example, Figure 2.(a) represents the pipe contents corresponding to
the graph of Figure 2.(b). Observe that the system has two pipes a1 = (1, 2)
and a2 = (1, 3). The capacities of a1 and a2 are v(a1) = 3 and v(a2) = 1,
respectively. Let us assume that Figure 2.(a) corresponds to state t. In this case,
we have pt(b1) = (a1, 1), pt(b2) = (a1, 2), pt(b3) = (a1, 3), and pt(b4) = (a2, 1),
since the contents of a1 and a2 are respectively represented by the lists [b1, b2, b3]
and [b4]. Furthermore, we have pt(b5) = pt(b6) = 1 since both b5 and b6 are stored
at node 1.

At the initial state (state 0), the position p0(b) of each batch b is given.

Operations

A solution for the model is a list Q of elementary pipeline operations (EPO),
defined as follows. Let a = (i, j) be an arc of G, whose content at a given
state t is given by the list [b1, b2, . . . , bv(a)]. Moreover, let b be a batch stored
either at node i or at node j, in this moment. An EPO is a pair (b, a), denoting
that b is pumped into a. Suppose that (b, a) is executed after the state t. If b
was previously stored at node i, then we refer to this EPO as a direct EPO.

Planning the Transportation of Multiple Commodities 771

Otherwise, if b was previously stored at node j, then we refer to this EPO as
a reverse EPO. In the case of a direct EPO, the contents of a at state t + 1
are given by the list [b, b1, b2, . . . , bv(a)−1] and bv(a) is stored at the node j. If a
reverse EPO was performed, then the contents of a at state t + 1 are given by
the list [b2, b3, . . . , bv(a), b] and b1 is stored at the node i. Let q be the size of
a given sequence Q of EPO’s. We say that Q is feasible when, for every node
i ∈ N and every commodity c ∈ C, we have at least d(i, c) batches associated to
the commodity c, stored at node i when the state is q.

The ABPTP Model

For the ABPTP, each batch b has a fixed destination node f(b) ∈ N ∪ {φ}.
Each batch b with f(b) = φ is called a further batch. These batches have no
destination node assigned and may be used to fill the pipes at the end of the
plan. All other batches are called non-further batches. Also, we say that Q is
feasible for the ABPTP when every batch b with f(b) �= φ is stored at the node
f(b), when the state is q.

3 Planning Algorithm

In this section, we describe a polynomial algorithm that solves the CBPTP.
Given an instance I of the CBPTP, our algorithm either finds a feasible solution
I or determines that I is infeasible. Let us refer to this algorithm as the Bridge
algorithm, which is motivated by the fact that handling the bridges of the graph
Ḡ is the most difficult part.

As mentioned in the introduction, we assign an unique flow direction for
each pipe of a 2-edge-connected component of Ḡ so that the resulting directed
subgraph is strongly connected. In [9], it is shown that such directions can be
assigned for any 2-edge-connected undirected graph. In fact, these directions
can be obtained in a linear time through a Depth First Search. For the sake
of simplicity, let us assume without loss of generality that the assigned flow
directions coincide with arc orientations of G. Moreover, let us refer to any arc
of G that corresponds to bridge in Ḡ as a bridge also.

3.1 Network Excess

Now, we introduce the concept of excess, which is extensively used throughout
this section.

Definition 1. Given a connected subgraph G′ = (N ′, A′) of G, the excess of G′

at a given state t is defined as the number of batches stored at the nodes of G′,
that is, this excess is given by xt(G′) = |{b ∈ L|pt(b) ∈ N ′}|.

Observe that no EPO can change the excess of G. As a result, this excess is
constant over the states generated by any plan. Hence, we define X = x0(G) =
x1(G) = · · · = xq(G), for any plan Q of size q.

Throughout this paper, we may also use the term excess to refer to a set
of batches stored at a node. In this case, given an arc a = (i, j), if k batches

772 A.A. Pessoa

are pumped from the node i into a, then we may say that an excess of size k
is moved from i to j. Note that the batches received by j may be completely
different from the batches pumped from i. Observe also that we can move an
excess from j to i, executing reverse EPO’s on a.

Now, let us consider a path in G (possibly containing both direct and reverse
arcs) that starts at a node i0 and visits the nodes i1, i2, . . . , il in this order. In
this case, an excess of size k may be moved from i0 to il as follows: move it from
i0 to i1, then move it from i1 to i2 and so on until il receives an excess of size
k. Observe that, since G is connected, any excess can be moved from any node
to any node in G.

3.2 Feasibility Conditions for the ABPTP

We have already mentioned that we solve the CBPTP through a reduction to
the ABPTP. Here, we introduce a necessary and sufficient set of conditions
for the feasibility of the ABPTP. Although the necessity is easy to prove, the
sufficiency is only obtained through a planning algorithm. Hence, we start stating
these conditions only as necessary conditions. For that, let us introduce some
additional definitions.

Given a bridge a = (i, j) of G, let us define S(a, G) and S′(a, G) as the two
subgraphs of G connected by a, where i and j are nodes of S(a, G) and S′(a, G),
respectively. In this case, we have the following definitions.

Definition 2. When the state is t, the position of a batch b with respect to a is
given by

yt(b, a) =

⎧⎨⎩
l , if pt(b) = (a, l);
0 , if pt(b) is a node of S(a, G);
v(a) + 1 , if pt(b) is a node of S′(a, G).

Definition 3. For t = 0, 1, . . . , q, we define wt(a) = xt(S′(a, G)) and w′
t(a) =

v(a)− xt(S(a, G)) + 1.

Next, we show that, if v(a) ≥ X, then w′
t(a) (wt(a)) is the minimum (max-

imum) position of a batch b w.r.t. a, when the state is t, such that b can be
delivered at a node of S′(a, G) (S(a, G)). As we show later, any batch can cross
any bridge a such that v(a) < X. On the other hand, the next lemma shows
that this is not true for bridges with v(a) ≥ X.

Lemma 1. If v(a) ≥ X and y0(b, a) < w′
0(a) (y0(b, a) > w0(a)), then no plan

can delivery b at a node of S′(a, G) (S(a, G)).

Proof: Let us defer it to the extended version of this paper.

Observe that Lemma 1 leads to the following necessary feasibility condi-
tion associated to each non-further batch b ∈ L: for every bridge a of G,
if y0(b, a) < w′

0(a) (y0(b, a) > w0(a)) then f(b) must be a node of S(a, G)
(S′(a, G)). Moreover, since we must have enough further batches to fill all the
pipes, we have the following fact.

Planning the Transportation of Multiple Commodities 773

Fact 1. A feasible instance of the ABPTP has at least as many further batches
as the total number pipe positions in the network.

Now, we are ready to state the following theorem. Recall that A′ is the set
of all pipe positions.

Theorem 1. Given an instance I of the ABPTP, I is feasible if and only if it
satisfies the following two conditions:

(i) for every non-further batch b ∈ L and every bridge a of G, if y0(b, a) < w′
0(a)

(y0(b, a) > w0(a)) then f(b) is a node of S(a, G) (S′(a, G));
(ii) |A′| ≤ |{b ∈ L|f(b) = φ}.
Proof: The necessity to satisfy these conditions is a consequence of both Lemma
1 and Fact 1. On the other hand, the sufficiency is only proved by the algorithm
described throughout this section.

3.3 Reduction from CBPTP to ABPTP

Here, we show how to use a polynomial algorithm for the ABPTP to solve the
CBPTP in polynomial time. Clearly, we can transform any instance I of the
CBPTP in an instance I ′ of the ABPTP by assigning destination nodes to all
batches of I so that all demands of I are satisfied. However, we only have a
reduction if such an assignment maintains the feasibility of I, that is, every
feasible instance I leads to a feasible instance I ′.

Observe that the conditions of Theorem 1 gives a set of possible destinations
for each batch which is independent from the destinations assigned to the other
batches. The only restriction is that the given demands and required further
batches are satisfied. As a result, the feasibility problem can be modeled as
an matching problem in a bipartite graph, where batches are nodes from one
partition and destinations are nodes from the other. We leave the construction
of this graph to an extended version of this paper.

3.4 One-Pipe Networks

Here, describe our procedure to handle a bridge a = (i, j) of G, assuming that a
is the only arc of G. Let us refer to this procedure as the One-pipe Procedure.
Later, in Subsection 3.6, we show how to generalize our solution to any network
graph. As we previously define, to handle a bridge a, we must move the pipeline
network to a state where every non-further batch b such that f(b) is a node
of S(a, G) (S′(a, G)) is already stored in this subgraph. In our case, the two
subgraphs are single nodes.

We divide in two cases: (i) v(a) ≥ X; (ii) v(a) < X.
In the case (i), a can be handled in four steps:

One-pipe Procedure – Case (i)
Step 1: Pump all batches from j into a.
Step 2: Pump all further batches from i into a.
Step 3: Pump all non-further batches from i into a.
Step 4: Pump all further batches from j into a.

774 A.A. Pessoa

Observe that, if there are enough further batches to fill a, then a is filled with
only further batches after the Step 4. Since, by Lemma 1, no batch can cross a,
we conclude also that all non-further batches are properly delivered after this
step (if the instance is feasible).

Now, let us consider the case (ii). The crucial observation is that, if all excess
of G is stored at the node i, then the first batch b pumped from i into a can
reach the node j. This is true because the excess of G minus one is sufficient to
fill a. On the other hand, we may have to pump all the batches of i into a to
get b stored at j. Analogously, if all excess of G is stored at the node j, then
the first batch pumped from j into a can reach the node i. This observations
suggest an yo-yo like procedure to handle bridges. This procedure performs the
following steps:

One-pipe Procedure – Case (ii)
Step 1: Pump all batches from j into a.
Step 2: Pump into a every non-further batch b from i such that f(b) = j.
Step 3: Pump all further batches from i into a.
Step 4: Pump all remaining non-further batches from i into a.
Step 5: Pump into a every non-further batch b from j such that f(b) = i.
Step 6: Pump all further batches from j into a.
Step 7: If there is a non-further batch b not stored at f(b) then go to Step 1.

Observe that, the non-further batches stored at the corresponding destination
nodes are the last pumped into a. As a result, since we must have enough further
batches to fill a, every non-further batch b that is stored at f(b) when executing
the Step 7 returns to f(b) before the next execution of this step. Moreover, due
to the previous observations, we have that the number of non-further batches
stored at the corresponding destination nodes increases on each execution of the
Step 7. Hence, the condition of Step 7 is satisfied after at most r iterations,
where r is the total number of batches in the network.

3.5 Selecting Batches from Subgraphs

Let a = (i, j) be a bridge of G. If a is the only pipe of G, then we can select
any batch from i or j and pump it into a. Here, we describe a method to select
a batch b either from S(a, G) or from S′(a, G) and pump it into a, where G
represents any pipeline network. Let us refer to this method as the Selection
Procedure.

The Selection Procedure uses the Cycling Procedure, proposed in [6]. Given
an arc a′ = (i′, j′) of a Strongly Connected Component (SCC) of G and a batch
b stored at i′, this procedure transports b to the node j′. We point out that
this procedure does not generate reverse EPO’s since this is a restriction of the
model used in [6]. Essentially, this procedure finds a cycle the contains a′ and
make the batches move along this cycle until b is stored at j′.

We shall describe the Selection Procedure only for the case where b is selected
from S(a, G), since the other case is analogous. This procedure uses the following
three assumptions:

Planning the Transportation of Multiple Commodities 775

Assumption 1: v(a) is maximum over all bridges of G;
Assumption 2: xt(S(a, G)) > v(a), where t is the state at which b is selected;
Assumption 3: all the excess of S(a, G) is stored at i;

Later, we show how to satisfy these assumptions when solving general pipeline
networks.

Next, we describe the Selection Procedure. If b is stored at i, then just pump
b into a and we are done. Since, by the assumption 3, no batch in S(a, G) is
stored at a node other than i, in the only remaining case, b is contained in a
pipe a′ = (i′, j′). In this case, we first show how to move b to a node. If a′ is
a bridge, then, by the assumption 1, v(a′) ≤ v(a). In this case, it is enough to
move an excess of size v(a) through a′. Otherwise, if a′ is not a bridge, then
we start by moving an excess of size 1 to i′. In this case, we observe that the
Cycling Procedure can be modified to transport b to j′. For that, we only need
to remove the Step 2 (since b is already contained in a′).

Now, b is already stored at a node. If this node is i, then just pump b into a
and we are done. Hence, let us assume that b is stored at a node k �= i. In this
case, find a path p in G from k to i, where the bridges (and only them) may
be reverse arcs. Then, move an excess of some size from i to k so that the total
excess of k increases to v(a) + 1 (including the batch b). After that, transport
b together with an excess of size v(a) through each arc a′ of p as follows. If a′

is a bridge, then, by the assumption 1, v(a′) ≤ v(a). In this case, it is enough
to pump into a′ the batch b followed by v(a) batches. Otherwise, if a′ = (i′, j′)
is not a bridge, then v(a′) may be greater than v(a). Hence, we use the Cycling
Procedure to transport b from i′ to j′. After that, we also move an excess of size
v(a) from i′ to j′. After transporting b through all arcs of p, we have b stored at
the node i. Then, we just pump b into a.

3.6 Handling Bridges

Finally, we describe the Bridge Procedure. Given an input graph G, the Bridge
Procedure selects a bridge a = (i, j) that maximizes v(a) in G, handle it and
recursively solve the two subproblems that correspond to S(a, G) and S′(a, G). If
G has no bridge, then, by the choice of the arc directions, G is strongly connected.
In this case, the SCC Procedure, that we introduce in the next subsection, is
called to solve the current problem with no recursion.

Before describing the Bridge Procedure, we introduce the concept of rolling
back EPO’s. Let (b, a) be a direct EPO executed when the content of a is given
by [b1, b2, . . . , bv(a)], for a = (i, j). After this EPO, the content of a changes to
[b, b1, b2, . . . , bv(a)−1], and bv(a) is stored at the node j. In this case, we may roll
back the previous EPO by executing the reverse EPO (bv(a), a), which changes
the state of the network back to the state that precedes the execution of (b, a).
Observe that reverse EPO’s may also be rolled back by executing the corre-
sponding direct EPO’s. We also observe that any sequence of EPO’s may be
rolled back. For that, we must roll back each EPO of the sequence in the reverse
order of their execution.

776 A.A. Pessoa

The Bridge Procedure is a generalization of the One-pipe Procedure that
uses the Selection Procedure whenever it is necessary to pump into a a batch
that is not stored at a node adjacent to a. We point out that, in the generalized
method, the recursive call to solve the two generated subproblems occurs while
handling a, not after that. This is necessary because the recursive calls must
generate subproblems whose excesses are equal to X, in order to maintain the
condition (i) of Theorem 1 satisfied.

Now, let us consider the three assumptions of the Selection Procedure. The
Assumption 1 is satisfied by the choice of the bridge a. The most important
observation to satisfy the Assumption 2 is the following. For a given iteration
of the One-pipe Procedure – Case (ii), if this iteration is not the last one, then
the last v(a) batches pumped from i during the Steps 2, 3, and 4 will return
to the node i. This is true because, since X > v(a), more than v(a) batches
will be pumped from j before the procedure halts. The same observation is also
valid for the last v(a) batches pumped from j during the Steps 5 and 6, and the
Step 1 of the next iteration. As a result, these batches may be replaced by any
available batches, that is, we do not need to call the Selection Procedure before
executing these EPO’s. This observation assures that we satisfy the assumption
2 of the Selection Procedure when generalizing the One-pipe Procedure, except
for both Case (i) and the last iteration of Case (ii). To avoid calling the Selection
Procedure in these exceptional cases, we recursively call the Bridge Procedure
just before they occur. In this case, the subproblem that correspond to S(a, G)
(S′(a, G)) is slightly modified so that the batches that shall be pumped into a
are destined to the node i(j). Consequently, when the procedure returns from
this recursive call, these batches are already stored at a node adjacent to a,
and the Selection Procedure no longer needs to be called. Then, the original
destination nodes of the batches are restored. Finally, the Assumption 3 can be
easily satisfied by moving the excesses S(a, G) (S′(a, G)) to the node i(j) before
calling the Selection Procedure.

Let us defer the details of this procedure for an extended version of this
paper.

3.7 Strongly Connected Components

Now, we describe the SCC Procedure to solve instances of the ABPTP such
that the graph G is strongly connected. As mentioned in the beginning of this
section, if G has no bridge, than one can choose directions for the arcs such that
G becomes strongly connected. Since these directions are merely a convention
to represent the arc contents, they can be chosen without loss of generality.
Recall that the SCC Procedure is called by the Bridge Procedure to solve the
subproblems that correspond to the SCC’s of G.

The SCC procedure is divided in two main phases: fill all arcs with further
batches; and transport all non-further batches to the corresponding destination
nodes.

Next, we give a pseudocode for the first phase.

Planning the Transportation of Multiple Commodities 777

While not all arcs in G are filled by further batches do
Find a node i that stores a further batch;
Find a directed path p from i such that

all arcs but the last one are filled by further batches;
For each arc a in p do

Pump a further batch into a;
End-for

End-While

Observe that, on each iteration of the outer loop, one further batch is pumped
into an arc that is not filled by further batches. Hence, we can conclude that
phase 1 terminates before the number of iterations is greater than the total
number of pipe positions in G.

Finally, we observe that the second phase, can be easily solved through the
Cycling Procedure (see Subsection 3.5).

References

1. Shimon Even. Graph Algorithms. Computer Science Press, 1979.
2. Christopher A. Hane and H. Donald Ratliff. Sequencing inputs to multi-commodity

pipelines. Annals of Operations Research, 57, 1995. Mathematics of Industrial
Systems I.

3. Ruy Luiz Milidiú, Frederico Liporace, and Carlos José P. de Lucena. Pipesworld:
Planning pipeline transportation of petroleum derivatives. In Workshop on the
Competition, Trento, Italy, June 2003.

4. Ruy L. Milidiú, Eduardo S. Laber, Artur A. Pessoa, and Pablo A. Rey. Petroleum
products scheduling in pipelines. In The International Workshop on Harbour, Mar-
itime & Industrial Logistics Modeling and Simulation, september 1999.

5. Ruy L. Milidiú, Artur A. Pessoa, and Eduardo S. Laber. Transporting petroleum
products in pipelines (abstract). In ISMP 2000 – 17th International Symposium on
Mathematical Programming, pages 134–135, Atlanta, Georgia, USA, August 2000.

6. Ruy L. Milidiú, Artur A. Pessoa, and Eduardo S. Laber. Pipeline transportation
of petroleum products with no due dates. In Proceedings of the LATIN’2002, pages
248–262, Canún, Mexico, april 2002.

7. Ruy L. Milidiú, Artur A. Pessoa, and Eduardo S. Laber. The complexity of
makespan minimization for pipeline transportation. Theoretical Computer Science,
306(1-3):339–351, 2003. presented in the APPROX’2002, Rome, Italy.

8. Shell Pipeline. Shell Pipeline Company LP – About Pipelines. in the URL
http://www.shellpipeline.com.

9. H.E. Robbins. A theorem on graphs, with an application to a problem of traffic
control. American Mathematical Monthly, 46:281–283, 1939.

Efficient Algorithms for the Hotlink Assignment
Problem: The Worst Case Search

Artur Alves Pessoa, Eduardo Sany Laber�, and Cŕıston de Souza

Departamento de Informática da PUC-Rio
{artur, laber, criston}@inf.puc-rio.br

Abstract. Let T be a rooted directed tree where nodes represent web
pages of a web site and arcs represent hyperlinks. In this case, when a
user searches for an information i, it traverses a directed path in T , from
the root node to the node that contains i. In this context, hotlinks are
defined as additional hyperlinks added to web pages in order to reduce
the number of accessed pages per search. In this paper, we address the
problem of inserting at most 1 hotlink in each web page, so as to mini-
mize the number of accesses in a worst case search. We present a (14/3)-
approximate algorithm that runs in a O(n log m) time and requires a
linear space, where n and m are the number of nodes (internal and ex-
ternal) and the number of leaves in T , respectively. We also introduce
an exact dynamic programming algorithm which runs in O(n(nm)2.284)
time and uses O(n(nm)1.441) space. By extending the techniques pre-
sented here, a polynomial time algorithm can also be obtained when
K = O(1) hotlinks may be inserted in each page. The best known result
for this problem is a polytime algorithm with constant approximation
ratio for trees with bounded degree presented by Gerstel et. al. [1].

1 Introduction

Finding desired information in a large and diverse data collection as the World
Wide Web is a complex task. There are two basic ways to handle information
in such collections. One views the information as a non-hierarchical structure
and provides a query language to extract the relevant data from the database.
The other method is based on a hierarchical index to the database according
to a taxonomy of categories. Examples of such indices on the Web are Yahoo
(www.yahoo.com) and the Open Directory Service (www.dmoz.org).

An advantage of the first approach over the hierarchical one is that the num-
ber of human operations required to find a desired piece of information is much
lower (if the right query is used). As opposed to that, in the hierarchical ap-
proach it is necessary to traverse a path in the taxonomy tree from the root to

� Partially supported by FAPERJ (Proc. E-26/150.715/2003) and by CNPQ, through
Edital Universal 01/2002 (Proc. 476817/2003-0).

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 778–792, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Efficient Algorithms for the Hotlink Assignment Problem 779

the desired node in the tree. Human engineering considerations further aggravate
this problem since it is very hard to choose an item from a long list (a typical
convenient number is 7–10 according to [1]). Thus, the degree of the taxonomy
tree should be rather low and the average depth of it is therefore high. Another
problem of the hierarchical approach is that the depth of an item in the taxon-
omy tree is not based on the access pattern. As a result, items which have very
high access frequency may require long access paths each time they are needed,
while items which are “unpopular” may still be very accessible in the taxonomy
tree.

Hotlinks are defined as additional hyperlinks added to hierarchical structures
in order to reduce the number of accessed pages per search [2]. There has been
some amount of research on the problem of assigning hotlinks to web sites [3, 4,
5, 6, 7, 1, 8].

Here, we consider the version of the problem faced by the web designer in
which the given site is represented by a rooted directed tree T and only the
leaves contain information to be searched by the user (in the full version of this
paper, we discuss how the exact algorithm proposed here can be modified to
handle the more general case where internal nodes also contain information). We
assume that the user always knows which link leads to the desired information.
In addition, following the “obvious navigation assumption” of [6] or, equivalently,
the “greedy user model” of [1], we assume that the user always follows a hotlink
(u, v) from node u when searching for a leaf in the subtree rooted by v. This
model reflects the reasonable case where the user has only local information
concerning the structure of the site.

The previous assumption implies that we can remove some arcs in the graph
obtained from T due the addition of a set of hotlinks once they will never be
followed by an user. In fact, the graph obtained due to the addition of some
hotlinks and the further deletion of non used arcs is a tree. As an example, the
tree of Figure 1.(b) is obtained from that of Figure 1.(a) through the addition
of the hotlink (u, v) and then the addition of hotlink (z, w). Note that the arcs
(x,w) and (y, v) were removed since they will never be followed by an user.

u

z y

v

p

u

z yv

T T A

p

w

w

(a)

(b)
x x

Fig. 1. (a) The tree T . (b) The improved tree T A, where A = {(u, v), (z, w)}

780 A.A. Pessoa, E.S. Laber, and C. de Souza

1.1 Problem Definition

In order to formalize the problem, let us recall some basic definitions. The level
of a node in a tree T is its distance(in number of arcs) to the root of T . We say
that a node v is a descendant of another node u in T when the only path in T
that connects r to v contains u. In this case, we also have that u is ancestor of v.
A node u is a proper descendant (ancestor) of v if u is a descendant (ancestor)
of v and u �= v.

An instance of the WCHS(Worst Case Hotlink Search) problem is defined by
a directed tree T = (V,E), rooted at a node r ∈ V and an integer K ≥ 1. A
solution for the WCHS problem is a hotlink assignment, defined as a set of arcs
A ⊂ V × V 1. A hotlink assignment A is feasible if and only if it satisfies the
following two conditions:

(i) for every arc (u, v) ∈ A, v is descendant of u in T ;
(iii) for every node u ∈ V , there are at most K arcs in A that leaves u.

We say that two arcs (u, a), (v, b) cross if u is a proper ancestor of v, v is a
proper ancestor of a and a is an ancestor of b. In the “greedy user model”, we can
restrict our attention to the set of feasible solutions without crossing arcs because
if two arcs cross then one of them will never be followed by the user. We define a
feasible non-crossing assignment as a feasible assignment without crossing arcs.
For the sake of shortness whenever we use the term feasible assignment we mean
feasible non-crossing assignment.

Now, we formalize the objective for the WCHS problem. For that, we define
the concept of an improved tree.

Definition 1. Given T = (V,E), and a feasible hotlink assignment A, the im-
proved tree obtained from T through A is defined as TA = (V, (E − X) ∪ A),
where X = {(u, v) ∈ E |(y, v) ∈ A for some y ∈ V }.

In the definition above, X is the set of arcs of E whose heads receive some
hotlink from A. As an example, Figure 1.(a) shows a tree T and Figure 1.(b)
shows the tree T {(u,v),(z,w)}. The set X in this case is {(x,w), (y, v)}.

Given an improved tree TA rooted at r, let dA(u) be the level of u in TA.
Moreover, let L be the subset of V that contains all leaves of T . A WC-optimal
hotlink assignment to T is a feasible hotlink assignment A∗ that minimizes
h(TA∗

) = maxx∈L dA∗(x), over all possible feasible assignments. The goal of
the WCHS problem is to find a WC-optimal hotlink assignment to T .We use
h∗(T) to denote h(TA∗

).
Observe that some internal nodes of T may become leaves in TA (e.g. the

node x in Figure 1.(b)). By definition, these nodes do not belong to L. Hence,
we refer to the nodes of L as hotleaves. The height of a tree T ′, denoted by

1 We remark that the definition of a feasible hotlink assignment allows self loops.
Although this is not necessary, it helps the description of the algorithms proposed
in this paper. For practical purposes, however, we never add a self loop.

Efficient Algorithms for the Hotlink Assignment Problem 781

H(T ′), is the maximum distance from the root of T ′ to a leaf in T ′. The height
takes into account all leaves including those that are not hotleaves. This measure
plays an important role in the complexity of the exact algorithm proposed here.
Throughout this paper, we may use H to denote the height H(T) of the input
tree T . In Figure 1.(b), we have H(TA) = 4 while h(TA) = 3.

1.2 Statement of the Results

Since we have limited space and some of the papers in this topic [3, 5] focus on
the case where K = 1, we restrict our presentation to this special case. However,
by using some ideas introduced in [1] it is relatively simple to extend the exact
algorithm proposed here to obtain a polynomial time algorithm for K = O(1).
This will be discussed in the full version of this paper.

Let n = |V | and m = |L|. We introduce an exact dynamic programming
algorithm for the WCHS problem that runs in O(n(nm)2.284) time and uses
O(n(nm)1.441) space. Furthermore, we present a (14/3)-approximation greedy
algorithm that runs in O(n logm) time and requires a linear space.

1.3 Related Work

The problem of assigning hotlinks to web sites was firstly studied in [3]. After
that, some authors have considered the problem and its variants [4, 5, 7, 1, 8, 9].
Two user models have been considered: the “clairvoyant user model” and the
“greedy user model”. In the former, the user has a map of the web site that
allows him to follow a shortest path from the root to the desired information.
In the latter, the user only views the current node and the arcs which leave it.
Then, it always chooses the arc which allows him to get closer to the desired
information (a greedy choice). Furthermore, two objective functions have been
addressed: minimizing the average number of accesses for a given probability
distribution on the leaves (ACHS problem) and minimizing the average number
of accesses when the probability distribution in unknown. As pointed out in [1],
the latter is equivalent to the problem of minimizing the number of accesses in
a worst case search (the WCHS problem addressed here).

Most of the research has been conducted for the ACHS problem. When the
input graph is a DAG(Directed Acyclic Graph), this problem is NP-complete
under both user models even for an uniform distribution on the nodes that con-
tain information [3] A polynomial time algorithm with constant approximation
ratio for trees of bounded degree is presented in [5]. This result holds for both
user models. For trees with O(logn) depth, a polynomial time algorithm under
the greedy user model was independently discovered by Gerstel et. al. [1] and
Pessoa et. al. [8].

The WCHS problem (unknown probability distribution modes) was intro-
duced in [1], where a polynomial time algorithm with constant approximation
ratio for trees with bounded degree is presented. Although not mentioned in [1],
the techniques presented for the ACHS problem can be easily adapted to devise

782 A.A. Pessoa, E.S. Laber, and C. de Souza

a polynomial time algorithm for the WCHS problem under the restriction that
T has height O(logn).

Since we present both an exact polynomial time algorithm and a 14/3-
approximation algorithm for general trees, our results constitute a considerable
improvement over the previous known result.

1.4 Paper Organization

This paper is organized as follows. In Section 2, we introduce some additional
notations and definitions. In the following section, we establish some properties
of a WC-optimal assignment. These are used in the design of the algorithms pro-
posed here. Then, in Section 4, we present the (14/3)-approximation algorithm
for the WCHS. Finally, in Section 5, we describe an exact polynomial algorithm
for the WCHS problem.

2 Notations and Definitions

We use Tu = (Vu, Eu) to denote the subgraph of T induced by the descendants
of u, that is, Vu = {v ∈ V | v is descendant of u}, and Eu = {(v, w) ∈ E | v, w ∈
Vu}. T −Tu is used to denote the subgraph of T induced by V −Vu. Throughout
this paper, we refer to Tu as the subtree of T rooted at u. Furthermore, we use
Lu to denote the subset of Vu that contains all leaves of Tu. If u ∈ L then we
say that Tu is a trivial subtree of T . Finally, we use Su to denote the set of all
children of node u in T .

3 Structural Properties

In this section, we prove some properties for an WC-optimal hotlink assignment.
Throughout this paper, we use log x to denote log2 x.

3.1 Upper Bounds

Here, we prove upper bounds on both h∗(T) and H(TA∗
). For that, we introduce

the LOG algorithm for the WCHS problem, which is a quite simple recursive
algorithm that starts with the tree T and during its execution it obtains a
sequence of improved trees due to the addition of hotlinks. At the end, the tree
TA is obtained, where A is the set of hotlinks added by LOG.

In order to decide the next hotlink to be assigned, LOG maintains a vector w,
where w(v), ∀v ∈ V , gives the number of hotleaves that are descendents of v in
the current tree. First, LOG assigns a hotlinks to a node u which splits the tree
T into ”balanced” subtrees. By balanced we mean that none of them has more
than max{t, (1− t)}|L| hotleaves, where t is a parameter whose value will be set
in the analysis. Then, it updates the vector w with respect to the improved tree
and recursively handles each of these balanced trees. A pseudo-code for LOG

Efficient Algorithms for the Hotlink Assignment Problem 783

is presented in Figure 2. Figure 3 shows the trees T and T (r,u). In T (r,u), the
subtrees T1−Tu, T2, . . . , Tk have at most (1− t)|L| hotleaves while the subtrees
rooted at the nodes that are children of u have at most t|L| hotleaves.

LOG(T: directed tree)
If T has exactly one hotleaf

Add a hotlink from r to this leaf
Else If T has more than one hotleaf

Find a node u in V such that w(u) ≥ tw(r) and w(v) < tw(r) for every v ∈ Su. (*)
Add the hotlink (r, u) to T to obtain an improved tree T {(r,u)}.
For every ancestor v of u in T , update the value of w(v) with respect to T {(r,u)}.
Let K = {v|v is a child of r in T {(r,u)}}
Let M = {v|v is a child of u in T {(r,u)}}.
For every v ∈ (K ∪ M) − {u} do

Execute LOG for the subtree of T {(r,u)} which contains v and all of its
descendants

Fig. 2. The LOG Algorithm

The next lemma, whose proof we defer for the extended version of the paper,
guarantees that it is always possible to find a node u as in the line (*) of the
pseudo-code.

Lemma 1. Let T be a tree rooted at r and let t be a real number with 1/|L| ≤
t ≤ 1. Then, there is a node u ∈ T such that w(u) ≥ tw(r) and w(v) < t.w(r),
for every child v of u.

For this algorithm, we have the following theorem.

...

r

u

u

...T1
Tk

TkT1-Tu

Fig. 3. The improved tree obtained by LOG due to the addition of (r, u)

Theorem 1. Let A be a hotlink assignment obtained by the LOG algorithm, for
the input tree T rooted at r. In this case, we always have h(TA) ≤ c logw(r)+1,
where

c = max

⎧⎨⎩ 2
log

(1
t

) , 1

log
(

1
1−t

)
⎫⎬⎭ .

784 A.A. Pessoa, E.S. Laber, and C. de Souza

Proof: We prove it by induction on the value of w(r). If w(r) = 1 then h(TA) =
1 = c logw(r) + 1. Now, let us assume that the result holds for the case where
w(r) < k. Under this assumption, we shall prove that it also holds for the
case where w(r) = k. By the choice of u, we have in T {(r,u)}: w(u) ≥ tw(r),
w(v) < tw(r) for every v ∈M , and w(v) ≤ (1−t)w(r) for every child v ∈ K−{u}.
By applying the inductive hypothesis on the subtrees rooted at the nodes in
(K ∪M)− {u}, we obtain that

h(TA) = max{max{1 + h(TA
v) | v ∈ K − {u}},max{2 + h(TA

v) | v ∈M}}
≤ max{1 + c log((1− t)w(r)) + 1, 2 + c log(tw(r)) + 1}

= c logw(r) + 1 + max
{

1− c log
(

1
1− t

)
, 2− c log

(
1
t

)}
. (1)

We establish this theorem by replacing the second and the third occurrence
of c in the righthand side of the previous equality respectively by 1/ log(1/(1−t))
and 2/ log(1/t).

From elementary calculus, we obtain that the best upper bound given by
the previous theorem is achieved with t = 3−

√
5

2 . In this case, we have c =
2

1−log(3−
√

5)
< 1.441, which leads to the following corollary.

Corollary 1. h∗(T) ≤ h(TA) ≤ 1.441 logm+ 1

Now, let us assume that the LOG algorithm uses the vector w to maintain
the number of nodes in the subtree rooted at each node rather than the number
of hotleaves. We refer to this algorithm as the Modified LOG algorithm. In this
case, we claim that it constructs a hotlink assignment A such that the height of
TA is not larger than 1.441 log n + 1. The proof for this claim is analogous to
that of Theorem 1. The next theorem uses this claim to give an upper bound on
the minimum height of a tree improved by a WC-optimal hotlink assignment.

Theorem 2. There is a WC-optimal hotlink assignment A∗ such H(TA∗
) ≤

1.441(logm+ logn) + 2.

Proof: Let A′ be an WC-optimal hotlink assignment for T . We prove this theo-
rem constructing another WC-optimal hotlink assignment A∗ from A′ such that
H(TA∗

) ≤ 1.441(logm+logn)+2. First, we insert in A∗ every hotlink (u, v) ∈ A′

such that u is at a level smaller than h∗(T) in TA′
. At this point, we already

have h(TA∗
) = h∗(T). Hence, by corollary 1, we obtain that any non-trivial sub-

tree of TA∗
rooted at a level not smaller than �1.441 logm + 1� has no hotleaf

and no hotlink assigned from. Since any change in such subtrees does not affect
the optimality of A∗, we apply the Modified LOG algorithm on every subtree
TA∗

v of TA∗
such that v is at level �1.441 logm + 1�. Recall that the Modified

LOG algorithm always construct improved trees with heights not greater than
1.441 log n + 1. Thus, by inserting the obtained hotlinks in A∗, we obtain that
H(TA∗

) ≤ 1.441(logm+ logn) + 2, and the proof is done.

Efficient Algorithms for the Hotlink Assignment Problem 785

3.2 Lower Bounds

Here, we prove a simple lower bound on h∗(T). First, observe that the maximum
node outdegree in TA∗

is at most d+1, where d is the maximum node outdegree
of T . Then, we have the following lower bound.

Lemma 2. Let T be a tree with m leaves and maximum node outdegree d. Then,
h∗(T) ≥ logd+1m.

This lower bound may be very loose if d is close to m. In order to analyze
the approximation algorithm proposed in the next section, we need a stronger
lower bound. For that, we combine the previous lower bound with the fact that
we can use subtrees of T to provide lower bounds on h∗(T).

Theorem 3. Let T ′ = (V ′, E′) be a binary subtree of T rooted at r. Then,
h∗(T) ≥ log3 |V ′ ∩ L|.

Proof: Let T2 = (V2, E2) be the tree induced by the ancestors of V ′ ∩ L in T .
Applying Lemma 2 to T2, we get that h∗(T2) ≥ log3 |V ′ ∩ L|. Thus, it remains
to show that h∗(T) ≥ h∗(T2). Let A∗ be a WC-optimal hotlink assignment
for T and let A = {(u, v) ∈ A∗ | u, v ∈ V2}. For every node i ∈ V ′ ∩ L, we
have that the level of i in TA

2 and TA∗
are the same. Hence, we obtain that

h∗(T) ≥ h(TA
2) ≥ h∗(T2), which completes our proof.

4 An Approximation Algorithm

In this section, we describe a (14/3)-approximation algorithm for the WCHS
problem that executes in O(n logm). Let us refer to this algorithm as the ALOG
(Approximation LOG) algorithm. ALOG is similar to LOG except for the in-
formation stored by vector w. Here, w(v) stores the number of hotleaves of the
binary subtree rooted at v which contains the largest number of hotleaves. Note
that if v has only one child a, then w(v) = w(a). Otherwise, w(v) = w(a)+w(b)
where a and b are the children of v with maximum w’s value, that is, w(v) =

max
{(a,b)∈Sv×Sv|a�=b}

{w(a) + w(b)}.

Now, we analyze the approximation ratio of ALOG. For that, we use w(v) to
denote the value of w(v) with respect to T . As a consequence of Theorem 3 and
the definition of w, we have that

h∗(T) ≥ log3 w(r). (2)

Now, we develop an upper bound on h(TA). First, we must understand how
w evolves when the tree T is improved to become the tree T {(r,u)}. The next
lemma address this issue. For every v ∈ V , let wT {(r,u)}

(v) be the value of w(v)
with respect to T {(r,u)}.

786 A.A. Pessoa, E.S. Laber, and C. de Souza

Lemma 3. Let K and M be the sets defined by LOG pseudo-code, and let s1 be
the node of K that is a proper ancestor of u in T (if it exists). Let also t ≥ 0.5.
Then, we have

(i) wT {(r,u)}
(v) ≤ (1− t)w(r),∀v ∈ K − {u, s1}

(ii) wT {(r,u)}
(v) < tw(r),∀v ∈M

(iii) wT {(r,u)}
(s1) ≤ 2(1− t)w(r)

Proof: We defer it for the extended version of this paper.

The following lemma gives an upper bound on the h(TA).

Lemma 4. Let A be a hotlink assignment obtained by the ALOG algorithm, for
the input tree T rooted at r. In this case, we always have h(TA) ≤ c logw(r)+1,

where c = max
{

2
log(1

t)
, 1

log
(

1
2(1−t)

)} .
Proof: The proof is analogous to that of Theorem 1. The only difference is that
we use the upper bound given by Lemma 3 for the child of r that is ancestor of
u, when the hotlink (r, u) is assigned.

Again, we obtain from elementary calculus that the optimal value of t is
9−

√
17

8 (observe that t > 0.5 as required in Lemma 3). In this case, we have
c = 2

3−log(9−
√

17)
< 2.801, which leads to the following theorem.

Theorem 4. The ALOG algorithm is (14/3)-approximate.

Proof: If w(r) = 1 then ALOG always constructs an optimal hotlink assignment.
Hence, let us assume that w(r) > 1. It follows from equation (2) and Lemma 4
that

h(TA)
h∗(T)

≤ c logw(r) + 1
log3 w(r)

. (3)

However, since the objective function for the WCHS problem is always inte-
ger, we also have that

h(TA)
h∗(T)

≤ �c logw(r) + 1�
�log3 w(r)� . (4)

We establish this theorem by using (3) whenever w(r) ≤ 125 and (4) other-
wise. In the first case, we verify through a computer that the theorem holds for
all possible values of w(r). In the second case, we have that

h(TA)
h∗(T)

≤ c logw(r)
log3 w(r)

+
1

log3 126
< 14/3.

Now, we analyze the running time of the ALOG algorithm.

Efficient Algorithms for the Hotlink Assignment Problem 787

Theorem 5. The ALOG algorithm runs in O(n logm) time.

Proof: (Sketch) In order to calculate the value of vector w for a tree T , the
algorithm takes linear time. Then, it is recursively executed to solve subproblems
defined by trees for which the w values of their roots is at a constant factor of
the w-value for T´s root. This fact, is assured by Lemma 3 Thus, one can write
a recursion relation which proves that ALOG runs in O(m log n)

5 An Exact Algorithm

In this section, we introduce the PATH algorithm, an exact dynamic program-
ming based algorithm for solving hotlinks assignment problems. PATH runs in
O(n(nm)2.284) time and uses O(n(nm)1.441) space.

In order to execute PATH we must provide an integer D. For a given D,
PATH spends O(n.3D) to find a hotlink assignment A∗

D (if it exists) with the
following properties: H(TA∗

D) ≤ D and for every feasible hotlink assignment A,
with H(TA) ≤ D, we have h(TA∗

D) ≤ h(TA).
In other words, PATH finds the best possible assignment under the constraint

that the tree produced by such assignment has height at most D. Since Theorem
2 assures that there is a WC-optimal hotlink assignment A∗ such that H(TA∗

) ≤
1.441(logm + logn) + 2, we execute PATH with D = 1.441(logm + logn) + 2.
This assures that PATH produces in polynomial time an optimal solution for
the WCSH problem.

5.1 The P-WCHS Problem

Observe that the WCHS problem could be exactly solved as follows. For each
possible hotlink assignment (r, u) from r, obtain the improved tree T {(r,u)}.
Then, for each child v of r in T {(r,u)}, recursively solve the subproblem where the
input tree is the subtree rooted at v. At the end, return the best solution found.
This approach, however, generates an exponential number of subproblems.

In order to explain the strategy used by PATH, let T be a tree rooted at
r and let f be the rightmost child of r. Recall that Tf is the largest subtree
of T rooted at f . First, PATH partites the set of feasible hotlink assignments
into two sets: the set of assignments in which a hotlink is assigned from r to
some node of Tf and the set of assignments in which it does not occur. Let
A1 and A2 be the best possible assignments that belong to the first and the
second set, respectively. Clearly, h∗(T) = min{h(TA1), h(TA2)}. For a given
tree T , let g∗(T) be the optimal solution for the WCHS problem, with input
T , constrained to assignments where no hotlink leaves the root of T . Being
Tf ∪ {r} the tree induced by both r and the descendants of f in T , it is not
difficult to check that h(TA1) = max{h∗(T − Tf), g∗(Tf ∪ {r})} and h(TA2) =
max{h∗(Tf ∪ {r}), g∗(T − Tf)}. Thus, we have

h∗(T) = min{max{h∗(T − Tf), g∗(Tf ∪ {r})},max{h∗(Tf ∪ {r}), g∗(T − Tf)}}.
The discussion above is for showing that in order to solve the WCHS problem

through this patitioning approach we must be able to solve a generalized problem

788 A.A. Pessoa, E.S. Laber, and C. de Souza

in which some nodes may be forbidden, that is, no hotlink can leave them. Such
a problem, denoted by P-WCHS, is formalized below:

Input:

i) a directed path q = (Vq, Eq) where Vq = {q1, . . . , qk} andEq = {(qi, qi+1)|1 ≤
i ≤ k − 1};

ii) a binary vector a = (a1, ..., ak, ak+1, b) ∈ {0, 1}k+2;
iii) a tree T s = (V s, Es) rooted at r.
iv) an integer D

Output: A hotlink assignment A to the tree Tq = (Vq∪V s, Eq∪Es∪{(qk, r)}),
satisfying the following six conditions:

(a) A is feasible in the sense of the WCHS problem;
(b) No hotlink can point to a node in Vq;
(c) For i = 1, . . . , k, if ai = 0, then no hotlink can leave qi;
(d) If ak+1 = 0, then no hotlink can leave r;
(e) if b = 0, then no hotlink can point to r;
(f) H(TA

q) ≤ D

Objective: Minimize the maximum level of a hotleaf in the resulting improved
tree TA

q .
Observe that the WCHS problem is a particular case of the P-WCHS problem

when q is empty, b = a1 = 1, and D = H. Thus, an exact algorithm for P-WCHS
is also an exact algorithm for WCHS.

5.2 Solving P-WCHS

Figure 4 is used throughout this section to illustrate some ideas. Figure 4.(a)
presents an instance of P-WCHS where the path q consists of four nodes q1, q2, q3
and q4. If a node qi ∈ q is such that ai = 1, then qi is said to be available. The
only non-available node, q3, is black colored. The subtree T s is rooted at a node
r which has three children. Since a5 = b = 1, hotlinks can be assigned from and
to the node r.

We need to introduce the following conventions: given a binary vector c and
a binary string d, we use cd to indicate the vector obtained by concatenating
c and d. For example, if c = (0, 1) and d = 100, then cd = (0, 1, 1, 0, 0) and
dc = (1, 0, 0, 0, 1). We use ci to denote the vector obtained by truncating the ith
first components of c. At the previous example, c1 = (0) and c2 = (0, 1). For a
directed path q and a node u, we use q → u to indicate the path obtained by
inserting u at the end of q. We use qi to denote the subpath of q formed by its
i-th first nodes.

Let h∗(q,a, T s) denote the cost of an optimal solution of a P-WCHS instance
defined by a binary vector a, a directed tree T s, a path q with |a|− 2 nodes and
an integer D. If |q| > D, PATH set h∗(q,a, T s) =∞. Hence, let us assume that
|q| ≤ D. In order to solve this instance we must consider the following cases:

Efficient Algorithms for the Hotlink Assignment Problem 789

q3

r (b = 0)

q
4

q
2

q
1

q3

r (b = 1)

q
4

q
2

q
1Case 2

Case 1

r (b = 0)

q
1

r (b = 0)

q
2

q
1

f

T f

(b) (c)

(d) (e)

q
1
 (a

1
 = 1)

q

q2 (a 2 = 1)

q
3
 (a

3
 = 0)

q
4
 (a

4
 = 1)

r (a
5
 = 1, b = 1)

(a)

Fig. 4. (a) an instance of the P-WCHS problem. (b) and (c) two possible subprob-
lems generated in the case 1. (d) and (e) the decomposition in the case 2 when
c = (0, 1, 0, 0, 1)

Case 1: some hotlink is assigned from a node of q to r in the optimal solution;
Case 2: no hotlink is assigned from a node of q to r in the optimal solution.

Case 1. This case is only considered when b = 1. In this case, we must assign
a hotlink from some available node to r. Thus, we have

∑k
i=1 ai possibilities. If

(q1, r) is assigned to the tree of Figure 4.(a), then PATH generates the subprob-
lem of Figure 4.(b). In fact, the addition of hotlink (q1, r) creates an improved
tree where q1 has two children: T s and the path (q2, q3, q4). However, since q2, q3
and q4 are not ancestors of hotleaves, they can be removed without modifying
the cost of the solution. Observe that b is set to 0, otherwise we would gen-
erate a solution with crossing arcs. When (q2, r) is assigned, instead of (q1, r),
then PATH generates the subproblem of Figure 4.(c). In general, if some hotlink
points to r in the optimal solution, we have that

h∗(q,a, T s) = min
i∈{1,2,3,...,k} | ai=1

{h∗(qi,ai−10ak+10), T s)} (5)

Case 2. In this case all the available nodes of q may only point to some node in
Vr − {r}. Thus, PATH must decide which of the available nodes are allowed to
point to the nodes of Tf , the subtree rooted at the last child f of r (assuming
any order). Let k′ =

∑k+1
i=1 ai be the number of available nodes. Then, PATH

has 2k′
possibilities to take such a decision. Since it is not clear which one

is the best, then all of them are considered. In order to clarify this idea, let
us consider the possibility where q2 and r remain available for Tf (see Figure
4.(e)). As a consequence, only q1 and q4 will be allowed to point to nodes in
T s − Tf (Figure 4.(d)). Figure 4.(d) defines a new subproblem (q,a′,T s − Tf),
where a′ = (1, 0, 0, 1, 0, 0). Note that b is set to 0 since we are in case 2. On
the other hand, Figure 4.(e) defines a new subproblem (q → r,a′′,Tf), where
a′′ = (0, 1, 0, 0, 1, 1, 1).

Thus, the maximum between the cost of the optimal solutions for the sub-
problems defined by Figures 4.(d) and 4.(e) is the cost of the optimal solution
for the problem of Figure 4.(a) under the assumptions that no hotlink can be

790 A.A. Pessoa, E.S. Laber, and C. de Souza

assigned to r (Case 2), the nodes q2 and r cannot point to nodes in T s−Tf , and
the nodes q1 and q4 cannot point to nodes in Tf .

In general, let C be a set of binary vectors defined by C = {(c1, . . . , ck+1)|ci ≤
ai for i = 1, . . . , k+1}. Each c ∈ C corresponds to one of the 2k′

possibilities for
selecting the nodes that will remain available to point to nodes in Tf . Further-
more, let c = a−c. This vector defines which nodes from q will remain available
to point to nodes in T s−Tf . Then, by considering all choices for c, we have that

h∗(q,a, T s) = min
c∈C

{max{h∗(q→ r, c11, Tf), h∗(q, c0, T s − Tf)}} , (6)

under the assumption that no node from q points to r.
Cases 1 and 2 together: Let P and Q be respectively, the righthand side of
equations (5) and (6). Thus,

h∗(q,a, T s) =
{

Q if b = 0
min{P,Q} if b = 1

Stop Conditions: If T s has only one node and this node is a hotleaf, say l,
then the best thing to do is to assign a hotlink from the first available node in
q to l. Thus,

h∗(q,a, T s) =
{

min{i|1 ≤ i ≤ k and ai = 1} if q has some available node
k, otherwise

(7)
If T s has no hotleaves then h∗(q,a, T s) = 0.

5.3 Analysis

In order to prove that the algorithm is correct, we must argue that if A is a
feasible hotlink assignment with H(TA) ≤ D, then A is among the assignments
considered by the PATH algorithm. Since PATH only discards subproblems for
which |q| > D, it is enough to show that none of the subproblems generated by
PATH to produce the hotlink assignment A has this property. Let I′ = (q′,a′, T ′)
be one of these subproblems. By observing that q′ is also a path in TA, we
conclude that |q| ≤ D.

Now, we analyze both the time and space complexities of the PATH algo-
rithm.

Theorem 6. The PATH algorithm runs in O(n3D) time and uses O(n2D) space.

Proof: First, let us analyze the number of generated subproblems. By means
of the dynamic programming technique, this number has the same order as the
PATH space usage. For each node u ∈ V and each integer q ∈ {0, 1, . . . , |Su|−1},
PATH generates a subtree T s by removing from Tu all the subtrees rooted at the
last q children of u. Now, let r be the root of T . Observe that PATH generates

Efficient Algorithms for the Hotlink Assignment Problem 791

exactly m trivial subtrees. Moreover, each node v ∈ V − {r} is the last (non-
removed) child of the root in exactly one generated non-trivial subtree. Hence,
PATH generates m+ n− 1 = O(n) subtrees. For each generated subtree, PATH
generates all possible paths vectors a. Since we have exactly 2i+2 possible vectors
a corresponding to a path q with i nodes, the number of generated vectors is

given by
D∑

i=0

2i+2 = O(2D).

As a result, we have that PATH uses O(n2D) space. Finally, we obtain the
time complexity of PATH by counting the number of subproblems checked to
calculate each value of h∗(q,a, T s). Let rs be the root of T s. In the Case 1,
PATH checks O(D) subproblems, since we have O(D) possible hotlinks from
a node in q to rs. On the other hand, in Case 2, the number of subproblems
checked by PATH depends on the number of available hotlinks in both q and
rs. For j available hotlinks, O(2j) subproblems are checked, since this is the
complexity of the number of possible distributions for these hotlinks between two
subproblems. Moreover, we have n

(
D+2

j

)
subproblems with j available hotlinks,

for j = 0, 1, . . . , D + 2. Hence, we have that the time complexity of PATH is
given by

O(n2DD) +
D+2∑
j=0

O

(
n

(
D + 2
j

)
2j

)
= O(n2DD) +O(n(2 + 1)D+2) = O(n3D).

Corollary 2. For the WCHS problem, the PATH algorithm runs in
O(n(nm)2.284) time and uses O(n(nm)1.441) space.

Proof: Theorem 2 assures that there is an optimal solution for WCHS with height
at most 1.441(logm+ logn) + 2. This assures that PATH can be executed with
D = 1.441(logm+ logn) + 2, which implies on the complexities above.

References

1. Gerstel, Kutten, Matichin, Peleg: Hotlink enhancement algorithms for web directo-
ries (extended abstract). In: ISAAC: 14th International Symposium on Algorithms
and Computation. (2003)

2. Perkowitz, M., Etzioni, O.: Towards adaptive Web sites: conceptual framework
and case study. Computer Networks (Amsterdam, Netherlands: 1999) 31 (1999)
1245–1258

3. Bose, P., Kranakis, E., Krizanc, D., Martin, M.V., Czyzowicz, J., Pelc, A., Gasieniec,
L.: Strategies for hotlink assignments. In: International Symposium on Algorithms
and Computation. (2000) 23–34

4. Fuhrmann, S., Krumke, S.O., Wirth, H.C.: Multiple hotlink assignment. In: Pro-
ceedings of the Twenty-Seventh International Workshop on Graph- Theoretic Con-
cepts in Computer Science. (2001)

792 A.A. Pessoa, E.S. Laber, and C. de Souza

5. Kranakis, E., Krizanc, D., Shende, S.: Approximate hotlink assignment. In: ISAAC:
12th International Symposium on Algorithms and Computation. (2001)

6. Czyzowicz, J., Kranakis, E., Krizanc, D., Pelc, A., Martin, M.V.: Enhancing hy-
perlink structure for improving web performance. Journal of Web Engineering 1
(2003) 93–127

7. Matichin, Peleg: Approximation algorithm for hotlink assignments in web directo-
ries. In: WADS: 8th Workshop on Algorithms and Data Structures. (2003)

8. Pessoa, A., Laber, E., Souza, C.: Efficient implementation of hotlink assignment
algorithms for web sites. In: Proceedings of ALENEX. (2004)

9. Matichin, Peleg: Approximation algorithm for hotlink assignment in the greedy
model. In: SIROCCO 2004:11th Colloquium on Structural Information and Com-
munication Comple. (2004)

Dynamic Tree Cross Products

Marcus Raitner

University of Passau, D-94032 Passau, Germany
Marcus.Raitner@Uni-Passau.De

Abstract. Range searching over tree cross products – a variant of clas-
sic range searching – recently has been introduced by Buchsbaum et al.
(Proc. 8th ESA, vol. 1879 of LNCS, pp. 120–131, 2000). A tree cross
product consist of hyperedges connecting the nodes of trees T1, . . . , Td.
In this context, range searching means to determine all hyperedges con-
necting a given set of tree nodes. Buchsbaum et al. describe a data struc-
ture which supports, besides queries, adding and removing of edges; the
tree nodes remain fixed. In this paper we present a new data structure,
which additionally provides insertion and deletion of leaves of T1, . . . , Td;
it combines the former approach with a novel technique of using search
trees superimposed over ordered list maintenance structures. The extra
cost for this dynamization is roughly a factor of O(log n/log log n). The
trees being dynamic is especially important for maintaining hierarchical
graph views, a problem that can be modeled as tree cross product. Such
views evolve from a large base graph by the contraction of subgraphs
defined recursively by an associated hierarchy. The graph view mainte-
nance problem is to provide methods for refining and coarsening a view.
In previous solutions only the edges of the underlying graph were dy-
namic; with the application of our data structure, the node set becomes
dynamic as well.

