

Lecture Notes in Computer Science 3358
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Jiannong Cao Laurence T. Yang
Minyi Guo Francis Lau (Eds.)

Parallel and
Distributed Processing
and Applications

Second International Symposium, ISPA 2004
Hong Kong, China, December 13-15, 2004
Proceedings

13

Volume Editors

Jiannong Cao
Hong Kong Polytechnic University, Department of Computing
Hung Hom, Kowloon, Hong Kong, China
E-mail: csjcao@comp.polyu.edu.hk

Laurence T. Yang
St. Francis Xavier University, Department of Computer Science
Antigonish, B2G 2W5, NS, Canada
E-mail: lyang@stfx.ca

Minyi Guo
The University of Aizu, School of Computer Science and Engineering
Tsuruga, Ikki-machi, Aizu-Wakamatsu City, Fukushima 965-8580, Japan
E-mail: minyi@u-aizu.ac.jp

Francis Lau
The University of Hong Kong, Department of Computer Science
Pokfulam Road, Hong Kong, China
E-mail: fcmlau@cs.hku.hk

Library of Congress Control Number: 2004116720

CR Subject Classification (1998): F.2, G.2, C.2, H.4, D.2, D.4

ISSN 0302-9743
ISBN 3-540-24128-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2004
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11369110 06/3142 5 4 3 2 1 0

Preface

Welcome to the proceedings of the 2nd International Symposium on Parallel and
Distributed Processing and Applications (ISPA 2004) which was held in Hong
Kong, China, 13–15 December, 2004.

With the advance of computer networks and hardware technology, parallel
and distributed processing has become a key technology which plays an impor-
tant part in determining future research and development activities in many
academic and industrial branches. It provides a means to solve computation-
ally intensive problems by improving processing speed. It is also the only vi-
able approach to building highly reliable and inherently distributed applications.
ISPA 2004 provided a forum for scientists and engineers in academia and indus-
try to exchange and discuss their experiences, new ideas, research results, and
applications about all aspects of parallel and distributed computing.

There was a very large number of paper submissions (361) from 26 countries
and regions, including not only Asia and the Pacific, but also Europe and North
America. All submissions were reviewed by at least three program or technical
committee members or external reviewers. It was extremely difficult to select
the presentations for the conference because there were so many excellent and
interesting submissions. In order to allocate as many papers as possible and
keep the high quality of the conference, we finally decided to accept 78 regular
papers and 38 short papers for oral technical presentations. We believe that
all of these papers and topics not only provide novel ideas, new results, work
in progress and state-of-the-art techniques in this field, but also stimulate the
future research activities in the area of parallel and distributed computing with
applications.

The exciting program for this conference was the result of the hard and excel-
lent work of many others, such as program vice-chairs, external reviewers, and
program and technical committee members. We would like to express our sincere
appreciation to all authors for their valuable contributions and to all program
and technical committee members and external reviewers for their cooperation
in completing the program under a very tight schedule.

October 2004 Jiannong Cao, Laurence T. Yang
Minyi Guo, Francis C.M. Lau

Organization

ISPA 2004 was organized mainly by the Department of Computing, Hong Kong
Polytechnic University, China.

Executive Committee

General Chairs Minyi Guo, University of Aizu, Japan
Francis Lau, University of Hong Kong, China

Program Chairs Jiannong Cao, Hong Kong Polytechnic University,
China

Laurence T. Yang, St. Francis Xavier University,
Canada

Program Vice-Chairs Rajkumar Buyya, University of Melbourne, Australia
Weijia Jia, City University of Hong Kong, China
Beniamino Di Martino, Second University of Naples,

Italy
Steering Committee Minyi Guo, University of Aziu, Japan

Jiannong Cao, Hong Kong Polytechnic University,
China

Laurence T. Yang, St. Francis Xavier University,
Canada

Yi Pan, Georgia State University, USA
Jie Wu, Florida Atlantic University, USA
Li Xie, Nanjing University, China
Hans P. Zima, California Institute of Technology,

USA
Publicity Chair Cho-Li Wang, University of Hong Kong, China
Workshop Chair Hong-Va Leong, Hong Kong Polytechnic University,

China
Local Chair Allan K.Y. Wong, Hong Kong Polytechnic University,

China
Publication Chair Alvin T.S. Chan, Hong Kong Polytechnic University,

China
Registration Chair Joseph K.Y. Ng, Hong Kong Baptist University,

China

Sponsoring Institutions

IEEE HK Chapter
Association for Computing Machinery, HK Chapter
The Information Processing Society of Japan
Springer

VIII Organization

Program/Technical Committee

David Abramson Monash University, Australia
Selim G. Akl Queen’s University, Canada
Giuseppe Anastasi University of Pisa, Italy
Hamid R. Arabnia University of Georgia, USA
Amy Apon University of Arkansas, USA
Eric Aubanel University of New Brunswick, Canada
David A. Bader University of New Mexico, USA
Mark Baker University of Portsmouth, UK
Ioana Banicescu Mississippi State University, USA
Virendra C. Bhavsar University of New Brunswick, Canada
Rupak Biswas NASA Ames Research Center, USA
Anu Bourgeois Georgia State University, USA
Martin Büecker Aachen University of Technology, Germany
Wentong Cai Nanyang Technological University, Singapore
Xing Cai University of Oslo, Norway
Jesus Carretero Universidad Carlos III de Madrid, Spain
Vipin Chaudhary Wayne State University, USA
Weng-Long Chang Southern Taiwan University of Technology,

Taiwan
Daoxu Chen Nanjing University, China
Ling Chen Yangzhou University, China
Kessler Christoph Linköping University, Sweden
Kranzlmueller Dieter Linz University, Austria
Ramón Doallo Universidade da Coruña, Spain
Andrei Doncescu LAS, France
Patricia González Universidade da Coruña, Spain
Andzrej Goscinski Deakin University, Australia
George A. Gravvanis Hellenic Open University, Greece
Yanxiang He Wuhan University, China
Bruce Hendrickson Sandia National Laboratory, USA
Dora Blanco Heras Universidade de Santiago de Compostela,

Spain
Annika Hinze University of Waikato, New Zealand
Hung-Chang Hsiao National TsingHua University, Taiwan
Ching-Hsien Hsu Chung Hua University, Taiwan
Chun-Hsi Huang University of Connecticut, USA
Constantinos Ierotheou University of Greenwich, UK
Xiaohua Jia City University of Hong Kong, China
Beihong Jin Institute of Software, CAS, China
Hai Jin Huazhong University of Science & Technology,

China
Ajay Katangur Texas A&M University at Corpus Christi, USA
Hatsuhiko Kato Shonan Institute of Technology, Japan
Daniel S. Katz JPL, California Institute of Technology, USA
Raj Kettimuthu Argonne National Laboratory, USA
Sy-Yen Kuo National Taiwan University, Taiwan

Organization IX

Program/Technical Committee (continued)

Tau Leng Supermicro Computer Inc., USA
Jie Li University of Tsukuba, Japan
Lei Li Hosei University, Japan
Minglu Li Shanghai Jiaotong University, China
Wenjun Li UT Southwestern Medical Center, USA
Xiaoming Li Peking University, China
Wekeng Liao Northwestern University, USA
Man Lin St. Francis Xavier University, Canada
Jiangchuan Liu Chinese University of Hong Kong,Hong Kong, China
Jian Lu Nanjing University, China
Paul Lu University of Alberta, Canada
Jianhua Ma Hosei University, Japan
Rodrigo Mello University of São Paulo, Brazil
Michel Schellekens National University of Ireland, Cork, Ireland
Michael Ng University of Hong Kong, China
Jun Ni University of Iowa, USA
Enrique Quintana-Orti University of Jaime I, Spain
Yi Pan Georgia State University, USA
Manish Parashar Rutgers University, USA
Xiangzhen Qiao Chinese Academy of Sciences, China
Fethi Rabhi University of New South Wales, Australia
Thomas Rauber University of Bayreuth, Germany
Gudula Rünger Chemnitz University of Technology, Germany
Biplab K. Sarker University of Tsukuba, Japan
Erich Schikuta University of Vienna, Austria
Gurdip Singh Kansas State University, USA
Peter Strazdins Australian National University, Australia
Yuzhong Sun Institute of Computing Technology, CAS,

China
Eric de Sturler University of Illinois at Urbana-Champaign,

USA
Sabin Tabirca University College Cork, Ireland
David Taniar Monash University, Australia
Ruppa K. Thulasiram University of Manitoba, Canada
Parimala Thulasiram University of Manitoba, Canada
Xinmin Tian Intel, USA
Dhaene Tom University of Antwerp, Belgium
Juan Touriño Universidade da Coruña, Spain
Sudharshan Vazhkudai Oak Ridge National Laboratory, USA
Lorenzo Verdoscia ICAR, Italian National Research Council

(CNR), Italy
Hui Wang University of Aizu, Japan
Guojung Wang Central South University, China
Andrew L. Wendelborn University of Adelaide, Australia
Jie Wu Florida Atlantic University, USA
Bing Xiao Hong Kong Polytechnic University, China

X Organization

Program/Technical Committee (continued)

Cheng-Zhong Xu Wayne State University, USA
Ming Xu National University of Defense Technology,

China
Zhiwei Xu Institute of Computing Technology, CAS,

China
Jingling Xue University of New South Wales, Australia
Jun Zhang University of Kentucky, USA
Xiaodong Zhang William & Mary College, USA
Wei Zhao Texas A&M University, USA
Weimin Zheng Tsinghua University, China
Yao Zheng Zhejiang University, China
Bingbing Zhou University of Sydney, Australia
Wanlei Zhou Deakin University, Australia
Xiaobao Zhou University of Colorado at Colorado Springs,

USA
Jianping Zhu University of Akron, USA
Ming Zhu Drexel University, USA
Albert Y. Zomaya University of Sydney, Australia

Additional Referees

Somasheker Akkaladevi
Peter Aronsson
Rocco Aversa
Shahaan Ayyub
Stefano Basagni
Andrzej Bednarski
Cinzia Bernardeschi
Rich Boakes
Luciano Bononi
Eleonora Borgia
Donggang Cao
Ning Cao
Ricolindo L. Carino
John Casey
Valentina Casola
Mikhail Chalabine
Philip Chan
Sumir Chandra
Wei Chen
Elaine L. Chen

Hui Cheng
Benny W.L. Cheung
Eunjung Cho
Chi-yin Chow
Paul Coddington
Yafei Dai
Franca DelMastro
Li Du
Colin Enticott
Robert Esser
Nickolas Falkner
Huifeng Fan
Maria Fazio
Michael Frumkin
Haohuan Fu
Boon Ping Gan
Slavisa Garic
Wojtek Goscinski
Christophe Gosset
Mat Grove

Rafael Mayo Gual
David Hickey
Judith Hippold
Edward K.S. Ho
Roy S.C. Ho
Tim Ho
Sasche Hunold
Mauro Iacono
Cruz Izu
Young-Sik Jeong
Ziling Jhong
Hao Ji
Nanyan Jiang
Tian Jing
Ning Kang
Peter Kelly
Manabu Kobayashi
Laurel C.Y. Kong
Donny Kurniawan
Matthias Kühnemann

Organization XI

Charles Lakos
Wilfred Lin
Lidong Lin
Qiu Ling
Hui Liu
Ying Liu
Hua Liu
Xiapu Luo
Praveen Madiraju
Laurent Manyri
Yang Mao
Stefano Marrone
Maria J. Martin
Hakan Mattsson
Piyush Mehrotra
Srinivasan Mullai
Mingzhong Xiao
Giacomo Morabito
Francesco Moscato
Raik Nagel
Harsha Narravula
Leanne Ngo
Maria O’Keeffe
Leonid Oliker
Hong Ong
Andrew Over
Andrea Passarella
Fang Qi

Wenny Rahayu
Massimiliano Rak
Carsten Scholtes
Aamir Shafi
Haifeng Shen
Wensheng Shen
Ji Shen
Wei Shi
Warren Smith
Guanghua Song
Makoto Suzuki
Guillermo L. Taboada
Ming Tang
Toshinori Tkabatake
Roberto Torella
Sven Trautmann
Ken C.K. Tsang
Mark C.M. Tsang
Wanqing Tu
Thierry Vallee

Wijngaart
Salvatore Venticinque
Murali N. Vilayannur
Shuchao Wan
Helmut Wanek
Habin Wang
Gaocai Wang

T.Q. Wang
Chen Wang
Yin Wang
Yue Wang
Habin Wang
Richard Wu
Sui Lun Wu
Weigang Wu
Percival Xavier
Yang Xiang
Helen Xiang
Yi Xie
Shuting Xu
Jin Yang
Zhonghua Yang
Shui Yu
Zoe C.H. Yu
Connie Yuen
Tianyi Zeng
Yi Zeng
Jun Zhang
Zili Zhang
Nadia X.L. Zhang
Guangzen Zhang
Qiankun Zhao
Bill Zhong
Suiping Zhou

Rob Vander

Table of Contents

Keynote Speech

Present and Future Supercomputer Architectures
Jack Dongarra . 1

Challenges in P2P Computing
Linoel M. Ni . 2

Multihop Wireless Ad Hoc Networking:
Current Challenges and Future Opportunities

David B. Johnson . 3

Session 1A: Parallel Algorithms and Systems I

An Inspector-Executor Algorithm for Irregular Assignment
Parallelization

Manuel Arenaz, Juan Touriño, Ramón Doallo . 4

Multi-grain Parallel Processing of Data-Clustering
on Programmable Graphics Hardware

Hiroyki Takizawa, Hiroaki Kobayashi . 16

A Parallel Reed-Solomon Decoder on the Imagine Stream Processor
Mei Wen, Chunyuan Zhang, Nan Wu, Haiyan Li, Li Li 28

Effective Nonblocking MPI-I/O in Remote I/O Operations Using a
Multithreaded Mechanism

Yuichi Tsujita . 34

Session 1B: Data Mining and Management

Asynchronous Document Dissemination in Dynamic Ad Hoc Networks
Frédéric Guidec, Hervé Roussain . 44

Location-Dependent Query Results Retrieval in a Multi-cell Wireless
Environment

James Jayaputera, David Taniar . 49

An Efficient Mobile Data Mining Model
Jen Ye Goh, David Taniar . 54

XIV Table of Contents

An Integration Approach of Data Mining with Web Cache Pre-fetching
Yingjie Fu, Haohuan Fu, Puion Au . 59

Session 1C: Distributed Algorithms and Systems

Towards Correct Distributed Simulation of High-Level Petri Nets with
Fine-Grained Partitioning

Michael Knoke, Felix Kühling, Armin Zimmermann,
Günter Hommel . 64

M-Guard: A New Distributed Deadlock Detection Algorithm Based on
Mobile Agent Technology

Jingyang Zhou, Xiaolin Chen, Han Dai, Jiannong Cao,
Daoxu Chen . 75

Meta-based Distributed Computing Framework
Andy S.Y. Lai, A.J. Beaumont . 85

Locality Optimizations for Jacobi Iteration on Distributed Parallel
Systems

Yonggang Che, Zhenghua Wang, Xiaomei Li, Laurence T. Yang 91

Session 2A: Fault Tolerance Protocols and Systems

Fault-Tolerant Cycle Embedding in the WK-Recursive Network
Jung-Sheng Fu . 105

RAIDb: Redundant Array of Inexpensive Databases
Emmanuel Cecchet . 115

A Fault-Tolerant Multi-agent Development Framework
Lin Wang, Hon F. Li, Dhrubajyoti Goswami, Zunce Wei 126

A Fault Tolerance Protocol for Uploads: Design and Evaluation
L. Cheung, C.-F. Chou, L. Golubchik, Y. Yang . 136

Topological Adaptability for the Distributed Token Circulation
Paradigm in Faulty Environment

Thibault Bernard, Alain Bui, Olivier Flauzac . 146

Table of Contents XV

Session 2B: Sensor Networks and Protocols

Adaptive Data Dissemination in Wireless Sensor Networks
Jian Xu, Jianliang Xu, Shanping Li, Qing Gao, Gang Peng 156

Continuous Residual Energy Monitoring in Wireless Sensor Networks
Song Han, Edward Chan . 169

Design and Analysis of a k-Connected Topology Control Algorithm for
Ad Hoc Networks

Lei Zhang, Xuehui Wang, Wenhua Dou . 178

On Using Temporal Consistency for Parallel Execution of Real-Time
Queries in Wireless Sensor Systems

Kam-Yiu Lam, Henry C.W. Pang, Sang H. Son, BiYu Liang 188

Session 2C: Cluster Systems and Applications

Cluster-Based Parallel Simulation for Large Scale Molecular Dynamics
in Microscale Thermophysics

Jiwu Shu, Bing Wang, Weimin Zheng . 200

Parallel Checkpoint/Recovery on Cluster of IA-64 Computers
Youhui Zhang, Dongsheng Wang, Weimin Zheng 212

Highly Reliable Linux HPC Clusters: Self-Awareness Approach
Chokchai Leangsuksun, Tong Liu, Yudan Liu, Stephen L. Scott,
Richard Libby, Ibrahim Haddad . 217

An Enhanced Message Exchange Mechanism in Cluster-Based Mobile
Ad Hoc Networks,

Wei Lou, Jie Wu . 223

Session 3A: Parallel Algorithms and Systems II

Algorithmic-Parameter Optimization of a Parallelized Split-Step
Fourier Transform Using a Modified BSP Cost Model

Elankovan Sundararajan, Malin Premaratne, Shanika Karunasekera,
Aaron Harwood . 233

Parallel Volume Rendering with Early Ray Termination for Visualizing
Large-Scale Datasets

Manabu Matsui, Fumihiko Ino, Kenichi Hagihara 245

XVI Table of Contents

A Scalable Low Discrepancy Point Generator for Parallel Computing
Kwong-Ip Liu, Fred J. Hickernell . 257

Generalized Trellis Stereo Matching with Systolic Array
Hong Jeong, Sungchan Park . 263

Optimal Processor Mapping Scheme for Efficient Communication of
Data Realignment

Ching-Hsien Hsu, Kun-Ming Yu, Chi-Hsiu Chen, Chang Wu Yu,
Chiu Kuo Lian . 268

Session 3B: Grid Applications and Systems

MCCF: A Distributed Grid Job Workflow Execution Framework
Yuhong Feng, Wentong Cai . 274

Gamelet: A Mobile Service Component for Building Multi-server
Distributed Virtual Environment on Grid

Tianqi Wang, Cho-Li Wang, Francis Lau . 280

The Application of Grid Computing to Real-Time Functional MRI
Analysis

E. Bagarinao, L. Sarmenta, Y. Tanaka, K. Matsuo, T. Nakai 290

Building and Accessing Grid Services
Xinfeng Ye . 303

DRPS: A Simple Model for Locating the Tightest Link
Dalu Zhang, Weili Huang, Chen Lin . 314

Session 3C: Peer-to-Peer and Ad-Hoc Networking

A Congestion-Aware Search Protocol for Unstructured Peer-to-Peer
Networks

Kin Wah Kwong, Danny H.K. Tsang . 319

Honeycomb: A Peer-to-Peer Substrate for On-Demand Media Streaming
Service

Dafu Deng, Hai Jin, Chao Zhang, Hao Chen, Xiaofei Liao 330

An Improved Distributed Algorithm for Connected Dominating Sets in
Wireless Ad Hoc Networks

Hui Liu, Yi Pan, Jiannong Cao . 340

Table of Contents XVII

A New Distributed Approximation Algorithm for Constructing
Minimum Connected Dominating Set in Wireless Ad Hoc Networks

Bo Gao, Huiye Ma, Yuhang Yang . 352

An Adaptive Routing Strategy Based on Dynamic Cache in Mobile Ad
Hoc Networks

YueQuan Chen, XiaoFeng Guo, QingKai Zeng, Guihai Chen 357

Session 4A: Grid Scheduling and Algorithms I

On the Job Distribution in Random Brokering for Computational Grids
Vandy Berten, Joël Goossens . 367

Dividing Grid Service Discovery into 2-Stage Matchmaking
Ye Zhu, Junzhou Luo, Teng Ma . 372

Performance Evaluation of a Grid Computing Architecture Using
Realtime Network Monitoring

Young-Sik Jeong, Cheng-Zhong Xu . 382

Quartet-Based Phylogenetic Inference: A Grid Approach
Chen Wang, Bing Bing Zhou, Albert Y. Zomaya 387

Scheduling BoT Applications in Grids Using a Slave Oriented Adaptive
Algorithm

Tiago Ferreto, César De Rose, Caio Northfleet . 392

Session 4B: Data Replication and Caching

A Clustering-Based Data Replication Algorithm in Mobile Ad Hoc
Networks for Improving Data Availability

ZhengJing , SuJinshu , LuXicheng . 399

CACHERP: A Novel Dynamic Cache Size Tuning Model Working with
Relative Object Popularity for Fast Web Information Retrieval

Richard S.L. Wu, Allan K.Y. Wong, Tharam S. Dillon 410

Implementation of a New Cache and Schedule Scheme for Distributed
VOD Servers

LuoHan , ShuJi-wu . 421

XVIII Table of Contents

Session 4C: Software Engineering and Testing

UML Based Statistical Testing Acceleration of Distributed
Safety-Critical Software

Jiong Yan, Ji Wang, Huo-wang Chen . 433

A Metamodel for the CMM Software Process
Juan Li, Mingshu Li, Zhanchun Wu, Qing Wang 446

Performance Tuning for Application Server OnceAS
Wenbo Zhang, Bo Yang, Beihong Jin, Ningjing Chen, Tao Huang 451

Systematic Robustness-Testing RI-Pro of BGP
Lechun Wang, Peidong Zhu, Zhenghu Gong . 463

Session 5A: Grid Protocols

MPICH-GP: A Private-IP-Enabled MPI ver
Grid Environments

Kumrye Park, Sungyong Park, Ohyoung Kwon, Hyoungwoo Park 469

Paradigm of Multiparty Joint Authentication: Evolving Towards Trust
Aware Grid Computing

Hui Liu, Minglu Li . 474

Design and Implementation of a 3A Accessing Paradigm Supported
Grid Application and Programming Environment

He Ge, Liu Donghua, Sun Yuzhong, Xu Zhiwei . 484

VAST: A Service Based Resource Integration System for Grid Society
Jiulong Shan, Huaping Chen, Guangzhong Sun, Xin Chen 489

Petri-Net-Based Coordination Algorithms for Grid Transactions
Feilong Tang, Minglu Li, Joshua Zhexue Huang, Cho-Li Wang,
Zongwei Luo . 499

Session 5B: Context- ware and Mobile Computing

Building Infrastructure Support for Ubiquitous Context-Aware Systems
Wei Li, Martin Jonsson, Fredrik Kilander, Carl Gustaf Jansson 509

Context-Awareness in Mobile Web Services
Bo Han, Weijia Jia, Ji Shen, Man-Ching Yuen . 519

A

O

Table of Contents XIX

CRL: A Context-Aware Request Language for Mobile Computing
Alvin T.S. Chan, Peter Y.H. Wong, Siu-Nam Chuang 529

A Resource Reservation Protocol for Mobile Cellular Networks
Ming Xu, Zhijiao Zhang, Yingwen Chen . 534

Session 5C: Distributed Routing and Switching Protocols I

Using the Linking Model to Understand the Performance of DHT
Routing Algorithms

Futai Zou, Shudong Cheng, Fanyuan Ma, Liang Zhang,
Junjun Tang . 544

Packet-Mode Priority Scheduling for Terabit Core Routers
Wenjie Li, Bin Liu . 550

Node-to-Set Disjoint Paths Problem in Bi-rotator Graphs
Keiichi Kaneko . 556

QoSRHMM: A QoS-Aware Ring-Based Hierarchical Multi-path
Multicast Routing Protocol

Guojun Wang, Jun Luo, Jiannong Cao, Keith C.C. Chan 568

Session 6A : Grid Scheduling and Algorithms II

A Dynamic Task Scheduling Algorithm for Grid Computing System
Yuanyuan Zhang, Yasushi Inoguchi, Hong Shen . 578

Replica Selection on Co-allocation Data Grids
Ruay-Shiung Chang, Chih-Min Wang, Po-Hung Chen 584

A Novel Checkpoint Mechanism Based on Job Progress Description for
Computational Grid

Chunjiang Li, Xuejun Yang, Nong Xiao . 594

A Peer-to-Peer Mechanism for Resource Location and Allocation over
the Grid

Hung-Chang Hsiao, Mark Baker, Chung-Ta King 604

The Model, Architecture and Mechanism Behind Realcourse
Jinyu Zhang, Xiaoming Li . 615

XX Table of Contents

Session 6B: Cluster Resource Scheduling and Algorithms

Managing Irregular Workloads of Cooperatively Shared Computing
Clusters

Percival Xavier, Wentong Cai, Bu-Sung Lee . 625

Performance-Aware Load Balancing for Multiclusters
Ligang He, Stephen A. Jarvis, David Bacigalupo, Daniel P. Spooner,
Graham R. Nudd . 635

Scheduling of a Parallel Computation-Bound Application and Sequential
Applications Executing Concurrently on a Cluster – A Case Study

Adam K.L. Wong, Andrzej M. Goscinski . 648

Sequential and Parallel Ant Colony Strategies for Cluster Scheduling in
Spatial Databases

Jitian Xiao, Huaizhong Li . 656

Session 6C: Distributed Routing and Switching Protocols I

Cost-Effective Buffered Wormhole Routing
Jinming Ge . 666

Efficient Routing and Broadcasting Algorithms in de Bruijn Networks
Ngoc Chi Nguyen, Nhat Minh Dinh Vo, Sungyoung Lee 677

Fault-Tolerant Wormhole Routing Algorithm in 2D Meshes Without
Virtual Channels

Jipeng Zhou, Francis C.M. Lau . 688

Fault Tolerant Routing Algorithm in Hypercube Networks with Load
Balancing Support

Xiaolin Xiao, Guojun Wang, Jianer Chen . 698

Session 7A: Security I

Proxy Structured Multisignature Scheme from Bilinear Pairings
Xiangxue Li, Kefei Chen, Longjun Zhang, Shiqun Li 705

A Threshold Proxy Signature Scheme Using Self-Certified Public Keys
Qingshui Xue, Zhenfu Cao . 715

Table of Contents XXI

The Authentication and Processing Performance of Session Initiation
Protocol (SIP) Based Multi-party Secure Closed Conference System

Jongkyung Kim, Hyuncheol Kim, Seongjin Ahn, Jinwook Chung 725

Session 7B: High Performance Processing and Applications

A Method for Authenticating Based on ZKp in Distributed Environment
Dalu Zhang, Min Liu, Zhe Yang . 730

A Load-Balanced Parallel Algorithm for 2D Image Warping
Yan-huang Jiang, Zhi-ming Chang, Xue-jun Yang 735

A Parallel Algorithm for Helix Mapping Between 3D and 1D Protein
Structure Using the Length Constraints

Jing He, Yonggang Lu, Enrico Pontelli . 746

A New Scalable Parallel Method for Molecular Dynamics Based on
Cell-Block Data Structure

CaoXiaolin , MoZeyao . 757

Parallel Transient Stability Simulation for National Power Grid of China
Wei Xue, Jiwu Shu, Weimin Zheng . 765

HPL Performance Prevision to Intending System Improvement
ZhangWenli , ChenMingyu , FanJianping . 777

Session 7C: Networking and Protocols I

A Novel Fuzzy-PID Dynamic Buffer Tuning Model to Eliminate
Overflow and Shorten the End-to-End Roundtrip Time for TCP
Channels

Wilfred W.K. Lin, Allan K.Y. Wong, Tharam S. Dillon 783

Communication Using a Reconfigurable and Reliable Transport Layer
Protocol

Tan Wang, Ajit Singh . 788

Minicast: A Multicast-Anycast Protocol for Message Delivery
Shui Yu, Wanlei Zhou, Justin Rough . 798

Dependable WDM Networks with Edge-Disjoint P-Cycles
Chuan-Ching Sue, Yung-Chiao Chen, Min-Shao Shieh, Sy-Yen Kuo . . 804

XXII Table of Contents

An Efficient Fault-Tolerant Approach for MPLS Network Systems
Jenn-Wei Lin, Hung-Yu Liu . 815

Session 8A: Security II

A Novel Technique for Detecting DDoS Attacks at Its Early Stage
Bin Xiao, Wei Chen, Yanxiang He . 825

Probabilistic Inference Strategy in Distributed Intrusion Detection
Systems

Jianguo Ding, Shihao Xu, Bernd Krämer, Yingcai Bai,
Hansheng Chen, Jun Zhang . 835

An Authorization Framework Based on Constrained Delegation
Gang Yin, Meng Teng, Huai-min Wang, Yan Jia, Dian-xi Shi 845

A Novel Hierarchical Key Management Scheme Based on Quadratic
Residues

Jue-Sam Chou, Chu-Hsing Lin, Ting-Ying Lee . 858

Session 8B: Artificial Intelligence Systems and Applications

Soft-Computing-Based Intelligent Multi-constrained Wavelength
Assignment Algorithms in IP/DWDM Optical Internet

Xingwei Wang, Cong Liu, Min Huang . 866

Data Transmission Rate Control in Computer Networks Using Neural
Predictive Networks

Yanxiang He, Naixue Xiong, Yan Yang . 875

Optimal Genetic Query Algorithm for Information Retrieval
Ziqiang Wang, Boqin Feng . 888

A Genetic Algorithm for Dynamic Routing and Wavelength Assignment
in WDM Networks

Vinh Trong Le, Son Hong Ngo, Xiaohong Jiang, Susumu Horiguchi,
Minyi Guo . 893

Session 8C: Networking and Protocols II

Ensuring E-Transaction Through a Lightweight Protocol for Centralized
Back-End Database

Paolo Romano, Francesco Quaglia, Bruno Ciciani 903

Table of Contents XXIII

Cayley DHTs — A Group-Theoretic Framework for Analyzing DHTs
Based on Cayley Graphs

Changtao Qu, Wolfgang Nejdl, Matthias Kriesell 914

BR-WRR Scheduling Algorithm in PFTS
Dengyuan Xu, Huaxin Zeng, Chao Xu . 926

VIOLIN: Virtual Internetworking on Overlay Infrastructure
Xuxian Jiang, Dongyan Xu . 937

Session 9A: Hardware Architectures and Implementations

Increasing Software-Pipelined Loops in the Itanium-Like Architecture
Wenlong Li, Haibo Lin, Yu Chen, Zhizhong Tang 947

A Space-Efficient On-Chip Compressed Cache Organization for High
Performance Computing

Keun Soo Yim, Jang-Soo Lee, Jihong Kim, Shin-Dug Kim,
Kern Koh . 952

A Real Time MPEG-4 Parallel Encoder on Software Distributed Shared
Memory Systems

Yung-Chang Chiu, Ce-Kuen Shieh, Jing-Xin Wang,
Alvin Wen-Yu Su, Tyng-Yeu Liang . 965

A Case of SCMP with TLS
Jianzhuang Lu, Chunyuan Zhang, Zhiying Wang, Yun Cheng,
Dan Wu . 975

Session 9B: High Performance Computing and Architecture

SuperPAS: A Parallel Architectural Skeleton Model Supporting
Extensibility and Skeleton Composition

Mohammad Mursalin Akon, Dhrubajyoti Goswami, Hon Fung Li 985

Optimizing I/O Server Placement for Parallel I/O on Switch-Based
Irregular Networks

Yih-Fang Lin, Chien-Min Wang, Jan-Jan Wu . 997

Designing a High Performance and Fault Tolerant Multistage
Interconnection Network with Easy Dynamic Rerouting

Ching-Wen Chen, Phui-Si Gan, Chih-Hung Chang 1007

XXIV Table of Contents

Evaluating Performance of BLAST on Intel Xeon and Itanium2
Processors

Ramesh Radhakrishnan, Rizwan Ali, Garima Kochhar,
Kalyana Chadalavada, Ramesh Rajagopalan, Jenwei Hsieh,
Onur Celebioglu . 1017

Session 9C: Distributed Processing and Architecture

PEZW-ID: An Algorithm for Distributed Parallel Embedded Zerotree
Wavelet Encoder

Zhi-ming Chang, Yan-huang Jiang, Xue-jun Yang, Xiang-li Qu 1024

Enhanced-Star: A New Topology Based on the Star Graph
Hamid Reza Tajozzakerin, Hamid Sarbazi-Azad . 1030

An RFID-Based Distributed Control System for Mass Customization
Manufacturing

Michael R. Liu, Q.L. Zhang, Lionel M. Ni, Mitchell M. Tseng 1039

Event Chain Clocks for Performance Debugging in Parallel and
Distributed Systems

Hongliang Yu, Jian Liu, Weimin Zheng, Meiming Shen 1050

Author Index . 1055

Present and Future Supercomputer Architectures

Jack Dongarra1, 2

1 Computer Science Department, University of Tennessee
Knoxville Tennessee 37996, USA
dongarra@cs.utk.edu

2 Oak Ridge National Laboratory

Oak Ridge, TN 37831, USA

Abstract. In last 25 years, the field of scientific computing has undergone rapid
change -- we have experienced a remarkable turnover of technologies,
architectures, vendors, and the usage of systems. Despite all these changes, the
long-term evolution of performance seems to be steady and continuous. The
acceptance of parallel systems not only for engineering applications but also for
new commercial applications especially for database applications emphasized
different criteria for market success such as stability of system, continuity of the
manufacturer and price/performance. Due to these factors and the
consolidation in the number of vendors in the market hierarchical systems build
with components designed for the broader commercial market are currently
replacing homogeneous systems at the very high end of performance. Clusters
build with components of the shelf also gain more and more attention and today
have a dominant position in the Top500. In this talk we will look at the some of
the existing and planned high performance computer architectures and look at
the interconnections schemes they are using. This talk will look at a number of
different high performance computing architectures.

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, p. 1, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Challenges in P2P Computing

Linoel M. Ni

Department of Computer Science, Hong Kong University of Science and Technology,
Clear Water Bay, Kowloon, Hong Kong

ni@cs.ust.hk

Abstract. Peer-to-peer (P2P) is an emerging model aiming to further utilize
Internet information and resources, complementing the available client-server
services. P2P has emerged as a promising paradigm for developing large-scale
distributed systems due to its many unique features and its potential in future
applications. P2P systems are popular because of their adaptation, self-
organization, load-balancing, and highly availability. However, P2P systems
also present many challenges that are currently obstacles to their widespread
acceptance and usage, such as efficiency, security, and performance guarantees.
For example, studies have shown that P2P traffic contributes the largest portion
of the Internet traffic based on the measurements on some popular P2P systems,
such as FastTrack (including KaZaA and Grokster), Gnutella, and Direct
Connect. Even given that 95% of any two nodes are less than 7 hops away and
the message time-to-live (TTL=7) is preponderantly used, the flooding-based
routing algorithm generates 330 TB/month in a Gnutella network with only
50,000 nodes. In reality, there are millions of active P2P users at any given
time. Our study has shown that the mechanism of a peer randomly choosing
logical neighbors without any knowledge about the underlying physical
topology causes topology mismatch between the P2P logical overlay network
and the physical underlying network. A large portion of the heavy P2P traffic is
caused by inefficient overlay topology and the blind flooding. Security and
anonymity are other concerns in P2P systems. This talk will address the above
issues as well as other potential applications of P2P computing and mobile P2P
systems.

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, p. 2, 2004.
© Springer-Verlag Berlin Heidelberg 2004

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, p. 3, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Multihop Wireless Ad Hoc Networking:
Current Challenges and Future Opportunities

David B. Johnson

Department of Computer Science, Rice University
6100 Main Houston, Texas 77005, USA

dbj@cs.rice.edu

Abstract. An ad hoc network is a collection of wireless mobile nodes that form
a network without existing infrastructure or centralized administration. Nodes
in the network cooperate to forward packets for each other, to allow mobile
nodes not within direct wireless transmission range of each other to
communicate. Ad hoc networks were initially studied for military applications
more than 20 years ago, and they are currently a very active area of research
within academia, government, and industry. However, few real applications of
ad hoc networking have yet been deployed in common usage, and the
commercial potentials of this technology have yet to be realized. In this talk, I
will describe some of the current research challenges in ad hoc networking, and
I will present what I believe are some the future real-world applications for this
promising technology.

An Inspector-Executor Algorithm for Irregular
Assignment Parallelization

Manuel Arenaz, Juan Touriño, and Ramón Doallo

Computer Architecture Group,
Dep. Electronics and Systems, University of A Coruña, Spain

{arenaz, juan, doallo}@udc.es

Abstract. A loop with irregular assignment computations contains loop-
carried output data dependences that can only be detected at run-time.
In this paper, a load-balanced method based on the inspector-executor
model is proposed to parallelize this loop pattern. The basic idea lies in
splitting the iteration space of the sequential loop into sets of conflict-
free iterations that can be executed concurrently on different processors.
As will be demonstrated, this method outperforms existing techniques.
Irregular access patterns with different load-balancing and reusability
properties are considered in the experiments.

1 Introduction

Research on run-time techniques for the efficient parallelization of irregular com-
putations has been frequently referenced in the literature in recent years [4, 5,
7, 8, 10, 14, 15]. An irregular assignment pattern consists of a loop with fsize ite-
rations, fsize being the size of the subscript array f (see Figure 1). At each
iteration h, value rhs(h) is assigned to the array element A(f(h)). Neither the
right-hand side expression rhs(h) nor any function call make within it contain
occurrences of A, thus the code is free of loop-carried true data dependences.
Nevertheless, as the subscript expression f(h) is loop-variant, loop-carried out-
put data dependences may be present at run-time (unless f is a permutation
array). This loop pattern can be found in different application fields such as
computer graphics algorithms [3], finite elements applications [12], or routines
for sparse matrix computations [11].

Knobe and Sarkar [6] describe a program representation that uses array ex-
pansion [13] to enable the parallel execution of irregular assignment computa-
tions. Each processor executes a set of iterations preserving the same relative
order of the sequential loop. Array A is expanded in order to allow different
processors to store partial results in separate memory locations. For each array
entry A(j), with j = 1, ..., Asize, the global result is computed by means of a
reduction operation that obtains the partial result that corresponds with the
highest iteration number. Each processor computes this reduction operation for
a subset of array elements.

An optimization to perform element-level dead code elimination at run-time
is also presented in [6]. In irregular assignments, the same array element may be

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 4–15, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

An Inspector-Executor Algorithm for Irregular Assignment Parallelization 5

A(...) = ...
DO h = 1, fsize

A(f(h)) = rhs(h)
END DO
... = ...A(...)...

Fig. 1. Irregular assignment pattern

computed several times, though only the last value is used after the loop ends.
Consequently, intermediate values need not be computed. Classical dead code
elimination typically removes assignment statements from the source code. This
technique eliminates unnecessary array element definitions at run-time.

In this paper we use the inspector-executor model to parallelize irregular as-
signments on scalable shared memory multiprocessors. We show that this model
can be efficiently applied to the parallelization of static/adaptive irregular ap-
plications, preserving load-balancing and exploiting uniprocessor data write lo-
cality. A preliminary work [1] did not include a theoretical performance analysis
based on a formal characterization of static/adaptative irregular applications,
and presented a quite limited performance evalutation. The technique described
in this paper is embedded in our compiler framework [2] for automatic kernel
recognition and its application to automatic parallelization of irregular codes.

The rest of the paper is organized as follows. Our parallelization method is
presented in Section 2. The performance of our technique is compared with the
array expansion approach in Section 3. Experimental results conducted on a SGI
Origin 2000 using a rasterization algorithm as case study are shown in Section 4.
Finally, conclusions are discussed in Section 5.

2 Parallel Irregular Assignment

In this section, we propose a run-time technique that uses the inspector-executor
model to parallelize irregular assignments. The basic idea lies in reordering loop
iterations so that data write locality is exploited on each processor. Furthermore,
the amount of computations assigned to each processor is adjusted so that load-
balancing is preserved.

The method is as follows. In the inspector code shown in Figure 2, array
A is divided into subarrays of consecutive locations, Ap (p = 1, ..., P where P
is the number of processors), and the computations associated with each block
are assigned to different processors. Thus, the loop iteration space (1, ..., fsize) is
partitioned into sets fp that perform write operations on different blocks Ap. The
sets fp are implemented as linked lists of iteration numbers using two arrays,
count(1 : P) and next(1 : fsize + P). Each processor p has an entry in both
arrays, count(p) and next(fsize + p). The entry next(fsize + p) stores the first
iteration number hp

1 assigned to processor p. The next iteration number, hp
2, is

stored in array entry next(hp
1). This process is repeated count(p) times, i.e. the

number of elements in the list. In the executor code of Figure 3, each processor

6 M. Arenaz, J. Touriño, and R. Doallo

! Accumulative frequency distribution
his(1 : Asize) = 0
DO h = 1, fsize

his(f(h)) = his(f(h)) + 1
END DO
DO h = 2, Asize

his(h) = his(h) + his(h − 1)
END DO

! Computation of the linked lists
Refs = (his(Asize)/P) + 1
count(1 : P) = 0
DO h = 1, fsize

thread = (his(f(h))/Refs) + 1
IF (count(thread).eq.0) THEN

next(fsize + thread) = h
ELSE

next(prev(thread)) = h
END IF
prev(thread) = h
count(thread) = count(thread) + 1

END DO

Fig. 2. Inspector code

A(...) = ...
DOALL p = 1, P

h = next(fsize + p)
DO k = 1, count(p)

A(f(h)) = ...
h = next(h)

END DO
END DOALL
... = ...A(...)...

Fig. 3. Executor code

P

...

1
2P

P

P

...

1
2P

P

2

his
1
0
0
0
1
1
2
1
2

A

A

1

2

Anext f

5
5

count

h

Fig. 4. Inspector-executor approach

An Inspector-Executor Algorithm for Irregular Assignment Parallelization 7

p executes the conflict-free computations associated with the loop iterations
contained in a set fp. Figure 4 shows a graphical description of the method. The
figure represents the linked-lists f1 and f2 of processors p1 and p2 as solid and
dashed lines, respectively. The corresponding subarrays A1 and A2 are depicted
as shaded regions within array A.

Load-balancing is preserved by splitting array A into subarrays Ap of different
size in the inspector stage. As shown in the code of Figure 2, the inspector first
computates the accumulative frequency distribution his(1 : Asize). For each
array entry A(j) with j = 1, ..., Asize, his(j) stores the sum of the number
of write references to A(1), A(2), ..., A(j). The second step consists of building
the linked lists fp by determining the list corresponding to each entry of the
subscript array f (see variable thread in Figure 2). The appropiate list is easily
computed as his(f(h))/Refs + 1, where Refs is the mean number of iterations
of the sequential loop per processor. As illustrated in Figure 4, load-balancing
is preserved because, as A1 and A2 have different sizes (7 and 3, respectively),
processors P1 and P2 are both assigned 5 iterations of the sequential loop.

Element-level dead code elimination can be implemented in the inspector-
executor model, too. In this case, the linked lists only contain the last iteration
at which array elements, A(j), are modified. This difference is highlighted in
Figure 5 where, unlike Figure 4, there are dotted arrows representing the loop
iterations that are not computed. The code of the optimized inspector (the
executor does not change) is shown in Figure 6. The accumulative frequency
distribution array, his(1 : Asize), contains the number of array entries in the
range A(1), A(2), ..., A(j) that are modified during the execution of the irregular
assignment. Note that an additional array, iter, is needed to store the last iter-
ation number at which the elements of array A are modified. Finally, the phase
that computes the linked lists is rewritten accordingly.

3 Performance Analysis

Memory overhead complexity of the array expansion technique proposed in [6] is
O(Asize×P) which, in practice, prevents the application of this method for large
array sizes and a high number of processors. In contrast, memory overhead of
our inspector-executor method is O(max(fsize + P, Asize)). Note that the extra
memory is not directly proportional to the number of processors. In practice,
the complexity is usually O(fsize), as fsize � P , or O(Asize).

The efficiency of the parallelization techniques for irregular assignments is
determined by the properties of the irregular access pattern. In our analysis, we
have considered the following parameters proposed in [15] for the paralleliza-
tion of irregular reductions: degree of contention (C), number of loop iterations
referencing an array element; sparsity (SP), ratio of different elements referenced
in the loop (Aupdated) and the array size; connectivity (CON), ratio of the num-
ber of loop iterations and the number of distinct array elements referenced in
the loop; and adaptivity or reusability (R), the number of times that an access
pattern is reused before being updated.

8 M. Arenaz, J. Touriño, and R. Doallo

P

...

1
2P

P

P

...

1
2P

P

Anext f

count
4
3

iter

A

A

1

2

1

his
1
0
0
0
1
1
1
1
1

6
12
0
0
0

10
16

h

19

Fig. 5. Inspector-executor approach when dead code elimination is applied

! Accumulative frequency distribution
iter(1 : Asize) = 0
his(1 : Asize) = 0
DO h = 1, fsize

iter(f(h)) = h
his(f(h)) = 1

END DO
DO h = 2, Asize

his(h) = his(h) + his(h − 1)
END DO

! Computation of the linked lists
Refs = (his(Asize)/P) + 1
count(1 : P) = 0
DO h = 1, Asize

IF (iter(h).gt.0) THEN
thread = (his(h)/Refs) + 1
IF (count(thread).eq.0) THEN

next(fsize + thread) = iter(h)
ELSE

next(prev(thread)) = iter(h)
END IF
prev(thread) = iter(h)
count(thread) = count(thread) + 1

END IF
END DO

Fig. 6. Inspector when dead code elimination is applied

An Inspector-Executor Algorithm for Irregular Assignment Parallelization 9

Unlike the array expansion approach, the inspector-executor technique takes
advantage of the adaptive nature of irregular applications. The computational
overhead is associated with the inspector stage because the executor is fully
parallel (it performs conflict-free computations). In static codes, the inspector
overhead is negligible because it is computed only once and then reused during
the program execution (R → ∞). Thus, as the parallel execution time can be
accurately approximated by the time of the executor, the efficiency E → 1 as
reusability R increases. In dynamic codes, the inspector is recomputed periodi-
cally. Supposing that the access pattern changes every time the executor is run
(R = 0), a lower bound of the efficiency is

E =
#iters ts

P (T INSP
s + #iters

P ts)
=

#iters ts
PT INSP

s + #iters ts
(1)

where ts is the execution time of one iteration of the sequential irregular loop,
T INSP

s represents the execution time of the sequential inspector, and #iters is
the number of loop iterations actually executed: fsize when dead-code elimina-
tion is not applied, and Aupdated when dead-code is applied. The execution time
of the parallel irregular assignment is given by Tp = T INSP

s + #iters
P ts.

As a result, the efficiency of the inspector-executor approach for any R is
bounded as follows:

fsize ts
PT INSP

s + #iters ts
≤ E ≤ 1 (2)

Lower efficiencies are obtained as R decreases because the irregular access
pattern changes more frequently. From now on we will assume a fixed array size
Asize. When dead code is not applied, T INSP

s increases as fsize raises (if SP is
constant, CON and fsize raise at the same rate). Thus, a higher lower bound is
achieved if the time devoted to useful computations (fsizets) grows faster than
the computational overhead (PT INSP

s). Supposing that SP is constant, when
dead code elimination is applied, the lower bound does not change because both
useful computations (Aupdatedts) and overhead T INSP

s remain constant as fsize

raises.
The inspector-executor method presented in this paper preserves load-balan-

cing, the exception being the case in which dead code elimination is not applied
and the access pattern contains hot spots, i.e. array entries where most of the
computation is concentrated (SP → 0 and C → ∞). On the other hand, the
array expansion approach may unbalance workload if dead code elimination is
applied. This is because as rhs(h) (see Figure 1) is computed during the re-
duction operation that finds the partial result corresponding to the highest it-
eration number, it is only computed for Aupdated array elements. As a result,
workload will be unbalanced if computations associated with modified elements
are not uniformly distributed among processors. In other words, load-balancing
is achieved if SP → 1. Otherwise, the array expansion approach does not as-
sure load-balancing because the contention distribution C of the irregular access
pattern is not considered in the the mapping of computations to processors.

10 M. Arenaz, J. Touriño, and R. Doallo

(a) Poor load-balancing.

(b) Medium load-balancing.

(c) Uniform distribution.

Fig. 7. Irregular access patterns

4 Performance Evaluation

In this section we present experimental results to compare the performances of
our technique and the array expansion method; different parameter combina-
tions that characterize irregular assignments are considered. The target machine
was a SGI Origin2000 cc-NUMA multiprocessor. OpenMP [9] shared memory
directives have been used in the parallel implementation.

4.1 Experimental Conditions

In our experiments, we have considered the parameters degree of contention (C),
sparsity (SP), connectivity (CON) and reusability (R), defined in Section 3. As
case study, we use the generic convex polygon scan conversion [3], a well-known
rasterization algorithm from computer graphics. This algorithm presents output
dependences that arise from the depiction of a set of polygons, which compose
an image/scene, on a display buffer, A. A typical size for the display buffer
is Asize = 512 × 512 = 262, 144 pixels. We have also considered three access
patterns that represent typical cases in which the scan conversion is used (see
Figure 7): a pattern with poor load-balancing that represents an scene where
all the objects are displayed on a region of the buffer (SP = 0.36, array ele-
ments with C > 0 are confined in a specific region); a second pattern presents
medium load-balancing that is associated with an image where most objects
are concentrated on several regions of the display (SP = 0.30, array elements
with C > 0 are uniformly distributed along the array, but there exist several
regions with a higher C); and a third pattern that is characterized by uniformly
distributed objects (SP = 0.32). We have considered 5, 000, 10, 000 and 20, 000
polygons to cover a reasonable range typically found in rasterization. Assuming
a fixed mean number of 20 pixels per polygon, the total number of references

An Inspector-Executor Algorithm for Irregular Assignment Parallelization 11

(i.e. loop iterations, fsize) to the array A is 100, 000 (CON ≈ 1.20), 200, 000
(CON ≈ 2.41) and 400, 000 (CON ≈ 4.81), respectively. The experimental re-
sults presented in the following sections were obtained by fixing Asize = 262, 144
and SP ≈ 0.33, on average. As a result, conclusions can be stated in terms of
CON and fsize.

4.2 Experimental Results

When element-level dead code elimination is not applied, computational load
is measured as the maximum number of loop iterations that is assigned to the
processors. Both methods preserve load-balancing by assigning approximately
fsize/P iterations to each processor, P being the number of processors. Figures 8
and 9 present execution times and speed-ups for different CON and R values.
The access pattern, which is defined in terms of SP and C, is not relevant in this
case. Execution times increase as CON raises because CON is related to the
amount of computational load assigned to processors; it does not affect workload
distribution. Note that memory overhead O(Asize×P) prevents the execution of
the array expansion approach on more than 15 processors, which is a drawback
if a high number of processors is needed.

The speed-ups of the array expansion approach (dotted lines) increase as
CON raises (this method does not take advantage of reusability) because the
computational overhead of this method mainly depends on the reduction ope-
ration that determines the value of each array element A(j), j = 1, ..., Asize,
by combining the partial results computed by the processors (Asize and SP
are constants). In the figure, speed-ups increase approximately 35% on 15 pro-
cessors when CON is doubled for Asize = 262, 144 and SP ≈ 0.33. In con-
trast, the speed-ups of our inspector-executor technique (shaded region) depend
on CON and R. In static codes (R → ∞), efficiency is approximately 1 in
any case (solid-star line). However, in dynamic applications, the sequential in-
spector imposes an upper limit on the maximum achievable speed-up (see Sec-
tion 3). The curve of speed-ups for totally dynamic codes is a lower bound of
the speed-up of the inspector-executor approach (see Eq. (2)). The lower bound
raises when CON is increased (solid lines with R = 0) because the time de-
voted to useful computations grows faster than the computational overhead. In
particular, the increment is approximately 6% on 32 processors when CON is
doubled. Lower speed-ups are obtained as R decreases because the access pat-
tern has to be rescanned a higher number of times during the execution of the
program.

4.3 Results with Dead Code Elimination

The generic scan conversion algorithm depicts all the polygons that represent
an image on the display buffer although, at the end, only the visible regions
of the polygons remain on the display. As a result, computational resources
are consumed in the depiction of invisible polygons. When element-level dead
code elimination is applied, only the visible regions of the polygons are printed

12 M. Arenaz, J. Touriño, and R. Doallo

5 10 15 20 25 30

10
0

10
1

Processors

E
xe

cu
tio

n
tim

e
(s

ec
co

nd
s)

Array expansion (CON=1.20)
Array expansion (CON=2.41)
Array expansion (CON=4.81)
Inspector−Executor (CON=1.20, R infinity)
Inspector−Executor (CON=2.41, R infinity)
Inspector−Executor (CON=4.81, R infinity)

Fig. 8. Execution times

5 10 15 20 25 30
0

5

10

15

20

25

30

Processors

S
pe

ed
−

up

Array expansion (CON=1.20)
Array expansion (CON=2.41)
Array expansion (CON=4.81)
Inspector−Executor (CON=1.20, R=0)
Inspector−Executor (CON=2.41, R=0)
Inspector−Executor (CON=4.81, R=0)
Inspector−Executor (R infinity)

Fig. 9. Speed-ups

on the display buffer, with the corresponding saving of resources. In this case,
computational load is measured as the maximum number of array elements that
are computed by the processors. Figure 10 represents the computational load
corresponding to the access pattern with poor load-balancing (SP = 0.36 and
C = 0 for large subarrays of A) when dead code elimination is applied. Unlike
our inspector-executor technique (black bars), the array expansion method (gray

An Inspector-Executor Algorithm for Irregular Assignment Parallelization 13

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

10
x 10

4

Processors

M
ax

im
um

 n
um

be
r

of
 a

rr
ay

 e
le

m
en

ts

Inspector−executor (poor, SP=0.36)
Array expansion (poor, SP=0.36)

Fig. 10. Computational load when dead code elimination is applied

5 10 15 20 25 30

10
−1

10
0

10
1

Processors

E
xe

cu
tio

n
tim

e
(s

ec
co

nd
s)

Array expansion (poor, SP=0.36)
Array expansion (medium, SP=0.30)
Array expansion (uniform, SP=0.32)
Inspector−Executor (poor, SP=0.36, R infinity)
Inspector−Executor (medium, SP=0.30, R infinity)
Inspector−Executor (uniform, SP=0.32, R infinity)

Fig. 11. Execution times when dead code elimination is applied

bars) presents load-unbalancing because array elements A(j) are assigned to
processors independently of the contention distribution C.

Note that workload depends on the distribution of modified array elements
(SP and C), while it depends on CON if dead code elimination is not applied.
Figures 11 and 12 show execution times and speed-ups when dead code elimina-
tion is applied. The parameter SP is ≈ 0.33 for all the access patterns described
in Section 4.1 because load-balancing increases in the array expansion approach

14 M. Arenaz, J. Touriño, and R. Doallo

5 10 15 20 25 30
0

5

10

15

20

25

30

Processors

S
pe

ed
−

up

Array expansion (poor, SP=0.36)
Array expansion (medium, SP=0.30)
Array expansion (uniform, SP=0.32)
Inspector−Executor (poor, SP=0.36, R=0)
Inspector−Executor (medium, SP=0.30, R=0)
Inspector−Executor (uniform, SP=0.32, R=0)
Inspector−Executor (R infinity)

Fig. 12. Speed-ups when dead code elimination is applied

as SP → 1. The inspector-executor method outperforms the array expansion
technique which, in addition, is highly sensitive to the contention distribution of
the access pattern.

5 Conclusions

A scalable method to parallelize irregular assignment computations is described
in this work. Unlike previous techniques based on array expansion, the method
uses the inspector-executor model to reorder computations so that load-balancing
is preserved and data write locality is exploited.

Performance evaluation shows that our method outperforms the array ex-
pansion approach either using dead code elimination or not. Furthermore, the
applicability of array expansion is limited by its memory requirements in prac-
tice. The inspector-executor model is appropriate to develop parallelization tech-
niques that take advantage of the adaptive nature of irregular applications.

Acknowledgements

We gratefully thank Complutense Supercomputing Center in Madrid for pro-
viding access to the SGI Origin 2000 multiprocessor. This work was supported
by the Ministry of Science and Technology of Spain and FEDER funds under
contract TIC2001-3694-C02-02.

An Inspector-Executor Algorithm for Irregular Assignment Parallelization 15

References

1. Arenaz, M., Touriño, J., Doallo, R.: Irregular Assignment Computations on cc-
NUMA Multiprocessors. In Proceedings of 4th International Symposium on High
Performance Computing, ISHPC-IV, Kansai Science City, Japan, Lecture Notes in
Computer Science, Vol. 2327 (2002) 361–369

2. Arenaz, M., Touriño, J., Doallo, R.: A GSA-Based Compiler Infrastructure to Ex-
tract Parallelism from Complex Loops. In Proceedings of 17th ACM International
Conference on Supercomputing, ICS’2003, San Francisco, CA (2003) 193–204

3. Glassner, A.: Graphics Gems. Academic Press (1993)
4. Gutiérrez, E., Plata, O., Zapata, E.L.: Balanced, Locality-Based Parallel Irregular

Reductions. In Proceedings of 14th International Workshop on Languages and
Compilers for Parallel Computing, LCPC’2001, Cumberland Falls, KY (2001)

5. Han, H., Tseng, C.-W.: Efficient Compiler and Run-Time Support for Parallel
Irregular Reductions. Parallel Computing 26(13-14) (2000) 1861–1887

6. Knobe, K., Sarkar, V.: Array SSA Form and Its Use in Parallelization. In Pro-
ceedings ACM SIGACT-SIGPLAN Symposium on the Principles of Programming
Languages (1998) 107–120

7. Lin, Y., Padua, D.A.: On the Automatic Parallelization of Sparse and Irregu-
lar Fortran Programs. In Proceedings of 4th Workshop on Languages, Compilers,
and Run-Time Systems for Scalable Computers, LCR’98, Pittsburgh, PA, Lecture
Notes in Computer Science, Vol. 1511 (1998) 41–56

8. Mart́ın, M.J., Singh, D.E., Touriño, J., Rivera, F.F.: Exploiting Locality in the
Run-time Parallelization of Irregular Loops. In Proceedings of 31st International
Conference on Parallel Processing, ICPP 2002, Vancouver, Canada (2002) 27–34

9. OpenMP Architecture Review Board: OpenMP: A Proposed Industry Standard
API for Shared Memory Programming (1997)

10. Rauchwerger, L., Padua, D.A.: The LRPD Test: Speculative Run-Time Paralleliza-
tion of Loops with Privatization and Reduction Parallelization. IEEE Transactions
on Parallel and Distributed Systems 10(2) (1999) 160–180

11. Saad, Y.: SPARSKIT: A Basic Tool Kit for Sparse Matrix Computations.
http://www.cs.umn.edu/Research/darpa/SPARSKIT/sparskit.html (1994)

12. Turek, S., Becker, C.: Featflow: Finite Element Software for the Incompressible
Navier-Stokes Equations. User Manual. http://www.featflow.de (1998)

13. Wolfe, M.J.: Optimizing Supercompilers for Supercomputers. Pitman, London and
The MIT Press, Cambridge, Massachussets (1989)

14. Xu, C.-Z., Chaudhary, V.: Time Stamp Algorithms for Runtime Parallelization of
DOACROSS Loops with Dynamic Dependences. IEEE Transactions on Parallel
and Distributed Systems 12(5) (2001) 433–450

15. Yu, H., Rauchwerger, L.: Adaptive Reduction Parallelization Techniques. In Pro-
ceedings of the 14th ACM International Conference on Supercomputing, Santa Fe,
NM (2000) 66–77

Multi-grain Parallel Processing of
Data-Clustering

on Programmable Graphics Hardware

Hiroyki Takizawa1 and Hiroaki Kobayashi2

1 Graduate School of Infortmation Sciences, Tohoku University,
Aoba, Aramaki-aza, Aoba-ku, Sendai 980-8578 Japan

2 Information Synergy Center, Tohoku University,
Aoba, Aramaki-aza, Aoba-ku, Sendai 980-8578 Japan

{tacky, koba}@isc.tohoku.ac.jp

Abstract. This paper presents an effective scheme for clustering a huge
data set using a commodity programmable graphics processing unit
(GPU). Due to GPU’s application-specific architecture, one of the cur-
rent research issues is how to bind the rendering pipeline with the data-
clustering process. By taking advantage of GPU’s parallel processing
capability, our implementation scheme is devised to exploit the multi-
grain single-instruction multiple-data (SIMD) parallelism of the near-
est neighbor search, which is the most computationally-intensive part
of the data-clustering process. The performance of our scheme is dis-
cussed in comparison with that of the implementation entirely running
on CPU. Experimental results clearly show that the parallelism of the
nearest neighbor search allows our scheme to efficiently execute the data-
clustering process. Although data-transfer from GPU to CPU is generally
costly, acceleration by GPU is significant to save the total execution time
of data-clustering.

1 Introduction

Data clustering [1] is to group similar data units in a database, and is essential
across a wide variety of research fields and their applications [2, 3, 4]. Iterative
refinement clustering algorithms [5] are generally applied to finding appropriate
clusters of a given data set. However, one severe problem is that the computa-
tional cost of such algorithms increases with the data set size and the dimension.
For the purpose of reducing the cost for massive data clustering, therefore, many
approaches to parallel data clustering have been proposed mainly using multi-
processors and/or special hardware [6, 7, 8, 9].

We present an effective implementation of k-means clustering [10] on a com-
modity programmable graphics processing unit (GPU), which is used as a power-
ful SIMD-parallel coprocessor. GPU’s parallel processing elements and dedicated
high-bandwidth memory can drastically accelerate SIMD-parallel and streaming
tasks even for non-graphics applications(e.g. [11, 12]). In addition, GPU has al-
ready become commonplace even in a low-end PC. Consequently, our scheme

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 16–27, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Multi-grain Parallel Processing of Data-Clustering 17

can significantly improve the computational efficiency of data-clustering, not
requiring neither an expensive multiprocessor system nor inflexible dedicated
hardware.

The GPU programming model is not universally applicable to any algorithm
due to the lack of random access writes and conditionals. Our scheme hence di-
vides the k-means algorithm into two parts. One part, called the nearest neighbor
search, that involves huge amounts of data-parallelism without complicated con-
trol flows is executed on GPU. The other that needs random access memory
writes and conditional branches is executed on CPU for effective implementa-
tion. Since the majority of the total execution time is spent for searching for the
nearest cluster centroid from a data unit, accelerating the search by GPU be-
comes remarkable, resulting in an effective reduction in the computational cost
of the k-means algorithm.

Bohn has applied graphics hardware to accelerate the self-organizing map,
which is one of artificial neural networks applicable to data clustering [13]. How-
ever, since only non-programmable GPUs were available at that time, his im-
plementation could not fully utilize the GPU performance. With a simple but
effective GPU implementation, therefore, this paper examines the potential of
GPU programming for data clustering.

The outline of this paper is as follows. In Section 2, we begin by briefly de-
scribing the programmable rendering pipeline of recent GPUs. Section 3 reviews
k-means clustering algorithms. Section 4 presents our scheme to accelerate a
k-means algorithm by dint of GPUs. In Section 5, the performance of our imple-
mentation is compared with that without using GPU. We will also discuss some
implementation issues for further performance enhancement. Section 6 gives con-
cluding remarks and our future work.

2 Graphics Processing Unit

Modern graphics hardware, such as NVIDIA’s GeForce and ATI’s RADEON, has
two kinds of programmable processors, vertex shader and fragment shader, on the
graphics pipeline to render an image. Figure 1 illustrates a block diagram of the
programmable rendering pipeline of these graphics processors. The vertex shader
manipulates transformation and lighting of vertices of polygons to transform
them into the viewing coordinate system. Polygons projected into the viewing
coordinate system are then decomposed into fragments each corresponding to a
pixel on the screen. Subsequently, color and depth of a fragment is computed by
the fragment shader. Finally, composition operations such as tests using depth,
alpha and stencil buffers are applied to the outputs of the fragment shader to
determine the final pixel colors to be written to the frame buffer.

It is emphasized here that vertex and fragment shaders are developed to
utilize multi-grain parallelism in the rendering processes: the coarse-grain ver-
tex/fragment level parallelism and the fine-grain vector component level par-
allelism. To exploit the coarse-grain parallelism, GPUs can operate individual
vertices and fragments in parallel. That is, fragment shaders (vertex shaders) of

18 H. Takizawa and H. Kobayashi

CPU & Main Memory

GPU

Vertex Shader

Polygon assembly/Rasterization

Vertex translation and lighting

Video MemoryFragment Shader

Per-fragment operation/Texturing
Texture images

Composition

Geometric Vertex Data

Projected Objects

Fragment Data

Fragment Color and Depth

Image

C
o

n
s
ta

n
t R

e
g

is
te

r C
o

n
fig

u
ra

tio
n

Fetch

R
e

a
d

in
g

 / W
ritin

g

Copy

Fig. 1. Overview of a programmable rendering pipeline

recent GPUs have several processing units for parallel-processing multiple frag-
ments (vertices). For example, NVIDIA’s latest GPU has 16 processing units in
the fragment shader and therefore can compute colors and depths of 16 frag-
ments at the same time[14]. On the other hand, to exploit the fine-grain paral-
lelism involved in all vector operations, they have SIMD instructions that can
simultaneously operate on four 32-bit floating-point values within a 128-bit reg-
ister. For example, one of the powerful SIMD instructions, the “multiply and
add” (MAD) instruction, performs a component-wise multiply of two registers
each storing four floating-point components and then does a component-wise
add of the product to another register. Thus, the MAD instruction performs
eight floating-point operations in one cycle.

GPU’s amazing evolution on both computational capability and functionality
extends application of GPUs to the field of non-graphics computations. Due to
its application-specific architecture, however, it does not work well universally.
To exhibit high performance for a non-graphics application, hence, we ought to
consider how to bind it to GPU’s programmable pipeline.

The most critical restriction in GPU programming for non-graphics applica-
tions is due to the restricted data flows in and between the vertex shader and the
fragment shader. Arrows in Figure 1 show typically-permitted data flows. Both
vertex and fragment shader programs have to write their outputs to write-only
dedicated registers; random access writes are not provided. This is severe im-
pediment to effective implementation of many data structures and algorithms. In

Multi-grain Parallel Processing of Data-Clustering 19

addition, the lack of loop-controls, conditionals, and branching3 is also crucial
for most of practical applications. Therefore, it is not a good idea to imple-
ment an application entirely on GPUs; if the application imposes the restriction
violation on the GPU programming model, the CPU should be used despite
time-consuming data exchange between CPU and GPU.

From the viewpoint of data accessibility, the fragment shader is superior to
the vertex shader because the fragment shader can randomly access the video
memory and fetch data as texture colors. Furthermore, the fragment shader usu-
ally has more processing units than the vertex shader, and thereby the fragment
shader is expected to exploit data-parallelism more effectively. Consequently,
this paper presents an implementation of data clustering accelerated effectively
using multi-grain parallel processing on the the fragment shader.

3 The k-Means Algorithm

In data clustering, multivariate data units are grouped according to their sim-
ilarity or dissimilarity. MacQueen used the term k-means to denote the pro-
cess of assigning each data unit to that cluster (of k clusters) with the nearest
centroid[1, 10]. That is, k-means clustering employs the Euclidean distance be-
tween data units as the dissimilarity measure; a partition of data units is assessed
by the squared error:

E[D] =
m∑

i=1

(
k

min
j=1

‖xi − yj‖2), (1)

where xi ∈ Rd, i = 1, 2, . . . , m is a data unit and yj ∈ Rd, j = 1, 2, . . . , k denotes
the cluster centroid.

Although there are a vast variety of k-means algorithms [5], for the sake of
explanation simplicity, this paper focuses on a simple and standard k-means
algorithm summarized as follows:

1. Begin with any desirable initial states, e.g. initial cluster centroids may be
drawn randomly from a given data set.

2. Allocate each data unit to the cluster with the nearest centroid. The centroids
remain fixed through the entire data set.

3. Calculate centroids of new clusters.
4. Repeat Steps 2 and 3 until a convergence condition is met, e.g. no data units

change their membership at Step 2, or the number of repetitions exceeds a
predefined threshold.

The procedure above is referred to as Forgy’s method [15] in [1]. This is essentially
equivalent to the well-known LBG algorithm in vector quantization literature,
named after its authors, Linde, Buzo, and Gray[16].

3 The next generation GPUs, e.g. NVIDIA GeForce6800, support Shader Model 3.0
that offers dynamic controls flows.

20 H. Takizawa and H. Kobayashi

At each repetition the assignment of m data units to k clusters in Step 2
requires km distance computations (and (k − 1)m distance comparisons) for
finding the nearest cluster centroids, the so-called nearest neighbor search. The
cost of each distance computation increases in proportion to the dimension of
data, i.e. the number of vector elements in a data unit, d. The nearest neigh-
bor search consists of approximately 3dkm floating-point operations, and thus
the computational cost of the nearest neighbor search increases at the rate of
O(dkm). In practical applications, the nearest neighbor search consumes most
of the execution time for k-means clustering because m and/or d often become
tremendous. However, the nearest neighbor search involves massive SIMD par-
allelism; the distance between every pair of a data unit and a cluster centroid
can be computed in parallel, and the distance computation can further be par-
allelized according to their vector components. This motivates us to implement
the distance computation on recent programmable GPUs as multi-grain SIMD-
parallel coprocessors.

On the other hand, there is no necessity to consider the acceleration of Steps
1 and 4 using GPU programming, because they require little execution time and
further include almost no parallelism. In Step 3, cluster centroid recalculation
consists of dm additions and dk divisions of floating-point values. Although most
of these calculations can be performed in parallel, conditionals and random ac-
cess writes are required for effective implementation of individually summing up
vectors within each cluster. In addition, the divisions also require conditional
branching to prevent divide-by-zero errors. Since the execution time for Step 3
is much less than that of Step 2, there is no room for performance improvement
that outweighs the overheads derived from the lack of random access writes and
conditionals in GPU programming. We think the CPU is suited for implemen-
tation of Steps 1, 3 and 4.

4 Mapping Data Clustering onto GPU and CPU

This section presents a novel implementation of the k-means algorithm. The
overview of our implementation is shown in Figure 2. The nearest neighbor search
involves multi-grain SIMD parallelism, while it is considerably time-consuming
in practical uses. In our implementation scheme, therefore, the nearest neighbor
search only is performed on GPU, and the remaining parts are on CPU. This
division of labor leads not only to better computational efficiency, but also to
easy extension of our implementation scheme to more advanced and complicated
k-means clustering(e.g. [17]) thanks to the CPU’s programming flexibility.

In our scheme, Step 1 first initializes the graphics library, and then copies all
data units and initial cluster centroids onto GPU-side video memory. In Step
2, the nearest neighbor search is performed on GPU and the computing results,
i.e. the nearest neighbor indices, are read back to CPU. According to the indices,
all cluster centroids are recalculated on CPU and then passed to GPU in Step
3. Steps 2 and 3 are alternated until the termination condition is met.

Multi-grain Parallel Processing of Data-Clustering 21

Step 1: Initialization

Step 2: Nearest Neighbor Search

Step 3: Centroid Recalculation

Dataset and

Initial Centroids

Nearest Neighbor Indices

New Centroids

CPU GPU

Fig. 2. Overview of the proposed implementation scheme

Our implementation scheme is aimed to effectively perform the nearest neigh-
bor search on GPUs used as multi-grain SIMD-parallel coprocessors. To exhibit
the high-performance of GPUs, we take advantage of two types of parallelism in
the nearest neighbor search as mentioned in Section 3. One is the coarse-grain
parallelism that all distances required for the nearest neighbor search can inde-
pendently be calculated. The other is the fine-grain parallelism that all scalar op-
erations in a vector operation can independently be done. The former parallelism
is bound to GPU’s fragment level parallel processing; each distance computation
is bound to the per-fragment operation. The fragment shader can compute multi-
ple distances in parallel, because it can simultaneously run several per-fragment
operations using its parallel processing units. The latter parallelism is bound to
GPU’s vector component level parallelism. Vector operations required for the
distance computation are effectively performed, because GPU’s SIMD instruc-
tions perform component-wise operations between two registers each storing four
floating-point components in one cycle.

In our implementation scheme, the nearest neighbor search is mapped to
multi-pass rendering of a polygon of m fragments, where the polygon is ren-
dered k times with different configuration. Figure 3 illustrates the parallel dis-
tance computation for the nearest neighbor search. Each fragment of the polygon
indicates a data unit (a circle in Figure 3(a)), and each of k rendering passes
corresponds to the distance computation from one cluster centroid (a star in
Figure 3(a)). The fragment shader program launched per fragment calculates
the distance between its own data unit and a cluster centroid in the render-
ing pass. Since GPUs can simultaneously operate multiple fragments, several
distances of the same color in Figure 3(a) are computed in parallel.

Figure 4 shows a sample assembly code of our fragment shader program and
Figure 5 illustrates how it works. A cluster centroid and its index corresponding
to the rendering pass are sent to all fragment shader programs via their input
registers, f[TEX1], f[TEX4], f[TEX5], f[TEX6], and f[TEX7]. Since these reg-
isters store four floating-point values, m fragments are processed using a unique

22 H. Takizawa and H. Kobayashi

(a) (b)

Fig. 3. Parallel distance computation. (a) distances from a cluster centroid to data
units are calculated in parallel, and the centroid index and the computed distance are
converted into the fragment color and depth. (b) the fragment color with the minimum
depth, corresponding to the index of the nearest cluster centroid, is written to the
frame buffer

!!FP1.0
TEX R0, f[TEX0].xyxx, TEX0, RECT;
ADDR R1, R0, -f[TEX4];
MADR R2, R1, R1, R2;
TEX R0, f[TEX0].xyxx, TEX1, RECT;
ADDR R1, R0, -f[TEX5];
MADR R2, R1, R1, R2;
TEX R0, f[TEX0].xyxx, TEX2, RECT;
ADDR R1, R0, -f[TEX6];
MADR R2, R1, R1, R2;
TEX R0, f[TEX0].xyxx, TEX3, RECT;
ADDR R1, R0, -f[TEX7];
MADR R2, R1, R1, R2;
DP4R o[DEPR], R2, {1,1,1,1};
MOVR o[COLR], f[TEX1].xyxx;

Fig. 4. Assembly code of fragment shader program for distance computation

16-dimensional cluster centroid in every rendering pass4. Meanwhile, texture-
mapping is used to assign a unique data unit to each fragment. By mapping a
texture image of m texels to a polygon of m fragments, each fragment is colored
by a unique texel. This means that a unique data unit consisting of four floating-
point values, i.e. RGBA, is assigned to each fragment. Multi-texturing is used to
the assign a data unit, consisting of more than four data elements, to a fragment.
The fragment shader program outputs the computed distance as the fragment
depth, and the cluster centroid index as the fragment color. They are written to

4 In this work, clustering of up to 16-dimensional vector data is considered, because
16-dimensional data clustering is often used for vector quantization of images.

Multi-grain Parallel Processing of Data-Clustering 23

f[TEX0] f[TEX1]f[TEX6]f[TEX5]f[TEX4]

Texture Coodinates

Distance Computation

Input Registers

Output Registers

Texture Images

Cluster Centroid Index

Distance

D
a

ta
 U

n
it

Fig. 5. The fragment shader program for distance computation

output registers, o[DEPR] and o[COLR], respectively. Then, the depth buffer test
compares the fragment depth with the “so far” minimum depth, and writes the
fragment color to the frame buffer only if its depth is smaller. After k rendering
passes, the color corresponding to the nearest cluster centroid remains on each
frame buffer element, as shown in Figure 3(b). Finally, the colors on the frame
buffer are copied onto CPU-side main memory for centroid recalculation.

5 Performance Evaluation

This section evaluates the performance of our implementation scheme. All of
the following results are obtained using NVIDIA GeForce5900Ultra running at
450MHz and Intel Pentium 4 3.2GHz with 3GB main memory. The operating
system is Linux whose kernel version is 2.6.6 with NVIDIA’s kernel module
1.0-6106. Our program code written in C++ uses OpenGL and NVIDIA’s ex-
tensions, and is compiled with GNU C++ compiler 3.0.4 with “-O3” options.

In this work, the performance of our implementation scheme is investigated
changing k, m, and d. The performance is assessed regarding the elapsed time
for each stage of the k-means algorithm, and is compared to that of the imple-
mentation entirely on CPU without GPU co-processing.

Figure 6 shows the total execution time required for ten repetitions of the
k-means algorithm in which no other termination condition is employed for fair
comparison. Figure 7 shows the breakdown of the total execution time of our
GPU implementation. Though the total execution times of both implementa-
tions have O(dkm) growth rates, the execution time of our scheme grows more
slowly. This means that our scheme can effectively perform the nearest neighbor
search, which dominates the total execution time as k, m, and/or d increase. The
GPU used here can perform color calculation and depth buffer test of up to four

Multi-grain Parallel Processing of Data-Clustering 25

(a) d = 4 (b) d = 8

(c) d = 12 (d) d = 16

Fig. 7. Breakdown of the execution time

In our implementation, the data transfer from CPU to GPU at each render-
ing pass is not a bottleneck of the nearest neighbor search. This is because the
large dataset has been stored in the GPU-side video memory in advance; only
the geometry data of a polygon, including texture coordinates as a cluster cen-
troid, are transferred at each rendering pass. Figure 8 depicts the experimental
results with/without NVIDIA’s vertex array range (VAR) extension that allows
our implementation to store all geometry data on GPU-side video memory in
advance. This figure clearly shows that enabling the VAR extension does not lead
to the performance improvement and results in the same performance as shown
in Figure 6. Accordingly, it is experimentally validated that our implementation
scheme can perform the nearest neighbor search without being interrupted by
the data transfer.

On the other hand, retrieving the nearest neighbor search results from the
GPU-side video memory consumes a certain part of the total execution time
especially for small data. The data retrieval from GPU-side video memory to
the main memory is still slow; this forecasts that the entire implementation
on GPUs may lead to further acceleration of the k-means clustering if GPUs
support dynamic control flows necessary for effective implementation of centroid
recalculation. Since the next generation GPUs with shader model 3.0 provide
dynamic control flows, it would become easy to implement the k-means algorithm
entirely on such GPUs. The entire implementation will be investigated in our
future work.

Multi-grain Parallel Processing of Data-Clustering 27

Aknowledgments

This research was partially supported by Grants-in-Aid for Scientific Research(B)
#14380132 and Young Scientists(B) #15700124.

References

1. Anderberg, M.: Cluster Analysis for Applications. Academic Press Inc., NY and
London (1973)

2. Kohonen, T.: Self-Organizing Maps. Springer-Verlag, New York (1995)
3. Fayyad, U., Haussler, D., Stolorz, P.: KDD for science data analysis: Issues and

examples. In: the Second International Conference on Knowledge Discovery and
Data mining (KDD-96), AAAI Press (1996)

4. Gersho, A., Gray, R.: Vector Quantization and Signal Compression. Kluwer Aca-
demic Publishers, Norwell, MA (1992)

5. Everitt, B., Landau, S., Leese, M.: Cluster Analysis. 4th edn. Oxford University
Press Inc., NY (2001)

6. Kobayashi, K., Kiyoshita, M., Onodera, H., Tamaru, K.: A memory-based parallel
processor for vectror quantization: FMPP-VQ. IEICE Trans. Electron. E80-C
(1997) 970–975

7. Abbas, H.M., Bayoumi, M.M.: Parallel codebook design for vector quantization on
a message passing MI MD architecture. Parallel Computing 28 (2002) 1079–1093

8. Parhi, K., Wu, F., Genesan, K.: Sequential and parallel neural network vector
quantizers. IEEE trans. Computers 43 (1994) 104–109

9. Manohar, M., Tilton, J.: Progressive vector quantization on a massively parallel
SIMD machine with application to multispectral image data. IEEE transactions
on Image Processing 5 (1996) 142–147

10. MacQueen, J.: Some methods for classification and analysis of multivariate observa-
tions. In: the fifth Berkley Symposium on Mathematical Statistics and Probability.
Volume 1., Berkley, the University of California Press (1967) 281–297

11. Thompson, C.J., Hahn, S., Oskin, M.: Using modern graphics architectures for
general-purpose computing: A fram ework and analysis. International Symposium
on Microarchitecture(MICRO), Turkey (2002)

12. Moreland, K., Angel, E.: The FFT on a GPU. In SIGGRAPH/Eurographics
Workshop on Graphics Hardware 2003 Proceedings (2003) 112–119

13. Bohn, C.A.: Kohonen feature mapping through graphics hardware. Computational
Intelligence and Neuroscience (1998)

14. NVIDIA Corporation: GeForce 6800 product web site (2004)
http://www.nvidia.com/page/geforce 6800.html.

15. Forgy, E.: Cluster analysis of multivariate data: Efficiency vs. interpretability of
classification. Biometrics 21 (1965) 768–769 (Abstract)

16. Linde, Y., Buzo, A., Gray, R.: An algorithm for vector quantizer design. IEEE
Transactions on Communications COM-28 (1980) 84–95

17. Patané, G., Russo, M.: The enhanced LBG algorithm. Neural Networks 14 (2001)
1219–1237

 J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 28-33, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A Parallel Reed-Solomon Decoder on the
Imagine Stream Processor1

Mei Wen, Chunyuan Zhang, Nan Wu, Haiyan Li, and Li Li

Computer School, National University of Defense Technology,
Chang Sha, Hu Nan, P. R. of China 410073

wenmei8086@163.com

Abstract. The increasing gap between processor and memory speeds is a well-
known problem in modern computer architecture. Imagine stream architecture
can solve bandwidth bottleneck by its particular memory hierarchy and stream
processing for computationally intensive applications. Good performance has
been demonstrated on media processing and partial scientific computing do-
mains. Reed-Solomon (RS) codes are powerful block codes widely used as an
error correction method. RS decoding demands a high memory bandwidth and
intensive ALUs because of complex and special processing (galois field arith-
metic), and real time requirement. People usually use specialized processor or
DSP to solve it that gains high performance but lacks flexibility. This paper
presents a software implementation of a parallel Reed-Solomon decoder on the
Imagine platform. The implementation requires complex stream programming
since the memory hierarchy and cluster organization of the underlying architec-
ture are exposed to the Imagine programmer. Results demonstrate that Imagine
has comparable performance to TI C64x. This work is an ongoing effort to
validate the stream architecture is efficient and makes contribution to extend
the application domain.

1 Introduction

RS codes[1] are powerful block codes widely used as an error correction method in
the areas such as digital communication, digital disc error correction, digital storage,
wireless data communication systems etc. A RS encoder takes a block of digital data
and adds extra “redundant” bits. And the RS decoder processes received code block
and attempts to correct burst errors that occur in transmission or storage. RS(n,k) is
defined over the finite field GF(2m). It means that the length of each block is n where
n≤2m-1 including k data symbols and (n-k) parity symbols. The decoding process uses
this parity information to identify and correct up to t errors, where t=(n-k)/2.

Imagine[4] is a prototype processor of stream architecture2 developed by Stanford
University in 2002, which is designed to be a stream coprocessor for a general pur-

1 This work was supported by the 973 Project and the 863 Project(2001AA111050) of China.
2 There are several kinds of stream architectures, the common feature is to take stream as

architectural primitives in hardware. In this paper, stream architecture is Imagine stream
architecture.

A Parallel Reed-Solomon Decoder on the Imagine Stream Processor 29

pose processor that acts as the host. It contains host interface, stream controller,
streaming memory system, microcontroller, 128k stream register file (SRF), eight
arithmetic clusters, local register file (LRF) and network interface. Each cluster con-
sists of eight functional units: 3 adders, 2 multipliers, 1 divide/square root unit, 1
communication unit and 1 local scratch-pad memory. The input of each functional
unit is provided by LRF in a cluster. The microcontroller issues VLIW instructions to
all the arithmetic clusters in a SIMD manner. The main idea of stream processing is
organizing the related data words into a record. The streams are ordered finite-length
sequences of data records of an arbitrary type (records in one stream are of the same
type). The stream model decomposes applications into a series of computation kernels
that operate on data streams. A kernel is a small program executed in arithmetic clus-
ters that is repeated for each successive element of its input streams to produce output
stream for the next kernel in the application. Imagine can be programmed at two
levels: stream-level (using StreamC) and kernel-level (using KernelC) [2, 3].

2 Imagine Implementation

The Peterson-Gorenstein-Zierler (PGZ) algorithm[5] is a popular method for RS
decoding. We parallelize and optimize the PGZ algorithm so that it can be adaptive to
Imagine’s memory hierarchy and parallel processing.

RS decoding application has natural stream features, and there is no dependence
between RS code blocks. According to the PGZ algorithm, the whole RS decoding

Fig. 1. Stream/kernel diagram and stream program structure for RS decoding

M. Wen et al. 30

process can be decomposed into four kernels: syndrome, bm, chsrh and
forney, respectively corresponding to syndrome computation, BM algorithm,
Chien search and Forney algorithm. The data flow diagram is shown in
Figure 1.Figure 1 shows that the relationship between kernels of RS decoder is a
complex producer-consumer model where streams are produced and consumed,
and four kernels are organized into a four-stage pipeline (not including
initialization).

For RS decoding algorithm, the parallelism exploited on Imagine architecture
includes instruction-level parallelism (ILP), data-level parallelism (DLP) and thread-
level parallelism (TLP).

An ILP approach to partition the RS algorithm for Imagine sends elements from a
single stream to all eight clusters. Obviously, the data between clusters is redundant.
If necessary, records are computed redundantly on all clusters. But it is the simplest
parallel approach. It minimizes serial communication blocks, and makes best use of
large computing capability of Imagine architecture. It brings waste to bandwidth,
LRF and computing capability. For those records with weak dependence, DLP is a
better parallel approach.

DLP can exploit parallelism very well and decrease the redundancy at the same
time. Here we introduce a new conception-frame. Frame is a field that consists of one
or more related records. The records in a frame are not always continuous, but the
interval is best to be integral times of cluster number. The dependence between
frames is very weak, while the data dependence in a frame is complicated so it can be
regarded as a child stream. Though input stream is the same, it is partitioned into
several independent frames in the DLP implementation. With this approach, the par-
ticular stream reference method[3] makes every cluster have different frames every
time and keeps high bandwidth throughput at the same time. The data in cluster has
little redundancy and the computing capability of ALU is utilized enough. However,
communication overhead becomes heavier because weak dependence still exists be-
tween frames of input and output stream. When the computation of each record is
very large, the communication overhead is acceptable. Thus, bm and forney of RS
algorithm are implemented in this approach. Syndrome mentioned in previous section
can also adopt this approach. However, its records have dependence, so that partition-
ing frame is difficult and the communication overhead is heavy. So ILP is a better
choice.

A third implementation of the RS decoder uses a SIMD architecture to exploit
TLP. In this implementation, each cluster receives a separate data stream and acts as a
full RS decoder. However, this approach will not be useful for applications that re-
quire only a fast real-time RS decoder because of its long latency.

The approaches above can be mixed to exploit parallelism efficiently.
During the practical design process, it is necessary to consider the parallelism of each
stream and kernel, and choose a reasonable parallel approach. More details
refer to [9].

A Parallel Reed-Solomon Decoder on the Imagine Stream Processor 31

3 Performance Evaluation3

A statistic of bandwidth requirement of memory units in each level on
Imagine and general purpose processor is in [10]. The conclusion is that the
memory hierarchy of stream processor and its stream processing make
bandwidth requirement distribute according to memory hierarchy (shown in figure
3(a)). The main data access is centered in LRF. It reduces the off-chip memory
reference and solves the bandwidth bottleneck, so that it can increase performance
greatly.

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

arithmetic comm SP reg uc

syndrom

bm

chsrh

forny

Fig. 2. (a)The utilization factor of main functional units (b) chsrh kernel schedule

The utilization factor of functional units of Imagine can achieve a very high level
(more than 90%) by exploiting proper ILP or DLP, as shown in Figure 2(a). At the
same time, Figure 2(a) expresses that the program features of each kernel. Then the
bottlenecks of kernels are: the reference of scratch-pad register in the syndrome ker-
nel, communication in the bm kernel and computation in the chsrh kernel, that are
accordant with the theory results. It’s helpful to extend the hardware of Imagine.
Taking the chrsh kernel as an example, the main computing feature of this kernel is
addition. Figure 2(b) shows a partial visualization of the inner loop of chsrh after
scheduling and software pipelining (unrolling loop twice, and This schedule was
created using iscd[2]). Each functional unit in an Imagine is shown across the top,
and the cycles in the kernel are down the side. Rectangles indicate an operation on the
functional unit and all the envelop-style operations are added during the scheduling
process. The times of looking up tables are 16, which are accordant with the opera-
tions of SP unit in scratch-pad (SP) register shown in the figure. Addition units are
almost filled and the multiplier and divide unit almost not used are spare. High local
bandwidth supports the computation units to run with full loads.

For comparison, we take TMS320C67x as a reference of general purpose
processor and TMS320C64x as a reference of special purpose processor because of
instruction GMPY4 for RS decoding. The TI DSP algorithm is similar to the Imagine

3 All the data of TI DSP in this paper are obtained by CCS2 in the -o3 flag, fast simulator. The

RS decoding codes are provided by TI Corporation[5] and the C code is not optimized. All
the data of Imagine in this paper are obtained by Imagine simulator ISIM.

M. Wen et al. 32

version. Figure 3(b) presents that the running time (not including initial time) of each
module on different chip simulators for RS (204,188) which is widely used for ADSL
modem. Because Galois field multiply is the majority of the whole computation of RS
decoding, the execution difference of Galois field multiply in different processors is
the key of performance gap. As a result, the performance gap between general proc-
essor and special processor are very clear. The Imagine has comparable performance
to C64x.

0.1

1

10

100

1000

Peak RS

memory

SRF

LRF

1

10

100

1000

10000

100000

Syndrome BM chien Forney

c6711 C code
c64x C code
c64x assembly optimizer
Imagine StreamC/KernelC code

Fig. 3. (a)Bandwidth hierarchy (GB/s) (b) Performances for RS (204,188) (cycles)

4 Conclusion

This paper discusses how to develop an efficient implementation of a complete RS
decoder solution on the Imagine platform and compare the experimental results with
several TI DSPs. We can find that the benefits that memory hierarchy of stream archi-
tecture and stream processing bring to stream applications are significant. It is a
bandwidth-effect architecture which supports a large number of ALUs. This work has
shown that stream processing is applicable to RS decoding.

Researches show if application could be expressed in streams (data stream
couldn’t be reused once flowing, there is perfect producer and consumer model) is
very important to make use of stream architecture’s advantage. Typical stream appli-
cations including media processing, RS decoding, network processing and software
defined radios have native stream feature, so they are best suited for stream architec-
ture. Some classes of scientific problems are well-suited for stream processor[6].
However, Imagine processor doesn’t achieve high performance for application not
well-suited for its architecture, like transitive closure[7]. Its complex programming is
another shortcoming. Programmers need to organize data into stream, and write
program at two levels. They need to, and pay more attention because of the visible
memory hierarchy. The following work is going on extending the domains of stream
application, and researching on stream architecture[8] and stream scheduling deeply.

References

1. Shu Lin, D.J.Costello, Error Control Coding Fundamentals and applications, 1983
2. Peter Mattson et al, Imagine Programming System Developer’s Guide, http://cva.stanford.

edu, 2002.
3. Beginner’s guide to Imagine Application Programming, http://cva.stanford.edu, March

2002.

A Parallel Reed-Solomon Decoder on the Imagine Stream Processor 33

4. Imagine project, http://cva.stanford.edu/Imagine/project/.
5. TI, Reed Solomon Decorder: TMS320C64x Implementation, 2000.
6. Jung ho Ahn, W.J.Dally et al, Evaluating the Imagine Stream Architecture, ISCA2004.
7. Gorden griem, Leonid oliker, Transitive Closure on the Imagine Stream Processor, 5th

workshop on media and streaming processors, San Diego, CA, December 2003.
8. Mei Wen, Nan Wu, Chunyuan Zhang et al, Multiple-dimension Scalable Adaptive Stream

Architecture, In: Proc of Ninth Asia-pacific Computer System Architecture Conference,
Springer’s LNCS 3189, 2004. 199~211

9. Nan Wu, Mei Wen, et al, Programming design patterns for the Imagine stream architec-
ture, 13th National Conference on Information Storage Technology, Xi’an, China, 2004

10. Mei Wen, Nan Wu et al, Research of Stream Memory Hierarchy, 13th National Conference
on Information Storage Technology, Xi’an, China, 2004

Effective Nonblocking MPI-I/O in Remote I/O
Operations Using a Multithreaded Mechanism

Yuichi Tsujita

Department of Electronic Engineering and Computer Science,
Faculty of Engineering, Kinki University,

Umenobe, Takaya, Higashi-Hiroshima, Hiroshima 739-2116, Japan
tsujita@hiro.kindai.ac.jp

Abstract. A flexible intermediate library named Stampi realizes seam-
less MPI operations on interconnected parallel computers. Dynamic pro-
cess creation and MPI-I/O operations both inside a computer and among
computers are available with it. MPI-I/O operations to a remote com-
puter are realized by MPI-I/O processes of the Stampi library which are
invoked on a remote computer using a vendor-supplied MPI-I/O library.
If the vendor-supplied one is not available, a single MPI-I/O process is
invoked on a remote computer, and it uses UNIX I/O functions instead of
the vendor-supplied one. In nonblocking MPI-I/O functions with multi-
ple user processes, the single MPI-I/O process carries out I/O operations
required by the processes sequentially. This results in small overlap of
computation by the user processes with I/O operations by the MPI-I/O
process. Therefore performance of the nonblocking functions is poor with
multiple user processes. To realize effective I/O operations, a Pthreads
library has been implemented in the MPI-I/O mechanism, and multi-
threaded I/O operations have been realized. The newly implemented
MPI-I/O mechanism has been evaluated on inter-connected PC clusters,
and higher overlap of the computation with the I/O operations has been
achieved.

1 Introduction

MPI [1, 2] is the de facto standard in parallel computation, and almost all com-
puter vendors have provided their own MPI libraries. But they do not support
MPI communications among different computers. To realize such mechanism,
Stampi [3] was developed.

Recently, data-intensive scientific applications require a parallel I/O system,
and a parallel I/O interface named MPI-I/O was proposed in the MPI-2 stan-
dard [2]. Although it has been implemented in several kinds of MPI libraries for
I/O operations inside a computer (local MPI-I/O), MPI-I/O operations to a re-
mote computer (remote MPI-I/O) have not been supported. Stampi-I/O [4] was
developed as a part of the Stampi library to realize this mechanism. Users can
execute remote MPI-I/O operations using a vendor-supplied MPI-I/O library

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 34–43, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Effective Nonblocking MPI-I/O in Remote I/O Operations 35

with the help of its MPI-I/O processes which are invoked on a remote com-
puter. When the vendor-supplied one is not available, a single MPI-I/O process
is invoked, and it uses UNIX I/O functions instead of the vendor-supplied one
(pseudo MPI-I/O method) [5].

Nonblocking MPI-I/O operation has advantage in performance compared
with blocking one because overlap of computation and I/O operations is available
in the nonblocking one. Unfortunately, there is not significant performance ad-
vantage in Stampi’s nonblocking MPI-I/O functions compared with performance
of its blocking ones due to a single task of the MPI-I/O process when UNIX I/O
functions are used. To improve the performance, a Pthreads library [6] has been
introduced in the MPI-I/O mechanism.

In the following sections, outline, architecture, and preliminary performance
results of the MPI-I/O mechanism are described.

2 Implementation of a Pthreads Library in Stampi

A single MPI-I/O process of the Stampi library is invoked on a remote computer
by user processes, and it uses UNIX I/O functions when a vendor-supplied MPI-
I/O library is not available on the computer. Besides, an I/O request of a col-
lective MPI-I/O function is translated into a combination of non-collective I/O
requests, and those requests are operated sequentially by the MPI-I/O process.
These architectural constraints result in poor overlap of computation by user pro-
cesses in the foreground with I/O operations by the MPI-I/O process in the back-
ground. Thus, performance of its nonblocking functions is poor, typically in the
collective case. To improve the performance, a LinuxThreads library [7], which
is one of the Pthreads libraries, has been introduced in the MPI-I/O mechanism
on a Linux PC cluster. With this implementation, the overlap ratio has been im-
proved, and an execution time which is required to issue nonblocking I/O function
has been minimized. Rest of this section describes the details of the mechanism.

2.1 Architecture of an MPI-I/O Mechanism

Architectural view of the MPI-I/O mechanism in Stampi is depicted in Figure 1.
In an interface layer to user processes, intermediate interfaces which have MPI
APIs (a part of a Stampi library) were implemented to relay messages between
user processes and underlying communication and I/O systems.

Stampi supports both local and remote MPI-I/O operations with the same
MPI-I/O APIs. In local MPI-I/O operations, a vendor-supplied MPI-I/O library
is used. If the library is not available, UNIX I/O functions are used. While
remote MPI-I/O operations are carried out with the help of MPI-I/O processes
on a remote computer. I/O requests from the user processes are translated into
message data, and they are transfered to the MPI-I/O processes. Bulk data
are also transfered via the same communication path. The MPI-I/O processes
play remote MPI-I/O operations using a vendor-supplied MPI-I/O library. If the
vendor-supplied one is not available, the pseudo MPI-I/O method is used.

36 Y. Tsujita

 Computation nodes

 Frontend node

 Router
 process
 (Stampi)

 TCP/IP

Disk

 Router
 process
 (Stampi)

 TCP/IP

Disk

 Computation nodes

< Local computer > < Remote computer >

 Vendor
MPI

 User process

 TCP/IP UNIX I/O

 Intermediate interfaces
(Stampi)

 TCP/IP UNIX I/O

 MPI-I/O process
(Stampi)

 Intermediate interfaces
(Stampi)

 Vendor
MPI

Fig. 1. Architecture of an MPI-I/O mechanism in Stampi

2.2 Execution Mechanism

Stampi supports both interactive and batch modes in executing an MPI pro-
gram. Here, execution method of remote MPI-I/O operations with an interac-
tive system which is illustrated in Figure 2 is explained. Firstly, an MPI start-up

 Server node

MPI-I/O
process

2. fork

3. start-up

: Router process

: Stampi starter

9. fork
7. remote
 start-up

1. issue
 a start-up command

5. connect
6. spawn

10. connect
11. connect

12. ack

Computation nodes

user
process 8. start-up

: MPI starter (e.g. mpirun)

4. start-up

Local computer Remote computer

Disk

Fig. 2. Execution mechanism of remote MPI-I/O operations from a PC cluster to a
remote computer

process (MPI starter) and a router process are initiated by a Stampi start-up
command (Stampi starter). Then the MPI starter initiates user processes. When
they call MPI File open(), the router process kicks off another Stampi starter
process on a remote computer with the help of a remote shell command (rsh or
ssh). Secondly, the starter kicks off an MPI-I/O process, and it opens a specified
file. Besides, a router process is invoked on an IP-reachable node if computation
nodes are not able to communicate outside directly. Remote MPI-I/O operations
are available via the communication path established in this strategy. After the
I/O operations, the file is closed and the MPI-I/O process is terminated when
MPI File close() is called by the user processes.

Effective Nonblocking MPI-I/O in Remote I/O Operations 37

 Main thread
 (MPI-I/O
 thread)

User
process

. . .
I/O request queue (Shared resource)

4. enqueue
7. dequeue

8. write/read

 Worker threads
 (I/O threads)

 I/O operation
 status tables

 I/O request queue
 status table

 Shared resources

queue_lock

mutex
lock_free

queue_not_empty
queue_not_full
queue_empty

.

.

.

.

< Condition values >

2. I/O requests

 Local computer

 Remote computer

1. invoke

5. awake

3. check status

6. chcek
 status

9. update
 information

10. check
 status

Fig. 3. Mechanism of a multithreaded MPI-I/O process

2.3 Mechanism of a Multithreaded MPI-I/O Process

With the help of the LinuxThreads library, multithreaded I/O operations have
been realized in an MPI-I/O process on a Linux PC cluster. Figure 3 depicts
an architecture of the mechanism. Once an MPI-I/O process is created, worker
threads (I/O threads) are invoked by a main thread (MPI-I/O thread) of it using
pthread create(), and an I/O request queue is prepared. As this system is a
prototype, the number of the threads is specified in a program code of it. Capa-
bility to specify the number in a user program is planed as a future work. Later,
an information table for the I/O request queue (I/O request queue status table)
and I/O operation status tables are created, and parameters associated with the
I/O operations (I/O request, message data size, I/O status values, and so on)
are stored in those tables. As the both tables are shared resources, mutual exclu-
sion using pthread mutex lock()/pthread mutex unlock() is done during the
I/O operations. Besides, condition values, queue not empty, queue not full,
and queue empty, are prepared to manage the I/O request queue. When I/O re-
quests are sent from user processes to the MPI-I/O process, those requests and
related parameters are enqueued at first by the MPI-I/O thread. Secondly, the
MPI-I/O thread awakes all the I/O threads using pthread cond broadcast(),
and each I/O thread receives a signal by pthread cond wait(). One of the I/O
threads dequeues an I/O request and carries out a requested I/O operation and
other I/O threads go to sleep state. After the I/O operation, it updates the
values in the corresponding I/O status table and goes to sleep state. Comple-
tion of the I/O operation is detected by the MPI-I/O thread with checking the
associated I/O operation status table.

When MPI File close() is issued by the user processes, a signal which ter-
minates all the I/O threads and the tables is sent from the MPI-I/O thread to
every I/O threads. Then the I/O request queue and the tables are deleted, and
the MPI-I/O process which consists of all the threads is terminated.

38 Y. Tsujita

As an example, mechanisms of multithreaded split collective MPI-I/O func-
tions with begin and end statements are illustrated in Figures 4 (a) and (b),
respectively. When user processes call the function with a begin statement, sev-

(a)

MPI_File_read_at_all_begin()

JMPI_Isend()
JMPI_Wait()

JMPI_Isend()
JMPI_Wait()

JMPI_Irecv()
JMPI_Wait()

JMPI_Irecv()
JMPI_Wait()

< MPI-I/O process >

1

2

parameters

returned values

. .

 . .

among
user processes

MPI_Pack()

MPI_Send()

MPI_Recv()

create I/O status table
and record information

MPI_Barrier()

MPI_Recv()

MPI_Unpack()

create I/O status table
and record information

MPI_Send()

 data
 manipulations

MPI-I/O thread I/O thread(s)

I/O
 request
queue

queue enqueue

 I/O (read())

 update
 I/O status table

< User processes >

(b)

MPI_File_read_at_all_end()

JMPI_Isend()
JMPI_Wait()

JMPI_Isend()
JMPI_Wait()

JMPI_Isend()
JMPI_Wait()

JMPI_Irecv()
JMPI_Wait()

JMPI_Irecv()
JMPI_Wait()

JMPI_Irecv()
JMPI_Wait()

< MPI-I/O process >

1

2

3

check I/O status table

delete I/O status table

MPI_Barrier()

MPI_Send()

MPI_Recv()

MPI_Recv()

MPI_Recv()

check I/O status table

MPI_Send()

MPI_Send()

delete I/O status table

MPI-I/O thread I/O thread(s)

parameters

returned values

message data

among user processes

< User processes >

Fig. 4. Mechanisms of split collective read MPI-I/O functions with (a) begin and (b)
end statements in remote MPI-I/O operations. MPI functions in solid line rectangles are
MPI interfaces of Stampi. Internally, Stampi-supplied functions such as JMPI Isend()

are called by them

eral parameters which are associated with the I/O operation including an I/O
request (message data size, rank of a user process which issues I/O request, and
so on) are packed in a user buffer using MPI Pack(). Then the buffer is transfered
to an MPI-I/O thread using MPI Send() and MPI Recv() of the Stampi library.
Inside the functions, Stampi-supplied underlying communication functions such
as JMPI Isend() are used for non-blocking TCP socket communications. After
the message transfer, the received buffer is unpacked by MPI Unpack(), and the
I/O request and other parameters are retrieved from it. Then an I/O status table

Effective Nonblocking MPI-I/O in Remote I/O Operations 39

Table 1. Specifications of PC clusters

PC cluster (I) PC cluster (II)
(DELL PowerEdge 600SC × 4) (DELL PowerEdge 1600SC × 5)

CPU Intel Pentium-4 2.4 GHz Intel Xeon 2.4 GHz (dual)
Chipset ServerWorks GC-SL ServerWorks GC-SL
Memory 1 GByte DDR SDRAM 2 GByte DDR SDRAM
Local disk 40 GByte (ATA-100 IDE) 73 GByte (Ultra320 SCSI)
Ethernet interface Intel PRO/1000 (on-board) Intel PRO/1000-XT (PCI-X board)
Linux kernel 2.4.19-1SCORE 2.4.20-20.7smp (server node)

(all nodes) 2.4.19-1SCOREsmp
(computation nodes)

Network driver Intel e1000 version 5.2.52
MPI library MPICH-SCore based on MPICH version 1.2.4
Ethernet switch NETGEAR GS108 3Com SuperStack4900

is created on the MPI-I/O process and they are stored in it. In addition, a ticket
number, which is issued to identify each I/O operation on the MPI-I/O process,
is also stored. After this operation, the ticket number and related parameters are
sent to the user processes. Then, the user processes create own I/O status table
and store them in it. On the MPI-I/O process, the queueing and de-queueing
of the I/O request and related parameters which are previously described are
carried out among the MPI-I/O thread and I/O threads.

To detect completion of the I/O operation, a split collective read function
with an end statement is called. The stored information values in the I/O status
table of each user process are retrieved, and the I/O request, ticket number, and
related parameters are sent to the MPI-I/O thread. It finds the corresponding
table which has the same ticket number, and information values associated with
the I/O operation are retrieved from the table. Finally, several parameters and
read data are sent to the user processes.

3 Performance Measurement

Performance of the MPI-I/O mechanism was measured on interconnected PC
clusters using an SCore cluster system [8]. Specifications of the clusters are sum-
marized in Table 1. As a server node of a PC cluster I acted as a computation
node, the total number of computation nodes was four. While a PC cluster II
consisted of one server node and four computation nodes. Network connections
among PC nodes of the clusters I and II were established on 1 Gbps bandwidth
network with full duplex mode via Gigabit Ethernet switches, NETGEAR GS108
and 3Com SuperStack4900, respectively. Interconnection between those switches
was also made using 1 Gbps bandwidth network with full duplex mode.

In the both clusters, an MPICH-SCore library [9] which is based on an
MPICH [10] version 1.2.4 was available, and it was used in an MPI program
which was executed on the cluster I.

40 Y. Tsujita

(a)

 0

 0.5

 1

 1.5

 2

1.0e+3 1.0e+4 1.0e+5 1.0e+6 1.0e+7 1.0e+8 1.0e+9

E
xe

cu
tio

n
tim

e
(s

)

Data size (Byte)

original (np=1)
original (np=2)
original (np=4)
thread (np=1)
thread (np=2)
thread (np=4)

(b)

 0

 1

 2

 3

 4

 5

 6

 7

1.0e+3 1.0e+4 1.0e+5 1.0e+6 1.0e+7 1.0e+8 1.0e+9

E
xe

cu
tio

n
tim

e
(s

)

Data size (Byte)

original (np=1)
original (np=2)
original (np=4)
thread (np=1)
thread (np=2)
thread (np=4)

Fig. 5. Execution times of (a) read and (b) write remote MPI-I/O operations using
original and multithreaded split collective MPI-I/O functions from a PC cluster I to a
server node of a PC cluster II, where original and thread denote I/O operations by the
original and multithreaded functions, respectively. np in the parentheses denotes the
number of user processes

A router process was not invoked in this test because each computation node
was able to communicate outside directly. Message data size was denoted as the
size of whole message data to be transfered. A message data was split evenly
among the user processes.

In performance measurement of remote I/O operations using nonblocking
MPI-I/O functions from the cluster I to the cluster II, two kinds of nonblocking
MPI-I/O functions;

– split collective MPI-I/O functions with an explicit offset value
(MPI File read at all begin()/ MPI File write at all begin()) and

– nonblocking MPI-I/O functions with a shared file pointer
(MPI File read ordered begin()/ MPI File write ordered begin()),

were evaluated. The two kinds of functions were selected for performance com-
parison between collective and non-collective cases. In each case, performance
with and without a LinuxThreads library (multithreaded and original mecha-
nisms, respectively) was measured. The multithreaded mechanism had two I/O
threads and four segments in an I/O request queue. In this test, TCP NODELAY
option was activated by the Stampi start-up command to optimize data transfer
among the two clusters.

Execution times of read and write remote split collective MPI-I/O operations
are shown in Figures 5 (a) and (b), respectively. In Figure 5 (a), execution times
of the read operations with a single user process are quite small in both the orig-
inal and the multithreaded cases because only parameters for the I/O operation
(totally 10 ∼ 30 KByte) were transfered in issuing this function. Read opera-
tion was carried out after completion of calling the function. The read operations
with two and four user processes required much long time in the original method
compared with the multithreaded method because I/O requests from the user

Effective Nonblocking MPI-I/O in Remote I/O Operations 41

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

1.0e+3 1.0e+4 1.0e+5 1.0e+6 1.0e+7 1.0e+8 1.0e+9

E
xe

cu
tio

n
tim

e
(s

)

Data size (Byte)

original (np=1)
original (np=2)
original (np=4)
thread (np=1)
thread (np=2)
thread (np=4)

(b)

 0

 1

 2

 3

 4

 5

1.0e+3 1.0e+4 1.0e+5 1.0e+6 1.0e+7 1.0e+8 1.0e+9

E
xe

cu
tio

n
tim

e
(s

)

Data size (Byte)

original (np=1)
original (np=2)
original (np=4)
thread (np=1)
thread (np=2)
thread (np=4)

Fig. 6. Execution times of (a) read and (b) write remote MPI-I/O operations using
original and multithreaded nonblocking MPI-I/O functions with a shared file pointer
from a PC cluster I to a server node of a PC cluster II, where original and thread
denote I/O operations by the original and multithreaded functions, respectively. np in
the parentheses denotes the number of user processes

processes were blocked until the MPI-I/O process finished the current I/O oper-
ation due to a single MPI-I/O task. The times of the multithreaded read method
achieved less than 12 % and 13 % of the times of the original method with more
than 512 KByte message data in the cases of two and four user processes, re-
spectively. The times for the two and four user processes in the multithreaded
case achieved less than 0.1 % of those in in the original case with a 256 MByte
data.

In Figure 5 (b), an execution time in the multithreaded case with a single
user process was 74 % of that in the original case with 256 MByte message data.
While the execution times of the multithreaded write operations were 60 % and
57 % of the times of the original ones with a 256 MByte data in the cases of two
and four user processes, respectively. In the write operations, transfer of bulk
data was also operated in addition to transfer of the parameters during calling
the nonblocking function. Besides the required time for the bulk data transfer
was dominant in the whole operation. Therefore the multithreaded method was
not able to make the execution times short as it did in the read operations.

Execution times of read and write remote nonblocking MPI-I/O operations
using a shared file pointer are shown in Figures 6 (a) and (b), respectively. In
Figure 6 (a), execution times of the read function with a single user process are
quite small in both the original and multithreaded cases because of the same
reason as denoted in the split collective read operations. Due to a single MPI-
I/O task, the original case for the two and four user processes required much
longer times than the required times in the multithreaded case. The times of
the multithreaded read ones were almost the same with respect to data sizes. In
the two and four user processes cases, the execution times in the multithreaded
case achieved less than 1 % of the times in the original case with a 256 MByte
message data.

42 Y. Tsujita

While the execution times became long with increasing the data size because
of the same reason which was mentioned in the split collective write operations.
With a 256 MByte message data, the execution times for the two and four user
processes in the multithreaded method achieved 87 % and 78 % of those in the
original one, respectively.

Comparing the collective functions with non-collective ones, execution times
in the collective write operations were longer than those in the non-collective
write ones due to synchronization among the user processes after all the data
transfer from the user processes to the MPI-I/O process in the collective case.

4 Related Work

ROMIO [11], which is an MPI-I/O implementation in MPICH, provides seamless
MPI-I/O interfaces to many kinds of file systems. Nonblocking I/O using a mul-
tithreaded library has been proposed for higher overlap of computation with I/O
operations [12]. With the help of an I/O thread which is invoked in the begin-
ning of nonblocking I/O operation, main thread is able to do next computation
without waiting completion of the I/O operation. On the other hand, Stampi
realizes seamless MPI-I/O operations among different computers. Besides, it re-
alizes MPI-I/O operations using UNIX I/O functions even if a vendor-supplied
MPI-I/O library is not available. A multithreaded MPI-I/O mechanism reported
in this paper realizes higher overlap of computation on a local computer with
I/O operations on a remote computer.

5 Summary

A multithreaded MPI-I/O mechanism using a LinuxThreads library has been
realized in the Stampi library to support effective nonblocking remote MPI-I/O
operations. In performance measurement which was carried out on intercon-
nected PC clusters, execution times for both write and read operations with
multiple user processes were shortened in the multithreaded method compared
with the times in the original one. Typically, the effect was big in the read op-
erations. Thus, the multithreaded method is effective in the nonblocking remote
MPI-I/O operations with multiple user processes. Besides, the times for the col-
lective write operations were longer than those for the non-collective write ones.
This was due to additional time required for synchronization among user pro-
cesses after all the data transfer from the user processes to an MPI-I/O process
in the collective one.

Acknowledgments

The author would like to thank Genki Yagawa, director of Center for Promotion
of Computational Science and Engineering (CCSE), Japan Atomic Energy Re-
search Institute (JAERI), for his continuous encouragement. The author would

Effective Nonblocking MPI-I/O in Remote I/O Operations 43

like to thank the staff at CCSE, JAERI, especially Toshio Hirayama, Norihiro
Nakajima, Kenji Higuchi, and Nobuhiro Yamagishi for providing a Stampi li-
brary and giving useful information.

This research was partially supported by the Ministry of Education, Culture,
Sports, Science and Technology (MEXT), Grant-in-Aid for Young Scientists (B),
15700079 and Kinki University under grant number GS14.

References

1. Message Passing Interface Forum: MPI: A message-passing interface standard.
(1995)

2. Message Passing Interface Forum: MPI-2: Extensions to the message-passing in-
terface standard. (1997)

3. Imamura, T., Tsujita, Y., Koide, H., Takemiya, H.: An architecture of Stampi:
MPI library on a cluster of parallel computers. In Recent Advances in Parallel
Virtual Machine and Message Passing Interface, Volume 1908 of Lecture Notes in
Computer Science., Springer (2000) 200–207

4. Tsujita, Y., Imamura, T., Takemiya, H., Yamagishi, N.: Stampi-I/O: A flexible
parallel-I/O library for heterogeneous computing environment. In Recent Advances
in Parallel Virtual Machine and Message Passing Interface, Volume 2474 of Lec-
ture Notes in Computer Science., Springer (2002) 288–295

5. Tsujita, Y.: Flexible intermediate library for MPI-2 support on an SCore cluster
system. In Grid and Cooperative Computing, Volume 3033 of Lecture Notes in
Computer Science., Springer (2004) 129–136

6. Institute of Electrical, Electronic Engineers: Information Technology – Portable
Operating Systems Interface – Part 1: System Application Program Interface (API)
– Amendment 2: Threads Extensions [C Languages]. (1995)

7. LinuxThreads: (http://pauillac.inria.fr/~xleroy/linuxthreads/)
8. PC Cluster Consortium: (http://www.pccluster.org/)
9. Matsuda, M., Kudoh, T., Ishikawa, Y.: Evaluation of MPI implementations on

grid-connected clusters using an emulated WAN environment. In: Proceedings of
the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid
(CCGrid 2003), 12-15 May 2003, Tokyo, Japan, IEEE Computer Society (2003)
10–17

10. Gropp, W., Lusk, E., Doss, N., Skjellum, A.: A high-performance, portable im-
plementation of the MPI Message-Passing Interface standard. Parallel Computing
22 (1996) 789–828

11. Thakur, R., Gropp, W., Lusk, E.: On implementing MPI-IO portably and with
high performance. In: Proceedings of the Sixth Workshop on Input/Output in
Parallel and Distributed Systems. (1999) 23–32

12. Dickens, P., Thakur, R.: Improving collective I/O performance using threads. In:
Proceedings of the Joint International Parallel Processing Symposium and IEEE
Symposium on Parallel and Distributed Processing. (1999) 38–45

Asynchronous Document Dissemination
in Dynamic Ad Hoc Networks

Frédéric Guidec and Hervé Roussain

Valoria Laboratory – University of South Brittany – France
{Frederic.Guidec|Herve.Roussain}@univ-ubs.fr

Abstract This paper presents a document-oriented model for information dis-
semination in dynamic ad hoc networks, such as those composed of highly mobile
and volatile communicating devices (e.g. laptops and PDAs). This model relies
on an asynchronous, peer-to-peer propagation scheme where documents can be
cached on intermediate devices, and be later sent again –either spontaneously or
on demand– in the network.

1 Introduction

Today most laptops and personal digital assistants (PDAs) feature wireless interfaces,
many of which are capable of ad hoc communication. Our work aims at fostering the de-
sign, the implementation, and the deployment of application services capable of running
specifically on devices participating in a dynamic ad hoc network, that is, a network
in which nodes are highly mobile and volatile. Node mobility in a dynamic network
is the consequence of the fact that devices are carried by users, which are themselves
mobile. Node volatility results from the fact that, since mobile devices have a low power-
budget, they are frequently switched off and on by their owners. An additional problem
with dynamic ad hoc networks is that in many realistic scenarios such networks present
themselves as disconnected networks. As a consequence, direct transmissions between
any pair of devices is not always feasible, as such transmissions require that both devices
are active simultaneously in the network, and that a connected-path can be established
between these devices at transmission time.

The problem of delivering messages in disconnected ad hoc networks has been ap-
proached several times and following different lines in the past few years. For example, a
new network architecture relying on the general principle of message switching in store-
and-forward mode has been proposed in [1]. With this approach pieces of information
are transported as so-called bundles between bundle forwarders, which are capable of
storing messages (or bundles) before they can be sent again in the network.

With Epidemic Routing [6, 4, 3], messages are buffered in mobile hosts, and random
pair-wise exchanges of messages among these hosts are expected to allow eventual
message delivery in partially-connected networks.

The service we present in this paper compares with the models proposed in the
above-mentioned papers. However it can be observed that these papers mostly address
the problem of message delivery in disconnected networks from a theoretical viewpoint:
they propose new algorithms and heuristics for delivering messages in such networks, and

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 44–48, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Asynchronous Document Dissemination in Dynamic Ad Hoc Networks 45

they report the results of simulations that are meant to demonstrate how these algorithms
should perform in realistic conditions. In contrast, our approach is more practical, since
it consists in actually implementing a service for document dissemination in ad hoc
networks, and then using this service as a building block with which application-level
services can be developed and tested in realistic experimental conditions.