1 Motivation

Many graphs, such as network traffic graphs, the web graph, or biochemical
pathways [1], are too large to display or edit them effectively. A well-established
technique to solve this problem is to partition the graph recursively into a hier-
archy of subgraphs. The complete road map of Europe, for instance, is a rather
large graph; a hierarchy on it can be defined, for instance, by grouping places
and roads within the same city, then the cities within the same state, and so
on. Not every city or state is always needed in full detail; the dispensable sub-
graphs, therefore, are contracted into a single meta node, representing the city
or state as a whole. Edges from within the contracted subgraph to nodes out-
side are retained as edges from the meta node to the outside place. This leads
to an abstract representation of the graph, a graph view, which is very conve-
nient, because both an overview of the whole graph and the necessary details
are displayed simultaneously.

In an interactive scenario, this facilitates exploring and editing a large graph:
the user can choose which subgraphs to contract into meta nodes and which

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 793–804, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

794 M. Raitner

to expand, i. e., to replace with its subordinate subgraphs. Depending on the
admissible modifications of the hierarchy and the graph, Buchsbaum and West-
brook [2] differentiate three variants of this graph view maintenance problem: in
the static case the graph and the hierarchy are both fixed; in the dynamic graph
variant graph edges can be inserted or deleted; in the dynamic graph and tree
variant the graph additionally is subject to node insertions and deletions, and
the hierarchy may change through splitting and merging of clusters.

As shown in [3] and briefly recapitulated in Sect. 3, maintaining hierarchical
graph views can be formulated as a special case of range searching over tree
cross products. A tree cross product consists of disjoint trees T1, . . . , Td and a
set of d-dimensional hyperedges u = (u1, . . . , ud) with ui ∈ Ti for i = 1, . . . , d.
In this context, range searching means to decide efficiently whether there is
a hyperedge between the subtrees of given tree nodes and to report all those
hyperedges. In [3] the set of hyperedges is dynamic, but the trees are static; we
generalize this approach and allow insertion and deletion of leaves of T1, . . . , Tn

as well. After a formal definition of the problem, the data structure for the two-
dimensional tree cross product is described in Sect. 2.1, which then serves as
basis for the recursive description of the higher dimensional case in Sect. 2.2.

In Sect. 3 we introduce the new dynamic leaves variant of the graph view main-
tenance problem for compound graphs [4], a more general model of hierarchically
structured graphs than the clustered graphs [5] used in previous approaches [2,3].
Formulated as a tree cross product, this problem can be solved efficiently with
our data structure. The new dynamic leaves variant extends the dynamic graph
variant by insertion and deletion of graph nodes, i. e., leaves of the hierarchy. In
contrast to the dynamic graph and tree variant, it lacks splitting and merging of
clusters. Thus, it is adequate for dynamic graphs with a fixed hierarchical struc-
ture, such as network traffic graphs: computers are identified by their IP addresses,
edges represent traffic, and the hierarchy is given by the structure of the IP ad-
dresses. The hierarchy is fixed, because the structure of an IP address does not
change. Further examples are road maps or biochemical reaction networks [1],
which consist of all reactions in some organism; the hierarchy is often defined by
grouping reactions that belong to the same biochemical pathway, e. g., the cit-
ric acid cycle. Unable to handle graphs with a dynamic node set, previous solu-
tions [2, 3] are not appropriate models for these applications.

2 Range Searching over Tree Cross Products

Let T = (V (T), E(T)) be a rooted tree with node set V (T) and edge set
E(T). For a node v ∈ V (T), let children(v) denote the set of all children of
v and parent(v) the parent of v. The descendants of v, desc(v), are all nodes
in the subtree rooted at v. Conversely, v is an ancestor of each u ∈ desc(v).
Given d disjoint, rooted trees T1, . . . , Td, consider a d-partite hypergraph G such
that V (G) =

⋃d
i=1 V (Ti) and E(G) ⊆

∏d
i=1 V (Ti) = V (T1) × · · · × V (Td).

We define n = |V (G)|, m = |E(G)|, and D = maxd
i=1 depth(Ti). For a tuple

u = (u1, . . . , ud) ∈
∏d

i=1 V (Ti), let

Dynamic Tree Cross Products 795

E(u) = {x = (x1, . . . , xd) ∈ E(G) | ∀ 1 ≤ i ≤ d : xi ∈ desc(ui)}

be the set of hyperedges between descendants of u’s elements; see Fig. 1 for an
example of a two-dimensional tree cross product. We call a tuple u an induced
hyperedge if E(u) �= ∅; the induced hypergraph I consists of the node set V (I) =
V (G) and all induced hyperedges: E(I) = {u ∈

∏d
i=1 V (Ti) | E(u) �= ∅}. In

the example of Fig. 1, for instance, the set E(v1, u2) contains three edges, but
E(u1, u2) is empty; this yields an induced edge (v1, u2) ∈ E(I), but none between
u1 and u2.

As defined in [3], the tree cross product problem is to perform the following
operations on tuples u ∈

∏d
i=1 V (Ti):

– edgeQuery(u) determines if E(u) �= ∅, i. e., whether u is induced,
– edgeReport(u) determines the set E(u),
– edgeExpand(u, j), where 1 ≤ j ≤ d; determines all induced hyperedges

(u1, . . . , uj−1, x, uj+1, . . . , ud) ∈ E(I), where x ∈ children(uj).

Besides inserting and deleting hyperedges (newEdge(u) and deleteEdge(u)),
our data structure supports the following new operations for adding and remov-
ing leaves:

– addLeaf(u), where u ∈ V (Tj); adds a new leaf to Tj as child of node u,
– deleteLeaf(u), where u is a leaf in V (Tj) and u is not the root of Tj ; removes

u and all hyperedges incident to it from Tj .

2.1 The Two-Dimensional Case

With [3] we share the idea to order the nodes of each tree T1 and T2 linearly
such that for each tree node v the set desc(v) is fully determined by min(v) and
max(v), the smallest and the largest node in the subtree rooted at v. Clearly,
traversing each tree in post-order yields such an order.

Since addLeaf(u) was defined to insert the new leaf as a child of u, insertions
occur at any point in the linear order. Therefore, simply assigning consecutive
integers to the nodes, as in [3], is inefficient, because all nodes following the new
one have to be renumbered. There are already efficient data structures for the
problem of performing order queries on an ordered list that is subject to insert
and delete operations [6,7]. All of them assign a numerical label (often integers)
to the elements, making the order query a simple comparison of the labels.
The most efficient solution allows all operations to be performed in O(1) worst-
case time [7, Sect. 3]. Using a technique for insertions and deletions in dense
sequential files [8] on the top level of a four-level data structure, it is, however,
rather complicated; a simpler, slightly less efficient, data structure might be more
suitable for an implementation. For example, [6] and [7, Sect. 2] both describe
solutions with O(1) amortized time for insert and delete and O(1) worst-case
time for order. Since our approach will treat the order maintenance component
as a black box, any will do, yet only with an O(1) worst-case solution the time
bounds of Theorems 1 and 2 are worst-case. Besides, we need access to the
successor and predecessor of a node in this order. If not already part of the

796 M. Raitner

order maintenance structures, we separately maintain a doubly linked list of the
nodes for each tree. In the following, we use <, ≤, ≥, and > to compare two
nodes instead of the corresponding order query.

We keep the list of children at a tree node sorted according to the respective
order for the tree. In addition to the values min(u1) and max(u1), we store at
each tree node u1 ∈ V (T1) (and symmetrically for the nodes u2 ∈ V (T2)) the set

S(u1) = {u2 ∈ V (T2) | ∃(u′
1, u2) ∈ E(G) : u′

1 ∈ desc(u1)},

i. e., all nodes of the tree T2 that are connected to a node in the subtree of u1;
see Fig. 1. Although defined as a set, S(·) intrinsically is a multiset: it stores
multiple entries of the same node, because the entries correspond to edges, and
an edgeReport needs to find all of them. A node u′

2 ∈ S(u1) ∩ desc(u2) indi-
cates an edge (u′

1, u
′
2) ∈ E(G) for some u′

1 ∈ desc(u1); if no such node exists,
no edge connects desc(u1) and desc(u2). Therefore, edgeQuery(u1, u2) can be
implemented by checking whether S(u1) ∩ desc(u2) = ∅.

v1

u1

u2

S(v1)

E(v1, u2)

Fig. 1. Example of a two-dimensional tree cross product. The dashed edges belong to
the two trees; the solid ones are the hyperedges E(G)

For the sets S(·) we need a data structure that, besides insert and delete,
efficiently supports the successor operation succ: for u1 ∈ V (T1) and u2 ∈
V (T2), succ(S(u1), u2) returns the smallest v ∈ S(u1) with v ≥ u2 or null
if no such element exists. Observe that S(u1) ∩ desc(u2) �= ∅ if and only if
succ(S(u1),min(u2)) ≤ max(u2); thus, edgeQuery(u1, u2) returns true if and
only if succ(S(u1),min(u2)) ≤ max(u2) [3]. We maintain each set S(·) as a
balanced search tree with respect to the order provided by the corresponding or-
der maintenance data structure. Hence, insert, delete, and succ can be done
in O(log n) worst-case time, provided that the order operation is O(1) worst-
case time. Additionally, the leaves of the search trees are linked to facilitate the
edgeReport operation.

Remark 1. Instead of balanced search trees, in [3] contracted stratified trees
(CST) [9] are used for the sets S(·). These improve the time bounds for insert,
delete, and succ from O(log n) to O(log log n) and increase the required space
by a factor of O(log log n); both effects can be seen in Table 1. A CST, however,
stores a subset of a fixed integer universe; this is impractical here, because the
sets S(·) are subsets of the set of tree nodes, which is – in contrast to [3] –

Dynamic Tree Cross Products 797

Table 1. Summary of results and comparison for the d-dimensional data structure; all
bounds are worst-case. Let D = maxd

i=1 depth(Ti). For edgeReport and edgeExpand,
k denotes the size of the output. The edgeQuery and edgeReport bounds stated in [3]
do not include the additive d terms, but they seem unavoidable given the description

Approach of [3] Our data structure

Space O(m(2D)d−1 log log n) O(m(2D)d−1)

edgeQuery(u) O(d + log log n) O(d + log n)
edgeReport(u) O(log log n + k) O(log n + k)
edgeExpand(u, j) O(d + k log log n) O(d + k log n)

newEdge(u) O((2D)d−1 log log n) O((2D)d−1 log n)
deleteEdge(u) O((2D)d−1 log log n) O((2D)d−1 log n)
addLeaf(u) n/a O(D)
deleteLeaf(u) n/a O(D)

dynamic. Apart from the universe not being fixed, using the integer labels of the
order maintenance structures [6, 7] in a CST is complicated: during an insert
operation, nodes following the inserted one are possibly shifted, i. e., get a new
number. Hence, all sets S(·) containing a shifted node need to be updated.

In order to efficiently perform the edgeExpand operation (see Algorithm 1),
we need to determine the ancestor of a node at a given depth of the tree. This
level ancestor problem is well studied both in the static [10,11] and the dynamic
variant [12,13]. Since we need to add and remove leaves, we will use the dynamic
data structure described in [12]. It preprocesses a tree in linear time and space
such that level ancestor queries and adding leaves can be performed in O(1)
worst-case time [12, Theorem 6]. Deleting leaves is not explicitly mentioned
in [12], but it is obviously possible in constant time by simply deleting the leaf.
The space bound, however, would no longer be linear in the number of tree nodes.
Similar to maintaining dynamic arrays, we can rebuild the data structure when,
for instance, half of the nodes have been deleted. This takes O(1) amortized cost
per delete, but using the standard doubling technique we can distribute it over
a sequence of operations such that every operation is worst-case O(1).

Altogether, our approach combines the idea of [3] with our novel technique of
using search trees superimposed over order maintenance structures. This makes
the previous data structure more dynamic in regard to insertion and deletion
of leaves, while the slow-down for the other operations – roughly a factor of
O(log n/log log n) – is tolerable; see Table 1.

Lemma 1. Our data structure, as described above, takes O(mD log n) worst-
case preprocessing time and uses O(mD) additional space.

Proof. Each edge e = (u1, u2) ∈ E(G) can contribute an entry only to those
sets S(w) where w is an ancestor of either u1 or u2. Therefore, the space needed
for all sets S(·) together is O(mD). They are built as follows: for each edge

798 M. Raitner

e = (u′
1, u

′
2) ∈ E(G), u′

1 is inserted into all sets S(u2), where u2 is an ancestor
of u′

2 (and symmetrically u′
2 into S(u1) for each ancestor u1 of u′

1). These are
O(mD) insert operations in balanced search trees, each of which takes O(log n).

The additional space for any of the order maintenance data structures [6,7]
is linear in the number of elements they contain, i. e., O(n); preprocessing takes
O(n) worst-case time. The level ancestor structure also can be preprocessed in
linear time and space [12, Theorem 6].
�

Lemma 2. edgeQuery and edgeReport take O(log n) and O(log n + k) worst-
case time respectively, where k is the number of edges reported.

Proof. edgeQuery(u1, u2) is done by checking whether succ(S(u1),min(u2)) ≤
max(u2). Since the set S(·) is stored as a balanced search tree, the succ opera-
tion and thus the whole edgeQuery take O(log n) worst-case time. Finding the
first edge reported by the edgeReport is essentially an edgeQuery. Since the
leaves of the search trees for the sets S(·) are linked, the remaining edges in
E(u1, u2) are discovered in constant time each.
�

We can implement edgeExpand by an appropriate collection of edgeQuery
operations; in general, however, this is less efficient than Algorithm 1, which is
similar to [3]. Since it simplifies the description, Algorithm 1 treats the expansion
of the first element of an edge only, i. e., edgeExpand((u1, u2), 1); expanding the
second element works analogously.

Algorithm 1: edgeExpand((u1, u2), 1)

input : (u1, u2) ∈ E(I), i. e., an induced edge (u1, u2)
output: all children u′

1 of u1 such that (u′
1, u2) ∈ E(I)

let v1, . . . , vk be the ordered list of children of u1

R ← ∅, t ← v1

repeat
s ← succ(S(u2), min(t))
if s ≤ max(vk) then

if s > max(t) then set t to the ancestor of s on the level of children(u1)
R ← R ∪ {t}
if t �= vk then advance t to the next child

end
until t = vk or s > max(vk)
return R

Lemma 3. edgeExpand((u1, u2), j) takes O(k log n) worst-case time, where k is
the number of edges reported.

Proof. Without loss of generality, we assume j = 1; the case j = 2 is symmetric.
Let v1, v2, . . . , vk denote the children of u1, in ascending order according to the
linear order of the tree T1, i. e., v1 < v2 < · · · < vk. Note that the children
are stored in this order and do not need to be sorted. We start with v1 and
determine whether it is connected to u2 by calculating s = succ(S(u2),min(v1)).
If s ≤ max(v1), v1 is reported; if max(v1) < s ≤ max(vk), the ancestor s′

Dynamic Tree Cross Products 799

of s among the children of u1 is reported by way of the level ancestor data
structure. This procedure is iterated until s > max(vk); see Algorithm 1. Each
succ operation, except the last, yields a new result. Since determining the level
ancestor takes constant time, we get O(k log n) worst-case time.
�

After adding a new edge (u′
1, u

′
2) to E(G), we insert u′

1 into S(u2) for all
ancestors u2 of u′

2 and u′
2 into S(u1) for the ancestors u1 of u′

1; conversely, for
deleting an edge (u′

1, u
′
2) we remove u′

1 from S(u2) and u′
2 from S(u1). Since

there are at most 2D ancestors, this yields the following lemma:

Lemma 4. newEdge(u1, u2) and deleteEdge(u1, u2) take O(D log n) time each.

For deleting a leaf u, we first delete all incident edges with deleteEdge, which
implicitly updates all affected sets S(·). Next, we update the order maintenance
and the level ancestor data structures and remove the leaf from its tree. At each
ancestor u′ of u we possibly have to update the values min(u′) and max(u′) to
u’s predecessor or successor in the ordered list of tree nodes.

When inserting a new leaf u′ as a child of node u, we first insert u′ right
before max(u) into the order maintenance structure. Then we add u′ to the level
ancestor data structure and insert it into the tree as a child of u. If u was an
inner node before this operation, the values min(u) and max(u) remain correct.
But if u was a leaf, i. e., max(u) = min(u), we have to set min(u) = u′; this may
cause further updates of the min(·) values at ancestors of u. Since insertion and
deletion in the order maintenance as well as the level ancestor data structure
take constant time, this yields the following lemma:

Lemma 5. Deleting a leaf (without any incident edges) and inserting a leaf can
be performed in O(D) time.

2.2 Higher Dimensions

The data structure described so far maintains a dynamic set of pairs (u1, u2) ∈
V (T1) × V (T2), while both trees are dynamic in regard to insertion and dele-
tion of leaves. It provides the retrieval operations edgeQuery, edgeReport, and
edgeExpand. We will give a recursive description for the higher dimensional data
structure with the two-dimensional case as basis.

Suppose that there is already such a data structure for the case d, i. e., for
maintaining hyperedges between nodes of d trees. The (d + 1)-dimensional data
structure stores at each node u1 ∈ V (T1) the set

Sd+1(u1) = {(u′
1, u

′
2, . . . , u

′
d+1) ∈ E(G) | u′

1 ∈ desc(u1)},

i. e., all hyperedges incident with descendants of u1. Disregarding the first el-
ement of the hyperedges, we use a separate d-dimensional data structure for
each set Sd+1(·). In other words, we store the (d + 1)-dimensional hyperedges
in a d-dimensional data structure according to their projections onto the last d
elements.

800 M. Raitner

We can implement edgeQuery(u1, u2, . . . , ud+1) as edgeQuery(u2, . . . , ud+1)
on the d-dimensional data structure stored at u1. An edgeReport query is for-
warded similarly; the edges it returns are already the correct (d+1)-dimensional
result, because the d-dimensional data structure contains the original hyper-
edges. The operation edgeExpand((u1, u2, . . . , ud+1), j) for j �= 1 is implemented
as an edgeExpand((u2, . . . , ud+1), j) on the d-dimensional data structure at the
node u1. For expanding a hyperedge at its first element (j = 1), we build the
same data structure designating some other tree to be T1, for instance T2.

Theorem 1. With O(m(2D)d−1) additional space, our data structure solves
the d-dimensional dynamic tree cross product problem with the worst-case time
bounds shown in Table 1.

Proof. For d = 2, all bounds in Table 1 follow directly from Lemmas 1, 2, 3, 4,
and 5.

For d > 2, an edge (u1, . . . , ud) contributes an entry to the lower dimensional
data structure at each ancestor of u1 and at each ancestor of u2 (assuming
that T2 is the tree designated to be T1 for the second data structure). These
are O(2D) entries; by induction each entry uses O((2D)(d−1)−1) space in the
lower dimensional data structure, which gives a total of O(m(2D)d−1) space.
Inserting or deleting an edge is implemented as one insert or delete operation
in a lower dimensional data structure for each ancestor in the two dimensions,
each of which takes O((2D)(d−1)−1 log n) by induction. All retrieval operations
edgeQuery, edgeReport, and edgeExpand are forwarded to an appropriate lower
dimensional data structure; this recursion ends at some two dimensional data
structure, where the operation is implemented as described in Sect. 2.1. Hence,
we get additional d − 1 steps for the recursion. Inserting and deleting a leaf is
exactly the same as in the two dimensional case.
�

Remark 2. In [3] compressed trees [14] are used to improve the space bound. For
a tree T , an edge (parent(u), u) is light if 2|desc(u)| ≤ |desc(parent(u))| and heavy
otherwise. The compressed tree C(T) evolves from T by contracting all heavy
paths into their respective topmost node. This technique could be employed here
as well, but maintaining C(T) subject to insertion and deletion of leaves into the
original tree T is not straightforward. The problem is that these modifications
can change the status of tree edges at ancestors of the affected node from light to
heavy and vice versa. In the compressed tree this results in adding or removing
an inner node. Especially for a new inner node this is expensive, because we have
to equip the new node with appropriate data structures, e. g., the set S(·). While
reducing the space bound, using compressed trees increases the time bounds of
most operations by a factor of O(log n/(log log n)2). In [3] the trees are stratified
recursively to improve these time bounds again. Unfortunately, the stratification
arguments are faulty [15]; therefore, only the results without stratification are
listed in Table 1.

Dynamic Tree Cross Products 801

3 Maintaining Hierarchical Graph Views

A compound graph Γ = (V,Ei, Ea) [4] consists of nodes V , inclusion edges Ei,
and adjacency edges Ea. It is required that the inclusion digraph T = (V,Ei)
is a tree and no adjacency edge connects a node to one of its descendants or
ancestors; see Figs. 2 and 3. A view U is a graph with nodes V (U) ⊆ V such
that ∀u, v ∈ V (U) : desc(u) ∩ desc(v) = ∅, i. e., the nodes of the view are not
related in terms of the inclusion tree. Two nodes u, v ∈ V (U) are connected by
an induced edge if and only if there are nodes u′ ∈ desc(u) and v′ ∈ desc(v)
such that u′ and v′ are connected by an adjacency edge (u′, v′) ∈ Ea; see
Fig. 4.

Fig. 2. An example of a
compound graph: the di-
rected edges form the inclu-
sion digraph T ; the undi-
rected ones are the adja-
cency edges Ea

Fig. 3. The same com-
pound graph as in Fig. 2,
but T is depicted by the
inclusion of the dashed
rectangles

Fig. 4. The view consisting
of the darker shaded nodes
of the compound graph in
Figs. 2 and 3

Given a compound graph Γ and a view U , the graph view maintenance prob-
lem, according to [2], is to efficiently perform the following operations on U :

– expand(v), where v ∈ V (U); replaces node v with its children, i. e., the result
is the view U ′ with nodes V (U ′) = V (U) \ {v} ∪ children(v),

– contract(v), where children(v) ⊆ V (U); contracts all children of v, i. e., the
result is the view U ′ with nodes V (U ′) = V (U) \ children(v) ∪ {v}.
In the new dynamic leaves variant of this problem, the compound graph Γ

is subject to the following modifications:

– newEdge(u, v), where u, v ∈ V , u �∈ desc(v), and v �∈ desc(u); adds a new
adjacency edge (u, v) to Γ ,

– deleteEdge(u, v), where (u, v) ∈ Ea; removes adjacency edge (u, v) from Γ ,
– newLeaf(u), where u ∈ V ; adds a new node v to Γ and a new inclusion edge

(u, v), i. e., v becomes a child of u in the inclusion tree,
– deleteLeaf(u), where u is a leaf in the inclusion tree; removes u from G.

Besides compound graphs, there are other concepts for extending graphs with
a hierarchical structure [5, 16, 17, 18], among which clustered graphs [5] are very
popular; they consist of a base graph and a tree whose leaves are exactly the

802 M. Raitner

Table 2. Results and comparison for the graph view maintenance problem. Let D =
depth(T), s = min{D, log n}, and Opt(U, v) =

∑
v′∈children(v) |adjU (v′)|. For expand(v),

U ′ denotes the view after expanding v in U . The bounds labeled with exp are expected,
all others are worst-case

Approach of [2] Approach of [3] Our data structure

Space O(ms2) O(mD log log n) O(mD)

expand(v) O(Opt(U ′, v)) O(Opt(U ′, v) log log n) O(Opt(U ′, v) log n)
contract(v) O(Opt(U, v)) O(Opt(U, v)) O(Opt(U, v))

newEdge(u, v) Oexp(s2 log n) O(D log log n) O(D log n)
deleteEdge(u, v) Oexp(s2 log n) O(D log log n) O(D log n)
newLeaf(u) n/a n/a O(D)
deleteLeaf(u) n/a n/a O(D)

nodes of the base graph. Consequently, clustered graphs have adjacency edges
only between leaves of the inclusion tree, whereas compound graphs allow them
between any pair of tree nodes such that neither is a descendant of the other.
In [2, 3] data structures for maintaining views of clustered graphs under expand
and contract operations are described; these are either static or allow insertion
and deletion of adjacency edges. Efficient data structures that additionally sup-
port modifications of the node set were left as an open problem [2]. Providing
insertion and deletion of leaves, we solve this problem partially; see also [19] for
a detailed description on directly applying the ideas of Sect. 2.1 to this problem.
Table 2 summarizes our results and compares them to the other approaches.

The graph view maintenance problem for compound graphs can be reduced
to a two-dimensional tree cross product; see [3, Sect. 5.1]. We set T1 = T2 = T
and interpret an adjacency edge (u, v) ∈ Ea as an edge connecting u ∈ T1 and
v ∈ T2. Clearly, determining whether there is an induced edge between two
nodes u and v becomes an edgeQuery; newEdge and deleteEdge directly map
to corresponding operations for tree cross products. Inserting or deleting leaves
in the inclusion tree engenders a newLeaf or deleteLeaf operation on both T1
and T2.

For expanding a view U at the node v, we use an expandEdge((v, w), 1) for
each edge (v, w) incident to v in the view U ; this determines all the children of v
inheriting the edge (v, w). Contracting a view at the node v is straightforward:
all the children of v are removed and v is connected to all former neighbors of
children of v.

Theorem 2. Let D = depth(T); with O(mD) additional space, our data struc-
ture solves the dynamic leaves variant of the graph view maintenance problem
with the worst-case time bounds shown in Table 2.

Dynamic Tree Cross Products 803

Proof. As in [2, 3], let Opt(U, v) =
∑

v′∈children(v) |adjU (v′)|, where adjU (v′) are
the edges incident to v′ in the view U . The number of items that have to be added
or removed during expand(v) is bounded by O(Opt(U ′, v)), where U ′ is the view
after expanding v in U . Similarly, the number of items affected by a contract(v)
is bounded by O(Opt(U, v)). By traversing all edges incident to children of v, we
can find the neighbors of v in U ′, where U ′ is the view resulting from contracting
the children of v in U . Hence, contract(v) takes O(Opt(U, v)) time. expand(v)
is bounded by O(Opt(U ′, v) log n), for we have to expand each edge incident to
v in U ; see Algorithm 1. Note that this does not yield the edges between two
children of v: we maintain these edges separately in a list at every node of the
tree. Since each edge is stored exactly once in such a list, namely at the nearest
common ancestor of its end nodes, this uses O(m) additional space, which does
not violate the O(mD) space bound. Clearly, it takes additional O(D) time for
updating these lists, which is possible within the O(D log n) bound for inserting
and deleting edges. All other bounds follow immediately from Theorem 1.
�

4 Conclusion

We have presented an efficient data structure for range searching over tree cross
products, where the trees are dynamic with regard to insertion and deletion
of leaves. As summarized in Table 1, our approach can compete well with the
one it extends [3]. So far, it is the only data structure for tree cross products
where the node set is dynamic. Applying it to graph view maintenance, we have
partially solved the dynamic graph and tree variant, an open problem in [2].
The comparison in Table 2 shows that our solution matches with the more
static ones, but additionally provides insertion and deletion of graph nodes. A
data structure for the dynamic graph and tree variant, i. e., with splitting and
merging of clusters, remains an open problem.

Acknowledgments

I would like to thank Adam Buchsbaum for the enlightening discussions on the
details of [3] and for his valuable comments on drafts of this paper. Furthermore,
I am grateful to Franz Brandenburg, Christian Bachmaier, and Falk Schreiber
for their suggestions.

References

1. Brandenburg, F.J., Forster, M., Pick, A., Raitner, M., Schreiber, F.: Biopath –
exploration and visualization of biochemical pathways. In Mutzel, P., Jünger, M.,
eds.: Graph Drawing Software. Mathematics and Visualization. Springer (2003)
215–236

2. Buchsbaum, A.L., Westbrook, J.R.: Maintaining hierarchical graph views. In: Proc.
11th ACM-SIAM Symposium on Discrete Algorithms (SODA). (2000) 566–575

804 M. Raitner

3. Buchsbaum, A.L., Goodrich, M.T., Westbrook, J.R.: Range searching over tree
cross products. In Paterson, M., ed.: Proc. 8th European Symposium on Algo-
rithms (ESA). Volume 1879 of LNCS. (2000) 120–131

4. Sugiyama, K., Misue, K.: Visualization of structural information: Automatic draw-
ing of compound digraphs. IEEE Transactions on Systems, Man, and Cybernetics
21 (1991) 876–892

5. Feng, Q.W., Cohen, R.F., Eades, P.: How to draw a planar clustered graph. In
Du, D.Z., Li, M., eds.: Proc. 1st Intl. Conference on Computing and Combinatorics
(COCOON). Volume 959 of LNCS. (1995) 21–30

6. Bender, M.A., Richard, C., Demaine, E.D., Farach-Colton, M., Zito, J.: Two simpli-
fied algorithms for maintaining order in a list. In Möhring, R.H., Raman, R., eds.:
Proc. 10th European Symposium on Algorithms (ESA). Volume 2461 of LNCS.
(2002) 152–164

7. Dietz, P.F., Sleator, D.D.: Two algorithms for maintaining order in a list. In: 9th
ACM Symposium on Theory of Computing (STOC). (1987) 365–372

8. Willard, D.E.: Good worst-case algorithms for inserting and deleting records in
dense sequential files. In: Proceedings of the 1986 ACM SIGMOD International
Conference on Management of Data. (1986) 251–260

9. van Emde Boas, P., Kaas, R., Zijlstra, E.: Design and implementation of an efficient
priority queue. Mathematical Systems Theory 10 (1977) 99–127

10. Berkman, O., Vishkin, U.: Finding level ancestors in trees. Journal of Computer
and System Sciences 48 (1994) 214–230

11. Bender, M.A., Farach-Colton, M.: The level ancestor problem simplified. In Ra-
jsbaum, S., ed.: Proc. 5th Latin American Symposium on Theoretical Informatics
(LATIN). Volume 2286 of LNCS. (2002) 508–515

12. Alstrup, S., Holm, J.: Improved algorithms for finding level ancestors in dynamic
trees. In Montanari, U., Rolim, J.D.P., Welzl, E., eds.: Automata, Languages and
Programming, 27th International Colloquium, ICALP 2000. Volume 1853 of LNCS.
(2000) 73–84

13. Dietz, P.F.: Finding level ancestors in dynamic trees. In Dehne, F.K.H.A., Sack,
J.R., Santoro, N., eds.: Algorithms and Data Structures, 2nd Workshop WADS
’91. Volume 519 of LNCS. (1991) 32–40

14. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors.
SIAM Journal on Computing 13 (1984) 338–355

15. Buchsbaum, A.L.: Personal communication
16. Harel, D.: On visual formalisms. Comm. of the ACM 31 (1988) 588–600
17. Lai, W., Eades, P.: A graph model which supports flexible layout functions. Tech-

nical Report 96–15, University of Newcastle (1996)
18. Raitner, M.: HGV: A library for hierarchies, graphs, and views. In Goodrich,

M.T., Kobourov, S.G., eds.: Proc. 10th Intl. Symposium on Graph Drawing (GD).
Volume 1528 of LNCS. (2002) 236–243

19. Raitner, M.: Maintaining hierarchical graph views for dynamic graphs. Technical
Report MIP-0403, Universität Passau (2004)

Spanners, Weak Spanners, and Power Spanners
for Wireless Networks

Christian Schindelhauer�, Klaus Volbert∗, and Martin Ziegler∗

Heinz Nixdorf Institute, Paderborn University
Institute of Computer Science,

{schindel, kvolbert, ziegler}@uni-paderborn.de

Abstract. For c ∈ R, a c-spanner is a subgraph of a complete Euclidean graph
satisfying that between any two vertices there exists a path of weighted length
at most c times their geometric distance. Based on this property to approximate
a complete weighted graph, sparse spanners have found many applications, e.g.,
in FPTAS, geometric searching, and radio networks. In a weak c-spanner, this
path may be arbitrary long but must remain within a disk of radius c-times the
Euclidean distance between the vertices. Finally in a c-power spanner, the total
energy consumed on such a path, where the energy is given by the sum of the
squares of the edge lengths on this path, must be at most c-times the square of
the geometric distance of the direct link.

While it is known that any c-spanner is also both a weak C1-spanner and a
C2-power spanner (for appropriate C1, C2 depending only on c but not on the
graph under consideration), we show that the converse fails: There exists a fam-
ily of c1-power spanners that are no weak C-spanners and also a family of weak
c2-spanners that are no C-spanners for any fixed C (and thus no uniform span-
ners, either). However the deepest result of the present work reveals that any
weak spanner is also a uniform power spanner. We further generalize the latter
notion by considering (c, δ)-power spanners where the sum of the δ-th powers of
the lengths has to be bounded; so (·, 2)-power spanners coincide with the usual
power spanners and (·, 1)-power spanners are classical spanners. Interestingly,
these (·, δ)-power spanners form a strict hierarchy where the above results still
hold for any δ ≥ 2; some even hold for δ > 1 while counterexamples exist for
δ < 2. We show that every self-similar curve of fractal dimension d > δ is no
(C, δ)-power spanner for any fixed C, in general.

1 Motivation

Spanners have appeared in Computer Science with the advent of Computational Geom-
etry [4, 18], raised further in interest as a tool for approximating NP-hard problems [13]
and, quite recently, for routing and topology control in ad-hoc networks [1, 12, 8, 7, 11].
Roughly speaking, they approximate the complete Euclidean graph on a set of geomet-
ric vertices while having only linearly many edges. The formal condition for a c-spanner

� Partially supported by the DFG-Sonderforschungsbereich 376 and by the EU within 6th
Framework Programme under contract 001907 “Dynamically Evolving, Large Scale Infor-
mation Systems” (DELIS).

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 805–821, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

806 C. Schindelhauer, K. Volbert, and M. Ziegler

G = (V,E) is that between any two u,v ∈ V , the edge (u,v) may be absent provided
there exists a path in G from u to v of length at most c-times the Euclidean distance
between u and v; see Figure 1(a). In particular, this path remains within a circle around
u of radius c. For applications in geometric searching [5], it has turned out that graphs
with the latter, weaker condition suffice; see Figure 1(b). In [10] such weak spanners
are used to approximate congestion-optimal radio networks. Several constructions yield
both spanners [6] and weak spanners [5] with arbitrarily describable approximation ra-
tio. Among them, some furthermore benefit from nice locality properties which led to
successful applications in ad-hoc routing networks [7, 9, 17, 16]. However in order to
restrict the power consumption during such a communication (which for physical rea-
sons grows quadratically with the Euclidean length of each link), one is interested in
routing paths, say between u and v, whose sum of squares of lengths of the individual
steps is bounded by c-times the square of the Euclidean distance between u and v; see
Figure 1(c). Such graphs are known as c-power spanners [7, 9].

u v

u v

vu
(a) Bounded length (b) Bounded radius (c) Bounded energy

Fig. 1. Spanner, Weak Spanner and Power Spanner

Finally, when power consumption is of minor interest but the routing time is domi-
nated by the number of individual steps, sparse graphs are desired which between any
vertices u and v provides a path containing at most c further vertices. These are the
so-called c-hop spanners [1]. In this paper, we investigate the relations between these
various types of spanners. Observe that any strongly connected finite geometric graph
is a C-spanner for some1 value C. Therefore the question on the relation between span-
ners and weak spanners rather asks whether any weak c-spanner is a C-spanner for
some value C depending only on c. Based on a construction from [3], we answer this
to the negative. For some weak c-spanners it is proved that they are also C-power span-
ners for some value C [7, 8] using involved constructions. One major contribution of
our work generalizes and simplifies such results by showing that in the plane in fact any
weak c-spanner is a C-power spanner with C = O(c8). Moreover, we investigate the
notion of a (c, δ)-power spanner [7] which

1 Consider for any pair u,v of vertices some path from u to v and the ratio of its length to the
distance between u and v; then taking for C the maximum over the (finitely many) pairs u,v
will do.

Spanners, Weak Spanners, and Power Spanners 807

– for δ = 1 coincides with c-spanners
– for δ = 2 coincides with (usual) c-power spanners
– for δ = 0 coincides with c-hop spanners, i.e. graphs with diameter c
– for δ > 2 reflects transmission properties of radio networks (e.g., for δ up to 6 or

even 8) .
We show that these form a strict hierarchy: For Δ > δ > 0, any (c, δ)-power spanner

is also a (C, Δ)-power spanner with C depending only on c and Δ/δ; whereas we give
examples of (C, Δ)-power spanners that are no (c, δ)-power spanner for any fixed c.
Our main contribution is that any weak c-spanner is also a (C, δ)-power spanner for
arbitrary δ ≥ 2 with C depending on c and δ only. We finally show that this claim is
best possible by presenting, for arbitrary δ < 2, weak c-spanners which are no (C, δ)-
power spanner for any fixed C.

This paper is organized as follows: Section 2 formally defines the different types
of spanners under consideration. Section 3 shows that, while any c-spanner is also a
weak c-spanner, a weak c-spanner is in general no C-spanner for any C depending just
on c. Section 4 similarly reveals the relations between spanners and power spanners.
The central Section 5 of the this work investigates the relation between weak span-
ners and power spanners. Theorem 3 gives an example of a power spanner which is
no weak spanner. Our major contributions then prove that, surprisingly, any weak c-
spanner is also a C-power spanner with C depending only on c. For different values
of δ, we obtain different upper bounds to C in terms of c: For δ = 2 (power span-
ners in the original sense), we show C ≤ O(c8), see Theorem 5; for δ > 2, we have
C ≤ O

(
c2+δ/(1 − 22−δ)

)
, see Theorem 4. However for δ < 2, we present counter-

examples of unbounded C, that is, in this case provably not any weak c-spanner is
a (C, δ)-power spanner. Further, we generalize our construction and analysis to self-
similar fractal curves. Section 6 finally shows that for different δ, the respective classes
of (·, δ)-power spanners form a strict hierarchy. In Section 7 we discuss extensions of
our results to higher-dimensional cases, before we conclude this work presenting appli-
cations of our results concerning power-efficient wireless networks in Section 8.

2 Preliminaries

We focus on the two-dimensional case, that is, directed graphs G = (V,E) with finite
V ⊆ R2; extensions to higher dimensions are discussed in Section 7. Let |u−v| denote
the Euclidean distance between u,v ∈ V . A path from u to v in G is a finite sequence
P = (u = u1,u2, . . . ,u� = v) of vertices ui ∈ V such that (ui−1,ui) ∈ E for all
i = 2, . . . , �. Occasionally, we also encounter the more general situation of a path from
u to v not necessarily in G; this means that ui ∈ V still holds but the requirement
(ui,ui+1) ∈ E is dropped. The radius of a path P is the real number max�

i=2 |u−ui|.
The (Euclidean) length of P is given by

∑�
i=2 |ui − ui−1|; the hop length is �− 1; for

δ ≥ 0,

‖P‖δ :=
�∑

i=2

|ui − ui−1|δ (1)

denotes the δ-cost of P . The length is just the 1-cost whereas the hop length coincides
with the 0-cost.

808 C. Schindelhauer, K. Volbert, and M. Ziegler

Definition 1. Let G = (V,E) be a geometric directed graph with finite V ⊆ R2 and
c > 0. G is a c-spanner, if for all u,v ∈ V there is a path P from u to v in G of length
‖P‖1 at most c · |u − v|. G is a weak c-spanner, if for all u,v ∈ V there is a path P
from u to v in G of radius at most c · |u− v|. For δ ≥ 0, G is a (c, δ)-power spanner if
for all u,v ∈ V there is a path P from u to v in G of δ-cost ‖P‖δ at most c · |u− v|δ .
G is a c-power spanner, if G is a (c, 2)-power spanner. The factor c is called length
stretch factor, weak stretch factor or power stretch factor, respectively.

Informally (see Figure 1), in a c-spanner there exists between two arbitrary vertices
a path of length at most c-times the Euclidean distance between these vertices (bounded
length). In a weak c-spanner, this path may be arbitrary long but must remain within a
disk of radius c-times the Euclidean distance between the vertices (bounded radius).
Finally in a c-power spanner, the energy consumed on such a path (e.g., the sum of
the squares of the lengths of its constituting edges) must be at most c-times the one
consumed on a putative direct link (bounded cost). Sometimes we shorten the notion
of spanner, weak spanner and power spanner and omit constant parameters. So, if we
say that a family of graphs is a spanner, then there exists a constant c such that all its
members are c-spanners.

The attentive reader might have observed that our Definition 1 does not exactly
match that from [7]. The latter required that the 2-cost of some path P from u to v in
G is bounded by c-times the 2-cost of any path Q (not necessarily in G) from u to v.
However, both approaches are in fact equivalent:

Lemma 1. Let G = (V,E) be a (c, δ)-power spanner, u,v ∈ V , and let Q denote
some path Q (not necessarily in G) from u to v of minimum δ-cost. Then there is a path
P in G from u to v of δ-cost ‖P‖δ at most c · ‖Q‖δ .

Proof. Let Q = (u = q1, . . . ,qL = v). For each i = 2, . . . , L there exists by presump-
tion a path Pi in G from qi−1 to qi of δ-cost at most c · |qi−qi−1|δ . The concatenation
of all these paths yields a path P from u to v in G with δ-cost ‖P‖δ at most c · ‖Q‖δ .

3 Spanners Versus Weak Spanners

Every c-spanner is also a weak c-spanner. Our first result shows that the converse fails
in general.

Fig. 2. Construction of EPPSTEIN provably yields no spanner but a weak spanner

Theorem 1. There is a family of graphs G = (V,E) with V ⊆ R2 all of which are
weak (

√
3 + 1/2)-spanners but no C-spanners for any fixed C ∈ R.

Spanners, Weak Spanners, and Power Spanners 809

Proof. We show the claim using the fractal construction presented in [3] (see Figure 2).
We briefly review its recursive definition which is similar to that of a KOCH Curve. At
the beginning there are two vertices with distance 1. In the following steps we replace
each edge by 5 new edges of equal length as follows: one horizontal, one at angle
π/4, a second horizontal, another one at angle −π/4 and a third horizontal. After i
steps we have a graph consisting of 5i edges and 5i + 1 vertices. As shown in [3] this
graph has unbounded length stretch factor. We argue that there exists a constant c such
that it is a weak c-spanner. It is known that the area under the constructed curve is
bounded by a constant and that the path between two vertices u, v ∈ V lies completely
in a disk around the midpoint of the segment between u and v with radius at most
(2 ·

√
3/2) =

√
3 (see KOCH’s Snowflake, Figure 6). Applying Observation 2 proves

the claim.

The following observation says that, up to constants, it makes no difference in the
definition of a weak spanner whether the radius is bounded with respect to center u (the
starting one of the two points) or with respect to center (u + v)/2 (the midpoint of the
segment between the two points).

Observation 2. Let P = (u = u1, . . . ,u� = v) be a path in the geometric graph
G = (V,E) such that |u−ui| ≤ c · |u−v| for all i = 1, . . . , �. Then, w := (u+v)/2
satisfies by the triangle inequality

|w−ui| = |u−ui+(v−u)/2| ≤ |u−ui|+|v−u|/2 ≤ (c+ 1
2)·|u−v| .

Conversely if P has |w − ui| ≤ c · |u− v| for all i, then

|u−ui| = |w−ui+(u−v)/2| ≤ |w−ui|+|u−v|/2 ≤ (c+ 1
2)·|u−v| .

4 Spanners Versus Power Spanners

In [7] it is shown that, for δ > 1, every c-spanner is also a (cδ, δ)-power spanner.
However, conversely, for any δ > 1, there are (c, δ)-power spanners which are no C-
spanners for any fixed C: This follows from Theorem 3 as any C-spanner is a weak
C-spanner as well.

5 Weak Spanners Versus Power Spanners

Now, we turn to the main contribution of the present paper and present our results
concerning the relation between weak spanners and power spanners. Surprisingly, it
turns out that any weak c-spanner is also a C-power spanner for some C depending
only on c. But first observe that the converse in general fails:

Theorem 3. In the plane and for any δ > 1, there is a family of (c, δ)-power spanners
which are no weak C-spanners for any fixed C.

Proof. Let V := {u = v1, . . . ,v = vn} be a set of n vertices placed on a circle scaled
such that the Euclidean distance between u and v is 1 and |vi − vi+1| = 1/i for all

810 C. Schindelhauer, K. Volbert, and M. Ziegler

i = 1, . . . , n − 1. Now, consider the graph G = (V,E) with edges (vi,vi+1). First
observe that G is a (c, δ)-power spanner with c independent of n. Indeed, its δ-power
stretch factor is dominated by the δ-cost of the (unique) path P in G from u to v which
amounts to

‖P‖δ =
n−1∑
i=1

(1/i)δ ≤
∞∑
i=i

(1/i)δ =: c

a convergent series since δ > 1. This is compared to the cost of the direct link from u
to v of 1. On the other hand, the Euclidean length (that is, the 1-cost) of the polygonal
chain from u to v is given by the unbounded harmonic series

∑n−1
i=1 (1/i) = Θ(log n).

Therefore also the radius of this polygonal chain cannot be bounded by any C indepen-
dent of n, either.

In the sequel, we show that, conversely, any weak c-spanner is a (C, δ)-power span-
ner for both δ > 2 (Section 5.1) and δ = 2 (Section 5.2) with C depending only on
c and δ. A counter-example in Section 5.3 reveals that this however does not hold for
δ < 2.

5.1 Weak Spanner Implies Power Spanner for δ > 2δ > 2δ > 2

In this subsection, we show that any weak c-spanner is also a (C, δ)-power spanner for
any δ > 2 with C depending only on c and δ. By its definition, between vertices u,v,
there exists a path P in G from u to v that remains within a disk around u of radius
c · |u−v|. However on the course of this path, two of its vertices u′ and v′ might come
very close so that P , considered as a subgraph of G, in general is no weak c-spanner.
On the other hand, G being a weak c-spanner, there exists also between u′ and v′ a path
P ′ of small radius. Based on such repeated applications of the weak spanner property,
we first assert the existence of a path which, considered as a subgraph of G, is weak
2c-spanner.

Definition 2. Let G = (V,E) be a directed geometric graph and e1 := (u1,v1),
e2 := (u2,v2) two of its edges. By their distance we mean the number

min
{
|u1 − u2|, |v1 − v2|, |u1 − v2|, |v1 − u2|

}
,

that is, the Euclidean distance of a closest pair of their vertices (see Figure 3(b)).

Lemma 2. Let G = (V,E) be a weak c-spanner and u,v ∈ V . Then there is a path P
from u to v in G which, as a subgraph of G, is a weak 2c-spanner.

Proof. The idea is to take the path P asserted by the weak spanner property for u and
v and to, for any pair u′,v′ of vertices on P for which P violates that property, locally
replace that part of P by a path from u′ to v′ in G. However for these iterated improve-
ments to eventually terminate, we perform them in decreasing order of the lengths of
the edges involved.

W.l.o.g. we assume |u − v| = 1. Since G is a weak c-spanner there exists a path
P = (u = u1, . . . ,u� = v) from u to v in G that lies completely within a disk

Spanners, Weak Spanners, and Power Spanners 811

2c

c u v

ui

ui+1

uj

uj+1e1
e2

|e1 − e2|

u1

v1

u2

v2

e1
e2

2c

c u v

ui
ui+1 uj

uj+1

|ui − uj | ≥ 1/2

(a) Improving paths (b) Edge distance (c) Counting edges

Fig. 3. Construction and analysis of a path with low power stretch in a weak spanner

around u of radius c. In particular, any edge on this path has a length of at most 2c, see
Figure 3(a).

Now, consider all edges on this path of length between c and 2c. For any pair e1 =
(ui,ui+1) and e2 = (uj ,uj+1) with j > i closer than 1

2 (Definition 2), improve
that part of P by replacing it with a path according to the weak c-stretch property.
Observe that, since the improvement is applied to vertices of distance at most 1

2 , this
sub-path remains within a disk of radius c/2; in particular any edge introduced to P has
length at most c and thus does not affect the edges of length between c and 2c currently
considered. Moreover, after having performed such improvements to all edges of length
between c and 2c, the resulting path P ′, although it might now leave the disk around u
of radius c, it does remain within radius c + c/2.

Next, we apply the same process to edges of length between c and c/2 and perform
improvements on those closer than 1

4 . The thus obtained path P ′′ remains within a disk
of radius c+c/2+c/4 while, for any pair of vertices u′ and v′ improved in the previous
phase, the sub-path between them might increase in radius from c · |u′ − v′| to at most
(c + c/2) · |u′ − v′|.

As G is a finite graph, repeating this process for edges of length between c/2 and
c/4 and so on, will eventually terminate and yield a path P̃ from u to v remaining
within a disk of radius c + c/2 + c/4 + . . . = 2c. Moreover, for any pair of vertices
u′,v′ in P , the sub-path between them has radius at most (c+c/2+c/4+ . . .) · |u′−v′|
which proves that P̃ is indeed a weak 2c-spanner.

Lemma 3. Let P = (u1, . . . ,u�) be a weak 2c-spanner, ui ∈ R2, |u1−u�| = 1. Then,
P contains at most (8c+1)2 edges of length greater than c; more generally, P contains
at most (8c + 1)2 · 4k edges of length greater than c/2k.

Proof. Consider two edges (ui,ui+1) and (uj ,uj+1) on P both of length at least c
with j > i. P being a 2c-weak spanner implies that, between vertices ui and uj ,
the sub-path in P from ui to uj (which is unique and passes through ui+1), satisfies
c ≤ |ui − ui+1| ≤ 2c · |ui − uj |; hence, |ui − uj | ≥ 1

2 , see Figure 3(c). In particular,
placing an Euclidean disk Bi of radius 1

4 around each starting vertex ui of an edge of

812 C. Schindelhauer, K. Volbert, and M. Ziegler

length at least c results in these disks being mutually disjoint. If m denotes the number
of edges of length at least c, these disks thus cover a total area of mπ(1

4)2. On the other
hand, as all ui lie within a single disk around u1 of radius 2c, all disks Bi together
cover an area of at most π(2c + 1

4)2. Therefore,

m ≤
π(2c + 1

4)2

π(1
4)2

= (8c + 1)2 .

For edges (ui,ui+1) and (uj ,uj+1) on P longer than c/2k, one similarly obtains
|ui−uj | ≥ 2−k−1 so that, here, Euclidean disks of radius 2−k−2 can be placed mutually
disjoint within the total area of π(2c + 2−k−2)2.

Theorem 4. Let G = (V,E) be a weak c-spanner with V ⊆ R2. Then G is a (C, δ)-

power spanner for δ > 2 where C := (8c + 1)2 · (2c)δ

1− 22−δ
.

Proof. Fix u,v ∈ V , w.l.o.g. |u − v| = 1. In the following we analyze the δ-cost of
the path P constructed in Lemma 2 for δ = 2 + ε. We consider all edges on this path
and divide them into classes depending on their lengths. By Lemma 3, there are at most
(8c + 1)2 edges of length between c and 2c, each one inducing δ-cost at most (2c)δ .
More generally, we have at most (8c+1)2 ·4k edges of length between c/2k and 2c/2k

and the δ-cost of any such edge is at most (2c/2k)δ . Summing up over all possible
edges of P thus yields a total δ-cost of P of at most

‖P‖δ ≤
∞∑

k=0

(8c + 1)2 · 4k ·
(

2c

2k

)δ

= (8c + 1)2 · (2c)δ

1− 22−δ

5.2 Weak Spanner Implies Power Spanner for δ = 2δ = 2δ = 2

The preceding section showed that, for fixed δ > 2, any weak c-spanner is also a (C, δ)-
power spanner. The present section yields the same for δ = 2, a case which, however,
turns out to be much more involved. Moreover, our bounds on C in terms of c become
slightly worse. In fact, the deepest result of this work is the following:

Theorem 5. Let G = (V,E) be a weak c-spanner with V ⊆ R2. Then G is a (C, 2)-
power spanner for C := O(c8).

Proof. First recall that between vertices u,v ∈ V there is a path P in G from u to v
which remains inside a square of length � := 2c · |u−v| and center u. We denote such a
square by Su(�). By s we denote the starting point of the path and by t the end (target)
point. We denote by V (P) the vertex set of a path and by E(P) the edge set of a path.

We give a constructive proof of the Lemma, i.e. given a path in G obeying the weak
spanning property we construct a path which obeys the

(
O(c8), 2

)
-power spanner prop-

erty. For this we iteratively apply a procedure called clean-up to a path, yielding paths
with smaller and smaller costs. Besides the path P in G this procedure has parameters
L, d,D ∈ R+. Hereby, L denotes the edge length of a square with middle point s con-
taining the whole path. The parameters d, D are in the range 0 < 3(c

√
3+2)d ≤ D ≤ L

Spanners, Weak Spanners, and Power Spanners 813

Fig. 4. The clean-up and the contract procedures and the idea for the Proof of Theorem 5

and can be chosen arbitrarily, yet fulfilling D/d ∈ N and L/D ∈ N. These parameters
define two edge-parallel grids Gd and GD of grid size d and D such that boundaries
of GD are also edges of Gd. These grids fill out the square Su(L), while the boundary
edge of Su(L) coincides with the boundary of Gd and GD, see Fig. 4 The outcome of
the procedure clean-up is a path P ′ = clean-up(P,L, d,D) which reduces the cost of
the path while obeying other constraints, as we show shortly.

In Figure 4 we describe the procedure clean-up which uses the procedure contract
described in Figure 4. Let D(A) denote the diameter of the area A.

Lemma 4. The procedure P ′ = contract(P,A) satisfies the following properties.

– Locality: ∀u ∈ V
(
E(P)\E(P ′)

)
: minp∈A |u−p| ≤ c ·D(A) and maxp∈A |u−

p| ≤ (c + 1) ·D(A).
– Continuity of long edges: ∀e ∈ P ′ : |e| ≥ 2c ·D(A) =⇒ e ∈ P .

Proof. The maximum distance between vi and vj is at most D(A). The replacement
path (w1, . . . ,wk) is inside a disk of radius c · D(A). Hence for all vertices u of this
replacement path we have |u−vi| ≤ cD(A) and therefore minp∈A |u−p| ≤ |u−vi| ≤
cD(A). From the triangle inequality it follows

max
p∈A

|u− p| ≤ D(A) + min
p∈A

|u− p| ≤ D(A) + |u− vi| ≤ (c + 1)D(A) .

Procedure clean-up (P, L, d, D)
begin

while three edges exist in P longer than 2
√

2cd
starting or ending in the same cell of Gd

do
Let C be such a cell in Gd

P ← contract(P, C)
od

while there exists a cell in GD where at least one vertex of P
lies in each of its Gd-sub-cells
do

Let C be such a cell of GD

Let rankP (u) denote the position of a vertex u in P
Sort all cells Z1, . . . , Z(D/d)2 of Gd in C

according to minu∈Zi∩V (P){rankP (u)}
Sort all cells Z′

1, . . . , Z′
(D/d)2 of Gd in C

according to maxu∈Z′
i
∩V (P){rankP (u)}

i ← 1
while cell Zi is not horizontally neighbored

to one of the cells {Z′
1, . . . , Z′

i}
nor Z′

i is horizontally neighbored
to one of the cells {Z1, . . . , Zi}
do

i ← i + 1
od

Let z and z′ be the two neighbored cells
from {Z1, . . . , Zi} and {Z′

1, . . . , Z′
i}

P ← contract(P, z ∪ z′)
od

return P
end

Procedure contract (P = (v1, . . . , vm) : path, A : area)
begin

Let vi be the first vertex of P in A
Let vj be the last vertex of P in A
Let P ′ = (w1, . . . , wk) be a path between vi = w1

and vj = wk satisfying the weak spanner property
return (v1, . . . , vi−1, w1, . . . , wk, vj+1, . . . , vm)

end

D

d s

P

t

L

814 C. Schindelhauer, K. Volbert, and M. Ziegler

The second property follows from the fact that all new edges inserted in P ′ lie inside
a disk of radius D(A).

Lemma 5. For D ≥ 3(c
√

3 + 2)d the procedure clean-up satisfies the four properties
power efficiency, locality, empty space, and continuity of long edges.

1. Locality For all vertices u ∈ V (P ′) there exists v ∈ V (P) such that

|u− v| ≤ ((
√

2 +
√

3)c + 2) · d .

2. Continuity of Long Edges For all edges e of P ′ with |e| ≥ 2
√

3cd it holds e ∈
E(P).

3. Power Efficiency For all k > 2
√

3c:∑
e∈E(P ′):2

√
3cd<|e|≤kd

(|e|)2 ≤ k2 d2 #F (P,Gd) ,

where #F (P,Gd) denotes the number of grid cells of Gd where at least one vertex
of P lies which is the end point of an edge of minimum length 2

√
3d.

4. Empty Space For all grid cells C of GD we have at least one sub-cell of GD within
C without a vertex of P ′.

Proof. All cells of Gd are called sub-cells in this proof for distinguishing them from
the cells of GD.

Observe that the clean-up procedure uses only contract-operation to change the
path. As parameters for this procedure we use either a grid sub-cell C of edge length
d and diameter D(C) =

√
2d or two horizontally neighbored grid sub-cells Z and Z ′

with edge lengths d with diameter D(Z ∪ Z ′).
Further note, that in the first loop each sub-cell C of the grid Gd will be treated by

the contract-procedure once. The reason is that from the contract procedures edges with
lengths less than 2

√
2d are produced, while each sub-cell will loose all but two edges

of P with minimum length 2
√

2d. This also proves that the first loop always halts.
Now consider the second while-loop and concentrate on the part inside the loop be-

fore the contract-operation takes place. Since in every sub-cell of C we have a vertex
of P we can compute the ordering Zi and Z ′

i as described by the algorithm. The main
observation is that until the first two neighbored sub-cells Z and Z ′ from these sets are
found, no two sub-cells Z and Z ′ from Z ∈ {Zj}j≤i and Z ′ ∈ {Z ′

j}j≤i are horizon-
tally neighbored. Hence, in the 2d-surrounding of every point there is an empty sub-cell
without any points of P .

The situation changes slightly if we apply the contract-operation. Then, an interme-
diate path will be added and possibly some of the empty sub-cells will start to contain
vertices of the path. However, only sub-cells in a euclidean distance of c

√
3d from sub-

cells Z and Z ′ are affected by this operation. Now consider a square Q of (c
√

3+2)d×
(c
√

3 + 2)d sub-cells in the middle of C. Then, at least two horizontally neighbored
sub-cells will not be influenced by this contract-operation and thus remain empty.

One cannot completely neglect the influence of this operation to a neighbored grid
cell of C. However, since D ≥ 3(c

√
3 + 2)d the inner square Q is not affected by

Spanners, Weak Spanners, and Power Spanners 815

contract-operation in neighbored grid cells of C because of the locality of the contract-
operation.

This means if a cell C was object to the second while-loop, then an empty sub-cell
will be produced which remains empty for the rest of the procedure. Hence, the second
loop also terminates.

We now check the four required properties.

Locality. After the first loop the locality is satisfied even within a distance of
√

2(c +
1)d. For this, observe that all treated cells contain end points of edges longer than
2
√

2cd which cannot be produced by contract-operations in this loop. Hence, if a cell
is object to the contract-operation it was occupied by a vertex of P from the beginning.
Then, from Lemma 4 it follows that for all new vertices of the path P there exists at
least one old vertex in distance

√
2(c + 1)d after the first loop.

For the second loop we need to distinguish two cases. First, consider a cell C where
in the inner square an empty sub-cell exists. In this case this cell will never be treated
by this second loop. If new vertices are added to the path within this cell, then this will
be caused by a contract-operation in a neighbored cell and will be considered in the
second case.

Now consider all cells with preoccupied inner squares (preoccupation refers to the
outcome of the first loop). These cells can be object to contract-operations of the second
loop. However, they will add only vertices to their own sub-cells or to the outer sub-
cells of neighbored cells. So, new vertices are added within a distance of (

√
3c+1)d of

vertices in the path at the beginning of the second loop. As we have seen above every
such vertex is only

√
2(c + 1)d remote from an original vertex of a path. This gives a

locality of distance ((
√

3 +
√

2)c + 2)d.

Continuity of Long Edges. Since the parametrized areas for the contract operation
have a maximum diameter of

√
3d this property follows directly from Lemma 4.

Power Efficiency. After the first loop the number of edges longer than 2
√

2cd is bounded
by #F (P,Gd), because in every occupied sub-cell at most two edges start or end and
each edge has two end points. Clearly, this number is an upper bound for edges longer
than 2

√
3cd. In the second loop no edges longer than 2

√
3cd will be added. This, di-

rectly implies the wanted bound.

Empty Space. As we have already pointed out the second loop always halts. Therefore
the empty space property holds.

Lemma 6. Given a path P0 with source s and target t such that ∀u ∈ V (P0) : |u −
s| ≤ c · L, where L = c · |u − v|. Now iteratively apply Pi+1 = clean-up(Pi, L +∑i

j=0 Di, di, Di) for i = 1, 2, . . . where Di = Lβ1−i, di = Lβ−i for β = 20
√

3c.
Then, Pm for m = �logβ minu,v∈V |u − v|� is path connecting s to t obeying the(
O(c8), 2

)
power spanner property.

Proof. For this proof we make use of the four properties of the clean-up procedure. By
assumption c ≥

√
3 we have β ≥ 60.

816 C. Schindelhauer, K. Volbert, and M. Ziegler

First note that the the square of edge length Li containing all vertices of path Pi

can increase. However we can bound this effect by the locality property, giving Li+1 ≤
Li+2di, where di = L·β−i. By assumption we have c ≥

√
3 and therefore di ≤ L4−i,

which gives an upper bound of Li ≤ 2L for all i.
Let Fi = #F (Pi, Gdi

). Then Ai = (di)2Fi denotes the area of all grid cells in Gdi

with a vertex of the path Pi which is the end point of an edge with length of at least
2
√

3d. In the next iteration in each of this cells an empty space will be generated with
an area of (di+1)2. Because of the locality property at least the following term of the
edge length is subtracted

∞∑
j=1

2
√

3di+j ≤
1
2
di .

Hence,an emptyarea of at least 1
4 (di)2 remains after applyingall clean-up-procedures.

Let Ei be the sum of all these areas in this iteration. Therefore we have Ai ≤ 4β2Ei.
Clearly, these empty areas in this iteration do not intersect with empty areas in other ar-
eas (since they arise in areas which were not emptied before). Therefore all these spaces
are inside the all-covering square of side length 2L yielding

∑∞
i=1 Ei ≤ 4L2.

Because of the long edge continuity property, edges of minimum length 2
√

3di do
not appear in rounds later than i. Therefore, the following sum S gives an upper bound
on the power of the constructed path.

S =
∞∑

i=1

∑
e∈E(Pi):

2
√

3cdi≤|e|<2
√

3cβdi

(|e|2)2 .

From the power efficiency property it now follows

S ≤
∞∑

i=1

12c2β2(di)2#F (Pi, Gdi
) = 12c2β2

∞∑
i=1

(di)2Fi = 12c2β2
∞∑

i=1

Ai

≤ 48c2β4
∞∑

i=1

Ei ≤ 192 c2β4L2 ≤ 192 c4β4(|s− t|)2 = O(c8(|s− t|)2)

This lemma completes the proof of the theorem.

5.3 Weak Spanner Does Not Imply Power Spanner for δ < 2δ < 2δ < 2

Theorem 6. To any δ < 2, there exists a family of geometric graphs G = (V,E) with
V ⊆ R2 which are weak c-spanners for a constant c but no (C, δ)-power spanners for
any fixed C.

Proof. As δ < 2, there is a k ∈ R such that 2 < k < 41/δ . We present a recursive
construction (see Figure 5). Fix u1 = (1/2, 1/2) ∈ R2. In each following recursion
step j, we replace every existing vertex ui = (ui

x, ui
y) by four new vertices u4i−3 =

(ui
x − d, ui

y + d), u4i−2 = (ui
x + d, ui

y + d), u4i−1 = (ui
x + d, ui

y − d), and u4i =
(ui

x − d, ui
y − d) where d := 1/(2kj). Finally, we consider the graph Gj := (Vj , Ej)

Spanners, Weak Spanners, and Power Spanners 817

Gj−1

Gj−1

Gj−1

(a) Idea

u

v

(b) After 4 steps (c) After 7 steps

Fig. 5. Recursive construction: The underlying idea and two examples for k = 2.1

with Vj := {ui | i ∈ {1, . . . , 4j}} and Ej := {(ui,ui+1) | i ∈ {1, . . . , 4j − 1}}. The
resulting graph after 4 recursion steps with k = 2.1 is given in Figure 5(b). Let u = u1

and v = u4j

.

Lemma 7. The graph Gj is a weak c-spanner for c :=
√

2k(k−1)
k−2 independent of j.

Proof. We prove the claim by induction over j. For j = 1 the weak stretch factor is
dominated by the path between u and v. The distance between u and v is 1/k. The
farthest vertex on the path from u to v is u3. It holds that |u − u3| ≤

√
2/k. Hence,

we get the weak stretch factor
√

2 ≤
√

2k(k−1)
k−2 = c. Now, we consider Gj for any

j. We can divide the graph Gj into four parts G1
j , . . . , G

4
j . By the definition of our

recursive construction each part equals the graph Gj−1. For two vertices in one part the
required weak c-spanner property holds by induction. We have to concentrate on two
vertices which are chosen from two different parts. Since Gi

j is connected to Gi+1
j it

is sufficient to consider a vertex from G1
j and a vertex from G4

j . On the one hand, the
weak stretch factor is affected by the shortest distance between such chosen vertices.
On the other hand, this distance is given by (see also Figure 5(a))

(1
2
·
(
1 +

1
k
−

j∑
i=2

(1
k)i
)
− 1

2

)
· 2 ≥ k − 2

k(k − 1)

The entire construction lies in a bounded square of side length 1, and hence we get

a weak stretch factor of at most
√

2k(k−1)
k−2 = c.

Lemma 8. The graphs Gj are no (C, δ)-power spanners for any fixed C.

Proof. It suffices to consider the δ-cost of the path from u to v. The direct link from u
to v has δ-cost at most 1. For any path P from u to v in G, it holds that

‖P‖δ ≥ 3 · 4j ·
(
(1

k)j
)δ = 3 ·

(
4
kδ

)j

which goes to infinity if j → ∞ for k < 41/δ .

Combining Lemma 7 and Lemma 8 proves Theorem 6.

818 C. Schindelhauer, K. Volbert, and M. Ziegler

5.4 Fractal Dimension

The present section generalizes the construction and analysis used in Lemma 8. To
this end, consider a self-similar polygonal fractal curve Γ as the result of repeated
application of some generator K being a polygonal chain with starting point u and end
point v. This is illustrated in Fig. 2 showing a generator (left) and the resulting fractal
curve (right part); see also [14, 2]. But other examples are plenty: the KOCH Snowflake
or the space filling HILBERT Curve (Fig. 6). Recall that the fractal dimension of Γ is
defined as

log(number of self-similar pieces)
log(magnification factor)

Theorem 7. Let K be a polygonal chain, Γn the result of n-fold application of K, and
Γ the final self-similar polygonal fractal curve with dimension d. Then, for all δ < d,
there is no fixed C such that Γn is a (C, δ)-power spanner for all n.

Proof. Let p denote the number of self-similar pieces in Γn and m the magnification
factor. Then by definition, we have d = log(p)/ log(m). Now consider the δ-cost of the
(unique) path P in Γn from u to v. Since Γn is constructed recursively we get in the
n-th step:

‖P‖δ = pn ·
((1

m

)n
)δ

=
(p

mδ

)n

Note that ‖P‖δ is unbounded iff p/mδ > 1, that is, iff δ < log(p)/ log(m) = d.

Fig. 6. Two Generators and the Fractal Curves they induce due to KOCH and HILBERT

The fractal dimensions of the KOCH and HILBERT Curves are well-known. There-
fore by virtue of Theorem 7, the KOCH Curve is not a (·, δ)-power spanner for any
δ < log(4)/ log(3) ≈ 1.26; similarly, HILBERT’s Curve is not a (·, δ)-power spanner
for any δ < 2. One can show that KOCH’s Curve is a weak spanner (the proof is analo-
gous to Theorem 1). However HILBERT’s Curve is no weak spanner as its inner vertices
come arbitrarily close to each other. Further examples for self-similar polygonal curves,
e.g., SIERPINSKIS’s triangle, can be found in [14, 2].

Spanners, Weak Spanners, and Power Spanners 819

6 Power Spanner Hierarchy

In the following we show that for Δ > δ > 0, a (c, δ)-power spanner is also a (C, Δ)-
power spanner with C depending only on c and Δ/δ. Then we show that the converse
fails in general by presenting to each Δ > δ > 0 a family of graphs which are (c, Δ)-
power spanners for some constant c but no (C, δ)-power spanners for any fixed C.

Theorem 8. Let G = (V,E) be a (c, δ)-power spanner with V ⊆ R2, 0 < δ < Δ.
Then G is also a (C, Δ)-power spanner for C := cΔ/δ .

Proof. Let u,v ∈ V be two arbitrary vertices. Since G is a (c, δ)-power spanner there
exists a path P = (u = u1, . . . ,ul = v) with ‖P‖δ =

∑l−1
i=1 |ui − ui+1|δ ≤ c ·

|u− v|δ2. The function f(x) = xΔ/δ being convex on [0,∞[, one may apply JENSEN’s
Inequality:

‖P‖Δ =
l−1∑
i=1

|ui−ui+1|Δ =
l−1∑
i=1

(
|ui − ui+1|δ

)Δ/δ

≤

⎛⎝l−|!1∑
i=1

|ui−ui+1|δ
⎞⎠Δ/δ

≤cΔ/δ ·|u−v|Δ.

Theorem 9. Let 0 < δ < Δ. There is a family of geometric graphs which are (c, Δ)-
power spanners but no (C, δ)-power spanners for any fixed C.

Proof. We slightly modify the construction from the proof of Theorem 3 by placing n
vertices u = u1, . . . ,un = v on an appropriately scaled circle such that the Euclidean
distance between u and v is 1 and |vi − vi+1| = (1/i)1/δ for all i = 1, . . . , n − 1.
Now, in the graph G = (V,E) with edges (vi,vi+1), the unique path P from u to v
has Δ-cost

‖P‖Δ =
n−1∑
i=1

(1/i)Δ/δ ≤
∞∑
i=i

(1/i)Δ/δ =: c

a convergent series since Δ/δ > 1. This is to be compared to the cost of the direct link
from u to v which amounts to 1 both w.r.t. Δ and δ. On the other hand, the δ-cost of P
is given by the harmonic series

∑n−1
i=1 (1/i)δ/δ = Θ(log n) and thus cannot be bounded

by any C independent of n.

7 Higher-Dimensional Case

For simplicity, most results in this work have been formulated for the case of (not neces-
sarily planar) geometric graphs in the plane. They immediately apply to higher dimen-
sions as well, however with the exception of Section 5 (Weak versus Power Spanners).
In fact, similar techniques yield that, for instance in 3D, each weak c-spanner is a (C, δ)-
power spanner for δ ≥ 3 with C depending only on c and δ whereas to any δ < 3, there
are counter-examples of weak c-spanners that are not (C, δ)-power spanners for any
fixed C; analogously in higher dimensions.

820 C. Schindelhauer, K. Volbert, and M. Ziegler

8 Conclusions

We investigate the relations between spanners, weak spanners, and power spanners. In
the plane, for δ ≥ 2 it turns out that being a spanner is the strongest property, followed
by being a weak spanner and finally being a (·, δ)-power spanner. For 1 < δ < 2,
spanner is still strongest whereas weak spanner and (·, δ)-power spanner are not related
to each other. For 0 < δ < 1 finally, (·, δ)-power spanner implies both spanner and
weak spanner. For higher dimensions, similar relations/independencies hold. All stretch
factors in these relations are constant and are pairwise polynomially bounded.

In [9, 7] a geometric graph called YY or SparsY-Graph was investigated as a topol-
ogy for wireless networks. It is constructed by dividing the area around each vertex into
k ∈ N non-overlapping sectors or cones of angle θ = 2π/k each. In each sector of a
vertex, there is at most one outgoing edge and if there is one, then this goes to the near-
est neighbor in this sector. A vertex accepts in each of its sectors only one ingoing edge
and this must be the shortest one in this sector. For this graph the relation between weak
and power spanner is exemplarily investigated in [9, 15] by performing experiments on
uniformly and randomly distributed vertex sets. They conclude that the SparsY-Graph
might be a spanner and also a power spanner. The first conjecture is still open, while
the latter was independently proven in [8] and [7].

Observe that SparsY is well-known to yield a good weak spanner already for k > 6
[7]. Regarding that our Theorem 5 asserts any weak spanner to be also a (·, δ)-power
spanner for δ ≥ 2, this includes the above result and weakens the presumption from
k ≥ 120 [8] to k > 6.

Although our results are exhaustive with respect to the different kinds of geometric
graphs and in terms of δ, one might wonder about the optimality of the bounds obtained
for C’s dependence on c; for instance: Any c-spanner is a (C, δ)-power spanner for
C = cδ , δ > 1 ; and this bound is optimal. But is there some C = o(c4) such that any
weak c-spanner is a (C, δ)-power spanner as long as δ > 2 ? Is there some C = o(c8)
such that any weak c-spanner is a (C, 2)-power spanner ?

References

1. K. Alzoubi, X.-Y. Li, Y. Wang, P.J. Wan, and O. Frieder. Geometric spanners for wireless
ad hoc networks. IEEE Transactions on Parallel and Distributed Systems, 14(4):408–421,
2003.

2. D. Eppstein. The Geometry Junkyard: Fractals, www.ics.uci.edu/∼eppstein/ junkyard/
fractal.html.

3. D. Eppstein. Beta-skeletons have unbounded dilation. Technical Report ICS-TR-96-15,
1996.

4. D. Eppstein. Spanning trees and spanners. In Handbook of Computational Geometry, pages
425–461. 2000.

5. M. Fischer, T. Lukovszki, and M. Ziegler. Geometric searching in walkthrough animations
with weak spanners in real time. In 6th Annual European Symposium on Algorithms (ESA
’98), pages 163–174, 1998.

6. M. Fischer, F. Meyer auf der Heide, and W.-B. Strothmann. Dynamic data structures for
realtime management of large geometric scenes. In 5th Annual European Symposium on
Algorithms (ESA ’97), pages 157–170, 1997.

Spanners, Weak Spanners, and Power Spanners 821

7. M. Grünewald, T. Lukovszki, C. Schindelhauer, and K. Volbert. Distributed Maintenance
of Resource Efficient Wireless Network Topologies (Ext. Abstract). In 8th EURO-PAR’02,
pages 935–946, 2002.

8. L. Jia, R. Rajaraman, and C. Scheideler. On local algorithms for topology control and routing
in ad hoc networks. In Proc. 15th ACM Symposium on Parallel Algorithms and Architectures
(SPAA ’03), pages 220–229, 2003.

9. X.-Y. Li, P.-J. Wan, and Y. Wang. Power efficient and sparse spanner for wireless ad hoc
networks. In IEEE International Conference on Computer Communications and Networks
(ICCCN01), pages 564–567, 2001.

10. F. Meyer auf der Heide, C. Schindelhauer, K. Volbert, and M. Grünewald. Energy, conges-
tion and dilation in radio networks. In Proc. 14th Symposium on Parallel Algorithms and
Architectures (SPAA’02), pages 230–237, 2002.

11. F. Meyer auf der Heide, C. Schindelhauer, K. Volbert, and M. Grünewald. Congestion,
Dilation, and Energy in Radio Networks. Theory of Computing Systems, 37(3):343–370,
2004.

12. R. Rajaraman. Topology control and routing in ad hoc networks: a survey. SIGACT News,
33(2):60–73, 2002.

13. S. B. Rao and W. D. Smith. Approximating geometrical graphs via spanners and banyans. In
Proceedings of the 30th annual ACM symposium on Theory of computing, pages 540–550,
1998.

14. C. Tricot. Curves and Fractal Dimension. Springer, 1995.
15. K. Volbert. Experimental Analysis of Adjustable Sectorized Topologies for Static Ad Hoc

Networks, accepted for DIALM-POMC 2004.
16. Y. Wang and X.-Y. Li. Distributed Spanner with Bounded Degree for Wireless Ad Hoc

Networks. In Parallel and Distributed Computing Issues in Wireless networks and Mobile
Computing, page 120, 2002.

17. Y. Wang, X.-Y. Li, P.-J. Wan, and O. Frieder. Sparse power efficient topology for wireless
networks. In Proc. ACM Hawaii International Conference on System Sciences (HICSS’02),
page 296, 2002.

18. A. C.-C. Yao. On Constructing Minimum Spanning Trees in k-dimensional space and related
problems. SIAM J. Comput., 11:721–736, 1982.

Techniques for Indexing and Querying Temporal
Observations for a Collection of Objects�

(Extended Abstract)

Qingmin Shi and Joseph JaJa

Institute of Advanced Computer Studies, University of Maryland,
College Park, MD 20742, USA

{joseph, qshi}@umiacs.umd.edu

Abstract. We consider the problem of dynamically indexing temporal
observations about a collection of objects, each observation consisting of
a key identifying the object, a list of attribute values and a timestamp
indicating the time at which these values were recorded. We make no
assumptions about the rates at which these observations are collected,
nor do we assume that the various objects have about the same number
of observations. We develop indexing structures that are almost linear in
the total number of observations available at any given time instance, and
that support dynamic additions of new observations in polylogarithmic
time. Moreover, these structures allow the quick handling of queries to
identify objects whose attribute values fall within a certain range at
every time instance of a specified time interval. Provably good bounds
are established.

1 Introduction

Consider the scenario in which temporal observations about a large collection of
objects are being collected asynchronously. Each observation record consists of
a key identifying the object, a list of the values of a number of attributes, and a
timestamp indicating the time at which these particular values were recorded. We
make no assumptions about the rates at which these observations are collected.
We allow the collection of objects to vary with time, with possibly new objects
added to our collection at any time instances. The only assumption we make
is that the timestamp of a new observation record for a given object has to be
larger than the timestamp of the object’s observations that are already stored
in our data structure.

This type of data appears in many real world applications. For example, in
the Great Duck Island (GDI) system [13] for monitoring the microclimates in and
around nesting burrows used by the Leach’s Storm Petrel, various environmental

� Supported in part by the National Science Foundation through the National Partner-
ship for Advanced Computational Infrastructure (NPACI), DoD-MD Procurement
under contract MDA90402C0428, and NASA under the ESIP Program NCC5300.

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 822–834, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Techniques for Indexing and Querying Temporal Observations 823

conditions such as temperature, photoresistor, and barometric pressure are mea-
sured by a collection of sensors at different geolocations and sent to a Postgress
database for storage and analysis. The Automated Local Evaluation in Real-
Time (ALERT) system [1] periodically collect meteorological/hydrological data
such as water level, temperature, and wind speed at ALERT sensor sites, which
is then transmitted to the base station for processing and web-based querying.
More and more car-rental companies have installed GPS systems on its fleet of
vehicles, which report back the speed and location of these vehicles.

While queries on “snapshots” of the temporal data have been studied for
some time (see for example [22] for a survey), the problem of quickly detecting
the temporal patterns of such data collections remains open. We believe that
a crucial first step towards solving this problem is to develop techniques to
support the discovery of a set of core temporal patterns. In this paper, we define
the conjunctive temporal range search problem, which is an extension of the well-
known and fundamental range search problem and develop efficient techniques
to handle such a problem.

A conjunctive temporal range search problem involves dynamically main-
taining an indexing structure to enable quick identification of objects whose at-
tributes consistently fall within a set of value ranges during a given time interval.
Note that queries of this type are seemingly similar but actually very different
from the following disjunctive temporal range queries: identify objects whose at-
tributes fall within a set of value ranges at any time instance during a given
time interval. Since we will not address the disjunctive temporal range queries
in this paper (results on this type of queries will be mentioned in Section 2), we
will use the term temporal range query to refer to conjunctive temporal range
query for simplicity.

Applications involving temporal data can benefit from an efficient solution to
this problem. For example, in a flood warning system, identifying locations where
the water level are above certain threshold during a limited time period could
be very important; and a car rental company many wish to identify the vehicles
in its fleet that have been driven within the boundary of a certain geographical
area during a specified time interval.

In this paper, we develop efficient indexing structures to handle the conjunc-
tive temporal range queries which achieve provably good performance bounds in
terms of space, querying time, and update time.

1.1 Problem Definition and Main Results

Consider a set S of n objects {O1, O2, . . . , On}, each identified by a key oi and
characterized by a set of d attributes {vi,1(t), vi,2(t), . . . , vi,d(t)} whose values
change over time t. Observations about each object are collected at discrete
time instances. Let mi be the number of observations about object Oi, say col-
lected at time instances t1i < t2i < · · · < tmi

i . We denote the observations of Oi

at tji as a vector vj
i = [vj

i,1, v
j
i,2, . . . , v

j
i,d], where vj

i,l = vi,l(t
j
i) for l = 1, . . . , d.

The total number of observations for all the objects in S ism =
∑

i=1,...,nmi. We

824 Q. Shi and J. JaJa

denote the number of distinct time instances among {tji |1 ≤ i ≤ n, 1 ≤ j ≤ mi}
as m′ ≤ m.

A temporal range query is formally defined as follows:
Given two vectors a = [a1, a2, . . . , ad] and b = [b1, b2, . . . , bd], and a time interval
[ts, te], determine the setQ of objects such that Oi ∈ Q if and only if the following
two conditions are satisfied:

– ∃j such that tji ∈ {tli|l = 1, . . . ,mi} and ts ≤ tji ≤ te, i.e., there is at least
one observation of Oi recorded between ts and te.1

– ∀j such that tji ∈ {tli|l = 1, . . . ,mi} and ts ≤ tji ≤ te, we have ak ≤ vj
i,k ≤ bk

for all 1 ≤ k ≤ d.

We will call each such object a proper object with respect to the query.
Let f denote the output size of such a query. The main results of this paper

are summarized as the following four theorems. The first three theorems deal
with the case of a single variable, while Theorem 4 deals with the general case.

Theorem 1. Any one-sided temporal range query on n single-attribute objects
with a total number of m observations can be answered in O(logm log2 n + f)
time using a data structure of size O(m log n ·min{logm,n}). This data struc-
ture can be constructed in O(m logm log2 n) time and updated in O(logm log2 n)
amortized time.

Theorem 2. Any one-sided temporal range query on n single-attribute objects
with a total number of m observations can be answered in O(logm(log2 n+ f))
time using O(m log n) space. This data structure can be constructed in O(m logm
log2 n) time and updated in O(logm log2 n) amortized time.

Theorem 3. Any one-sided temporal range query on n single-attribute objects
with a total number of m observations can be answered in O(log4m + f)) time
using a O(m logm) space data structure. This data structure can be constructed
in O(m log2m) time and updated in O(log3m) amortized time.

Theorem 4. Any temporal range query on n objects with a total number of m
observations, and involving a time hierarchy with m′ predefined time intervals at
the lowest level, can be answered in O(log2d−1 n+f) time using O(m log2d−2 n+
m′) space. The preprocessing takes O(m log2d−1 n+m′) time. A new observation
can be added in O(log2d−1 n +Δm′) amortized time, where Δm′ is the number
of new time intervals added to the lowest level of the hierarchy.

2 Previous Related Work

A related class of problems that have been studied in the literature, especially
the database literature (see for example [12, 15, 18, 26, 27]), deals with temporal

1 This condition can be removed if necessary by introducing a simple additional data
structure [25] based on priority search trees [16].

Techniques for Indexing and Querying Temporal Observations 825

data by appending a time interval to each piece of data separately, thus treating
each observation, rather than each object, as an individual entity. These tech-
niques work well for queries that involve only a single time instance but are ill
suited for the temporal range queries studied here because applying them di-
rectly would result in algorithms whose execution time depends on the number
of time instances in the query time interval, which is undesirable for our general
problem.

The disjunctive temporal range queries can be reduced to the so called gen-
eralized intersection problems (see [10, 9, 8, 3, 17, 24] for results on this topic),
and seems to be easier than the conjunctive temporal range queries. Indeed, we
have shown in [24] that a one-sided disjunctive temporal range query on single-
attribute objects can be handled optimally in O(logm + f) time using linear
space. Similar to disjunctive temporal range queries is the problem of indexing
moving objects (see for example [2, 11, 21, 5, 20]). We should emphasize again
that a conjunctive temporal range query requires every observation of a proper
object in the time interval to fall within the value ranges while a disjunctive
temporal range query needs only one such observation.

Finally, a “synchronized” and static version of this problem, in which obser-
vations of the objects are all collected at the same sequence of time instances
and are available beforehand, was studied in our previous paper [23].

3 One-Sided Temporal Range Queries: The Static Case

3.1 Preliminaries

Let vj
i denote the observation of object Oi at time instance tji . Given a query

represented by the triple (ts, te, a), we aim at identifying the objects that have
at least one observation during the time interval [ts, te] and whose observations
within that time interval are all greater than or equal to a. We call this type
of queries one-sided temporal range queries. We will give three solutions to this
problem, each providing a tradeoff between the storage cost and the query time.

We start by making the following straightforward observation.

Observation 1. An object Oi is proper with respect to the query (ts, te, a) if and
only if min{vj

i |ts ≤ tji ≤ te} ≥ a.

Note that we define min{vj
i |ts ≤ tji ≤ te} = −∞ whenever no j exists such

that ts ≤ tji ≤ te. We define the dominant interval Ij
i = (sj

i , e
j
i) of observation

vj
i as the longest open time interval during which vj

i is the smallest observation
of Oi. More specifically, Let vj1

i be the latest observation such that j1 < j and
vj1

i ≤ vj
i and vj2

i be the earliest observation such that j2 > j and vj2
i < vj

i . Then
sj

i = j1 and ej
i = j2. If j1 does not exist, then sj

i = −∞. Similarly, ej
i = +∞ if

j2 does not exist. We thus transform an observation vj
i into a 5-tuple (or tuple

for short) (vj
i , t

j
i , s

j
i , e

j
i , oi).

The following lemma is critical to our approach.

826 Q. Shi and J. JaJa

Lemma 1. An object Oi is proper with respect to the query (ts, te, a) if and
only if there exists a unique tuple (vj

i , t
j
i , s

j
i , e

j
i , oi) such that (sj

i , e
j
i) ⊃ [ts, te],

tji ∈ [ts, te], and vj
i ≥ a.

Proof. By definition, an object Oi is proper only if no observation is smaller
than a during the time interval [ts, te]. Let vj

i = min{vl
i|ts ≤ tli ≤ te} (it always

exists for a proper object), where j is the smallest such index if multiple minima
exist. It is obvious that the tuple (vj

i , t
j
i , s

j
i , e

j
i , oi) satisfies the three conditions

stated in the lemma. On the other hand, if Oi is not proper, then either there
is no observation of Oi in [ts, te], or the value of at least one such observation is
less than a. In the latter case, no interval (sl

i, e
l
i) with tli ∈ [ts, te] and vl

i ≥ a will
be able to cover [ts, te]. The uniqueness of this tuple is due to the fact that the
dominant intervals are maximal.
�

3.2 An O(m log m)-Space O(log n log m + f)-Query Time Solution

We call the data structure proposed in this section the fast temporal range tree
(FTR-tree) because it is the fastest among the three solutions proposed; and the
one discussed in Section 3.3, which uses less space but requires more query time,
is called the compact temporal range tree (CTR-tree).

Let (t1, t2, . . . , tm′) be the sorted list of all the distinct time instances. The
skeleton of the FTR-tree is a balanced binary tree T built on this list. Each node
u is associated with a set S(u) of up to n tuples (n is the number of objects). If
u is the kth leaf starting from the left, then S(u) = {(vj

i , t
j
i , s

j
i , e

j
i , oi)|tji = tk}.

If u is an internal node with two children v and w, we decide for each object Oi

which tuple to be added to S(u) by examining the tuples corresponding to Oi

in v and w. If S(v) and S(w) do not contain any such tuple, then no tuple for
Oi will be added to S(u). If only one of them do, then that tuple is included
in S(u). If both of them do, then the tuple with the longest dominant interval
is chosen. Note that in this case the longer interval always contains the shorter
one. Figure 1 illustrates how the tuples associated with each node are collected
for an example consisting of two objects and a total of 16 observations.

Given a query (ts, te, a), we can easily find the set of at most 2(logm′ − 1)
allocation nodes in T that correspond to the interval [ts, te]. An allocation node
is a node whose corresponding time interval is fully contained in [ts, te] and that
of whose parent is not. For each allocation node v, we only need to report those
tuples in S(v) that satisfy (sj

i , e
j
i) ⊃ [ts, te], and vj

i ≥ a. Lemma 1 guarantees
that exactly one such tuple will be reported for each proper object. No further
search on v’s descendants is necessary.

For each allocation node v, looking for tuples (vj
i , t

j
i , s

j
i , e

j
i , oi) that satisfy

(sj
i , e

j
i) ⊃ [ts, te] and vj

i ≥ a is equivalent to a three dimensional dominance
reporting problem, which can be solved in O(logn(v) + f(v)) time and O(n(v))
space using the data structure of Makris and Tsakalidis [14], which we will refer
to as the dominance tree, where n(v) is the number of tuples stored in v and
f(v) is the number of tuples reported.

We show in the full paper [25] that this scheme achieves the following.

Techniques for Indexing and Querying Temporal Observations 827

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16t

48 6 3 5 1 7 2

25 4 1 7 3 6 8O2

O1

(8,- ,3) (4,- ,7)
(6,3,7)

(3,- ,9)
(5,7,9)

(1,- ,) (7,9,15) (2,9,)

(2,- ,10) (1,- ,) (3,10,) (6,12,) (8,14,)

8 8

8 8

8 8 8
8 8 8 8 8

8
(1,- ,)
(1,- ,)

(1,- ,)

(3,- ,9) (1,- ,)

(2,9,)(4,- ,7)

(4,- ,7)

(8,- ,3)

(5,- ,5)

(2,- ,10)

(2,- ,10)
(3,- ,9)

(1,- ,)

(2,- ,10) (1,- ,) (6,12,)
(2,9,)

(6,12,)
(7,9,15)

(3,10,)(1,- ,)
(1,- ,)(3,- ,9) (5,- ,5)

8
8 8

8

8 8
8 8

8
8 8

8

8

8
8

8
8 8

8

8
8

8
8

8 8
88

8
8 8

 (5,- ,5)
(4,5,10) (7,10,12)

8
8

8(8,14,)

Fig. 1. The observations of two objects and the corresponding FTR-tree. Each node
is associated with up to two tuples, the one above the horizontal line corresponds to
object O1 and the one below it corresponds to object O2. We omit the values of tj

i and
oi for each tuple

Theorem 5. Using O(mmin(logm,n)) space, any one-sided temporal range
query involving n objects with a total number of m observations can be handled
in O(logn logm+ f) time, where f is the output size.

3.3 An O(m)-Space O(log m(log n + f))-Query Time Solution

In a FTR-tree, a tuple could be stored at multiple levels of the primary tree T . In
this section, we propose the CTR-trees by removing these duplicates. Consider
an arbitrary observation vj

i stored in an node u of T . We stipulate that vj
i be

removed from u if there is no observation of Oi stored in the sibling of u. It is
easy to verify that the modified data structure uses O(m) space.

To ensure the correctness of our answer to a query, we modify the algorithm
of Section 3.2 to search not only the allocation nodes, but also the nodes on the
path from the root to them. Although no proper object will be missed in this
process, some tuples that do not satisfy the conditions stated in Lemma 1 may
be mistakenly reported. Fortunately, these tuples always correspond to proper
objects. The only side effect is that an object may be reported up to O(logm)
times, once at each level of T .

It is easy to see that the total number of nodes on the paths from the root
to the allocation nodes is O(logm), and O(logn) time is taken at each of them.
Thus we have the following theorem.

Theorem 6. Using O(m) space, any one-sided temporal range query involving n
objects with a total of m observations can be answered in O(logm log n+f logm)
time, where f is the number of proper objects.

828 Q. Shi and J. JaJa

3.4 An O(m)-Space O(log3 m + f)-Query Time Solution

In this section, we give a linear space solution that reports each proper object
exactly once. We call it linear temporal range tree (LTR-tree). In designing the
LTR-tree, we apply twice the interval tree techniques of Edelsbrunner [7] and
use dominance trees to handle the queries.

Rewriting the conditions stated in Lemma 1, we have ts ∈ (sj
i , t

j
i], te ∈ [tji , e

j
i),

and vj
i ≥ a. Each tuple (vj

i , t
j
i , s

j
i , e

j
i , oi) can be viewed as a rectangular plate in a

three-dimensional space whose edges are parallel to the x- and y-axes, and whose
projections to these two axes are (sj

i , t
j
i] and [tji , e

j
i) respectively; and the query

can be viewed as finding the plates that are intersected by a ray perpendicular to
the x-y plane shooting in the direction of positive z-axis from the point (ts, te, a).

We consider the projections of these plates to the x-y plane, which are rect-
angles. The primary structure of the LTR-tree is an interval tree T on the set
of intervals {(sj

i , t
j
i]|i = 1, . . . , n; j = 1, . . . ,mi}, thus distributing the rectangles

to the nodes of T . Let S(v) be the set of rectangles associated with a node v of
T . We build a secondary interval tree T (v) on S(v), this time based on vertical
edges of the rectangles in S(v). By doing so, we further distribute the tuples in
S(v) to the nodes of T (v). For the tuples associated with each node μ of T (v), we
construct four versions T0(μ), T1(μ), T2(μ), and T3(μ) of the dominance tree, for
the following point dominance queries respectively: 1. (ts > sj

i , te ≥ tji , v
j
i ≥ a); 2.

(ts > sj
i , te < ej

i , v
j
i ≥ a); 3. (ts ≤ tji , te ≥ tji , v

j
i ≥ a); 4. (ts ≤ tji , te < ej

i , v
j
i ≥ a).

To answer a query (ts, te, a), we start from the root r of the primary tree. We
first access T (r) to report tuples stored at r and then check if ts ≤ x(r). If this
is the case, we recursively access the subtree rooted at r’s left child; otherwise,
we recursively access the subtree rooted at r’s right child. When accessing a
secondary tree T (u), we start from its root α. We first compare te with y(α).
Depending on whether ts ≤ x(u) and whether te < y(α), we access one of the
four dominance trees associated with α. More specifically, we access T0(α) if
ts ≤ x(u) and te < y(α); T1(α) if ts ≤ x(u) and te ≥ y(α); T2(α) if ts ≥ x(u)
and te < y(α); and T3(α) if ts ≥ x(u) and te ≥ y(α). After the points associated
with α are reported, we recursively access its left child if te ≤ y(α) or its right
child otherwise.

In the full paper [25], we provide the correctness proof of this scheme and
show that it has the complexity bounds stated in the following theorem.

Theorem 7. Using O(m) space, any one-sided temporal range query involving
n objects with a total of m observations can be answered in O(log3m+ f) time,
where f is the number of proper objects.

4 One-Sided Temporal Range Queries: The Dynamic
Case

In this section, we consider the problem of designing dynamic indexing structures
that enable the quick handling of temporal range queries and at the same time
can be efficiently updated when new observations are added. As stated before,

Techniques for Indexing and Querying Temporal Observations 829

we make the assumption that the timestamp of a new observation of an object
Oi is larger than that of any existing observations of Oi. Note that adding a new
object simply means adding the first observation of that object.

4.1 Creating and Updating Tuples

The addition of new observations may require that many of the existing tuples
corresponding to the same object be updated to reflect the possible change of
their dominant intervals. To facilitate the quick identification of such tuples,
we maintain a Cartesian tree [28] Ci for each object Oi. A Cartesian tree for a
sequence (tji , v

j
i), 1 ≤ j ≤ mi, is a binary tree with mi nodes. The root stores

the smallest value vj
i over the time interval [t1i , t

mi
i], where j is the smallest such

index if multiple minima exist. Its left child is the root of the Cartesian tree for
observations {v1

i , . . . , v
j−1
i }; and its right child is the root of the Cartesian tree

for observations {vj+1
i , . . . , vmi

i }. Note that a node may not have a left or right
child. The Cartesian tree Ci can be built in O(mi logmi) time by inserting the
observations in order of their timestamps, using the algorithm we discuss next.

Let vmi+1
i be the new observation of object Oi with a timestamp tmi+1

i , where
tmi+1
i > tmi

i . Let Πi be the rightmost path of the Cartesian tree Ci before the
addition of vmi+1

i and πi be the prefix of Πi such that each node on πi, except
the root, is the right child of its parent. To update Ci, we first find the pair
of parent-child nodes upred and usucc on πi and the corresponding observations
v

jpred
i and vjsucc

i such that vjpred
i ≤ vmi+1

i < vjsucc
i . upred (usucc) is null if vmi+1

i

is less than (greater than or equal to) all the observations associated with πi.
Since the values of the observations corresponding to the nodes on πi are non-
decreasing from the root, we can easily find this pair in O(logmi) time using
binary search.

Now consider nodes upred and usucc. If upred is not null, then the new node u
that corresponds to vmi+1

i becomes its right child. If usucc is not null, it becomes
the left child of u. The node u becomes the root of the new Ci if upred is null.

The following lemma guarantees that on average, only a constant number of
tuples need to be updated.

Lemma 2. Let mi be the number of observations of object Oi maintained in the
current Cartesian tree Ci prior to the insertion of the new observation vmi+1

i

with a time stamp tmi+1. Then the g tuples that need to be updated after inserting
vmi+1

i can be identified in O(logmi + g) time. Furthermore the amortized value
of g over the next mi insertions corresponding to Oi is at most 2.

Proof (sketch). Consider the insertion of a new observation vmi+1
i of Oi. We

only need to update the tuples whose corresponding observations are associated
with the suffix of πi, starting from usucc. Let hj

i be the length of πi in the version
of Ci with j observations and let lji be the height of the node uprec (the height
of the root is 1). Then hj

i − l
j
i existing tuples need to be updated. These tuples

can be retrieved in O(1) time each, provided that usucc has been located, a task
that can be done in O(log hj

i) time. Furthermore, the length hj+1
i of the new πi

830 Q. Shi and J. JaJa

after the insertion is lji + 1. Adding up hj
i − l

j
i for j = mi, . . . , 2mi − 1 gives the

lemma.
�

The following lemma gives the aggregate number of tuples that need to be
updated over a sequence of adding new observations.

Lemma 3. Let m be the number of observations maintained in the current pri-
mary data structure corresponding to all the objects. Then the aggregate number
of tuples that need to be updated over the insertions of the next k new observa-
tions is less than m+ k.

Lemma 3 allows us to handle the addition by first identifying the old tuples
that need to be updated, followed by performing each of the updates, and finally
inserting the new tuple.

4.2 Dynamic Data Structures for 3-D Dominance Queries

We present in this section a data structure called dynamic dominance tree that
supports 3-D dominance report queries and dynamic insertion and deletion. We
now elaborate on this data structure using the version of dominance query in
which we are asked to find all the points p = (px, py, pz) that are dominated by
a query point q = (qx, qy, qz), i.e., px ≤ qx, py ≤ qy, and pz ≤ qz.

Given a set of n 3-D points, we first build a weight-balanced B-tree [4] T of
degree c on the z-coordinates sorted in increasing order, where c is a constant.
For each internal node v, we build a priority search tree [16] that stores the
set of points in the subtree of v projected onto the x-y plane. A dominance
query can be answered by first identifying the O(c log n) allocation nodes in
T that together correspond to the z-range (−∞, qz], and then searching the
corresponding priority search trees to answer the query (px ≤ qx; py ≤ qy).

Insertion and deletion on dynamic dominance tree are very similar to the ones
described in [4] and thus is omitted here. Generalization of the above results to
higher dimensions is straightforward and is summarized by the following lemma.

Lemma 4. For any d ≥ 2, using O(n logd−2 n) space and O(n logd−1 n) pre-
processing, we can store n d-dimensional points in a data structure such that
dominance queries can be answered in O(logd−1 n+ f) time and updates can be
performed in O(logd−1 n) amortized time.

4.3 Dynamic FTR-Tree

To make the structure in Section 3.2 dynamic, we replace the binary tree built
on the time instances by a weight-balanced B-tree T of degree c. Each node is
associated with a set of tuples, each representing an object. The dominant inter-
val of a tuple associated with an internal node v covers the dominant intervals
of all the tuples stored in the subtree of v representing the same object. With
each node v of T , we store the dynamic dominance tree structure Tdom(v) built
on the tuples stored at v, and a dynamic binary search tree, say a red-black
tree [6], Tkey(v) built on the keys associated with these tuples. It can be shown

Techniques for Indexing and Querying Temporal Observations 831

using similar arguments as in the static case that the size of this data struc-
ture is O(m log nmin{logm,n}) (the extra logn factor is due to the dynamic
dominance tree structure being used).

The query process is almost the same as in the static case. The only difference
is that we now have up to O(c logm) allocation nodes. Each such node v takes
O(log2 n+ f(v)) time to search.

There are two major steps required to update our overall data structure. The
first is to update the tuples that are no longer valid, and the second is to insert
the new time stamp and the new tuple into the primary tree.

Consider the update step. Suppose that the tuple (vl
i, t

l
i, s

l
i, e

l
i, oi) needs to

be updated. Notice that the entry tli of this tuple does not change. Therefore,
there is no need to update the primary tree. Furthermore, we have the following
lemma.

Lemma 5. An updated tuple associated with a previous observation should be
stored in the auxiliary tree structures Tdom(v) and Tkey(v) of the new primary
structure if and only if the old tuple is also stored there.

Therefore, what we need to do is to go through each node on the path from
the root to the leaf node corresponding to tli. For each node v on this path, we
search Tkey(v) using oi to find the old tuple and replace it with the new one.
Then we remove the same old tuple from, and insert the new tuple into, Tdom(v).
The whole process takes O(logm log2 n) time.

To insert a new tuple (vj+1
i , tj+1

i , sj+1
i ,+∞, oi), we first insert the new time

instance into the primary tree T . This may cause up to O(logm) nodes to split,
which can be handled in O(logm log2 n) amortized time following similar ar-
guments as in Section 3.2. To insert the new tuple, we traverse the path from
the leaf node corresponding to tj+1

i up toward the root. At each node v visited,
we search the representative tuple of Oi in Tkey(v) using oi. If there is no such
tuple, we insert the new tuple into both Tkey(v) and Tdom(v). If one such tuple
is found, we check if it needs to be replaced by the new tuple. If it does, then
we remove the old tuple from and insert the new tuple into both Tkey(v) and
Tdom(v). Otherwise, we do not need to visit any of v’s ancestors. The full proof
of Theorem 1 is given in [25].

In the full paper [25], we show how to use similar techniques to show Theo-
rems 2 and 3 about the CTR- and the LTR-trees.

5 Handling the General Temporal Queries

For the general problem, we assume that we have a predefined time hierarchy im-
posed on our time line, say starting at a fixed time instance t0 until tm+1 = +∞,
such that all queries involve one of the time intervals defined in this hierarchy.
This is indeed the case in many applications such as OLAPs. We are interested
in queries that will identify objects whose attributes fall within certain ranges
at every time instance in one of the time intervals defined by the hierarchy.

832 Q. Shi and J. JaJa

We formally define the time hierarchy as a tree T = (V,E). Each node v of T
is associated with a time interval I(v) = [ts, te) at a certain level of this hierarchy.
An internal node v has a set of children that correspond to the time intervals
of a finer granularity. Except for the root, which is associated with the time
interval [t0,+∞), the time interval associated with any other internal node v is
I(v) =

⋃
u∈children(v) I(u). The leaves correspond to time intervals of the finest

granularity in the hierarchy. A temporal range query on this time hierarchy is
defined as follows.

Given two vectors a = [a1, a2, . . . , ad] and b = [b1, b2, . . . , bd], and a node
v ∈ V , determine the set Q of objects such that Oi ∈ Q if and only if the
following two conditions are true:

– There exist at least one observation taken at time tji ∈ I(v).
– For every observation vj

i such that tji ∈ I(v), we have ak ≤ vj
i,k ≤ bk for

k = 1, 2, . . . , d.

We store at each node v a set S(v) of (2d+1)-tuples: S(v) = {(minv
i,1,maxv

i,1,

. . . ,minv
i,d,maxv

i,d, oi)|∃j, tji ∈ I(v)}, where minv
i,l and maxv

i,l are the minimum
and maximum values of the lth attribute of Oi during the time interval I(v).
If there is no observation for Oi during I(v), then there is no tuple in S(v)
representing Oi. To be able to tell which objects are represented in v, we maintain
a red-black tree Tkey(v) to index the tuples in S(v) on the keys oi.

By Observation 1, we can answer a query by determining the (2d+1)-tuples at
v which satisfy: maxv

i,1 ≤ bl and minv
i,1 ≥ al, for all l = 1, 2, . . . , d. Finding such

tuples in S(v) is equivalent to answering a (2d)-dimensional dominance query,
which can be handled in O(log2d−1 n+f(v)) time using a data structure Tdom(v)
of size O(n log2d−2 n). The total number of tuples stored in T is O(m), since each
tuple is stored in a constant number of nodes, one at each level of the hierarchy
(the number of hierarchy levels is assumed to be a constant independent of
the number of observations). Let n(v) be the number of tuples stored in v.
The overall size of the data structure is O

(∑
v∈V n(v) log2d−2 n(v) +m′

)
=

O
(
m log2d−2 n+m′

)
, where m′ is the number of leaves in T , which is typically

much smaller than m. The construction of this data structure is straightforward.
We first use O(m) time to construct the set S(v) for each node v. We then spend
O(n(v) logn(v)) time to build Tkey(v) and O(n(v) log2d−1 n(v)) time to build
Tdom(v). The overall preprocessing time is O(m log2d−1 n+m′).

Details of adding new observations and the full proof of Theorem 4 are pro-
vided in the full paper [25].

References

[1] http://www.alertsystems.org/.
[2] P. K. Agarwal, L. Arge, and J. Erickson. Indexing moving points. In 19th ACM

Symposium on Principles of Database Systems, pages 175–186, 2000.
[3] P. K. Agarwal, S. Govindarajan, and S. Muthukrishnan. Range search in categor-

ical data: color range searching on grid. In ESA’02, pages 17–28, 2002.

Techniques for Indexing and Querying Temporal Observations 833

[4] L. Arge and J. S. Vitter. Optimal dynamic interval management in external
memory. In FOCS’96, pages 560–569, Oct. 1996.

[5] V. P. Chakka, A. Everspaugh, and J. M. Patel. Indexing large trajectory data sets
with SETI. In 1st Biennial Conf. on Innovative Data Systems Research, 2003.

[6] Cormen, Leiserson, and Rivest. Introduction to Algorithms. MIT Press, 1990.
[7] H. Edelsbrunner. A new approach to rectangle intersections, part I. Int. J. Com-

puter Mathematics, 13:209–219, 1983.
[8] P. Gupta, R. Janardan, and M. Smid. Computational geometry: generalized inter-

section searching. In Handbook of Data Structures and Applications. CRC Press.
[9] P. Gupta, R. Janardan, and M. Smid. Further results on generalized intersec-

tion searching problems: counting, reporting, and dynamization. Journal of Algo-
rithms, 19:282–317, 1995.

[10] R. Janardan and M. Lopez. Generalized intersection searching problems. Inter-
national Journal of Computational Geometry & Applications, 3(1):39–69, 1993.

[11] G. Kollios, D. Gunopulos, and V. J. Tsotras. On indexing mobile objects. In
PODS’99, pages 261–272, 1999.

[12] S. Lanka and E. Mays. Fully persistent B+-trees. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, pages 426–435, 1991.

[13] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson. Wire-
less sensor networks for habitat monitoring. In ACM International Workshop on
Wireless Sensor Networks and Applications, Sept. 2002.

[14] C. Makris and A. K. Tsakalidis. Algorithms for three-dimensional dominance
searching in linear space. Information Processing Letters, 66(6):277–283, 1998.

[15] Y. Manolopoulos and G. Kapetanakis. Overlapping B+-trees for temporal data.
In Proc. of the 5th Jerusalem Conf. on Info. Tech., pages 491–498, 1990.

[16] E. M. McCreight. Priority search trees. SIAM J. Computing, 14(2):257–276, 1985.
[17] C. W. Mortensen. Generalized static orthogonal range searching in less space.

Technical Report TR-2003-22, The IT University of Copenhagen, 2003.
[18] M. A. Nascimento and J. R. O. Silva. Towards historical R-trees. In Proceedings

of the ACM Symposium on Applied Computing, pages 235–240, Feb. 1998.
[19] M. H. Overmars. The design of dynamic data structures. Springer-Verlag, LNCS

156, 1983.
[20] D. Pfoser, C. S. Jensen, and Y. Theodoridis. Novel approaches in query processing

for moving object trajectories. In VLDB’00, pages 395–406, Sept. 2000.
[21] S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez. Indexing the

positions of continuously moving objects. In Proc. of the ACM SIGMOD Int.
Conf. on Management of Data, pages 331–342, 2000.

[22] B. Salzberg and V. J. Tsotras. Comparison of access methods for time-evolving
data. ACM Computing Surveys, 31(2):158–221, 1999.

[23] Q. Shi and J. JaJa. Fast algorithms for a class of temporal range queries. In
WADS’03), pages 91–102, Ottawa, Canada, 2003.

[24] Q. Shi and J. JaJa. Optimal and near-optimal algorithms for generalized inter-
section reporting on pointer machines. Technical Report CS-TR-4542, Institute
of Advanced Computer Studies (UMIACS), University of Maryland, 2003.

[25] Q. Shi and J. JaJa. Techniques for indexing and querying temporal observations
for a collection of objects. Technical Report CS-TR-4503, Institute of Advanced
Computer Studies (UMIACS), University of Maryland, 2003.

[26] Y. Tao and D. Papadias. Efficient historical R-trees. In Proceedings of the 13th Int.
Conf. on Scientific and Statistical Database Management, pages 223–232, 2001.