2 Service Overview

The general architecture of the service we propose is shown in Figure 1. This service
is not meant to be used directly by end-users. Instead it is meant to serve as one of the
basic building blocks with which higher-level services can later be developed. Moreover
this service is document-oriented. Basically, we propose that any document sent in the
network be maintained as long as possible in a local cache by as many devices as possible,
so it can remain available for those devices that could not receive it at the time it was sent
originally. The underlying idea is that the dissemination of multiple copies of the same
document may help do with the volatility of devices, while the mobility of these devices
can itself help transport information between islands in a fragmented network. Besides
providing a caching system where documents can be maintained in mobile devices, our
service also provides facilities for document advertisement, document discovery, and
document transport between neighboring devices. For example, a device can sporadically
or periodically notify its neighbors about all or part of the documents stored in its cache.
It can also look for specific documents in its neighborhood, and either push documents
toward –or pull documents from– its neighbors.

lookup / put / get

CACHE

Producer
lookup / get lookup / put

Dispatcher

Service # 1 Service # 2 Service # 3

Production
strategies

Consumption
strategies

NETWORK

Descriptor
Request / Document Request

 Document /
Descriptor Advertisement

Descriptor advertisements
and documents

Descriptor requests
and document requests

Transfer documents

Consumer

Fig. 1. Illustration of the document caching service

Structure of Documents. In the model our service relies on, each document can be
associated a document descriptor, which provides information about its type, author,
keywords, content, etc. A document may encapsulate its own descriptor, but the de-
scriptor can also be handled separately (which means it can for example be transmitted,
edited, stored, and displayed separately). When an application-level document must be

46 F. Guidec and H. Roussain

sent in the network, it must itself be encapsulated in a transfer document, whose de-
scriptor specifies transmission parameters for this document, such as its type, origin,
and destination, as well as indications about how long and how far this document should
propagate in the network. Examples of document descriptors can be found in [5].

Caching Documents. Once a document has been received by a device, it is expected that
this document be stored for some time on this device, and possibly sent again later in the
network. Each device thus maintains a cache, whose capacity can of course be adjusted
depending on the resources available locally. Local strategies can additionally be defined
on each device in order to specify caching modalities for documents. Possible criteria for
defining such strategies are document size, type, origin, destination, lifetime, etc. The
caching service is not itself responsible for deciding how it should behave with respect to
documents. Instead, it provides interfaces (not detailed in this paper) with which higher-
level services can specify strategies regarding how one or another category of document
should be managed locally. Moreover, attributes found in a document’s descriptor can
help determine how this document should be managed by the caching service. For
example, attributes may indicate how long a document should be considered as being
valid in the network, and how often the availability of this document should be announced
in the network.

Document Producers and Consumers. Each device that participates in the dissemi-
nation of documents can play several distinct roles with respect to these documents. A
device is considered as the provider of a document if this document is stored locally (in
its cache), and if it can send this document in the network. Symmetrically, a device is
considered as being a potential consumer for a document if it can receive this document
from the network, and either use this document immediately or store this document in
its cache (or both).

Depending on circumstances, a device may play only one of these two roles, or
both roles simultaneously. The behavior of a device may actually not be the same for
all types of documents. For example the caching service may be configured so as to
accept and receive only a certain category of documents from the network. Moreover
these documents may be received and stored in the cache only for the benefit of other
local application services. The device would thus behave as a consumer for certain
documents, while refusing to disseminate these documents further. Conversely a device
may be configured so as to provide its neighbors with documents produced locally, while
refusing to consume similar documents received from the network.

Besides playing the role of a producer or consumer for a category of documents, a
device can behave either proactively or reactively (or both) with respect to each of these
roles. A device that plays the role of a document provider can behave proactively by
sending spontaneously this document in the network. It may also behave reactively by
sending a document in the network after this document has been explicitly requested.
It can of course show a mixed behavior, sending for example one document periodi-
cally (with a rather long period so as not to load the network too much), and replying
immediately to explicit requests for this document.

Asynchronous Document Dissemination in Dynamic Ad Hoc Networks 47

Similarly, a device that plays the role of a document consumer can behave either
proactively or reactively, or show both kinds of behavior simultaneously. A document
consumer can behave proactively by sending requests for this document in the network
(thus soliciting a reactive behavior from devices that possess a copy of this document).
It can also behave reactively by receiving a document from the network, and consuming
this document even if it has not been explicitly requested before.

Advertisement and Request Documents. Specific kinds of documents have been de-
fined in order to allow the advertisement, discovery, and transmission of documents
between neighboring devices. For example, an ”advertisement document” can be sent
by a device to announce that it owns one or several documents in its cache, and that it
can provide any of these documents on demand. An advertisement document is thus a
special kind of transfer document whose payload is composed of one or several docu-
ment descriptors, corresponding to the descriptors of the documents whose availability
is being announced.

Another special kind of document, called a ”request document”, can likewise be sent
by a device to ask for the transmission of a document, or that of several documents. A
request can be addressed specifically to a given device (for example after an advertise-
ment has been received from this device), or it can be sent to all or part of the devices
in the neighborhood. The payload of a request document is composed of one or sev-
eral descriptor patterns. The structure of a descriptor pattern compares with that of a
descriptor, but for all or part of the attributes that can appear in a document descriptor,
it specifies a regular expression to be applied to the corresponding attribute. A device
receiving a descriptor pattern can thus use this pattern to examine the descriptors of the
documents it maintains in its cache, and to decide which of these descriptors match the
pattern. Selected documents can then be sent in the network.

3 Implementation Details and Ongoing Work

The service for asynchronous document dissemination presented in the former section
has been implemented in Java. Documents and document descriptors are also reified
as standard Java objects. They can be transported in the network either as serialized
Java objects, or as XML-formatted documents (examples can be found in [5]). It is
worth mentioning that the code we developed can be deployed equally on a single-hop
network, or on a multi-hop network relying on algorithms for dynamic routing and
flooding.

The development of several application-level services is also under way in our lab-
oratory. These services all rely on the facilities offered by the document dissemination
service, but each of them defines its own strategy regarding what documents must be
disseminated, and in what conditions. Among these application-level services are a
peer-to-peer messaging service, a presence announcement service, and a service for the
distribution and the deployment of software packages. Details about the latter service
can be found in [2].

48 F. Guidec and H. Roussain

4 Conclusion

The service presented in this paper permits the asynchronous dissemination of documents
in dynamic ad hoc networks, such as those composed of highly mobile and volatile
communicating devices. It proposes an asynchronous, peer-to-peer, document-oriented
propagation model, where each document received by a device can be maintained in a
local cache in this device, so it can later be sent again in the network, either spontaneously,
or after a request for this document has been received from another device. This approach
is expected to help do with the volatility of devices, since it permits that documents reach
devices that are only active sporadically in the network. It is also expected to permit
information dissemination in a fragmented network, taking advantage of the mobility of
devices which can serve as carriers between disconnected parts of the network.

Acknowledgements

This work is supported by the French ”Conseil Régional de Bretagne” under contract
B/1042/2002/012/MASC.

References

1. Kevin Fall. A Delay-Tolerant Architecture for Challenged Internets. Technical Report IRB-
TR-03-003, Intel Research, Berkeley, February 2003.

2. Nicolas Le Sommer and Hervé Roussain. JASON: an Open Platform for Discovering, De-
livering and Hosting Applications in Mobile Ad Hoc Networks. In International Conference
on Pervasive Computing and Communications (PCC’04), pages 714–720, Las Vegas, Nevada,
USA, June 2004.

3. Q. Li and D. Rus. Sending Messages to Mobile Users in Disconnected Ad Hoc Wireless Net-
works. In Proceedings of the Sixth ACM/IEEE International Conference on Mobile Computing
and Networking (Mobicom 2000), pages 44–55, August 2000.

4. Anders Lindgren, Avri Doria, and Olov Schelén. Probabilistic Routing in Intermittently Con-
nected Networks. In Proceedings of the Fourth ACM International Symposium on Mobile Ad
Hoc Networking and Computing (MobiHoc 2003), June 2003.

5. Hervé Roussain and Frédéric Guidec. A Peer-to-Peer Approach to Asynchronous Data Dis-
semination in Ad Hoc Networks. In International Conference on Pervasive Computing and
Communications (PCC’04), pages 799–805, Las Vegas, Nevada, USA, June 2004.

6. Amin Vahdat and David Becker. Epidemic Routing for Partially-Connected Ad Hoc Networks.
Technical Report CS-2000-06, UCSD, July 2000.

Location-Dependent Query Results Retrieval in
a Multi-cell Wireless Environment

James Jayaputera and David Taniar

School of Business Systems Monash University,
Clayton Vic 3800 Australia

{James.Jayaputera, David.Taniar}@infotech.monash.edu.au

Abstract. The demand of information services is popular in recent
years. However, the requested of correct answer in a mobile environ-
ment needs to have more attentions. This is due to the scope of query
depends to the user location. In this paper, we propose an extension ap-
proach to handle the situation where a mobile user misses a query result
at current time and expects to receive a next query result in the next
interval time. The aim of this extension approach is to avoid redundant
process in order to get a new query result. We show the efficiency of our
proposed algorithm by giving some different examples and evaluations.

1 Introduction

Location-Dependent Information Service (LDIS) is one type of applications to
generate query results based on the location of users issuing queries (requesters)
[1, 2, 3]. It implies whenever users change their locations while they are sending
queries, the query results have to be relied on the receiving location of the users
receiving queries. Location-Dependent Query (LDQ) is one type of queries based
on the data found on that particular location [4, 3]. Hence, the expected results
of LDQ must accurate and depend on the new location of user.

In our past papers [5, 6], we proposed an approach to retrieve query results
for LDIS applications. The query result retrieval approach allowed that method
to retrieve the results produced based on the locations users requesting queries.
However, that approach deals if users freely move within one cell, where a cell
is an area covered by one base station (BS). 1

In this paper, we propose an extension algorithm from our previous works.
This extension algorithm is to retrieve query results in multi cells. The aim of
this paper is to retrieve query results from multi cells accurately. For example,
users send queries from current cell and travel with constant velocities and di-
rections. Since a BS covers only a certain area, the users can move from one cell
into another. However, delays might occur during this period, which results of

1 A Base Station is a static host that does an address translation and message for-
warding from a static network to wireless devices and vice-versa [7].

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 49–53, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

50 J. Jayaputera and D. Taniar

handover or others delays (such as transmission or processing). Handover is a
process to transfer an ongoing call from one cell to another as a user changes
the coverage area of a cellular system [8].

To simplify our discussion, it is assumed as follow: a geometric location is
represented as two-dimensional coordinates, users travel on steady velocities and
directions, every BS has knowledge about its neighbours and the expected time to
leave current BS, the predicted locations are known before receiving query results
and there are no errors in all partials data retrieved. Furthermore, the handover
time is ignored since it does not make any changes towards the prediction of
users’ location. The delay occurred is static instead of variable.

The rest of this paper is organized as follows. In next section, some related
works of this paper are presented. In section 3, our proposed algorithm will be
discussed and later, examples will be shown. In section 4, we show the perfor-
mance of our proposed algorithm. Finally, the last section will summarize the
contents of this paper.

2 Related Work

In this section, we review the existing studies on those two aspects. Related
works to this paper is works have been done in query results retrieval for LDIS
applications, including how to retrieve query results from one Base Station and
multiple Base Stations while a user is moving from one to another area [5, 6, 9, 10]

Efficiency query result retrieval in one BS for LDIS application has been
discussed in our past papers [5, 6]. Figure 1 shows an illustration of our proposed
algorithm to retrieve query results within a single BS. Let us considers, two
locations: A and B. A user travels to east from A to B at speed 2 is sending a
query, “retrieve all vending machines within 1 km from my current location”.
When the user accepts the query results, the query results must reflect to all
vending machines which are located 1 km away from B since the user is not
on A anymore. However, the user is only interested with the query results that

Fig. 1. Query Result Retrieval in a single BS

Location-Dependent Query Results Retrieval 51

have not been passed (shaded area). Therefore, the valid query results are the
vending machines (V9, V10, V11, V13, V14).

In work done by Sistla et al [10], the location of a moving object is conducted
as dynamic attributes which is divided into three sub-attributes: function, up-
datetime and value. The advantage of their work is a new predication location
can be found by using function of time. Therefore, we adopt their method to
calculate the prediction location in our approach.

Our work is similar to their works; however, the focus of our work is to retrieve
query results from multiple cells. The purpose of our work is to get query results
accurately and fast.

3 Query Results Retrieval: Propose Algorithm

In this section, we propose an algorithm for query results retrieval in multi-
cell for location-dependent. In retrieving query results, users can either stay in
same location or move to other locations. We are only interested in moving users,
however, users travel with variable velocity and directions are not discussed here.
The aim of our propose algorithm is to retrieve correct query results from servers
where the query scope is crossing the area of BSs.

Our proposed algorithm for query results retrieval from multiple BS is shown
in figure 2. Current BSID represents the current BS identification number. BSscope

is referred to endpoint coordinates that performed a boundary of BS. In our case,

Fig. 2. The proposed approach

52 J. Jayaputera and D. Taniar

the number of endpoints used is four since we assume that the scope of BS is a
square. All online BSs are stored into a collection, called BS[1..n] where n is a
number of online BSs. Queryscope is four endpoint coordinates that represents a
scope of user query.

After the parameters initialization, the current BS checks whether the scope
of query is intersect the scope of current BS. It generates query results in the
current BS and stores the query results into result parameter. If there is no
intersection, only the query results in the current BS are returned.

If there is any neighbour BS straight to the current BS, the neighbour BS
becomes the current BS. The scope of the current BS is generated and then, the
query scope is deducted against the minimum endpoint coordinates of parameter
BSscope. The query results within the query scope are generated. These processes
keep repeating until there is no any intersection between query scope and BS
scope. Then, the query results are forwarded to the user.

4 Performance Evaluation

After we discussed our proposed algorithm, evaluations on our proposed algo-
rithms are given in this section. The objective of our evaluations are to exam-
ine situations whether our algorithms can handle situations to retrieve query
results from multiple cells efficient and accurately. First, we give examples to
simulate our evaluations. Then, we evaluate our examples given. The evalua-
tion results are given at the end of this section show efficiencies of our propose
approach.

Figure 3 shows processing time to process one query. The graph does not
show straight line graph, because processing time to generate an answer for
every query is different from one to another. The processing time to generate
query results for query number 45 is the longest since there are a number of
users entering cells. It can also be caused by more common data in the server.
In contrast, the processing time for query number 10 is the shortest since the
data and users entering the cell are rare.

Fig. 3. Processing time for one query

Location-Dependent Query Results Retrieval 53

5 Conclusion

In this paper, we have shown how to retrieve query results in multi cell. In early
section, we give our motivation on query results retrieval in multi-cell. After-
wards, we propose our algorithm followed by analyses. We assume that the user
travels on steady speed and direction. Whenever there is any intersection be-
tween query scope and BS scope, it implies the query results are within multiple
cells. Therefore, the query scope must be deducted against the minimum bound-
ary of next BS in order to process the remaining query scope inside the next
BS. We also deal with delay time if any. However, we do not consider variable
value of delay time. When there is any fixed delay time, it is added to the value
of retrieval time. Our experiments results show accurate value. In addition, our
experiments results show reasonable time to answer the user query.

References

1. Baihua, Z., Lee, D., Xu, J.: Data management in location-dependent information
services. IEEE Pervasive Computing 1 (2002) 65–72

2. Tang, X., Xu, J., Lee, D.: Performance analysis of location dependent cache in-
validation schemes for mobile environments. IEEE trans. on Knowledge and Data
Eng. 15 (2003) 474–488

3. Zheng, B., Xu, J., Lee, D.: Cache invalidation and replacement strategies for
location-dependent data in mobile environments. IEEE Trans. on Computers 51
(2002) 1141–1153

4. Dunham, M., Kumar, V.: Using semantic caching to manage location dependent
data in mobile computing. Proc. of the sixth annual Int’l Conf. on Mobile Com-
puting and Networking (2000) 210–221

5. Jayaputera, J., Taniar, D.: Defining scope of query for location-dependent in-
formation services. Int’l Conf. on Embedded and Ubiquitous Computing (2004)
366–376

6. Jayaputera, J., Taniar, D.: Query processing strategies for location-dependent
information services (to appear jan 2005). Int’l Journal of Business Data Comm.
and Networking (2004)

7. Goodman, D.J.: Wireless Personal Communications Systems. Addison-Wesley
Wireless Communications Series (1998)

8. Markopoulos, A., Pissaris, P., Kyriazakos, S., Sykas, E.: Efficient location-based
hard handoff algorithms for cellular systems. NETWORKING 2004, Third Int’l
IFIP-TC6 Networking Conference (2004) 476–489

9. Kahol, A., Khurana, S., Gupta, S.K.S., Srimani, P.K.: An efficient cache manage-
ment scheme for mobile environment. Proc. of the 20th Int’l Conf. on Distributed
Comp. Systems (2000) 530–537

10. Sistla, P., Wolfson, O., Huang, Y.: Minimization of communication cost through
caching in mobile environments. IEEE trans. on Parallel and Distributed Systems
9 (1998) 378–389

 J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 54–58, 2004.
© Springer-Verlag Berlin Heidelberg 2004

An Efficient Mobile Data Mining Model

Jen Ye Goh and David Taniar

Monash University, School of Business Systems, Clayton, Vic 3800, Australia
{Jen.Ye.Goh, David.Taniar}@infotech.monash.edu.au

Abstract. Mobile Data Mining involves the generation of interesting patterns
out from datasets collected from mobile devices. Previous work are frequency
pattern [3], group pattern [9] and parallel pattern [5]. As mobile applications
usage increases, the volume of dataset increases dramatically leading to lag time
for processing. This paper presents an efficient model that uses the principle to
attack the problem early in the process. The proposed model performs minor
data analysis and summary early before the source data arrives to the data
mining machine. By the time the source data arrives to the data mining
machine, it will be in the form of summary transactions, which reduces the
amount of further processing required in order to perform data mining.
Performance and evaluation shows that this proposed model is significantly
more efficient than traditional model to perform mobile data mining.

Keywords: Mobile Data Mining, Mobile Applications, Mobile Users.

1 Introduction

Mobile data mining [3-5] is a research area that aims to extract interesting patterns out
from mobile users. These patterns found are then filtered by means of the relevancy
and accuracy of each pattern, and the end result is provided to the decision maker. The
decision maker can therefore use the interesting pattern as a competitive advantage
into making more accurate decision with lesser uncertainty. Mobile data mining is an
important field of research because it provides support for decision makers in order to
make decisions relating to mobile users. Some of the techniques in classical data
mining includes time series analysis [6, 7] and spatial data mining [8]. In a mobile
environment, it consists of a set of static nodes and mobile nodes. Static nodes are
devices that remain static over the time. Mobile nodes are devices that remain both
static and mobile over the time. An example of static node is the wireless access point
and an example of mobile node is the personal digital assistant.

2 Related Work

Our related work, location dependent mobile data mining proposed a way to find out
useful knowledge from mobile users. The visiting behaviour of each mobile user is
first recorded down when the mobile user is near to a static node. The collective

An Efficient Mobile Data Mining Model

55

volume of the visiting records is later sent to a central server and these visiting records
are aggregated based on each mobile user. The outcome of this process is a list of user
profiles. Each user profile is a list of themes that relates to some static node previously
visited. Each theme has a confidence in percentage assigned to it to show how
confident the mobile user is interested in the particular theme.

Classical data mining methods used are association rules [1] and sequential
patterns [2]. The outcome of the existing work is providing visiting behaviour mobile
users and the location theme. One common weakness of all previous related work, in
which this paper aims to identify and solve, is that all the transactions in the mobile
data mining are gathered from the source, sending to the destination, without being
analysed or modified. Many of these transactions may be irrelevant, repetitive or even
contains corrupted data. Our proposed efficient model for mobile data mining aims to
do minor analysis and summarizing of data, to tackle the problem early, leading to a
cumulative effect where by the time the source transactions reaches the data mining
machine, transactions are summarised enough and they are more readily to be
processed by the data mining machine.

3 Proposed Method

Traditionally, each static node is defined by only the identification code. In the
efficient model, each static node is defined the same way. but each mobile node is
defined with the identification code of the mobile node itself and extra buffer for
recording temporary summary transactions. In the efficient model, Static Node =
{Identification}. Mobile Node = {Identification, Summary Transaction 1, Summary
Transaction 2, …, Summary Transaction n}. Summary transaction involves optimising
the transaction so that each transaction is shortened to the extent that time in and time
out range in the time series are defined rather than identifying each time point for the
whole time series and finding the range out at a later stage using the costly high-end
machines. The mobile nodes are in the best position to identify and generate the time
range in the time series as time_from is the time point when the mobile node is in
contact with other static node or mobile node, and time_to is the time point when the
mobile node terminates or lost contact with a static node or mobile node.

Summary transaction is defined as: Summary Transaction n {Node Identification,
time_from, time_to}. The node identification can be either a static node or a mobile
node. If the connection was lost somewhere in the time series and re-established again, it
is counted as two summary transactions as a new set of time_from and time_to will be
recorded. The result of the cost efficient model is to use the strategy to first simplify the
mobile data-mining problem by summarising the transactions in the mobile environment
by the mobile node itself. This is because mobile node is in the best position to provide
the summary transaction with minimal amount of cost. If the summary is done at a later
stage, huge amount of processing power will be incurred.

3.1 Definition of Nodes

In the efficient model, the model of each static node is unchanged. Static Node =
{Identification}. However, the definition of mobile node is redefined. Mobile Node =

J.Y. Goh and D. Taniar

56

{Identification, Summary Transaction 1, Summary Transaction 2, …, Summary
Transaction n}. Each summary transaction is defined as: Summary Transaction
{Identification, time_in, time_out}. The time_in and time_out represents the time
point where the mobile node established a communication status with a station. It
provides a range of time by using two values instead of time series using multiple
transaction and multiple values. Figure 1 shows the definition of the static node,
mobile node and summary transaction.

Function Summary Transactions Definition
 Summary Transactions = Size Desired By Mobile User
 Transaction Refresh Frequency = Duration by Mobile User // max_time
 Transaction Refresh Size = No of Transactions by Mobile User // max_transaction
 Generate [Summary Transactions] Amount of Summary Transactions Each Holding {
 Destination Node Identification = Full Logical Name // can be either static or mobile
 time_in = Time Point Mobile Node Established Contact with Destination Node
 time_out = Time Point Mobile Node Lost Contact with Destination Node
 } End Function

Fig. 1. Definition of Cost Efficient Model

3.2 Gathering Summary Transactions

The mobile nodes starts to collect the summary transactions as it traverse throughout
the mobile environment. It encounters different static nodes and different mobile
nodes. Each established contact is recorded as summary transaction with the
identification of the node and the time_in and time_out information. Due to the
different amount of storage capacity available in the mobile nodes, each mobile node
is configured with a max_transaction and max_time. The max_transaction is the
number of maximum transactions that a static node is configured to store. The
max_time is the number of time units that the mobile node must sent out the summary
transactions to a mobile data mining enabled static node. Either one of the two
conditions will lead to a sending of summary transactions to the mobile data mining
enabled static node. Figure 2 shows the codes for refreshing transactions.

Function Refresh Transactions
If (Number of Summary Transactions >= max_transaction)
 Or (Elapsed Time >= max_time) Then
 Refresh Transaction by Sending List of Summary Transactions to a Static Node
End If

End Function

Fig. 2. Gathering of Summary Transactions

3.3 Perform Mobile Data Mining

By the time that all summary transactions reached to the central server for mobile data
mining, all the summary transactions have made simplified by eliminating all the

An Efficient Mobile Data Mining Model

57

sequences in the time series that the mobile node have established contact, and all
summary transactions that are not within the scope of the problem for the decision
maker will have already be filtered out. The final list can then be fed into any kind of
mobile data mining systems or classical data mining systems in order to find out useful
knowledge from mobile users.

4 Performance Evaluation

Performance evaluation is done on Pentium IV 384MB machine, over 10GB of hard
disk storage space. The classical model represents the gathering of all the transactions
from mobile users at all times, storing them into a central repository and finally,
perform data mining by first preparing the data, removing irrelevant data and feed the
data into the relevant algorithms. Performance parameters: Mobile Users: 0 – 15, No
of Transactions: 0 – 35,000, Level of Activity: 0% - 100%.

Figure 3 shows the performance chart between the numbers of transactions found
compared to different number of mobile users required. The case scenario is based on
frequency pattern mobile data mining method. The number of transactions required
increases significantly for classical model while the cost efficient model increases
gradually. It shows that, the classical model are not able to accommodate scalability
when the number of mobile users is in the range of greater than 10,000 as the amount
of processing power and memory required is huge. On the other hand, the cost
efficient model significantly reduces the amount of transactions needed by using
summary transactions generated by the mobile nodes themselves.

No of Transactions vs No of Mobile Nodes

0
5

10
15
20
25
30
35

0 1 2 3 4 5

No of Mobile Nodes

N
o

 o
f

T
ra

n
sa

ct
io

n
s

Classical Model Cost Efficient Model

No of Transactions vs No of Mobile Nodes

0
5000

10000
15000
20000
25000
30000
35000

10 11 12 13 14 15

No of Mobile Nodes

N
o

o
f

T
ra

n
sa

ct
io

n
s

Classical Model Cost Efficient Model

Fig. 3. Verify Summary Transactions

Figure 4 shows the performance chart between the classical model and cost
efficient model by comparison the number of transactions required from each model at
50% level of activity. It can be observed that the performance for cost efficient model
is similar to classical model from 0 to 2 number of mobile users and the two lines
quickly deviates each other and cost efficient model maintains a better performance
with lesser amount of transactions while the number of transactions required out of
classical model increases significantly.

J.Y. Goh and D. Taniar

58

No of Transactions vs No of Mobile Nodes with
50% Level of Activity

0

5

10

15

20

0 1 2 3 4 5

No of Mobile Users

N
o

 o
f

T
ra

n
sa

ct
io

n
s

Classical Model Cost Efficient Model

No of Transactions vs No of Mobile Nodes with
50% Level of Activity

0
100
200
300
400
500
600

5 6 7 8 9 10

No of Mobile Users

N
o

 o
f

T
ra

n
sa

ct
io

n
s

Classical Model Cost Efficient Model

Fig. 4. Verify Summary Transactions

5 Conclusion and Future Work

The conclusion is that cost efficient model for mobile data mining, the number of
transactions required to be fed into the data mining system can be reduced
significantly by using summary transactions and server filtering method. The
difference between the two models is that classical model delivers all transactions to
the server for data mining while the cost efficient model lets the mobile nodes to
summary their transactions and only then sent to the server for data mining. A filtering
mechanism is placed just before the summary transactions reach the server which
made it more efficient. Future work is develop novel ways to accurately determine the
size of the summary transactions and the time interval before the summary
transactions are uploaded to server.

References

1. R. Agrawal and R. Srikant. Fast Algorithms for Mining Association Rules. In Proc. 20th
Int. Conf. Very Large Data Bases, pp. 487-499, 1994.

2. R. Agrawal and R. Srikant. Mining Sequential Patterns. In Proc. 11th Int. Conf. on Data
Engineering, pp. 3-14, 1995.

3. J. Goh and D. Taniar. Mining Frequency Pattern from Mobile Users. In Proc. Knowledge-
Based Intelligent Information & Eng. Sys., 2004. (To Appear)

4. J. Goh and D. Taniar. Mobile Data Mining by Location Dependencies. In Proc. 5th Int.
Conf. on Intelligent Data Engineering and Automated Learning, 2004. (To Appear)

5. J. Goh and D. Taniar. Mining Physical Parallel Pattern from Mobile Users. In Proc. Int.
Conf. on Embedded and Ubiquitous Computing, 2004. (To Appear)

6. J. Han, G. Dong, and Y. Yin. Efficient Mining of Partial Periodic Patterns in Time Series
Database. In Proc. of Int. Conf. on Data Engineering, pp. 106-115, 1999.

7. J. Han, W. Gong, and Y. Yin. Mining Segment-Wise Periodic Patterns in Time Related
Databases. In Proc. 4th Int. Conf. on Knowledge Discovery and Data Mining, vol. no. pp.
214-218, 1998.

8. K. Koperski and J. Han. Discovery of Spatial Association Rules in Geographical
Information Databases. 4th Int. Symp. on Advances in Spatial Databases, pp. 47-66, 1995.

9. Y. Wang, E.-P. Lim, and S.-Y. Hwang. On Mining Group Patterns of Mobile Users. In
Proc. of DEXA, pp. 287-296, 2003.

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 59–63, 2004.
© Springer-Verlag Berlin Heidelberg 2004

An Integration Approach of Data Mining with Web
Cache Pre-fetching

Yingjie Fu
1
, Haohuan Fu

2
, and Puion Au

2

1
Department of Computer Science,

City University of Hong Kong, Hong Kong SAR
fuyingjie@tsinghua.org.cn

2
Department of Computer Engineering and Information Technology,

 City University of Hong Kong, Hong Kong SAR
fu.haohuan@student.cityu.edu.hk, poau@it.cityu.edu.hk

Abstract. Web caching plays a very important role for improving the perform-
ance of many Web-Based systems. As web cache capacity is limited, most web
cache systems are using replacement algorithm to wash out the outdated data.
Our web cache prediction method is based on the fact that, many clients usually
have some kinds of regular procedures to access web files, such that the regu-
lar-procedure knowledge can be mined or learned by web cache system and
files can be pre-fetched accordingly.

1 Introduction

As networks become the basic infrastructure for data sharing and communication,
web server response time becomes a very important measurement factor of the net-
work and server performance. It is known that a server side web cache is placed
between a web server and the clients; and the web cache buffers the copies of files
requested by the clients. The usage of web cache is to improve the server responding
time, decrease server load, and reduce latency to minimize “World Wide Waiting”
problem.

In traditional web cache systems, file replacement policies are used to handle the
limited cache size. There exist numerous replacement policies, such as LRU (Least
Recently Used), LFU (Least Frequently Used), SLRU [1], LRU-MIN [2] and SIZE
[3], etc. However, these pure replacement-policy strategies do not associate with any
predication approach, which can enable the servers to find out what the client’s ac-
cess-profiles are, and the use this knowledge to predict the files to be accessed. In or-
der to enhance web caching performance, not only the replacement policies can be
applied, web cache pre-fetching technologies are also frequently used. Web cache
pre-fetching needs the server-side cache to predict what kind of information would be
used in the near future. In this paper, we present a new approach for web cache pre-
diction to achieve better performance of file hit rate and byte hit rate.

Y. Fu, H. Fu, and P. Au 60

2 Algorithm

At the beginning of data mining process, the web log records are loaded into a
user-request pool p, which includes user record lists l1, l2…ln. Users are identified by
IP address. In each user record list l, it contains the user-accessed file URLs in a time
ascending order.

As shown in Fig.1, history request pool is a table of user-request lists ls, and each l
is a list of accessed file URLs. For better performance, user-request pool is designed
to be a hash table with user IP as primary-key. When a request comes, according to
the request source IP address, new record will be added to the user-request pool p.

User request list l1 Accessed file URLs of l1

User request list l2 Accessed file URLs of l2

… …

U
se

r-
re

q
po

ol
 p

User request list ln Accessed file URLs of ln

Fig. 1. User-request Pool

There are numbers of accessed file URLs in each user-request list. Let Tmin be the
minimum threshold of URL number. In data mining process, the user-request lists
with more than Tmin URLs will be marked. Since minor URLs do not reflect
user-access profile, we believe only these marked user-request lists will contribute to
the data mining process. On the other hand, the URL number in each l should not
grow unboundedly. When it grows to an upper threshold Tmax, old URLs can be treated
as outdated and will be washed out (deleted) from the list. It is obvious that, very old
data source will not be useful for new data mining because both the user-accessing
profile and web server files may have been changed already.

A new data structure is used to record user access orientation for each file URL.
As shown in Fig.2, access-orientation is an integer to measure user accessing orienta-
tion for a file. It is also a hash table with file URL as primary-key.

URL1 URL2 … URLk

access-orientation1 access-orientation2 … access-orientationk

Fig. 2. Access orientation hash table

At the beginning in the data mining process, the value of access-orientations are set
to zero. While the data mining processing carrying on, they will be increased respec-
tively. Our data mining process is not complicated. Suppose the last request from the
users is URLlast. For each marked user-request list l, find out all of the URLs are that

An Integration Approach of Data Mining with Web Cache Pre-fetching 61

equal to URLlast. If there are N1 URL1s behind URLlast, add N1 to access-orientation1; if
there are N2 URL2s behind URLlast, add N2 to access-orientation2…until add Nk to ac-
cess-orientationk. Finally, the web cache prediction can be done according to the cal-
culation of access-orientations. Our data mining procedure and web cache pre-fetching
procedure can be presented into the following pseudo code:

Load web log into user-request pool p;

Mark the user-request lists ls containing more than Tmin records

FOR each l having more than T
max

 records

 Wash out outdated records;

END FOR

FOR each latest URL request

 FOR each URL
j
 in URL

1
...URL

k

 Set access-orientation
j
 to 0;

 END FOR

 Get the latest requested URL URL
last

;

 FOR each l
i
 in l

1
… l

n

 Find all URL==URL
last

;

 FOR each URL
j
 in URL

1
…URL

k

 Set integer N
j
=0;

 Count the number (Nj) of URLjs that follow URLlast;

 access-orientationj= access-orientationj+ Nj ;

 END FOR

 END FOR

 END FOR

 Find out M URLs having the largest access-orientations from

 access orientation hash table, denoted as URLp1, URLp2…URLpM;

 FOR each URL
j
 in URL

p1
, URL

p2
…URL

pM

 IF URL
j
 NOT in web cache

 copy URL
j
 into web cache;

 END IF

 END FOR

END FOR

Fig. 3. Algorithm Pseudo Code

Y. Fu, H. Fu, and P. Au 62

In line 20, M can be assigned according to web cache size and whole system per-
formance. Larger the web cache size is and better the system performance is, larger
value is assigned to M. As for URLp1, URLp2…URLpM in line 22, there are two possible
results. Either web cache will be full and cannot cache all of them, or web cache is
large enough to hold all them. In the first case, the URLs that can not be cached will
be discarded and web cache prediction process continues whereas in the second case,
web cache prediction process will continue directly. In previous researches, there are
a lot of contributions on replacement algorithm, e.g., FIFO, LRU, LFU, LRU-MIN,
and SIZE etc. Web caching hit-rate and byte hit-rate can be better under the coopera-
tion of web cache prediction method and web cache replacement algorithm. In our
experiment, FIFO and LRU are used for the web cache replacement mechanism.

3 Simulation

We did the trace-driven simulation to compare the performance of our data mining
approach with some well-known cache replacement algorithms. We choose three ba-
sic replacement algorithms, LFU, LRU and SIZE, which respectively consider three
most basic factors, reference number, last access time and data size. We have done the
trace-driven experiment for our data mining approach with 10 different cache sizes,
compared with other five different cache replacement algorithms.

Fig. 4 shows the different hit rates for different algorithms. And among the dif-
ferent algorithms, the DM 600 means the data mining approach uses the latest 600
request-history records to do prediction, and DM 1200 means the approach uses 1200
the latest request-history records. In the web cache, LRU is used as wash-out ap-
proach. We could see that, from pure LRU to LRU plus web cache prediction, a lot
achievement has been gotten. And from this figure we could see that the data mining
approach has much better performance over any other pure replacement algorithms.

Hit Ratio Comparison betw een different algorithms

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

200k 400k 800k 1600k 3200k 6400k 12800k 25600k 51200k 100M

Cache Size/byte

H
it

 R
at

io

LRU

LFU

SIZE

LRU-MIN

SLRU

DM 600

DM 1200

Fig. 4. Hit-rate comparison

4 Conclusion

There is a response time necessity in web accessing. In order to reduce to response
time, web cache is used. Web cache prediction and pre-fetching is a very good

An Integration Approach of Data Mining with Web Cache Pre-fetching 63

method to improve the web response time. In this paper, we introduced a new data
mining method to do prediction. The specification of the method approach and prac-
tical approach were discussed. Under the practical approach, we did experiment, and
achieved satisfactory experiment results demonstrated the efficiency of integration
which uses web cache prediction method and web cache replacement algorithm to-
gether in order to get better performance.

References

1. C. Aggarwal, Joel L. Wolf and P. S. Yu, Caching on the World Wide Web, IEEE Transac-
tions on Knowledge and Data Engineering, vol. 11, no. 1, January/February 1999.

2. M. Abrams, C. R. Standridge, G. Abdulla, S. Williams and E. A. Fox, Caching proxies:
Limitations and potentials, 4th International World-wide Web Conference, pages 119-133,
Dec, 1995.

3. S. Williams, M. Abrams, C. R. Standridge, G. Abdulla and E. A. Fox, Removal Policies in
Network Caches for World-Wide Web Documents, Proceedings of ACM SIGCOMM, pp.
293-305, 1996.

4. Web_Log_2003_04.data, City University of Hong Kong, April 2003.
5. Web Trace, uc.sanitized-access, ftp. ircache.org, 18th, November 2003.

Towards Correct Distributed Simulation of
High-Level Petri Nets with Fine-Grained

Partitioning

Michael Knoke, Felix Kühling, Armin Zimmermann, and Günter Hommel

Technische Universität Berlin,
Real-Time Systems and Robotics,

Einsteinufer 17, 10587 Berlin, Germany
knoke@cs.tu-berlin.de

Abstract. Powerful grid and cluster computers allow efficient distributed
simulation. Optimistic simulation techniques have been developed which
allow for more parallelism in the local simulations than conservative
methods. However, they may require costly rollbacks in simulation time
due to dependencies between model parts that cause violations of global
causality. Different notions of time have been proposed to detect and
remedy these situations. Logical time (or Lamport time) is used in many
present-day distributed simulation algorithms. However, high-level col-
ored Petri nets may contain global activity priorities, vanishing states,
and global state dependencies. Thus virtual time is not sufficient to main-
tain the global chronological order of events for the optimistic simulation
of this model class. The paper presents a new approach that guarantees
a correct ordering of global states in a distributed Petri net simulation.
A priority-enhanced vector time algorithm is used to detect causal de-
pendencies.

1 Introduction

Stochastic Petri nets (PN) have been widely used for modeling the behavior
of systems where synchronization of processes is crucial [1]. They provide a
graphical representation and are able to represent discrete events as well as
(stochastic) timing. Our simulation framework uses a variant of colored Petri
nets (CPN) [2].

Real world systems consist of parts widely showing autonomous behavior but
cooperating or communicating occasionally. This inherent concurrency and re-
quired synchronization can be modeled adequately using PNs. Distributed Petri
net simulation (DPNS) can exploit this inherent parallelism efficiently using grid-
and cluster computers. Hence, a partitioning algorithm is required that decom-
poses the model such that heavily communicating elements are not split. Each
decomposed PN submodel is assigned to a logical process (LP) that is performing
the simulation on a physical processor. A logical clock that denotes how far the
simulation has progressed is assigned to a LP as well. LPs communicate using
timestamped messages [3].

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 64–74, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Towards Correct Distributed Simulation of High-Level Petri Nets 65

There has been significant work in the area of distributed simulation of PNs
in the past few years. Almost all proposed algorithms assume a virtual time
with an arbitrary high resolution to eliminate isochronous events. Some model
specific activities can also cause events with the same virtual time, even for an
assumed infinite resolution of time. Some of the activities in high-level PNs are:

– immediate transitions resulting in state changes without simulation time
progress

– deterministic transitions that have a deterministic delay for state changes
– time guard functions which trigger state changes at a certain point in time

These properties of high-level PNs are either not allowed or adequately dis-
tributed to LPs, so that they are sequentially processed. Nicol and Mao [4] have
contributed one of the most complete publications on distributed simulation of
PNs, showing this limitation in each presented algorithm. It is obvious that in
these cases the event ordering is simple and most research is focused on prefer-
ably good partitioning algorithms and early rollback detection. PN models for
real world systems, such as detailed workflow modeling, may contain more than
50 percent timeless or deterministic activities.

A basic problem of distributed simulation is to avoid causality errors. Correct-
ness of simulation can only be ensured if the (total) event ordering as produced by
a sequential simulation is consistent with the (partial) event ordering due to dis-
tributed execution. Indeed, Jefferson [5] recognized this problem to be the inverse
of Lamport’s logical clock problem [6], i.e. providing clock values for events occur-
ring in a distributed system such that all events appear ordered in logical time.

Lamport’s algorithm allows to maintain time ordering among events [7]. How-
ever, a mapping from Lamport time to real time is not possible. Furthermore
it is not sufficient to characterize causal relationships between events. But the
detection of causal relationships between events is indispensable for transition
priorities. Otherwise it is not possible to sort concurrent and independently fired
events whose occurrence is based on a different priority. The Lamport time would
impose an artificial order independent of their priority.

A logical time that characterizes causality and can be used to remedy last
named problems is the vector time (VT) proposed by Mattern [8] and Fidge [9].
The causal relationships between events can be determined from their corre-
sponding VT values. VT allows to detect indirect dependencies, that means
comparing two VTs of different events provides information whether these events
are causally dependent and if so, which event depends on which one. This has
the following advantages in the context of DPNS:

– concurrent events can be identified and sorted by their priorities
– a very fine-grained model partitioning allowing deterministic and zero-firing

times for output transitions of LPs is possible
– precise recovery of local LP states based on external events
– no need to solve equal Lamport time stamps

Many different high-level colored PN model classes, our class as well, allow
different priorities for immediate transitions. That means if two events could be

66 M. Knoke et al.

Products Order OrderQueue

Delivery

[1]

<Parts> <Parts>

Prio=2

Prio=1

SpareParts DeliveredSendPart

<Parts>

<Parts>

<Parts>

#Products > 1

<Parts>

Fig. 1. Example of a high-level colored Petri net model

created at the same simulation time, the higher prioritized event is permitted first
and may disable the second event through its occurrence. An example of a simple
PN model is presented in Fig. 1. Transitions Order and SendPart are concurrently
enabled and have different priorities, so that Order is processed first because of
its higher priority. A sequential simulation is simple but a distributed simulation
where both transitions fire optimistically, requires an order of execution.

To the best of the authors knowledge this paper presents the first time a new
logical time scheme for high-level PNs which has significant advantages for par-
titioning without any structural limitations. It offers correctness for isochronous
events and is applicable for all types of PNs, even for timeless PNs. Our exten-
sions to the logical time fulfil today’s requirements for flexibility and maximum
scalability for typical real world PN models. It is not the intention of this paper
to compare performance measures with any of the numerous Time Warp varia-
tions for distributed simulation of PNs. Optimistic simulation of high-level PNs
is, in contrast to PDES, heavily dependent on the abilities of the underlying
net class. It’s always possible to design PN models perfectly fitting to a given
distributed simulation algorithm. Our objective in this paper is to show new al-
gorithms for partitioning and distributed event processing based on a new logical
time scheme that opens new possibilities for DPNS performance optimization.

The paper first presents our new partitioning approach in Sect. 2. The sub-
sequent Sect. 3 introduces a logical time scheme for prioritized globally ordered
states. Some information about successfully completed test scenarios are shortly
presented in Sect. 4 and finally concluding remarks are given in Sect. 5.

2 A New Partitioning Approach

Based on the correct implementation of causal dependencies that is described
later in Sect. 3, the following scheme of an event-driven distributed simulation
for high-level colored PNs was developed. Rollbacks can be performed more
precisely and the flexibility of the partitioning is higher in particular if prioritized
transitions and isochronous states are used in the model.

Towards Correct Distributed Simulation of High-Level Petri Nets 67

The simulation is composed of N sequential event driven LPs that do not
share memory and operate asynchronously in parallel. Unlike in other optimistic
DPNS algorithms (e.g. introduced in [10]), an atomic unit (AU) is defined as
the smallest indivisible part of the model, whereas a LP consists of one or more
of these AUs. The basic architecture and formalism of the LPs and AUs used in
this paper is:

– The smallest indivisible part of the model is an atomic unit AU .
– A transition Ti is inseparably linked with all of its input places •Ti and

constitutes an atomic unit AU . This can lead to situations where more than
one transition will be assigned to one AU , namely if a place has several
output transitions.

– At least one AU is assigned to every LPi which is running as a process on
one physical node Ni.

– A communication interface attached to the LPs is responsible for the prop-
agation of messages to the remote LPs and to dispatch incoming messages
to local AUs. AUs on the same LP are communicating directly to avoid
additional message overhead.

– Each LPi, AUj has access only to a partitioned subset of the state variables
SP,i ⊂ S and SU,j ⊂ SP,i, disjoint to state variables assigned to other LPs,
AUs. State variables of LPi are the set of state variables of all local AUs
SP,i =

⋃
SU,j(∀j).

– The simulation of local AUs scheduled within each LP in a way that avoids
local rollbacks.

The three basic items for event-driven DPNS are state variables which denote
the state of the simulation model, an event list that contains pending events, and
a simulation clock which keeps track of the simulation’s progress. All of these
parts have been integrated into the AUs. Only two basic messages are required
for simulation progress of AUs: positive event messages for token transfers and
negative event messages to perform a rollback to an earlier simulation time.

A fine-grained partitioning and a discrete storage of processed states have
a bunch of advantages for DPNS. First of all, in contrast to existing DPNS
algorithms, e.g. described by Chiola and Ferscha [11], a rollback of complete
LPs will not happen. Each AU has it’s own virtual simulation time and stores
its state for each local event independently from other AUs. This characteristic
is essential for migration to other LPs at runtime. AUs can restore their state
accurately for a given simulation time and send rollback messages to other AUs
if they are affected by this rollback. Thus, rollbacks are much more precise and
unnecessary rollbacks are prevented if independent AUs are simulated by a single
LP. Memory consumption is lower than the classical LP approach because rarely
executing AUs don’t need to save their states until their own net activity.

Very important for collecting the result measures is the discrete storage of
processed states. This storage mechanism allows to revert exactly to a given log-
ical time without needing to resimulate already simulated sequences. In case of a
rollback the last valid state is found with absolut precision. The disadvantage of
a higher memory consumption is compensated by the much smaller size of AUs.

68 M. Knoke et al.

3 A Logical Time Scheme for Prioritized High-Level
Distributed PN Simulation

In this section a logical time scheme for DPNS is presented and studied in detail.
As per description in Sect. 1 it is essential for a correct ordering of states if model
characteristics allows prioritized transitions and isochronous concurrent states.
A distributed simulation is correct if its simulation results match the results of a
traditional, single process simulator. Such sequential simulations are processing
events in the order that takes the simulation time and the event priority into
account. As a consequence we can conclude that a DPNS is correct if each AU
is processing events in the traditional sequential manner and if incoming events
are sorted exactly as they would be generated by a single process simulator. The
following section presents an expanded logical time to fulfill these demands.

3.1 Event Priorities

For PN simulations on a single processor it is sufficient to have one global sim-
ulation time with an arbitrarily low resolution. All activities are running in
succession and are responsible for the time increment. The simulated order of
events is identical to the order in which they are simulated. Conflicts of concur-
rent activities are resolved by priorities or by random selection.

Immediate transitions have a priority greater than 0 and timed transitions
have an implicit priority of 0. These priority values must be valid across AU
borders, that means if transitions on different AUs are concurrently firing
isochronously, the corresponding events must be ordered by their priority. Among
identically enabled transitions one is chosen to fire first non-deterministically.
For distributed simulation this approach is nonapplicable because of consistency
reasons. Independent random generators on the AUs cannot guarantee the same
ordering. Therefore we have decided to define a new global event priority (GEP)
that includes the AU number into the priority value to determine an explicit
relation for two equal event priorities. GEP is calculated as follows:

GEP = PE ∗NAU + iAU PE : event priority
NAU : AU count
iAU : current AU no.

(1)

GEP forces the same global event ordering for concurrent events with different
event priorities as a sequential simulation, but events with the same priority are
ordered by the AU number in which they are created. A random selection of
equal prioritized concurrently enabled transitions is non-applicable for DPNS.
It forces a synchronization of model parts which acting completely autonomous.
We have decided to accept this limitation because some people identify this
problem as a modeling mistake.

Calculating the event priority PE from the transition priority is nontrivial.
The following order would be achieved by a sequential simulation of the model
in Fig. 2: T2 → T4 → T1 → T3. T0 is firing first and afterwards T1 and T2 are

Towards Correct Distributed Simulation of High-Level Petri Nets 69

simultaneously enabled but T2 fires because of its higher priority. Now, without
any simulation time elapsed, T1 and T4 are in conflict and T4 fires. Subsequently
T1 and T3 fire in succession without taking the priority values into account. This
example looks simple but it is observable that in case of a distributed simulation
the firing order requires global knowledge.

T3

T4

T5T0

T2P2

P1 P3

P4

P5

T1

AU0
AU2

AU1

AU4

AU3

AU5

1

2 3

4

Fig. 2. An example for transition priorities

An optimistic distributed simulation doesn’t need to resolve this priority
problem when it appears but at the time when affected tokens are inserted into
a place. This happens if at least two concurrent isochronous tokens must be
ordered according to their priority. If the priority of the last fired transition was
directly used to calculate the GEP it would give the token from path T1 → T3
a higher order of precedence in the event queue because it was last fired from
T3 which has a higher priority than T4.

To get the correct result it is important to create a priority path (herein
after called critical path) from the last common transition or from the last timed
transition. All priorities on each path must be considered for later event or-
dering. It can be shown that the minimum priority Pmin of each path is deci-
sive because the transition with the lowest priority delays the propagation of
an event until no other transition with a higher priority on other paths can
fire. Using the minimum priority on both paths would deliver the correct result
(PminT1,T3 = 1, PminT2,T4 = 2).

An AU-sized vector of the last firing priority of each AU would be needed
for calculating the minimum priority on the critical path. Events within an AU
are always sequentially ordered, so it is not required to store the priorities of all
transitions. This priority vector p(e) has to be assigned to each event e. It is
defined as follows:

p(e)i =

⎧⎪⎨
⎪⎩
∞ in case that AU i is not on the critical path

otherwise the minimum priority of all preceding events on the
critical path of e in AU i

(2)

To follow the path of AUs that a token has entered and to compute the
minimum priority of this path, it is just required to compute the minimum value

70 M. Knoke et al.

of the priority vector. It is a precondition that all components of this vector
are set to the infinite value on initialization and if a timed transition fires. On
equality of two calculated minimum priorities it is obvious that a specific AU
which is on both paths has randomly defined the order. For n AUs it must been
AU i with i = pmin mod n, as derivable through (1). The order is then explicitly
observable by the corresponding VT component.

Assuming that two concurrently fired isochronous events arrived at AU5 with
(V T), [PE]:

E1 := (1, 1, 0, 1, 0, 0), [−, 1,−, 4,−,−]
E2 := (1, 0, 1, 0, 1, 0), [−,−, 2,−, 3,−]

The VT indicates that both tokens are concurrent, but the minimum priority
of E1 is lower than the priority of E2. As a result E1 must be sorted after E2.

3.2 Compound Simulation Time

Distributed PN simulations running on several processors in parallel, require
a logical time to detect causal dependencies and to achieve a global order of
events. Certainly, the simulation progress of the distributed simulation is further
on driven by the simulation clock time which progresses independently on each
AU. PN model specific characteristics and a limited resolution of this time permit
the occurrence of isochronous events. To operate with these events this time is
extended by a sufficient logical time, namely the VT and the GEP introduced in
Sect. 3.1. The compound time is capable of processing these isochronous events
and can detect all causal dependencies. The new logical time is the simulation
time (ST) as defined in (3), with the corresponding ordering relation (4).

ST = (T, V, G)

T : Simulation clock time

V : Vector time

G : Global event priority

(3)

u ≤ v ⇔
(Tu < Tv)∨
((Tu = Tv) ∧ ((Vu < Vv)∨
(Vu ‖ Vv ∧ Gu ≥ Gv)))

(4)

Fig. 3. Compound simulation time

3.3 Transitivity of the Relation

A global ordering relation requires transitivity to offer explicit sorting of events.
Relation (4) proposed in the last section is not transitive if it is not using
the priority path for the GEP. An example of a simple Petri net that creates
non-transitive events is shown in Fig. 4. Transitions T1, T2, and T3 create
isochronous concurrent events which have to be sorted before merging the cor-
responding tokens at place P4.

Assuming that the following three simulation times S1, S2 and S3 have to be
compared using (4):

Towards Correct Distributed Simulation of High-Level Petri Nets 71

3

2

1

P4

T1

T2

T3

Fig. 4. Example petri net that can create non-transitive events

S1 = (2004-01-01 00:00:00, [1, 0, 0], 1)
S2 = (2004-01-01 00:00:00, [1, 1, 0], 3) (5)
S3 = (2004-01-01 00:00:00, [0, 0, 1], 2)

All events have the same simulation clock time which is 2004-01-01 00:00:00.
By comparing the VT values it can be observed that S2 is causally dependent
on S1 but S3 is concurrent to S1 and S2. S3 has to be sorted with its priority
value which is 2. The result is S1 ≤ S2 ≤ S3 and due to the transitivity theorem
should follow:

S1 ≤ S2 ≤ S3 ⇒ S1 ≤ S3

In fact it is:
S3 ≤ S1

Events corresponding to the simulation times S1 and S3 are concurrent and
originated from simultaneous and independently activated transitions. The event
with timestamp S3 must be fired first because of the higher priority. S2 is causally
dependent on S1 and must be sorted behind S1 and as a result behind S3 even
though S2 ≤ S3.

Theorem 1. If the correct global event priority (as depicted in Sect. 3.1) is used
then (4) is transitive.

Proof. Consider three events ei with 1 ≤ i ≤ 3 and the corresponding priorities
pi as well as the simulation time stamps Si. We assume that all Si have the
same simulation clock time. Then it is obvious that we have to account for the
causal dependencies, namely the vector times and the priorities. The following
notation is used for the causal dependency:

ei → ej ⇔ ej causally depends on ei

ei ‖ ej ⇔ ei and ej are concurrent.

Only if two events are concurrent their priorities have to be used for sorting.
With this notation and on that condition (4) can be written as follows:

Si ≤ Sj ⇔ ei → ej ∨ (ei ‖ ej ∧ pi ≥ pj) (6)

72 M. Knoke et al.

It is necessary to show that this relation is transitive:

S1 ≤ S2 ∧ S2 ≤ S3 ⇒ S1 ≤ S3 (7)

If the correct GEP is used then it is clear that an event cannot have a higher
priority than the event that it depends on. This constraint can be written as:

ei → ej ⇒ pi ≥ pj (8)

Other helpful relationships directly deduced from (6) are:

ei → ej ⇒ Si ≤ Sj (9)
ei ‖ ej ∧ pi ≥ pj ⇒ Si ≤ Sj (10)
ei ‖ ej ∧ Si ≤ Sj ⇒ pi ≥ pj (11)

Furthermore the transitivity of the causal relationship → and the sorting
relation for priorities ≤ is assumed.

In order to prove the transitivity it is essential to consider all possibilities to
combine causal relationships and priorities of the three events. Implication (7)
must be valid in all cases. First of all let’s focus on the causal dependencies. The
implication is fulfilled if the right side of the implication is true (e1 → e3) or the
left side is false (e1 ← e2 ∨ e2 ← e3). The following eight cases remain:

1. e1 → e2 ∧ e2 → e3 ∧ e1 ← e3
2. e1 → e2 ∧ e2 → e3 ∧ e1 ‖ e3
3. e1 → e2 ∧ e2 ‖ e3 ∧ e1 ← e3
4. e1 → e2 ∧ e2 ‖ e3 ∧ e1 ‖ e3

5. e1 ‖ e2 ∧ e2 → e3 ∧ e1 ← e3
6. e1 ‖ e2 ∧ e2 → e3 ∧ e1 ‖ e3
7. e1 ‖ e2 ∧ e2 ‖ e3 ∧ e1 ← e3
8. e1 ‖ e2 ∧ e2 ‖ e3 ∧ e1 ‖ e3

The cases 1, 2, 3, and 5 contradict the transitivity of the causality relation
and need not be considered further. In case 8 the events are sorted exclusively
by their priorities whose ordering relation is assumed to be transitive. Only the
cases 4, 6, and 7 remain and needs to be analyzed.

Case 4. We show that the right side of (7) must be true if the left side is true.

e1 → e2 ⇒ p1 ≥ p2
e2 ‖ e3 ∧ S2 ≤ S3 ⇒ p2 ≥ p3

}
⇒ p1 ≥ p3

e1 ‖ e3 ∧ p1 ≥ p3 ⇒ S1 ≤ S3

Case 6. Analogous to case 4.

e1 ‖ e2 ∧ S1 ≤ S2 ⇒ p1 ≥ p2
e2 → e3 ⇒ p2 ≥ p3

}
⇒ p1 ≥ p3

e1 ‖ e3 ∧ p1 ≥ p3 ⇒ S1 ≤ S3

Towards Correct Distributed Simulation of High-Level Petri Nets 73

Case 7. The right side of the implication is false. Assuming that the left side
is true the transitivity would be violated. We show that this assumption is
incorrect.

e1 ‖ e2 ∧ S1 ≤ S2 ⇒ p1 ≥ p2
e2 ‖ e3 ∧ S2 ≤ S3 ⇒ p2 ≥ p3

}
⇒ p1 ≥ p3

e1 ← e3 ⇒ p1 ≤ p3

The outcome of this is p1 = p3. But concurrent events cannot have the
same priority if unambiguous global priorities are used as depicted in Sect. 3.1.
From this it follows that the left side of the implication must not be true. The
transitivity is not violated.

So we can conclude that it is proven that (6) and as a result (4) are transitive.

4 Tests

In the course of our research and development we have designed a lot of mod-
els to verify our implementation of the new logical time scheme. The AU ap-
proach allows a truly distributed simulation of simple models to exploit par-
allelism. These simple models are not adequate for performance measurements
but demonstrate the correctness of our approach. All experiments have been
conducted on a 16 node, dual Intel Xeon processor, Linux cluster with 1 GB
memory for each node. SCI has been used as a high-speed ring-topology-based
networking.

Figure 5 shows a modified version of the model in Fig. 4 to test transitivity.
Transition T5 may not fire if correct event ordering is used. Running this model
over a long simulation time with several million events shows that T1 and T6
fire equal times, but never T5.

More complicated models, which have been accrued for different research
projects for global operative business companies, are already successfully tested

T1

P4

P5

P6

P3

P1

P2

P7

T3

T4

1

2 2

1

T2 T5

T6

3

Fig. 5. Example petri net for testing transitivity

74 M. Knoke et al.

but not shown here because of lack of space. Such models are mostly not qualified
for verifying substantial characteristics of the newly developed mechanisms.

5 Conclusion

This paper presented a new mechanism for distributed simulation of high-level
Petri Nets. We introduced the notion of prioritized logical time which allows for
a mapping between simulation clock and logical time. Applied to high-level PNs,
this logical time is sufficient to allow a fine-grained partitioning not possible with
Lamports logical time. It can be viewed as a total ordering scheme for high-level
PN events. The Petri net model is decomposed into atomic units which have
an own virtual time. Plenty of advantages for the distributed simulation arise
from this approach: a better partitioning flexibility, dynamic migration with low
operational expense, and efficient rollbacks.

References

1. Zimmermann, A., Freiheit, J., Huck, A.: A Petri net based design engine for manu-
facturing systems. Int. Journal of Production Research, special issue on Modeling,
Specification and Analysis of Manufacturing Systems 39 (2001) 225–253

2. Jensen, K.: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. Volume 1 : Basic Concepts. EATCS Monographs on Theoretical Computer
Science, Springer-Verlag, Germany (1992)

3. Fujimoto, R.: Parallel and distributed discrete event simulation: algorithms and
applications. In: Proceedings of the 1993 Winter Simulation Conference, Los An-
geles, CA, Eds. ACM, New York, 1993 (1993) 106–114

4. Nicol, D.M., Mao, W.: Automated parallelization of timed petri-net simulations.
Journal of Parallel and Distributed Computing 1 (1995)

5. Jefferson, D.: Virtual time. ACM Transactions on Programming Languages and
Systems 7 (1985) 405–425

6. Lamport, L.: Time, Clocks, and the Ordering of Events in a Distributed System.
Communications of the ACM 21 (1978) 558–565

7. Zeng, Y., Cai, W., Turner, S.: Causal Order Based Time Warp: A Tradeoff of
Optimism. Proceedings of the 2003 Winter Simulation Conference (2003)

8. Mattern, F.: Virtual Time and Global States of Distributed Systems. Proceedings
Parallel and Distributed Algorithms Conference (1988) 215–226

9. Fidge, C.: Logical Time in Distributed Computing Systems. Computer 24 (1991)
28–33

10. Ferscha, A.: Parallel and Distributed Simulation of Discrete Event Systems.
McGraw-Hill (1995)

11. Chiola, G., Ferscha, A.: Distributed simulation of Petri Nets. IEEE Parallel and
Distributed Technology 1 (1993) 33–50

 J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 75–84, 2004.
© Springer-Verlag Berlin Heidelberg 2004

M-Guard: A New Distributed Deadlock Detection
Algorithm Based on Mobile Agent Technology1

Jingyang Zhou1,2, Xiaolin Chen3,1, Han Dai1, Jiannong Cao2, and Daoxu Chen1

1 Dept. of Computer Science & Technology, Nanjing Univ., Nanjing, China
{jingyang, cdx}@nju.edu.cn; {cxl, daihan}@dislab.nju.edu.cn

2 Dept. of Computing, Hong Kong Polytechnic Univ., Hong Kong, China
csjcao@comp.polyu.edu.hk

3 Dept. of Computer Science, Chuxiong Normal Univ., Chuxiong, China

Abstract. Deadlock detection and resolution are of the fundamental issues in
distributed systems. Although many algorithms have been proposed, these
message passing based traditional solutions can hardly meet the challenges of the
prevailing Internet computing and mobile computing. In this paper, we present a
novel algorithm, namely the M-Guard, for deadlock detection and resolution in
distributed systems based on mobile agent technology. The proposed algorithm
lies in the intersection of the centralized type algorithm and the distributed type
algorithm. An agent is employed in our algorithm as a guard with dual-role:
when roaming in the system according to a specified itinerary algorithm, the
agent collects resource request/allocation information for detecting deadlock
cycles as well as propagating the collected network and resource information
among the nodes. Consequently, accurate and timely detections of deadlocks can
be made without any network node being the performance bottleneck.
Preliminary simulation results show that, compared with several other
algorithms, the M-Guard algorithm achieves both shorter deadlock persisting
time and smaller phantom deadlock ratio. Moreover, the overall network
communication overhead can be decreased, too.

1 Introduction

A distributed system always consists of a collection of geographically dispersed
network nodes. These nodes share with each other computing resources and storage
devices attached to them. System or application processes executing on any node are
capable of using both local and remote shared resources, simultaneously and mutually.
However, the use of blocking concurrency control is always subject to a possibility of
deadlock. A deadlock occurs when a set of processes wait, in circular fashion, for
exclusive access to some of the resources indefinitely hold by other processes in the
same set [14]. Deadlock is not desirable because all the processes involved will be

1 This work is partially supported by the National 973 Program of China under grant

2002CB312002, the National 863 Program of China under grant 2001AA113050 and the Hong
Kong Polytechnic University under HK PolyU Research Grant G-YD63.

J. Zhou et al. 76

blocked indefinitely until the deadlock is resolved. Thus, the performance, such as
device utilization ratio and application response time, will be degraded to an
unbearable level and even the systems may crash.

Deadlock prevention, deadlock avoidance, and deadlock detection are three
approaches to handle deadlocks [14]. In contrast to the former two’s pessimistic and
over-cautious mode, deadlock detection allows deadlocks to occur, but provides certain
technique to find and resolve deadlocks. Deadlock detection is widely adopted for
distributed systems due to its high flexibility and little negative influence on the system
performance.

In the past two decades, many deadlock detection algorithms for distributed
systems have been seen in literature, and they can be classified into three types:
centralized, hierarchical and distributed [14]. In the centralized type algorithms, a
certain node is assigned the sole responsibility of detecting any deadlock cycles in that
system. These algorithms are easy to implement and because their knowledge about the
whole system is comparatively accurate, they seldom detect deadlocks that are actually
non-existing. But the coordinator may be the performance bottleneck, and even causes
the problem of single-point failure. The distributed type algorithms are more flexible.
Each node in the system has an equal possibility of participating in detecting deadlock
cycles. They exchange information with each other and work cooperatively to solve the
deadlocks. However, this type of algorithms is not accurate enough and may induce
much communication overhead. A deadlock cycle is sometimes detected by multiple
detectors and more than one processes involved in the same deadlock cycle might be
forced to abort. The hierarchical algorithms are introduced as a compromise. They
organize network nodes hierarchically as a tree, for example. Each node detects
deadlocks involving only its descendant nodes. Nevertheless, the hierarchical structure
is difficult to construct and maintain.

Any type of algorithms mentioned above is mostly implemented with message
passing. However, the traditional message passing mechanism is not suitable for
loosely coupled systems, like the Internet, and dynamically evolving systems, such as
mobile systems, due to unpredictable message propagation delay and frequently
changes of network topology. As a result, timely and precise detection of deadlocks
cannot be guaranteed so that either an existing deadlock will not be resolved for a long
time or false deadlocks are frequently detected. Furthermore, it is difficult for the
message passing mechanism to accommodate dynamic changes in the system that
requires adaptive and scalable solutions.

Recently, the mobile agent technology [9, 13] provides a new approach for
structuring and coordinating wide-area network and distributed services that require
intensive remote real-time interactions [1, 5]. In our previous research [2], we have
proposed a mobile agent enabled framework for distributed deadlock detection, which
is named MAEDD (Mobile Agent Enabled Deadlock Detection). In this paper, we
describe a novel deadlock detection algorithm for distributed systems, i.e. the
M-Guard, under the MAEDD framework, which takes advantages of the merits of both
the centralized type algorithms and the distributed type algorithms. An agent is
employed in the M-Guard as a dual role: when roaming in the system according to a
specified itinerary algorithm, the agent collects resource request/allocation information
for detecting deadlock cycles as well as propagating the collected network and resource
information among the nodes. Consequently, accurate and timely detections of

M-Guard: A New Distributed Deadlock Detection Algorithm 77

deadlocks can be made without any network node being the performance bottleneck.
Meanwhile, because the deadlock is solely resolved by the M-Guard unique to the
system, the problem that the same deadlock cycle is resolved by different detectors will
not occur in our algorithm.

The remainder of this paper is organized as follows: Section 2 overviews related
works. Our M-Guard algorithm is detailedly described in Section 3 together with the
itinerary algorithms for the agent. Section 4 presents the preliminary simulation results
and analysis. Finally, we conclude our paper in Section 5.

2 Related Works

As aforementioned, centralized, distributed, and hierarchical are three ways for
deadlock detection. The representatives of the centralized type are Ho-Ramamoorthy’s
one-phase and two-phase algorithms [6]. In the two-phase algorithm, every node
maintains a status table, which contains the status of all processes initiated at that node.
The status of a process includes all resources it occupies and all resources it is waiting
for. Periodically, a designated node (the coordinator) requests the status tables from all
nodes, constructing a global state graph from the received information. The coordinator
then tries to search for cycles in that graph. If finds, it requests every node to send the
status table to it again. This time, the coordinator constructs the global state graph only
using the information exists in both of the two times. If the same cycles are detected,
the system is declared deadlocked.

In the distributed approach, algorithms can be classified into four categories [7].
They are Path-Pushing (WFG-based), Edge-Chasing (Probe-based), Diffusing
Computation and Global State Detection. Instead of constructing the “state graph”, the
Wait-for-Graph (WFG) is used. A WFG consists of a set of processes {P1, P2,…, Pn} as
the node set. An edge (Pi, Pj) exists in the graph if and only if Pi is waiting for a resource
that is held by Pj [16]. Path-pushing algorithms maintain an explicit WFG. Each node
periodically builds a local WFG by collecting its local wait dependencies, then searches
for cycle in the WFG and tries to resolve these cycles. After that, every node sends its
local WFG to its neighboring nodes. Each node updates its local WFG by inserting wait
dependency received, and detects cycles in the updated WFG. The updated WFG is
passed along to neighboring nodes again. This procedure will be repeated until some
nodes finally detect the deadlock or announce the absence of deadlock. The most
famous algorithm in this category is Obermarck’s algorithm [12], which was
implemented in the System R*. Edge-chasing algorithms do not explicitly build the
WFG. Instead, they send a special message called probe to detect deadlocks. A process
(initiator) sends probes to each of the processes holding the locks it is waiting for. Upon
receiving such a probe message, a process should forward it to all the processes it is
waiting for. It is assumed that the probe message contains information to identify the
initiator. If the initiator receives a probe sent by itself, it can then announce a deadlock
because the probe must have traveled a cycle. This idea was originally proposed in [3]
with the correctness proof presented in [8], and a revision can be seen in [15]. Similarly
in the Mitchell and Merritt’s Algorithm [11], a probe consists of a single number that is
unique, which identifies the initiator. The probe travels along the edges in the opposite
direction of global WFG, and when it returns to its initiator, a deadlock is detected.

J. Zhou et al. 78

A special case is the SET algorithm [4]. It is a combination of the edge-chasing and
the path-pushing algorithms. The messages named “global candidate” are exchanged
among the nodes. They carry more information than probes do, but are simpler than the
local WFG information. A string of processes (P1, P2, …, Pn) is said to be a global
candidate if for any process Pi (1≤ i<n), it resides on the same node and waits for Pi+1,
and some process residing on another node is waiting for P1 while Pn is waiting for
some process on another node. When a blocked process times out, the node that process
resides begins the deadlock detection process. The initiator node finds the global
candidates and sends them to the nodes where resides processes blocking Pn. When a
node receives a global candidate, if it can be concatenated with its own global
candidates, the node checks for deadlocks and forwards the concatenation to other
nodes. Otherwise, the candidate will be discarded.

3 M-Guard: Our Deadlock Detection Algorithm

3.1 System Model and Data Structure

Imaging a distributed system consists of n nodes denoted as {Ni | 0 i<n}. All the nodes
are logically connected, i.e., for any pair of nodes, there exists a communication path
between them. Each node Ni is associated with one or more resources sharable to
network users. A node manager (NM) on the node is responsible for maintaining the
resource allocation information. Application processes are distributed on system nodes,
each has a global unique identifier, such as Pm, Pn, and etc. These processes request
resources according to their own requirements. If the requested resource is mutually
held by other processes, the requesting process will be blocked until the resource is
released and granted to it. Some mobile agent platform (here we use the IBM Aglet) is
deployed all network nodes so that the mobile agent guard (M-Guard) can migrate to
and executed on each node. In this paper, we assume that the underlying
communication link is free of failure and the priorities of the processes are set by their
respective IDs.

We define two states for each process: active and blocked. A process can issue a
request to access a resource only if it is active. If the resource Pm requests is currently
occupied by another process Pn, Pm is then in the status of blocked. Process Pm may
change from blocked to active if and only if it is granted the resource it requests.

NM on each node maintains a local Wait-for-Graph with data structure as follows:

Table 1. Data Structure of Local WFG

Request Process ID Block Process ID Remote Node ID Flag

Table 2. Data Structure of Global WFG

Request Process ID Request Node ID Block Process ID Block Node ID

M-Guard: A New Distributed Deadlock Detection Algorithm 79

As shown in Table 1, the Request Process ID is the request process ID; Block
Process ID is the blocked process ID; Remote Node ID is the remote node ID on which
block process is executing and the Flag marks whether the corresponding entry has
been read by the agent. The data structure of the global WFG is similar to that of the
local, but Request Node ID is the node ID on which the requesting process resides.

M-Guard also keeps a double-side queue NodeQueue (the meaning of double-side
is that the delete operation is performed at both sides of the queue, while the insert
operation is performed only at tail). The elements in the NodeQueue are node IDs to be
visited in the future. Three operations are defined on the NodeQueue: push (insertion at
the tail), popfront (deletion at the head), and popback (deletion at tail). In addition, an
integer array node_visited[n] is maintained by the agent guard to record whether a node
has been visited. For instance, if node Ni has been visited, then node_visited[i]=1.

When a process Pm is selected as the victim to break an existing deadlock cycle, the
NM on the same node where Pm resides will receive a victim message. This message
identifies the process that must abort and release all resources it occupies.

3.2 The Algorithm

The NM maintains a local WFG with regard to status of all processes and resources on
the same node. Whenever a local process requests for some resource(s) locally or
remotely, the corresponding NM should record the event as a new entry in the local
WFG. When a local process is granted the resource or just cancel its request, the NM
will delete the corresponding entry in the local WFG. The NM periodically checks the
local WFG. If a local deadlock is detected, it will resolve it by informing the process
with the lowest priority to abort.

In the system there is a single mobile agent named M-Guard that is responsible for
detecting global deadlocks. The M-Guard visits the nodes in the distributed system
according to some specified itinerary algorithm. When roaming in the system, all local
WFGs are collected and combined into one global WFG. The M-Guard then analyzes
the constantly updated global WFG and tries to resolve all deadlocks formed.
Meanwhile, M-Guard will keep track of the network status and the resource
information. For any change, for example a new resource is available on certain node,
M-Guard will pick this news and inform all the NMs on the nodes it visits about that.

As we can see in our M-Guard algorithm, the M-Guard has a dual role. It can inform
NMs about the status of processes, resources and the network as well as performing the
task of deadlock detection. There are two key points in designing the M-Guard: one is
how M-Guard collects the local WFG and how it analyzes the global WFG; the other is
how to design an appropriate itinerary for the M-Guard. Apparently, a suitable travel
itinerary could help M-Guard detect and resolve deadlocks more efficiently and
accurately. In the following subsections, we will describe the main algorithm for
deadlock detection and resolution in detail firstly. Then the three different itinerary
algorithms are introduced respectively.

3.2.1 Deadlock Detection
Part A) Algorithm Executed by the Node Manager
When a local process Pm waits for process Pn on node Nj, a new entry will be appended
in local WFG with the value of the field Flag equals to1 meaning this entry is waiting to
be read by the M-Guard.

J. Zhou et al. 80

If process Pm is granted the resource it requests or it cancels its resource request
after a period of time, the NM should:

I. If the “Flag” field in the corresponding entry equals to 1, meaning that M-Guard
hasn’t read this entry, NM delete it directly;

II. If the “Flag” field in corresponding equals to 0, it can be inferred that the
M-Guard has read the information. In order to keep consistent with information
M-Guard maintains, NM should set the Flag field to -1. When the M-Guard read
this entry next time, it will know the corresponding information should be
deleted from its global WFG.

When NM receives a victim message sent by the M-Guard indicating that local
process Pm is selected as the victim to break the deadlock cycle, it will release the
resources held by Pm, and inform Pm to abort. Finally, the NM deletes the
corresponding entries in the local WFG.

Part B) Algorithm Executed by the M-Guard
Every time the system initializes, the guard agent will be created on node N0. The agent
first reads the local information on N0, and then visits other nodes in the system
according to some specified itinerary algorithm depicted in Section 3.3.
On arriving at a new node Ni, the M-Guard will perform following steps:

I. For each entry with Flag equals 1, M-Guard appends it to the global WFG. If the
corresponding block process is on node Nj (i j and node_visited[j]=0), the agent
pushes Nj into the nodeQueue. For each entry with Flag equals to -1, the agent
will delete all corresponding entries in both local and global WFG;

II. When the request out-degrees of Ni in local WFG is 0, meaning that no local
process waits for resources held by other processes, we know that all of the
processes local to Ni are impossible to be involved in a deadlock cycle at present.
If at the same time the nodeQueue is empty, the M-Guard will stay on Ni for a
defined period of idle time (guard_wait_time) and then read the information
again. The parameter guard_wait_time should be preset according to the
deadlock frequency and network delay. Despite that none of the processes on Ni
issues resource requests within that period of time, it is stipulated that M-Guard
should select the next node to visit after the guard_wait_time in order to avoid
sleeping on a node for too long time;

III. After reading all the local information, M-Guard checks the global WFG it
maintains. If any deadlocks are detected, it will send a victim message to the NM
on the same node where the victim process resides;

IV. The M-Guard collects the status information of processes, resources on Ni, which
will be propagate to other NMs if necessary.

3.2.2 Deadlock Resolution
When the M-Guard detects a cycle, it must try to resolve the deadlock immediately.
Traditional strategy of deadlock resolution is to choose one of the processes trapped in
deadlock as the victim process. The victim process is required to release all the
resources it holds and roll back to a certain status (this can be achieved by the technique
of checkpoint). To minimize the loss due to the deadlock, M-Guard chooses the process
with the lowest priority as the victim by sending a victim message to the NM. It is clear

M-Guard: A New Distributed Deadlock Detection Algorithm 81

that only one victim is selected because the victim message is solely sent by the
M-Guard based on the global WFG. After the NM of the victim process receives the
victim message sent by the M-Guard, it will release the resources held by victim and
inform it to abort. Corresponding entries in the local and global WFG will be updated
respectively by the NM and the agent.

3.3 The Itinerary Algorithm for M-Guard

The M-Guard should follow some specified itinerary to visit nodes in distributed
systems. The itinerary algorithm has a great impact on the overall performance. A good
itinerary can reduce the deadlock cycle persisting time as well as the communication
cost. If an inappropriate itinerary algorithm is employed, the agent may visit too many
nodes where the information maintained can contribute little to detect existing
deadlock cycles. However, the performance of an itinerary algorithm may vary under
different scenarios. Hence, we design three different itinerary algorithms, i.e. the
random, breadth-first and depth-first itinerary. In the random itinerary, the M-Guard
randomly chooses a node that hasn’t been visited recently as its next visiting node. The
breadth-first and depth-first itinerary refer to the different search strategy on the
dependent graph. The operations of them are somewhat similar. Here, we only
introduce the breadth-first itinerary algorithm as a representative.

As introduced in Sec. 3.1, the M-Guard maintains a double-side queue nodeQueue,
in which elements in nodeQueue are node IDs to be visited by the agent in the future,
and an integer array node_visited[n], which is used to record whether the nodes have
been visited. In this itinerary algorithm for the M-Guard, when the agent arrives at a
new node Ni, it should first set node_visited[i] to 1. If there is a local process Pm is
waiting for a resource held by a remote processes Pn on Nj, it appends Nj into the
nodeQueue at the tail. After collecting all local information, M-Guard chooses the first
element in nodeQueue that hasn’t been visited as the next travel target.

If all of the nodes in the nodeQueue have been visited, the M-Guard should clear the
nodeQueue and set node_visited[i]=0 (0 i<n). After that, M-Guard begins a new travel
iteration from the current node; If the nodeQueue is empty and there are some nodes in
the system that haven’t been visited, M-Guard will randomly choose one of them to
push into the nodeQueue and visit it next.

Comparatively, the random itinerary is very simple and is easy to be implemented,
but sometimes is not efficient enough. For the other two itinerary algorithms, because
M-Guard travels approximately along the directed edges in the WFG, it can detect
deadlocks more quickly. Moreover, when the average number of nodes involved in a
deadlock is relative small, the breadth-first itinerary algorithm is slightly better than
depth-first itinerary algorithm.

4 Performance Evaluation

In our simulation, enough number of workstations with IBM Alget mobile agent
platform deployed are organized into one network. We assume that the average
transmission time for a message or an agent between a pair of nodes is Tn. N sharable
resources and M processes are randomly distributed on systems nodes. Cp is defined as
the average number of processes on a node. The time interval between two successful

J. Zhou et al. 82

resource requests issued by a process follows the passion distributed with the expected
value equals to 1=2 while the time a process holds a granted resource follows a passion
distributed with 2=10. Deadlock cycles are broken by selecting the process with the
largest ID as the victim. Time needed for agent execution and messages processing are
omitted. The idle time of the M-Guard on a node with out-degree equals 0 is Tgwt. Since
the scale of the system simulated is not great, we use the breadth-first itinerary
algorithm for the M-Guard travel. We choose Chandy-Misra-Hass’s algorithm [3] and
the SET algorithm [4], which have better performance against other traditional
algorithms, for comparison. Every time we run the simulation for Ttotal time slips. In the
simulation, the single-resource model [7] is adopted for simple consideration, and we
set Tn=2, Tm=25, Cp=4, N=20, Tgwt=4 and Ttotal =10000.

Three widely accepted criteria are adopted [10, 14]. They are:

I. Deadlock duration (deadlock cycle persisting time). It is the time interval
between a deadlock cycle is formed and it is resolved.

II. Phantom deadlock ratio. It is the rate that the number of detected deadlocks that
does not exist in the system against the number of deadlocks really exists.

III. Communication overhead. The times that the agent guard migrates and the
number of messages transferred in the system.

We conduct the simulation for 10 times and take the mean value as the final result.
Figure 1 shows the phantom deadlock ratio of the three algorithms as a function of the
total process number. The phantom deadlock ratio of M-Guard algorithm keeps the
smallest of the three at about 0.2. The phantom deadlock ratio of the Chandy et al.’s
algorithm is two times bigger than that of our M-Guard algorithm while the ratio of the
SET algorithm is much greater.

Communication overhead is another important criterion to evaluate an algorithm’s
performance. In M-Guard algorithm, the communication overhead refers the sum of
agent migration times and the numbers of victim messages sent. In Chandy’s and the
SET algorithm, the overhead only refers to the messages exchanged in the system.
Figure 2 depicts the average communication overhead for one successful detection of a

Fig. 1. Comparison of Phantom Deadlock Ratio Fig. 2. Comparison of Communication
Over-head

M-Guard: A New Distributed Deadlock Detection Algorithm 83

deadlock cycle for the three algorithms respectively. As we can see, when the number
of process increases, overhead of Chandy’s algorithm and the SET algorithm increase
much, but M-Guard algorithm has a much lower and stable communication overhead.

Finally, the deadlock duration is
plotted in Figure 3. When the total
process number is under 40, most of the
deadlocks can be detected and resolved
rapidly in the M-Guard algorithm.
Although M-Guard has a longer
deadlock persisting time when the
system scale grows, we argue that this
may be improved by employing a more
efficient itinerary algorithm.

From the data and analysis above, we
can see that the M-Guard algorithm has a
better overall performance than others
do. This is especially true when scale of
the system is not very huge.

5 Conclusions

In this paper, we propose the M-Guard, a novel deadlock detection algorithm using
mobile agent technology for distributed systems. The M-Guard employs a mobile
agent, which keeps roaming in the network, to collect status information of processes
and resources for detecting deadlock cycles, like a mobile guard of the system. We
describe both parts of the proposed algorithm that are executed by the agent guard and
the local nodes respectively. We also specify three different itinerary algorithms for the
agent guard that may perform well under different scenarios. The M-Guard algorithm
lies in the intersection of the centralized type and the distributed type, so that accurate
and timely detections of deadlocks can be made without any network node being the
performance bottleneck.

This mobile agent enabled algorithm has several advantages over the traditional
message-passing based algorithms. Our simulation demonstrates that it reduces the
phantom deadlock rate and the overall communication overhead, resulting in increased
performance. Meanwhile, the deadlock cycle persisting time can be decreased in case
that the scale of the whole system is not too big.

In the future works, we plan to design a heuristic itinerary algorithm for
the M-Guard. We will conduct a further study on agent itinerary algorithms’ impact on
the overall performance of the M-Guard algorithm. We are also going to investigate the
employment of multiple agents, each monitors a portion of the whole network, to guard
a larger scale system. Finally, performance comparison and algorithm switch of our
M-Guard algorithm with other deadlock detection algorithms under the MAEDD
framework is desired.

Fig. 3. Comparison of deadlock Duration

J. Zhou et al. 84

References

1. J. Cao, G. H. Chan, W. Jia and T. Dillon: Checkpointing and Rollback of Wide-Area
Distributed Applications Using Mobile Agents. In Proc. of 15th Intl. Parallel and
Distributed Processing Symposium, San Francisco, California, USA, Apr. 23-27, 2001, pp.
1-6.

2. J. Cao, J. Zhou, W. Zhu, D. Chen and J. Lu: A Mobile Agent Enabled Approach for
Distributed Deadlock Detection. In Proc. of the 3rd Intl. Conf. on Grid and Cooperative
Computing (LNCS 3251), Wuhan, Hubei, China, Oct. 21-24, 2004, , pp. 535-542.

3. K. M. Chandy and J. Misra: A Distributed Algorithm for Detecting Resource Deadlocks in
Distributed Systems. ACM Trans. on Computer Systems, Vol. 1(2), May, 1983, pp.
144-156.

4. A. N. Choudhary: Cost of Distributed Deadlock Detection: A Performance Study. In
Proceedings of the 6th Intl. Conf. on Data Engineering, Los Angeles, California, USA, Feb.
5-9, 1990, pp. 174-181.

5. S. Funfrocken: Integrating Java-based Mobile Agents into Web Servers under Security
Concerns. In Proc. of 31st Hawaii Intl. Conf. on System Sciences, Hawaii, USA, Jan. 6-9,
1998, pp. 34-43.

6. G. S. Ho and C. V. Ramamoorthy: Protocols for Deadlock Detection in Distributed
Database Systems. IEEE Trans. on Software Engineering, Nov. 1982, Vol. 8(6), pp.
554-557.

7. E. Knapp: Deadlock Detection in Distributed Databases. ACM Computing Surveys, Vol.
19(4). Dec. 1987, pp.303-328.

8. A. D. Kshemkalyani and M. Singhal: Invariant-based Verification of a Distributed Deadlock
Detection Algorithm. IEEE Trans. on Software Engineering, Vol. 17(8), Aug. 1991, pp.
789-799.

9. D. B. Lange and M. Oshima: Seven Good Reasons for Mobile Agents. Communications of
the ACM, Vol. 42(3), 1999, pp. 88-89.

10. S. Lee and J. L. Kim: Performance Analysis of Distributed Deadlock Detection Algorithms.
IEEE Trans. on Knowledge and Data Engineering, Vol. 13(4), Apr. 2001, pp. 623-636.

11. D. P. Mitchell and M. J. Merritt: A Distributed Algorithm for Deadlock Detection and
Resolution. In Proc. of the 3rd ACM Symposium on Principles of Distributed Computing,
New York, USA, Aug. 27-29, 1984, pp. 282-284.

12. R. Obermarck: Distributed Deadlock Detection Algorithm. ACM Trans. on Database
Systems, Vol.7(2), Jun. 1982, pp.187-208.

13. V. A. Pham, A. Karmouch: Mobile Software Agents: An Overview. IEEE Communications,
Vol. 36(7), Jul. 1998, pp. 26-37.

14. M. Singhal: Deadlock Detection in Distributed Systems. IEEE Computer, Vol. 22(11), Nov.
1989, pp.37-48.

15. M. K. Young, H. L. Ten and N. Soundarajan: Efficient Distributed Deadlock Detection and
Resolution Using Probes, Tokens, and Barriers. In Proc. of the 1997 Intl. Conf. on Parallel
and Distributed Systems, Seoul, Korea, Dec. 11-13, 1997, pp. 584-593.

16. J. Wu: Distributed System Design. CRC Press, USA, 1999.

 J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 85–90, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Meta-based Distributed Computing Framework

Andy S.Y. Lai1 and A.J. Beaumont2

1 Department of Information and Communications Technology,
Institute of Vocational Education, Hong Kong

 andylai@vtc.edu.hk
2 Department of Computer Science, Aston University,

Aston Triangle, Birmingham, United Kingdom
a.j.beaumont@aston.ac.uk

Abstract. The explosive growth of distributed technologies requires frame-
works to be adaptable. This paper uses design patterns as building blocks to
develop an adaptive pattern-oriented framework for distributed computing ap-
plications. We describe our novel approach of combining a meta-architecture
with a pattern-oriented framework, resulting in an adaptable framework which
provides a mechanism to facilitate system evolution. We show how the meta-
based framework can be used effectively to enable component integration and
to separate system functionality from application functionality. The framework
is based on modelling layers of the architecture to meet the challenges of cus-
tomization, reusability, and extendibility in distributed computing technology.
We also highlight how the meta-based framework will impose significant
adaptability in system evolution through a simple example using a HTTP
Server in conjunction with a thread pool.

1 Introduction

This work presents an approach for constructing an object-oriented (OO) design
framework using distributed computing design patterns as building blocks under a
meta-architecture. Such a framework can be used for constructing distributed com-
puting applications. Design patterns and frameworks both facilitate reuse by captur-
ing successful software development strategies. When patterns are used to structure
and document frameworks in an object-oriented approach, nearly every class in the
framework plays a well-defined role and collaborates effectively with other classes in
the framework. In this paper, the proposed framework is not only pattern-oriented, it
also employs a meta-architecture as a means of making the framework easily adapt-
able. The explosive growth of distributed technologies requires frameworks to be
adaptable. Our meta-architecture supports dynamic adaptation of feasible design
decisions in the framework design space by specifying and coordinating meta-objects
that represent the building blocks within the distributed system environment. The
proposed meta-based framework has the adaptability that allows the system evolution
that is required in distributed computing technology. Our approach resolves the prob-
lem of the dynamic integration and adaptation within the framework, which is en-
countered in most distributed systems.

A.S.Y. Lai and A.J. Beaumont 86

2 Pattern-Oriented Frameworks with Meta-architecture

Yacoub et al. [1] described pattern-oriented frameworks as containing two distinct
levels: the pattern level and the class level. A simple pattern-oriented framework
provides component-based design at design level but it has difficulty in addressing
the framework’s adaptability at the implementation level. We ensure that our frame-
work is adaptive by using the novel combination of distributed computing design
patterns within a meta-architecture. By adding a meta-architecture layer on top of the
pattern-oriented framework, we will be able to provide an adaptive level in addition
to the pattern level and class level, as shown in Figure 1.

Pattern

Pattern

Pattern

Pattern

Pattern

Framework-based
Applications

Framework Construction
(Pattern Level)

Framework Instantiation
(Class Level)

Framework Adaptation
(Adaptive Level)

Framework Application
(Applicable Level)

Pattern-Oriented
Meta-Level

Base-Level

Framework-based
Applications

Reification
Reflection

Meta-
Architecture
Framework

Fig. 1. Adaptive level introduced in Meta-based Pattern-Oriented Framework

The meta level provides information about selected system properties and behav-
iors, and the base level consists of the application logic. The implementation of sys-
tem functionality is built at the meta level. Any changes in information kept at the
meta level affect subsequent base-level behavior. Figure 1 shows the framework
architecture where the meta level contains distributed computing patterns and the base
level contains base objects (or application servers). The kernel of the framework
provides the core functions for the framework adaptation between meta level and base
level. It includes: Meta objects and Meta Space Management which handles meta
level configuration, Reflection Management which provides dynamic reflection from
the meta level to the base level, and Reification Management which provides
dynamic reification from the base level to the meta level. In order to support the core

Meta-based Distributed Computing Framework 87

functions for framework adaptation, we employ the Mediator, Visitor and Observer
Patterns [2].

3 Patterns Instantiation and Patterns Integration in Meta Space

The kernel classes shown in Figure 2 manipulate the interaction between meta objects
and are generalized for conformation from distributed computing patterns to meta
objects. The class instantiation of the Thread Pool Pattern, shown in the top right of
the figure, has thread pool workers defined to handle tasks assigned by the system.
The management and deployment of the system-level components in the meta space
is simple and uniform. On the class level, distributed computing pattern components
simply extend a class called MetaObjectImpl from the kernel package to form
meta components, and, on the object level, the instantiation of meta components
means that they are ready to deploy to meta space. Other distributed computing pat-
terns such as Http Server, ORB Registry and Publisher/Subscriber can follow the
same procedures and be easily deployed as meta components.

Fig. 2. Distributed Computing Patterns Integration at Meta Level

Our framework supports dynamic integration of meta objects at run-time. Thread
Pooling Pattern and Http Server Pattern are meta objects and they are deployed to the
meta space and that situation is illustrated in Figure 2. Every time a HTTP request
comes to the base object, the meta space will handle the request by checking whether

A.S.Y. Lai and A.J. Beaumont 88

the base object is reified with the ThreadPool at the meta level. If the Thread-
Pool found is reified with the base object, MetaSpace will let HTTPServer pass its
HTTPWorker to the thread pool workers to continue the process. Figure 2 shows
that integration between meta objects, ThreadPool and HttpServer at the meta
level which is used to provide a Thread Pooling HTTP Server at the base level.

Figure 3 shows the interaction between the meta level and the base level. Base ob-
ject receives Http requests and passes them to HTTPServer at the meta level.
HTTPServer normally processes requests using HTTPWorker. However, if there
is a ThreadPool that has been reified by the base object, HTTPWorker will be
passed to the ThreadPool and a ThreadPoolWorker handles the task for the
HTTPServer. In this way, handling tasks will be based on the number of workers in
ThreadPool.

Http
Server

Http
Worker

Thread Pool

Thread Pool
Worker

Base
Object

Meta
Object

Http
Requests

Multi-
Threading

Job

Fig. 3. Interaction between Meta Level and Base Level

4 Adaptation in Framework

Our meta-based framework provides dynamic system behavior and provides adapta-
bility within its run-time environment. We propose that each meta object has its own
internal identifier attribute MetaID which is private and internally stored in each
meta object. Fixed Thread Pool Pattern and Growth Enabled Thread Pool Pattern are
two typical examples of pooling patterns. The meta objects for these two patterns
would each have its own internal identifier. However, in this case, the contents of the
two internal identifiers are identical to indicate both are a kind of thread pool.

The administration utility has the ability to replace meta objects at run time by
verifying their internal identifiers. One meta object can replace another if they both
belong to the same type and have the same internal identifier. Therefore a fixed
thread pool could be replaced with a growth enabled thread pool as described below:

Meta-based Distributed Computing Framework 89

Meta Space at Run Time

Meta Fixed
Thread Pool

Meta Http
Server

R
e

p
la

c
in

g

Meta Growable
Thread Pool

Meta ORB
Registry

Meta
Publisher/
Subscriber

Meta
Configuration
Management

Console

(Runtime
Adaptation)

1.

2.

3.

1. MetaSpace has constructed and instantiated metaFixedThreadPool which belongs to a
Type called Pooling and has an internal identifier with the value ThreadPool.
metaFixedThreadPool is then registered in the meta object repository.

2. Meta object metaGrowableThreadPool is constructed and instantiated and also belongs
to a type called Pooling and so also has an internal identifier with the value
ThreadPool. However, it has not been registered in the meta object repository. Since it
has the same meta type and internal identifier as metaFixedThreadPool, they can each
be replaced by the other.

3. Our configuration and management utility controls the replacements of meta objects.
The changes will reflect the system behavior of the meta level and also immediately
affect those base objects which have reified the meta objects which have the internal
meta identifier ThreadPool.

5 Conclusion

We have presented a new approach to the design of a framework based on a meta-
architecture employing distributed computing patterns as the building blocks for meta
objects. This paper addresses how our framework can meet diverse requirements in
distributed computing systems, and describes the advantage of its meta-architecture
that makes the system adaptive and configurable. The proposed framework provides
separation of concerns in system functionality and business functionality and makes
the system’s technological features open-ended for extension, and allows itself to
continually evolve. The work has emerged as a promising way to meet the challenges
in distributed environment currently and in the future. Nonetheless, significant work
remains to be done with respect to security and retransmission, etc [3]. We view such
distributed computing components as an evolutionary extension of the framework we
have described.

A.S.Y. Lai and A.J. Beaumont 90

References

1. S.M. Yacoub, H. H. Ammar: Toward Pattern-Oriented Frameworks. Journal of Object-
Oriented Programming, January 2000.

2. E. Gamma, R. Helm, R.Johnson, J. Vissides: Design Patterns: Elements of Reusable Ob-
ject-Oriented Software, Addison-Welsey, Reading, MA, 1995.

3. M. Grand: JAVA Enterprise Design Patterns, John Wiley, 2002.

Locality Optimizations for Jacobi Iteration on
Distributed Parallel Systems

Yonggang Che, Zhenghua Wang1, Xiaomei Li2, and Laurence T. Yang3

1 School of Computer, National University of Defense Technology,
Changsha 410073, P. R. China

2 Institute of Equipment and Command Technology, Beijing, P.R. China
3 Department of Computer Science, St. Francis Xavier University,

P.O. Box 5000, Antigonish, B2G 2W5, NS, Canada

Abstract. In this paper, we propose an inter-nest cache reuse optimization method
for Jacobi codes. This method is easy to apply, but effective in that it enhances
cache locality of the Jacobi codes while preserving their coarse grain parallelism.
We compare our method to two previous locality enhancement techniques that can
be used for Jacobi codes: time skewing and new tiling. We quantitatively calculate
the main contributing factors to the runtime of different Jacobi codes. We also
perform experiments on a PC cluster to verify our analysis. The results show that
our method performs poorer than time skewing and new tiling for uniprocessor,
but performs better for distributed parallel system.

1 Introduction

Jacobi iteration is widely used in Partial Differential Equations (PDE) solvers. Although
more efficient schemes (e.g., multigrid) have been introduced, it remains important be-
cause it is building block of other advanced schemes, and also because it has simple
computational properties. Many programs spend a large fraction of their runtime per-
forming Jacobi-style computations.

Consider Jacobi code for Laplace equation in two dimensions. Figure 1(a) shows
the original sequential Fortran code, which consists of two loop nests surrounded by an
outer loop. We use the term time-step to refer to the iteration of loop t, and the term
spatial loop to refer to the two inner loops (loop j and loop i). We call the time-step when
t takes an odd (even) number as an odd (even) time-step. There is reuse between the two
spatial loops in addition to the reuse carried by the time-step loop. If the sizes of array
U1 and U2 exceed the size of cache, the array elements used in current time-step will
be evicted from the cache before they can be used by subsequent time-step. Thereby the
array elements must be fetched repeatedly to the cache in every time-step and the Jacobi
code will incur a lot of cache misses and spend a good many time handling these cache
misses.

Song & Li [2, 3], Wonnacott [4, 5] both proposed methods that can be used to solve
this kind of problems. Song & Li used a new tiling technique, which utilizes a combi-
nation of loop skewing and tiling, combined with limited array expansion. They only
discussed optimization for uniprocessor. Wonnacott described time skewing, a technique

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 91–104, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

92 Y. Che et al.

Initiate U1 and boundary of U2
do 100 t=1, mi

do 200 j = 1,N
do 200 i = 1, N

U2(i,j)=(U1(i,j-1)+U1(i-1,j)
+U1(i+1,j)+U1(i,j+1))* 0.25

200 continue
do 300 j = 1,N

do 300 i = 1,N
U1(i,j) = U2(i,j)

300 continue
100 continue

(a)
Initiate U2 and boundary of U1

do 100 t=1, mi
if(MOD(t, 2) .EQ. 1) then

do 200 j = 1,N
do 200 i = 1, N

U1(i,j)=(U2(i,j-1)+U2(i-1,j)
+U2(i+1,j)+U2(i,j+1))* 0.25

200 continue
else

do 300 j = N, 1, -1
do 300 i =N, 1, -1

U2(i,j)=(U1(i,j-1)+U1(i-1,j)
+U1(i+1,j)+U1(i,j+1))* 0.25

300 continue
end if

100 continue
(b)

Fig. 1. Fortran codes for serial Jacobi. (a) Original version; (b) InterNest version

that combines tiling in both the data and time domains. A time-step loop is skewed with
one spatial loop over a data tile so as to preserve data dependencies across multiple
time-steps. The technique involves transforming both the iteration space and array in-
dexing functions in a loop body. Wonnacott described how to achieve scalable locality
and parallelism. But the overheads due to cache miss and communication still exist and
most of them can’t be hidden on modern parallel systems. Other work [6, 7] discussed
the data partition and task scheduling problems for Jacobi code on parallel systems. But
they only considered the original Jacobi code.

In this paper, we propose a simple locality enhancement method for Jacobi code,
which utilizes inter-nest reuse in the Jacobi code to improve its cache locality. In order
to determine which method performs the best for a given machine and certain prob-
lem size, we quantitatively analyze the major contributing factors to overall perfor-

Locality Optimizations for Jacobi Iteration on Distributed Parallel Systems 93

mance of the three methods. We also perform experiments on a PC cluster to verify our
analysis.

The rest of this paper is organized as follows. Section 2 presents sketch of the three
locality optimization methods. Section 3 presents our quantitative analysis in detail.
Section 4 presents our experimental results and discussion. In Section 5, we present a
short summary.

2 Sketch of the Three Memory Locality Enhancement Methods

We briefly introduce the three memory locality enhancement methods mentioned above
here. For simplicity, we don’t consider Jacobi code with convergence test, which is
solved by Song and Li [2]. We denote the original Jacobi codes (both serial and par-
allel) as Ori, our Jacobi codes as InterNest, the Jacobi codes that employ Wonnacott’s
time skewing as TimeSkew, the Jacobi codes that employ Song & Li’s new tiling as
NewTile.

2.1 InterNest

We find that the array copying operations (the second loop nest in Figure 1(a)) in the
original Jacobi code can be eliminated. By odd-even duplication and using U1 or U2
to store temporary values alternately, we remove the array copying operations. There
is data reuse between successive loop nests. To transform this kind of data use into
cache locality, we use an Inter-nest reuse optimization method. Inter-nest reuse takes
place when a set of data items is accessed in a given loop nest and then accessed again
within some subsequent portion of the program. In [8], Kandemir et al presented a
compiler strategy that optimizes inter-nest reuse using loop transformations. They de-
termine the loop transformations matrix and transform the loop nest based on it. Here
we do not present the transformation matrix. To make use of newly cached array el-
ements by previous time-step, the i and j loops in even time-steps are conducted in
reverse order wrt (with respect to) the i and j loops in odd time-steps. The serial code
of InterNest is shown in figure 1(b). Just as Ori, the computation is performed time-
step by time-step in InterNest. Figure 2 shows the parallel Jacobi codes for Ori and
InterNest.

The computation order of InterNest is illustrated in figure 3, in which a point stands
for the computations that update one column of array U1 or U2. Note that although
each column of U1 or U2 appears many times in the figure, it actually uses the same
memory location. The arrows denote the iteration order of loop j. As the 4-point stencil
computation requires, for any j (0 ≤ j ≤ ny + 1), the values of column U1(*, j) de-
pend on the values of three columns U2(*, j-1), U2(*, j) and U2(*, j+1) from previous
time-step iteration. The data dependency relationship is not shown in figure 3 and other
figures.

2.2 TimeSkew

Loop skewing is a program transformation proposed by Wolfe [9]. It is usually used
to transform the loop and its dependences into a form for which tiling is legal. Time

94 Y. Che et al.

Initiate U1 and boundary of U2
do 100 t=1, mi

Exchange boundary data of array U1
do 200 j = 1,N

do 200 i = 1, N
U2(i,j)=(U1(i,j-1)+U1(i-1,j)

+U1(i+1,j)+U1(i,j+1))* 0.25
200 continue

do 300 j = 1,N
do 300 i = 1,N

U1(i,j) = U2(i,j)
300 continue
100 continue

(a)
Initiate U2 and boundary of U1
do 100 t=1, mi

if(MOD(t, 2) .EQ. 1) then
Exchange boundary data of array U2
do 200 j = 1,N

do 200 i = 1, N
U1(i,j)=(U2(i,j-1)+U2(i-1,j)

+U2(i+1,j)+U2(i,j+1))* 0.25
200 continue

else
Exchange boundary data of array U1
do 300 j = N, 1, -1

do 300 i =N, 1, -1
U2(i,j)=(U1(i,j-1)+U1(i-1,j)

+U1(i+1,j)+U1(i,j+1))* 0.25
300 continue

end if
100 continue

(b)

Fig. 2. Fortran codes for parallel Jacobi. (a) Original version; (b) InterNest version

skewing approach reorders the computation order of Jacobi code as figure 4 shows. In
figure 4, a point stands for the computations that update one column of array U1 or
U2. The time-step iterations are divided into groups (referred to as frames, separated
by horizontal lines in figure 4), each contains several time-steps. The computation is
conducted frame by frame. In each frame, the computations order is from upper-left
to the right-below, as indicated by arrows. TimeSkew is parallelized in pipelined pat-
tern, as illustrated in figure 5 (we only illustrate the situation for column partition to save

Locality Optimizations for Jacobi Iteration on Distributed Parallel Systems 95

Fig. 3. Computation order of serial InterNest

Fig. 4. Computation order of serial TimeSkew

Fig. 5. Parallel version of TimeSkew (column partition)

space). Wonnacott introduced another parallelization method for time skewed stencil
codes in [4]. But that method uses an inefficient memory allocation scheme, in which
each processor tries to allocate the entire shared array, and then only fill and use the parts
it needs. That may lose the benefit of parallel computing. We do not use that method in
this paper.

96 Y. Che et al.

2.3 NewTile

For simplicity, we only consider the common situation when (mi < ny − ns + 1).
Figure 6 illustrates the computation order of Jacobi code after new tiling is applied. In
figure 6, a point stands for the computations that update one column of array U1 or
U2. The arrows indicate the computation order of the array elements. The j loops are
tiled with the size ns. The t-j iteration space is reordered into several slopes as separated
by the diagonals in figure 6. The computations are conducted from upper-left slopes to
right-bottom slopes. In each slope, the computation is performed time-step by time-step.
NewTile is also parallelized in pipelined pattern, as shown in figure 7 (we only illustrate
the situation for column partition to save space).

Fig. 6. Computation order of serial NewTile

Fig. 7. Parallel version of NewTile (column partition)

3 Performance Modeling

3.1 Assumptions and Notations

We study the performance of these Jacobi codes using a quantitative method. We are
only intended to roughly compare their performance here. We target our analysis to
a distributed memory parallel system, in which each node has the same computation
ability. The communication cost between any two nodes is the same. Each processor of

Locality Optimizations for Jacobi Iteration on Distributed Parallel Systems 97

the system has two levels of cache. We denote the cache at level i (i=1,2) as Cachei. The
caches use LRU (Least Recently Used) replacement algorithm. The computation domain
is rectangular. Each processor is assigned a rectangular sub-domain. The program uses
column-major storage order.

The architecture parameters and performance profiles of the machine are:

Tf : the average time in seconds for the processor to perform a floating-point opera-
tion;

S1 / S2: L1 / L2 cache size in the number of data elements;
B1 / B2: L1 / L2 cache line size in the number of data elements;
C1 / C2: L1 / L2 cache miss penalty in seconds;
W: Network bandwidth in elements/second for large message passing between two

processors;
L: End to end latency or time spent sending a 0-length message between two pro-

cessors.

The program parameters are:

P: the total number of processes (equal to the number of processors) used;
px / py: the number of processes in x / y dimension in the process topology;
N: total number of grid points in each dimension (boundary points not included);
nx / ny: the number of grid points in x / y dimension for one process;
mi: the number of time-step iterations, assumed to be an even number;
nf: the number of time-steps in a frame in TimeSkew;
ns: the tile size in j loop in NewTile.

For parallel codes, we have P=px*py, nx=N/px, and ny=N/py. We assume ny � nf .
For column partition, py=P, nx=N, and ny=N/p. For row partition, px=P, ny=N, and
nx=N/p.

3.2 Overhead Factors

The total runtime of parallel code can be divided into the following factors:

1. time spent performing useful floating-point calculations (Tfp)
2. stalls due to processor pipeline stalls when cache misses occur (Tmiss)
3. idle time due to pipeline initiation in parallel pipeline execution pattern, or wait

latency (Twait)
4. time spent on exchanging data with neighboring processes (Tcomm), which can

be further divided into time due to end to end latency (TEEL) and time spent on actual
data transfer (Ttrans).

The serial runtime is

Tser = Tfp + Tmiss

The parallel runtime is

Tpar = Tfp + Tmiss + Twait + TEEL + Ttrans

98 Y. Che et al.

Note here we do not consider the overlapping of communication and computation.
We will omit certain small constants from our cost expressions. For stencil operations,
we use the computations that update the values of U2 with the values of U1.

3.3 Cache Misses for Tree Versions of Jacobi Code

We consider only compulsory misses and capacity misses. The situation when array U1
and U2 can fit into Cachei (that is, Si ≥ 2nx ∗ ny) is not considered because it rarely
happens for real applications.

For all Jacobi codes, the spatial and temporal locality wrt loop i can be achieved.
A whole loop i will miss Cachei no more than 4nx/Bi times. So for three versions of
Jacobi codes, the number of misses for Cachei is no greater than 4nx ∗ ny ∗mi/Bi.

InterNest. For a whole j-i loop nest, each column U2(*,j) is accessed for three times,
and each column U1(*,j) is accessed once. If Cachei can hold 4 columns of U1 and
U2, this kind of data reuse will become cache locality, loop nest j-i will totally incur
(2nx∗ny−Si)/Bicache misses. If Cachei can not hold 4 columns of U1 and U2, then
the number of cache misses is (4nx ∗ ny − Si)/Bi. So the number of cache misses for
Cachei (i=1,2) is

MInterNest
Li

{
≈ (4nx ∗ ny − Si) ∗ mi/Bi, (Si < 4nx)
= (2nx ∗ ny − Si)mi/Bi, (4nx ≤ Si < 2nx ∗ ny)

TimeSkew. As can be seen from Figure 2, the working set size of inner loop nest
that computes the values of an arrow is approximately 3+2(nf-1)+1=2nf+2 columns
of data. When Cachei can hold these columns of array elements, each column of
array is reused for nf times in Cachei. So the number of cache misses for Cachei

is (2nx ∗ ny/Bi) ∗ (mi/nf) = 2nx ∗ ny ∗ mi/Bi. Otherwise, it will incur about
2nx ∗ ny ∗mi/Bi cache misses. So the number of cache misses for Cachei (i=1,2) is

MTimeSkew
Li

⎧⎪⎨
⎪⎩

≈ 4nx ∗ ny ∗ mi/Bi, (Si < 4nx)
= 2nx ∗ ny ∗ mi/Bi, (4nx ≤ Si < 2(nf + 1)nx)
= 2nx ∗ ny ∗ mi/(Bi ∗ nf),
(2(nf + 1)nx ≤ Si < 2nx ∗ ny)

NewTile. If cache can hold 2(ns+2) columns of array elements, it ensures that each
column is reused for ns times. So the number of cache misses for Cachei (i=1,2) is

MNewTile
Li

⎧⎪⎨
⎪⎩

≈ 4nx ∗ ny ∗ mi/Bi, (Si < 4nx)
= 2nx ∗ ny ∗ mi/Bi, (4nx ≤ Si < 2(ns + 2)nx)
= 2nx ∗ ny ∗ mi/(Bi ∗ ns),
(2(ns + 2)nx ≤ Si < 2nx ∗ ny)

When 2(nf +1)∗nx ≤ Si(i=1,2), TimeSkew incurs less cache misses than InterNest
at Cachei. When 2(ns + 2) ≤ Si, NewTile incurs less cache misses than InterNest at
Cachei. For other cases, InterNest incurs slightly less cache misses than TimeSkew
and NewTile. NewTile and TimeSkew incur nearly the same number of cache misses
under most situations. For three versions of serial Jacobi codes, their performance is
largely determined by the number of the cache misses. We can conclude that under most

Locality Optimizations for Jacobi Iteration on Distributed Parallel Systems 99

situations, TimeSkew and NewTile perform better than InterNest on uniprocessor, and
TimeSkew and NewTile perform similarly on uniprocessor.

3.4 The Cost of Communication

For all Jacobi codes, each process must exchange boundary data with their neighbors.
While the number of array elements exchanged is the same, the communication count
and the waiting time due to data dependency differ greatly across four methods.

Ori and InterNest. Ori and InterNest have regular computation patterns. In each time-
step, they first exchange boundary data with neighboring processes, then do stencil
computations.

– Column Partition. Each process at the boundary of the process topology (boundary
process) will communicate for 2mi times, totally send and receive 2mi*nx array
elements. Each process in the interior of the process topology (interior process) will
communicate for 4mi times, totally send and receive 4mi*nx array elements.

– Row Partition. Each boundary process will communicate for 2mi times, totally
send and receive 2mi*ny array elements. Each interior process will communicate
for 4mi times, totally send and receive 4mi*ny array elements.

– 2D Division. Each process will communicate for 4mi, 6mi or 8mi times, totally
send and receive 2mi*(nx+ny), 2mi*(2nx+ny), 2mi*(nx+2ny) or 4mi*(nx+ny) array
elements.

TimeSkew

– Column Partition. As can be seen from figure 5, in the first frame, only after
process P1 finishes computing its right most column of U1 (marked by “1”) at
time-step 1 and send this column to process P2, can P2 computes its left most
column of U2 (marked by “2”) at time-step 2. Similarly, process P3 must wait
process P2 because of the data dependency between array elements marked by
“3”and “4”. This forms a waiting chain. When Pn starts computing the left most
column of U2 at time-step 2, the pipeline is “full”. After that, all processes can
do their work concurrently. Pn will be the last process to finish its computation.
For Pn, it must wait the time for a single process to compute (P-1)((2+3+. . . +(nf-
1))+nf(ny-nf))≈P*nf*ny columns before it can calculate its left most column of U1
at time-step 2. Performing these computations needs to exchange one column of
array between any two neighboring processes. Further more, these computations
also introduce cache misses. So Pntotally wait the time for a single process to
perform approximately 4P ∗ ny ∗ nx ∗ nf floating-point calculations, perform
2P communications (totally send or receive 2nx*P array elements), and handle
P∗nf

mi MTimeSkew
L1 L1 data cache misses and P∗nf

mi MTimeSkew
L2 L2 cache misses.

– Row Partition. The number of elements exchanged is the same as InterNest. Each
process can do its computation concurrently from the beginning to the end. There
is no significant wait latency between processes. But the communication count is
larger for it can only send or receive 1 array element at one time to maintain the
computation order and the parallelism. Each boundary process will communicate

100 Y. Che et al.

for 2mi*ny times, totally sends and receives 2mi*nx array elements. Each interior
process will communicate for 4mi*ny times, totally send and receive 4mi*ny array
elements.

– 2D Partition. The communication counts and number of array elements commu-
nicated are the sum of those at column and those at row. It incurs wait latency in
column direction and a large number of communications in row direction. Each
process will communicate for 2mi*ny to 4mi*ny times, according to its position
wrt other processes in the process topology. Its waiting pattern between processes is
similar to that of the column partition. For the right most processes, the wait latency
is the sum of time for a single process to perform approximately 4py*nf*nx*ny
floating-point calculations, perform 2py*nf*ny communications (totally send or re-
ceive 2py*nx+2py*nf*ny array elements), and handle py∗nf

mi MTimeSkew
L1 L1 data

cache misses and py∗nf
mi MTimeSkew

L2 L2 cache misses.

NewTile. The communication count is the same as TimeSkew. But as we can see from
figure 7(a), P1 must finish calculating mi(ny-ns+ny-ns-mi+1)/2≈mi(2ny-2ns-mi)/2 -
columns at the upper left region in figure 7(a) before it calculates the right most column
of U1 at time-step 1 (marked by “1”) and send this column to P2, then P2 can start
calculate its left most column of U2 at time-step 2 (marked by “2”). This kind of latency
exists between any two neighboring processes. Totally, the right most process must
wait the time for a single process to compute P*mi*(2ny-2ns-mi)/2 columns to begin
calculate its left most column of U2 at time-step 2. The wait latency for Pn is the sum
of time for a single process to perform 4nx ∗mi(P − 1)(2ny − 2ns −mi + 1)/2 ≈
2P ∗nx∗mi∗(2ny−2ns−mi) floating-point calculations, perform 2P communications
(totally send or receive 2nx*P array elements), and handle P∗(2ny−2ns−mi)

2ny MNewTile
L1

L1 data cache misses, P∗(2ny−2ns−mi)
2ny MNewTile

L2 L2 cache misses.
We see that the wait latency is rather long.

– Row Partition. The communication count is the same as TimeSkew. From figure
8, we see that each process can do its work concurrently from beginning to the end.
No significant wait latency between processes.

– 2D Partition. The communication count is the sum of those at column and those at
row. It incurs wait latency in column direction and a large number of communica-
tions in row direction. Each process communicates 2mi(1+ny) to 4mi(1+ny) times,
according to its position wrt other process in the process topology. The wait latency
at column direction exists as column partition does. The right most processes in
the process topology must wait the sum of time for a single process to perform
2py ∗nx ∗mi ∗ (2ny− 2ns−mi) floating-point operations, perform py*mi*(2ny-
2ns-mi) communications (totally send or receive 2py*nx+py*mi*(2ny-2ns-mi) ar-
ray elements), and handle py∗(2ny−2ns−mi)

2ny MNewTile
L1 L1 data cache misses and

py∗(2ny−2ns−mi)
2ny MNewTile

L2 L2 cache misses.

Overall Communication Overheads. Table 1 shows the cost of communication for
different Jacobi codes, where InterNest col stands for InterNest with row partition, In-
terNest row stands for InterNest with row partition, and so on. In table 1:

Locality Optimizations for Jacobi Iteration on Distributed Parallel Systems 101

Table 1. The cost of communication for different versions of Jacobi

Twait TEEL Ttrans

InterNest col 0 4L*mi 4mi*nx/W
InterNest row 0 4L*mi 4mi*ny/W
InterNest 2D 0 8L*mi 4mi(nx+ny)/W

TimeSkew col T
(1)
wait 4L*mi 4mi*nx/W

TimeSkew row 0 4L*mi*ny 4mi*ny/W

TimeSkew 2D T
(2)
wait 4L*mi*ny 4mi(nx+ny)/W

NewTile col T
(3)
wait 4L*mi 4mi*nx/W

NewTile row 0 4L*mi*ny 4mi*ny/W

NewTile 2D T
(4)
wait 4L*mi*ny 4mi(nx+ny)/W

MTimeSkew = (C1 ∗ MTimeSkew
L1 + C2 ∗ MTimeSkew

L2)

MNewTile = (C1 ∗ MNewTile
L1 + C2 ∗ MNewTile

L2)

T
(1)
wait = 4P ∗ Tf ∗ nx ∗ ny ∗ nf + 2L ∗ P + 2P ∗ nx/W + P∗nf

mi
MTimeSkew

T
(2)
wait = 4Tf ∗ py ∗ nf ∗ ny ∗ nx + 2L ∗ py ∗ nf ∗ ny + 2py ∗ (nx + nf ∗ ny)/W +

py∗nf
mi

MTimeSkew

T
(3)
wait = 2Tf ∗ P ∗ nx ∗ mi(2ny − mi) + 2L ∗ P + 2P ∗ nx/W + P (2ny−mi)

2ny
MNewTile

T
(4)
wait = 2Tf ∗ py ∗ nx ∗ mi(2ny − mi) + L ∗ py ∗ mi(2ny − mi) + py ∗ mi(2ny −

mi)/W + py(2ny−mi)
2ny

MNewTile

We see that TimeSkew and NewTile incur much larger parallel overheads than In-
terNest.

Because 2D partition is commonly required for large parallel systems, we com-
pare TimeSkew’s and NewTile’s parallel performance when 2D partition is used. Be-
cause their Tfp, Tmiss, TEEL and Ttransare nearly the same, we only need to compare
the difference of their Twait. Her we assume mi � ny, ns=nf and MTimeSkew =
MNewTile.