834 Q. Shi and J. JaJa

[27] T. Tzouramanis, Y. Manolopoulos, and M. Vassilakopoulos. Overlapping Linear
Quadtrees: A spatio-temporal access method. In Proc. of the 6th ACM Symp. on
Advances in Geo. Info. Systems (ACM-GIS), pages 1–7, Bethesda, MD, 1998.

[28] J. Vuillemin. A unifying look at data structures. CACM, 23(4):229–239, 1980.

Approximation Algorithms for the Consecutive
Ones Submatrix Problem on Sparse Matrices�

Jinsong Tan and Louxin Zhang

Department of Mathematics, National University of Singapore,
2 Science Drive 2, Singapore 117543

{mattjs, matzlx}@nus.edu.sg

Abstract. A 0-1 matrix has the Consecutive Ones Property (C1P) if
there is a permutation of its columns that leaves the 1’s consecutive in
each row. The Consecutive Ones Submatrix (COS) problem is, given a
0-1 matrix A, to find the largest number of columns of A that form a
submatrix with the C1P property. Such a problem has potential appli-
cations in physical mapping with hybridization data. This paper proves
that the COS problem remains NP-hard for i) (2, 3)-matrices with at
most two 1’s in each column and at most three 1’s in each row and for
ii) (3, 2)-matrices with at most three 1’s in each column and at most
two 1’s in each row. This solves an open problem posed in a recent paper
of Hajiaghayi and Ganjali [12]. We further prove that the COS problem
is 0.8-approximatable for (2, 3)-matrices and 0.5-approximatable for the
matrices in which each column contains at most two 1’s and for (3, 2)-
matrices.

1 Introduction

A 0-1 matrix is said to have the Consecutive Ones Property (C1P) if there is
a permutation of its columns that leaves the 1’s consecutive in each row. This
property was first mentioned by an archaeologist named Petrie in 1899 [15]. In
the last three decades, the study of the C1P property for a given 0-1 matrix
found different applications in graph theory [7, 15], computer science [5, 9], and
genome sequencing [20].

For sequencing large genomes, biologists first construct a clone library con-
sisting of thousands of clones. Each clone represents a DNA fragment of small
size. Then, they map each clone and assemble these maps to determine the map
of the entire genome using overlapping between the clones (overlapping can be
achieved by using a few restriction enzymes). One approach to determine whether
two clones overlap or not is based on hybridization with short probes. In this
approach, a clone is exposed to a number of probes and which of these probes
hybridize to the clone is determined. Therefore, for the map assembly problem

� The research was partially supported by the Biomedical Research Council of Singa-
pore (BMRC01/1/21/19/140).

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 835–846, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

836 J. Tan and L. Zhang

with m clones and n probes, the experimental data is a n×m matrix A = (aij),
where aij = 1 if clone cj hybridizes with probe pi, and aij = 0 otherwise. If the
probes are STS’s, each probe is unlikely to occur twice in the genome and hence
this leads to physical mapping with unique probes [6]. If an experimental data
matrix A is error-free, it has the C1P property and there are efficient algorithms
for constructing a correct ordering of clones and probes [7, 3, 2]. However, in
reality, physical mapping is prone to various errors and the physical mapping
problem with error and uncertainties becomes extremely difficult [2, 14, 10, 19].
This motivates us to study the following problem

Consecutive Ones Submatrix (COS)
Instance: A 0-1 matrix A.
Question: Find the largest number of columns of A that form a submatrix with
C1P property.

The decision version of this problem is one of the earliest NP-complete problems
appearing in the Garey and Johnson’s book [8]. However, the NP-completeness
proof was misreferred to in the book. Recently, Hajiaghayi and Ganjali gave a
proof [12]. Actually, they proved that the COS problem is NP-complete even
for 0-1 matrices in which there are at most two 1’s in each column and at most
four 1’s in each row. On the other hand, the COS problem can be solved in
polynomial time for 0-1 matrices with at most two 1’s in each row and column.
Therefore, their work raises the problem of weather the COS problem remains
NP-complete or not for i) (3, 2)-matrices which have at most two 1’s in each row
and at most three 1’s in each column and for ii) (2, 3)-matrices which have at
most three 1’s in each row and at most two 1’s in each column.

Studying the COS problem for matrices with a small number of 1’s in column
and/or rows is not only theoretically interesting, but also practically important.
Actually, this sparsity restriction was proposed by Lander and Istrail (personal
communication) with hopes of making the mapping problem tractable. This
paper is divided into five sections. We answer the open problem by proving
its NP-completeness for the two special cases just mentioned (in Section 2).
Furthermore, we prove that the COS problem is 0.8-approximatable for (2, 3)-
matrices, 0.5-approximatable for the matrices in which each column contains at
most two 1’s (in Section 3) and for (3, 2)-matrices (in Section 4). Finally, we
conclude this work with several remarks in Section 5. Two closely related works
are that the different versions of physical mapping with errors are showed to be
NP-hard for sparse matrices in [1, 21].

For basic concepts and knowledge in NP-hardness, polynomial time approx-
imation, we refer readers to the book [8] by Garey and Johnson.

2 NP-Hardness of the Problems

In this section, we study the decision version of the COS problem: given a 0-
1 matrix A and a positive integer K, are there K columns of A that form a
submatrix with the C1P property. A 0-1 matrix is a (2, 3)-matrix if it has at

Approximation Algorithms for the COS Problem on Sparse Matrices 837

most two 1’s in each column and at most three 1’s in each row; similarly, it is a
(3, 2)-matrix if it has at most three 1’s in each column and at most two 1’s in
each row.

2.1 COS for (2, 3)-Matrices Is NP-Complete

To prove the COS problem NP-complete for (2, 3)-matrices, we first define a
special spanning tree problem and prove it NP-complete. Formally, it is defined
as follows.

Definition 1. A tree is caterpillar if each node of degree c ≥ 3 is adjacent to at
least c− 2 leaf nodes.

Spanning Caterpillar Tree in Degree-3 Graph
Instance: A graph G = (V,E) in which each node has degree at most 3.
Question: Does G contain a spanning caterpillar subtree T?

Lemma 1. The Spanning Caterpillar Tree in Degree-3 Graph problem is NP-
complete.

Proof. The proof is by a reduction from the Hamiltonian Path problem for cubic
graphs in which every node has degree 3 (see the comment in GT39 in [8]).

Given a cubic graph G = (V,E), we construct a new graph G′ = (V ′, E′) by
inserting a new node in each edge of G. Formally, we have

V ′ = V ∪ {xuv | (u, v) ∈ E}

E′ = {(u, xuv), (xuv, v) | (u, v) ∈ E},
where xuv is called an edge node. The reduction follows from the fact that there
exists a Hamiltonian path in G if and only if there exists a spanning caterpillar
subtree of G′. We conclude the proof by proving this fact as follows.

The ‘only if’ direction is easily seen. If there is a Hamiltonian path P in the
cubic G, we obtain a desired spanning caterpillar subtree of G′ by replacing each
edge (u, v) by a two-edge path uxuvv if (u, v) is in the path P and attaching the
inserted node wuv to u otherwise.

For the ‘if’ direction, we assume that such a spanning caterpillar subtree T
exists in G′. By construction of G′, any degree-3 node in T must be a degree-3
node in G′ and hence corresponds to a node in G. This also implies that each leaf
adjacent to a degree-3 node in T must be an edge node. Therefore, by removing
the leaves adjacent to degree-3 nodes from T , we obtain a path P ′. Obviously,
by construction, P ′ corresponds to a Hamiltonian path in G.
�

Next, we proceed to show the NP-completeness of the COS problem for (2,
3)-matrices by a reduction from the Spanning Caterpillar Tree in Degree-3 Graph
problem.

Theorem 1. The decision version of the COS problem is NP-complete for (2,
3)-matrices.

838 J. Tan and L. Zhang

Proof. The proof is just a refinement of the reduction used to prove the NP -
completeness of the COS problem in [12]. Given a G = (V,E) with n nodes and e
edges in which each node has degree at most 3, we consider its incidence matrix
B(G) = (bij). Recall that B(G) has a row for each node vi ∈ G and a column
for each edge ej ∈ G; and bij is 1 if vi is incident to ej in G and 0 otherwise.
Since each node in G has degree at most 3, the incidence matrix B(G) has exact
two 1’s in each column and at most three 1’s in each row.

It can be easily seen that a subset of columns corresponds to a subgraph
induced by the corresponding edges in G. Moreover, we claim that G has a
spanning caterpillar subtree if and only if B(G) has a submatrix of size n×(n−1)
that has C1P property. We conclude the proof by proving this claim.

We start with the ‘only if’ direction. Suppose G has a spanning caterpillar
subtree T in which each degree-3 node is adjacent to at least one leaf. Since G
has n nodes, T contains n − 1 edges. Moreover, the submatrix induced by the
columns corresponding to these n−1 edges satisfies C1P property. To prove this
fact, we consider two cases.

Case 1. If T is just a Hamiltonian path u1, u2, u3, · · · , un of G, then, the columns
corresponding to edges (u1, u2), (u2, u3), · · · , (un−1, un) (in this order) form an
n× (n− 1) submatrix in which all the 1’s are consecutive in each row.

Case 2. If T contains degree-3 nodes, then, we consider the a longest path in
T . Assume such a longest path P is u1, u2, u3, · · ·um, where m < n. Since G
has n nodes and T is a spanning caterpillar subtree, P contains exactly n −m
nodes ui1 , ui2 , · · · , uin−m of degree 3 in T such that each uij is adjacent to a
unique leaf vij that is not in the path P . By arranging columns corresponding
to edges (u1, u2), (u2, u3), · · · , (um1 , um) in the same order and inserting the
column corresponding to (uij

, vij
) between those corresponding to (uij−1, uij

)
and (uij

, uij+1) for each j, we obtain an n× (n− 1) submatrix in which all the
1’s are consecutive in each row. This is because the row corresponding to a leaf
contains only one 1.

Now we show the ‘if’ direction. Suppose there exists a submatrix of size
n × (n − 1) that has C1P property in B(G). The subgraph induced by the
corresponding n − 1 edges must not admit a cycle (otherwise, at least one
of the n rows cannot satisfy the consecutive ones property). Hence, the (n −
1) edges induce a spanning subtree of G since these edges are incident to n
nodes. Suppose T does not satisfy our special requirement that each degree-
3 node in it is adjacent to a leaf node. Then, there exists a node v ∈ T
such that v is adjacent to three nodes v1, v2, v3 ∈ T with degree(vi) ≥ 2,
i = 1, 2, 3. It’s easy to see that there is no way to arrange the columns cor-
responding to (v1, v), (v2, v) and (v3, v) in B(G) such that all the four rows
corresponding to v, v1, v2 and v3 satisfy C1P property. Therefore, the span-
ning subtree T is caterpillar, i.e, each degree-3 node in it is adjacent to at least
a leaf.

�

Approximation Algorithms for the COS Problem on Sparse Matrices 839

2.2 COS for (3, 2)-Matrices NP-Complete

In this subsection, we prove the NP-completeness of the COS problem for (3,
2)-matrices by a reduction from the following NP-complete problem for cubic
graphs.
Induced Disjoint-Path-Union Subgraph
Instance: Graph G = (V,E) in which each node has degree 3, and a positive
integer k ≤ |V |.
Question: Does there exist a k-node subset V ′ ⊆ V that induces a subgraph
G(V ′) (not necessarily connected) whose components are paths?

Lemma 2. The Induced Disjoint-Path-Union Subgraph problem is NP-complete
for cubic graphs.

Proof. According to the theorems by Yannakakis [22] and Lewis [16] (see also
problem GT21 and the related comment on page 195 in the book [8] by Garey
and Johnson), the problem of finding an induced subgraph with property Π of
a particular given size in a cubic graph is NP-complete if Π is:

1) Nontrivial. Π is true for a single node and not satisfied by all the graphs
in the given domain;

2) Interesting. There are arbitrarily large graphs satisfying Π;
3) Easy. For a given graph, the property can be verified in polynomial time;
4) Hereditary. If a graph satisfies property Π, then any of its induced sub-

graph must also satisfy property Π.

We now prove our problem is NP-complete by showing that our property π
of being a disjoint union of paths satisfies the above conditions.

Let G denote the set of all cubic graphs. The set G′ of graphs that are iso-
morphic to an induced subgraph of G is the domain of our property π.

It is easy to see that the property π holds for a single node and an arbitrarily
large graph in the domain, but not all graphs in the domain; also, π is hereditary
since whenever G is a disjoint union of paths, so is its any subgraph. In addition,
the property π can be easily verified in polynomial time. Hence, our problem is
NP-complete.
�

Theorem 2. The decision version of the COS problem is NP-complete for (3,
2)-matrices.

Proof. We prove this NP-completeness result by giving a simple reduction from
the Induced Disjoint-Path-Union Subgraph problem for cubic graphs.

Given a cubic graph G with n nodes and m edges, we consider the transpose
B′(G) = (bij) of the incidence matrix of G. Thus, B′(G) is a m × n matrix in
which each row corresponds to an edge of G and each column a node of G. The
entry bij is 1 if edge ei has vj as an end node; it is 0 otherwise. Since G is a cubic
graph, B′(G) has exactly three 1’s in each column and two 1’s in each row.

We claim that a k-node subset V ′ induces a subgraph G(V ′) of G that is a
disjoint union of paths if and only if the k columns corresponding to nodes in
V ′ form an m× k submatrix with C1P property.

Is

840 J. Tan and L. Zhang

The ‘only if’ direction is similar to Case 1 in the ‘only if’ condition proof in
Theorem 1, so we focus on the ‘if’ direction. Suppose B′(G) contains an m× k
submatrix C with C1P property. Let V ′ be the subset of nodes corresponding
to the k columns in C. We show that V ′ induces a subgraph with the desired
property. Let v be a node in V ′. Since G is cubic, we assume the neighbors of
v are v1 and v2 and v3 in G. If all its neighbors v1, v2 and v3 are also in V ′,
then, there is no way to arrange these four columns corresponding to v, v1, v2
and v3 so that the two 1’s are consecutive in rows corresponding to (v1, v) and
(v2, v) and (v3, v). (Note that each column in the submatrix C contains exactly
three 1’s.) Hence, at most two of vi’s are in V ′. This implies that V ′ induces
a subgraph in which each node has degree at most 2. Furthermore, it is easy
to see that the induced subgraph G(V ′) does not contain a cycle (otherwise, at
least one of the rows corresponding to the edges in the cycle cannot have its 1’s
consecutive under any column permutation). This concludes the proof.
�

3 Approximation Algorithms for (2, Δ)-Matrices

We present a 0.8-approximation algorithm for the COS problem for (2, 3)-
matrices: Given a (2, 3)-matrix A, find a largest submatrix B of A consisting
of a subset of A’s columns with the C1P property. We also show that a direct
generalization of the algorithm turns out to have an approximation ratio 0.5
for (2, Δ)-matrices. Without loss of generality, we may assume a (2, Δ)-matrix
A = (aij) satisfies the following properties in this section:

1. Row-distinguishability. No two rows are identical.
2. Column-distinguishability. No two columns are identical.
3. Connectedness. For any partition of the rows into non-empty subsets R′ and
R′′, there are i′ ∈ R′ and i′′ ∈ R′′ such that ai′j = ai′′j = 1 for some column
j.

Recall that a (2, Δ)-matrix A has at most Δ 1’s in each row and at most
two 1’s in each column. If A contains any column with only one 1, we expand A
into a ‘full’ (2, Δ)-matrix A′ whose columns contains exactly two 1’s as follows.
For each column j containing only one 1, we add an extra row i′ that has 1 at
the column j and 0 elsewhere. Assume A has k columns with a single 1. Then,
its expansion A′ has the same number of columns as A and k more rows than
A. Finally, we assume A has n columns. For any subset C ⊆ {1, 2, · · · , n}, we
use A(C) to denote the submatrix of A consisting of columns with indices in C.
Then, we give the following simple observation without proof.

Proposition 1. For any subset C ⊆ {1, 2, · · · , n}, A(C) has the C1P property
if and only if A′(C) has the property.

By Proposition 1, the COS problem has the same solution to A and A′,
and a good approximation solution to A′ is also a good approximation to A.
Therefore, assume that A has exactly two 1’s in each column. Obviously, such

Approximation Algorithms for the COS Problem on Sparse Matrices 841

a (2, Δ)-matrix A defines uniquely a graph G(A) = (V,E) that has A as the
incidence matrix: Each row and column of A corresponds to a node and edge
in G(A), respectively. We assume E = {1, 2, · · · , n}. For a subset C ⊆ E, the
subgraph of G(A) induced by C has node set V and edge set C and is denoted
by GC(A).

Proposition 2. Let C ⊆ {1, 2, · · · , n}. Then, A(C) has the C1P property if and
only if GC(A) = (V,C) is a union of caterpillar subtrees. Here a single node is
also considered as a caterpillar tree.

Proof. (Sketch of Proof) For convenience, we use the term edges and nodes in
G(A) and columns and rows in A interchangeably. Suppose GC(A) is a union of
caterpillar subtrees C1, C2, ..., Ch. For each 1 ≤ t ≤ h, using the same discus-
sion as in the proof of Theorem 1, the edges in Ct = (Vt, Et) form a submatrix
AVt×Et

(C) with the C1P property. By arranging the columns in each caterpillar
subtree in a block and arranging the columns within each block according to
their connection in the corresponding subtree, we obtain a submatrix in which
all the 1’s in each row are arranged consecutively. This is because A(i, j) = 0
if node i and edge j don’t belong to the same caterpillar tree. Hence, A(C) has
the C1P property.

Conversely, suppose A(C) has the C1P property. Using the same discussion
as in the proof of Theorem 1, each component of GC(A) must be a caterpillar
subtree. Therefore, GC(A) is a union of caterpillar trees.
�

3.1 A 0.8-Approximation Algorithm for (2, 3)-Matrices

Theorem 3. For the COS problem for any (2, 3)-matrix A, there is a polyno-
mial time 0.8-approximation algorithm.

Proof. Let the (2, 3)-matrix A havem rows and n columns. Then, G(A) = (V,E)
has m nodes and n edges. Since each row contains at most three 1’s in A, each
node has degree at most 3.

For any subset C ⊆ {1, 2, · · · , n}, by Proposition 2, if A(C) has the C1P
property, GC(A) is a union of caterpillar subtrees. Therefore, GC(A) has at
most m− 1 edges, and hence C contains at most (m− 1) columns.

To find a 0.8-approximating solution to the COS problem for A, we first find
a spanning tree T in G(A). Then, we apply Algorithm A given below to T
to find a union of caterpillar subtrees that have at least 0.8(m − 1) edges. The
set of edges in the union gives a desired solution by Proposition 2. To describe
Algorithm A, we recall some basic concepts in graph theory. In a rooted tree,
the depth of a node is equal to the distance between the root and itself. A non-
leaf node is said to be internal. For an internal node x in a rooted tree T ′, we
use T ′(x) to denote the subtrees rooted at x and p(x) to denote the parent of x
that is the first node on the unique path from x to the root. Finally, an internal
node is said to be complete if it is adjacent to 3 internal nodes. Obviously, a
complete internal node is of degree 3.

842 J. Tan and L. Zhang

Algorithm A

Input: A tree T with m nodes, in which each node has degree at most 3;
Output: A union of caterpillar subtrees with at least 0.8(m− 1) edges.

1 Pick a leaf r of T and root T at r. Let Tr be this rooted tree;
2 Initially, set RT = Tr, RE = φ;
3 Do a Breath First Search on Tr, for each node v encountered;
4 Record its depth in Tr;
5 If v is complete in Tr, push it to the end of list Lc

6 Repeat the following action until RT contains at most 6 nodes:
7 Pop a node x from the end of Lc;
8 if x is complete in RT
9 Remove the edge between x and its parent p(x);
10 RT = RT −RT (x)− (x, p(x)), RE = RE ∪ {(x, p(x)};
11 Output T −RE;

It is easy to see that the algorithm takes O(m) time. Notice that a tree with
at most 6 nodes is caterpillar if each node has degree at most 3. Now we prove
its connectedness. Now consider a complete internal node x with a largest depth
in the tree RT (Note each node poped from list Lc at line 7 is with a largest
depth in RT). First, the subtree rooted at x, RT (x), is a caterpillar subtree
since by assumption every internal node of it is adjacent to at most two internal
nodes. Second, since x is a complete internal node, there are at least two internal
nodes in RT (x) and hence RT (x) contains at least 4 edges. This implies that
each repeat of line 6-10 removes at least 5 edges (including (x, p(x))). Therefore,
line 6-10 of the algorithm can be repeated at most (m− 1)/5 times and at most
0.2(m− 1) edges are removed from the input tree.
�

3.2 0.5-Approximation Algorithm for (2, Δ)-Matrices

Now we show that a direct generalization of Algorithm A has approximation
ratio 0.5 for (2, Δ)-matrices.

Let A be a (2, Δ)-matrix with m rows and n-columns. Then, the correspond-
ing graph G(A) has m nodes and n edges, and each node of it has degree at
most Δ. We propose the following generalization to Algorithm A.

First, we find a spanning tree T of G(A) and root it at a leaf r. Let the
resulting rooted tree be Tr. Obviously, each node in Tr has degree at most Δ.
Recall that a non-leaf node is called an internal node. For an internal node x,
we use lx to denote the number of leaves adjacent to it and dx to denote its
degree; x is said to be complete if it is adjacent to at least three internal nodes,
i.e, dx − lx ≥ 3. We find a union of caterpillar subtrees of T (hence G(A)) by
repeating the following action until no complete internal nodes exist in Tr:

Pick a complete internal node x in Tr with the largest depth and then
remove the edge (x, p(x)) and any other dx− lx−3 edges between x and
its internal neighbors.

Approximation Algorithms for the COS Problem on Sparse Matrices 843

In each repeat, we take away at least lx + 1 + 2(dx − lx − 1) = 2dx − lx − 1
edges from Tr by removing dx − lx − 2 edges. Thus, at least half of the edges in
T remain in the output union of caterpillar subtrees. Hence we proved that

Theorem 4. There is a polynomial time 0.5-approximation algorithm for the
COS problem when the input matrix has at most two 1’s in each column.

4 A 0.5-Approximation Algorithm for (3, 2)-Matrices

In this section, we use a partition theorem of Lovász in graph theory to obtain a
0.5-approximation algorithm for the COS problem for (3, 2)-matrices. The idea
is also generalized to (Δ, 2)-matrices.

4.1 The Algorithm

Recall that a (3, 2)-matrix contains at least three 1’s in each column and at
most two 1’s in each row. Noting that any column permutation preserves the
consecutiveness of 1’s in a row with at most one 1, we only focus on the (3,
2)-matrices which have exactly two 1’s in each row in the rest of this section.

Let A be such a (3, 2)-matrix. Then, it defines uniquely a graph G(A) with
maximum degree 3 in which nodes correspond one-to-one to the columns inA and
edges to the rows in A. Without loss of generality, we assume A have m row and
n columns and the corresponding graph G(A) has node set V = {1, 2, · · · , n}.
Furthermore, we have the following fact.

Lemma 3. Let C = {i1, i2, · · · , ik} be a subset of columns of A. Then, the
submatrix A(C) of A consisting of the columns in C has the C1P property if and
only if the subgraph G(A)|C induced by node subset C ⊆ V is an union of paths.
Here we consider an isolated note as a trivial path.

Proof. Assume A(C) has the C1P property. Consider a node i′ ∈ C. If it has
three adjacent nodes ij , ik, il. Then, any permutation of C cannot keep the 1’s
consecutive on the rows corresponding to (i′, ij), (i′, ik) and (i′, il) since there
are only two 1’s in each row. Thus, each node in G(A)|C has degree at most 2.
Similarly, we can also show that G(A)|C does not contains any cycles. Therefore,
the node induced subgraph is an union of paths and isolated nodes.

Conversely, if G(A)|C is an union of paths, then if we arrange all the columns
in each path together in the same order as they appear in the path, the resulting
matrix have 1’s consecutive on each row. This finishes the proof.
�

Using this lemma, we are able to present a 0.5-approximation algorithm for
(3, 2)-matrices.

Theorem 5. There is a linear-time algorithm that always outputs a C1P sub-
matrix consisting of at least n/2 columns given a (3, 2)-matrix A with n columns.

844 J. Tan and L. Zhang

Proof. Let A be a (3, 2)-matrix. Recall that we assume that each row contains
exactly two 1’s in A. By Lemma 3, we only need to find a subset C containing
at least n/2 nodes in G(A) such that the induced subgraph G(A)|C is an union
of paths and isolated nodes. The following Algorithm B is such an algorithm.

Algorithm B

Input: A (3, 2)-matrix A;
Output: A subset C of columns of A such that A(C) has the C1P property.

1 Construct the graph G(A) = (V,E) as described above;
(G(A) has At as its incidence matrix; each node has degree at most 3.)

2 Initially, set V ′ = φ and V ′′ = V ;
3 Repeat the following action until both G(A)|V ′ and G(A)|V ′′ contain

no nodes of degree more than 1;
4 Pick a node of degree at least 2 in G(A)|V ′ and move it to V ′′, or
5 Pick a node of degree at least 2 in G(A)|V ′′ and move it to V ′;
6 Output C = V ′ if |V ′| ≥ n/2 or V ′′ otherwise.

Each execution of line 3-5 increases the number of cut edges between V ′ and
V ′′ by at least 1; and hence it will repeat at most |E| times. Therefore, the
algorithm takes linear time. Since G(A)|V ′ and G(A)|V ′′ contains no nodes with
degree more than 1, by Lemma 3, the output C is a desired subset of columns,
i.e. A(C) has the C1P property. This finishes the proof.
�

4.2 Generalization to (Δ, 2)-Matrices

Given a graph G, we use Δ(G) to denote the largest degree of a node in G.
Algorithm B indicates that the node set V of any graph G with Δ(G) = 3
can be partitioned into V ′ and V ′′ such that Δ(G|V ′) ≤ 1 and Δ(G|V ′′) ≤ 1.
In fact, this is a special case of the following important partition theorem by
setting t1 = t2 = 1.

Theorem 6. ([17]) Let G = (V,E) be a graph. Let t1, t2, ..., tk be non-negative
integers such that

∑k
i=1 (ti + 1) − 1 = Δ(G). Then V can be partitioned into k

subsets that induce subgraphs G1, G2, ..., Gk with Δ(Gi) ≤ ti, for i = 1, 2, ..., k.

In addition, a desired partition can also be found in polynomial time [13]. By
this theorem, the node set of a graph G can be decomposed into �(Δ(G)+1)/2�
subsets that induce subgraphs with maximum degree at most 1. This implies the
following result.

Proposition 3. There is a polynomial time algorithm that always outputs a
subset C of at least n/�(Δ+1)/2� columns such that A(C) has the C1P property
given an input (Δ, 2)-matrix A of n columns.

Approximation Algorithms for the COS Problem on Sparse Matrices 845

5 Conclusion

The COS problem finds applications in physical mapping with hybridization
date. In this paper, we answer an open problem posed in [12] by proving that
the decision version of the COS problem remains NP-complete for (2, 3) and
(3, 2)-matrices. To prove these results, we also formulate two simple, but inter-
esting NP-complete problems for cubic graphs. These two problems - Spanning
Caterpillar Tree and Induced Disjoint-Path-Union Subgraph may find applica-
tions in studying the complexity issues of other algorithmic problems.

We also study the approximation issue of the COS problem. It is proved that
theCOSproblem is 0.8-approximatable for (2, 3)-matrices and 0.5-approximatable
for the matrices in which each column contains at most two 1’s and for (3, 2)-
matrices. But it is open whether the COS problem can be approximatable with
constant factor for matrices in which there are at most two 1 in each row.

By studying the complexity and approximation issues of the COS problem
that are relevant for physical mapping, we hope our results will give insights into
the difficulty of the physical mapping problem which are of value for bioinfor-
maticians.

References

1. J. Atkins and M. Middendorf. On physical mapping and the consecutive ones
property for sparse matrices. Discrete Applied Mathematics, 71 (1996), 23-40.

2. F. Alizadeh, R. M. Karp, D. K. Weisser and G. Zweig. Physical mapping of chromo-
somes using unique probes. Journal of Computational Biology, 2 (1995), 159-184.

3. K. S. Booth and G. S. Lueker. Test for the consecutive ones property, interval
graphs, and graph planarity using PQ-tree algorithms. J. Comput. Systems Sci.,
13 (1976), 335-379.

4. J. S. Deogun and K. Gopalakrishnan. Consecutive retrieval property revisited.
Information Processing Letters, 69 (1999), 15-20.

5. M. Flammini, G. Gambosi and S. Salomone. Boolean routing. Lecture Notes in
Comput. Sci., 725 (1993), 219-233.

6. S. Foote, D. Vollrath, A Hilton and D. C. Page. The human Y chromosome: over-
lapping DNA clones spanning the euchromatic region. Science, 258 (1992), 60-66.

7. D. R. Fulkerson and O. A. Gross. Incidence matrices and interval graphs. Pacific
J. Mathematics, 15 (1965), 835-855.

8. M. R. Garey and D. S. Johnson. Computers and intractability: A guide to the
theory of NP-completeness. San Francisco: W. H. Freeman, 1979.

9. S. P. Ghosh. File organization: the consecutive retrieval property. Commun. ACM,
15 (1972), 802-808.

10. D. S. Greenberg and S. Istrail. Physical mapping by STS hybridization: algorithmic
strategies and the challenge of software evaluation. J. Comput. Biol., 2 (1995), 219-
273.

11. M. Habib and R. McConnell, C. Paul and L. Viennot. Lex-BFS and partition
refinement, with applications to transitive orientation, interval graph recognition
and consecutive ones testing. Theoretical Computer Science, 234 (2000), 59-84.

12. M. T. Hajiaghayi and Y. Ganjali. A note on the consecutive ones submatrix prob-
lem. Information Processing Letters, 83 (2002), 163-166.

846 J. Tan and L. Zhang

13. M. M. Halldórsson and H. C. Lau. Low-degree graph partitioning via local search
with applications to constraint satisfaction, max cut, and 3-coloring. J. Graph
Algorithm Appl., 1 (3) (1997) 1-13.

14. W.-F. Lu and W.-L. Hsu. A test for the consecutive ones property on noisy data -
application to physical mapping and sequence assembly. Journal of Computational
Biology 10(5) (2003), 709-735.

15. D. G. Kendall. Incidence matrices, interval graphs and seriation in archaeology.
Pacific J. Math., 28 (1969), 565-570.

16. J. M. Lewis. On the complexity of the maximum subgraph problem. in Proc. 10th
Ann. ACM Symp. on Theory of Computing, (1978) 265-274.

17. L. Lovász. On decomposition of graphs. Stud. Sci. Math. Hung., 1 (1966), 237-238.
18. J. Meidanis, O. Porto and G. P. Telles. On the consecutive ones property. Discrete

Applied Mathematics, 88 (1998), 325-354.
19. R. Mott, A. Grigoriev, and H. Lehrach. A algorithm to detect chimeric clones and

randome noise in genomic mapping. Genetics, 22 (1994), 482-486.
20. P. A. Pevzner. Computational molecular biology. The MIT Press, 2000.
21. S. Weis and R. Reischuk. The complexity of physical mapping with strict

chimerism. in Proc. 6. Int. Symposium on Computing and Combinatorics (CO-
COON’2000), LNCS 1858, 383-395.

22. M. Yannakakis. Node- and edge-deletion NP-complete problems. in Proc. 10th Ann.
ACM Symp. on Theory of Computing, (1978) 253-264.

The Two-Guard Problem Revisited and Its
Generalization

Xuehou Tan

Tokai University, 317 Nishino, Numazu 410-0395, Japan
tan@wing.ncc.u-tokai.ac.jp

Abstract. Given a simple polygon P with two vertices u and v, the
two-guard problem asks if two guards can move on the boundary chains
of P from u to v, one clockwise and one counterclockwise, such that they
are mutually visible. By a close study of the structure of the restrictions
placed on the motion of two guards, we present a simpler solution to the
two-guard problem. The main goal of this paper is to extend the solution
for the two-guard problem to that for the three-guard problem, in which
the first and third guards move on the boundary chains of P from u to v
and the second guard is always kept to be visible from them inside P . By
introducing the concept of link-2-ray shots, we show a one-to-one corre-
spondence between the structure of the restrictions placed on the motion
of two guards and the one placed on the motion of three guards. We can
decide if there exists a solution for the three-guard problem in O(n log n)
time, and if so generate a walk in O(n log n + m) time, where n denotes
the number of vertices of P and m (≤ n2) the size of the optimal walk.

1 Introduction

The two-guard problem asks for a walk of two points (called the guards) on the
boundary of a simple polygon P from the starting vertex u to the ending vertex
v, one clockwise and one counterclockwise, such that the guards are always mu-
tually visible. The solution of the two-guard problem consists of several instances
of straight walks and counter-straight walks [5]. A walk is said to be straight if
two guards monotonically move on P from u to v, or counter-straight if both
guards monotonically move on P clockwise, one from u to v and one from v to
u. Icking and Klein gave an O(n log n) time algorithm for determining if P is
straight, counter-straight, or general walkable, where n is the number of vertices
of P . Later, a linear time algorithm was presented by Heffernan [4]. Tseng et
al. gave an O(n log n) time algorithm to determine all pairs of boundary points
which admits walks, straight walks [7]. Bhattacharya et al. improved this time
bound to O(n) [1].

The two-guard problem also involves giving a walk of mimimum length, for
a (straight) walkable polygon. Icking and Klein have presented an optimal time
algorithm for generating a walk of minimum length. To this end, they developed
a considerable theorems for evaluating the so-called hi, lo functions for straight
walks, and the C-hi, C-lo functions for counter-straight walks [5]. It is not a
simple work to analyze the performance of these functions.

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 847–858, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

848 X. Tan

In this paper, by a close study of the structure of the restrictions placed on the
motion of two guards, we present a simpler algorithm to give a walk. For straight
walks, we give a method to partition the polygon P into triangular regions so
that a sequence of walk instructions can be obtained from the partition, without
considering hi and lo at all. For general walks, we show that counter-straight
walks needn’t be considered explicitly. Again, the evaluation of C-hi and C-lo is
avoided. This simplification exposes more intrinsic properties of the two-guard
problem, and makes our second work easy.

The main goal of this paper is to generalize the solution for the two-guard
problem to that for the three-guard problem, in which the first and third guards
move on the two boundary chains of P from u to v and the second guard is
always kept to be visible from them inside P . By introducing the concept of link-
2-ray shots, we show a one-to-one correspondence between the structure of the
restrictions placed on the motion of two guards and the one placed on the motion
of three guards. We can decide whether there exists a solution for the three-
guard problem in O(n log n) time, and if so generate a walk in O(n log n + m)
time, where m (≤ n2) denotes the size of the optimal walk. This improves
upon the previous time bounds O(n2) and O(n2 log n), respectively [2]. (The
corresponding edge-to-edge problem is solved in [2], instead of the point-to-point
problem.) Moreover, the paradigm developed in this paper is general, and might
be used to solve other geometric problems.

2 Preliminaries

Let P be a simple polygon with two marked points u and v. The boundary
of P is divided into two chains, L and R, with common endpoints u and v.
Both chains L and R are oriented from u to v. For a vertex x of a polygonal
chain, Succ(x) denotes the vertex of the chain immediately succeeding x, and
Pred(x) the vertex immediately preceding x. For two points p, p′ ∈ L, we say
that p precedes p′ (and p′ succeeds p) if we encounter p before p′ when travers-
ing L from u to v. We write p < p′ if p precedes p′. The chain L<p (resp.
L>p) is the subchain of L consisting of all points that precede (resp. succeed)
p. For an interval X ⊆ L, the point y ∈ X is the largest (resp. smallest) if
y ≥ x ∈ X (resp. y ≤ x ∈ X). We define these concepts for R in a similar
manner.

A vertex of P is reflex if its interior angle is strictly larger than 180◦. The
backward ray shot from a reflex vertex r of L or R, denoted by Backw(r), is
the first point of P hit by a “bullet” shot at r in the direction from Succ(r)
to r, and the forward ray shot Forw(r) is the first point hit by the bullet shot
at r in the direction from Pred(r) to r. See Fig. 1. The vertex r is called the
origin of Backw(r) and Forw(r). Two shots from a chain are said to cross if
the order of them on the opposite chain differs from the order of their origins
(e.g., Figs. 1c-d). A pair of vertices p ∈ L, q ∈ R is said to give a deadlock if
q < Backw(p) ∈ R and p < Backw(q) ∈ L hold (Fig. 1a) or if q > Forw(p) ∈ R
and p > Forw(q) ∈ L hold (Fig. 1b). A pair of vertices p, p′ ∈ L or q, q′ ∈ R is

The Two-Guard Problem Revisited and Its Generalization 849

said to give a wedge if p < p′ and R / Forw(p′) < Backw(p) ∈ R hold (Fig. 1c)
or q < q′ and L / Forw(q′) < Backw(q) ∈ L hold (Fig. 1d).

(a) (b) (c) (d)

L R

L R
L R L R

p q

p q

p'

p

q'

q

Backw(q) Backw(p)

Forw(q) Forw(p)

Backw(p)

Forw(p')

Backw(q)

Forw(q')

Fig. 1. Deadlocks and wedges

Theorem 1 [5]. A polygon P is walkable if and only if L and R are mutually
weakly visible and no deadlocks occur. If the condition that no wedges exist is
added, then P is straight walkable.

In the case that P is walkable, we need to give a walk schedule, which consists
of the following actions: (i) both guards move forward along segments of single
edges, and (ii) one guard moves forward but the other moves backward [5].

Theorem 2 [4, 5]. It takes O(n) time to test the walkability of a simple polygon,
O(n) time to generate a straight walk schedule, and O(n log n + m) time to
generate a walk schedule of minimum length where m is the size of the output.

3 The Two-Guard Problem Revisited

Throughout this section, we consider only the ray shots whose chain differs from
the chain to which their origins belong. We will write ”Forw(p)” or ”Backw(p)”
to represent ”Forw(p) ∈ R” or ”Backw(p) ∈ R”, and ”Forw(q)” or ”Backw(q)”
to represent ”Forw(q) ∈ L” or ”Backw(q) ∈ L”. We give below our simpler proof
of sufficiency of Theorem 1 (the proof of necessity is easy [5]).

3.1 Straight Walks

We give a simple method to show that if L and R are mutually weakly visible and
neither deadlocks nor wedges occur, there is a straight walk for P . Our method
makes expansive use of Heffernan’s idea on the dominance relation defined be-
tween ray shots [4]. We define below eight types of dominated shots (note that
the last four types are not defined in [4]). As shown in [4], these dominated shots
can be ignored when the straight walk is considered.

• For a vertex p2 ∈ L, the shot Backw(p2) (resp. Forw(p2)) is dominated if
there exists a vertex p1 ∈ L<p2 (resp. p1 ∈ L>p2) such that Backw(p1) >
Backw(p2) (resp. Forw(p1) < Forw(p2)). See Fig. 2a (resp. Fig. 2b).

850 X. Tan

• For a vertex q2 ∈ R, the shot Backw(q2) (resp. Forw(q2)) is dominated if
there exists a vertex q1 ∈ R<q2 (resp. q1 ∈ R>q2) such that Backw(q1) >
Backw(q2) (resp. Forw(q1) < Forw(q2)). See Fig. 2c (resp. Fig. 2d).

• For a vertex q2 ∈ R, the shot Forw(q2) (resp. Backw(q2)) is dominated if
there exists a vertex p1 ∈ L such that q2 < Backw(p1) and p1 < Forw(q2)
(resp. Forw(p1) < q2 and Backw(q2) < p1). See Fig. 2e (resp. Fig. 2f).

• For a vertex p2 ∈ L, the shot Backw(p2) (resp. Forw(p2)) is dominated if
there exists a vertex q1 ∈ R such that Forw(q1) < p2 and Backw(p2) < q1
(resp. p2 < Backw(q1) and q1 < Forw(p2)). See Fig. 2g (resp. Fig. 2h).

qp

p

p

q

q

p

p

q

q

p qp q qp

(a) (b) (c) (d)

(g) (h)(f)(e)

1

2

1

2

1

2

1
2

1
2

11 2

2

1

L R L R

L R
L R

L R

L R L R

2

L R

Fig. 2. Illustrating the definition of dominated shots

A shot is said to be non-dominated if it is not dominated by any other shots.
The key observation we make here is that removing all dominated shots from
considerations helps us partition P into triangular regions (Fig. 3b). First, insert
the segments connecting four families of non-dominated shots with their origins
into P in an arbitrary order. If a segment intersects with some previous or
existing segment, it is ignored (i.e., not inserted). This gives a partition of P .
See Fig. 3a for an example, where the segments for four families of non-dominated
shots are inserted in the order of, backward shots from L, forward shots from L,
backward shots from R and forward shots from R.

Let Pi denote a region of the resulting partition, and Li (resp. Ri) the part
of L (resp. R) appearing in Pi (see Fig. 3a). We claim that the whole chain Li

u

L

R

v

u

L

R

v

(a) (b)

x

y

iP

Fig. 3. The decomposition of the polygon P

The Two-Guard Problem Revisited and Its Generalization 851

(resp. Ri) is visible from either endpoint of Ri (resp. Li). Assume that v is a
reflex vertex in Pi. Then, either shot of v is dominated (e.g., Backw(x), Forw(y)
and Backw(y) in Fig. 3a), or the segment concerning the shot is not inserted
into the partition of P (e.g., Forw(x) in Fig. 3a). Thus, two ray shots from v lie
outside of Pi, one above Pi and one below Pi. The vertex v cannot block a point
of a chain (Li or Ri) from being visible from any point of the opposite chain.
Our claim is proved. A triangular decomposition of Pi can then be obtained,
say, by adding the segments which connect the smallest point of Li with the
vertices of Ri and the largest point of Ri with the vertices of Li. See Fig. 3b for
an example (some triangles have been merged into bigger ones).

Since a sequence of walk instructions can be output from the triangular de-
composition described above, we have that if L and R are mutually weakly visible
and neither deadlocks nor wedges occur, there is a straight walk for P .

Let us briefly describe the algorithm for determining if P is straight walkable,
and if so generating a walk schedule. We call the shots, which are not dominated
when only the first four types of dominance relations are considered, ”pseudo-
non-dominated” shots. It is known that each family of pseudo-non-dominated
shots has the non-crossing property [4]. For example, if the origins of pseudo-
non-dominated backward shots from L are, in sorted order, p1, . . . , pk, then
Backw(p1), . . . , Backw(pk) are sorted on R. We can compute all pseudo-non-
dominated shots, and determine if P is straight walkable, in O(n) time [4].

Our walk schedule can be reported inO(n) time as follows. All non-dominated
shots can be computed by merging the set of segments connecting the pseudo-
non-dominated backward (resp. forward) shots from L with their origins and the
set of segments connecting the pseudo-non-dominated forward (resp. backward)
shots with their origins. If any situation shown in Figs. 2e-f (resp. Fig. 2g-h)
ever occurs, a dominated shot is found, and its segment is deleted so as to
continue the merging procedure. Also, a partition of P into disjoint regions can
be obtained by inserting the segments connecting four families of non-dominated
shots with their origins into P , using a merging procedure such that whenever
a pair of intersecting segments is found, the lately inserted segment is deleted.
Finally, each region is divided into triangles, and a sequence of walk instructions
is output from the triangular partition of P .

3.2 General Walks

We give a simple method to show that if L and R are mutually weakly visible
and no deadlocks occur, there is a walk for the polygon P . As in [5], we define a
sequence of maximal wedges in P . (Our definition is the same as that given by
Icking and Klein, and all maximal wedges can be computed using their algorithm
turnpoint [5].) Let the 4-tuple W =< a, b,Backw(a), Forw(b) > denote a wedge
with a < b and Backw(a) > Forw(b). A wedge on L (i.e., a, b ∈ L) is maximal if
Backw(a) succeeds all others Backw(a′) ∈ R for a < a′ < b, Forw(b) precedes
all others Forw(b′) ∈ R for a < b′ < b, and Forw(b”) < Backw(a”) never holds
for a < b” < a” < b. A maximal wedge on R can also be defined. We then have
a sequence of maximal wedges in P , ordered from u to v [5].

852 X. Tan

It is known that the portion of P between two consecutive maximal wedges
is straight walkable, and a maximal wedge is counter-straight walkable [5]. The
method described in Section 3.1 can be used to give a straight walk. Since the
treatment of counter-straight walks given in [5] is complicated, we present below
a simpler solution. By symmetry, we discuss only the wedges on L.

p

p

1

2

Backw(p)

Backw(p)

1

2

p

p

2

1

Forw(p)

Forw(p)

2

1

(a) (b)

L' L'R' R'

Fig. 4. Illustrating the definition of g-dominated shots

Let L′ denote the subchain of L from a to b, and R′ the subchain of R from
Forw(b) to Backw(a). As in Section 6 of [4], we define the g-dominated shots.
(Our definition is the same as that of Heffernan, and all g-dominated shots can be
computed using his algorithm [4].) For a vertex p2 ∈ L′, the shot Backw(p2) ∈ R′

(resp. Forw(p2) ∈ R′) is g-dominated if there exists a vertex p1 ∈ L′
>p2

(resp.
p1 ∈ L′

<p2
) such that Backw(p1) ∈ R′ and Backw(p1) > Backw(p2) (resp.

Forw(p1) ∈ R′ and Forw(p1) < Forw(p2)). See Fig. 4a (resp. Fig. 4b). We then
have a list of non-g-dominated backward (resp. forward) shots such that each
shot crosses all others. For an example, if p1, . . ., pk are ordered on L′, then
Backw(pk), . . ., Backw(p1) are ordered on R′.

Backw(a)

Backw(p)

Forw(p)

2

1

2

1

p

p

(b)(a)

Forw(p)

Backw(p)

a

b

1

2

p

p

2

1

L' R'
L' R'

Forw(b)

Fig. 5. A possible situation (a); A forbidden situation (b)

Note also that the situation shown in Fig. 5a may occur, but the one shown in
Fig. 5b is forbidden (as the considered wedge should end at or before p1Forw(p1)).

Lemma 1. A maximal wedge on L can be walked so that two guards move on
L and R clockwise.

Proof. Let W =< a, b,Backw(a), Forw(b) > denote a maximal wedge on L.
First, merge the list of non-g-dominated forward shots and the list of non-g-
dominated backward shots within W , into a list FB in the decreasing order of
them. Beginning with Backw(a), we repeatedly take the shot from FB until all

The Two-Guard Problem Revisited and Its Generalization 853

q

p

(a) (c)

q

(b)

x

x

Forw(p)
p

(d)

x

L' L'

L'
L'

R' R'

R'

R'
x

b
b Backw(p)

Fig. 6. Illustration for the proof of Lemma 1

shots in FB have been processed. If the next shot does not cross the current shot
(e.g., Fig. 5a), it is ignored. In the case that the next shot crosses the current
one, we claim that both intervals of L′ and R′, determined by two shots and
their origins, are visible from the crossing point x. Otherwise, assume there is a
reflex vertex q ∈ R′ that blocks a part of R′ from being visible from x. In this
case, two vertices q and a or b give a deadlock, a contradiction. See Figs. 6a-b
for some examples. Assume now there is a reflex vertex p ∈ L′ that blocks a part
of L′ from being visible from x. If the shot from p crosses both of the considered
shots, it is non-g-dominated, a contradiction. See Fig. 6c. Otherwise, one of the
considered shots is g-dominated (Fig. 6d), or the situation shown in Fig. 5b (e.g.,
two considered shots are Forw(p1) and Forw(b), and the blocking vertex is p2)
occurs, a contradiction. Our claim is proved. The segment connecting two guards
can then be rotated around the crossing point x so that two guards move to the
next shot and its origin. In this way, W can be walked. �

4 Generalization to the Three-Guard Problem

Let g1, g2 and g3 denote three guards. A walk schedule consists of the following
actions: while g2 moves along a line segment inside P and is kept visible from
g1 on L and g3 on R, (i) both g1 and g3 move forward along segments of single
edges, or (ii) one of g1 and g3 moves forward but the other moves backward. If
neither backtracking of g1 on L nor backtracking of g3 on R is allowed in the
walk schedule, then P is said to be straight walkable by three guards.

We will first define the link-2-ray shots, and then show a one-to-one corre-
spondence between ray shots and link-2-ray shots so that the results obtained
for the two-guard problem can be directly extended to those for the three-guard
problem. Most of our geometric arguments are the same as those used in [5].

4.1 Link-2-Ray Shots

Two points x, y ∈ P are said to be mutually link-2-visible if there exists another
point z such that the segments xz and zy are entirely contained in P . For two
regions Q1, Q2 ⊆ P , we say that Q1 is weakly link-2-visible from Q2 if every
point in Q1 is link-2-visible from some point in Q2.

Let s denote a segment pBackw(p) (or p′Forw(p′)) such that if p ∈ L (or
p′ ∈ L), then p < Backw(p) ∈ L (or p′ > Forw(p′) ∈ L) holds. We call the part

854 X. Tan

of L between two endpoints of s, the component of s. The segment s is said to
be redundant if its component contains the component of some other segment.
Let SL denote the set of non-redundant segments whose two endpoints belong
to L. Similarly, we have the set SR of non-redundant segments in R.

We give below the definition of link-2-ray shots, which is based on the ob-
servation that the shot Backw(x) (resp. Forw(x)) is the smallest (resp. largest)
point of the opposite chain that is visible from Succ(x) (resp. Pred(x)). Sup-
pose that s = pBackw(p) is a segment in SL and s does not intersect with
other segments of SL. Let π(u, p) and π(u,Backw(p)) denote the shortest paths
from u to p and from u to Backw(p), respectively. Let B(p) denote the vertex
where two paths diverge. Shoot a ”bullet” at B(p) in the direction from the first
turn of the path π(B(p), Backw(p)) to B(p). The hit point on the boundary
of P is defined as the backward link-2-ray shot from p, denoted by Backw2(p).
See Fig. 7a. Similarly, let F (p) denote the vertex where two paths π(v, p) and
π(v,Backw(p)) diverge. Shooting a ”bullet” at F (p) in the direction from the
first turn of π(F (p), p) to F (p) gives the forward link-2-ray shot Forw2(p) (Fig.
7a). Note that the shot Backw2(p) ∈ R (resp. Forw2(p) ∈ R) is the smallest
(resp. largest) point of R that is link-2-visible from Succ(p). The link-2-ray shots
derived from the segment pForw(p) can be defined analogously (Fig. 7a).

p

B(p)

Backw(p)

Forw (p)

Backw (p)

2

2

Forw (q)
2

Backw (q)2

q

L R

F(p)

b

c p

p

p

2

1

L R

Forw (p)
2

Backw (p)
2

Backw (p)
2

Forw (p)2

1

1

(a) (b)

F(q)

B(q)

3

3

3d =

a =

Fig. 7. Link-2-ray shots

Consider now the general case in which the segments of SL intersect each
other. Assume that s1 is the segment of SL such that its vertex endpoint p1 is the
smallest in SL, and s2, . . ., sk are the segments of SL intersecting s1, ordered from
u to v (Fig. 7b). Let a, b, c, d denote four endpoints of s1 and sk, with a < b <
c < d. See Fig. 7b for an example. We define Backw2(p1) and Forw2(p1) as those
which are computed using the method described above, with a slight modification
that p and Backw(p) are replaced by b and c, respectively. The component of any
si (1 ≤ i ≤ k) contains both b and c, and is thus link-2-visible from Backw2(p1)
(resp. Forw2(p1)). Clearly, the shot Backw2(p1) ∈ R (resp. Forw2(p1) ∈ R) is
the smallest (resp. largest) point on R, from which the component of any si is
link-2-visible. So Forw2(p1) and Backw2(p1) can be considered as two link-2-
ray shots for this group of intersecting segments (or the vertices). In this way,
the link-2-ray shots for the next group of intersecting segments can be defined,

The Two-Guard Problem Revisited and Its Generalization 855

and so on. For the vertices whose non-redundant segments belong to SR, the
link-2-ray shots can be defined analogously.

Similar to the necessary and sufficient condition for the weak visibility be-
tween L and R [5], we have the following result (without the proof here).

Lemma 2. The chain L is weakly link-2-visible from R if and only if there is
no vertex p ∈ L such that p < Backw2(p) ∈ L or p > Forw2(p) ∈ L holds.

Finally, we define the link-2-deadlocks and link-2-wedges. A pair of vertices
p ∈ L, q ∈ R is said to give a link-2-deadlock if Backw2(p) ∈ R, Backw2(q) ∈ L,
q < Backw2(p) and p < Backw2(q) hold, or Backw2(p) ∈ R, Backw2(q) ∈ L,
q > Forw2(p) and p > Forw2(q) hold (Fig. 7a). A pair of vertices p1, p2 ∈ L
(resp. q1, q2 ∈ R) is said to give a link-2-wedge if Backw2(p1) ∈ R, Forw2(p2) ∈
R, p1 < p2 and Forw2(p2) < Backw2(p1) hold (resp. if Backw2(q1) ∈ L,
Forw2(q2) ∈ L, q1 < q2 and Forw2(q2) < Backw2(q1) hold). See Fig. 7b.

4.2 Straight Walkable Case

In this section, we extend the necessary and sufficient condition of straight walks
for two guards to that for three guards.

Lemma 3. If a polygon P is straight walkable, the chains L and R are mutually
weakly link-2-visible and neither link-2-deadlocks nor link-2-wedges occur.

Proof. It can be proved by an argument similar to that given for the two-guard
problem [5]. We omit the detail in this extended abstract. �

Turn to sufficiency. Recall first that all link-2-ray shots lie on the chain op-
posite to the chain of their origins. A shot Backw2(p2) from a vertex p2 ∈ L is
dominated if there exists a vertex p1 ∈ L such that p1 < p2 and Backw2(p1) >
Backw2(p2). Similarly, seven other types of dominated link-2-ray shots can be
defined. A link-2-ray shot is said to be non-dominated if it is not dominated by
any other shots. Also, each family of non-dominated shots has the non-crossing
property. For example, if Backw2(p1), . . . , Backw2(pk) are sorted on R, then
their ”B” points B(p1), . . . , B(pk) are sorted on L.

Let Ray stand for the symbol ”Backw” or ”Forw”, and S the letter ”B”
or ”F”. As in Section 3.1, we divide P into disjoint regions by inserting the

p
B(p)

Forw (p)

Backw (p)

2

2

Forw (q)
2

Backw (q)
2

q

L R

F(p) F(q)

B(q)

iP
b

t

t4

t1

t2

t3

Fig. 8. A region Pi

856 X. Tan

segments connecting four families of non-dominated shots Ray2(z) with their
points S(z). Let Pi denote a region in the partition of P , and Li (resp. Ri) the
part of L (resp. R) appearing in Pi. By an argument similar to that given in
Section 3.1, all the components contained in a chain of Pi are link-2-visible from
either endpoint of the opposite chain of Pi. (Note that all points of a chain may
not be link-2-visible from an endpoint of the opposite chain.)

Let us see how the region Pi can be walked. Assume that S(x)Ray2(x)
(resp. S(y)Ray2(y)) is the lower (resp. upper) bounding segment of Pi, and both
Ray2(x) and Ray2(y) lie on a chain, say, Ri. See Fig. 8. (All other situations
can be dealt with analogously.) Let t (resp. b) denote the largest (resp. smallest)
point of the components in Ri (resp. Li). All the components contained in Ri,
which are link-2-visible from S(x), can be walked as follows: Fix g1 at S(x), and
start g2, g3 at Ray2(x). Then, move g3 monotonically to the point t along the
chain Ri. At the time that g3 is going out of the visible region of g2, move g2 to
a place such that the edge on which g3 is moving is visible from it. See Fig. 8 for
an example, where S(x) = B(p), Ray2(y) = Forw2(p), and the sequence of the
points ti gives the stopped positions of g2 such that g1 and g2 are kept on a line
segment as long as possible. Let tk denote the position of g2 when g3 reaches
the point t. (In Fig. 8, tk = t4.) Similarly, all the components in Li, which are
link-2-visible from Ray2(y), can be walked.

The rest work for walking through Pi is to move g1 and g3 on their chains
from S(x) to b and from t to Ray2(y), respectively. Since all the components
contained in Pi have been handled, both the chains from S(x) to b and from t
to Ray2(y), are weakly visible from the shortest path π(tk, Ray2(y)) (see Fig.
8). The following result helps complete the walk schedule for Pi.

Lemma 4. Let P be a simple polygon that is weakly visible from π(u, v) for
some points u and v on the boundary of P , where π(u, v) denotes the shortest
path between u and v in P . Then P is straight walkable by three guards, and the
number of walk instructions required is linear in the size of P .

Proof. Since it is the same as Theorem 7 of [6], the proof is omitted here. �

By now, we obtain the following results.

Theorem 3. If L and R are mutually weakly link-2-visible and neither link-2-
deadlocks nor link-2-wedges occur, then P is straight walkable by three guards.

Theorem 4. It takes O(n log n) time to test the straight walkability of a polygon,
and O(n) time to generate a walk schedule, if it exists.

Proof. Using the ray-shooting algorithm as well as the shortest paths from u
and v to all vertices of P and all end points of segments of SL and SR (see
Section 4.1), all link-2-ray shots can be calculated in O(n log n) time. Due to
space limit, we omit the detail in this extended abstract. All other steps are
similar to those for two guards, and thus take O(n) time. �

The Two-Guard Problem Revisited and Its Generalization 857

4.3 General Walkable Case

Let us allow backtracking of g1 and g3, i.e., they can move back and forth on
the chains L and R. As in Section 3.2, we define a sequence of maximal link-
2-wedges in the polygon P . Let the 4-tuple W =< a, b,Backw2(a), Forw2(b) >
denote a link-2-wedge with a < b and Backw2(a) > Forw2(b). A link-2-wedge
WL on L is maximal if Backw2(a) succeeds all others Backw2(a′) ∈ R for
a < a′ < b, Forw2(b) precedes all others Forw2(b′) ∈ R for a < b′ < b, and
Forw2(b”) < Backw2(a”) never holds for a < b” < a” < b. A maximal link-2-
wedge WR on R can be defined analogously. Also, we have a sequence of maximal
link-2-wedges in P , ordered from u to v. Note that the algorithm for computing
maximal wedges [5] can be used to compute maximal link-2-wedges.

We show below that the portion of the polygon P between two consecutive
maximal link-2-wedges is straight walkable, and a maximal link-2-wedge can be
walked so that g1 and g3 move on L and R clockwise.

Lemma 5. Let Wi =< B(ai), F (bi), Backw2(ai), Forw2(bi) >, Wj =< B(aj),
F (bj), Backw2(aj), Forw2(bj) > denote two consecutive maximal link-2-wedges.
A straight walk exists for the region between F (bi)Forw2(bi) and
B(aj)Backw2(aj).

Proof. The proof can be given by an argument similar to that for Lemma 5.3
of [5]. We omit the detail in this extended abstract. �

Consider the walk for a maximal link-2-wedge W =< B(a), F (b), Backw2(a),
Forw2(b) > on L. (The walk for a link-2-wedge on R can be given analogously.)
Let L′ denote the subchain of L from B(a) to F (b), and R′ the subchain of R
from Forw2(b) to Backw2(a). For a vertex p2 ∈ L′, the shot Backw2(p2) ∈ R′

(resp. Forw2(p2) ∈ R′) is g-dominated if there exists a vertex p1 ∈ L′
>p2

(resp.
p1 ∈ L′

<p2
) such that Backw2(p1) ∈ R′ and Backw2(p1) > Backw2(p2) (resp.

Forw2(p1) ∈ R′ and Forw2(p1) < Forw2(p2)).

Lemma 6. A maximal link-2-wedge can be walked so that g1 and g3 move on L
and R clockwise. Moreover, the number of walk instructions required is linear in
the size of the wedge.

Proof. Assume that W =< B(a), F (b), Backw2(a), Forw2(b) > is a maximal
link-2-wedge on L. Merge the list of non-g-dominated forward link-2-ray shots
and the list of non-g-dominated backward link-2-ray shots, withinW , into the list
FB in the decreasing order of them. Beginning with Backw2(a), we repeatedly
take the shot from FB until all shots have been processed. If the next shot does
not cross the current shot, it is ignored. Otherwise, we can show by an argument
similar to the proof of Lemma 1 that both intervals in L′ and R′, determined
by two shots and their ”S” points, are link-2-visible from the crossing point x of
two ray shots. Two guards g1 and g3 can then move to the next shot and its ”S”
point as follows: Move g2 to the point x, and rotate the segment g1g3 clockwise,
using the walk instructions (ii). Whenever the rotation cannot be done, say, g1
proceeds to a reflex vertex r and is going out of the visible region of g2, the guard
g2 moves to the vertex r. Let r′ denote the point of L′, which is first touched by

858 X. Tan

extending of the segment rx within P . The subchain of L′ from r to r′ is weakly
visible from the segment rr′; otherwise, the chain L′ is not link-2-visible from x,
a contradiction. Then, we monotonically move g1 to r′ along his chain and move
g2 to r′ along the segment rr′ (see also Theorem 5 of [6]). Finally, move g2 back
to the point x. In this way, the wedge W can be walked. The number of walk
instructions used is linear in the size of W . �

By now, we can conclude the main result of this paper.

Theorem 5. A polygon is walkable if and only if two chains L and R are mu-
tually weakly link-2-visible and no link-2-deadlocks occur.

Theorem 6. It takes O(n log n) time to test the walkability of a polygon, and O(n
log n+m) time to generate a walk, where m denotes the size of the optimal walk.

Proof. First, all link-2-ray shots are computed in O(n log n) time. Similar to the
argument used in [4, 5], the walkability of the polygon can then be determined
in O(n) time. Using the algorithm turnpoint [5], we compute the sequence of
maximal link-2-wedges in P . As in [5], we can show that these wedges give the
necessary and sufficient turning points for g1 and g3. Applying the result of
Section 4.2 for the region between two maximal link-2-wedges and Lemma 6 for
a link-2-wedge gives a general walk. The size of our walk is clearly O(m). �

Lemma 7. The number m of walk instructions for the three guards is Θ(n2).

Proof. Fig. 13 of [2] shows a case in which m = Ω(n2). On the other hand,
since there are O(n) maximal link-2-wedges, the number of the walks for them
(Lemma 6) and the straight walks between them is O(n). Since each of these
walks takes O(n) time, the number of walk instructions used is O(n2). �

Finally, the paradigm developed in this paper can be used to solve the general
k-guard problem. Such a result should have an application in the problem of
sweeping through a simple polygon with a chain of minimum number of guards,
without considering any starting or ending point [3].

References

[1] B.K.Bhattacharya, A. Mukhopadhyay and G.Narasimhan, ”Optimal algorithms for
two-guard walkability of simple polygons”, Lect. Notes Comput. Sci. 2125 (2001)
438-449.

[2] D.Crass, I.Suzuki and M.Yamashita, “Search for a mobile intruder in a corridor”,
IJCGA 5 (1995) 397-412.

[3] A.Efrat, L.J.Guibas, S. Har-Peled, D.C.Lin, J.S.B. Mitchell and T.M.Murali,
“Sweeping simple polygons with a chain of guards”, In Proc., ACM-SIAM SODA
(2000) 927-936.

[4] P.J.Heffernan, “An optimal algorithm for the two-guard problem”, IJCGA 6 (1996)
15-44.

[5] C. Icking and R. Klein, “The two guards problem”, IJCGA 2 (1992) 257-285.
[6] I.Suzuki and M.Yamashita, “Searching for mobile intruders in a polygonal region”,

SIAM J. Comp. 21 (1992) 863-888.
[7] L.H.Tseng, P.J.Heffernan and D.T.Lee, “Two-guard walkability of simple poly-

gons”, IJCGA 8 (1998) 85-116.

Canonical Data Structure for Interval Probe Graphs

Ryuhei Uehara

Department of Information Processing, School of Information Science, JAIST, Ishikawa, Japan
uehara@jaist.ac.jp

Abstract. The class of interval probe graphs is introduced to deal with the phys-
ical mapping and sequencing of DNA as a generalization of interval graphs. The
polynomial time recognition algorithms for the graph class are known. However,
the complexity of the graph isomorphism problem for the class is still unknown.
In this paper, extended MPQ-trees are proposed to represent the interval probe
graphs. An extended MPQ-tree is canonical and represents all possible permu-
tations of the intervals. The extended MPQ-tree can be constructed from a given
interval probe graph in polynomial time. Thus we can solve the graph isomorphism
problem for the interval probe graphs in polynomial time. Using the tree, we can
determine that any two nonprobes are independent, overlapping, or their relation
cannot be determined without an experiment. Therefore, we can heuristically find
the best nonprobe that would be probed in the next experiment. Also, we can
enumerate all possible affirmative interval graphs for any interval probe graph.

Keywords: Bioinformatics, data structure, graph isomorphism, interval probe
graph.

1 Introduction

The class of interval graphs was introduced in the 1950’s by Hajös and Benzer inde-
pendently. Since then a number of interesting applications for interval graphs have been
found including to model the topological structure of the DNA molecule, scheduling, and
others (see [6, 14, 4] for further details). The interval graph model requires all overlap
information. However, in many cases, only partial overlap data exist. The class of inter-
val probe graphs is introduced by Zhang in the assembly of contigs in physical mapping
of DNA, which is a problem arising in the sequencing of DNA (see [19, 21, 20, 14] for
background). An interval probe graph is obtained from an interval graph by designating
a subset P of vertices as probes, and removing the edges between pairs of vertices in
the remaining set N of nonprobes. That is, on the model, only partial overlap infor-
mation (between a probe and the others) is given. From the graph theoretical point of
view, interval probe graphs are related to tolerance graphs [8–Section 4], and recently,
the notion is extended to the chordal probe graphs [7, 16]. On the other hand, from the
practical point of view, a few efficient algorithms for the class are known; the recognition
algorithms [10, 13, 9], and an algorithm for finding a tree 7-spanner (see [3] for details).
The recognition algorithm in [10] also gives a data structure that represents all possible
permutations of the intervals of an interval probe graph.

A data structure called PQ-trees was developed by Booth and Lueker to represent
all possible permutations of the intervals of an interval graph [2]. Korte and Möhring

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 859–870, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

860 R. Uehara

simplified their algorithm by introducingMPQ-trees [11]. AnMPQ-tree is canonical;
that is, given two interval graphs are isomorphic if and only if their correspondingMPQ-
trees are isomorphic. However, there are no canonical MPQ-trees for interval probe
graphs. In general, given an interval probe graph, there are several affirmative interval
graphs those are not isomorphic, and their interval representations are consistent to the
interval probe graph.

In this paper, we extendMPQ-trees to represent interval probe graphs. The extended
MPQ-tree is canonical for any interval probe graph, and the tree can be constructed
in polynomial time. Thus the graph isomorphism problem for interval probe graphs can
be solved in polynomial time. From the theoretical point of view, the complexity of the
graph isomorphism of interval probe graphs was not known (see [18] for related results
and references). Thus the result improves the upper bound of the graph classes such that
the graph isomorphism problem can be solved in polynomial time.

From the practical point of view, the extendedMPQ-tree is very informative, which
is beneficial in the Computational Biology community. The extendedMPQ-tree gives
us the information between nonprobes; the relation of two nonprobes is either (1) inde-
pendent (they cannot overlap with each other), (2) overlapping, or (3) not determined
without experiments. Hence, to clarify the structure of the DNA sequence, we only have
to experiment on the nonprobes in the case (3). Moreover, given extended MPQ-tree,
we can find the nonprobe v that has the most nonprobes u such that v and u are in the
case (3) in linear time. Therefore, we can heuristically find the “best” nonprobe to fix
the structure of the DNA sequence efficiently.

Due to space limitation, details of the construction of an extended MPQ-tree are
omitted.1

2 Preliminaries

The neighborhood of a vertex v in a graph G = (V,E) is the set NG(v) = {u ∈ V |
{u, v} ∈ E}, and the degree of a vertex v is |NG(v)| and denoted by degG(v). For the
vertex set U of V , we denote by NG(U) the set {v ∈ V | v ∈ N(u) for some u ∈ U}.
If no confusion can arise we will omit the index G. Given a graph G = (V,E) and
a subset U ⊆ V , the subgraph of G induced by U is the graph (U,F), where F =
{{u, v} | {u, v} ∈ E for u, v ∈ U}, and denoted by G[U]. Given a graph G = (V,E),
its complement Ḡ = (V, Ē) is defined by Ē = {{u, v} | u, v ∈ V and {u, v} �∈ E}. A
vertex set I is independent set ifG[I] contains no edges, and then the graph Ḡ[I] is said
to be a clique.

For a given graph G = (V,E), a sequence of the distinct vertices v0, v1, . . . , vl is a
path, denoted by (v0, v1, . . . , vl), if {vj , vj+1} ∈ E for each 0 ≤ j ≤ l− 1. The length
of a path is the number of edges on the path. For two vertices u and v, the distance of
the vertices is the minimum length of the paths joining u and v. A cycle is a path begin-
ning and ending with the same vertex. An edge which joins two vertices of a cycle but
is not itself an edge of the cycle is a chord of that cycle.A graph is chordal if each cycle of

1 Full draft isavailable athttp://www.komazawa-u.ac.jp/˜uehara/ps/MPQipg.pdf

Canonical Data Structure for Interval Probe Graphs 861

length at least 4 has a chord. Given graph G = (V,E), a vertex v ∈ V is simplicial in
G if G[N(v)] is a clique in G. The following lemma is a folklore (see [17]):

Lemma 1. Given chordal graph, all simplicial vertices can be found in linear time.

The ordering v1, . . . , vn of the vertices of V is a perfect elimination ordering of G
if the vertex vi is simplicial in G[{vi, vi+1, . . . , vn}] for all i = 1, . . . , n. Then a graph
is chordal if and only if it has a perfect elimination ordering (see, e.g., [4–Section 1.2]
for further details).

Two graphs G = (V,E) and G′ = (V ′, E′) are isomorphic if and only if there
is a one-to-one mapping φ : V → V ′ which satisfies {u, v} ∈ E if and only if
{φ(u), φ(v)} ∈ E′ for every pair of vertices u and v. We denote by G ∼ G′ if G
is isomorphic toG′. Given graphsG andG′, graph isomorphism problem is the problem
to determine if G ∼ G′.

2.1 Interval Graph Representation

A graph (V,E) withV = {v1, v2, . . . , vn} is an interval graph if there is a set of intervals
I = {Iv1 , Iv2 , . . . , Ivn} such that {vi, vj} ∈ E if and only if Ivi ∩ Ivj �= ∅ for each
i and j with 1 ≤ i, j ≤ n. We call the set I of intervals interval representation of the
graph. For each interval I , we denote by R(I) and L(I) the right and left endpoints of
the interval, respectively (hence we have L(I) ≤ R(I) and I = [L(I), R(I)]).

A graph G = (V,E) is an interval probe graph if V can be partitioned into subsets
P and N (corresponding to the probes and nonprobes) and each v ∈ V can be assigned
to an interval Iv such that {u, v} ∈ E if and only if both Iu ∩ Iv �= ∅ and at least
one of u and v is in P . In this paper, we assume that P and N are given, and then
we denote by G = (P,N,E). By definition, N is an independent set, and G[P] is
an interval graph. Let G = (P,N,E) be an interval probe graph. Let E+ be a set of
edges {t1, t2} with t1, t2 ∈ N such that there are two probes v1 and v2 in P such that
{v1, t1}, {v1, t2}, {v2, t1}, {v2, t2} ∈ E, and {v1, v2} �∈ E. In the case, we can know
that intervals t1 and t2 have to overlap without experiment. Each edge inE+ is called an
enhanced edge, and the graphG+ := (P,N,E∪E+) is said to be an enhanced interval
probe graph. It is known that an interval probe graph is weakly chordal [15], and an
enhanced interval probe graph is chordal [19, 21]. For further details and references can
be found in [4, 14].

For a given (enhanced) interval probe graph G, an interval graph G′ is said to be
affirmative if and only ifG′ gives one possible interval representations forG. In general,
for an (enhanced) interval probe graph G, there are several non-isomorphic affirmative
interval graphs.

2.2 PQ-Trees and MPQ-Trees

PQ-trees were introduced by Booth and Lueker [2], and which can be used to recognize
interval graphs as follows. APQ-tree is a rooted tree T with two types of internal nodes:
P andQ, which will be represented by circles and rectangles, respectively. The leaves of
T are labeled 1-1 with the maximal cliques of the interval graphG. The frontier of aPQ-
tree T is the permutation of the maximal cliques obtained by the ordering of the leaves

862 R. Uehara

of T from left to right.PQ-tree T and T ′ are equivalent, if one can be obtained from the
other by applying the following rules a finite number of times; (1) arbitrarily permute the
successor nodes of aP-node, or (2) reverse the order of the successor nodes of aQ-node.
In [2], Booth and Lueker showed that a graph G is an interval graph if and only if there
is a PQ-tree T whose frontier represents a consecutive arrangement of the maximal
cliques ofG. They also developed a linear algorithm that either constructs aPQ-tree for
G, or states thatG is not an interval graph. IfG is an interval graph, then all consecutive
arrangements of the maximal cliques of G are obtained by taking equivalent PQ-trees.

Lueker and Booth [12], and Colbourn and Booth [5] developed labeled PQ-trees in
which each node contains information of vertices as labels. Their labeled PQ-trees are
canonical; given interval graphsG1 andG2 are isomorphic if and only if corresponding
labeledPQ-trees T1 and T2 are isomorphic. Since we can determine if two labeledPQ-
trees T1 and T2 are isomorphic, the isomorphism of interval graphs can be determined
in linear time.
MPQ-trees, which stands for modified PQ-trees, are developed by Korte and

Möhring to simplify the construction of PQ-trees [11].TheMPQ-tree T ∗ assigns sets
of vertices (possibly empty) to the nodes of a PQ-tree T representing an interval graph
G = (V,E). A P-node is assigned only one set, while aQ-node has a set for each of its
sons (ordered from left to right according to the ordering of the sons). A P-node P̂ con-
sists of those vertices of G contained in all maximal cliques represented by the subtree
or P̂ in T , but in no other cliques.2 The definition of a Q-node Q̂ is more involved: Let
Q1, . . . , Qm (m ≥ 3) be the set of the sons (in consecutive order) of Q̂, and let Ti be
the subtree of T with root Qi. We then assign a set Si, called section, to Q̂ for each Qi.
Section Si contains all vertices that are contained in all maximal cliques of Ti and some
other Tj , but not in any clique belonging to some other subtree of T that is not below Q̂.

In [11], Korte and Möhring proposed two linear time algorithms that construct an
MPQ-tree for given interval graph. Although it does not shown explicitly, theMPQ-
trees constructed by the algorithms are the same. TheMPQ-tree directly corresponds to
the labeled PQ-tree; the sets of vertices assigned in theMPQ-tree directly correspond
to the “characteristic nodes” in [5]. Hence, the labeled PQ-tree is canonical, so is the
MPQ-tree. Therefore the graph isomorphism problem also can be solved in linear time
using theMPQ-trees (without constructing PQ-trees in [2]). The property ofMPQ-
trees is summarized as follows [11–Theorem 2.1]:

Theorem 1. Let T ∗ be the canonical MPQ-tree for an interval graph G = (V,E).
Then

(a) T ∗ can be obtained in O(|V |+ |E|) time and O(|V |) space.
(b) Each maximal clique ofG corresponds to a path in T ∗ from the root to a leaf, where
each vertex v ∈ V is as close as possible to the root.
(c) In T ∗, each vertex v appears in either one leaf, one P-node, or consecutive sections
Si, Si+1, . . ., Si+j (with j > 0) in a Q-node.
(d) The root of T ∗ contains all vertices belonging to all maximal cliques, while the leaves
contain the simplicial vertices.

2 We will use P̂ , Q̂, and N̂ for describing a P-node, Q-node, any node, respectively to distinguish
probe set P and nonprobe set N .

Canonical Data Structure for Interval Probe Graphs 863

Proof. The claims (a) and (b) are stated in [11–Theorem 2.1]. The claim (c) is imme-
diately obtained by the fact that the maximal cliques containing a fixed vertex occur
consecutively in T ; see [11] for further details. The claim (d) is also stated in [11–p. 71].

�

We note that there are no vertices that appear in only one section in aQ-node (since
such a vertex appears in the subtree of the section). Thus each vertex in aQ-node appears
at least two consecutive sections.

Lemma 2. Let Q̂ be a Q-node in the canonical MPQ-tree. Let S1, . . . , Sk (in this
order) be the sections of Q̂, and let Ui denote the set of vertices occurring below Si with
1 ≤ i ≤ k. Then we have the following;

(a) Si−1 ∩ Si �= ∅ for 2 ≤ i ≤ k,
(b) S1 ⊆ S2 and Sk ⊆ Sk−1,
(c) U1 �= ∅ and Uk �= ∅,
(d) (Si ∩ Si+1) \ S1 �= ∅ and (Si−1 ∩ Si) \ Sk �= ∅ for 2 ≤ i ≤ k − 1,
(e) Si−1 �= Si with 2 ≤ i ≤ k − 1, and
(f) (Si−1 ∪ Ui−1) \ Si �= ∅ and (Si ∪ Ui) \ Si−1 �= ∅ for 2 ≤ i ≤ k.

Proof. The results in [11] lead us from (a) to (e) immediately. Thus we show (f). If
(Si−1 ∪ Ui−1) \ Si = ∅, we have Ui−1 = ∅ and Si−1 ⊂ Si. In the case, Si−1 is
redundant section; we can obtain more compact MPQ-tree by removing Si−1. This
fact contradicts that theMPQ-tree is canonical. Thus (f) is settled.
�

For an enhanced interval probe graph G+ = (P,N,E ∪ E+), let u and v be any
two nonprobes with {u, v} �∈ E+. Then, we say that u intersects v if Iu ∩ Iv �= ∅
for all affirmative interval graphs of G+. The nonprobes u and v are independent if
Iu ∩ Iv = ∅ for all affirmative interval graphs of G+. Otherwise, we say that the
nonprobe u potentially intersects v. Intuitively, if u potentially intersects v, we cannot
determine their relation without experiments.

2.3 Extended MPQ-Trees

If given graph is an interval graph, the correspondingMPQ-tree is uniquely determined
up to isomorphism. However, for an interval probe graph, this is not in the case. For exam-
ple, consider an interval probe graph G = (P,N,E) with P = {1, 2, 3, 4, 5, 6, 7, 8, 9}
and N = {a, b, c, d, e, f, g} given in Fig. 1. If the graph does not contain the nonprobe
g, we have the canonical MPQ-tree in Fig. 2. However, the graph is an interval probe
graph and we do not know if g intersects b and/or c since they are nonprobes. Accord-
ing to the relations between g and b and/or c, we have four possible MPQ-trees that
are affirmative to G shown in Fig. 3, where X is either {1, 2, 7, 8}, {1, 2, 7, 8, c}, or
{1, 2, 7, 8, b, c}. We call such a vertex g floating leaf (later, it will be shown that such a
vertex has to be a leaf in an MPQ-tree). For a floating leaf, there is a corresponding
Q-node (which also will be shown later). Thus we extend the notion of a Q-node to
contain the information of the floating leaf. A floating leaf appears consecutive sections
of a Q-node Q̂ as the ordinary vertices in Q̂. To distinguish them, we draw them over
the corresponding sections; see Fig. 4. Further details will be discussed in Section 3.

864 R. Uehara

f
g

c
d

e

a
b

4
2

1
9 3

65
8

7

Probes

Nonprobes

Fig. 1. A given interval probe graph G

2,4,7,
8,b

1,2,7,
8,b

1,2,5,
7,8,c

1,2,7,
c,d

1,2,6,
7,c,f

1,6,7,
c,f

1,6,
7,f

[9][a]

4,7,

8

1,2,5,
7,c,d

[e] [3]

1,2,6,
7,c,d

Fig. 2. The MPQ-tree of G − g

2,4,7,
8,b

1,2,7,
8,b

1,2,5,
7,8,c

1,2,5,
7,c,d

2,4,7,
8,b

1,2,7,
8,b

1,2,5,
7,8,c

1,2,5,
7,c,d

[g]

X

[g]

Fig. 3. Four MPQ-trees of G

2,4,7,
8,b

1,2,7,
8,b

1,2,5,
7,8,c

1,2,7,
c,d

1,2,6,
7,c,f

1,6,7,
c,f

1,6,
7,f

[9][a]

4,7,

8

1,2,5,
7,c,d

[e] [3]

1,2,6,
7,c,d

g

Fig. 4. The extended MPQ-tree of G

3 Construction of Extended MPQ-Tree of Interval Probe Graph

LetG = (P,N,E) be a given interval probe graph, andG+ = (P,N,E ∪E+) the cor-
responding enhanced interval probe graph, whereE+ is the set of enhanced edges. In our
algorithm, simplicial nonprobes play an important role; we partition the set N of non-
probes to two sets N∗ and NS defined as follows; NS := {u | u is simplicial in G+},
and N∗ := N \ NS . For example, for the graph G = (P,N,E) in Fig. 1, E+ =
{{c, d}, {c, f}}, NS = {a, e, g}, and N∗ = {b, c, d, f}. Then the outline of the algo-
rithm is as follows.

A0. For a given interval probe graph G = (P,N,E), compute the enhanced interval
probe graph G+ = (P,N,E ∪ E+);

A1. Partition N into two subsets N∗ and NS ;
A2. Construct theMPQ-tree T ∗ ofG∗ = (P,N∗, E∗), whereE∗ is the set of edges

induced by P ∪N∗ from G+;
A3. Embed each nonprobe v in NS into T ∗.

Canonical Data Structure for Interval Probe Graphs 865

Note that the tree constructed in step A2 is the ordinary MPQ-tree. In step A3, it
will be modified to the extendedMPQ-tree.

3.1 Property of G∗

Let G∗ = (P,N∗, E∗) be the enhanced interval probe graph induced by P and N∗ in
step A2. The following lemma plays an important role in this subsection.

Lemma 3. Let u and v be any nonprobes inN∗. Then there is an interval representation
of G∗ such that Iu ∩ Iv �= ∅ if and only if {u, v} ∈ E+.

Proof. If {u, v} ∈ E+, Iu∩Iv �= ∅ by definition. Thus we assume that {u, v} �∈ E+, and
show that there is an interval representation ofG∗ such that Iu∩Iv = ∅. We fix an interval
representation ofG∗, and assume that Iu∩Iv �= ∅. WhenN(u)∩N(v) = ∅, it is easy to
modify to satisfy Iu∩Iv = ∅. Thus we assume thatN(u)∩N(v) �= ∅. We first show that
N(u) �⊆ N(v) and N(v) �⊆ N(u). If N(u) ⊆ N(v), since {u, v} �∈ E+, all vertices in
N(u) intersect with each other. Thus,N(u) induces a clique, which contradicts u ∈ N∗.
Hence N(u) �⊆ N(v) and N(v) �⊆ N(u). Without loss of generality, we can assume
that L(u) < L(v) < R(u) < R(v). Let w1 and w2 are any probes which intersect the
interval [L(v), R(u)]. Then, since {u, v} �∈ E+, Iw1 ∩ Iw2 �= ∅. Thus, by the Helly
property (see, e.g.,[1]), there is a point p in the interval [L(v), R(u)] such that all probes
contain p. We replace the point p in all intervals by a small interval [p−ε, p+ε], and then
we replace Iu by [L(u), p− ε] and Iv by [p+ ε, R(v)]. The replacement has no effect to
the relations between u (or v) and probes. We here show that the replacement also has
no effect to the relations between u (or v) and other nonprobes. To derive contradictions,
we assume hat the relation between u and a nonprobe w is changed. Since the interval
Iu is shortened,w ∈ N(u) becomesw �∈ N(u) by the replacement. Since both of u and
w are nonprobes, there are two independent probes t1 and t2 that guarantee w ∈ N(u).
Then, replacing [L(u), R(u)] by [L(u), p − ε], at least one of t1 and t2, say t, changes
from t ∈ N(u) to t �∈ N(u). However this contradicts the definition of the point p,
which should be contained in t, and we have t ∈ N(u) after replacement. Thus the
replacement has no effect to the relations between u (or v) and other nonprobes. Hence
we obtain a new affirmative interval representation of G∗ with Iu ∩ Iv = ∅. Repeating
this process for each pair we have the lemma.
�

The definition of (enhanced) interval probe graphs and Lemma 3 imply the main
theorem in this subsection:

Theorem 2. The enhanced interval probe graph G∗ is an interval graph.

Hereafter we call the graph G∗ = (P,N∗, E∗) the backbone interval graph of
G+ = (P,N,E ∪E+). For any given interval graph, its correspondingMPQ-tree can
be computed in linear time [11]. Thus we also have the following corollary:

Corollary 1. The canonicalMPQ-tree T ∗ of G∗ can be computed in linear time.

In the canonical MPQ-tree T ∗, for each pair of nonprobes u and v, their corre-
sponding intervals intersect if and only if {u, v} ∈ E+. This implies the following
observation.

866 R. Uehara

2,7,
8,b

1,2,7,
8,b

1,2,5,
7,c,d

1,2,6,
7,c,d

1,2,6,
7,c,f

1,6,7,
c,f

1,6,
7,f

[9] [3][4]

1,2,5,
7,8,c

Fig. 5. The canonical MPQ-tree T ∗ of G∗

Observation 1. The canonical MPQ-tree T ∗ gives us the possible interval represen-
tations of G∗ such that two nonprobes in N∗ do not intersect as possible as they can.

For example, for the graphG = (P,N,E) in Fig. 1, the canonicalMPQ-tree of the
backbone interval graph G∗ = (P,N∗, E∗) is described in Fig. 5. In the MPQ-tree,
Id ∩ If = ∅.

Now, our main task is that embedding each vertex in NS into the canonicalMPQ-
tree T ∗ without breaking canonicality.

3.2 Embedding of Nonprobes in NS

Due to space limitation, we describe an outline of our embedding.
We first show two lemmas for the nonprobes in NS .

Lemma 4. For each nonprobe v in NS , all vertices in N(v) are probes.

Proof. To derive a contradiction, we assume that a nonprobe v′ is inN(v). Then {v, v′}
is in E+. Thus there are two probes u and u′ such that {u, v}, {u, v′}, {u′, v}, and
{u′, v′} are in E, and {u, u′} is not in E, which contradicts that v ∈ NS .
�

Lemma 5. For any interval probe graph G, there is an affirmative interval graph G′

such that every nonprobe v in NS of G is also simplicial in G′.

Proof. Let v be any nonprobe in NS such that v is not simplicial in G′. By the Helly
property, there is a point p such that all probes in N(v) contains p. We replace the point
p in all intervals by a small interval [p−ε, p+ε], and we setR(v) = L(v) = p. Then v is
simplicial in the interval graph corresponding to the new interval representation, and the
interval graph is still affirmative. Thus, repeating this process, we have the lemma.
�

By Lemma 5 and Theorem 1(d), we have the following corollary.

Corollary 2. For any interval probe graph G, there is an affirmative interval graph G′

such that every nonprobe v in NS of G is in a leaf of theMPQ-tree of G′.

We will construct the extendedMPQ-tree that represents all such affirmative interval
graphs stated in Corollary 2 for G.

Our embedding is an extension of the embedding by Korte and Möhring [11] to deal
with nonprobes. Hereafter, we suppose that the algorithm picks up some nonprobe v
from NS and it is going to embed v into T ∗. Each node N̂ (including Q-node) of the
current tree T ∗ and each section S of aQ-node is labeled according to how the nonprobe
v in NS is related to the probes in N̂ or S. Nonprobes in N̂ or S are ignored. The label
is∞, 1, or 0 if v is adjacent to all, some, or no probe from N̂ , or S, respectively. Empty
sets (or the sets containing only nonprobes) obtain the label 0. Labels 1 and∞ are called
positive labels.

Canonical Data Structure for Interval Probe Graphs 867

Lemma 6. For a nonprobe v in NS , all nodes with a positive label are contained in a
unique path of T ∗.

Proof. By definition, v is simplicial, orN(v) induce a clique. Thus Theorem 1(b) implies
the lemma.
�

Let P′ be the unique minimal path in T ∗ containing all nodes with positive label. Let
P be a path from the root of theMPQ-tree T ∗ to a leaf containing P′ (a leaf is chosen
in any way). Let N̂∗ be the lowest node in P with positive label. If P contains nonempty
P-nodes or sections above N̂∗ with label 0 or 1, let N̂∗ be the highest such P-node or
Q-node containing the section. Otherwise put N̂∗ = N̂∗. Intuitively, the neighbors of v
are distributed in the nodes from N̂∗ to N̂∗ along P.

When N̂∗ �= N̂∗, we have the following lemma:

Lemma 7. We assume that N̂∗ �= N̂∗. Let Q̂ be anyQ-node with sections S1, · · ·, Sk in
this order between N̂∗ and N̂∗. If Q̂ is not N̂∗, all neighbors of v in Q̂ appear in either
S1 or Sk.

Proof. We first observe that N̂∗ contains at least one probe w of v with w �∈ N(v) since
N̂∗ is non-empty and the label of N̂∗ is 0 or 1. We assume that v has a neighbor u in Q
with u �∈ S1 and u �∈ Sk to derive a contradiction. Let U1 and Uk be the set of vertices
occurring below S1 and Sk, respectively. By Lemma 2(c), U1 �= ∅ and Uk �= ∅. Thus
there are two vertices u1 ∈ U1 and uk ∈ Uk such that Iu1 ⊆ Iw, Iu ⊆ Iw, Iuk

⊆ Iw,
andR(Iu1) < L(Iu) < R(Iu) < L(uk) (orR(Iuk

) < L(Iu) < R(Iu) < L(u1)). Thus
we have Iu ⊂ Iw, which contradicts that w �∈ N(v) and u ∈ N(v).
�

We note that Lemma 7 does not hold at the node N̂∗.
We are now ready to use the bottom-up strategy from N̂∗ to N̂∗ as in [11]. In [11], the

ordering of vertices are determined by LexBFS. In our algorithm, the step A3 consists
of the following substeps;

A3.1. while there is a nonprobe v such that N̂∗ �= N̂∗ for v, embed v into T ∗;
A3.2. while there is a nonprobe v such that N̂∗ = N̂∗ for v and v is not a floating

leaf, embed v into T ∗;
A3.3. embed each nonprobe v (such that N̂∗ = N̂∗ for v and v is a floating leaf) into

T ∗.

An embedding of a nonprobe v with N̂∗ �= N̂∗ merges some nodes into one new
Q-node. Thus, during step A3.1, embedding of a nonprobe v can change the condition
of other nonprobes u from “N̂∗ �= N̂∗” to “N̂∗ = N̂∗”.

We here have the following theorem:

Theorem 3. When N̂∗ �= N̂∗, v is not a floating leaf.

The proof of Theorem 3 is omitted here since it hardly depends on the templates for the
embedding process. By Theorem 3, steps A3.1 and A3.2 do not generate floating leaves,
and all floating leaves are embedded in step A3.3. Hence the templates used in steps
A3.1 and A3.2 are not required to manage floating leaves.

868 R. Uehara

When N̂∗ = N̂∗, the embedding is done at the unique node N̂∗ = N̂∗. On the other
hand, when N̂∗ �= N̂∗, the embedding is involved. But the number of cases are decreased
by Lemma 7: Our embedding from N̂∗ to N̂∗ along P is the natural extension of the
construction of the MPQ-tree in [11] except at the top node N̂∗. At the node N̂∗, our
embedding is natural extension of the construction of the PQ-tree in [2].

Example 1. For the graph G = (P,N,E) in Fig. 1 with its backbone interval graph in
Fig. 5, the extended MPQ-tree T̃ is shown in Fig. 4. Note that we can know that e
intersects both of c and d with neither experiments nor enhanced edges. We also note
that Ia and Ib could have intersection, but they are standardized.

3.3 Analysis of Algorithm

The correctness and complexity of the algorithm is given by the straightforward (but
tedious) case analysis for the templates. Hence the proof is omitted here.

Theorem 4. The resultant extendedMPQ-tree is canonical up to isomorphism.

Theorem 5. For a given interval probe graph G = (P,N,E), let T̃ be the canoni-
cal extended MPQ-tree, and G+ = (P,N,E ∪ E+) be the corresponding enhanced
interval graph. Let Ẽ be the set of edges {v1, v2} joining nonprobes v1 and v2 which
is given by T̃ ; more precisely, we regard T̃ as the ordinary MPQ-tree, and the graph
G̃ = (P ∪N,E∪E+∪Ẽ) is the interval graph given by theMPQ-tree T̃ (thus a float-

ing leaf may not be a leaf). Then T̃ can be computed inO((|P |+ |N |)|E|+ |E+|+
∣∣∣Ẽ∣∣∣)

time and O(|P |+ |N |+ |E|+ |E+|+
∣∣∣Ẽ∣∣∣) space.

Corollary 3. The graph isomorphism problem for the class of (enhanced) interval probe
graphs G is solvable in O(n2 + nm) time and O(n2) space, where n and m are the
number of vertices and edges of an affirmative interval graph of G, respectively.

We note that |E+| +
∣∣∣Ẽ∣∣∣ can be Θ(|N |2) = Θ(n2) even if |E| = O(n), where

n = |P |+ |N |. Thus the running time in the main theorem can be Θ(n3) even if given
interval probe graphs have O(n) edges.

4 Applications

Given canonical extendedMPQ-tree T̃ , using a standard depth first search technique,
we can compute in linear time if each subtree in T̃ contains only nonprobes. Thus,
hereafter, we assume that each section Si knows if its subtree contains only nonprobes
or not.

We first consider the following problem:

Input: An enhanced interval probe graph G+ = (P,N,E ∪ E+) and the canonical
extendedMPQ-tree T̃ ;

Output: Mapping f from each pair of nonprobes u, v with {u, v} �∈ E+ to “intersect-
ing”, “potentially intersecting”, or “independent”;

Canonical Data Structure for Interval Probe Graphs 869

We denote byEi andEp the sets of the pairs of intersecting nonprobes, and the pairs
of potentially intersecting nonprobes, respectively. That is, each pair of nonprobes u, v
is either in E+, Ei, Ep, or otherwise, they are independent.

Theorem 6. The setsEi andEp can be computed inO(|E|+ |E+|+ |Ei|+ |Ep|) time
for a given enhanced interval probe graph G+ = (P,N,E ∪ E+) and the extended
MPQ-tree T̃ .

Proof. Omitted.
�

By Theorem 6, we can heuristically find the “best” nonprobe to fix the structure of
the DNA sequence:

Corollary 4. For a given enhanced interval probe graph G+ = (P,N,E ∪ E+) and
the canonical extended MPQ-tree T̃ , we can find the nonprobe v that has the most
potentially intersecting nonprobes in O(|E|+ |E+|+ |Ei|+ |Ep|) time.

We next consider the following problem:

Input: An interval probe graphG = (P,N,E) and the canonical extendedMPQ-tree
T̃ ;

Output: All affirmative interval graphs.

Theorem 7. For a given enhanced interval probe graphG = (P,N,E) and the canon-
ical extendedMPQ-tree T̃ , all affirmative interval graphs can be enumerated in poly-
nomial time and space of |P | + |N | + |M |, where M is the number of the affirmative
interval graphs.

Proof. We here show how to generate one possible affirmative interval graph of G. It
is easy to modify it to enumerate all affirmative interval graphs in polynomial time and
space of |P |+ |N |+ |M |. We first fix each floating leaf as a leaf under the corresponding
Q-node (in arbitrary way). Then, we have an affirmative MPQ-tree for some interval
graph. However, to generate all possible interval graphs, we have to consider two more
cases; (1) two adjacent nonprobes inN∗ might have intersection as noted in Observation
1, and (2) two adjacent nonprobes in NS might have intersection. Those two cases can
be analyzed in the same case-analysis in the proof of Theorem 6. Then we next fix the
relations between each pair of nonprobes (We note that some pair of nonprobes u and v
may be determined by the relation of the other pair of nonprobes u and w). It is easy to
see that for each possible affirmative interval graph, itsMPQ-tree can be generated in
this way.
�

References

1. C. Berge. Hypergraphs. Elsevier, 1989.
2. K.S. Booth and G.S. Lueker. Testing for the Consecutive Ones Property, Interval Graphs,

and Graph Planarity Using PQ-Tree Algorithms. Journal of Computer and System Sciences,
13:335–379, 1976.

870 R. Uehara

3. A. Brandstädt, F.F. Dragan, H.-O. Le, V.B. Le, and R. Uehara. Tree Spanners for Bipartite
Graphs and Probe Interval Graphs. In 29th International Workshop on Graph-Theoretic
Concepts in Computer Science (WG ’03), pages 106–118. Lecture Notes in Computer Science
Vol. 2880, Springer-Verlag, 2003.

4. A. Brandstädt, V.B. Le, and J.P. Spinrad. Graph Classes: A Survey. SIAM, 1999.
5. C.J. Colbourn and K.S. Booth. Linear Time Automorphism Algorithms for Trees, Interval

Graphs, and Planar Graphs. SIAM Journal on Computing, 10(1):203–225, 1981.
6. M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, 1980.
7. M.C. Golumbic and M. Lipshteyn. Chordal Probe Graphs. In 29th International Workshop

on Graph-Theoretic Concepts in Computer Science (WG ’03), pages 249–260. Lecture Notes
in Computer Science Vol. 2880, Springer-Verlag, 2003.

8. M.C. Golumbic and A.N. Trenk. Tolerance Graphs. Cambridge studies in advanced mathe-
matics 89. Cambridge, 2004.

9. J.L. Johnson, R.M. McConnell, and J.P. Spinrad. Linear Time Recognition of Probe Interval
Graphs. in preparation, 2002.

10. J.L. Johnson and J.P. Spinrad. A Polynomial Time Recognition Algorithm for Probe Interval
Graphs. In Proc. 12th Ann. ACM-SIAM Symp. on Discrete Algorithms, pages 477–486. ACM,
2001.

11. N. Korte and R.H. Möhring. An Incremental Linear-Time Algorithm for Recognizing Interval
Graphs. SIAM Journal on Computing, 18(1):68–81, 1989.

12. G.S. Lueker and K.S. Booth. A Linear Time Algorithm for Deciding Interval Graph Isomor-
phism. Journal of the ACM, 26(2):183–195, 1979.

13. R.M. McConnell and J.P. Spinrad. Construction of Probe Interval Models. In Proc. 13th Ann.
ACM-SIAM Symp. on Discrete Algorithms, pages 866–875. ACM, 2002.

14. T.A. McKee and F.R. McMorris. Topics in Intersection Graph Theory. SIAM, 1999.
15. F.R. McMorris, C. Wang, and P. Zhang. On Probe Interval Graphs. Discrete Applied Mathe-

matics, 88:315–324, 1998.
16. A. Nerry, M.C. Golumbic, and M. Lipshteyn. Two Tricks to Triangulate Chordal Probe Graphs

in Polynomial Time. In Proc. 15th Ann. ACM-SIAM Symp. on Discrete Algorithms, pages
955–962. ACM, 2004.

17. J.P. Spinrad. Efficient Graph Representations. American Mathematical Society, 2003.
18. R. Uehara, S. Toda, and T. Nagoya. Graph Isomorphism Completeness for Chordal bipartite

graphs and Strongly Chordal Graphs. Discrete Applied Mathematics, 2004. to apear.
19. P. Zhang. Probe Interval Graphs and Its Applications to Physical Mapping of DNA.

manuscript, 1994.
20. P. Zhang. Probe Interval Graph and Its Applications to Physical Mapping of DNA. RECOMB

2000, Poster Session; available at http://recomb2000.ims.u-tokyo.ac.jp/
Posters/list-posters.html, 2000.

21. P. Zhang. United States Patent. Method of Mapping DNA Fragments. [Online]
Available http://www.cc.columbia.edu/cu/cie/techlists/patents/
5667970.htm, July 3 2000.

Efficient Algorithms for the Longest Path Problem

Ryuhei Uehara1 and Yushi Uno2

1 Department of Information Processing, School of Information Science,
JAIST, Ishikawa, Japan

uehara@jaist.ac.jp
2 Department of Mathematics and Information Science, College of Integrated Arts and

Sciences, Osaka Prefecture University, Sakai, Japan
uno@mi.cias.osakafu-u.ac.jp

Abstract. The longest path problem is to find a longest path in a given graph.
While the graph classes in which the Hamiltonian path problem can be solved
efficiently are widely investigated, very few graph classes are known where the
longest path problem can be solved efficiently. For a tree, a simple linear time
algorithm for the longest path problem is known. We first generalize the algorithm,
and it then solves the longest path problem efficiently for weighted trees, block
graphs, ptolemaic graphs, and cacti. We next propose three new graph classes that
have natural interval representations, and show that the longest path problem can
be solved efficiently on those classes. As a corollary, it is also shown that the
problem can be solved efficiently on threshold graphs.

Keywords: Efficient algorithms, graph classes, longest path problem.

1 Introduction

The Hamiltonian path problem (HPP, for short) is one of the most well known NP-
hard problems and has numerous applications [15]. For such an intractable problem,
there are two major approaches; approximation algorithms [17, 2, 25] and parameterized
complexity [13]. In both approaches, we have to change the decision problem to the
optimization problem. Therefore the longest path problem (LPP) is one of the basic
problems from the viewpoint of combinatorial optimization. From the practical point of
view, it is also a very natural approach to find a longest path in a given graph when it does
not have a Hamiltonian path. However, finding a longest path seems to be more difficult
than determining whether the given graph has a Hamiltonian path or not. Even if a given
graph has a Hamiltonian path, it is impossible to efficiently find a path of length n− nε

for any ε < 1 unless P = NP [18]. In general, LPP does not belong to APX unless
P = NP [18], and the best known performance ratio of an approximation algorithm is
O(n(log log n/ log n)2) [7] (see also [21, 1, 23, 26] for related results).

Until now, many graph classes have been proposed, and the complexity of hard
problems over those graph classes have been extensively investigated [9, 16]. The clas-
sification of the graph classes by the difficulty in solving HPP gives us an insight for
LPP. If HPP is NP-hard, LPP is also intractable since HPP is a special case of LPP.
Such “hard” graph classes include chordal bipartite graphs, strongly chordal split graphs

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 871–883, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

872 R. Uehara and Y. Uno

(and hence chordal graphs and split graphs) [22], undirected path graphs, double inter-
val graphs, rectangle graphs [6], and circle graphs [11]. On the other hand, all proper
interval graphs have a Hamiltonian path [5]. Thus we can find a longest path of length
equal to the number of vertices for any given proper interval graph. Between them, there
are “non-trivial” graph classes; HPP is polynomial time solvable for circular arc graphs
(and hence interval graphs) [12], and bipartite permutation graphs [24]. In this paper,
we focus on LPP for the “non-trivial” graph classes, and propose efficient algorithms
for several graph classes.

There are few polynomial time algorithms for finding a longest path in a graph; as far
as the authors know, trees are the only natural and non-trivial graph class in which LPP
can be solved in polynomial time. The algorithm for trees was invented by W. Dijkstra
around 1960. It runs in linear time, and the formal proof is given by R.W. Bulterman et
al [10].

We first generalize Dijkstra’s longest path algorithm (in this paper, we abbreviate
this simply as Dijkstra’s algorithm) and its proof in [10], and show that LPP is solved
efficiently for (vertex/edge) weighted trees, block graphs, ptolemaic graphs, and cacti.

Next, we focus on graph classes which have natural interval representations.Although
all longest paths of a connected interval graph have non-empty intersection [3, Corollary
2.2], there are no efficient algorithms for finding a specific longest path in an interval
graph. We introduce three natural and non-trivial graph classes and show that LPP can
be solved efficiently on those classes. As a direct corollary, LPP is solved efficiently for
threshold graphs.

2 Preliminaries

A graphG = (V,E) consists of a finite set V of vertices and a collectionE of 2-element
subsets of V called edges. The neighborhood of a vertex v in a graph G = (V,E) is
the set NG(v) = {u ∈ V | {u, v} ∈ E}. For a subset U of V , we denote by NG(U)
the set {v ∈ V | v ∈ N(u) for some u ∈ U}. If no confusion can arise we will omit
the index G. We denote the closed neighborhood N(v) ∪ {v} by N [v]. Given a graph
G = (V,E), its complement is defined by Ē = {{u, v} | {u, v} �∈ E}, and is denoted
by Ḡ = (V, Ē). A vertex set I is an independent set if G[I] contains no edges, and the
graph Ḡ[I] is called a clique. A graph G = (V,E) is bipartite if V can be partitioned
into two independent sets. A graph with a partition of its vertex set V into X and Y can
be denoted by G = (X ∪ Y,E).

For G = (V,E), a sequence of distinct vertices v0, v1, . . . , vl is a path, denoted by
(v0, v1, . . . , vl), if {vj , vj+1} ∈ E for each 0 ≤ j < l. The length of a path is the number
of edges on the path. For two vertices u and v, the distance of the vertices, denoted by
d(u, v), is the minimum length of the paths joining u and v. A cycle is a path beginning
and ending with the same vertex. A cycle of length i is denoted by Ci. An edge which
joins two vertices of a cycle but is not itself an edge of the cycle is a chord of that cycle. A
graph is chordal if each cycle of length at least 4 has a chord. Given a graphG = (V,E),
a vertex v ∈ V is simplicial in G if G[N(v)] is a clique in G.

Efficient Algorithms for the Longest Path Problem 873

2.1 Graph Classes with Interval Graph Representation

A graph (V,E) with V = {v0, v1, . . . , vn−1} is an interval graph if there is a set of
intervals I = {Iv0 , Iv1 , . . . , Ivn−1} such that {vi, vj} ∈ E if and only if Ivi

∩Ivj
�= ∅ for

each i and j with 0 ≤ i, j < n. We call the set I of intervals an interval representation of
the graph. For each interval I , we denote by L(I) and R(I) the left and right endpoints
of the interval, respectively (hence we have L(I) ≤ R(I) and I = [L(I), R(I)]).

A bipartite graph (X ∪ Y,E) with X = {x0, x1, . . ., xn1−1} and Y = {y0, y1,
. . ., yn2−1} is an interval bigraph if there are families of intervals IX = {Ix0 , Ix1 , . . .,
Ixn1−1} and IY = {Iy0 , Iy1 , . . . , Iyn2−1} such that {xi, yj} ∈ E iff Ixi ∩ Iyj �= ∅ for
each i and j with 0 ≤ i < n1 and 0 ≤ j < n2. We also call the families of intervals
(IX , IY) an interval representation of the graph. If no confusion can arise we sometimes
unify a vertex v and the corresponding interval Iv , and writeN(Iv),L(v). Moreover, if a
vertex v corresponds to a point, the vertex v and the corresponding pointL(Iv) = R(Iv)
are sometimes unified.

For two intervals I and J , we write I ≺ J if L(I) ≤ L(J) and R(I) ≤ R(J). For
any interval representation I and a point p,N [p] denotes the set of intervals that contain
the point p.

Given an interval (bi)graph, an interval representation is said to be compact if the
following conditions hold;

1. for each interval I , R(I) and L(I) are integers, and
2. for each pair of integers p, q with N [p] �= ∅ and N [q] �= ∅, N [p] \ N [q] �= ∅ and
N [q] \N [p] �= ∅.

Lemma 1. For any given interval graph G = (V,E), there is a linear time algorithm
that constructs a compact interval representation I such that

1. each simplicial vertex v is a point; that is, L(Iv) = R(Iv),
2.
⋃

I∈I I is contained in [0, |V | − 1], and
3. each integer point i with N [i] �= ∅ corresponds to a distinct maximal clique of G.

Proof. Given an interval graph G = (V,E), we can construct an MPQ-tree, which
is a kind of labeled PQ-tree, in linear time [19]. From the MPQ-tree, in a natural
way, we can construct a compact interval representation in linear time. This fact can be
proved by the induction of the number of nodes and sections in theMPQ-tree, but it is
straightforward and tedious, and is omitted here. We show that the constructed compact
interval representation satisfies the conditions.

Let v be any simplicial vertex inG. By the definition,N(v) induces a clique. Thus, by
the Helly property (see, e.g.,[4]), all vertices u inN(v) share a common point. Therefore,
Iv contains this point. If Iv is not an integer point, Iv must contain an interval [i, i+ 1]
for some integer i. Then, N [i] = N [i + 1], which contradicts the compactness of the
interval representation. This yields claim 1.

The maximal cliques of an interval graph G can be linearly ordered so that for
each vertex v, the maximal cliques containing v occur consecutively [8]. Since the
representation is compact, we have claim 3 immediately. It is well known that chordal
graphs, and hence interval graphs, have at most nmaximal cliques. This fact with claim
3 implies claim 2.
�

874 R. Uehara and Y. Uno

An interval graph is a proper interval graph if no two intervals I and J properly
contain each other, i.e., if either I ≺ J or J ≺ I for each I and J .

LetG = (X∪Y,E) be a bipartite graph. An ordering< ofX inG has the adjacency
property if for each vertex y ∈ Y , N(y) consists of vertices that are consecutive in the
ordering < of X . A bipartite graph G = (X ∪ Y,E) is biconvex if there are orderings
of X and Y that fulfill the adjacency property. G is convex if there is an ordering of X
or Y that fulfills the adjacency property.

Given a biconvex graph G = (X ∪ Y,E) with |X| = n1 and |Y | = n2, a compact
interval representation I(G) is constructed as follows: Let x0 < x1 < · · · < xn1−1 and
y0 < y1 < · · · < yn2−1 be the orderings ofX andY that have adjacency property. Letxi

correspond to the integer point iwith 0 ≤ i < n1. For each j with 0 ≤ j < n2, since each
yj contains consecutive xs, we can make yj correspond to the interval [L(yj), R(yj)]
such that L(yj) = l and R(yj) = r, where xl and xr are the minimum and maximum
vertices in N(yj), respectively.

Lemma 2. For the compact interval representationI(G) of a given biconvex graphG =
(X∪Y,E), there are two indices jt and jb such that (1)L(y0) ≥ L(y1) ≥ · · · ≥ L(yjt)
and L(yjt) ≤ L(yjt+1) ≤ · · · ≤ L(yn2−1), and (2) R(y0) ≤ R(y1) ≤ · · · ≤ R(yjb

)
and R(yjb

) ≥ R(yjt+1) ≥ · · · ≥ R(yn2−1).