TNewTile
par

− TTimeSkew
par

= TNewTile
wait − TTimeSkew

wait

= py ∗mi (2Tf ∗ nx(2ny −mi) + L(2ny −mi)) + py ∗mi(2ny −mi)/W

+py(2ny−mi)
2ny MNewTile − (4Tf ∗ py ∗ nf ∗ ny ∗ nx + 2py ∗ L ∗ nf ∗ ny)

−
(
2py ∗ (nx + nf ∗ ny)/W + py∗nf

mi MTimeSkew
)

≈ 4Tf ∗ py ∗ nx ∗ ny ∗mi + 2py ∗ L ∗ ny ∗mi + 2py(ny ∗mi− nx)/W
+pyMTimeSkew

> 0 (ny ∗mi− nx) > 0

We see that NewTile incurs much larger wait latency than TimeSkew. It will perform
poorer than TimeSkew on parallel systems.

102 Y. Che et al.

4 Experimental Results and Discussion

The experiments are done on a PC cluster connected by 100M fast Ethernet switch. Each
node is based on a 2.53GHz Intel P4 processor, which has separated L1 cache (12KB
micro-ops /8KB data, 64B/line) and a unified L2 cache (512 KB, 128B/line). Each
node contains 1GB 333MHz DDR RAM. Every node runs RedHat 8.0 Linux (Kernel
version 2.4.18-14). We use LAM/MPI 6.5.6 as message passing library. We use G77
V7.3 compiler with the highest optimization level (-O3) turned on. Each array element
is a 4-byte floating-point value. The time reported here is wall clock time. The runtime
of TimeSkew depends on the parameter nf . We change nf from 2 to 64 and report the
one with the shortest runtime. The runtime of NewTile depends on the parameter ns and
the same approach is used to choose the best one. The performance of TimeSkew and
NewTile is rather poor when row partition is used, so we do not present their results.

Table 2 shows the runtime for the four serial Jacobi codes. We see the three optimized
versions outperform Ori significantly. The runtime for InterNest is slightly longer than
TimeSkew and NewTile. For all problem sizes, the runtime for TimeSkew and NewTile
nearly equal. These data conform to our analysis.

Table 3 shows the parallel runtime for the four methods when column partition is
used. The number of time-step iteration (mi) is 100 for all problem sizes. We see that
the runtime of InterNest is much shorter than that of NewTile, but is sometimes longer
than that of TimeSkew.

Table 4 shows the runtime when 2D partition is used. The number of time-step
iteration (mi) is 100 for all problem sizes. We see that InterNest always outperforms

Table 2. The runtime in seconds for serial Jacobi codes

N / mi Ori InterNest TimeSkewNewTile
256/10000 5.85 2.8 2.37 2.46
512/1000 11.61 9.82 9.14 9.14
1024/100 2.33 1.63 1.36 1.38
2048/100 7.48 4.79 3.82 3.87
4096/100 26.32 16.63 16.23 16.01

Table 3. The runtime in seconds for parallel Jacobi codes with column partition

N P Ori InterNest TimeSkewNewTile

2048
2 4.112 2.627 2.266 4.226
4 2.71 1.783 1.46 4.149
8 1.607 1.23 1.039 4.483

4096
2 15.015 8.747 8.61 14.45
4 8.189 5.258 4.214 13.11
8 4.747 3.284 2.776 13.42

8192
2 48.965 30.09 39.397 73.516
4 25.964 15.462 15.503 56.708
8 14.622 9.339 8.912 54.608

Locality Optimizations for Jacobi Iteration on Distributed Parallel Systems 103

Table 4. The runtime for parallel Jacobi codes with 2D partition

N PX×PYOri InterNest TimeSkewNewTile

2048
2×2 2.333 1.528 4.066 13.426
2×4 1.318 1.025 13.324 13.676
4×2 1.342 0.989 9.001 19.835

4096
2×2 7.650 4.748 8.693 29.967
2×4 4.432 3.128 23.245 31.442
4×2 4.151 2.805 14.299 40.99

8192
2×2 26.85916.61 21.58 81.117
2×4 13.9789.016 45.943 81.62
4×2 13.9349.016 24.385 88.821

NewTile and TimeSkew significantly. The runtime for InterNest always decreases when
more processors are used. For the same number of processors, the runtime of InterNest
decreases when 2D partition is used instead of column partition. But for NewTile and
TimeSkew, employing more processors even increases their runtime.

So we conclude that NewTile is not suitable for parallel systems. TimeSkew is only
suitable for small-scale parallel systems when column partition is used. InterNest has
good parallel scalability and is more suitable for large-scale parallel systems.

5 Summary

In this paper, we propose a performance enhancement method for 4-point Jacobi code that
solving 2D Laplace equation. This method does not aggressively enhance the memory
locality, but maintains the coarse grain parallelism in the Jacobi code. We compare
our methods to Wonnacott’s time skewing and Song’s new tiling, both quantitatively
and experimentally. We see that Wonnacott and Song’s methods exhibit better memory
locality and are suitable for uniprocessor. But when it comes to distributed parallel
systems, their methods suffer from higher parallel overhead. Our method is more suitable
for distributed memory parallel systems.

While we focus our analysis to Jacobi iteration for 2D Laplace equation, it is easy
to extend this method to other scientific applications that employ Jacobi scheme over a
regularly discretized domain.

References

1. Yonghong Song and Zhiyuan Li. New Tiling Techniques to Improve Cache Temporal Locality.
in Proceedings of ACM SIGPLAN PLDI99, 1999: 215-228.

2. Yonghong Song and Zhiyuan Li, Effective Use of The Level-Two Cache for Skewed Tiling.
Technical Report CSD-TR-01-006, Department of Computer Sciences, Purdue University,
2001.

3. Yonghong Song and Zhiyuan Li. Impact of Tile-Size Selection for Skewed Tiling. in Proceed-
ings of the 5th Workshop on Interaction between Compliers and Architectures, 2001.

104 Y. Che et al.

4. David Wonnacott. Using Time Skewing to Eliminate Idle Time due to Memory Bandwidth
and Network Limitations. in Proceedings of International Parallel and Distributed Processing
Symposim, 2000: 171-180.

5. David Wonnacott, A General Algorithm for Time Skewing. International Journal of Parallel
Programming, 2002: 181-221.

6. Naraig Manjikian and Tarek S. Abdelrahman. Scheduling of wavefromnt parallelism on scal-
able shared memory multiprocessor. in Proceedings of International Conference on Parallel
Processing. Bloomington, IL, 1996: 122-131.

7. David K. Lowenthal and Vincent W. Freeh, Architecture-independent parallelism for both
shared- and distributed-memory machines using the Filaments package. Parallel Computing,
2000, 26(10): 1297-1323.

8. M. Kandemir, I. Kadayif, A. Choudhary, et al. Optimizing Inter-Nest Data Locality. in Pro-
ceedings of International Conference on Compilers, Architecture, and Synthesis for Embedded
Systems. Grenoble, France, 2002: 127-135.

9. M. J. Wolfe, Loop skewing: The wavefront method revisited. International Journal of Parallel
Programming, 1986, 15(4): 279-293.

Fault-Tolerant Cycle Embedding
in the WK-Recursive Network

Jung-Sheng Fu

Department of Electronics Engineering, National United University, Taiwan
jsfu@.nuu.edu.tw

Abstract. 1Recently, the WK-recursive network has received much at-
tention due to its many favorable properties such as a high degree of
scalability. By K(d, t), we denote the WK-recursive network of level t,
each of whose basic modules is a d-node complete graph, where d > 1
and t ≥ 1. In this paper, we construct fault-free Hamiltonian cycles in
K(d, t) with at most d − 3 faulty nodes, where d ≥ 4. Since the connec-
tivity of K(d, t) is d − 1, the result is optimal.

1 Introduction

The WK-recursive network, which was proposed in [1], is a class of recursively
scalable networks. It offers a high degree scalability, which conforms very well to
a modular design and implementation of distributed systems involving a large
number of computing elements. A transputer implementation of a 16-node WK-
recursive network has been realized at the Hybrid Computing Research Center,
Naples, Italy. In this implementation, each node is implemented with the IMS
T414 Transputer [2].

Previous works relating to the WK-recursive network can be found in [1, 3–
12] Layout circuits in VLSI were described in [3]. A broadcasting algorithm was
presented in [4]. In [9], some substructure allocation algorithms for a multiuser
WK-recursive network were presented. The shortest-path routing algorithm was
presented, and some topological properties, such as diameter and connectivity,
were investigated in [5]. The wide diameter and fault diameter were computed
in [6]. In [7], the Hamiltonian cycle embedding method with some faulty links was
presented. Cycles of all possible lengths were also constructed. In [8], link-disjoint
Hamiltonian cycles and link-disjoint spanning trees were constructed. In [12], a
B-tree traingular coding was presented. In [10], an adaptive routing algorithm
was presented. In [13], the Rabin number was derived. In [11], a communication
algorithm was presented. In [14], a Hamiltonian path between arbitrary two
distinct nodes was constructed.

1 The author would like to thank the National Science Council of the Republic of
China, Taiwan for financially supporting this research under Contract No. NSC 93-
2213-E-239-010-.

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 105–114, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

106 J.-S. Fu

Linear arrays and rings, which are two of the most fundamental networks
for parallel and distributed computation, are suitable for developing simple al-
gorithms with low communication cost. Many efficient algorithms that were de-
signed based on linear arrays and rings for solving a variety of algebraic prob-
lems and graph problems can be found in [15, 16]. They can also be used as
control/data flow structures for distributed computation in arbitrary networks.
The longest path approach was applied to a practical problem that was encoun-
tered in the on-line optimization of a complex Flexible Manufacturing System
in [17]. These applications motivated us to embed paths and cycles in networks.

Suppose that W is an interconnection network (network for short). A path
(cycle) in W is called a Hamiltonian path (Hamiltonian cycle) if it contains
every node of W exactly once. W is called Hamiltonian if there is a Hamiltonian
cycle in W [18]. Since node faults and link faults may develop in a network,
it is practically important to consider faulty networks. A network W is called
k-node (k-link) Hamiltonian if it remains Hamiltonian after removing any k
nodes (links) [19]. If W has node (link) connectivity k + 2 and is k-node (k-
link) Hamiltonian, then it can tolerate a maximal number of node (link) faults
while embedding a longest fault-free cycle. Some networks have been shown to
be k-node Hamiltonian and k-link Hamiltonian. For example, the hierarchical
cubic network with connectivity n + 1 is (n − 1)-link Hamiltonian [20]. The
n-dimensional twisted cube [21] is (n − 2)-node Hamiltonian and (n − 2)-link
Hamiltonian.

Note that an n-link Hamiltonian graph can not be guaranteed to be n-node
Hamiltonian. For example, the n-cube is (n−2)-link Hamiltonian but not (n−2)-
node Hamiltonian [22]. In [7], the WK-recursive network with connectivity d−1
was shown to be (d − 3)-link Hamiltonian. It is not possible to re-use their
approach of replacing link failures with node failures because a faulty node will
cause d− 1 links to fail, and because their approach can handle at most (d− 3)
faulty links.

In this paper, we show that the WK-recursive network with connectivity
d − 1 is (d − 3)-node Hamiltonian. In addition, the WK-recursive network is
Hamiltonian-connected [14] and pancyclic [7]. Hence, it can be concluded that
the WK-recursive network is excellent in terms of Hamiltonicity, and that it can
tolerate a maximal number of node (link) faults while embedding a longest fault-
free cycle. In the next section, the WK-recursive network is formally defined.

2 Preliminaries

In this section, we introduce some important notations and concepts. The WK-
recursive network can be constructed hierarchically by grouping basic modules.
Any d-node complete graphs can serve as the basic modules. We use K(d, t) to
denote a WK-recursive network of level t, each of whose basic modules is a d-
node complete graph, where d > 1 and t ≥ 1. The structures of K(4, 1), K(4, 2),
and K(4, 3) are shown in Figure 1. K(d, t) is defined in terms of a graph as
follows.

Fault-Tolerant Cycle Embedding in the WK-Recursive Network 107

Fig. 1. The topologies of (a)K(4, 1), (b)K(4, 2), and (c)K(4, 3)

108 J.-S. Fu

Definition 1 Each node of K(d, t) is labeled as a t-digit radix d number. Node
at−1at−2...a1a0 is adjacent to (1) at−1at−2...a1b, where b �= a0, and adjacent
to (2) at−1at−2...aj+1b1(b0)j if aj �= aj−1 and aj−1 = aj−2 = ... = a0, where
b1 = aj−1, b0 = aj, and (b0)j denotes j consecutive b0’s. The links of (1) are
called substituting links and are labeled 0. The link of (2) is called a j-flipping
link and is labeled j. For example, the 2-flipping link connects node 033 and node
300 in K(4, 3) (refer to Figure 1). In addition, if at−1 = at−2 = ... = a0, then
an open link labeled t is incident with at−1at−2...a0. The open link is reserved
for further expansion; hence, its other end node is unspecified.

Note that K(d, 1) is a d-node complete graph augmented with d open links.
Each node of K(d, t) is incident with d − 1 substituting links and one flipping
link (or open link). The substituting links are those within basic building blocks,
and the j-flipping links are those connecting two embedded K(d, j)’s.

Definition 2 Let ct−1ct−2 · · · cm be a specific (t−m)-digit radix d number. De-
fine ct−1ct−2 · · · cm · K(d, m) as the subgraph of K(d, t) induced by {ct−1ct−2
· · · cmam−1 · · · a1a0| am−1 · · · a1a0 is a m-digit radix d number}; that is, ct−1
ct−2...cm ·K(d, m) is an embedded K(d, m) with the identifier ct−1ct−2...cm.

In Figure 1 (c), 00·K(4, 1) is the subgraph of K(4, 3) induced by {000, 001, 002,
003}. If we regard each c ·K(d, t− 1), which can be called a subnetwork of level
t− 1, as a supernode, then {0 ·K(d, t− 1), 1 ·K(d, t− 1), 2 ·K(d, t− 1), ..., d−
1 ·K(d, t − 1)} forms a complete graph. There is a unique (t − 1)-flipping link
between two arbitrary supernodes. The (t−1)-flipping link between a·K(d, t−1)
and b ·K(d, t− 1) connects nodes a(b)t−1 and b(a)t−1.

Definition 3 Node at−1at−2...a1a0 is a k-frontier if ak−1 = ak−2 = ... = a0,
where 1 ≤ k ≤ t.

By definition, a k-frontier is automatically an l-frontier for 1 ≤ l ≤ k. A
k-frontier is proper if it is not an (k +1)-frontier. Both end nodes of a k-flipping
link are proper k-frontiers.

In the rest of this paper, a path from node X to node Y is abbreviated as an
X-Y path. An X-X path, which has length 0, degenerates to a node X.

3 Cycle Embedding in K(d, t) with Node Faults

In this section, we show that K(d, t) is (d− 3)-node Hamiltonian, where d ≥ 4.
That is, we embed a fault free Hamiltonian cycle in K(d, t) with at most d− 3
faulty (or removed) nodes. Since the node connectivity of K(d, t) is d − 1, the
result is optimal. Clearly, there are d embedded K(d, t−1)’s in K(d, t). The idea
is to construct a Hamiltonian path between two proper (t− 1)-frontiers for each
K(d, t − 1) and to then use d (t − 1)-flipping links to connect these d paths to
form a Hamiltonian cycle for K(d, t). Suppose that a Hamiltonian path for each
K(d, t−1) can be constructed. The following lemma shows that the Hamiltonian

Fault-Tolerant Cycle Embedding in the WK-Recursive Network 109

cycle for K(d, t) can be formed by combining these paths when at most d − 3
nodes are removed.

Lemma 1 If f ≤ d − 3 nodes are removed from K(d, t), then we can find a
sequence v0, v1, . . . , vd−1 such that nodes v0(v1)t−1, v1(v0)t−1, v1(v2)t−1, . . .,
vd−2(vd−1)t−1, vd−1(vd−2)t−1, vd−1(v0)t−1, and v0(vd−1)t−1 are not removed,
where {v0, v1, . . . , vd−1} = {0, 1, 2, . . . , d− 1}.
Proof. We can transform this problem into another problem, which is cycle em-
bedding in a complete graph with faulty links. If we regard each K(d, t − 1) as
a single supernode, then K(d, t) can be treated as a complete graph C with d
nodes. Removing a proper (t−1)-frontier from K(d, t) is tantamount removing a
link in C. Hence, one non-removed link in C can assure that two adjacent proper
(t−1)-frontiers in K(d, t) are not removed. In K(d, t), at most d−3 proper (t−1)-
frontiers are removed because at most d − 3 nodes are removed. Therefore, the
graph C can be treated as indicating that at most d−3 links are removed. In [7],
a complete graph with d nodes was shown to be (d− 3)-link Hamiltonian. That
is, a Hamiltonian cycle can be found in C after at most d− 3 links are removed.
Let vi denote a node in C corresponding to vi · K(d, t − 1) in K(d, t), and let
−→ denote a link in C. Suppose that the Hamiltonian cycle in C is as follows:

v0 −→ v1 −→ v2 −→ . . . −→ vd−1 −→ v0,

where {v0, v1, . . . , vd−1} = {0, 1, 2, . . . , d− 1}. These d non-removed links of the
Hamiltonian cycle for C assure that nodes v0(v1)t−1, v1(v0)t−1, v1(v2)t−1, . . .,
vd−2(vd−1)t−1, vd−1(vd−2)t−1, vd−1(v0)t−1, and v0(vd−1)t−1 in K(d, t) are not
removed. (see Figure 2) ��

)1,(1 −⋅− tdKvd

)1,(1 −⋅ tdKv

)1,(2 −⋅− tdKvd

1
01)(−tvv

1
21)(−

−−
t

dd vv
1

12)(−
−−

t
dd vv 1

32)(−
−−

t
dd vv

)1,(0 −⋅ tdKv

1
10)(−tvv

0v 1v

2−dv1−dv

),(tdK

1
21)(−tvv

1
01)(−

−
t

d vv

1
10)(−

−
t

dvv

C

Fig. 2. The Hamiltonian cycle in C and the corresponding non-removed nodes in
K(d, t)

Now, we want to construct Hamiltonian paths for each K(d, t−1) between two
proper (t−1)-frontiers. When at most d−4 nodes are removed from K(d, t−1),

110 J.-S. Fu

we can construct a Hamiltonian path for the network that remains after remov-
ing nodes from K(d, t− 1) between two arbitrary non-removed (t− 1)-frontiers.
When d − 3 nodes are removed from K(d, t − 1), we choose two non-removed
proper (t− 1)-frontiers and then construct a Hamiltonian path for the network
that remains after removing nodes from K(d, t− 1) between the proper (t− 1)-
frontiers. We will show the former in Lemma 3 and the latter in Lemma 5. To
prove Lemma 3, we need the following lemma.

Lemma 2 Given two integers v0, vd−1 ∈ {0, 1, 2, . . . , d − 1}, if at most d −
4 proper (t − 1)-frontiers are removed from K(d, t), then we can find a se-
quence v0, v1, . . . , vd−1 such that nodes v0(v1)t−1, v1(v0)t−1, v1(v2)t−1, . . ., vd−2
(vd−1)t−1, and vd−1(vd−2)t−1 are not removed, where {v0, v1, . . . , vd−1} = {0, 1,
2, . . . , d− 1}.
Proof. There exists a Hamiltonian path between two arbitrary nodes of a com-
plete graph with d nodes after removing d − 4 links (see [7]). The remaining
proof is similar to that of Lemma 1. ��

For simplicity, we use K(d, t) instead of K(d, t − 1). The following lemma
shows that when at most d − 4 nodes are removed from K(d, t), we can con-
struct a Hamiltonian path for the network that remains after removing nodes
from K(d, t) between two arbitrary non-removed t-frontiers.

Lemma 3 Let G be the network that remains after removing any f ≤ d − 4
nodes from K(d, t) and (a)t and (b)t are not removed. There exists an (a)t-(b)t

Hamiltonian path for G.

Proof. We proceed by induction on t. Clearly, the lemma holds for t = 1. As-
sume that it holds for t = k ≥ 1. The situation in the case of t = k + 1 is
discussed below. Let v0 = a and vd−1 = b. At most d − 4 proper k-frontiers in
K(d, k + 1) are removed since at most d − 4 nodes in K(d, k + 1) are removed.
According to Lemma 2, we can find a sequence v0, v1, . . . , vd−1 such that nodes
v0(v1)k, v1(v0)k, v1(v2)k, . . . , vd−2(vd−1)k, and vd−1(vd−2)k are not removed,
where {v0, v1, . . . , vd−1} = {0, 1, 2, . . . , d − 1}. By assumption, there exists a
Hamiltonian path for the network that remains after removing any f nodes at
most from k(d, k) between two arbitrary distinct non-removed k-frontiers. Let
H=⇒ denote this path, and let −→ denote a k-flipping link. An (a)k+1-(b)k+1

Hamiltonian path for G is constructed as follows:

(a)k+1 = (v0)k+1 H=⇒ v0(v1)k −→ v1(v0)k H=⇒ v1(v2)k −→ . . . −→
vd−2(vd−3)k H=⇒ vd−2(vd−1)k −→ vd−1(vd−2)k H=⇒ (vd−1)k+1 = (b)k+1.

��
When d−3 nodes are removed from c ·K(d, t−1) for some c ∈ {0, 1, 2, . . . , d−

1}, we choose two non-removed proper (t− 1)-frontiers (i.e., c(a)t−1 and c(b)t−1

with a, b ∈ {0, 1, 2, . . . , d−1}−{c}) and then construct a Hamiltonian path for the
network that remains after removing d−3 nodes from c ·K(d, t−1) between the
proper (t−1)-frontiers, which is the proof of Lemma 5. In the proof of Lemma 5,
there is a tricky case of K(4, t). To solve this case, we need the following lemma.

Fault-Tolerant Cycle Embedding in the WK-Recursive Network 111

Lemma 4 Let {a, b, c, e} = {0, 1, 2, 3}. There exist an (a)t-(c)t path and a (b)t-
(e)t path such that they are disjoint and contain all the nodes of K(4, t), where
t ≥ 1.

Proof. Clearly, the lemma holds for t = 1. The situation in the case of t ≥ 2
is discussed below. According to Lemma 3, there exists a Hamiltonian path for
K(d, t−1) between two arbitrary (t−1)-frontiers. Let H=⇒ denote this path, and
let −→ denote a (t − 1)-flipping link. An (a)t-(c)t path and a (b)t-(e)t path in
K(4, t) are constructed as follows:

(a)t H=⇒ a(c)t−1 −→ c(a)t−1 H=⇒ (c)t,
(b)t H=⇒ b(e)t−1 −→ e(b)t−1 H=⇒ (e)t. ��

Lemma 5 Let G be the network that remains after removing any d − 3 nodes
from K(d, t). Given an integer c ∈ {0, 1, 2, . . . , d − 1}, we can find two distinct
integers a, b ∈ {0, 1, 2, . . . , d − 1} − {c} such that nodes (a)t and (b)t are not
removed and there is an (a)t-(b)t Hamiltonian path for G.

Proof. We proceed by induction on t. Clearly, the lemma holds for t = 1. Assume
that it holds for t = k ≥ 1. The situation in the case of t = k + 1 is discussed
below. Let −→ denote a k-flipping link. Two cases will be considered.

Case 1: The number of nodes removed from each subnetwork of level k is not
greater than d − 4. According to Lemma 3, there exists a Hamiltonian path
for the network that remains after removing at most d − 4 nodes from k(d, k)
between two arbitrary distinct non-removed proper k-frontiers. Let H=⇒ denote
this path. Two cases will be further considered.
Case 1.1: No (k + 1)-frontier in K(d, k + 1) is removed. According to Lemma
1, we can find a sequence v0, v1, . . . , vd−1 such that nodes v0(v1)k, v1(v0)k,
v1(v2)k, . . . , vd−2(vd−1)k, vd−1(vd−2)k, vd−1(v0)k, and v0(vd−1)k are not removed,
where {v0, v1, . . . , vd−1} = {0, 1, 2, . . . , d − 1}. There exists an integer i ∈
{0, 1, 2, . . . , d − 1} such that c �∈ {vi, vi+1 mod d}. Let a = u0 = vi+1 mod d,
u1 = vi+2 mod d, . . . , uj = vi+1+j mod d, . . ., ud−2 = vi+(d−1) mod d, and
b = ud−1 = vi. (a)k+1 and (b)k+1 are not removed since no (k + 1)-frontier
is removed. An (a)k+1-(b)k+1 Hamiltonian path for G is constructed as follows:

(a)k+1 = (u0)k+1 H=⇒ u0(u1)k −→ u1(u0)k H=⇒ u1(u2)k −→ . . . −→
ud−2(ud−3)k H=⇒ ud−2(ud−1)k −→ ud−1(ud−2)k H=⇒ (ud−1)k+1 = (b)k+1.

Case 1.2: At least one (k +1)-frontier is removed. Clearly, at most d− 3 (k +1)-
frontiers are removed since d− 3 nodes are removed. Hence, at least three non-
removed (k+1)-frontiers can be found. Let (v0)k+1 and (vd−1)k+1 be two distinct
non-removed (k + 1)-frontiers, where v0, vd−1 ∈ {0, 1, 2, . . . , d − 1} − {c}. Be-
cause at least one (k+1)-frontier is removed, at most d−4 proper k-frontiers are
removed. According to Lemma 2, we can find a sequence v0, v1, . . . , vd−1 such
that nodes v0(v1)k, v1(v0)k, v1(v2)k, . . ., vd−2(vd−1)k, and vd−1(vd−2)k are not
removed, where {v0, v1, . . . , vd−1} = {0, 1, 2, . . . , d−1}. Let a = v0 and b = vd−1.
An (a)k+1-(b)k+1 Hamiltonian path for G is constructed as follows:

112 J.-S. Fu

(a)k+1 = (v0)k+1 H=⇒ v0(v1)k −→ v1(v0)k H=⇒ v1(v2)k −→ . . . −→
vd−2(vd−3)k H=⇒ vd−2(vd−1)k −→ vd−1(vd−2)k H=⇒ (vd−1)k+1 = (b)k+1.

Case 2: There is a subnetwork of level k containing d−3 removed nodes. Assume
that c′ ·K(d, k) contains d− 3 removed nodes, for some c′ ∈ {0, 1, 2, . . . , d− 1}.
Hence, all nodes in other remaining subnetworks of level k are not removed. By
assumption, we can find two distinct integers a′, b′ ∈ {0, 1, 2, . . . , d − 1} − {c′}
such that nodes c′(a′)k and c′(b′)k are not removed and there is a c′(a′)k-
c′(b′)k Hamiltonian path for G′, which is the network that remains after re-

moving d − 3 nodes from c′ · K(d, k). Let G′
=⇒ denote this path. According to

Lemma 3, there exists a Hamiltonian path for K(d, k) between two arbitrary k-
frontiers. Let H=⇒ denote this path. When {0, 1, 2, . . . , d− 1} − {a′, b′, c′, c} �= ∅,
let b = vd−1 ∈ {0, 1, 2, . . . , d − 1} − {a′, b′, c′, c} and v1 = c′. If a′ �= c, then let
a = v0 = a′ and v2 = b′. If a′ = c (certainly, we have b′ �= c), then let a = v0 = b′

and v2 = a′. Let {v0, v1, . . . , vd−1} = {0, 1, 2, . . . , d−1}. An (a)k+1-(b)k+1 Hamil-
tonian path for G is constructed as follows:

(a)k+1 = (v0)k+1 H=⇒ v0(v1)k −→ v1(v0)k G′
=⇒ v1(v2)k −→ . . . −→

vd−2(vd−3)k H=⇒ vd−2(vd−1)k −→ vd−1(vd−2)k H=⇒ (vd−1)k+1 = (b)k+1.

When {0, 1, 2, . . . , d−1}−{a′, b′, c′, c} = ∅, clearly, we have d = 4. Let a = a′

and b = b′. According to Lemma 4, there exist an (a)k+1-a(c′)k ((b)k+1-b(c)k,
respectively) path and an a(b)k-a(c)k (b(a)k-b(c′)k, respectively) path containing
all the nodes in a ·K(4, k) (b ·K(4, k), respectively). Let P1=⇒ denote the (a)k+1-

a(c′)k path, let P2=⇒ denote the a(b)k-a(c)k path, let
P ′

1=⇒ denote the (b)k+1-b(c)k

path, and let
P ′

2=⇒ denote the b(a)k-b(c′)k path. An (a)k+1-(b)k+1 Hamiltonian
path for G is constructed as follows:

(a)k+1 P1=⇒ a(c′)k −→ c′(a)k G′
=⇒ c′(b)k −→ b(c′)k P ′

2=⇒ b(a)k −→ a(b)k

P2=⇒ a(c)k −→ c(a)k H=⇒ c(b)k −→ b(c)k P ′
1=⇒ (b)k+1. ��

Finally, the following theorem is the main result of this paper.

Theorem 1 K(d, t) is (d− 3)-node Hamiltonian, where d ≥ 4.

Proof. Suppose f ≤ d−3 nodes are removed in K(d, t). We proceed by induction
on t. Clearly, the theorem holds for t = 1. Assume that it holds for t = k ≥ 1.
The situation in the case of t = k + 1 is discussed below. Let −→ denote a
k-flipping link. Two cases will be considered.

Case 1: The number of nodes removed from each subnetwork of level k is not
greater than d − 4. According to Lemma 1, we can find a sequence v0, v1, . . . ,
vd−1 such that nodes v0(v1)k, v1(v0)k, v1(v2)k, . . . , vd−2(vd−1)k, vd−1(vd−2)k,
vd−1(v0)k, and v0(vd−1)k are not removed, where {v0, v1, . . . ,vd−1}={0, 1,
2, . . . , d − 1}. According to Lemma 3, there exists a Hamiltonian path for the

Fault-Tolerant Cycle Embedding in the WK-Recursive Network 113

network that remains after removing any d− 4 nodes at most from K(d, k) be-
tween two arbitrary distinct non-removed k-frontiers. Let H=⇒ denote this path.
A Hamiltonian cycle is constructed as follows:

v0(vd−1)k H=⇒ v0(v1)k −→ v1(v0)k H=⇒ v1(v2)k −→ . . . −→ vd−2(vd−3)k

H=⇒ vd−2(vd−1)k −→ vd−1(vd−2)k H=⇒ v0(vd−1)k.

Case 2: There is a subnetwork of level k containing d−3 removed nodes. Assume
that v0 ·K(d, k) contains d− 3 removed nodes, for some v0 ∈ {0, 1, 2, . . . , d− 1}.
Hence, all nodes in other remaining subnetworks of level k are not removed. Let
G′ be the network that remains after removing d−3 nodes from v0 ·K(d, k). Ac-
cording to Lemma 5, we can find two distinct integers v1, vd−1 ∈ {0, 1, 2, . . . , d−
1}− {v0} such that nodes v0(v1)k and v0(vd−1)k are not removed and there is a

v0(v1)k-v0(vd−1)k Hamiltonian path for G′. Let G′
=⇒ denote this path. According

to Lemma 3, there exists a Hamiltonian path for K(d, k) between two arbitrary
k-frontiers. Let H=⇒ denote this path. Let {v0, v1, . . . , vd−1} = {0, 1, 2, . . . , d−1}.
A Hamiltonian cycle is constructed as follows:

v0(vd−1)k G′
=⇒ v0(v1)k −→ v1(v0)k H=⇒ v1(v2)k −→ . . . −→ vd−2(vd−3)k

H=⇒ vd−2(vd−1)k −→ vd−1(vd−2)k H=⇒ v0(vd−1)k. ��

4 Discussion and Conclusion

In this paper, using inductive proofs, we showed that K(d, t) is (d − 3)-node
Hamiltonian. In addition, K(d, t) was shown to be (d− 3)-link Hamiltonian [7].
Because K(d, t) has node and link connectivity d− 1, it can tolerate a maximal
number of node and link faults while embedding a longest fault-free cycle. Our
results reveal that K(d, t) is excellent in terms of fault-tolerant Hamiltonicity. A
topic for further research is the Hamiltonian-connectedness of the WK-recursive
network when there are node faults and/or link faults.

References

1. Della Vecchia, G., Sanges, C.: Recursively scalable networks for message passing
architectures. In Chiricozzi, E., D’Amico, A., eds.: Parallel Processing and
Applications. Elsevier North-Holland, Amsterdam (1988) 33–40

2. INMOS Limited: Transputer reference manual. Prentice-Hall, Upper Saddle
River, NJ 07458, USA (1988) Includes index. Bibliography: p. 315-324.

3. Della Vecchia, G., Sanges, C.: A recursively scalable network VLSI implementation.
Future Generation Computer Systems 4 (1988) 235–243

4. Della Vecchia, G., Sanges, C.: An optimized broadcasting technique for WK-
recursive topologies. Future Generation Computer Systems 5 (1989/1990) 353–357

5. Chen, G.H., Duh, D.R.: Topological properties, communication, and computation
on WK-recursive networks. Networks 24 (1994) 303–317

114 J.-S. Fu

6. Duh, D.R., Chen, G.H.: Topological properties of WK-recursive networks. Journal
of Parallel and Distributed Computing 23 (1994) 468–474

7. Fernandes, R., Friesen, D.K., Kanevsky, A.: Embedding rings in recursive
networks. In: Proceedings of the 6th Symposium on Parallel and Distributed
Processing. (1994) 273–280

8. Fernandes, R., Friesen, D.K., Kanevsky, A.: Efficient routing and broadcasting
in recursive interconnection networks. In: Proceedings of the 23rd International
Conference on Parallel Processing. Volume 1: Architecture. (1994) 51–58

9. Fernandes, R., Kanevsky, A.: Substructure allocation in recursive interconnection
networks. In: Proceedings of the 1993 International Conference on Parallel
Processing. Volume 1: Architecture. (1993) 319–323

10. Verdoscia, L., Vaccaro, R.: An adaptive routing algorithm for WK-recursive
topologies. Computing 63 (1999) 171–184

11. Verdoscia, L., Scafuri, U.: CODACS project: level-node communication policies.
In: Proceedings of the Eleventh Euromicro Conference on Parallel,Distributed
and Network-Based Processing. (2003) 134–139

12. Della Vecchia, G., Distasi, R.: B-Tree triangular coding on WK-recursive networks.
In: Parallel Computing: State-of-the-Art and Perspectives, Proceedings of the Con-
ference ParCo’95, 19-22 September 1995, Ghent, Belgium. Volume 11 of Advances
in Parallel Computing., Amsterdam, Elsevier, North-Holland (1996) 165–172

13. Liaw, S.C., Chang, G.J.: Generalized diameters and rabin numbers of networks.
Journal of Combinatorial Optimization 2 (1999) 371–384

14. Fu, J.S.: Hamiltonian-connectedness of the WK-recursive network. In: Proceedings
of the 7th International Symposium on Parallel Architectures, Algorithms and
Networks. (2004) 569–574

15. Akl, S.G.: Parallel Computation: Models and Methods. Prentice-Hall, Upper
Saddle River, NJ (1997)

16. Leighton, F.T.: Introduction to Parallel Algorithms and Architectures: arrays.
trees. hypercubes. Morgan Kaufman, San Mateo (1992)

17. Ascheuer, N.: Hamiltonian path problems in the on-line optimization of flexible
manufacturing systems. PhD thesis, University of Technology, Berlin, Germany
(1995) Also available at ftp://ftp.zib.de/pub/zib-publications/reports/TR-96-
03.ps.

18. Buckley, F., Harary, F.: Distance in Graphs. Addison-Wesley, Reading, MA, USA
(1990)

19. Harary, F., Hayes, J.P.: Edge fault tolerance in graphs. Networks 23 (1993) 135–142
20. Fu, J.S., Chen, G.H.: Fault-tolerant cycle embedding in hierarchical cubic

networks. Networks 43 (2004) 28–38
21. Huang, W.T., Tan, J.M., Hung, C.N., Hsu, L.H.: Fault-tolerant hamiltonicity of

twisted cubes. Journal of Parallel and Distributed Computing 62 (2002) 591–604
22. Fu, J.S.: Fault-tolerant cycle embedding in the hypercube. Parallel Computing

29 (2003) 821–832

 J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 115–125, 2004.
© Springer-Verlag Berlin Heidelberg 2004

RAIDb: Redundant Array of Inexpensive Databases

Emmanuel Cecchet

INRIA, Sardes Project – 655, Avenue de l’Europe – 38330 Montbonnot – France
Emmanuel.Cecchet@inria.fr

Abstract. In this paper, we introduce the concept of Redundant Array of Inex-
pensive Databases (RAIDb). RAIDb is to databases what RAID is to disks.
RAIDb aims at providing better performance and fault tolerance than a single
database, at low cost, by combining multiple database instances into an array of
databases. Like RAID, we define and compare different RAIDb levels that pro-
vide various cost/performance/fault tolerance tradeoffs.

We present a Java implementation of RAIDb called Clustered JDBC or C-
JDBC. C-JDBC achieves both database performance scalability and high avail-
ability at the middleware level without changing existing applications nor data-
base engines.

Keywords: database, replication clustering, middleware, scalability, depend-
ability.

1 Introduction

Nowadays, database scalability and high availability can be achieved, but at very high
expense. Existing solutions require large SMP machines or clusters with a Storage
Area Network (SAN) and high-end RDBMS (Relational DataBase Management Sys-
tems). Both hardware and software licensing cost makes those solutions only avail-
able to large businesses.

In this paper, we introduce the concept of Redundant Array of Inexpensive Data-
bases (RAIDb), in analogy to the existing RAID (Redundant Array of Inexpensive
Disks) concept, that achieves scalability and high availability of disk subsystems at a
low cost. RAID combines multiple inexpensive disk drives into an array of disk
drives to obtain performance, capacity and reliability that exceeds that of a single
large drive [5]. RAIDb is the counterpart of RAID for databases. RAIDb aims at pro-
viding better performance and fault tolerance than a single database, at a low cost, by
combining multiple database instances into an array of databases.

RAIDb primarily targets low-cost commodity hardware and software such as clus-
ters of workstations and open source databases. On such platforms, RAIDb will be
mostly implemented as a software solution like the C-JDBC middleware prototype we
present in this paper. However, like for RAID systems, hardware solutions could be
provided to enhance RAIDb performance while still being cost effective.

Clusters of workstations are already an alternative to large parallel machines in
scientific computing because of their unbeatable price/performance ratio. Clusters can
also be used to provide both scalability and high availability in data server environ-
ments. Database replication has been used as a solution to improve availability and

E. Cecchet 116

performance of distributed databases [2, 8]. Even if many protocols have been de-
signed to provide data consistency and fault tolerance [3], few of them have been used
in commercial databases [12]. Gray et al. [6] have pointed out the danger of
replication and the scalability limit of this approach. However, database replication is
a viable approach if an appropriate replication algorithm is used [1, 8, 14]. We
propose a classification of the various distribution and fault tolerance solutions in
RAIDb levels and evaluate the performance/fault tolerance tradeoff of each solution.

The outline of the rest of this paper is as follows. Section 0 gives an overview of
the RAIDb architecture and its components. In section 0, we introduce a classification
of the basic RAIDb levels. Then, section 0 shows how to combine those basic RAIDb
levels to build larger scale RAIDb configurations. Section 0 gives an overview of C-
JDBC, a Java implementation of RAIDb. Section 0 discusses related work and we
conclude in section 0.

2 RAIDb Architecture

One of the goals of RAIDb is to hide the distribution complexity and provide the da-
tabase clients with the view of a single database like in a centralized architecture. Fig.
1 gives an overview of the RAIDb architecture. The left side of the figure depicts the
standard centralized database access by clients using the database driver to send their
SQL requests. The right side of fig. 1 shows how RAIDb is used to cluster the original
database.

As for RAID, a controller sits in front of the underlying resources. The clients
send their requests directly to the RAIDb controller that distributes them among the
set of RDBMS backends. The RAIDb controller gives the illusion of a single RDBMS
to the clients by exporting a virtual database.

Database clients

Database driver

Relational Database

Database clients

RAIDb driver

Virtual Database

DB1 DB2 DB.. DBn

Database drivers

SQL queriesSQL queries

RAIDb controller

Fig. 1. RAIDb architecture overview

RAIDb: Redundant Array of Inexpensive Databases 117

2.1 RAIDb Controller

RAIDb controllers may provide various degrees of services. The controller must be
aware of the database tables available on each RDBMS backend so that the requests
can be routed (according to a load balancing algorithm) to the right node(s) by parsing
the SQL statement. This knowledge can be configured statically through configura-
tion files or discovered dynamically by requesting the database schema directly from
the RDBMS. Load balancing algorithms can range from static affinity-based or
round-robin policies to dynamic decisions based on node load or other monitoring-
based information.

RAIDb controllers should also provide support for dynamic backend addition and
removal which is equivalent to the disks’ hot swap feature. To prevent the controller
from being a single point of failure, it is possible to replicate controllers and synchro-
nize them using totally ordered reliable communication channels. This is necessary to
preserve the same serializable execution order at each controller.

As RAID controllers, RAIDb controllers can offer caching to hold the replies to
SQL queries. The controller is responsible for the granularity and the coherence of the
cache. Additional features such as connection pooling can be provided to further
enhance performance scalability. There is no restriction to the set of services imple-
mented in the RAIDb controller. Monitoring, debugging, logging or security man-
agement services can prove to be useful for certain users.

2.2 Application and Database Requirements

In general, RAIDb does not impose any modification of the client application or the
RDBMS. However, some precautions have to be taken care of, such as the fact that all
requests to the databases must be sent through the RAIDb controller. It is not allowed
to directly issue requests to a database backend as this might compromise the data
synchronization between the backends as well as the RAIDb cache coherency.

As each RDBMS supports a different SQL subset, the application must be aware
of the requests supported by the underlying databases. This problem can be easily
handled if all RDBMS instances use the same version from the same vendor. For ex-
ample, a cluster consisting only of MySQL 4.0 databases will behave as a single in-
stance of MySQL 4.0. Nevertheless, heterogeneous databases can be used with
RAIDb. A mix of Oracle and PostgreSQL databases is a possible RAIDb backend
configuration. In such a case, the application must use an SQL subset that is common
to both RDBMS. If the RAIDb controller supports user defined load balancers, the
user can implement a load balancer that is aware of the respective capabilities of the
underlying RDBMS. Once loaded in the RAIDb controller, the load balancer should
be able to direct the queries to the appropriate database.

3 Basic RAIDb Levels

We define three basic RAIDb levels varying the degree of partitioning and
replication among the databases. RAIDb-0 (database partitioning) and RAIDb-1 (da-
tabase mirroring) are similar to RAID-0 (disk striping) and RAID-1 (disk mirroring),
respectively. Like RAID-5, RAIDb-2 is a tradeoff between RAIDb-0 and RAIDb-1.
Actually, RAIDb-2 offers partial replication of the database. We also define RAIDb-

E. Cecchet 118

1ec and RAIDb-2ec that adds error checking to the basic RAIDb levels 1 and 2,
respectively.

Note that RAIDb is just a conceptual analogy to RAID. Data distribution in
RAIDb uses a logical unit which is a database table, whereas RAID uses a physical
unit defined by a disk block.

3.1 RAIDb-0: Full Partitioning

RAIDb level 0 is similar to striping provided by RAID-0. It consists in partitioning
the database tables among the nodes. Each table is assigned to a unique node and
every node has at least one table. RAIDb-0 uses at least 2 database backends but there
is no duplication of information and therefore no fault tolerance guarantees.

RAIDb-0 allows large databases to be distributed, which could be a solution if no
node has enough storage capacity to store the whole database. Also, each database
engine processes a smaller working set and can possibly have better cache usage,
since the requests are always hitting a reduced number of tables. As RAID-0, RAIDb-
0 gives the best storage efficiency since no information is duplicated.

RAIDb-0 requires the RAIDb controller to know which tables are available on
each node in order to direct the requests to the right node. This knowledge can be con-
figured statically in configuration files or build dynamically by fetching the schema
from each database.

Like for RAID systems, the Mean Time Between Failures (MTBF) of the array is
equal to the MTBF of an individual database backend, divided by the number of
backends in the array. Because of this, the MTBF of a RAIDb-0 system is too low for
mission-critical systems.

3.2 RAIDb-1: Full Replication

RAIDb level 1 is similar to disk mirroring in RAID-1. Databases are fully replicated.
RAIDb-1 requires each backend node to have enough storage capacity to hold all da-
tabase data. RAIDb-1 needs at least 2 database backends, but there is (theoretically)
no limit to the number of RDBMS backends.

The performance scalability is limited by the capacity of the RAIDb controller to
efficiently broadcast the updates to all backends. In case of a large number of backend
databases, a hierarchical structure like those discussed in section 0 would give better
scalability.

Unlike RAIDb-0, the RAIDb-1 controller does not need to know the database
schema, since all nodes are capable of treating any request. However, if the RAIDb
controller provides a cache, it will need the database schema to maintain the cache
coherence.

RAIDb-1 provides speedup for read queries because they can be balanced over the
backends. Write queries are performed in parallel by all nodes, therefore they execute
at the same speed as the one of a single node. However, RAIDb-1 provides good fault
tolerance, since it can continue to operate with a single backend node.

3.3 RAIDb-1ec

To ensure further data integrity, we define the RAIDb-1ec level that adds error check-
ing to RAIDb-1. Error checking aims at detecting Byzantine failures [9] that may oc-

RAIDb: Redundant Array of Inexpensive Databases 119

cur in highly stressed clusters of PCs [7]. RAIDb-1ec detects and tolerates failures as
long as a majority of nodes does not fail. RAIDb-1 requires at least 3 nodes to oper-
ate.

A read request is always sent to a majority of nodes and the replies are compared.
If a consensus is reached, the reply is sent to the client. Else the request is sent to all
nodes to reach a quorum. If a quorum cannot be reached, an error is returned to the
client.

The RAIDb controller is responsible for choosing a set of nodes for each request.
Note that the algorithm can be user defined or tuned if the controller supports it. The
number of nodes always ranges from the majority (half of the nodes plus 1) to all
nodes. If all nodes are chosen, it results in the most secure configuration but the per-
formance will be the one of the slowest backend. This setting is a tradeoff between
performance and data integrity.

3.4 RAIDb-2: Partial Replication

RAIDb level 2 features partial replication which is an intermediate configuration be-
tween RAIDb-0 and RAIDb-1. Unlike RAIDb-1, RAIDb-2 does not require any sin-
gle node to host a full copy of the database. This is essential when the full database is
too large to be hosted on a node’s disks. Each database table must be replicated at
least once to survive a single node failure. RAIDb-2 uses at least 3 database backends
(2 nodes would be a RAIDb-1 solution). Like for RAIDb-0, RAIDb-2 requires the
RAIDb controller to be aware of the underlying database schemas to route the request
to the appropriate set of nodes. As RAID-5, RAIDb-2 is a good tradeoff between cost,
performance and data protection.

Typically, RAIDb-2 is used in a configuration where no or few nodes host a full
copy of the database and a set of nodes host partitions of the database to offload the
full databases. RAIDb-2 can be useful with heterogeneous databases. An existing en-
terprise database using a commercial RDBMS could be too expensive to fully dupli-
cate both in term of storage and additional licenses cost. Therefore, a RAIDb-2 con-
figuration can add a number of smaller open-source RDBMS hosting smaller parti-
tions of the database to offload the full database and offer better fault tolerance.

3.5 RAIDb-2ec

Like for RAIDb-1ec, RAIDb-2ec adds error checking to RAIDb-2. Three copies of
each table are needed in order to achieve a quorum. RAIDb-2ec requires at least 4
RDBMS backends to operate. The choice of the nodes that will perform a read request
is more complex than in RAIDb-1ec due to the data partitioning. However, nodes
hosting a partition of the database may perform the request faster than nodes hosting
the whole database. Therefore RAIDb-2ec might perform better than RAIDb-1ec.

3.6 RAIDb Levels Performance/Fault Tolerance Summary

Fig. 2 gives an overview of the performance/fault tolerance tradeoff offered by each
RAIDb level. RAIDb-0 offers in the best case the same fault tolerance as a single da-
tabase. Performance can be improved by partitioning the tables on different nodes, but
scalability is limited to the number of tables and the workload distribution among the
tables.

E. Cecchet 120

RAIDb-1 gives in the worst case the same fault tolerance as a single database, and
performance scales according to the read/write distribution of the workload. On a
write-only workload, performance can be lower than for a single node. At the oppo-
site extreme, a read-only workload will scale linearly with the number of backends.
RAIDb-1ec provides at least the same fault tolerance as RAIDb-1, but performance is
lowered by the number of nodes used to check each read query.

RAIDb-2 offers less fault tolerance than RAIDb-1, but it scales better on
write-heavy workloads by limiting the updates broadcast to a smaller set of nodes.
RAIDb-2ec has better fault tolerance than RAIDb-2 but comes at the price of lower
performance and a larger number of nodes.

Fig. 2. RAIDb performance/fault tolerance tradeoff

3.7 RAIDb Levels Cost Effectiveness

Several parameters influence the cost and performance of every RAIDb configuration.
Table 1 lists the cost and performance parameters taken into account for computing the
cost/performance ratio of every RAIDb configuration.

Table 2 summarizes the performance cost tradeoff of each RAID level
configuration. The optimal throughput assumes that performance scales linearly with
the number of nodes regardless of the number of RAIDb controllers. Reads can occur
in parallel whereas write will execute at the speed of the slowest replica. We assume
that all nodes have the same performance.

RAIDb-0 performance scales up to the number of database tables if the workload
is equally distributed among tables. In the best case, the disks can be fully distributed
in the nodes if the tables have the same size that matches the disk size.

With RAIDb-1, each node has a full copy of the database, which makes it the most
expensive solution with RAIDb-1ec. In the best case, write performance is the same
as the one of a single node but reads can be parallelized on all nodes. RAIDb1-ec read
performance is divided by the number of nodes involved on the error checking. This
optimal case does take into account the cost of the results comparison.

Worst
Best

Performance

Fa
ul

t t
ol

er
an

ce

Best

Single
database

 RAIDb-1

RAIDb-0

RAIDb-2

RAIDb-1ec

RAIDb-2ec

RAIDb: Redundant Array of Inexpensive Databases 121

Table 1. Cost/performance parameters

Name Description
n number of backend nodes
n$ backend node cost including software licenses but excluding disk

cost
d number of disks
d$ cost of a disk
c number of C-JDBC controllers
c$ cost of a C-JDBC controller
t throughput of a single database node
tab number of tables
%read percentage of reads in the workload
%write percentage of writes in the workload
r number of replicas of a table (RAIDb-2)
nec number of nodes participating in error checking for a read request

(RAIDb-*ec)

Table 2. RAIDb level cost effectiveness summary

RAIDb
level

Nb of
nodes

Nb of
disks

Optimal throughput/cost ratio

Single DB n = 1 d≥1
$$ ddn

t

×+

RAIDb0 2≤n≤tab d≥1
$$$ ccddnn

tn

×+×+×
×

RAIDb1 n≥2 dn×
$$)$(

%%

ccddnn

writetreadtn

×+×+
×+××

RAIDb1ec n≥3 dn×
$$)$(

%%

ccddnn

writetread
nec

tn

×+×+

×+××

RAIDb2 n≥3 dr ×

$$$

%%

ccddrnn

writet
r

n
readtr

×+××+×

××+××

RAIDb2ec n≥4 dr ×
$$$

%%

ccddrnn

writet
r

n
read

nec

tr

×+××+×

××+××

RAIDb-2 read throughput is a factor of the number of replicas, but only those rep-
licas are blocked during a write allowing other writes to occur in parallel on other
tables. As for RAIDb-1ec, RAIDb-2ec limits reads scalability.

E. Cecchet 122

4 Composing RAIDb Levels

It is possible to compose several RAIDb levels to build large-scale configurations. As
a RAIDb controller may scale only to a limited number of backend databases, it is
possible to cascade RAIDb controllers to support a larger number of RDBMS. As
each RAIDb controller can provide its own cache, a RAIDb composition can help
specialize the caches and improve the hit rate.

Fig. 3 shows an example of a 3-level RAIDb composition. The first level RAIDb-1
controllers acts as a single RAIDb-1 controller. At the second level, the database
backend replica is implemented by a RAIDb-0 array with one of the partition being
implemented by a RAIDb-2 configuration. Note that any controller can be replicated
at any level to provide more availability.

DB 6DB 5

DB native JDBC driver

DB 7

RAIDb driver

DB 1 DB 2

DB native
JDBC driver

DB 3

DB native
JDBC driver

DB 4

RAIDb-1 controllerRAIDb-1 controller

RAIDb-2 controller

RAIDb-0 controller

RAIDb
driver

Client
program

RAIDb
driver

Client
program

RAIDb
driver

Client
program

RAIDb
driver

RAIDb
driver

Fig. 3. RAIDb levels composition

There is potentially no limit to the depth of RAIDb compositions. It can also make
sense to cascade several RAIDb controllers using the same RAIDb levels. For exam-
ple, a cascade of RAIDb-1 controllers could be envisioned with a large number of
mirrored databases. The tree architecture offered by RAIDb composition offers a
more scalable solution for large database clusters especially if the RAIDb controller
has no network support to broadcast the writes.

5 C-JDBC: A RAIDb Software Implementation

JDBC™, often referenced as Java Database Connectivity, is a Java API for accessing
virtually any kind of tabular data [13]. We have implemented C-JDBC (Clustered
JDBC), a Java middleware based on JDBC, that allows building all RAIDb configura-
tions described in this paper. C-JDBC works with any RDBMS that provides a JDBC
driver. The client application does not need to be modified and transparently accesses
a database cluster as if it were a centralized database. The RDBMS does not need any

RAIDb: Redundant Array of Inexpensive Databases 123

modification either, nor does it need to provide distributed database functionalities.
The distribution is handled by the C-JDBC controller that implements the logic of a
RAIDb controller using a read-one write-all approach.

Fig. 4 gives an overview of the different C-JDBC components. The client applica-
tion uses the generic C-JDBC driver that replaces the database specific JDBC driver.
The C-JDBC controller implements a RAIDb controller logic and exposes a single
database view, called virtual database, to the driver.

The authentication manager establishes the mapping between the login/password
provided by the client application and the login/password to be used on each database
backend. All security checks can be performed by the authentication manager. It pro-
vides a uniform and centralized resource access control.

Each virtual database has its own request manager that implement the required
RAIDb level and defines the request scheduling, caching and load balancing policies.
The “real” databases are defined as database backends and are accessed through their
native JDBC driver. If the backend is a cascaded RAIDb controller like show on fig. 4,
the C-JDBC driver is used as a regular database backend driver.

C-JDBC Controller

MySQL

C-JDBC driver

MySQL

Virtual database

Database
Backend

Connection
Manager

Database
Backend

Connection
Manager

Request Manager

RAIDb-1 Scheduler

RAIDb-1 Load balancer

MySQL
JDBC driver

MySQL
JDBC driver

Recovery
Log

Authentication Manager

Database
Backend

Connection
Manager

C-JDBC
driver

C-JDBC driver

Client application
(Servlet, EJB, ...)

Client application
(Servlet, EJB, ...)

C-JDBC Controller

PostgreSQL Oracle

Virtual database

Database
Backend

Connection
Manager

Database
Backend

Connection
Manager

Request Manager

RAIDb-2 Scheduler

RAIDb-2 Load balancer

PostgreSQL
JDBC driver

Oracle JDBC
driver

Authentication Manager

MySQL

Database
Backend

Connection
Manager

C-JDBC
driver

MySQL
JDBC driver

Fig. 4. C-JDBC overview

When a request comes from a C-JDBC driver, it is routed to the request manager
associated to the virtual database. The scheduler is responsible for ordering the re-
quests according to the desired isolation level. Once the request scheduler processing
is done, the requests are sequentially ordered and sent to the load balancer.

Among the backends that can treat the request (all of them in RAIDb-1), one is se-
lected according to the implemented algorithm (this applies only to reads, writes are
broadcasted). Once a backend has been selected, the request is sent to its native driver
through a connection manager that can perform connection pooling. The ResultSet

E. Cecchet 124

returned by the native driver is transformed into a serializable ResultSet that is re-
turned to the client by means of the C-JDBC driver.

C-JDBC also implements a recovery log that records all write statements between
checkpoints. With each checkpoint corresponds a database dump. When a backend
node is added to the cluster, a dump corresponding to a checkpoint is installed on the
node. Then, all write queries since this checkpoint are replayed from the recovery log,
and the backend starts accepting client queries as soon as it is synchronized with the
other nodes. C-JDBC implementation and performance is further detailed in [4].

6 Related Work

Since the dangers of replication have been pointed out by Gray et al. [6], several
works have investigated lazy replication techniques [10]. Ongoing efforts on eager
replication have also been going on with the recent release of Postgres-R [8]. Several
groups are focusing on group communications for asynchronous replication [14] or
partial replication [11]. To the best of our knowledge, RAIDb is the first concept to
propose a classification of the various replication techniques. Moreover, the approach
can be applied both at the middleware and database levels.

Support for large number of backends usually consists in replicating the RAIDb
controller. But it is also possible to compose RAIDb levels by nesting controllers to
accommodate any application or setup requirements. C-JDBC is currently the only
RAIDb software implementation that supports both controller replication and vertical
scalability allowing different replication policies to be mixed.

7 Conclusion

We have proposed a new concept, called RAIDb (Redundant Array of Inexpensive
Databases) that aims at providing better performance and fault tolerance than a single
database, at a low cost, by combining multiple database instances into an array of da-
tabases. We have defined several levels featuring different replication techniques:
RAIDb-0 for partitioning, RAIDb-1 for full replication and RAIDb-2 for partial repli-
cation. Additionally, two levels called RAIDb-1ec and RAIDb-2ec provide error
checking and tolerate Byzantine failures.

We have shown how the various RAIDb levels can be combined to build large
scale clustered database configurations. We hope that RAIDb will provide a sound
basis for classifying work done in the field of database clustering. Finally, we have
presented C-JDBC, a RAIDb software implementation in Java. C-JDBC is an open-
source project and is available for download from http://c-jdbc.objectweb.org.

References

1. Christiana Amza, Alan L. Cox, Willy Zwaenepoel – Conflict-Aware Scheduling for Dy-
namic Content Applications – Proceedings of USITS 2003, March 2003.

2. Christiana Amza, Alan L. Cox, Willy Zwaenepoel – Scaling and availability for dynamic
content web sites – Rice University Technical Report TR02-395, 2002.

RAIDb: Redundant Array of Inexpensive Databases 125

3. P.A. Bernstein, V. Hadzilacos and N. Goodman – Concurrency Control and Recovery in
Database Systems – Addison-Wesley, 1987.

4. Emmanuel Cecchet, Julie Marguerite and Willy Zwaenepoel – C-JDBC : Flexible Data-
base Clustering Middleware – Usenix Annual Technical Conference - Freenix track, June
2004.

5. P. Chen, E. Lee, G. Gibson, R. Katz and D. Patterson – RAID: High-Performance, Reli-
able Secondary Storage – ACM Computing Survey, 1994.

6. Jim Gray, Pat Helland, Patrick O’Neil and Dennis Shasha – The Dangers of Replication
and a Solution – Proceedings of the 1996 ACM SIGMOD International Conference on
Management of Data, June 1996.

7. Monika Henziger – Google: Indexing the Web - A challenge for Supercomputers – Pro-
ceeding of the IEEE International Conference on Cluster Computing, September 2002.

8. Bettina Kemme and Gustavo Alonso – Don’t be lazy, be consistent: Postgres-R, a new
way to implement Database Replication –Proceedings of the 26th International Conference
on Very Large Databases, September 2000.

9. L. Lamport, R. Shostak, and M. Pease – The Byzantine Generals Problem – ACM Trans-
actions of Programming Languages and Systems, Volume 4, Number 3, July 1982.

10. E. Pacitti, P. Minet and E. Simon – Fast algorithms for maintaining replica consistency in
lazy master replicated databases –Proceedings of VLDB, 1999.

11. A. Sousa, F. Pedone, R. Oliveira, and F. Moura – Partial replication in the Database State
Machine – Proceeding of the IEEE International Symposium on Networking Computing
and Applications (NCA’01), 2001.

12. D. Stacey – Replication: DB2, Oracle or Sybase – Database Programming & Design 7, 12.
13. S. White, M. Fisher, R. Cattel, G. Hamilton and M. Hapner – JDBC API Tutorial and Ref-

erence, Second Edition – Addison-Wesley, ISBN 0-201-43328-1, november 2001.
14. M. Wiesmann, F. Pedone, A. Schiper, B. Kemme and G. Alonso – Database replication

techniques: a three parameter classification – Proceedings of the 19th IEEE Symposium on
Reliable Distributed Systems (SRDS2000), October 2000.

 J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 126–135, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A Fault-Tolerant Multi-agent Development Framework

Lin Wang, Hon F. Li, Dhrubajyoti Goswami, and Zunce Wei

Department of Computer Science, Concordia University,
1455 de Maisonneuve Blvd. W., Montreal, Quebec H3G 1M8, Canada

{li_wang, hfli, goswami, zunce_we}@cs.concordia.ca

Abstract. FATMAD is a fault-tolerant multi-agent development framework
that is built on top of a mobile agent platform (Jade). FATMAD aims to satisfy
the needs of two communities of users: Jade application developers and
fault-tolerant protocol developers. Application-level fault tolerance incurs
significant development-time cost. FATMAD is based on a generic
fault-tolerant protocol whose refinements lead to a broad range of checkpoint
and recovery protocols to be used in supporting user applications, thus
significantly reducing the development time of fault-tolerant agent applications.
This paper introduces the design of FATMAD and explains how fault-tolerant
protocol developers can extend FATMAD with additional checkpoint and
recovery protocols. The key concepts and features are illustrated through the
staggered checkpoint protocol.

1 Introduction

Multi-agent systems are receiving considerable attention in many application areas
[16, 20] due to the flexibility and ease of use of the agent paradigm. Fault tolerance is
an important design issue in many on-line applications. Since agents are autonomous
objects [2] with purposeful and also unpredictable behaviors, tolerating failures in
agent applications is a non-trivial problem for agent developers and system designers.

Checkpoint and rollback-recovery [11] are popular strategies to achieve fault
tolerance in distributed systems. Unlike replication-based techniques [8] that are only
suitable for storage-intensive or service-oriented situations, checkpoint/recovery is
applicable for all kinds of systems. In such a strategy, two inter-dependent protocols
are deployed: a checkpoint/logging protocol that saves information into stable storage,
and a recovery protocol that is launched upon failure to restore the execution from
stable storage. In log-based recovery [1, 19], message events are logged and replayed
to guarantee the deterministic recreation of the execution. Checkpoints are taken as
process snapshots only in order to trim the message log. In contrast, checkpoint-based
recovery [5, 11] takes coordinated checkpoints to avoid message logging/replaying.
As a result, all processes that coordinate during checkpointing need to rollback
together in recovery. Checkpoint/recovery strategies are usually based on the fail-stop
model [18], in which processes are subject to crash failures detectable by other
processes.

A Fault-Tolerant Multi-agent Development Framework

127

The distributed agent community has done a significant amount of work in agent
modeling, specification, and development. Role model [9, 10] is presented to capture
agent behaviors and specify the requirements. A high-level agent communication
language (ACL) [7] is designed for agents to interact with each other, and agent
collaborations can be modeled by AUML protocol diagram [3, 14]. On the other
hand, there are agent platforms and frameworks [4, 15, 21, 23] that provide
development support and runtime environment for agent applications. Common
features and services are implemented as system APIs or pre-designed agent classes,
with which agent developers interface to build their own agent applications.

Existing agent frameworks do not provide sufficient support for developing
fault-tolerant agent applications: there is less support to tolerate agent crash and the
strategies are almost fixed in the kernel. Many agent frameworks, such as Jade [4] and
Aglet [21], focus on different levels of services for standard agent communication and
collaboration. New version of Jade employs replication techniques to enhance the
availability of system services, but it doesn’t provide scheme on application level
fault-tolerance for agents. Using such frameworks, in order to employ a
checkpoint/recovery protocol, an application developer usually has to implement the
protocol by directly programming the detailed issues like where to take a checkpoint
and when to start logging messages. Some agent frameworks [15, 23] provide system
services for fault-tolerant programming, but these services mainly focus on the
mobility aspects of agents and are hard-coded, hence are less flexible. For example,
Concordia [23] partially implements a checkpoint/recovery scheme to guarantee only
the agent migration. With these frameworks, application developers are actually
playing the role of checkpoint/recovery protocol designers. However, none of the
existing agent frameworks provides support for protocol designers to implement and
test different checkpoint/recovery strategies.

A new fault-tolerant agent framework that supports checkpoint/recovery strategies
can be built to help both application developers and (checkpoint/recovery) protocol
designers. Here the framework distinguishes the jobs of these two user groups.
Application developers are only responsible for the application code and the selection
of the appropriate checkpoint/recovery protocol from a protocol library supplied by
the framework. Protocol designers build and extend the protocol library by
programming their checkpoint/recovery protocols using facilities supported by the
framework.

In general, the following observations apply to all checkpoint and recovery
protocols: i) the protocols employ some common basic functions, such as taking a
local checkpoint, logging a message, and resetting an agent to a checkpoint; ii) many
protocols follow a generic behavioral pattern, e.g. upon failure, a recovery protocol
has to retrieve the recorded information, decide the set of agents to be recovered, and
rollback their execution to some appropriate checkpoints. When provided with a
framework that has implemented most of the common functions and the generic
behavioral pattern(s), protocol designers can save their efforts and focus on the
protocol-specific parts. In this way, the framework can facilitate protocol
implementation and application development by providing a flexible as well as
sufficient agent-programming environment.

This paper presents the design of such a framework named Fault-Tolerant
Multi-Agent Development framework (FATMAD). Based on checkpoint and recovery
techniques, it tolerates agent failure by providing a modifiable fault tolerance kernel,

L. Wang et al. 128

which allows users to choose from a library of different strategies and to extend the
library easily. The rest of the paper is organized as follows: section 2 gives an overview
of the framework in terms of its objectives, structure, and its appearance to application
developers. Section 3 provides more details of the design, and highlights its appearance
to protocol designers. An example checkpoint and recovery protocol is used throughout
to illustrate the programming interfaces. Section 4 concludes the paper.

2 Overview

FATMAD is targeted for two groups of users with different expectations and
responsibilities: protocol designers who can extend the framework with new
checkpoint/recovery protocols, and application developers who can use the extended
or default framework to develop fault-tolerant agent applications.

From an application developer’s perspective, FATMAD should act like a
fault-tolerant-support layer on top of the agent application development platform. The
application developer should have some basic knowledge regarding the selection of a
specific checkpoint/recovery protocol that best suits the characteristics of her
application, and be able to integrate with ease the selected fault-tolerant protocol into
her application using the FTMAD provided API support.

A protocol designer uses FATMAD to implement a particular checkpoint/recovery
protocol. Generic functionalities that are common to most protocols should be
supported. FATMAD should be able to provide a meta-model that is abstract enough
to cover most protocols and is also flexible enough for the protocol designer to
customize her own protocols by incorporating specific "hot-spots". To be able to
interface with application developers without extension, it should also come with
some default checkpoint and recovery protocols that can be immediately used.

2.1 High-Level Structure

FATMAD is designed to provide all necessary supports for both user groups, at
design-time and run-time. As shown in Fig. 1, FATMAD is implemented on the Jade
[4] platform, and provides programming interfaces for application developers to
embed fault-tolerance support. FATMAD functionalities can be abstractly divided
into two parts: FATMAD Primary and the Protocol Extension. FATMAD Primary is
the default framework without any extension. It provides a kernel with all basic
services, a protocol skeleton that captures the generic behavioral pattern of most
protocols, and a default implementation of the customizable parts that include two
default checkpoint/recovery protocols. Protocol Extension is the protocol-specific
part, including all customizations and configurations created by protocol designers.

 Agent Application

Jade

FATMAD Primary

Protocol Extension
FATMAD

Fig. 1. Structure of FATMAD

A Fault-Tolerant Multi-agent Development Framework

129

Application developers can use either the default or the extended FATMAD for
embedding agent applications with fault-tolerance support (refer to Fig. 1). In either
case, they need to program with the protocol-specific classes, which are provided
either by FATMAD or by protocol designers. Protocol designers can extend the
framework by integrating their own protocols, which are implemented by concretizing
the protocol skeleton with the protocol-specific code. The resulted protocols are
provided a set of agent classes, including the protocol-specific class for application
developers and other supporting classes. To ensure the correct implementation of the
protocol, it is mandatory that the designers have a good understanding of the
underlying design and the internal mechanisms of FATMAD. These issues are
discussed in section 3.

2.2 Application Programming with FATMAD

To embed fault tolerance features into application agents, the developer has to select a
checkpoint/recovery protocol that is deemed to be suitable for her application, and
then adapt the application to FATMAD by applying the protocol interface(s). In order
to properly use a FATMAD supported protocol, the developer needs to understand: i)
the important characteristics, such as protocol scheme, suitability of application types,
benefits, etc, and ii) the framework interfaces of the selected protocol. Usually,
adapting an application agent into a fault-tolerant agent includes the following:

Extend Protocol Specific Agent Class. Instead of extending the Jade agent class, one
needs to start by extending a protocol-specific class created by protocol designers.

Replace a Set of Agent Class Methods. Jade-provided methods need to be replaced
by FATMAD-provided methods in order to perform user-defined operations.

Replace Messaging Function Calls. Jade messaging functions should be replaced by
corresponding FATMAD functions, which can trigger message handling like logging.

Flag to Trigger Checkpoint/Logging. Some protocols require the application to set
flags at desired points in order to trigger a checkpoint. This can be done by calling the
pre-defined methods provided either by the kernel or by the protocol.

The following example shows code fragments of an agent application named
FTAppAgent, which employs the staggered checkpoint protocol [22] via extending the
protocol-specific class named StaggeredFTAgent. Bold words demonstrate the parts
performed by application developers, e.g., the calling of flagToCheckpoint() method,
as is required by the protocol. Details of the staggered checkpoint protocol and the
implementation of StaggeredFTAgent class in FATMAD are discussed in Section 3.

public class FTAppAgent extends StaggeredFTAgent
{ // Class inheritance
 public void appSetup(){...} // To replace Jade setup()
 public class OEBehaviour extends SimpleBehaviour
 { // Behaviour class conforming to Jade
 public void action(){ // Application agent action
 if(chpt_condition) flagToCheckpoint();
 // Flag to trigger checkpoint service
 sendMessage(msg); ...} // To replace Jade send()
 ...}
...}

L. Wang et al. 130

3 FATMAD for Protocol Designers

The design of FATMAD is based on the observation that different
checkpoint/recovery protocols have common or similar behavioral patterns and utilize
a set of common services. FATMAD provides these common parts as generic
patterns/services, from which protocol designers can customize their protocol-specific
parts.

3.1 The Generic Solutions

A checkpoint/recovery protocol, in general, consists of different actions that are
executed or triggered under various conditions. For example, the staggered checkpoint
protocol, which is a refinement of the coordinated checkpoint protocol by Chandy and
Lamport [6], is triggered by a flag-to-checkpoint of an application agent (the initiator).
The initiator takes a local checkpoint, sends a checkpoint request to an un-checkpointed
agent, and begins to log messages from all channels. Upon receiving a checkpoint
request, an agent will take similar actions. This sequence repeats until the last un-
checkpointed process sends a checkpoint request back to the initiator. The initiator then
sends out special marker messages to all its output channels. Once an agent receives the
first marker message, it sends out marker messages to all its output channels. The
message logging for a channel stops as soon as a marker message is received from that
channel. The corresponding recovery protocol will rollback all agents to their most
recent checkpoints, and the logged messages will be replayed accordingly.

As we can see, the above protocol involves many basic functions, e.g., taking a
local checkpoint, logging/replaying of a message, rolling an agent back to a
checkpoint, and so on. These basic functions are common to most checkpoint/
recovery protocols, and can be supported as framework services. A protocol
developer’s responsibility is then to properly utilize these services while integrating
her protocol into the framework.

In general, the checkpoint protocol for an agent can be viewed as a sequence of three
atomic actions: checkpointing, message logging, and updating of the logging policy.
Coordination actions (such as checkpoint request and marker message) induce
dependencies among agents. An action is triggered when some particular conditions are
satisfied. A policy hence can generally refer to an action and its triggering condition.
These features can be supported by the framework as a generic checkpoint protocol (i.e.,
a generic behavioral pattern), as shown in a high level of abstraction as follows:

Upon checkpoint event for agent ai:
 Take a local checkpoint;
 Update logging policy locally;
 Send checkpoint request to a subset of agents;
 Wait for feedback from a subset of agents;
 Send checkpoint commitment to a subset of agents;
 Do logging coordination with a subset of agents
 and update group logging policy;

A specific checkpoint protocol is a refinement of the generic protocol (by the
protocol designer). In general, in a checkpoint protocol, the designer needs to specify
the following for an agent: i) when a local checkpoint is taken (i.e. triggered by some
specific checkpoint events like application’s flag-to-checkpoint or a checkpoint

A Fault-Tolerant Multi-agent Development Framework

131

request); ii) changes to the policy of logging messages that are received by that agent
(e.g. start or stop logging a channel); iii) dependencies among checkpoint/logging
events taken at different agents, if any; iv) defining the coordination group, etc.

The action of message logging can be implemented as a framework service that is
governed by a logging policy. All checkpoints and logged messages are retrievable
from some repository manager that can survive node crash. When an agent failure is
detected, a recovery protocol will usually perform the following: i) gather necessary
information (checkpoints and message logs) from the repository manager, ii) based on
the information gathered, decide on a recovery line involving one or more agents that
should roll back, and iii) enforce the rollback with an appropriate policy for replay
and discard of messages. The above three steps can be modeled as a sequence of three
atomic actions. Hence the framework involves a simple abstract recovery protocol.
While a checkpoint protocol involves a logging policy, a recovery protocol similarly
involves a message handling policy upon agent recovery. The enforcement of the
policy is automatically supported by the framework.

FATMAD also supports pruning of logged data. Pruning actions are consequences
of checkpoint and recovery actions. A generic pruning protocol is available for
discarding logged data when they are not needed in future crashes.

The generic checkpoint/logging and recovery/pruning protocols can be refined to
many checkpoint and recovery protocols rather than merely the staggered protocol.
For example, during failure-free execution, checkpoint-based protocols only involve
the actions of checkpointing, while log-based and hybrid protocols involve all three
atomic actions but differ in their policy control. In addition, the generic protocols also
fit some other protocols that are neither log-based nor globally coordinated, such as
the group-based checkpoint/recovery protocol that we have recently developed [12].

FATMAD implements the previous generic solutions as follows: (a) a kernel that
contains the essential framework services supporting all protocols; (b) a protocol
skeleton that can be refined into specific checkpoint/recovery protocols; (c) an
application skeleton that embodies an application agent to be interfaced properly with
FATMAD (including parts of both (a) and (b)). The protocol skeleton actually
implements the atomic action control and the policy triggering mechanism for the
generic protocol(s). It is ready to be concretized by a protocol developer, who will
incorporate protocol-specific code into the skeleton. Once extended with protocol-
specific code through the use of the framework services, it forms a
developer-provided protocol and can serve as an application skeleton for application
developers.

3.2 Design of FATMAD

As mentioned in section 3.1, the FATMAD kernel consists of a set of basic services
needed to support checkpoint and recovery protocols. These services are general
purpose in nature and their functionalities are apparent from their names: (i) execution
control for application agent, such as freeze, resume, abort of an agent, (ii) checkpoint
service that is triggered by a checkpoint event, (iii) logging service with various
logging options and management of cache/stable storage, (iv) timing service such as
logical and vector clocks, (v) repository service that takes care of storage management
and data access, and (vi) other message handling services such as replay/discard of
messages during recovery. These services are used by the checkpoint and recovery
protocols in both protocol skeleton and its extension, for creating checkpoints and

L. Wang et al. 132

message logs on the application agents as well as for deciding how to handle an agent
crash at recovery time. Some services are executed by the protocol as procedure calls,
while the others are triggered by the kernel as policy actions. Both procedure call and
policy setting are framework- provided APIs available for protocol designers.

The protocol skeleton is provided as a set of agent classes which, when
extended/concretized, implements four key functions that are associated with a typical
checkpoint/recovery protocol: (i) Agent-specific control, including agent execution
control, checkpoint service and protocol, and message handling; (ii) Logging control
(the logging service and policy) (iii) Recovery decision control (the recovery
protocol); (iv) Pruning control (the pruning protocol).

The agent-specific control part is responsible for the checkpoint/recovery
behaviors of a particular agent during failure-free execution and after recovery. It is
provided as an FTBehaviour class in FATMAD, with an embedded behavior which
implements the generic checkpoint protocol by pre-setting some generic polices as
outlined earlier. For example, a checkpointing action is triggered automatically upon
the call of flagToCheckpoint() method. Protocol designers can either set the policy
conditions by calling the corresponding APIs (e.g., set checkpoint interval in
periodical checkpointing), or provide their protocol-specific actions as callback
functions. The embedded behavior can hence be extended to accommodate different
categories of checkpoint protocols (i.e., log-based, coordinated, group-based, etc.).
Optionally, coordination of dependent checkpoints can be programmed in
FTBehaviour by a protocol developer, via system messages or information
piggybacking. In addition, the message handling service is integrated into the
agent-specific control part, and it receives policies from the recovery decision control
part. In FATMAD, a logging policy specifies the rule to be applied in logging
messages on each channel and is executed by the logging control part, which is
provided as a LoggingAction class.

To program a checkpoint/logging protocol using the FTBehaviour class, the
designer has to deal with the issues such as setting checkpoint event, updating logging
policy and checkpoint coordination. Related policies (the actions and/or the triggering
conditions) have to be customized according to the needs of the particular protocol.
This is done by first creating a sub-class of FTBehaviour and then overriding the
corresponding methods as callback functions, using the kernel APIs. An example is
the StaggeredFTBehaviour class shown in section 3.3 where the corresponding code
for overridden methods is given. Often the LoggingAction class is not extended since
in most protocols the enforcement of the logging policy can be generically shared.

The recovery decision control part, when extended by the protocol designer, is
responsible for deciding on the set of agents and their rollback checkpoints, and the
messages to be replayed/discarded at each agent. The decision is passed to the
agent-specific control part of each involved agent. The recovery decision control part
is provided as a RecoveryManager class which implements the generic recovery
protocol, and is triggered upon detection of failure. Similar to case of checkpoint
control, a protocol designer has to create a sub-class via class inheritance and override
some pre-defined callback methods. The pruning control is provided as a Java
interface named PruningAction, which in turn should be implemented if needed.

In addition to implementing the four functions in the previous discussion, a
protocol designer has to put them together to provide an interface to application
developers. This is done by inheriting a sub-class from FTAgent class, and specifying

A Fault-Tolerant Multi-agent Development Framework

133

the four functions in its ftSetup() method that initializes all fault tolerance features for
an agent. This sub-class is protocol-specific, and serves as an application skeleton in
FATMAD (refer to section 2.3). Section 3.3 shows the sub-class StaggeredFTAgent
for the staggered checkpoint protocol, with the code for its ftSetup() method.

StaggeredFTBehaviourStaggeredFTAgent StaggeredRecoveryManager

App Agent App Behaviour

FTBehaviour

ParallelBehaviour

1 *

1

1 *

1

RecoveryManager

LoggingAction

FTAgent

1
1

1
1

1
1

1
1

11 11

1

1

1

1

Protocol Skeleton

Protocol Extension

Agent Application

Fig. 2. Hierarchy of Key Classes in FATMAD

Fig. 2 shows the hierarchy of key classes that are relevant to a protocol developer.
One should observe how fault tolerance features are added via class inheritance
relations among the following classes: Jade agent FTAgent (Protocol Skeleton)
StaggeredFTAgent (Protocol Extension) FTAppagent (Application agent). The
classes FTBehavior, LoggingAction, RecoveryManager, and PruningAction form the
protocol skeleton part of FATMAD. Protocol designers need to deal with some or all
of them in order to implement their protocol agents. Application developers simply
inherit their application agents from the desired protocol agents.

3.3 An Example of Protocol Extension

In this section, we illustrate the use of FATMAD by showing how the staggered
checkpoint protocol can be implemented using the FATMAD classes. Due to space
limit, we focus on the framework support and omit the details of control flow code.

A designer of the staggered checkpoint protocol needs supports from FATMAD to
do the following: i) Setting the checkpoint events as application flag and some
coordination message (checkpoint request), and program the checkpointing actions;
ii) Starting/stopping logging upon receipt of some special coordination message
(marker); iii) Coordinating checkpointing/logging via special coordination messages.

As mentioned in Section 3.2, the designer first inherits a sub-class
StaggeredFTBehaviour from the base agent-specific class FTBehaviour, which
provides a method postChecpointAction() that is invoked by the kernel whenever the
flagToCheckpoint() method is called by application. The designer hence needs to
override postChecpointAction() in her sub-class to program the corresponding
checkpointing action. At the same time, the designer needs to create two coordination
message types via implementing a LoggingMessage interface provided by FATMAD
to support the design of new system messages. Its messageAction() method should be
coded subsequently for implementing the actions triggered upon receipt of such a
system message, such as: checkpointing, starting/stopping logging, and coordination

L. Wang et al. 134

actions among agents. To update logging policy, the designer calls the corresponding
methods of the LoggingAction class: enableLogMsgIn(), stopLogMsgIn(),
respectively. The relevant code is shown as follows and is highlighted in bold words.
The recovery protocol can be programmed similarly using corresponding FATMAD
support.

public class StaggeredFTBehaviour extends FTBehaviour{
 public void postCheckponitAction(LoggingAction la)
 { // Method overriding
 la.enableLogMsgIn(); // Start logging message
 StaggeredMarker m; // New coordination message
 sendSysMessage(m, nextAgent); // Agent coordination
 ...}
...}
public class StaggeredMarker implements LoggingMessage{
 public void messageAction(LoggingAction la)
 { // Method overriding
 la.stopLogMsgIn(); // Stop logging message
 ...}
...}

In addition, the designer needs to integrate all parts of her checkpoint/recovery
protocol by creating a sub-class StaggeredFTAgent of FTAgent and subsequently
overriding its ftSetup() method. The following shows the resultant StaggeredFTAgent.

public class StaggeredFTAgent extends FTAgent{
 public void ftSetup(){ // method overriding
 setFTBehaviour(new StaggeredFTBehaviour(this));
 setLoggingAction(new LoggingAction(this));
 setEventReaction(new StaggeredRecoveryManager());
 setPrunningAction(new PrunningAction());
 ...} // other initialization
...}

4 Conclusion and Future Works

In this paper we have presented a fault-tolerant agent framework (FATMAD) based
on checkpoint/recovery techniques. The framework provides supports for both
application developers and protocol designers. It integrates a kernel that consists of
essential framework services, a generic protocol skeleton that can be extended into
specific (checkpoint/recovery) protocols, and an application skeleton that incorporates
application agents with selected fault-tolerance features. The design of both protocol
and application agent can be facilitated by programming with the framework services
and pre-defined classes.

Ongoing extensions of FATMAD include agent monitoring and failure detection,
that go beyond crash failure, by using both protocol monitoring and checking [17],
and distributed predicate checking [13]. Ongoing effort also includes additional
automation of more generically usable components.

A Fault-Tolerant Multi-agent Development Framework

135

References

[1] L. Alvisi, K. Marzullo, Message logging: pessimistic, optimistic, causal and optimal,
IEEE Trans. Software Eng. 24(2) (1998) 149-159.

[2] Y. Aridor, D.B. Lange, Agent design patterns: elements of agent application design, in
Proc. Agents’98, Minneapolis, Minnesota, May 1998, pp. 108-115.

[3] B. Bauer, J.P. Müller, J. Odell, Agent UML: a formalism for specifying multiagent
interaction, in, Proc. AOSE’01, Springer-Verlag, Berlin, 2001, pp. 91-103.

[4] F. Bellifemine, A. Poggi, G. Rimassa, JADE — A FIPA-Compliant Agent Framework, in
Proc. PAAM-99, London, UK, 1999. The Practical Application Company Ltd, pp.
97-108.

[5] G. Cao, M. Singhal, On coordinated checkpointing in distributed systems, IEEE Trans.
Parallel and Distributed Systems, 9(12) (1998) 1213-1225.

[6] M. Chandy, L. Lamport, Distributed snapshots: determining global states of distributed
systems, ACM Trans. Computing Systems, 3(1) (1985) 63-75.

[7] FIPA, FIPA’99 Specification Part 2: Agent Communication Language, http://www.fipa.org.
[8] R. Guerraoui, A. Schiper, Fault-tolerance by replication in distributed systems, in

Reliable Software Technologies - Ada-Europe'96, LNCS 1088, pp. 38-57.
Springer-Verlag, June 1996.

[9] E.A. Kendall, Agent roles and aspects, in: S. Demeyer, J. Bosch, (eds.), Proc. ECOOP
Workshops, Springer-Verlag, LNCS 1543 (1998) 440.

[10] E.A. Kendall, Agent software engineering with role modeling, in: Proc. AOSE-2000,
Springer-Verlag, Berlin, Germany, Jan. 2000, pp. 163-170.

[11] R. Koo, S. Toueg, Checkpointing and rollback recovery for distributed systems, IEEE
Trans. Soft. Eng., 13(1) (1987) 23-31.

[12] H.F. Li, Z. Wei, D. Goswami, Quasi-atomic recovery for distributed agents, under revision.
[13] N. Mittal and V.K. Garg, On Detecting Global Predicates in Distributed Computations,

in: Proc. IEEE ICDCS, Phoenix, May 2001, pp. 3 - 10.
[14] J. Odell, H.V.D. Paranak, B. Bauer, Extending UML for agents, in Proc. AOIS Workshop

at AAAI 2000, Mar. 2000, Austin, TX, USA, pp. 3-17.
[15] H. Pals, S. Petri, C. Grewe, FANTOMAS: Fault Tolerance for Mobile Agents in Clusters,

in: Proc. 15th IPDPS Workshops, Cancun, Mexico, Springer-Verlag, LNCS 1800, pp.
1236-1247.

[16] A. Pivk, M. Gams. Intelligent Agents in E-Commerce. Electrotechnical Review,
67(5)(2000) 251-260.

[17] J. Saldhana, Sol M. Shatz, UML diagrams to object petri net models: an approach for
modeling and analysis, in: Proc. Intl. Conference on Software Eng. and Knowledge Eng.
(SEKE), Chicago, July 2000, pp. 103-110.

[18] R.D. Schlichting, F.B. Schneider, Fail-stop processors: an approach to designing
fault-tolerant computing systems, ACM Trans.Computer Systems, 1(3)(1983) 222-238.

[19] R.E. Strom, S.A. Yemini, Optimistic recovery in distributed systems, ACM Trans.
Computer Systems, 3(3) (1985) 204-226.

[20] K. Sycara, K. Decker, A. Pannu, M. Williamson, D. Zeng, Distributed intelligent agents,
IEEE Expert, 11(6) (1996) 36-46.

[21] H. Tai, K. Kosaka, The Aglets project, Comm. of the ACM, 42(3)(1999) 100-101.
[22] N.H. Vaidya, Staggered consistent checkpointing, IEEE Trans. Parallel and Distributed

Systems, 10(7)(1999) 694-702.
[23] T. Walsh, N. Paciorek, D. Wong, Security and reliability in Concordia, in Proc. 31th

Annual Hawaii International Conference on System Sciences (HICSS31), 7(1998) 44-53.

A Fault Tolerance Protocol for Uploads:
Design and Evaluation�

L. Cheung1, C.-F. Chou2, L. Golubchik3, and Y. Yang1

1 Computer Science Department, University of Southern California, Los Angeles, CA
{lccheung, yangyan}@usc.edu

2 Department of Computer Science and Information Engineering,
National Taiwan University

ccf@csie.ntu.edu.tw
3 Computer Science Department, EE-Systems Department, IMSC, and ISI,

University of Southern California, Los Angeles, CA
leana@cs.usc.edu

Abstract. This paper investigates fault tolerance issues in Bistro, a
wide area upload architecture. In Bistro, clients first upload their data
to intermediaries, known as bistros. A destination server then pulls data
from bistros as needed. However, during the server pull process, bistros
can be unavailable due to failures, or they can be malicious, i.e., they
might intentionally corrupt data. This degrades system performance since
the destination server may need to ask for retransmissions. As a result,
a fault tolerance protocol is needed within the Bistro architecture. Thus,
in this paper, we develop such a protocol which employs erasure codes in
order to improve the reliability of the data uploading process. We develop
analytical models to study reliability and performance characteristics of
this protocol, and we derive a cost function to study the tradeoff between
reliability and performance in this context. We also present numerical re-
sults to illustrate this tradeoff.

1 Introduction

High demand for some services or data creates hot spots, which is a major
hurdle to achieving scalability in Internet-based applications. In many cases,
hot spots are associated with real life events. There are also real life deadlines
associated with some events, such as submissions of papers to conferences. The
demand of applications with deadlines is potentially higher when the deadlines
are approaching.

� This work is supported in part by the NSF Digital Government Grant 0091474. It
has also been funded in part by the Integrated Media Systems Center, a National
Science Foundation Engineering Research Center, Cooperative Agreement No. EEC-
9529152. Any opinions, findings and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect those of the
National Science Foundation. More information about the Bistro project can be
found at http://bourbon.usc.edu/iml/bistro.

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 136–145, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

A Fault Tolerance Protocol for Uploads: Design and Evaluation 137

To the best of our knowledge, however, there are no research attempts to
relieve hot spots in many-to-one applications, or upload applications, except for
Bistro [1]. Bistro is a wide-area upload architecture built at the application layer,
and previous work [2] has shown that it is scalable and secure.

In Bistro, an upload process is broken down into three steps (see Sect. 3 for
details) [1]. First, in the timestamp step, clients send hashes of their files, h(T), to
the server, and obtain timestamps, σ. These timestamps clock clients’ submission
time. In the data transfer step, clients send their data, T , to intermediaries called
bistros. In the last step, called the data collection step, the server coordinates
bistros to transfer clients’ data to itself. The server then matches the hashes
of the received files against the hashes it received directly from the clients. The
server accepts files that pass this test, and asks the clients to resubmit otherwise.
This completes the upload procedure in the original Bistro architecture [1, 2].

We are interested in developing and analyzing a fault tolerance protocol in
this paper, in the context of the Bistro architecture. The original Bistro does not
make any additional provisions for cases when bistros are not available during
the data collection step. In addition, malicious bistros can intentionally cor-
rupt data. Although a destination server can detect corrupted data from the
hash check, it has no way of recovering the data. Hence, unavaliable bistros and
malicious behavior can result in the destination server having to request client
resubmissions. In this work, we are interested in using forward error correction
techniques to recover corrupted or lost data in order to improve the overall sys-
tem performance. The fault tolerance protocol, on the other hand, brings in
additional storage and network transfer costs due to redundant data. The goal
of this paper is to (a) provide better performance when intermediaries fail while
reducing the amount of redundant data needed to accomplish this, and (b) to
evaluate the resulting tradeoff between performance and reliability.

We propose analytical models to evaluate our fault tolerance protocol. In par-
ticular, we develop reliability models to analyze the reliability characteristics of
bistros. We also derive performance models to estimate the performance penalty
of employing our protocol. Moreover, we study the tradeoff between reliability
and performance.

The remainder of this paper is organized as follows. Section 2 describes re-
lated work. Section 3 describes our fault tolerance protocol. We derive analytical
models for this protocol in Sect. 4. Section 5 presents numerical results showing
the tradeoff between performance and reliability characteristics of our protocol.
Finally, we conclude in Sect. 6.

2 Related Work

This section briefly describes fault tolerance considerations in other large-scale
data transfer applications, and discusses other uses of erasure codes in the con-
text of computer networking.

One approach to achieving fault tolerance is through service replication.
Replication of DNS servers is one such example. The root directory servers are

138 L. Cheung et al.

replicated, so if any root server fails, DNS service is still available. Each ISP is
likely to host a number of DNS servers, and most clients are configured with
primary and alternate DNS servers. Therefore, even if some DNS servers fail,
clients can contact an alternate DNS server to make DNS lookup requests. In
Bistro, the service of intermediaries is replicated, where intermediaries provide
interim storages of data until the destination server retrieves it.

In storage systems, data redundancy techniques, such as RAID techniques [3],
are commonly used for providing better fault tolerance characteristics. In case of
disk failures, file servers are able to reconstruct data on the failed disk once the
failed disk is replaced, and data is available even before replacing the failed disks.
Although data redundancy can provide better fault tolerance characteristics, the
storage overhead can be high. We are interested in providing fault tolerance with
small storage overhead in this work.

Erasure codes are useful in bulk data distribution, e.g., in [4] clients can recon-
struct the data as long as a small fraction of erasure-encoded files are received.
This scheme allows clients to choose from a large set of servers, resulting in good
fault tolerance and better performance characteristics than traditional approaches.

In wireless networking, using forward error correction techniques can reduce
packet loss rates by recovering parts of lost packets [5, 6]. Packet loss rates in
wireless networks are much higher because propagation errors occur more fre-
quently when the data is transmitted through air. Employing forward error cor-
rection techniques can improve reliability and reduce retransmissions.

These applications of erasure codes assume that packets are either received
successfully or are lost. They assume that there are other ways to detect cor-
rupted packets. e.g., using TCP checksums. In Bistro, however, this assumption is
not valid because packets can be intentionally corrupted by intermediate bistros.
In Sect. 3, we describe one way to detect corrupted packets using checksums so
that we can treat corrupted packets as losses.

3 Fault Tolerance Protocol

This section provides details of our fault tolerance protocol. The protocol is
broken down into three parts as in the original Bistro protocol described in [2].
We provide details of each step in this section with focus on the fault tolerance
aspects proposed in this paper. We also discuss related design decisions.

3.1 Timestamp Step

The timestamp step verifies clients’ submissions. Clients first pass their files, To,
to erasure code encoders to get the encoded files T = T1 + T2 + . . . + Tx. Then,
clients generate hashes of each part of their data, concatenate the hashes and send
the results, H, to the destination server. The destination server replies to clients
with tickets, ξ, which consist of timestamps, σ, and the hash messages clients have
just sent, h(H). Tickets are digitally signed by the destination server, so clients
can authenticate the destination server. Fig. 1 depicts the timestamp step.

A Fault Tolerance Protocol for Uploads: Design and Evaluation 139

ξ = Kpriv(h(H), σ)

H = h(T1) + h(T2) + ... + h(TX)

Client
Destination

Server

Fig. 1. Timestamp Step

In the original protocol, clients send a checksum (or a hash) of the whole file to
the destination server in the timestamp step. If any packets are lost or corrupted,
the checksum check would fail, and the destination server would have to discard
all packets that correspond to that checksum because it does not know which
packets are corrupted. This would mean that losing any packet would result in
retransmissions of entire files, in the original protocol.

To solve this problem, we send multiple checksums in the fault tolerance
protocol, h(T1)+h(T2)+. . .+h(Tx). Assume that each client has W data packets
to send. The data packets are divided into Y FEC (forward error correction)
groups of k packets each. For each FEC group, a client encodes k data packets
into n packets (data + parity), arranges the n packets into Z checksum groups
each of size g, and generates one checksum for each checksum group using a
message digest algorithm such as SHA1. We assume that Z is a factor of g,
because we want the size of all checksum groups to be the same, which simplifies
our reliability evaluation in Sect. 4. There are altogether X = Y Z checksums,
which are concatenated and sent in one message to the destination server. Figure
2 illustrates the relationship between FEC groups and checksum groups.

Original File

Divide into
FEC groups

Encode with
erasure code

Divide into
checksum groups

W packets

k packets

g packets each

k packets k packets

n packets

Fig. 2. FEC Groups and Checksum Groups

Note that the size of a checksum group has to be smaller than the number of
data packets per FEC group (g < k). Recall that erasure codes do not correct
corrupted packets, so we drop all packets in a checksum group if any packet
within the checksum group is lost or corrupted, and then we try to recover the
dropped packets using an erasure code. If g ≥ k and if a checksum group is
dropped, then we lose more than k packets in at least one FEC group, which

140 L. Cheung et al.

we would not be able to recover because less than k packets within that FEC
group are received, i.e., we would have to ask for retransmissions if any packet
in the file is lost or corrupted. So, if g ≥ k, we are back to the problem of the
original protocol where losing any packet would result in retransmissions. The
above argument also implies that there must be at least two checksum groups
per FEC group. This also explains the order in which FEC groups and checksum
groups are constructed.

3.2 Data Transfer Step

In the data transfer step, clients send their files to intermediate bistros which are
not trusted. Clients first choose B bistros to send their data to and then generate
a session key Ksesi

for each chosen bistro, 1 ≤ i ≤ B. After that, clients divide
their files into B parts. For each part i, clients encrypt it with a session key Ksesi

and send that part to an intermediate bistro i. Clients also send to bistro i the
session key, Ksesi

, and ticket, ξ, encrypted with the public key of the destination
server. In addition, clients send event IDs, EID, so as to identify that the data
is for a particular upload event whose event ID is EID. Each bistro i generates a
receipt, ρi, and sends it to both an appropriate client and the destination server.
The receipts contain the public key of bistro i, Ki,pub, so that both clients and
the destination server can decrypt and verify the receipt1. Figure 3 depicts the
data transfer step.

Client

bistro1

bistroB

KsesB(TB), Kpub(KsesB, ξ), EID

Kses1(T1), Kpub(Kses1, ξ), EID

Client

bistro1

bistroB

ρB = KB, priv(EID, Kpub(KsesB, ξ))

ρ1 = K1, priv(EID, Kpub(Kses1, ξ))

Fig. 3. Data Transfer Step

In [7], the so-called assignment problem is studied, i.e., how a client should
choose a bistro to which it sends its file. However, in that case, only one bistro
out of a pool of bistros is chosen. In the case of striping (our case), a client needs
to choose B ≥ 1 bistros. As shown in [7], this is a difficult problem even for
B = 1. Hence, we leave the choice of which B bistros a client should stripe its
file to, and how clients determine the value of B to future work. In the remainder
of this paper, we assume that the B bistros are known.

1 Note that whether the public key of an intermediate bistro is correct or not does not
affect the correctness of the protocol, as in the original Bistro system, as intermediate
bistros are not trusted in any case.

A Fault Tolerance Protocol for Uploads: Design and Evaluation 141

3.3 Data Collection Step

In the data collection step, the destination server coordinates intermediate bistros
to collect data. When the destination server wants to retrieve data from bistro
i, it sends a retrieval request along with the receipt ρi and the event ID EID.
Upon receiving retrieval requests from the destination server, bistro i sends the
file Ti along with the encrypted session key and ticket for decryption. Figure 4
depicts the data collection step.

bistro1

bistroB

Retrieve (EID, ρ1)

Retrieve (EID, ρB)

Destination
Server

bistro1

bistroB

Kses1(T1), Kpub(Kses1, ξ), EID

KsesB(TB), Kpub(KsesB, ξ), EID

Destination
Server

Fig. 4. Data Collection Step

When all packets within a checksum group are received, the destination server
computes the checksum of the received checksum group. It then matches this
checksum with what it received during the timestamp step. If these two check-
sums match, the destination server accepts all packets in the checksum group,
and discards them otherwise.

After the destination server has retrieved data from all intermediate bistros,
it passes the packets that pass the checksum check to an erasure code decoder,
if it has received at least k packets from every FEC group. The erasure code
decoder then reconstructs the original file To. If the destination server receives
less than k packets from any FEC group, it contacts the appropriate clients and
requests retransmissions of specific FEC group(s).

4 Analytical Models

We propose analytical models to evaluate our fault tolerance protocol in this
section. We develop a reliability model to study how reliability characteristics of
bistros affect system reliability. We also develop a performance model to estimate
the performance penalty of employing our protocol. Lastly, we derive a cost
function to study the tradeoff between reliability and performance.

4.1 Reliability Model

Let pg be the probability that there is no loss within a checksum group. Re-
call that if a checksum check fails, all packets within that checksum group are
discarded because we have no way of determining which of the packets are cor-
rupted. Hence, the probability that at least one packet is lost within a checksum
group is 1− pg.

142 L. Cheung et al.

Let us assume that losing or corrupting one packet is independent of los-
ing or corrupting other packets within the same checksum group. Let p be the
probability that a packet is lost or corrupted. Then,

pg = (1− p)g. (1)

Due to the lack of space, we omit the derivation of Pretrans, the probability
that retransmission is needed, and simply state the result as follows:

Pretrans = 1− (
Z∑

i=� k
g �

(
Z
i

)
pi

g(1− pg)Z−i)Y . (2)

The derivation of (2) can be found in [8]. We have also developed other
reliability models to evaluate the reliability of our protocol, which are omitted
here due to lack of space. They can be found in [8].

4.2 Performance Model

This section describes the performance model used for evaluating our fault toler-
ance protocol. We limit the evaluation in this paper to the performance penalty
in the timestamp step only. This is motivated by the fact that if the performance
of timestamp step is poor, then we are back to the original problems where many
clients are trying to send large amounts of data to a server at the same time.

We believe that it is more important to consider the potential overloading
of network resources, due to sending a greater number of checksums, than the
additional computational needs on the server for producing digital signatures of
larger timestamp messages. This is again due to the consideration that clients
sending large messages to the destination server around the deadline time would
take us back to the original problem of a large number of clients trying to send
large amounts of data to the server in a short period of time.

Hence, we use the number of checksum groups per data packet, Z
k , as our per-

formance metric. This is derived by considering the total number of checksums,
Y Z, normalized by the file size, Y k.

4.3 Cost Function

Now that we have a reliability model and a performance model, the question
is how to combine the effects of both in order to study the tradeoff between
reliability and performance. This section describes a cost function which we
propose to use to achieve this goal.

Let C1 be the cost computed using the reliability model, and let C2 be the
cost computed using the performance model in the timestamp step. Thus, our
cost function is

C = w1C1 + w2C2 (3)

where w1 and w2 are weights of each factor.

A Fault Tolerance Protocol for Uploads: Design and Evaluation 143

Earlier we derived the probability that retransmission is needed, Pretrans, as a
reliability metric. We can use this metric as our reliability cost. The performance
cost in the timestamp step is given by the number of checksum groups per data
packet, Z

k . In the next section, we study how reliability and performance metrics
affect the overall cost function.

5 Numerical Results

This section provides numeric results on varying different parameters of our
protocol and their effect on the cost function discussed above. Due to lack of
space, we present only a subset of our experiments. Other results, which also
support our findings, can be found in [8].

The parameters of interest to our system and its corresponding reliability
and performance characteristics include the following.
1. Number of checksum groups per FEC group, Z. Setting Z to be large can

provide better reliability because loss of a packet affects fewer other packets,
as we drop the entire checksum group whenever any packet from that group
is lost or corrupted. On the other hand, large values of Z result in large
timestamp messages, which can have adverse effects on network resources.

2. Number of parity packets per FEC group, n− k. For reliability reasons, we
want to send a large number of parity packets, but this increases the number
of checksums we send as we are interested in adding parity checksum groups.

3. Number of data packets per FEC group, k. Given a file of W packets, we
want to study the differences in dividing the file into few large FEC groups
or many small FEC groups.

4. Probability of losing a packet, p. We want to see how sensitive the cost
function is to p.

5. Weights w1 and w2. We are interested in how sensitive the cost function is
to the chosen weight values. We performed a number of experiments with
different weight values (please refer to [8] for the results). Due to lack of
space, we omit these results here and only use representative weight values
in the remainder of the paper.
The tradeoff between reliability and performance in the context of varying

the number of checksum groups per FEC group, Z, is illustrated in Fig. 5(a),
where Y = 5, n = 20, k = 10, p = 0.01, w1 = 0.9, and w2 = 0.1. In Fig. 5(a) the
cost is high when Z is small because Pretrans is high. The cost decreases when
Z is between 1 and 4 because Pretrans is improving. At Z ≥ 2, the cost goes up
again because the size of the message becomes too large.

We study the tradeoff between reliability and performance of adding parity
packets, n − k in Fig. 5(b), where k = 10, p = 0.01, Z = 2, w1 = 0.9, and
w2 = 0.1. In Fig. 5(b), when n − k ≤ 10, the cost decreases because Pretrans

decreases. At n − k ≥ 10 in Fig. 5(b), the cost increases because Z
k increases

while Pretrans approaches 0.
We study how we should choose k, the number of data packets in each FEC

group, in Fig. 5(c). For this experiment we set W = 100, n = 2k, Z = 2, p = 0.01,

144 L. Cheung et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 2 4 6 8 10 12 14 16 18 20

co
st

number of checksum groups per FEC group

(a) cost vs Z

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4

 0 5 10 15 20 25 30 35 40

co
st

number of parity packets per FEC group

(b) cost vs n − k

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 5 10 15 20 25 30 35 40 45 50

co
st

number of data packets per FEC group

(c) cost vs k

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

co
st

probability of losing a packet

(d) cost vs p

Fig. 5. Results for varying different parameters in the cost function

w1 = 0.9, and w2 = 0.1. Figure 5(c) shows that cost is high when k is small,
because this results in a lot of checksums. The cost drops when k is between 1
and 10, as we send fewer checksums and the corresponding reliability penalty
does not increase as fast. Eventually, when k ≥ 10, cost goes up as k increases
since larger FEC groups are not as fault tolerant.

We are interested in looking at how the cost function changes with the prob-
ability of losing a packet, p. We set Y = 5, n = 20, k = 10, Z = 2, w1 = 0.9,
and w2 = 0.1 in Fig. 5(d). Since both Z and k are fixed, changes in cost reflect
changes in Pretrans. Cost increases rapidly when p is between 0 and 0.1. When
p > 0.1, since Pretrans approaches 1, cost remains fairly constant.

6 Conclusions

Bistro is a scalable and secure wide-area upload architecture that can provide an
efficient upload service. The goal of this paper was to develop a fault tolerance
protocol that improves performance in the face of failures or malicious behavior
of intermediaries in the context of the Bistro architecture. We developed such
a protocol using a forward error correction technique. We also evaluated this
protocol using proposed analytical models to study the reliability and perfor-
mance characteristics. We studied the resulting cost, as a function of a number
of parameters, including the number of data packets per FEC group, the num-
ber of parity packets, and the number of checksum groups per FEC group. In
conclusion, we believe that fault tolerance is important in wide area data up-

A Fault Tolerance Protocol for Uploads: Design and Evaluation 145

load applications. We believe that the proposed protocol is a step in the right
direction, leading to better fault tolerance characteristics with fewer retrans-
missions due to packet losses or corruptions, resulting in better overall system
performance.

References

1. Bhattacharjee, S., Cheng, W.C., Chou, C.F., Golubchik, L., Khuller, S.: Bistro: a
framework for building scalable wide-area upload applications. ACM SIGMETRICS
Performance Evaluation Review 28 (2000) 29–35

2. Cheng, W.C., Chou, C.F., Golubchik, L., Khuller, S.: A secure and scalable wide-
area upload service. In: Proceedings of 2nd International Conference on Internet
Computing. Volume 2. (2001) 733–739

3. Patterson, D.A., Gibson, G., Katz, R.H.: A case for redundant arrays of inexpensive
disks (raid). In: Proceedings of the 1988 ACM SIGMOD international conference
on Management of data, ACM Press (1988) 109–116

4. Byes, J., Luby, M., Mitzenmacher, M., Rege, A.: A digital fountain approach to
reliable distribution of bulk data. In: ACM SIGCOMM. (1998)

5. Ding, G., Ghafoor, H., Bhargava, B.: Resilient video transmission over wireless net-
works. In: 6th IEEE International Conf. on Object-oriented Real-time Distributed
Computing. (2003)

6. McKinley, P., Mani, A.: An experimental study of adaptive forward error correction
for wireless collaborative computing. In: IEEE Symposium on Applications and the
Internet (SAINT 2001). (2001)

7. Cheng, W.C., Chou, C.F., Golubchik, L., Khuller, S.: A performance study of
bistro, a scalable upload architecture. ACM SIGMETRICS Performance Evaluation
Review 29 (2002) 31–39

8. Cheung, L., Chou, C.F., Golubchik, L., Yang, Y.: A fault tolerance for uploads:
Design and evaluation. Technical Report 04-834, Computer Science Department,
University of Southern California (2004)

Topological Adaptability for the Distributed
Token Circulation Paradigm in Faulty

Environment

Thibault Bernard, Alain Bui��, and Olivier Flauzac

LICA, Département de Mathématiques et Informatique,
Université de Reims Champagne-Ardenne, BP 1039,

F-51687 Reims Cedex 2, France
{thibault.bernard, alain.bui, olivier.flauzac}@univ-reims.fr

Abstract. In this paper, we combine random walks and self-stabilization
to design a single token circulation algorithm. Random walks have proved
their efficiency in dynamic networks and are perfectly adapted to fre-
quent network topological changes. Self-stabilization is the most general
technique to design an algorithm that tolerates transient failures. Taking
account that the token circulates continually according to a random walk
scheme, designing a self-stabilizing algorithm implies to solve two situ-
ations (1) no token in the system and (2) several tokens in the system.
The former is generally solved by a time-out mechanism, upon timeout a
new token is created. In this paper, we focus on this problem. Just state
that one may choose a sufficiently long time-out period is not possible in
our case: the system could never stabilize. Indeed, a random walk based
token eventually cover the network but only the expected time to cover
the network can be captured. Therefore, we introduce a mechanism “the
reloaded wave propagation” to prevent unnecessary token creation and
preserve self-stabilization properties.

1 Introduction

In distributed computing, the token circulation primitive is very useful for many
applications. Election, spanning tree construction, mutual exclusion and several
important tasks can be achieved using token circulation. This problem has been
widely studied under different assumptions.

For instance, a single token which continually circulates through all the pro-
cessors of a distributed system, can solved the mutual exclusion problem. The
token circulation insures the liveness property - every processor enters the critical
section infinitely often - and unicity of the token insures the safety property - at
most one processor can be in the critical section at time. In a safe environment,
these two properties are always true.

In this paper, we focus on the token circulation paradigm, for dynamic net-
works, including but no limited to mobile and ad-hoc networks.

�� Corresponding author.

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 146–155, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Topological Adaptability for the Distributed Token Circulation Paradigm 147

We use random walks , i.e. memoryless stochastic processes: the token mes-
sage circulates in the system, and at each step, the processor that owns it sends
it to one of its neighbors chosen uniformly at random. Random walks have
proved their efficiency and are perfectly adapted to frequent network topological
changes. Unlike others solutions e.g. [9, 3], no structure such (virtual) rings or
trees have to be maintained. Random walk can be also used as an alternative
method to flooding or broadcasting [6, 13]. An important result is that the token
eventually visits all the processors of a system. But it is impossible to capture
an upper bound on the time to visit all processors in the system, only bounds
on the cover time, defined as the average time to visit all the processors are
available.

In faulty environment, transient failures may occur. The concept of self-
stabilization, introduced by [4], is the most general technique to design a system
to tolerate arbitrary temporary faults. A self-stabilizing algorithm can be started
in any global state which may occur due to failures. From any arbitrary starting
state, it must be ensured that the task of the algorithm is accomplished. If dur-
ing a sufficiently long period no further failures occur, the algorithm converge
eventually to the intended behavior in finite time.

Designing a self-stabilizing token circulation token implies to solve two situ-
ations (1) the token lost situation and (2) the multiple tokens situation. In the
latter case, tokens will merge to one in finite time [10]. Many papers with token
circulation run within the state model and case (1) can be detect by reading
neighbors variables. In the most general model - the message passing model - in
which we are concerned, one main problem is to detect communication deadlock:
processors are waiting for messages and there are no messages on communication
links. A solution [7] is to use timeout.

In [14], the author proposes a message passing adaptation of Dijkstra algo-
rithm [4]. In particular, a self-stabilizing token circulation algorithm on undi-
rected ring is presented. Communication deadlock is solved by a timeout process
in a distinguished processor called the root. Nevertheless, duplicate tokens may
occur. The author introduces the counter flushing paradigm to solve this prob-
lem and thus, design a self-stabilizing token circulation algorithm. The idea of
counter flushing is applied by numerous papers dealing with self-stabilization in
message passing model, as [3, 8].

In [6], authors use a random walk of a mobile agent to achieve self-stabilizing
communication group in ad-hoc networks. The agent (which behaves as a token)
is used for broadcasting. The paper assumes the existence of a single agent in
the system. A timeout mechanism is used for creation of a new agent when no
agent exists (similarly to a communication deadlock). The authors suggest to
choose a “long time-out period tpi (that is function of the cover time for a graph
of N nodes) to produce an agent” and “to avoid simultaneous creation of many
agents one may choose tpi to be also a function of the identifiers [processor] pi [
. . .] we may choose to assign tpi = i×C where i is the identifier of pi [and C is
the cover time]”. The guarantee that in finite time, eventually there exists only
one agent is not clearly highlighted in [6] since C is defined as an expected time.

148 T. Bernard, A. Bui, and O. Flauzac

In this paper, we work within a general topology. As we discuss previously,
we use a random walk token circulation as solution for topological changes for dy-
namic networks. To cover the communication deadlock problem, the self-stabilizing
version of this algorithm use a decentralized timeout procedure. In a configuration
where no tokens exists in the system, each processor indistinctly has the possibility
of producing a new token. Simultaneous or multiple creation of token can occur in
some very specific cases. But our algorithm guarantees that the system eventually
stabilizes (with exactly one token). We introduce a new mechanism: the “reload-
ing wave”. Each processor maintains a timer. Upon timeout each processor may
produce a token. The reloading wave prevents from creating unnecessary token:
each processor that has been previously visited by the token, will not trigger the
timeout and its timer will be reseted. In fact after the reloading wave procedure,
the only case where a processor will produce a new token after the timeout pe-
riod, corresponds to a illegitimate configuration (the processor has not been yet
visited by the token). This mechanism is described in next section. There is no
extra cost for self-stabilizing in terms of message complexity except the reloading
wave propagation (at most n− 1 messages). To build the reloading wave, we use
the informations collected and stored by the token through its traversal.

2 Preliminaries

Distributed Systems. A distributed system is an undirected connected graph
G = (V, E), where V is a set of processors with |V | = n and E is the set of
bidirectional communication links with |E| = m. (We use the terms “node”,
“vertex”, “site” and “processor” interchangeably). A communication link (i, j)
exists if and only if i and j are neighbors. Every processor i can distinguish all
its links of communication. Each of them maintains a set of neighbors (denoted
as Ni). The degree of i is the number of neighbors of i, i.e. |Ni| (denoted as
deg(i)). We consider a distributed system where all sites have distinct identities.
We assume an upper bound N on the number of sites in the network, an upper
bound Δ on the delay to deliver message and an upper bound Θ on processing
time on each site. Moreover, we consider to have reliable channels during and
after the stabilization phase.

Failures and Self-Stabilization. A transient fault is a fault that causes the state of
a process (its local state, program counter, and variables) to change arbitrarily.
An algorithm is called self-stabilizing if it is resilient to transient failures in the
sense that, when started in an arbitrary system state, and no other transient
faults occur, the processes converge to a global legal state after which they
perform their task correctly (see [4, 5]).
C being the set of all configurations in the system, an algorithm is self-stabilizing

if there is a set of legal configurationsLC such as: (1) The system eventually reaches
a legal configuration (convergence). (2) Starting from any legitimate configura-
tion, the system remains in LC (closure). (3) Starting from any legitimate config-
uration, the execution of the algorithm verifies the specification of the problem.

Topological Adaptability for the Distributed Token Circulation Paradigm 149

Random Walks. A random walk is a sequence of vertices visited by a token that
starts at i and visits other vertices according to the following transition rule: if
the token is at i at time t then at time t+1, it will be at one of the neighbors of i,
this neighbor is chosen uniformly at random among all of them [11, 1]. Similarly
to deterministic distributed algorithms, the time complexity of random walk
based token circulation algorithms can be viewed as the number of “steps” it
takes for the algorithm to achieve the network traversal. With only one walk at
a time (which is the case we deal), it is also equal to the message complexity.
The cover time C — the average time to visit all nodes in the system — and
the hitting time denoted by hij — the average time to reach a node j for the
first time starting from a given node i — are two important values that appear
in the analysis of random walk-based distributed algorithms.

3 Self-Stabilizing Token Circulation Algorithm

Dealing with Communication Deadlocks. A simple single token circulation
using a random walk scheme is sufficient to solve the token circulation problem
under topological changes assumptions. The procedure is simple: if the token is
owned by a site i at time t, at time t + 1, it is owned by each neighbor j of
i with probability 1/deg(i). Thus, topological changes are easily and naturally
managed. Suppose the token is in a site i. If a channel (i, j) becomes unavailable
(and G still connected), eventually the token will hit j for the first time after
the expected time hij (hij being the hitting time defined in previous section).

The token eventually visits all the sites in the system and the expected time
to achieve this task is the cover time. But a given site will receive the token in
finite but unbounded time.

Consequently, a solution to a communication deadlock configuration directly
inspired by [14, 6] is not adapted. The choice of an “enough long timeout period”
to produce new tokens, compromises the closure property of our self-stabilizing
algorithm. For the same reason, the choice of a distinguished site which would
take charge of the main tasks, in any case provides nothing additional. Thus,
our algorithm is totally decentralized and each site maintains a timeout to send
a token periodically. A timer is associated to each site. We choose to set this
value at max∀(i,j)∈V 2(h(i, j)) × (Δ + Θ) units of time. This value corresponds
to the worst expected time for the token starting at site i to reach for the first
time any site j.

During a legal execution of the algorithm (without failures), when a given
site i is about to produce a new token (near timeout), it receives an information
from a wave, the reloading wave. i is informed that there exists a token in the
system and that i has been previously visited by the token.

The reloading wave is propagated under the following conditions: the token
maintains itself a counter which is incremented at each token hop. The counter is
set to 0 at token creation. This value is compared to the timeout value Tmax =
max∀(i,j)∈V 2(h(i, j)) × (Δ + Θ) minus the time to achieve a wave propagation
(at worst case N). When this counter value is superior or equal to the latter

150 T. Bernard, A. Bui, and O. Flauzac

value, the site that holds the token launches the wave and the token counter is
reseted to 0.

When a site receives the wave, it reloads its timer to Tmax.
Thus, a simple low cost solution to the deadlock communication problem is

proposed.
In presence of multiple tokens, by [10], these tokens will merge into one.

Reloading Wave Propagation. We maintain a dynamic self-stabilizing tree
[2] through the system to propagate the reloading wave. There is no additional
protocol, we use the token contents. The token collects and stores identities of
each site, thus its contents can be viewed as the history of the token’s moves.
Such a token is called a circulating word. Each time the token meets a site i, a
tree rooted on i is locally computed by i using the topological informations stored
in the circulating word. Although the token continually circulates through the
network, the token size is bounded by 2n−1, where n is the number of sites in the
system (cf. [2]). In this paper, we use another representation of the topological
information: a father-son relation table. As improvement, the token size is now
bounded by n.

The following example (Fig. 1) exhibits a father-son relation table and its
associated tree.

Fig. 1. Network, Father-son relation table update through random moves, and Tree
(constructed on site 5)

The tree computation is achieved by updating the data structure stored in
the token each time it moves. If the token moves from j to i, the update is done
as follow: (i is the currently visited site, and j is the previously visited site)

1. i becomes the new root of the computed tree.
2. j becomes the son of i.

This gives the following algorithm:

Algorithm 1 Algorithm on node p

token.table[p] ←− p, token.table[sender] ←− p
sends token to a site chosen randomly among Np

token.table denotes the data structure in the token.