Proof. We note that x0 ∈ N(yjt
), xn1−1 ∈ N(yjb

), and we can assume that jt ≤ jb
without loss of generality. If the index jt does not exist, we have three consecutive
vertices, say, y1 < y2 < y3 such that L(y1) > L(y2) and L(y3) > L(y2). Then there is
a vertex x ∈ X such that y1, y3 ∈ N(x) and y2 �∈ N(x). This contradicts the definition
of biconvex graphs. Thus jt exists. The case of index jb is symmetric.
�

A graph G = (V,E) is called threshold if there exist nonnegative integers w(v)
(v ∈ V) and an integer t such that

∑
v∈S w(v) ≤ t if and only if S is an independent

set of G.

2.2 Tree-Like Graph Classes

We here introduce some graph classes that have similar structure to trees. A graph G is
a block graph if G is connected and every maximal 2-connected subgraph is a clique.
Block graphs can be seen as graphs obtained from trees by replacing each edge by a
clique, and the cliques have at most one vertex in common. A graph G is ptolemaic if
for any vertices u, v, w, x of G, d(u, v)d(w, x) ≤ d(u,w)d(v, x) + d(u, x)d(v, w).
Ptolemaic graphs can be seen as graphs obtained from trees by replacing each edge by a
clique, and the cliques have any number of vertices in common. Thus, a block graph is
ptolemaic. A cactus is a graph whose block is either an edge or a cycle. Similarly, cacti
can be seen as graphs obtained from trees by replacing a part of edges by a cycle, and
the cycles have at most one vertex in common. See [9] for further details of these graph
classes.

2.3 New Graph Classes

We say that an interval graph G = (V,E) is said to be an interval biconvex graph if V
can be partitioned into two sets S and Y such that

Efficient Algorithms for the Longest Path Problem 875

1. each vertex x ∈ S is simplicial in G, and
2. the bipartite graph G′ := (S ∪ Y,E′) is a biconvex graph, where E′ := {{x, y} |
x ∈ S, y ∈ Y, and {x, y} ∈ E}.

Intuitively, interval biconvex graphsG are interval graphs obtained from biconvex graphs
G′; they have common interval representations. We have the following proper inclusion:

Lemma 3. (Proper interval graphs ∪ threshold graphs) ⊂ interval biconvex graphs ⊂
interval graphs.

Proof. The inclusions “proper interval graphs ⊂ interval biconvex graphs ⊂ interval
graphs” are easy to follow directly from the corresponding definitions. It remains to
show that any threshold graph G = (V,E) is an interval biconvex graph. We assume
that vertices are ordered with respect to their weights;w(v0) ≤ w(v1) ≤ · · · ≤ w(vn−1).
Let i be the smallest index with w(vi) ≥ t

2 . We partition V into V ′ := {vi, . . . , vn−1}
andS := V \V ′. Then we have (1)G[V ′] is a clique, (2) for each vertex v inS, there is an
index j (> i) such that N(v) = {vj , . . . , vn−1}, and (3) each vertex in S is simplicial.
Thus G is an interval biconvex graph.
�

Lemma 4. Let G = (S ∪ Y,E) be an interval biconvex graph. Let v be a (simplicial)
vertex in S. Let NS [v] be the set {v} ∪ (N(v) ∩ S) in G. Then NS [v] induces a clique,
and for any two vertices v1 and v2 in NS [v], NG[v1] = NG[v2].

Proof. Since v is simplicial,NS [v] induces a clique. Thus we show thatN [v1] = N [v2]
for any v1 and v2 inNS [v].We first note that v1 ∈ N [v2] since v is simplicial. Letw be any
vertex inN [v1]. Then, since v1 is also simplicial,{w, v2} ∈ E, consequently,w ∈ N [v2].
Hence we have N [v1] ⊆ N [v2]. Symmetric argument implies N [v2] ⊆ N [v1], which
completes the proof.
�

Corollary 1. LetG = (S∪Y,E) be an interval biconvex graph, and I(G) be a compact
interval representation of G. Then

(1) for each vertex v in S, Iv is an integer point, and
(2) for each vertices u and v in S with N [u] = N [v], Iv and Iu are the same integer
point.

We say that a biconvex graphG = (X ∪ Y,E) with Y = {y0, . . . , yn2−1} is proper
if y0 ≺ y1 ≺ · · · ≺ yn2−1 and is linearly included if Iy0 ⊆ Iy1 ⊆ · · · ⊆ Iyn2−1 .
Intuitively, a biconvex graph G is proper if j0 = jt and jb = n2 − 1, and G is linearly
included if jt = n2 − 1 in Lemma 2. The motivation for introducing these two graph
classes comes from the fact that every biconvex graph can be partitioned into three
graphs from these classes. This can be achieved as follows: For any biconvex graph
G = (X ∪ Y,E) with the two indices jt and jb from Lemma 2, we partition Y into
Y1 := {y0, . . . , yjt}, Y2 := {yjt+1, . . . , yjb−1}, and Y3 := {yjb

, . . . , yn2−1}. Let Xi

be the set of vertices in N(Yi) and let Ei be the set of edges induced by Xi ∪ Yi. Then
G1 := (X1 ∪ Y1, E1) and G3 := (X3 ∪ Y3, E3) are linearly included biconvex graphs,
and G2 := (X2 ∪ Y2, E2) is a proper biconvex graph.

876 R. Uehara and Y. Uno

3 Algorithms for Tree-Like Graphs

Given a finite tree T , a longest path can be found in linear time. A simple procedure is
invented by E.W. Dijkstra around 1960. The formal correctness proof of the procedure
is given in [10]. In order to illustrate our algorithms for tree-like graphs, we first give
a framework that allows a generalization of Dijksta’s algorithm by transforming G into
another graph G′. For a given graph G = (V,E), suppose that we can construct a new
graph G′ = (V ′, E′) satisfying the following three conditions:

1. V ⊆ V ′,
2. for each pair u, v in V , dG′(u, v) equals the length of a longest path joining u and
v in G, and

3. for each pair u, v in V , dG′(u, v) is given by the unique shortest path on G′.

Then the following algorithm computes the length of a longest path in G by using
the graph G′ in O(|V |+ |E|+ |V ′|+ |E′|) time and space.

Algorithm TR
Input: Graphs G = (V, E) and G′ = (V ′, E′).

Output: The length of a longest path P in G.

T1. pick any vertex u in V of G′;

T2. find a vertex x in V such that dG′(u, x) is largest;

T3. find a vertex y in V such that dG′(x, y) is largest;

T4. output the length of a shortest path joining x and y on G′.

For G′ = G, TR is in fact Dijkstra’s algorithm.

Theorem 1. Algorithm TR computes the length of a longest path in G in linear time.

Proof. In the proof in [10], the correctness of Dijkstra’s algorithm is based on the
following three facts; (1) for any vertices u and v, the shortest path joining them gives the
longest path joining them, (2) for any vertices u, v and w, we have d(u, v) ≤ d(u,w) +
d(w, v), and (3) for any vertices u, v andw, we have d(u, v) = d(u,w)+d(w, v) if and
only if w is on the path joining u and v.

By condition of G′, for any vertices u and v in V , the length of the shortest path
joining u and v on G′ is equal to the length of the longest path joining u and v on G.
For any vertices u, v, and w in V , we also have dG′(u, v) ≤ dG′(u,w) + dG′(w, v).
By condition of G′, dG′(u, v) is given by the unique shortest path on G′. Thus, for any
vertices u, v and w in V , we have dG′(u, v) = dG′(u,w) + dG′(w, v) if and only if w
is on the shortest path joining u and v. Therefore, we can use the same argument in the
proof of [10] to show the correctness of Algorithm TR. Since shortest paths in G′ are
unique, we can use the standard BFS to implement TR in linear time.
�

In the following, we investigate graph classes for which Algorithm TR computes
the length of a longest path with given suitable reductions. We note that, in step T4,
Algorithm TR outputs the length of a longest path. However, it is easy to modify the
specialized algorithms so that they output not just the length but the longest path itself.

Efficient Algorithms for the Longest Path Problem 877

Lemma 5. Let G = (V,E) be a tree, and w : V ∪ E → Z+ be a weight func-
tion of vertices and edges. We define the length of a weighted path (v1, v2, . . . , vk) by∑k

i=1 w(vi) +
∑k−1

i=1 w({vi, vi+1}). Then the weighted longest path problem can be
solved in O(|V |) time and space.

Proof. We can use Dijkstra’s algorithm straightforwardly.
�

Theorem 2. Let G = (V,E) be a block graph. Then the longest path problem can be
solved in O(|V |+ |E|) time and space.

Proof. Given block graph G, we construct a weighted tree G′ as follows: For each
maximal clique K of size k > 2, we first remove all edges in K, second create a vertex
c of weight k − 3, and third join c and each vertex in K by an edge of weight 1. We
repeat the replacement for all maximal cliques of size > 2. The resulting graph G′ is an
integer weighted tree. Let u and v be any two vertices in V . Then the length of a longest
path between u and v on G is equal to the length of the weighted path joining u and v
on G′. Thus we can use Lemma 5.
�

Theorem 3. Let G = (V,E) be a ptolemaic graph. Then the longest path problem can
be solved in O(|V | (|V |+ |E|)) time and space.

Proof. LetK andK ′ be any two maximal cliques inGwith |K ∩K ′| ≥ 2. Then, for any
pair of vertices u and v inK∪K ′, we can construct a path P of length |K ∪K ′|−1 such
that its endpoints are u and v and P contains all vertices inK∪K ′. We now add edges to
G[K ∪K ′] untilG[K ∪K ′] becomes a clique. It is easy to see that the replacement does
not change the length of the longest path of the graph. While G contains two maximal
cliques K and K ′ with |K ∩K ′| ≥ 2, we repeat the above process. Let G′ be the
resulting graph. Then G′ is a block graph and the length of a longest path in G′ is equal
to the length of a longest path in G. Thus, Theorem 2 completes the proof.
�

Theorem 4. Let G = (V,E) be a cactus. Then the longest path problem can be solved
in O(|V |2) time and space.

Proof.
(a) (b)

Fig. 1. Gadget for C5

We first show a reduction in
O(|V |3) time and space. Let Ck be any
cycle of k vertices inG. We replaceCk by
a gadget C ′

k defined as follows (Fig. 1):
For each pair of vertices vi and vj on Ck,
if dCk

(vi, vj) = h, C ′
k contains a path of

length k − h (with auxiliary vertices). We
note that the length of the longest path joining vi and vj on G (or Ck) is k − h. We
replace all cycles of G by the gadgets. The resulting graph G′ has O(|V |3) vertices and
edges, and the reduction can be done inO(|V |3) time and space. To show the correctness
of Algorithm TR, we show that for each pair u, v in V , (1) dG′(u, v) equals the length
of a longest path joining u and v in G, and (2) the shortest path joining u and v on
G′ is uniquely determined. Since G is a cactus, we show that for each pair vi and vj

on Ck, dG′(vi, vj) equals the length of a longest path joining vi and vj in G. Without

878 R. Uehara and Y. Uno

loss of generality, we assume that i = 0 and 0 < j ≤ k
2 . By the construction, we have

dG′(v0, vj) is at most k − j by the added path joining v0 and vj . We assume that there
is a shorter path P in G′ joining v0 and vj to derive a contradiction. Since G is a cactus,
P contains at least one vertex v′ on Ck with v′ �= v0, vj . From the construction, for any
pair of vertices u and u′ on C ′

k, we have k
2 ≤ dG′(u, u′) ≤ k− 1. Thus, k− j ≤ k− 1.

On the other hand, since P contains three vertices v0, vj , and v′ on Ck, the length of P
is at least 2k

2 = k, which contradicts that the length of P is shorter than k − j ≤ k − 1.
Thus, for each pair u, v in V , dG′(u, v) is equal to the length of a longest path joining u
and v in G, and the shortest path joining u and v on G′ is uniquely determined. In each
gadget in Fig. 1, we replace each path by the edge of weight equal to the length of the
path. This reduction can be done in O(|V |2) time and space.
�

4 Algorithms for Biconvex Graphs

In this section, we consider the longest path problem on two subclasses of biconvex
graphs. We assume that a biconvex graph G = (X ∪ Y,E) is given with its compact
interval representation. For given any path P, we denote by PX the set of vertices in
P and X , and by PY the set of vertices in P and Y . We assume that the sets PX

and PY are ordered; when PX = {xi0 , xi1 , . . .} and PY = {yj0 , yj1 , . . .}, then P =
(xi0 , yj0 , xi1 , yj1 , . . .) or P = (yj0 , xi0 , yj1 , xi1 , . . .).

4.1 An Algorithm for Proper Biconvex Graphs

Lemma 6. If the graph G = (X ∪ Y,E) is proper biconvex, there is a longest path P
with PX = {xi0 , xi1 , · · ·} and PY = {yj0 , yj1 , · · ·} s.t. ik < ik+1 and jk < jk+1 for
each k.

Proof. Let P′ be any longest path (xi′
0
, yj′

0
, xi′

1
, yj′

1
, . . .) such that xi ∈ X and yj ∈ Y

(the symmetric case that P′ starts from a vertex in Y is omitted). We construct P from
P′ such that P contains the same vertices in P′ and satisfies the condition. The proof is
done by the induction for the length of the path. The lemma holds when the length of
the path is 2. Thus we assume that the length of the path is at least 3. We have two cases:
(1) The path ends two vertices (xi′

k
, yj′

k
) with xi′

k
∈ X and yj′

k
∈ Y . Then, by the

inductive hypothesis, there is a path P′′ = (xi0 , yj0 , xi1 , yj1 , . . ., xik−1 , yjk−1) sat-
isfying the condition. If either yjk−1 ≺ yj′

k
or yj′

k
≺ yj0 , the path (xi0 , yj0 , . . .,

xik−1 , yj′
k
, xi′

k
) or (xi′

k
, yj′

k
, xi0 , yj0 , . . ., xik−1) satisfies the condition. Thus we suppose

that yj0 ≺ yj′
k
≺ yjk−1 . Then since the graph is proper, there is an index h such that

yjh
≺ yj′

k
≺ yjh+1 . Then xih+1 ∈ Iyj′

k

, and xi′
k
∈ (Iyjh

∪ Iyjh+1
). If xi′

k
∈ Iyjh

,

the path (xi0 , yj0 , xi1 , yj1 , . . ., yjh
, xi′

k
, yj′

k
, xih+1 , yjh+1 , . . ., xik−1 , yjk−1) satisfies

the condition. Otherwise, the path (xi0 , yj0 , xi1 , yj1 , . . ., yjh
, xih+1 , yj′

k
, xi′

k
, yjh+1 , . . .,

xik−1 , yjk−1) satisfies the condition.
(2) The path ends two vertices (yj′

k−1
, xi′

k
) with yj′

k−1
∈ Y and xi′

k
∈ X . Then, by the

inductive hypothesis, there is a pathP′′ = (xi0 , yj0 , xi1 , yj1 , . . . , xik−1 , yjk−1) satisfying
the condition. Then we have three possible cases; yjk−1 ≺ yj′

k−1
, yj′

k−1
≺ yj0 , and

yj0 ≺ yj′
k−1

≺ yjk−1 . Using the same argument as in (1), we have the lemma.
�

Efficient Algorithms for the Longest Path Problem 879

Theorem 5. In a proper biconvex graph G = (X ∪ Y,E), a longest path can be found
in O(|X ∪ Y |+ |E|) time.

Proof. (Outline.) To compute the longest path satisfying the condition in Lemma 6, we
use a standard dynamic programming. We define two functions f(xi, yj) and g(yj , xi)
such that f(xi, yj) gives the length of a longest path starting at the edge {xi, yj} and
g(yj , xi) gives the length of a longest path starting at the edge {yj , xi}. We define
f(xi, yj) = 0 if {xi, yj} �∈ E or yj does not exist, and g(yj , xi) = 0 if {xi, yj} �∈ E
or xi does not exist. Then, if {xi, yj} ∈ E, we have f(xi, yj) = max{f(xi, yj+1),
g(yj , xi+1) + 1} and g(yj , xi) = max{f(xi, yj+1) + 1, g(yj , xi+1)}. Therefore, the
length of a longest path is max{f(x0, y0), g(y0, x0)}, which can be computed by a
standard dynamic programming in linear time and space. Computing the longest path
itself is also straightforward.
�

4.2 An Algorithm for Linearly Included Biconvex Graphs

Lemma 7. A linearly included biconvex graph G = (X ∪ Y,E) is proper.

Proof. By definition, there is an index ic such thatN(x0)⊆N(x1)⊆ · · · ⊆N(xic) and
N(xn1−1) ⊆ N(xn1−2) ⊆ · · · ⊆ N(xic), where n1 = |X|. Since Y is linearly ordered
in inclusion, for any pair of xi and xi′ with 0 ≤ i ≤ c and c ≤ i′ ≤ n1 − 1, we have
N(xi) ⊆ N(xi′) orN(xi′) ⊆ N(xi). Thus, we can linearly order both ofX and Y ; the
ordering of Y is as it is, and the ordering of X is computed by the following algorithm
in linear time:

Input: A linearly included biconvex graph G = (X ∪ Y, E) with |X| = n1 and |Y | = n2,
the orderings over X and Y , and a compact interval representation I(G).

Output: A linear ordering of X in inclusion.
P0. � := 0; r := n1 − 1;
P1. if N(x�) ⊆ N(xr) then output x� and � := � + 1 else output xr and r := r − 1;
P2. if � < r then goto P1 else output x�(= xr) and halt.

The correctness of the algorithm is easy.
�

Theorem 6. In a linearly included biconvex graphG = (X ∪Y,E), a longest path can
be found in O(|X ∪ Y |+ |E|) time.

Proof. By Lemma 7,G is proper. Since Y is linearly ordered in inclusion, the condition
N(x�) ⊆ N(xr) is equivalent to the condition min{N(x�)} ≥ min{N(xr)}. Thus
the step P1 in the algorithm in the proof of Lemma 7 can be done in O(1) time, and
the algorithm runs in linear time. Therefore, combining the algorithms in Lemma 7 and
Theorem 5, we can construct a linear time algorithm that finds a longest path of G.
�

5 An Algorithm for Interval Biconvex Graphs

Let G = (S ∪ Y,E) be an interval biconvex graph with the set S of simplicial vertices.
Let x0 < x1 < · · · < xn1−1 and y0 < y1 < · · · < yn2−1 be the orderings over S and
Y that have adjacency property. We here denote by I(xi) the integer point Ixi

, that is,

880 R. Uehara and Y. Uno

I(xi) = R(Ixi
) = L(Ixi

). By Lemma 4, for each x and x′ with N [x] = N [x′], we
have I(x) = I(x′). For each j with 0 ≤ j ≤ n2− 1, since each yj contains consecutive
xs, we can let yj correspond to the interval [L(yj), R(yj)] such that L(yj) = I(x�) and
R(yj) = I(xr), where x� and xr are the minimum and maximum vertices in N(yj),
respectively. By definition and the proof of Lemma 2, we immediately have the following
lemma:

Lemma 8. For the compact interval representation I(G) of the interval biconvex graph
G = (S ∪ Y,E) with the set S of simplicial vertices, there are two indices jt and jb
such that (0) jt ≤ jb, (1) L(y0) ≥ L(y1) ≥ · · · ≥ L(yjt

) and L(yjt
) ≤ L(yjt+1) ≤

· · · ≤ L(yn2−1), and (2) R(y0) ≤ R(y1) ≤ · · · ≤ R(yjb
) and R(yjb

) ≥ R(yjt+1) ≥
· · · ≥ R(yn2−1).

The following proposition is also immediate (see also [5, Lemma 2]):

Proposition 1. Let G = (S ∪ Y,E) be a connected interval biconvex graph. Let
y0 < y1 < · · · < yn2−1 be the orderings over Y that have adjacency property. Then
{yi−1, yi} ∈ E for each 1 ≤ i ≤ n2 − 1. That is, (y0, y1, . . . , yn2−1) is a path of G.

Hereafter, we denote by (S, y) a path (x1, . . . , xk, y) for a set S = {x1, . . . , xk} if
G[S] is a clique.

Lemma 9. Given a connected interval biconvex graph G = (S ∪ Y,E), there is a
longest path P such that (1) the vertices in Y ∩P appear consecutively; that is, Y ∩P is
yj , yj+1, . . . , yj+k−1, yj+k for some j and k, and those vertices appear according to the
ordering over Y , (2) the consecutive vertices in S of P correspond to the same integer
point; that is, if P contains a subpath (yj , xi, xi+1, xi+2, . . . , xi+h, yj+1), we have
I(xi) = I(xi+1) = · · · = I(xi+h), (3) the vertices in S of P appear according to the
ordering overS; that is, ifS∩P is xi1 , xi2 , . . . , xih

in this order, xi1 < xi2 < · · · < xih
,

and (4) P starts and ends at the vertices in S.
Let s and t be integers such that P starts with the vertices inN [s]∩S and ends with

the vertices in N [t] ∩ S. Let ys and yt be the vertices such that P starts with (N [s], ys)
and ends with (yt, N [t]). Then (5) ys is the minimum vertex in Y with Iys

contains s,
and yt is the maximum vertex in Y with Iyt contains t.

Proof. (1) We assume that P contains yj1 , yj2 , and yj3 in this ordering and yj1 < yj3 <
yj2 . Then we have five cases; (a) I(yj1) ⊆ I(yj3) ⊆ I(yj2), (b) I(yj1) ⊆ I(yj3)
and yj3 ≺ yj2 , (c) yj1 ≺ yj3 ≺ yj2 , (d) yj1 ≺ yj3 and I(yj2) ⊆ I(yj3), or (e)
I(yj2) ⊆ I(yj3) ⊆ I(yj1). We assume that they are minimal, that is, they are consecutive
in P ∩ Y . Then, in any case, swapping yj2 and yj3 we have also a path. Repeating this
process, we have a path such that the vertices in Y appear according to the ordering
over Y . Let yj and yj+k be the first and last vertices in P ∩ Y , respectively. We next
show that all vertices yj+k′ with 0 < k′ < k appear on P. We assume that some yj+k′

with 0 < k′ < k does not appear on P. Then, inserting it, we have a longer path, which
contradicts that P is a longest path.

(2) Let s be any integer such that there is a vertex x in N [s] ∩ S ∩ P. If there is a
vertex x′ such that x′ ∈ N [s] ∩ S and x′ does not appear in P, we have longer path by
replacing a subpath (x) of P by (x, x′). Thus all vertices in N [s] ∩ S appear in P. It is

Efficient Algorithms for the Longest Path Problem 881

clear that gathering all vertices in N [s] ∩ S ∩ P has no effects on the connectivity and
length of P. Thus we can assume that all vertices in N [s] ∩ S are consecutive in P.

(3) By (1), all vertices in Y ∩P appear consecutively. Thus, using the same argument
in (1), we can assume that all vertices in S ∩ P also appear consecutively.

(4) To derive a contradiction, we assume that P starts at the vertex yj in S. Then,
by the definition of a compact interval representation, we have (a) L(yj) = R(yj′) for
some j′ < j, or (b) N [L(yj)] ∩ S �= ∅. In the case (a), we have longer path by adding
yj′ at the top of P. On the other hand, in the case (b), we also have longer path by adding
the vertices in N [L(yj)] ∩ S at the top of P. Thus, P starts at the vertex in S. Using the
same argument, we can show that P ends at the vertex in S.

(5) To derive a contradiction, we assume that P starts with (N [s], ys) and there is a
vertex ys′ such that s′ �= s, Iys′ contains s, and ys′ ≺ ys. By (1), ys′ does not appear in
P. However, in the case, we have longer path by replacing (N [s], ys) by (N [s], ys′ , ys),
which is a contradiction. Thus ys is the minimum vertex in Y with Iys

contains s. Using
the symmetric argument, yt is the maximum vertex in Y with Iyt

contains t.
�
By Lemma 9, the outline of our algorithm is as follows:

0. for each integer s and t with 0 ≤ s < t < n1, suppose N [s] ∩ S and N [t] ∩ S are the
endpoints of a longest path;

1. let yjs be the smallest vertex with L[yjs] ≤ s ≤ R[yjs], and let yjt be the largest vertex
with L[yjt] ≤ t ≤ R[yjt];

2. for each integer i = s + 1, s + 2, . . . , t − 1, determine where the vertices in S ∩ N [i] are
inserted in the path (N [s], yjs , yjs+1, . . . , yjt−1, yjt , N [t]).

Step 2 can be solved by finding a maximum weighted matching in the weighted
bipartite graph G′ = (X ′ ∪ Y ′, E′) defined as follows; X ′ = {i | I(x) = i for some
x ∈ S with s < i < t}, Y ′ = {{yj , yj+1} | yj , yj+1 ∈ Y and js ≤ j ≤ jt − 1}, and
E′ consists of edges e = {i, {yj , yj+1}} if N [i] contains yj and yj+1. The weight of
the edge e = {i, {yj , yj+1}} is defined by |S ∩N [i]|. A weighted matching M of G′

gives us a path of G as follows; if an edge e = {i, {yj , yj+1}} is in M , the path of G
contains (yj , N [i], yj+1). By Lemma 9, the maximum weighted matching of G′ gives
us a longest path of G. The detail of the algorithm can be described as follows:

Algorithm IBG:
Input: An interval biconvex graph G = (S ∪ Y, E) with |S| = n1 and |Y | = n2 and a

compact interval representation I(G).
Output: A longest path P.
B0. construct the weighted bipartite graph G′ = (X ′, Y ′, E′) for G;
B1. for each integer s and t with 0 ≤ s < t < n1 do the following;

B1.1. let N [s] and N [t] suppose the endpoints of a longest path;
B1.2. let yjs be the smallest vertex with L[yjs] ≤ N [s] ≤ R[yjs], and let yjt be the

largest vertex with L[yjt] ≤ N [t] ≤ R[yjt];
B1.3. let G′′ be the induced bipartite graph from G′ by the vertices in S between s and

t and the vertices in Y between yjs and yjt ;
B1.4. find a maximum weighted matching M in G′′;
B1.5. compute a path from (N [s], yjs , yjs+1, . . . , yjt , N [t]) and the weighted edges

in M ;
B2. find the longest path among the paths generated in step B1.5.

882 R. Uehara and Y. Uno

Theorem 7. A longest path in a given interval biconvex graph G = (S ∪ Y,E) with
|S ∪ Y | = n and |E| = m can be found in O(n3(m+ n logn)) time.

Proof. The correctness of Algorithm IBG follows from Lemma 9. Thus we analyze the
running time. For the weighted bipartite graph G′ = (X ′ ∪ Y ′, E′) constructed in step
B0, we have |X ′| = O(n1), |Y ′| = n2 − 1, and |E′| = O(|E|). A maximum weighted
matching can be found in O(|V |(|E| + |V | log |V |)) time and O(|E|) space for (any)
given graph G = (V,E) [14]. Hence step B1.4 takes O(n(m + n log n)) time with
n = n1 + n2 and m = |E|. Therefore total running time is O(n2

1n(m + n log n)) =
O(n3(m+ n log n)).
�

Corollary 2. A longest path in a given threshold graph G = (V,E) with |V | = n and
|E| = m can be found in O(n+m) time and space.

Proof. (Sketch.) By Lemma 3 and Theorem 7, a longest path in a threshold graph can
be found in O(n3(m + n log n)) time. However, Algorithm IBG can be simplified to
run in linear time and space using the properties shown in the proof of Lemma 3 and
the fact that G[S] is an independent set. A similar idea can be found in [20], and hence
is omitted here.
�

6 Concluding Remarks

The major open problem is the complexity of the longest path problem for interval
graphs, convex graphs, and biconvex graphs.

References

1. N. Alon, R. Yuster, and U. Zwick. Color-Coding. J. ACM, 42(4): 844–856, 1995.
2. G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Protasi.

Complexity and Approximation. Springer, 1999.
3. P.N. Balister, E. Györi, J. Lehel, and R.H. Schelp. Longest Paths in Circular Arc Graphs.

Technical report, U. of Memphis, www.msci.memphis.edu/preprint.html, 2002.
4. C. Berge. Hypergraphs. Elsevier, 1989.
5. A.A. Bertossi. Finding Hamiltonian Circuits in Proper Interval Graphs. Info. Proc. Lett.,

17(2): 97–101, 1983.
6. A.A. Bertossi and M.A. Bonuccelli. Hamiltonian Circuits in Interval Graph Generalizations.

Info. Proc. Lett., 23: 195–200, 1986.
7. A. Björklund and T. Husfeldt. Finding a Path of Superlogarithmic Length. SIAM J. Comput.,

32(6): 1395–1402, 2003.
8. K.S. Booth and G.S. Lueker. Testing for the Consecutive Ones Property, Interval Graphs, and

Graph Planarity Using PQ-Tree Algorithms. J. Comput. Syst. Sci., 13: 335–379, 1976.
9. A. Brandstädt, V.B. Le, and J.P. Spinrad. Graph Classes: A Survey. SIAM, 1999.

10. R.W. Bulterman, F.W. van der Sommen, G. Zwaan, T. Verhoeff, A.J.M. van Gasteren, and
W.H.J. Feijen. On Computing a Longest Path in a Tree. Info. Proc. Lett., 81: 93–96, 2002.

11. P. Damaschke. The Hamiltonian Circuit Problem for Circle Graphs is NP-complete. Info.
Proc. Lett., 32: 1–2, 1989.

Efficient Algorithms for the Longest Path Problem 883

12. P. Damaschke. Paths in Interval Graphs and Circular Arc Graphs. Discr. Math., 112: 49–64,
1993.

13. R.G. Downey and M.R. Fellows. Parameterized Complexity. Springer, 1999.
14. H.N. Gabow. Data Structures for Weighted Matching and Nearest Common Ancestors with

Linking. In Proc. 1st Ann. ACM-SIAM Symp. on Discr. Algo., 434–443. ACM, 1990.
15. M.R. Garey and D.S. Johnson. Computers and Intractability — A Guide to the Theory of

NP-Completeness. Freeman, 1979.
16. M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs, 2/e. Ann. Discr. Math., 57.

Elsevier, 2004.
17. D. Hochbaum (eds.). Approximation Algorithms for NP-hard Problems. PWS Publishing

Company, 1995.
18. D. Karger, R. Motwani, and G.D.S. Ramkumar. On Approximating the Longest Path in a

Graph. Algorithmica, 18: 82–98, 1997.
19. N. Korte and R.H. Möhring. An Incremental Linear-Time Algorithm for Recognizing Interval

Graphs. SIAM J. Comput., 18(1): 68–81, 1989.
20. N.V.R. Mahadev and U.N. Peled. Longest Cycles in Threshold Graphs. Discr. Math., 135:

169–176, 1994.
21. B. Monien. How to Find Long Paths Efficiently. Ann. Discr. Math., 25: 239–254, 1985.
22. H. Müller. Hamiltonian Circuit in Chordal Bipartite Graphs. Disc. Math., 156: 291–298,

1996.
23. M.G. Scutellà. An Approximation Algorithm for Computing Longest Paths. European J.

Oper. Res., 148(3): 584–590, 2003.
24. J. Spinrad, A. Brandstädt, and L. Stewart. Bipartite Permutation Graphs. Discr. Appl. Math.,

18: 279–292, 1987.
25. V.V. Vazirani. Approximation Algorithms. Springer, 2001.
26. S. Vishwanathan. An Approximation Algorithm for Finding a Long Path in Hamiltonian

Graphs. In Proc. 11th Ann. ACM-SIAM Symp. on Discr. Algo., 680–685. ACM, 2000.

Randomized Algorithms for Motif Detection

Lusheng Wang1, Liang Dong2, and Hui Fan3

1 Department of Computer Science, City University of Hong Kong
Kowloon, Hong Kong

2 Department of Computer Science, Peking University, Beijing 100871, P.R. China
3 School of Information and Electronic Engineering,

Institute of Shandong Business and Technology, Yantai, Shandong, P.R. China
lwang@cs.cityu.edu.hk, dongl@theory.cs.pku.edu.cn, fanlinw@263.net

Abstract. Motivation: Motif detection for DNA sequences has many
important applications in biological studies, e.g., locating binding sites
and regulatory signals, and designing genetic probes etc. In this paper,
we propose a randomized algorithm, design an improved EM algorithm
and combine them to form a software.
Results: (1) We design a randomized algorithm for consensus pattern
problem. We can show that with high probability, our randomized algo-
rithm finds a pattern in polynomial time with cost error at most ε× l for
each string, where l is the length of the motif and ε can be any positive
number given by the user. (2) We design an improved EM (Expectation
Maximization) algorithm that outperforms the original EM algorithm.
(3) We develop a software MotifDetector that uses our randomized algo-
rithm to find good seeds and uses the improved EM algorithm to do local
search. We compare MotifDetector with Buhler and Tompa’s PROJEC-
TION which is considered to be the best known software for motif detec-
tion. Simulations show that MotifDetector is slower than PROJECTION
when the pattern length is relatively small, and outperforms PROJEC-
TION when the pattern length becomes large.
Availability: Free from http://www.cs.cityu.edu.hk/˜lwang/software/
motif/index.html, subject to copyright restrictions.

1 Introduction

Motif detection for DNA sequences is an important problem in bioinformatics
that has many applications in biological studies, e.g., locating binding sites [4],
finding conserved regions in unaligned sequences, designing genetic probes [15,
17], etc. Motif detection problem can be defined as follows: given n sequences,
each is of length m, and an integer l, where l ≤ m, find a center string s of
length l such that s appears (with some errors) in each of the n given sequences.
If no error is allowed, the problem is easy. However, in practice, the occurrence
of the center string s in each of the given sequences has mutations and is not
exact. The problem becomes extremely hard when errors are allowed. Many
mathematic models have been proposed. The following two are important.

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 884–895, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Randomized Algorithms for Motif Detection 885

The Consensus Pattern Problem: Given n DNA sequences {s1, s2, . . . , sn},
each is of length m, and an integer l, the consensus pattern problem asks to find
a center string s of length l and a substring ti of length l in si such that

n∑
i=1

d(s, ti)

is minimized.

The Closest Substring Problem: Given n DNA sequences {s1, s2, . . . , sn},
each is of length m, and an integer l, the closest substring problem asks to find
a center string s of length l and a substring ti of length l in si such that

d =
n

max
i=1

d(s, ti)

is minimized.
d here is called the radius. Other measures include the general consensus

score [8] and SP-score.
Other than mathematic models, motif representation is another important

issue. There are three representations, consensus pattern, profile, and signature
[7]. Here we focus on consensus patterns and profiles. Let t1, t2, · · · , tn be n
strings of length l. Each ti is an occurrence of a motif. The consensus pattern
of the n occurrences is obtained by choosing the letter that appears the most in
each of the l columns. The profile of the n occurrences is a 4× l matrix W , each
cell W (i, j) is a number indicating the occurrence rate of letter i in column j.
Figure 1 gives an example.

caaccca a 0 1 0.4 0 0 0 0.4
caacccc c 1 0 0.2 1 1 1 0.2
catcccg g 0 0 0.0 0 0 0 0.2
catccct t 0 0 0.4 0 0 0 0.2
cacccca

____________________ (b)
consensus pattern caaccca
another con. pattern catccca

(a)

Fig. 1. (a) The 5 occurrences of the motif and the consensus patterns. (b) the profile
matrix

To evaluate those mathematic models, representations or programs, Pevzner
and Sze [16] proposed a challenge problem, which has been studied by Ke-
ich and Pevzner [9, 10]. We randomly generate n(n = 20) sequences of length
m(m = 600). Given a center string s of length l, for each of the n random se-
quences, we randomly choose d positions for s, randomly mutate the d letters
from s and implant the mutated copy of s into the random sequence. The prob-
lem here is to find the implanted pattern. The pattern thus implanted is called

886 L. Wang, L. Dong, and H. Fan

an (l, d)-pattern. Throughout this paper, we will use this model to do simulations
and test our algorithms.

Both the consensus pattern problem and the closest substring problem were
proved to be NP-hard and polynomial time approximation schemes have been
developed for both problems. However, the closest substring problem seems to
be harder than the consensus pattern problem from mathematical point of view.
When l = m, the consensus pattern problem can be solved in polynomial time,
whereas, the closest substring problem becomes the closest string problem and
still remains NP-hard [11].

In this paper, we adopt the model of consensus pattern. We first design a
randomized algorithm for the consensus pattern problem. We show that with
high probability, our randomized algorithm finds a pattern in polynomial time
with cost error at most ε × l, for any positive number ε given by the user.
Then, we propose an improved EM algorithm that outperforms the original
EM algorithm. Finally, we develop a software MotifDetector that uses our ran-
domized algorithm to find good seeds and uses the improved EM algorithm to
do local search. We compare MotifDetector with Buhler and Tompa’s PRO-
JECTION [3] That is considered to be the best known software for motif de-
tection. Simulations show that MotifDetector is slower than PROJECTION
when l is relatively small, and outperforms PROJECTION when l becomes
large.

The improved EM algorithm itself is an independent contribution. It can
greatly enhance the speed and quality of the EM algorithm. It can be embedded
into other motif detection software.

2 A Randomized Algorithm for Consensus Pattern

For consensus pattern problem, a PTAS was designed in [13, 14]. However, that
algorithm is not fast enough to give good solutions in practice. Here we propose
a randomized algorithm that works reasonably well in practice.

The technique originates from the PTAS in [14] for the closest substring
selection problem. We use it here for the consensus pattern. The idea is to
randomly choose k positions among the l positions of the pattern. Then we can
guess the true consensus pattern at the k selected positions by trying 4k possible
strings of length k. The partial consensus pattern (with k guessed letters) is used
to search all the given sequences s1, s2, . . ., sn to find a ti from each si that is
closest to the partial consensus pattern, i.e., the number of mismatches between
ti and the partial consensus pattern at those selected k positions is minimized.
Let K be the set of k selected positions, and t′i and s two strings of length l.
We use d(t′i, s|K) to denote the number of mismatches between t′i and s at the
positions in K. The algorithm is given in Figure 2.

In Step (3), when using a partial consensus string sp to search a given string
si, we try to find a substring of length l such that the number of mismatches at
those k selected positions is minimized. Steps (1)-(4) generate a candidate of the
center string. Since this is a randomized algorithm, different executions generate

Randomized Algorithms for Motif Detection 887

1. randomly choose k positions from the l positions for the center string;
2. try all 4k possible (partial) consensus strings;
3. use the partial consensus strings sp to search all the n given strings and

find a substring that is closest to the partial center string from each of the
n given strings;

4. reconstruct the center string s based on the n selected substrings of length
l;

5. repeat 1–4 several times and choose the best result.

Fig. 2. A randomized algorithm for consensus pattern

different results. Thus, in the algorithm, we repeat Steps (1)-(4) several times
to enhance the quality of the output.

An interesting problem is how big the parameter k should be. k is related to
the accuracy of the solution. Let ti be the true occurrence of the motif in the
given string si and t′i be a substring of length l in si. s denotes the consensus
pattern. Assume that t′i is quite different from ti, say,

d(s, t′i) ≥ d(s, ti) + 2εl (1)

for a small number ε that represents the error rate. Pr(d(t′i, s|K) ≤ d(s, ti|K))
denotes the probability that d(t′i, s|K) ≤ d(s, ti|K). We will estimate Pr(d(t′i, s|
K) ≤ d(s, ti|K)), the probability that t′i is chosen to be the closest substring to
the partial consensus pattern s|K. Note that from (1), d(t′i, s|K) ≤ d(s, ti|K)
implies either d(s, t′i|K) ≤ (d(s, t′i) − εl) × k

l or d(s, ti|K) ≥ (d(s, ti) + εl) × k
l .

Thus, we have

Pr(d(t′i, s|K) ≤ d(s, ti|K)) ≤ Pr(d(t′i, s|K) ≤ (d(s, t′i)− εl)×
k

l
)

+ Pr(d(s, ti|K) ≥ (d(s, ti) + εl)× k

l
). (2)

Note that d(t′i, s|K) is the sum of k independent random 0-1 variables∑k
i=1Xi, where Xi = 1 indicating a mismatch between s and t′i at the i-th

position in K. Thus, from Chernoff’s bounds,

Pr(d(t′i, s|K) ≤ (d(s, t′i)− εl)×
k

l
) ≤ exp(−1

2
ε2k).

If k = � 4
ε2 log(nm)�, then

Pr(d(t′i, s|K) ≤ (d(s, t′i)− εl)×
k

l
) ≤ (nm)−2.

Similarly, it can be proved that if k = � 4
ε2 log(nm)�,

Pr(d(s, ti|K) ≥ (d(s, ti) + εl)× k

l
) ≤ (nm)− 4

3 .

888 L. Wang, L. Dong, and H. Fan

Therefore,
Pr(d(t′i, s|K) ≤ d(s, ti|K)) ≤ 2(nm)− 4

3 .

Consider all the n(m− l+ 1) substrings of length l in the n given strings, we
know that with probability 1 − 2(nm)− 1

3 ,
∑n

i=1 d(s, t
′
i) ≤

∑n
i=1(d(s, ti) + 2εl).

Therefore we have the following theorem.

Theorem 1. Let k = � 4
ε2 log(nm)�. With probability 1−2(nm)− 1

3 , the algorithm
finds a string s of length l and a length l substring ti for each given string si

such that
∑n

i=1 d(s, t
′
i) ≤

∑n
i=1(d(s, ti)+2εl). The running time of the algorithm

is O(4knml).

Theorem 1 shows that when k is large, we can get a good approximation so-
lution. However, in practice, k has to be a relatively big number in order to get
satisfactory results. The speed is far below that of PROJECTION. PROJEC-
TION uses a random projection method to find seeds and uses an EM method
to do local search. In the next section, we propose a combined approach that
uses the EM algorithm to replace Steps (3) and (4) in Figure 2.

3 An Randomized Algorithm Using EM Method

Our method contains two parts. (1) we choose a set of starting points, each a 4×l
weight matrix W , representing the initial guess of the motif (using a randomized
algorithm). (2) we use the “EM” method to refine the motif. Repeat the above
two steps several times and report the best motif found.

3.1 Choosing Starting Points

A set of starting points are generated using the following randomized algorithm:

1. Choose k different positions uniformly at random from l positions.
2. For each of the 4k possible strings of length k, a matrix W is formed as

follows: for column x, if position x is among the k selected positions, then set
W (b, x) = 1, where b is the letter at position x, and set the other 3 elements
in column x to be 0; otherwise, set W (b, x) = 0.25 for b = A,C,G, T .

Here we use the profile representation of the motif.

3.2 Refining Starting Points with EM Method

Lawrence and Reilly [12] were the first to introduce the Expectation Maximiza-
tion (EM) algorithm in motif finding problems. Bailey and Elkan [1] used it in
multiple motif finding. Buhler and Tompa [3] adopted the EM method in their
PROJECTION algorithm in the motif refining step. The following description
of the EM algorithm is based on [1].

Let a 4× l matrix W be the initial guess of the motif. si(j) denotes the j-th
letter in sequence si. Here is the standard EM algorithm to refine the motif:

Randomized Algorithms for Motif Detection 889

1. For each position j in each sequence si, sij = si(j)si(j + 1) . . . si(j + l − 1)
denotes the l-mer (substring of length l) starting at si(j) and ending at
si(j + l− 1). Calculate the likelihood that sij is the occurrence of the motif
as follows:

P (i, j) =
l∏

x=1

W (sij(x), x), 1 ≤ i ≤ n, 1 ≤ j ≤ m− l + 1

where sij(x) = si(j + x− 1) is the x-th base in l-mer sij . In order to avoid
zero weights, a fixed small number(we use 0.1) is added to every element of
W before calculating the likelihoods.

2. For each l-mer sij , we get a normalized probability from the likelihood.

P ′(i, j) =
P (i, j)∑m−l+1

j=1 P (i, j)
.

Replace P (i, j) with P ′(i, j).
(The normalization guarantees that

∑m−l+1
j=1 P ′(i, j) = 1, reflecting the fact

that there is exactly one motif occurrence in each sequence.)
3. Re-estimate the (motif) matrix W from all the l-mers as follows:

W =
n∑

i=1

m−l+1∑
j=1

W ij ,

where W ij is also a 4× l matrix, constructed from sij :

W ij(b, x) =
{
P (i, j) : if b = sij(x)

0 : otherwise.

4. A normalization is applied to W to ensure that the sum of each column in
W is 1, i.e.,

W ′(b, x) =
W (b, x)∑

b=A,C,G,T W (b, x)
.

Replace W with W ′.
5. Steps 1–4 is called a cycle. Let Wq−1 and Wq be the two consecutive matrices

produced in cycles q − 1 and q. If

max |Wq(b, x)−Wq−1(b, x)| < ε, (3)

then EM stops. Otherwise, goto step 1 and start next cycle.

In step 5, ε is a parameter given by the user. We use a relatively large
value ε = 0.05 such that on average the EM algorithm stops within very few
cycles.

890 L. Wang, L. Dong, and H. Fan

3.3 Reporting the Best Motif

For each starting point, at the termination of the EM algorithm, we get n(m−
l+1) probabilities P (i, j) standing for the likelihood of l-mer sij being the motif
occurrence. We always choose the sij with the highest P (i, j) as the occurrence
of the motif in sequence si. Buhler and Tompa [3] use the product of the prob-
abilities:

Pro =
n∏

i=1

max
j
P (i, j)

to measure the quality of the t occurrences of the motif in the n given sequences.
We call Pro the probability score. It works well for the easy motifs like (11,2),
(13,3) and (15,4). However, for some hard motifs such as (19,6) and (14,4), if ε
in (3) is set to be large (0.05), the correct motif often has a lower probability
score than some incorrect ones when the EM algorithm stops.

Though setting a smaller value to ε allows the EM algorithm to find the
correct motif eventually, the running time of the whole algorithm will be signif-
icantly increased. So another choice is to use the measure

d = max
i

min
j
d(sij , c)

where d(,) is the hamming distance and c is the consensus string obtained from
W by choosing the letter with the biggest probability in each of the l columns.
Here for each si, we select sij that is the closest to c and we hope that for each
si, minj d(sij , c) ≤ d for some given number d. An (l, d) motif should have a
mismatch-number at most d.

3.4 The Whole Algorithm

Now we can describe the whole algorithm. See Figure 3.

1. for trial = 1 to maxtrials do
2. choose k positions from l positions uniformly at random;
3. generate 4k starting points;
4. for i = 1 to 4k do
5. refine the i-th starting point;
6. if an (l, d) motif is found then goto 7;
7. report the best motif ever found.

Fig. 3. The whole algorithm

The algorithm stops as soon as it finds an (l, d) motif. If such a motif can not
be found, it stops after maxtrials iterations. The parameter k is usually set to
be 4.

4 Improved EM Algorithm

In this section, we propose some techniques to improve the EM algorithm.

Randomized Algorithms for Motif Detection 891

4.1 Threshold

The algorithm proposed in Section 3 spends most of the time on running the EM
algorithm. Thus, accelerating the EM algorithm is important. In the construction
of W , those matrices W i,j with very small P (i, j) values represent noise and
should be eliminated. Therefore, we use the average value of all P (i, j) for j =
1, 2, . . . ,m − l + 1, i.e., 1

m−l+1 , as the threshold in Step 3 of the algorithm in
Section 3.2. An l-mer sij takes part in the re-estimation of the motif matrix W
only when its probability P (i, j) ≥ 1

m−l+1 . Thus, Step 3 in Section 3.2 becomes

W =
n∑

i=1

∑
j∈G

W ij ,

where G = {j | 1 ≤ j ≤ m− l + 1, P (i, j) ≥ 1
m−l+1}.

After introducing the threshold, we observe the following improvements:
(1) each EM cycle takes less time than before. Table 1 shows the average

running time of every EM cycle for different length of motifs, on a 500 MHz Sun
UltraSPARC-IIe workstation. (All the simulations in this paper are done on this
computer.)

Table 1. Average cycle time (milliseconds). It increases when l increases. The average
time for a cycle decreases by about 30%

l 11 13 15 17 19
without threshold 22.4 25.5 28.6 31.5 35.2
with threshold 16.1 18.2 20.0 22.0 23.8

(2) EM converges faster. In our experiments, the average number of cycles for
the EM algorithm to stop is reduced from 6.0 to 3.6 after using the threshold,
which means a time saving of 40%.

(3) the accuracy of the algorithm, i.e., the probability that the EM algorithm
finds the correct motif, also increases. Table 2 illustrates the improvement of
the accuracy. (Other tables are omitted due to space limit.) In each case, the
program runs on 100 random instances. The accuracy and the average running
time for different maxtrials is reported. Here 20 sequences, each of length 600,
are used.

Table 2. (17,5)-motif

maxtrials 10 20 30
accuracy without threshold 28% 48% 60%

(%) with threshold 59% 82% 89%
average time without threshold 423 720 921

(seconds) with threshold 119 161 195

892 L. Wang, L. Dong, and H. Fan

From these tables we can see that adding the threshold can improve both
the accuracy and the speed of the algorithm. The improvement on speed is more
significant when accuracy requirement increases since the EM algorithm with
threshold can find the correct motif earlier and thus stops earlier.

4.2 Shifting

We have often observed the following phenomenon in experiments:

tgtgggtcacc is the actual motif consensus;
ctgtgggtcac is the motif consensus found by the algorithm.

The algorithm spend some time on finding good, but not the correct motif.
Those detected patterns have long overlaps with the correct motif. Thus, we can
shift the detected motifs with good scores to the left and right for a few positions
and see if there is any improvement.

Suppose a motif and its n occurrences are found. Given a number h for
shifting, a new motif is produced in this way:
1. For each occurrence sij of the motif, replace it with si(j+h).
2. Construct the matrix W based on the new occurrences, and refine it with

the EM algorithm.
In our experiment, h is set to be ±1 and ±2. The original motif is treated as

h = 0.
The algorithm is given in Figure 4.

1. for trial = 1 to maxtrials do
2. choose k positions from l positions uniformly at random;
3. generate 4k starting points;
4. for i = 1 to 4k do
5. refine the i-th starting point;
6. if an (l, d) motif is found then goto 9;
7. shift the top 10 results in this trial;
8. if an (l, d) motif is found then goto 9;
9. report the best motif ever found.

Fig. 4. The whole algorithm with shifting

Table 3 illustrates the improvement using the shifting technique. (Other ta-
bles are omitted due to space limit.)

Table 3. (15,4)-motif

maxtrials 2 4 8
accuracy without shift 27% 43% 68%

(%) with shift 70% 94% 100%
average time without shift 29 50 78

(seconds) with shift 27 34 36

Randomized Algorithms for Motif Detection 893

We can see that the shifting technique can improve both the accuracy and
the speed of the algorithm. The improvement on speed is more significant on a
large maxtrials. On a small maxtrials the shifting technique sometimes even
increases the running time a little bit.

5 Implementation of the Software

We put all the techniques together and produce a software, MotifDetector. The
program is written in Java 1.1. MotifDetector allows the users to input their own
data. The sequences should be in FASTA format. In other words, each sequence
has a title line starting with “>” followed by one or more characters (as the
title of the sequence) and terminated with an end-of-line. The following lines
are assumed to be the sequence until an end-of-file, a blank line, or another
line beginning with “>” is encountered. The users can either directly type the
sequences in the input area or copy the data from a file and paste them to the
input area.

6 Comparison with PROJECTION

In [3], Buhler and Tompa developed a software, PROJECTION, using a random
projection algorithm. To our knowledge, this is the best known software for
motif detection. PROJECTION can solve the (15,4)-motif challenge problem
efficiently, and it can even solve (14,4)-motif, given plenty of time. Figure 5 is
an outline of the random projection algorithm.

1. for trial = 1 to maxtrials do
2. choose k positions from l positions uniformly at random;
3. hash all the l-mers of the input sequences into 4k buckets;
4. pick up those buckets that receive at least s l-mers;
5. refine those buckets using EM;
6. if an (l, d) motif is found then goto 7;
7. report the best motif ever found.

Fig. 5. The random projection algorithm

Simulations on various cases have been done to compare our software with
PROJECTION. The parameters for PROJECTION are set as in [3] whenever
possible. PROJECTION’s synthetic mode is enabled, which improved its perfor-
mance noticeably. See Table 4 for the result.

From Table 4 we can see: (1) PROJECTION runs faster on (11,2), (13,3),
(15,4), (10,2), (12,3), (9,1) and (8,1) motifs; (2)our program is both faster and
more accurate on the other 6 cases. It seems that PROJECTION is more ef-
ficient on short motifs, and our program is good at solving long and subtle
motifs.

894 L. Wang, L. Dong, and H. Fan

Table 4. Performance comparison with PROJECTION. On each motif problem, both
programs take the same 100 random instances as input. Each problem instance consists
of 20 sequences each of length 600. For PROJECTION, set k = 7 and s = 4. For our
program, set k = 4, except for (18,6)-motif, on which we found k = 5 is better. Running
time (in seconds) is averaged on all the 100 instances

PROJECTION our program
motif maxtrials accuracy time k maxtrials accuracy time
(11, 2) 6 100% 5.6 4 3 100% 13
(13, 3) 12 100% 12 4 4 100% 21
(15, 4) 30 100% 26 4 8 100% 36
(10, 2) 60 100% 25 4 30 100% 47
(12, 3) 300 99% 203 4 70 99% 207
(17, 5) 160 99% 83 4 16 100% 52
(19, 6) 200 99% 194 4 30 100% 92
(14, 4) 800 89% 936 4 160 90% 813
(16, 5) 1200 76% 2334 4 300 82% 2063
(18, 6) 2400 81% 4929 5 150 89% 4661
(9, 1) 1 100% 4.3 4 1 100% 6.9
(8, 1) 3 100% 4.3 4 5 100% 9.6
(21, 7) 400 96% 332 4 60 100% 102

7 Conclusions

We have developed a software MotifDetector for motif detection. Simulations
show that MotifDetector is slower than PROJECTION when the pattern length
is relatively small, and outperforms PROJECTION when the pattern length
becomes large.

Another contribution is an improved EM algorithm. It can be applied in many
current algorithms such as MEME and PROJECTION. We can expect that after
using the improved EM algorithm, their performances might be significantly
improved.

Acknowledgement

The work is fully supported by a grant from the Research Grants Council of the
Hong Kong Special Administrative Region, China [Project No. CityU 1047/01E].

References

1. Bailey,T. and Elkan,C. (1995) Unsupervised learning of multiple motifs in biopoly-
mers using expectation maximization, Machine Learning, 21, pp.51–80.

Randomized Algorithms for Motif Detection 895

2. Blanchette,M. (2001) Algorithms for phylogenetic footprinting. RECOMB 01: Pro-
ceedings of the Fifth Annual International Conference on Computational Molecular
Biology, pp.49–58..

3. Buhler,J. and Tompa,M. (2002) Finding motifs using random projections. Journal
of Computational Biology, 9, pp.225–242.

4. Dopazo,J., Rodŕıguez,A., Sáiz,J.C. and Sobrino,F. (1993) Design of primers for
PCR amplification of highly variable genomes, CABIOS, 9, pp.123–125.

5. Duret,L. and Bucher,P. (1997) Searching for regulatory elements in human non-
coding sequences. Curr. Opin. Struct. Biol., 7, pp.399–406.

6. Duret,L., Dorkeld,F. and Gautier,C. (1993) Strong conservation of non-coding se-
quences during vertebrates evolution: potential involvement in post-transcriptional
regulation of gene expression. Nucleic Acids Research, 21, pp.2315–2322.

7. Gusfield, D. (1997) Algorithms on Strings, Trees, and Sequences: Computer Science
and Computational Biology, Cambridge University Press.

8. Hertz,G. and Stormo,G. (1995) Identification of consensus patterns in unaligned
DNA and protein sequences: a large-deviation statistical basis for penalizing gaps,
Proc. 3rd Int’l Conf. Bioinformatics and Genome Research, pp.201–216.

9. Keich,U. and Pevzner,P. (2002a) Finding motifs in the twilight zone. Bioinformat-
ics, 18, pp.1374–1381.

10. Keich,U. and Pevzner,P. (2002b) Subtle motifs: defining the limits of motif finding
algorithms. Bioinformatics, 18, pp.1382–1390.

11. Lanctot,K., Li,M., Ma,B., Wang,S. and Zhang,L. (1999) Distinguishing string selec-
tion problems, Proc. 10th ACM-SIAM Symp. on Discrete Algorithms, pp.633–642.
Also to appear in Information and Computation.

12. Lawrence,C. and Reilly,A. (1990) An expectation maximization (EM) algorithm
for the identification and characterization of common sites in unaligned biopolymer
sequences, Proteins, 7, pp.41–51.

13. Li,M., Ma,B. and Wang,L. (2002) Finding Similar Regions in Many Sequences,
J. Comput. Syst. Sci., 65, pp.73–96, special issue for Thirty-first Annual ACM
Symposium on Theory of Computing.

14. Li,M., Ma,B. and Wang,L. (2002) On the closest string and substring problems,
JACM, 49(2): pp.157–171.

15. Lucas,K., Busch,M., Mössinger,S. and Thompson,J.A. (1991) An improved micro-
computer program for finding gene- or gene family-specific oligonucleotides suitable
as primers for polymerase chain reactions or as probes, CABIOS, 7, pp.525–529.

16. Pevzner,P. and Sze,S. (2000) Combinatorial approaches to finding subtle signals in
DNA sequences. In Proceedings of the 8th International Conference on Intelligent
Systems for Molecular Biology. pp.269–278.

17. Proutski,V. and Holme,E.C. (1996) Primer Master: a new program for the design
and analysis of PCR primers, CABIOS, 12, pp.253–255.

Weighted Coloring on Planar, Bipartite and
Split Graphs: Complexity and Improved

Approximation

Dominique de Werra1, Mare Demange2, Bruno Escoffier3,
Jerome Monnot3, and Vangelis Th. Paschos3

1 Ecole Polytechnique Fédérale de Lausanne, Switzerland
dewerra@ima.epfl.ch

2 ESSEC, Dept. SID, France
demange@essec.fr

3 Université Paris Dauphine, LAMSADE, CNRS UMR 7024, 75016 Paris, France
{escoffier, monnot, paschos}@lamsade.dauphine.fr

Abstract. We study complexity and approximation of min weighted
node coloring in planar, bipartite and split graphs. We show that
this problem is NP-complete in planar graphs, even if they are triangle-
free and their maximum degree is bounded above by 4. Then, we prove
that min weighted node coloring is NP-complete in P8-free bipar-
tite graphs, but polynomial for P5-free bipartite graphs. We next focus
ourselves on approximability in general bipartite graphs and improve
earlier approximation results by giving approximation ratios matching
inapproximability bounds. We next deal with min weighted edge col-
oring in bipartite graphs. We show that this problem remains strongly
NP-complete, even in the case where the input-graph is both cubic and
planar. Furthermore, we provide an inapproximability bound of 7/6 − ε,
for any ε > 0 and we give an approximation algorithm with the same ra-
tio. Finally, we show that min weighted node coloring in split graphs
can be solved by a polynomial time approximation scheme.

1 Introduction

We give in this paper some complexity results as well as some improved ap-
proximation results for min weighted node coloring, originally studied in
Guan and Zhu [7] and more recently in [4]. A k-coloring of G = (V,E) is a
partition S = (S1, . . . , Sk) of the node set V of G into stable sets Si. In this
case, the objective is to determine a node coloring minimizing k. A natural gen-
eralization of this problem is obtained by assigning a strictly positive integer
weight w(v) for any node v ∈ V , and defining the weight of stable set S of G as
w(S) = max{w(v) : v ∈ S}. Then, the objective is to determine S = (S1, . . . , Sk)
a node coloring of G minimizing the quantity

∑k
i=1 w(Si). This problem is easily

shown NP-hard; it suffices to consider w(v) = 1, ∀v ∈ V and min weighted
node coloring becomes the classical node coloring problem. Other versions of
weighted colorings have been studied in Hassin and Monnot [8].

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 896–907, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Weighted Coloring on Planar, Bipartite and Split Graphs 897

Consider an instance I of an NP-hard optimization problem Π and a poly-
nomial time algorithm A computing feasible solutions for Π. Denote by mA(I, S)
the value of a Π-solution S computed by A on I and by opt(I), the value of
an optimal Π-solution for I. The quality of A is expressed by the ratio (called
approximation ratio in what follows) ρA(I) = mA(I, S)/opt(I), and the quantity
ρA = inf{r : ρA(I) < r, I instance of Π}. A very favourable situation for poly-
nomial approximation occurs when an algorithm achieves ratios bounded above
by 1 + ε, for any ε > 0. We call such algorithms polynomial time approximation
schemes. The complexity of such schemes may be polynomial or exponential
in 1/ε (they are always polynomial in the sizes of the instances). A polynomial
time approximation scheme with complexity polynomial also in 1/ε is called fully
polynomial time approximation scheme.

This paper extends results on min weighted node coloring, the study of
which has started in Demange et al. [4]. We first deal with planar graphs and
we show that, for this family, the problem studied is NP-complete, even if we
restrict to triangle-free planar graphs with node-degree not exceeding 4.

We then deal with particular families of bipartite graphs. The NP-complete-
ness of min weighted node coloring has been established in [4] for general
bipartite graphs. We show here that this remains true even if we restrict to planar
bipartite graphs or to P21-free bipartite graphs (for definitions graph-theoretical
notions used in this paper, the interested reader is referred to Berge [1]). It is
interesting to observe that these results are obtained as corollaries of a kind
of generic reduction from the precoloring extension problem shown to be NP-
complete in Bodlaender et al. [2], Hujter and Tuza [10, 11], Kratochvil [13]. Then,
we slightly improve the last result to P8-free bipartite graphs and show that the
problem becomes polynomial in P5-free bipartite graphs. Observe that in [4],
we have proved that min weighted node coloring is polynomial for P4-free
graphs and NP-complete for P5-free graphs.

Then, we focus ourselves on approximability of min weighted node color-
ing in (general) bipartite graphs. As proved in [4], this problem is approximable
in such graphs within approximation ratio 4/3; in the same paper a lower bound
of 8/7− ε, for any ε > 0, was also provided. Here we improve the approximation
ratio of [4] by matching the 8/7-lower bound of [4] with a same upper bound;
in other words, we show here that min weighted node coloring in bipartite
graphs is approximable within approximation ratio bounded above by 8/7.

We next deal with min weighted edge coloring in bipartite graphs. In
this problem we consider an edge-weighted graph G and try to determine a par-
tition of the edges of G into matchings in such a way that the sum of the weights
of these matchings is minimum (analogously to the node-model, the weight of a
matching is the maximum of the weights of its edges). In [4], it is shown that min
weighted edge coloring is NP-complete for cubic bipartite graphs. Here, we
slightly strengthen this result showing that this problem remains strongly NP-
complete, even in cubic and planar bipartite graphs. Furthermore, we strengthen
the inapproximability bound provided in [4], by reducing it from 8/7 − ε to

898 D. de Werra et al.

7/6−ε, for any ε > 0. Also, we match it with an upper bound of the same value,
improving so the 5/3-approximation ratio provided in [4].

Finally, we deal with approximation of min weighted node coloring
in split graphs. As proved in [4], min weighted node coloring is strongly
NP-complete in such graphs, even if the nodes of the input graph receive only
one of two distinct weights. It followed that this problem cannot be solved by
fully polynomial time approximation schemes, but no approximation study was
addressed there. In this paper we show that min weighted node coloring in
split graphs can be solved by a polynomial time approximation scheme.

In the remainder of the paper we shall assume for any weighted node or edge
coloring S = (S1, . . . , S�) considered, we will have w(S1) � . . . � w(S�).

2 Weighted Node Coloring in Triangle-Free Planar
Graphs

The node coloring problem in planar graphs has been shown NP-complete by
Garey and Johnson [5], even if the maximum degree does not exceed 4. On
the other hand, this problem becomes easy in triangle-free planar graphs, (see
Grotzsch [6]). Here, we show that the weighted node coloring problem is NP-
complete in triangle-free planar graphs with maximum degree 4 by using a reduc-
tion from 3-sat planar, proved to be NP-complete in Lichtenstein [14]. This
problem is defined as follows: Given a collection C = (C1, . . . , Cm) of clauses over
the set X = {x1, . . . , xn} of Boolean variables such that each clause Cj has at
most three literals (and at least two), is there a truth assignment f satisfying C ?
Moreover, the bipartite graph BP = (L,R;E) is planar where |L| = n, |R| = m
and [xi, cj] ∈ E iff the variable xi (or xi) appears in the clause Cj .

Theorem 1. min weighted node coloring is NP-complete in triangle-free
planar graphs with a maximum degree 4.

Proof. Let BP = (L,R;E) be the bipartite graph representing an instance
(X, C) of 3-sat planar where L = {x1, . . . , xn}, R = {c1, . . . , cm}. We con-
struct an instance I = (G,w) of min weighted node coloring by using two
gadgets: The gadgets clause F (Cj) are given in Figure 1 for clause Cj of size 3
and in Figure 2 for clause Cj of size 2. The nodes ckj are those that will be linked
to the rest of the graph.

The gadgets variable H(xi) is given in Figure 3 for variable xi. Assume that
xi appears p1 times positively and p2 times negatively in (X, C), then in H(xi)
there are 2p = 2(p1 + p2) special nodes xk

i , x
k
i , k = 1, . . . , p. These nodes form a

path which meets nodes xk
i , xk

i alternately.
The weight of nodes which are not given in Figures 1, 2 and 3 are 1. These

gadgets are linked together by the following process. If variable xi appears pos-
itively (resp. negatively) in clause cj , we link one of the variables xk

i (resp. xk
i),

with a different k for each Cj , to one of the three nodes clj of gadget F (Cj).
This can be done in a way which preserves the planarity of the graph. Observe
that G is triangle-free and planar with maximum degree 4. Moreover, we assume

Weighted Coloring on Planar, Bipartite and Split Graphs 899

Fig. 1. Graph F (Cj) representing a clause Cj of size 3

Fig. 2. Graph F (Cj) representing a clause Cj of size 2

Fig. 3. Graph H(xi) representing variable xi

that G is not bipartite (otherwise, we add a disjoint cycle Γ with |Γ | = 7 and
∀v ∈ V (Γ), w(v) = 1).

It is then not difficult to check that (X, C) is satisfiable iff opt(I) � 6.

3 Weighted Node Coloring in Bipartite Graphs

3.1 Complexity Results

The NP-completeness of min weighted node coloring in bipartite graphs
has been proved in [4]. Here, we show that some more restrictive versions are
also NP-complete, namely bipartite planar graphs and P8-free bipartite graphs,
i.e. bipartite graphs which do not contain induced paths of length 8 or more.
We use a generic reduction from the precoloring extension node coloring problem

900 D. de Werra et al.

(in short PrExt node coloring). This latter problem studied in [2, 10, 13, 11],
can be described as follows. Given a positive integer k, a graph G = (V,E) and
k pairwise disjoint subsets V1, . . . , Vk of V , we want to decide if there exists a
node coloring S = (S1, . . . , , Sk) of G such that Vi ⊆ Si, for all i � k. Moreover,
we restrict to some class of graphs G: we assume that G is closed when we add
a pending edge with a new node (i.e., if G = (V,E) ∈ G and x ∈ V , y /∈ V , then
G+ [x, y] ∈ G).

Theorem 2. Let G be a class of graphs which is closed when we add a pending
edge with a new node. If PrExt node coloring is NP-complete for graphs
in G, then min weighted node coloring is NP-complete for graphs in G.

Proof. Let G be such a class of graphs. We shall reduce PrExt node color-
ing in G graphs to weighted node coloring in G graphs. Let G = (V,E) ∈ G
and k pairwise disjoint subsets V1, . . . , Vk of V . We build instance I = (G′, w)
of weighted node coloring using several gadgets Ti, for i = 1, . . . , k. The con-
struction of Ti is given by induction as follows: T1 is simply a root v1 with
weight w(v1) = 2k−1. Given T1, . . . , Ti−1, Ti is a tree with a root vi of weight
w(vi) = 2k−i that we link to tree Tp via edge [vi, vp] for each p = 1, . . . , i− 1.

Fig. 4. Gadgets for T1, T2 and T3

Figure 4 illustrates the gadgets T1, T2, T3. Now, I = (G′, w) where G′ =
(V ′, E′) is constructed in the following way: G′ contains G. For all i = 1, . . . , k,
we replace each node v ∈ Vi by a copy of the gadget Ti where we identify v with
root vi. For all v ∈ V \ (∪k

i=1Vi) we set w(v) = 1. Note that, by hypothesis,
G′ ∈ G.

One can verify that the precoloring ofG (given by V1, . . . , Vk) can be extended
to a proper node coloring of G using at most k colors iff opt(I) � 2k − 1.

Using the results of Kratochvil [13] on the NP-completeness of PrExt node
coloring in bipartite planar graphs for k = 3 and P13-free bipartite graphs for
k = 5, we deduce:

Corollary 1. In bipartite planar graphs, min weighted node coloring is
strongly NP-complete and it is not 8

7 − ε-approximable unless P=NP.

Weighted Coloring on Planar, Bipartite and Split Graphs 901

Corollary 2. In P21-free bipartite graphs, min weighted node coloring is
strongly NP-complete and it is not 32

31 − ε-approximable unless P=NP.

In Hujter and Tuza [11], it is shown that PrExt node coloring is NP-
complete in P6-free bipartite chordal graphs for unbounded k. Unfortunately, we
cannot use this result in Theorem 2 since the resulting graph has an induced
path with arbitrarily large length. However, we can adapt their reduction.

Theorem 3. min weighted node coloring is NP-complete in P8-free bi-
partite graphs.

Proof. We shall reduce 3-sat-3, proved to be NP-complete in Papadimitriou
[16] to our problem. Given a collection C = (C1, . . . , Cm) of clauses over the set
X = {x1, . . . , xn} of Boolean variables such that each clause Cj has at most three
literals and each variable has at most 3 occurrences (2 positive and one negative),
we construct an instance I = (BP,w) in the following way: we start from BP1 =
(L1, R1;E1), a complete bipartite graph Kn,m where L1 = {x1, . . . , xn} and
R1 = {c1, . . . , cm}. Moreover, each node of BP1 has weight 1. There is also
another bipartite graph BP2 isomorphic to K2n,2n where a perfect matching
has been deleted. More formally, BP2 = (L2, R2;E2) where L2 = {l1, . . . , l2n},
R2 = {r1, . . . , r2n} and [li, rj] ∈ E2 iff i �= j. Finally, w(li) = w(ri) = 22n−i

for i = 1, . . . , 2n. Indeed, sets {l2i−1, r2i−1} and {l2i, r2i} will correspond to
literal xi and xi respectively. Between BP1 and BP2, there is a set E3 of edges.
[xi, rj] /∈ E3 iff j = 2i − 1 or j = 2i and [li, cj] /∈ E3 iff i = 2k − 1 and xk is in
Cj or i = 2k and xk is in Cj . Note that BP is a P8-free bipartite graph.
One can verify that (X, C) is satisfiable iff opt(I) � 22n − 1.

We end this section by stating that min weighted node coloring is poly-
nomial for P5-free bipartite graphs, i.e., without induced chain on 5 nodes. There
are several characterizations of P5-free bipartite graphs, see for example, Ham-
mer et al. [9], Chung et al. [3] and Hujter and Tuza [10]. In particular, BP is
a P5-free bipartite graph iff BP is bipartite and each connected component of
BP is 2K2-free, i.e., its complement is C4-free. In this case, we can show that
any optimal weighted node coloring S∗ = (S∗

1 , . . . , S
∗
�) uses at most 3 colors (so,

� � 3) and when � = 3, then for any connected component BPi = (Li, Ri;Ei)
of P5-free bipartite graph we have S∗,i

1 ∩ Li �= ∅ and S∗,i
1 ∩ Ri �= ∅, S∗,i

2 ⊂ Ri

(resp., S∗,i
2 ⊂ Li) and S∗,i

3 ⊂ Li (resp., S∗,i
3 ⊂ Ri) where (S∗,i

1 , S∗,i
2 , S∗,i

3) is the
restriction of S∗ to the subgraph BPi. Thus, applying an exhaustive search on
k1 = w(S∗

2) and a dichotomy search k2 = w(S∗
3) we can find an optimal solution

within O(n|w|log|w|) time where |w| = |{w(v) : v ∈ V }|. Hence, we can state:

Theorem 4. min weighted node coloring is polynomial in P5-free bipartite
graphs and can be solved within time O(n|w|log|w|).

3.2 Approximation

In Demange et al. [4], a 4
3 -approximation is given for min weighted node

coloring and it is proved that a (8
7 − ε)-approximation is not possible, for any

902 D. de Werra et al.

ε > 0, unless P=NP, even if we consider arbitrarily large values of opt(I). Using
Corollary 1, we deduce that this lower bound also holds if we consider bipartite
planar graphs. Here, we give a 8

7 -approximation in bipartite graphs.

BIPARTITECOLOR

1 Sort the nodes in non-increasing weight order (i.e., w(v1) � . . . � w(vn));
2 For i = 1 to n do

2.1 Set Vi = {v1, . . . , vi};
2.2 Compute S∗

i = (Si
1, S

i
2) (Si

2 may be empty) an optimal weighted node
2-coloring in the subgraph BP [Vi] induced by Vi ;

2.3 Define node coloring Si = (Si
1, S

i
2, L \ Vi, R \ Vi) (L \ Vi or/and R \ Vi

may be empty);
3 Output S = argmin{val(Si) : i = 1, . . . , n};

The step 2.2 consists of computing the (unique) 2-coloration (S∗
1,j , S

∗
2,j) (with

w(S∗
1,j) � w(S∗

2,j)) of each connected component BPj , j = 1 . . . p of BP [Vi] (with
S∗

2,j = ∅ if BPj is an isolated node). Then it merges the most expensive sets, i.e.
it computes Si

1 = ∪p
j=1S

∗
i,j for i = 1, 2. It is easy to observe that S∗

i = (Si
1, S

i
2)

is the best weighted node coloring of BP [Vi] among the colorings using at most
2 colors; such a coloring can be found in O(m) time where m = |E|.
Theorem 5. BIPARTITECOLOR polynomially solves in time O(nm) min weighted
node coloring in bipartite-graphs and it is a 8

7 -approximation.

Proof. Let I = (BP,w) be a weighted bipartite-graph where BP = (L,R;E)
and S∗ = (S∗

1 , ..., S
∗
l) be an optimal node coloring of I with w(S∗

1) ≥ ... ≥ w(S∗
l).

If l < 3, then BIPARTITECOLOR finds an optimal weighted node coloring which
is Sn. Now, assume l � 3 and let ij = min{k : vk ∈ S∗

j }. We have i1 = 1 and
opt(I) � w(vi1) + w(vi2) + w(vi3).

Let us examine several steps of this algorithm. When i = i2−1, the algorithm
produces a node 3-coloring Si2−1 = (S1

i2−1, L \ S1
i2−1, R \ S1

i2−1). Indeed, by
construction Vi2−1 ⊆ S∗

1 is an independent set, and then, S∗
i2−1 is defined by

Si2−1
1 = Vi2−1, S

i2−1
2 = ∅ and then val(Si2−1) � w(vi1) + 2w(vi2). When i =

i3− 1, the algorithm produces on BP [Vi3−1] a node 2-coloring S∗
i3−1 with a cost

val(S∗
i3−1) � w(vi1)+w(vi2) since the coloring (S∗

1∩Vi3−1, S
∗
2∩Vi3−1) is a feasible

node 2-coloring of BP [Vi3−1] with cost w(vi1) + w(vi2). Thus, val(Si3−1) �
w(vi1) + w(vi2) + 2w(vi3). Finally, when i = n, the node 2-coloring Sn satisfies
val(Sn) � 2w(vi1)

The convex combination of these 3 values with coefficients 1
7 × val(Sn), 4

7 ×
val(Si3−1) and 2

7 × val(Si2−1) gives the expected result.

4 Weighted Edge Coloring in Bipartite Graphs

The weighted edge coloring problem on a graph G can be viewed as the weighted
node coloring problem on L(G) where L(G) is the line graph of G. Here, for
simplicity, we refer to the edge model.

Weighted Coloring on Planar, Bipartite and Split Graphs 903

4.1 Complexity Results

Demange et al. [4] have proved that min weighted edge coloring in bipartite
cubic graphs is strongly NP-complete and a lower bound of 8

7 is given for the
approximation. Here, we slightly improve these complexity results.

Theorem 6. In bipartite cubic planar graphs, min weighted edge coloring
is strongly NP-complete and it is not 7

6 − ε-approximable unless P=NP.

Proof. We shall reduce PrExt edge coloring in bipartite cubic planar graphs
to our problem. Given a bipartite cubic planar graph BP and 3 pairwise disjoint
matchings Ei, the question of PrExt edge coloring is to determine if it is
possible to extend the edge precoloring E1, E2, E3 to a proper 3-edge coloring of
G. Very recently, this problem has been shown NP-complete in Marx [15].
Let BP = (V,E) and E1, E2, E3 be an instance of PrExt edge coloring; we
construct an instance I = (BP ′, w) of weighted edge coloring as follows. Each
edge in E1 receives weight 3. Each edge [x, y] ∈ E2 is replaced by a gadget F2
described in Figure 4.1, where we identify x and y to v0 and v9 respectively. Each
edge in E3 is replaced by a gadget F3 which is the same as gadget F2 except
that we have exchanged weights 1 and 2. The other edges of G receive weight 1.
Remark that BP ′ is still a bipartite cubic planar graph.

Fig. 5. Gadget F2 for e ∈ E2

We can verify that the answer of PrExt edge coloring instance is yes if
and only if there exists an edge coloring S of I with cost val(S) � 6.

4.2 Approximation

In Demange et al. [4], a 5
3 -approximation is given for min weighted edge

coloring in bipartite graphs with maximum degree 3. Here, we give a 7
6 -

approximation. We need some notations: If BP = (V,E) is a bipartite graph with
node set V = {v1, . . . , vn}, we always assume that its edges E = {e1, . . . , em} are
sorted in non-increasing weight order (i.e., w(e1) � . . . � w(em)). If V ′ is a sub-
set of nodes and E′ a subset of edges, BP [V ′] and BP [E′] denote the subgraph
of BP induced by V ′ and the partial graph of BP induced by E′ respectively.
For any i � m, we set Ei = {e1, . . . , ei} and Ei = E \Ei. Finally, Vi denotes the
set of nodes of BP incident to an edge in Ei (so, it is the subset of non-isolated
nodes of BP [Ei]).

904 D. de Werra et al.

BIPARTITEEDGECOLOR

1 For i = m downto 1 do
1.1 Apply algorithm SOL1 on BP [Ei];
1.2 If SOL1(BP [Ei])�= ∅, complete in a greedy way all the colorings produced

by SOL1 on the edges of Ei. Let S1,i be a best one among these edge
colorings of BP ;

1.3 For j = i downto 1 do
1.3.1 Apply algorithm SOL2 on BP [Ej];
1.3.2 If SOL2(BP [Ej])�= ∅, complete in a greedy way all the colorings pro-

duced by SOL2 on the edges of Ej . Let S2,j,i be a best one among
these edge colorings of BP ;

1.3.3 Apply algorithm SOL3 on BP [Ej];
1.3.4 If SOL3(BP [Ej])�= ∅, complete in a greedy way all the colorings pro-

duced by SOL3 on the edges of Ej . Let S3,j,i be a best one among
these edge colorings of BP

2 Output S = argmin{val(S1,i), val(Sk,j,i) : k = 2, 3, j = 1, . . . , i, i =
1, . . . ,m}.

The greedy steps 1.2, 1.2.2 and 1.2.4 give a solution using at most 5 colors.
More generally, in [4], we have proved that, in any graph G, the greedy coloring
and at least one optimal weighted node coloring use at most Δ(G) + 1 colors,
where Δ(G) denotes the maximum degree of G. In our case, we have G = L(H),
the line graph of H, and we deduce Δ(L(H))+1 � 2(Δ(H)−1)+1 = 2Δ(H)−1.
The 3 algorithms SOL1, SOL2 and SOL3 are used on several partial graphs BP ′ of
BP . In the following, V ′, E′ andm′ denote respectively the node set, the edge set
and the number of edge of the current graph BP ′. Moreover, we set V ′

i = V ′\V ′
i .

If M = (M1, . . . ,Ml) with w(M1) � . . . � w(M�) is an edge coloring of BP ′,
we note ij = min{k : ek ∈Mj}. We assume, for reason of readability, that some
colors Mj may be empty (in this case ij = m′ + 1). The principle of theses
algorithms consist in finding a decomposition of BP ′ (a subgraph of BP) into
two subgraphs BP ′

1 and BP ′
2 having each a maximum degree 2. When there

exists such a decomposition, we can color BP ′
i with at most 2 colors since BP

is bipartite.

SOL1

1 For j = m′ downto 1 do
1.1 If the degree of BP ′[E′

j] is at most 2 then
1.1.1 Consider the graph BP ′j induced by the nodes of BP ′ incident to

at least 2 edges of E′
j and restricted to the edges of E′

j .
1.1.2 Determine if there exists a matching M j of BP ′j such that every

node of V ′
j is saturated;

1.1.3 If such a matching is found, consider the decomposition BP ′
1,j and

BP ′
2,j of BP ′ induced by E′

j ∪M j and E′ \ (E′
j ∪M j) respectively;

Weighted Coloring on Planar, Bipartite and Split Graphs 905

1.1.4 Find an optimal 2-edge coloring (M j
1 ,M

j
2) of BP ′

1,j ;
1.1.5 Color greedily the edges of BP ′

2,j with two colors (M j
3 ,M

j
4);

1.1.6 Define Sj
1 = (M j

1 ,M
j
2 ,M

j
3 ,M

j
4) the edge coloring of BP ′;

2 Output {Sj
1 : j = 1, . . . ,m′ − 1};

Note that the step 1.1.2 is polynomial. Indeed, more generally, given a graph
G and V ′ ⊆ V , it is polynomial to determine if there exists a matching such
that each node of V ′ is matched. To see this, consider G′ where we add to G all
missing edges between nodes of V \ V ′. If |V | is odd, then we add a node to the
clique V \ V ′. It is easy to see that G′ has a perfect matching if and only if G
has a matching such that each node of V ′ is saturated.

Lemma 1. If S = (M1,M2,M3,M4) is an edge coloring of BP ′, then we have
val(Si3−1

1) � w(M1) + w(M2) + 2w(M3).

SOL2

1 For k = m′ downto 1 do
1.1 If E′

k is a matching :
1.1.1 Determine if there exists a matching Mk of BP ′[V ′

k] such that each
node of BP ′[V ′

k] having a degree 3 in BP ′ is saturated.
1.1.2 If such a matching is found, consider the decomposition BP ′

1,k and
BP ′

2,k of BP ′ induced by E′
k ∪Mk and E′ \ (E′

j ∪Mk) respectively;
1.1.3 Color BP ′

1,k with one color Mk
1 ;

1.1.4 Color greedily BP ′
2,k with two colors Mk

2 and Mk
3 ;

1.1.5 Define Sk
2 = (Mk

1 ,M
k
2 ,M

k
3) the edge coloring of BP ′;

2 Output {Sk
2 : k = 1, . . . ,m′};

Lemma 2. If S = (M1,M2,M3) is an edge coloring of BP ′, then we have
val(Si2−1

2) � w(M1) + 2w(M2).

SOL3

1 For k = m′ downto 1 do
1.1 Determine if there is a matching Mk in BP ′[E′

k] such that each node of
degree 3 in BP ′ is saturated.

1.2 If such a matching is found, consider the decomposition BP ′
1,k and BP ′

2,k

of BP ′ induced by Mk and E′ \Mk respectively;
1.3 Color BP ′

1,k with one color Mk
3 ;

1.4 Color greedily BP ′
2,k with two colors Mk

1 and Mk
2 ;

1.5 Define Sk
3 = (Mk

1 ,M
k
2 ,M

k
3) the edge coloring of BP ′;

2 Output {Sk
3 : k = 1, . . . ,m′ − 1};

906 D. de Werra et al.

Lemma 3. If S = (M1,M2,M3) is an edge coloring of BP ′, then we have
val(Si3−1

3) � 2w(M1) + w(M3).

Theorem 7. BIPARTITEEDGECOLOR is a 7
6 approximation for min weighted

edge coloring in bipartite graphs with maximum degree 3.

Proof. Let S∗ = (M∗
1 , . . . ,M

∗
5) with w(M∗

1) � . . . � w(M∗
5) be an optimal

weighted edge coloring of BP . Denote by i∗k the smallest index of an edge in M∗
k

(i∗k = m+1 if the color is empty). Consider the iteration of BIPARTITEEDGECOLOR
corresponding to the cases i = i∗5 − 1 and j = i∗4 − 1. Then, applying Lemma
1, we produce on BP ′ = BP [Ei] an edge coloring of weight at most w(M∗

1) +
w(M∗

2)+2w(M∗
3). Then the greedy coloring of the edges of Ei produces a coloring

S ′
1 of weight val(S ′

1) � w(M∗
1)+w(M∗

2)+2w(M∗
3)+w(M∗

5). Applying the same
arguments on Lemma 2 and Lemma 3, we produce two solutions S ′

2 and S ′
3

respectively satisfying val(S ′
2) � w(M∗

1) + 2w(M∗
2) + 2w(M∗

4) and val(S ′
3) �

2w(M∗
1) + w(M∗

3) + 2w(M∗
4).

Notice that if there is an empty color produced by one of the algorithms SOLi,
then the bounds are still valid. The convex combination of these 3 values with
coefficients 3

6 × val(S ′
1),

2
6 × val(S ′

2) and 1
6 × val(S ′

3) gives the expected result.

5 Weighted Node Coloring in Split Graphs

The split graphs are a class of graphs related to bipartite graphs. Formally,
G = (K1, V2;E) is a split graph if K1 is a clique of G with size |K1| = n1 and V2
is an independent set with size |V2| = n2. So, a split graph can be viewed as a
bipartite graph where the left set is a clique. Since split graphs forms a subclass of
perfect graphs, the node coloring problem on split graphs is polynomial. On the
other hand, in [4], it is proved that the weighted node coloring problem is strongly
NP-complete in split graphs, even if the weights take only two values. Thus, we
deduce that there is no fully polynomial time approximation scheme in such
a class of graphs. Here, we propose a polynomial time approximation scheme
using structural properties of optimal solutions. An immediate observation of
split graphs is that any optimal node coloring S∗ = (S∗

1 , . . . , S
∗
�) satisfies |K1| �

� � |K1| + 1 and any color S∗
i is a subset of V2 with possibly one node of K1.

In particular, for any optimal node coloring S∗ = (S∗
1 , . . . , S

∗
�) , there exists at

most one index i(S∗) such that S∗
i(S∗) ∩K1 = ∅.

Lemma 4. There is an optimal weighted node coloring S∗ = (S∗
1 , . . . , S

∗
�) with

w(S∗
1) � . . . � w(S∗

�) and an index i0 � �+ 1 such that:

• ∀j < i0 S
∗
j = {vj}∪{v ∈ V2 : v /∈ ∪j−1

k=1S
∗
k and [v, vj] /∈ E} for some vj ∈ K1.

• S∗
i0

= V2 \ (S∗
1 ∪ . . . ∪ S∗

i0−1) and ∀j > i0 S
∗
j = {vj} for some vj ∈ K1.

Thus, applying an exhaustive search on all setsK ′
1 ⊆ K1 with k = |K ′

1| � � 1
ε�

and on all bijections from {1, . . . , k} to K ′
1, one can find the k heaviest colors of

an optimal weighted node coloring and thus, we deduce:

Theorem 8. min weighted node coloring admits a polynomial time ap-
proximation scheme in split graphs.

Weighted Coloring on Planar, Bipartite and Split Graphs 907

References

1. C. Berge[1973]. Graphs and hypergraphs. North Holland, Amsterdam.
2. H. L. Bodlaender, K. Jansen, and G. J. Woeginger[1990]. Scheduling with

incompatible jobs. Discrete Appl. Math., 55:219–232.
3. F. R. K. Chung, A. Gyárfás, Zs. Tuza and W. T. Trotter [1990]. The maxi-

mum number of edges in 2K2-free graphs of bounded degree. Discrete Mathematics,
81:129–135.

4. M. Demange, D. de Werra, J. Monnot and V.Th. Paschos [2002]. Weighted
node coloring: when stable sets are expensive. Proc. WG’02 LNCS 2573:114–125.

5. M. R. Garey and D. S. Johnson [1979]. Computers and intractability. a guide
to the theory of NP-completeness. CA, Freeman.

6. H. Grotzsch [1959]. Ein dreifarbensatz fur dreikreisfreie netze auf der Kugel.
Wiss. Z. Martin Luther Univ. Halle-Wittenberg, Math. Naturwiss Reihe, 8:109–120.

7. D. J. Guan and X. Zhu [1997]. A Coloring Problem for Weighted Graphs. Inf.
Process. Lett., 61(2):77–81.

8. R. Hassin and J. Monnot [2004]. The maximum saving partition problem. Op.
Res. Lett., to appear.

9. P. L. Hammer, U. N. Peled and X. Sun [1990]. Difference graphs. Discrete
Applied Mathematics, 28:35–44.

10. M. Hujter and Zs. Tuza [1993]. Precoloring extension. II. Graphs classes
related to bipartite graphs. Acta Math. Univ. Comeniane, LXII:1–11.

11. M. Hujter and Zs. Tuza [1996]. Precoloring extension. III. Classes of perfect
graphs. Combin. Probab. Comput., 5:35–56.

12. D. König [1916]. ber graphen und iher anwendung auf determinantentheorie und
mengenlehre. Math. Ann., 77:453–465.

13. J. Kratochvil [1993]. Precoloring extension with fixed color bound. Acta Math.
Univ. Comen., 62:139–153.

14. D. Lichtenstein [1982]. Planar formulae and their uses. SIAM J. Comput.,
11(2):329–343.

15. D. Marx [2004]. NP-completeness of list coloring and precoloring ex-
tension on the edges of planar graphs. Technical report available to
http://www.cs.bme.hu/ dmarx/publications.html.

16. C. H. Papadimitriou[1994]. Computational Complexity. Addison Wesley.

Sweeping Graphs with Large Clique Number
(Extended Abstract)

Boting Yang1, Danny Dyer2, and Brian Alspach3

1 Department of Computer Science, University of Regina
boting@cs.uregina.ca

2 Department of Mathematics, Simon Fraser University
tddyer@sfu.ca

3 Department of Mathematics and Statistics, University of Regina
alspach@math.uregina.ca

Abstract. An open problem in sweeping is the existence of a graph
with connected sweep number strictly less than monotonic connected
sweep number. We solve this problem by constructing a graph W ex-
hibiting exactly this property. Further, we will examine a new method of
constructing graphs that makes proving all such inequalities easier, and
offer some new lower bounds on sweep numbers.

1 Introduction

The model of searching originated by Parsons in [6] allowed capture of an in-
truder by a searcher to occur on an edge. We will call this type of search a
continuous sweep. The specifics of sweeping a graph G are as follows: initially,
all edges of G are contaminated (or dirty). To sweep G it is necessary to formu-
late and carry out a sweep strategy. A sweep strategy is a sequence of actions
designed so that the final action leaves all edges ofG uncontaminated (or cleared).
The actions allowed after placing all the sweepers on vertices are: move a single
sweeper along an edge uv starting at u and ending at v; move a sweeper on a
vertex u to any other vertex v.

Any sweep strategy that uses the second action will be called a wormhole
sweep strategy. We will restrict ourselves to considering simple graphs throughout
this paper.

An edge uv in G can be cleared in one of two ways: (1) At least two sweepers
are placed on vertex u and one of them traverses the edge from u to v while the
others remain on u. (2) At least one sweeper is placed on vertex u, and all other
edges incident with u, other than uv, are already cleared. Then one sweeper
moves from u to v.

Knowing that our goal is to end up with a graph where all the edges are
cleared, a basic question is: what is the fewest number of sweepers for which
a sweep strategy exists for G? We call this the sweep number, denoted sw(G).
Similarly, we define the wormhole sweep number, denoted wsw(G). In fact, these

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 908–920, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Sweeping Graphs with Large Clique Number 909

two numbers are equal for connected graphs [1]. This paper will deal solely with
connected graphs.

Further restrictions may be placed on sweep strategies. Let E(i) be the set
of cleared edges after action i has occurred. A sweep strategy for a graph G
for which E(i) ⊆ E(i + 1) for all i is said to be monotonic. We then define the
monotonic sweep number msw(G). Similarly, a sweep strategy such that E(i)
induces a connected subgraph for all i is said to be connected, and we define the
connected sweep number ksw(G). Finally, a sweep strategy can be both connected
and monotonic, giving us the monotonic connected sweep number mksw(G). We
similarly define the same concepts for wormhole sweeping.

LaPaugh [4] and Bienstock and Seymour [3] proved that for any connected
graph G, wsw(G) = mwsw(G). Barrière et al. [2] extended this result, giving the
following relations for these numbers.

Lemma 1. For any connected graph G, wsw(G) = sw(G) = mwsw(G) �
msw(G) � kwsw(G) = ksw(G) � mkwsw(G) = mksw(G).

We will show that sw(Kn) = mksw(Kn) = n, where Kn is the complete
graph on n vertices. This means that there is exactly one sweep number for
complete graphs. More generally, determining the sweep number of a graph G
is NP-complete [5]. As any successful sweep strategy gives an upper bound, our
goal becomes first to find the “right” way to sweep the graph, using as few
sweepers as possible. However, once this strategy is found, we must then prove
that no fewer sweepers will suffice. Here is where the true difficulty lies: most
easily attainable lower bounds we have are quite poor. We will prove several
lower bound results, but the one we will make the greatest use of is the clique
number, which occurs repeatedly in our constructions. The clique number is the
number of vertices in the largest clique of G, denoted ω(G).

Returning to Lemma 1, we still need to consider the question of strict inequal-
ity. An example given in [2] shows that the first inequality can be strict. The
second inequality, msw � ksw, was also proved in [2]. They also gave an example
showing that the inequality was strict. With this result, they also observed that
the classes of monotonically sweepable and connected sweepable graphs were
not minor closed. We prove these results by using large cliques as our building
blocks, thereby allowing us to calculate the sweep numbers easily.

Whether the third inequality, ksw � mksw, could be strict was an open
problem [2]. We will show that there exists a graphW with ksw(W) < mksw(W),
and that the difference between these two values can be arbitrarily large.

This paper is organized as follows: in Section 2, we examine the sweeping
of cliques, and some of the immediate consequences. Section 3 describes the
construction of a graph W such that ksw(W) < mksw(W), and includes some
lemmas that hint at the construction of the graph. Sections 4 and 5 are devoted
to the analysis of the connected sweep number and monotonic connected sweep
number of W . Section 6 re-examines several of the observations of [2], proving
not only that inequalities can be strict, but the difference can be arbitrarily large.
The proofs of these results rely heavily on the idea of clique number. Finally, we
mention several open problems in Section 7.

910 B. Yang, D. Dyer, and B. Alspach

2 Sweeping and Cliques

The main result of this section is Theorem 1. We use it to prove several lower
bounds for the sweep number.

It is easy to see that sw(K1) = 1, sw(K2) = 1, sw(K3) = 2, and sw(K4) = 4.
The jump of the sweep numbers from 2 for K3 to 4 for K4 indicates that obvious
methods, such as mathematical induction, will not easily prove a formula for
sw(Kn). But the following result will give sw(Kn) as a corollary.

Theorem 1. For a connected graph G, let δ(G) be the minimum degree of G.
If δ(G) 	 3, then sw(G) 	 δ(G) + 1.

Proof. Consider a graph G with minimum degree δ(G) = δ, and a strategy S
that sweeps it. A vertex v is said to be cleared if all the edges incident with it
are currently uncontaminated. If the first vertex cleared by S is not of mini-
mum degree, then it must have at least δ + 1 vertices adjacent to it. When this
vertex is cleared, each of the these vertices must contain a sweeper and sw(G) 	
δ + 1.

We now consider the last time that the graph goes from have no cleared
vertices to a single cleared vertex u. By the preceding paragraph, we may assume
u is a vertex of minimum degree. We will assume that the strategy S employs
at most δ sweepers, and arrive at a contradiction. Let the neighbours of u be
denoted v1, v2, . . ., vδ. Assume, without loss of generality, that uv1 is the final
edge incident with u cleared, and that uv2 is the penultimate such edge.

Consider the placement of sweepers the moment before uv1 is cleared. As
each of uvi (2 � i � δ) is cleared, there must be a sweeper on each endpoint of
these edges. But this uses all δ sweepers, so the only way that uv1 can be cleared
is if the sweeper at u sweeps uv1 to end up at v1. Thus, all other edges incident
with v1 must be contaminated. Since δ 	 3, the sweeper on v1 cannot move.

Now consider the placement of sweepers before the penultimate edge uv2 is
cleared. As each of the edges uvi (3 � i � δ) is cleared, there must be a sweeper
on each endpoint of these edges, accounting for δ − 1 sweepers. Since the next
move is to clear uv2, the single free sweeper must be on either u or v2. Moving
from v2 to u would not sweep the edge. Instead, the edge must be cleared from
u to v2. This leaves the sweeper at v2, and all the other edges incident with v2
must be contaminated. Since δ 	 3, the sweeper on v2 cannot move.

Consider a sweeper on vi, 3 � i � δ. If the vertex vi is adjacent to v1 and
v2, then the edges v1vi and v2vi are contaminated, and the sweeper at vi cannot
move.

If the vertex vi is adjacent to exactly one of v1 and v2, it must also be adjacent
to some other vertex, w, not adjacent to u (as the degree of vi is at least δ).
As there is no sweeper on w, the only way that viw can be cleared is if w is a
cleared vertex. This contradicts the choice of u. Thus, the sweeper at vi cannot
move.

Finally, if the vertex vi is adjacent to neither v1 nor v2, it must be adjacent
to two vertices, w1 and w2, neither of which is adjacent to u. As before, these
edges cannot be clean, and thus the sweeper at vi cannot move. As there are still

Sweeping Graphs with Large Clique Number 911

contaminated edges, but none of the δ sweepers can move, we have obtained the
required contradiction.

Corollary 1. For a connected graph G, let κ(G) and κ′(G) be the vertex and
edge connectivity of G. If κ(G) 	 3, then sw(G) 	 κ′(G) + 1 	 κ(G) + 1.

Corollary 2. For n 	 4, sw(Kn) = n.

Corollary 2 can actually be strengthened to mksw(Kn) � n. From Lemma 1
and Corollary 2, it follows that there is only one sweep number for the complete
graph Kn.

Corollary 3. For all positive integers n, wsw(Kn) = sw(Kn) = mwsw(Kn) =
msw(Kn) = kwsw(Kn) = ksw(Kn) = mkwsw(Kn) = mksw(Kn) = n.

Theorem 2. If a graph G′ is a minor of a graph G, then sw(G′) � sw(G).

Theorem 3. For n 	 4, Kn+1 is the unique connected supergraph of Kn with
the fewest number of edges with sweep number n+ 1.

Theorem 4. If n 	 4, then the graph of order n with the most edges and com-
binatorial sweep number n− 1 is the complete graph Kn with one edge removed.

We remind the reader that G�H denotes the cartesian product of two graphs
G and H.

Theorem 5. For n 	 4, mksw(Kn�Kn) � n(n− 1) + 1.

3 Construction of the Obstruction W

From Corollary 3 and Theorem 2, we obtain the following result.

Lemma 2. If G is a graph and ω(G) 	 4, then ω(G) � sw(G).

Lemma 2 is a useful lower bound and a hint as to how to construct graphs
to calculate sweep number easily. Given a graph G that can be cleared by p
sweepers, we can instead construct a graph G′, almost identical to G, with the
addition of a Kp to “force” the sweep number of G′ to be at least p.

Theorem 6. The unique connected graph G with the fewest edges containing
two vertex-disjoint n-cliques and satisfying sw(G) = n+ 1 is G = Kn�K2.

Theorem 6 also provides hints about constructing graphs with easily calcu-
lated sweep numbers. In particular, if two large cliques are interconnected too
heavily, the sweep number goes up. If we again consider a graph G which is
p-sweepable, we have already mentioned that in a new graph G′, we can pre-
serve the structure of G but add a Kp, to ease calculating the sweep number.
However, if many large cliques are added that are too heavily interconnected to
one another, G′ will no longer be p-sweepable.

We construct the graph W as shown in Figure 1. In this figure, a circle
represents a complete graph on the indicated number of vertices, and double
lines between two cliques A and B indicate a perfect matching either between A

912 B. Yang, D. Dyer, and B. Alspach

C’

19

9A’

D’

19

iG

280280280

19D

19C
1L

300B1

L
300R

1R

300

B

A 5A

3A

6

9A

8A
7A

T

A

1A

300F

2

80

281

1

1C

300T1

D

F

300E

1E

1

450

160 180

180

50

160

80

281

80

110

160

80

20

20

20

A

141201

20

20

8080

20 20

20

80

1T’

300R’

1

T’

1D’

1C’

300

R’

B’

8A’ 7A’

1

300L’

1L’

300B’

E’

1F’

300E’

1F’

1A’

2A’

300

6

180

180

50

20

80 80

160

80110 50

160

160

A’

141 201

4

A’ 5A’

3A’

20

2020

20

20

20 20

Fig. 1. The graph W

and B (if |A| = |B|) or between A and a subgraph of B (if |A| < |B|). The latter
is called a saturated matching. If there is a saturated matching from a graph A
to a subgraph of B, we use B[A] to denote the graph induced by those vertices
of B adjacent to vertices of A. So B[A] is also a clique.

We construct W such that A9[C19], A9[D19], A9[E300] and A9[F300] are all
disjoint; similarly for A′

9. Also, V (A2[C1]) ∩ V (A2[B1]) = ∅ and V (A4[D1]) ∩
V (A4[B300]) = ∅; similarly for A′

2 and A′
4. Finally, there are 300 cliques between

A1 and A′
1, each of which contains 280 vertices.

4 Computing ksw (W)

Lemma 3. For any (monotonic) connected sweep strategy on W using (m)ksw
(W) sweepers, the first cleared vertex must occur in one of A9 and A′

9, and the
last cleared vertex must occur in the other.

Theorem 7. For the graph W , ksw(W) = 281.

Proof. It follows from Lemma 2 that we need at least 281 sweepers to clear W .
The following sweep strategy proves this number is sufficient.

Place all 281 sweepers on a single vertex v of A′
9 that is not a vertex of

(A′
9[C

′
19], A

′
9[D

′
19], A

′
9[E

′
300] or A′

9[F
′
300]). Sweep 280 of them to the neighbours

of v, clearing v. The 1 sweeper remaining on v then cleans all remaining edges
in A′

9.
The sweepers on A′

9[C
′
19] sweep to C ′

19 along the perfect matching. A single
free sweeper cleans all the edges of C ′

19. Repeating this process, we finally place
20 sweepers on A′

2[C
′
1], and use a single sweeper to clean all edges in A′

2[C
′
1].

Sweeping Graphs with Large Clique Number 913

Similarly, we sweep the D′
i, E

′
i, and F ′

i , ending with sweepers on A′
4[D

′
1], A

′
5[F

′
1],

and A′
6[E

′
1]. We now have 201 free sweepers.

We send these sweepers to a single vertex in A′
8 that is adjacent to A′

6[E
′
1]

and clear this vertex. This leaves a single free sweeper that cleans all remaining
edges in A′

8. Then, the sweepers in A′
8[A

′
6] move to A′

6, and a single free sweeper
cleans all edges in A′

6.
At this point, we have 20 sweepers stationed on each of A′

2[C
′
1], A

′
4[D

′
1], and

A′
5[F

′
1], and 80 stationed on A′

6, leaving 141 free sweepers. Move all
these sweepers to a vertex of A′

7 that is adjacent to A′
5[F

′
1]. We then clear this

vertex, and with the remaining free sweeper, clean the edges of A′
7. Lifting the

sweepers on A′
7[A

′
5] along the perfect matching to A′

5, clean A′
5. We now have

80 sweepers station on A′
5, 80 on A′

6, 20 on A′
2[C

′
1] and 20 on A′

4[D
′
1], leaving 81

free sweepers.
Move along the perfect matchings in the T ′

i , using the single free sweeper
to clean all the edges in the T ′

i , and finally sweep from T ′
1 to A′

6. We now can
move 160 sweepers from A′

6 to L′
300. Use 1 sweeper to clean all the edges in L′

300.
Then sweep to L′

299, and use the single free sweeper to clean the edges there,
and continue until the edges in L′

1 are cleared. Then, send the sweepers from
L′

1[A
′
2] to A′

2, and use a free sweeper to clean all the edges in A′
2. There are now

80 sweepers stationed at each of A′
2 and A′

5, and 20 stationed on A′
4[D

′
1], leaving

101 free sweepers.
As we cleared the L′

i, we also clear all the R′
i, using the 101 free sweepers

with those 80 sweepers on A′
5. Then we move the sweepers from R′

1[A
′
4] to A′

4,
and use a single sweeper to clean the remaining edges of A′

4. We now have 190
sweepers stationed at A′

4 and A′
2, leaving 91 free sweepers. We use these sweepers

to clean the B′
i, and then we use 160 sweepers to clean A′

3. This cleans the left
half of the graph W . We now only have 80 sweepers stationed at A′

2.
We now use 281 sweepers to clean, one by one, the 300 cliques between A′

1 and
A1, followed by A1 itself. Then, we move the sweepers from A1[A2] to A2, and
use a free sweeper to clean all edges in A2. We now have 80 sweepers stationed
in A2, leaving 201 free sweepers.

Now pick a vertex in C1. Sweep to this vertex from A2[C1]. Then move
another sweeper along this edge, and to the corresponding vertex in C2, then
another to the corresponding vertex in C3, and so on, until finally we have
placed a sweeper on the corresponding vertex in A9[C19]. Then, move a sweeper
to a vertex in A9[D19], then move a sweeper to a corresponding vertex in D19,
then another to a corresponding vertex in D18, and so on, until sweeping to
the corresponding vertex in D1. Finally, move one sweeper to the corresponding
vertex in A4[D1]. We now have 80 sweepers stationed in A2, and in total, 41
sweepers along a path through the Ci, through A9, and finally through the Di

into A4. This leaves 160 free sweepers.
Move these free sweepers along this path, to the single vertex in A3 adjacent

to the path. Clear this vertex, and then use the single free sweeper to clean A3.
Then the sweepers on A3[A4] sweep to A4, and a free sweeper clean A4. With
110 sweepers stationed on A4, 80 sweepers stationed on A2, and 39 sweepers

914 B. Yang, D. Dyer, and B. Alspach

strung in that path from A1 to A4 through A9, this leaves 52 free sweepers.
These sweepers can clean the Bi.

Now surrender the path from A2 to A4 through A9 in the following man-
ner: the single sweeper in D1 moves to the corresponding vertex in D2; the
two sweepers in D2 move to the corresponding vertex in D3; and so on,
until finally all the sweepers in the path are in C1, at which point they move
to A2[C1]. (“Reeling in” the path in this manner preserves the connectedness of
this sweep.)

We now have 190 sweepers stationed on A2 and A4, leaving 91 sweepers free.
Of these free sweepers, move 20 from A4 to D1, using a free sweeper to clean D1,
and then clean D2, then D3, until finally we station 20 sweepers on A9[D19]. Now
move the 110 sweepers on A4 to R1[A4]. Use a free sweeper to clean the edges
of R1[A4]. Place the remaining 71 free sweepers on a vertex on R1[A4] and clear
it. With the single remaining free sweeper, clean R1. Then sweep all sweepers
in R1 to R2, and use the remaining free sweeper to clean R2. Repeating, clean
to R300, finally moving 80 sweepers from R300[A5] to A5 and using a single free
sweeper to clean A5. We now have 160 sweepers stationed at A2 and A5, and 20
sweepers stationed at A9[D19]. This leaves 101 free sweepers.

As with the Di, use 21 sweepers to clean the Ci, eventually stationing 20
sweepers at A9[C19]. Then sweep the 80 sweepers from A2 to L1[A2], and use
the 81 free sweepers to first clear a vertex in L1[A2] and then to clean L1. We
then clean all the Li, eventually stationing 80 sweepers at A6 and using a free
sweeper to clean the edges of A6. We now have 80 sweepers at each of A5 and
A6, and 20 sweepers at each of A9[C19] and A9[D19], leaving 81 free sweepers.

We use these sweepers to clean the Ti. Then, we sweep them along the Fi,
eventually stationing 20 sweepers on A9[F300]. With 80 sweepers at A5, 80 at
A6, and 60 in A9, there are 61 free sweepers. Move the 80 sweepers at A5 and
61 free sweepers to A7, and clean A7.

Clean all the Ei by sweeping from A6, eventually stationing 20 sweepers
at A9[E300]. Move the 80 sweepers stationed at A6 to A8[A6], using a free
sweeper to clean the edges of A8[A6]. We now have 80 sweepers stationed in
A9, and 80 sweepers stationed in A8[A6]. The remaining 121 sweepers are used
to clear a vertex in A8[A6], and then the 1 remaining free sweeper cleans the
edges of A8.

Finally, with only 80 sweepers stationed in A9 (and thus 201 free sweepers),
we clear a vertex in A9, and then use the single remaining free sweeper to clean
the edges of A9, which completes the sweep strategy for W . This strategy, as has
been noted, is connected, but is not monotonic, as the edges in the path from
A2 through A9 to A4 were allowed to be recontaminated.

5 Computing mksw (W)

From the symmetry of W and Lemma 3, we can suppose that any monotonic
connected sweep strategy first clears A′

9 and last clears A9.

Theorem 8. mksw(W) = 290.

Sweeping Graphs with Large Clique Number 915

Proof. First, we show W is 290-monotonically connected sweepable. Starting at
A′

9, we sweep as in Theorem 7 until we clean all the edges in A2. At this point,
we have 80 sweepers stationed at A2, and 210 free sweepers. Moving 50 of these
sweepers to B1, we then use another free sweeper to clean the edges in B1. Then,
repeat with B2, B3, . . ., B300. Finally, station 50 sweepers at A4[B300], and use
another sweeper to clear all the edges in A4[B300]. We now have stationed 130
sweepers, and have 160 free.