Topological Adaptability for the Distributed Token Circulation Paradigm 151

Transient failures and topological changes can produce inconsistent token.
Each time a site receives the token, it can check and locally correct token con-
sistency by applying “Internal test procedure” Algorithm 4.

Internal Test Example. Site 5 receives the token (from the previous network).
Site 5 checks the table consistency. It detects that site 1 could not be its son
on the tree, since site 1 is not in its neighborhood. Locally, site 5 eliminates the
subtree rooted in 1.

Node 1 2 3 4 5
Father 5 1 1 5 5

Node 1 2 3 4 5
Father u u u 5 5

Before the test After the test

As we discuss previously, several tokens can occurred in the system. In finite
time, they merge into one. To improve convergence, the algorithm also merges
topological informations: a single tree is built thanks to the two data structures
stored in both tokens. See Algorithm 3 for details.

Fig. 2. Example

In Fig. 2, we give an ewample of the reloading wave in a legal configuration.

step (a) The token is in 3, the timer value is 7 and token counter is 0.
step (b) After 3 hops the token reaches site 1. The condition Tmax− n = hop
to launch the reloading wave is true.
step (c) In our case, the dynamic tree is the chain 1-4-2-3. Site 4 receives the
wave and reload its timer.
step (d) Site 3 receives the wave. The timer of value 1 is reloaded to Tmax =7.
No token is created.

In Fig. 3, we illustrate how a token creation is possible when a site is not
contained on the tree built.

step (a) Site 3 has not been yet visited by the token. Token is created in site 2.
Timers values are 7 for all sites
step (b) The token moves randomly through site 2, 4, 1, and back to 2. Wave
launch condition is true.

152 T. Bernard, A. Bui, and O. Flauzac

Fig. 3. Example

step (c) The wave reloads all sites timers except 3 (it is not contained in the
tree)
step (d) Upon a timeout site 3 creates a new token.

In finite time, tokens will merge to one, topological informations of the two tokens
will also merge. Next step, if no failures occurs, no token creation is possible.
This gives Algorithm 2.

Algorithm 2 Algorithm on site p

[Upon a reception of message (Token) from site sender]
Token.table[p] ←− p, Token.table[sender] ←− p
If Messagequeue not empty() Then

∀T ∈ message queue : merge tokens(Token, T), consume message(T)
internal test(Token.table), Token.hop ←− Token.hop + 1
If Token.hop × (Δ + Θ) ≥ (max(i,j) h(i, j) − N) × (Δ + Θ) Then

∀v ∈ sonp (respecting Token.table): send reload, subtree(Token.table, v)) to v
Token.hop ←− 0

Send Token to i chosen randomly in N(p), Reload the timer to max(i,j) h(i, j)
[Upon a release of timer]
For i = 0 to N Do

Token.table[i] ←− undefined
Token.table[p] ←− p, Token.hop ←− 0
Send Token to i chosen randomly in N(p), Reload the timer to max∀(i,j)∈V 2 h(i, j)
[Upon a reception of message (reload, table)]
∀v ∈ sonp (respecting the tree table): send reload, subtree(table, v)) to v
Reload the timer to max(i,j) h(i, j)

This algorithm uses the following functions:

– Messagequeue not empty returns true if another message is present on the
site.

– merge tokens merges the topological informations of the tokens, by adding
unknown topological informations to the token. The number of hop is the
maximum of the merging tokens. The result of the merger is placed in token
Tok. See Algorithm 3.

Topological Adaptability for the Distributed Token Circulation Paradigm 153

– internal test tests the consistency of the table, relatively to the neighbor-
hood relation of the site p. If any node i is described as son of p in the table
but is not in Np, all the associations (identity-father) of the subtree whose
root is i are deleted. See Algorithm 4.

– subtree(t, v) returns the subtree which root is v constructed with the table
t. See Algorithm 5.

Algorithm 3 Merge token Algorithm
Procedure: merge tokens(Tok: token T : token)
Tok.hop = max(Tok.hop, T.hop), T.table[p] ←− p, T.table[sender] ←− p
For k = 0 to N Do

If (Tok.table[k] = undefined) ∩ (T.table[k] �= undefined) Then
Tok.table[k] ←− T.table[k]

Algorithm 4 Internal Test Algorithm on site p

Procedure: internal test(table : array)
for all i = 0 to N Do

list ←− ◦/
If (table[i] = p) ∩ (i /∈ {Np ∪ {p}}) Then

list ←− list ∪ {i}
for all h ∈ list Do

For j = 0 to N Do
If table[j] = h Then

table[j] = undefined, list ←− list ∪ {j}
list ←− list − {h}

Algorithm 5 Subtree Algorithm
Procedure: subtree(table : array, v : integer)
∀i, table′[i] ←− undefined
table′[v] ←− v, list ←− {v}
for all h ∈ list Do

For j = 0 to N Do
If table[j] = h Then

table′[j] = h, list ←− list ∪ {j}
list ←− list − {h}

return table′

Proof Outline

We claim that algorithm 2 is self-stabilizing for the predicate PL: there is exactly
one token with a complete and consistent table (and token counter consistent
with timer), in the system. A father-son relation (FS) table is said consistent
if it permits the construction of a tree over the network. A FS table is said
complete, if all sites have a defined father in the FS table.

Starting from any configuration, any execution of the algorithm satisfies the
properties of the random token circulation problem. We prove that every execu-
tion starting from an arbitrary configuration, a legitimate configuration is reached
- convergence - a configuration from which its satisfies PL forever - closure.

154 T. Bernard, A. Bui, and O. Flauzac

A site visited by the token will be reached by the reloading wave. Then it
cannot trigger its timer and new token creation is impossible. Thus when all
sites have been visited by one token, no new token can be created.

By [10, 12], and Algorithm 3, at most in expected time 8n3/27, all token
eventually merge. All merging topological information are preserved. If there is
no token in the system, then upon a timeout (cf. Algorithm 2), one or several
tokens are created and next they merge to one. Then, starting from any initial
configuration, the system eventually reaches a configuration where there is exactly
one token.

Once the token has cover the network, it becomes consistent (all FS relations
are updated) and since all sites have been visited, the token is complete.

We conclude that starting from any arbitrary configuration, the system even-
tually satisfies PL.

To prove the closure property, we observe that token creation is impossible for
an execution starting from a legitimate configuration. Each site is infinitely often
visited by a complete and consistent token, which states the closure property and
the correctness of the algorithm.

4 Conclusion

In this paper, we discuss on the token circulation paradigm in distributed com-
puting. The token moves thanks to a random walk scheme, to provide a simple
and efficient solution to network topological changes. Our protocol works on ar-
bitrary networks, is fully distributed, and without specific structure to maintain.
Our protocol is also self-stabilizing. To this aim, we focus on the communica-
tion deadlock. We use a timeout mechanism combined with the reloading wave
to prevent unnecessary token creation. Finally, we prove the convergence and
closure properties with the additional result of [10].

References

1. R. Aleliunas, R. Karp, R. Lipton, L. Lovasz, and C. Rackoff. Random walks,
universal traversal sequences and the complexity of maze problems. In FOCS 79,
pp 218–223, 1979.

2. T Bernard, A Bui, and O Flauzac. Random distributed self-stabilizing structures
maintenance. In ISADS’04, LNCS 3061. pp 231 – 240. Springer, 2004.

3. Y Chen and JL Welch. Self-stabilizing mutual exclusion using tokens in mobile
ad hoc networks. In Proceedings of the 6th international workshop on Discrete
algorithms and methods for mobile computing and communications, pp 34–42. ACM
Press, 2002.

4. EW Dijkstra. Self stabilizing systems in spite of distributed control. CACM,
17(11):643–644, 1974.

5. S Dolev. Self-Stabilization. MIT Press, 2000.
6. Shlomi Dolev, Elad Schiller, and Jennifer L. Welch. Random walk for self-

stabilizing group communication in ad-hoc networks. In SRDS, 2002.

Topological Adaptability for the Distributed Token Circulation Paradigm 155

7. MG Gouda and N Multari. Stabilizing communication protocols. IEEE Transac-
tions on Computers, 40(4):448–458, 1991.

8. R. Hadid and V. Villain. A new efficient tool for the design of self-stabilizing
l-exclusion algorithms: the controller. In WSS’01, LNCS 2194. Springer, 2001.

9. L Higham and S Myers. Self-stabilizing token circulation on anonymous message
passing. In OPODIS’98, pp 115–128, Hermes. 1998.

10. Amos Israeli and Marc Jalfon. Token management schemes and random walks
yield self-stabilizing mutual exclusion. In ACM PODC 90, pp 119–131, 1990.

11. Laszlo Lovasz. Random walks on graphs: A survey. In , Combinatorics: Paul Erdos
is Eighty (vol. 2), pp 353–398. Mathematical Society, 1993.

12. P. Tetali and P. Winkler. On a random walk problem arising in self-stabilizing
token management. In 10th ACM PODC 91, pp 273–280, 1991.

13. D. Tsoumakos and N. Roussopoulos. A comparison of peer-to-peer serach methods.
In Sixth International Workshop WebDB’03, 2003.

14. George Varghese. Self-stabilization by counter flushing. In SIAM J. Computing
(vol.30), pp 486–510, 2000.

 J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 156–168, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Adaptive Data Dissemination in
Wireless Sensor Networks*

Jian Xu1,2, Jianliang Xu1, Shanping Li2, Qing Gao1,2, and Gang Peng2

1 Hong Kong Baptist University,
Kowloon Tong, Hong Kong

{jianxu, xujl, qgao}@comp.hkbu.edu.hk
2 Zhejiang University,

Hangzhou, 310027, P.R. China
shan@cs.zju.edu.cn, e_pglmary@hotmail.com

Abstract. Recent years have witnessed growing research interest in wireless
sensor networks. In the literature, three data storage strategies, i.e., local, data-
centric, and index-centric, have been proposed to answer one-shot queries
originated from inside the network. Through careful analysis, we show in this
paper that each of the three strategies respectively achieves the best perform-
ance in a certain range of query-rate to update-rate (Q2U) ratios. We therefore
propose several adaptive schemes which periodically adjust the data storage and
dissemination strategy in accordance with the Q2U ratio observed in the
network. Experimental results demonstrate that in dynamic environments the
proposed adaptive schemes substantially outperform the three basic strategies.

1 Introduction

Recent advances in embedded systems and wireless communications have enabled the
development and deployment of wireless sensor networks. A sensor network usually
involves a large number of small, battery-powered sensor nodes scattered on an op-
erational area to collect fine-grained, high-precision sensing data. With features of
low cost and easy deployment, sensor networks have a wide range of applications in
various domains such as habitat monitoring, surveillance, health care, and intruder
detection [1], [2]. However, a wireless sensor network is constrained by limited bat-
tery power and scarce wireless bandwidth. Thus, many studies have been carried out
to develop scalable and energy-efficient data dissemination schemes [3, 4].

In the literature, three data storage strategies, i.e., local, data-centric, and index-
centric, have been proposed to answer one-shot queries originated from inside
the network (see Fig. 1) [5]. With local data storage, the sensing data is stored on the
local node that captures it. To answer a query, the query is flooded to all nodes in

* This work was supported in part by a grant from Hong Kong Baptist University (Grant

FRG/04-05/I-17).

Adaptive Data Dissemination in Wireless Sensor Networks 157

the network to find out the desired data. With data-centric storage, the sensing data is
hashed, based on some pre-defined keys, to some geometric location and stored on the
node nearest to that location (called centric storage node, or simply centric node); all
data with the same hashed value will be stored on the same node. A key-based query
is hashed in the same way as the sensing data, hence, it can be resolved on the corre-
sponding centric node. With index-centric storage, the actual sensing data is stored on
the local sensor node, and its search key value and a pointer to the local node are
stored on the centric node. A query first goes to the centric node and then follows the
location pointer to retrieve the actual data on the corresponding local node.

Local Data Storage Data-Centric Storage Index-Centric Storage

Fig. 1. Three Basic Data Storage and Dissemination Strategies

In this paper, we first analyze the performance of these storage and dissemination
strategies in terms of total network traffic (which transfers to energy consumption).
Through both theoretical and simulation-based studies, we find that each of these
three strategies respectively achieves the best performance in a certain range of query-
rate to update-rate (Q2U) ratios. Based on this observation, this paper proposes
adaptive data dissemination (ADD) schemes to minimize the network traffic and,
hence, to extend the network lifetime in dynamic environments. Under the adaptive
schemes, the system periodically estimates the Q2U ratio and adjusts the data storage
and dissemination strategy in accordance with the observed Q2U ratio. We address
two practical issues in the implementation of an ADD scheme: 1) how to estimate the
Q2U ratio periodically; 2) when to switch from one storage strategy to another. Ex-
tensive simulations are conducted to evaluate the performance of the proposed adap-
tive schemes. The results show that they substantially outperform the basic strategies
when the access pattern changes over time.

The rest of the paper is organized as follows. Section 2 presents the background of
this study. Section 3 describes the main design of the ADD schemes. Simulation re-
sults are presented in Section 4. Section 5 reviews the related work in this field. Fi-
nally, Section 6 concludes the paper.

2 Background

In this paper, we focus on a large-scale sensor network that covers a wide region.
Some targets (e.g., animals) are moving within the region. The sensor nodes in the
network detect the status of each target, which usually means an event of interest, and

° ° °
 ° °
 °

Query

 ° °
 ° ° °

 ° ° °
° °
° °

Data Update

Result
Centric Data

° ° °
 ° °
 °

 ° °
° °

° °

Result
Index Update

Query

Forward Query

 ° °
 ° ° °
 °

° ° °
 ° °
 °

 ° °
° °

° °

Result

Flood Query

Centric Index

J. Xu et al. 158

generate sensing data to report the status of a target. Users are also making move-
ments within the region. From time to time, a user may want to retrieve the current
status of a target via a nearby sensor node. The node where the sensing data is stored
is called a source. The node via which the user retrieves the status is called a sink.

We assume that all sensor nodes are aware of their geographic locations. This can
be achieved through the use of GPS [6] or some other localization techniques such as
triangulation [7]. This is a reasonable assumption because in many cases the sensing
data is useful only if the source location is known. We assume that the GPSR routing
protocol [8] is employed to forward messages in the network. The GPSR makes
greedy forwarding decisions using information about a node’s immediate neighbors,
and routes messages around the perimeter of the area while greedy forwarding is
impossible. The most distinct feature of GPSR is that it allows sensor nodes to route
around without global IDs. By keeping the state of neighboring nodes only, GPSR
scales better than other protocols.

It is also assumed that the sensor network is divided into a grid, where grid
neighbors can communicate with each other directly. A sensor node may switch to in
sleep mode to save energy by running the GAF protocol [9]. For each grid cell, there
is a grid head responsible for message forwarding; other nodes wake up only when
needed.

3 Adaptive Data Dissemination

3.1 Analysis of Basic Strategies

As discussed in the Introduction, there are three basic data storage and dissemination
strategies: local, data-centric, and index-centric storage. Under the local storage, the
source stores sensing data on its local storage; a sink retrieves the sensing data by
flooding the query throughout the whole network. Obviously, this strategy is the best
choice when the query rate is very low. When the update rate is low, data-centric
storage might be a better choice. In this case, the sensing data is pushed to some cen-
tric node using GHT [5], which hashes a search key value into a geographic location
and maps it to the nearest sensor node. A query is hashed in the same way to locate
the node containing desired data. Another alternative, index-centric storage, might be
attractive for moderate update and query rate. As the name suggests, only the index of
sensing data (rather than actual data) is pushed to some centric node. A sink always
routes queries to appropriate centric index nodes, from where the queries will be for-
warded to the source by following the location pointers. The source sends the result
back to the sink when it receives a query.

We now quantitatively analyze the performance of each data storage strategy.
Similar to the previous work [10], [11], this paper uses the metric of total network
traffic to quantify the communication overhead. We consider a sensor network with
n× n nodes distributed in some random grid topology. To facilitate the analysis, we
introduce several notations. Denote by N the total number of sensor nodes in the net-
work, i.e., N= n× n. We use the fact that the asymptotic cost of a flooding is O(N) and
that of direct routing between two nodes randomly selected in the network is

()O N . Let rq be the query rate and ru be the data update rate. Let sq, si, and sd be the

Adaptive Data Dissemination in Wireless Sensor Networks 159

sizes of a querying message, an index updating message, and a data messages, respec-
tively. In most cases, we have sd > sq and sd > si. In the following, we derive the
network traffic in a unit time for each basic data storage strategy.

a) Local Data Storage (LS)
The source stores sensing data locally and hence incurs no update cost. A query is
flooded to all nodes at a cost of O(N). The result is sent back to the sink from the

source at a cost of ()O N . Therefore, the query will produce a traffic of ()q qO Nr s

and the return of result will generate a traffic of ()q dO N r s . The total traffic in a

unit time is given by:

: ()
q q q d

LS O Nr s N r s+ (1)

b) Index-Centric Storage (IC)
The source updates the index stored on some centric node at a cost of ()O N when

an update on the search key field(s) occurs. A query is forwarded by the centric node
to the source at a cost of (2)O N and the return of result at ()O N . The total

traffic is thus given by:

: (2)
u q q q diIC O N r s N r s N r s+ + (2)

c) Data Centric Storage
The source sends the data to some centric nodes at a cost of ()O N when an up-

date occurs. A query is resolved also at a cost of ()O N . The same cost is incurred

to return the result. The total traffic is given by:

: ()
u d q q q d

DC O N r s N r s N r s+ + (3)

We also observe that in a grid network, where a node can reach its vertical or

horizontal neighbors only, the routing hops between two nodes under GPSR can be
estimated. Specifically, in an m×n grid network, the average number of hops for rout-
ing from a node at coordinate [p, q] to any other nodes is:

1 1

(2 min(| |,| |) || | | ||) ()
m n

i j

i p j q i p j q m n
= =

− − + − − − × (4)

Based on (4), we can estimate the average number of routing hops between two
nodes randomly selected in an n×n grid network. We have conducted simulation to
verify the analytical result using the simulator ns-2 [13]. In the simulation, 500 pairs
of nodes are randomly selected to communicate. In Fig. 2, we show the average num-
bers of hops obtained from the simulation, the analytical result from (4), and the ap-
proximation of SQRT(N) (i.e., ()O N), respectively. We can see that the simulation

result agrees with the analytical result. It is also observed that the average number of
hops is about 0 .66 N .

J. Xu et al. 160

Similarly, the average number of routing hops from a fixed centric node to an-
other randomly selected node in the network can be obtained with (4). Fig. 3 shows
the comparison of routing hops from the node located at the geometrical center of the
network to any other nodes. The ratio of the actual routing hops to the value of
SQRT(N) is about 0.50. We can easily extend this result to any other fixed centric
node.

Fig. 3. Average Hops Between Two Nodes

Without loss of generality, suppose the centric node of the search key value is the
geometrical center in the network. The network traffics can be re-written as follows:

: 0.66
q q q d

LS Nr s N r s+ (5)

: 0.50 0.66)
u q q q diIC N r s N r s N r s+ + (6)

: 0.50 0.50 0.50)
u d q q q d

DC N r s N r s N r s+ + (7)

In the following, we analyze the thresholds of query-rate to update-rate (Q2U)
ratios for which one strategy dominates another:

(both random selected)

0
5

10
15
20
25

36 49 64 81 100 121 144 169 196 225 256 289 324 361 400

N

Hops
Simulation results SQRT(N) Ratio Calculated

Fig. 2. Average Hops Between Two Nodes

Hops
(one fixed and the other random selected)

0
5

10
15
20
25

36 49 64 81 100 121 144 169 196 225 256 289 324 361 400
N

Simulation results SQRT(N) Ratio Calculated

Adaptive Data Dissemination in Wireless Sensor Networks 161

- : 0.50 (-)q u i qLS IC r r N s N N s= (8)

- : 0.50 (- 0.50)q u d qLS DC r r N s N N s= (9)

- : 0.50(-) (0.50 0.16)q u d i q dIC DC r r s s s s= + (10)

For a grid network of 256=16×16 nodes, if the data message size sd is 50 bytes,
and both the query and index message sizes sq, si are 10 bytes. The threshold values
for (8), (9) and (10) are 0.03, 0.16, and 1.54, respectively. The optimal storage strat-
egy with respect to a certain Q2U ratio is illustrated as follows:

Q2U Ratio: 0.03 0.16 1.54
 Low|___ __Middle______|__High_____
Best Storage Strategy: LS | IC | DC

3.2 Proposed Adaptive Algorithms

As discussed, each of these three strategies respectively achieves the best perform-
ance in a certain range of Q2U ratios. Therefore, we propose several adaptive data
storage and dissemination schemes to minimize the network traffic for dynamic ac-
cess patterns. We evaluate the access pattern periodically. Denote by L the interval
between two consecutive evaluations. The data storage nodes are responsible for
collecting query and update rates during an evaluation interval.

To predict future access patterns, we rely on historical data accesses. Based on dif-
ferent prediction methods, we propose three adaptive algorithms. The first two estimate
the Q2U ratio based on the history in the immediate past two intervals. We classify the
ratio into three classes: L (low), M (moderate), and H (high), according to the analysis
presented in the last section. The transition of storage strategy in the next interval fol-
lows the conditions shown in Fig. 4. The third predicts the Q2U ratio based on a simple
exponential aging method. The final projected value is the predicted ratio plus a predic-
tion error, which is the difference between the projected ratio and the observed ratio for
the immediate past interval. The details of this algorithm are described in Algorithm 3.

Fig. 4. Strategy Transition in Algorithm 1 and Algorithm 2

H

L

M, L

H

M, H

L

M

IC LS DC

H

M

DC

 L

M

L

H

M H
IC LS

L

J. Xu et al. 162

Table 1. Simulation Parameters

Parameter Value
Random Grid 16×16
Grid Size 19.5m

Topology

field Size 595×595m
Beacon Interval 3.0s
Beacon Expiration 13.5s
Implicit Beacon Yes

GPSR
Routing

Planarization Yes
Range 40m Radio
MAC 802.11
Index update 10 bytes
Data update/Result 50 bytes

Message
Size

Query 10 bytes

Algorithm 3: Adaptive Algorithm based on Exponential Aging Prediction

Collect current query update ratio r_ratioi ;
 Calculate f_ratio(i+1) using (11);
 Switch f_ratio(i+1) {
 Case L: Local storage in next interval; break;

 Case M: Index centric storage in next interval; break;
 Case H: Data centric storage in next interval; break;
 }
Exponential aging prediction:
Real query update ratio: r_ratio(i-1), r_ratioi, r_ratio(i+1),
Predicted Q2U ratio: f_ratio(i-1), f_ratioi, f_ratio(i+1),
Evaluation interval: __(i-1)__ |___i___|___(i+1)__

f_ratio(i+1)= f_ratioi + a�(f_ratioi- r_ratioi) (11)

4 Performance Evaluation

We developed a wireless sensor network based on ns2-2.26 [13] to evaluate the pro-
posed adaptive schemes and other basic schemes. The default parameters settings are
summarized in Table 1. We used a new, improved trace format in our simulation to
collect messages transferred at the RTR trace level.

For simplification, only one moving target was deployed in the sensor network.
We assume the centric node of this target calculated by GHT is located at the geomet-
rical center of the sensor network. The target moves at a random speed lower than
50m/s and with a random direction. We assume the target is aware of the network
boundary, and it will be bounced back when it hits the boundary. The target can pro-
duce stimulus from time to time. The frequency of generating stimulus is controlled in
the simulation to facilitate performance comparison. At the beginning of each evalua-

Adaptive Data Dissemination in Wireless Sensor Networks 163

tion interval, the centric node makes storage decisions. If there is a strategy transition,
the centric node will broadcast it throughout the network. Then, the storage strategy is
changed on every node in the network. All sensor nodes are stationary and distributed
over a 595×595 m2 flat field, which is divided into GAF grid cells.

The simulation results to be presented in this section include two parts. The first
part is the comparison of local storage, index-centric, and data-centric storage under
different Q2U ratios. The second part is the comparison of different adaptive algo-
rithms with various evaluation intervals.

4.1 Comparison of Local Storage, Index Centric and Data Centric Storage

In this subsection, we show the comparative results of total traffic produced by local
storage, index-centric, and data-centric storage schemes. The data update rate is fixed
throughout the experiments. We vary the query rate and obtain different Q2U ratios.
The sink node which issues the query is randomly selected. All simulations last for
1000 seconds. We repeat experiments three times with different random queries for
each Q2U ratio and average the total traffics of the three repetitions as the result.

As shown in Fig. 5, when the Q2U ratio is high, local storage is shown to have the
highest total traffic. This is because the cost saving in updates brought by local stor-
age is compromised by queries, since it needs to flood query messages to the whole
network. Data-centric storage has the lowest total traffic in all three storage schemes
when the Q2U ratio is higher than 1.54. In the range of the ratio between 0.03 and
1.54, index-centric storage achieves the best performance. The results are consistent
with the analysis carried out in Section 3.

4.2 Comparison of Different Adaptive Algorithms and Evaluation Intervals

In this subsection, we compare different adaptive schemes with various evaluation
intervals. We conduct three sets of experiments with 3K, 60K, and 120K queries in 24

10

100

1000

10000

100000

0.01 0.04 0.08 0.2 0.6 1 4 8
Query/Update

Traffic(Kb)

IC DC LS

Fig. 5. Comparison of LS, IC and DC

J. Xu et al. 164

hours. The evaluation intervals are set at 5, 10, and 30 minutes. The data update rate
is fixed throughout the simulations. In order to simulate dynamic access patterns, we
assume that queries arrive following the Gauss distribution with the peak hour at
12pm and the standard deviation of 3-12 hours.

Fig. 6 shows the results for 3K queries. The total traffic for data-centric storage in
these simulations is too large (more than 36Mb) to be shown in the figure. The total
traffics of local storage and index-centric storage strategies are kept constant through-
out the settings of query arrival deviation. The adaptive schemes always achieve the
least traffic since they adapt the storage scheme to the current Q2U ratio. The number
of storage strategy transition decreases when the evaluation interval gets longer as
showed in the figure. When the query arrival deviation gets smaller, i.e., the query
times converge towards 12pm, the total traffic decreases since there are fewer strategy
transitions. Adaptive algorithms 1 and 2 do not show obvious differences since there
is no direct transition of Q2U ratio from low to high or high to low in all evaluation
intervals during the 24 hours. The storage strategy transitions of adaptive algorithm 3

Switches(3k queries; 5m interval)

0

20

40

60

80

100

120

12 11 10 9 8 7 6 5 4 3
Standard Deviation (hours)

N
u

m
b

er

Algorithm 1 Algorithm 2 Algoritm 3

TotalTraffic(3k queries; 5m interval)

5000

6000

7000

8000

9000

10000

12 11 10 9 8 7 6 5 4 3
Standard Dev iation (hours)

Tr
af

fi
c

(k
b

)

Algorithm 1 Algorithm 2 Algorithm 3
LS IC DC

Switches(3k queries; 10m interval)

0

10

20

30

40

50

60

12 11 10 9 8 7 6 5 4 3
Standard Deviation (hours)

N
u

m
b

er

Algorithm 1 Algorithm 2 Algoritm 3

TotalTraffic(3k queries;10m interval)

5000

6000

7000

8000

9000

10000

12 11 10 9 8 7 6 5 4 3
Standard Deviation (hours)

T
ra

ff
ic

 (
kb

)

Algorithm 1 Algorithm 2 Algorithm 3
LS IC DC

Switches(3k queries; 30m interval)

0

2

4

6

8

10

12 11 10 9 8 7 6 5 4 3
Standard Deviation (hours)

N
u

m
b

er

Algorithm 1 Algorithm 2 Algoritm 3

TotalTraffic(3k queries; 30m interval)

5000

6000

7000

8000

9000

10000

12 11 10 9 8 7 6 5 4 3
Standard Deviation (hours)

T
ra

ff
ic

 (
kb

)

Algorithm 1 Algorithm 2 Algorithm 3
LS IC DC

Fig. 6. 3K queries in 24 hours

Adaptive Data Dissemination in Wireless Sensor Networks 165

are less than the other two for all three different evaluation intervals. Its total traffic is
the lowest among all the storage schemes in most cases.

When we evaluate 60K queries in 24 hours, the Q2U ratio has a moderate value in
most cases. Thus, less strategy transitions are expected. With different evaluation
intervals, there are no obvious differences for strategy switches and total traffic for
the three adaptive schemes. Fig. 7 shows the results with an evaluation interval of 5
minutes. The total traffic for local storage is too high (up to 185Mb) to be shown in
the figure. Again, we can observe that the third adaptive scheme based on exponential
aging prediction achieves the best performance.

In the simulations of 120K queries (see Fig. 8), the adaptive schemes also show
their better performance than other basic schemes. The traffic for local storage is
369Mb and not shown in the figure. When the query arrival deviation is longer than 5
hours, the strategy transitions keep decreasing. The strategy transitions increase sig-
nificantly when the deviation is within 3 hours. The reason behind this is that the Q2U
ratio is fluctuated around 1.54, as shown in Fig. 9. A longer evaluation interval also
results in less strategy transitions in this set of experiments. This is consistent with the
previous few experiments. In addition, we can observe that the total traffic with the
adaptive schemes is reduced as the query arrival deviation decreases.

5 Related Work

A number of data dissemination schemes have been proposed for wireless sensor
networks in the literature [3], [14], [15]. Traditional sensor networks usually rely on a
base station, which not only serves as a center for data collection and storage but also
a gateway to the external clients. Centralized storing of data at the base station is
convenient for analysis and management. However, if there are many queries from
the sensor nodes inside the network, this is very inefficient since queries and results
must swing between the base station and the sink.

Data-centric routing algorithms, such as Directed Diffusion [3] and TTDD [12],
have also been proposed for long-live queries. In Directed Diffusion, data is named
using attribute-value pairs. A query is broadcast throughout the sensor network as an
interest for data. Gradients or paths are set up during this procedure and the source

Switches(60k queries;5m interval)

0

5

10

15

20

25

30

12 11 10 9 8 7 6 5 4 3
Standard Deviation (hours)

N
u

m
b

er

Algorithm 1 Algorithm 2 Algoritm 3

TotalTraffic(60K queries;5m interval)

45000

48000

51000

54000

57000

60000

63000

12 11 10 9 8 7 6 5 4 3
Standard Deviation (hours)

T
ra

ff
ic

 (
kb

)

Algorithm 1 Algorithm 2 Algorithm 3
LS IC DC

Fig. 7. 60K queries in 24 hours

J. Xu et al. 166

reinforces one of them. The results will return to the sink along this route. TTDD is a
two-tier data dissemination approach. The data source that detects a target builds a
grid structure to flood the advertisement of sensing data reports. A sink sends queries
and receives results directly to or from the source via the grid structure. The adver-
tisement in the grid structure, however, introduces significant traffic overhead. There-
fore, these two approaches are not suitable for one-shot queries.

6 Conclusion

This paper presents the design and evaluation of adaptive data storage and dissemina-
tion schemes for dynamic environments. The objective is to minimize the total net-
work traffic incurred by data queries and updates. Different data storage strategies are
adopted in accordance with the observed Q2U ratios. We have conducted a series of

Switches(120k queries;5m interval)

0

10

20

30

40

50

60

12 11 10 9 8 7 6 5 4 3
Standard Deviation (hours)

N
u

m
b

er

Algorithm 1 Algorithm 2 Algoritm 3

TotalTraffic(120K queries;5m interval)

75000

78000

81000

84000

87000

90000

93000

96000

12 11 10 9 8 7 6 5 4 3
Standard Deviation (hours)

T
ra

ff
ic

 (
kb

)

Algorithm 1 Algorithm 2 Algorithm 3
LS IC DC

Switches(120k queries;10m interval)

0

5

10

15

20

12 11 10 9 8 7 6 5 4 3
Standard Deviation (hours)

N
u

m
b

er

Algorithm 1 Algorithm 2 Algoritm 3

TotalTraffic(120k queries;10m interval)

75000

78000

81000

84000

87000

90000

93000

96000

12 11 10 9 8 7 6 5 4 3
Standard Deviation (hours)

T
ra

ff
ic

 (
kb

)

Algorithm 1 Algorithm 2 Algorithm 3
LS IC DC

Switches(120k queries;30m interval)

0

1

2

3

4

5

6

12 11 10 9 8 7 6 5 4 3
Standard Deviation (hours)

N
u

m
b

er

Algorithm 1 Algorithm 2 Algoritm 3

TotalTraffic(120k queries;30m interval)

75000

78000

81000

84000

87000

90000

93000

96000

12 11 10 9 8 7 6 5 4 3
Standard Deviation (hours)

T
ra

ff
ic

 (
kb

)

Algorithm 1 Algorithm 2 Algorithm 3
LS IC DC

Fig. 8. 120K queries in 24 hours

Adaptive Data Dissemination in Wireless Sensor Networks 167

simulation experiments to evaluate the performance of the basic strategies and three
proposed adaptive schemes. The results have shown the proposed adaptive schemes
save a significant amount of data communications compared to the basic strategies for
dynamically changing access patterns. In particular, the adaptive algorithm based on
the exponential aging prediction performs better than the other two.

References

1. G. Pottie and W. Kaiser. Wireless Integrated Network Sensors. Communications of the
ACM, 43(5):51-8, May 2000.

2. I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cyirci. Wireless Sensor Networks: A
Survey. Computer Networks, 38(4):393-422, 2002.

3. C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed Diffusion: A Scalable and Ro-
bust Communication Paradigm for Sensor Networks. Proceedings of MOBICOM2000.

4. J. Heidemann, F. Silva, and D. Estrin. Matching Data Dissemination Algorithms to Appli-
cation Requirements. Proceedings of the first international conference on Embedded net-
worked sensor systems,2003.

5. S.Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S. Shenker. GHT: A
Geographic Hash Table for Data-Centric Storage. Proceedings of the First ACM Interna-
tional Workshop on WSNA 2002.

6. US Naval Observatory GPS Operations. http://tycho.usno.navy.mil/gps.html, 2001.
7. J. Albowitz, A. Chen, and L. Zhang. Recursive Position Estimation in Sensor Networks.

ICNP2001.
8. B. Karp and H.T. Kung, GPSR: Greedy Perimeter Stateless Routing for Wireless Net-

works, Proceedings of MOBICOM2000.
9. Y. Xu, J. Heidemann, and D. Estrin. Geography-informed Energy Conservation for Ad

Hoc Routing. ACM MOBICOM2001.
10. A. Ghose, J. Grossklags, and J. Chuang. Resilient Data-Centric Storage in Wireless Ad-

Hoc Sensor Networks. Proceedings of the International Conference on MDM2003.
11. W. Zhang, G. Cao and T. La. Data Dissemination with Ring-Based Index for Wireless

Sensor Networks. ICNP2003.

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00

1 51 101 151 201 251 Interval

Ratio
3 5 12

Fig. 9. Query/Update Ratio (120k queries;5m interval)

J. Xu et al. 168

12. F. Ye, H. Luo, J. Cheng, S. Lu and L. Zhang. A Two-Tier Data Dissemination Model for
Large-scale Wireless Sensor Networks. Proceedings of Mobicom2002.

13. ns-2.26. http://www.isi.edu/nsnam/ns.
14. S. Shenker, S. Ratnasamy, B. Karp, R. Govindan, and D. Estrin. Data-Centric Storage in

Sensornets. ACM SIGCOMM Computer Communication Review 33(1):137 – 142, Jan
2003.

15. B. Greenstein, De. Estrin, R. Govindan, S. Ratsanamy, and S. Schenker. DIFS: A Distrib-
uted Index for Features in Sensor Networks. Workshop on SNPA 2003.

 J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 169–177, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Continuous Residual Energy Monitoring
in Wireless Sensor Networks

Song Han and Edward Chan

Dept. of Computer Science, City University of Hong Kong
csedchan@cityu.edu.hk

Abstract. A crucial issue in the management of sensor networks is the con-
tinuous monitoring of residual energy level of the sensors in the network. In this
paper, we propose a hierarchical approach to construct a continuous energy map
of a sensor network. Our method consists of a topology discovery and cluster-
ing phase, followed by an aggregation phase when energy information collected
are abstracted and merged into energy contours in which nodes with similar en-
ergy level are grouped into the same region. The monitoring tree is restructured
periodically to distribute energy cost among all nodes fairly, which increases
the lifetime of the sensor network. Simulation results indicate that our method
is able to generate accurate energy maps with low energy cost.

1 Introduction

With recent advances in sensor technology, wireless sensor networks have received
substantial research interest. However, sensor nodes have limited resources such as
computing capability, memory and battery power, and it is particularly difficult to re-
plenish the battery of the sensors. Hence methods to preserve energy in sensors, as
well as the monitoring of the residual energy level of the nodes in a sensor network
are crucial research topics.

In this paper, we focus on the issue of efficient residual energy collection. The
process of monitoring energy levels in the sensors consumes energy, and since it is
done on a continuous basis, it is important to make sure the process is as energy effi-
cient as possible. Furthermore, given the large number of nodes in a sensor network,
typically only an approximate instead of an exact view is required. Just like a weather
map, it is sufficient if we can draw an energy map for a sensor network, in which we
separate the sensor nodes into several groups according to different residual energy
ranges. If such a map can be generated efficiently and reasonably accurately, we can
use this energy distribution map to deploy additional nodes to the regions where the
energy of the sensor will be depleted soon.

To achieve this, we propose a hierarchical approach for collecting residual energy
information continuously in the sensor network in order to construct an energy map at
the base station. The entire sensor network is first separated into several static clusters
using the TopDisc algorithm proposed by Deb et al. [10] Each cluster is represented by
a head node inside the cluster, and at the same time, a topology tree is constructed
which consists of these head nodes and some bridging delivery nodes between two ad-
jacent clusters. Based on the energy information collected, a set of polygons which rep-
resent the contours of different energy levels is produced independently for each cluster.

S. Han and E. Chan 170

The topology tree is then used to collect the energy graphs from leaf nodes to the base
station, and in-network aggregation is used to unify the adjacent polygons with the same
energy range in order to simply the overall energy map and reduce message cost. In ad-
dition to the construction of the initial topology tree for energy collection, reorganiza-
tion of the tree to evenly distribute energy consumption in the monitoring process is
performed periodically to extend the battery life of the sensors in the network.

The rest of the paper is organized as follows. A summary of related work is pre-
sented in Section 2. Section 3 describes the design of the continuous hierarchical re-
sidual energy collection in detail. The performance of the algorithm is examined in
Section 4 and compared with similar algorithms. The paper concludes with Section 5
where some issues and future work are discussed.

2 Related Work

Although there has been a large number of recent work on sensor networks [1,2], only
a fairly small number explicitly deals with the issue of managing sensor networks and
even fewer deals with the monitoring of residual energy levels. A distributed ap-
proach to sensor network monitoring is proposed in [5]. The notion of active
neighbour monitoring is combined with low overhead passive monitoring by the net-
work wide control system to provide high responsiveness without incurring the heavy
energy consumption associated with a network wide active monitoring scheme based
on constant updates.

The notion of an energy map for sensor networks is first proposed by Zhao at al.
[7]. Called the residual energy scan (eScan), this pioneering work applies the tech-
niques of in-network aggregation and abstracted representation of energy graphs
which are also used in our algorithm. However, there is no notion of a hierarchical
structure in eScan and the topology tree consists of all the sensor nodes in the net-
work, which can lead to additional cost in message delivery. Moreover, since no to-
pology maintenance scheme is proposed, the nodes close to the base station will con-
sume energy at a very high rate for large-sized networks due to the large number of
messages delivered, leading to quick depletion of the available energy resources for
these nodes. To reduce the energy cost of collecting an eScan and to make monitoring
information available to all nodes within a network, the authors propose a monitoring
tool called digest which is an aggregate of some network properties [9].

A mechanism to predict the energy consumption by a sensor node in order to con-
struct the energy map of a sensor network is proposed in [6,11]. With the proposed
energy dissipation model, a sensor node need not transmit its energy information pe-
riodically. Instead it can just send one message with its energy information and the
parameters of the model, with the major advantage of a greatly extended lifetime for
the sensor.

3 Continuous Hierarchy Residual Energy Collection

In this paper we propose an energy efficient mechanism for Continuous Residual En-
ergy Monitoring (CREM). The residual energy information is presented in the form of
an energy map (Fig. 1), inspired by eScan. The energy map shows the residual energy
of different regions in the sensor network. The regions are colored differently de-
pending on the different energy ranges within that region. Using this energy map, the

Continuous Residual Energy Monitoring in Wireless Sensor Networks 171

network manager can decide where new sensor nodes need be deployed to maintain
the effectiveness of the monitoring activity of the sensor network.

3.1 System Model and Assumptions

In this section we briefly describe the system model used in our study and state the
underlying assumptions used in the formulation of our model. We assume that there is
a base station at the network edge. The base station, which has a continuous energy
supply, sends a request to collect residual energy to all nodes in the sensor network.
This collection of residual energy information occurs at regular intervals called the
monitoring cycle. Each node is immobile and has symmetric communications to other
nodes within certain range R. The nodes also know their positions, and each node is
powered by battery with normalized capacity of 100. The sensor network consumes
energy according to the Hotspot Dissipation model [7]. The positions of the hotspots
are also generated randomly.

70%-80%

60%-70%

50%-60%

Ordinary

Cluster

Cluster Head

Delivery Node

Fig. 1. Example of an Energy Map Fig. 2. Topology Discovery

3.2 Topology Discovery

The initial task in the energy collection is to organize the network in a way that would
reduce the required level of message transmission in the entire monitoring process.
The basic approach is to divide the network into a number of clusters, each with a
cluster head which acts as a representative for nodes in the neighborhood. A “Topol-
ogy Discovery Request” is sent by the base station. The request is propagated through
controlled flooding so that all nodes receive a request packet if they are connected. At
the same time, sensors which cannot receive any message from their neighbors will be
excluded. In the second step, the sensor network is divided into clusters based on the
TopDisc algorithm [10]. This algorithm is based on the simple greedy log
(n)-approximation algorithm for finding the set cover.

At the end of this process, the sensor network is divided into n clusters and each
cluster is represented by one node, which is called the head node. The head node ob-
tains energy information from all the nodes in the cluster because they are all within
its communication range. Each head node knows its parent head node, but they can
not communicate with each other directly. Instead, a grey (or delivery) node acts as an
intermediary which delivers messages between each pair of head node. Fig. 2 is an
example of the tree generated in the topology discovery phase.

This algorithm, while similar to the TopDisc algorithm, differs from the original
one in one significant aspect. In constructing the topology, we reduced the radius of

S. Han and E. Chan 172

the communication from range R to R/2 to make sure that in each formed cluster,
every node is reachable from any other node in the same cluster. This is important to
our topology maintenance process, which will be described in detail in Section 3.3.4.

3.3 Periodical Residual Energy Collection

Residual energy collection is a core process that is performed on a continuous basis. It
can be divided into three phases: first, determining the local energy graph; second,
performing in-network aggregation of the energy and propagation of the information
to the base station, and third, reconstructing the topology tree from the root to the
leaves to distribute energy consumption in a more equitable manner.

3.3.1 Abstracted Representation of Energy Graph
One of the main objectives of our algorithm is to reduce the message cost. Our ap-
proach is to select an abstracted representation of the energy graph since there is no
need to know the energy information for all the nodes in the sensor network. The
structure of the message which is used to deliver energy information is as follows:

H e a d e r S e n d e r ID R e c e iv e r ID E n e rg y R a n g e P o ly g o n In fo rm a t io n

Energy Range is a vector which gives the min and max values of the region.
Polygon information is a general list, which is a group of separated polygons, each of
which can be concave and have holes in them. Each separated polygon is also repre-
sented by the general list: the first element is the outside contour and the other ele-
ments are the outside contours of the holes.

3.3.2 Determining the Local Energy Graph
In this step, we wish to get a set of polygons which can provide the contours of the dif-
ferent energy regions. During the energy monitoring cycle, every node in a given cluster
sends its energy information to the head node of the cluster. The energy information in-
cludes the position of the node and the energy value. After the head node received in-
formation from the nodes in its cluster, it divides all the nodes into several sets accord-
ing to different energy ranges. A convex contour is generated for each node set, and
only the vertexes and the sequence are stored. Boolean computing [8] is applied be-
tween each contour. The result will be general contours, it can be concave, and has
holes, and also can be consisted of several parts. A general list is then used to represent
the data structure of the polygons in this cluster, as explained in the previous section.

3.3.3 In-Network Aggregation of Energy Graphs
When a head node gets the local energy graph, the information will send be sent to its
parent head node through the default delivery node we have mentioned above. When
a head node receives all the messages from its children, it will do the in-network ag-
gregation of the energy graphs. If two polygons are adjacent to each other physically,
we can merge them into one polygon to reduce the number of the vertexes and the
communication cost. For each contour, the physically adjacent nodes for each vertex
of the contour are used to generate an extended contour. Two polygons can be joined
together if their extended contours intersect. The joined contours can then be reduced
in size to form the final merged contour shown in the figure.

Continuous Residual Energy Monitoring in Wireless Sensor Networks 173

3.3.4 Topology Maintenance
Combining the schemes proposed in the previous sections, the energy graph of the
sensor network can be obtained efficiently and accurately. However, since the moni-
toring process is a continuous one, the head node is each cluster will deplete its en-
ergy resources at a much higher rate than other nodes due to the need to constantly
transmit and receive messages. When a head node exhausts its energy, the topology
tree needs to be reconstructed.
 There are two methods to handle the issue of topology tree maintenance in our hi-
erarchical clustering system: a dynamic scheme and a static scheme. In a dynamic to-
pology maintenance scheme, the whole sensor network is re-clustered periodically to
distribute the energy cost among all nodes more evenly, similar to the approach taken
in [4]. The disadvantage of this approach is the large number of extra messages re-
quired in re-clustering the network. The other alternative is to use a static topology
maintenance scheme (the approach used in this paper) where the hierarchical structure
of the clusters is preserved, but different head nodes and delivery nodes in the cluster
are used based on the energy graph stored in the former head node [3]. At the begin-
ning of each monitoring cycle, this process is applied to the entire tree from the root
to the leaves, and each parent / child cluster pair will perform the following steps:

1. In the parent cluster, the former head node (FP) selects the new head node (NP)
according to the energy graph stored in its cache.

2. FP sends a RE-CONSTRCT message which includes the position of NP to the
former head node (FC) of the child cluster through the former delivery node (FD).

3. In the child cluster, based on the message from FD, FC selects the new head
node (NC) using the same scheme as FP.

4. FC sends a CONFIRM message in which includes the position of node NC to
FP through FD.

5. As the delivery node has the same work load as the head node, it is necessary to
rotate the delivery node periodically as well. Consequently, when FP receives
the CONFIRM message, the FP selects another node to be the new delivery
node (ND) which is different from the new head node, and sends a
CONFIRM-DNODE message which includes the position of ND to FC through
FD. Then it will broadcast a TOPOLOGY-CHANGE message with the position
of NC to all the nodes in its cluster.

6. In the child cluster, after receiving the message CONFIRM_DNODE, FC sends
a message to NC informing it of the new delivery node. Then it broadcasts the
TOPOLOGY-CHANGE message (with the position of NC) to all the nodes in
its cluster.

 After all communicating node pairs have finished the exchange of the various mes-
sages, the new topology tree will be constructed. We will now discuss how the new
head nodes and delivery nodes are selected within the cluster. Clearly, in order to
reduce the size of the energy graph and also to facilitate in-network aggregation of the
energy contours, we need to keep the energy graphs as regular as possible. A naïve
approach is to always choose the node with the most remaining energy in the cluster
as the new head node. However, by just choosing nodes with the most residual energy
without regard to existing energy contours, the energy of the nodes are depleted and
they drop into a lower energy range, resulting in a highly irregular energy contour.

The approach used in this paper is to select a node based not on its residual energy
but on its proximity to the next lower energy range. This is shown in Fig. 8. Suppose
Node X has the minimum distance to any node in the next energy range, and Y the

S. Han and E. Chan 174

most residual energy. If X (instead of Y) is chosen as the new head node or delivery
node, after it has consumed substantial energy in its role and its residual energy drops
to the next lower level, the energy graph will still be quite regular.

Fig.3a Fig.3b

Fig. 3. Selection of new head nodes based on distance to next energy level: Fig.3a is the initial
state and Fig.3b is the state after energy dropped to a lower range

4 Simulation Results

4.1 Performance Metrics and Simulation Setup

In this section we will define the following performance metrics used in the experi-
ments (1) Residual reachable nodes (2) Fidelity and (3) Total Message Cost, and de-
scribe the simulation setup as well.

Residual Reachable Nodes measures the number of nodes which can be reached
by a path from the base station. If the number of residual reachable nodes is small,
then clearly many sensors have run out of energy and the sensor network is unlikely
to function well. The notion of fidelity is used to measure how accurately the energy
map represents residual energy information in the actual network. We divide the en-
ergy information in a sensor node (from 0% to 100%) into N ranges, and each is
called an energy range, where the i th energy range stands for the range <100
%*(i-1) / N, 100%*i / N>. If a polygon consists entirely of nodes which fall into the
energy range X, we call this polygon the related polygon to X. For any node n in a
senor network S, if n is in the energy range X, and n is inside the contour or on the
outside contour of its related polygon, it is a correct node, otherwise it is a wrong
node. Now we define the fidelity F of the energy map as follows:

Fidelity = total no. of correct nodes / total no. of the nodes in sensor network

Since message transmission is a major source of energy consumption in a sensor
network, the overhead of our algorithm is reflected in the level of message transmis-
sion, measured by the total number of bytes transmitted. The overall message cost
consists of two components: message cost involved in performing the periodic energy
scan and message cost that is incurred in maintaining the topology tree:

Total Message Cost (bytes) = Cost local energy scan + Cost topology tree reconstruction

To study the performance of CREM, a simulation program is written using C++
and CSim-18. For each simulation run, a different set of nodes are generated and lo-
cated randomly; the hotspots are generated according to the Hotspot model. The posi-
tion of base station is at the origin i.e. <0, 0>, and the sensors are distributed over a
field whose size increases with the number of nodes to maintain the same density of

X

Y

 X

 Y

Continuous Residual Energy Monitoring in Wireless Sensor Networks 175

nodes for all network sizes. The energy monitoring cycle is set to 100 time units, and
the sensor network is divided into 5 energy ranges from <0%, 20%> to <80%,
100%>. The energy range is assumed to be represented using a single byte, and two
bytes are used to represent the position for each node. In the calculation of message
cost, protocol overhead is ignored.

4.2 Simulation Results

In the first experiment, we compare CREM with centralized collection, which collects
individual residual energy information directly from each node.

Fig. 4 shows the ratio of the total message cost for centralized collection and
CREM respectively. It can be seen that CREM consistently outperforms centralized
collection by a wide margin regardless of network size, which means that the
out-performance of CREM algorithm is scalable. Moreover, Fig. 4 clearly indicates
that for a given network size, the cost ratio between centralized collection and CREM
increases as communication range increases. This is expected because as communica-
tion range increases, the number of nodes in the cluster will increase, which also
means that many more nodes fall into the contour of a certain energy range and hence
can be ignored using CREM. Fig. 5 shows the fidelity achieved using CREM, which
is typically above 95%. Thus, CREM is able to significantly reduce total message cost
at only a small degradation in fidelity when compared to Centralized collection
(which has a fidelity of 100%).

In the second group of experiments, we examine the impact of several algorithms
on the lifetime of the sensors in the sensor network. The first method, centralized col-
lection, gathers energy information from every node in the network directly as de-
scribed previously. The second method, called Static Clustering, also uses a hierar-
chical tree topology for residual energy monitoring, but without topology
restructuring. By comparing the performance of CREM to Static Clustering we can
isolate the impact of topology restructuring on overall performance.

The results of the experiments, with a fixed communication range of 5 for the sensor,
are shown in Fig. 6-9. Fig. 6 shows the effect of network size on fidelity. The fidelity of
the energy map is over 90% initially, and stays in that range for a considerable number
of monitoring cycles. However, as the number of nodes which has exhausted its energy
climbs, it is more and more difficult to maintain an accurate representation of the energy
levels. This effect is more pronounced when networks increase in size. As the number
of nodes increases, the number of levels in the hierarchy increases and the total number
of messages handled by the head nodes and delivery nodes increases as well, so that
their energy is consumed at a higher rate. As a result of this decrease in the number of
functional nodes, accurate representation becomes more difficult.

Fig. 7 shows clearly the lifetime of the network decreases with the increasing net-
work size. The reason is that for larger networks, there are more levels in the hierar-
chy and the head nodes and the delivery nodes have more energy information to de-
liver and hence depletes their energy more rapidly. This is consistent with results seen
in other experiments discussed in this section.

The fidelity of the three algorithms over the lifetime of the sensor network is
shown in Fig. 8. If we assume that a fidelity of about 90% is acceptable, then it can be
seen that CREM results in an 20-25 fold increase in the lifetime of the network com-
pared to Centralized collection, and an 7-8 fold increase compared to Static Cluster-
ing. The latter two methods do have a marginally higher fidelity than CREM (by
about 3%) during the first few monitoring cycles, but even then CREM still supports

S. Han and E. Chan 176

an average fidelity of over 95%, which should be adequate for most energy monitor-
ing applications. It is clear that CREM greatly extends the lifetime of the network at
the expense of just a minor decrease in fidelity.

Fig. 4. Cost ratio between CREM and Fig. 5. Fidelity vs network size for CREM
centralized collection

Fig. 6. Fidelity vs Monitoring cycles Fig. 7. Residual reachable nodes versus Moni-
for CREM toring cycles for CREM

Fig. 8. Fidelity vs monitoring cycles for the Fig. 9. Total message cost: CREM versus
three methods static clustering

Continuous Residual Energy Monitoring in Wireless Sensor Networks 177

If we compare the total message cost between Static Clustering and CREM in
Fig. 9, it can be seen that our algorithm introduces an additional overhead of around
25%. Although this is a bit high, by suitably sharing the additional energy consump-
tion among different nodes, the lifetime of the sensor network is extended by an even
greater amount as noted above, making this additional cost very worthwhile.

5 Conclusion

Energy is one of the most critical resources in a sensor network, and it is important to
be able to monitor the availability of this resource with low overhead. In this paper,
we propose a hierarchical approach to continuously collect and aggregate residual en-
ergy information for presentation in the form of an energy map. By using techniques
such as in-network aggregation, construction of a hierarchical monitoring structure as
well as the continuous rotation of the cluster heads, energy cost due to message
transmission is reduced. Extensive simulation results show that our approach is en-
ergy efficient and is able to extend the lifetime of the sensor network substantially
with only a small decrease in accuracy of the energy map generated.

References

1. D. Estrin, R. Govindan, J. Heidemann and S. Kumar, “Next Century Challenges: Scalable
Coordination in Sensor Networks”, Proc. ACM/IEEE Int’l. Conf. on Mobile Computing
and Network, August 1999.

2. Lakshminarayanan Subramanian and Randy H.Katz, “An Architecture for Building
Self-Configurable systems”, Proc. IEEE/ACM Workshop on Mobile Ad Hoc Networking
and Computing, August 2000.

3. S. Han and E. Chan, “Hierarchical Continuous Energy Maps for Sensor Networks”, Tech-
nical Report, Dept. of Computer Science, City University of Hong Kong, 2004.

4. W. Heinzelman, A. Chandrakasan and H. Balakrishnan, “Energy-Efficient Communica-
tion Protocol for Wireless Microsensor Networks”, Proc. of the 33rd International Con-
ference on System Sciences, January 2000.

5. Chih-fan Hsin and Mingyan Liu, “ A Distributed Monitoring Mechanism for Wireless
Sensor Networks”, Proc. Workshop on Wireless Security 2002.

6. A. F. Mini, Badri Nath and Antonio A. F. Loureiro, “Prediction-based Approaches to
Construct the Energy Map for Wireless Sensor Networks”, Proc. 21st Brasilian Sympo-
sium on Computer Networks, Natal, RN, Brazil, May 19-23, 2003.

7. Y. J. Zhao, R. Govindan and D. Estrin. Residual Energy Scan for Monitoring Sensor Net-
works”, Proc. IEEE Wireless Communications and Networking Conference, March 2002.

8. Michael V. Leonov, Alexey G. Nikitin, “An Efficient Algorithm for a Closed Set of Boo-
lean Operations on Polygonal Regions in the Plane”, Preprint 46, Novosibirsk, A. P. Er-
shov Institute of Informatics Systems, 1997.

9. J. Zhao, R. Govindan, and D. Estrin, “Computing aggregates for monitoring wireless sen-
sor networks”, Technical Report 02-773, USC, September 2003.

10. B. Deb, S. Bhatangar, and B. Nath, “A Topology Discovery Algorithm for Sensor Net-
works with Applications to Network Management”, Proc. IEEE CAS Workshop on Wire-
less Communications and Networking, Pasadena, USA, Sept. 2002.

11. A. F. Mini, Badri Nath and Antonio A. F. Loureiro, “A Probabilistic Approach to Predict
the Energy Consumption in Wireless Sensor Networks”, Proc. IV Workshop de Comuni-
cação sem Fio e Computação Móvel, São Paulo, Brazil, October 23-25 2002.

Design and Analysis of a k-Connected Topology
Control Algorithm for Ad Hoc Networks

Lei Zhang1, Xuehui Wang2, and Wenhua Dou1

1 School of Computer,
2 School of Mechatronics Engineering and Automation,

National University of Defense Technology, Changsha 410073, China
findzhanglei@hotmail.com

Abstract. Topology control is an effective approach to reduce the en-
ergy consumption in wireless ad hoc networks. In this paper, we propose
a k-connected (KC) energy saving topology control algorithm, which
is fully distributed, asynchronous and scalable with little overhead. We
prove KC algorithm has several valuable properties. First, it is opti-
mal for the local energy-saving topology control; second it preserves the
network connectivity (even k-connectivity if the neighbor topology is
k-connected) and dramatically reduces the energy consumption; third,
each node degree obtained by the KC algorithm cannot exceed 6*k. Per-
formance simulation shows the effectiveness of our proposed algorithm.

1 Introduction

Minimizing energy consumption is an important challenge in wireless ad hoc
networks. Topology control via per-node transmission power adjustment has
been shown to be effective in extending network lifetime and increasing network
capacity (due to better spatial reuse of spectrum).

Several energy-saving topology control algorithms [1]-[6] have been proposed
to create a power-efficient network topology in wireless ad hoc networks with
limited mobility. Ramanathan et al. [1] proposed the CONNECT and BICONN-
AUGMENT algorithms to solve the 1-connected and 2-connected energy-saving
topology control problems, but both CONNECT and BICONN-AUGMENT are
centralized algorithms with poor scalability. Roger Wattenhofer al. [2] introduced
a cone-based distributed topology control algorithm (CBTC) with the support
of directional antenna, but directional antenna is usually unusable for ad hoc
networks. Douglas M. Blough [3] proposed a k-Neigh approach for topology con-
trol based on the principle of maintaining the number of neighbors of every node
equal to or slightly below a specific value k. The approach enforces symmetry
on the resulting communication graph and does not require the knowledge of
the exact number n of nodes in the network to work, as k is only loosely de-
pendent on n(e.g., k=9 for n in the range 50-500). They estimate the value of
k that guarantees connectivity of the communication graph with high probabil-
ity. Ning Li [5] devised another distributed topology control algorithm LMST
basing on the local minimum spanning tree theory, but LMST can only main-

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 178–187, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Design and Analysis of a k-Connected Topology Control Algorithm 179

tain 1-connectivity of the network and need the position system to identify the
mutual distance between neighbor nodes, which may be inapplicable.

In this paper, we propose a k-connected (KC) energy saving topology control
algorithm for wireless ad hoc networks, which need not the directional antenna
or position system support, it only requires each node is able to measure the
received signal power level during communication. Furthermore, CBTC has no
bound on the number of messages nor on the energy expended in determining the
proper transmit power, whereas in our algorithm each node need only transmit
three messages at the maximum power.

2 Design of the KC Algorithm

We consider a wireless ad hoc network as a network of homogenous nodes. All
nodes are arbitrarily deployed in a two-dimensional plane. Each node is equipped
with an omnidirectional antenna with adjustable transmission power in the range
of 0 to Psmax. V denotes the node set in the network, ∀u ∈ V , we define its
neighbor and neighbor set as follows.

Definition 1. Neighbor and Neighbor Set. ∀u ∈ V , if node u can communicate
with node v(v ∈ V) using the maximum transmission power, node v is called a
neighbor of node u, all the neighbors of node u constitute its neighbor set V u

N

(including node u).

Network connectivity can be measured by k-edge connectivity or k-vertex
connectivity, the latter is stronger than the former, so we use k-vertex connec-
tivity in this paper. The k-connected energy-saving topology control algorithm
is composed of the following four phases: topology information collection, local
topology construction, transmission power adjustment and mobility manipula-
tion.

2.1 Topology Information Collection

In this phase each node collects information from neighbors and constructs a
neighbor topology information graph Gu

N = (V u
N , Eu

N), where V u
N is the neighbor

set, Eu
N is the edge set among all the nodes in V u

N . Gu
N can be obtained as follows.

Each node broadcasts a HELLO message using the maximum transmission
power Psmax to its neighbors, by measuring the receiving power of HELLO
messages, node u can determine the minimum power P

(u,v)
s min required to reach

its neighbor node v as in [5]. Assume the remaining battery energy of node u is
Wu, we define the lifetime of link (u, v) as

T (u,v)
max =

Wu

P
(u,v)
s min

(1)

so link (u, v) can be regarded as a directed edge between node u and v with two
weight values: P

(u,v)
s min and T

(u,v)
max , all these directed edges construct edge set E,

thus G = (V, E) is a directed graph representing the global network topology.

180 L. Zhang, X. Wang, and W. Dou

Each node collects its neighbor link information from the received HELLO mes-
sages and broadcasts these information in a Neighbor Link Information Message
(NLI) using the maximum transmission power. After receiving the NLI messages
from all the neighbors, node u can build its neighbor topology information graph
Gu

N = (V u
N , Eu

N).

2.2 Local K-Connected Topology Construction

On obtaining the neighbor topology information graph, each node builds a k-
connected subgraph Gu

N
′ = (V u

N , Eu
N

′) using the following local k-connected
energy-saving topology control(LKC) algorithm.

Step 1. Construct a subgraph Gu
N

′ = (V u
N , Eu

N
′) without any edges , i.e.

Eu
N

′ = φ. ∀x ∈ V u
N , set its minimum transmission power P x

min to 0, P x
min = 0.

Step 2. ∀x, y ∈ V u
N , merge the two directed edges e

(y,x)
P,T and e

(x,y)
P,T between

them into a undirected edge exy
P,T , the weight values of the new undirected edge

are:
P xy

s min = max(P (x,y)
s min , P

(y,x)
s min) T xy

max = min(T (x,y)
max , T (y,x)

max)

The purpose of this step is to avoid the unidirectional link in the network, because
MAC protocols usually require bidirectional links for proper operation.

Step 3. Sort the edges in Gu
N = (V u

N , Eu
N) according to its lifetime T xy

max in
a non-increasing order, the sort result is denoted as S.

Step 4. If S is empty, terminate the algorithm, else retrieve the first edge
exy

P,T from S.
Step 5. If node x and y are in the same k-connected subgraph of Gu

N
′ =

(V u
N , Eu

N
′), go to step 4; else add edge exy

P,T to Eu
N

′ and update the transmission
power by performing the following two steps.

if P x
min < P xy

s min, set P x
min = P xy

s min

if P y
min < P xy

s min, set P y
min = P xy

s min

Step 6. If Gu
N

′ is k-connected, terminate the algorithm, else go to step 4.

LKC is a greedy algorithm, it iteratively adds edges to Eu
N

′ to build a k-
connected sub-network. LKC is the core of KC algorithm and it has the following
properties.

Lemma 1. Given a k-connected graph G = (V, E), x ∈ V, y ∈ V , if x, y are
directly connected by an edge exy, and there exist j(j ≥ k + 1) disjoint paths
between node x and y in G = (V, E), then delete exy from G = (V, E), the
remaining graph Gd = (V, Ed) is still k-connected.

Proof. ∀u ∈ V, v ∈ V , there are at least k disjoint paths between u and v, if
these k disjoint paths do not pass through exy, deleting exy from G = (V, E)
does not affect the connectivity between node u and v. Suppose one of these k
disjoint paths pass through exy, we denote the k disjoint paths as

p1, p2...pk−1, p(u, a1, a2...x, y...b1, b2, v)

Design and Analysis of a k-Connected Topology Control Algorithm 181

after deleting exy, p(u, a1, a2...x, y...b1, b2, v) does not exist in Gd = (V, Ed),
there are only j − 1 ≥ k disjoint paths between node x and y, and at most
k-1 of them will intersect with p1, p2...pk−1 , assume one of the remaining paths
between x and y is p(x, c1, c2...y), so we can find another new disjoint path
p(u, a1, a2...x, c1, c2...y...b1, b2, v) between node u and v, the number of disjoint
paths between node u and v is still k, therefore after deleting exy from G =
(V, E), the remaining graph Gd = (V, Ed) is k-connected.

Theorem 1. If the neighbor topology information graph Gu
N = (V u

N , Eu
N) is k-

connected, then Gu
N

′ = (V u
N , Eu

N
′) obtained by LKC algorithm is also k-connected.

Proof. Step 6 and step 4 in LKC algorithm guarantee that if Gu
N

′ = (V u
N , Eu

N
′)

is not k-connected, it will search every edge in Eu
N . According to step 5 , if node

x and y are in the same k-connected subgraph, i.e. if there have been k disjoint
paths between x and y in Gu

N
′ = (V u

N , Eu
N

′), edge exy
P,T will not be added to Gu

N
′ =

(V u
N , Eu

N
′), so Gu

N
′ = (V u

N , Eu
N

′) is equal to a subgraph of Gu
N = (V u

N , Eu
N) which

reduces some redundant edges, By Lemma 1, reducing these kind of edges does
not affect the network connectivity, therefore if Gu

N = (V u
N , Eu

N) is k-connected,
Gu

N
′ = (V u

N , Eu
N

′) obtained by LKC algorithm is also k-connected.

Theorem 2. LKC algorithm is an optimal solution to obtain Gu
N

′ = (V u
N , Eu

N
′),

i.e. the lifetime T0 = min{T xy
max|T xy

max ∈ Gu
N

′, x, y ∈ V u
N} of Gu

N
′ obtained by LKC

algorithm is maximized.

Proof. We denote the last edge added by LKC algorithm as euv
P,T , since every

edge is retrieved in a non-increasing lifetime order, which implies Tuv
max = T0.

There are k-1 disjoint paths between node u and v before adding euv
P,T to Eu

N
′,

denote them as p1, p2...pk−1.
Suppose LKC algorithm is not optimal, T0 is not the maximum lifetime of

Gu
N

′. Then there must exist another optimal algorithm, which can find a path
puv �= euv

P,T , puv does not intersect with p1, p2...pk−1 and its lifetime is longer
than T0. This can only be achieved by adding other edges to Eu

N
′ and these edges’

lifetime must be longer than T0. In fact, all the edges whose lifetime is longer
than T0 have been retrieved in step 4. Assume the last added edge to construct
puv is exy

P,T , exy
P,T was retrieved by LKC algorithm before but not added to Eu

N
′

only if there had been k disjoint paths between node x and y, now to construct
puv, exy

P,T must be added, which implies the k disjoint paths between node x and
y are all intersected with the k-1 disjoint paths p1, p2...pk−1, that is impossible
and leads to a contradiction. Therefore LKC algorithm is an optimal solution to
obtain Gu

N
′ = (V u

N , Eu
N

′).

2.3 Transmission Power Adjustment

On termination of the LKC algorithm, node u obtains the transmission power
P x

min of each node in V u
N , it will broadcast these information to its neighbors in a

Transmission Power Control (TPC) message. After receiving the TPC message,
each node adjusts its transmission power using a Max-Min method. Assume

182 L. Zhang, X. Wang, and W. Dou

node u receives a TPC message from neighbor x, first it extracts its transmission
power Pu

TPCx from the message (calculated by neighbor x) and compares it with
Pu

min(calculated by itself), the less one is recorded in Pux, i.e.

Pux = min(Pu
min, Pu

TPCx)

After receiving the TPC messages from all neighbors, node u set its trans-
mission power to the maximum of Pux:

Pu = max (Pux,∀x ∈ V u
N andx �= u)

The final network topology after transmission power adjustment is denoted
as G0 = (V, E0).

u v
x

y z

w

maxsP maxsP

s
maxsP

Fig. 1. An illustration of Max-Min transmission power adjustment

The Max-Min transmission power adjustment removes some redundant paths
while preserving the network connectivity. As illustrated in Fig. 1 (k=1), because
node z and w are v’s neighbors but not u’s, node u has to communicate with
node v directly, its transmission power obtained by LKC algorithm is Pu

min =
Puv

s min, while node v can find a more energy efficient path p(v, w, z, y, x, u), on
which the transmission power of node u is Pu

TPCv = Pux
s min < Puv

s min. So the
minimum transmission power between node u and v is Puv = Pux

s min. Similarly,
the minimum transmission power of node u to reach other neighbors can be
calculated:

Pus = Pus
s min, Pux = Pux

s min, Puy = Puy
s min

By Max-Min transmission power adjustment, the final transmission power of
node u is:

Pu = max (Puv, Pus, Pux, Puy) = Pus
s min < Pu

min

which implies the edge euv
P,T will be removed from Eu

N
′, while the final network

is still connected. Fig. 1 only illustrates the case of k = 1, for the more general
case (k ≥ 1), we prove the conclusion is still correct in Lemma 2.

Lemma 2. ∀u ∈ V , if Gu
N

′ = (Gu
N , Eu

N
′) obtained by LKC algorithm is k-

connected, after the Max-Min transmission power adjustment, ∀v ∈ V u
N and

v �= u, there are at least k disjoint paths between node u and v in G0 = (V, E0).

Design and Analysis of a k-Connected Topology Control Algorithm 183

Proof. ∀u ∈ V , v ∈ V u
N , v �= u, because Gu

N
′ = (Gu

N , Eu
N

′) and Gv
N

′ = (Gv
N , Ev

N
′)

are k-connected graph, we denote the k disjoint paths between u and v in Gu
N

′ =
(Gu

N , Eu
N

′) as p1
u, p2

u, ...pk
u, and those in Gv

N
′ = (Gv

N , Ev
N

′) as p1
v, p2

v, ...pk
v . After

the Max-Min transmission power adjustment, the transmission power of node u
is

Pu = max (min(Pu
min, Pu

TPCv),∀v ∈ V u
N and v �= u)

which implies Pu ≥ min(Pu
min, Pu

TPCv), if Pu
min > Pu

TPCv, the k disjoint paths
between node u and v are p1

v, p2
v, ...pk

v , else they would be p1
u, p2

u, ...pk
u. Therefore

after the Max-Min transmission power adjustment, there are at least k disjoint
paths between node u and v in G0 = (V, E0).

2.4 Mobility Manipulation

To manipulate the mobility of wireless nodes, each node should broadcast HELLO
message periodically, the interval between two broadcasts is determined by the
mobility speed. When any node finds the neighbor topology is changed, it will
rebroadcast the Neighbor Link Information message to notify its neighbors to
update the neighbor topology information graph and readjust the transmission
power from scratch.

3 Properties of KC algorithm

Theorem 3. ∀u ∈ V , if the neighbor topology Gu
N = (V u

N , Eu
N) is k-connected,

the final topology G0 = (V, E0) obtained by KC algorithm is also k-connected.

Proof. Let n(u, v) represents the number of edges along a path puv between
node u and v in G0 = (V, E0), n(u, v)=1 means u and v are directly connected,
n(u, v)=2 means there is an intermediate node between u and v along path puv.
∀u ∈ V, v ∈ V, if n(u, v)=1, node v is node u’s neighbor, by Lemma 2, there are
k disjoint paths between u and v in G0 = (V, E0). Assume when n(u, v) = m
(m ≥ 1), there are k disjoint paths between node u and v in G0 = (V, E0), now
we prove the assumption is still held for n(u, v) = m+1.

When n(u, v) = m+1, we denote the m intermediate nodes along path puv

as a1, a2...am, so there exists a path pa1v = (a1, a2...am, v) between node a1
and v, n(a1, v) = m, according to our assumption, there exist k disjoint paths
between node a1 and v in G0 = (V, E0) (including path pa1v). Consider the
k nodes that are directly connected with a1 on the k disjoint paths, denote
them as a2, s1, s2...sk−1, if we can find k disjoint paths from u to these k nodes:
pua2 , pus1 , pus2 . . . pusk−1 , then there must exist k disjoint paths between node u
and v, as illustrated in Fig. 2.

Because node u and a2...am are a1’s neighbors, they are in the same neighbor
set, by Lemma 2, there exist k disjoint paths between each pair of these nodes
in G0 = (V, E0). Now we will show how to find the k disjoint paths from u to
a2, s1, s2...sk−1. For node a2, obviously a path pua2 = (u, a1, a2) exists between
node u and a2 in G0 = (V, E0). For node s1, because there are k disjoint paths
between node u and s1 in G0 = (V, E0), at most one of them will intersect with

184 L. Zhang, X. Wang, and W. Dou

pua2 , we can find a disjoint path pus1 from the remaining k-1 ones. Similarly, for
node sk−1, among its k disjoint paths to node u at most k-1 of them will intersect
with path pua2 , pus1 , pus2 . . . pusk−2 , the last disjoint one is pusk−1 . So we can find
k disjoint paths pua2 , pus1 , pus2 . . . pusk−2 , pusk−1 from node u to a2, s1, s2...sk−1
respectively, which implies there also exist k disjoint paths between node u and
v, thus when n(u, v) = m+1, there are still k disjoint paths between node u and
v in G0 = (V, E0). Therefore the final topology G0 = (V, E0) obtained by KC
algorithm is k-connected.

Fig. 2. The topology derived by KC algorithm is k-connected

3/

u

3/
3/

v

1a 2a
ka

maxd

1c 2c
S

Fig. 3. The degree of any node is bounded by 6*k in the final topology

Theorem 4: If ∀u ∈ V , its remaining battery energy is W , then the degree of
any node in G0 = (V, E0) cannot exceed 6*k.

Proof: ∀u, v ∈ V , we assume the receiving threshold is Pr min, according to the
communication theory, it satisfies

Pr min = c ∗ P
(u,v)
s min

d(u, v)r
(2)

Design and Analysis of a k-Connected Topology Control Algorithm 185

where c and r are constants, d(u, v) is the mutual distance between node u and
v, by the lifetime definition in equation (1), we have

T (u,v)
max =

c ∗W

Pr min ∗ d(u, v)r
(3)

which indicates the maximum lifetime of link (u, v) is determined by their mutual
distance d(u, v). As illustrated in Fig. 3, all the neighbors of node u are in a circle

area, whose center is u and radius is equal to dmax = r

√
c ∗ Ps max

Pr min
, consider a

π/3 radian sector S of this circle area, we will prove there are at most k nodes
directly connected to u in S. Assume in graph G0 = (V, E0) node u has had
k directly connected nodes inside S, denoted as a1a2...ak, none of them locates
on the radius of S. Pick another node v in S, according to step 3 in the LKC
algorithm and equation (3), we get d(u, v) ≥ d(u, ai), i = 1...k, which implies
the distance between node u and v is not less than that between u and ai, since
v is in a π/3 radian sector and a1a2...ak are inside S, we have d(u, v) > d(ai, v),
i = 1...k, so we can find k disjoint paths whose lifetime is not less than that of
the direct connection between node u and v as follows

(u, ai, v) i = 1...k

recall the optimality of LKC algorithm, u and v cannot be directly connect in
graph G0 = (V, E0), therefore in S the number of directly connected nodes is no
more than k.

Now consider a special case, where node ai and v locate on the two radius
of sector S respectively, and satisfy d(u, v) = d(ai, v), thus u can connect with
v directly or through node ai. The latter is the same as ai is inside S, while the
former will lead to k+1 nodes which are directly connected with u. In this case
because ai and v are located on the radius of S, they will be shared with the
neighbor sectors, so on average there are still k nodes directly connected with u.

The area covered by S is only 1/6 of node u’s communication range, therefore
the degree of u cannot exceed 6*k.

4 Performance Evaluation

We evaluate the performance of KC algorithm through simulations. Assume n
nodes are uniformly distributed in a l× l square area, two-ray ground propaga-
tion model is used for the wireless channel, the maximum transmission power
is 0.2818w, the receiving threshold is 3.652 × 10−10w and the corresponding
maximum transmission range is 250m.

4.1 Average Node Degree

A smaller average node degree usually implies less contention/interference and
better spatial reuse. Energy-saving topology control algorithm should preserve
the network connectivity while reducing the average node degree. In this

186 L. Zhang, X. Wang, and W. Dou

simulation, we set n = 100 and l = 1000m, Table 1. shows the average node de-
gree of each topology, from which we can see CBTC, LMST and KC all dramat-
ically reduce the average node degree. Moreover, KC outperforms both LMST
and CBTC.

Table 1. Average node degree derived by different topology control algorithms

Algorithm Max. Power CBTC LMST KC
Average Degree 15.81 3.52 2.38 2.08

4.2 Scalability

To evaluate the scalability of the KC algorithm, we first fix the node density
and vary the number of nodes (the network size increases) in the network from
50 to 300, the average node degrees for the topologies generated using the KC
algorithm when density = 2× 10−4, density = 1× 10−4 and density = 5× 10−5

are shown in Fig. 4(a). The average node degree increases slowly with the number
of nodes under a fixed node density, and the higher the node density, the lower
the average node degree. Then we fix the distribution area l = 1000m and vary
the number of nodes from 50 to 300, in Fig. 4(b) we compare the average node
degree of the topologies generated using max transmission power, CBTC, LMST
and KC algorithm. The KC algorithm outperforms the others and its average
node degree (overlapped with LMST in figure 4(b)) is almost invariable with
the number of nodes, which is in contrast with the observation that the average
node degree of the topology generated using the maximum transmission power
increases almost linearly. These two simulations show that the performance of
KC algorithms is not sensitive to the node density and network size. Moreover,
the KC algorithm is a localized algorithm, each node need only interact with its
neighbors, the communication overhead of each node does not increase with the
node density or network size.

Fig. 4. Scalability of the KC algorithm

Design and Analysis of a k-Connected Topology Control Algorithm 187

4.3 Average Transmission Power

Fig. 5 shows the average transmission power under different topology control
algorithms where l = 1000m, from which we can see the transmission power
under KC algorithm is the minimum. With the node density increasing, the
average distance between each pair of neighbor nodes becomes closer. Hence,
the nodes need lower transmission power to ensure the network connectivity.

50 100 150 200 250 300
10

−4

10
−3

10
−2

10
−1

10
0

Nodes

A
ve

ra
ge

 T
ra

ns
m

is
si

on
 P

ow
er

 (
W

)

Max Power
CBTC
LMST
KC

Fig. 5. Average transmission power under different topology control algorithms

References

1. R. Ramanathan and R. Rosales-Hain, “Topology control of multihop wireless net-
works using transmit power adjustment,” in Proc. IEEE INFOCOM 2000, Tel Aviv,
Israel, Mar. 2000, pp. 404–413.

2. L. Li, J. Y. Halpern, P. Bahl, Y.-M. Wang, and R. Wattenhofer, “Analysis of a cone-
based distributed topology control algorithm for wireless multi-hop networks,” in
Proc. ACM Symposium on Principles of Distributed Computing, Newport, Rhode
Island, United States, Aug. 2001, pp. 264–273.

3. D.M.Blough, M.Leoncini, G.Resta, P.Santi, “The k-Neighbors Approach to Sym-
metric Topology Control in Ad Hoc Networks”, submitted to IEEE J. on Selected
Areas in Communications.

4. Y.-C. Tseng, Y.-N. Chang, and B.-H. Tzeng, ”Energy-efficient topology control
for wireless ad hoc sensor networks,” In Proc. Int. Conf. Parallel and Distributed
Systems (ICPADS 2002).

5. N. Li, J. C. Hou, and L. Sha, “Design and analysis of an MSTbased topology control
algorithm,” in Proc. IEEE INFOCOM 2003, San Francisco, CA, USA, Apr. 2003.

6. P. Wan, A. Calinescu, X. Li, and O. Frieder, “Minimum energy broadcast routing
in static ad hoc wireless networks,” in Proc. Of IEEE INFOCOM. 2001.

7. S. Narayanaswamy, V. Kawadia, R. S. Sreenivas, and P. R. Kumar, “Power con-
trol in ad-hoc networks: Theory, architecture, algorithm and implementation of the
compow protocol,” in Proc. of European Wireless 2002, Florence, Italy, Feb. 2002,
pp. 156–162.

 J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 188–199, 2004.
© Springer-Verlag Berlin Heidelberg 2004

On Using Temporal Consistency for Parallel Execution of
Real-Time Queries in Wireless Sensor Systems

Kam-Yiu Lam1, Henry C.W. Pang1, Sang H. Son2, and BiYu Liang1

1 Department of Computer Science, City University of Hong Kong,
83 Tat Chee Avenue, Kowloon, Hong Kong

cskylam@cityu.edu.hk, {henry, byliang}@cs.cityu.edu.hk
2 Department of Computer Science, University of Virginia, Charlotte,

Virginia, USA
son@cs.virginia.edu

Abstract. In this paper, we study the important issues for execution of real-time
queries in a wireless sensor system in which sensor nodes are distributed to
monitor the events that have occurred in the environment. Three important
objectives in processing the real-time queries are: (1) to minimize the number
of missed deadlines, (2) to minimize the processing costs, especially in data
communication; and (3) to provide temporally consistent sensor data values for
query execution. To reduce the data transmission cost and delay time in
gathering the right versions of data items for a query, we propose the Parallel
Data Shipping with Priority Transmission (PAST) scheme to determine where
and how to execute a real-time query. To meet the deadlines of the queries, a
deadline-driven priority policy is adopted to schedule the transmission of sensor
data versions to the coordinator node.

1 Introduction

In a wireless sensor system, sensor nodes are deployed to monitor the real-time status
of the environment. In this paper, we focus on processing of real-time queries which
access to sensor databases. Real-time queries are usually submitted to monitor the
current status of the system environment and generate a timely response if certain
events are detected or emergency situations occur. Each real-time query is associated
with a soft deadline. It is an important system performance objective to complete real-
time queries before the deadlines. The set of data items accessed by a real-time query
has to be temporally consistent [6]. Otherwise, the correctness of the results could be
seriously affected. Although temporal inconsistency is an important issue to real-time
query processing due to the fast changing nature of the system environment, temporal
consistency of sensor data has not received much attention until very recently. In [6],
they apply the concept of temporal tolerance to reduce data transmission workload in
a wireless network. In [1], temporal consistency has been chosen to be the correct
execution criterion for continuous aggregate queries in a wireless sensor network. As
we will discuss later, the cost for meeting temporal consistency in real-time query
execution could be expensive in a wireless environment. It depends heavily on how to
collect the data items for processing the query.

On Using Temporal Consistency for Parallel Execution of Real-Time Queries 189

In this paper, we adopt a multi-version data transmission (MVDT) scheme using
relative consistency [11, 10] as the correctness criterion for execution of real-time
queries. Each generated data item has an interval to identify its validity period. We
provide an algorithm to ensure that all data items accessed by a query are relatively
consistent. To determine where and how to execute a real-time query, we propose the
Parallel Data Shipping with Priority Transmission (PAST) scheme for gathering the
right versions of data items for a real-time query. To meet the execution deadline of a
query, a deadline-driven priority scheduling policy is adopted to schedule the
transmission of sensor data versions to the coordinator node.

2 Related Works

Wireless sensor data management for monitoring and control purposes is a new area
in mobile computing research [9]. The in-network approach was proposed for
processing queries in wireless sensor networks [4, 3, 8]. In [4], the Tiny Aggregation
(TAG) scheme was proposed for Tiny database (TinyDB) which is a sensor data
processing system with an SQL-like interface for aggregate queries. Users may
specify the epoch duration for aggregating the data for a query to limit the difference
in time-spans among the collected data items. It organizes the nodes into a tree
structure, and partial computation and aggregation are performed on the way from the
leaf nodes towards the root. To minimize the number of communication messages, a
generic aggregation scheme is proposed to combine with TAG to propagate partial
results of a query following the topology and connections of the sensor nodes [3]. In
[3], a technique called pipeline aggregation is proposed to improve the degree of
tolerance towards loss of messages and node disconnection. The tradeoff is more
messages being transmitted for aggregation. In [5], the aggregation mechanism is
enhanced by proposing the semantic routing tree (SRT) scheme in which several
schemes for choosing the parent nodes are discussed. In [7], the ACQUIRE
mechanism is proposed to obtain the required data for a query in a sensor network
using a look ahead scheme together with an active query with triggered local updates.

Most of the previous works in the area have ignored the temporal consistency
issue in accessing sensor data. The pioneer work on that issue is [6] which aims to
reduce the aggregate workloads. In [1], we proposed a sequential aggregation scheme
for execution of continuous queries using temporal consistency as the correct
execution notion with the objective to minimize the aggregation cost. Most of the
previous works are for aggregate queries using partial computation to minimize the
data access cost and delay. On the contrary, our focus is on time-constrained queries
in which the operations of a query have precedence constraints. The focus of this
paper is to combine the techniques in both real-time query processing and data
management in wireless sensor systems to support efficient processing of real-time
queries in a wireless network. To our best knowledge, this is the first study on real-
time queries on sensor data.

3 System Model and Temporal Consistency

The wireless sensor system model consists of a base station (BS) and a collection of`
sensor nodes distributed in the environment. The area is divided into a number of

K.-Y. Lam et al. 190

r

r

r2

BS

user

R

square grids with length of r as shown in Figure 1. A grid may contain multiple sensor
nodes. It is assumed that the nodes within the same grid have similar functions, i.e.,
capturing the same signals of their surrounding environment. The length r of a grid is
defined such that a node can directly communicate with all the nodes in its
neighboring grids. The communication range R of a sensor node is 22 × r. Each
grid has a coordinator node elected from the set of nodes in the grid. It is responsible
for reporting the operation status of the nodes within the grid to the base station
periodically. The base station is responsible for the communication between the
sensor nodes and the users of the system. Each sensor node maintains a tiny sensor
database for storing its sensor data items (data versions). Each newly created data
version is associated with a time-stamp to indicate the time when it is created. The
time-stamps can be used for ensuring temporal consistency in query execution and
will be discussed in details in Section 3.3.

Real-time queries are submitted for event detection in an area (or areas). Due to
the responsive nature of a real-time query, it is important that the values of the data
items accessed by a real-time query are representing the current information (“real-
time status of the entities”) in the environment. Each real-time query has a currency
requirement on its accessed data items. Failing to meet the requirement implies that
they are too “old” and not correctly describing the current situation of the
environment. Since the action is a response to the occurred events, each real-time
query is given a deadline on its completion time.

Fig. 1. System Model

A real-time query consists of a sequence of read operations on sensor data items
for event detection. Unlike aggregate queries, the set of operations in a real-time
query is defined with precedence constraints (<i). To simplify the discussion, it is
assumed that the operations are totally ordered and the required items of a query are
defined at the grid level. Once the base station receives a real-time query, it
determines the set of grids from which the set of data items need to be accessed by the
query, and then it can identify the set of sensor nodes, called participating nodes, for
the query. The query will then be divided into a set of sub-queries and the sub-queries
are passed to the grids for retrieving the required sensor data. Since the main purpose

On Using Temporal Consistency for Parallel Execution of Real-Time Queries 191

of a real-time query is for event detection, the required sensor data are location-
dependent instead of sensor dependent. For example, a query Ti accesses to sensor
data items from sensor node Nj if Ti wants to access the status of grid A in the system
and A is now monitored by Nj. If Nj has moved out of grid A, Nj does not need to
report its sensor data for Ti. On the other hand, if another node Nk has entered grid A,
Nk will start to report for Ti.

In addition to meeting the deadline and currency requirement, another important
issue is the reliability of the results generated in processing a real-time query. It is
quite common that the sampled sensor data items contain errors due to various types
of noises in the system. Thus, the result generated from a set of data items may also
contain errors. To improve the reliability and accuracy of the results, it is important to
provide multiple results by accessing multiple data versions of the data items in
processing a real-time query. Therefore, a real-time query is associated with a result
interval requirement, which specifies the time interval of data items for generating the
results. The followings formally define a real-time query Ti:

Ti = {Di, Opi, <i, Oi, Δi, Ri}
 Di = the deadline of Ti
 Opi = the set of operations in Ti
 <I = defines the execution orders of the operation in Ti
 Oi = the set of data items to be accessed by Ti
 Δi = the currency requirement on Oi.

 Ri =the time interval of the results required to be generated from Ti

3.1 Temporal Consistency of Sensor Data Items

Temporal consistency is commonly used as the correctness notion for execution of
real-time queries on dynamic data items whose values change continuously with time.
Data item x is absolutely consistent if the current data version xi is still within its life-
span at the commit time of a query which has accessed to it, i.e.,Start_time (xi) + VIx >
current time. Start_time (xi) is the creation time of the current version xi of data item
x. VIx is the validity interval of x. It is a pre-defined value. We use a time bound,
upper valid time (UVT) and lower valid time (LVT) to label the validity interval of a
data version. The sampling period equals to the validity interval such that at every
time point there is a valid version of the data item. The current version will become
stale once a new data version is generated. The validity interval of a data item could
be small and the total number of versions generated for a data items could be large if
it is defined based on the maximum rate of change of the data item. The set of data
items for execution of a real-time query are relatively consistent if they are temporally
correlated to each other, i.e., representing the status of entities in the environment at
the same time point [11].

Definition of Relative Consistency: Given a set of data versions V from different data
items, the versions in V are relatively consistent if Φ≠∈ }|)({ VxxVI ii , where VI(xi)

= [LVT(xi), UVT(xi)].
In addition to meeting the relative consistency requirement, the set of data items

also needs to satisfy the currency requirement of the query. For query Ti, the creation
time of all its accessed data versions should not be earlier than (Di − Δi), where Di and

K.-Y. Lam et al. 192

Δi are the deadline and the currency requirement of Ti, respectively, i.e.
Φ≠Δ−∈],[})|)({(iiiii DDVxxVI . The time window (Di to (Di − Δi)) is called

the valid time window for the set of valid results of the query. Within the valid time
window, there may have a set of multiple versions of data items meeting the query
requirements. In this paper, we adopt relative consistency as the notion of correctness
for execution of a real-time query. Note that the currency requirement is similar to the
epoch used in [4] for data collection. However, due to the fast changing nature of
sensor data if the epoch value is not small enough, they may not be relatively
consistent. On the other hand, the use of a small epoch will make a large amount of
data useless since the transmission delay may be larger than the epoch.

4 Relative Consistency Problem in Wireless Sensor Systems

Although using relative consistency can reduce the cost for processing a real-time
query since it does not need to access to the latest version of a data item, how to
provide the required data items for execution with minimum data transmission
overhead in a wireless sensor system is still a challenge. To illustrate the problem, let
us first consider the conventional sequential scheme for execution of a real-time
query in which the sequential order is according to the operation dependencies <i
defined in the query. A query is forwarded to the node where the required data item of
its operation is located according to the sequence of its operations. As shown in
Figure 2, it is assumed that the required data items of query Ti are managed by sensor
nodes {N1, N3, N7, N10} and the orders of access by Ti are: N1 N3 N7 N10. When
Ti arrives at N1 for data item o1, it gets the latest version o1,j. Then, it moves on to N3,
N7 and finally to N10 to complete its computations.

Fig. 2. Temporal consistency problem in sequential execution

In this example, two problems have to be addressed: (1) the relative consistency
problem; and (2) the reliability problem. Although at the time when Ti is at N1, the
version o1,j is the latest one, it may become outdated and the currency requirement
may not be satisfied at the time when Ti is at N10 due to the long propagation delay in
a wireless network. Therefore, to meet the currency requirement:

Δi > d

n

j
ji td ×

=2
, +

=

n

j
jic

1
, (1)

N1 N3

ci,1

N7 N10

ci,3 ci,7 ci,10

di,1 di,3 di,7

A data item is invalid if Δi > d

n

j
ji td ×

=2
, +

=

n

j
jic

1
,

On Using Temporal Consistency for Parallel Execution of Real-Time Queries 193

where n is the number of operations in Ti and di,j is the length defined in terms of
number of hop counts between each successive node for execution of Ti. td is the
communication time to send a data version through one hop. ci,j is the computation
time to process the jth operation of Ti at a node. If the sum of the total delay in
transmission plus the total computation delay is greater than the currency
requirement, i.e., eqn. (1) is not satisfied, no result will be generated for the query.
Even though the currency requirement can be satisfied, the set of results generated
may not meet the result duration requirement Ri if the transmission delay is long.

Multiple versions of data items can be provided for execution of the query to
improve the reliability of the generated results by using a pipeline approach in the
sequential execution scheme. For example, the operations of a query will stay at the
nodes until the deadline of the query. If a new version is generated from the node
where the first operation of the query is residing, the operation will be evaluated and
then the new result is forwarded to the next node where the next operation of the
query is residing. Then, the next operation will be executed using the data version
which is relatively consistent with the version from the previous node. The procedure
is repeated until all the operations of the query have completed. The interval of results

Ri to be generated for Ti is: Δi − d

n

j
ji td ×

=2
, −

=

n

j
jic

1
, > Ri. The problem of this

approach is heavy data transmission cost since the number of messages for data
transmission is higher and the message overhead is directly proportional to the
number of messages for sending data versions to the next nodes in the sequence.
Further, some data transmission and computations, especially those operations in the
beginning of a query, may become useless if they cannot meet the currency
requirement when they reach the last operation node.

5 Parallel Data Shipping with Priority Transmission (PAST)

As discussed in the previous section, the major problem of the sequential execution
scheme is the long delay in getting the required data items for the operations of a real-
time query. Instead of sequentially forwarding operations to sensor nodes for
execution according to their execution orders, a simple way to reduce the data access
delay is to adopt a parallel scheme in which the participating nodes forward data
values required by the operations to the coordinator node to execute the query. Data
shipping is suitable for wireless sensor systems as the sizes of sensor data are usually
small. Most sensor data values can be fitted into one to two bytes. Note that due to the
precedence constraints among the operations, parallel execution of operations at
multiple nodes is not easy to achieve.

Although the concept of parallel data shipping is simple, the design of an efficient
data shipping scheme meeting the processing constraints of a real-time query in a
wireless environment is not trivial. In PAST, the participating nodes of a query submit
data versions to a carefully selected coordinator node in a parallel and synchronized
fashion such as the one shown in Figure 3. We determine when and which data
versions are to be sent from each participating node to the coordinator node so that the
currency, result interval and deadline requirements of the query can be satisfied. The
submission of data versions from the participating nodes is synchronized depending
on the farthest participating node from the coordinator node. The scheduling of

K.-Y. Lam et al. 194

transmission of data versions at each node follows a priority scheme to be discussed
in Section 5.2 so that the arrival times of the data versions is close to the expected
time. Compared with the sequential scheme, the tradeoff of the parallel data shipping
scheme is heavier workload at the coordinator node (grid). To minimize the workload
at the coordinator node, the nodes within the coordinator grid may rotate to be the
coordinator node. PAST consists of three phases:

 (i) Analysis phase at the base station;
 (ii) Collection phase at the sensor nodes; and
(iii) Processing phase at the coordinator node

In this paper, we concentrate on a two level execution model, the participating
nodes and the coordinator node. If a query can be divided into hierarchical sub-
queries such that they can be processed atomically, the proposed scheme PAST can
easily be extended to be a hierarchical scheme.

Fig. 3. Parallel submission of data versions

5.1 Analysis Phase

The analysis phase is performed at the base station once it receives a real-time query.
After considering the grids to be accessed by the query, it determines the set of
participating nodes of the query. Then, the base station determines the answers for the
following two questions in the analysis phase:

(1) Which node should be assigned as the coordinator node? Note that the coordinator
node does not need to be one of the participating nodes. It is chosen such that the
total transmission cost of the data versions from the participating nodes to the
coordinator node is minimized. An algorithm is provided in Section 5.1.1 for
choosing the coordinator node.

(2) What are the data versions from each participating node to be sent to the
coordinator node? All the submitted data versions have to satisfy the relative
consistency and currency requirements of the query. Therefore, data versions that
are not relatively consistent with the data versions from other participating nodes
or do not meet the currency requirement of the queries should not be submitted
from the participating nodes in order to minimize the unnecessary data
transmission workload.

Coordinator node

Participating nodes

On Using Temporal Consistency for Parallel Execution of Real-Time Queries 195

5.1.1 Determination of the Coordinator Node
The coordinator node is responsible for collecting data versions from the participating
nodes to execute the query. Figure 4 shows the time line for getting the data versions
from a participating node j.

As shown in Figure 4, to meet the currency requirement Δi and the result interval
requirement Ri, the participating node j has to send the data versions covering the time
period of the data item from (Di − Ci − MTi,j − Ri) to (Di − Ci − MTi,j) at time (Di − Ci
− MTi,j). Ci is the computation time needed for node j to evaluate the query. The
arrivals time of the data versions has to be earlier than (Di − Ci) and the data
transmission delay (MTi,j) of it has to be smaller than (Δi − Ci − Ri). Otherwise, the
coordinator node may not have sufficient time to finish the query. The data
transmission delay from a participating node to the coordinator node can be measured
in terms of number of hops in communication between them if we assume that the
data transmission delay for sending a data version through one hop is a constant td. (If
the transmission delay is not a constant, we can use the expected value for calculation.)
Let Dmax be the maximum data transmission delay from all the participating nodes of a
query.The maximum number of hops Hi of the participating nodes from the
coordinator node is: Hi = Dmax / td.

Fig. 4. Time line for sending data versions

Let Gall = {g1 , g2 , g3 ,….., gn} be the set of grids in the system and Fij is defined as
the distance (in number of hops) between grid i and grid j where i, j = 1, …, n. Suppose
Ti wants to access to u grids/nodes and its required nodes are in the grids set Gi = {gi1 ,
gi2 , gi3 ,….., gi,u}and u = |Gi|. Let FtotalX be the total transmission length defined in terms
of hops for choosing grid X as the grid where the coordinator node is residing:

FtotalX =
∈ iGj

jXF ,

Let the coordinates of a grid k be (Xk,Yk) and ()ig HS
ik

 be the set of grids which

can be reached by the data versions originated from gik with a distance of no more
than Hi in hop counts, i.e.:

() { }allijgijig GjHFgHS
ikik

∈≤= ,, (2)

i

Ri data transmission time Ci
Time

(MTi,j)

Di

K.-Y. Lam et al. 196

Eqn. (2) defines a square region with a participating node as the central point of
the square and the boundary is Hi hop counts from the grid where the participating
node is residing. As shown in Figure 5, the coordinator node is resided in the area
within the overlapped regions of the squares from the participating nodes. Algorithm
1 calculates the coordinates of the coordinator node which is within the intersect
regions of all the participating nodes.

Fig. 5. Location of the coordinator node

In the above algorithm, if there is no intersection among the regions with length
(Δi − Ci − Ri) / td from all the participating nodes, we will increase the region size by
decreasing the value of Ri. Doing so will decrease the period of time length covered

Objective: Finding the coordinates of the coordinator node with minimum total hop counts from
the participating grids (nodes) of Ti
input: Gi = {gi1 , gi2 , gi3 ,….., giu}, Ri
output: The coordinates of the coordinator node PA with minimum total distance from all the
participating nodes
FEASIBLE := false;

while(FEASIBLE == false and Ri > 1) {
Hi := (Δi − Ci − Ri) / td; // calculate Hi of Ti

S := ()ig HS
i1

;
for k := 2 to u do {

S := S ()ig HS
ik

;}
if (S ==) then {

FEASIBLE := false; // not feasible
Ri := Ri – 1; // decrease result interval requirement}

else {FEASIBLE := true;
FC := infinity;
for each grid Q in S do {

if (F total Q,i < FC) then {
PA := (XQ,YQ);}}

}
}
If (FEASIBLE == false) then

abort; // no feasible solution
else

return PA;

Algorithm 1. Calculating the coordinates of the coordinator node

Participating nodes
Location of coordinator node

On Using Temporal Consistency for Parallel Execution of Real-Time Queries 197

by the set of data versions submitted from the participating nodes and will reduce the
result interval of a query. If the participating nodes are so apart that there is no
interaction even when Ri is reduced to zero, no result will be generated for the query.

5.1.2 Start Time for Transmission
The set of data versions to be submitted from each participating node is those data
versions which are valid within the interval from (Di − Ci − Dmax − Ri) to (Di − Ci −
Dmax). For the participating nodes, which transmission times are much smaller than
Dmax, the data versions may arrive at the coordinator node much earlier than (Di − Ci).
They will be put into the buffer until all the required data items have arrived, and then
the processing of the query will be started at the coordinator node.

5.2 Collection Phase

Once the coordinator node and the transmission time of each participating node have
been determined, the information together with result interval requirement Ri will be
transmitted to the participating nodes. According to the received information, the
participating nodes search their databases for the required versions and then
submit them to the coordinator node at the assigned start time. Each message is
associated with the deadline of the query in addition to the data versions and path
information.

In order to make the arrival time of a message close to the estimated arrival time
(Di − Ci), a priority scheduling algorithm is adopted at the relay nodes to forward the
data versions to the coordinator node. Since the processing power of a sensor node is
very limited, the operating system in a sensor node may only support single thread
processing and pre-emption in execution is usually not allowed. Therefore, it is usually
not preferable to use a sophisticated real-time scheduling especially with pre-emption as
adopted in conventional real-time systems. In a wireless sensor system, the biggest time
delay in processing a real-time query is usually data communication instead of
processing delay at the sensor nodes. Therefore, instead of adopting a priority-cognitive
real-time scheduling algorithm in scheduling the processing of the real-time queries, we
propose a priority-based message transmission algorithm, for meeting the deadlines of
the queries. The priority scheduling is non-preemptive. Each sensor node maintains a
data transmission queue. Once it has completed a transmission, it will examine the
transmission jobs in the message queue and select the highest priority one for
transmission to the next node as defined in the path associated with the data versions in
the message.

In our priority assignment policy, the priority assigned to a message is based on its
deadline and distance from its coordinator node such as:

Priority of a message Mi at node Nj = (Di – Current time) / number of hops from
Nj to the coordinator.

A higher priority is assigned to a message for transmission if the calculated value
is smaller. Note that this is progressive scheme. If a message is far from the
coordinator node, it will be assigned a higher priority. Its priority decreases when it is
closer to its destination since the hop count is smaller.

K.-Y. Lam et al. 198

5.3 Processing Phase

After the coordinator node has received all the required data versions for a query, it
will process them according to the precedence orders of the operations defined in the
query. It needs to ensure that the relative consistency requirement is satisfied.
Algorithm 2 shows the logic in meeting the relative consistency requirement in query
execution.

Objective: Query processing logic for accessing u data items

input: data streams xj,k , 1 j u, k = 1,2,3,…

output: query execution result stream

for j = 1 to u do {

kj := 1; // initial version index of the jth data stream}

LBi := Di – Δi; // initial lower bound of result interval

while(LBi < Di – Δi – Ri) {
UBi :=)}({min , jkj

j
xUVT ;

execute Ti with data },...,,{ ,,2,1 21 ukukk xxx ;

result validity interval I := [LBi , UBi];
})({: , ikj UBxUVTjJ

j
== ;

for each j in J do {
kj := kj + 1; // use next data version of stream j}

LBi:= UBi;}

Algorithm 2. Query accessing data versions

6 Conclusions

In this paper, we have studied how to process real-time queries in a wireless sensor
system. Although many queries in a wireless sensor network processes real-time
properties, the problem has been greatly in previous research although query
processing in sensor networks has received a lot of research interests in recent years.
To our best knowledge, this is the first study on the problem. Real-time queries are
associated with a deadline on their completion times. In processing a real-time query,
an important requirement is the temporal consistency. This issue has also been greatly
ignored in the previous work in sensor data management. In this paper, we adopt the
notion of relative consistency for processing real-time queries. We propose a
synchronized parallel scheme called Parallel Data Shipping with Priority
Transmission (PAST) to collect multiple versions of data items for execution of the
query with smaller data transmission cost and transmission delay and at the same time
to meet the processing constraints of the queries, i.e., deadline, data currency and
result requirements. To meet the transmission deadline, a deadline-based priority
scheduling algorithm is designed in PAST to transmit the data versions from a

On Using Temporal Consistency for Parallel Execution of Real-Time Queries 199

participating node to the coordinator node of the query. An important feature of PAST
is that multiple results are generated for a query to improve the accuracy and
reliability of the results.

Acknowledgement. This work was supported, in part, by NSF grants IIS-0208758 and
CCR-0329609.

References

1. Kam Yiu Lam and Henry C.W. Pang: Correct Execution of Continuous Monitoring
Queries in Wireless Sensor Systems. Proceedings of the Second International Workshop
on Mobile Distributed Computing (MDC 2004), Tokyo,Japan, March 2004.

2. A. Mainwaring, D. Culler, J. Polastre , R. Szewczyk , J. Anderson: Wireless Sensor
Networks for Habitat Monitoring. Proceedings of the first ACM international workshop on
Wireless Sensor Networks and Applications 2002.

3. S. R. Madden, R. Szewczyk, M. J. Franklin, and D. Culler: Supporting aggregate queries
over ad-hoc sensor networks. Proceedings of Workshop on Mobile Computing and System
Applications (WMCSA), 2002.

4. S.R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong: Tag: A tiny aggregation
service for ad-hoc sensor networks. Proceedings of 2002 OSDI.

5. S. Madden, M. J. Franklin and J.M. Hellerstein: The Design of an Acquisitional Query
Processor For Sensor Networks. Proceedings of SIGMOD 2003, June 9-12, San Diego, CA.

6. Mohamed A. Sharaf, Jonathan Beaver, Alexandros Labrinidis, Panos Chrysanthis: TiNA:
A Scheme for Temporal Coherency-Aware in-Network Aggregation. Proceedings of 2003
International Workshop in Mobile Data Engineering.

7. Narayanan Sadagopan, Bhaskar Krishnamachari, and Ahmed Helmy: Active Query
Forwarding in Sensor Networks (ACQUIRE). to appear in Ad Hoc Networks.

8. Y. Yao and J. E. Gehrke: The Cougar Approach to In-Network Query Processing in Sensor
Networks. SIGMOD Record, vol. 31, no. 3, September 2002.

9. Y. Yao and J. E. Gehrke: Query Processing in Sensor Networks. Proceedings of the First
Biennial Conference on Innovative Data Systems Research (CIDR 2003), Asilomar,
California, January 2003.

10. Ben Kao, Kam-Yiu Lam, Brad Adelberg, Reynold Cheng and Tony Lee: Maintaining
Temporal Consistency of Discrete Objects in Soft Real-Time Database Systems. IEEE
Trans on Computers, vol. 52, no. 3, pp. 373-389.

11. Ramamritham, K.: Real-time Databases. International Journal of Distributed and Parallel
Databases, vol. 1, no. 2, 1993.

Cluster-Based Parallel Simulation for Large
Scale Molecular Dynamics in Microscale

Thermophysics

Jiwu Shu, Bing Wang, and Weimin Zheng

Institue of HPC, Dept. of Computer Science and Technology,
Tsinghua Uni., Beijing, China, 100084

shujw@tsinghua.edu.cn

Abstract. A cluster-based spatial decomposition algorithm for solving
large-scale Molecular Dynamics simulation of thermophysics is proposed.
Firstly, three kinds of domain division strategies are provided and their
efficiency and scalability are analyzed. Secondly, a method called FLNP
(Fast Location of Neighboring Particles) to accelerate the location of
neighboring particles is proposed, which greatly reduces the cost of cal-
culation and communication of interaction. Additionally, a new memory
management technique called AMM (Adaptive Memory Management) is
applied to meet the large memory requirement. The parallel algorithm
based on these above technologies was implemented on a cluster of SMPs
and tested on a system of 6,912,000 particles and achieved an efficiency
of 77.0%.

1 Introduction

Recently, more and more researchers are attracted by the microscale problems
in thermophysics, which include atomic beam bombardment, liquid-vapor inter-
face and nucleation. Because those processes are all going along in microscopic
time and space scale, it is so difficult to control them that up to now, there
is no traditional experimental method to measure these processes directly and
accurately [1]. Molecular Dynamics (MD) simulation provides a new method for
the research of microscale thermophysics, by which researchers can understand
these problems at the level of molecules or even atoms.

There are two important characteristics when the MD simulation method
is used to study the problems of microscale thermophysics. Firstly, this kind of
MD simulation must handle a great number of particles; secondly, the simulating
process must go on for numerous time steps (say 1,000,000 or 10,000,000 steps).
All of the above factors lead to enormous calculation especially when MD sim-
ulation is applied to a very large system with many particles. Researchers have
spent much time to simplify MD model and improve MD algorithms, but those
various fast methods cannot provide a satisfactory solution to the MD simulation
of large-scale system. It is obvious that a complete solution of such a problem
must depend on the development of efficient and scalable parallel algorithms.
The simulation in PC or workstations can only be applied to a system with

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 200–211, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Cluster-Based Parallel Simulation for Large Scale Molecular Dynamics 201

103-104 particles, and it has been reported that the largest thermophysical MD
simulated system in supercomputers is about of 1,000,000 particles [2]. These
kinds of system scale can not meet the need of MD simulation in most of ther-
mophysical fields, for example, nucleation. So the task of designing an efficient
and scalable parallel MD simulation algorithm is much useful to the research of
microscale thermophysics.

In the recent years, the technology of Cluster has been well developed. A
cluster is a local computing system comprising a set of independent computers
and a network interconnecting them [3]. The Cluster systems have so many
advantages that they are widely used in the international areas of scientific and
engineering computing [4].

This paper takes a review on current work in parallel MD simulation, and
proposes a new spatial decomposition MD algorithm based on Cluster system,
which can be used efficiently to simulate a large-scale multi-particle thermophys-
ical system. Firstly, we provide three different domain division strategies and
analyze their efficiency and scalability. Secondly, we propose a method called
FLNP (Fast Location of Neighboring Particles) to accelerate the location of
neighboring particles, which greatly reduce the cost of interaction calculation
and communication. The FLNP method has the advantages of both LinkCell
and NeighborList and has a good performance in practical simulation. Thirdly,
a new memory management called Adaptive Memory Management is presented
to reduce the tremendous memory usage, which is always the bottleneck of large-
scale MD simulation. With the above algorithm and strategies, we simulate a
large system with 6,912,000 particles and get satisfactory results on the PVT
property calculation of this system.

2 MD Simulation of Microscale Thermophysics Problems

In MD Simulation [5], all the N simulated particles are treated as a point mass and
are given initial positions and velocities. Then, the inter-particle forces are calcu-
lated and the positions and velocities are updated after a short simulating time.
When repeated for hundreds of thousands of times, the above simulating process
can constitute a motion picture of the whole simulated system in microscale.

In our work, we simulate a multi-particle system and calculate its PVT prop-
erties. The N particles are simulated in a 3D cubic space with periodic boundary
conditions at the state point defined by the reduced density ρ∗ = 0.0685 and the
reduced temperature T ∗ = 1.2. The simulation is begun with the particles on an
fcc lattice with randomized velocities. A roughly uniform spatial density persists
for the duration of the simulation. The simulation is run at constant N , volume
V and temperature T , a statistical sampling from the canonical ensemble.

The computational task in MD simulation is to solve the Newton’s equation
given by {

Fi(t) = mi
dvi

dt =
∑

j F2(ri, rj) +
∑

j

∑
k F3(ri, rj , rk) + . . .

dri

dt = vi
(1)

202 J. Shu, B. Wang, and W. Zheng

where mi the mass of particle i, ri and vi are its position and velocity vectors.
F2 is a force function describing pair-wise interactions. Fk(k >= 3) describes
the multi-body interaction which is ignored in our simulation.

The most time-consuming part in MD simulation is the calculation of inter-
action, which usually requires 90% of total simulation time. The force terms in
Equation (1) are typically non-linear functions of the distance between particle
i and the other particles. In our simulation, the interaction can be modeled with
a Lennard-Jonse potential energy as

φ(r) = 4ε[(
σ

r
)
12 − (

σ

r
)
6
] (2)

where r is the distance between two interacting particles, ε and σ are constants.
In a long-range model, each particle interacts with all the other (N − 1) particles,
which leads a computational complexity of O(N2). But many physical problem
can be modeled with short-range interaction, that is, the summations in Equation
(1) can be restricted to particles within some small region surrounding particle i.
We can implement it using a cutoff distance rc, outside of which all interactions are
ignored. In this case, the interaction calculating complexity was reduced to O(N).
In our simulation, the cutoff distance rc is 4.0σ. How to minimize the number of
neighboring particles that must be checked for possible interactions is an impor-
tant problem, which can greatly influence the speed of short-range MD simulation.

3 Parallel MD Simulation

In the past twenty years, researchers have developed three classes of parallel MD
simulation algorithms. The first class is called Atom Decomposition (AD) [6].
Both the replicated-data strategy [7,8] and the systolic-loop method [9] belong
to this kind of class. The main shortcoming of this algorithm is the enormous
memory requirement because each processor must maintains the positions of all
the particles. Only when dealing with MD system of a small number of particles
on shared memory machines, the AD algorithm can gives a good performance.
The second class is Force Decomposition algorithm (FD) [10]. This kind of algo-
rithms doesn’t need all of the particles’ position so it requires much less memory
than AD algorithm. But FD algorithm cannot maintain load balance as eas-
ily as AD algorithm can, and only when the force matrix has a uniform sparse
structure, the FD algorithms can achieve a good load balance. The last class
is Spatial Decomposition (SD)[11]. The main benefit of SD is that it takes full
advantages of the local nature of the inter-particle forces and performs only
local communication. Thus, in large-scale MD simulation, it achieves optimal
O(N/P) scaling and achieves better performance on Cluster than AD and FD
algorithms. Therefore, we chose the SD algorithm as our simulation method and
propose three kinds of domain division strategies to make the SD algorithm more
efficient and more scalable.

Our work is to design an efficient and scalable parallel algorithm of MD sim-
ulation on cluster systems, in which the most popular parallel programming en-

Cluster-Based Parallel Simulation for Large Scale Molecular Dynamics 203

vironment is Message Passing Interface (MPI). Under MPI programming model,
an efficient parallel algorithm must meet the following needs: (1) to increase the
asynchronous calculating granularity in each processor, and reduce the inter-
processor synchronizing communication cost; (2) to maintain a good load bal-
ance among all processors to reduce the inter-processor waiting time; (3) a high
scalability. After a elaborate comparison among the AD, FD and SD algorithms,
we finally chose the SD.

3.1 Domain Division Strategies

Domain division is the most important technique in SD algorithm, which can
greatly affect the load balance, communication cost and the scalability of the
parallel algorithms [12, 13]. Three different kinds of domain division strategies
are discussed and analyzed here, as described in figure (1.a, 1.b, 1.c). For the
convenience of discussion, suppose the whole simulating domain is divided into
P sub-domains

∑
i(i = 1, 2, . . . P), the number of processor is also P , Pi(i =

1, 2, . . . P). The P sub-domains are assigned to P processors separately. That
is, processor Pi computes the interactions on particles in sub-domain

∑
i, and

updates their positions and velocities. Below we discuss the differences of these
three strategies in load-balance, communication and scalability.

Fig. 1. domain division strategies

Firstly, we discuss the performance of these three strategies in load balance.
We can draw a conclusion that the 1-dimension division showing in Figure (1.a)
can achieve the best load balance because of two reasons. (1) The load imbalance
is caused mainly because the non-uniformity of particle density, which has the
least effects on 1-dimension division of the three division strategies. Suppose the
simulating domain is scaled as x, y, z in three dimensions, and the 1-dimension
division in Figure (1.a) is implemented in x dimension. Only the non-uniformity
of particle density in x direction can influence the load balance of 1-dimension
division. On the contrary, no matter which dimension the non-uniformity occurs
in, the load balance of 3-dimension in Figure (1.c) can be greatly influenced. (2)
The algorithm with 1-dimension division strategy can implement dynamic load
balance more easily than that with 3-dimension division strategy. The commu-
nication architecture of 1-dimension division is easier than that of 3-dimension
division. Thus the algorithm with 1-dimension division strategy can easily re-
divide the sub-domains locally or globally when the particle density alters. On

204 J. Shu, B. Wang, and W. Zheng

the other hand, the algorithm with 3-dimension cannot achieve an easy imple-
mentation of dynamic load balance due to complex communication. Generally
speaking, the cost to maintain a good load balance of the three kinds of domain
division strategies can be expressed as below:

B1 < B2 < B3 (3)

where Bi(i = 1, 2, 3) are the total cost due to a load imbalance, in 1-dimension,
2-dimension, 3-dimension, separately.

Fig. 2. communications in parallel
SD algorithm

Fig. 3. NeighborList Method (a)
and LinkCell Method (b)

There are two kinds of communications in the Spatial Decomposition algo-
rithm. (1) When any particle moves from sub-domain

∑
i to sub-domain

∑
j ,

the processor Pi must send the all information of this particle to the processor
Pj . This kind of communication is usually called particle move, which is illus-
trated in Figure (2.a). The communication of particle move is simple because
it always happens between neighboring processors. (2) The calculation of inter-
action on particles that locate near the boundary of sub-domain requires the
positions of other particles that maybe belong to another processor, which lead
to an exchange of particle position called boundary copy illustrated in Figure
(2.b). In short-range MD simulation, the exchanges involve only those particles
whose distance to boundary is within cutoff distance rc.

We compare the communication cost of three domain division strategies in
both communication data volume and communication time. (1) Under the 1-
dimension division, processor Pi need only communicate with the two neighbor-
ing processors Pi−1 and Pi+1, and each time step there are two communications
at most. Under the 2-dimension division, processor Pi must communicate with
8 neighboring processors, which requires 4 communications even using fold [14]
technology. Under the 3-dimension division, the number of neighboring proces-
sors is 26 and the times of communication are 6. (2) The main task of commu-
nication is boundary copy and so we analyze the communicate data volume of
boundary copy. The data volume can be expressed in the following equations⎧⎨

⎩
C1 = (N/ρ)2/3 × ρ× 2
C2 = (N/ρ)2/3/P 1/2 × ρ× 4
C2 = (N/ρ)2/3/P 2/3 × ρ× 6

(4)

Cluster-Based Parallel Simulation for Large Scale Molecular Dynamics 205

where C1,C2,C3 are the total communication data volumes of 1-dimension, 2-
dimension and 3-dimension division strategies, respectively. N is the particle
number of the simulated system, P is the processor number on Cluster system
and ρ is the particle number in each box. We have

C1 : C2 : C3 = 1 : 2/P 1/2 : 3/P 2/3 (5)

Specially, when P > 6(this condition can be easily achieved), we have

C1 > C2 > C3 (6)

Equation (6) shows that, the total communication data volume of 3-dimension
is the least and that of 1-dimension the greatest. Further experimental result
proves that the communication data volume is the dominant factor in total
communication cost of large-scale parallel MD simulation.