Send these 160 sweepers to a single vertex in A3 that is adjacent to A4[B300],
and clear this vertex. Using the 1 remaining free sweeper, clean the edges of A3.
Then, move the sweepers from A3[A4] to A4, and clean all remaining edges in
A4. We now have 110 sweepers stationed at A4, and 80 stationed at A2, leaving
100 free sweepers. Use these sweepers to clean the Di, eventually placing 20
sweepers on A9[D19]. Then move all the sweepers on A4 to R1[A4]. We have
now stationed 80 sweepers on A2, 20 sweepers on A9[D19], and 110 on R1[A4],
leaving 80 free sweepers.

With 80 free sweepers and the 110 sweepers in R1, clean the Ri, eventually
stationing 80 at A5, and use another sweeper to clean the edges of A5. We now
have 80 sweepers stationed at each of A2 and A5, and 20 stationed at A9[D19],
leaving 110 free sweepers.

Using these sweepers, clean the Ci, eventually stationing 20 at A9[C19]. We
now have 90 free sweepers. Using these sweepers, and those from A2, we clean
the Li, eventually stationing 80 sweepers on A6. With 80 sweepers stationed
on each of A6 and A5, and 20 stationed on each of A9[C19] and A9[D19], we
have 90 free sweepers to clean the Ti. Then, use these sweepers to clean the Fi,
eventually stationing 20 sweepers on A9[F300].

With 60 sweepers stationed in A9, and 80 stationed at A6, we have 150
(including 80 at A5) to clean A7. Then, these sweepers can sweep the Ei, finally
stationing 20 sweepers atA9[E300]. With 80 sweepers inA9, we have 210 sweepers
(including 80 at A6) to sweep A8. Finally, these 210 sweepers move to A9 and
clean it. Thus mksw(W) � 290.

To prove the equality, we will show that mksw(W) > 289. First, assume that
W is 289-monotonically connected sweepable. Let S be a monotonic connected
sweep strategy using 289 sweepers. Due to the 300 280-cliques between A1 and
A′

1, it is clear that we must clean one “side” of W first, then proceed through the
280-cliques one at a time. Assume that the left side of W has been cleared first,
and that now 80 sweepers are stationed at A2. We call a clique pseudo-cleared
if it contains exactly one cleared vertex.

Case 1: If A8 is pseudo-cleared before A3, then at the moment that the first
vertex v in A8 is cleared, there must be at least 200 sweepers in A8 and 1 sweeper
in A6. We now consider several subcases.
Case 1a: If the Li are cleared before v is cleared, there must be at least 80
sweepers on A6. Since A9 is not cleared, there must be at least 20 sweepers
between A2 and A9[C19]. With at least 200 sweepers in A8, this strategy requires
at least 300 sweepers, a contradiction. Similarly, it can be shown that if the Li

916 B. Yang, D. Dyer, and B. Alspach

are not cleared before v is cleared, then none of the Ti, Ri, or Bi can be cleared
before v is cleared.
Case 1b: If none of the Li, Ri, Ti or Bi are cleared before v is cleared, then there
must be at least 80 sweepers on A2. Further, since the strategy is monotonic and
connected, there must be a cleared path from A2 to A8 that passes through A9
before v is cleared. If the strategy passes through the Ci’s by leaving a single
sweeper in each clique (“sneaking” through the cliques, but not cleaning them),
we must station at least 19 sweepers on this sneaking path. On the other hand,
if we clean each of the Ci clique by clique, we must station at least 20 sweepers
on A9[C19]. In either situation, since there are at least 200 sweepers in A8 and
1 on A6, this strategy must use at least 290 sweepers, a contradiction.
Case 2: If A3 is pseudo-cleared before A8, then at the moment that the first
vertex,u in A3 is cleared there must be at least 159 sweepers on A3, and at least
1 sweeper on A4. Since A8 is not cleared and A2 is, there must be at least 80
sweepers somewhere between A2 and A8.
Case 2a: If the Bi are cleared when u is cleared, there must be at least 49 more
sweepers on A4. With at least 159 on A3, at least 50 on A4, at least 80 sweepers
between A2 and A8, this accounts for at least 289 sweepers, with no free sweeper
to clean edges in A3, a contradiction. Similarly, it can be shown that none of the
Li, Ri, or Ti can be cleared when u is cleared.
Case 2b: If none of the Li, Bi, Ti, or Ri are cleared when u is cleared, we must
station at least 80 sweepers on A2. Further, since this strategy is monotonic and
connected, there must be a cleared path from A2 to A3 that passes through A9
when u has been cleared. We consider some subcases:
Case 2b(i): If the cleared path through the Di is obtained by sweeping the Di

clique by clique, there must be at least 20 sweepers left at A9[D19] and 19 more
sweepers left at A4[D1]. Also, since the cleared path must go though the Ci,
there must be at least 19 sweepers stationed on the Ci (or on A9[C19]). Then
with at least 159 on A3, at least 20 on A4, and at least 80 on A2, this strategy
uses at least 298 sweepers, a contradiction.
Case 2b(ii): If the cleared path through the Di is obtained by placing only a
single sweeper on each clique Di, and a single sweeper on A9[D19], this requires
at most 20 sweepers. Whether the Ci are c;eared clique by clique, or merely have
a single sweeper in each clique, this requires at most 20 sweepers (either 20 on
A9[C19] or 19 on the Ci and 1 on A9[C19]). With exactly 159 on A3, exactly 1
on A4, and exactly 80 on A2, this leaves 9 free sweepers. These sweepers can be
used to clean A3, and then 109 more sweepers (for a total of 110) are stationed
on A4. With 110 on A4, 80 on A2, and 40 through the Ci and Di, this leaves 59
free sweepers with which we can sweep the Bi.

At this point, there are not enough free sweepers to clean either the Li or
Ri. The 59 sweepers are sufficient to clean either the Ei or the Fi, but not both.
Then, no more cliques may be cleared. So, there is no monotonic connected
sweep strategy for this graph using 289 sweepers.

Corollary 4. For the graph W , ksw(W) = 281 < 290 = mksw(W).

Sweeping Graphs with Large Clique Number 917

6 Applications of the Clique Method

6.1 Inequalities

We have exhibited the power of cliques in constructing the graph W . We can
extend this technique to other graphs to study other properties of sweeping.

Let X ′ = K10�P60. We construct X as in Figure 2, where each circle rep-
resents a complete graph on the number of vertices in the circle, and dou-
ble lines between two cliques represent a saturated matching. By construction,
V (X21[A20])∩ V (X21[B20]) = ∅ and V (X40[C41])∩ V (X40[D41]) = ∅. Then X is
a subgraph of X ′. However, we can prove ksw(X) > ksw(X ′).

Theorem 9. For X and X ′ as given, sw(X) < msw(X) < ksw(X) and ksw(X ′) <
ksw(X).

Since X is a subgraph of X ′, this lemma has an immediate consequence.

Corollary 5. [2] The family of graphs that are connected sweepable are not
minor–closed.

10 10

5

5

5

5 5 10

5

5

5

10

5

5

5

5

5

5

10Y21

B20

B19

B1

Y22 Y39

E41

E42

E59

Y40 Y79Y41
Y80 Y81

F79

F78

F61

Y99

D120

A19

A20

A1

Y1 Y2 Y119 Y120

10 10 10 10 10

5

5

5

5

5

5

10 10

Y

Y’

Y100

D101

D102

C101

C120

C102

B20

B19

B1

A19

A20

A1

X1 X2 X59 X60

X21

X22 X39

X4010 10 10 10 10

5

5

5

5

5

5

10 10

5

5

5

5

5

5

10

C

C

C

D

D

D

X’

41

42

60

42

41

60

X

Fig. 2. The graphs X ′ and Y ′ and their subgraphs X and Y

In the same vein, let Y ′ = K10�P120, and Y be as pictured in Figure 2.

Theorem 10. For graphs Y and Y ′ as given, msw(Y) > msw(Y ′).

As before, since Y is a subgraph of Y ′, there is an immediate corollary.

918 B. Yang, D. Dyer, and B. Alspach

Corollary 6. [2] The family of graphs that are monotonically sweepable are not
minor–closed.

There are three inequalities in Lemma 1. Corollary 4 shows that the final
inequality can be strict and Theorem 9 shows that the first two may also be
strict. We can construct a single graph H for which all the inequalities strict.

Theorem 11. There exists a graph H such that sw(H) < msw(H) < ksw(H)
< mksw(H).

6.2 Differences Between Sweep Numbers

In Corollary 4 we showed that a graph W existed with ksw(W) < mksw(W).
The graph W is very large, containing ≈ 400000 vertices. The large strings of
300 n-cliques were constructed so that sweepers could not “sneak” through, and
the Ci and Di were constructed so that sweepers could “sneak” through.

We showed that the difference between ksw(W) and mksw(W) was 9, though
the difference can be much smaller. For instance, we could reduce the size of
cliques and length of “paths” by an approximate factor of 5 and then prove that
ksw(W 1

5
) = 57 and mksw(W 1

5
) = 58. However, these results, while valid, are

more easily demonstrated by using larger cliques and longer paths to make the
difference more “believable.”

Similarly, we can construct Wk, where clique size and “path” length are
increased by an approximate factor of k. The resulting Wk are “scaled up”
versions of W , with appropriately changed sweep numbers. Using arguments
similar to those in Theorems 7 and 8, we can prove the following theorem.

Theorem 12. For k 	 1, ksw(Wk) = 280k + 1, and mksw(Wk) = 290k.

In the same manner, we can create families of graphs Xk, X ′
k, Yk, and Y ′

k

based on X, X ′, Y and Y ′.

Theorem 13. For k 	 1, ksw(Xk) = 15k+ 1; msw(Xk) = 10k+ 2; ksw(X ′
k) =

10k + 1; msw(Y) = 15k + 1; and msw(Y ′) = 10k + 1.

Theorem 13 tells us that the difference between the monotonic sweep num-
ber and the connected sweep number can be large. As well, it tells us that for
connected or monotonic sweeps, a subgraph may need many more sweepers then
a supergraph.

Finally, the “Y-square” in Figure 3 is a graph with sweep number 3 and
monotonic sweep number 4. (In fact, it is the smallest (edgewise) graph with
sw < msw.) The “kY-square” is a similarly “scaled up” version of the Y-square.
Here, edges are replaced by “paths” of cliques, with each path containing k2

cliques of size k. This increases the sweep number to 3k+ 1, and the monotonic
sweep number to 4k, again showing that the difference in these values can be
quite large.

Sweeping Graphs with Large Clique Number 919

Fig. 3. The Y-square (left) and the kY-square (right)

7 Conclusions

This paper’s main purpose was to demonstrate the increased ease of proof given
by constructing graphs with large clique number. This has been done through
the construction of the graphs W , X, Y and the kY -square, which allowed us to
prove the existence of a graph where the connected sweep number and monotonic
connected sweep number differ. Large cliques in a graph not only imply lower
bounds on the sweep number, but also allow us to restrict how a graph is cleared
by setting up situations where “paths” of cliques must be cleared one at a time
rather than by “sneaking” through them.

Having solved one of the open problems in [2], we mention the other: find an
upper bound for the ratio mksw(G)/sw(G). The bound was discussed in [2] for
trees, and the authors believe that it is true for all connected graphs.

As mentioned, the Y-square is the smallest graph with sweep number strictly
less than monotonic sweep number. For the other inequalities, we have given
examples which show these inequalities can be strict, but these graphs are very
large. Smallest graphs with these properties would be interesting to find to ex-
amine underlying structures.

Acknowledgements. The authors would like to extend special thanks to Denis
Hanson and Xiangwen Li both for their ongoing support and for the fascinating
discussion they have provided in our weekly MITACS seminars. The first and
third authors was supported in part by NSERC and MITACS.

References

1. B.Alspach, X.Li, and B.Yang, Searching Graphs and Digraphs, Manuscript, 2004.
2. L. Barrière, P. Fraigniaud, N. Santoro and D. Thilikos, Searching is not Jumping.

In Proc. 29th Workshop on Graph Theoretic Concepts in Computer Science (WG
2003), Lecture Notes in Computer Science, 2880, pp. 34-45, 2003.

3. D. Bienstock and P. Seymour, Monotocity in graph searching, Journal of Algorithms
12 (1991), 239–245.

4. A. S. LaPaugh, Recontamination does not help to search a graph. Journal of ACM,
40(1993)224–245.

920 B. Yang, D. Dyer, and B. Alspach

5. N. Megiddo, S. L. Hakimi, M. Garey, D. Johnson and C. H. Papadimitriou, The
complexity of searching a graph. Journal of ACM , 35 (1988), pp. 18–44.

6. T. Parsons, Pursuit-evasion in a graph. Theory and Applications of Graphs, Lecture
Notes in Mathematics, Springer-Verlag, pages 426–441, 1976.

A Slightly Improved Sub-cubic Algorithm
for the All Pairs Shortest Paths Problem

with Real Edge Lengths

Uri Zwick

School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel

Abstract. We present an O(n3√log log n/ log n) time algorithm for the
All Pairs Shortest Paths (APSP) problem for directed graphs with real
edge lengths. This improves, by a factor of about

√
log n, previous algo-

rithms for the problem obtained by Fredman, Takaoka and Dobosiewicz.

1 Introduction

The input to the All Pairs Shortest Paths (APSP) problem is a directed graph
G = (V,E) with a length function � : E → R defined on its edges. The goal
is to find, for every pair of vertices u, v ∈ V , the distance from u to v in the
graph, and possibly also a shortest path from u to v in the graph. (If there is
a path from u to v in the graph that passes through a cycle of negative length,
the distance from u to v is defined to be −∞. If there is no path from u to v,
the distance is defined to be +∞.

The APSP problem for directed graphs with real edge weights can be solved
in O(mn+ n2 log n) time by running Dijkstra’s [6] Single Source Shortest Path
(SSSP) algorithm from each vertex, where n = |V | and m = |E| are the num-
ber of vertices and edges, respectively, in the graph. The quoted running time
assumes the use of Fibonacci heaps (Fredman and Tarjan [10]), or an equivalent
data structure. If some of the edge lengths are negative, then a preprocessing
step described by Johnson [15] is necessary. A slightly improved running time of
O(mn+n2 log log n) was recently obtained by Pettie [18], based on an approach
initiated by Thorup [25], Hagerup [14] and Pettie and Ramachandran [19].

On dense graphs with m = Ω(n2), the worst-case running times of the algo-
rithms mentioned above isΘ(n3). A running time ofO(n3) is also obtained by the
simple Floyd-Warshall algorithm (see [8, 26]). Can the APSP problem be solved
in sub-cubic, i.e., o(n3) time? An affirmative answer was provided by Fredman [9]
who showed that the problem can be solved in O(n3(log log n/ logn)1/3). This
time bound was subsequently improved to O(n3

√
log log n/ log n) by Takaoka

[24], and to O(n3/
√

log n) by Dobosiewicz [7]. We present here a further im-
proved algorithm with a running time of O(n3√log log n/ log n).

The complexity of the APSP problem is known to be the same as the com-
plexity of the min-plus matrix multiplication problem (see [1], Theorem 5.7 on
page 204). If A = (aij) and B = (bij) are two n × n matrices, we let A ∗ B be

R. Fleischer and G. Trippen (Eds.): ISAAC 2004, LNCS 3341, pp. 921–932, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

922 U. Zwick

the n×n matrix whose (i, j)-th element is (A∗B)ij = mink{aik + bkj}. We refer
to A∗B as the min-plus product of A and B. (It is trivial to see that the APSP
problem can be solved by computing logn min-plus products. A more intricate
argument, given in [1], shows that this extra logn can be avoided.)

The min-plus product can be naively computed using O(n3) additions and
comparisons. Fredman [9] made the intriguing observation (see also Section 3)
that the min-plus product of two n×n matrices can be inferred after performing
only O(n2.5) comparisons of sums of two matrix elements! The catch is that
Fredman does not specify explicitly which comparisons should be made, nor
how to infer the result from the outcome of these comparisons. In more exact
terms, Fredman [9] shows that there is a decision tree for computing the min-
plus product of two n × n real matrices whose depth is O(n2.5). However, he
does not construct such a decision tree explicitly.

Fredman [9] was able, however, to use his observation to obtain an explicit
sub-cubic algorithm for the min-plus product, and hence for the APSP problem.
This is done by explicitly constructing a decision tree of depth O(m2.5) for the
min-plus product of two m ×m matrices, where m = o(logn). The size of this
decision tree, which is exponential in m, is o(n). As the product of two n × n
matrices can be solved by computing (n/m)3 products of m ×m matrices, an
o(n3) algorithm is obtained for the problem of multiplying two n× n matrices.

The main technique used by Fredman [9] to implement his algorithm is table
look-up. Takaoka [24] presents a simpler and more efficient algorithm based on
similar ideas. Dobosiewicz [7] uses a somewhat different approach. The speed-
up of his algorithm is obtained by using bit-level parallelism, i.e., the ability to
operate simultaneously on logn bits contained in a single machine word. The
exact computational model used by Fredman, Takaoka, Dobosiewicz, and also by
us, is discussed in the next section. We stress here that the same model is used in
all cases, so our improved algorithm is not obtained by using a stronger machine
model. Our algorithm uses both table look-ups and bit-level parallelism. It uses
ideas appearing in the Boolean matrix multiplication algorithm of Arlazarov et
al. [3]. It is also inspired by recent dynamic algorithms for the transitive closure
in directed graphs (see, e.g., [16, 5, 20]).

Much faster, and truly sub-cubic, algorithms are known for the standard ma-
trix multiplication problem. Strassen [23] obtained an O(n2.81) time algorithm.
The best available bound is currently O(n2.38), obtained by Coppersmith and
Winograd [4]. It remains a major open problem whether these techniques could
be used to obtain faster algorithms for the min-plus product of matrices with
arbitrary real edge weights.

Fast algebraic matrix multiplication algorithms were used to obtain faster
algorithms for the APSP problem with small integer edge lengths. Zwick [29],
improving a result of Alon et al. [2], obtained an O(n2.58) algorithm for the
APSP problem for unweighted undirected graphs. Even better algorithms are
known for undirected graphs with small integer edge weights (see Seidel [21],
Galil and Margalit [13, 12], and Shoshan and Zwick [22]). For more results on
the APSP problem and its various variants, see Zwick [28].

A Slightly Improved Sub-cubic Algorithm 923

The rest of this paper is organized as follows. In the next section we discuss
the model of computation used. In Section 3 we review the ideas of Fredman [9].
In Section 4 we describe the algorithm of Dobosiewicz [7] on which our algorithm
is based. In Section 5 we present the Boolean matrix multiplication algorithm of
Arlazarov et al. [3]. Finally, in Section 6 we present our algorithm which uses a
combination of ideas from all previous sections. We end in Section 7 with some
concluding remarks and open problems.

2 Model of Computation

We use the standard RAM model of computation (see, e.g., [1]). Each memory
cell can either hold a real number or an w-bit integer. Usually, we assume that
w = Θ(logn), which is the standard realistic assumption, where n is the input
size. All the bounds in the abstract and introduction make this assumption.

Reals numbers are treated in our model as an abstract data type. The only
operations allowed on real numbers are additions and comparisons. (As explained
below, subtractions can be simulated in our model.) No conversions between real
numbers and integers are allowed. This model is sometimes referred to as the
addition-comparison model (see, e.g., [28, 19, 18]).

Although we are mainly interested in the case w = Θ(logn), we explicitly
describe the dependence of the running times of our algorithm on the word
size w. This shows more clearly which logarithmic factors are the result of the
word size, i.e., the effect of bit-level parallelism, and which are obtained using
other techniques, e.g., table look-up. We always assume that w ≥ log n.

The operations allowed on integers are the standard arithmetical and logical
operations. We can thus add two integers and compute their bit-wise or. We
also assume that we have an instruction that returns the index of one of the 1’s
in a non-zero word. We do not give an explicit list of the integer instructions
assumed. The reason is that when w = Θ(logn), which is the case we are most
interested in, any conceivable instruction can be emulated, in constant time,
using table look-up. In particular, even if there is no instruction for returning
the index of, say, the left-most 1 in a non-zero word, we can still find this index,
in O(1) time, using table look-up. The time needed for initializing the table will
be negligible compared to the other operations performed by our algorithms.

As stated above, our model only allows additions of comparisons of real num-
bers. It is not difficult to see, however, that allowing subtractions does not change
the strength of the model. We simply represent each intermediate result as the
difference of two real numbers. When two difference x1− y1 and x2− y2 need to
be compared, we do that by comparing x1 + y2 and x2 + y1. It is interesting to
note that this simple observation also lies at the heart of Fredman’s [9] technique.

Our realistic model of computation should be contrasted with the unrealis-
tic, but nevertheless interesting, model used by Yuval [27]. He shows that the
distance product of two matrices with integer elements can be computed by first
converting the elements of the matrix into very high precision real numbers,
performing a standard algebraic product, and then converting the elements back

924 U. Zwick

into integers. The conversion steps use the computation of exact exponentials
and logarithms. More careful implementations of Yuval’s algorithm, in realistic
models of computation, combined with other techniques, form the basis of the
algorithms of [13, 12, 22, 29].

3 The Algorithm of Fredman

Let A = (aij) be an n×m matrix, and let B = (bij) be an m× n matrix. The
distance product C = A∗B can be naively computed using O(mn2) operations.
Fredman [9] observed the product can also be deduced after performing only
O(m2n) operations.

Theorem 1 (Fredman [9]). Let A = (aij) be an n ×m matrix, and let B =
(bij) be an m×n matrix with real elements. Then, the distance product C = A∗B
can be deduced from the information gathered by performing at most O(m2n)
comparisons of differences of elements of the matrices A and B.

Proof. Let ai
rs = air − ais and bjrs = bsj − bsi, for i, j ∈ [n] and s, r ∈ [m]. These

differences can be formed in O(m2n) time, and sorted using O(m2n log(mn))
comparisons. Fredman [9] actually shows that the differences can be sorted using
only O(m2n) comparisons. (For a proof, see Fredman [9].)

Let āi
rs be the index of ai

rs in the sorted sequence, and let b̄jrs be the index
of bjrs in the sequence, for i, j ∈ [n] and s, r ∈ [m]. While sorting the sequence,
we assume that ties are resolved in favor of the ai

rs elements, i.e., if ai
rs = bjr′s′ ,

then ai
rs appears before bjr′s′ in the sorted sequence and thus āi

rs < b̄jr′s′ . With
this convention we have ai

rs ≤ bjr′s′ if and only if āi
rs ≤ b̄jr′s′ .

For every i, j ∈ [n], we can now find an index r = rij ∈ [m] for which
cij = air + brj just by looking at the indices āi

rs and b̄irs, without looking again
at the elements of the matrices A and B. For every i, j ∈ [n], we want to find an
index r for which air + brj ≤ ais + bsj , for every s ∈ [m]. Note, however, that

air+brj ≤ ais+bsj ⇔ air−ais ≤ bsj−bsi ⇔ ai
rs ≤ bjrs ⇔ āi

rs ≤ b̄jrs .

Thus, the outcome of every comparison needed to determine an appropriate
index r is implied by the indices computed.
�

The above ‘algorithm’ does not explain how to use the indices āi
rs and b̄irs to

determine the indices rij . It just says that these indices contain enough infor-
mation to uniquely determine the result.

The fast ‘algorithm’ for rectangular min-plus products of Theorem 1 can be
used to obtain a fast ‘algorithm’ for square min-plus products as follows:

Theorem 2 (Fredman [9]). Let A = (aij) and B = (bij) be two n×n matrices
with real elements. Then, the distance product C = A∗B can be deduced from the
information gathered by performing at most O(n2.5) comparisons of differences
of elements of the matrices A and B.

A Slightly Improved Sub-cubic Algorithm 925

Proof. Let 1 ≤ m ≤ n be a parameter to be chosen later. We split the matrix A
into n/m matrices A1, A2, . . . , An/m of size n×m, and the matrix B into n/m
matrices B1, B2, . . . , Bn/m of size m×n. Clearly, A∗B = mink

i=1AiBi, where the
min here is applied element-wise. Each distant product AiBi can be determined,
as described in the proof of Theorem 1, using O(m2n) comparisons. Computing
the n/m products and computing their element-wise minimum thus requires only

O(
n

m
· (m2n+ n2))

comparisons. This expression is minimized for m =
√
n and the resulting number

of comparisons is then O(n2.5).
�

We note again that the ‘algorithm’ given in the proof of Theorem 2 is not
really an algorithm in the conventional sense of the word, as it does not specify
how to infer the result of the distance product from the comparisons performed.
More accurately, the theorem says that there is a decision tree for the min-plus
product of two n × n matrices whose depth is O(n2.5). Fredman [9] observes,
however, that the decision tree whose existence is proved in Theorem 2 can be
explicitly constructed for tiny values of n, and this can be used to slightly lower
the cost of computing a min-plus product of two n× n matrices.

Theorem 3 (Fredman [9]). Let A = (aij) and B = (bij) be two n × n ma-
trices with real elements. Then, the distance product C = A∗B can computed in
O(n3(log log n/ log n)1/3) time on a machine with (logn)-bit words.

Takaoka [24] simplified Fredman’s explicit algorithm and reduced its running
time to O(n3(log log n/ log n)1/2), again on a machine with (logn)-bit words.

4 The Algorithm of Dobosiewicz

Dobosiewicz [7] discovered a slightly more efficient explicit implementation of
Fredman’s ‘algorithm’ for rectangular min-plus products. Instead of using table-
lookup, as done by Fredman [9] and Takaoka [24], the algorithm of Dobosiewicz
simply uses bit-level parallelism.

Theorem 4 (Dobosiewicz [7]). A distance product of an n×m matrix by an
m×n matrix can be computed in O(m2n2/w+n2) time on a machine with w-bit
words, where w ≤ n/ log n.

Proof. Dobosiewicz’s algorithm is given in Figure 1. It receives an n ×m ma-
trix A, an m×n matrix B. It returns two n×n matrices C and R. The matrix C
contains the min-plus product A∗B. The matrix R contains the minimal indices
for the product, i.e., cij = ai,rij

+ brij ,j , where rij ∈ [m], for every i, j ∈ [n].
The algorithm starts by setting Zi ← [n], for i ∈ [n]. The set Zi contains

all the indices j for which cij and rij were not determined yet. The algorithm
maintains two other collections of sets, Xi, for i ∈ [n], and Ys, for s ∈ [m]. The
cost of performing operations on these sets will be discussed later. We focus,
first, on the correctness of the algorithm.

926 U. Zwick

Algorithm (Cn×n, Rn×n) ← MULT (An×m, Bm×n)

Let Zi ← {1, 2, . . . , n}, for i ∈ [n].

for r ← 1 to m

Let ai
rs ← air − ais, for i ∈ [n], s ∈ [m], s �= r.

Let bj
rs ← bsj − arj , for j ∈ [n], s ∈ [m], s �= r.

Form a sorted list L containing these 2(m − 1)n elements.

Let Xi ← Zi, for i ∈ [n].
Let Yi ← {1, 2, . . . , n}, for i ∈ [n].

for k ← 1 to 2(m − 1)n
if Lk is ai

rs, then Xi ← Xi − Ys.
if Lk is bj

rs, then Ys ← Ys ∪ {j}.
end

for i ← 1 to n
for every j ∈ Xi

rij ← r.
cij ← air + brj .

end
Zi ← Zi − Xi.

end

end

Fig. 1. The rectangular min-plus multiplication algorithm of Dobosiewicz

The main portion of the algorithm is a loop in which the variable r ranges
over the values from 1 to m. In each iteration of the loop the algorithm identifies
all pairs of indices (i, j), where i, j ∈ [n], for which r is a minimal index, i.e.,
(A∗B)ij = air +brj , and for which no other minimal index was found before, and
sets the entries cij and rij accordingly. (Note that there may be several minimal
indices for a pair (i, j). The algorithm will find the smallest one of them.)

As in the proof of Theorem 1, r is a minimal index for (i, j) if and only if
air + brj ≤ ais + bsj , or equivalently, air − ais ≤ bsj − brj , for every s ∈ [m]. The
algorithm computes the differences ai

rs = air − ais and bjrs = bsj − brj , for every
i, j ∈ [n], s ∈ [m], and forms a sorted list L containing them. (Again, as in the
proof of Theorem 1, if ai

rs = bjrs′ , then the element ai
rs is placed before bjrs′ in

the list.) Then, r is a minimal index for (i, j) if and only if ai
rs appears before bjrs

in the list, for every s ∈ [m].
At the start of each iteration the algorithm sets Xi ← Zi for every i ∈ [n].

It then scans the elements of list L, one by one, while maintaining the following
invariant: j ∈ Xi if and only if j ∈ Zi and it is ‘still possible’ that r is a mini-
mal index for (i, j). To be more precise, j ∈ Xi if and only if j ∈ Zi and for every

A Slightly Improved Sub-cubic Algorithm 927

s ∈ [m], either ai
rs appears before bjrs in L, or bjrs was not scanned yet. To help

maintain this invariant, the algorithm also maintains, for every s ∈ [m], a set Ys

that contains all the indices j for which bjrs was already encountered.
Let us see what actions should be taken to maintain the invariants when

scanning the next element of L. If the scanned element is ai
rs, then all the

elements of Ys should be removed from Xi. (Indeed, if j ∈ Ys then bjrs appears
before ai

rs in the list.) The algorithm thus appropriately performs Xi ← Xi−Ys.
If the scanned element is bjrs, we simply need to add j to Ys, and the algorithm
appropriately performs Ys ← Ys ∪ {j}.

It is easy to see that when all the elements of L are scanned, j ∈ Xi if and
only j ∈ Zi and r is a minimal index for (i, j). For each j ∈ Xi, the algorithm
thus sets rij ← r and cij ← air + brj . The set Xi is then removed from Zi, for
i ∈ [n]. This completes the description and correctness proof of the algorithm.

Let us now discuss the complexity of the algorithm. Consider the cost of a
single iteration of the algorithm with a given value of r. Computing the dif-
ferences ai

rs and bjrs takes O(mn) time. Sorting them to form the list L takes
O(mn log(mn)) time. For each element of L we then perform two set operations
on subsets of [n]. Each one of the sets Xi, Zi and Ys can be represented as an
n-bit vector which can be packed into n/w machine words. Each set operation
can then be implemented in O(n/w) time. The total cost of an iteration, ex-
cluding the cost of the last for loop, is thus O(mn log(mn) + mn2/w), which
is O(mn2/w) since we assume that w ≤ n/ log n. Multiplying this by m, the
number of iterations, we get a time bound of O(m2n2/w).

To finish the proof it remains to bound the time spent in the double loop
in which i ranges from 1 to n and j ranges over all the elements of Xi. To do
so, note that for every i ∈ [n], the m versions of the set Xi obtained in the m
iterations are disjoint. This is so because Xi is initialized to Zi at the beginning
of each iteration, and the resulting set Xi is subtracted from Zi at the end of
each iteration. Thus, the total number of elements j extracted from the sets Xi

in all iterations is exactly n2. Extracting all the elements of a set Xi can be
easily done in O(|Xi|+ n/w) time using a machine instruction that returns the
index of one of the 1’s in a non-zero machine word. (See Section 2.) The total
time spent in the double loop is therefore at O(n2 +mn/w). The total running
time of the algorithm is therefore O(m2n2/w + n2), as required.
�

Theorem 5 (Dobosiewicz [7]). A distance product of two n×n matrices can
be computed in O(n3/

√
w) time on a machine with w-bit words, w ≤ n/ log n.

Proof. As in the proof of Theorem 2, we break the product of two n×n matrices
into n/m products of n ×m by m × n matrices. The total time needed is then
O(n

m · (m2n2

w + n2)), which is minimized when we set m =
√
w.
�

Corollary 1 (Dobosiewicz [7]). A distance product of two n×n matrices can
be computed in O(n3/

√
log n) time on a machine with (logn)-bit words.

928 U. Zwick

5 The Algorithm of Arlazarov et al.

Arlazarov et al. [3] considered the different, though related, problem of comput-
ing the Boolean, i.e., the or-and product, of two Boolean matrices.

Theorem 6 (Arlazarov et al. [3]). The Boolean product of an n×log n matrix
by an log n×n matrix can be computed in O(n2/w) time on a machine with w-bit
words.

Proof. Let A = (aij) be an n × log n matrix, and let B = (bij) be a logn × n
matrix. Let C = AB be their n × n Boolean product. We let Ai, Bi and Ci

denote i-th row of A,B or C, respectively. As we assume that w ≥ log n, reach
row Ai of A fits into a single machine word. For each row of B and C, on the
other hand, requires n/w machine words.

Each row Ai specifies a subset of the rows of B, of size at most log n, that
needs to be or’ed. Doing this naively would require O((n log n)/w) time for each
row, and thus a total time of O((n2 log n)/w).

We can save a log n factor as follows. For brevity, let k = log n. For every
k-bit word x = x1 . . . xk, we let BT [x] = ∨k

i=1xiBi, i.e., the or of the rows of B
corresponding to the 1’s in the word x. We can compute BT [x], for every k-
bit word x, in O(2kn/w) = O(n2/w) time. Now Ci = BT [Ai], for every i ∈ [n].
Thus, the rows Ci, for i ∈ [n], can be looked up in the table B, again in O(n2/w)
time, as required. A complete description of the algorithm is given in Figure 2.

Algorithm Cn×n ← BMULT (An×log n, Blog n×n)

BT [0] ← 0
for i ← 0 to log n − 1

for j ← 0 to 2i − 1
BT [2i + j] ← Bi ∨ BT [j]

end
end

for i ← 1 to n
Ci ← BT [Ai]

end

Fig. 2. The Boolean matrix multiplication algorithm of Arlazarov et al

Theorem 7 (Arlazarov et al. [3]). The Boolean product of two n×n matrices
can be computed in O(n3/(w log n)) time on a machine with w-bit words.

Proof. As usual, we break the Boolean product of two n×nmatrices into n/ log n
products of an n × log n matrix by an logn × n matrix. The total cost is then
O(n

log n ·
n2

w) = O(n3

w log n).
�

A Slightly Improved Sub-cubic Algorithm 929

The Boolean product of two n × n matrices can be computed in in O(nω)
time, where ω < 2.376 [4] is the algebraic matrix multiplication exponent (see,
e.g., Furman [11] and Munro [17]). We do not know, however, how to utilize
these fast algebraic or Boolean matrix multiplication algorithms to obtain faster
algorithms for the min-plus product of matrices with real elements.

6 The New Algorithm

Using the idea used by Arlazarov et al. [3], we can obtain a slightly more efficient
implementation of the algorithm of Dobosiewicz [7].
Theorem 8. A distance product of an n×m matrix by an m×n matrix can be
computed in O(m2n2 log(w log n)/(w log n)) time on a machine with w-bit words.

Proof. The improved algorithm is obtained by providing a slightly more efficient
implementation of the set operations used by the algorithm of Dobosiewicz [7].

Let t be a parameter to be chosen later. For simplicity, we assume that n/t is
an integer. Each dynamic set Ys, where s ∈ [m], is maintained as follows. As long
as Ys contains at most t elements, we maintain a simple list Ys containing the
elements of Ys. When the size of the list Ys reaches t, we prepare a compressed
representation Y 1

s of Ys using n/w words, and reset Ys to the empty list. Ele-
ments added to the set Ys are again added to the list Ys until its length becomes t
again. We then prepare a compressed representation of the set Y 2

s = Ys∪Y 1
s and

again empty Ys. Continuing in this way, we get n/t−1 snapshots Y 1
s , . . . , Y

n/t−1
s

of the set Ys, and the list Ys is always of size at most t. For every s ∈ [m], we
let vs be the index of the last snapshot of Ys created so far.

A set operation Xi ← Xi−Ys is now implemented as follows. We remove the
elements in the list Ys, one by one, from Xi. This takes only O(t) time. We also
set vis ← vs to signify that the elements of Y vs

s should be removed from Xi, but
we do not remove these elements as yet. These removals will be carried out at
the final stage of the algorithm. Doing all these removals together will allow us
to use a trick similar to the one used by Arlazarov et al. [3].

At the end of the sequence of update operations, we need to perform

Xi ← Xi −
m⋃

s=1

Y vis
s , for every i ∈ [n] .

Note that for each i ∈ [n] and s ∈ [m] we have 0 ≤ vis ≤ n/t − 1. For
brevity, let b = n/t. It would have been nice to be able to look up the value of
∪m

s=1Y
vis
s in a table. Unfortunately, such a table will be too large as it would

have to contain bm = (n/t)m entries, which may be much larger than n. Let
k = logn/ log(n/t). As bk = (n/t)k = n, we can afford to keep a table with
(n/t)k entries. Thus, we can construct m/k tables, each of size n, such that the
g-th table will hold all the sets of the form ∪(g+1)k

s=gk+1Y
vis
s . Combining these m/k

tables we get a two-dimensional table Y T such that

Y T [g,
(g+1)k∑
s=gk+1

vsb
s−(gk+1)] =

(g+1)k⋃
s=gk+1

Y vs
s , 0 ≤ g < m

k , 0 ≤ vs < b .

930 U. Zwick

Initialization:

for s ← 1 to m
vs ← 0.
Ys ← φ.
Y 0

s ← φ.
end

Ys ← Ys ∪ {i}:

if |Ys| < t then
Ys ← Ys ∪ {i}

else
vs ← vs + 1
Y vs

s ← Y vs−1
s ∪ Ys

Ys ← {i}
end-if

Xi ← Xi − Ys:

vis ← vs

for every j ∈ Ys

Xi ← Xi − {j}
end

Finalization:

b ← n/t
k ← log n/ log b

for g ← 0 to m/k − 1
Y T [g, 0] ← φ
for s ← 1 to k

for v ← 0 to b − 1
for x ← 0 to bs−1 − 1

Y T [g, v · bs + x] ← Y v
gk+s ∪ Y T [g, x]

end
end

end
end

for i ← 1 to n
for g ← 0 to m/k − 1

ind ← 0
for s ← gk + 1 to (g + 1)k

ind ← b · ind + vis

end
Xi ← Xi − Y T [ind]

end
end

Fig. 3. Speeding up the set operations used in the algorithm of Dobosiewicz

Each entry in the table is a subset of [n] represented using n/w machine
words. The time needed for constructing the table Y T is proportional to its size
in words, which is O((m/k) · n · (n/w)) = O(mn2 log n

t

w log n) . Each set of the form
∪m

s=1Y
vis
s can now be formed in O((m/k) · (n/w)) time by taking the union of

m/k sets found in the table Y T . The time needed for computing the n sets
∪m

s=1Y
vis
s , for i ∈ [n], is therefore the same as the time needed for preparing the

table Y T . A full description of the proposed new way of implementing the set
operations is given in Figure 3.

Let us now analyze the cost of executing all the set operations performed by
the algorithm of Dobosiewicz [7] (see Figure 1) using the new implementation.
We bound the cost of the O(mn) set operations performed during one iteration
of the algorithm. The total initialization cost is O(mn/w). The total cost of
handling the instructions of the form Ys ← Ys ∪ {i} is O(m · (n+ (n/t)(n/w))).
The total cost of handling the instructions of the form Xi ← Xi−Ys is O(mn ·t).
Adding the cost of the finalization stage, as discussed above, we get that the total
cost of an iteration is

O
(
mnt+

mn2 log n
t

w log n
)
,

A Slightly Improved Sub-cubic Algorithm 931

where we have neglected terms that are dominated by the two terms appearing
above. To minimize the running time, we choose t = n/(w log n). The running
time of an iteration is then O

(mn2 log(w log n)
w log n

)
. Multiplying this by the number

of iterations we get the time bound claimed.
�

Theorem 9. A distance product of two n × n matrices can be computed in
O(n3/

√
w log n/ log(w log n)) time on a machine with w-bit words.

Proof. Yet again, we break the Boolean product of two n×n matrices into n/m
products of an n×m matrix by an m×n matrix. We compute each one of these
rectangular products using the algorithm of Theorem 8. The total cost is then

O

(
n

m
·
(m2n2 log(w log n)

w log n
+ n2)) .

Choosing m =
√
w log n/ log(w log n), we get the time bound claimed.
�

Corollary 2. A distance product of two n × n matrices can be computed in
O(n3√log log n/ log n) time on a machine with (logn)-bit words.

As an additional corollary, we get the main result of this paper.

Corollary 3. The APSP problem for directed graphs with real edge weights can
be solved in O(n3√log log n/ log n) time on a machine with (logn)-bit words.

7 Concluding Remarks

We have obtained a slightly improved sub-cubic algorithm for the APSP problem
with real edge lengths. Unfortunately, we were not able to answer the following
major open problem: Is there a genuinely sub-cubic algorithm for the APSP
problem with real edge lengths, i.e., an algorithm that runs in O(n3−ε) time, for
some ε > 0?

The algorithm presented here is also the fastest known algorithm for the
APSP problem with integer edge lengths taken, say, from the range {1, 2, . . . , n}.
Is there a genuinely sub-cubic algorithm for this version of the problem?

References

1. A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The design and analysis of computer
algorithms. Addison-Wesley, 1974.

2. N. Alon, Z. Galil, and O. Margalit. On the exponent of the all pairs shortest path
problem. Journal of Computer and System Sciences, 54:255–262, 1997.

3. V.L. Arlazarov, E.C. Dinic, M.A. Kronrod, and I.A. Faradzev. On economical
construction of the transitive closure of a directed graph. Doklady Akademii Nauk
SSSR, 194:487–488, 1970. English translation in Soviet Mathematics Doklady,
11:1209–1210, 1970.

4. D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progres-
sions. Journal of Symbolic Computation, 9:251–280, 1990.

932 U. Zwick

5. C. Demetrescu and G.F. Italiano. Fully dynamic transitive closure: Breaking
through the O(n2) barrier. In Proc. of 41st FOCS, pages 381–389, 2000.

6. E.W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271, 1959.

7. W. Dobosiewicz. A more efficient algorithm for the min-plus multiplication. In-
ternational Journal of Computer Mathematics, 32:49–60, 1990.

8. R.W. Floyd. Algorithm 97: Shortest path. Communications of the ACM,
5(6):345, 1962.

9. M.L. Fredman. New bounds on the complexity of the shortest path problem. SIAM
Journal on Computing, 5:49–60, 1976.

10. M.L. Fredman and R.E. Tarjan. Fibonacci heaps and their uses in improved net-
work optimization algorithms. Journal of the ACM, 34:596–615, 1987.

11. M.E. Furman. Application of a method of rapid multiplication of matrices to the
problem of finding the transitive closure of a graph. Doklady Akademii Nauk SSSR,
194:524, 1970. English translation in Soviet Mathematics Doklady, 11:1252, 1970.

12. Z. Galil and O. Margalit. All pairs shortest distances for graphs with small integer
length edges. Information and Computation, 134:103–139, 1997.

13. Z. Galil and O. Margalit. All pairs shortest paths for graphs with small integer
length edges. Journal of Computer and System Sciences, 54:243–254, 1997.

14. T. Hagerup. Improved shortest paths on the word RAM. In Proc. of 27th ICALP,
pages 61–72, 2000.

15. D.B. Johnson. Efficient algorithms for shortest paths in sparse graphs. Journal of
the ACM, 24:1–13, 1977.

16. V. King. Fully dynamic algorithms for maintaining all-pairs shortest paths and
transitive closure in digraphs. In Proc. of 40th FOCS, pages 81–91, 1999.

17. I. Munro. Efficient determination of the transitive closure of a directed graph.
Information Processing Letters, 1(2):56–58, 1971.

18. S. Pettie. A new approach to all-pairs shortest paths on real-weighted graphs.
Theoretical Computer Science, 312(1):47–74, 2004.

19. S. Pettie and V. Ramachandran. Computing shortest paths with comparisons and
additions. In Proc. of 13th SODA, pages 267–276, 2002.

20. L. Roditty and U. Zwick. Improved dynamic reachability algorithms for directed
graphs. In Proc. of 43rd FOCS, pages 679–688, 2002.

21. R. Seidel. On the all-pairs-shortest-path problem in unweighted undirected graphs.
Journal of Computer and System Sciences, 51:400–403, 1995.

22. A. Shoshan and U. Zwick. All pairs shortest paths in undirected graphs with
integer weights. In Proc. of 40th FOCS, pages 605–614, 1999.

23. V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 13:354–
356, 1969.

24. T. Takaoka. A new upper bound on the complexity of the all pairs shortest path
problem. Information Processing Letters, 43:195–199, 1992.

25. M. Thorup. Undirected single-source shortest paths with positive integer weights
in linear time. Journal of the ACM, 46:362–394, 1999.

26. S. Warshall. A theorem on boolean matrices. Journal of the ACM, 9(1):11–12, 1962.
27. G. Yuval. An algorithm for finding all shortest paths using N2.81 infinite-precision

multiplications. Information Processing Letters, 4:155–156, 1976.
28. U. Zwick. Exact and approximate distances in graphs – a survey. In Proc. of 9th

ESA, pages 33–48, 2001.
29. U. Zwick. All-pairs shortest paths using bridging sets and rectangular matrix

multiplication. Journal of the ACM, 49:289–317, 2002.

Author Index

Abraham, David J. 3
Ailon, Nir 16
Akutsu, Tatsuya 452
Alspach, Brian 908
Amano, Kazuyuki 28
Amir, Amihood 41
Andersson, Mattias 53
Araki, Toru 442
Armon, Amitai 65
Aronov, Boris 77, 89
Asano, Tetsuo 77, 89

Bae, Sang Won 101
Bauer, Markus 113
Bazgan, Cristina 124
Beigel, Richard 427
Bengtsson, Fredrik 137
Bereg, Sergey 149, 606
Bilò, Davide 159
Bilò, Vittorio 172
Brandes, Ulrik 184
Brazil, Marcus 196

Cai, Jin-Yi 209
Calinescu, Gruia 221, 234
Cechlárová, Kataŕına 3
Chan, Timothy M. 246
Chan, Wun-Tat 259
Chang, Maw-Shang 282
Chao, Kun-Mao 294
Chazelle, Bernard 16
Chen, Chao 330
Chen, Danny Z. 271
Chen, Hsin-Fu 282
Chen, Jingsen 137
Chen, Kuan-Yu 294
Chen, Xujin 306
Chen, Zhenming 318
Cheng, Ho-Lun 330
Cheng, Qi 342
Chwa, Kyung-Yong 101, 352
Comandur, Seshadhri 16

Daescu, Ovidiu 669
Dai, H.K. 364

Dang, Zhe 377
Demaine, Erik D. 1
Demange, Marc 896
de Souza, Cŕıston 778
de Werra, Dominique 896
Dom, Michael 389
Dong, Liang 884
Dragan, Feodor F. 402
Duch, Amalia 415
Dyer, Danny 908

Escoffier, Bruno 124, 896

Fan, Hui 884
Flammini, Michele 172
Fu, Bin 427
Fujita, Satoshi 442
Fukagawa, Daiji 452

Goerdt, Andreas 470
Goldstein, Avraham 484
Goldstein, Darin 49
Golin, Mordecai 508
Gudmundsson, Joachim 53
Guo, Jiong 389

Haga, Hiroki 693
Hershberger, John 522
Hu, Xiaobo S. 271
Huang, Ming-Deh 342
Hui, Peter 534
Hüffner, Falk 389

Ibarra, Oscar 377
Iwama, Kazuo 545

JaJa, Joseph 558, 822
Jansson, Jesper 569, 581
Jaromczyk, Jerzy W. 594
Jiang, Minghui 606
Jo, Byung-Cheol 352

Katoh, Naoki 77
Kawachi, Akinori 545
Kawada, Taizo 705
Kikuchi, Yosuke 89

6

934 Author Index

Kim, Hee-Chul 742
Kim, Jae-Hoon 618
Klau, Gunnar W. 113
Knauer, Christian 352
Kobayashi, Kojiro 49
Kolman, Petr 484
Kötter, Rolf 629
Kowalski, Dariusz R. 644

Laber, Eduardo Sany 778
Lanka, André 470
Lefmann, Hanno 657
Lerner, Jürgen 184
Leung, Yiu Cho 508
Levcopoulos, Christos 53
Lim, Hyeong-Seok 742
Liu, Ding 16
Lomonosov, Irina 402
Lonc, Zbigniew 594
Luan, Shuang 271
Luo, Jun 669

Mäkinen, Veli 681
Manlove, David F. 3
Maruoka, Akira 28
Mehlhorn, Kurt 3, 77
Melideo, Giovanna 172
Miura, Kazuyuki 693
Moet, Esther 352
Monnot, Jerome 896
Mortensen, Christian W. 558
Moscardelli, Luca 172
Mount, David M. 2

Nagamochi, Hiroshi 705
Nandy, Subhas 89
Naqvi, Shahid A. 271
Navarro, Gonzalo 681
Ngo, Trung Hieu 569
Niedermeier, Rolf 389
Nishizeki, Takao 693
Nor, Igor 41
Nowakowski, Richard J. 717

Park, Jung-Heum 742
Paschos, Vangelis Th. 124, 896
Pelc, Andrzej 644
Peng, Zeshan 754
Pessoa, Artur Alves 766, 778
Proietti, Guido 159

Qin, Zhongping 606

Raitner, Marcus 793

Sadakane, Kunihiko 681
Sadjad, Bashir S. 246
Sasahara, Shinji 89
Schaefer, Marcus 534
Schindelhauer, Christian 805
Shi, Qingmin 558, 822
Shin Chan-Su 352
Shparlinski, Igor E. 464
Shrivastava, Nisheeth 522
Singh, Vikas 318
Su, H.C. 364
Su, Jianwen 377
Sung, Wing-Kin 569, 581
Suri, Subhash 522

Tan, Jinsong 835
Tan, Xuehou 847
Ting Hingfung 754
Tokuyama, Takeshi 77
Tóth, Csaba D. 522

Uehara, Ryuhei 859, 871
Uno, Takeaki 89
Uno, Yushi 871

van Oostrum, René 352
Volbert, Klaus 805
von Oertzen, Timo 729
von zur Gathen, Joachim 464

Wang, Chao 271
Wang, Lusheng 884
Wang, Yajun 508
Wanke, Egon 629
Watanabe, Osamu 209
Winter, Pawel 196
Wong, Prudence W.H. 259

Xu, Jinhui 318

Yang, Boting 908
Yu, Cedric 271

Zachariasen, Martin 196
Zang, Wenan 306
Zeh, Norbert 717
Zelikovsky, Alexander 234

6

X.

Author Index 935

Zhang, Louxin 835
Zheng, Jie 484
Zhu, Binhai 606

Ziegler, Martin 805
Zwick, Uri 65, 921

	Frontmatter
	Puzzles, Art, and Magic with Algorithms
	The ABCs of AVDs: Geometric Retrieval Made Simple
	Pareto Optimality in House Allocation Problems
	Property-Preserving Data Reconstruction
	On the Monotone Circuit Complexity of Quadratic Boolean Functions
	Generalized Function Matching
	Approximate Distance Oracles for Graphs with Dense Clusters
	Multicriteria Global Minimum Cuts
	Polyline Fitting of Planar Points Under Min-sum Criteria
	A Generalization of Magic Squares with Applications to Digital Halftoning
	Voronoi Diagrams with a Transportation Network on the Euclidean Plane
	Structural Alignment of Two RNA Sequences with Lagrangian Relaxation
	Poly-APX- and PTAS-Completeness in Standard and Differential Approximation
	Efficient Algorithms for {\itshape k} Maximum Sums
	Equipartitions of Measures by 2-Fans
	Augmenting the Edge-Connectivity of a Spider Tree
	On Nash Equilibria for Multicast Transmissions in Ad-Hoc Wireless Networks
	Structural Similarity in Graphs
	Flexibility of Steiner Trees in Uniform Orientation Metrics
	Random Access to Advice Strings and Collapsing Results
	Bounding the Payment of Approximate Truthful Mechanisms
	The Polymatroid Steiner Problems
	Geometric Optimization Problems Over Sliding Windows
	On-Line Windows Scheduling of Temporary Items
	Generalized Geometric Approaches for Leaf Sequencing Problems in Radiation Therapy
	An Efficient Exact Algorithm for the Minimum Ultrametric Tree Problem
	On the Range Maximum-Sum Segment Query Problem
	An Efficient Algorithm for Finding Maximum Cycle Packings in Reducible Flow Graphs
	Efficient Job Scheduling Algorithms with Multi-type Contentions
	Superimposing Voronoi Complexes for Shape Deformation
	On Partial Lifting and the Elliptic Curve Discrete Logarithm Problem
	Guarding Art Galleries by Guarding Witnesses
	On {\itshape p}-Norm Based Locality Measures of Space-Filling Curves
	Composability of Infinite-State Activity Automata
	Error Compensation in Leaf Root Problems
	On Compact and Efficient Routing in Certain Graph Classes
	Randomized Insertion and Deletion in Point Quad Trees
	Diagnosis in the Presence of Intermittent Faults
	Three-Round Adaptive Diagnosis in Binary {\itshape n}-Cubes
	Fast Algorithms for Comparison of Similar Unordered Trees
	GCD of Random Linear Forms
	On the Hardness and Easiness of Random 4-SAT Formulas
	Minimum Common String Partition Problem: Hardness and Approximations
	On the Complexity of Network Synchronization
	Counting Spanning Trees and Other Structures in Non-constant-jump Circulant Graphs
	Adaptive Spatial Partitioning for Multidimensional Data Streams
	Paired Pointset Traversal
	Approximated Two Choices in Randomized Load Balancing
	Space-Efficient and Fast Algorithms for Multidimensional Dominance Reporting and Counting
	Local Gapped Subforest Alignment and Its Application in Finding RNA Structural Motifs
	The Maximum Agreement of Two Nested Phylogenetic Networks
	Sequences of Radius {\itshape k}: How to Fetch Many Huge Objects into Small Memory for Pairwise Computations
	New Bounds on Map Labeling with Circular Labels
	Optimal Buffer Management via Resource Augmentation
	Oriented Paths in Mixed Graphs
	Polynomial Deterministic Rendezvous in Arbitrary Graphs
	Distributions of Points and Large Quadrangles
	Cutting Out Polygons with Lines and Rays
	Advantages of Backward Searching --- Efficient Secondary Memory and Distributed Implementation of Compressed Suffix Arrays
	Inner Rectangular Drawings of Plane Graphs
	Approximating the Minmax Subtree Cover Problem in a Cactus
	Boundary-Optimal Triangulation Flooding
	Exact Computation of Polynomial Zeros Expressible by Square Roots
	Many-to-Many Disjoint Path Covers in a Graph with Faulty Elements
	An {\itshape O}({\itshape n}log {\itshape n})-Time Algorithm for the Maximum Constrained Agreement Subtree Problem for Binary Trees
	Planning the Transportation of Multiple Commodities in Bidirectional Pipeline Networks
	Efficient Algorithms for the Hotlink Assignment Problem: The Worst Case Search
	Dynamic Tree Cross Products
	Spanners, Weak Spanners, and Power Spanners for Wireless Networks
	Techniques for Indexing and Querying Temporal Observations for a Collection of Objects
	Approximation Algorithms for the Consecutive Ones Submatrix Problem on Sparse Matrices
	The Two-Guard Problem Revisited and Its Generalization
	Canonical Data Structure for Interval Probe Graphs
	Efficient Algorithms for the Longest Path Problem
	Randomized Algorithms for Motif Detection
	Weighted Coloring on Planar, Bipartite and Split Graphs: Complexity and Improved Approximation
	Sweeping Graphs with Large Clique Number
	A Slightly Improved Sub-cubic Algorithm for the All Pairs Shortest Paths Problem with Real Edge Lengths
	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