At last, we will compare the scalabilities of the three strategies. Generally
speaking, the 3-dimension division strategy performs better than the 1-dimension
division. Two facts make us reach this conclusion. (1) Equation (4) shows that
when P becomes larger, the communication data volume reduces rapidly with
3-dimension division but remains constant with 1-dimension. Thus when more
and more processors are used, the algorithm with 1-dimension becomes more
and more inefficient. The 1-dimension division strategy limits the scalability
of parallel algorithms. (2) When N is fixed, the number of sub-domains in SD
algorithms is limited by the boundary copy. Speaking in detail, the sub-domain
must be longer than an individual box in the dividing direction; otherwise the
communication must become more complex. The length of a box is rc or rs when
using FLNP method, which is discussed bellow. Form the discussion in (1) and
(2), we can conclude that the algorithm with 3-dimension division strategy is
the most scalable MD simulation algorithm on Cluster.

From the above discussion, we can draw the conclusion that when the load
balance is well maintained, the 3-dimension division is the best domain decom-
position strategy for the parallel MD simulation on Cluster.

3.2 The FLNP Method

In short-range MD simulation of a system with N particles, in order to calculate
the force on particle i, we need not check all of the other (N−1) particles because
only those particles who are within the cutoff distance rc can contribute to the
force on particle i. There are two basic techniques used to accomplish this.

In the first idea, the LinkCell [15] method, the simulating domain is divided
into many 3D cells of side length d, where d equal to rc or slightly larger, as
illustrated in Figure (3.a) and each particle is mapped to some cell. This reduces
the task of finding neighbors of a given particle to checking in 27 cells, that is,
the cell which this particle is in and the 26 surrounding ones. Since mapping the
particles to cells only requires O(N) work, the original O(N2) work required by
force calculation is greatly reduced.

The other technique used for speeding up MD calculation is known as Neigh-
borList [16] as illustrated in Figure (3.b). When the list is built, all of the nearby

206 J. Shu, B. Wang, and W. Zheng

particles within an extended cutoff distance rs = rc + δ are stored. The list is
used to calculate interactions for a few time steps. Then before any particles
could have moved from a distance r > rs to r < rc, the list is rebuilt. The
NeighborList method has the advantages that when the list built, checking all of
the possible neighboring particles in list is much faster than checking all particles
in simulated system. However, the process of list building and rebuilding still
requires checking all of the simulated particles.

Based on the analysis and comparisons between them, we can see that Link-
Cell and NeighborList are two speedup techniques coming in different ways. The
former is an optimizing strategy in the spatial aspect. On the other hand, the
latter, the NeighborList technique concerns more about optimizations in time
aspect. When NeighborList applied, the neighboring particle lists can be kept
unchanged in several continuous time steps, in which it is not necessary to rebuild
the list and the neighboring particle searching is not time-consuming at all. Gen-
erally speaking, from two different aspects, the space and the time, two different
speedup techniques are developed. If a strategy concerns not only spatial but
also time aspect, it must benefit from both and a better speedup performance is
expected. The FLNP (Fast Location of Neighboring Particles) strategy proposed
in this paper is just the combination of both LinkCell and NeighborList. Firstly,
with this method, the whole simulated domain is divided into many cells with
the side length rs. To a particular particle A, any particles which are contributed
to the interactions on A are within the neighboring cells of A (including the cell
where A is). This is similar to LinkCell method. Secondly, like the NeighborList
technique, for each particle A, a neighbor list is maintained, recording informa-
tion of all particles with a distance of rs. It is not necessary to rebuild the list in
each time step. Only when some particles outside rs go into the cutoff distance
rc, the list is rebuilt. This new method has obvious advantages relative to basic
LinkCell and NeighborList techniques. Firstly, compared to LinkCell method, it
reduces the number of particles that should be checked because the there are far
fewer particles to check in a sphere of volume 4

3πr3
s than in a cube of volume

27r3
s . On the other hand, compared to basic NeighborList method, there is a sig-

nificant time saving when list is rebuilt because the searching volume has been
reduced from the whole simulated domain to 27r3

s . In general, FLNP technique
combines the benefits of both LinkCell and NeighborList, and optimizes the par-
ticle searching task with reducing both the searching volume and the searching
times.

Moreover, the FLNP method can reduce the calculation and communication
cost due to particle move and boundary copy. This is caused mainly by two
reasons. (1)The FLNP maintains a neighbor list for each particle, which stores
all of the particles that can possibly contribute to the force calculation. In algo-
rithms not using FLNP, when some particles near the boundary move from one
sub-domain to another, the neighbor list has to be rebuilt. But in algorithms
using FLNP, if these moving particles don’t enter other particles’ extended cut-
off distance, the neighbor list can be rebuilt late. So the communication cost of
particle move can be reduced to some extent. (2)When boundary copy (as illus-

Cluster-Based Parallel Simulation for Large Scale Molecular Dynamics 207

trated in Figure (2)) occurs, processors must check which particles are near the
boundary and must be sent to the neighboring processors. This work must be
done at each time step in algorithms not using FLNP; but in algorithms using
FLNP, it can be done once every few time steps, when the neighbor lists are
rebuilt. During all the other time steps, we can easily send the latest position
information of particles that have been checked as boundary particles in the
previous time step. It must be pointed out that the basic NeighborList strategy
can also bring out the two benefits.

Furthermore, the calculation cost can be half reduced, when applying New-
ton’s Third Law, which shows that,

Fij = −Fji (7)

In NeighborList method, we can implement this speedup by simply ignoring
the particle j in the neighboring list of particle i.

3.3 Adaptive Memory Management

The large-scale MD simulation involves a great number of particles, which require
a lot of memory resources. In fact, the usual workstations can not simulate a
large system with about 1,000,000-100,000,000 particles due to shortage of local
memory. Though a cluster may be rich in distributed memory resource, it is
necessary to use the memory efficiently because memory is the bottleneck to
increase the scale of simulated system.

In our algorithm, an Adaptive Memory Management (AMM) is put into prac-
tice, with which the usage of memory is optimized. The AMM technique can help
to manage the memory usage efficiently by dynamically allocating and releasing
memory according to the need of simulation. In parallel SD algorithms, each pro-
cessor is responsible to particles in a fixed sub domain. Because of the motion of
these particles, the number of particles belonging to some processor is changing
from time to time. So the memory need of each processor is also unfixed. If each
processor simply allocates superfluous memory for all of N particles, the memory
is not used efficiently and the simulated system is restricted to a smaller scale.
With AMM technique, each processor is given a fixed number of memories when
parallel program is initialed. In simulating process, each processor inspects the
particle number of its own sub domain. When allocated memory is not enough
to hold the particles, the processor allocates double number of memory. On the
other hand, when particles decrease in number to such a degree that 2/3 of
the allocated memory is useless, the processor releases half of its memory. This
technique brings little additional cost, because the change of density of simu-
lated particles is not abrupt and the number of memory allocation and release is
usually small. Practically, one user-level function ReallocateMem(double ratio)
is provided to dynamically manage the memory usage within the SMP node. In
fact, when NeighborList method is applied, the largest system our cluster can
simulate is of about 1,000,000 particles. And with AMM technique, we success-
fully simulated a very large system with 6,912,000 particles.

208 J. Shu, B. Wang, and W. Zheng

4 Results and Analysis

The parallel MD algorithm of Section 3 was tested on our Cluster system. This
Cluster is made up of 36 SMP nodes. Each node has 4 CPUs of Intel Xeon
PIII700, 36Gbytes of hard disk, and 1Gbytes of memory. The communication
medium between SMP nodes is Myrinet Switch with bandwidth of 2.56Gb/s.
The software environments are Redhat Linux 7.2(kernel version 2.4.7-10smp),
MPICH-1.2.7 and gm-1.5pre4 which is network protocol running on Myrinet.
The simulated physical system is a canonical ensemble with 6,912,000 Argon
atoms and our simulation gives the accurate phase figures.

4.1 Comparison of Domain Division Strategies

Figure (4) shows the performance curves of three kinds of domain division strate-
gies separately. Generally speaking, the algorithm with 3-dimension division gets
the highest performance and the one with 1-dimension division the lowest.

Figure (4) also shows that the three kinds of domain division strategies have
similar parallel efficiency when P is small (say P ≤ 9 processors). When more
and more processors are used, the efficiency of 1-dimension division drops down
quickly. On the contrary, the declination of efficiency of 2-dimension and 3-
dimension division is slight. We can draw the conclusion that the algorithm
with 3-dimension division is the most efficient and most scalable for MD parallel
simulation on Cluster system. The algorithm with 2-dimension division also has
a fine scalability but it is less efficient than that with 3-dimension division. The
algorithm with 1-dimension is the worst one because of its awful efficiency and
scalability, and it can provide an acceptable performance only when P is small.

Figure (5) illustrates the communication cost of three domain division strate-
gies. With processors of similar numbers, the communication cost of 1-dimension
strategy is must higher than those of 2-dimension and 3-dimension strategies
and the cost of 3-dimension is a little lower than that of 2-dimension. It is
maybe noted that the experimental data in Figure (5) seems not consistent with
Equation (5). The reason is that it is the whole communication costs which
are illustrated in Figure (5) but in Equation (5) only the communication data

Fig. 4. speedup and efficiency of domain division strategies

Cluster-Based Parallel Simulation for Large Scale Molecular Dynamics 209

Fig. 5. the communication cost of
domain division strategies

Fig. 6. peak memory usage when
AMM is applied

volumes are analyzed. Obviously, the whole communication cost is not only re-
lated to the communication data volume, but also depends on other factors: (1)
the communication times and communication mode. Even if equal data volumes
are communicated, complex global communication mode is much more time-
consuming than some simple modes. (2) The synchronization cost. With SD
algorithm, global synchronization among all processes is necessary in every time
step. All of the three decomposition strategies, 1-dimension, 2-dimension and
3-dimension, have similar communication mode and synchronization operation.
Therefore, though there are great gaps among communication data volumes of
the three strategies, the differences of the whole communication costs of them
are not so apparently.

4.2 Influence of FLNP to Parallel Efficiency

In Figure (7), we plot the 3-dimension algorithm’s computing time per step under
different δ. The processor number is 8 and the particle number is 6,912,000.

The experimental result shows that, the FLNP method can bring much
greater improvement to parallel algorithm’s speed than the two basic technolo-
gies: LinkCell and NeighborList. Firstly, LinkCell is described with the result
obtained when δ equals to zero in Figure (7), which shows that the speed with
FLNP is about double to the speed with LinkCell. Secondly, the basic Neigh-
borList technology cannot be use separately on MD simulation of such a large-
scale system that has 6,912,000 particles. In fact, when 8 processors used, each
processor must handle 864,000 particles averagely. If basic NeighborList technol-
ogy would be used, it should have taken dozens of hours to build the neighbor
list once.

The result also shows that, the value of δ can influence the speed of parallel
algorithm, which requires a precise value of δ. The optimal value of δ for our
simulation is in the scope of [0.5σ, 0.6σ].

210 J. Shu, B. Wang, and W. Zheng

Fig. 7. CPU timings (ms / time step) under different δ with FLNP

4.3 Memory Usage with AMM

When AMM is not used, the system with 6,912,000 particles can not be simulated
in our cluster because of limitation of memory. In fact, each processor must
allocate more than 6GB memory to hold possible particles, which exceeds the
greatest number of memory a 32-bit processor can directly access, 4GB. When
AMM is applied, the memory need is greatly reduced and the 6,912,000 particle
system is successfully simulated. Figure (6) shows the memory usage of parallel
SD algorithm with AMM and 1-dimension strategy. If only concerning memory,
the largest system our cluster can simulate may have 100,000,000 particles.

5 Conclusion

In this paper, we design and implement a Cluster-based spatial decomposition
algorithm, which is suitable to the large-scale MD simulation of microscale ther-
mophysical problems. Another important optimizing strategy in short-range MD
simulation is to minimize the number of neighboring particles that must be
checked for possible force calculation. This paper proposes and implements a
new method called fast location of neighboring particles, which combines the
benefits of both link-cell and neighborlist and can greatly accelerate the calcu-
lation of interaction. δ is the most important parameter in this new method,
which can greatly influence the efficiency of parallel algorithm. The memory is
the bottleneck in large-scale MD simulation. An adaptive memory management
is provided to our algorithm, with which the memory is used efficiently and the
simulated systems are increased to a larger scale.

Acknowledgements

The work in this paper was partly supported by a 985 Basic Research Foundation
of Tsinghua University, P.R. China (Grant No.JC2002027, No. JC2001024).

References

1. Chou F C, Lukes J R, Liang X G et al , Molecular Dynamics in Microscale Ther-
mophysical Engineering. Heat Transfer, 10(1999), 141-176

Cluster-Based Parallel Simulation for Large Scale Molecular Dynamics 211

2. BFeng XiaoLi, Li ZhiXin, Guo ZengYuan, Molecular dynamics study on thermal
conductivity and discussion on some related topics. Journal of engineering ther-
mophysics, 2(22),(2001),195-198

3. Mark Baker, Cluster Computing White Paper - Final Release (Version 2.0) 28,De-
cember,2000

4. Kengo Nakajima, and Hiroshi Okuda, Parallel iterative solvers for unstructured
grids using a directive/MPI hybrid programming model for the GeoFEM platform
on SMP cluster architectures, Concurrency Computat.: Pract. Exper. 14:411,2002

5. J. M. HAILE, Molecular Dynamics Simulation Elementary Methods. (Wiley Pro-
fessional Paperback Edition Published 1997)

6. D.L. Greenwell, R.K. Kalia, J.C. Patterson, P.Vashishta, Molecular Dynamics Al-
gorithm on the connection machine, Int. J. High Speed Computing 1(2),(1989),321-
328

7. W. Smith, A replicated data molecular dynamics strategy for the parallel Ewald
sum, Comp. Phys. Comm. 67(3),(1992),392-406

8. W. Smith, T.R. Forester, Parallel Macromolecular simulations and the replicated
data strategy, Comp. Phys. Comm. 79(1),(1994),52-62

9. D. Okunbor, Integration methods for N-body problems, Proceedings of the Second
International Conference On Dynamics Systems (1996)

10. Ravi Murty, Daniel Okunbor , Efficient Parallel Algorithms For Molecular Dynam-
ics Simulations, Parallel Computing 25(3),(1999), 217-230

11. S.Plimpton, Fast parallel algorithms for short-range molecular dynamics,
J.Comput.Phys. 117(1),(1995),1-19

12. Ryoko Hayashi, Susumu Horiguchi, Parallel molecular dynamics simulations of
polymers (In Japanese), Transactions of Information Processing Society of Japan,
39(6),(1998),1775-1781

13. Shu Jiwu, Zheng Weimin etc, Parallel computing for lattice Monte Carlo simulation
of large-scale thin film growth, Science in China(Series F) 45(2),(2002)

14. G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J. K. Salmon, and D.
W. Walker, Solving Problems On Concurrent Processors: Volume I (Prentice Hall,
Englewood Cliffs, NJ, 1988)

15. R. W. Hockney, S. P. Goel, and J. W. Eastwood, Quiet high-resolution computer
models of a plasma, J. Comput. Phys, 14(48),(1974)

16. L. Verlet, Computer experiments on classical fluids. I. Thermodynamical properties
of Lennard-Jones molecules. Phys. Rev. 159(98),(1967)

 J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 212–216, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Parallel Checkpoint/Recovery on
Cluster of IA-64 Computers1

Youhui Zhang, Dongsheng Wang, and Weimin Zheng

Department of Computer Science, Tsinghua Univ.,
100084, Beijing, P.R.C

zyh02@mail.tsinghua.edu.cn

Abstract. We design and implement a high availability parallel run-time
system---ChaRM64, a Checkpoint- based Rollback Recovery and Migration
system for parallel running programs on a cluster of IA-64 computers. At first,
we discuss our solution of a user-level, single process checkpoint/recovery
library running on IA-64 systems. Based on this library, ChaRM64 is realized,
which implements a user-transparent, coordinated checkpointing and rollback
recovery (CRR) mechanism, quasi-asynchronous migration and the dynamic
reconfiguration function. Owing to the above techniques and efficient error
detection, ChaRM64 can handle cluster node crashes and hardware transient
faults in a IA-64 cluster. Now ChaRM64 for PVM has been implemented in
Linux and the MPI version is under construction. As we know, there are few
similar projects accomplished for IA-64 architecture.

1 Introduction

Cluster of computers (COCs) is a parallel system using off-the-shelf computers con-
nected through high-speed network. Eight of the top ten machines in the November
2003 Top500 [1] list are cluster systems. While the growth in CPU count has
provided great increases in computing power, it also presents significant reliability
challenges to applications. Failures in the computing environment are making it more
difficult to complete long-running jobs.

PVM and MPI are popular systems for message passing parallel programming.
However, their implementation itself does not specify any particular kind of fault tol-
erant behavior. To fully increase the system availability, it is necessary to enhance
these parallel running systems. Checkpointing & Rollback Recovery (CRR) and Proc-
ess Migration offer a low overhead and full solution to this problem [2,3].

On the other hand, 64-bit architecture will become the main trend of high perform-
ance computing and IA-64 is one important architecture in this field. IA-64 combined
numerous innovations in its design, which contain massive resources such as rich in-
struction set and large register files [4]. However, some characteristic features such as
huge register files, the register stack, and the backing store, bring up difficulties when
the current CRR software is ported to IA-64 and few works have been done in this
field, as we know.

1 Supported by High Technology and Development Program of China (No. 2002AA1Z2103).

Parallel Checkpoint/ Recovery on Cluster of IA-64 Computers 213

We analyze the problems on IA-64, and provide our solution to implement the
user-level, single process checkpointing software for IA-64 Linux systems. Based on
the tool, we implement a Checkpoint-based Rollback Recovery and Migration system
for parallel running programs on the IA-64 version of Linux, which is named
ChaRM64 and owns the following features:

1. User-level, user-transparent implementation. So it is not necessary for users to
modify their source code.

2. It is implemented on the top of the message passing system (such as PVM and
MPI), and the approach can be easily adapted for different platforms.

3. A coordinated CRR mechanism and a quasi-asynchronous process migration are
realized.

4. It supports dynamic reconfiguration and n-node fault tolerance.
5. As we know, it is the first parallel CRR implementation on IA-64 platform. Now

ChaRM64 for PVM has been implemented and the MPI version is under construc-
tion.

The next section illustrates the key techniques employed in our single process
checkpointing software for IA-64. And then the structure of ChaRM64 is described in
Section 3. Section 4 gives some future works.

2 Process Checkpointing and Rollback Recovery on the IA-64
 Architecture

2.1 Traditional Methods

We will discuss the user-level implementation of checkpointing and recovery in the
following sections. We take libckpt [5] as our paradigm, a transparent checkpointing
library that has been ported to many platforms. Upon checkpointing, the checkpoint-
ing procedure is called from signal handler or from the user program. In the simplest
case, the procedure will save the process state in the following order:

1. Call setjmp() to save the current CPU sate to a memory area.
2. Save the contents of the data segment to the checkpoint file.
3. Save the stack segment to the checkpoint file.

2.2 What Is Special on IA-64: Register Stack and Backing Store

One characteristic feature of IA-64 architecture is its register stack. There are 128
general registers in total, which are split in two subnets. The first 32 general registers
are static; the following 96 registers named from r32 to r127, are organized as a regis-
ter stack. Each procedure frame has two regions on the register stack: the input
parameters and local variables, and the output parameters. On a procedure call, the
output region of the caller frame is renamed to be the input region of the procedure
frame being called. This is similar to “shifting” the register stack, so that each proce-
dure frame accesses their registers from the same base. On return, the registers are
restored to the previous state. The renaming and restoring are automatically done by
hardware.

214 Y. Zhang, D. Wang, and W. Zheng

There are only 96 registers allocated for the register stack. When the depth of the
register stack exceeds this limit, contents of the old registers will be stored to a mem-
ory area called backing store, so that registers are freed up for reuse.

So, a process running on IA-64 has two stacks: one conventional memory stack,
and one register stack. Part of the contents of the register stack lies in the CPU
registers; the rest of them are in the memory. To checkpoint/restore a process on
IA-64, we must find out ways to save/restore the states of the CPU and the register
stack.

2.3 Solutions on the IA-64

Most of the frame work of libckpt still works but some problems must be handled
with special attention.

1. CPU State. In libckpt and most user-level checkpointing software, the
setjmp/longjmp function in the GNU C Library is used to save/restore the CPU
state to memory. On IA-64 the implementation of setjmp/longjmp will not
save/restore any registers in the register stack, but they will save/restore the posi-
tion of the register stack. Even when the registers had been flushed, the longjmp()
function will operate through the RSE so that the register stack will be rewinded to
the original position.

2. Saving the Register Stack. Since the setjmp() function does not save the contents of
the register stack, we must save them manually. On IA-64, the instruction flushrs is
responsible for flushing the registers to the backing store. After flushrs is executed,
only the current procedure frame has its registers in the CPU register file. Registers
of previous procedure frames will be flushed to the backing store.

3. Dual-Stack Recovery. Recovery on IA-64 requires both the memory stack and the
register stack be recovered before resuming the program execution. To avoid direct
operation on the register file and the RSE, we may simulate a deep series of func-
tion calls, to make the size of the register stack much larger than the one in the
checkpoint file, so that the recovery will not overwrite the contents of the register
files.

3 ChaRM64

3.1 Overview

ChaRM64 is a distributed run-time system with high availability for the reliable exe-
cution of parallel application programs on COCs.

This system consists of a checkpoint manager module (C_manager), a checkpoint-
ing and rollback recovery module (ChaRM_CRR), a state monitor module (Watch-
Daemon) and a process migration and checkpoint file mirror module (Mig & Mir).

During fault-free operation, the system is invoked periodically to save system
consistent states; corresponding processes are coordinated by C_manager to
take a checkpoint. When a fault is detected, the rollback recovery is trigged, and
system states restoring, restarting and necessary process migration could recover the
fault.

Parallel Checkpoint/ Recovery on Cluster of IA-64 Computers 215

In ChaRM64 system, application processes in one node save their checkpoints
information and in-transit messages to local disk instead of network file system,
this can avoid producing burst network traffic and reduce the checkpointing time.
Checkpointing to local disk can recovery any number of node transient
faults. ChaRM64 uses RAID like checkpoint mirroring technique to tolerate one or
more node permanent faults. Each node uses a background process to mirror the
checkpoint file and related information to other nodes besides its local disk. When
some node fails, the recovery information of application processes running on the
node will be available on other nodes.

Using ChaRM64, transient faults can be recovered automatically, and the node
permanent fault can also be recovered through checkpoint mirroring and process mi-
gration techniques. If any node that is running the computation drops out of the COC,
due to failure, load, ownership or software/hardware maintenance, the computation
can be continuous. An available node can also be rejoining the system to compute
dynamically.

Now ChaRM64 for PVM has been implemented in Linux. Besides checkpointing
the IA-64 process, some other key technologies, including process ID mapping, func-
tions wrapping and renaming, exit/rejoin mechanism and signal/message notification,
are employed [6].

3.2 Performance

Several programs is selected to evaluate the overload of the IA-64 checkpointing
software on two Intel servers equipped with one 1.30 GHz Itanium 2 CPU. The test
focuses on the running time overhead with or without checkpointing and results are
listed in Table 1.

Table 1. Testing Results of ChaRM64

Program Check-
point
Number

Number of
processes

Running Time
without Check-
pointing (second)

Running Time
with ten
checkpoints
(second)

Running
time Over-
head (%)

matrix-
multiplication
(512x512, 100)

10 9 127.32 129.36 1.6

matrix-
multiplication
(512x512, 500)

10 9 634.62 677.55 6.7

matrix-
multiplication
(512x512,
1000)

10 9 1290.55 1352.44 4.8

matrix-
multiplication
(512x512,
3000)

10 9 3991.63 4439.35 11

Pi 10 12 9.58 10.35 8
Fractal 10 9 42.76 47.26 10

216 Y. Zhang, D. Wang, and W. Zheng

The first program is a matrix multiply program. In the parallel version, the data is
distributed among the worker tasks that perform the actual multiplication
and send back their respective results to the master task. The second, Pi, calculates π
using a “dartboard” algorithm. All processes contribute to the calculation, with the
master averaging the values for π. The last is a parallel fractal program.

At first we execute programs with different arguments without checkpointing at all
and calculate the running time. Then, programs are recompiled to own checkpointing
functions and checkpointed 10 times during the running process. We record the
running time. It is obvious that the time overload introduced by our checkpointing
software is small in respect that the ratio of the extra time to the normal is always less
than 15%.

4 Future Work

In this paper we focused on the mechanics of checkpointing and recovery, rather than
performance and optimization. The 64-bit addressing of the IA-64 architecture
provided the ability to utilize a huge memory for some super-computing tasks. For
processes occupying tens of giga bytes of memory, checkpointing will be a time-
consuming work, so that there will be a greater demand for optimizations, such as in-
cremental checkpointing and user-directed checkpointing. At the same time we are
waiting for USA Argonne National Laboratory to release a stable mpich2 version for
IA-64. And then we will implement ChaRM64 for MPI soon.

References

1. Top500 supercomputer list, November 2003. http://www.top500.org/.
2. Elnozahy E N, Johnson D B, Wang Y M. A Survey of Rollback Recovery Protocols in

Message-Passing System. Technical Report. Pittsburgh, PA: CMU-CS-96-181. Carnegie
Mellon University, Oct 1996.

3. Elnozahy E N. Fault tolerance for clusters of workstations. Banatre M and Lee P (Editors),
chapter 8, Spring Verlag, Aug. 1994.

4. Sverre Tarp. IA-64 architecture: A detailed tutorial. CERN-IT Division. November 1999.
5. James S. Plank, Micah Beck, Gerry Kingsley and Kai Li, “Libckpt: Transparent Check-

pointing under Unix”, Conference Proceedings, Usenix Winter 1995 Technical Conference,
New Orleans, LA, January, 1995, pp. 213-223.

6. M. Litzkow and M. Solomon. The Evolution of Condor Checkpointing, 1998.

 J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 217–222, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Highly Reliable Linux HPC Clusters:
Self-Awareness Approach

Chokchai Leangsuksun1,*, Tong Liu2, Yudan Liu1,*, Stephen L. Scott3,**,
Richard Libby4, and Ibrahim Haddad5

1 Computer Science Department, Louisiana Tech University
2 Enterprise Platforms Group, Dell Corp.,

3 Oak Ridge National Laboratory
4 Intel Corporation

5 Ericsson Research
{box, yli010}@latech.edu, Tong_Liu@dell.com, scottsl@ornl.gov,

rml@hpc.intel.com, ibrahim.haddad@ericsson.com

Abstract. Current solutions for fault-tolerance in HPC systems focus on deal-
ing with the result of a failure. However, most are unable to handle runtime sys-
tem configuration changes caused by transient failures and require a complete
restart of the entire machine. The recently released HA-OSCAR software stack
is one such effort making inroads here. This paper discusses detailed solutions
for the high-availability and serviceability enhancement of clusters by HA-
OSCAR via multi-head-node failover and a service level fault tolerance mecha-
nism. Our solution employs self-configuration and introduces Adaptive Self
Healing (ASH) techniques. HA-OSCAR availability improvement analysis was
also conducted with various sensitivity factors. Finally, the paper also entails
the details of the system layering strategy, dependability modeling, and analysis
of an actual experimental system by a Petri net-based model, Stochastic Reword
Net (SRN).

1 Introduction

One of the challenges in a clustered environment is to keep system failure to a mini-
mum and to provide the highest possible level of system availability. If not resolved in
a timely fashion, such failures can often result in service unavailability/outage that
may impact businesses, productivity, national security, and our everyday lives. High-
Availability (HA) computing strives to avoid the problems of unexpected failures
through active redundancy and preemptive measures. Systems that have the ability to
hot-swap hardware components can be kept alive by an OS runtime environment that
understands the concept of dynamic system configuration. Furthermore, multiple

 * Research supported by Center for Entrepreneurship and Information Technology, Louisiana

Tech University.
** Research supported by U. S. Department of Energy grant, under contract No. DE-AC05-

00OR22725 with UT-Battelle, LLC.

C. Leangsuksun et al. 218

head-nodes (sometimes called service nodes) can be used to distribute workload while
consistently replicating OS runtime and critical services, as well as configuration
information for fault-tolerance. As long as one or more head-nodes survive, the system
can be kept consistent, accessible and manageable.

2 HA-OSCAR Architecture

A typical Beowulf cluster consists of two node types: a head node server and multiple
identical client nodes. A server or head node is responsible for serving user requests
and distributing them to clients via scheduling/queuing software. Clients or compute
nodes are normally dedicated to computation [4]. However, this single head-node
architecture is a single-point-of-failure-prone of which the head-node outage can ren-
der the entire cluster unusable.

Fig. 1. HA-OSCAR architecture

There are various techniques to implement cluster architecture with high-availability.
These techniques include active/active, active/hot-standby, and active/cold standby. In
the active/active, both head nodes simultaneously provide services to external requests
and once one head is down, the other will take over total control. Whereas, a hot standby
head node monitors system health and only takes over control when there is an outage at
the primary head node. The cold standby architecture is very similar to the hot standby,
except that the backup head is activated from a cold start.

Our key effort focused on “simplicity” by supporting a self-cloning of cluster mas-
ter node (redundancy and automatic failover). Although, the aforementioned failover
concepts are not new, HA-OSCAR simple installation, combined HA and HPC archi-
tecture are unique and its 1.0 beta release is the first known field-grade HA-Beowulf
cluster release.

Highly Reliable Linux HPC Clusters: Self-Awareness Approach 219

3 HA-OSCAR Serviceability Core

Our existing HA-OSCAR and OSCAR installation and deployment mechanism em-
ploys Self-build- a self-configuration approach through an open source OS image
capture and configuration tool, SystemImager, to clone and build images for both
compute and standby head nodes. Cloned images can be stored in a separate image
servers (see Figure 1) which facilitate upgrade and improve reliability with potential
rollback and disaster recovery.

3.1 Head-Node Cloning

As stated in Section 3, our approach of removing the head node single-point-of-failure
is to provide a hot-standby for the active head node. The hot-standby head node is a
mirror of the active node and will process user requests when the active head node
fails. To simplify the construction of this environment, we begin with a standard
OSCAR cluster build on the active node and then “clone” or duplicate that to the hot-
standby head node. As shown in Fig. 3, the network configuration differs between the
active and hot-standby node by the public IP address, thus they are not exact dupli-
cates of one another. Presently, hardware must be identical between the active and
standby machine. Once cloned, both head nodes will contain the Linux operating
system and all the necessary components for an OSCAR cluster [4] including: C3,
LAM/MPI, LUI, Maui PBS Scheduler, MPICH, OpenSSH, OpenSSL, PBS, PVM,
and System Installation Suite (SIS).

w o rk in g F ailov er

failu re

A le rt.

Detect

p rev ious s tate, # counte r ,
recov ery

sw itc h ov er & tak e contro l a t the

sta ndby

th res ho ld reac hed
afte r # re try

p rev iou s s ta te, # cou nte r,
reco very

Afte r the p r im ary n ode rep air,
then o p tion al Fa llb ack

Fig. 2. Adaptive Self-Healing State Diagram

3.2 Adaptive Self-Healing (ASH) Technique

HA-OSCAR addresses service level faults via the ASH technique, whereby some
service level failures are handled in a more graceful fashion. Fig. 2. illustrates an ASH
state-transition diagram in order to achieve service level fault tolerance. In a perfect
condition, all the services are functioning correctly. The ASH MON daemon monitors
service availability and health at every tunable interval and triggers alerts upon failure

C. Leangsuksun et al. 220

detection. Our current monitoring implementation is a polling approach in which a
default interval is 5 seconds. However, this polling interval is tunable for the faster
detection time. Section 6 entails impacts and analysis of different polling interval
times.

3.3 Server Failover

Fig. 3 shows an example of the HA-OSCAR initial network interface configuration
during a normal operation. In our example, HA-OSCAR assigns the primary server
public IP address “Eth0p:” with 138.47.51.126 and its private IP address
“Eth1p:” as 10.0.0.200. We then configure an alias private IP address Eth1:0p:
as 10.0.0.222. For the standby server, the public IP address “Eth0s:” is initially
unassigned and its private IP address is Eth1s: 10.0.0.150.

Public Network (Internet)

Private Network (to compute nodes)

IDC

Primary Head
node

Ether0p:138.47.51.126

Ether1p:10.0.0.200
Ether1:0p:10.0.0.222

IDC

Standby Server
node

Ether0p:unassigned

Ether1s:10.0.0.150

ac
tiv

e
ch

an
ne

l

ac
tiv

e
ch

an
ne

l

Public Network (Internet)

Private Network (to compute nodes)

IDC

Primary Head
node

outage

Ether0p:

Ether1p:
Ether1:0p:

IDC

Standby Server
node

Ether0p:138.47.51.126

Ether1s:10.0.0.200

ac
tiv

e
ch

an
ne

l

ac
tiv

e
ch

an
ne

l

Fig. 3. Network Interface Configuration during normal condition and after failover

When a primary server failure occurs, all its network interfaces will drop. The
standby server takes over and clones the primary server network configuration shown
in Figure 3 (on the right). The standby server will automatically configure its public
network interface Eth0s: to the original public IP address 138.47.51.126 and
private network interface Eth1s: to 10.0.0.200. This IP cloning only takes 3-5
seconds.

4 Implementation and Experimental Results

HA-OSCAR should support any Linux Beowulf cluster. We have successfully verified
a HA-OSCAR cluster system test with the OSCAR release 3.0 and RedHat 9.0. The
experimental cluster consisted of two dual xeon server head nodes, each with 1 GB
RAM, 40 GB HD with at least 2GB of free disk space and two network interface
cards. There were 16 client nodes that were also Intel dual xeon servers with 512 MB
RAM and a 40 GB hard drive. Each client node was equipped with at least one net-
work interface card; Head and client nodes are connected to dual switches as shown in
Figure 1.

Highly Reliable Linux HPC Clusters: Self-Awareness Approach 221

5 Modeling and Availability Prediction

In order to gauge an availability improvement based on the experimental cluster, we
evaluated our architecture, its system failure and recovery with a modeling approach.
We also studied the overall cluster uptime and the impact of different polling interval
sizes in our fault monitoring mechanism. Stochastic Reward Nets (SRN) technique has
been successfully used in the availability evaluation and prediction for complicated
systems, especially when the time-dependent behavior is of great interest [5]. We
utilized Stochastic Petri Net Package (SPNP) [6] to build and solve our SRN model.

We calculated instantaneous availabilities of the system and its parameters. Details
can be founded in [1]. We obtained a steady-state system availability of 99.993%,
which was a significant improvement when compared to 99.65%, from a similar Beo-
wulf cluster with a single head node. Furthermore, higher serviceability such as the
abilities to incrementally upgrade and hot-swap cluster OS, services, applications and
hardware, will further improve planned downtime which undoubtedly benefits the
overall aggregate performance. Figure 4 illustrates the total availability (planned and
unplanned downtime) improvement analysis of our HA-OSCAR dual-heads vs. a
single service node Beowulf clusters when exploiting redundant service nodes for both
fault tolerance and hot and incremental upgrade.

HA-OSCAR solution vs traditional Beowulf
Total Availability impacted by service nodes

90.580%

91.575%
92.081% 92.251% 92.336% 92.387%

99.9896%

99.9951% 99.9962% 99.9966% 99.9968%

99.9684%

90.00%

91.00%

92.00%

93.00%

94.00%

95.00%

96.00%

97.00%

98.00%

99.00%

100.00%

Noda-wise mean time to failure (hr)

Av
ai

la
bi

lit
y

99.950%

99.955%

99.960%

99.965%

99.970%

99.975%

99.980%

99.985%

99.990%

99.995%

100.000%

Beowulf 0.905797 0.915751 0.920810 0.922509 0.923361 0.923873

HA-oscar 0.999684 0.999896 0.999951 0.999962 0.999966 0.999968

1000 2000 4000 6000 8000 10000

Model assumption:
- scheduled downtime=200 hrs
- nodal MTTR = 24 hrs
- failover time=10s
- During maintainance on the
head, standby node acts as
primary

Fig. 4. HA-OSCAR and traditional Linux HPC: the total availability improvement analysis

6 Conclusions and Future Work

Our proof-of-concept implementation, experimental and analysis results [1, 2, and
here] suggest that HA-OSCAR solution is a significant enhancement and promising
solution to providing a high-availability Beowulf cluster class architecture. The avail-
ability of our experimental system improves substantially from 99.65% to 99.9935%.
The polling interval for ASH failure detection indicates a linear behavior to the total
cluster availability. The introduction of the hot-standby server is clearly cost-effective
method when compared with an investment of a typical cluster since a double outage

C. Leangsuksun et al. 222

of the servers are very unlikely, therefore, clusters with HA-OSCAR are likely much
more available than a typical Beowulf cluster. We have furthered our investigation
from outage detection to prediction techniques [10], active-active multi-head failover
and grid-enabled HA-OSCAR In addition, we have recently investigated a job queue
migration mechanism based on Sun Grid Engine (SGE) and experimented with Berk-
ley Lab Checkpoint/Restart (BLCR) and LAM/MPI [7] for an automated checkpoint
and restart mechanism to enhance fault tolerance in HA-OSCAR framework. Our
initial findings [9] are very promising. We will extend transparent failure recovery
mechanisms for more options, including a sophisticated rule-based recovery and inte-
gration with openMPI (a unified MPI platform development effort from LA/MPI ,
FT/MPI [8] and LAM/MPI [7] teams).

References

1. C. Leangsuksun, L. Shen, T. Liu, H. Song, S. Scott, Availability Prediction and Modeling
of High Availability OSCAR Cluster, IEEE International Conference on Cluster Comput-
ing (Cluster 2003), Hong Kong, December 2-4, 2003.

2. C. Leangsuksun, L. Shen, T. Liu, H. Song, S. Scott, Dependability Prediction of High
Availability OSCAR Cluster Server, The 2003 International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA'03), Las Vegas, Nevada,
USA, June 23-26, 2003.

3. B Finley, D Frazier, A Gonyou, A Jort, etc., SystemImager v3.0.x Manual, February 19,
2003.

4. M J. Brim, T G. Mattson, S L. Scott, OSCAR: Open Source Cluster Application
Resources, Ottawa Linux Symposium 2001, Ottawa, Canada, 2001

5. J Muppala, G Ciardo, K. S. Trivedi, Stochastic Reward Nets for Reliability Prediction,
Communications in Reliability, Maintainability and Serviceability: An International Jour-
nal published by SAE International, Vol. 1, No. 2, pp. 9-20, July 1994.

6. G Ciardo, J. Muppala, K. Trivedi, SPNP: Stochastic Petri net package. Proc. Int. Work-
shop on Petri Nets and Performance Models, pp 142-150, Los Alamitos, CA, Dec. 1989.
IEEE Computer Society Press.

7. S. Sankaran, J. M. Squyres, B. Barrett, A. Lumsdaine, Jason Duell, Paul Hargrove, and
Eric Roman. The LAM/MPI Checkpoint/Restart Framework: System-Initiated Checkpoint-
ing. In LACSI Symposium, Santa Fe, NM, October 27-29 2003.

8. G.E. Fagg, E.Gabriel, Z. Chen, T.Angskun, G. Bosilca, A.Bukovsky and J.J.Dongarra:
’Fault Tolerant Communication Library and Applications for High Performance Comput-
ing’, LACSI Symposium 2003, Santa Fe, NM, October 27-29, 2003.

9. C.V Kottapalli, Intelligence based Checkpoint Placement for Parallel MPI programs on
Linux Clusters, Master Thesis Report, Computer Science Program, Louisiana Tech
University, August 2004 (In preparation)

10. C. Leangsuksun et al, “A Failure Predictive and Policy-Based High Availability Strategy
for Linux High Performance Computing Cluster”, The 5th LCI International Conference
on Linux Clusters: The HPC Revolution 2004, Austin, TX, May 18-20, 2004.

An Enhanced Message Exchange Mechanism in
Cluster-Based Mobile Ad Hoc Networks�,��

Wei Lou1 and Jie Wu2

1 Dept. of Computing, Hong Kong Polytechnic University,
Hung Hom, Kowloon, Hong Kong

2 Dept. of Computer Science and Engineering, Florida Atlantic University,
Boca Raton, Florida, USA

Abstract. In mobile ad hoc networks (MANETs), networks can be par-
titioned into clusters. Clustering algorithms are localized algorithms that
have the property of creating an upper bounded clusterheads in any
networks even in the worst case. Generally, clusterheads and selected
gateways form a connected dominating set (CDS) of the network. This
CDS forms the backbone of the network and can be used for routings
(broadcasting/multicasting/unicating). As clusterheads need to deter-
mine the selected gateways to connect their adjacent clusterheads within
the coverage set, they periodically collect 2-hop and 3-hop clusterhead in-
formation. These information can be gathered when they hear their non-
clusterhead neighbors sending out messages that contain neighboring
clusterhead information. These extra maintenance cost can be reduced
when some enhanced mechanism is applied. In this paper, an enhanced
mechanism is proposed to reduce the total length of the messages when
non-clusterhead nodes exchange their 1-hop and 2-hop neighboring clus-
terhead information. Simulation shows that over 50% of message over-
head can be saved for dense networks.

1 Introduction

Mobile ad hoc networks (MANETs) are collections of autonomous mobile hosts
without the help of center base stations. Applying such networks into prac-
tice brings many challenges to the protocol design, such as routing in highly
dynamic networks, allocating shared wireless channels and saving limited band-
width. Trade-offs are needed in the protocol design to achieve these conflicting
goals. One fundamentally problem of MANETs is the scalability issue of the
network. As the size of the network increases and the network becomes dense,
a flat infrastructure of the network may not work properly, even for a single

� Wei Lou’s work was supported in part by the Seed Project Grant of the De-
partment of Computing, Hong Kong Polytechnic University. Contact E-mail:
csweilou@comp.polyu.edu.hk

�� Jie Wu’s work was supported in part by NSF grants CCR 9900646, CCR 0329741,
ANI 0073736 and EIA 0130806. Contact E-mail: jie@cse.fau.edu

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 223–232, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

224 W. Lou and J. Wu

broadcast operation [1]. Therefore, building some type of hieratical infrastruc-
ture for a large network is a necessity and can enhance the performance of the
whole network.

The cluster structure is a two-layer hieratical network that converts a dense
network to a sparse one, and therefore, relieves the communication overhead of
the whole network. The clustering algorithms partition the network into a group
of clusters. Each cluster has one clusterhead that dominates all other members
in the cluster. Two clusterheads cannot be neighbors. Gateways are those non-
clusterhead nodes that have at least one neighbor that belongs to other clusters.
It is easy to see that clusterheads and gateways form a connected dominating set
(CDS) of the original network. A dominating set (DS) is a subset of nodes such
that every node in the graph is either in the set or has an edge linked to a node
in the set. If the subgraph induced from a DS of the graph is connected, the DS
is a CDS. It has been proved that finding a minimum CDS (MCDS) in a given
graph is NP-complete; this applies to a unit disk graph as well [2, 3]. In cluster
networks, selecting gateways to connect clusterheads and maintaining such a
CDS structure in a mobile environment is an extra cost that can be reduced.

Theoretically, we can describe a MANET as a unit disk graph G =(V, E),
where the node set V represents a set of wireless mobile hosts and the edge set E
represents a set of bi-directional links between the neighboring hosts, assuming
all hosts have the same transmission range r. Two hosts are considered neighbors
if and only if their geographic distance is less than r. Nk(v) is v’s k-hop neighbor
set, including v itself.

When building the infrastructure of the cluster-based CDS in MANETs, each
clusterhead collects the clusterhead information within its coverage set so that
it can determine some gateways to connect all clusterheads in its coverage set. A
node v’s coverage set C(v) is a set of clusterheads that are within a specific cov-
erage area of v. It can be a 3-hop coverage set, which includes all the clusterheads
in its 3-hop neighbor set N3(v), or a 2.5-hop coverage set, which includes all the
clusterheads in N2(v) and the clusterheads that have members in N2(v). These
clusterhead information can be gathered by hearing the non-clusterhead neigh-
bors sending out messages that contain neighboring clusterhead information. In
this paper, we propose an enhanced mechanism that can reduce the overhead
of message exchanges. Instead of sending messages that include all paths to the
neighborhood clusterheads, in the enhanced mechanism, each non-clusterhead
node sends the message that only provides one path per neighboring cluster-
head. In Fig. 1 (a), the original mechanism requires node g to send clusterhead
u a message that includes all intermediate nodes (inside the dotted circle) con-
nected to clusterhead v. In Fig. 1 (b), the enhanced mechanism requires node
g to send clusterhead u a message that only includes an intermediate nodes
(grey node) connected to clusterhead v. Simulations show that a large amount
of overhead can be saved.

The remaining part of the paper is organized as follows: Clustering algorithms
are briefly introduced in Section 2. Section 3 describes the message exchanging
mechanism. In Section 4 shows the simulation results. Conclusions are drawn in
Section 5.

An Enhanced Message Exchange Mechanism 225

(a)

v

g

u

(b)

v

g

u

Fig. 1. Message exchange mechanism: (a) original mechanism and (b) enhanced mech-
anism

2 Preliminaries

The distributed clustering algorithm, lowest-ID clustering algorithm [4], is initi-
ated by electing as a clusterhead the node whose ID is locally the smallest one
among all its neighbors. At the beginning, all nodes in the network are candi-
dates. When a candidate finds itself to be the one with the smallest ID among
all its 1-hop candidate neighbors, it declares itself as the clusterhead of a new
cluster and notifies all its 1-hop neighbors. When a candidate receives a clus-
terhead notification from a neighboring clusterhead, the candidate joins in the
cluster, changes itself to a non-clusterhead member of the cluster, and announces
its non-clusterhead state to all its neighbors. If it receives more than one clus-
terheads’ declaration, it joins in the cluster whose clusterhead has the smallest
ID. Non-clusterheads that have neighbors belonging to other clusters become
gateways. The network will eventually be partitioned into clusters where each
cluster has one clusterhead and several gateway/non-clusterhead members. Re-
placing the clusterhead selecting priority from node ID to effective node degree
leads to the highest node degree clustering algorithm [4].

Jiang et al [5] proposed a cluster-based routing protocol (CBRP) that forms a
cluster structure by first electing clusterheads and then letting each clusterhead
select one or one pair of gateways to connect to each clusterhead in its adjacent
clusters. Therefore, each clusterhead may build multiple paths to its adjacent
clusterheads as much as it can maintain.

Kwon and Gerla [6] proposed a passive clustering scheme that constructs the
cluster structure during the data propagation. A clusterhead candidate applies
the “first declaration wins” rule to become a clusterhead when it successfully
transmits a packet. Then, its neighbor nodes can learn the presence of this clus-
terhead and change their states to become gateways if they have more than one
adjacent clusterhead or ordinary (non-clusterhead) nodes otherwise. The passive
clustering algorithm has the advantages of no initial clustering phase, no need of
the complete neighborhood information for the clusterhead election and no com-
munication overhead for maintaining cluster structure or updating neighborhood
information, but it suffers poor delivery rate and global parameter requirement.

226 W. Lou and J. Wu

Alzoubi et al [7] proposed a cluster-based message-optimal CDS which is
formed with two steps: In the first step, clusterheads are determined by the
lowest-ID clustering algorithm. A clusterhead knows all its 2-hop and 3-hop
clusterheads with two rounds of neighborhood information exchanges. In the
second step, each clusterhead selects a node to connect each 2-hop clusterhead
and a pair of nodes to connect each 3-hop clusterhead. All the clusterheads and
selected nodes form a CDS of the network.

Lou and Wu [8] proposed two categories of cluster-based CDSs. Both cluster-
based CDSs can be built on the 3-hop or 2.5-hop coverage set. These algorithms
are localized algorithms since each clusterhead only selects some gateways to
connect the clusterheads within the coverage set. In general, the size of a cluster-
head’s 2.5 hop coverage set is less than that of its 3 hop coverage set. Therefore,
the cost of maintaining the 2.5-hop coverage set is less than that of the 3-hop
coverage set.

One common feature of all the above algorithms is that each clusterhead
needs two rounds of neighborhood information exchanges and overhead of these
neighborhood information is not taken into consideration when the clustering
algorithm is designed.

3 An Enhanced Mechanism of Exchanging Neighborhood
Information

Constructing clusters in a MANET needs several rounds of message exchanges.
Also, to build the cluster-based CDS of the network, each clusterhead has to
gather neighboring clusterhead information within its coverage set. These in-
formation comes from the neighboring clusterhead messages sent by those non-
clusterheads.

3.1 Construction Process

The construction of the cluster-based backbone is described in detail as follows:
At the beginning, each node can learn its neighbors’ IDs through HELLO

messages. The network is partitioned into clusters by applying the lowest-ID
clustering algorithm. A clusterhead will send out a CH message and a non-
clusterhead will send out a NCH message to inform its neighbors.

After the clusters have been formed, each node knows all its 1-hop neigh-
bors. A non-clusterhead v sends out a 1-hop neighboring clusterhead message
CH HOP1(v) which includes all v’s 1-hop neighboring clusterheads. When the
clusterhead u receives the CH HOP1 messages from all its non-clusterhead neigh-
bors, u adds an entry for each new neighboring clusterhead with its associated
gateway that connects the clusterheads together.

Once another non-clusterhead w receives the message CH HOP1(v) from v,
w builds the message CH HOP2(w) as follows: If a clusterhead u that is found
in CH HOP1(v) is also a 1-hop neighbor of w, w ignores u in the CH HOP2(w);
Otherwise, w checks if u is a new 2-hop clusterhead of w. If so, w creates a new
entry that contains the 2-hop clusterhead u and the its associated node v. If u

An Enhanced Message Exchange Mechanism 227

is already included in the entry and the associated node v has a higher priority
(e.g., lower ID or higher linkage quality, etc.) than the original one, the entry
can be updated with the new associated node v.

When w receives the CH HOP1 messages from all its non-clusterhead neigh-
bors, it sends out a message CH HOP2(w) that contains all 2-hop clusterhead
entries. Unlike other algorithms that each clusterhead includes all associated
gateways in the message CH HOP2, the CH HOP2 with enhanced mechanism
builds each entry with one clusterhead and one associated gateway. Therefore,
the size of the message CH HOP2 can be much smaller. When the clusterhead u
receives a CH HOP2, u builds a new entry for each clusterhead in the CH HOP2.

After clusterhead u receives all CH HOP1 and CH HOP2 messages from its
non-clusterhead neighbors, u builds its coverage set C(u) = C2(u)∪C3(u), where
C2(u) consists of all elements in CH HOP1 and C3(u) consists of all elements in
CH HOP2. If a clusterhead appears in both C2(u) and C3(u), the one in C3(u)
is removed.

Each clusterhead u selects gateways to connect all the clusterheads in C(u)
with the forward node set selection process. The gateways are selected by the
greedy algorithm: The neighbor node or the pair of nodes, whichever has the
highest “yield” is first selected as the gateway(s). A “yield” of node(s) is defined
as the total number of the clusterheads in the C(u) that was connected by the
selected gateway(s) divided by the number of the selected gateway(s). A tie of
yield is broken by selecting the smaller node ID. When a node is selected, all of
the clusterheads in C(u) is removed. The selection process repeats until C(u) is
empty.

After a clusterhead determines its gateways, it sends out a GATEWAY mes-
sage that contains all selected gateways. The selected 1-hop gateways forward
the GATEWAY message so that all the selected 2-hop gateways can be informed.

3.2 Example

Fig. 2 shows the construction process of a cluster-based CDS backbone. At the
beginning, all the nodes are candidates (Fig. 2 (a)). With the lowest-ID clustering
(LID) algorithm, nodes 1, 2, 4, 8 and 10 become clusterheads and form clusters
labelled as C1, C2, C3, C4 and C5; then nodes 7 and 9 join in cluster C1, nodes
3 and 6 join in cluster C2,nodes 5 joins in cluster C3 (Fig. 2 (b)).

Fig. 2(c) illustrates message exchange when node 4 construct its 3-hop and
2.5 hop coverage sets:

(1) For 3-hop coverage set, node 6 sends CH HOP1(6) (M1 in Fig. 2(c)) which
contains its 1-hop clusterhead neighbor set {2∗}, 3 sends CH HOP1(3) (M2
in Fig. 2(c)) contains {2∗, 8}. Here, * indicates the clusterhead of the cluster
that the node belongs to. Likewise, nodes 5 and 7 send CH HOP1(5)={4∗, 10}
and CH HOP1(7)={1∗, 4} (M3 and M5 in Fig. 2(c)). After receiving M1 and
M2, node 7 may form CH HOP2(7) (M6 in Fig. 2(c)) which contains its 2-hop
clusterhead neighbors and associated gateways {2[3], 8[3]}. Here, CH HOP2(u)=
{v[w], ...} means that clusterhead u connects to clusterhead v via w. Then node
7 sends CH HOP2(7) out. Note that node 7 picks node 3 as the gateway instead

228 W. Lou and J. Wu

(a)

84

5 6 2

37

1 9

(b)

8

C3 C4

C1

4

5 6 2 C2

37

1 9

M1

M2

M3
M4

M5 M6

M1

(c)

8

C3 C4

C1

4

5 6 2 C2

37

1 9

(d)

8

C3 C4

C1

4

5 6 2 C2

37

1 9

(e)

8

C3 C4

C1

4

5 6 2 C2

37

1 9

(f)

8

C3 C4

C1

4

5 6 2 C2

37

1 9

Fig. 2. Illustration of constructing a coverage set: (a) initial network, (b) clusters, (c)
exchange neighboring information, (d) 3-hop coverage set, (e) 2.5-hop coverage set, and
(f) cluster-based CDS

of node 6 because node 3 has two adjacent clusterheads 2 and 8. Also, the size of
the CH HOP2(7) is smaller than the one that includes all possible paths to node
2 since it only keeps the most favorable path in the message. Similarly, node 5
will send CH HOP2(5)={2[6]} out (M4 in Fig. 2(c)). After receiving M3, M4,
M5 and M6, node 4 can build its local view of its coverage set (Fig. 2(d)).

An Enhanced Message Exchange Mechanism 229

Clusterhead 4 selects node 5 as the gateway to connect to clusterhead 10,
selects nodes 7 and 3 as the gateways to connect clusterheads 1, 2 and 8, and
sends a message GATEWAY(1) = {3, 5, 7}. Similarly, clusterheads 1 and 8 se-
lect nodes 7 and 3 as gateways and send GATEWAY(1)=GATEWAY(8)={3, 7};
clusterhead 2 selects node 3 to connects clusterhead 8, selects nodes 3 and 7
to connect clusterheads 1 and 4, selects nodes 6 and 5 to connect clusterhead
10, and sends GATEWAY(2)={3, 5, 6, 7}; clusterhead 10 selects nodes 5 and 6
to connect clusterheads 2 and 4, and sends GATEWAY(10)={5, 6}. The final
cluster-based CDS is {1,2,3,4,5,6,7,8,10} (Fig. 2 (f)).
(2) For the 2.5-hop coverage set, node 4 builds its local view as Fig. 2(e).
Here, clusterhead 4 does not know clusterhead 8 since CH HOP2(7) only in-
cludes {2[3]}. Therefore, the size of the CH HOP2(7) is even reduced. The for-
ward node set selection process is similar and the final cluster-based CDS is
{1,2,3,4,5,6,7,8,10} (Fig. 2 (f)).

3.3 Message Overhead Complexity

The message exchange overhead for constructing a cluster-based CDS of the
network is listed in Table 1. Note that the number of clusterheads within 1-hop
and 2-hop neighbor set are bounded by a constant value [7], the size of CH HOP1
and CH HOP2 with the enhanced message exchange mechanism are O(1). On
contrast, the original one without this mechanism will send message CH HOP2
that containing all possible gateways. Therefore, the size of CH HOP2 is O(Δ),
where Δ is the maximum node degree of the network.

Table 1. Message Overhead Complexity

Algorithm
Message type Original Enhanced

HELLO O(1) O(1)
CH(NCH) O(1) O(1)
CH HOP1 O(1) O(1)
CH HOP2 O(Δ) O(1)
GATEWAY O(1) O(1)

Total O(Δ) O(1)

4 Simulations

We measure the average sizes of the message exchange for constructing the
cluster-based CDS with enhanced message exchange mechanism (referred to as
Enhanced (3-hop and 2.5-hop) and without enhanced message exchange mecha-
nism (referred to as Original (3-hop)). The size of the message is counted as the
number of nodes included in the message.

The simulation runs under the following simulation environment: A number
of nodes (ranging from 100 to 1000) are randomly placed in a confined working

230 W. Lou and J. Wu

space 100 × 100. The nodes have the same transmission ranges, and the link
between two nodes is bi-directional. The network is generated with two fixed
average node degrees: d = 6 and 18, which are the representatives of the relative
sparse and dense networks. If the generated network is not connected, it is dis-
carded. We only consider the traffic of the packets at the network layer without
any transmission collision. We repeat the simulation until the 99% confidential
interval of the result is within ±5%.

Table 2. Message exchange overhead (sparse network:n=1000,d=6)

Algorithm
Message Original(3-hop) Enhanced(3-hop) Enhanced(2.5-hop)
HELLO 1000.0 1000.0 1000.0

CH(NCH) 1000.0 1000.0 1000.0
CH HOP1 1209.3 1209.3 1209.3
CH HOP2 5106.3 3874.7 2973.7
GATEWAY 1134.0 1134.0 1013.3

Total 9449.6 8218.0 7197.3

Table 3. Message exchange overhead (dense network: n=1000, d=18)

Algorithm
Message Original(3-hop) Enhanced(3-hop) Enhanced(2.5-hop)
HELLO 1000.0 1000.0 1000.0

CH(NCH) 1000.0 1000.0 1000.0
CH HOP1 1601.8 1601.8 1601.8
CH HOP2 15587.6 6912.5 5421.9
GATEWAY 837.7 837.7 724.4

Total 20027.1 11352.0 9748.1

The Tables 2 and 3 show the cases that the sizes of different types of messages
exchanged for the construction of the clusters of the network, when the number
of nodes in the network is 1000 and the average node degree is 6 and 18 respec-
tively. We can see that the size of CH HOP2 is the most weighted part of the
total sizes (40% ∼ 70%). In the sparse scenario where average node degree d is 6,
the enhanced mechanism can reduce 25% of overhead of CH HOP2 with 3-hop
coverage set and 17% less with 2.5-hop coverage set compared with the original
one. The overhead of the total size of the message can reduce 13% and 24% of
the original one with 3-hop and 2.5-hop coverage set. In the dense network where
average node degree d is 18, the reduction of the overhead of the CH HOP2 can
reach 56% with 3-hop coverage set and 66% with 2.5-hop coverage. Correspond-
ingly, the total size of the message can reduce 43% and 51% of the original one.

The Fig. 3 shows the average size of message per node when the size of
the network ranges from 100 to 1000. Fig. 3 (a) shows the scenario when the

An Enhanced Message Exchange Mechanism 231

5

6

7

8

9

10

100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 s
iz

e
of

 m
es

sa
ge

 e
xc

ha
ng

e
pe

r
no

de

Number of nodes

(a) average degree = 6

Original (3-hop)
Enhanced (3-hop)
Enhanced (2.5-hop)

5

10

15

20

25

100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 s
iz

e
of

 m
es

sa
ge

 e
xc

ha
ng

e
pe

r
no

de

Number of nodes

(b) average degree = 18

Original (3-hop)
Enhanced (3-hop)
Enhanced (2.5-hop)

Fig. 3. Message Overhead: (a) average node degree = 6, and (b) average node
degree = 18

node degree is 6. The cost decreases from over 9 for the original one to around
8 (over 10%) for the enhanced mechanism with 3-hop coverage set, and then
to around 7 (over 20%) for the enhanced mechanism with 2.5-hop coverage
set. Fig. 3 (b) shows the scenario when d is 18. The cost decreases more re-
markably from near 20 for the original one to around 10 (50%) for the en-
hanced mechanism with 3-hop coverage set and even less for that with 2.5-
hop coverage set. We observe that overhead total cost of message exchange
per node increases remarkably (doubled) when the network becomes dense.
Also, we find that the enhanced mechanism can greatly reduce the message
exchange overhead, especially for the dense network. The reason is that when
the network is dense and each node has more neighbors, a CH HOP2 will
include more different intermediate nodes for each 2-hop clusterhead for the
original mechanism. Thus, the overhead of CH HOP2 increases remarkably.
When the CH HOP2 includes only one intermediate node for each 2-hop clus-
terhead for the enhanced mechanism, the message overhead can be greatly
reduced.

232 W. Lou and J. Wu

5 Conclusions

In this paper, an enhanced message exchange mechanism is proposed to reduce
the size of the messages when the network forms into clusters. When the non-
clusterhead nodes only exchange their 2-hop neighboring clusterhead with only
one intermediate node, the message complexity can be reduced from O(Δ) to
O(1). Simulation shows that this mechanism can greatly reduce the total message
overhead. When the network is dense network, over 50% of message overhead
can be saved.

References

1. S. Ni, Y. Tseng, Y. Chen, and J. Sheu: The broadcast storm problem in a mobile
ad hoc network. Proc. of ACM/IEEE MOBICOM’1999 (1999), 151–162.

2. V. Chvatal: A greedy heuristic for the set-covering problem. Mathematics of Oper-
ation Research, 4(3) (1979), 233–235.

3. M. V. Marathe, H. Breu, H. B. Hunt III, S. S. Ravi, and D. J Rosenkrantz: Simple
heuristics for unit disk graphs. Networks, 25 (1995), 59–68.

4. A. Ephremides, J. E. Wieselthier, and D. J. Baker: A design concept for reliable
mobile radio networks with frequency hopping signaling. Proc. of the IEEE, 75(1)
(1987), 56–73.

5. M.L. Jiang, J. Y. Li, and Y. C. Tay: Cluster based routing protocol (CBRP) func-
tional specification. IETF Internet draft (1999), http://www.ietf.org/ietf/draft-ietf-
manet-cbrp-spec-01.txt.

6. T. J. Kwon and M. Gerla: Efficient flooding with passive clustering (PC) in ad hoc
networks. ACM Computer Communication Review, 32(1) (2002), 44–56.

7. K. M. Alzoubi, P. J. Wan, and O. Frieder: Message-optimal connected dominating
sets in mobile ad hoc networks. Proc. of ACM/IEEE MOBIHOC’2002 (2002), 157–
164.

8. W. Lou and J. Wu: A cluster-based backbone infrastructure for broadcasting in
manets. Proc. of IEEE IPDPS’2003, Workshop of WMAN (2003).

Algorithmic-Parameter Optimization of a
Parallelized Split-Step Fourier Transform Using

a Modified BSP Cost Model�

Elankovan Sundararajan1, Malin Premaratne2, Shanika Karunasekera1, and
Aaron Harwood1

1 Department of Computer Science and Software Engineering,
The University of Melbourne,

ICT Building, 111 Barry Street, Carlton 3053,
Victoria, Australia

e.sundararajan@pgrad.unimelb.edu.au, {aharwood, shanika}@cs.mu.oz.au
2 Advanced Computing and Simulation Laboratory,

Department for Electrical and Computer System Engineering,
Monash University, Clayton 3800,

Victoria, Australia
malin.premaratne@eng.monash.edu.au

Abstract. Adaptive algorithms are increasingly acknowledged in lead-
ing parallel and distributed research. In the past, algorithms were man-
ually tuned to be executed efficiently on a particular architecture. How-
ever, interest has shifted towards algorithms that can adapt themselves
to the computational resources. A cost model representing the behavior
of the system (i.e. system parameters) and the algorithm (i.e algorithm
parameters) plays an important role in adaptive parallel algorithms. In
this paper, we contribute a computational model based on Bulk Syn-
chronous Parallel processing that predicts performance of a parallelized
split-step Fourier transform. We extracted the system parameters of a
cluster (upon which our algorithm was executed) and showed the use of
an algorithmic parameter in the model that exhibits optimal behavior.
Our model can thus be used for the purpose of self-adaption.

1 Introduction

Optimizing software to exploit the underlying features of computational re-
sources has been an area of research for many years. Traditionally, optimization is
done by hand tuning. However, this approach is tedious and requires skilled pro-
grammers and technical knowledge in both the algorithms and complexity of tar-
get platform. Performance of highly tuned software can decline upon even slight
changes in the hardware and computational load. This is further aggravated by

� This work was funded in part by the Australian Research Council, ARC grant num-
ber DP0452102.

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 233–244, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

234 E. Sundararajan et al.

the short life cycles of modern computer platforms. As a result, tuning of soft-
ware to fully exploit the computational resources should be a dynamic process.
Parallel algorithms should be able to take into consideration the availability of
computational resources i.e. system parameters in conjunction with algorithm
parameters before starting and during execution.

The bulk synchronous parallel (BSP) processing model of computation was
first proposed by Valiant [1] as a bridging model between hardware and software
for general purpose computation. BSP model consists of three parts: compu-
tation, communication and synchronization. Structure introduced by the BSP
model for parallel programming ensures clarity and flow of complicated parallel
programs. In this paper, we consider a modified BSP cost model approach as a
possible way to provide performance prediction of parallel algorithms running
on a cluster of PCs.

We address parallel implementation of the split-step Fourier (SSF) method
for solving the nonlinear Schrödinger equation (NLSE) arising in the field of
nonlinear fiber optics [2]. The selection of this problem is partially motivated
by the complexity of optical network and associated processes which presents a
formidable challenge for network designers because such complex systems require
the modeling and simulation of basic sub-systems as well as the overall system.

In Section 2, we give the BSP details, a parallel SSF method to solve nonlinear
Schrödinger equation and brief discussion on related works. Section 3 describes
the modified BSP cost analysis model for parallel split-step method, Section 4
presents analysis of predicted time and real time performance. Section 5 offers
some concluding remarks.

2 Background

2.1 Bulk Synchronous Parallel Processing Model

A BSP program is one which proceeds in stages, known as supersteps1 [3, 17, 18,
19]. A superstep consists of two phases. In the first phase, processors compute
using locally held data. In the second phase datasets are communicated between
the processors. The amount of time required to complete a BSP program is the
sum of the times required for completion of its supersteps. Thus, the required
time for a superstep is the sum of: (i) the longest computation time on any of
the processors, max

{
wi

si

}
; (ii) the longest communication time on any of the

processors; and (iii) the time overhead required by barrier synchronization.
The execution time for superstep i is:

Tsi = max

{
wi

si

}
+ TscL, (1)

where Tsi represents the time for a superstep, wi represents the number of float-
ing point operations performed by processor i, si gives the processing speed in

1 http://users.Comlab.ox.ac.uk/bill.mccoll/oparl.html

Algorithmic-Parameter Optimization 235

FLOPS of processor i and TscL the total time taken for communication and
synchronization. To minimize the execution time in Eq.(1), the programmer
must: (i) balance local computation over processors in each superstep; (ii) bal-
ance communication between processors to reduce large variation; and (iii) min-
imize the total number of supersteps in the program.

2.2 Parallel SSF Method

A non-linear Schrödinger equation (NLSE) is a nonlinear partial differential
equation that cannot be solved analytically except for a few cases. Taha and
Ablowitz [4] conducted a study where the SSF method of Tappert [5] was com-
pared with several finite difference, pseudospectral and global methods. In a
majority of their experiments the split-step method turned out to be superior,
thus high accuracy may be achieved at comparatively low computational cost [6].

Electromagnetic wave propagation in optical fiber is governed by the NLSE:

∂u

∂z
− β

2
∂2u

∂t2
+

i

2
αu − g|u|2 = 0, (2)

where u is the envelope of the signal wave, z is distance, t is time, β is group
velocity dispersion, α is loss coefficient, g is Kerr coefficient and i =

√−1.
Eq.(2) can be formally written as

∂u

∂z
= D̂ + N̂ u, (3)

where D̂ is a differential operator that accounts for dispersion and absorption
in linear medium and N̂ is a nonlinear operator that governs the effect of fiber
nonlinearities on pulse propagation[2]. In general, dispersion and nonlinearity
act together along the length of the fiber. Using the SSF method, propagation of
a pulse over the full length of optical fiber is simulated by dividing the full length
of the fiber into relatively small segments with length h, such that changes in
the envelope of optical signals can be considered sufficiently small.

More specifically, propagation from z to z + h is carried out in two steps.
In the first step, the nonlinearity acts alone, and D̂ = 0 in Eq.(3). In second
step, dispersion acts alone, and N̂ = 0 in Eq.(3). Using Eq.(3), the following
approximate expression with second order accuracy in h can be written as u(z +
h) ≈ exp (hD̂) exp (hN̂)u(z, t).

The exponential operator exp (hD̂) is evaluated conveniently in the Fourier
domain using exp (hD̂)B(z, t) = F−1

T exp
[
hD̂(iω)

]
FT B(z, t), where FT denotes

the Fourier transform operation and D̂(iω) is a number in the Fourier space.
The equation above is run over a number of iterations

[
Z
h

]
to arrive at the de-

sired distance. The required run time for the simulation depends on the number
of datasets used for the Fourier transform and the number of iterations.

Discrete Fourier Transform. The discrete Fourier transform (DFT) plays an
important role in many scientific and technical applications [7]. The discrete one

236 E. Sundararajan et al.

dimensional forward DFT for discrete set of N points is defined in the literature
[8] as

U(z) =
N−1∑
k=0

u(k)e
(
− 2πizk

N

)
: z ∈ {0, 1, ..., N − 1}. (4)

A direct implementation uses O(N2) computations. However a fast Fourier
transform (FFT) gives O(N log N) computations. The first algorithm of Fast
Fourier Transform (FFT) dates back to Gauss and was made popular by Cooley
and Tukey [9]. Researchers have generated variants of this algorithm by looking
at specific features [10, 11, 12].

An efficient implementation of the FFT is the FFT-Transpose Method (FFT-
TM) and can be derived from the one dimensional FFT. Suppose that the num-
ber of discrete samples is N and that it has the following factorization: N =
N0N1, where N0, N1 ∈ Z

+ then define two-dimensional arrays u(l,m) = u(k)
and U(n, p) = U(z) where k = l + mN0 and z = n + pN1. Then, Eq.(4) can be
transformed [8, 10, 13] to:

U(n, p) =
N0−1∑
l=0

e−i
(

2πlp
N0

)
e−i

(
2πn
N

) N1−1∑
m=0

u(l,m)e−i
(

2πmn
N1

)
.

Therefore, U(n, p) can be computed as two multiple FFTs. First compute N0
FFTs of length N1 each and multiply with exp(−i2πn

N):

U ′(l, n) = e−i
(

2πn
N

) N1−1∑
m=0

u(l,m)e−i
(

2πmn
N1

)
.

Next compute N1, FFTs of length N0, U(n, p) =
∑N0−1

l=0 U ′(l, n)e−i
(

2πlp
N0

)
.

The complexity of the FFT-TM algorithm is given by O
(

N
P log2N

)
.

Implementation Using BSP. The FFT-TM algorithm consists of computing
one dimensional FFT on both dimensions using FFTW[11, 12]:

Pseudo code for the 2 Dimensional Split-step method.

Calculate Initial data.
For (Loop = 1 to NLoop)

Superstep 1.
If(Loop != 1)

Multiply conjugate phase factor.
Backward transform every row in each processor.
Nonlinear step.

End of If
1. Forward transform every row in each processor.
2. Multiply phase factor.
3. Distribute and arrange the dataset.

End of Superstep 1.
Superstep 2.

Algorithmic-Parameter Optimization 237

1. Forward transform every column in each processor.
2. Linear step.
3. Backward transform every column in each processor.
4. Arrange and distribute the dataset.

End of superstep 2.
End of Loop.

This implementation can be used for any number, 2i, i = 0, 1, 2, . . . , of pro-
cessors. The size of rows can be changed without changing the code by varying
the product N = N0N1, thus N0 is an algorithmic parameter.

Related Work. A parallel implementation of the SSF method for solving the
NLSE is presented in [14]. This work explored the performance of the implemen-
tation for a fixed number of rows. It is also mentioned that a perfect speedup
can be achieved over sequential SSF algorithm by tuning the number of proces-
sors and problem size. Adaptive systems are currently an active area of research.
These systems are expected to have the necessary ‘intelligence’ to adapt them-
selves to available resources so that efficient performance can be achieved. Many
works have attempted to obtain this type of efficient systems in different fields
[11, 15, 16]. In this paper, we have introduced a model which is based on empiri-
cal studies on the target cluster. This model is later used to predict the optimal
behavior of algorithmic parameter, N0 for best possible execution time.

3 Modified BSP Cost Analysis Model

In this section, we provide detailed notation to represent parts in the calculation.
TLft(m) and TUft(m) with m being the dataset size, is the lower bound and the
upper bound on time taken to transform m complex datum using the FFTW
package. TLcms(x) and TUcms(x) with x being the message size in bytes, is the
lower bound and upper bound on predicted time for all-to-all communication
to complete. It also includes the barrier synchronization time for a subsequent
barrier operation. We used a look up table to store information gathered from
empirical experiment. The performance prediction model uses this table for pre-
diction purposes. We have used utilities run on the target cluster to predict the
time taken for arithmetic, trigonometric, and other basic mathematical func-
tions, with results kept in a look up table.

The model described below is for the implementation using row-by-row dis-
tribution. We have used coefficients such as 221 and 479.26 in (6), (7) and (8).
These are constants that represents the lower and upper bound of total normal-
ized time taken for arithmetic, trigonometric and other mathematical functions
respectively.

Total time consumed in an iteration is given by Eq.(5):

Tlp = TC + TCMS , (5)

where Tlp is total time taken to complete an iteration, TC is total time taken
for computation in a loop and TCMS is total time taken for communication and

238 E. Sundararajan et al.

synchronization in a loop. Continuing, TC = Tcs1 + Tcs2 + Tca where Tcs1 is
time taken for computation in superstep 1, Tcs2 is time taken for computation
in superstep 2 and Tca is the time taken for computation after supersteps. Tcs1
includes the time for Fourier transform on the rows of initial data using forward
FFT, multiplying phase factor to the transformed dataset and also the time in
arranging the received dataset. N0

P is the total number of rows in a node, P
represents number of processors used in the numerical simulation, N1 represents
the total number of data in a row while TLpt and TUpt are the average time of
the repeated runs minus the standard deviation and average time of repeated
runs plus the standard deviation for the addition operation. These values are
later used to normalize all the other operations. Now,

N0

P
TLft(N1) + TLpt

221N0N1

P
≤ Tcs1 ≤ N0

P
TUft(N1) + TUpt

479.26N0N1

P
.

(6)

The time taken in superstep 2, Tcs2, includes the time for transforming the
column of dataset from 1st superstep using forward FFT, operation on linear
part, transforming the column of dataset using backward FFT and arranging
the dataset before distribution:

2N1

P
TLft(N0) +TLpt

448.33N0N1

P
≤ Tcs2 ≤ 2N1

P
TUft(N0) +TUpt

978.82N0N1

P
.

(7)

Computation before supersteps involves calculating the initial value of the
pulse. This Initial value is calculated only once and it is outside the iteration
loop. Computation after supersteps is for multiplying phase factor, transforming
the rows of datasets from 2nd superstep and computation of the nonlinear part.
Let Tcb be the time taken for computation before supersteps:

TLpt

{
389.91N0N1

P

}
≤ Tcb ≤ TUpt

{
895.65N0N1

P

}
.

TLpt

{
319.4N0N1

P

}
+

N0TLft(N1)
P

≤ Tca ≤ TUpt

{
693.78N0N1

P

}
+

N0TUft(N1)
P

.

(8)

Communication occurs at the end of each superstep. In both supersteps, all-
to-all is used to scatter portions of the calculated data from each process to all
the other processes. An experiment was conducted on a cluster of 2,4 and 8 PCs
to predict the time, Tcms(x), taken to distribute messages with different sizes
using all-to-all, assuming a single user mode:

N0

P

{
TLcms(16N1)

} ≤ Tcms1, Tcms2 ≤ N0

P

{
TUcms(16N1)

}
.

Thus, TCMS is given by

2N0

P

{
TLcms(16N1)

} ≤ TCMS ≤ 2N0

P

{
TUcms(16N1)

}
(9)

Algorithmic-Parameter Optimization 239

and substituting (6),(7),(8),(9) into Eq.(5) gives

2N1

P
TLft(N0) +

2N0

P
TLft(N1) +TLpt

988.73N0N1

P
+

2N0

P
TLcms(16N1) ≤ Tlp

≤ 2N1

P
TUft(N0) +

2N0

P
TUft(N1) +TUpt

2151.86N0N1

P
+

2N0

P
TUcms(16N1) .

(10)

For K iterations, Eq.(10) can be written as

TLpt
389.91N0N1

P
+K

2N1

P
TLft(N0) +

2N0

P
TLft(N1) +TLpt

988.73N0N1

P
+

2N0

P
TLcms(16N1) ≤ TLP ≤ TUpt

895.65N0N1

P
+ K

2N1

P
TUft(N0) +

2N0

P
TUft(N1) + TUpt

2151.86N0N1

P
+

2N0

P
TUcms(16N1)

where TLP is the time taken for completing the simulation.

4 Experimental and Predicted Computation Times

Experiments were conducted on a cluster which consists of PCs each having a
Pentium 4 2GHz processor, 512 MB memory, 40 GB hardisk space, and a Red
Hat 7.3 Linux operating system. These PCs are interconnected using 16 port
Gigabit LAN Switch (Dlink DGS-1016T). We used the Message Passing Inter-
face (MPI)[20] as the basis for parallel programming, namely the MPI all-to-all
and barrier functions.

We developed two versions of the parallel SSF, one distributes datasets row-
by-row and the other distributes datasets all-at-once. We find that for the former,
refer Fig. 1, as the number of rows increases to more than the size of data in a
row (i.e. N0 > N1), the number of calls to all-to-all collective communication
primitive increases and the size of datasets that are distributed at any one time
becomes less to the extend of effecting the performance of the implementation.
This behavior is reflected by our model which can predict the best size of N0 that
should be used to extract the best performance from the implementation. The
parallel program which distributes datasets all-at-once, Fig. 2, is slower for the
best size of N0 compared to the one sent row-by-row, Fig. 1, because the datasets
must be arranged before distribution and rearranged again after distribution to
obtain the transposed datasets whereas the row-by-row implementation requires
arranging the datasets only once.

Fig. 1 and Fig. 2 shows actual run time and predicted (average of upper bound
and lower bound) time of the implementation for different data size (i.e 220, 222

and 223) and different number of processors (i.e. P = 2, 4, 8) using distribution
row-by-row and all-at-once respectively. We have used a maximum size of 223

data, so that the speedup can be calculated (i.e. to compare speed with a single

240 E. Sundararajan et al.

(a) Real time, N = 220 (b) Predicted time, N = 220

(c) Real time, N = 222 (d) Predicted time, N = 222

(e) Real time, N = 223 (f) Predicted time, N = 223

Fig. 1. Actual run time and predicted time for different data sizes, using row-by-row
distribution

Algorithmic-Parameter Optimization 241

(a) Real time,N = 220 (b) Predicted time,N = 220

(c) Real time,N = 222 (d) Predicted time,N = 222

(e) Real time,N = 223 (f) Predicted time,N = 223

Fig. 2. Actual run time and predicted time for different data sizes, using all-at-once
distribution

242 E. Sundararajan et al.

Table 1. The actual and predicted size of rows that minimizes execution time

(a) Datasets distributed row-by-
row

N P Actual, N0 Predicted, N0

220 2 28 28

222 2 210 210

223 2 211 211

220 4 29 28

222 4 211 210

223 4 212 211

220 8 28 28

222 8 211 210

223 8 211 211

(b) Datasets distributed all-at-
once.
N P Actual, N0 Predicted, N0

220 2 29 29

222 2 211 211

223 2 212 211

220 4 211 29 and 211

222 4 211 211

223 4 211 211 and 212

220 8 29 29

222 8 211 211

223 8 211 211

node). This is because of memory limitation, only 512MB RAM is available on
each node. Each datum requires 16 bytes. For FFT two arrays of the same size
for input and output is required and only data size of 2n is allowed.

Table 1. shows the comparison of the actual best number of rows from run-
ning the program and the best number of rows recommended by the performance
model. We believe that inconsistencies in the prediction is due to the effect of
memory hierarchy and communication. The speedup is mostly impaired by the
communication phase, as a lot of time is spent during the transposition stage.
This is further aggravated by the unprecedented effectiveness of the sequential
program that utilizes FFTW package. FFTW automatically adapts the com-
putation to the hardware by a special purpose compiler written in Objective
Caml[12]. Table 2. depicts the results of implementation using row-by-row dis-
tribution and all-at-once distribution for 20 iterations respectively. The notations
r.t. and p.t. represents real time and predicted time.

5 Conclusion

In this paper, we developed a modified BSP model for predicting the perfor-
mance of parallel SSF method for solving nonlinear Schrödinger equation. We
have shown that a performance model based on BSP model can be used to model
complicated parallel complications for the purpose of adapting an algorithmic
parameter. Thus, our work is useful for self adaptive parallel algorithms. We
have shown that by using the performance model we can predict an optimal
value for the algorithmic parameter N0 that will minimize the computation time
of the algorithm. The predicted performance is accurate but different to the
measured values and we believe it is due to the effect of the memory hierarchy
and communication. Our present model does not take memory hierarchy into
consideration. In future work, we would like to explore the possibility of hav-
ing a performance model that could include the effect of memory hierarchy as
well.

Algorithmic-Parameter Optimization 243

Table 2. (a-f) Speedup and timings for row-by-row distribution. (g-l) Speedup and
timings for all-at-once distribution

(a) N = 220

P r.t. (s) Speedup
1 34.19 1
2 30.34 1.13
4 14.71 2.32
8 7.58 4.51

(b) N = 222

P r.t. (s) Speedup
1 203.61 1
2 122.45 1.66
4 58.62 3.47
8 30.13 6.76

(c) N = 223

P r.t. (s) Speedup
1 320.11 1
2 234.72 1.36
4 119.86 2.67
8 60.12 5.32

(d) N = 220

P p.t. (s) Speedup
1 34.19 1
2 37.10 1.26
4 15.01 2.27
8 7.58 4.51

(e) N = 222

P p.t. (s) Speedup
1 203.61 1
2 110.63 1.84
4 61.14 3.33
8 30.89 6.59

(f) N = 223

P p.t. (s) Speedup
1 320.11 1
2 220.19 1.45
4 121.75 2.63
8 61.50 5.20

(g) N = 220

P r.t. (s) Speedup
1 34.19 1
2 33.80 1.01
4 20.18 1.69
8 10.67 3.2

(h) N = 222

P r.t. (s) Speedup
1 203.61 1
2 125.14 1.63
4 80.29 2.54
8 42.17 4.83

(i) N = 223

P r.t. (s) Speedup
1 320.11 1
2 242.77 1.32
4 159.52 2.01
8 86.55 3.70

(j) N = 220

P p.t. (s) Speedup
1 34.19 1
2 33.16 1.03
4 20.55 1.66
8 10.82 3.16

(k) N = 222

P p.t. (s) Speedup
1 203.61 1
2 128.62 1.58
4 82.48 2.47
8 43.74 4.66

(l) N = 223

P p.t. (s) Speedup
1 320.11 1
2 258.68 1.24
4 158.88 2.01
8 87.99 3.64

Acknowledgement

Elankovan Sundararajan would like to thank The National University of Malaysia
for providing financial assistance. We would also like to thank anonymous re-
viewers for their constructive comments.

References

1. Valiant, L.: A bridging model for parallel computation. Communication of the
ACM 33 (1990) 103–111

2. Agrawal, G.: Nonlinear Fiber Optics. 3rd edn. Academic Press (2001)
3. Skillicorn, D., Hill, J., McColl, W.: Questions and answers about BSP. Scientific

Programming 6 (1998) 249–274

244 E. Sundararajan et al.

4. Taha, T., Ablowitz, M.: Analytical and numerical aspects of certain nonlinear
evolution equation II. numerical, nonlinear Schrödinger equation. In: J. Comp.
Phys. Volume 55. (1984) 203–230

5. Tappert, F.: Numerical solutions of the Korteweg-de Vries equation and its gener-
alizations by the split-step Fourier method. In: Lect. Appl. Math. (1974) 215–216

6. Weideman, J., Herbtz, B.: Split-step methods for the solution of the nonlinear
Schrödinger equation. SIAM Journal on Numerical Analysis 23 (1986) 485–507

7. Gupta, A., Kumar, V.: The scalability of FFT on parallel computers. IEEE
Transaction of Parallel and Distributed Systems 4 (1993) 922 – 932

8. Chu, E., George, A.: Inside the FFT black box: serial and parallel fast Fourier
transform algorithms. Boca Raton, Fla.: CRC Press (2000)

9. Cooley, C., Tukey, J.: An algorithm for the machine calculation of complex Fourier
series. Math. Comput 19 (1965) 297–301

10. Calvin, C.: Implementation of parallel FFT algorithms on distributed memory
machines with a minimum overhead of communication. Parallel Computing 22
(1996) 1255–1279

11. Frigo, M., Johnson, S.: FFTW: An adaptive software architecture for the FFT.
Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal
Processing 3 (1998) 1381–1384

12. Frigo, M.: A fast Fourier transform compiler. Proceedings of the ACM SIG-
PLAN’99 Conference on Programming Language Design and Implementation
(PLDI) (1999) 169–180

13. Proakis, J.: Digital Communications. Boston : McGraw-Hill, McGraw-Hill Higher
Education (2001)

14. Zoldi, S.M., Ruban, V., Zenchuk, A., Burtsev, S.: Parallel implementations of the
split-step Fourier method for solving nonlinear Schrödinger systems. SIAM News
32 (1997)

15. Whaley, R., Petitet, A., Dongarra, J.: Automated empirical optimizations of soft-
ware and the ATLAS project. Parallel Computing 27 (2001) 3–35

16. Chen, Z., Dongarra, J., Luszczek, P., Roche, K.: Self adapting software for nu-
merical linear algebra and LAPACK for clusters. Parallel Computing 29 (2003)
1723–1743

17. McColl, W.F., Tiskin, A.: Memory-efficient matrix computations in the BSP
model. Algorithmica 24 (1999) 287–297

18. Tiskin, A.: Bulk-synchronous parallel Gaussian elimination. Journal of Mathemat-
ical Sciences 108 (2002) 977–991

19. Gerbessiotis, A.V., Siniolakis, C.J., Tiskin, A.: Parallel priority queue and list
contraction: The BSP approach. Computing and Informatics 21 (2002) 59–90

20. Gropp, W., Lusk, E., Skjellum, A.: Using MPI:Portable parallel programming with
the Message Passing Interface. 2nd edn. The MIT Press (1999)

Parallel Volume Rendering with Early Ray Termination
for Visualizing Large-Scale Datasets

Manabu Matsui, Fumihiko Ino, and Kenichi Hagihara

Graduate School of Information Science and Technology, Osaka University,
1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan

m-matui@ist.osaka-u.ac.jp

Abstract. This paper presents an efficient parallel algorithm for volume render-
ing of large-scale datasets. Our algorithm focuses on an optimization technique,
namely early ray termination (ERT), which aims to reduce the amount of compu-
tation by avoiding enumeration of invisible voxels in the visualizing volume. The
novelty of the algorithm is that it incorporates this technique into a distributed
volume rendering system with global reduction of the computational amount. The
algorithm also is capable of statically balancing the processor workloads. The ex-
perimental results show that our algorithm with global ERT further achieves the
maximum reduction of 33% compared to an earlier algorithm with local ERT. As
a result, our load-balanced algorithm reduces the execution time to at least 66%,
not only for dense objects but also for transparent objects.

1 Introduction

Direct volume rendering [1] is a technique for displaying three-dimensional (3-D) vol-
umetric scalar data as a two-dimensional (2-D) image. Typically, the data values in the
volume are made visible by mapping them to color and opacity values, which are then
accumulated to determine the image pixel.

One challenging issue in volume rendering is to realize fast rendering for large-scale
datasets. However, finding a solution to this issue is not easy due to the high time and
space complexities of volume rendering, both represented as O(n3) for an n × n × n
voxel volume. Therefore, fast processors with large memories are necessary to carry out
this compute-intensive rendering with in-core processing.

To address this issue, many acceleration techniques have been proposed in the past.
Levoy [2] proposes two optimization techniques that reduce the time complexity of
volume rendering. The first technique is early ray termination (ERT), which adaptively
terminates accumulating color and opacity values in order to avoid useless ray casting.
The second technique is a hierarchical octree data structure [3], which encodes spatial
coherence in object space in order to skip empty regions of the volume. These techniques
reduce the execution time by roughly a factor of between 5 and 11. Nukata et al. [4]
present a cuboid-order rendering algorithm that aims to maximize the cache hit ratio by
dividing the volume into cuboids, which are then rendered successively. This algorithm
enables view-independent fast volume rendering on a single CPU computer.

Another promising approach is parallelization on parallel computers. Hsu [5] pro-
poses the segmented ray casting (SRC) algorithm, which parallelizes volume rendering
on a distributed memory parallel computer. This algorithm distributes the volume by

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 245–256, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

246 M. Matsui, F. Ino, and K. Hagihara

using a block-block decomposition and carries out data-parallel processing to generate
subimages for each decomposed portion. The subimages are then merged into a final
image by using an image compositing algorithm [6, 7].

Though many earlier projects propose a wide variety of acceleration schemes, data
distributed parallel schemes [5–7] are essential to render large-scale datasets that cause
out-of-core rendering on a single CPU computer. One problem in these schemes is
that the increase of computational amount compared to sequential schemes, where the
amount can easily be reduced by means of ERT. This increase is due to the low affinity
between ERT and data distribution. That is, while data distribution makes processors
independently render the volume data, ERT is based on the visibility of the data, de-
termined in a front-to-back order. Therefore, earlier parallel algorithms independently
apply ERT to each distributed data in order to perform data-parallel processing. This
locally applied ERT, namely local ERT, increases the computational amount compared
to global ERT, because the visibility is locally determined, so that processors render
locally visible but globally invisible voxels. Thus, earlier data distributed schemes are
lacking the capability of global ERT, so that these schemes can suffer in low efficiency
especially for large-scale datasets with many transparent objects.

Gao et al. [8] address this issue by statically computing the visibility of the volume
data. However, their static visibility culling approach requires pre-processing for every
viewing direction, so that its pre-processing stage prevents rapid visualization.

The key contribution of this paper is the development of a parallel algorithm that
dynamically realizes global ERT in a distributed volume rendering system. Our algorithm
has the following two advantages.

R1: Reduction of the memory usage per processor by data distribution.
R2: Reduction of the computational amount by global ERT without pre-processing.

To realize R1, our algorithm employs a block-cyclic decomposition that is capable
of statically balancing the processor workloads. To realize R2, the algorithm employs
an efficient mechanism for sharing the visibility information among processors.

The remainder of the paper is organized as follows. Section 2 introduces earlier
algorithms and presents the problem we tackled in this work. Section 3 describes the
details of our algorithm while Section 4 presents some experimental results on a cluster
of 64 PCs. Finally, Section 5 concludes the paper.

2 Volume Rendering

Figure 1(a) shows an overview of the ray casting algorithm [1]. This algorithm produces
an image by casting rays from the viewpoint through the screen into the viewing volume.
The image pixel Is,t on point (s, t) is determined by accumulating color and opacities
values of penetrated voxels V1, V2, . . . , Vk: Is,t =

∑k
i=1 α(Vi)c(Vi)

∏i−1
j=0(1−α(Vj)),

where C(Vi) and α(Vi) are the color and opacity values of the i-th penetrated voxel Vi,
respectively; 0 ≤ α(Vi) ≤ 1; and α(V0) = 0. Computing Is,t for all points (s, t) on the
screen, where 1 ≤ s ≤ ns and 1 ≤ t ≤ nt, generates the final image of size ns × nt.
In the following discussion, let as,t(i) be the accumulated transparency for voxel Vi,
where as,t(i) =

∏i−1
j=0(1− α(Vj)).

Parallel Volume Rendering with Early Ray Termination 247

View Point

(s,t)

Screen

Vk Ray

Volume

V1
nn

rs,t
V2

n n

n

st

x z

y

(a)

x

y
z

Sub-
screen

(b)

x

y
z

Subvolume

(c)

Fig. 1. Ray casting and its parallel schemes. (b) Screen-parallel rendering and (c) object-parallel
rendering parallelize (a) ray casting by exploiting the parallelism in screen space and in object
space, respectively

Screen

V1 V2 V3 V4 V5 V6 V7 V8 V9

Voxel Invisible voxels

}rs,t

(a)

Screen

V1 V2 V3}

Subvolume

rs,t

}P1

V4 V5 V6

}P2

V7 V8 V9

}P3Processor

Invisible voxels

}

(b)

Fig. 2. Early ray termination (ERT). (a) Global ERT for sequential and screen-parallel rendering,
and (b) local ERT for object-parallel rendering. While global ERT terminates the ray immedi-
ately before invisible voxel V5, local ERT fails to avoid accumulating locally visible but globally
invisible voxels: V5, V7, and V8. Voxels V6 and V9 are invisible locally as well as globally

ERT reduces the computational amount by avoiding accumulation of color and opac-
ity values that do not have influence on the final image. That is, ERT avoids enumerating
voxels Vl, Vl+1, . . . , Vk if as,t(l) = 0.

Earlier parallel schemes can be classified into two groups: screen-parallel and object-
parallel rendering as illustrated in Figure 1.

Screen-parallel rendering exploits the parallelism in screen space. In this scheme, the
screen is divided into p subscreens, where p represents the number of processors, and
tasks associated with each subscreen are assigned to processors. Because each processor
takes responsibility for the entire of a ray as it does in sequential schemes, ERT can easily
be applied to this scheme, as illustrated in Figure 2(a). Furthermore, by assigning the tasks
in a cyclic manner, this scheme statically balances the processing workloads. However,
it requires large main memory to provide fast rendering for any given viewpoint, because
every processor need to load the entire volume into memory. Thus, though screen-parallel
rendering is a good scheme for small datasets, which require no data decomposition, it
does not suit for large-scale datasets.

In contrast, object-parallel rendering exploits the parallelism in object space. This
scheme divides the volume intop subvolumes, and then assigns tasks associated with each
subvolume to processors. Parallel rendering of each subvolume generates p distributed
subimages, so that image compositing is required to merge subimages into the final
image. Thus, this scheme allows us to distribute subvolumes to processors, so that is
suitable for large-scale datasets. However, because accumulation tasks of a ray can be
assigned to more than one processor, it is not easy to utilize global ERT in this scheme.

248 M. Matsui, F. Ino, and K. Hagihara

Figure 2(b) shows an example of local ERT in object-parallel rendering. In this
example, voxels from V1 to V4 are visible from the viewpoint while voxels from V5 to
V9 are invisible. These voxels are assigned to three processors, so that each processor
takes responsibility for three of the nine voxels. In object-parallel rendering, the reduction
given by ERT is localized in each processor, because processors take account of the local
visibility instead of the global visibility. For example, processor P2 fails to identify V5
as an invisible voxel, because it accumulates opacity values from its responsible V4 in
order to perform data-parallel processing. Furthermore, although P2 terminates the ray
after V5, its back neighborhood P3 is unaware of this termination, so that accumulates
V7 and V8, according to the local visibility.

3 Data Distributed Algorithm with Early Ray Termination

Our algorithm is based on object-parallel rendering to deal with large-scale datasets.
It integrates the following techniques: (1) Data distribution by a block-cyclic decom-
position; (2) Concurrent processing of volume rendering and image compositing; (3)
Visibility sharing by a master/slave paradigm; (4) Parallel image compositing.

3.1 Data Distribution

Our algorithm distributes the volume data according to a block-cyclic decomposition,
aiming to maximize the parallelism that can be decreased due to global ERT. The fol-
lowing discussion describes why we employ this decomposition.

In order to realize global ERT in object-parallel rendering, processors have to share
the visibility information, namely accumulated transparency. For example, as illustrated
in Figure 2(b), in a case where processors P2 and P3 are responsible for neighborhood
voxels and P2 terminates the ray, P3 can avoid accumulating all of its responsible voxels
V7, V8, and V9 after it obtains the value of accumulated transparency that P2 has computed
for V6. However, this indicates that casting a ray with global ERT has no parallelism
in the viewing direction, because P3 has to wait for P2 to complete rendering of its
responsible voxels. Thus, applying global ERT to object-parallel rendering decreases
the entire parallelism in object space due to processor synchronization. Note here that
the parallelism in screen space is remained.

The key idea to address this decreased parallelism is that exploiting parallelism
in vertical planes perpendicular to the viewing direction. That is, we employ (A) a
data decomposition that allows every processor to have equal-sized tasks on any cross
sections of the volume. Such decomposition minimizes the overhead for the processor
synchronization by allowing processors to overlap communication with computation.
For example, processor P3 in Figure 2(b) can perform rendering for other rays during
waiting for P2, because any processor has its responsible tasks on any vertical plane
perpendicular to the viewing direction. Furthermore, this decomposition realizes static
load balancing because tasks on any cross sections are assigned equally to processors.

As the results of the above considerations, our algorithm employs a block-cyclic
decomposition. Note here that a cyclic decomposition is more appropriate than this de-
composition in terms of (A). However, it possibly decreases rendering performance due

Parallel Volume Rendering with Early Ray Termination 249

to frequent communication among processors, because a task in the cyclic decomposi-
tion corresponds to a voxel, so that communication occurs for each voxel. Therefore, we
use a combination of block and cyclic decompositions in order to have coarse-grained
tasks without losing the nature of load balancing.

In addition to this data distribution technique, our algorithm aims to reduce the time
complexity by encoding empty regions as Levoy does in [2]. We use an adaptive block
decomposition rather than Levoy’s hierarchical octree, because it increases traversing
overheads with the degree of its hierarchy [9]. The adaptive block decomposition ad-
dresses this issue by uniformly space partitioning.

3.2 Concurrent Processing of Volume Rendering and Image Compositing

As mentioned before, ERT aims to efficiently render the volume according to the visibil-
ity. Note here that the visibility in object-parallel rendering is determined by compositing
of subimages. Therefore, applying global ERT to object-parallel rendering requires con-
current processing of volume rendering and image compositing. Furthermore, to obtain
better performance, (B) a rapid read/write access to the visibility information, namely
the accumulated transparency for an arbitrary ray, must be provided.

In order to realize (B), we classify processors into two groups as follows: (1) Render-
ing Processors (RPs), defined as processors that render subvolumes in order to generate
subimages; (2) Compositing Processors (CPs), defined as processors that composite
subimages and manage accumulated transparency as,t for all rays, where as,t denotes
the accumulated transparency for ray rs,t. Note here that the relation between CPs and
RPs is similar to that between masters and slaves in the master/slave paradigm. The
details of CPs and RPs are presented later.

3.3 Visibility Sharing Mechanism

Figure 3 shows the processing flow of our master/slave based algorithm. Let r, c, and v
be the number of RPs, CPs, and subvolumes, respectively. The processing flows for RPs
and CPs consist of the following phases.

Processing Flow for RPs

1. Data distribution. The volume is divided into at least r subvolumes, which are then
distributed to r RPs in a round-robin manner. Data distribution phase occurs only
at the beginning of the system.

2. Rendering order determination. Each RP determines the rendering order of assigned
subvolumes by constructing a list of subvolumes, L, in which its responsible v/r
subvolumes are sorted by the distance to the screen in an ascending order. This
ascending order is essential to achieve further reduction by means of ERT. List L is
updated every time the viewpoint moves.

3. Accumulated transparency acquisition. Each RP deletes a subvolume from the head
of L, then obtains accumulated transparencies from CPs, for all rays that penetrate
the subvolume. Let T be a set of accumulated transparencies obtained from CPs.

4. Subvolume rendering. For all rays rs,t such that as,t ∈ T and as,t > 0, each RP
accumulates the voxels penetrated by rs,t so that generates a subimage. Note here

250 M. Matsui, F. Ino, and K. Hagihara

Rendering Processors

1. Data distribution

4. Subvolume rendering

5. Rendered subimage
 transmission

Subimage d. Subimage compositing
 and accumulated
 transparency updating

No

Yes

Compositing Processors

CPc

b. Message waiting

2. Rendering order
 determination

a. Compositing order
 determination

6. All subvolumes are
 traversed?

e. All finish messages
 are received?

Viewpoint movement

Yes

No

RP1 CP1RP2 RPr CP2 ...

Finish message

b. Message waiting

b. Message waiting

3. Accumulated transparency
 acquisition

c. Accumulated transparency
 transmission

Request

T: A set of accumulated transparencies

...

Fig. 3. Processing flow of proposed algorithm

that the algorithm avoids rendering for all rays rs,t such that as,t ∈ T and as,t = 0,
according to ERT.

5. Rendered subimage transmission. Each RP transmits the rendered subimages to CPs.
Because blank pixels have no influence on the final image, the algorithm transmits
only pixels inside the bounding rectangle of the subimages in order to reduce the
amount of communication.

6. Completion check. Phases 3., 4., and 5. are repeated until list L becomes empty.
Empty L indicates that the RP completes performing all assigned tasks for the current
viewpoint, so that it sends a finish message to all CPs.

Processing Flow for CPs

a. Compositing order determination. Each CP determines the compositing order of
subimages by constructing a list of subvolumes, M , in which all v subvolumes are
sorted by the distance to the screen in an ascending order.

b. Message waiting. Each CP waits for incoming messages from RPs. Such messages
contain request messages for accumulated transparency acquisition, data messages
including rendered subimages, and finish messages.

c. Accumulated transparency transmission. Each CP transmits T that RPs require.
d. Subimage compositing and accumulated transparency updating. Each CP updates T

by compositing its local subimages with received subimages, according to the order

Parallel Volume Rendering with Early Ray Termination 251

I2
I1

I3

(a)

S1 S2

S3 S4

I2
I1

I3

(b)

Fig. 4. Screen-parallel compositing. Dividing the screen into subscreens produces more parallelism
of image compositing

of list M . If keeping this order is impossible due to the lack of the still unrendered
subimages, it stores the received subimages into a local buffer for later compositing.

e. Completion check. Phases b., c. and d. are repeated until receiving finish messages
from all RPs.

3.4 Parallel Processing of Image Compositing

In the master/slave paradigm, the master becomes a performance bottleneck if it is
assigned many slaves beyond its capacity. Therefore, our algorithm parallelizes the
master’s tasks by exploiting the parallelism in screen space. That is, as screen-parallel
rendering does, it divides the screen into at least c subscreens and assigns them to c CPs.
Let s be the number of subscreens.

In addition to the benefits of acceleration, this screen-parallel compositing increases
the parallelism of image compositing. Figure 4 gives an example of this increased par-
allelism. In this example, subimages I1, I2, and I3 are rendered from neighborhood
subvolumes located in a front-to-back order. As shown in Figure 4(a), compositing I1
and I3 requires rendered I2 if we avoid dividing the screen. In this case, CPs have to wait
for RPs to generate I2 before compositing I1 and I3. In contrast, if the screen is divided
into subscreens, rendered I2 is unnecessary to perform compositing in subscreens S2, S3,
and S4. Therefore, compositing in these subscreens can be carried out without waiting
the rendering of I2, so that screen-parallel compositing enables compositing subimages
at shorter intervals. This means that accumulated transparencies are updated at shorter
intervals, which contribute to achieve further reduction by ERT.

Thus, dividing the screen allows us to exploit more parallelism of image compositing.
Furthermore, it also contributes to realize (B) because it enables more frequent updating
of accumulated transparencies.

4 Experimental Results

In order to evaluate the performance of our algorithm, we compare it with two earlier
algorithms: SRC [5] and SRC with load balancing (SRCLB). We also present a guideline
for obtaining the appropriate values for the four parameters: r, c, v, and s.

252 M. Matsui, F. Ino, and K. Hagihara

(a) (b) (c)

Fig. 5. Rendering results of volume datasets used in experiments. (a) D1: skull volume of size
512 × 512 × 448, (b) D2: abdomen volume of size 512 × 512 × 730, and (c) D3: hydrogen atom
volume of size 512 × 512 × 512. Each volume is rendered on a 512 × 512 pixel screen

The SRC algorithm is an object-parallel algorithm that parallelizes the ray cast-
ing algorithm with a block-block decomposition. On the other hand, the SRCLB
algorithm incorporates a load balancing capability into SRC. To balance processing
workloads, it divides the volume into subvolumes with marginal regions. For every
viewpoint, it adaptively varies the size of responsible regions inside the subvolumes,
according to the execution time measured for the last viewpoint. Therefore, SRCLB
requires more physical memory compared to the remaining two algorithms, which use
disjoint decompositions. However, it requires no data redistribution during volume ren-
dering. Both the SRC and SRCLB algorithms use an improved binary-swap compositing
(BSC) [7] for image compositing. Furthermore, ERT is locally applied to them. All the
three algorithms use an adaptive block decomposition [9] to skip empty regions in the
volume.

We have implemented the three algorithms by using the C++ language and MPICH-
SCore library [10], a fast implementation of the Message Passing Interface (MPI) stan-
dard. We used a Linux cluster of 64 PCs for the experiments. Each node in this cluster
has two Pentium III 1-GHz processors and 2 GB of main memory, and connects to a
Myrinet switch, which provides a link bandwidth of 2 GB/s.

Figure 5 shows images rendered for three employed datasets D1, D2, and D3. In
addition, we also used a large-scale dataset D4, skull-big volume of size 1024× 1024×
896, generated by trilinear interpolation of D1. The screen sizes are 512× 512 pixel for
D1, D2, and D3, and 1024× 1024 pixel for D4.

4.1 Performance Comparison to Earlier Algorithms

To measure rendering performance, we rotated the viewpoint around the viewing objects,
so that obtained an average of 24 measured values. Table 1 shows the averaged results.
In this table, T1, T2, and T3 represent the averaged execution time for SRC, SRCLB,
and our algorithms, respectively. N1, N2, and N3 also represent the averaged number of
rendered voxels. We measured them by using the best parameter values determined by
the guideline presented in the next section (see Table 2). The length for marginal region
of SRCLB is given by 256 voxels, which is the maximum length for performing in-core
rendering on our cluster.

Parallel Volume Rendering with Early Ray Termination 253

Table 1. Measured execution time and number of rendered voxels for proposed, SRC, and SRCLB
algorithms. On less than eight processors, some execution failed due to the lack of physical memory.
Ns represents the number of voxels rendered by a sequential algorithm with ERT

D1: skull volume D2: abdomen volume

p
Ns = 3.1 · 106 voxels Ns = 18.2 · 106 voxels

SRC SRCLB Proposed Reduction ratio SRC SRCLB Proposed Reduction ratio
T1 N1 T2 N2 T3 N3 RT RN T1 N1 T2 N2 T3 N3 RT RN

4 2134 6.7 — — 2366 4.4 0.90 1.52 6155 23.7 — — 6497 20.9 0.95 1.13
8 1471 8.3 1185 8.0 1283 6.3 1.15 1.32 3719 25.9 — — 3316 23.8 1.12 1.09

16 1177 9.9 773 10.2 691 6.3 1.70 1.57 2684 27.9 2350 28.0 1761 23.7 1.52 1.18
32 920 11.4 480 12.3 438 6.8 2.10 1.68 1903 29.6 1432 29.9 934 24.7 2.04 1.20
64 682 12.7 302 14.0 279 8.3 2.44 1.53 1334 31.0 859 31.5 541 25.5 2.47 1.22
128 435 15.0 240 12.6 207 11.0 2.10 1.36 780 32.6 536 27.8 373 27.3 2.09 1.19

D3: hydrogen atom volume D4: skull-big volume

p
Ns = 7.6 · 106 voxels Ns is unmeasurable

SRC SRCLB Proposed Reduction ratio SRC SRCLB Proposed Reduction ratio
T1 N1 T2 N2 T3 N3 RT RN T1 N1 T2 N2 T3 N3 RT RN

4 2168 8.1 — — 2759 7.3 0.79 1.11 — — — — — — — —
8 1201 8.3 — — 1725 7.5 0.70 1.11 7146 40.8 — — 5836 26.7 1.22 1.53
16 888 8.3 777 8.3 872 7.6 1.02 1.09 5386 49.2 4736 49.5 3328 31.5 1.62 1.56
32 673 8.3 479 8.4 499 7.8 1.35 1.06 4144 57.2 3172 59.4 2178 36.3 1.90 1.58
64 468 8.4 302 8.6 301 8.1 1.55 1.04 3152 64.8 2365 68.5 1311 41.0 2.40 1.58
128 325 8.5 187 7.5 226 8.2 1.44 1.04 2132 78.8 1640 86.0 927 50.2 2.30 1.57

RT = T1/T3, RN = N1/N3

Table 2. Parameter values employed for p processors. Parameters r, c, v, and s represent the
number of RPs, that of CPs, that of volume divisions, and that of screen divisions, respectively

D1: skull volume of D2: abdomen volume of D3: hydrogen atom volume D4: skull-big volume of
p size 512 × 512 × 448 size 512 × 512 × 730 of size 512 × 512 × 512 size 1024 × 1024 × 896

r v s r v s r v s r v s
4 3 2 × 2 × 2 23 × 23 3 3 × 3 × 3 24 × 24 3 6 × 6 × 6 24 × 24 — — —
8 7 2 × 2 × 2 22 × 22 7 8 × 8 × 8 24 × 24 7 6 × 6 × 6 18 × 18 7 4 × 4 × 4 24 × 24

16 14 4 × 4 × 4 24 × 24 15 8 × 8 × 8 23 × 23 14 6 × 6 × 6 19 × 19 15 5 × 5 × 5 23 × 23
32 27 7 × 7 × 7 22 × 22 29 10 × 10 × 10 20 × 20 27 8 × 8 × 8 16 × 16 27 7 × 7 × 7 23 × 23
64 55 8 × 8 × 8 18 × 18 59 9 × 9 × 9 16 × 16 50 8 × 8 × 8 10 × 10 55 8 × 8 × 8 24 × 24

128 109 8 × 8 × 8 14 × 14 111 12 × 12 × 12 11 × 11 106 8 × 8 × 8 14 × 14 109 11 × 11 × 11 20 × 20

This table indicates that our algorithm is generally faster than SRC, because it shows
RT > 1.0 for all p > 8, where RT is the reduction ratio of the execution time compared to
SRC. In particular, on a larger number of processors, our algorithm reduces the execution
time in half for datasets D1, D2, and D4.

In contrast, the reduction ratio is relatively small on a smaller number of processors.
This small improvement can be explained as follows. The first reason is that RPs in our
classification based algorithm is c fewer than that in the remaining two algorithms. This
indicates that processor classification is not suited for systems with smaller p, because
such systems do not have computing resources enough to deal with compute-intensive
rendering. In such small systems, any resource must be dedicated to the performance
bottleneck, namely subvolume rendering, in order to achieve faster acceleration. Actu-
ally, as presented in Table 2, we obtain c = 1 for all p ≤ 8, so that the number of RPs is
insufficient to that of CPs in these situations. The second reason is that tasks associated
with the same ray are assigned to a few processors in the SRC algorithm. This indi-
cates that on a smaller number of processors, local ERT is sufficient to terminate rays

254 M. Matsui, F. Ino, and K. Hagihara

in an early rendering phase, so that there is no redundant accumulation left for global
ERT.

By comparing RT and RN , where RN is the reduction ratio of rendered voxels
compared to SRC, we can see that the reduction of the execution time is more than
that of rendered voxels. In particular, although ERT achieves few reduction for trans-
parent dataset D3, our algorithm reduces its execution time by 33%. This acceleration
is provided by load balancing. As shown in Figure 5(c), the most voxel in dataset D3
is transparent and few opaque voxel is located around the center of the volume. For
such datasets, the SRC algorithm constructs smaller blocks located near the center and
larger blocks located far from the center, because it uses a combination of an adaptive
block decomposition and block-block decomposition. Therefore, processors assigned
with center blocks have relatively larger tasks than others, so that the processor work-
loads become imbalanced. Actually, the average and standard deviation of subvolume
rendering time on 128 processors, μ and σ, respectively, are improved from μ = 91 and
σ = 88 ms in the SRC method to μ = 105 and σ = 34 ms in our algorithm.

Finally, we compare our algorithm to SRCLB by using D1 and its larger version D4.
Our algorithm shows better improvement to SRCLB for D4 rather than for D1. On 128
processors, its reduction ratio to SRCLB is T2/T3 = 1.77 for D4 but 1.16 for D1. This is
due to the lack of physical memory required for marginal regions. That is, although we
maximized the length for marginal regions, it was not enough to balance the workloads
for D4. Thus, compared to our algorithm, SRCLB requires a larger physical memory to
balance the workloads for large-scale datasets.

4.2 Parameter Setup

We now present a guideline for obtaining the appropriate values for the four parameters:
r, c, v, and s. Figure 6 shows the execution time averaged over RPs for different parameter
values. We show the results only for skull dataset D1 because we obtained similar results
for others.

Rendered subimage transmission Subvolume rendering
Accumulated transparency acquisition Rendering order determination

r: Number of rendering processors
1 7 14 21 28 35 42 49 56 630

500
1000
1500
2000
2500
3000
3500
4000
4500
6500

12500
13000

E
xe

cu
tio

n
tim

e
(m

s)

(a)

4 8 12 16 20
v: Number of volume divisions

0

200

400

600

800

1000

1200

E
xe

cu
tio

n
tim

e
(m

s)

4400
4200

13 33333

v>r

(b)

0
200
400

600

800

4 8 12 16 20 24
s: Number of screen divisions

Ex
ec

ut
io

n
tim

e
(m

s)

12500
16500

12 2 2 2 2 2 2

s>c

8000

1000
1200
1400
1600

(c)

Fig. 6. Execution time measured on RPs for different parameter values using skull dataset D1.
Results for (a) v = 8 × 8 × 8 and s = 18 × 18, (b) r = 55 and s = 18 × 18, and (c) r = 55 and
v = 8 × 8 × 8

Parallel Volume Rendering with Early Ray Termination 255

We first investigate the influence of r under fixed v and s. Figure 6(a) shows the
breakdown of the execution time on p = 64 for different r. The time for subvol-
ume rendering decreases as r increases, so that we obtain the shortest time when
r = 55. This decrease is due to the reduction of computational amount per pro-
cessor, because each RP is responsible for v/r subvolumes, which decreases with
the increase of r. On the other hand, when r > 55, the execution time turns to in-
crease because the communication time for accumulated transparency acquisition in-
creases with r. This increase is due to the lack of CPs, which makes RPs wait in
the accumulated transparency acquisition phase. Thus, there is a tradeoff between r
and c.

The appropriate values for r and c are determined by finding a balancing point as
follows. Given a volume of size n×n×n and a screen of n×n, the time complexities of
volume rendering and image compositing are O(n3) and O(n2), respectively. Therefore,
if we assume that the appropriate values for r and c balance the workloads of them, r
and c are given by:

r/c = (w1 + w2)/w2 · n3/n2, (1)

p = r + c, (2)

where (w1 + w2)/w2 is a granularity of rendering to compositing, w1 is the time for
trilinear interpolation to determine a scalar value of a voxel, and w2 is the time for
accumulating color and opacity values of a image pixel.

Next, we investigate v (Figure 6(b)). The increase of v means the downsize of task
granularity. In addition, the block-cyclic decomposition becomes similar to the cyclic
decomposition with the increase of v. Therefore, increasing v leads to better load balanc-
ing, which minimizes the execution time for subvolume rendering. However, fine-grained
tasks cause frequent communication between RPs and CPs, because they shorten the in-
tervals of accumulated transparency acquisition and updating.Although shorter intervals
contribute to achieve further reduction by ERT, but CPs can suffer from network con-
tention when the intervals are too short beyond the network capacity. Therefore, the
execution time turns to increase in such a situation. Thus, there is a tradeoff between
load balancing and communication frequency.

As same as for r and c, the appropriate value for v also is determined by finding a
balancing point. In Table 2, we can see that the best value of v differs among datasets.
Therefore, the appropriate value must be determined for each p and dataset by finding
the saturated value of at least r. For example, by increasing v from r, we can identify
the saturated value when the execution time turns from decrease to increase.

Finally, we investigate s (Figure 6(c)). When s < c, the parallelism of image com-
positing increases with s, so that increasing s reduces the execution time. However, there
is no significant difference when s ≥ c. Furthermore, Table 2 shows similar values of
s for datasets D1, D2, and D3. Therefore, the appropriate value for s depends on each
p and n. The value can be determined by finding the saturation point with increasing s
from c.

In summary, Equations (1) and (2) determine the appropriate values for r and c,
which dominate the execution time. The appropriate value for v can be determined by
using the tradeoff between load balancing and communication time. The value is given
by finding the saturated value of at least r for each p and dataset. The last parameter

256 M. Matsui, F. Ino, and K. Hagihara

s has relatively small significance on the execution time. The appropriate value can be
determined by finding the saturated value of at least c for each p and n.

5 Conclusions

We have presented an efficient parallel volume rendering algorithm that is capable of
rendering large-scale datasets on a distributed rendering system. The novelty of the
algorithm is a combination of global ERT and data distribution with static load balancing.
To realize this, the algorithm uses the master/slave paradigm where slave processors
carry out the rendering tasks to accumulate color and opacity values of voxels while
master processors perform compositing tasks and manage the accumulated values to
share them among processors. The experimental results show that the reduction given
by ERT increases with the size of datasets, and the improvement produced by static load
balancing increases with the number of processors.

References

1. Levoy, M.: Display of surfaces from volume data. IEEE Computer Graphics and Applications
8 (1988) 29–37

2. Levoy, M.: Efficient ray tracing of volume data. ACM Trans. Graphics 9 (1990) 245–261
3. Yau, M.M., Srihari, S.N.: A hierarchical data structure for multidimensional digital images.

Comm. ACM 26 (1983) 504–515
4. Nukata, M., Konishi, M., Goshima, M., Nakashima, Y., Tomita, S.: A volume rendering

algorithm for maximum spatial locality of reference. IPSJ Trans. Advanced Computing
Systems 44 (2003) 137–146 (In Japanese).

5. Hsu, W.M.: Segmented ray casting for data parallel volume rendering. In: Proc. 1st Parallel
Rendering Symp. (PRS’93). (1993) 7–14

6. Ma, K.L., Painter, J.S., Hansen, C.D., Krogh, M.F.: Parallel volume rendering using binary-
swap compositing. IEEE Computer Graphics and Applications 14 (1994) 59–68

7. Takeuchi, A., Ino, F., Hagihara, K.: An improved binary-swap compositing for sort-last
parallel rendering on distributed memory multiprocessors. Parallel Computing 29 (2003)
1745–1762

8. Gao, J., Huang, J., Shen, H.W., Kohl, J.A.: Visibility culling using plenoptic opacity functions
for large volume visualization. In: Proc. 14th IEEEVisualization Conf. (VIS’03). (2003) 341–
348

9. Lee, C.H., Park, K.H.: Fast volume rendering using adaptive block subdivision. In: Proc. 5th
Pacific Conf. Computer Graphics and Applications (PG’97). (1997) 148–158

10. O’Carroll, F., Tezuka, H., Hori, A., Ishikawa,Y.: The design and implementation of zero copy
MPI using commodity hardware with a high performance network. In: Proc. 12th ACM Int’l
Conf. Supercomputing (ICS’98). (1998) 243–250

A Scalable Low Discrepancy Point Generator
for Parallel Computing

Kwong-Ip Liu and Fred J. Hickernell

Department of Mathematics, Hong Kong Baptist University, Kowloon, Hong Kong
kiliu@math.hkbu.edu.hk, fred@hkbu.edu.hk

Abstract. The Monte Carlo (MC) method is a simple but effective way
to perform simulations involving complicated or multivariate functions.
The Quasi-Monte Carlo (QMC) method is similar but replaces indepen-
dent and identically distributed (i.i.d.) random points by low discrepancy
points. Low discrepancy points are regularly distributed points that may
be deterministic or randomized. The digital net is a kind of low dis-
crepancy point set that is generated by number theoretical methods. A
software library for low discrepancy point generation has been developed.
It is thread-safe and supports MPI for parallel computation. A numerical
example from physics is shown.

Keywords: Monte Carlo and Quasi-Monte Carlo methods, digital nets,
parallel programming, software library.

1 Introduction

Simulations are useful for solving many problems in scientific computing. For
example, since most integrals cannot be evaluated analytically, approximation
by numerical methods is often the only possible solution. For an integral de-
pending on a few variables, tensor product trapezoidal or Simpson’s rule may
be applied. However, for high dimensional integrals, these methods becomes less
practical since the amount of work required to attain a certain error tolerance
increases exponentially with the dimension. The Monte Carlo (MC) method and
the Quasi-Monte Carlo (QMC) method are alteratives since the errors of these
methods are less dependent on dimension. From the computational point of view,
they are simple to implement and are highly parallelizable.

Consider the following approximation of an s-dimensional integral,

I(f) =
∫

[0,1)s

f(x) dx ≈ Q(f) =
1
n

n∑
i=1

f(xi) , (1)

where f is a multivariate function, {xi} is a set of n points lying in [0, 1)s. A
simple Monte Carlo method chooses the {xi} to be independent and identically
distributed (i.i.d.) random points. By Quasi-Monte Carlo method, the {xi} is a
set of carefully selected regularly distributed points. It has been found that in
many practical problems, like pricing of financial derivatives, the performance

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 257–262, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

258 K.-I. Liu and F.J. Hickernell

of the Quasi-Monte Carlo method is better than the Monte Carlo method, even
when s is on the hundreds. This observation can be explained by the effective di-
mension [1]. This paper focuses on digital nets which is a kind of low discrepancy
points.

2 Design and Implementation of the Library

A library has been implemented based on the codes in [2] and [3]. By combining
different scrambling methods and using the Gray code [4], the generation of
digital net can be highly simplified by the following recursive function [2],

φ(x0,j) = ẽj , j = 1, 2, . . . , s (2)

φ(xi+1,j) = φ(xi,j)− C̃j,k̂i+1
mod 2,

{
i = 0, 1, . . . , 2m − 1,
j = 1, 2, . . . , s,

(3)

where C̃j,l is the l-th column of C̃j = LjCjLT , Lj and L are nonsingular lower
triangular random matrices, Cj are generating matrices of digital net, ẽj are
random vectors and k̂i = min(k : �i2−k� �= i2−k).

So far the library supports the standard C rand() function and the SPRNG
library [5] for random number generation, and MPI as the parallel programming
library. During initialization, a digital net may be chosen in one of four different
modes:

NETGEN SIMPLE Use rand() function in C standard library to scramble the
digital net. The same sequence of digital net is generated
in different processors of a parallel program, if the same
seed is used.

NETGEN SPRNG Use SPRNG to scramble the sequences. The same sequence
of digital net is generated in different processors of a par-
allel program, if the same seed is used.

NETGEN MPI Use SPRNG to scramble the net. Independent sequences of
digital net are generated in different processors of a parallel
program, even the same seed is used in all processors.

NETGEN BLOCK Use SPRNG to scramble the digital net. A long sequence
of digital net is divided into different segments for different
processors of a parallel program [6].

The independent sequences in NETGEN MPI are generated by different scram-
bled generator matrices. In NETGEN BLOCK mode, the sequences in different pro-
cessors are generated by the same set of matrices, but reflect different segments
of a long sequence. In order to support programs with several phases, the se-
quences are extendable. In NETGEN BLOCK, the point number of the beginning of
extended sequence is found by,

MK + kn,

A Scalable Low Discrepancy Point Generator for Parallel Computing 259

where M is the original number of points in each processor, K is the number of
processors, k is the rank of processor and n is the number of extended points.
Actually, MK is the last point of the original sequence, and kn is the offset of
the new sequence in the k-th processor. For other modes, the point number of
the beginning of extended sequence is the end of current sequences plus one.

All function prototypes and user-data structures are defined in the header file
netgen.h. An abstract programming object “net handle” is defined to represent
a digital net.

netHandle *nh;

After initialization, the net handle is used as a parameter to other functions
in the library. The main function prototypes in the library are

– netHandle *InitNetHandle(int dim, unsigned long num, int type,
int mode, unsigned seed, int scrambling); – creates a digital net. Four
types of nets are supported: SOBOL [7], NIED [8], NIEDXING [9] or RANDOM. Af-
ter calling this function, a pointer to the created digital net is returned.

– void FinalNetHandle(netHandle *nh); – releases all resources allocated
by the net pointed by nh.

– void NextPoint(netHandle *nh); – forwards to the next point in the net
pointed by nh. The coordinates of the point are stored in double array,
nh->point.

– void ExtendPoint(netHandle *nh, unsigned long num); – extends num
points in the net pointed by nh.

3 Numerical Example

3.1 Multivariate Integration

Many problems in physics are multivariate integration. We tested the perfor-
mances of Monte Carlo and Qusai-Monte Carlo methods by a typical integration
[10].

Q(s) =
∫
Rs

cos(‖x‖)e−‖x‖2
dx

= πs/2
∫

[0,1]s
cos

⎛
⎝
√√√√ s∑

j=1

Φ−1(yj)2

2

⎞
⎠ dy, (4)

where ‖ · ‖ denotes the Euclidean norm in Rs, and Φ denotes the standard
multivariate Gaussian distribution function. One of the reasons for choosing this
function is that the values of the integral is known.

The results of the serial (NETGEN SPRNG mode) and the parallel (NETGEN BLOCK
and NETGEN MPI modes) executions were the average of 100 simulations. The rel-
ative RMS errors, variances and execution times have been recorded. For serial
executions, the performances by using a digital net are better than the one by
using i.i.d. random points for 9-dimensional integral, for both error magnitudes

260 K.-I. Liu and F.J. Hickernell

and the rates of error decreases. However, the rate of error decrease by using
i.i.d. random points becomes compatible to the rate of error decreases by using
a digital net in 100-dimensional integral. This is consistent with the error upper
bounds in [11].

The relative RMSE of different net types in NETGEN BLOCK mode parallel
executions with 10 processors were plotted in Figure 1. They are almost the same
as the figures of serial executions if plotted since a single sequence was distributed
to different processors. Similar features have been observed for NETGEN MPI mode.

Figure 2 shows the comparison between NETGEN MPI and NETGEN BLOCK on
relative RMSE. The relative RMSE of NETGEN BLOCK mode are smaller than

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

9−dimension (NETGEN_BLOCK)

Number of points

R
el

at
iv

e
R

M
S

E

Sobol
Nied
NiedXing
MC

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

100−dimension (NETGEN_BLOCK)

Number of points

R
el

at
iv

e
R

M
S

E

Sobol
Nied
MC

Fig. 1. Relative RMSE in NETGEN BLOCK mode parallel executions for 9-dimensional
and 100-dimensional integrals

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

9−dimension

Number of points

R
el

at
iv

e
R

M
S

E

NETGEN_BLOCK
NETGEN_MPI

Fig. 2. Comparison between NETGEN MPI and NETGEN BLOCK on relative RMSE

A Scalable Low Discrepancy Point Generator for Parallel Computing 261

NETGEN MPI mode. It is because the number of effective points to estimate the
integral in NETGEN BLOCK mode are more than the number in NETGEN MPI mode.
However, it is difficult for NETGEN BLOCK mode to estimate the error in the cases
in which the exact answer is not known. It is because only one estimation is
resulted in NETGEN BLOCK mode from all processors.

The average time and the speedup of executions of 9-dimensional integrals
were shown in Figure 3. The communication overheads of 10 processors is signif-
icant for the number of points less than 106. Moreover, the execution time using
digital net is less than the time using i.i.d. random points because of the efficient
generation algorithm of the nets. The random number generator is called only
in the inital phase.

Assume tp is the time for parallel, N is the number of points to be used, n
is the number of processors, Tn is the communication overhead which is inde-
pendent to N but is dependent on n. A simple model for the time of parallel
executions of MC/QMC methods can be stated as,

tp = Tn + k(N/n) (5)

where k is another constant reflecting the processing time of one simulation.
This model is particularly useful for MC/QMC methods since the simulations
in different processors are basically independent. The speedup would be,

ts
tp

=
kN

Tn + k(N/n)
=

1
Tn/kN + 1/n

(6)

The speedup will be improved if the execution time is longer (a larger N) or
the number of processors decreases (a smaller Tn). For parallel execution using
Sobol net using 10 processors in Figure 3, the parameters are approximately
T10 = 5.195 and k = 4.547× 10−6.

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

9−dimension

Number of points

T
im

e
(s

ec
on

d)

Sobol (serial)
MC (serial)
Sobol (parallel)
MC (parallel)

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

0

1

2

3

4

5

6
9−dimension

Number of points

S
pe

ed
up

Sobol
MC

Fig. 3. The average time and speedup of the parallel executions of 9-dimensional inte-
grals

262 K.-I. Liu and F.J. Hickernell

4 Summary and Future Work

We briefly introduced our implementation of a software library to generate dif-
ferent digital nets. We hope the library is useful for developing the programs in
both serial and parallel computers. In the future, more net types will be added
to the library.

Numerical examples of the applications of digital nets have been shown. Dur-
ing the implementation of these programs, we observed that some applications of
digital nets are quite similar and can be summaried in several standard patterns
of usages. High-level functions will be added to the library for these standard
patterns of usages, so that the implementation of applications will be easy and
efficient.

References

1. Caflish, R.E., Morokoff, W., Owen, A.B.: Valuation of mortgage-backed securities
using brownian bridges to reduce effective dimension. The Journal of Computa-
tional Finance 1 (1997) 27–46

2. Hong, H.S., Hickernell, F.J.: Algorithm 823: Implementing scrambled digital se-
quences. ACM Transactions on Mathematical Software 29 (2003) 95–109

3. Bratley, P., Fox, B.L., Niederreiter, H.: Implementation and tests of low-
discrepancy sequences. ACM Trans. Model. Comput. Simul. 2 (1992) 195–213

4. Lichtner, J.: Iterating an α-ary gray code. SIAM Journal of Discrete Mathematics
11 (1998) 381–386

5. Mascagni, M., Srinivasan, A.: Algorithm 806: SPRNG: a scalable library for pseu-
dorandom number generation. ACM Transactions on Mathematical Software 26
(2000) 436–461

6. Ökten, G., Srinivasan, A.: Parallel quasi-monte carlo methods on a heterogeneous
cluster. In Fang, K.T., Hickernell, F.J., Niederreiter, H., eds.: Monte Carlo and
Quasi-Monte Carlo Methods 2000, Springer-Verlag (2002) 406–421

7. Sobol’, I.M.: The distribution of points in a cube and the approximate evaluation
of integrals. U.S.S.R. Comput. Math. Math. Phys. 7 (1967) 86–112

8. Niederreiter, H.: Low-discrepancy and low dispersion sequences. J. Numb. Theor.
30 (1998) 51–70

9. Niederreiter, H., Xing, C.: Nets, (t, s)-sequences and algebraic geometry. In: Ran-
dom and Quasi-Random Point Sets. Volume 138 of Lecture Notes in Statistics.
Springer-Verlag (1998)

10. Keister, B.D.: Multidimensional quadrature algorithms. Comput. Phys. 10 (1996)
119–122

11. Niederreiter, H.: Random number generation and quasi-Monte Carlo methods.
Society for Industrial and Applied Mathematics (1992)

Generalized Trellis Stereo Matching with Systolic Array

Hong Jeong and Sungchan Park

Pohang University of Science and Technology, Electronic amd Electrical Engineering,
Pohang, Kyungbuk, 790-784, South Korea

hjeong@postech.ac.kr
http://isp.postech.ac.kr

Abstract. We present here a real time stereo matching chip which is based on
a general trellis form with vergent optical axis. The architecture can deal with
general axis angle of cameras with better resolution in given space. For a pair
of images with M × N pixels, only O(MN) time is required. The design is
highly scalable and fully exploits the concurrent and configurable nature of the
algorithm. We implement stereo chip on Xilix FPGA with 208 PEs(Processing
Elements) that can obtain disparity range of 208 levels. It can provide the real-
time stereo matching for the mega-pixel images.

1 Introduction

Stereo vision is the process of recreating depth or distance information from a pair of
images of the same scene. Its methods fall into two broad categories [1]. One is the
local method which uses the constraint in small window pixels like block matching or
feature matching technique. And the other is the global method which uses the global
constraints on scan-lines or whole image like dynamic programming and graph cuts
typically. Normally many real time systems [2], [3] , [4], [5] use the local methods.
Although it has low complexity, there are some local problems where it fail to match,
due to occlusion, uniform texture, ambiguity of low texture, and etc. Also, the popular
local matching method, block matching skill makes disparity data blurred in object
boundary. The global methods can solve these local problems but suffer from the huge
processing time. In 2000, Jeong and Oh [6] built a stereo global matching ASIC that
can deal with parallel optical axis in real time. The high speed is possible due to a
parallel dynamic programming search method on a trellis solution space. It is suitable
for highly parallel implementation and produces good matching results. However, a
desire to improve depth resolution and depth of field has led to modifications to this
algorithm to incorporate vergent cameras, that is, cameras with optical axes that intersect.
Based on this algorithm, we introduce in this paper an efficient linear systolic array
architecture that is appropriate for VLSI implementation. The array is highly regular,
consisting of identical and simple processing elements (PEs) with only nearest-neighbor
communication and external communication occurs with the end PEs. So, it makes
possible to construct an inexpensive and truly portable stereo vision system.

This paper is organized as follows: A brief review of the matching algorithm based
on a trellis structure is presented in Sec. 2. Sec. 3 describes the systolic array of PEs
realizing this algorithm. The test results are discussed in Sec. 4 and finally conclusions
are given in Sec. 5.

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 263–267, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

264 H. Jeong and S. Park

2 Stereo Matching Algorithm

The observed image line g is the ideal image line f where each pixel or element has
been corrupted by independent and identically distributed additive white gaussian noise.
A possible match is indicated wherever a projection line from one image intersects a
projection line from the other image. This is shown in Fig. 1(a) for a pair of cameras
with parallel optical axes. Because a pixel in the left image can only be matched to a
pixel in the right image with zero or higher disparity, intersections or possible matches
occur over a triangular region. However, by canting the optical axes inward, a pixel in
one image can be matched to a larger range of pixels in the other image. This is known
as the vergent camera model and mimics human vision. An example of this is shown in
Fig. 1(b).

Note that the matching region now consists of two triangles and that a pixel in one
image can now be matched to any pixel in the other image, effectively doubling the
size of the match point set. It can have all positive and negative disparity data. Vergent
cameras allow us to increase the depth range over parallel cameras, or to double the
depth resolution with the same depth of field.

Given the observations gl and gr, we wish to obtain a maximum a priori (MAP)
estimate of the disparity

d̂ = arg max
d

P (d|gl, gr)

= arg max
d

P (gl, gr|d)P (d) . (1)

The prior probability distribution P (d) is modeled using a simple independent binary
probability Po of an occlusion at each pixel site. An occlusion occurs when a point is
visible in one image but not in the other. We assume that each pixel is corrupted by
AWGN with distribution N(0, σ). Then, the log-likelihood of P (d|gl, gr) is

0 N-1 0 N-1
0 2N

left image gl gr right image

center disparity

pl pc pr

d=N-2

d=N-1

(a) Projection model for parallel cameras

0

N-1 0

N-1
pl pr

2N 0

d=0

d=-1

d=-(N-1)

d=0
d=N-1

center disparity

left image gl gr right image

(b) Projection model for vergent cameras

Fig. 1. Projection model for several camera models

Generalized Trellis Stereo Matching with Systolic Array 265

� � � � � � � � � �
� � � � � � � �

� � � � � �
� � � �

� �

�
�

�
�

�
�

�

�
�

��
�

�

�
�

�

�
�

�
�

gl
1 gl

2 gl
3 gl

4 gl
5gr

1 gr
2 gr

3 gr
4 gr

5
image
pixel 0 1 2 3 4 5 6 7 8 9 10 site

0

1

2

3

4

disparity

(a) Disparity trellis of parallel cameras for N = 5.

� � � � � � � �
� � � � � �

� � � �
� �

� � � � � �
� � � �

� �

�
�

�

�
�

�
�

�
�

�
�

��
�

�

�
�

�
�

�
�

�
�

�

gl
1

gl
2

gl
3

gl
4

gr
2

gr
3

gr
4

gr
1

0 1 2 3 4 5 6 7 8 Site

-3

-2

-1

0

1

2

3

D
is

pa
ri

ty

(b) Generalized disparity trellis for N = 4.

Fig. 2. Disparity trellis

U(d) =
2N∑
i=1

[Δg(di)o(i + di) + γ|di − di−1|] , (2)

where

Δg(di) =
(
gl

1
2 (i−di+1) − gr

1
2 (i+di+1)

)2
(3)

is the cost of matching two pixels, o() is a function that is 1 when the argument is odd
and 0 otherwise,

γ = σ2 log
(1− Po)2√
2πσ(Po)2

(4)

is the cost of an occlusion.
The optimal disparity d̂ is the disparity that minimizes (2). The structure of the trellis

allows the solution d̂ to be found efficiently using the Viterbi algorithm.

Algorithm. Given gl and gr, the accumulated cost Uj(t), the best input path decision
Vt,j and the optimal disparity d̂ are computed as follows:
1. Forward Initialization:

Uj(0) =

{
0, j = base,

∞, otherwise.

2. Forward Recursion: For each site t = 1, . . . , 2N , find the best path into each node j:
Δg(a, b) = |gl

1
2 (a−b+1) − gr

1
2 (a+b+1)|

(a) If t + j is even,

Uj(t) = min
k∈[−1,1]

U(t− 1, j + k) + γ|k| ,

Vt,j = arg min
k∈[−1,1]

U(t− 1, j + k) + γ|k| .

(b) If t + j is odd,

Uj(t) = U(t− 1, j) + Δg(t, j − base) ,

Vt,j = 0 .

266 H. Jeong and S. Park

ln

ln+1

Control

� �
�

�

�

�

�

�

�

�

�

�

�

��

��

rn

rn+1
�

�

�

��

��

fpj−1

fpj

fpj+1

fpj+2

�

�

�

�

�

�

��

��
U

�

�

�

�

�

�

��

��
a

stack

stack

stack

stack

�

�

�

�

�

�

�

�

bpj−1

bpj

bpj+1

bpj+2

�

�

�

� V ∗

�̂d

Fig. 3. Inter processor connectivity of a linear array of PEs

3. Backward Initialization:
d̂2N = 0 .

4. Backward Recursion: For each site t = 2N − 1, . . . , 0, find the optimal disparity

d̂t+1 = d̂t + Vt,d̂t
.

3 Systolic Array Architecture

Based on the stereo matching algorithm given in the previous section, we wish design a
scalable architecture to implement stereo matching in hardware. The overall architecture
is a linear systolic array of PEs as shown in Fig. 3. Communication extends only to
neighboring PEs and the array is completely regular in structure, making actual hardware
design relatively simple. The area complexity isO(N) for N PEs for all componenents
except for the best path decision registers V which is O(N2).

4 Experimental Results

As shown in Fig. 4(a) the images received from a pair of cameras are processed by the
rectification logics which use the linear interpolation method and then the generalized
stereo matching part calculates disparity data from rectified images. This architecture is
implemented on Xilinx Virtex - II XC2V8000 FPGA which incorporates 208 PEs. To
access the FPGA, it is mounted on PCI interface board. PC then reads the computed
disparity, converts it to a gray scale image and displays it. The implemented stereo
matching board is shown in Fig. 4(b).

Given images of the vergent cameras the experimental results in Fig. 4 show that
when the camera canting the optical axes inward, the old parallel axis system doesn’t
work. We can know the generalized trellis system supports the vergent case in addition
to the parallel case.

Generalized Trellis Stereo Matching with Systolic Array 267

Stereo Matching
FPGA

Real Time
Rectification

Real Time
Rectification

�

�

Right
Camera

�

Left
Camera

�

�Disparity Out
to PCI board

(a) Overall system. (b) Hardware of
real-time stereo vi-
sion system.

(c) Left Image (d) Right image (e) Parallel-
axis based
trellis system

(f) generalized
trellis system

Fig. 4. Hardware system and output of images

5 Conclusions

As a step toward a real-time stereo, we have presented a fast and efficient VLSI architec-
ture and implementation of a stereo matching algorithm in the vergent camera case. The
architecture has the form of linear systolic array using simple PEs that are connected
with only neighboring PEs. The design is simple to implement and scales very well. The
hardware board can process 1280 by 1000 images of maga pixel cameras at 15 frames/s.

References

1. Myron Z. B. and Gregory D. H.: Advances in computational stereo. IEEE Transactions on
Pattern Analysis and Machine Intelligence. vol. 25. no. 8 (2003)993–1007

2. T. Kanade, A.Yoshida, K. Oda, H. Kano, and M. Tanaka: A stereo machine for video-rate dense
depth mapping and its new applications. in Proceedings of the IEEE International Conference
on Computer Vision and Pattern Recognition. IEEE Computer Society Press. (1996)

3. K. Konolige: Small vision systems: Hardware and implementation. Proc. Eighth Int Ol Symp.
Robotics Research. (1997)

4. H. Yamaguchi, E. Kawamura, S. Kimura, T. Shinbo and K. Naka: A convolver-based real-time
stereo machine (sazan).Proc. Computer Vision and Pattern Recognition. vol.1 (1999)457–463

5. T. Takeuchi, M. Hariyama and M. Kameyama: Vlsi processor for reliable stereo matching
based on adaptive window-size selection . Proceedings of the IEEE International Conference
on Robotics and Automation. (2001)1168–1173

6. H. Jeong andY. Oh: Fast stereo matching using constraints in discrete space. IEICE Transactions
on Information and Systems. (2000)

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 268–273, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Optimal Processor Mapping Scheme for Efficient
Communication of Data Realignment1

Ching-Hsien Hsu, Kun-Ming Yu, Chi-Hsiu Chen, Chang Wu Yu, and Chiu Kuo Lian

Department of Computer Science and Information Engineering,
Chung Hua University, Hsinchu, Taiwan 300, ROC
{chh, yu, cwyu, ckliang}@chu.edu.tw

Abstract. In this paper, we present an Optimal Processor Mapping (OPM)
scheme to minimize data transmission cost for general BLOCK-CYCLIC
data realignment. We examine a size oriented greedy matching method
and the maximum bipartite matching theory to explore logical processor
sequences. Based on these matching polices, the realigned sequences are
used to perform data realignment in the destination phase. A significant
improvement of our approach is that the OPM achieves high ratio of data
remain in local space and leading minimum inter-processor
communications. The OPM scheme could handle array realignment with
arbitrary BLOCK-CYCLIC type and multidimensional arrays. Theoretical
analysis and experimental results show that our technique provides
considerable improvement for dynamic data realignment.

1 Introduction

In many data parallel applications, an optimal distribution of data depends on the
characteristics of an algorithm, as well as on the attributes of the target
architecture. Because the optimal distribution changes from one phase to
another, data realignment turns out to be a critical operation during runtime.
Therefore, many data parallel programming languages support run-time
primitives for changing a program’s data decomposition. Since data
realignment is performed at run-time, there is a performance trade-off between
the efficiency of the new data decomposition for a subsequent phase of an
algorithm and the cost of redistributing matrix data among processors. Thus
efficient methods for performing data realignment are of great importance for the
development of parallelizing compilers for those languages.

Techniques for dynamic data realignment are discussed in many researches.
A detailed expatiation of these techniques was described in [4]. Since the
communication overheads usually dominate overall performance of a
redistribution algorithm, many researches have been concentrated on the
optimizations of communication. Examples are the processor mapping
technique [5] for minimizing data transmission overheads, the multiphase

1 This work was supported in part by NSC of Taiwan under grant number NSC92-2213-E-216-025
and in part by Chung-Hua University, under contract CHU-93-TR-010.

Optimal Processor Mapping Scheme for Efficient Communication 269

redistribution strategy [6] for reducing message startup cost, the communication
scheduling approach [1, 2, 3, 7, 10] for avoiding node contention, the strip
mining approach [8] for overlapping the communication and computation steps
and the spiral mapping technique [9] for enhancing communication locality. In
this paper, we present an optimal processor mapping scheme to minimize data
transmission cost for general BLOCK-CYCLIC data redistribution. A major
feature of the proposed technique is that it achieves the highest ratio of data
remain in local space and leading minimum inter-processor communication.
The ability to handle arbitrary BLOCK-CYCLIC multidimensional array is also
an important extension.

2 Preliminaries and Cost Model

To simplify the presentation, we use BCx→y to represent the CYCLIC(x) to
CYCLIC(y) redistribution for the rest of the paper. As mentioned in [4], each
processor has to compute the following four sets, Destination Processor Set
(DPS[Pi]), Send Data Sets (

]DPS[ij PP ∈
SDS[Pi→j]), Source Processor Set (SPS[Pj]), and

Receive Data Sets (
]SPS[ji PP ∈

RDS[Pj←i]) for a redistribution. Since a Bipartite

Graph (BG) is usually used to represent the communication patterns between source
and destination processors sets, the above terms, |DPS[Pi]|, the number of
destination processors in DPS[Pi] and |SDS[Pi→j]|, the number of elements in
SDS[Pi→j] could represent the out degree of node Pi and the weight (wij) of edge eij
in BG, respectively.

To facilitate the analysis of next sections, we formulate the communication cost
of a processor Pi in an algorithm to perform data redistribution as Tcomm = αi × Ts + δi
× Td, where Ts is the message startup cost; Td is the data transmission costs of
interconnection network of a parallel machine; αi = |DPS(Pi)| is the number of

destination processors in DPS(Pi) and δi =
∈]DPS[ij PP

 |SDS[Pi→j]| is the total

number of elements in all SDS[Pi→j], for all j ∈ DPS[Pi].
In general, data transmission cost is directly proportional to the size of

redistributing data and influence the total execution time. Recall the bipartite
graph representation, for source processor Pi, δi is equal to the summation of edge
weight for all directional edges that has source vertex Pi, i.e., δi =

∈∀]DPS[ij P
ijw .

Because the edge eij will not incur inter-processor communication when i = j, we

have δi =
≠∈∀ jiP

ij
ij

w
],DPS[

. The global volume of transition data δ =
−

=

1

0

P

i
iδ .

Another structure widely used to demonstrate the inter-processor communication
patterns is Communication Table (CT), which is defined as a P×P matrix in which
CTij = wij, the edge weight of eij in BG. Since CTij will not incur inter-processor

communication when i = j, we obtain δ = −
−

=

−

=

1

0

1

0,

P

i
ii

P

ji
ij CTCT . Let Ld be summation

C.-H. Hsu et al. 270

of the volume of elements in the main diagonal in CT, i.e., Ld = CT00+…+ 11 −− PPCT ,

we then have δ = d

P

ji
ij LCT −

−

=

1

0,
. Because

−

=

1

0,

P

ji
ijCT is a constant, increasing Ld

will lead lower δ and minimize communication cost. In next section, we will
describe the techniques to maximize Ld.

3 Processor Mapping Scheme

We begin by illustrating the utility of processor mapping technique for the example
of BC10→5 on A[1:100] over 5 processors. Figure 1 shows data alignments using
two different processor sequences, the Traditional Logical Processor Sequences
(TLPS) and the Realigned Logical Processor Sequences (RLPS), where TLPS is an
ascending order of integers from 0 to P-1; RLPS is another permutation of those
integers except the one of TLPS. The shadow blocks represent data reside in the
same logical processor through the operation of data realignment. We refer these
data as Local Data Sets (Ld). Thus we can have Ld = CT0 0 + CT4 4 = 20 in TLPS as
shown in Figure 2(a) and Ld = CT0 0 + CT1 1 + CT2 2 + CT3 3 + CT4 4 = 50 in RLPS as
shown in Figure 2(b).

CYCLIC(5)

(TLPS: P0 P1 P2 P3 P4)
P0 P1 P2 P3 P4 P0 P1 P2 P3 P4 P0 P1 P2 P3 P4 P0 P1 P2 P3 P4

CYCLIC(10) P0 P1 P2 P3 P4 P0 P1 P2 P3 P4

CYCLIC(5)

(RLPS: P0 P3 P1 P4 P2)
P0 P3 P1 P4 P2 P0 P3 P1 P4 P2 P0 P3 P1 P4 P2 P0 P3 P1 P4 P2

P0 P1 P2 P3 P4

P0 10 10

P1 10 10

P2 10 10

P3 10 10

P4 10 10

(a)

P0 P3 P1 P4 P2

P0 10 10

P3 10 10

P1 10 10

P4 10 10

P2 10 10

(b)

Fig. 1. Data alignments using TLPS and RLPS Fig. 2. Communication Tables (a) CT
for TLPS (b) CT for RLPS

3.1 Size Oriented Greedy Matching

According to the above example, to permute the order of logical processors for data
realignment might increase the amount of elements in local data sets. A
Size-Oriented Greedy (SOG) approach for reordering logical processors is
introduced.

Let RLPS[0:P−1] be the realigned sequence of logical processors and β is the
largest CTij in CT, for all 0 ≤ i, j ≤ P − 1. In SOG method, RLPS[j] is set to i if CTij
= β. For example, given the communication table of a BC5→4 over 12 processors as
shown in Figure 3(a), we have β = 4; for source processors (the first column) P0, P3,
P4, P7, P8 and P11, they have largest CTij equals to 4; therefore, the RLPS is set to {0,
3, 4, 7, 8, 11, -, -, -, -, -, -}. Now, processors P1, P2, P5, P6, P9 and P10 have largest
CTij equals to 3 (i.e., β − 1). For processor P1, CT11, CT14, CT17 and CT1 10 are equal
to 3. Since RLPS[1] and RLPS[4] were prior occupied by P3 and P8, thus, RLPS[7]
is set to P1. Similarly, RLPS[6] is set to P2. Finally, we have RLPS = {0, 3, 4, 7, 8,
11, 2, 1, 6, 5, 10, 9}. The communication table for BC5→4 over 12 processors using
RLPS is shown in Figure 3(b).

Optimal Processor Mapping Scheme for Efficient Communication 271

CT

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

P0 4 1 4 1 4 1 4 1

P1 3 2 3 2 3 2 3 2

P2 3 2 3 2 3 2 3 2

P3 1 4 1 4 1 4 1 4

P4 1 4 1 4 1 4 1 4

P5 3 2 3 2 3 2 3 2

P6 2 3 2 3 2 3 2 3

P7 4 1 4 1 4 1 4 1

P8 4 1 4 1 4 1 4 1

P9 2 3 2 3 2 3 2 3

P10 2 3 2 3 2 3 2 3

P11 1 4 1 4 1 4 1 4

CT
P0 P3 P4 P7 P8 P11 P2 P1 P6 P5 P10 P9

P0 4 1 4 1 4 1 4 1

P3 1 4 1 4 1 4 1 4

P4 1 4 1 4 1 4 1 4

P7 4 1 4 1 4 1 4 1

P8 4 1 4 1 4 1 4 1

P11 1 4 1 4 1 4 1 4

P2 3 2 3 2 3 2 3 2

P1 3 2 3 2 3 2 3 2

P6 2 3 2 3 2 3 2 3

P5 3 2 3 2 3 2 3 2

P10 2 3 2 3 2 3 2 3

P9 2 3 2 3 2 3 2 3
(a) (b)

Fig. 3. Communication Tables of BC5→4 over 12 processors. (a) CT for TLPS (P0 P1 P2 P3 P4
P5 P6 P7 P8 P9 P10 P11). (b) CT for RLPS (P0 P3 P4 P7 P8 P11 P2 P1 P6 P5 P10 P9)

3.2 Maximum Matching

It is possible that an RLPS derived from the SOG matching is not an optimal
result for a given realignment request. Foe example, the TLPS produces Ld = 24
for a BC8→6 over 11 processors while the RLPS = {0, 5, 3, 4, 2, 7, 1, 6, 9, 8, 10}
that derived from SOG matching yields Ld = 58. If we use a maximum bipartite
matching algorithm for deriving new RLPS ={0, 5, 10, 4, 9, 3, 8, 2, 7, 1, 6}, we
have Ld = 66. Form this results, the maximum matching conduces largest local
data set. In this paper, we apply Hopcroft and Karp’s algorithm for deriving
RLPS. We will analyze the effectiveness between SOG matching and the
maximum matching in next section.

4 Performance Analysis

To facilitate the following analysis of experiments, we have some declarations.
Let Ld_TR, Ld_SOG and Ld_MM be the amount of elements in local data sets for TLPS,
RLPS derived from SOG matching and maximum matching, respectively. The
improvement rates of data transmission costs for SOG and maximum matching
methods are defined as IRSOG = (Ld_SOG Ld_TR) / δ and IRMM = (Ld_MM Ld_TR)

/ δ, respectively, where δ =
−

=

1

0,

P

ji
ijCT . Table 1 shows the theoretical

improvement rate of data transmission costs for the two matching schemes. We
found that the SOG matching and maximum matching have almost the same
improvement rate for most cases, except for S4(P=48), R2 (P=16) and R2
(P=64). According to this similarity, we adopt the RLPS derived from
maximum matching for realigning data in our tests.

To get the performance comparison, we have implemented the realignment
algorithms using both TLPS and RLPS. Both programs were written in the
single program multiple data (SPMD) programming paradigm with C+MPI code
and executed on an SMP/Linux cluster consisted of 24 SMP nodes.

C.-H. Hsu et al. 272

Table 1. Theoretical improvement rate of Td for SOG and maximum matching

Maximum Matching SOG Matching

P=12 P=16 P=24 P=48 P=64 P=128 P=12 P=16 P=24 P=48 P=64 P=128

S1 (BC5→4) 9.17 11.25 13.33 15.42 15.94 16.72 9.17 11.25 13.33 15.42 15.94 16.72
S2 (BC5→6) 5.00 10.42 9.17 11.25 15.10 15.89 5.00 10.42 9.17 11.25 15.10 15.89

S3 (BC5→8) 3.75 4.38 6.25 8.44 9.06 9.84 3.75 4.38 6.25 8.44 9.06 9.84

S4 (BC20→11) 0.23 0.57 0.80 2.90 3.34 4.09 0.23 0.57 0.80 2.89 3.34 4.09

R1 (BC10→5) 41.67 43.75 45.83 47.92 48.44 49.22 41.67 43.75 45.83 47.92 48.44 49.22

R2 (BC15→5) 22.22 25.00 27.78 30.56 31.25 32.29 22.22 22.92 27.78 30.56 30.73 32.29

R3 (BC20→5) 12.5 18.75 18.75 21.88 23.44 24.22 12.5 18.75 18.75 21.88 23.44 24.22

Figures 4(a) and (b) show the execution time to perform S1 and R3
realignment, respectively. As the theoretical prediction, algorithm with RLPS
scheme outperforms the TLPS for both cases. This is because the amount of
data needs to be exchanged in RLPS is less than that in TLPS.

Figures 5(a) and (b) illustrate the improvement rate for six test samples on
different number of processors. The R-type realignments has higher
improvement rate than S type. This phenomenon matches the information given
in Table 1.

 S1

TLPS

RLPS

 R3

TLPS

RLPS

(a) (b)

Fig. 4. Execution time of data realignment using TLPS and RLPS (a) BC5→4 (b) BC20→5
(size = 1.152×107 Bytes)

IR S1

S2

S3

IR R1

R2

R3

(a) (b)

Fig. 5. Improvement rate of algorithm using RLPS on different cases. (a) S type
realignment. (b) R type realignment (size = 1.152×107 Bytes)

Optimal Processor Mapping Scheme for Efficient Communication 273

5 Conclusions

We have presented an optimal processor mapping to minimize data transmission
cost for general BLOCK-CYCLIC data realignment. Use data to logical
processor mapping scheme, the desired destination data-layout could be
accomplished over a new RLPS. A significant effect is the achievement of large
volume of local data sets that leading minimum inter-processor communication.
The maximum matching mechanism is applicable to handle arbitrary
BLOCK-CYCLIC data and multidimensional arrays. The theoretical analysis
and experimental tests show the efficiency of the proposed technique is superior
to traditional algorithms.

References

1. Frederic Desprez, Jack Dongarra, and Antoine Petitet,“ Scheduling Block-Cyclic
Data redistribution,” IEEE Trans. on PDS, vol. 9, no. 2, pp. 192-205, Feb. 1998.

2. M. Guo, I. Nakata, and Y. Yamashita, “Contention-Free Communication Scheduling
for Array Redistribution,” Parallel Computing, vol. 26, no. 8, 2000.

3. S. K. S. Gupta, S. D. Kaushik, C.-H. Huang, and P. Sadayappan, “On Compiling
Array Expressions for Efficient Execution on Distributed-Memory Machines,”
Journal of Parallel and Distributed Computing , Vol. 32, pp. 155-172, 1996.

4. C.-H. Hsu and Kun-Ming Yu, "Processor Mapping Technique For Communication
Free Data Redistribution on Symmetrical Matrices," Proc. of the 7th IEEE
International Symposium on Parallel Architectures, Algorithms, and Networks,
2004.

5. E. T. Kalns, and Lionel M. Ni, “Processor Mapping Technique Toward Efficient
Data Redistribution, ” IEEE Trans. on PDS, vol. 6, no. 12 , December 1995.

6. S. D. Kaushik, C. H. Huang, J. Ramanujam, and P. Sadayappan, “Multiphase data
redistribution: Modeling and evaluation,” Proceeding of IPPS’95, pp. 441-445,
1995.

7. N. Park, Viktor K. Prasanna, Cauligi S. Raghavendra, “Efficient Algorithms for
Block-Cyclic Data redistribution Between Processor Sets,” IEEE Transactions on
Parallel and Distributed Systems, vol. 10, No. 12, pp.1217-1240, Dec. 1999.

8. A. Wakatani and Michael Wolfe, “A New Approach to Array Redistribution: Strip
Mining Redistribution,” Proc. of Parallel Architectures and Languages Europe,
1994.

9. A. Wakatani and Michael Wolfe, “Optimization of Array Redistribution for
Distributed Memory Multicomputers, ”Parallel Computing, vol. 21, no. 9, 1995.

10. H.-G. Yook and Myung-Soon Park, “Scheduling GEN_BLOCK Array
Redistribution,” Proceedings of the IASTED International Conference Parallel and
Distributed Computing and Systems, November, 1999.

MCCF: A Distributed Grid Job Workflow
Execution Framework

Yuhong Feng� and Wentong Cai

School of Computer Engineering,
Nanyang Technological University, Singapore 639798

Abstract. With the explosion of scientific data, distributed scientific
applications present great challenges to the existing job workflow ex-
ecution models over the Grid. Based on the idea of having executable
codes as part of Grid resources, a Mobile Code Collaboration Framework
(MCCF) utilizing light-weight mobile agent and dynamic services for dis-
tributed job workflow execution is proposed in this paper. Instead of the
existing light-weight mobile agents, agent core (AC), which is an XML
file specifying the functional descriptions of sub-jobs, is used to adapt
job workflow execution to the dynamic characteristics of the Grid and to
reduce the security risks. In addition, dynamic service mechanism is also
introduced to facilitate the multidisplinary scientific cooperation and ap-
plication integration over the Grid. As a proof-of-concept, a prototype
of MCCF is implemented.

Keywords: Grid computing, job workflow execution model, job work-
flow programming model, mobile agent, code mobility, dynamic service.

1 Introduction

Grid computing aims at providing scientific communities a flexible, secure, coor-
dinated resource sharing among dynamic collections of individuals, institutions
and resources [6]. However, data intensive collaborative scientific (DICS) com-
putations, such as bioinformatics [7], often require diverse, high volume and
distributed data sets. High volume data motion over the Internet makes it a
bottleneck for such computations [3]. In addition, DICS computations encom-
pass a large repository of analysis modules, each of which acts on specific kinds
of data. Developing such computations as monolithic codes is a backbreaking
job.

Job workflow includes the composition of a complete job from multiple sub-
jobs, specification of the execution order of the sub-jobs, and the rules that define
the interactions among the sub-jobs. Job workflow is a natural technology for
developing DICS computations.

� Contact Author: Email – pg01797855@ntu.edu.sg

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 274–279, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

MCCF: A Distributed Grid Job Workflow Execution Framework 275

Pioneers have done much research on the development of effective workflow
execution models. Some popular business workflow execution models, for exam-
ple, Web Service Flow Language (WSFL) [9] and Business Process Execution
Language for Web Services (BPEL4WS) [2], use a typical Client/Server execu-
tion model. When Client/Server model is applied, the execution depends on the
workflow engine to intermediate at each step of the sub-job execution, which
will produce a lot of unnecessary traffic around the engine. Grid Service Flow
Language [8] allows services to deliver messages to each other directly, thus ob-
viating the need for a centralized workflow engine to relay the data between
services. However, its control flow stays with the workflow engine, which makes
the workflow engine a single point of failure. Considering Grid resource dynamic
membership and dynamic quality of service characteristics, mobile agent based
distributed workflow enactment [10] seems a promising solution.

Service is classified into dynamic service and static service [5]. When the ser-
vice deployment is location independent, meaning that it can be instantiated
on any servicing host during runtime, the service is called dynamic service. On
contrary, when the service can only be instantiated on certain set of hosts, it is
called static service. Having executable codes as part of Grid resources, a detailed
classification of job workflow execution model was introduced and a simulation
study was carried out to compare the performance of various workflow execu-
tion models [5]. The simulation results show that when the sub-job executions
involve large data sets from distributed data repositories, light-weight mobile
agent based on dynamic service gets better performance.

In this paper, Mobile Code Collaboration Framework (MCCF) based on dy-
namic services together with light-weight mobile agent for distributed job work-
flow execution is introduced in details.

2 Mobile Code Collaboration Framework

For a given job workflow application, the sub-jobs of the job workflow are rep-
resented as a set J = {j1, . . . , jn}, n is the number of sub-jobs. The sub-jobs
and data dependencies among them can be viewed as a directed acyclic graph
(DAG), which is represented as G = (V, E), where V = J , i.e., sub-jobs are
represented by nodes. The dependencies among the sub-jobs are represented by
directed edges. A directed edge, ei,k ∈ E, from ji to jk, represents that jk is
data dependant to ji, i.e., jk will take ji’s output as its input, and the execution
of jk will not be ready to start until the completion of ji.

2.1 Grid Resources

Having executable codes as Grid resources, Grid resources include data reposi-
tories, computational resources, code repositories, and network resources. For a
certain data set required by a sub-job, there may exist several data repositories
having the data set, which are represented as a set D = {d0, . . . , dd}. Similarly,
for a certain required code by a sub-job, multiple code repositories may have the

276 Y. Feng and W. Cai

codes, which are represented as a set C = {c0, . . . , cc}. For a certain sub-job to be
executed, there will be multiple computational resources satisfying the compu-
tation requirements, which can be represented as a set M = {m1, . . . , mm}. Grid
resources are shared among different organizations, which may involve commu-
nications over the Internet. N is the matrix capturing network characteristics
among nodes in D, M, and C. So a Grid is modelled as G = (D,M, C,N).

2.2 Dynamic Mapping of the Job Workflows

The objective of MCCF is to map the static job workflow specification to the
dynamic Grid resource on the fly for distributed job workflow execution, which
is shown in Figure 1. The job workflow specification includes static specifica-
tion and dynamic specification. The static specification specifies the sub-jobs
and data dependencies among them, and the user policies for resource schedul-
ing. It is generated from user input. Resources for sub-job execution, input data
from predecessor sub-jobs, and locations of the required data set and codes
can be specified as dynamic. This means that the information will be filled
up by the workflow engine dynamically during execution. The resources for
sub-job execution is scheduled on the runtime, i.e., when it is ready to run.
The resource scheduling will be done according to the policies specified by
users.

Grid Resources

Map

Job Workflow

Computational
resources

Data Code

network

Fig. 1. Job Workflow Execution on Grid Resources

2.3 Runtime Support

Mobile agent implementations can be classified into non-functional part and
functional part. The former includes codes for mobile agent communication, in-
telligence, migration and so on, which are common to all mobile agents. The
latter is specific to application functionality. According to what codes will be
transferred during the migration, current mobile agent systems can be classified
into two categories: monolithic mobile agent and light-weight mobile agent [5].
When a mobile agent carries all its codes on its migration, it is a monolithic mo-
bile agent. When a mobile agent carries only its non-functional implementation
or just the description of its functional implementation, it is called light-weight
mobile agent.

Code mobility is defined as the movement of the executable code over net-
works towards the location of needed resources for execution [4]. “Code-on-
demand” (COD) is a design paradigm for code mobility. Applications developed

MCCF: A Distributed Grid Job Workflow Execution Framework 277

using this paradigm can download and link on-the-fly part of their codes from
remote hosts that act as code servers [11]. For COD, codes can be stored in
trusted code repository, which will reduce more risks than that of any code from
any machine.

The light-weight mobile agent in MCCF is different from existing light-weight
mobile agents. It is defined using an agent core (AC). AC is an XML file, which
contains the ID to identify it and the job workflow specification. No code is
included for sub-job execution, instead, the code functionality description is
provided. During runtime, only codes (including supporting packages) conform-
ing to sub-job functionality description are selected and downloaded from code
repositories for execution.

As we can see, no code is contained in AC. The functional implementations
are provided in trusted code repositories as dynamic services. On migration, only
AC will be transferred. COD technology is used to download executables. This
greatly simplifies the existing mobile agent security problem. In addition, AC
migration can be easily carried out for non-identical platforms and incur less
overhead.

Common non-functional implementations, instead of being transferred over
the Internet, are built into runtime supporting infrastructures. They are grouped
into what is called AC agents, which work cooperatively for sub-job execu-
tion. AC agents include plan agent, task agent, and coordinator agent. They
are constructed on each host when AC arrives and destructed when AC is
migrated.

Plan agent is in charge of dynamic resource scheduling according to the poli-
cies specified in the AC. It locates the data repository, schedules the destination
host and locates the code repository for a ready sub-job. Task agent is responsible
for sub-job execution. It will download the dynamic services from selected code
repository and instantiate them for sub-job execution. Coordinator agent will
start and synchronize the execution of plan agent and task agent, and activate
AC migration.

3 Prototype Implementation

We have built a simple prototype of MCCF to illustrate the distributed job
workflow execution over the Grid. Our implementation is built on J2ME (Java
2 MicroEdition) and Java Agent Development Framework (JADE) [12]. Java
is chosen as the implementation language for the following two reasons: it is
platform-independent and its customerized ClassLoader and inspection mecha-
nism make dynamic remote class loading possible. Java CoG-1.1 [13] is utilized
to access Grid services. Globus2.2 needs to be installed on each selected host.

Currently only random resource selection is supported. AC agents are im-
plemented by extending JADE Agent class. A simple code repository service is
implemented as a proof-of-concept. Java byte codes are provided at specified
directory on the code repository. Gridftp [1] is the common data transfer and
access protocol which provides secure, efficient data movement over the Grid. It

278 Y. Feng and W. Cai

is used to download the codes, fetch required data sets and transfer AC between
selected resources.

4 Conclusions & Future Work

The explosion of scientific data and dynamic nature of Grid resources pose great
challenges to the existing job workflow execution models. MCCF utilizes dy-
namic services and light-weight mobile agent to fulfill new requirements. First,
executable codes are provided as dynamic services, which eases job composition
and integration, and makes COD possible. Thus, agent core can be migrated
amongst resources and execution can be carried out at where the data is lo-
cated. Second, AC migration simplifies the security problem of mobile agent,
and also makes mobile agent platform independent. Third, in concept, MCCF
provides a two-level job workflow program model: component developers de-
velop executable code for dynamic services and application developers just need
to specify the input data and code description for sub-job execution and the
data dependency among the jobs. This will greatly reduce the efforts for the
application developers to “gridify” their applications.

References

1. W. Allcock et al. GridFTP: Protocol Extensions to FTP for the Grid. Mar 2001.
http://www-fp.mcs.anl.gov/dsl/GridFTP-Protocol-RFC-Draft.pdf

2. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Business Process
Execution Language for Web Services Version 1.1, 05 May 2003.
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/

3. B. Athey. Future Needs for Bioinformatics, Computational Biology, Bioengineer-
ing, and Biomedical Imaging Requiring Next Generation Supercomputing. DARPA
Biomedical Computing Needs for HPC Systems Workshop. Arlington, VA. January
17, 2003.

4. R. Brandt and H. Reiser. Dynamic Adaptation of Mobile Agents in Heterogenous
Environments. 2001 Mobile Agents: 5th International Conference, Dec 2001.

5. Y. Feng, W. Cai, and J. Cao. A Simulation Study of Job Workflow Execution
Models over the Grid. In 2003 Proceedings of the International Workshop on Grid
and Cooperative Computing (GCC2003), GCC (2), 935-943, 2003.

6. I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid. International
Journal of High Performance Computing Applications, 15(3):200–222, 2001.

7. G. Heffelfinger, and A. Geist. Report on the ComputationalInfrastructure Work-
shop for theGenomes to Life Program. Jan, 2002.
http://doegenomestolife.org/compbio/mtg 1 22 02/infrastructure.pdf

8. S. Krishnan, P. Wagstrom, and G. Laszewski. GSFL: A Workflow Framework
for Grid Services. http://www-unix.globus.org/cog/projects/workflow/gsfl-
paper.pdf

9. F. Leymann. Web services flow language. May 2001.
http://www-3.ibm.com/software/solutions/webservices/pdf/WSFL.pdf

MCCF: A Distributed Grid Job Workflow Execution Framework 279

10. S. Loke, and A. Zaslavsky. Towards Distributed Towards Distributed Workflow
Enactment with Itineraries and Mobile Agent Management. E-Commerce Agents
2001, 283-294, 2001.

11. J. Vitek and C. Tschudin. Mobile Object Systems: Towards the Programmable
Internet. Second International Workshop, MOS’96, July 1996.

12. Java Agent Development Framework. http://sharon.cselt.it/projects/jade/
13. Java CoG Kit. http://www-unix.globus.org/cog/java/?CoGs=&

Gamelet: A Mobile Service Component for
Building Multi-server Distributed Virtual

Environment on Grid�

Tianqi Wang, Cho-Li Wang, and Francis Lau

Department of Computer Science, The University of Hong Kong, Pokfulam
{tqwang, clwang, fcmlau}@cs.hku.hk

Abstract. A DVE system provides a computer-generated virtual world
where individuals located at different places could interact with each
other. In this paper, we present the design of a grid-enabled service ori-
ented framework for facilitating the building of DVE systems on Grid.
A service component named “gamelet” is proposed. Each gamelet is
characterized by its load awareness, high mobility, and embedded syn-
chronization. Based on gamelet, we show how to re-design the existing
monopolistic model of a DVE system into an open and service-oriented
system that can fit into current Grid/OGSA framework. We also demon-
strate an adaptive gamelet load-balancing (AGL) algorithm that helps
the DVE system achieve better performance. We evaluate the perfor-
mance through a multiplayer online game prototype implemented on
Globus Toolkit. Results show that our approach can achieve faster re-
sponse time and higher throughput.

1 Introduction

A Distributed Virtual Environment (DVE) system is a software system through
which people that are geographically dispersed over the world can interact with
each other by sharing a consistent environment in terms of space, presence and
time [1]. These environments usually aim for a sense of realism and an immerse
experience by incorporating realistic 3D graphics and providing real-time inter-
actions for a large number of concurrent users. DVEs are now widely used in
virtual shopping mall, interactive e-learning and multiplayer online games.

A typical DVE system should be able to support a life-like world and real-
time interactions for a large number of users in a consistent way. This trans-
lates into intensive requirements on both the computing power and the network
bandwidth. Multi-server architecture is a popular solution to tackle these prob-
lems [2, 10]. In addition, several techniques [3] such as dead reckoning, packet
aggregation, and area of interest (AOI) management have been proposed to re-
duce the network bandwidth consumption and the servers’ computing load.

� This research is supported in part by the China National Grid project (863 program)
and the HKU Foundation Seed Grant 28506002.

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 280–289, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Gamelet: A Mobile Service Component 281

In recent years, some projects have tired to build DVE systems over Grid.
Cal-(IT)2 Game Grid [8] provides the first ever grid infrastructure for games re-
search in the area of communication system and game service protocols. Butterfly
Grid [9] tries to provide an easy to use commercial grid-computing environment
for both the game developers and game publishers. However, a few new chal-
lenges remain to be solved. One is how to re-design the existing monopolistic
model of a DVE system into an open and service-oriented system that can fit
into current Grid/OGSA framework [7]. Another lies in how to ensure a certain
qualities of service from the perspective of end users. In a DVE system, each user
is represented as an entity called “avatar” whose state is controlled by the user’s
input commands. Since users can move and act freely, it may incur significant
workload imbalance among servers, which in turn causes unpredictable delays in
computing the global world state and delivering the state to the client machines.
This makes it very difficult to achieve real-time interactions.

In this paper, we propose a flexible and scalable service-oriented framework
based on a component called “gamelet” to support the building of a DVE sys-
tem on Grid. Based on the gamelet framework, we further propose an adaptive
gamelet load-balancing (AGL) algorithm that is able to make the DVE system
more scalable and cost-effective.

The rest of the paper is organized as follows. In Section 2, we discuss the
gamelet concept and system framework. In Section 3, we present the prototype
design. Section 4 presents the performance evaluations. Section 5 presents some
related work. Section 6 concludes the paper.

2 Gamelet-Based System Framework

2.1 Gamelet Definition

We define gamelet as a mobile service component that is responsible for process-
ing the workload introduced by a partitioned virtual environment. A group of
related objects, including both static and dynamic objects, form one partition
and will be assigned to one gamelet for processing. For example, in a room-
based virtual environment, one or several rooms can form one partition. In a
session-based virtual environment, like a virtual meeting system, users joining
the same session can form one partition. For system with a persistent wide-open
virtual environment, overlapping partition technique [11] can be used to support
smooth visual interactions among the participants across multiple partitions. A
gamelet has the following unique characteristics:

– Load Awareness. A gamelet is able to detect and monitor the CPU and
network load it created on its hosting server. It also provides a rich set of
API for load inquiry.

– High Mobility. A gamelet can move freely and transparently to a new grid
node within our framework. The mobility is achieved at the application level,
and the world states are transferred using object serialization technique.

282 T. Wang, C.-L. Wang, and F. Lau

– Embedded Synchronization. In DVE, there will be some visual interactions
among two partitions. Two gamelets should be able to communicate reliably
to synchronize their world states whenever necessary.

With gamelets, we can accelerate the application development circles as most
existing partition schemes adopted by the multi-server DVE systems can easily
adapt to the gamelet framework. Moreover, a gamelet can be migrated among
the server nodes to support load balancing at run-time.

2.2 System Framework

Figure 1 shows the overall picture of the system framework. It consists of three
kinds of components: monitor, gamelet and communicator. A monitor is respon-
sible to collect the workload information of each gamelet periodically and execute
the load balancing algorithms. The communicator acts as the gateway for all the
incoming packets and will do intelligent message routing, which means it will
forward an incoming packet to all the related gamelets according to the prede-
fined partition logic. In such a case, the gamelets are responsible to execute the
embedded synchronization protocol to provide a consistent view to the clients.
To join the world, a participant will first contact a well-known monitor. The
monitor assigns a communicator to the client. The client will always send mes-
sages to this communicator. The communicator then forwards the messages to
the corresponding gamelets for processing and the updated world states are sent
back directly to the clients.

In our framework, GT3 core services provide the following supports. Grid
Security Infrastructure (GSI) is used to ensure the secure communication and
authentication among the gamelets over an open network. Each gamelet service
instance will have a unique Grid Service Handle (GSH) managed by the Nam-
ing Service and is associated with a structured collection of information called

Gamelet
Services

Synchronization &
Migration Message

J2EE Service Container

Monitor

Gamelet Factory Services

Client

Communicator

Client

SOAP

Update

C
om

m
an

d

SOAP

 Partition Management

GSI

Gamelet
Wrapper

Gamelet
Wrapper

Naming / Service Data /
Life Cycle Management

Synchronization
Management

Collision Detection
Management

Avatar
Management

Client

World
Management

J2EE Service Container

Gamelet Factory Services

GSI

Index Service

Naming / Service Data /
Life Cycle Management

World
Management

Collision Detection
Management

GRAM

Synchronization
Management

Avatar
Management

Index Service GRAM

Fig. 1. Gamelet-based System Framework

Gamelet: A Mobile Service Component 283

Service Data that can be easily queried by requestors. Life Cycle Management
service provides methods to control a gamelet throughout its life cycle from
creation to destruction.

GT3 base services are based on the GT3 core services. Gamelet Factory
service makes use of the Grid Resource Allocation and Management (GRAM)
service to enable remote creation and management of a gamelet service. A set of
service data, e.g., the cost of the gamelet service, is associated with a Gamelet
Factory service through the use of Index Service. Using the Index Service, the
monitor can dynamically discover the desired Gamelet Factory services that
can meet certain basic requirements in terms of speed, availability, cost and
etc.

To enable a flexible control over multiple gamelets, each gamelet has a cor-
responding wrapper in the monitor. This design encapsulates the complicated
grid related stuffs and makes the monitor totally separated from the underline
grid libraries. So the monitor component is more portable. The gamelet factory
service enables several stateful gamelet services to be created at the same grid
node concurrently. A gamelet factory will periodically register its GSH into a
registry, from where a monitor can locate a set of gamelet factory services and
reliably create and manage gamelet service instances. The monitor and gamelet
form a client-server relationship that is in line with the OGSA client-server pro-
gramming model [12].

2.3 Gamelet Migration

Gamelet migration enables load balancing. The migration protocol is as follows.
When the monitor determines that a gamelet is in need of migration, it first
tries to locate a GSH of another Gamelet Factory service and then creates a
new gamelet to serve as the target of the migration. Once the new gamelet has
been created, the monitor will notify the communicator to store the incoming
packets temporarily in a resizable message queue. Then the monitor directs the
old gamelet to transfer its world content to the new one. Finally, the monitor
will notify the communicator the completion of the migration. Communicator
will then forward the stored packets and the succeeding packets according to the
updated mapping information. Therefore, the migration process won’t result in
notable message loss.

2.4 Load Balancing Algorithm

To support the load balancing of a DVE system in the grid environment, we
propose a new adaptive gamelet load-balancing (AGL) algorithm. The word
adaptive has two-fold meanings. Firstly, the algorithm adapts to the network
latency among the grid nodes to make gamelet migration decisions. Secondly,
the algorithm evaluates each gamelet based on the activities of the clients being
managed and adapts to the resource heterogeneity of the grid nodes to make
gamelet migration decisions.

284 T. Wang, C.-L. Wang, and F. Lau

In AGL algorithm, there is a threshold δm used to judge whether a new load
balancing process is necessary to be performed for server m. Its value can be
adjusted based on the runtime stability of grid resources. Since a grid server may
become unavailable due to some reasons, it might need to be removed from the
DVE system at anytime. Under such a situation, δm can be set to about 0 so
that server m will be considered as overloaded until all its gamelets are migrated
to other grid servers. Then server m can be removed from the system.

We formulate the gamelet load balancing problem as a graph repartition
problem. The graph is built as follows. For the ith gamelet Gi, create a ver-
tex Vi in the graph. For any two vertices Vi and Vj , if there are some inter-
communications Ci,j between them, create an edge between them with value
Wi,j = Ci,j . Other notations used are: V al(Gi) represents the CPU load Gi

introduces to the server, defined as a weighted packet sending rate; Syn(Gi) is
the synchronization cost of Gi; Cost(Gi, m) is the cost of migrating Gi to server
m; Percentage(Gi) is the percentage of CPU load that Gi introduces to the
server, Percentage(Gi) ∈ [0, 1]. The following lists the main procedure of the
AGL algorithm.

Adaptive Gamelet Load Balancing Algorithm:

1. Select a server s which has the highest CPU load among the overloaded
servers. Server s is considered to be overloaded if its CPU load is larger than
δs, which is loaded from a configuration file at runtime.

2. Select a server t with the least CPU load as the migration target. Calculate
the migration cost of each gamelet Gi in server s:

Cost(Gi, t) = Syn′(Gi)− Syn(Gi)

Syn(Gi) is the pre-migration synchronization cost of gamelet i calculated
by formula:

Syn(Gi) =
∑

Gj∈φ

Wi,j × Latencym,n

where φ is the set of gamelets that have some communication traffic with
gamelet i, gamelet i runs in server m and gamelet j runs in server n.
Syn′(Gi) is the post-migration synchronization cost calculated by assuming
that gamelet i has been migrated to server t.

3. Replace server t with a less loaded server. Repeat step 2 again until all ex-
isting gamelet servers have been evaluated.

4. Assign a gamelet with the smallest value of Cost(Gi, q) from server s to
server q. Calculate how much percentage of the workload gamelet i con-
tributes to the original server. Estimate how much workload it will add to
server q (this can be easily done by quantifying and comparing the hardware
configurations of the two servers). The algorithm estimates the percentage of
workload introduced by gamelet i by this formula:

Percentage(Gi) = V al(Gi)/
∑

Gs∈ψ

V al(Gs)

Gamelet: A Mobile Service Component 285

where ψ is a set of gamelets that are currently running in server s. If server
q will be overloaded after migration, repeat step 4 again and try the gamelet
with the second smallest value of Cost(Gi, q).

5. Repeat step one to four until the estimated CPU load of the original server
is under its threshold.

6. If there is still an overloaded server while all the other existing servers cannot
afford to share workload, the algorithm will make a decision to discover a
new grid node with certain requirements, e.g., a grid node with > 10Mbps
bandwidth and < 200ms latency time, add it to the system as another server
candidate. Wait for some time and go to step 1 again.

One strength of the algorithm is that the workload model is more accurate
than other approaches that only take into account the clients number or den-
sity. Therefore, it makes the workload sharing more effective. The reason to use
a weighted packet rate is that different participants will have different packet
sending rate and different commands will lead to different workload too. The
algorithm can also adapt to the network latency among the grid servers to make
gamelet migration decisions. This is achieved through the use of a cost model
that integrates both the gamelet synchronization cost and grid inter-server la-
tency. All these factors enable the AGL algorithm work well in a grid environ-
ment.

3 Prototype Design and Implementation

There are four components in our prototype: client simulator, communicator,
gamelet and monitor. The size of the 3D world is 100*100*20. The world is
partitioned into 16 equal-sized cells and the overlapping length of the neighbor-
ing partitions is 5. The client simulator simulates a number of randomly dis-
tributed clients. Each will send out a packet every 100ms. Each data packet
has 32 bytes, consisting of the avatar’s position, command and timestamp.
We define a circle with a radius of 5 to be the area that a client is inter-
ested in. The gamelet also do collision detections after each command is exe-
cuted.

We define the response time (RT) to be the average time interval of each
client from sending out a packet to receiving the confirmation from the server
that the command has been executed and the results have been sent to all
the related clients. System capacity (CP) is defined as the maximum num-
ber of participants that the system can accommodate so that the interactions
in the world will have a reasonable average RT (≤ 200 ms) and loss rate
(≤ 50%).

The gamelet and monitor are implemented on top of GT3.0 [14]. All compo-
nents are implemented using J2SE 1.4.2 and run on Linux kernel 2.4.18 with
P4 2.00GHz CPU, 512MB RAM and 100Mbps Ethernet [13]. The network
round-trip time among the nodes is within several milliseconds if not specified
explicitly.

286 T. Wang, C.-L. Wang, and F. Lau

4 Performance Results

4.1 Gamelet Creation and Migration

We study the performance of gamelet creation and migration when a monitor
sequentially creates gamelets in different servers. We find that when the monitor
creates the first gamelet in the first server, it usually takes about 7-8 seconds.
This is because various GT3 runtime libraries need to be loaded and initialed at
both the monitor and gamelet server side. But the creation of the first gamelet
in a second server takes 2-3 seconds. This is because the monitor has loaded
and created necessary libraries. The creation of the second gamelet in the same
server will only take about 100 ms.

The gamelet migration process will introduce a short time of delay. The de-
lay time depends on the size of the gamelet, e.g., the total number of avatars
that need to be transferred. The interactions between the monitor and the com-
municator add about 30-40 ms to the pure gamelet content transmission time.
However, the migration process won’t bring obvious influence to the packet loss
rate, since the communicator will store the incoming packets temporally and
forward them later.

4.2 Gamelet Migration Algorithm

We compare the performance of our proposed AGL algorithm with a popular
used algorithm named even-avatar load-balancing (EAL) algorithm, which tries
to even the number of avatars that each server holds. Table 1 shows part of
the network latency configurations among the servers in the experiments. The
latency is below 1 ms within the same server.

Table 1. Network Latency Among the Servers

Latency(ms) S1 S2 S3 S4 S5 S6 S7 S8
S2 100 1 200 150 100 100 100 50

Initially, the 16 gamelets are all in server 1. As the number of clients increases,
servers are added into the system one by one according to their indices. A server
is regarded as overloaded if its CPU load is larger than 90%. In the experiment,
the client simulator will generate a virtual environment with 3 hotspots.

Figure 2(a) shows the average RT under the two different approaches with 2,
4, and 8 servers respectively. The graph shows that the AGL algorithm can get
much better performance. Table 2 shows the performance result under 4 servers.
Under EAL approach, S1, S2 and S3 are all overloaded. Therefore, the RT of
the three servers are very long leading to much worse performance on average.
The influence of the inter-server latency is worthy of mention. E.g., under AGL
approach, S2 has similar load with S1, but the RT of S2 is about 100 ms longer
than that of S1. This is because network connections with S2 is not as fast as
that with S1.

Gamelet: A Mobile Service Component 287

0

100

200

300

400

500

2 servers / 52 clients 4 servers / 91 clients 8 servers / 176
clients

Server Number

R
es

p
o

n
se

 T
im

e
(m

s)

AGL EAL

(a)

0

25

50

75

100

125

150

175

2 4 8

Server Number

S
ys

te
m

 C
ap

ac
it

y
 (

n
u

m
b

er
 o

f
cl

ie
n

ts
)

AGL EAL

(b)

Fig. 2. Gamelet Migration Algorithms Evaluations

Table 3 and Table 4 show the CPU load and RT when 8 servers is used un-
der the two approaches. This time the EAL approach happens to even the load
among the servers (though it can not guarantee), and the inter-server traffic is
even smaller than that of AGL algorithm. However, the average RT is still not
as good as that of AGL algorithm. We find that the RT of S2, S3 and S4 is much
worse under EAL approach. This is mainly because much of the inter-server
traffic is transferred through low network, e.g., S2 and S3 under EAL approach.
This situation is avoided under AGL algorithm since two gamelets with large

Table 2. Performance Comparisons with 4 Servers

91 Clients CPU Load Inter-server RT (ms) ART
4 Servers S1 S2 S3 S4 Traffic S1 S2 S3 S4 ms

AGL 90% 89% 79% 81% 276.8 Kbps 223 321 210 241 248.7
EAL 100% 100% 99% 42% 184.1 Kbps 503 572 512 101 422.0

Table 3. Performance Comparisons with 8 Servers (1)

176 Clients CPU Load Inter-server
8 Servers S1 S2 S3 S4 S5 S6 S7 S8 Traffic

AGL 90% 72% 69% 71% 71% 90% 69% 68% 891.1 Kbps
EAL 90% 88% 89% 91% 89% 90% 35% 36% 742..6 Kbps

Table 4. Performance Comparisons with 8 Servers (2)

176 Clients RT (ms) ART
8 Servers S1 S2 S3 S4 S5 S6 S7 S8 (ms)

AGL 270 323 180 180 184 247 175 158 214.6
EAL 235 402 309 278 214 235 137 110 240.0

288 T. Wang, C.-L. Wang, and F. Lau

amount of traffic will tend to be assigned to two servers with better connec-
tions provided they can not be in the same server due to the CPU balancing
requirement.

By decreasing the number of the clients in the virtual world, we can get the
CP of the servers under the two approaches. The system with AGL algorithm has
much larger capacity than the EAL algorithm. The reason lies in two aspects.
Firstly, the AGL algorithm can estimate the CPU load each gamelet introduces
to the server more accurate than the EAL algorithm. Secondly, AGL algorithm
tries to minimize the intercommunications among the servers that have bad
network connections. As shown in Fig. 2(b) the proposed AGL algorithm can
improve the CP by 80%, 72% and 13% comparing with EAL approach when
using 2, 4 and 8 servers respectively, therefore making a more scalable and cost-
effective system.

5 Related Work

Most of the existing multi-server approaches are based on data partition scheme
and can only perform limited local load sharing strategies. Examples includes
CittaTron [4], NetEffect [5] and CyberWalk [6]. CittaTron is a multi-server net-
worked game whose world is partitioned into several regions, each of which is
assigned to one server. A load adjustment scheme is introduced by transferring
some users from the highest loaded region to the neighboring regions. However,
this approach can hardly be effective since only the user number is considered.
In NetEffect, the virtual world is partitioned into separated communities that
are managed by multiple servers. A heavy loaded server can transfer some of
its communities to a less loaded server dynamically. Unfortunately, in such a
system the load balancing process is not transparent to the clients. A user has
to log into the system again after each migration. CyberWalk is a web-based
multi-server distributed virtual walkthrough environment. The region managed
by each server can be adjusted by transferring the boundary areas among neigh-
boring regions. However, if there is more than one hotspots in the concerned
regions, a cascading effect may occur which will seriously affect the system per-
formance. Therefore, all the above load-sharing approaches are not suitable for a
very dynamic DVE system where the participants can move and act freely. It is
more difficult for these approaches to work well in a dynamic grid environment.

6 Conclusions

In this paper, we present a novel service component called gamelet for building
DVE systems over Grid. Existing multi-server DVE systems based on partition
scheme can be easily mapped into the gamelet-based framework. Our gamelet
migration protocol and the load balancing algorithm help enable a more scalable
DVE system. We have evaluated the performance of our proposed approach
through a multi-player game prototype. Results show that our approach can
build a more scalable system.

Gamelet: A Mobile Service Component 289

In our future work, we will study how various synchronization protocols will
influence the performance of gamelet-based DVE system and what are the pos-
sible improvements. Currently, we assumes a simple two-way synchronization
scheme. However, more complicated synchronization protocol is needed for ap-
plications that have both high consistency and response time requirements. One
possible direction is to study how the communicator can help gamelet do syn-
chronization more efficiently.

References

1. S. Singhal and M. Zyda, Networked Virtual Environments: Design and Implemen-
tation, Addison Wesley, July 1999.

2. T. Funkhouser, “Network Topologies for Scalable Multi-User Virtual Environ-
ments”, Proceedings of the 1996 Virtual Reality Annual International Symposium,
IEEE VRAIS 96, San Jose, CA, USA, 1996, pp. 222-228.

3. J. Smed, T. Kaukoranta, and H. Hakonen, “A Review on Networking and Mul-
tiplayer Computer Games” Technical Report 454, Turku Centre for Computer
Science, 2002.

4. M. Hori, K. Fujikawa, T. Iseri, and H. Miyahara, “CittaTron: a Multiple-server
Networked Game with Load Adjustment Mechanism on the Internet”, Proceedings
of the 2001 SCS Euromedia Conference, Valencia Spain, 2001, pp.253-260.

5. Tapas K. Das, Gurminder Singh, Alex Mitchell, P. Senthil Kumar, and Kevin
McGee, “NetEffect: a network architecture for large-scale multi-user virtual
worlds”, Proceedings of the ACM symposium on Virtual reality software and tech-
nology, Lausanne, Switzerland, 1997, pp.157-163.

6. N. Beatrice, S. Antonio, L. Rynson, and L. Frederick, “A Multiserver Architecture
for Distributed Virtual Walkthrough”, Proceedings of ACM Symposium on Virtual
Reality, Software and Technology 2002, Hong-Kong, 2002.

7. I. Foster, C. Kesselman, J. Nick, and S. Tuecke, The Physiology of the Grid: An
Open Grid Services Architecture for Distributed Systems Integration, Open Grid
Service Infrastructure WG, Global Grid Forum, 2002.

8. California Inst. for Telecommunications & Infor. Tech. http://www.calit2.net
9. Butterfly Grid. http://www.butterfly.net/.

10. Beatrice Ng, Frederick W. B. Li, Rynson W. H. Lau, Antonio Si, and Angus M.
K. Siu, “A performance study on multi-server DVE systems”, Information Sci-
encesInformatics and Computer Science: An International Journal, v. 154, n.1-2,
2003, pp. 85-93.

11. J.Y. Huang, Y.C. Du, and C.M. Wang, “Design of the Server Cluster to Support
Avatar Migration, IEEE Virtual Reality 2003 Conference, LA, USA, 2003, pp.7-14.

12. S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, C. Kesselman, T. Maguire,
T. Sandholm, P. Vanderbilt, and D. Snelling, Open Grid Services Infrastructure
(OGSI) Version 1.0, Global Grid Forum Draft Recommendation, 2003.

13. HKU Gideon300 Grid. http://www.srg.csis.hku/gideon/, 2004.
14. Globus Toolkit 3.0. http://www.globus.org/.

 J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 290–302, 2004.
© Springer-Verlag Berlin Heidelberg 2004

The Application of Grid Computing to Real-Time
Functional MRI Analysis

E. Bagarinao1, L. Sarmenta2, Y. Tanaka3, K. Matsuo1, and T. Nakai1

1 Photonics Research Institute, National Institute of Advanced Industrial
Science and Technology

(AIST) Kansai Center, Ikeda City, Osaka 563-8577, Japan
2 Department of Information Systems and Computer Science, Ateneo de Manila University,

Quezon City 1108, Metro Manila, Philippines
3 Grid Research Technology Center, National Institute of Advanced Industrial Science and

Technology, Tsukuba City, Ibaraki 305-8566, Japan

Abstract. The analysis of brain imaging data such as functional MRI (fMRI)
data often requires considerable computing resources, which in most cases are
not readily available in many medical imaging facilities. This lack of computing
power makes it difficult for researchers and medical practitioners alike to
perform on-site analysis of the generated data. This paper proposes and
demonstrates the use of Grid computing technology to provide medical imaging
facilities with the capability of analyzing functional MRI data in real time with
results available within seconds after data acquisition. Using PC clusters as
analysis servers, and a software package that includes fMRI analysis tools, data
transfer routines, and an easy-to-use graphical user interface, we are able to
achieve fully real-time performance with a total processing time of 1.089 s per
image volume (64 x 64 x 30 in size), much less than the per volume acquisition
time set to 3.0 s. We also study the feasibility of using XML-based
computational web services, and show how such web services can improve
accessibility and interoperability while still making real-time analysis possible.

1 Introduction

Functional magnetic resonance imaging (fMRI) is a non-invasive technique used to
investigate the functions of the human brain. In an fMRI examination or experiment,
the subject's brain is repeatedly scanned while the subject is performing certain tasks.
Statistical analysis is then performed on the resulting time series of brain scans in order
to produce an activation map indicating regions in the brain that are active during
certain tasks. Since most medical imaging facilities today do not have the computational
resources to perform such an analysis in real-time, medical practitioners and researchers
typically do not get the results of the examination until long after the scanning session is
completed and the subject is no longer inside the MR scanner. This limits the type of
examinations and analyses that can be done, since examiners are forced to run a static
set of tests and cannot add or discard tests dynamically based on the results of previous
tests. It can also lead to wasted work and lost opportunities in cases where the results of
an experiment must be discarded due to errors encountered during the gathering that
could have been avoided if the examiner had immediate feedback.

The Application of Grid Computing to Real-Time Functional MRI Analysis

291

Site A

MR Scanner

IBRI, Kobe, Japan

Site B
LERC, AIST Kansai
Osaka, Japan

Site CAnalysis Servers

GTRC, AIST
Tsukuba City, Japan

Site D

Analysis Workstation

Sato Lab, Osaka University
Osaka, Japan

Site E

Analysis Server

DISCS, ADMU
Quezon City, Phils Philippines

Japan

Data
Server

Analysis
Server

Data ServerSite A

MR Scanner

IBRI, Kobe, Japan

Site B
LERC, AIST Kansai
Osaka, Japan

Site CAnalysis Servers

GTRC, AIST
Tsukuba City, Japan

Site D

Analysis Workstation

Sato Lab, Osaka University
Osaka, Japan

Site E

Analysis Server

DISCS, ADMU
Quezon City, Phils Philippines

Japan

Data
Server

Analysis
Server

Data Server

In this paper, we present a system that is capable of achieving real-time processing
of functional MRI time series using remote computational resources accessed via the
Grid. Several PC clusters belonging to different institutions participating in the
Medical Grid Project (MGP) were utilized. A software package, baxgrid, was
developed to support the integration of the different subsystems. We describe these
subsystems and the overall system’s implementation, and present the results of the
evaluation of the system’s performance. We also present results from a new approach
involving XML-based computational web services, and show how such web services
can improve accessibility and interoperability while still making real-time analysis
feasible.

2 System Overview and Design

We propose the use of a computational grid composed of multiple MR imaging
subsystems, analysis servers, and data servers, all interconnected via the Internet.
Since the analysis of data is performed remotely by the high-performance analysis
servers, real-time processing is possible even if the medical imaging facility itself has
only limited computational capability. Furthermore, since the system allows sites that
are geographically separated to participate in the grid, it can bring fMRI analysis
capabilities to places that do not yet have it, such as developing countries and
financially-constrained institutions.

2.1 The Medical Grid Project Testbed and Analysis Servers

To study and demonstrate the idea of using grid computing for medical applications
such as fMRI, we have formed the Medical Grid Project (MGP) testbed composed of
several sites in Japan and the Philippines, as shown in Fig. 1.

Fig. 1. The Medical Grid Project Testbed for real-time fMRI analysis

 The MGP testbed provides five PC clusters serving as analysis servers (one cluster
each at Sites A, B, and E, and two clusters from Site C) and two data servers (one from

E. Bagarinao et al.

292

Site A and another one from Site B). The MRI acquisition subsystem is located in Site
A. For real-time benchmarking, the two clusters in Site C were utilized. One of them,
cluster A, has 4 compute nodes and 1 server node. The other one, the cluster B, has 32
compute nodes and 1 server node. Each node (NEC Express 5800) for both clusters has
two 1.4-GHz Pentium III processors. Within each cluster, the nodes are interconnected
via Gigabit Ethernet link. For offline timing and code optimization, cluster C in Site A
was used. It has 8 compute nodes and 1 server node. Each node has two 800-MHz PIII
processors with 1-GB of physical memory. The cluster is interconnected using Myrinet
(Myricom, Inc. Arcadia, CA) and Fast Ethernet links. To measure data transfer times
across large geographic distances, we used the analysis workstation at Site D in Japan to
send and receive data from a PC cluster at Site E in the Philippines.

2.2 Software Components

Using Grid Computing for Functional MRI Analysis
The analysis of a functional MRI time series is a computationally intensive task that
includes image preprocessing (motion correction and smoothing), incremental general
linear modeling (GLM) using a method such as that in [2], and statistical analysis.
The analysis starts when the first image volume is received from the analysis
workstation of the MRI acquisition subsystem. As more image volumes arrive, each
new volume is realigned relative to the first volume in the series to correct for head
movement during the scan. After realignment, spatial smoothing using a three-
dimensional Gaussian filter is then applied. The estimates of the GLM coefficients, t-
statistics, and t-statistics threshold are then updated, incorporating the information of
the new volume. The procedure is repeated with each new volume until the last
volume in the series is processed.

While a single PC doing this analysis may not be able to do it fast enough for real-
time use, wherein the whole analysis process must be completed for each volume
before the next volume is made available, a high-performance parallel machine, such
as a PC cluster, can do it by parallelizing some of the steps. Thus, if we can give a
medical imaging facility access to a remote high-performance PC cluster that can do
the processing for it, then we can enable it to do real-time fMRI analysis.

The Baxgrid Software Package
Fig. 2 shows a description of the baxgrid software package that we have developed to
allow enable grid-based fMRI analysis as described above. Written in C, the baxgrid
package is composed of several routines which can be categorized into computational
routines, data transfer routines, and display routines. The flow of the analysis and
interaction between these routines is shown in Fig. 2.

The acquisition and analysis of data is initiated by the user using the Baxgridgui
program (shown in Fig. 3), which serves as the front-end application with which the
user interacts directly. This graphical application, written in C, runs on the analysis
workstation and allows users to specify, among others: (1) the scanning parameters
such as the number of slices and the number of volumes to process, etc., (2) the
preprocessing operations that will be included in the analysis, and (3) the remote
computational resources that will be used. Once the user starts the analysis,
baxgridgui invokes several local and remote processes to facilitate the analysis and
transfer of the data from the local workstation to the remote analysis server.

The Application of Grid Computing to Real-Time Functional MRI Analysis

293

baxgridgui

baxdsend

baxrrecv

baxgridviewer

baxdrecv

baxgridbatch

baxrsend

gridftp

analysis workstation analysis server

data

(remote copy)

data

(local copy)

results

(remote copy)results

(local copy)

display

(spm)

results

baxgridviewer

other remote workstation

display

(spm)

remote

processes

local

processes

MRI

Scanner

Fig. 2. Interaction of the different routines (local and remote) of the baxgrid package during
real-time analysis

After the first volume is acquired from the MR image acquisition facility (image
acquisition phase), it is immediately sent to the analysis server (data transfer phase)
using the baxdsend and baxdrecv programs, two C programs that transfer binary data
through direct TCP/IP sockets between the hosts. When the volume data is received
by the analysis server, the server starts processing it (analysis phase) immediately
using the baxgridbatch program. To be able to compute the statistics incrementally,
the method proposed in [2] is used. The Message Passing Interface (MPI) library
(http://www-unix.mcs.anl.gov/mpi/) is used to parallelize the analysis within a
volume. The result of this analysis is an activation map file showing the areas of the
brain which are active. These results are sent back (results transfer) to the analysis
workstation via baxrsend and baxrrecv. On the analysis workstation, the
baxgridviewer routine receives and displays the new activation map data (as shown in
Fig. 3). The whole process is then repeated for the next volume until the last volume is
processed.

Note that to achieve fully real-time analysis – wherein the user can see the results
of the previous volume's analysis before the next volume is scanned – the total time
from data transfer to the update of the activation map should be less than the
repetition time (TR) of the scan, the time interval between the re-scanning of the same
image slice. In the case of our experiments, TR = 3 s. However, if enough computing
power is available, then lower values of TR may be used for more temporal precision.

The User Interface
The baxgridgui and baxgridviewer programs use the gtk+ library (http://www.gtk.org)
for Linux to provide a user-friendly graphical user interface (GUI) as shown in Fig. 3.

E. Bagarinao et al.

294

Through this GUI, the remote analysis is made transparent to the user, as if all
computations are performed using the local analysis workstation. These programs use
the Globus Toolkit 2.0 API (http://www.globus.org) to initiate remote processes such as
the analysis program and the data transfer routines on the analysis server.

Collaborators from other institutions can also view results simultaneously by
running baxgridviewer in their local machines. An option in the baxgridviewer
program can be used to retrieve the results directly from the analysis server using
gridftp and display them in the user’s monitor.

Fig. 3. Screenshots of the baxgridgui and baxgridviewer application windows

2.3 Computational Web Services

Aside from the original baxgrid software that uses C and Globus APIs for data
transfer and remote execution, we also implemented a prototype system that uses
computational web services instead.

The idea behind computational web services (CWS) [1] is to use XML web
services to offer a simple programming interface that can make it very easy for
programmers to tap the computational power of a Grid computing resource. XML
web services are like older remote procedure call or remote object technologies such
as RPC, CORBA, RMI, and DCOM, that allow programmers to call a function on a
remote machine as easily as if the function were running on the local machine.
Unlike these older technologies, however, XML Web Services use HTTP and
industry-standard platform-independent XML-based protocols such as SOAP, WSDL,
and UDDI. These protocols allow XML Web Services to be invoked from potentially
any programming language, and to be accessed from anywhere that the Web is

The Application of Grid Computing to Real-Time Functional MRI Analysis

295

available, even from within a firewall. Thus, XML web services are much more
interoperable and more easily accessible than these older technologies.

In the case of Medical Grid Computing and fMRI research, a CWS can provide a
simple API for submitting jobs and data to the analysis server, which can then execute
the job quickly on a high-performance cluster. Currently, since the baxgrid program
uses Globus, it requires the complex installation procedure of Globus on both the
analysis workstation and the analysis server, and also requires a complex firewall
configuration (which may not even be allowed by some institutions' firewall policies).
By using a CWS instead of Globus, we can greatly simplify the setup procedure, as
well as eliminate the firewall problems. Furthermore, since the CWS is accessible
from a variety of programming languages, it makes it much easier to write GUI-based
client applications that can run on different operating systems.

Fig. 4 shows the design of a generic computational web service for MRI or fMRI
applications which we are currently implementing. In this figure, the user would use
a client program (Step 1), which would allow him to specify the input files as well as
the analysis he wants to perform (e.g., activation map, do realignment, etc.) Then
(Step 2), this program invokes the startJob() remote function of the MRIService
computational web service. The program submits the parameters (including the
common information in the image headers such as image size, etc.), and specifies the
type of analysis as indicated by the user in Step 1. Given these parameters, the CWS
will start the executable corresponding to the desired analysis type on the cluster, and
return a job number, which the client can use to identify the job. Then (Step 3), the
analysis program will loop through all the volumes and submit them to the server
using the submitVolume() remote function of the web service. Each call to
submitVolume() must include the jobID number so that the server can distinguish

Fig. 4. Using a computational web service for MRI Analysis

which job a volume belongs to. This makes it possible for the server to serve multiple
client (e.g., multiple hospitals or MRI facilities) at the same time. The call to

PC Cluster

MRIService

MRI Analysis
Computational Web Service

Analysis
Workstation

User enters params
and input files

long jobID
= MRIService.startJob(

analysis type, params)

for(all volumes in series)
{ MRIService.submitVolume(

jobID, volumeID, data)
}

for(all volumes in series)
{ result[i] = MRIService.getResult(

jobID, volumeID)
}

User views Results

1

2

3

4

5

E. Bagarinao et al.

296

submitVolume() also includes a volumeID so the server can keep the volume images
in sequential order. As each volume is submitted, the MRIService puts the
data in an incoming queue. Meanwhile, the process that was started in Step 2
runs as a program on the PC cluster, and periodically checks the incoming
queue and processes any new volumes. Any new results produced by the cluster are
put in an outgoing queue. Then (Step 4), on the client side, the viewer part of the
analysis program periodically retrieves any available volume images using the
getResult() web service. Finally, this information is displayed to the user in real time
(Step 5).

Note that although initially meant to be used for fMRI analysis, this system can
potentially be used to handle many different kinds of image analysis applications that
process time series of medical images. All that is needed is for the user to specify a
different executable (assuming that the executable binaries are already present in the
analysis server and PC cluster).

At present, we have built a prototype web service using Java and Apache AXIS
(http://www.apache.org/), that runs on the PC cluster at Ateneo de Manila University,
and allows clients to send and retrieve data and result files, as well as to start the
analysis program. To demonstrate interoperability and ease-of-programming, we have
successfully written a number of client programs, including a text-based batch
processing program written in Java, running on Linux and Windows, as well as an
interactive graphical client similar to baxgridviewer and baxgridgui, written in
Microsoft .NET C#, running on Windows, as shown in Fig. 5.

Fig. 5. A GUI-based Microsoft .NET C# client connected to a Java XML Web service

The Application of Grid Computing to Real-Time Functional MRI Analysis

297

3 Results

3.1 Data Transfer Time

Two critical time factors affecting the remote real-time analysis of fMRI data are
transfer times (data and results) and analysis time. Fully real-time analysis can only
be achieved when the total time (roughly, data transfer time + analysis time + results
transfer time + display update) is less than the used TR. Using a benchmarking data
set consisting of 130 volumes of 64 x 64 x 30 voxels each, we measured the average
time to transfer an image volume from one site to another repeatedly throughout the
day for several days. The results are shown in Fig. 6.

Fig. 6. Transfer times per volume from one MGP participating site to another (measured every
hours for several days). Cases: (A) from Site D to Site E, (B) from Site A to Site C, (C) from
Site B to Site C, and (D) from Site D to Site C

For the given data size (in this case, 480Kbytes per volume), only Case D with an
average transfer time of 0.533 s has the potential for attaining fully real-time
performance. Each site (D and C) connects to a Gigabit backbone. Case B is the
slowest since the resources in Site A connect to the Internet via an ISDN (Integrated
Services Digital Network) line. Case C is promising in spite of the fact that the
resources in Site B are connected to the Internet via an ADSL (Asymmetric Digital
Subscriber Line) connection. Although it is not possible to achieve fully real-time
analysis with the given data size and TR (3 s), the average transfer time per volume
(5.825 s) is close enough to the TR that the delay in the analysis would not be
significant. It may still be possible to achieve real-time analysis by reducing the data
size, or using a longer TR.

Case A of Fig. 6 illustrates the challenges faced when doing grid computing across
international borders. For this case, the entire Ateneo de Manila University (Site E)
shares the Internet connection to the world, consisting of multiple E1 lines. Thus,
during school days (Monday to Friday), the network slows down dramatically,

E. Bagarinao et al.

298

especially during peak hours as exhibited by the peaks of the transfer time. On
weekends and at night, however, the network activity is greatly reduced and the
transfer time goes down. The minimum time in this experiment is about 2.5 s, which
would make real-time analysis possible if network activity is minimized. (Note: this
experiment was done using volume data of 480Kbytes each. In a later experiment,
described below, we were able to reduce the data to 280Kbytes by removing redundant
header information, and were able to cut down the transfer time to a best case of 1.5 s
or less per volume.) These results are promising, especially for researchers in
developing countries, and other places with limited computational resources, since it
demonstrates that it is possible to access computational resources in developed
countries, and thus enhance their capabilities without too much additional cost.

3.2 Analysis Time

Another critical time factor is the analysis time. To get the speed up due to
parallelization, several analysis runs using different number of CPUs in clusters B and
C were performed. Fig. 7 summarizes the total time to process a single volume, 64 x
64 x 30 in size, as a function of the number of CPUs employed in the analysis. The
data were obtained offline. The bar graphs include the timing for realignment,
smoothing, statistical analysis using GLM, and within-cluster communication.
Noticeably, the realignment took the bulk of the processing time, followed by
smoothing, then within-cluster communication, and finally statistical analysis. As the
number of CPUs increases, the total processing time decreases. For within-cluster
communication, the time increases due to the increasing number of nodes to
communicate. But the overall processing time decreases until 16 CPUs.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

2 6 11 16

Communication

Statistics

Smoothing

Realignment

Number of CPUs

P
ro

c
e

ss
in

g
ti

m
e

(s
)

0

0.5

1

1.5

2

2.5

2 4 8 12 16 20

Statistics

Communication

Smoothing

Realignment

Number of CPUs

P
ro

c
e

ss
in

g
ti

m
e

(s
)

Cluster C Cluster B

Fig. 7. Total time to process a volume (64 x 64 x 30) of fMRI data as a function of the number
of CPUs, for cluster C (slower processors) and cluster B (faster processors). The processing
includes realignment, smoothing, and statistical analysis. The time spent for data
communication within the cluster is indicated as communication

From the above figures, we can conclude that the use of PC clusters significantly
improved the performance of the system. In this case, we achieved optimal
performance with 16 CPUs. Beyond this number, communication overhead causes the
total processing time to start to increase.

The Application of Grid Computing to Real-Time Functional MRI Analysis

299

One may note that with the newer, faster processors available in Cluster B, the
analysis can already be done in less than 3 s with only 2 processors, suggesting that it
would be better to just have the medical imaging facility buy an off-the-shelf dual-
processor machine, and perform the real-time analysis locally. This may be true in
this case for this particular experiment, since the volumes we are processing are not
very large. However, as the volumes become larger (e.g., with higher resolution brain
scans), then the performance of a single dual-processor machine will not be enough
anymore. Furthermore, note that the analysis performed in this experiment is just one
kind of fMRI analysis. In the future, we may have other, more computationally
intensive and more parallelizable, algorithms that we wish to run on each volume, in
which case having access to the PC cluster would be significantly beneficial.

3.3 Total Analysis Time

Finally, we simulated a real-time run by using the analysis workstation in Site D
and cluster B in Site C. The running results were also displayed simultaneously in
Site B. The simulated real-time run used real data from a previous MRI
examination, and included everything specified in Fig. 2 except the participation of
the MRI scanner itself (which is not readily accessible for computational
experiments). To get the timing for the data transfer, we used the time function to
record the total time the application was running. Dividing the resulting time by 130
would approximate the transfer time per volume. This value represents a good
estimate since the data were already available locally and the program did not have
to wait for the data’s acquisition. Using this approach, an estimated data transfer
time per volume equal to 0.215 s was obtained. (Note that this is different from the
result of the transfer test in Fig. 6 (average 0.533 s) because for this run, the header
information, which is redundant information that is about the same size as the
image data, was excluded from the transfer, thus reducing the time by almost half.

The analysis time was also estimated similarly, that is, taking the total running time
of baxgridbatch using 16 CPUs and dividing it by 130. The result was 0.960 s per
volume. Note that this value includes waiting time, that is, before baxgridbatch could
start the analysis for one volume, it had to wait for the data transfer to complete.
Subtracting the data transfer time obtained above, we got 0.745 s. This value is close
to the value obtained during the offline runs, which is 0.710 s (Fig. 7b, 16 CPUs). For
the results transfer time, the waiting times for data transfer and analysis need to be
subtracted from the obtained value, which was around 1.269 s. This gives 0.094 s for
result transfer time. Finally, the time to update the display is recorded using the
g_timer_* routines in the gtk+ library. For local update, the time is around 0.035 s,
whereas for remote update, the time is 1.6 s. These values are dependent on the size of
the actual display. From these values, the total processing time per volume can be
approximated and is equal to 1.089 s (for local display) and 2.654 s for remote
display. Note that the reported values above varied from run-to-run, though not
significantly, with the total value always within the used TR, thus demonstrating fully
real-time analysis.

3.4 Computational Web Services

Aside from improving interoperability and programmability, the use of these XML
Web services also greatly reduced the setup requirements compared to that of Globus.

E. Bagarinao et al.

300

Furthermore, even though these web services use Java and use XML, a text-based
language, to encode the data during data transfer, the data transfer rate was only
around 2x slower than that of the direct socket transfer program, as shown in Fig. 8.
Moreover, by having the web service automatically use GZIP compression (using
built-in Java routines) to compress the data before encoding it as XML, we were able
to reduce the slowdown to less than 2x (around 1.5x for image files, in this case, and
much less for the highly-compressible activation map files), and come close to
achieving a total transfer time (including the image file and the activation map) of less
than 3s between Osaka and Manila during off-peak hours, thus demonstrating at least
the feasibility of real-time performance even when using XML web services. (We
have actually measured total transfer times of less than 3s using a CWS but were not
able to measure the time for the C socket version for the same time period, and so do
not present the data here.)

Fig. 8. A comparison of data transfer times between Sites D and E, using C sockets and a
computational web service

4 Related Work

Several other groups have also studied the use of grid computing technologies for the
analysis of medical imaging data. These include the MediGrid Project [4,5] and the
Neurogrid Project [6]. Darthmouth College has established the fMRI Data Center [7]
which uses Globus to provide researchers with access to several databases of fMRI
data, as well as allows them to submit their own data and run fMRI applications on
these data. Most of these projects are primarily concerned with offline processing of
image data, and not so much on real-time processing as we are attempting in this
project.

Our idea of computational web services [1] was originally developed
independently from the idea of grid services as developed in the OGSA project [3].
Thanks to OGSA, there is now great interest in grid services in industry and many
grid computing projects are now taking advantage of XML web services. As far as
we know, however, most medical imaging applications using grid computing are still
using the older version of Globus, which does not yet using web services.

0
1
2
3
4
5
6
7
8
9

E -> D D -> E E -> D D -> E

DATA DATA MAP MAP

T
ra

ns
fe

r
tim

e
pe

r
vo

lu
m

e
(s

)

Java CWS gzip

C sockets
uncompressed

Java CWS
uncompressed

The Application of Grid Computing to Real-Time Functional MRI Analysis

301

Some grid computing projects today aimed at practical scientific applications, such
as GridSphere [8] use grid portals. These grid portals typically allow users to submit
jobs to the Grid by providing a web page that they can visit and upload data to using a
web browser. XML-based computational web services and grid services, on the other
hand, provide a programmatic interface that allows programs to communicate with a
server via the HTTP protocol. Computational web services do not use web browsers
and act like essentially like remote objects that can be invoked by user programs.
Thus, the applications of computational web services are much more vast than those
of grid portals.

5 Discussion and Conclusion

One of the critical factors in the real-time analysis of functional MRI time series is the
analysis time. This in turn depends on the complexity of the analysis performed and
the size of the data being considered. For analysis involving only simple comparison
t-test or those involving only limited number of voxels (e.g., a slice or two), achieving
real-time performance would not require considerable computing power. But the
analysis results would not be as useful. It could only give a rough idea of possible
regions of activation. The coverage would also be strongly limited to specific regions
in the brain. To attain more reliable and complete results, more sophisticated analysis
employing for instance image preprocessing to eliminate non-task related artifacts is
important. Whole-brain image analysis is also necessary to have an overall
perspective of the different regions activated during the experiment. For this case, the
effect of analysis time in the overall real-time performance comes into play. The use
of PC clusters to process the data was shown to significantly improve the analysis
performance of the system.

Performing real-time analysis using remote resources offers the possibility of doing
more intensive analysis even if the imaging site doesn’t have enough computing
resources. However, it imposes additional constraints in the overall performance of
the system. The unpredictable behavior of the network, as demonstrated in Case A in
Fig. 6, can strongly affect the transfer time. This in turn can affect the total analysis
time, which determines whether fully real time analysis could be achieved or not. To
mitigate this problem, an incremental approach was used. By incremental, we mean
that the data are processed volume-by-volume in contrast to the batch approach where
all the volumes are collected first before the processing starts. The advantages are
apparent. Since the data are transferred volume-by-volume, network load is
distributed across time during the experiment. The analysis can also be started in
parallel with data acquisition, thus making the final results available within a short
time after all the data are acquired. The running results can also be used as a
determinant of the quality of the acquired data and as a measure on how the
experiment progresses.

In this paper, we demonstrated fully real-time analysis in the simulated real-time
runs for a real data set. The total analysis time per volume in this experiment was
around 1.089 s, much less than the repetition time, TR, of 3 s. This implies that the
TR of the scan could still be shortened to increase the data’s temporal resolution.
Alternatively, larger data sets with higher spatial resolution could also be considered
for processing without losing fully real-time performance. Although in the current
implementation it is not possible to attain real-time analysis using slow connections,

E. Bagarinao et al.

302

the use of compression algorithms during data transfer could minimize transfer times
to further improve the performance of the system. Moreover, recent advances in high-
speed network connectivity may soon eliminate this problem.

The results of the experiments between Site E to Site D (Fig. 6 and Fig. 8) also
illustrate the potential of grid computing as a technology that will enable researchers
from different countries share their resources and collaborate with each other. For
instance, medical imaging sites in developing countries will be able to access
computational resources in developed countries, thus enhancing their capabilities
without the additional cost associated with resource acquisition and maintenance.

Aside from demonstrating the feasibility of geographically disparate Grid
computing, the results of using the XML computational web service (Fig. 8), also
demonstrate the potential of web-service based Grid technologies (including our own
ad hoc one, as well as standard ones such as OGSA) for use in real practical, and even
data-intensive applications, such as these.

Future work on this project will include further improvement and development of
the existing code (with special focus on the computational web service components),
and the exploration of other medical applications of grid computing. Since the results
of this paper show that data transfer times are still a significant limiting factor, we
plan to consider other applications as well, where the computation-to-communication
ratio is much higher than in the case studied in this paper.

References

1. Sarmenta LFG, Chua SJ, Echevarria P, Mendoza JM, Santos RR, Tan S. Bayanihan
Computing .NET: Grid Computing with XML Web Services. In: 2nd IEEE International
Symposium on Cluster Computing and the Grid; 2002; Berlin, Germany; 2002.

2. Bagarinao E, Matsuo K, Nakai T, Sato S. Estimation of general linear model coefficients for
real-time application. Neuroimage 2003;19(2):422–429.

3. Foster I, et al. The Physiology of the Grid: An Open Grid Services Architecture for
Distributed Systems Integration. http://www.globus.org/research/papers/ogsa.pdf. February
2002.

4. Montagnat J, Breton V, Magnin IE. Using grid technologies to face medical image analysis
challenges. BioGrid'03, IEEE/ACM CCGrid03, Tokyo, Japan, May 2003.

5. Tweed T, Miguet S. Distributed indexation of a mammographic database using the grid.
International Workshop on Grid Computing and e-Science. 17th Annual ACM International
Conference on Supercomputing. San Francisco, USA, June 21st 2003.

6. Buyya R, Date S, Mizuno-Matsumoto Y, Venugopal S, Abramson D. Composition of
Distributed Brain Activity Analysis and its On-Demand Deployment on Global Grids.
Technical Report, Grid Computing and Distributed Systems (GRIDS) Lab, Dept. of
Computer Science and Software Engineering, The University of Melbourne, Australia.
2002.

7. The fMRI Data Center Home Page. http://www.fmridc.org/
8. GridSphere Home Page. http://www.gridsphere.org/

 J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 303–313, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Building and Accessing Grid Services

Xinfeng Ye

Department of Computer Science, Auckland University, New Zealand
xinfeng@cs.auckland.ac.nz

Abstract. A computation grid, which hosts services that are shared by users, is
formed. The grid system is responsible for deciding which services need to be
replicated for efficiency reason. A dynamic XML document is an XML
document with embedded Web service calls. This paper proposes an approach
in which dynamic XML documents are used to specify Grid services that users
want to access.

1 Introduction

Open Grid Services Architecture (OGSA) [7,16] is built on Globus [8] and Web
services. The conventional way of accessing a Web service is either by sending a
SOAP message to the Web service or by using the features provided in the SDKs of
programming languages to invoke the Web service. Both approaches require users
have good programming skills. A dynamic XML document is an XML document with
embedded Web service calls [1]. The Web service calls are made when the content of
the full document is needed.

In this paper, a computation grid based on OGSA is described. Users use dynamic
XML documents to specify Grid services that they want to access. A tool is developed
for managing the calls to the Grid services specified in the dynamic XML documents.
As the tool is responsible for making calls to services, users only need to know how to
write dynamic XML documents in order to use the Grid services. The computation
grid manages the service instances serving the users’ requests to ensure that (a) users’
requests are served within a reasonable amount of time, and (b) the resources in the
computation grid are not wasted.

2 Dynamic XML Documents

2.1 Using Dynamic XML Documents

Dynamic XML documents were developed in Active XML system [1]. In a dynamic
XML document, there is a special kind of elements, called service elements, which
represent calls to Web services. In [1], a service element needs to have attributes to
specify the location of the Web service. In this paper, since it is impossible to know
which machine in the computation grid hosts the services specified in a dynamic
XML document when the document is written, a service element only needs to

X. Ye 304

specify the name of the service. The computation grid will be responsible for mapping
a service name to a machine that hosts an instance of the service.

The example in Fig. 1 shows a simple dynamic XML document. The document
specifies the design of a yacht’s sail. In this document, the user wants to see how the
sail performs when the yacht sails. The Grid service that simulates the performance of
the sail is called “SailSimulation”. When the service is called, two parameters, i.e.
the sail’s design data and the data describing the wind condition, are passed to the
service. Tag externalURL is used in dynamic XML documents to specify the link to
an external document. If the contents between the externalURL tags start with
“http”, it means that the document resides on a web site. If the contents start with
“file”, it means that the file resides on user’s local file system.

<document name=“SailDesign”>
 <service name=“SailSimulation”>
 <param>
 <externalURL>file://C:/project/SailData.xml</externalURL>
 </param>
 <param>
 <externalURL>http://winddata.com/wind.xml</externalURL>
 </param>
 </service>
</document>

Fig. 1. A Simple Dynamic XML Document

The parameters of a Grid service can be results returned from calls to other Grid
services. The example in Fig. 2 shows that the wind data is obtained by calling Grid
service HistoricalWindData. When HistoricalWindData is called, the user needs to
provide the parameters specifying the location and time interval for the wind data to be
retrieved. Data returned from HistoricalWindData are passed to SailSimulation as a
parameter. In this example, an implicit order of calling Grid services exists. That is,
when service SailSimulation is called, a call to service HistoricalWindData must be
made first to obtain the value of the parameter to be passed to service SailSimulation.
The relations between Grid services can also be specified explicitly using XLink [6].

<document name=“SailDesign”>
 <service name=“SailSimulation”>
 <param>
 <externalURL>file://C:/project/SailData.xml</externalURL>
 </param>
 <param>
 <service name=“ HistoricalWindData”>
 <param> Location </param>
 <param> Time </param>
 </service>
 </param>
 </service>
</document>

Fig. 2. A Dynamic XML Document with Implicit Calling Order

Building and Accessing Grid Services 305

2.2 A Tool for Handling Dynamic XML Document

A tool, dXMLTool, is developed in this project. dXMLTool is for making calls to
Grid services specified in dynamic XML documents as well as for viewing and
editing dynamic XML documents.

When a user wants to invoke a Grid service in a document, the user clicks the
corresponding service element in the document. The dXMLTool interacts with the
computation grid to locate a machine that hosts an instance of the requested Grid
service. The details of the interaction between the dXMLTool and the computation
grid are explained in §4.1.

Once a service instance is located, the dXMLTool calls the operation provided by
the service instance on behalf of the user. If the values of the parameters to be passed
to the Grid service are stored in files referred through external links, e.g.
file://C:/project/SailData.xml, http://winddata.com/wind.xml, etc, the dXMLTool
retrieves the contents of the files and passes the retrieved data to the Grid service. As
explained in §2.1, the parameters in a Grid service call might be the results returned
from other Grid service calls. Thus, before a Grid service call is made, the dXMLTool
also checks whether the value of a parameter is the result returned from the call to
another Grid service, say gs. If this is the case, the dXMLTool will call gs first.

Two Grid services do not depend on each other if their outputs are not used as the
inputs of their counterpart. If there is not a dependency relation between two Grid
services, the two services can be called simultaneously. A user might specify several
Grid services that can be called concurrently in a dynamic XML document. The
dXMLTool provides a button that enables a user invoke all the Grid services specified
in the document. In order to determine the dependencies amongst the Grid services,
the dXMLTool represents the dynamic XML document as a tree. It can be seen that, if
two Grid services do not have ancestor/descendent relationship in the tree, the two
services do not depend on each other. Thus, they can be called simultaneously.

3 A Computation Grid

Machines in several labs are pooled together to form a computation grid. The hosting
environment provided by each lab is shown in Fig. 3. The computation grid is made
up of several such environments.

G
rid

 S
er

vi
ce

 M
an

ag
er

R
es

ou
rc

e
M

an
ag

er

S
er

vi
ce

 F
ac

to
ry

Servant

Servant

…

S
er

vi
ce

 C
od

e
R

ep
os

ito
ry

ho
st

in
g

en
vi

ro
nm

en
t

G
rid

 S
er

vi
ce

 M
an

ag
er

R
es

ou
rc

e
M

an
ag

er

S
er

vi
ce

 F
ac

to
ry

Servant

Servant

…

S
er

vi
ce

 C
od

e
R

ep
os

ito
ry

ho
st

in
g

en
vi

ro
nm

en
t

G
rid

 S
er

vi
ce

 M
an

ag
er

R
es

ou
rc

e
M

an
ag

er

S
er

vi
ce

 F
ac

to
ry

Servant

Servant

…

S
er

vi
ce

 C
od

e
R

ep
os

ito
ry

ho
st

in
g

en
vi

ro
nm

en
t

Fig. 3. Computation Grid Hosting Environment

X. Ye 306

The components managing the computation grid, e.g. Grid Service Manager,
Resource Manager etc., provide their services in the form of Web services. In this
paper, the services provided by these components are not regarded as Grid services.
Grid services are defined as the services referenced by users using service elements in
dynamic XML documents, e.g. SailSimulation, HistoricalWindData.

Each lab hosts a Grid Service Manager (GSM). The GSM is responsible for (a)
keeping track of the Grid services available on the computation grid and the service
instances running on the computation grid, (b) monitoring the utilizations of the
service instances, and (c) requesting the computation grid replicate a Grid service
when the utilizations of all existing instances of the service exceed a threshold.

A web server, i.e. Tomcat, is running on each of the lab machines. The web server
hosts a web service, called Servant. Servant provides two operations startService
and terminateService. The Servant service on a machine is responsible for starting
or terminating a Grid service instance on the machine. If a machine is not hosting any
Grid service, the machine is regarded as idle.

Each lab runs a Web service called ResourceManager which corresponds to the
Resource Manager in Fig. 3. The ResourceManager service of a lab is responsible
for monitoring the status of the machines in the lab, i.e. whether a machine is idle or
is hosting an instance of a Grid service. The ResourceManager holds the URLs of
all the Servant services in the lab. A ResourceManager service provides four
operations, i.e. getServant, register, unregister and alive. The getServant
operation finds the URL of a Servent (if any) running on an idle machine and returns
the URL to the caller. The register operation is called by a Servant service when the
machine hosting the Servant service becomes idle. unregister operation is used to
inform the ResourceManager that an “idle” machine is no longer idle.

Each lab runs a ServiceFactory service which corresponds to the Service Factory
component in Fig. 3. ServiceFactory service provides a createService operation.
The operation creates an instance of a requested Grid service. The code implementing
Grid services is stored in the Service Code Repository. The code repository is hosted
by a web server and is shared by all labs.

All Grid services hosted by the computation grid are implemented as Web
services. Each service provides two operations. One is for implementing the service
needed by the user, e.g. simulating the design of a yacht’s sail. The name of the
operation is determined by the functionality of the operation, e.g. sailSimulation. The
other operation is called destroy. This operation is called when the system removes
an instance of the service from the grid.

Each service has a unique logical name, e.g. SailSimulation. A service is referred
by its logical name in a dynamic XML document. A service might have several
service instances running on the grid. The service instances of a service form a service
group. The group name of the service is the same as the logical name of the service,
e.g. SailSimulation. A service group is assigned to a GSM. The GSM is called the
manager of the group.

If a service group is heavily used, the manager of the group requests the
computation grid create one or several service instances for the group to ensure users’
requests can be served promptly. To start a service instance, the manager calls the
createService operation of the ServiceFactory service. The ServiceFactory
service calls the getServant operation of the ResourceManager service to obtain an

Building and Accessing Grid Services 307

idle machine first. The ResourceManager passes the URL of the Servant service
on the idle machine to the ServiceFactory service. The ServiceFactory service calls
the startService operation of the Servant service to instruct the machine to start a
service instance. When startService is called, the code of the service instance is
downloaded from the Service Code Repository and is installed on the idle machine.
As a result, a service instance is created on the idle machine. The Servant service that
starts the service instance is called the guardian of the service instance. The
ServiceFactory service registers the service instance to the manager of the group to
which the instance belongs. When a service instance is registered to the manager, the
estimated response time of the operation provided by the service instance is also
logged with the manager. The ServiceFactory service also calls the unregister
operation of the ResourceManager to remove the “idle” machine from the
ResourceManager’s list.

To better utilize the grid resources, if the utilization of a service group is below a
threshold, the manager of the group will terminate some service instances in the group.
To terminate a service instance, the manager calls the destroy operation of the service
instance. The destroy operation calls the terminateService operation of the service
instance’s guardian. The guardian’s terminateService operation removes the code of
the service instance from the web server hosting the instance. As a result, the service
instance is removed from the computation grid. The guardian also calls the register
operation of the ResourceManager to indicate that the machine is idle again.

4 How the System Works

4.1 Invoking a Grid Service

When a user activates a service element in a dynamic XML document to call a Grid
service, the dXMLTool interacts with the computation grid to find a service instance
to serve the call. The managers of service groups maintain references to the service
instances in the system. Thus, the dXMLTool must contact the manager of the service
group to which the service instance belongs. However, if it is the first time for the
dXMLTool to call a Grid service, the dXMLTool does not know the identity of the
GSM that manages the corresponding service group. By default, the dXMLTool is set
to contact the GSM hosted by the user’s lab.

When a GSM is contacted by the dXMLTool, there are three possibilities:

(a) The GSM manages the service group that provides the requested service.
In this case, the GSM finds a service instance to serve user’s request and

returns the service instance to the dXMLTool.

(b) The service group that provides requested service is managed by another GSM.
In this case, the GSM informs the dXMLTool of the identity of the GSM, say

gsm’, from which the dXMLTool can obtain the required service instance. As a
consequence, the dXMLTool contacts gsm’ to obtain the required service instance.

(c) No service instance that serves user’s request has been created. That is, it is the
first time that the requested Grid service is called by a user.

X. Ye 308

In this case, the GSM (i) requests the computation grid create a required
service instance, (ii) forms a service group for the service and becomes the
manager of the service group, and (iii) notifies the other GSMs in the system
about the existence of the newly created service group.

Once the dXMLTool knows which GSM manages a requested service group, the
dXMLTool caches this information. So that, future calls to the service can be sent to
the correct GSM.

A service group manager uses the following rules in managing service instances:

(a) When receiving a request for a service instance:
(i) Allocate an idle service instance that has the shortest response time. According

to the response time of the service instance, the manager records the time that
the service instance is expected to complete serving the request.

(ii) If there is no idle service instance, put the request in a wait-for-service queue.
(b) When a service instance becomes available, if there are requests in the wait-for-

service queue, allocate the service instance to the first request in the queue.

4.2 Replicating Grid Services

If the utilization of a service group is high, in order to ensure that users’ requests for a
Grid service can be responded promptly, new service instances are created for the
group. The utilization of a service group is defined as below:

Let (a) t be the time period over which the usage of the group is monitored, (b) ti
be the time that service instance i spent on serving users’ request during t, (c) SG be
a set including all the service instances in the service group, and (d) t’i be the amount
of time that service instance i is alive (a service instance is alive once it is created)
during t. The utilization U of a service group SG is defined as:

=
∈

∈

SGi i

SGi i

t

t
U

'

t is chosen based on whether users can obtain a response from the system within
a reasonable period of time. According to [14], 10 seconds is the limit for keeping
users’ attention focused. Some services need to run for a period longer than 10
seconds to produce their results. Thus, the goal of this project is, after a user sends a
service request, the user will be notified within 10 seconds that a service instance has
started working on the request. Taking into account of the time for the dXMLTool to
interact with the GSMs to find a service instance to serve users’ requests, in this
project, t is set to 8 seconds.

If U = 1 holds for a service group, it means that all service instances of the group
are busy during t. Thus, if extra requests for service instances arrive during this
period, these requests cannot be served immediately. If U < 1, it means the service
group has spare capacity to handle more users’ requests within time period t.

At the end of a t period, the manager of a service group checks the utilization of
the group. If the utilization is above a threshold , the service group is regarded as
being heavily used. In this case, the manager creates more service instances to make

Building and Accessing Grid Services 309

the utilization below . In this project, is set to 80%. Setting to a value less than
100% allows a service group having spare capacities to cope with a sudden surge in
request numbers.

Let SG’ be the set of service instances created by the computation grid to lower
the utilization of a group, say SG. The following rule is used by the group’s manager
to determine the number of service instances that should be in SG’.

Rule: After creating sufficient number of service instances, the following should hold:

ε≤=
∪∈

∈

)'('
'

SGSGi i

SGi i

t

t
U

Due to the timing of the arrival of service requests, it is possible that, even if the
utilization of a group does not exceed the threshold, a user’s request still cannot be
responded in 10 seconds. Therefore, when a request is added to the wait-for-service
queue, the group manager also checks the expected completion time of all existing
service instances. If a request cannot be responded in 10 seconds, the manager asks
the computation grid create a new service instance.

4.3 Removing Grid Service Instances

If the utilization of a service group is below a threshold for a long period, the manager
of the service group will terminate one or several service instances in the service
group1. A service group’s manager uses the following principles to decide whether to
terminate some service instances in the service group:

Let (i) U be service group SG’s utilization, (ii) be the threshold indicating the
service group is heavily used, and (iii) be the threshold indicating the service group
is under utilized.

Case 1: None of the service instances in the service group have been used, i.e. U=0.
Terminate all service instances in the group. That is, group SG is terminated.

Case 2: 0≠U

(i) Find and remove one service instance, say SI, from SG, such that one of the
following conditions holds:

(C2)
'

(C1)
'

}){(

}){(

εϕ

ϕ

≤≤

<

−∈

∈

−∈

∈

SISGi i

SGi i

SISGi i

SGi i

t

t

t

t

If C1 holds, it means that, the utilization of SG is still low even after SI is
removed from SG. Thus, more service instances can be considered to be removed
from SG. Hence, (i) is applied to SG–{SI} again.

1 In this project, the threshold is set to 20% while the time interval is set to 30 minutes.

X. Ye 310

If C2 holds after applying (i), it means that, after SI is removed from the group,
the utilization of the group is within an acceptable range. Thus, the process of
terminating service instance stops after SI is terminated.

(ii) If no service instance can be found when applying (i), stop the process of finding
and terminating service instances in SG.

The manager will wait for another period, e.g. 30 minutes, and starts this
process again if the utilization of the service group is still below .

When group SG is terminated, i.e. Case 1, notifications should be sent to all the
GSMs in the system. Thus, a future request for obtaining a service instance from SG
will not be forwarded to SG’s current manager. Instead, a GSM which receives the
request will be responsible for requesting the computation grid create a service
instance to serve the call (as explained in §4.1).

5 Performance

Performance test has been carried out to measure the average response time to service
requests under different utilization levels of a service group. The following
assumptions are made for the test: (a) the size of the code that implements the Grid
service is 20 Kbytes, (b) t is set to 8 seconds, (c) data are collected from ten
consecutive t periods, (d) there are three service instances in the service group
initially, (e) it takes about 550ms to start a Grid service instance after a service group
manager requests the computation grid to do so, (f) the manager of a service group
requests the computation grid create new service instances if the utilization of the
group is above 80% or a request cannot be responded in 10 seconds, and (g) each
service instance completes serving a user’s request in 30 seconds.

The average response time is the average time to respond to the new requests
generated during a t period. The new requests sent to the group at a t period spread
evenly over the period. That is, the interval between the requests sent to the service
group at the ith t period is t/(the number of new requests during ith period).

0

10

20

30

40

1 2 3 4 5 6 7 8 9 10

Time Period

N
u

m
be

r
o

f
S

er
vi

ce

In
st

an
ce

s

0
2
4

6
8
10

N
u

m
be

r
o

f
R

eq
u

es
ts

Number of Service Instances Number of Requests

0

500

1000

1500

2000

1 2 3 4 5 6 7 8 9 10

Time Period

A
ve

ra
ge

R

es
po

n
se

 T
im

e
(m

s)

0
20
40
60
80
100
120

U
ti

liz
at

io
n

(%
)

Average Response Time Utilization

(a) (b)

Fig. 4. Performance Test

Building and Accessing Grid Services 311

From Fig. 4(a), as there are three service instances initially, the requests
generated in the first two periods can be served immediately. Thus, the response
time is about 100ms as shown in Fig. 4(b). During the 3rd period, requests are
served by creating new service instances, since the existing instances cannot start
serving these requests in 10 seconds. Thus, the response time is about 550ms.
Since the utilization of the group is above 80% between 2nd to 7th periods, new
service instances are also created at the end of these periods to lower the
utilization. During the 4th to 6th periods, some requests are served by creating new
service instances while others will wait to be served by the existing instances. In
most cases, the time waiting for the existing instances to complete is longer than
the time to create a new service instance. Thus, the response time for these three
periods is above 550ms. As sufficient numbers of service instances have been
created, the requests generated in the last four periods can be served immediately
(i.e. in 100ms) as shown in Fig. 4(b).

6 Related Work

Numerous Grid projects are being carried out, e.g. Condor-G [10], Nimrod/G [2],
ICENI [11], etc. All these systems provide a general-purpose grid computing
environment while our project focuses on (a) providing the services through web
services, and (b) allowing users describe their desired grid services in a coherent and
structured way through the use of dynamic XML documents.

There are many projects on developing general-purpose workflow management
solutions for Grid computing, e.g. Chimera [9], Pegasus [5], GridFlow [4] and
Discovery Net [3]. The main difference between these systems and the approach in
this paper is that our project allows the dependencies of the Grid services to be
specified implicitly through nested calls to the grid services as well as explicitly using
XLink while the other systems require users explicitly define the dependencies
between the grid services. In addition, instead of submitting a complete workflow to
the system for execution each time, the dynamic XML approach allows users only
invoke the services that the users are interested by clicking on the relevant service
elements. Similar to Discovery Net, a dynamic XML document not only includes
dependency relations of the Grid services, it can also include information like the
rationality of a design, auditing information, etc. This seems to make the document
more self-contained.

A number of Grid portals have been built over the years [12,13,15]. When using a
Grid portal, a user typically interacts with the portal to select a service and to provide
required input data. In our approach, a user specifies all the required services in a
dynamic XML file. This has the potential to describe the users’ desired Grid services
as well as to present the results produced by the Grid services in a more coherent and
structured way. The resulting XML file can be consumed directly by domain specific
application programs, e.g. visualisation tools, to present the results to the users in a
more appealing format. Thus, the approach discussed in this paper complements the
Grid portal approach.

X. Ye 312

7 Conclusions

In a traditional approach, users write programs to invoke grid services and synthesize
the results returned from the services. This means that, in order to use the services, a
user needs a lot of programming experience. This paper proposes an approach in
which users use dynamic XML documents to specify the services that the users want
to access. The dXMLTool handles the invocation of the services. This approach does
not require the users have much programming experience. Calls to the same service at
different parts of a document or in a different document can be reused easily by
copying the relevant segment of the XML documents. Compared with program code,
the contents of XML documents are easy to understand. Thus, reusing segments of a
XML document is relatively easier than reusing code segments of a program.

The computation grid in this paper provides a management service that monitors
and manages the resources in the system. The management service ensures that (a) the
system resources are not wasted, and (b) users’ requests can be served efficiently.

Acknowledgment

The author would like to thank the anonymous reviewers for their useful comments.

References

1. S. Abiteboul, A. Bonifati, G. Cobéna, I. Manolescu and T. Milo: Dynamic XML
Documents with Distribution and Replication, Proc. of SIGMOD 2003, pp. 527–538

2. D. Abramson, R. Buuya and J. Giddy: A Computational Economy for Grid Computing and
its Implementation in the Nimrod-G Resource Broker, Future Generation Computer
Systems. Volume 18, Issue 8, Oct-2002

3. S. Al Sairafi, F. S. Emmanouil, M. Ghanem, N. Giannadakis, Y. Guo, D. Kalaitzopolous,
M. Osmond, A. Rowe, J. Syed and P. Wendel: The Design of Discovery Net: Towards
Open Grid Services for Knowledge Discovery, in International Journal of High
Performance Computing Applications. Vol 17, Issue 3. 2003

4. J. Cao, S. A. Jarvis, S. Saini and G. R. Nudd: “WorkFlow Management for Grid
Computing.” In Proc. of the 3rd IEEE/ACM International Symposium on Cluster
Computing and the Grid, pp. 198–205, 2003

5. E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi, A. Lazzarini, A. Arbree,
R. Cavanaugh, S. Koranda: Mapping Abstract Complex Workflows onto Grid
Environments, Journal of Grid Computing, vol. 1, pp. 25–39, 2003.

6. S. DeRose, E. Maler and D. Orchard: XML Linking Language (XLink) Version 1.0,
http://www.w3.org/TR/xlink

7. I. Foster, C. Kesselman, J. Nick, S. Tuecke: The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems Integration, Open Grid Service
Infrastructure WG, Global Grid Forum, June 22, 2002

8. I. Foster and C. Kesselman: Globus: A Toolkit-Based Grid Architecture, in I. Foster and C.
Kesselman eds, The Grid: Bluprint for a New Computing Infrustructure, Morgan
Kaufmann, 1999, pp. 259–278

Building and Accessing Grid Services 313

9. I. Foster, J. Voeckler, M. Wilde, and Y. Zhao, "Chimera: A Virtual Data System for
Representing, Querying, and Automating Data Derivation," pp. 37–47, 14th International
Conference on Scientific and Statistical Database Management, 2002

10. J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke, "Condor-G: A Computation
Management Agent for Multi-Institutional Grids", Proceedings of the Tenth IEEE
Symposium on High Performance Distributed Computing (HPDC10), 2001

11. N. Furmento, J. Hau, W. Lee, S. Newhouse, and J. Darlington, Implementations of a
Service-Oriented Architecture on top of Jini, JXTA and OGSI, Second Across Grids
Conference, 2004

12. D. Gannon, M. Christie, O. Chipara, L. Fang, M. Farrellee, G. Kandaswamy, W. Lu, B.
Plale, A. Slominski, A. Sarangi, Y. L. Simmhan, Building Grid Services for User Portals,
http://www.extreme.indiana.edu/~gannon/GridServiceUserPortal.pdf

13. Integrated e-Science Environment for CLRC, http://esc.dl.ac.uk/IeSE
14. R.B. Miller: Response Time Man-Computer Conversational Transactions, AFIPS Fall

Joint Computer Conference, pp. 267–277, Vol.33, 1968
15. NCSA Alliance Scientific Portal Project, http://www.extreme.indiana.edu/alliance
16. S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, C. Kesselman, T. Maguire, T.

Sandholm, P. Vanderbilt, D. Snelling: Open Grid Services Infrastructure (OGSI) Version
1.0, Global Grid Forum Draft Recommendation, 2003

DRPS: A Simple Model for Locating the
Tightest Link�

Dalu Zhang, Weili Huang, and Chen Lin

Department of Computer Science and Engineering,
Tongji University, Shanghai, P.R.China

daluz@public.sta.net.cn, gitry@163.com, spalding@sohu.com

Abstract. The tightest link of a network path is the link where the
end-to-end available bandwidth is limited. We propose a new and simple
probe model, called Dual Rate Periodic Streams (DRPS), for finding the
location of the tightest link. A DRPS probe is a periodic stream with two
rates. Initially, it goes through the path at a comparatively high rate.
When arrived at a particular link, the probe shifts its rate to a lower level
and keeps the rate. If proper rates are set to the probe, we can control
whether the probe is congested or not by adjusting the shift time. When
the point of rate shift is in front of the tightest link, the probe can go
through the path without congestion, otherwise congestion occurs. Thus,
we can find the location of the tightest link by congestion detection at
the receiver.

1 Introduction

In the past few years, there are large quantities of researches on available band-
width measurement. Besides measuring the value of available bandwidth, more
and more researchers are interested in locating tight link. The purpose of this pa-
per is to propose a new measurement model, called Dual Rate Periodic Streams
(DRPS), for locating the tightest link of a path. DRPS based pathload [4] and tail-
gating technique[5]. It extends the existing measurement of available bandwidth
and brings some new applications. It takes more benefits to network management
and network applications. It also provides more information that is valuable to
network behavior research.

Recently several tools have been developed for locating the tightest link,
such as BFind [1], STAB [6], and Pathneck [3]. BFind essentially induces network
congestion through continuous transmission of UDP traffic and determines the
location of the tight link from traceroute round-trip times. STAB infers the
location of the tightest link by measuring and evaluating the available bandwidth
of the prefix path of each link. Pathneck combines measurement packets and load
packets in a single probing packet train. It infers the position of the tightest link
by estimate packet train length on the incoming link of each router.

� Supported by the National Natural Science Foundation of China(No. 90204010).

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 314–318, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

DRPS: A Simple Model for Locating the Tightest Link 315

2 Dual Rate Periodic Streams

When a stream of rate R goes through a path, the input stream rate and the
output stream rate at the ith link are denoted by IRR

i and ORR
i respectively. If

IRR
i > ORR

i , we say that the ith link is a tight link at rate R. If IRR
i > ORR

i

for any R > A, we say that the ith link is the tightest link of the path. Given a
path P , the first tight link is the tightest link of the path, denoted by tlP1 . For
any i > 1, the ith tight link of a path is the tightest link of the prefix path of
the (i− 1)th tight link, denoted by tlPi .

We propose a new probe model, called Dual Rate Periodic Streams (DRPS),
for finding the location of the tightest link. It has two properties, dual rate and
periodic stream.

Dual rate probe is a stream with two rates. Initially, the probe goes through
the path at a high rate RH . At the moment of shift time HS , the probe shifts
its rate to a low level RL and keeps the rate until arriving at the receiver. Here
shift time HS can be regarded as the hops by which the probe keeps with a high
rate. We denote a dual rate probe by DRP (RH , RL, HS) and use the following
theorem to describe the property of dual rate probe.

Theorem 1. Dual Rate Property. Given a dual rate probe DRP (RH , RL, HS),
Atl1 < RH < Atl2 and RL < Atl1 . If HS < H(tl1), then ORH = RL. Else, if
HS ≥ H(tl1), then ORH < RL.

If the rate shift occurs before the probe passes the tightest link of the path(i.e.
HS < H(tl1)), then the probe can go through the tightest link without conges-
tion; otherwise, it has to queue at the tightest link. So theorem 1 provides a
way to find the tightest link of a path. If proper rates (Atl1 < RH < Atl2 and
RL < Atl1)

1 are set to DRP, we can find the tightest link by detecting the output
rate at the last link ORH for each HS(from 1, · · ·H).

A dual rate probe can be regarded as the mixture of two streams. One stream,
denoted by S1, is a stream of rate RL, which can go through the path. Another
stream, denoted by S2, is a hop-limited stream of rate RH −RL, which expires
at the hop HS . In terms of Theorem 1, dual rate probes with too large shift time
cause a difference between send rate RL and receive rate ORH of S1. Fig. 1.
shows that two dual rate probes with different shift times, DRP (RH , RL, H(l4))
and DRP (RH , RL, H(l5)), go through a 10-hop path. In each column, filled part
is the cross traffic and blank part is the available bandwidth. The tightest link
of the path is l5. S1 is the black stream, and S2 is the gray stream. In (a), the
point of rate shift is in front of the tightest link. There is no congestion in the
path, so S1 keeps its rate until arriving at the receiver. In (b), the point of rate
shift is at the back of the tightest link. Congestion occurs at the tightest link
and the rate of S1 slows down.

In theorem 1, we determine whether the probe is congested in the path or
not by its rate at the receiver. Generally speaking, the rate is computed by

1 Atl1 is the available bandwidth of the tightest link tl1, and Atl2 is the available
bandwidth of the second tight link tl2.

316 D. Zhang, W. Huang, and C. Lin

(a) HS < H(tl1) (b) HS ≥ H(tl1)

Fig. 1. (a) DRP (RH , RL, H(l4)) shifts before arriving at the tightest link, no conges-
tion occurs. (b) DRP (RH , RL, H(l5)) shifts after it passed the tightest link, a conges-
tion occurs

arriving times of the first packet and the last packet. The behavior of single
packet will affect the estimation of the rate. In addition, it is difficult to make a
decision when the rate at the receiver is close to the low rate set at the sender.
Therefore, we use a special dual rate probe, which is called Dual Rate Periodic
Streams (DRPS). Based on the periodic stream property given in [4], we can
detect congestion by OWD difference instead of the rate at the receiver.

3 Locating the Tightest Link

DRPS is a simple and flexible model. It gives the theoretical framework for
locating the tightest link. Furthermore, when we apply DRPS to practical mea-
surements, more details need to be considered. Here we focus on three key issues,
which are parameters setup, probe structure, and how to speed up the locating
procedure.

Rate Selection: We set RH = Atl1(1 + δ), and set RL = RH/2, where δ is a
small proportion and set to 5% by default. Thus, we make sure that RH > Atl1 ,
RL < Atl1 , and the rate of probe is not too large. Although it is uncertain
that RH < Atl2 , we believe it doesn’t matter. If Atl2 is close to and no 5%
more than Atl1 , we locate the second tight link, which is also significant to its
applications and even more important than the tightest link. The selection of an
approximate rate simplifies the locating process by avoiding measuring Atl2 . We
can only measure Atl1(i.e. end-to-end available bandwidth A) by pathload [4].

DRPS Probe Structure: Hop-limited packets are used to ensure back-to-back
queuing at a given link in both tailgating [5] and cartouche [2] techniques. We also
use hop-limited packets to shift the probe’s rate. First, we construct a periodic
stream of rate RH . Next we set the TTL value for each packet to make sure
those hop-limited packets and normal packets are arranged alternatively in the
probe. So the low rate is half of the high rate. Fig. 2 is an illustration for probe

DRPS: A Simple Model for Locating the Tightest Link 317

structure and probing process. Packets in black are normal packets and packets
in white are hop-limited packets. They are arranged alternatively in the stream.
The egress link of the black node is the tightest link and the egress link of the
gray node is the second tight link. In (a), hop-limited packets are dropped before
arriving at the tightest link, so no congestion occurs. In (b), hop-limited packets
are not dropped in time, so congestion occurs and the gap between two successive
packets increases.

Fig. 2. DRPS probe structure and probing illustration

Quick Locating Algorithm: The problem of locating the tightest link can be
regarded as a search problem for a sorted sequence in terms of Theorem 1.
Thus, binary search can be used to shorten the measurement period. Binary
search is the best method for searching a number in a sorted sequence. It reduces
the complexity from O(H) to O(log2 H). Because H is no more than 30 hops
usually, we will generate at most five probes.

4 Simulation and Experiment

We construct a path with 7 links (i.e. H = 7) in NS environment. At the sender,
we add two CBR agents to generate two periodic streams S1 and S2, which
make up our DRPS probe. S1 and S2 will send packets by turns strictly, which
means one for S1 packet and one for S2 packet between the same interval. In our
simulations, we make l4 be the tightest link by adjusting cross traffic. We test our
DRPS technique under CBR cross traffic and Pareto cross traffic respectively.
Fig. 3 shows OWDs of the probes used for locating the tightest link. We find
the OWDs show an increasing trend when the TTL value is set to 4 and non-
increasing trend when TTL is set to 3. Then the location of the tightest link is
found.

We also experiment on a practical 5-hop network path in our lab. The net-
work path consists of four routers, which are connected with each other by their

318 D. Zhang, W. Huang, and C. Lin

(a) (b)

Fig. 3. (a) OWDs measured under CBR cross traffic. (b) OWDs measured under Pareto
cross traffic

100Mbps Ethernet ports. So the capacity of the 5-hop network path is 100Mbps.
The primitive cross traffic on the path is less than 5Mbps, i.e. the end-to-end
available bandwidth of the path is more than 95Mbps. Because the differences
of available bandwidth of each link are very small, it is unclear which link is
the tightest link. In order to make the tightest link more distinguishable, we
inject cross traffics into specific link. Cross traffics are generated by 15 threads.
Each thread generates 200 UDP packets per second. The size of packets varies
from 1300 bytes to 1500 bytes randomly with the average of 1400 bytes. In our
experiments, cross traffics are generated on the middle links(l2, l3, and l4) in
turn. Thus, the location of the tightest link varies with the position where cross
traffics are injected. In each case, we run DRPS simultaneously. It works well
and finds the correct position of the tightest link.

References

1. A. Akella, S. Seshan, and A. Shaikh. An empirical evaluation of wide-area internet
bottlenecks. In Proceedings of ACM SIGCOMM Internet Measurement Conference,
October 2003.

2. K. Harfoush, A. Bestavros, and J. Byers. Measuring bottleneck bandwidth of tar-
geted path segments. In Proceedings of IEEE INFOCOM, March 2003.

3. N. Hu, L. Li, Z. Mao, P. Steenkiste, and J. Wang. Locating internet bottlenecks:
algorithms, measurements, and implications. In Proceedings of ACM SIGCOMM,
August 2004.

4. M. Jain and C. Dovrolis. End-to-end available bandwidth: Measurement method-
ology, dynamics, and relation with tcp throughput. In Proceedings of ACM SIG-
COMM, August 2002.

5. K. Lai and M. Baker. Measuring link bandwidths using a deterministic model of
packet delay. In Proceedings of ACM SIGCOMM, August 2000.

6. V. Ribeiro, R. Riedi, and R. Baraniuk. Spatio-temporal available bandwidth esti-
mation with stab. In Proceedings of ACM SIGMETRICS, June 2004.

A Congestion-Aware Search Protocol for
Unstructured Peer-to-Peer Networks

Kin Wah Kwong and Danny H.K. Tsang

Department of Electrical and Electronic Engineering,
Hong Kong University of Science and Technology

{erick, eetsang}@ust.hk

Abstract. Peer-to-Peer (P2P) file sharing is the hottest, fastest growing
application on the Internet. When designing Gnutella-like applications,
the most important consideration is the scalability problem. Recently,
different search protocols have been proposed to remedy the problems in
Gnutella’s flooding. However, congestion due to large query loads from
users and peer heterogeneity definitely impact on the performance of
search protocols, and this consideration has received little attention from
the research community. In this paper, we propose a congestion-aware
search protocol for unstructured P2P networks. The aim of our protocol
is to integrate congestion control and object discovery functionality so
that it can achieve good performance under congested networks and flash
crowds. The simulation results show that our protocol can largely reduce
a hit delay while maintaining a high hit rate, and the congestion problems
such as query loss and system overloading can be effectively alleviated.

1 Introduction

P2P file sharing has attracted a lot of attention recently from the general public.
Pioneered by Napster, users can share their files such as music and movies over
the Internet, and allow other users to download them freely via a P2P approach.
After that, many P2P file sharing systems such as Gnutella [1], KaZaA [2], Bit-
Torrent [3] have been developed and widely used. Recently, distributed hash
table (DHT) P2P systems, say CAN [4], have been advocated to organize the
overlay networks into a certain structure so as to improve exact-match search
performance. In this paper, we focus on unstructured, distributed P2P archi-
tecture such as Gnutella and KaZaA. We also define that congestion is caused
by large query rates from users, but the physical network congestion such as
router’s buffer overflow is ignored.

Flooding search creates many repeated messages and hence generates massive
traffic which is a very serious problem [5]. To solve this problem, different search
algorithms have been recently proposed, say random walk [6], criticality-based
probabilistic flooding [7] and APS [8], to replace flooding. Moreover, according
to [9], among Napster users, their Internet access bandwidths are very heteroge-
neous, from 56Kbps dial-up connection to cable-modem connection. Therefore,

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 319–329, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

320 K.W. Kwong and D.H.K. Tsang

we believe that a search protocol should be aware of both congestion and peer
heterogeneity.

To improve the efficiency of a P2P file sharing system, many techniques have
been employed. Common methods are caching (say [6]) and topology adaptation.
Generally speaking, in caching, a peer caches recently-seen query hit information.
After that, if a peer receives a query request for the same file, it can directly reply
to the query by using the cached answer and the amount of query traffic can be
reduced. However, if the cached answer is outdated or invalid, the search result
is affected. Super-peer topology formation is a kind of adaptation technique. In
this case, powerful users (such as high bandwidth users) form the backbone of
a P2P network and most of the query traffic is processed by them. Therefore,
low capacity users can be shielded from massive query traffic. The super-peer
idea is used in KaZaA [10]. In [11], different methods such as biased random
walk, caching, topology adaptation and flow control are used together to build
a scalable P2P file sharing system called Gia.

Our Question Is: Is it possible to design a better search protocol such that P2P
systems are robust under congestion and flash crowds without using caching and
topology adaptation techniques?

To answer this question, we propose a congestion-aware search algorithm.
Our protocol can be used in KaZaA-like and Gnutella-like systems and it has
the following properties:

1. Maintains a low hit delay and a high hit rate1 under congestion
2. Alleviates congestion problems such as messages loss and system overloading
3. Fully distributed algorithm and lightweight maintenance

The remainder of this paper is organized as follows. Section 2 describes our
proposed congestion-aware search protocol in detail. We present the extensive
simulation results in Section 3. We then conclude the paper in Section 4.

2 Proposed Protocol

Our proposed search protocol consists of three parts — Congestion-Aware
Forwarding (CAF), Random Early Stop (RES) and Emergency Signaling
(ES). We first look at the system model.

We design our search protocol based on the random walking technique. To
initiate a query request, the requesting node randomly sends out w query walkers
to its neighbors, same as [6]. If the number of node’s neighbors is smaller than w,
a node only sends one walker to each neighbor. Each walker is assigned an initial
TTL value. This TTL value is decreased by one for each node visit. If TTL is

1 Generally speaking, hit rate represents how good the search algorithm to locate
requested files is. We will define rigorously what hit rate is in the performance
evaluation section.

A Congestion-Aware Search Protocol 321

zero, a node discards the walker. We model each node i with a capacity constraint
Ci which denotes the number of messages (such as queries and emergency signals)
it can process per unit time, and its new query generation rate per unit time
is represented by qi. If the aggregate message incoming rate is higher than the
node’s capacity, excessive messages are queued in the node’s input buffer. Qi(t)
represents how many messages are backlogged in node i’s input buffer at time t.

Definition 1. Congestion level (CL) of node i at time t:

CLi (t)
Δ=

1 + Qi (t)
Ci

(1)

Remark 1. We use CL to denote how congested a node is. Equation (1) means
how much waiting time a walker would encounter if it is forwarded to node i.
For simplicity, we write CLi only.

Each node i maintains a forwarding table which is built based on infor-
mation carried by a feedback message. A forwarding table is used to assist
in forwarding walkers. A feedback message is generated when a query hit oc-
curs, and is sent back to the query originator via the query reverse path (as
in Gnutella). The forwarding table is composed of entries. Each entry, Ex

i→j ,
consists of four different data as follows:

Object x: This field stores the object x’s identifier such as an object’s name or
hash value.
Estimated Maximum Congestion Level px

i→j: The estimated CL of a bot-
tleneck node in the direction of neighbor node j.
Estimated Hop Count hx

i→j: The estimated distance, in term of hop count,
to locate object x in the direction of neighbor node j. This value may not be an
integer, because it is updated by averaging previous estimated hop count values.
Expiry Time txi→j: The entry is expired and removed when time txi→j has
elapsed.

Definition 2. Total Congestion (TC) in the direction of neighbor node j for
object x:

fx
i→j

Δ= px
i→j · hx

i→j (2)

Remark 2. Basically, we should forward walkers to a direction with smaller
queueing delay and shorter hop count in reaching a node storing requested ob-
jects. To combine these two features, fx

i→j is used for reference in forwarding
walkers.

2.1 Feedback Update

To build a forwarding table, we utilize a feedback message generated when a
query hit occurs. The main purpose of feedback message is to allow nodes to
acquire congestion and object location information so that nodes can forward
queries wisely. When a query walker successfully finds object x in node k, a

322 K.W. Kwong and D.H.K. Tsang

Table 1. Feedback Update Algorithm

When node i receives a feedback message Mx from its neighbor node j:
1. IF the entry Ex

i→j exists in the forwarding table THEN
2. tx

i→j ← new expiry time
3. hx

i→j ← (1 − α) × hx
i→j + α × Mx

HC

4. px
i→j ← (1 − β) × px

i→j + β × Mx
CL

5. ELSE
6. IF the forwarding table is full THEN
7. Remove the soonest expiring entry
8. ENDIF
9. Initialize the new entry Ex

i→j as follows:
10. tx

i→j ← new expiry time
11. hx

i→j ← Mx
HC

12. px
i→j ← Mx

CL

13. ENDIF
14. Mx

HC ← Mx
HC + 1

15. IF CLi > Mx
CL THEN Mx

CL ← CLi ENDIF
16. Forward the feedback message Mx to the next node of the reverse path if node i is
not the query originator. Otherwise, drop this feedback message.

feedback message (Mx) generated by node k is sent to the query originator via
the query’s reverse path. The feedback message not only contains the query
hit information such as node k’s IP address and object x’s size, but also has
Congestion Level field (Mx

CL) and Hop Count field (Mx
HC). These two fields are

initialized in node k as follows:

Mx
CL ← CLk, Mx

HC ← 1

When a feedback message traverses back to the query originator, the for-
warding tables of the reverse-path nodes including the query requestor as well
as Mx

CL and Mx
HC of a feedback message are updated based on the algorithm

shown in Table 1.
In the feedback update algorithm, hx

i→j and px
i→j are updated by using the

moving average approach (lines 3, 4). α and β are between 0 and 1. A feedback
message memorizes an object distance and a congestion bottleneck along an
object discovery path. Mx

HC is a counter to record how many hop counts from
the current node to the object’s hosting node. This field is increased by one in
each reverse path node (line 14). Mx

CL is to record a maximum CL of a node
along the reverse path. We only need to update Mx

CL if a node’s CL value is
larger than its current value (line 15). The reason for Mx

CL records a maximum
CL instead of accumulating it is to prevent this field from numerical overflowing.
Also, emergency signaling can help to correct the inaccuracy of an estimated CL
in a node’s forwarding table. Each entry is tagged with an expiry time. Expiry
time is used to control the life span of an entry and prevent an outdated entry
affecting the protocol decision. If the forwarding table is full, we can simply
remove the soonest expiring entry in order to add another new entry (lines 9-12).

A Congestion-Aware Search Protocol 323

2.2 Congestion-Aware Forwarding (CAF) and Random Early Stop
(RES)

Feedback update helps nodes to know the congestion and object location around
them. Intuitively, queries should be forwarded in some direction so as to shorten
the hit delay, increase the hit rate, prevent congestion and discover a new object’s
host. Moreover, we should drop a walker in preemptive manner to alleviate the
congestion. However, in dropping non-zero-TTL walkers, we need to ensure that
the hit rate should not be greatly degraded. To achieve the above requirement,
we develop CAF and RES.

The detailed CAF and RES algorithms are shown in Tables 2 and 3 respec-
tively (Uniform(a, b) denotes a uniformly random real number between a and
b). In using CAF, we firstly classify the node’s neighbors into set A and set B.
If a node’s forwarding table contains object x’s information in the direction of
neighbor node j, then node j belongs to set A. Otherwise, it belongs to set B.
However, a query originator (say node s1) and the node from which a query is
received (say node s2) are excluded from these two sets, because a query should
not be forwarded back to these two nodes. The mathematical expressions of set
A and set B are:

A = {v ∈ Nbr (i) \ {s1, s2} |Ex
i→v exists} (3)

B = {v ∈ Nbr (i) \ {s1, s2} |Ex
i→v not exists} (4)

where Nbr (i) is the set of node i’s neighbors.
Therefore, there are three different cases in a forwarding decision (lines 1, 8

and 18 of Table 2). In case 1 (line 1), the forwarding table of node i contains full
information about object x in all possible forwarding directions. As we have full
information in case 1, the RES algorithm should be executed there (Table 2,
line 2). Table 3 shows the RES algorithm, a node first calculates the difference
between the shortest distance estimation hsmallest (provided by a forwarding
table) to reach a node storing object x and a walker’s TTL. If the difference
is larger than a RES trigger threshold εmin, a walker is to be dropped with a
probability proportional to this difference, but not more than a maximum RES
drop probability Dropmax. If a query is not dropped by RES, node i forwards
this query to one of its neighbors based on the forwarding probability P (j, A)
(line 6 of Table 2) as follows:

P (j, A) =
1

fx
i→j∑

l∈A
1

fx
i→l

(5)

Thus, a direction where smaller TC occurs is chosen with a higher chance.
In case 2 (line 8), a node has information for some directions only. In this

case, the neighbors in set B should not be ignored in a forwarding decision,
because it is possible to discover a new object host and a low congested path
in the null-information direction. To deal with this situation, we first select one

324 K.W. Kwong and D.H.K. Tsang

Table 2. Congestion-Aware Forwarding Algorithm

Upon node i decides to forward walkers:
1. IF (A �= φ, B = φ) THEN
2. Dropped ←Random Early Stop Algorithm
3. IF Dropped is TRUE THEN
4. RETURN
5. ENDIF
6. Forward to node j ∈ A with probability P (j, A) and RETURN
7. ENDIF
8. IF (A �= φ, B �= φ) THEN
9. Choose a node j ∈ A with probability P (j, A)

10. IF fx
i→j < κ THEN temp ← Uniform(0.5, 1)

11. ELSE temp ← Uniform(0, 0.5)
12. ENDIF
13. IF temp ≥ Uniform(0, 1) THEN Forward to node j
14. ELSE Forward randomly to a node j′ ∈ B
15. ENDIF
16. RETURN
17. ENDIF
18. IF (A = φ, B �= φ) THEN
19. Forward randomly to a node j ∈ B and RETURN
20. ENDIF

Table 3. Random Early Stop Algorithm

Select the smallest hx
i→j where j ∈ A, denoted by hsmallest

1. IF δ
Δ= hsmallest − TTL ≥ εmin THEN

2. IF min(δ−εmin
εmax−εmin

, Dropmax) ≥ Uniform(0, 1) THEN
3. Drop this query and RETURN TRUE
4. ENDIF
5. ENDIF
6. RETURN FALSE

node (line 9), say j, from set A based on the probability in Eq. 5. However, we
can not ensure that a chosen node j is a good path in term of TC, so we need
to arbitrarily introduce a probability in the selection. The algorithm considers
forwarding a query to node j depending on its TC. If the TC in the direction of
node j is smaller than an Alternate Selection threshold κ (line 10), a node sends
a query to node j with a probability of at least 0.5 (line 10). Otherwise, a query
is forwarded to node j with, at most, the probability of 0.5 (line 11). Thus, a
direction of low TC is favored. If node j is not selected, a query is forwarded to
a node j′ randomly chosen from set B (line 14). In case 3 (line 18), a node has
no information about object x and it forwards a query randomly.

When a neighbor (say node j) of node i disconnects, node i can simply remove
all the entries related to j (i.e. ∀E∗

i→j , where ∗ means wild-card) to maintain the

A Congestion-Aware Search Protocol 325

consistency of a forwarding table. Therefore, this maintenance procedure is very
simple and lightweight. Moreover, in this paper, we assume that a walker is not
to be dropped if it arrives at a node that has been visited before (i.e. looping),
but dropping those walkers does not affect our protocol.

2.3 Emergency Signaling

In the flash crowd situation, the amount of a query request for a particular
object increases suddenly. In this situation, a query walker takes a longer time
to reach an object host, and the feedback update is delayed. In this case, a node
uses outdated CL data to make decision in forwarding the query. This is a big
problem because a node does not know where the current congestion bottleneck
is. As a consequence of this situation, both hit delay and hit rate become worsen.

To solve this problem, each walker carries a Congestion Header (CH) field.
When node i forwards a walker to node j, px

i→j value is to be stored in this
walker’s CH field. Then, node j calculates the difference between its current
CL and a walker’s CH field value. If the difference, CLj − px

i→j , is larger than
an ES trigger threshold EStri, an emergency signal, tagged with value CLj , is
sent back to node i. Upon node i receiving this signal, an emergency update is
triggered for all entries relating to the direction of node j as follows: px

i→j ←
max(CLj , p

x
i→j) for every object x in the forwarding table. If node i has no entry

for this direction, it does nothing. When a node receives emergency signaling data
from its neighbors, it processes the data at the highest priority. The rationale
behind the emergency update algorithm is simple: Since p∗

i→j is an estimated
maximum CL in the direction of node j, we update this value based on two
different situations. First, if a current p∗

i→j is larger than CLj , it implies that
a bottleneck of a route in this direction is not in node j, and we should keep
the original value. Otherwise, it means that an old estimated CL value is not
suitable to be used because a current maximum CL value is CLj and a new
bottleneck is now in node j.

Furthermore, we set a rate constraint on generating emergency signals. Each
node i is allowed to send at most ESrate

i emergency signals per unit time to each
neighbor. Then the total maximum number of emergency signals generated per
unit time is ESrate

i × |Nbr (i)|, where |Nbr (i)| denotes the number of neighbors
of node i.

3 Performance Evaluation

We have developed a P2P simulator by using C++ to evaluate the performance
of our search protocol (CA). We compare our protocol with random walk (RW)
and Adaptive Probabilistic Search (APS) [8]. We focus on the pessimistic APS
for comparison. The APS parameters are the same as [8]. Due to the limited
space, we only present two simulations – flash crowd situation and dynamic
change of topology. For other simulations, please refer to [12]. The total number
of nodes is assumed to be 1000. Each node i is assigned an exponential service

326 K.W. Kwong and D.H.K. Tsang

rate (capacity) of Ci in unit of messages per second. The capacity distribution
among the nodes is same as [11]. The lowest capacity nodes can only process one
message per second. Each node issues query requests at the Poisson arrival rate
qi(requests/second). In our simulation, we assume all nodes generate queries at
the same rate.

Each node randomly connects to b neighbors where 5 ≤ b ≤ 20. However,
to prevent lowest capacity nodes connecting to too many neighbors, they are
allowed to connect to five neighbors only. If the number of a node’s neighbors is
lower than five, it randomly connects to some nodes such that the node main-
tains b neighbors. In each simulation, we use the same topology, and thus the
simulation results are not biased due to different topologies.

We randomly distribute M = 30 different distinct objects, with a Zipf-like
distribution property, into different nodes. Object 1 is the most popular with a
60% replication factor. Object 30 is the rarest that only 1% of the nodes store
it. Each node is randomly looking for an object in each request. The simulation
parameters are shown in Table 4. The time unit is in second.

Table 4. Simulation Parameters

α β εmin εmax Dropmax κ ESrate
i EStri w TTL Expiry time

0.6 0.8 2 8 0.8 100 0.067 50 6 15 300

To evaluate the effectiveness of our protocol, we define several performance
metrics as follows.

Average hit delay of object x, Dx: the average time of each walker to
find object x.

Hit rate of object x, Rx (t):

Rx (t)
Δ=

No. of walkers hitting object x in [0, t]
No. of query requests for object x in [0, t]

(6)

Furthermore, we define R (t)
Δ=

M∑
x=1

Rx (t) and D
Δ= 1

M

M∑
x=1

Dx to denote total

hit rate and total average hit delay respectively.

3.1 Simulation 1: Flash Crowd Situation

One of the most important considerations in designing search protocols is its
robustness under flash crowds. We set the input buffer of each node to be un-
limited in this simulation in order to study how good our protocol is in releasing
the query pressure generated in the flash crowd situation. The query rate qi

is 0.05. At time 500s, 1300s and 2300s, we randomly select 100 nodes to in-
crease their query rates from 0.05 to 5 for emulating a flash crowd situation.
Then these 100 chosen nodes simultaneously generate queries for object 26 only,

A Congestion-Aware Search Protocol 327

Table 5. Summary of Hit Rate and Hit Delay in Simulation 1 & Simulation 2 at
t=3000 (Dx and D are in unit of second)

R10 (t) R20 (t) R30 (t) R (t) D10 D20 D30 D

Simulation 1

CA 5.4 5.2 4.5 153.8 4.3 4.4 4.9 4.7

APS 4.7 4.5 4.3 139.9 167.1 183.7 205.1 172.5

RW 1.4 0.6 0.4 40.4 331.0 352.9 399.7 355.5

Simulation 2

CA 4.2 3.5 2.6 112.7 38.7 41.6 43.7 38.9

APS 3.1 2.5 2 85.0 63.9 70.8 81.6 67.6

RW 1.2 0.6 0.3 35.7 75.4 78.2 90.5 79

which is 1.2% replicated. Each flash crowd period lasts for 20 seconds. After
that, all these nodes return to the normal setting and their query rates are back
to 0.05.

This simulation shows that the hit delay is kept very low while maintaining
a high hit rate by using CA. Due to the page limit, we only extract some results
for presentation as shown in Table 5. The percentage of walkers dropped by
RES is 1.05%. In Fig. 1(a), it is shown that the query pressure is released very
quickly, roughly within 600 seconds, and the total amount of remaining walkers
is very small compared with APS and RW. However, in APS and RW, the hit
delay is very large because many walkers are backlogged in the system. In Fig.
1(b), we show the role of emergency signaling under flash crowd situation. In
the normal time, no emergency signal is required because the CA’s query hit
feedback update is enough to gather congestion information (except earlier time
50s∼250s since some nodes still randomly forward queries). In the flash crowd
periods, the emergency signaling takes effect. Due to this signaling, nodes can
immediately sense the new congestion situation and make the decision to forward
queries to less congested neighbors. Therefore, using CA, the system overloading
problem can be effectively alleviated.

3.2 Simulation 2: Dynamic Change of Topology

To simulate the dynamic behavior of P2P networks, we use the setting suggested
in [11]. Each node is assigned an independent life which is a uniformly random
number between 0 and 1000. When a node’s life is up, the node disconnects from
its neighbors and all queued messages in it are discarded. A leaving node also
removes its forwarding table. Then, this node immediately re-joins the network
again by randomly choosing some neighbors to connect to, and picks a new life
value. The query rate qi is 0.1. A feedback message is to be dropped if a reverse
path is changed. We also assume the input buffer of each node is infinite.

328 K.W. Kwong and D.H.K. Tsang

0 500 1000 1500 2000 2500 3000
10

2

10
3

10
4

10
5

10
6

Simulation time (sec)

N
um

be
r

of
 r

em
ai

ni
ng

 w
al

ke
rs

 in
 th

e
sy

st
em

CA
APS
RW

(a)

0 500 1000 1500 2000 2500 3000
0

5

10

15

20

25

30

Simulation time (sec)

N
um

be
r

of
 e

m
er

ge
nc

y
si

gn
al

s
in

 e
ac

h
se

co
nd

CA

(b)

Fig. 1. Flash crowd situation. (a) Number of remaining walkers in the system. (b)
Number of emergency signals generated in each second

0 500 1000 1500 2000 2500 3000
0

100

200

300

400

500

600

Simulation time (sec)

N
um

be
r

of
 w

al
ke

r
dr

op
s

pe
r

se
co

nd

CA
APS
RW

Fig. 2. Walker drops per second due to nodes leave the network (averaged over 150
seconds)

As shown in Table 5, our protocol can maintain the lowest hit delay in the dy-
namic environment. Moreover, CA’s hit rate is the best, because CA is equipped
with a load balancing function, so the queue length of each node is maintained
at a low level compared with APS and RW. Therefore, the number of walker
drops due to node departure can be greatly reduced, as indicated in Fig. 2. As
a result, the user’s experience has not suffered much.

4 Conclusion

In this paper, we proposed a congestion-aware search protocol for unstructured
P2P networks. The aim of the protocol is to combine congestion control and
object discovery functionality to achieve a better search performance in hetero-

A Congestion-Aware Search Protocol 329

geneous, dynamic P2P networks. By using our search protocol, no other flow
control algorithm, caching and topology adaptation are required to solve the
congestion problems such as query loss and system overloading. The simulation
results show that it can achieve a very low hit delay while ensuring a high hit
rate. Also, the number of messages lost can be kept to a minimum. Therefore,
we believe that it is possible to build a larger P2P file sharing network based
on our congestion-aware search protocol. We also believe that our congestion-
aware idea can be applied to other fields such as agent-based resource discovery
systems and sensor networks.

Acknowledgment. We thank Professor Keith Ross of Polytechnic University
for many useful discussions. Also, we would like to thank anonymous reviewers
for their helpful comments.

References

1. Gnutella. http://www.gnutella.com
2. KaZaA. http://www.kazaa.com/
3. BitTorrent. http://bitconjurer.org/BitTorrent/
4. S. Ratnasamy et al: A Scalable Content-addressable Network. In Proceedings of

ACM SIGCOMM 2001
5. J. Ritter: Why Gnutella Can’t Scale. No, Really. [Online] http://

www.darkridge.com/∼jpr5/doc/gnutella.html
6. Q. Lv et al.: Search and Replication in Unstructured Peer-to-Peer Networks. In

Proceedings of ACM ICS 2002.
7. F. Banaei-Kashani and C. Shahabi: Criticality-based Analysis and Design of Un-

structured Peer-to-Peer Networks as “Complex System”. In Proceedings of GP2PC
2003.

8. D. Tsoumakos and N. Roussopoulos: Adaptive Probabilistic Search for Peer-to-
Peer Networks. In Proceedings of IEEE International Conference on P2P Comput-
ing 2003

9. S. Saroui et al: Measurement Study of Peer-to-Peer File Sharing Systems. In Pro-
ceedings of Multimedia Computing and Networking 2002

10. J. Liang et al: Understanding KaZaA. [Online] http://cis.poly.edu/∼ross/
papers/UnderstandingKaZaA.pdf.

11. Y. Chawathe et al.: Making Gnutella-like P2P Systems Scalable. In Proceedings
of ACM SIGCOMM 2003

12. Kin Wah KWONG: A Congestion-Aware Search Protocol for Unstructured Peer-
to-Peer Networks. Technical Report, HKUST 2004

 J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 330–339, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Honeycomb: A Peer-to-Peer Substrate for On-Demand

Media Streaming Service*

Dafu Deng, Hai Jin, Chao Zhang, Hao Chen, and Xiaofei Liao

Cluster and Grid Computing Lab.,
Huazhong University of Science and Technology, Wuhan, 430074, China

{dfdeng, hjin, haochen, xfliao}@hust.edu.cn

Abstract. Peer-to-Peer media streaming service has gained tremendous mo-
mentum in recent years. However, a number of challenges in Peer-to-Peer me-
dia streaming have not been addressed. In this paper, we propose a peer-to-peer
substrate for supplying on-demand media streaming service, called Honeycomb,
which mainly addresses on the key technical issue of: constructing a locality-
aware P2P overlay network with high scalability and manageability. Honey-
comb can fully utilize the locality of underlying physical network so that the
bandwidth consumption used for the overlay maintenance can be effectively
saved and the QoS requirements for delivering media content can be easily
satisfied.

1 Introduction

The success of P2P file-sharing and storage applications, such as Gnutella [3] and
FreeNet [2], gives us a graceful reference to solve the scalability problem existed in
the conventional on-demand media streaming systems with client/server model. Some
recent works suggest building on-demand media streaming service on the P2P sub-
strates. For example, GNUStream [5] proposes an application-level multicast scheme
for effectively transferring video data based on fully decentralized Gnutella network.
PROMISE [4] system is built on highly structured Pastry network.

However, the existed “highly structured” P2P substrates, such as Pastry [6], Chord
[9], and CAN [7], are mainly designed to enhance searching performance. Those
systems are poor in locality since the overlay network is constructed based on the
DHT algorithm of shared objects. For on-demand media streaming services, locality
of overlay network is very important because Quality-of-Service (QoS) requirements
for media content delivery, such as latency, can be easily satisfied if nearby hosts in
the underlying Internet are also nearby with each other in the overlay network.

Other fully decentralized P2P substrates, such as Gnutella, are easily to be main-
tained and can achieve high resilient of transient user population. However, locality
issue is also not considered in those systems since they are mainly used for file-

* This paper is supported by National Hi-Tech R&D Project under grant No.2002AA1Z2102

and National Science Foundation of China under grant No.60125208 and No.60273076.

Honeycomb: A Peer-to-Peer Substrate for On-Demand Media Streaming Service 331

sharing systems in which clients first download the entire file before using it. There
are no timing constraints on downloading the requested file object and peers often use
small bandwidth to upload the requested file data. In on-demand media streaming
systems, timing constraints are crucial since a packet arriving after its scheduled
playback time is useless and considered lost. Furthermore, fully decentralized overlay
networks make the scalability of their searching schemes, such as flooding and ran-
dom walks, limited.

In papers [8] and [10], the authors proposed to construct the locality-aware topol-
ogy based on landmarks, similar to our work, trying to meet the efficiency and QoS
requirements. Although the efficiency can be improved, paper [8] needs extra de-
ployment of landmarks and produces some hotspots in the underlying physical net-
work when the overlay is heterogeneous and large. Paper [10] uses the similar
method with ours. However, in [10], since that each peers needs to maintain the ad-
dress information of all of classmates and neighbor classmates, as well as the search-
ing service must use flooding scheme, the overhead for maintaining those address
information list and the poor scalable flooding scheme seriously limit its scalability.

In this paper, we propose a novel peer-to-peer substrate, called Honeycomb, which
focuses on the following aspects.

Locality: The neighbor peers in the overlay network of P2P substrate for on-demand
media streaming service should be closely located in the underlying physical network.
To achieve this goal, Honeycomb uses the concept of closeness to construct overlay
network and clusters peers into many groups so that each group consists peers close
with each other.

Scalability: The cost of the overlay construction, maintenance, and the searching
scheme should be as small as possible. For this purpose, Honeycomb organizes the
overlay network as a layered ring structure so that the maximum logical-link (or rout-
ing) information maintained on a peer is converged to a constant. The overlay con-
struction process is implemented in a distributed fashion to reduce the number of
measured hosts whenever a peer joins into the system. Furthermore, Honeycomb
organizes the intra-group overlay as a reliable ring so that failure recovery can be
done regionally with only impact on at most a constant number of peers. Since the
most of peers that could not guarantee QoS are not traversed, it saves the bandwidth
consumption and so improves the scalability of the P2P substrate.

The remainder of this paper is organized as follows. In section 2, we propose the
mechanism for constructing and maintaining the overlay network topology of Honey-
comb. Section 3 ends with conclusion remarks and future works.

2 Locality-Aware Overlay Network

We first introduce the concept of closeness. Given any two hosts i and j, the notation
D used in this paper represents the maximum physical hop counts between i and j (i.e.
the diameter of Internet). We uniformly divide D into H parts, denoted by a sequence
{l0, l1, …, lH-1}, where li represents the distance level [i×[D/H](i+1)×[D/H]-1] in terms
of hop-counts. The closeness between i and j, denoted by Ci j, is defined as:

D. Deng et al. 332

×
= ↔

↔ D

HopcountsH
C ji

ji

 (1)

In this section, we first give out the overview of locality-aware overlay network
topology based on the concept of closeness, and then propose how to construct and
maintain the overlay topology.

2.1 Organization of Overlay Network

Peers in the overlay network are recursively organized as a topology of layered multi-
ring hierarchy defined by the following rules (where H is the number of possible
values of Ci j for any two particular peers i and j, is a constant). In this paper, we
assume that the left direction corresponds to the anti-clockwise and the right corre-
sponds to the clockwise on a ring.

Rule 1: Peers in the overlay network are organized in H layers. The 0-th layer con-
tains all peers.

Rule 2: Peers at the layer k (0≤ k ≤ H-1) are clustered into different groups. Given a
peer P, if CA P = CB P, peers A and B are clustered into the same group at the k-th
layer, where k = CA P = CB P.

Rule 3: For each group at the k-th (0≤ k ≤ H-1) layer, a peer is selected to be the
leader. This leader is automatically becomes a member of the (k+1)-th layer if k<H-1.
The leader's neighbor is selected to be the vice-leader of that group. It is responsible
for hotly backing up the logical link information of the leader. An exception holds for
the scene that there is only one peer in a group. In this case, the survival peer is both
the leader and the vice-leader.

Rule 4: Logical links among peers in the group at the k-th (0≤ k ≤ H-1) layer are
organized as a reliable ring, called basic-ring, on which each peer maintains a hosts
list, denoted by < IDr, Ild, Ilf, Irg, Ill, Irr>, where the IDr is the unique ID of the ring. If
the peer is the leader, Ild records the address of vice-leader for that group. Otherwise,
Ild represents the address of the leader peer. Notations Ilf, Irg, Ill, and Irr represent the
address of its left neighbor, right neighbor, left neighbor's left neighbor, and right
neighbor's right neighbor, respectively.

Rule 5: For groups at the 0-th layer, an additional reliable ring, called inner-ring, is
constructed on the basic-ring to divide it into lots of sub-rings with size in [1,] peers.
For each inner-ring peer, non inner-ring peers on its left sub-ring are called children
of that inner-ring peer. Each inner-ring peer is responsible for maintaining an index
information list to record the information of its children peers and itself, such as the
address information and keywords of shared media files.

Fig.1 (a) shows an example of the layered-groups hierarchy. In this case, we as-
sume that Ci j∈[0, 2]. Thus, the overlay network is organized in three layers. In the
0-th layer, 20 peers are clustered into 3 groups (A, B, and C). Peers 1, 13, and 19 are
leader peers of groups A, B, and C, respectively, and automatically become members

Honeycomb: A Peer-to-Peer Substrate for On-Demand Media Streaming Service 333

of layer 1. Peers 2, 14, and 20 are vice-leader peers of these three groups, respectively.
In the 1-th layer, peer 1 is clustered into group D alone since both C1 13>1 and
C1 19>1. Peers 13 and 19 are clustered into the group E with the leader peer 13 and
vice-leader peer 19 because C13 19=1.

Fig. 1. An example of (a) layered-groups hierarchy and (b) the intra-group structure with =4
for the group A

Fig.1 (b) describes the example for intra-group topology with parameter =4 of
the group A. In this figure, solid arcs represent logical links to the corresponding left
neighbor and right neighbor, and dashed arcs illustrate logical backup links to corre-
sponding left neighbor's left neighbor and right neighbor's right neighbor. Since the
group A is located at the 0-th layer, both the basic-ring and the inner ring must be
constructed. The inner-ring divides the basic ring into 4 sub-rings due to =4 and the
total number of peers is 12. For peer 1, the left sub-ring consists of peers 1, 10, 11,
and 12. Thus, it maintains the index information of media files shared by its children
peer 10 and 11.

Theorem 1: No matter how the total number of peers in the system increases, the
maximum logical link information maintained on a peer is a constant which is equal
to 5(H+1) addresses.

Proof: According the definition of rule 3, peers of the group at the highest (i.e. H-1)
layer maintains the maximum logical links which is related to H+1 reliable rings,
where H is the total number of basic rings from the 0-th layer to the (H-1)-th layer
and 1 is the number of the inner-ring in the group at the 0-th layer. Based on the defi-
nition of rule 4, there are 5 addresses must be maintained in each reliable ring. Thus,
the maximum logical link information is equal to a constant 5(H+1) addresses.

Theorem 2: If the average number of media files shared by a peer is M, then, for each
inner-peer, the average number of items in the index information list is less than
M×(-1)+2×(-2).

Proof: According to the definition of rule 5, for each inner-ring peer, the maximum
number of children is -2. Thus, the index information list must record the address

D. Deng et al. 334

information and the available bandwidth information of -2 children. In addition, the
average number of movie names is less than M×(-2+1), where M×(-2) represents
keywords of movies shared by its children and M×1 is the average number of movies
shared by itself. Totally, the average number of items is less than 2×(-2)+ M×(-
2+1)= M×(-1)+ 2×(-2).

2.2 Overlay Construction

There are two key steps for dynamically constructing the overlay network. The first is
how to locate new hosts into groups at different layers. For the new host, once the
joining group has been determined, the next step is how to join into reliable rings of
that group. In this subsection, we present these two processes in detail.

A. Group Locating
Like Gnutella-2 [3], one or several well known rendezvous points (RPs) are involved
for locating new hosts into groups. Those RP servers are responsible for caching the
addresses list of several peers existed in the highest layer. All new peers know where
the RP is. Therefore, the first step for a new peer is to contact RP to randomly fetch
one address of peer in the highest layer. This peer, called boot peer, will guide the
new peer into groups.

The algorithm for locating a new host i into a group is presented formally in Fig.2 (a),
and relies on the following notations. Let Gr be the current processing group. j and L
represent the nearest peer and the layer number of group Gr, respectively. The locating
algorithm starts at measuring all peers in the group at the highest layer H-1 to find out
the nearest peer j. If Ci j =0 (i.e. peer j is located at the nearest position of the host i in
the physical network), the locating algorithm is finished immediately and the new host i
is located into the group at the 0-th layer leaded by j. If Ci j <L (i.e. a new nearest peer
be found out in the processing group), Gr is changed to be the group at the layer Ci j
leaded by j. The procedure repeats until no new nearest peer can be found out (i.e. Ci j
=L and L 0). In this case, a new group should be created on each layer k (0≤ k ≤ L-1).
Meanwhile, the new host i is located into the group at the layer L leaded by j.

Fig.2 (b) illustrates an example of the group locating algorithm. In this case, the
new host 21 first contacts the RP node and fetch the boot peer 13. Since F is the
group on the highest layer 2, it sequentially measures the closeness value between
itself and peers 1 and 13. The result shows that peer 13 is the nearest peer in F and
C21 13 =1. Then, it goes to the group E leaded by 13 and located at the layer 1. After
measuring all peers in the group E, it finds that peer 19 has the same closeness value
with peer 13. Thus, a new group G is created at the layer 0 and the peer 21 is located
into the group E.

B. Group Joining
The group joining algorithm is presented formally in Fig.3 (a). Suppose that the lo-
cated group is Gr. Based on the overlay definition, there may be two kinds of intra-
group topology of the group Gr. One is the basic-ring topology for groups at the layer
k (0< k ≤ H-1). The other is the multi-rings (including a basic-ring and an inner-ring)
topology for groups at the layer 0. Thus, the group joining algorithm uses two branch
procedures to process these two cases.

Honeycomb: A Peer-to-Peer Substrate for On-Demand Media Streaming Service 335

Case 1: Gr is at the layer k (0< k ≤ H-1). The group joining algorithm simply inserts
the new host into the basic-ring as the leader peer's left neighbor. Note that the leader
of Gr is determined by the group locating algorithm. Fig.3 (b) illustrates an example
for joining into the group at the layer k (0< k ≤ H-1).

Case 2: Gr is at the layer 0. In order to balance the number of children of inner-ring
peers, the group joining algorithm uses a function Find_inner_peer to notify the
leader to launch a query message at the anti-clockwise direction of the inner-ring.
Once a peer at the inner-ring receives this message, it checks whether the number of
children peers is less than -2. If so, it responds a message to the leader and discards
this message directly. Then the leader notifies the new host to be inserted into the
basic-ring as the left neighbor of the responding peer. Otherwise, the peer forwards

(2)

Fig. 2. (a) Pseudo-code of the algorithm to locate a new host to a group; (b) an example to
locate a new host to a group

Fig. 3. (a) Pseudo-code of the group joining algorithm; (b) an example for inserting the new
host into the basic-ring; and (c) an example for inserting the new host into the multi-ring

D. Deng et al. 336

this message to its right neighbor. If all inner-ring peers have -2 children peers (i.e.
the Find_inner_peer function returns NULL), the new host is inserted into both the
basic-ring and inner-ring as the left neighbor of the leader peer. Fig.3(c) shows an
example for joining the multi-ring. In this figure, the logical backup links in the ba-
sic-ring are omitted just for clearness of the illustration.

2.3 General Maintenance Operations

To maintain the reliable layer ring structure (i.e. the hosts list of each peer) and the
index information of inner-ring peers, two kinds of messages should be periodically
launched by different peers. One is the “alive” message pair launched by leader peers.
The other is the “collection” message launched by inner-ring peers.

The “alive” messages pair is comprised of an “alive_l” message and an “alive_r”
message, where the “alive_l” message is forwarded anti-clockwise and the “alive_r”
message is forwarded clockwise. Information contained in each message is denoted
by <IDr, Tm, AI>, where IDr is the unique ID of the ring on which the message is for-
warded, Tm represents the time stamp used to uniquely identify the messages pair, and
AI represents the address of the leader peer.

Once non-leader peer X receives one of the “alive” messages pair, it first checks
whether the value of Tm is contained in the message earlier than that of the last re-
ceived message. If so, X simply discards this message. Otherwise, the following tasks
should be performed: 1) responds an “ack” to the peer from which the message comes;
2) refers to AI contained in the message, updating the leader address Ild of the ring IDr;
3) forwards this message to the next neighbor on the ring IDr and initializes a timer to
wait for response. Once the “ack” response is missed after the timer expires, it indi-
cates that the neighbor peer fails or departs. At this moment, X forwards the received
message to the backup neighbor (i.e. neighbor's neighbor) on the ring IDr and re-
freshes the timer to wait for response.

The “collection” message is forwarded anti-clockwise along the left sub-ring of
peer Y. Once a non inner-ring peer received this message, the following actions
should be performed: 1) appends its address, available bandwidth, and keywords of
shared media files to the “collection” message; 2) forwards the appended message to
its right neighbor. When the inner-ring peer Y receives the appended “collection”
message, it updates the corresponding index information.

Theorem 3: The worst-case maintenance overhead of a peer is upper bound by
2×(H+1)+1 in terms of messages processed during a period.

Proof: Consider a peer X whose highest layer is j. Thus, X belongs to j+2 rings that
include j+1 basic-rings of groups at layers {0, 1, …, j} and one inner-ring of a group
at layer 0. In each ring, the number of processed “alive” messages during a period is 2.
Hence, the total number of “alive” messages processed by X is 2×(j+2). In addition,
one “collection” message must be processed by X. Hence, the total number of main-
tenance messages processed by X is 2×(j+2)+1. Consequently, the worst-cast main-
tenance overload is upper bound by 2×(H+1)+1 since j is upper bounded by H-1.

Honeycomb: A Peer-to-Peer Substrate for On-Demand Media Streaming Service 337

2.4 Failure Recovery

Without loss generality, we consider a peer X who fails either purposely due to a
departure or accidentally due to a failure. Suppose that highest layer of X is layer j
j∈[0, H-1] and each item of the sequence RS{RI, R0, R1, …, Rj} represents a ring to
which X belongs, where RI represents the inner-ring and Rj (i∈[0, j]) indicates the
basic-ring at the layer i. As a result of the maintenance protocol, if j=0 and X∈RI, two
peers must be aware of this failure: one is a neighbor of X on the inner-ring RI, de-
noted by X’I; the other is a neighbor of X on R0, denoted by X’0. Otherwise, on each
basic-ring Rj, a neighbor peer of X, denoted by X’j, must be aware of this failure. Ba-
sically, the following tasks are required for recovery: 1) X should be deleted from
each ring of the sequence RS; 2) peers on the ring Rk (k∈[0, j]) need a new leader to
periodically launch maintenance messages since the leader no longer existed; 3) the
basic-ring Rj needs a new vice-leader if X is the vice-leader of Rj; and 4) if X is just a
inner-ring peer at the layer 0 (i.e. j=0 and X∈RI), a new inner-ring peer should be
selected to satisfy the requirement that the size of each sub-ring is in [1, α] peers. We
propose the detail policies to remain tasks below.

We first consider the case j=0, that is, X belongs to only one group. If X is neither
the vice-leader nor an inner-ring peer, no further work is required. If X is the vice-
leader, X’0 must be the leader since the vice-leader is the leader's right neighbor on the
basic-ring. In this case, the leader X’0 simply selects its new right neighbor on the
recovered basic-ring to be the new vice-leader and backs up its hosts list to it.

If X is an inner-ring peer (i.e. X∈RI), to satisfy the sub-ring size requirement, X’I
should send out a “selection” message including two member fields. One is a counter
C= -1. The other is the address of X’I. If X is X’I's left neighbor on RI, the message is
sent to X’I's left neighbor on R0. Conversely, the message is sent to X’I’s right
neighbor on R0. Once a non inner-ring peer receives this “selection” message, it first
checks whether C is equal to 1. If C>1, the message receiving peer updates the value
of C to C-1 and forwards the message to its next neighbor on the basic-ring. Other-
wise, it simply discards this message and joins into the inner-ring RI.

We now consider the case j>0. If X is a non-vice-leader on the basic-ring Rj, X’k
(k∈[0, j]) must be the vice-leader of the basic-ring Rk since X is the leader of each
basic-ring Rk. The following recovery actions should be performed by X’k to work
together with the task 1). It automatically a) takes place the position of X on the inner-
ring RI if k=0; b) becomes the new leader of Rk to launch maintenance messages; c)
selects its right neighbor on Rk to be the new vice-leader and backs up its hosts list to
the new vice-leader; and d) joins into the basic-ring Rk+1 since the vice-leader of Rk+1
will automatically become the leader and its address is backed up by X’k. If Rk+1 just
includes one peer X, a new group should be create at the layer k+1 by X’k and X’k
should join into the basic-ring Rk+2 if j<H-1. If X is a vice-leader on the basic-ring Rj,
a further recovery task similar with that of the case j=0 should be performed on the
basic-ring Rj.

Fig.4 (a) and Fig.4 (b) illustrate the recovered layered-group hierarchy after peers
1 and 19 fail, respectively. The original overlay is given in Fig.1. In Fig.4 (a), peer 2
automatically becomes the leader of R0 (i.e. the group A) and selects its right neighbor
to be the vice-leader. Meanwhile, peer 2 creates a new group D' since R1 (i.e. the

D. Deng et al. 338

original group D in Fig.1 (a)) just includes one peer 1 and joins in to the basic-ring R2
(i.e. the group F). In Fig.4 (b), peer 20 automatically becomes the leader of R0 (i.e. the
group C) and joins into the basic-ring R1 (i.e. the group E). Since the failure peer 19 is
the vice-leader of R1 (i.e. the group E), the new joined peer 20 is selected to be the
vice-leader of E. Fig.4(c) gives out the example of recovery procedure after inner-
ring peer 10 fails. In this case, peer 10 is first deleted from both the inner-ring and the
basic-ring of group A. Then, a “selection” message with initial counter value C=3 is
initialized by the failure detecting peer 1 and forwarded anti-clockwise along the
basic ring. Peer 9 receives the message with counter value C=1. Thus, it joins to the
inner-ring as the left neighbor of peer 1.

Fig. 4. The recovered layered-group hierarchy after peers (a) 1 and (b) 19 fail, as well as (c) the
example recovery procedure after the inner-ring peer 10 fails. The original overlay is given in
Fig.1

In overall, a peer failure requires only a few peers to be contacted for recovery. If
the failure peer is just an inner-ring peer, there are at most 4 peers contacted to delete
the failure peer from the inner-ring, 4 peers to delete the failure peer from the
basic-ring, 2α-4 peers to select new inner-ring peer, and 4 peers to join into the inner-
ring. Otherwise, there are at most 4 inner-ring peers contacted to take place the
leader's position at the inner-ring, 4H peers to delete the failure peer from correspond-
ing basic-rings from layer 0 to H-1, 4(H-1) peers to join into corresponding basic-
rings from the layer 1 to H-1. Thus, we conclude the overhead of failure recovery is
as follow.

Theorem 4: The number of peers needed to contact due to a failure is upper bound by
max{8H, 2α+8}.

Proof: The theorem has been proved above.

3 Conclusions and Future Works

In this paper, we propose a novel P2P substrate for on-demand media streaming ser-
vice, called Honeycomb. The main contribution of Honeycomb is that it organizes the
overlay network into layered reliable rings based on the physical location of different

Layer 0

Layer 1

Layer 2

23

4 5 6 7 8 91011 12

13 1914

15161718

20

1913

213

A B C

D E

F

23

4 5 6 7 8 91011 12

1314

15161718

20

13

1 13

A B C

D E

F

1

1 202

1
2

3

4

5

6
7

8

9

10

11

12

Selection
(C=3)

Selection
(C=2)

Selection
(C=1)

(a) (b) (c)

Join into
inner-ring

Honeycomb: A Peer-to-Peer Substrate for On-Demand Media Streaming Service 339

peers so that the underlying bandwidth consumption used for overlay maintenance
can be effectively saved. Meanwhile, the locality property of Honeycomb makes it
easily satisfy the QoS requirements for delivering the on-demand media streams.
Because of space limitation, details of performance analysis are not included in this
paper. Long version can be accessed in [1]. In that version, the performance of
Honeycomb is theoretically analyzed based on modeling the underlying physical
network as a random graph with power-law degree distribution. Numerical results
clearly prove the significant benefits of Honeycomb. Our ongoing work is developing
the prototype of Honeycomb and evaluating its performance in the real Internet
environment.

References

1. D. Deng, H. Jin, C. Zhang, and H. Chen, “Honeycomb: A Peer-to-Peer Substrate for On-
demand Media Streaming Service”, (long version), Technical Report, Huazhong Univer-
sity of Science and Technology, June, 2004.

2. Freenet Website. [Online]. Available: http://freenet.sourceforge.net.
3. Gnutella Website. [Online]. Available: http://gnutella.wego.com.
4. M. Hefeeda, A. Habib, B. Botev, D. Xu, and B. Bhargava, “PROMISE: Peer-to-Peer Me-

dia Streaming Using CollectCast”, Proc. of ACM SIGMM’03, Berkeley, CA, pp.45-54,
Nov., 2003.

5. X. Jiang, Y. Dong, D. Xu, and B. Bhargava, “GNUSTREAM: A P2P Media Streaming
system prototype”, Proc. of ICME’03, Baltimore, MD, July, 2003.

6. A. Rowstron1 and P. Druschel, “Pastry: Scalable, distributed object location and routing
for large-scale peer-to-peer systems”, Proc. of the 18th IFIP/ACM International Confer-
ence on Distributed Systems Platforms (Middleware 2001), Heidelberg, Germany, Nov.,
2001.

7. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A scalable content-
addressable network”, Proc. of ACM SIGCOMM, San Diego, CA, Aug. 2001.

8. S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, “Topologically-Aware Overlay Con-
struction and Server Selection”, Proc. of INFOCOM, pp.1190-1199, 2002.

9. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, “Chord: A Scalable
Peer-to-peer Lookup Service for Internet Applications”, Proceedings of SIGCOMM'01,
pp.149-160, San Diego, CA, Aug. 2001.

10. X. Zhang, Z. Zhang, G. Song, and W. Zhu, “A Construction of Locality-Aware Overlay
Network: mOverlay and Its Performance”, IEEE Journal on selected areas in communica-
tions, Vol.22, No.1, pp.18-28, Jan., 2004.

 J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 340–351, 2004.
© Springer-Verlag Berlin Heidelberg 2004

An Improved Distributed Algorithm for Connected
Dominating Sets in Wireless Ad Hoc Networks

Hui Liu, Yi Pan1 and Jiannong Cao2
1

Department of Computer Science, Georgia State University, Atlanta, GA 30303
hliu1@student.gsu.edu and pan@cs.gsu.edu

2
Department of Computing, Hong Kong Polytechnic University, Hong Kong

csjcao@comp.polyu.edu.hk

Abstract. The idea of virtual backbone routing has been proposed for efficient
routing among a set of mobile nodes in wireless ad hoc networks. Virtual
backbone routing can reduce communication overhead and speedup the routing
process compared with many existing on-demand routing protocols for routing
detection. In many studies, Minimum Connected Dominating Set (MCDS) is
used to approximate virtual backbones in a unit-disk graph. However finding a
MCDS is a NP-hard problem. We propose a distributed, 3-phase protocol for
calculating the CDS in this paper. Our new protocol largely reduces the number
of nodes in CDS compared with Wu and Li’s method, while message and time
complexities of our approach remain almost the same as those of Wu and Li’s
method. We conduct extensive simulations and show our protocol can
consistently outperform Wu and Li’s method. The correctness of our protocol is
proved through theoretical analysis.13

1 Introduction

A wireless ad hoc network is a particular type of wireless networks in which an
association of mobile nodes forms a temporary network, without any support of fixed
infrastructure or central administration. They are widely deployed for many
applications such as automated battlefield operations, wireless conferences, disaster
rescues, and connection to the Internet in remote terrain, etc. Mobile nodes can
control connections and disconnections by the distances between them and the
willingness to collaborate during the formation of short-lived networks. That means a
connection is achieved either through a single-hop radio transmission if two nodes are
located within wireless transmission range of each other, or through relaying by
intermediate nodes that are willing to forward packets for them.

In this paper, we assume that a wireless ad hoc network is deployed in a two-
dimensional space, and each mobile node is equipped with an omni-directional
antenna which has an equal maximum transmission range. Thus the topology of such
a wireless ad hoc network can be modeled as a unit-disk graph (UDG). “A graph is a

1 Yi Pan’s research was supported in part by the National Natural Science Foundation of China

(NSFC) under Grant No. 60440440451 (“two base” project).

An Improved Distributed Algorithm for Connected Dominating Sets 341

unit graph if and only if its vertices can be put in one to one correspondence with
equisized circles in a plane in such a way that two vertices are joined by an edge if
and only if the corresponding circles intersect.” [16]. A wireless ad hoc can be
represented as a simple graph G (V, E), where V represents a set of mobile nodes and
E represents a set of edges. An edge (u,v) in E indicates that nodes u and v are
neighbors, and that u is within v’s range of transmission, while v is within u’s range.

Features of wireless ad hoc networks have posed a lot of challenges on routing
protocols that are used to find a route to send a packet from a source to a destination.
Mobility and lack of infrastructure cause topological changes within the network,
therefore the volatility of network information is also increased. The property of
limited bandwidth in wireless networks makes information collection very expensive
and the power limitation factor leads to mobile nodes disconnecting frequently. Thus,
an efficient and scalable routing scheme needs to be devised.

Routing protocols are classified into two main categories: topology-based and
position-based. Topology-based routing protocols are based on the information
concerning links [7,8,9,10,11]. In position-based routing protocols, mobile nodes
know physical position information by geolocation techniques such as GPS
[12,13,14]. Although a wireless ad hoc network has no fixed backbone infrastructure,
many routing protocols propose the promising idea of virtual backbones such as
cluster-based routing, backbone-based routing and spine-based routing [2,3,6,15]. The
basic idea behind these types of algorithms is to divide a wireless ad hoc network into
several small overlapping sub-networks, where each sub-network is a clique (a
complete subgraph). Each sub-network has one or more virtual backbones to connect
to other parts in the network. Virtual backbones are usually connected and form a
dominating set of the corresponding wireless ad hoc network.

In general, a dominating set (DS) is a subset of vertices of a graph where every
vertex that is not in the subset is adjacent to at least one vertex in the subset. A
connected dominating set (CDS) is a dominating set that induces a connected
subgraph. A virtual backbone plays a key role in routing as it simplifies the routing
process to one in a smaller subgraph generated from the connected dominating set.
Obviously, it is important to find a minimum connected dominating set (MCDS) of a
given graph in order to reduce communication overhead, to increase the convergence
speed, and to simplify the connectivity management. However, finding a MCDS is
NP-complete for most graphs. Several distributed algorithms have addressed the
problem of determining CDS in wireless ad hoc networks. Wu and Li [6] proposed a
two-phase distributed algorithm for the construction of an approximation MCDS. The
first phase is called marking process, where each node first broadcasts all IDs of its
neighboring nodes to its neighbors, and after receiving two-hops information from all
its neighbors it declares itself as a dominator if and only if it has two unconnected
neighbors. The dominators form the initial CDS. In the second phase, the algorithm
removes certain locally redundant nodes from the initial CDS. We notice that this
algorithm does not mention any control messages to bridge the two consecutive
stages. Further Wu’s algorithm is outperformed by Das’ algorithm when transmission
range is very large. That means the reduction of cardinality of dominating sets is
limited in dense network. The time and message complexities of this approach are
O(Δ2) and O(Δn) respectively, where Δ is the maximum node degree and n represents
the total number of vertices in graph G.

H. Liu, Y. Pan and J. Cao 342

In this paper, we propose a simple and distributed heuristic algorithm for
constructing the CDS based on Wu and Li’s algorithm. Our protocol largely reduces
the number of nodes in dominating sets, while communication and computation
complexities of our algorithm remain the same polynomial complexity as those of Wu
and Li’s algorithm. As we know, the less the number of nodes in dominating sets, the
better the performance, because our goal is to generate a small dominating set in order
to speedup the routing process and decrease the communicating overhead. We
implement the two algorithms and compare them. Then the simulation results show
that our algorithm can consistently outperform the existing distributed algorithm of
Wu and Li, and our algorithm significantly reduces the cardinality of dominating sets
up to 70% compared with Wu and Li’s algorithm.

The remainder of this paper is organized as follows. Section 2 gives a brief review
of related work. We present our algorithm, prove the correctness of our algorithm and
give performance analysis in section 3. Section 4 shows our simulation results and
Section 5 concludes the paper.

2 Related Work

Various virtual backbone based routing protocols have been proposed in recent years.
Distributed approximation algorithms for MCDS in mobile ad hoc networks were first
developed by Das et al. [1-3]. These algorithms provided distributed implementations
of the two centralized algorithms given by Guha and Khuller [4]. In Das’s algorithm,
a connected dominating set is found by growing a set U starting from a vertex with
the maximum node degree. It then iteratively adds to U a node that is adjacent to the
maximum number of nodes not yet in U until U forms a dominating set. Finally, it
assigns each edge with a weight equal to the number of neighbors not in U, and then
finds a minimum spanning tree T in the resulting weighted graph. All the nonleaf
nodes form a CDS. This approach has two main improvements over previous
protocols. Firstly, only a few nodes need to keep global information that captures the
topological changes structure of the whole network, and as long as network
topological changes do not affect these MCDS nodes, there is no need to recapture
global information. Thus it reduces information access overhead and update overhead.
Secondly, each node only needs 2-hops neighborhood information instead of
information of the entire network topology. The main shortcoming of this algorithm is
that the process of “constructing a spanning tree” is almost sequential, thus it needs a
nonconstant number of rounds to determine a CDS. Furthermore, the algorithm
suffers from high implementation complexity and message complexity.

Alzoubi et al. [5] also proposed a distributed solution with a constant
approximation ratio for constructing CDS. It also consists of two phases. One phase
constructs an MIS, and another constructs a dominating tree. In the first phase, a
spanning tree rooted at a node v (selected through an election process) is constructed.
After such construction is finished, each node is identified according to a topological
sorting order of the tree. Then, nodes are marked based on their tree levels in the
order starting from root v. The root v is marked as black, and other nodes are all
marked as white initially. Following the order, each node is marked black if it has no
black neighbor. Let U be the set of black nodes, U forms an MIS. In the second phase

An Improved Distributed Algorithm for Connected Dominating Sets 343

it constructs a tree spanning all the black nodes, and is referred to as a dominating
tree. Let T be the dominating tree, where T is initially empty. The root v joins T at
first. Then each black node (except v) selects a neighbor with the largest tree level but
smaller than its own tree level and marks it as gray. Thus black and gray nodes form a
CDS. Alzoubi et al. [5] prove that this algorithm has an approximation ratio of at
most 8. Performance of this scheme is very good, however, a global infrastructure
(spanning tree) is constructed before the node selection process. Also, two phases of
the scheme are serialized. In addition, “locality of maintenance” is not realized in this
approach, for a single change in network topology may destroy the spanning tree thus
causing the dominating set to be reconstructed.

Wu and Li [6] proposed a simple and efficient distributed algorithm that can
quickly find a DS in a mobile ad hoc network. Each node is marked as white initially.
Let N(v) be the open neighbor set of vertex v, which means N(v) includes all the
neighbors of vertex v. And let N[v] be the closed neighbor set of vertex v, the set of all
neighbors and itself. By assumption, each node has a unique ID number. This
algorithm runs in two phases. In the first phase, each node broadcasts its neighbor set
N(v) to all its neighbors, and after collecting all adjacency information from all
neighbors every node marks itself as black if there exist two unconnected neighbors.
All black nodes form the initial CDS. However, considering only the first phase, there
are too many nodes in dominating set. So in the second phase, the algorithm executes
two extensional rules to eliminate local redundancy. Extensional rule 1 is as follows:
Consider any two nodes u and v belonging to the dominating set. If N[v] ⊆ N[u] and
id(v) < id(u), then change v’s color to white. That means if all neighbors of v and
itself are covered by u, and v is connected to u and has lower id, v can be removed
from the dominating set. Rule 2 is described as follows: Consider any three nodes u,
v, and w belonging to a dominating set, such that u and w are two black neighbors of
v. If N(v) ⊆ N(u)∪N(w) and v has the smallest id of three nodes, then v’s color is
changed to white. In other words, if each neighbor of v is covered by u and w
together, where u and w are both connected neighbors of v, then v can be eliminated
from the list of dominating nodes. Thus, the second phase removes some nodes from
the original dominating set and the size of a dominating set is further reduced.
However the distributed implementation lacks some type of control message to bridge
the two consecutive phases. We also notice that the reduction of locally redundancy is
limited and the size of dominating set is still large.

3 The Algorithm

In this section, we propose a distributed algorithm to construct CDS. This algorithm
consists of three main phases: Dominators Election, Redundancy Elimination By One
Neighbor and Redundancy Elimination By Two Neighbors. First, we form the initial
CDS, U, which includes all the nodes once they have two unconnected neighbors.
Then a node u is removed from the initial CDS, U, if there exists a neighbor of node u
in U that can cover all other neighbors of u. In the third phase, we eliminate a
redundant node u from U when node u has any two neighbors in U that can dominate
all the neighbors of u. We will show that our algorithm is not only correct but also
message and time efficient through proof.

H. Liu, Y. Pan and J. Cao 344

3.1 Algorithm Description

Initially each mobile host is colored white. Dominators will be colored black and
form the CDS when the algorithm terminates. We assume that each host has a unique
ID, and each vertex knows its one-hop neighbors and its degree d that can be
collected by periodic or event-driven hello messages. Messages are used to exchange
information for computation or control. Actually messages record the information of
nodes that send them. Each message contains three fields. The first field contains a
unique identifier ID; the second field contains a status number, i, which is used to
specify what jobs a host has finished and will do next; and the last one is a set of all
one-hop neighbors represented by NEIGHBOR. The algorithm proceeds in phases. At
each phase, some of the hosts are active and generate messages. Each host x first
broadcasts message (x.ID, 1, x.NEIGHBOR) to the hosts at one-hop distance. In our
algorithm, after a destination host y collects messages from all its neighboring hosts
such as x1, x2, x3, … xd, it does some actions according to the status number i, its own
ID and IDs of all its neighbors. We set a TIMEOUT value; a neighboring node is
considered passive, if y doesn’t receive any message from this node after this
threshold time. We also induce a new concept “Synchronization Phase” to our
algorithm. Synchronization Phase lies between two continuous phases. In
Synchronization phase, destination node y collects messages from its neighbors until
it has received messages sent by all its neighbors who have finished jobs of previous
phase and will start jobs of next phase. Notice here neighboring nodes of y can only
be classified into two types. Some neighboring nodes are passive, either y has
received PASSIVE messages or after the threshold time passes, y has not received
anything from them, and all other nodes have the status numbers to identify of what
phase jobs will begin next. The following is the details of this algorithm:

Phase 1: If y is white and i equals to 1, then it checks whether any two of its
neighbors are connected. Since the information of y’s two-hops neighbors can be
obtained through the third field of messages, y compares the neighbor sets of its two
neighbors to see whether there exist any overlaps. As we know, if such overlaps exist,
then these two neighbors are connected. Otherwise, they are unconnected. Once y
finds two of its neighbors are unconnected, y is colored black, declares itself as a
dominator and broadcasts message (y.ID, 2.1, y.NEIGHBOR) to all y’s neighbors. If
y does not have unconnected neighbors, it remains white and broadcasts message
(y.ID, PASSIVE). Phase 1 terminates when every host finishes this kind of judge
about coloring.

Phase 2.1:
 Synchronization Phase of y, status number equals to 2.1.
 For each active neighbor xk do:
 if (color of y is black and y.ID < xk.ID) then
 if (xk dominates y’s neighbors and y itself) then
 y is colored white, removed from CDS and broadcasts message (y.ID,
 PASSIVE)
 break;
 end if
 end for
 y sends message (y.ID, 2.2, y. NEIGHBOR) to all y’s neighbors.

An Improved Distributed Algorithm for Connected Dominating Sets 345

Phase 2.2:
 Synchronization Phase of y, status number equals to 2.2.
 For each active neighbor xk do:
 if (color of y is black and y.ID > xk.ID) then
 if (xk dominates y’s neighbors and y itself) then
 y changes its color to white and is removed from CDS
 break;
 end if
 end for
 y broadcasts message (y.ID, 3.1, y. NEIGHBOR).
Phase 3.1:
 Synchronization Phase of y, status number equals to 3.1.
 For any two active neighbors xk and xj do:
 if (color of y is black and y.ID < xk.ID and y.ID < xj.ID) then
 if (xk and xj combine to dominate y’s neighbors and y itself) then
 y changes its color to white and is removed from CDS
 break;
 end if
 end for
 y sends message (y.ID, 3.2, y. NEIGHBOR) to all y’s neighbors.
Phase 3.2:
 Synchronization Phase of y, status number equals to 3.2.
 For any two active neighbors xk and xj do:
 if (color of y is black and y.ID is larger than one of xk and xj, but less than one of them) then
 if (xk and xj combine to dominate y’s neighbors and y itself) then
 y changes its color to white and is removed from CDS
 break;
 end if
 end for
 y broadcasts message (y.ID, 3.3, y. NEIGHBOR).
Phase 3.3:
 Synchronization Phase of y, status number equals to 3.3.
 For any two neighbors xk and xj do:
 if (color of y is black and y.ID is largest one among xk.ID, xj.ID and y.ID) then
 if (xk and xj combine to dominate y’s neighbors and y itself) then
 y changes its color to white and is removed from CDS
 break;
 end if
 end for
 y becomes passive.

When a black host finishes the jobs of phase 3.3 and becomes passive, it marks its
local predicate true and propagates a token to detect termination of our algorithm as
that described by Zou’s algorithm [17]. Then a CDS is constructed by all the nodes
remaining black, when the algorithm terminates.

H. Liu, Y. Pan and J. Cao 346

3.2 Correctness and Complexity Analysis

We use a simple graph G (V, E) to represent a wireless ad hoc network, where V
represents a set of mobile hosts and E denotes a set of edges. There exists an edge
(u,v) in E if nodes u and v are neighbors in a wireless ad hoc network. Assume V’ is
the set of black nodes in V, and G’ is the subgraph induced by V’. The next theorem
shows that G’ is a connected dominating set.

Theorem 1: If the given graph G = (V, E) is not a complete graph, the graph G’
induced by V’, derived from our proposed approach, forms a connected dominating
set.

Proof: It has been shown in 6 that nodes derived from phase 1, coloring process,
form a CDS. We only need to show that whenever a node v is removed either by one
neighbor or two neighbors, the remaining nodes (G’- {v}) still form a CDS. We look
at the first case in which a redundant node v is removed from the dominating set by
one of its neighbors. There is a requirement for removing such v that all neighbors of
v and v itself must be covered by one of v’ neighbors in the dominating set, and
without loss of generality we assume it is node u that makes v removed. Removing v
only affects the neighbor nodes of v and itself. Since u and v are neighbors and u
remains in CDS, v is adjacent to CDS. Also all neighbors of v are dominated by u, so
all neighbors of v are adjacent to u, a dominator. Then in the second case, if v is
removed by two of its neighbors in the dominating set, u and w, u and w combine
together to dominate all neighbors of node v. Obviously v is adjacent to CDS, for v is
a neighbor of both u and w. While all neighbors of v are adjacent to CDS because they
are covered by either u or w. And it is easy to see G’- {v} in either case is still
connected. In other word, the graph G’ induced by V’, derived from our proposed
approach, forms a CDS.

In Wu and Li’s algorithm, it mentions that the role of ID is to avoid “illegal
simultaneous” removal of vertices in G’. Vertex v cannot be removed even if N[v] ⊆
N[u] unless id(v) < id(u). And v cannot be removed even if N(v) ⊆ N(u)∪N(w) unless
v’s ID is the smallest one among v, u and w. This kind of avoiding wastes a lot of
chances to reduce the cardinality of CDS and is too conservative. Actually by our
approach, we can remove v only if N[v] ⊆ N[u] regardless of v and u’s IDs. We also
can remove v only if N(v) ⊆ N(u)∪N(w) without considering the order of u, v and w’s
IDs. At the same time, “illegal simultaneous” removal of vertices in G’ is avoided by
control messages in which there exist status numbers to identify the end of previous
phase and beginning of next phase. In synchronization phase, a node waits for
information of all neighbors. This helps avoid illegal simultaneous removal.

In phase 1, each host only broadcasts messages (ID, 1, NEIGHBOR) at most once.
The message complexity is dominated by nodes’ degree. Thus, the message
complexity of Phase 1 is O(Δn). Each host needs to compare the neighbor sets of its
any two neighbors, and it takes O(Δ2) time. The time complexity is O(Δ2). In every
synchronization phase, hosts only wait for receiving messages from all their
neighbors, so they do not have any computation or communication jobs. In phases 2.1
and 2.2, each host checks all its black neighbors one by one, thus the time complexity
is O(Δ). The message complexity is also O(Δn) since each active host needs to

An Improved Distributed Algorithm for Connected Dominating Sets 347

broadcast message either (ID, PASSIVE) or “phase 3.1 begins”. Each node checks
any two of its black neighbors one pair by one pair in phases 3.1, 3.2 and 3.3, so the
time complexity is O(Δ2). The message complexity remains O(Δn). From the above
analysis we have the following theorem:

Theorem 2: The distributed algorithm has time complexity O(Δ2) and message
complexity O(Δn).

Theorem 3: Our distributed algorithm for finding CDS is deadlock-free.

Proof: To show that our algorithm for finding CDS is deadlock-free, we need to
prove that there is no mutual waiting among mobile hosts, because mutual waiting is
necessary condition of the deadlock situation in message communication. Mutual
waiting occurs in message communication when each of a group of hosts is waiting
for a message from another member of the group, but there is no message in transit.
By the definition of synchronization phase, it is easy to see that there is no mutual
waiting in the network, since we set timeout value, if one host has some problem to
finish jobs or send messages, other hosts who wish to exchange messages with it will
regard that host as PASSIVE without infinite waiting. Thus, no mutual waiting can be
created.

4 Simulation and Results

We conduct a simulation study to measure the size of the CDS derived from our
algorithm and compare it with the one generated by Wu and Li’s algorithm. We have
simulated three algorithms: Wu and Li’s algorithm without applying extensional
rules, their algorithm with extensional rules, and our proposed algorithm.

In our simulation, random graphs are generated in a 600 × 600 square units of a 2-
D simulation area, by randomly including a certain number of mobile nodes. We
assume that each mobile node has the same transmission range r, thus the generated
graph is undirected. If the distance between any two nodes is less than radius r, then
there is a connection link between the two nodes. Basic, Wu’s and New are three
parameters used to represent the number of dominators calculated by Wu and Li’s
basic rule, their algorithm with the two extensional rules, and our new algorithm
respectively.

Actually two groups of simulation are performed. In the first group, we set the
transmission radius of mobile nodes r to 100, 125, 150, 175, 200, 225, and 250 units.
In this way, we can control the density of the generated graphs because the density
increases when r increases. For each transmission range r, the number of nodes n is
varied from 80 to 150. For each n, the number of running times is 500 times. For each
case, we calculate Basic, Wu’s and New, and then record the average number ±
standard deviation, minimum and maximum number of the different algorithm results
in tables. We compare the results in terms of the number of dominators generated. It
is well known that the lower the number of dominators, the better the result. Thus, our
goal is to generate a small connected dominating set to facilitate a fast routing process
and reduce access and update overhead.

Fig.1. shows the average number of dominating set nodes versus the number of
nodes in the network for the increasing order of transmission radius r. We can see the

H. Liu, Y. Pan and J. Cao 348

performance of the basic rule without extensional rules is very poor and the ratio of
nodes in the dominating set to all nodes in the network is almost 1, specifically, 0.86.
Moreover, when the transmission range is very large, almost every node belongs to a
dominating set. Because the basic rule is loose, when the density of generated graphs
increases as the transmission range increases, it is very easy to find two neighbors of a
node that are not connected. After applying the two extensional rules of Wu and Li’s
algorithm, the size of the dominating set is largely reduced. The ratio of the number of
dominating nodes over the total number of nodes in the network changes from 60% to
22% as the transmission range increases.

Fig. 1. Average number of dominating set nodes relative to the number of nodes n

The simulation also shows that our algorithm consistently outperforms Wu and
Li’s algorithm with two extensional rules. The performance of our proposed
algorithm is much better than the one derived by Wu and Li’s. We can see the gap
between New and Wu’s increases as r increases. The ratio of dominating set size
induced by our algorithm over the number of nodes changes from 41% to 8% as the
transmission range increases. The number of dominators produced by our algorithm is
only half or one third of that derived by Wu’s algorithm.

An Improved Distributed Algorithm for Connected Dominating Sets 349

In order to fully understand this relative performance between Wu and Li’s
algorithm and ours, we conduct a second group of simulations. Fig.2. shows the
number of dominating set nodes with respect to radius r for the increasing order of the
number of nodes n. The number of dominating set nodes decreases smoothly as the
transmission range increases by applying their algorithm and our new algorithm.
Firstly, when the radius of mobile node’s transmission range is increasing, the gap
between Wu’s and New becomes larger, and then when the radius of mobile node’s
transmission range increases more, such gap decreases a little. We find that while the
network is dense, e.g. there are more mobile nodes in this ad hoc network or the
transmission range of every node is very large, the reduction on the number of
dominators of our approach is very large compared with that of Wu’s. Since there are
more chances for a node to find any one or two neighboring dominators that cover its
neighbors when ad hoc networks become denser.

In a summary, our new approach consistently obtains much better performance
than Wu and Li’s algorithm. The cost of our approach is slightly more than Wu and
Li’s algorithm since more phases are induced.

Fig. 2. Average number of dominating set nodes relative to transmission range r

H. Liu, Y. Pan and J. Cao 350

5 Conclusion

In this paper, we propose a distributed algorithm for determining the connected
dominating set (CDS) improved on Wu and Li’s algorithm. Our approach calculates
the CDS in O(Δ2) time with 2-hops neighborhood information, where Δ is the
maximum node degree of the graph. In addition, the algorithm also uses constant
rounds of message exchanges, and the amount of exchanged messages is O(Δn),
where n represents the total number of vertices in graph G. We can see the time and
message complexities of our approach remain the same asymptotic growth rate with
Wu and Li’s algorithm. While our approach significantly reduces the cardinality of
CDS compared theirs. The dominator nodes selected by our new algorithm form a
CDS, then a reduced graph can be generated from the CDS and the searching space
for a routing process can be reduced to this graph. The effectiveness of our algorithm
is confirmed through a simulation study on both sparse and dense networks. Our
simulation results show that our algorithm outperforms the approach proposed by Wu
and Li.

Acknowledgments

The authors are grateful to the three referees for their careful reading and suggestions
which have greatly improved the readability of the paper.

References

1. V. Bharghavan, B. Das: Routing in Ad Hoc Networks Using Minimum Connected
Domination Sets. In Proc. Int. Conf. Commun.’97, Montreal, Canada. Jun 1997.

2. B. Das, R. Sivakumar, V. Bharghavan: Routing in Ad-hoc Networks Using a Spine. In
Proc. Int. Conf. Comput. And Commun. Networks, Las Vegas, NV., Sept. 1997.

3. R. Sivakumar, B. Das, V. Bharghavan: An Improved Spine-Based Infrastructure for
Routing in Ad Hoc Networks. In Proc. IEEE Symp. Comput. And Commun., Athens,
Greece, June 1998.

4. S. Guha, S. Khuller: Approximation Algorithms for Connected Dominating Sets.
Algorithmica, Vol. 20(4), April 1998, pp. 374-387.

5. K. M. Alzoubi, P.J. Wan, O. Frieder: New Distributed Algorithm for Connected
Dominating Set in Wireless Ad Hoc Networks. Proc. 35th Hawaii Int. Conf. On System
Sciences, pp. 1-7, January 2002.

6. J. Wu, H. Li: A Dominating-Set-Based Routing Scheme in Ad Hoc Wireless Networks.
Telecomm. System, Special Issue on Wireless Networks, vol. 18, no. 1-3, pp13-36, 2001

7. B. Bellur, R. Ogier, F. Templin: Topology Broadcast Based on Reverse-Path Forwarding
(tbrpf). Internet Draft, draft-ietf-manet-tbrpf-01.txt, Work in Progress, March 2001.

8. D. Johnson, D. Maltz: Mobile Computing, Chapter 5 – Dynamic Source Routing, pages
153-181. Kluwer Academic Publishers, 1996.

9. V. Park, M. Corson: A Highly Adaptive Distributed Routing Algorithm for Mobile
Wireless Networks. In Proc. Of INFOCOM’97, 1997.

An Improved Distributed Algorithm for Connected Dominating Sets 351

10. C. Perkins, E. Royer: Ad-hoc On-Demand Distance Vector Routing. In Proc. Of the 2nd
IEEE workshop on Mobile Computing System and Applications, pages 90-100, February
1999.

11. S. Basagni, I. Chlamatac, V. Syrotiuk, B. Woodward: A Distance Routing Effect
Algorithm for Mobility (dream). In Proc. Of the 4th Annual ACM/IEEE Int. Conf. On
Mobile Computing and Networking (MOBICOM)’98, pages 76-84, Dallas, TX, USA,
1998.

12. J. Li, J. Jannotti, D. S. J. De Couto, D. R. Karger, R. Morris: A Scalable Location Service
for Geographic Ad Hoc Routing. In Proc. Of the 6th Annual ACM/IEEE Int. Conf. On
Mobile Computing and Networking (MOBICOM) 2000, pages 120-130, Boston, MA,
USA, 2000.

13. B. Karp, H. T. Kung: Greedy Perimeter Stateless Routing for Wireless Networks. In Proc.
Of the 6th Annual ACM/IEEE Int. Conf. On Mobile Computing and Networking
(MOBICOM) 2000, pages 243-254, Boston, MA, USA, 2000.

14. Y. B. Ko, N. H. Vaidya: Location-Aided Routing (LAR) in Mobile Ad Hoc Networks.
ACM/Baltzer Wireless Networks (WINET) journal, 6(4):307-321, 2000.

15. U. C. Kozat, G. Kondylis, B. Ryu, M. K. Marina: Virtual Dynamic Backbone for Mobile
Ad Hoc Networks. In IEEE International Conference on Communications (ICC),
(Helsinki, Finland), June 2001.

16. M. V. Marathe, H. Breu, H. B. Hunt III, S. S. Ravi, D. J. Rosenkrantz: Simple Heuristics
for Unit Disk Graphs. Networks, Vol. 25, 1995, pp. 59–68.

17. Hengming Zou: An Algorithm for Detecting Termination of Distributed Computation in
Arbitrary Network Topologies within Linear Time. International Symposium on Parallel
Architectures, Algorithms and Networks (ISPAN '96), 1996, pp. 168-172.

A New Distributed Approximation Algorithm
for Constructing Minimum Connected

Dominating Set in Wireless Ad Hoc Networks

Bo Gao1, Huiye Ma2, and Yuhang Yang1

1 Dept. of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, China
gaobo@sjtu.edu.cn

2 Dept. of Computer Science and Engineering, Chinese University of Hong Kong
hyma@cse.cuhk.edu.hk

Abstract. In this paper, we present a new distributed approximation
algorithm that constructs a minimum connected dominating set (MCDS)
for wireless ad hoc networks based on a maximal independent set (MIS).
Our algorithm, which is fully localized, has a constant approximation
ratio, and O(n) time and O(n) message complexity. In this algorithm
each node only requires the knowledge of its one-hop neighbors and
there is only one shortest path connecting two dominators that are at
most three hops away. Compared with other MCDS approximation al-
gorithms, our algorithm shows better efficiency and performance than
them.

1 Introduction

In recent years, some researchers have proposed to construct a virtual backbone
by nodes in a connected dominating set (CDS) [1, 2, 3] to improve the perfor-
mance in the ad hoc wireless networks. However, finding the minimum connected
dominating set (MCDS) is a well-known NP-hard problem in graph theory [4].
Approximation algorithms for MCDS have been proposed in the literature. Most
of these algorithms suffer from poor approximation ratio, high time complexity
and message complexity.

In this paper, we present a new distributed approximation algorithm that
constructs a minimum connected dominating set (MCDS) for wireless ad hoc
networks. Our algorithm is based on a maximal independent set (MIS) with a
constant approximation ratio, and linear time and linear message complexity.
In our algorithm, there is a unique shortest path selected to connect a pair of
dominators whose distance is within three hops. Our algorithm is fully localized.
Each node only requires the knowledge of its single-hop neighbors.

The rest of the paper is organized as follows. In Section 2, we provide prelim-
inaries necessary for describing our new algorithm. Section 3 presents our new
distributed formation algorithm. Section 4 presents the performance results of
several experiments. At last, we conclude our paper in Section 5.

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 352–356, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

A New Distributed Approximation Algorithm 353

2 Some Definitions and Notations

In this section, we give some definitions and notations that will be used in our
paper later.

Definition 1. A subset S of V is a Dominating Set (DS) if each node u in
V is either in S or is adjacent to some node v in S. Nodes from S are called
dominators, while nodes not from S are called dominatees.

Definition 2. A subset C of V is a Connected Dominating Set (CDS) if C is
a Dominating Set and C induces a connected subgraph.

In the CDS, the nodes in C can communicate with any other node in the same
set without using nodes in V −C. A Dominating Set with the minimum number
of nodes is called a Minimum Dominating Set, denoted by MDS. A Connected
Dominating Set with minimum number is denoted by MCDS.

Definition 3. A subset V ′ of vertices V in a graph G is an Independent Set
(IS) if, for any pair of vertices in V ′, there is no edge between them.

A MIS is a maximum cardinality subset V ′ of V so that there is no edge
between any two vertices in V ′.

3 Our New Distributed Approximation Algorithm for
Constructing MCDS

Our distributed algorithm to construct approximation MCDS can be briefly de-
scribed as two phases. The first phase is the construction of the MIS, where MIS
nodes are referred to as dominators. In the second phase a unique shortest path
is created between each pair of dominators within at most three hops distance
from each other. The nodes in these shortest paths are called connectors. All the
dominators and connectors form the MCDS. These two phases are described in
following subsections.

3.1 Creating a MIS

In this phase, we design our method of creating a MIS inspired by the relevant
work of Alzoubin [3]. Each node is in one of four states: candidate, dominator,
dominatee and connector. Each node is initialized as candidate state and subse-
quently enters either the dominatee state or the dominator state. The connec-
tor state can only be entered from the dominatee state. There is a local variable
nLower in each node. It stores the number of the current candidate neighbors with
lower IDs, and is initially equal to the total number of neighbors with lower IDs.

A candidate node with nLower = 0 changes its own state to dominator
(black), and then broadcasts a DOMINATOR message.

Upon receiving a DOMINATOR message, a candidate node changes its own
state to dominatee (gray), and then broadcasts a DOMINATEE message.

354 B. Gao, H. Ma, and Y. Yang

Upon receiving a DOMINATEE message, a candidate node decreases nLower
by one if the sender has a lower ID. If nLower is equal to 0 after the updating,
it changes its own state to dominator, and then broadcasts a DOMINATOR
message.

3.2 Creating a MCDS

In this phase, each dominator generates a REQUEST DOMI message to find all
other dominators within three hops. This message is broadcasted at most three
hops before it arrives at a dominator. When a dominatee receives this message, it
appends its ID into the node list included in the REQUEST DOMI message and
then broadcasts this message. In this way, when a REQUEST DOMI message
arrives at a dominator, it has already recorded the IDs of all nodes in its node list
which form the path from the dominator originating this message to the dom-
inator receiving this message. When a dominator receives a REQUEST DOMI
message for the first time from another dominator, it generates a REPLY DOMI
message including the path that this message should visit and sends this mes-
sage. This path is the reverse order of the one in the REQUEST DOMI message
that it has received before. When a dominatee whose ID is included in the path
of the REPLY DOMI message receives this REPLY DOMI message, it changes
its state to connector and sends this message to the next-hop node according to

1 2

3

4

5

(a) (b) (c)

(d) (e) (f)

Fig. 1. Example: MCDS Constructions

A New Distributed Approximation Algorithm 355

the path in this message. A possible execution scenario is shown in Fig. 1(a)-Fig.
1(f). In Fig. 1, white circles represent candidates, black circles represent domi-
natees, black boxes represent dominators and gray boxes represent connectors.

Theorem 1. Our distributed algorithm for constructing a MCDS has a constant
approximation factor of minimum CDS in G.

Proof. (omitted)

Theorem 2. Our distributed algorithm for constructing a MCDS has O(n) time
complexity and O(n) message complexity.

Proof. (omitted)

4 Performance Evaluation

We evaluate the performance of our MCDS algorithm through simulation. We
implement Wu’s MCDS algorithm [2] and Alzoubin’s MCDS algorithm [3], and
our MCDS algorithm respectively.

Random graphs are generated in a 1000 × 1000 square units of a 2-D sim-
ulation area, by randomly throwing a certain number of nodes. For each node,
its positions in the area is assumed as (x, y). The value of x coordinate is a
random number distributed uniformly between 0 and 1000, and that of y coor-
dinate distributed uniformly between 0 and 1000 too. There is a link between
two nodes only if their geometric distance is less than the wireless transmission
range. If the generated graph is disconnected, we simply discard it and regen-
erate a graph with the same parameters. In Fig. 2(a), an original topography
is shown, in which the radius is 180, and connectivity is very dense in some
parts of the graph, which increases the overhead of network control functions.
Figure. 2(b) shows the corresponding MCDS graph of Fig. 2(a) constructed by
our MCDS algorithm.

Figure. 3 shows the performance of these three algorithms in terms of the
normalized MCDS size. In Fig .3(a), the number of the nodes is fixed to 300 and
the transmission range of the nodes changes from 100 to 1000. In Fig .3(b), the

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 100 200 300 400 500 600 700 800 900 1000

(a) A unit disk graph.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 100 200 300 400 500 600 700 800 900 1000

dominator
connector

dominatee

(b) Our MCDS

Fig. 2. Connected dominating set of the unit disk graph

356 B. Gao, H. Ma, and Y. Yang

transmission of the nodes is fixed to 300 and the number of the nodes changes
from 100 to 1000. From Fig .3(b) we can see that the normalized MCDS size
of our algorithm decreases with the increasing of the number of the hosts. It
means that our algorithms is more efficient in the dense networks. However, this
does not happen in Wu’s algorithm. As shown in Fig. 3, the performance of our
algorithm is obviously better than other two algorithms.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 100 200 300 400 500 600 700 800 900 1000

T
he

 n
or

m
al

iz
ed

 C
D

S
 s

iz
e

The transmission range of the hosts

the number of hosts is 300

Our CDS algorithm
Alzoubin’s CDS algorithm

Wu’s CDS algorithm

(a) The number of the
nodes is 300

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 200 300 400 500 600 700 800 900 1000

T
he

 n
or

m
al

iz
ed

 C
D

S
 s

iz
e

The number of the hosts

The transmission range of the hosts is 300

Our CDS algorithm
Alzoubin’s CDS algorithm

Wu’s CDS algorithm

(b) The transmission
range is 300

Fig. 3. The normalized MCDS size

5 Conclusions

In this paper, we have proposed a new distributed approximation algorithm
based on a maximal independent set (MIS) for constructing a MCDS with a
constant approximation ratio in O(n) time and O(n) message complexity. The
algorithm is fully localized, and it does not rely on the spanning tree construc-
tion, which makes it practical for large network with dense topology. Both theory
analysis and simulation show that our algorithm performs better than other two
algorithms in terms of normalized MCDS size, especially, when the underlying
network is large and the topology is dense.

References

1. V. Bharghavan and B. Das, “Routing in Ad Hoc Networks Using Minimum Con-
nected Dominating Set”, in Proceedings of International Conference on Communi-
cations’97, Montreal, Canada. June 1997.

2. J. Wu and H. L. Li, “On Calculating Connected Dominating Set for Efficient Rout-
ing in Ad Hoc Wireless Network”, in Proceedings of the 3rd ACM International
Workshop on Discrete Algorithms and Methods for Mobile Computing and Commu-
nications, 1999, Pages 7-14.

3. K. Alzoubi, X.-Y. Li, Y. Wang, P.-J. Wan, and O. Frieder, “Geometirc Spanners
for Wireless Ad Hoc Network”, IEEE TRANSACTIONS ON PARALLEL AND
DISTRIBUTED SYSTEMS, VOL.14, NO.4, APRIL 2003, Pages 408-421.

4. M. R. Garey and D. S. Johnson. “Computers and Intractability. A guide to the
theory of NP-completeness”, Freeman, Oxford, UK, 1979.

 J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 357–366, 2004.
© Springer-Verlag Berlin Heidelberg 2004

An Adaptive Routing Strategy Based on Dynamic
Cache in Mobile Ad Hoc Networks*

YueQuan Chen, XiaoFeng Guo, QingKai Zeng, and Guihai Chen

State Key Laboratory for Novel Software Technology,
Department of Computer Science and Technology, Nanjing University,

210093 Nanjing, China
chen_yuequan@yahoo.com.cn

Abstract. The dynamic changes of the topology caused by the movement of
nodes makes routing become one of the key problems in the mobile Ad Hoc
Networks (MANET). So how to optimize routing becomes a hot and difficult
topic, among which optimizing routing cache is one of the key techniques. In
this paper, we propose an adaptive dynamic cache routing (DCR) strategy
based on DSR (Dynamic Source Routing), which can evaluate the link expira-
tion time rapidly. The experimental results show that the DCR has considerable
improvement in control packets, packet delivery ratio, packet drops and end-to-
end average delay in the MANET.

1 Introduction

Mobile Ad Hoc Networks (MANET) are self-organized wireless networks which are
multi-hops and without infrastructure [1]. Due to the absence of infrastructure, nodes
can move frequently, and the topology can change dynamically. Thus, research on
routing becomes a difficult and hot topic [2]. Normally, there are two main routing
strategies: proactive routing and reactive routing. Proactive routing is implemented by
exchanging routing tables, such as DSDV [3], WRP [4], etc. Reactive routing is on-
demand routing, such as DSR [5], AODV [6], TORA [7], etc. It has been shown that
reactive routing is more suitable for MANET than the proactive one [8].

In reactive routing, as the on-demand routing is based on request/reply recycle,
the routing discovery cost is large, which will decrease the performance of network.
If many nodes send requests at the same time, networks will congest easily. In the
MANET, researchers use three main methods to decrease discovery cost: 1) Optimiz-
ing cache (such as DSR, AODV, etc). Every node has a cache to store the path from
itself to destination. When it receives the route request and has a path to the specified
destination, it will reply the corresponding path to source node from its cache, and if
one link breaks, it can switch to an alternative path so that it can decrease the route

* Supported by NSF of China (No.60473053), Hi-Tech Program of china (2002AA141090),

National Grand Fundamental Research 973 Program of China (No.2002CB312002) and
TRAPOYT Award of China Ministry of Education.

Y. Chen et al. 358

request cost and error paths, and consequently reduces the end-to-end delay. 2) Local
flooding (such as LAR [9], ZRP [10], etc). The flooding broadcast locally will reduce
the discovery cost. 3) Multipath (such as SMR [11], AOMDV [12], etc]. Using multi-
ple paths to send data parallel or concurrently and alternative path will reduce the
number of requests.

Cache routing strategy, such as DSR and AODV, can reduce the discovery cost.
But there are some shortcomings, for example it hasn’t an efficient cache strategy and
efficient automatic link expiration mechanism, so there are many researches on it. Hu.
et al [13] proposed an on-demand routing protocol on cache strategy in MANET,
which limited their study on expiration mechanism to a fixed level of node mobility,
while a static optimal lifetime is not suitable for high mobility. Liang [14] proposed a
best static optimal link expiration time based on numeric method, but it is not suitable
for high mobility either. Valera et al [15] proposed a cooperative cache strategy, but it
doesn’t consider link expiration. Cao et al discussed how to improve performance of
network using cache in application layer [16], but it is unsuitable for cache in network
layer.

In this paper, we propose an adaptive dynamic cache routing strategy (DCR)
based on DSR. According to DCR, the network performance can be improved by
using the link-based cache organization, source or intermediate nodes caching effi-
cient paths, and by evaluating link life-time and setting the link timeout automatically
to reduce error packets and decrease end-to-end delay. Compared with DSR, DCR
can reduce control packets by 10%-50%, improve packet delivery ratio by 10%-20%,
decrease 20%-60% packet drops and end-to-end delay by 50%-70%.

This paper is organized as follows. Section II introduces the DSR protocol and
cache problem. Section III describes the DCR link organization, cache strategy and
the link expiration mechanism. Section IV analyzes the DCR Protocol. Performance
evaluation by simulation is presented in Section V and conclusions and future work
are given in Section VI.

2 Introduction to DSR and Cache Problem

DSR is an on-demand reactive routing protocol which is based on request/reply
method. Because DSR is a classical protocol which has better performance in reactive
routing [8], we take it as a reference protocol to propose our strategies and mecha-
nisms (DCR) which are also suitable for other reactive routing protocol.

2.1 Introduction to DSR

DSR routing protocol has two main phases: routing discovery and routing mainte-
nance.

− Routing Discovery
Firstly, the source node broadcasts flooding route request to destination. After an
intermediate node receives the request, it will check its cache to see whether it has
paths to the destination. If it has a path to the destination, it will reply the corre-

An Adaptive Routing Strategy Based on Dynamic Cache 359

sponding path to the source node; otherwise it will put its address into route re-
quest packet header, and broadcast the route request again. After the route request
reaches the destination, the destination extracts the efficient information from route
request packet and reply to source node through the route request path. Then in-
termediate node receives the route reply packet and puts the efficient routes into its
cache. Afterwards, it forwards this route reply packet to upper node. When the
route reply packet reaches the source node, the source node collects these paths
and put them into its cache for the purpose of sending data later.

− Routing maintenance
If a node detects some broken links through MAC layer, it will judge whether its
salvage bit is set or not. When the bit is not set, it will search another path leading
to the destination and forward the data packet through it. Otherwise, it will drop
this data packet and informs the upper node and source node to process the broken
link.

2.2 DSR Cache Problem

As DSR cache is based on path organization, the intermediate node or source node
will not process anything while caching the route reply packet. Meanwhile its cache
has no automatic link expiration either and will delete the error link when receiving
the error packets. So DSR cache is easy, but it has some problems as follows:

– Inefficient Cache Organization: In DSR, it will delete the whole path which in-
cludes error links when receiving the error packets even though there may be
only one link broken in this path and other links are also existed, which will re-
sult in that the path organization can’t use the link information efficiently.

– Easy Cache strategy: if intermediate nodes or source node receive route reply
packets, it will cache this path without any further process. But in MANET, the
longer the path is, the larger the broken probability of this path will be.

– No automatic link expiration mechanism: In DSR, it take the link for existence
until receiving error link information. But the links are broken and connected
dynamically in MANET. So if there is no automatic link timeout, it will increase
the end-to-end delay and the number of error packets.

Due to the above mentioned reasons, we propose a Dynamic Cache Routing strat-
egy which is based on link organization, selective cache strategy and automatic link
expiration mechanism.

3 DCR Protocol Description

DCR, based on DSR, differs from DSR mainly in three aspects from DSR: link or-
ganization, cache strategy and auto link expire mechanism.

Y. Chen et al. 360

3.1 DCR Link Organization

In DSR, its cache organization is based on path (Fig. 1). This organization is easy to
manage, and its routes can be directly selected when needed. The key problem is the
low efficiency. In this paper, we add some features, such as the link counter and time
counter, into the link organization described in [13]. The link counter indexes the
numbers of one link in its cache. If a new link is added, we will initiate its link
counter to one, and increase its link counter by one if the same link is added again
and decrease its link counter by one when link expiration time is triggered. When
receiving some link error packet or its link counter decreasing to zero, we will delete
the link from the cache. The time counter indexes the link expiration which will be
described in section 3.3. After these processes, we can use the link efficiently.

Fig. 1. Path-based Cache Organization Fig. 2. Link-based Cache Organization

For example, in the path-based organization (Fig. 1), if link B D is broken, the
cache has no path to the destination T1 which results in route rediscovery and the cost
increases. But in the link-based organization (Fig. 2), we can use BSF [17] (Bread
First Search) to compute the shortest path from the source node to destination T1 in
network topology. Thus we can achieve the path S A C D T1 and reduce the
number of route discovery, decrease control packets and improve cache link effi-
ciency greatly.

3.2 DCR Path Cache Strategy

The source node and intermediate node cache strategy have been modified as follows.
When intermediate node receives route reply packet, the path with the distance from
this node to destination node less than Δ1 will be chosen to be cached based on local
principle. In this way the probability for the error path can be decreased by avoiding
too long path. When the intermediate node receives the route request packets, it will
do the following process: if the minimum hops from the source to the intermediate
node plus the minimum hops from the intermediate node to the destination already
available are less than Δ2, then it will reply the corresponding path to source node.
When the source node receives route reply packets, if this route reply packet to desti-

S A B D T1

S A C D T2

S 2 A B1 D T11 1

C

T2

1 1

1

An Adaptive Routing Strategy Based on Dynamic Cache 361

nation is the first one, then cache it directly, otherwise we cache it if the route reply
hops are less than Δ3. The Δ11, Δ2, Δ3 is constant number.1

3.3 Adaptive Link Expiration Mechanism

For two nodes at one link, if one node leaves the covering region of the other node,
the link will be broken. Due to the nodes’ mobility, the link is broken and connected
dynamically. But DSR does not consider these problems, and will not delete the bro-
ken link until it receives the error packet. This results in increasing the error packets
and the end-to-end delay. Setting the link expiration time is very important: when the
topology changes greatly (the pause time is shorter), if the link time is set too long,
the error packets increase and the data are retransmitted, and, consequently, the delay
increases; when the topology changes little (the pause time is longer), if the link life-
time is set too little, we can’t use the link information efficiently, so we add an adap-
tive link expiration mechanism. In this paper, we propose the following method to
evaluate the link time:

– When the topology changes greatly, the link is broken and connected dynamically.
Suppose Sn = Link.expiren - Link.startn, where the Link.startn is the starting time of
link stored in the cache and the Link.expiren is the time of link whose link counter
becomes zero or that receives the error packet which contains the error link infor-
mation; LinkTimen is set to evaluate the link lifetime, Diffn is set to the difference
of Sn and LinkTimen, Vn is set to variance, TimeOutn is set to the timeout of link, α,
β, γ is constant number between 0 and 1.1

 Diffn = Sn – LinkTimen-1. (1)

 LinkTimen = α* LinkTimen-1 + (1 –α) * Sn (2)

 Vn = β* Vn-1 + (1-β) * |Diffn| (3)

 TimeOutn =
<−
≥+

0)(Diff if V LinkTime

0)(Diff if)V (LinkTime*

nn

nnγ

(4)

− When the topology changes little, that is when the pause time is larger than if we
set the link expire time to related pause time, we can use the link efficiently and
decrease the error packets.

 TimeOut = PauseTime + δ (5)

 The PauseTime is pause time of node in random WayPoint model [5], δ and δ
is a constant. 1

1 Practical number will be discussed in section 5.

Y. Chen et al. 362

4 Analysis of DCR Protocol

Lemmas 1. When the topology changes greatly, the formula (4) can converge to link
time expiration rapidly.

Proof. As the node mobility is random WayPoint model, LinkTime can be repre-
sented as an average exponent series [18], so LinkTimen can converge. We set it to L,
and calculate the expectation value of the formula, so

E(LinkTimen) = α* E(LinkTimen-1) + (1 –α) * E(Sn)

 E(LinkTimen) = E(LinkTimen-1) = L (n ∞)

 E(LinkTimen) E(Sn) (n ∞)

Using the same treatment to formula (3), we can get:

 E(Vn) | Sn – LinkTimen-1|

Lemma 2. When the topology changes a little, formula (5) can use the link
information efficiently.

Proof. When the topology changes little, the probability of link broken is little. As we
have observed (it will be discussed in section 5.2), when the topology changes little,
the link expiration time is related to pause time greatly. For we want to use the link
information efficiently and avoid sending data to the error link, we add δ to pause
time. The simulation shows a better result.

Lemma 3. The time complexity of DCR is O(N) and the space complexity is O(N), N
= |V|, V is the set of mobile nodes.

Proof. By using the link-based organization and the link counter, and applying the
link graph to store the link information, so the space complexity is O (N). And by
using the BFS to search the path from the source node to the destination node in the
cache, the time complexity becomes O (N). Compared with DSR whose space com-
plexity is O (K× N), where K is average length of path, the space complexity of DCR
is better than that of DSR. And as the time complexity of searching path in DSR is
also O (N), both of them are the same.

Thus it has been shown that DCR can converge to link lifetime and set the link
expiration time more efficiently than DSR.

5 Performance Evaluation of DCR

We use GloMoSim simulator [20] to evaluate the performance of DCR. In this simu-
lation, the wireless bandwidth is 2Mbps, the transmit distance is 250m and the MAC
layer is IEEE802.11. In 800 × 700 regions, 50 nodes can move randomly, and the

An Adaptive Routing Strategy Based on Dynamic Cache 363

model mobility is random WayPoint model. In this model, the nodes are uniformly
distributed, and when one node moves to one place, it will stay there for some time
and move again. In our simulation, we set the min speed as 5m/s, the max speed as
10m/s, pause time from 0s to 300s, and interval of simulation as 30s, simulation time
as 300s and 30CBR, and every CBR traffic as 1kb/2s.

5.1 Performance Criteria

We evaluate the performance of DSR and DCR according to the parameters in [21].
Here, two important parameters of the packet delivery ratio and end-to-end delay are
used for evaluating the performance of networks. The former one represents the ca-
pability of transmitting data, the latter represents the processing capability of packets.
The control packet cost is also an important parameter. Due to the node mobility and
network instability in MANET, we use the control packet to rediscover the route and
maintain the route in on-demand routing algorithm. So we must decrease the control
packets, including the route request packets, route reply packets and error packets. In
our simulation, we use the ratio of control packets to the total received packets to
evaluate the control packet cost, and the packet drops to index the case of packet
dropping. In section 3.2, the Δ1 is 5, Δ2 is 10, Δ3 is 10 2. In section 3.3, α is 0.625, β is
0.725 3. And as the lifetime of link complies with exponential distribution, a better
performance can be got when the value of γ is 0.825. We set δ to 10s and to 210s.

5.2 Results and Analysis of Simulation

In Fig. 3, as the pause time increases, the control packets of both DCR and DSR de-
crease. This phenomenon can be explained as follows. As the pause time increases,
the whole network topology becomes more and more stable, causing the request
packets and the control packets decrease. As a whole, the control packets, in the DCR
is less than 10%-50% than that in the DSR, especially when pause time is shorter
(pause time 60s is an abnormal case which will be discussed at the end of this sec-
tion).Because the link expiration time in DCR converges rapidly, the error packets
decrease, too. But when topology changes greatly, the route requests increasing cause
the control packets to increase. However, the control packet is still less than that of
DSR by 10%; and when the pause time increases, the topology becomes stable and
the DCR requests decrease. Therefore error packets decrease, which results in the
control packets decreasing by 30%-50% than that of DSR.

In Fig. 4, as the pause time increases, the packet delivery increase rapidly in DSR,
while DCR delivery ratio keeps at 86%-92% in all time. And because the link expira-
tion time in DCR converges rapidly, when pause time is 0s, DCR can also keep on
high delivery ration. Therefore, the route can refresh rapidly, which can keep the link
exist in packet transmitting. But in DSR, it doesn’t consider the automatic link expira-
tion, resulting in the link broken while transmitting the data and the packet delivery

2 Δ1, Δ2, Δ3 is based on experience.
3 α, β is similar of setting the parameter of RTT in TCP.

Y. Chen et al. 364

ratio decreasing. When the pause time is 60s, the packet delivery ratio decreases in
both DCR and DSR. The reason is because of the network congestion; as the pause
time increases, the delivery increase more rapidly, however, DCR increases 10%
more than DSR in packet delivery ratio. As a whole, DCR increases the packet deliv-
ery ratio by 10%-20% than DSR.

Fig. 3. Control Packets in DCR VS DSR Fig. 4. Packet Delivery in DCR VS DSR

In Fig. 5, in DSR, as the pause time increases, the packet drops decrease. But in
DCR, when the pause time is little, the packet drops keep small, because the link can
be automatically broken, the topology can be rediscovered, thus the route is renewed.
However, when the pause time is 60s, the probability of packet drops are higher
caused by the network congestion. As a whole, DCR can decrease 20%-60% packet
drops more than DSR.

In Fig. 6, DCR can keep a lower delay all the time. When the pause time is little,
due to node mobility and topology changes, the distance from source to destination is
short, so the delay is decreased. However, when the pause time is larger, the topology
changes very little, making the end-to-end distance and delay longer. But the delay
still keeps at low values. This is because that DCR can auto-break the error link
timely to avoid transmitting data through the error path, resulting in the decrease the
end-to-end delay. But DSR dose not consider this case; the packets are transmitted
through the error path, which results in the end-to-end delay increasing. As a whole,
DCR can decrease the delay by 50%-70%.

In general, when pause time is 60s, the network is congested, which increases
DSR control packets, while that of DCR changes less. In this case, link can not be
automatically broken timely. Therefore the packet delivery ratio decreases, error
packets increase and end-to-end delay also increases. In other cases, DCR uses the
efficient cache organization, auto link broken mechanism and efficient cache strategy
to achieve less control packets, higher packet delivery, less packet drops and average
end- to-end delay.

An Adaptive Routing Strategy Based on Dynamic Cache 365

Fig. 5. Drop Packets in DCR VS DSR Fig. 6. End-to-end Delay in DCR VS DSR

6 Conclusion and Future Work

Due to node mobility and topology instability in MANET, optimizing cache can im-
prove the performance of routing. In this paper, we propose an adaptive dynamic
cache strategy (DCR), which is based on link organization cache, selective cache
strategy and adaptive method to evaluate the link expiration time. Comparison of
DCR with DSR using simulations shows that DCR can decrease control packet by
10%-50%, increase packet delivery ratio by 10%-20%, decrease packet drops about
20%-60%, and decrease end-to-end delay by 50%. Currently we are not clear about
and will further study: 1) How to use cache error informing mechanism for decreas-
ing the error packets. 2) How to use the reactive renewing route to cache the efficient
path in advance for reducing the number of requests. 3) What is the quantified influ-
ence of cache on security and QoS.

References

1. Z.J. Haas et al. Wireless Ad Hoc Networks. John Wiley, 2002.
2. R. Ramanathan and J. Redi. A Brief Overview of Ad Hoc Networks: Challenges and Di-

rections. IEEE Commun. Magzine, 40(5), 2002.
3. C.E. Perkins and P. Bhagwat. Highly dynamic destination-sequenced distance-vector rout-

ing for mobile computers. In Proc. ACM SIGCOMM’94, 1994.
4. T.W. Chen and M. Gerla. Global State Routing: A New Routing Scheme for Ad-hoc

Wireless Networks. In Proc.IEEE ICC'98, IEEE Press, 1998.
5. D. Johnson, D.A. Maltz and Y.C.Hu. Dynamic source routing in Ad hoc wireless net-

works. IETF Mobile Ad Hoc Networks Working Group, Internet Draft, work in progress,
2003.

6. C.E. Perkins, E.M. Royer and S. Das. Ad-hoc on demand distance vector routing.
RFC3561, July 2003

7. V.D. Park and M.S. Corson. A highly adaptive distributed routing algorithm for mobile
wireless networks. In Proc. IEEE INFOCOM'97, IEEE Press, 1997.

Y. Chen et al. 366

8. J.Broch, D.A.Maltz, D.B.Johnson, Y.Hu, and J. Jetcheva. A performance comparison of
multi-hop wireless ad hoc network routing protocols. In Proc. ACM Mobicom’98, ACM
Press, 1998.

9. Y.B.Ko and N.H.Vaidya. Location-aided routing (LAR) in mobile ad hoc networks. Klu-
wer Academic Publishers, 6(4), 2000.

10. Z. Haas and M. Perlman. The zone routing protocol for ad hoc networks. Internet Draft,
Work in Progress, March 2000.

11. S.J. Lee and M. Gerla. Split Multipath Routing with Maximally Disjoint Paths in Ad hoc
Networks. In Proc. IEEE ICC’01, IEEE Press, 2001.

12. M. K. Marina and S. R. Das. On-demand Multipath Distance Vector Routing for Ad Hoc
Networks. In Proc. ICNP’01, IEEE Press, 2001

13. Y.-C.Hu and D.B. Johnson. Caching strategies in on-demand routing protocols for wire-
less ad hoc networks. In Proc. ACM Mobicom’00, ACM Press, 2000.

14. B. Liang and Z.J. Haas. Optimizing Route-Cache Lifetime in Ad Hoc Networks. In Proc.
IEEE Infocom’03, IEEE Press, 2003.

15. A. Valera, Winston K.G. Seah and S. Rao. Cooperative Packet Caching and Shortest
Multipath Routing in Mobile Ad hoc Networks. In Proc. IEEE Infocom’03, IEEE Press,
2003.

16. G.H. Cao, L.H. Yin and C.R. Das. Cooperative Cache-Based Data Access in Ad Hoc
Networks. IEEE Computer, 37(2), IEEE Press, 2004.

17. T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction To Algorithms
(second edition). MIT Press, 2001

18. G.E.P. Box and G.M. Jenkins. Time Series Analysis forecasting and Control. Holden Day
publisher, 1976.

19. K.S. Trivedi. Probability and Statistics with Reliability, Queuing and Computer Science
Applications. John Wiley & Sons, 2002.

20. UCLA Parallel Computing Laboratory and Wireless Adaptive Mobility Laboratory. Glo-
MoSim: A Scalable Simulation Environment for Wireless and Wired Network Systems.
http://pcl.cs.ucla.edu/projects/glomosim.html.

21. S.Corson, J.Macker. Mobile ad hoc networking (MANET):Routing protocol performance
issues and evaluation considerations. RFC2501, January 1999.

On the Job Distribution in Random Brokering
for Computational Grids

Vandy Berten1,2 and Joël Goossens2

1 Research Fellow for FNRS (Fond National de la Recherche Scientifique - Belgium)
2 Université Libre de Bruxelles, Belgium

{vandy.berten, joel.goossens}@ulb.ac.be

Abstract. This paper analyses the way jobs are distributed in a compu-
tational grid environment where the brokering is done in such a way that
each Computing Element has a probability to be chosen proportional to
its number of CPUs. We give the asymptotic behaviour for several met-
rics (queue sizes, slowdown. . .), or, in some case, an approximation of
this behaviour. We study the unsaturated case as well as the saturated
case, in several stochastic distributions.

1 Introduction

Used by several popular grid systems, we shall see that “ranked brokers” can
have unexpected behaviours and, to the best of our knowledge, these behaviours
have not been studied so far. We focus mainly this paper – which summarises a
more complete work [1] – on a particular case of ranked brokering (i.e., random
brokering). Due to space limitation, we do not give proofs of our results; those
proofs can be found in [1].

On a random broked grid, when a job arrives in the system, it is sent to a
Computing Element (CE) with a probability proportional to that CE number
of CPUs. Once a job has been dispatched towards a CE, it has to be scheduled
by this CE. In this work, we consider mainly FCFS (First Come First Serve)
scheduling rule.

1.1 Model of Computation

In the grids we consider, there is a central Resource Broker (RB), to which
each CE is connected, and a client sends its jobs to that central RB. Each job
j has mainly two parameters: a length (or execution time) j�, and a width (or
number of parallel processes) jw. The job j will therefore need jw CPUs during
j� units of time. We assume that, on one processor, we do not use parallelism
nor preemption (and consequently migration), and that our system is greedy1.
We also suppose that jobs are not spread across several CEs.

1 A system is said to be greedy (sometimes called expedient) if it never leaves any
resource idle intentionally. If a system is greedy, a resource is idle only if there is no
eligible job waiting for that resource.

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 367–371, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

368 V. Berten and J. Goossens

1.2 Mathematical Model

We will use in this paper the notations defined in [1]. Briefly, our system is
composed of N CE, called Ci(i ∈ [1 . . .N]). ci refers to the number of CPUs
of Ci, and C �

∑N
i=1 ci (the symbol � means “is by definition”). ν(t) is the

total amount of work received in [0, t] divided by the product between the total
number of CPUs (C) and the total duration (t), or in other word, the total
amount of work received divided by the total amount of work that the system
could provide. The interval [0, t] is called the observation period.

f1(t) ∼
t

f2(t) means that limt→∞
f1(t)
f2(t)

= 1.

We assume that the arrival of jobs is a random process with an average delay
λ−1 between two successive arrivals. The average execution time (E[j�]) has a
distribution with mean μ−1, and jobs are independent. λi � λ ci

C , ρi � λi

μ , ρ � λ
μ ,

and the system load ν � ρi

ci
= ρ

C .

2 Sequential Jobs

In this section, we will analyse the case where j� = 1 ∀j.

2.1 Queue Size

ν < 1. We focus here on a single (arbitrary) Ci, where the arrival is a Poisson
process with rate λi and the execution time has an Exponential distribution with
mean μ−1. Such a system is well known, and has been abundantly studied in the
literature: this is a M/M/ci queueing system. Notice that this is a quite näive
approximation; in practice, grids are not generally as predictable as a M/M/c
system.

Let Ji be the number of jobs in Ci (running and waiting jobs) and Qi be the
number of jobs in the queue. Knowing P[Ji = n] (for instance by [5–page 371,
section 8.5.2]) and the relationship between Ji and Qi, we show in [1] that

Theorem 1. If ν < 1, the average queue size of Ci is

E[Qi] ∼
t

b
νci+1cci

i

ci!(ν − 1)2
where b �

[ci−1∑
k=0

(νci)k

k!
+

(νci)ci

ci!
1

1− ν

]−1

.

ν > 1. For that case, we do not longer assume that the system is M/M/c;
we just need to know the average execution time, and the average inter-arrival
delay. We will focus on the average queue size at time t, that is, if Pn(t) is
the probability that there are n jobs in the queue at time t, we will consider∑∞

n=0 nPn(t). With some subtile manipulations, we proof in [1] that:

Theorem 2. If ν > 1, we have

E[Qi(t)] ∼
t

λit

(
ν − 1

ν

)

On the Job Distribution in Random Brokering 369

Fig. 1. Queue Size observed in simulation and theoretically expected, for non saturated
(left side, with Theorem 1) and saturated systems (right side, with Theorem 2)

Experimental Results. Figure 1 (see [1] for details) highlights that our expec-
tations (continuous lines) are really close to what we got by simulation (dots).

We observe that there is an “inversion” around ν = 1: when ν < 1, E[Qi] <
E[Qj] if ci > cj , and for ν > 1, we have the opposite.

2.2 Used CPUs

It can be intuitively easy to see that, for ν > 1, the average number of used
CPUs on Ci is ci, and that for ν < 1, νci CPU’s are used in average on Ci. A
formal proof is given in [1].

2.3 Slowdown

The slowdown for a particular job is classically defined as

waiting time + execution time
execution time

.

ν < 1. We have an approximation in the case where job lengths have a shifted
exponential distribution with a α small (see [1]).

Lemma 1. If ν < 1, with shifted exponential distribution for job length, the
average slowdown E[SDi] is asymptotically close to2

b(νci)ci

ci · ci!(1− ν)2
e

α
1−α

1− α
Γ [0,

α

1− α
] + 1.

ν > 1. In the system we are studying, we measure the slowdown of completed
jobs. We computed then the average for each measured job. But, at the end of
our observation period, especially if ν � 1, a lot of jobs are still in the queue
and are therefore not taken into account in our average.

2 Γ [0, z] =
∫ ∞

z
e−τ

τ
dτ is the incomplete Euler gamma function.

370 V. Berten and J. Goossens

Lemma 2. If ν > 1, the average slowdown for jobs leaving the system between
0 and t, in the case of constant execution time μ−1, tends asymptotically on t
towards

λt
ν − 1
2ν2C

.

Lemma 3. If ν > 1, the average slowdown for jobs leaving the system between
0 and t, in the case of shifted exponential distribution with parameter α tends
asymptotically on t towards

λte
α

1−α

Γ [0, α
1−α]

1− α

ν − 1
2ν2C

.

(Experimental results can be found in [1].)

3 Parallel Jobs

In the previous section, we imposed the constraint that jobs required only one
processor during their execution. In this section, we will be more general and
relax this constraint: a job can require several CPUs, and uses them from the
beginning up to the end of its execution.

We need here some more notations : wk is the probability for a job to need for
k CPUs, and W stands for

∑
k kwk. The system load is redefined as : ν � λW

μC .
For more details, see the full version of this paper ([1]). Notice that the case

separation ν < 1 and ν > 1 is here changes into ν < ν̃i and ν > ν̃i, where ν̃i is
the point of saturation.

Lemma 4. If ν > ν̃i, the average queue size of Ci is close to tλi
ν−ν̃i

ν .

Lemma 5. Whatever the job width distribution, if the job length is fixed, the
average number of used CPUs on a CE having c CPUs is

c∑
k=1

kPk

Where Pk are solutions of the system⎧⎨
⎩Pk =

∑c
j=c−k+1

[
Pj

∑k
�=c−j+1 w�β(k−�)

γ(c−j+1) γ(c− k + 1)
]

∑c
i=1 Pk = 1

with β(k) =
∑k

i=1 wiβ(k − i) and γ(k) =
∑c

i=k wi.

Lemma 6. In the case of equidistributed job width distribution between 1 and c
(the CE size), if the job length is fixed, the average number of used CPUs is

3c(c + 1)
2(1 + 2c)

.

On the Job Distribution in Random Brokering 371

Lemma 7. In case of equidistributed job width distribution between 1 and ci

(the CE size), if the job length is fixed, the point of saturation ν̃i is
3(ci + 1)
2(1 + 2ci)

.

Lemma 8. If ν > ν̃i, the average slowdown for jobs leaving the system between
0 and t (MSDi(t)), in the case of constant execution time μ−1, tends (approx-
imately) asymptotically on t towards

λt
ν − 1

2(ν − 1 + ν̃i)νC
W.

4 Conclusion and Future Work

Our work was a first step towards a more complex analysis of general ranked
based brokering. As we shown by plotting together our simulation observa-
tions and our theoretical predictions or approximations, we acquired really good
knowledge of the job brokering characteristics and behaviour in the specific case
we observed.

A second step in our work would be to have a look at some more com-
plex cases; brokering based on the number of free CPUs, the queue size, or an
estimation of the waiting time, for other job length and inter-arrival distribu-
tions. . . These new constraints will make more than probably our analysis more
difficult, for instance because we introduce a feedback from Computing Elements
to the Resource Broker. We believe that we now have built the tools we needed
for this futher study.

Acknowledgements

The authors would like to thank Prof G. Louchard and R. Devillers (from
ULB - Computer Science dpt) for their significant contributions.

References

1. Berten, V., and Goossens, J. On the job distribution in random brokering for
computational grids. Tech. Rep. 518, Université Libre de Bruxelles, May 2004.
http://homepages.ulb.ac.be/̃ vberten/Papers/RandomBrokering-Full.ps.

2. Buyya, R. High Performance Cluster Computing, vol. 1, Architectures and Systems.
Prentice Hall PTR, 1999.

3. Ernemann, C., Hamscher, V., Schwiegelshohn, U., Streit, A., and
R.Yahyapour. On Advantages of Grid Computing for Parallel Job Scheduling.
In Proceedings of the 2nd IEEE International Symposium on Cluster Computing
and the Grid (CC-GRID 2002) (May 2002).

4. J. Krallmann, U. S., and Yahyapour, R. On the design and evaluation of job
scheduling algorithms. Job Scheduling Strategies for Parallel Processing (1999), 17-
42.

5. Nelson, R. Probability, Stochastic Processes, and Queueing Theory. Springer-
Verlag, 1995.

 J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 372–381, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Dividing Grid Service Discovery into
2-Stage Matchmaking

Ye Zhu, Junzhou Luo, and Teng Ma

Department of Computer Science and Engineering, Southeast University,
210096 Nanjing, P.R. China

{tonyzhuye, jluo, mateng}@seu.edu.cn

Abstract. In the wide-area Grid environment which consists of a huge amount
of stateful Grid services, the service discovery is a key and challenging issue.
The user’s requirements on Grid services not only include the function-related
but also include the QoS or service state related requirements. Based on the
analysis for the requirements of service discovery, this paper divides the service
matching process into 2 stages: service type matching and instance matching,
and proposes a Grid Service Discovery Model Based on 2-Stage Matching
which can enable more effective service discovery. In the model VO is utilized
as the managerial unit for grid services and a two-level publication architecture
is adopted. The initial simulation results show that the model can effectively
aggregate the service information and avoid the workload caused by frequent
dynamic updating.

1 Introduction

Since the Open Grid Services Architecture (OGSA [1]) has adopted service-oriented
technologies from Web Services to solve similar problems in Grid environment, the
stateful Grid services and a multi-level service integration architecture is introduced.
In the wide-area Grid environment which consists of a huge amount of stateful Grid
services the service discovery is a key and challenging issue. The matching
mechanism introduced from Web Services can be regarded as capability matching,
namely focusing on whether the function offered by the service can fulfill the user's
requirement. Here it emphasizes more on the satisfying of the operation logic. While
in Grid services, the binding of service and resource makes the functionality no longer
the only demand. Grid user will care more about the performance that service can
guarantee, which can be represented by QoS parameters or service-specific state
information. So the discovery process for Grid services is not merely to find that type
of service which has the needed operation logic, but to find those service instances
satisfying the performance requirement.

Most of the existing service discovery models didn’t raise the QoS demand to the
height of a query requirement, so the practical matching process is mostly the
matchmaking for static service type information. Here the ‘service type’ emphasizes
that’s a type which is developed according to definite operation logic and has specific
interface and behavior, while the service instance is an individual which is
dynamically created and has the only GSH in OGSA. Compared with the relatively

Dividing Grid Service Discovery into 2-Stage Matchmaking 373

static service function and interface description, the QoS and state information are
dynamically changed and should be updated in time. If we treat them in an equal way,
the layer-by-layer aggregation of the large amount of dynamic information may bring
quite heavy updating workload. But the real-time update for QoS and state
information is absolutely necessary for improving the success rate of service instance
discovery. So we propose that the static and dynamic information should be separated
and adopt different policies for publication and maintenance, thus dividing the service
matching process into 2 stages: service type matching and instance matching. On the
basis a 2-Stage Matching Based Grid Service Discovery Model is proposed in this
paper. It uses VO [2] as the managerial unit and adopts the two-level publication
architecture inside VO and a Forward List based mechanism among VOs.

The rest of the paper is organized as follows. The related work is discussed in
Section 2. In the next Section we introduce the 2-stage service matching process. The
model architecture and key mechanisms will be presented in Section 4. Next we use
the initial simulation results to show the performance of the model. Finally we
conclude this paper.

2 Related Work

The performance of Grid services is usually represented by QoS parameters. The
QoS-based service discovery provides a good support to resource advance reservation
so as to guarantee the user’s requirement on performance. In [3] the researchers
classify and describe the Grid QoS properties and extend the UDDI [4] to support the
QoS property based service search. However in practical Gird environments, the
dynamic characteristics of the resource itself and the frequent QoS update caused by
allocation can not be neglected, and there will necessarily exist large numbers of
dynamic transient services, so UDDI architecture may be not suitable here or need
quite more improvement. Furthermore the user’s requirement may also contain some
service-specific service data so the centralized aggregation for such information is
unreasonable.

In OGSA each Grid service expresses its state in a standardized way as Service
Data Elements (SDEs). The MDS (Monitoring and Discovery Service) [5] of Globus
Project implements the OGSI-based grid information service system. MDS uses VO as
the basic unit for management of Grid services and Registry for soft-state registration.
It adopts decentralized maintenance mechanism and can be extended to form various
types of discovery and management architectures. But MDS is more used to query the
service data but not well support the service type discovery based on the service
interface and activity. And MDS does not involve how to improve and optimize the
service discovery through effective VO-layer organization and cooperation.

The paper [6] proposes a Grid Service Location Mechanism Based on VO and the
Small-World Theory, which utilizes the similarity of the service types and properties
inside the VO, and determines whether the request could be accepted by this VO
through the dissemination of its service type distribution information. The mechanism
is feasible but exist some problems. The neighbor relationship among VOs utilized in
message dissemination is unascertainable for the numerous possibly overlapped VOs.
And various types of Grid services can not be definitely represented only by type ID.
Furthermore the distributed message dissemination mechanism is also unsuitable for
dynamically updated service QoS.

Y. Zhu, J. Luo, and T. Ma 374

3 Service Type Matching and Instance Matching

Based on the analysis for the main elements involved in service discovery, Grid
service information can be denoted as a 4-tuple S(P, I, S, E), where P is the static
service property information mainly expressing the function and activity which are
determined by service type; I is the interface description which usually refers to the
portTypes description part in WSDL document; S is the instance-related status
information mainly including QoS performance, service-specific SDE, etc; and E is
the endpoint information such as GSH and GSR. Also, the user’s request can be
regarded as a partial description document for the service. Similarly it can be denoted
as a triple R(P’, I’, S’), where these elements respectively express the corresponding
aspects of the requirement to the service.

Service type matching is to discover the qualified service type that accords with the
required function and interface from the numerous potential service types. Its basic
input is R(P’, I’) and S(P, I, E), namely comparing the function and interface
requirement contained in user’s request to the service properties and portTypes
interface description. The matching logic adopts the exact field-value matching and
semantic similarity matching. The output is the qualified service types which could be
more than one if the compatible similar service is allowed to be invoked. In practical
applications the output may be the endpoint addresses of the numerous service
instances corresponding to that service type, which can be used as the input for the
next stage matching. It should be noticed that the service property information may be
published to the Registry by the service instance, but in type matching stage it mainly
involves the development-time, rather than run-time service description. The property
information related to service type may be diversified or field-specific; here we just
discuss some main properties:

 Service Name: A specific type of service will be assigned a name according to its
main function or objective by the service developer. It should be standardized
based on industry-specific naming criterion. But some services that have the same
name may adopt various implementation logics.

 Type ID: It’s a key element in the model which uniquely identifies the service
type. It must be specified using unified mechanism, at least in a VO and similar
types should have close values for their Type ID.

 Semantic Description: It mainly focuses on the activity of the service. Much
related research has been done in the field of Semantic Web [7] and the similarity
matching by ontology [8] can be adopted to enable flexible matches.

 Categories: The service type can be classified and construct a layered catalog.
 Compatibility: It can be used to describe the substitution relationship between

services of the same level. If compatibility has been identified, the similar-type
services provided by different developers can be replaceable under specific criteria
and ensured to achieve the required functions.

 Static Capability: It refers to the intrinsic service capability fixed in developing
stages such as the security level, lowest computing ability, etc.

Besides the above basic properties, the portTypes interface description, as a
segment of WSDL document [9], is also an important factor for type matching.
Though WSDL document may contain instance related information in <Bindings>
element, a large part of the document can be used as the basis for service interface
comparison.

Dividing Grid Service Discovery into 2-Stage Matchmaking 375

Service instance matching is to find a more refined instance subset which satisfies
the QoS or service data requirement from the candidate instance set. Its basic input is
R(S’) and S(S, E). One side is the QoS or specific SDE requirement contained in user’s
request and the other side is the QoS state and SDE values of the service instances
aggregated in the Registry. The matching logic involves the field-value matching and
constraint matching. The output will be the GSH of the qualified Grid service
instances. However the practical course is not merely matchmaking. Grid services
comprise transient services and persistent services which have to be treated differently
in instance matching stage. The transient service refers to the service whose instance is
created only when it is invoked and lives for a task duration while the persistent service
means that its instance has been created beforehand and may exist for quite a long time
to serve many requests. For transient service the QoS requirement should be submitted
to Factory interface, the latter will query the current state of its controllable resource to
determine whether the potential instance to be created can satisfy the requirement. If
satisfiable then the Factory Handle will be returned. For persistent service it may
directly query the Registry for the QoS state and SDE information. If the request
contains multi-QoS constraint it will also have to consider more factors such as the
priority of diverse parameters, synthesized selecting policy, etc.

In the multi-level service integration architecture the low-level service can be
dynamically organized and agglomerated to compose high-level service which has
more powerful function and ability to control resource, for example a Scheduler
Service may be regarded as a high-level service for on-demand resource allocation.
For such kind of service which can extend its ability on demand, they should
provide information about their QoS capability area in SDE. And the matching
course is just to find the potential service instances whose capability covers the
required QoS constraint. After that the user proxy will negotiate with the service
according to its policy and establish the Service Level Agreements to ensure the
QoS performance.

4 Grid Service Discovery Based on 2-Stage Matching

Based on the analysis and improvement on the existing discovery architectures [10],
we realize the 2-Stage Matching Based Grid Service Discovery Model. It takes VO as
the managerial unit for Grid services, adopts a two-level publication architecture
which consists of one VOSR and many LSRs inside VO, and a request transfer
mechanism by VO Forward List among VOs (as shown in Figure 1).

 LSR (Local Service Registry): It serves as a Registry for soft-state registration
and information maintenance of local Grid services, and publishes the service
description document to VOSR after local publication. Here the “local” refers to a
logic concept. LSR can be a Container Registry Service deployed specially for the
services on the same machine or site, or it can also be a common Registry for a group
of distributed but directly administered services.

 VOSR (VO Service Registry): It’s the centralized registry for all Grid services
inside the VO. It records and maintains the type information of usable services
published by LSR and the endpoint addresses of those LSR to which service instance
registers. It will aggregate the distributed instances and establish the index by service
type. The service type matchmaking is implemented on VOSR and its result is an

Y. Zhu, J. Luo, and T. Ma 376

address list of the LSRs that have required service instances or Factory Handles. After
further filter of the result using certain policy, the request will be forwarded to these
LSRs for instance matching.

Fig. 1. The architecture of 2-Stage Matching Based Grid Service Discovery Model

On the VO layer of this model, the VOSR nodes from each VO compose a P2P
network, which adopts a flexible request forward mode. It’s mainly disseminated by
the VO Forward List established in advance, and can also be forwarded by the history
discovery record or by querying the Industry VO Directory similar to the yellow page
service.

4.1 Service Publication and Update

LSR should register to the VOSR it wants to join when start-up. Then VOSR assigns
it a unique ID and saves its endpoint address. The service shall register to LSR first
when created. For persistent service its instance is usually created when the container
startup or a long-term service subscription is accepted. LSR will record its GSH and
also the GSR in HandleMap service. Meanwhile the corresponding type-related
service description and SDE information will be stored in LSR. The creation for
transient service should adopt the Factory Pattern, namely registering an activated
Factory Handle (FH) in LSR according to the resource state, and creating its instance
when necessary. Its corresponding type description and the WSDL document not
containing instance-related status information will be stored to LSR. LSR needs to
update them periodically or when changes reach to some extent. For dynamic QoS
state or more universal SDE the update period should be relatively short.

After the local registration LSR also has to register the service to VOSR. VOSR
indexes by service Type ID to aggregate the service information, as shown in Figure 2.
LSR submits the corresponding service type information and WSDL document of the
newly registered instance or FH to VOSR. Then VOSR queries its maintained Service
Type Table. If there is no information of this type of service, it will create a new type
item and store the correlative description information. If the type has been recorded
before then it can locate to the LSR List pointing to those which provide this type of
service currently. Similarly it may add a new LSR item or plus 1 to the <instance
numbers> of the corresponding existed item and store the service data information.
The service data stored in VOSR needn’t to be updated in time namely they are
inaccurate and just for refining the type matching result so as to reduce the query
range. The information in VOSR is updated with a quite long period or when an

Dividing Grid Service Discovery into 2-Stage Matchmaking 377

instance or factory register or revoke in LSR. The revoking course is similar to the
register. When the <instance numbers> of a item in LSR List become zero it will be
deleted, but the item in Service Type Table will generally not be deleted.

VOSR Index Structure
Service Type Table

Type ID Service Properties
Service Properties Type ID

WSDL interface description

LSR List
LSR Handle1 Instance numbers
LSR Handle2 Instance numbers
LSR Handle3 Instance numbers

SDE
information

VO_B Handle
VO_C Handle
VO_E Handle

VO Forward List

Service Type1
Service Type2
Service Type3

History Service List

Fig. 2. VOSR Index Structure and VO Forward List

On VO Layer the service information is not aggregated. But VO needs to know
the potential VO partners which it can forward the request to. Using the pre-created
VO Forward List is a simple but effective dissemination approach (Figure 2). Here
the VO Handle needs to register in VO Administrative Institution and get a unified
ID. The creation of the Forward List has multiple modes. The VO which has related
application purpose or cooperation relations should be first added to VO Forward
List. The famous large-scale VO can also be added manually or by querying the
Industry VO Directory similar to the Yellow Page Service. Furthermore, VO Forward
List should also include a default item pointing to a VO which faces the general field.

4.2 Service Discovery

The service discovery course starts with the service request sent by the user proxy
program. The request containing QoS requirement is encapsulated in SOAP message
and sent to a specified VOSR. Usually it's first submitted to the VO that the user
belongs to but that's not imperative:

1. When receiving service request VOSR will first authenticate the requestor and
query the VO Policy Center for authorization, only authorized request can be
accepted.
2. VOSR resolves the service request, searches the local maintained Service Type
Table according to the service type requirement contained in request and compares
them with the service properties and WSDL interface descriptions. If matched service
type is found, continue with the next step; otherwise go to (5).
3. It locates to a LSR List according to Type ID of the matched item. Here further
selection and refinement can be made according to certain policy to reduce the result
range. It may query the service data stored on VOSR which includes QoS information
as the reference basis for selection. By now we may get a LSR set and obtain their
endpoint addresses by LSR handle. VOSR will add the Service Type ID into the
SOAP Header of the request and forward it to these addresses.

Y. Zhu, J. Luo, and T. Ma 378

4. After receiving the request, LSR will first find the corresponding service instances
or Factory Handles by the Type ID and resolve the QoS or specific service data
requirement from the request. If there is no requirement all instances of this type will
be returned. Otherwise it will query the service data or submit the demand to Factory
interface as described in instance matching section. Finally qualified GSH or FH are
found and returned to the user proxy.
5. If not finding required service in local VO, VOSR will forward the request to other
VOs according to VO Forward List and inform the user the request has been
transferred. The forward can be carried out by stages, for example it may first
forwarded to the VOs that have cooperation relations, which is reasonable and
feasible for the project carried out cooperatively by several VOs. To accelerate the
discovery course a sub-list can be used to record the most often requested outside
services in a certain VO. Another VOSR will continue the above process when
receiving the forwarded request. If still no matched service the request will be
disseminated again through that VO List until the limited steps or time-out
mechanism take effect.

4.3 Service Invoking

The user proxy receives the qualified service handles returned by LSR. The result
may be quite a few service instances so the proxy has to filtrate according to certain
policies such as cost, history records, or VO policy to finally get a smaller service
set. For persistent service the proxy will utilize the endpoint address of LSR in
return message to locate the HandleMap service and obtain the GSR which contains
binding information. For transient service it can use FH to directly visit the Factory
interface which may create the required service instance and return the GSR. If
there is QoS requirement the proxy can adopt SLA to negotiate with the service and
finally establish a BSLA specification to guarantee the performance in service
invoking.

4.4 Discovery of the Large Numbers of Low-Level Services

For the VO that has common application purpose especially in scientific computing
field, a possible scenario is that large numbers of low-level services of some main
types are deployed on most of the nodes inside the VO, usually for fulfilling some
divisible independent tasks. Such a large amount of low-level services bring a quite
heavy workload to the service discovery and information maintenance. Also returning
numerous low-level service handles makes it difficult for user to choose. A possible
solution is to select a LSR to create a virtual composite service item which represents
all the instances or factories of a certain type. In this way VOSR can only keep one
item for this type of service. But certainly the capability of the composite service
should be represented in a proper way in service properties by the maintainer. The
user proxy may find this service through VOSR and send the invoking request to that
LSR. If LSR accepts, it will disseminate the request in VO and many service
instances distributed in different places actually perform the task and return the result.
This solution is transparent to the users and feasible for the VO which widely deploys
the basic services.

Dividing Grid Service Discovery into 2-Stage Matchmaking 379

5 Simulation Results

The simulated wide-area environment (Figure 3) consists of 6 VOs and the LSR
number in each VO is randomly distributed in [5, 10]. We assume there are 100
different types of services and each VO has its representative 20 service types (They
may overlap). For each service, the number of the providers (persistent service or
activated Factory) produced in one minute is randomly distributed in [1, 10]. It will be
registered to a randomly selected LSR and its lifetime is randomly distributed in [5,
10] minutes. The popularity of each service, measured in number of requests per
minute, is also randomly distributed in [5, 50] requests per minute. 50% of the
requests come from the local VO and the others are randomly selected from the other
VOs. The QoS capability of the service instance is dynamically changed and 50% of
the grid resources are assumed to have higher QoS performance than the average QoS
requirement.

Fig. 3. Simulated Wide-Area Grid Environment

We make an initial simulation for 2000 minutes under the above scenario to
evaluate the model performance from three aspects: success rate of the discovery,
query responsiveness and information updating workload.

Success Rate of the Discovery: A successful service discovery includes two aspects:
the potential qualified services can be discovered and the returned services can be
successfully invoked and satisfy the QoS or SDE requirement. In our simulation all
service information is reachable, so here we mainly focus on the latter’s performance.
For simplicity, we assume that the result only has two QoS levels – ‘1’ and ‘0’. The
service invoking results in QoS level ‘1’, if and only if all its requirements are
satisfied; otherwise it results in ‘0’. As a comparison, we also simulate under the basic
discovery model: using the layered architecture but not aggregating QoS information,
and randomly selecting the service instance. Table 1 shows the average QoS levels of
the request results from every VO. The results show a significant improvement under
the 2-stage matching based model, which is a necessary result for QoS-aware instance
matching.

Y. Zhu, J. Luo, and T. Ma 380

Table 1. Average QoS Level Comparison

Simulated Model/VO A B C D E F

Basic 0.74 0.73 0.76 0.75 0.73 0.72

2-Phase Matching Based 0.95 0.96 0.97 0.96 0.97 0.97

Query Responsiveness: It lies on the time consumed in matchmaking and the
distances for request forwarding. In the wide-area environment it’s mainly
influenced by the second factor. Here we use the hops involved in a query request
as the estimate parameter. The model for comparison is the totally layered model:
AB, DE, CF respectively compose the upper-layer domains and further form the
root domain. The results in Table 2 show that our model has better query
responsiveness.

Table 2. Average Hop Involved in a Query Request

Simulated Model/VO A B C D E F
Basic Layered Model 4.3 3.8 4.4 4.1 4.6 4.5

2-Phase Matching Based 2.7 2.4 3.2 2.8 3.1 3.3

Information Updating Workload: It directly depends on the amount of the
aggregated service information and the updating frequency. In our simulation the
updating period for QoS is 2 minutes. One time of information update for a service
type or instance is regarded as one unit of load. We use the average updating
workload per-minute in LSR/VOSR as the estimate parameter and obtain the results
in Table 3. As a comparison, we also simulate the scenario with no matching stage
division, in which all service information is updated to VOSR (row 3). From the
results we can see the division of the type and instance matching can effectively
reduce the updating workload.

Table 3. Average Updating Workload Per-Minute in LSR/VOSR

Simulated Registry/VO A B C D E F

LSR 53 76 88 59 66 105
VOSR 246 242 243 242 244 233

VOSR(aggregating QoS) 610 605 605 610 612 607

Although it is still simple and initial, the simulation does show the effectiveness of
our proposed improvement based on 2-stage matching. As a QoS-aware wide-area
service discovery model, it can effectively aggregate the service information and
avoid the workload brought by dynamic updating.

Dividing Grid Service Discovery into 2-Stage Matchmaking 381

6 Conclusions and Future Work

Aiming at the QoS and service state requirement in Grid service discovery, the model
proposed in this paper separates the relatively static and dynamic service description
information and divides the service matching process into 2 stages: service type
matching and instance matching. It’s a compromise between the efficient service
information aggregation and the workload brought by dynamic updating. The paper
also discusses the differential treatment between transient service and persistent
service.

Our future work is to realize a prototype system to test the feasibility of the model
under the practical environment. Further analysis and improvement will be made to
some details of the 2-stage service matching. Also some potential further extension on
the description contents may become our next research target which may enable
powerful discovery for more additive and practical functions.

Acknowledgement

This work is supported by National Natural Science Foundation of China under the
Special Program "Network based Science Activity Environment" (90412014).

References

1. I. Foster, C. Kesselman, J. Nick and S. Tuecke: The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems Integration. Globus Project, 2002.

2. I. Foster, C. Kesselman and S. Tuecke: The Anatomy of the Grid: Enabling Scalable
Virtual Organizations. International J. Supercomputer Applications, 15(3), 2001

3. R. Al-Ali, O. Rana, D. Walker, S. Jha, and S. Sohail: G-QoSM: Grid Service Discovery
Using QoS Properties. Computing and Informatics Journal, Special Issue on Grid
Computing, 21(4):363–382, 2002.

4. Universal description, discovery and integration of business of the Web. http://www.
uddi.org

5. K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman: Grid information services for
distributed resource sharing. In Proc. 10th IEEE International Symposium on
High-Performance Distributed Computing (HPDC-10), pages 181–194, 7-9 August 2001.

6. Erfan Shang, Zhihui Du: Efficient Grid Service Location Mechanism Based on Virtual
Organization and the Small-World Theory. Journal of Computer Research and
Development, Vol.40, No.12, Dec. 2003 (Chinese)

7. Boris Motik, Andreas Abecker, “Report on Development of Web Service Discovery
Framework”.

8. Simone A. Ludwig, Peter van Santen, “A Grid Service Discovery Matchmaker based on
Ontology Description”.

9. Web Services Description Language (WSDL). http://www.w3.org/TR/wsdl
10. Feilong Tang, Minglu Li, Jian Cao, Qianni Deng: GSPD: A Middleware That Supports

Publication and Discovery of Grid Services. In Proc. 2nd International Workshop on Grid
and Cooperative Computing (GCC2003), pages 530-537, Dec. 2003

 J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 382–386, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Performance Evaluation of a Grid Computing
Architecture Using Realtime Network Monitoring1

Young-Sik Jeong* and Cheng-Zhong Xu

* Department of Computer Engineering, Wonkwang University,
 344-2 Shinyong-Dong, Iksan, Jeonbuk 570-749, Korea

ysjeong@wonkwang.ac.kr
Department of Electrical and Computer Engineering, Wayne State University,

 Detroit, Michigan 48202, USA
czxu@ece.eng.wayne.edu

Abstract. This paper integrates the concepts of realtime network monitoring
and visualizations into a grid computing architecture on the Internet. We de-
velop a Realtime Network Monitor(RNM) that performs realtime network
monitoring in order to improve the performance of the grid computing frame-
work. Through network monitoring, it is also found out that the network traffic
has effects on the performance of processing for large scale applications.

1 Introduction

Recently, rapid improvements in the performance of internet service and pervasive
deployment of commodity resources provide us grid computing infrastructures with
tremendous potential[6],[7]. This potential is being widely tapped, and many grid
middleware projects such as Globus, Condor, and NetSolve have been pursued to
provide efficiently access to remote resources[4],[5],[6]. Unfortunately, there are a
paucity of tools that assist a user in predicting if their application will obtain suitable
performance on a particular platform. AppLes[4],[5] has been to investigated adap-
tive scheduling for grid application and to apply these research results to distributed
applications. MicroGrid[6] is described a tool to develop and implement simulation
tools that support a vehicle for the convenient scientific study of grid topologies and
application performance issues.

These researches did not take into account the realtime network monitoring of
sub-networks including hosts. This differentiation reduces the entire network’s opera-
tion time. In height of this, this paper suggests task allocation algorithms which are
based on network monitoring. This paper should use to grid computing infrastructure
called Parallel Distributed Processing(PDP)[1] which is a parallel computing frame-
work implemented with Java over the Internet. In this model, there are three kinds of
participating entities; Manager, Host, Requester. The Requester is a process seeking
computing resources, The Host is a process offering computing resources, The Man-

1 This Research was supported by University IT Research Center Project.

Performance Evaluation of a Grid Computing Architecture 383

ager is a process that coordinates the supply and demand for computing resources.
PDP fragments the large scale application into small units, or tasks. Tasks are then
processed in parallel through the key algorithms. PDP’s task allocation algorithm is
classified into static task allocation and dynamic task allocation, depending on
whether the participating hosts are dynamically managed or not. During the static
phase, the addition of new hosts and the secession of hosts do not occur. In this phase,
PDP has three cockpit algorithms: the Uniform Task Allocation (UTA), the CPU
Performance Task Allocation (CPTA), and the Static Adaptive Task Allocation
(S_ATA). In the dynamic phase, the number of participating hosts may be changed
during the execution time and PDP has one Dynamic Adaptive Task Allocation
(D_ATA) algorithm based on S_ATA.

UTA is a very simple algorithm. It is executed by equally distributing a certain
amount of tasks to each host regardless of the CPU capacity of the participating hosts.
Each host then executes the tasks and their results are directly called back to the re-
quester, using the RMI reference value. CPTA is more common than UTA because
the connected hosts on this slide are distinguished by their different CPU capacities.
The CPTA algorithm is executed by allocating the tasks to each host based on its
CPU capacity. For evaluation of the CPU capacity, the LINPACK[2] benchmark
algorithm is used. It is impossible to predict the CPU usage of each host during the
execution time because the locations of hosts are geographically too far from one
another. The prediction of CPU usage is further compounded by the fact that each
host can be also accessed by many users, and the number of internal process of each
host constantly changes. These problems are resolved by the static adaptive task allo-
cation (S_ATA). Due to the autonomous character of the Internet, system faults can
result in the secession of host connection to the manager. Specifically, network failure
or internal defects of each host may unexpectedly disable the sharing of resources. In
order to support that, we use to the dynamic adaptive task allocation (D_ATA).

The goal of this paper is to develop and implement the realtime network monitor-
ing(RNM) system that is able to monitor network traffic sub-networks including hosts,
is providing resources to the internet oriented grid computing architecture by task
allocation depending on the network bandwidth. And also this paper provides the task
allocation algorithms which are based on realtime network monitoring.

2 Realtime Network Monitoring

2.1 Monitoring Factors and Architecture

Network management, which is using SNMP methodology[3], is consisted with man-
agement agent, SNMP agent, Management Information Base(MIB) and Network
Management Protocol(NMP). Total amount of network traffic and available band-
width can be checked by simple handling. Therefore, network monitoring shall be
used for data extraction method in this paper. Various network monitoring factors
can be analyzed to examine network performance. In this paper, the RNM, which is
going to be developed, shall be allocating tasks by knowing the capable work loading

Y.-S. Jeong and C.-Z. Xu 384

amount. Therefore, Utilization and Bandwidth shall be used for network valuation
factors in network performance monitoring factors. RNM was developed by Java
based toolkit and the architecture of its should be consisted as described in Fig. 1.

Controller

DataStorage

Bandwidth_Extractor

Extractor

Utilization_ExtractorComInterface

SNMP

RNMRNM
Visualization

TotalHostView HostView

Visualization

ReadHostData

C
reate(H

ostInfo)

Create(HostInfo,OID)

Create, Start
R

N
M

C
ontroller

C
reate

Controller

DataStorage

Bandwidth_Extractor

Extractor

Utilization_ExtractorComInterface

SNMP

RNMRNM
Visualization

TotalHostView HostView

Visualization

ReadHostData

C
reate(H

ostInfo)

Create(HostInfo,OID)

Create, Start
R

N
M

C
ontroller

C
reate

Controller

DataStorage

Bandwidth_Extractor

Extractor

Utilization_ExtractorComInterface

SNMP

RNMRNM
Visualization

TotalHostView HostView

Visualization

ReadHostData

C
reate(H

ostInfo)

Create(HostInfo,OID)

Create, Start
R

N
M

C
ontroller

C
reate

Fig. 1. Architecture of Realtime Network Monitoring System

It should be constituted with Visualization, Controller, Extractor and SNMP pack-
age. Visualization package includes TotalHostView and HostView to provide two
viewing options as management interface part. Visualization class offers view to
compare network usage ratio of whole host, which is able to monitor. RNMController,
which is controlling RNM entire movement, is creating user interface Visualization,
ReadHostData and DataStorage class. Additionally, it is creating Bandwidth Extractor
and Utilization Extractor class from Extractor package by getting information from
PDP. ComInterface class is connected with SNMP. Those are cooperated to extract
monitoring information by generating SNMP message.

2.2 Algorithms Based on Realtime Network Monitoring

The network performance of each participating host in sub-network is different to
each other. In this research, we propose the two task allocation algorithms based on
realtime network monitoring; Network Performance to Task Allocation(NPTA) algo-
rithm and Network performance Adaptive Task Allocation(NATA) algorithm. NPTA
is executed by dividing the tasks based on the each host’s the network performance
and is assigned by allocating the appropriate tasks to each host. NATA could cope
with the network traffic changing during actual execution time for application. Let’s
assume during the execution application at time ti, Fig. 2 be shown that. It is based on
NPTA, after pass time tj, the available network bandwidth at Host4 is changed to the
wide network bandwidth at time ti + tj, such like the sky color. This situation is re-
solved by the NATA algorithm.

Performance Evaluation of a Grid Computing Architecture 385

Manager

Computing

Adaptive
Reallocation Tasks

Manager

Computing

Adaptive
Reallocation Tasks

Fig. 2. Network performance Adaptive Task Allocation Algorithm

3 Performance Evaluation

Simulation environment is designed to carry out the performance evaluation without
the affection by network environmental factors. For the purpose of only network
performance testing, all the host’s operating system has been standardized as Pentium
4.1.3GHz, 256 memory chip, same hardware and OS as Windows 2000 professional.
Sub-network is consisted of Host and Traffic loader connected with switch for the
testing. These 8 sub-networks are connected with main switch, which is including
SNMP demon. Port between sub-network’s switch and main switch is 10Mbps and
sort of dual line structure. Traffic server, which is receiving package to generate traf-
fic of manager, applier and traffic loader, is connected as 100Mbps and whole dual
line communicating structure. This dual line communicating structure can prevent
threshold congesting situation. Traffic loader is functioning as generating traffic
charged around 20~90% in the node between sub-network switch and main switch. In
this paper, we used the drawing of 3D Image as application in this experimental envi-
ronment and ignored the overhead for network monitoring, which has a little network
bandwidth.

NPTA and NATA based on PDP performance testing has been carried out in five
ways, 20~90% of traffic can be generated by traffic loader and used to four hosts. In
network environment, all the traffic is changeable. This changeable network envi-
ronment can be effectively adjusted by using adaptive task allocation in network
environment.

Fig. 3. Performance Evaluation of NPTA and NATA

Y.-S. Jeong and C.-Z. Xu 386

Fig. 3 is bar graph which describes comparison of the total execution time for task
processing by carrying out UTA, NPTA and NATA in the same environmental situa-
tion. Case 1 is the results of no changes of network usage ratio. This shows that
NPTA and NATA results reduced task processing time compared with UTA algo-
rithm. However, since the task load has been balanced in the network already, there
are not many differences between NPTA and NATA. In the case of 2 and 4, it shows
the total execution time of NPTA is bigger than UTA. These cases are caused by
increase ratio of network usage. In case 2, as host1 is not used, it has been allocated
with more tasks, which led increase of the total execution time of network. Same case
applied with case 4. NATA allocates task to the early finished host without waiting
other host’s process completion. In case 3 and 5, during task processing it occurs
decreasing the network usage ratio, those are similar with case 1 in differences of
running time between UTA and NPTA. However, NATA reduces more the total exe-
cution time by doing other host’s allocated tasks to be reallocated to other hosts,
which is not charged with any works.

4 Conclusion

This paper developed the realtime network monitor system that could monitor the
performance changes in each host during the actual execution time in order to im-
prove these. By performance results, this research demonstrated that network traffic
occurred in sub-network including hosts could affect the total execution time for
processing application. Also it represented that effective task allocating process based
on sub-network usage ratio of each host makes minimum affection not to be delayed
with task processing time by monitoring network environments of each host.

References

1. Eun-Ha Song, Young-Sik Jeong, “Development of Dynamic Host Management Scheme for
Parallel/Distributed Processing on the Web,” KISS Vol. 8 No 3. (2002)

2. J. Dongarra, J. Bunch, D. Moler, and G. W. Stewart, "LINPACK User`s Guide" SIAM
Philadephia PA (1979)

3. SNMP Research International, Inc., “http://www.snmp.org”
4. R. Figueiredo, P. Dinda, and J. Fortes, "A Case of Grid Computing on Virtual Machines,"

The 23th International Conference on Distributed Computing Systems, Province, Rhode Is-
land, USA, May 19-22, (2003)

5. M. Thottan, L. Li, B. Yao, S. Mirrokni, S. Paul, "Distributed Network Monitoring for
Evolving IP Networks," The 24th International Conference on Distributed Computing Sys-
tems, Tokyo, JAPAN, March 23-26 (2004)

6. F. Berman, et al, “The GrADS Project: Software support for high-level Grid application
development” International Journal of Supercomputer Application, 15-4 (2001) 327-344

7. B. O. Christiansen, P. Cappello, M. F. Ionescu, M. O. Neary, and K. E. Schauser, "Javelin :
Internet-Based Parallel Computing Using Java," ACM Workshop on Java for Science and
Engineering Computation,(1997)

Quartet-Based Phylogenetic Inference:
A Grid Approach

Chen Wang, Bing Bing Zhou, and Albert Y. Zomaya

School of Information Technologies, University of Sydney,
NSW 2006, Australia

Abstract. The accuracy of quartet-puzzling method, which is widely
used in molecular phylogenetic analysis depends heavily on the number
of intermediate trees searched and the order of molecular sequences se-
lected to generate these trees. Because the quality of intermediate trees
cannot be guaranteed, the consensus results can easily be trapped into
local optima. In this paper we present a new approach to guide the inter-
mediate tree selection. Our experimental results show that the accuracy
of reconstructed trees can be improved significantly. Using our method,
the task can easily be partitioned into independent subtasks of differ-
ent sizes. Therefore, it can effectively be implemented and run in the
heterogeneous and dynamic environment of the computational grid.

1 Introduction

Molecular hylogenetic analysis is a fundamental tool in bioinformatics and com-
putational biology, and supports other research in diverse areas of molecular
bioscience including comparative genomics, drug design, environmental biotech-
nology, and protection of biodiversity [1]. The task of phylogenetic analysis is
to try to reconstruct the evolutionary history by inferring phylogenetic relation-
ships from a given set of molecular sequences. The evolutionary history is orga-
nized as unrooted binary trees. The number of different unrooted binary trees is,∏N

i=3(2i− 5) where N denotes the number of given molecular sequences. As N
increases, the number of possible evolutionary trees increases exponentially and
it will quickly become impossible to exhaustively search the entire tree space
for finding the best one that represents the true evolutionary history. Thus,
heuristics are used to assist biologists with phylogenetic analysis.

Of many popular heuristic techniques, maximum-likelihood (ML) methods
[2] are widely used due to their well-founded statistical basis and conceptual
simplicity. Maximum likelihood methods evaluate a hypothesis about evolution-
ary history in terms of the probability that a proposed model of the evolutionary
process and the hypothesized history would give rise to the observed data. It is
conjectured that a history with a higher probability reaching the current state of
affairs is a preferable hypothesis to the one with a lower probability [3]. Exper-
imental results show that analytical results obtained by using ML methods are
often more robust than those by other methods such as neighbor-joining (NJ) [4]
and maximum parsimony (MP) [3, 5, 6]. However, maximum-likelihood methods

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 387–391, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

388 C. Wang, B.B. Zhou, and A.Y. Zomaya

are computationally more expensive. This high computational complexity often
prevents the methods from being applied for large-scale analyses. As a result,
there is a great effort in attempt to improve the computational speed of ML
methods.

One technique used to reduce the ML computational complexity is quartet
puzzling [7, 8]. The quartet puzzling is actually an approximate ML method and
contains three stages. In the first, or ML stage, a set of 4-trees (four-sequences
phylogenies) on all different quartets (4 sequences) is constructed using the stan-
dard maximum likelihood methods [2]. In the the second, so called puzzling stage,
a number of intermediate trees are constructed based on the 4-trees generated
in the ML stage. The results of this stage is dependent on the order of sequences
being added and such orders are randomly generated, one for each tree, in the
current TREE-PUZZLE package. In the final consensus stage, a consensus (typ-
ically majority ruling) based on the rate of occurrence of partitions is applied
to construct the final tree from the intermediate trees generated in the second
stage.

When the number of sequences is N , there will be a total number of (N −
4)! different intermediate trees. As n increases, it is impossible to exhaustively
construct all different trees for the final consensus. Normally only a limited
number of trees are generated in the puzzling stage. Since these intermediate
trees are not evaluated, the quality of these trees is not guaranteed. Therefore,
the final results can easily be trapped into local optima.

The lack of quality control in selecting intermediate trees in the quartet
puzzling method is partly because there are not enough computing resources
to evaluate these trees. As more and more powerful computing resources are
reachable on the Internet, it is possible for us to make effective use of these
resources to get the quartet puzzling out of the local optimal loops. In this
paper, we present a grid-based algorithm to obtain more accurate trees.

The rest of the paper is organized as follows: Our grid quartet-based algo-
rithm (GridQP) in Section 2. some experiment results are presented in Section
3; The conclusions are given in Section 4.

2 Grid-Based QP Algorithm

Our extensive experiments show that the accuracy of the reconstructed tree using
the quartet puzzling method does not scale well with the number of intermediate
trees searched and it can easily be trapped into local optima. The main reason,
we believe, is there is a lack of quality control in constructing intermediate trees.
We cannot expect an accurate tree to be reconstructed after the consensus if a
large amount of intermediate trees are less likely, or bad trees. Thus a proper
selection of the intermediate trees for consensus is crucial in obtaining a more
accurate tree.

To reduce the negative impact caused by less likely trees in final consensus
stage, we should evaluate the intermediate trees and delete the bad ones before
the consensus. A tree with a higher likelihood value normally is the one that

Quartet-Based Phylogenetic Inference: A Grid Approach 389

is closer to the correct tree. This is the base of maximum likelihood methods.
Therefore, we use the likelihood value of a tree to guide the tree selection for
the final consensus. When the number of different intermediate trees to be con-
structed are large, however, it is not feasible to compute the likelihood value of
every intermediate tree. To reduce the computational complexity, we adopt a
hierarchical consensus technique. It is described as follows.

For a given number of intermediate trees to be constructed, we divide them
into groups of different sizes from 1 to I. For each group we apply the standard
QP procedure, that is, we first construct the intermediate trees, do a consensus
and then calculate the likelihood value of the consensus tree for the group. The
likelihood values of all the consensus trees are compared and only K best ones
are kept. Finally, we do another consensus among these K best trees. In contrast
to the normal quartet puzzling method, such an arrangement will have an extra
cost for evaluating the group consensus trees. How high this extra cost will
depend on how the total intermediate trees are divided. When there is only one
group, it is exactly the same as the normal quartet puzzling method. In our
experiments we find that we are able to obtain better results using less number
of intermediate trees. Therefore, the extra computational cost may not be great.

The computation for each group can be done independently and the com-
putational costs for different groups are different. This makes our method more
attractive for grid computing.

The grid environment for our modified quartet-puzzling algorithm consists of
a management node, various numbers of computing nodes and a resource broker
in between. The roles of the resource broker are to keep the information about
available computing resources once registered there and to provide the informa-
tion to the management node upon request. Once being contacted, an available
computing node will receive the task from the management node, execute the
task, and send the result back to the management node. The management node
is responsible for contacting the resource broker for available resources, properly
dividing tasks, sending tasks to and receiving partial results from computing
nodes. The management node also maintains a list to record the K best trees
obtained so far. After all the partial results are received, the management node
will do a final consensus on the K best trees kept in the list.

To detect the actual performance of computing nodes, the management node
maintains another list which records all the nodes the tasks were assigned before.
When a computing node is first contacted, it will be recorded in the list and a
small task is assigned to it and the start time (when the task is sent) is recorded.
When the result is returned, the finish time (when the result received) is also
recorded. The difference between the start and finish times will be considered in
determining the size of the next task to be assigned to the node. If the computing
node can finish the task quickly and immediately become available again, it will
be assigned a larger task. When a computing node cannot finish the task fast
enough, the size of the next task will be decreased. By detecting the actual
performance of computing nodes, we are able to assign tasks of proper sizes to
them and then make the computation more effective and efficient.

390 C. Wang, B.B. Zhou, and A.Y. Zomaya

3 Experimental Results

We have deployed the United Devices Grid MP Platform on hundreds of PCs and
the testing of our grid-based algorithm for large data sets is current under way.
Here we present some results to show the accuracy of our method in comparison
with the standard QP method. In our simulation, we first generate a random
birth-death model tree using Phyl-O-Gen [9] with a constant per-lineage birth
rate of 0.23, a constant per-lineage death rate of 0.14 and the lineage being 900.
After the model tree is constructed, protein sequences are generated based on
an evolution model using PSeg-Gen with commonly used software under JTT
evolution model [10]. The likelihood values are compared and the Robinson-
Foulds distance [11] is used to measure the differences between the model tree
and reconstructed trees.

Some experimental results are depicted in Figure 1. It is clearly show that
our modified quartet-puzzling algorithm can obtain much more accurate results
than the standard QP.

Accuracy Comparison (Taxa# = 20)

0

0.5

1

1.5

2

2.5

3

200 400 600 800 1000 1200

Sequence length

R
F

 d
is

ta
n

c e TP

GridQP

Accuracy Comparison (Taxa# = 40)

0

1

2

3

4

5

6

7

200 400 600 800 1000 1200

Sequence length

R
F

 d
is

ta
n

c e TP

GridQP

Fig. 1. RF distance comparison when the number of taxa is 20 and 40

Table 1 gives the likelihood values obtained from the same experiments. We
can see that the reconstructed trees using our algorithm generally have higher
maximum likelihood values than those reconstructed by the original one.

Table 1. Maximum Likelihood Comparison Between TP and GridQP

Seq. length TP(taxa#=20) GridQP(taxa#=20) TP(taxa#=40) GridQP(taxa#=40)
200 -5914.5 -5903.8 -9256.1 -9256.5
400 -11537.7 -11527.8 -19265.2 -18884.2
600 -17981.2 -17978.7 -29084.8 -29027.3
800 -23095.4 -23084.4 -37378.9 -37364.6
1000 -29228.5 -29213.7 -47634.9 -47563.5
1200 -35953.0 -35950.8 -56405.2 -56392.1

Quartet-Based Phylogenetic Inference: A Grid Approach 391

4 Conclusions

The computing complexity prevents mathematically well-founded maximum like-
lihood methods from being used in large problems. Quartet based approach
makes the reconstruction of trees from a large number of protein sequences
achievable within a reasonable amount of time. While quartet based maximum
likelihood methods gain in speed, our investigation shows that the accuracy of
the reconstructed trees are not increased reasonably as more computing time is
devoted. In this paper we present a grid based quartet puzzling method which
can overcome the loss of accuracy problem and the method is in attempt to
efficiently use computing resources to obtain more accurate trees. This is the
first quartet puzzling method that takes the advantage of grid environment to
improve the accuracy of reconstructed phylogenetic trees. Our simulation shows
the accuracies of trees reconstructed are generally better than existing quartet
puzzling methods.

References

1. Swofford, D. L., Olsen, G. J., Wadell, P. J., and Hillis, D. M., Chapter 11: Phylo-
genetic inference. In: Systematic Biology (hillis, D. M., Moritz, C., and Mable, B.
K., eds.). Sinauer Associates Sunderland, Massachusetts.

2. Tiffani L. Williams and Bernard M.E. Moret, An Investigation of Phylogenetic
Likelihood Methods, Proceedings of the Third IEEE Symposium on BioInformatics
and BioEngineering (BIBE’03).

3. Korbinian Strimmer and Arndt von Haeseler, Quartet puzzling: A quartet
maximum-likelihood method for reconstructing tree topologies. Mol. Biol. Evol.
13(7):964-969, 1996.

4. Heiko A. Schmidt, Korbinian Strimmer, Martin Vingron and Arndt von Haeseler:
TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and
parallel computing. Bioinformatics; Mar 2002; 18(3): 502-504.

5. Felsenstein, J., Evolutionary trees from DNA sequences: a maximum likelihood
approach. J. Mol. Evol. 17:368-376.

6. N. Saitou and M. Nei. The neighbor-joining method: a new method for reconstruct-
ing phylogenetic trees. Mol. Biol. Evol., 4:406-425, 1987.

7. Kluge, A. G., and Farris, J. S. Quantitative phyletics and the evolution of anurans.
Syst. Zool. 18: 1-32. 1969.

8. Farris, J. S. Methods for computing Wagner trees. Syst. Zool. 19: 83-92. 1970.
9. Andrew Rambaut, Phylogenetic Tree Simulator Package Version 1.1.

http://evolve.zoo.ox.ac.uk/software/phylogen/manual.php. 2002.
10. Grassly NC, Adachi J, and Rambaut A., PSeq-Gen: an application for the Monte

Carlo simulation of protein sequence evolution along phylogenetic trees. Comput
Appl Biosci 13, 559-560. 1997.

11. Robinson, D.R., and Foulds, L.R. 1981. Comparison of phylogenetic trees. Math-
ematical Biosciences 53: 131-147.

Scheduling BoT Applications in Grids
Using a Slave Oriented Adaptive Algorithm�

Tiago Ferreto1, César De Rose1, and Caio Northfleet2

1 Faculty of Informatics - PUCRS, Brazil
{ferreto, derose}@inf.pucrs.br

2 HP-Brazil
caio.northfleet@hp.com

Abstract. Efficient scheduling of Bag-of-Tasks (BoT) applications in
a computational grid environment reveals several challenges due to its
high heterogeneity, dynamic behavior, and space shared utilization. Cur-
rently, most of the scheduling algorithms proposed in the literature use
a master-oriented algorithm, in which the master is the only responsible
for choosing the best task size to send to each slave. We present in this
paper a different approach whose main originality is to be slave-oriented,
i.e. each slave locally determines, from a set of initial runs, which work-
load size is more adapted to its capacities and notifies the master of
it. Finally, we show some measurements comparing our algorithm with
other three well-known scheduling algorithms using the SimGrid toolkit.

1 Introduction

Computational grids as a platform to execute parallel applications is a promising
research area. The possibility to allocate unprecedent amounts of resources to a
parallel application and to make it with lower cost than traditional alternatives
(based in parallel supercomputers) is one of the main attractives in grid com-
puting. On the other hand, the grid characteristics, such as high heterogeneity,
complexity and wide distribution (traversing multiple administrative domains),
create many new technical challenges. In particular, the area of scheduling faces
entirely new challenges in grid computing. Traditional schedulers (such as the
operating system scheduler) control all resources of interest. In a grid, such a
central control is not possible. First, the grid is just too big for a single entity
to control. In a grid, a scheduler must strive for its traditional goals, improving
system and application performance [1].

Bag-of-Tasks (BoT) applications are parallel master/slave applications whose
tasks are independent to each other. A vast amount of work has been done
in order to schedule efficiently Bag-of-Tasks applications improving the load
balancing in distributed heterogeneous systems. Most of the algorithms focus
on the adaptation of the workload during the execution, using either a fixed
increment or decrement (e.g. based on an arithmetical or geometrical ratio) or a

� This research was done in cooperation with HP-Brazil.

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 392–398, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Scheduling BoT Applications in Grids 393

more sophisticated function to adapt the workload. Yet the solutions presented
are all based on some evaluation by the master of the slaves’ capacities and of
the tasks workload. This implies a significant overhead since the master has to
maintain some kind of information about its slaves.

We propose in this paper the scheduling of BoT applications in Grids with a
different approach whose main originality is to be slave-oriented, i.e. each slave
locally determines, from a set of initial runs, which workload is more adapted
to its capacities and informs the master of it. In turn, the master can compare
the workload demanded by the slave to the network penalty paid and make the
proper adjustments to adapt the workload. We have thus a workload adaptive
algorithm.

2 Related Work

In this section we focus in self-scheduling algorithms [2]. These algorithms divide
the total workload based on a specific distribution, providing a natural load
balancing to the application during its execution. This class of algorithms is
well suited for dynamic and heterogeneous environments, such as grids, and for
divisible workload applications.

The Pure Self-scheduling [2] or Work Queue scheduling algorithm divides
equally the workload in several chunks. A processor obtains a new chunk when-
ever it becomes idle. Due to the scheduling overhead and communication latency
incurred in each scheduling operation, the overall finishing time may be greater
than optimal [3].

The Guided Self-scheduling algorithm [4] (GSS), proposed by Polychronopou-
los and Kuck, and Factoring [3], proposed by Flynn and Hummel, are based on a
decreasing-size chunking scheme. GSS schedules large chunks initially, implying
reduced communication/scheduling overheads in the beginning, but at the last
steps too many small chunks are assigned generating more overhead [2]. Factor-
ing was specifically designed to handle iterations with execution-time variance.
Iterations are scheduled in batches of equal-sized chunks. The total size of the
chunk per batch is a fixed ratio of the remaining workload.

In all algorithms shown above, the amount of workload sent to each slave is
defined by the master. We propose in the following section another approach,
where the evaluation of the load to be assigned to each slave is done by the slave
itself.

3 Local Decision Scheduling Algorithm

The local decision scheduling algorithm (LDS) addresses BoT applications us-
ing divisible workloads, i.e. all independent tasks demands the same amount of
computational resources. The algorithm focus on a heterogeneous, dynamic and
shared environment, characterizing a typical computational grid. It is based on
a distributed decision mechanism, building in each slave a performance model,
which represents the application behavior based on resources utilization. Each

394 T. Ferreto, C. De Rose, and C. Northfleet

slave computes the task received, includes this information in its performance
model and, based on the analysis of its performance model, calculates the best
workload size to be computed at the next iteration.

The scheduling algorithm is divided in the following phases: setup, adaptive
and finalization phases. The setup phase goal is to initialize and refine the per-
formance model of each slave. The master sends tasks to slaves using a fixed
quadratic increment. This process continues until it receives a signal from the
slave in order to start the adaptive phase. This signal is generated when the
performance model starts presenting estimates with minimum error.

The adaptive phase goal is to adapt this performance model if any variation is
observed and to generate appropriate estimates of workloads size to be computed
in the next iterations. The master side of the algorithm for the adaptive phase is
presented in Algorithm 1. It sends to the slave a task using the fixed quadratic
increment again, but at this time, it includes information about the time slice the
slave has to compute at the next iteration (execTime variable). This information
is highly dependable on the application characteristics, workload (number of
tasks), and environment conditions, and is currently static and manually defined.
The master receives, after the processing of the task by the slave, the result,
execution time of the task computed and an estimation of the next workload
size in order to accomplish to the time slice defined at the master. At the next
workload assignment for the slave, the master just changes the workload size to
send to the slave accordingly to the estimate previously received. It keeps using
this procedure until it reaches a specified limit (line 4). After this, it starts the
finalization phase.

The slave side of the algorithm for the adaptive phase is presented in Algo-
rithm 2. The slave starts a loop receiving tasks to be computed. Together with
the task, it receives the workload size and execution time values. The workload is
computed and its size with execution time inserted in a prediction table, which
is used to compute the performance model. Using this prediction table and the
execution time value received from the master, it computes the next workload
size. After that, the slave sends to the master the result, execution time of the
task received, and an estimation of the next workload size. The slave gets out
from the loop when it receives a signal message from the master to initiate the
finalization phase.

The finalization phase adjusts the workloads size computed in each slave in
order to achieve load balancing, resulting in a better overall performance. When
the master switches from the adaptive phase to the finalization phase, it stops
using slaves’ predictions and starts using the factoring algorithm till the end of
tasks processing. After assigning the remaining tasks, the master starts a loop
receiving the remaining results from the slaves.

3.1 Local Prediction of the Computational Load

In order to estimate the most suited workload, a slave needs a performance model
for the execution of chunks of size taskSizei. The model may include various
data such as the execution time, memory utilization, cache access, etc, used to

Scheduling BoT Applications in Grids 395

Algorithm 1 LDS algorithm at master side
1: while there are tasks to schedule do
2: for each available slavei do
3: execTime ⇐ maxExecTime
4: if

∑numslaves

i=1 taskSizei ≥ number of tasks remaining then
5: start finalization phase
6: else
7: task ⇐ getTask(taskSizei)
8: send to slavei the task, taskSizei and execTime
9: end if

10: end for
11: receive result, execTime and nextTaskSize
12: taskSizei ⇐ nextTaskSize
13: end while

Algorithm 2 LDS algorithm at slave side
1: while there are tasks to compute do
2: receive task, taskSize and maxExecTime
3: result ⇐ compute task
4: insertPredictionTable(taskSize, execTime)
5: nextTaskSize ⇐ predictNextSize(maxExecTime)
6: send to master the result, execTime and nextTaskSize
7: end while

process a given task. In this preliminary version of our prototype we only take
into account the execution time.

Given some N values taskSize1, taskSize2, . . . taskSizen and the slaves data
t (e.g. the execution time) the slave has to estimate t(taskSize). In a multi-
parameter model we could use algorithms such as the Singular Value Decompo-
sition [5], one of the most robust for data modeling. It would fit the function t
as a linear combination of standard base functions (e.g. x→ ex,

√, polynomials,
. . .).

Yet in the case where t only depends on the processor’s speed, an affine
model of the time required vs. the number of chunks to run is most realistic
and used by other algorithms [6]. The modeling problem is therefore a basic
linear interpolation problem of the measured running time tj , j = 1 . . . n vs.
the number of chunks taskSizej . Beside the estimated coefficients a, b of the
affine approximation t = a + b × taskSize, the correlation coefficient is used
to determine the correction of the interpolation and thus decide if more chunks
should be sent in the initial phase, before entering in the adaptive phase.

The interpolation algorithm is very fast and thus does not prejudice the
execution of the application. Moreover, it is trivial for a slave to determine the
adapted task size, given the execution time t it has to run and the affine model
(a, b). Note that in the case of a more complex, non-linear model, it would have
to use a more time-consuming algorithm such as a gradient or dichotomic search
to solve the t = f(taskSize) equation.

396 T. Ferreto, C. De Rose, and C. Northfleet

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Processing quantity (MFlops)

64 nodes

Work Queue
GSS

Factoring
LDS (5)

LDS (20)

 300

 400

 500

 600

 700

 800

 900

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Processing quantity (MFlops)

90 nodes

Work Queue
GSS

Factoring
LDS (5)

LDS (20)

Fig. 1. Measurements scheduling 1000 tasks using 64 and 90 nodes

4 Evaluation

We used the SimGrid [7] toolkit to evaluate our scheduling algorithm. The plat-
form used for simulation is an example of grid model included in the SimGrid
package. The model is composed by 90 heterogeneous machines connected by
several links with different latency and bandwidth values.

We used this platform to simulate applications with different number of tasks
(1000, 10000 and 100000 tasks) and quantity of computation per task (100,
500, 1000 and 2000 MFlop/s) using deployments with 64 and 90 nodes. In our
experiments we assumed that communication costs to send one task to a slave
is fixed (0.001 Mbyte/s) and to receive the result is irrelevant.

Each simulated application was executed using 4 different algorithms: Work
Queue, Guided Self-scheduling, Factoring (using α = 2) and LDS (using β = 5
and 20). LDS uses the β value to compute the maxExecT ime parameter, which
is calculated dividing the estimate of the total execution time to compute all
tasks sequentially by β multiplied by the number of slaves.

Figure 1 illustrates the measurements obtained for an application containing
1000 tasks begin executed in 64 and 90 nodes of the platform, with compu-
tation amount per task varying from 100 to 2000 MFlop/s. Using 64 nodes
and computation quantity ranging from 100 to approximately 800 MFlop/s, the
GSS algorithm presented the best results, after 800 MFlop/s the Factoring al-
gorithm overcomed GSS. The same behavior is presented with 90 nodes, except
that this transition is observed when computation quantity is approximately
1400 MFlop/s. The Work Queue algorithm presented the worst results in both
simulations. The LDS algorithm presented a behavior similar to the Factoring
algorithm in both simulations.

In Figure 2 the same measurements are presented for an application with
10000 tasks. The Work Queue algorithm presented again the worst results using
64 and 90 nodes. GSS, Factoring and LDS(5) presented similar values using low
computation quantity (100 MFlop/s) and 64 nodes. Using tasks with more than
400 MFlop/s the LDS(5) and LDS(20) presented the best results. Using 90 nodes
and computation quantity ranging from 100 to approximately 200 MFlop/s the

Scheduling BoT Applications in Grids 397

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Processing quantity (MFlops)

64 nodes

Work Queue
GSS

Factoring
LDS (5)

LDS (20)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Processing quantity (MFlops)

90 nodes

Work Queue
GSS

Factoring
LDS (5)

LDS (20)

Fig. 2. Measurements scheduling 10000 tasks using 64 and 90 nodes

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Processing quantity (MFlops)

64 nodes

Work Queue
GSS

Factoring
LDS (5)

LDS (20)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Processing quantity (MFlops)

90 nodes

Work Queue
GSS

Factoring
LDS (5)

LDS (20)

Fig. 3. Measurements scheduling 100000 tasks using 64 and 90 nodes

GSS algorithm presented the best results. Factoring behaved better from 200 to
approximately 600 MFlop/s and after 600 MFlop/s, the LDS(5) and LDS(20)
algorithm overcomed the other 3 algorithms.

The measurements for 64 and 90 nodes using an application with 100000
tasks (Figure 3) are very similar. The LDS algorithm presented the best results
for all experiments and overcomed the Factoring algorithm in approximately
30%, i.e. the execution time of the application using the LDS algorithm was
approximately 30% faster in comparison to the Factoring algorithm.

The measurements show that simple algorithms, such as, GSS and Factoring
present good results when the total number of tasks and the computation quan-
tity per task is low. With a higher number of tasks and computation quantity
the LDS algorithm performs better, obtaining in some cases, a reduction of 30%
in the execution time in comparison to the Factoring algorithm.

5 Conclusion and Future Work

In this paper we proposed a slave oriented adaptive algorithm for the scheduling
of BoT applications in Grid environments. In this approach, each slave of a BoT

398 T. Ferreto, C. De Rose, and C. Northfleet

application locally determines, based on a data modeling algorithm to evaluate
its computational capacity on a received task, which workload is more adapted
to its capacities, sending this information to the master. The main characteristic
of our algorithm is that the computation of the best suited task size is entirely
distributed, unlike other adaptive approaches.

We compared our algorithm with other well-known scheduling algorithms us-
ing the SimGrid toolkit and preliminary results indicate that this new approach
behaves better in several of the test cases. The best results where obtained when
the number of tasks is high (100000 tasks), the computation amount of each
task is also high (1000 and 2000 MFlop/s), and the Grid is composed of several
heterogeneous resources (90 nodes) resulting in a mean performance increase of
approximately 30% over the Factoring algorithm.

The main limitation of our algorithm currently lies in the modeling of the
slave’s capacities to treat the master’s tasks. We intend to improve the data
modeling and the possibility to extrapolate the model for values of the workload
that could be less regular. In this initial work the slave only evaluates its CPU
performance. A direct extension of the algorithm would be to include a local
evaluation of the slave’s memory usage. We also face the inclusion of a historical
log maintained by the slave about its availability so as to let it require a workload
most adapted to the time-frame it knows it can work for the master.

Nevertheless we believe this novel approach is promising and already a very
good alternative to be considered when a scheduling algorithm is needed for BoT
applications in Grids.

References

1. da Silva, D.P., Cirne, W., Brasileiro, F.V.: Trading cycles for information: Using
replication to schedule bag-of-tasks applications on computational grids. In: Euro-
Par 2003. Volume 2790 of Lecture Notes in Computer Science., Springer (2003)
169–180

2. Chronopoulos, A.T., Andoine, R., Benche, M., Grosu, D.: A CLass of Loop Self-
Scheduling for Heterogeneous Clusters. In: Proceedings of CLUSTER’2001. (2001)

3. Hummel, S.F., Schonberg, E., Flynn, L.E.: Factoring: A Method for Scheduling
Parallel Loops. Communications of the ACM 35 (1992) 90–101

4. Polyhronopoulos, C.D., Kuck, D.: Guided Self-Scheduling: A Practical Scheduling
Scheme for Parallel Supercomputers. IEEE Trans. on Computers 36 (1987) 1425–
1439

5. Press, W.e.a.: Numerical Recipes in C: The Art of Scientific Computing. Number
ISBN 0521431085. Cambridge University Press (1993)

6. Beaumont, O., Legrand, A., Robert, Y.: Scheduling divisible workloads on hetero-
geneous platforms. Parallel Computing 29 (2003) 1121–1152

7. Casanova, H.: Simgrid: A toolkit for the simulation of application scheduling. In:
Proceedings of the IEEE Symposium on Cluster Computing and the Grid (CC-
Grid’01). (2001)

 J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 399–409, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A Clustering-Based Data Replication Algorithm
in Mobile Ad Hoc Networks for

Improving Data Availability

Jing Zheng, Jinshu Su, and Xicheng Lu

School of Computer, National University of Defense Technology,
Changsha 410073, Hunan, China
zhengjing621@hotmail.com

Abstract. In Mobile Ad Hoc Networks (MANET), network partitioning occurs
when nodes move freely and cause disconnections frequently. Network
partitioning is a wide-scale topology change that can cause sudden and severe
disruptions to ongoing data access, and consequently data availability is
decreased. A new distributed clustering algorithm is presented in this paper for
dynamically organizing mobile nodes into clusters in which the probability of
path availability can be bounded. Based on this clustering algorithm, a data
replication policy is proposed to improve data availability during network
partitioning. Through theoretic analysis our algorithm has proper complexity.
Simulation results show that the clusters created by our clustering algorithm
have desirable properties and our algorithms improve the data availability
effectively in MANET environment.

1 Introduction

In MANETs, mobile nodes move freely, and disconnections of links occur frequently.
This may cause frequent network partitioning, which can cause sudden and severe
disruptions to ongoing data access, then it poses significant challenges to data
management in MANET environment.

Data availability is referred to the ratio between the number of requests to a data
object and that of responses. To provide data availability during network partitioning,
a clustering based data replication algorithm is proposed in this paper. The basic ideal
of the algorithm is that the data object in the clusters which request this data object
will be replicated to prevent deterioration of data accessibility at the point of network
partitioning. The clustering mechanism is used to predict the network partitioning,
and should present the following desirable properties: 1) Each cluster is connected,
and there is at least one stable path between any pair of nodes in a cluster. The path
stability guarantees the data availability in a cluster. 2) The number of clusters should
be limited. Because there is at least one replica for every requested data in a cluster,
more clusters will cause more replicas. 3) Two clusters should overlap appropriately.

This research was supported by the National Natural Science Foundation of China
(No. 69933030).

J. Zheng, J. Su, and X. Lu 400

Overlap between clusters can decrease the number of replicas, i.e. data replica on the
common nodes will allow nodes in two clusters accessing the public replica. But all
common nodes of two clusters will have to maintain cluster state for both the clusters.
Hence, it is necessary to make trade-off between them. 4) Cluster should be stable
across node mobility. The clustering algorithm should adapt to nodes joining in the
network, disappearing from the network and moving.

Clustering based routing algorithm has been an extensive research topic. However,
only a few researches have focused on clustering problem for data availability. [1]
began the study of the clustering problem in ad hoc networks by proposing a linked
cluster algorithm. Two distributed algorithms introduced in [2] choose cluster-head
based lowest ID and highest degree respectively. Another method used for clustering
is based on domination set in a graph ([3][4][5]). Above-mentioned clustering
algorithms are used to support routing in MANET, forming cluster-based
hierarchical routing or backbone-based routing. Because the goals of clustering are
different from us, the requirements for clustering are different too. [6] proposes a
method to ensure that the centralized service is available to all nodes during
network partitioning for group mobility model. T.Hare’ work [7] focuses on data
accessibility in MANET, but does not consider topology changes and connection
stability. [8] presents a stable path based clustering routing algorithm, but the method
to compute path availability is complicated and the goal of clustering is different from
us.

The rest of the paper is organized as follows: in section 2 we pose our problem
statement in a graph theoretic framework; in section 3 a distributed algorithm to
construct -Stable Graph is presented in detail; in section 4, the clustering-based data
replication algorithm is described; in section 5, algorithms are evaluated through
simulations; and finally in section 6, the summary and some future work are
presented.

2 Problem Statement

We use a widely employed model, so-called Unit Disk Graph (UDG) G(V, E), to
study ad hoc networks: Vertices in G are nodes that are located in the Euclidean plane
and assumed to have identical transmission radio. An edge between two vertices,
representing that corresponding two nodes are in mutual transmission range, exists iff
their Euclidean distance is not greater than the maximal transmission distance.

Definition 1. -Stable Neighbor: During time slice Δt, the connectivity probability
between node i and its neighbor j is denoted as Pr(linki,j). Node j is a -stable
neighbor to i, if Pr(linki,j) is larger than (is the threshold). Let SN(i)=
{j| Pr(linki,j)}> } be the -stable neighbors set of i.

Definition 2. -Stable Path: The path Pathm,n between node m and n is comprised of
links linki,j, linki,j, ∈ Pathm,n, and the path availability is denoted as Pr(Pathm,n).
According to the assumption of independent link failures, the path availability is

given by ∏
∈

=

nmpathji

jinm linkpath

,),(

,,)Pr()Pr(. Pathm,n is a -stable path, if Pr(Pathm,n)> .

A Clustering-Based Data Replication Algorithm in Mobile Ad Hoc Networks 401

Definition 3. -stable path nodes set: -stable path nodes set for i, SP(i), for every
node j in nodes set SP(i), if there is at least one -stable path between node i and j.
SN(i) ⊆ SP(i).

Definition 4. -stable graph G : The -stable graph of graph G, G (V, E’), vertices in
G are the same as those in G, edge (m, n)∈E’ iff there is at least one -stable path
between node m and n, i.e. Pr(Pathm,n)> .

Fig.1. shows the UDG of a mobile ad hoc network, and Fig.2 is the G for Fig.1. In
Fig.2, the dashed line between two nodes indicates that there is a -stable path
between them, and the solid line between two nodes indicates that they are stable
neighbors each other.

1

19

4

3
2

8

5

6

11

18

1312

10

17

15
14

16

9

20

21

7

1

19

4

3
2

8

5

6

11

18

7

1312

10

17

15
14

16

9

20

21

In G , mobile nodes are separated into several disconnected sub-graphs, i.e. there is
no any stable paths between two nodes that belong to different sub-graphs
respectively; therefore, the probability of network partitioning between two sub-
graphs is high. Our goal is to construct clusters in which the path availability between
any two nodes is bigger than , and the size of each cluster is as large as possible. A
clique in graph G indicates that there is at least one -stable path between any two
nodes in the clique, therefore the clustering problem can be mapped to the maximum
clique problem (MCP) in graph G . However, the cluster in our algorithm must satisfy
the property: each cluster is connected in graph G. The graph meeting above two
requirements simultaneously may not exist. We create clusters that are cliques in G

and connected in G, so that the previous desired properties are maintained.

3 Distributed Algorithm to Construct -Stable Graph (-SGA)

3.1 The Connectivity Probability Between Neighbors

Assuming that link disconnection is caused by node mobility, the distance between
two neighbors is used as the metric of connectivity probability between neighbors.
We assume that the effective wireless communication range of node i is the disk Di
for which i is its center and R is its radius. The distance between node i and its
neighbor j is d, and all nodes move in the Random Waypoint Mobility Model, i.e.

Fig. 1. UDG Fig. 2. -stable graph G

J. Zheng, J. Su, and X. Lu 402

each mobile node’s speed is uniformly distributed between (0, Velmax) and the
direction is uniformly distributed over (0, 2) (so the maximum speed of node j
relative to node i is 2Velmax.) . Therefore in time slice Δt the position of node j is
uniformly distributed in disk Dj for which center is node j and radius equates to
2VelmaxΔt. Finally, the connectivity probability between i and j in time slice Δt can be
described as:

max
,

max

(,) (, 2)
Pr()

(, 2)
i j

i j
j

S D R S D Vel t
link

S D Vel t

∩ Δ
=

Δ
 (1)

S(Di) means the area size of disk Di. If Pr(linki, j)> , j is a stable neighbor of i.
Δt is a systemic parameter, which presents the time interval to estimate the validity

of connectivity probability. As formula (1), if Δt and Velmax have been known, it was d
to determine the connectivity probability of the pair of nodes. We partition the disk
into n cirque regions. Due to different distances to center i, the cirque regions from
nearby to far away is H1,H2,…Hn. Connectivity probability between every cirque
region and center i equates to the average value of connectivity probability between
every point in this region and center i. If node j is located in one region Hk of Di,
k∈{1,2…n}, Pr(linki, j) is the connectivity probability between Hk and i.. In this way
the distance change within a cirque region will not cause change of connectivity
probability, and connectivity probability can be obtained by simply looking up a pre-
setting region connectivity probability table with the ID of the region.

3.2 Distributed -Stable Graph Algorithm (-SGA)

We propose a fully distributed algorithm -SGA to construct above -stable graph by
only exchanging information between neighbors. On each mobile node i, a global ID
id(i) and following local states is maintained in the distributed algorithm:

1) Profile of Measurement of Distance to all Neighbors, P(i). Every mobile node i
measures the distance to each neighbor j, and calculates the corresponding
connectivity probability Pr(linki,j), then record it in 2-tuple < id(j), Pr(linki,j) >.

2) The Set of Stable Neighbors, SN(i). This set is constructed by all these nodes
which satisfy definition 1, using P(i). In SN(i), the ID of i’s every stable neighbor j
and its connectivity probability to i are recorded in 2-tuple < id(j), Pr(linki,j) >.

3) The Set of -Stable Path Nodes, SP(i). This set records all such nodes that satisfy
definition 3. For each j∈SP(i), a 3-tuple < id(j), id(N(Pathi,j)), Pr(Pathi,j) > is
maintained. If multiple paths exist between node i and j, Pr(Pathi,j) is the
maximum path availability among these paths. N(Pathi,j) is the next hop node from
i to j in this selected path with the maximum availability probability.

4) The SN(j) and SP(j) of Stable Neighbor j, PN(j). For each -stable neighbor j, i
maintains SN(j) and SP(j) of j. Each PN(j) has a 4-tuple < id(m), Attribute(m),
Pr(Pathj,m), Pr(Pathi,j,m) >, m ∈SP(j) ∪ SN(j). Pr(Pathi,j,m) is the availability
probability of path from node i to m, passing j.

The distributed algorithm -SGA (-Stable Graph Algorithm) allows mobile nodes
to find their stable neighbors and -stable path nodes by exchanging information with

A Clustering-Based Data Replication Algorithm in Mobile Ad Hoc Networks 403

their stable neighbors and construct their -stable graph G . Algorithm is described as
below:

1) Measurement. Every mobile node i calculates the connectivity probability to each
neighbor. For each j∈P(i), if definition 1 has been satisfied, i.e. Pr(linki,j)> then
SN(i)=SN(i) ∪ {j}. During initiation, SP(i)=SN(i).

2) Exchange. i exchanges its SN(i) and SP(i) with all its stable neighbors. It sends 3-
tuples < id(m), Attribute(m), Pr(Pathi,m) > to all its stable neighbors. There
m∈SP(j) ∪ SN(j). If Attribute (m)=0, it means that m has been just deleted from
SP(j). Upon receiving information from the stable neighbors, i construct its SP(i)
and SN(i).

3) Update. When the connectivity probability between i and its neighbor j has been
changed, or i receives update information from other stable neighbors, state
information P(i), SN(i), SP(i) and PN(j) should be updated. Algorithm’s detail is
described in Table1.

Table 1. Update Operation of -SGA

if connectivity probability between i and its neighbor j has been changed then
update P(i);

if j∈SN(i) and Pr(linki, j) then SN(i):= SN(i)/{j},delete all info in PN(j); endif;

if j∈SN(i) then update corresponding probability value in SN(i) and PN(j);
add j to update message queue;

endif;
if j∉SN(i) and Pr(linki, j) > then

SN(i):= SN(i) ∪ {j}, SP(i):= SP(i) ∪ {j};
update SN(i) and PN(j); add j to update message queue;

endif;

for all m∈SP(i) & id(N(Pathi ,m))= = id(j)
 recalculate Pr(Pathi,m);

 if ∃ k∈ SN(i), make Pr(Pathi,k,m)> &)}{Pr(maxPr(,,)(),, mliiSNlmki PathPath ∈== then

 update SP(i); id(N(Pathi,m)): = id(k); Pr(Pathi,m):= Pr(Pathi,k,m);
add m to update message queue;

 else SP(i): = SP(i)/{m}; add m to update message queue; Attribute(m):= 0;
 endif;

endfor;
propagate update message to all stable neighbors except j;

endif;
if i receives update message from stable neighbor j then

do similar update to SP(i), SN(i) and PN(j) as above
propagate update message to all stable neighbors except j;

 endif;

By exchanging information with stable neighbors, -SGA makes every node i
construct a set SP(i) containing all the nodes that have -stable path to i. There is a
edge between i and each node in SP(i) in G . Because messages are exchanged
between pairs of stable neighbors, and the change of connectivity probability caused
by node’s movement only is propagated among its -stable path nodes, the
communication overhead to maintain G is dependent on the size of the -stable path
nodes set. Because usually the size of the -stable path nodes set is much smaller than

J. Zheng, J. Su, and X. Lu 404

the total size of the network and only the incremental update is
needed, the communication overhead of this algorithm is acceptable in MANET
environment.

3.3 Heuristic Connected Clique of -Stable Graph Algorithm (CCGA)

We propose CCGA (Connected Clique Graph Algorithm) algorithm to construct
clique in G , based on sequential greedy heuristic method [9]. This clique contains
node i and is connected in graph G.

Table 2. The CCGA algorithm

procedure local-search-add-move (output: Clique (i); input: SP(i), SN(i))
begin
1 PA : =SP(i), Clique (i) : = i;
2 repeat
3 PA’ : = Ø;

4 for all j ∈Clique (i)

PA’ : =PA’ ∪ (PA SN(j));
 endfor;

5 search node v ∈PA’ & () max { () }k PASP v PA SP k PA′∈′ ′∩ == ∩

6 if for all u∈Clique (i), v∈SP(u) is true then Clique (i) : = Clique (i) ∪ {v}; endif;
 PA: =PA/{v};

if k∈SN(v) PA and SN(k) PA= ={v} then PA: =PA/{k}; endif;
7 until PA= =Ø;
8 return Clique (i);
end;

In the algorithm, Clique (i) is the node set of clique containing node i in G ; PA is
the set of all candidate nodes to be added to Clique(i); PA’ is composed of all the
candidate nodes which at least has a stable neighbor in Clique(i). In line 6 of
algorithm, if candidate node v at least has a stable path with every node in Clique (i),
then v is added to Clique (i), so Clique (i) is a clique containing i in G ; line 5
searches the node which have maximum number of edges with other candidate node.
Algorithm complexity is O(|SP(i)|3).

4 The Clustering-Based Data Replication Algorithm

4.1 -Stable Path Based Clustering Algorithm (-SPCA)

The distributed -SPCA algorithm is based on algorithms presented in the last
section. The -SPCA algorithm has two phases: Cluster Creation and Cluster
Maintenance. The cluster creation is invoked when network is in the initialization
phase .The cluster maintenance is an inexpensive phase of the algorithm that handles
node mobility leading to the local change of the existing cluster.

A Clustering-Based Data Replication Algorithm in Mobile Ad Hoc Networks 405

 Cluster Creation

1) Every node i obtains its -stable path nodes set SP(i) by exchanging information
with its stable neighbors.

2) If node i does not belong to any cluster and is the least ID node among its stable
neighbors which is not clustered, node i becomes a cluster head.

3) Cluster head i executes CCGA algorithm to find Clique(i) in G . The nodes in the
Clique(i) compose a cluster whose cluster head is node i and Cluster ID (CID)
equates to the ID number of i .

4) Node i which is not clustered repeats step 2) and 3) until every node belongs to at
least a cluster.

 Cluster Maintenance

Once cluster creation phase generates a set of clusters, the cluster maintenance phase
is invoked to perform some small changes to handle node mobility as new nodes join
and existing nodes leave a cluster.

1) Node Joins: When cluster head i finds any new stable path node j, i checks every
cluster member in the cluster if node j is in its stable path nodes set and if node j is
in some cluster member’s stable neighbors set. If so, node j joins the cluster.

2) Node Leaves: If there is no longer a stable path between a pair of nodes in the
same cluster, the node that has the larger ID and is not the cluster head leaves the
cluster. If the leaving node does not belong to any cluster and can not join other
clusters, it executes CCGA algorithm to construct a new cluster. If the node has no
stable neighbor, it is called orphan node. The orphan node is a very unstable node
in the network.

3) Cluster Removes: If all of the cluster members in a cluster Ci belong to multiple
other clusters, the cluster head of Ci sends the apply for removing Ci to cluster
heads whose cluster cover some members of Ci. If all these cluster heads agree
removing Ci, the cluster head of Ci declares Ci is vanished. In case some nodes do
not belong to any cluster when multiple clusters are removed simultaneously. If
two clusters have the identical members, the cluster that has the larger CID is
removed.

The cluster created by the -SPCA algorithm described above has the following
properties:

Property 1. The path availability between any pair of nodes in the same cluster is
larger than .

Property 2. Each cluster is connected in graph G.

Property 3. Each node i belongs to at most |SP(i)| clusters.
The proofs of these properties are omitted because of limit of the space.

4.2 Clustering-Based Data Replica Allocation Algorithm (CDRA)

Based the -SPCA algorithm, the network is clustered into several clusters. The path
availability between any pair of nodes in the same cluster is bigger than , and
network partitions often present between clusters especially clusters without overlap.
In the face of the challenge of network partitioning to data access, CDRA algorithm is

J. Zheng, J. Su, and X. Lu 406

proposed in this paper. The basic ideal of this algorithm is that replication of the data
object in the clusters which request this data object will prevent deterioration of data
accessibility at the point of network partitioning. The CDRA algorithm is described as
following:

1) Every cluster head maintains states of all other cluster heads in the networks.
When a node requests to access a data object, the node broadcasts the access
request in the whole cluster Ci that the node belongs to. If there are some replicas
of the data object in Ci, the closest replica node serves the access request.

2) If there is not replica node for the requested data object in Ci, the request is
propagated from the cluster head of Ci to all other cluster heads. If there is replica
in some cluster, the cluster head sends the data to the cluster head of Ci .

3) The cluster head of Ci sends the data to request nodes. A node in Ci is chosen to
replicate the data object, which has request to the data object. Nodes in multiple
clusters have the priority to be chosen as replica nodes. Because the path
availability between any pair of nodes in a cluster is bigger than , the data
availability in a cluster is bigger than .

4) The adaptive replica allocation algorithm (ARAM) [10] proposed by us is used to
allocate the replica in the inter-cluster. The ARAM algorithm dynamically adjusts
location and number of replicas adapting to the nodes motion and the change of
read-write pattern [10].

For the several replicas of the same data object in the networks, the ROWA (READ-
ONE-WRITE- ALL) policy is used to ensure the consistency of the replicas. 2PL is
used to ensure strict consistency for intra-cluster, and optimistic concurrency control
is used to ensure weak consistency for inter-cluster. The write requests for the data
object are propagated to all cluster heads whose cluster has the replica of the data
object, and then are forwarded to the replica nodes in the cluster. If the write request
is granted, data update message forwards to all the replica nodes in the same way.
Because of using the hierarchical control, replica update messages are propagated
among cluster heads and among replica nodes in the same cluster. Therefore the
communication overhead of replica update operations will be reduced.

5 Simulation and Analysis

To evaluate the performance of our algorithm, extensive simulations have been
performed. Because our main concern is to improve data availability in the presence
of frequent network partitioning events, simulations are performed in a MANET
environment with sparse mobile nodes. 250 Nodes are initially randomly activated
within a bounded region of 5*5 km, and transmission range R=0.5 km. All nodes
move in the Random Waypoint Mobility Model. A range of node mobility with mean
speeds MVel between 5 to 10 m/s is simulated. During each epoch the speeds of each
mobile node are uniformly distributed over (0, 2MVel), and the direction is uniformly
distributed over (0, 2). The pause-time is 4s. Two values of the path availability
threshold are used, 0.4 and 0.6. The systemic parameter Δt is 20s. In these
simulations, the read requests issued by every node are uniformly distributed from 0
to 20, the ratio between read requests and write requests is 10:1, and there is only 1
data object.

A Clustering-Based Data Replication Algorithm in Mobile Ad Hoc Networks 407

 Comparison Properties of the Cluster with (, t)-Cluster Algorithm
We compare properties of the cluster in -SPCA with those in (, t)-Cluster (t=1
minute) algorithm[10] in the simulation. The results show that the cluster created by

-SPCA algorithm can achieve the desirable properties described in section 1, and the
-SPCA clustering algorithm is more suitable for data replication than the (, t)-

Cluster algorithm.
Fig. 3 (a) shows the effects of mobility on mean cluster size. The results show that

the -SPCA clustering algorithm adapts cluster size to node mobility and threshold .
Another observation indicates that the mean cluster size in -SPCA is bigger than that
in (, t)-Cluster algorithm, and the reason is that in the -SPCA algorithm cluster head
adds nodes as many as possible into its cluster and allows proper overlaps among
clusters, but in (, t)-Cluster algorithm every node only belongs to one cluster, and
although there is a stable path between any pair of nodes in two clusters, these two
clusters can not be combined into a single cluster. Accordingly, the number of cluster
relating to the size of cluster, mean number of cluster in -SPCA is smaller than that
in the (, t)-Cluster algorithm. According to our replication strategy, the more
clusters, the more replicas may be required. Therefore, fewer replicas are required in
the -SPCA than in (, t)-Cluster algorithm.

Fig. 3. (b) demonstrates the desirable stability property of the cluster. Cluster
survival time is measured by taking the amount of elapsed time of each currently
active cluster. Thus, it represents the lifetime of cluster. The chart implies that the
speed affects the stability of cluster topology, and the higher link failure rates are
observed at the higher speed. A cluster is removed only when all its members belong
to other clusters in the -SPCA, so the cluster is stable and the mean cluster survival
times can be accepted in terms of system performance. The great jump in the point at
10m/s in (, t)-Cluster algorithm is due to the very low probability of a node actually
being clustered.

10M
ea

n
C

lu
st

er
 S

iz
e

(N
um

be
r

of
 N

od
es

)

*

+
* *

*
* *

+
+

++

0 42 6 8

4

2

6

8

10

1

*
+

* *

*
*

*
*

*

+
++++

+

+

M ean M obile Nodes Speed (m /s)

(a) Cluster S ize

*
*

+
+

a =0.4 a-SPCA
a =0.4 (a , t)-C luster
a =0.6 a-SPCA
a =0.6 (a , t)-C luster

10

C
lu

st
er

 A
ge

 (
m

in
)

0 42 6 8

20

10

30

40

50

0

M ean M obile N odes Speed (m /s)
(b) C luster Surv ival

*
*

+
+

a =0.4 a -SPC A
a =0.4 (a , t)-C luster
a =0.6 a -SPC A
a =0.6 (a , t)-C luster

Fig. 3. Comparison Cluster Properties of the Different Algorithms

 Comparison Data Availability with ARAM Algorithm

We compare ARAM algorithm and Static Replica Allocation algorithm (i.e. SRA,
replicas are distributed on fixed nodes, and the replica allocation scheme doesn’t
change during the whole process of simulation) with our algorithm. The data

J. Zheng, J. Su, and X. Lu 408

availability of the two approaches is plotted in Fig. 4. With nodes moving, the data
availability changes whenever the network partitions or merges. Because the first two
approaches do not consider the effects of network partitioning on data access, Fig 4(a)
shows more periodic and frequent rises and drops in data availability than Fig 4(b).
Predicting that the network partitions often present between clusters, we replicate data
object in every cluster that requests this data object. Thus, our algorithm greatly
improves the data availability to 96.5%.

We can draw two conclusions from simulations. Firstly, in our algorithm, dynamic
allocation of the replica effectively improves data availability, since the allocation is
decided based on the changing network topology and the prediction of the network
partitions. Secondly, our distributed algorithm only cannot ensure data availability of
those clusters in which all nodes have not requested the data object before network
partitioning occurs. Therefore the data availability is interrupted by chance in Fig. 4(b).

100

D
at

a
A

va
ila

bi
li

ty

0 4020 60 80

0.4

0.2

0.6

0.8

1

0

t (min)

SRA m ean=0.745
ARAM mean=0.864

(a) SR A and ARAM A lgorithm

100

D
at

a
A

va
ila

bi
lit

y

0 4020 60 80

0.4

0.2

0.6

0.8

1

0

t (min)

CDRA mean=0.965 a =0.6

CDRA mean=0.944 a =0.4

(b) CDRA Algorithm

Fig. 4. Comparison Data availability of Different Algorithms

6 Conclusion

In this paper, we have proposed a distributed clustering-based data replication
algorithm to address the data availability in partitionable ad hoc networks. We present
a fully distributed clustering algorithm based on the path stability between pairs of
nodes, which is used to predict the network partitioning. We replicate the data object
in the clusters that request this data object to prevent deterioration of data accessibility
at the point of network partitioning. Our simulations show that the clusters created by
our clustering algorithm have desirable properties and our replication algorithm
greatly improve the data availability under network partitioning. In the future work,
the algorithm should be improved to deal with replica conflict resolution and
reconciliation problem during network partitioning in the MANET environment.

References

[1] D. Baker, A. Ephremides, and J. A. Flyynn, “The Design and Simulation of a Mobile
Radio Network with Distributed Control,” IEEE Journal on Selected Area in
Communications, SAC-2(1):226-237, 1984.

A Clustering-Based Data Replication Algorithm in Mobile Ad Hoc Networks 409

[2] M.Gerla and Jack T. Tsai, “Multicluster, Mobile, Multimedia Radio Network”, Wireless
Networks, 1:255-265, 1995.

[3] Y.P.Chen, A.L.Liestman, “Approximating Minimum Size Weakly-Connected
Dominating Sets for Clustering Mobile Ad Hoc Networks”, MOBIHOC’02, June 9-
11,2002,EPFL Lausanne, Switzerland. pp. 165-172.

[4] M.Q.Rieck, S. Pai, and S. Dhar, “Distributed Routing Algorithm for Wireless Ad Hoc
Networks Using d-Hop Connected d-Hop Dominating Sets”, In Proceedings of the 6th
International Conference on High Performance Computing: Asia-Pacific (HPC Asia
2002), Tata McGraw Hill, 2002.Vol 2, pp. 443-450.

[5] J.Wu and H.Li, “A Dominating-Set-Based Routing Scheme in Ad Hoc Wireless
Networks”, Special issue on wireless networks in the Telecommunication Systems
Journal. Vol. 3, 2001. pp. 63-84.

[6] K.Wang and B.Li, “Efficient and Guaranteed Service Coverage in Partitionable Mobile
Ad-hoc Networks”, INFOCOM'02, New York, June 2002. pp.1089-1098.

[7] T.Hare, “Effective Replica Allocation in Ad hoc Networks for Improving Data
accessibility”, IEEE Infocom 2001, 2001. pp. 1568-1576.

[8] A.B.McDonal and T. Znati, “A Mobility Based Framework fo Adaptive Clustering in
Wireless Ad-Hoc Networks”, IEEE Journal on Selected Areas in Communication, Vol.
17, No. 8, August 1999. pp. 1466-1487.

[9] I.M.Bomze, M.Budinich, P.M.Pardalos, and M.Pelillo, “The Maximum Clique Problem”.
In D.-Z. Du and P. M. Pardalos, editors, Handbook of Combinatorial Optimization,
volume 4. Kluwer Academic Publishers, Boston, MA, 1999.

[10] J.Zheng, et al., “A Dynamic Adaptive Replica Allocation Algorithm in Mobile Ad Hoc
Networks”, In Proceeding of IEEE International Conference on Pervasive Computing
and Communications (PerCom’04). P65-70. Orlando, March 2004.

CACHERP: A Novel Dynamic Cache Size Tuning Model
Working with Relative Object Popularity for Fast Web

Information Retrieval

Richard S.L. Wu1, Allan K.Y. Wong1, and Tharam S. Dillon2

1 Department of Computing, Hong Kong Polytechnic University, Hong Kong SAR
{csslwu, csalwong}@comp.polyu.edu.hk

2 Faculty of Information Technology, University of Technology, Sydney Broadway,
N.S.W. 2000

{tharam}@it.uts.edu.au

Abstract. The novel CACHERP model for dynamic cache size tuning leverages
the relative object popularity as the sole parameter. It is capable of maintaining
the given hit ratio on the fly by deriving the popularity ratio from the currently
collected statistics. Being statistical the accuracy of the CACHERP operation
should be independent of the changes in the Internet traffic pattern, which can
switch suddenly. By adaptively maintaining the given hit ratio through cache
size auto-tuning in a dynamic manner the model effectively reduces the
end-to-end information retrieval roundtrip time (RTT).

Keywords: dynamic cache size tuning, popularity ratio, point-estimate,
statistical.

1 Introduction

Applications for running on the Internet are naturally distributed and object-based.
The objects always interact in the client/server relationship, which is also called the
asymmetric rendezvous. In this rendezvous it is normal for the server at one end to
answer the requests from different clients at the other [6]. Since the traffic patterns of
the different streams of client requests vary, the resultant pattern of the merged traffic
for the server queue becomes unpredictable.

The proxy/web-server interaction is an asymmetric rendezvous and the data
fetching roundtrip time (RTT) inevitably depends on the average number of trials
(ANT) to get a successful transmission. If the proxy keeps a large number of hot data
objects in its cache, the ANT would be reduced because of less requests made to the
server. The potential and real benefits from caching have inspired different relevant
areas of research, and the most-researched topic is improving hit ratio by efficient
replacement algorithms [1, 5, 8]. Our literature search indicates that there is little
experience, however, on how to maintain the given hit ratio consistently under all
conditions. This maintenance ability is significant because it always guarantees a
reasonable information retrieval time by reducing the average ANT value. In the
process it minimizes the chance of network congestion, which could otherwise be
created by the massive data transfer across the network. To achieve the goal of
maintaining the given minimum hit ratio the novel dynamic/adaptive caching model,

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 410–420, 2004.
© Springer-Verlag Berlin Heidelberg 2004

CACHERP: A Novel Dynamic Cache Size Tuning Model 411

namely, CACHERP (Dynamic Cache Size Tuning with Relative Object Popularity) is
proposed. It leverages the relative popularity of the data objects as the sole metric for
adaptive cache size tuning and maintenance. The ever changing profile of data object
probability over time is depicted in Fig. 1.

Fig. 1. Changes in the spread of the relative data object popularity profile

2 Related Work

There is a subtle difference between the effort to gain a high hit ratio and to
maintain a given/prescribed hit ratio. The rationale to gain a high hit ratio is to
keep as much hot data as possible in the local cache. The related issues to be
addressed in order to achieve this goal include: replacement algorithms [10],
caching scalability, filtration of cold data or “one-timers” [1], and adaptive web
caching architectures [7]. The extant replacement algorithms, however, cannot
upkeep the hit ratio consistently. The problem is that they work with a fixed-size
cache, and because of this they do not accommodate the changes in the
“popularity spread of the data objects”. Maintaining a given hit ratio requires
dynamic cache size tuning with respect to the spread of changes, best reflected by
the variance or standard deviation of the relative popularity file. This profile
changes with respect to the users’ shift in interest toward particular objects within
the data set. Fig. 1 shows the changes of the popularity spread or variance of the
data objects within the same set over time. SA and SB are the standard deviations
for the timely popularity profile A and B, which are captured at different time
points. If a cache of a fixed size is able to keep enough hot data for the given
confidence of one-standard deviation δ (or 68.4%) about the mean (i.e. AS=δ),
then it should not work for SB. Physically the wider SB needs a bigger cache to
hold extra hot data objects in order to satisfy the same given 68.4% confidence,
and this is the essence of dynamic cache size tuning [11].

R.S.L. Wu, A.K.Y. Wong, and T.S. Dillon 412

From the perspective of the changeful popularity spread in Fig. 1, any replacement
algorithm designed to gain a high hit ratio with a cache of static size S works well only
when the size δS required by the standard deviation δ is smaller than S (i.e. SS ≤δ).

To maintain the given hit ratio under all conditions, for example 68.4% (i.e. oneδ of the
popularity profile), the cache size should be timely and adaptively adjusted by leveraging
the chosen system parameters. The CACHERP model makes use of the log-log plot of the
“access frequencies versus the ranked positions of the data objects within the set”; a
higher frequency has a higher rank (in descending order) as shown in 0. The linear
regression that correlates the access frequencies (Y-axis) and the ranked positions R of
the data objects (X-axis) can be represented by:)1()(−−= RfRy highest γ , where

1≥R . This is the Zipf-like correlation that has been repeatedly observed and verified in
different research with traces [3], where γ is a curve fitting parameter. The CACHERP
model is built on our previous findings [11], and the relative popularity profile in Fig. 2 is
mapped into a bell function (or bell(x)) similar to Fig. 3. The mapping or conversion by
the “MAP” operator is conceptually. The resultant bell curve is the popularity distribution
(PD) that quantifies the relative popularity profile of the data objects in a timely fashion.
The Y-axis of the PD records the access frequencies (or probabilities) for the
corresponding objects on the X-axis. The PD variability (spread) is characterized by the
standard deviation (SD) that measures the popularity deviations by different data objects
from the “mean value”: y(1) = fhighest. That is, the object with the highest access frequency
in the Zipf distribution has become the “mean value” of the PD by mapping. Once the
SD of the current PD is computed from the life data sampled statistically, the popularity
ratio (PR) (explained in the next section) can be computed and used to adjust/tune the
cache size adaptively on the fly.

Fig. 2. Log-log regression

Fig. 3. Object Popularity Distribution

3 The Novel CACHERP Model

The CACHERP model tunes the cache size St adaptively to satisfy the tSS ≤δ

condition consistently, where σ is the given hit ratio to be maintained, δS is the
minimum cache size to achieve the goal and t of St indicates the time point at t. The

CACHERP: A Novel Dynamic Cache Size Tuning Model 413

adaptive tuning is based on the current popularity ratio (PR), which is directly
computed from the sampled standard deviation or the variance of the current PD. The
PR that tunes the cache size (CS) can be either the standard deviation ratio (SR)
shown by equation (3.1) or the variance ratio (VR) shown by equation (3.2):

=
LastSample

ThisSample
SROldSRTuned SD

SD
CSCS *__ (3.1)

2

__ *=
LastSample

ThisSample
VROldVRTuned SD

SD
CSCS (3.2)

where LastSampleThisSample SDSDVRSR == .

SDThisSample and SDLastSample are the two most current successive standard deviations for
the changeful PD. Equations (3.1) and (3.2) reflect the statistical nature of the
dynamic cache size tuning operation by CACHERP. The final cache size should be
adjusted to CSTuned_VR or CSTuned_SR. The SR approach, which requires smaller amount of
cache memory in the tuning process, however, is more suitable for small caching
systems. In fact, the number of small caching systems, which cost less than US$1000
and have limited memory resources, is substantial in the field [9]. Therefore this paper
focuses on verifying the SR approach (i.e. equation (3.1)). In the present stage of the
CACHERP research it is assumed that the popularity distributions are bell-shape and
unimodal with a gentle mode skew.

The Internet traffic follows the power laws and changes among different patterns
without warning. Therefore the accuracy of the method used to estimate the mean (μ)
and the standard deviation (δ) of the timely popularity distribution (0) should be
independent of the traffic patterns. For this reason the point-estimate (PE) technique,
which is based on the central limit theorem [4], is chosen for the real-time μ and δ
estimations. The PE has good qualities such as stability, time-proven effectiveness,
and traffic insensitivity. In order to differentiate the ideal μ and δ from their
estimated values with samples collected on the fly, the following are defined:

1. Estimated mean (x): It is for a sample of arbitrary size n, and for normal practice
the minimum value for n should be equal to or greater than 10.

2. Estimated standard deviation sx: It is the SD or δ calculated for the n data items.

If
x

δ is the standard deviation for the curve plotted with many x values, then the

central limit theorem supports the relationship of n
x

δδ = , provided that n is

large enough, and there is enough number of x values. The estimated value sx from
the current n data items, however, usually differs from the value

x
δ .

If the CACHERP model were to be deployed in real-life applications, then μ and δ
estimations should be carried out with respect to the given tolerances. The equation

(3.3), equationN − is derived by assuming the following tolerances:

)(
N

kkE
x

δδμ == (3.3)

R.S.L. Wu, A.K.Y. Wong, and T.S. Dillon 414

1. Fractional error tolerance (E): It is the fractional error about true mean, μ by

estimated mean, x .

2. SD tolerance (k): It is the number of standard deviations that x is away from the
true mean μ and still be tolerated.

The equationN − dictates the minimum sample size N to yield the acceptable
μ and δ predictions with respect to the specified k and E error tolerances. The

equationN − can be rearranged to become the ideal equation 3.4:

2

=
μ
δ

E

k
N (3.4)

Previous experience shows that for real-life applications x and sx instead of μ

and δ can be used yield N, and this converts equation (3.4) to equation (3.5):

2

=
xE

ks
N x (3.5)

The following example illustrates the usefulness and application of this conversion:

1. For 50 RTT samples (i.e. sample size n is 50), the following are estimated:

25=x and sx= 7.
2. The given tolerance is two standard deviations (i.e. k=2 or 95.4%), and the allowed

fractional error tolerance E is therefore 4.6% (E=0.046) because k and E connote
the same error.

3. The values above together yield 148
250460

72
2

≈=
*.

*
N .

The computed N in this case indicates that for satisfying the
x

kE δμ = criterion

the sample size must be at least 148. This implies that the sample size of n=50 used
for the data collection process is not good enough. This problem should be resolved
by one of the following approaches:

1. First approach: Collect at least another (126 – 50) or 76 RTT samples and then

estimate x and sx again, but this cannot guarantee the
x

kE δμ = criterion would

be satisfied.
2. Second approach: Collect another n=50 additional RTT samples and estimate

x and sx again, and if the freshly computed N is less than 2n (or 100 for one
additional round) then stop, otherwise repeat the process with additional n
sampled data items in every new round.

The past experience in different applications shows that the second approach

normally converges to satisfy
x

kE δμ = much faster. In most cases x and sx

stabilize in the second or the third trial [4].

CACHERP: A Novel Dynamic Cache Size Tuning Model 415

IF “Main”_has_the_request_data_object
THEN return the data
ELSE IF “Aux”_has_the name_of_the_data_object_being_requested
THEN { fetch_the_data_from_the_remote_source_and_return_it;
 cache_the_fetched_data_in_”Main”_as_well;}
ELSE {register_the_name_of_the_data_object_being_requested_in_”Aux”;
 fetch_the_data_from_the_remote_source_and_return_it;}

4 CACHERP Verification

4.1 Experiment Setup

The verification of the Java-based CACHERP prototype is carried out by simulation
over the Aglets mobile agent platform [2]. The Aglets choice is intentional because it
is designed for Internet applications, and therefore it makes the verification results
scalable and repeatable over the open dynamic Internet. The set up for the
verification experiments is shown in Fig. 4. The basic caching architecture used is the
stable "Twin-Cache System (TCS)" [1], as shown in Fig. 5. The aim of the TCS is to
filter the “one-timer” cold data to make the verification result more meaningful.
In the CACHERP verification experiments the dynamic cache size tuning applies only
to the main cache (Main) of the TCS system. The Main holds the actual data objects
while the auxiliary cache (Aux) contains only the names the data objects and their
actual contents may or may not be present in Main. Their presence depends on the
replacement dynamics as well as the inter-arrival times among the requests.

Fig. 4. Setup for the verification experiments

Fig. 5. The "Twin-Cache System (TCS)" algorithm

R.S.L. Wu, A.K.Y. Wong, and T.S. Dillon 416

In the simulations the same Least Recently Used (LRU) replacement algorithm is
deployed for both Main and Aux. The replacement mechanism pushes out those aged
objects that have stayed in the cache for the longest time. The simulations are carried out
over the Aglets running in a Sun workstation. In each simulation two aglets (agile applets)
interact in the client/server relationship over a stable designated Aglets ATP (Agent
Transfer Protocol) channel. The client generates requests with respect to a bell-shape PD
that represents the object popularity. A random number is generated as the access
probability (Y-axis) for the distinctive object represented on the X-axis. With the access
probability the corresponding object is found from the PD by interpolation. The
experimental results in this paper are generated with 40,000 objects of an average size of
5k. In each simulation 1,000,000 data object requests are generated, at an average rate of
0.67 requests per second. The cache size for Main is set to be large enough for 1 standard
deviation of data objects of first set of interleaving bell curves that yield the resultant PD.
For example, 5k is the first curve in the interleaving sequence: kk 105 → (explained
later). Such initialization has no impact on the final cache size because it is continuously
tuned at runtime. The CACHERP model is only verified with respect to the SR approach
(Equation 3.1) in the scope of this paper, with the parameters shown in the Table 1. To
summarize, the simulations involve the following details:

1. The bell-shape PD represents the pattern of the client requests (user preference). The
data object to be accessed is interpolated from the X-axis with the current random
number. Different bell curves are interleaved in a specific sequence to produce the
final PD in some experiments to simulate the ever changing shape of a real case.

2. The caching system (Fig. 4) in the simulations is the TCS that operates with the
TCS algorithm shown in Fig. 5.

3. The CACHERP mechanism tunes the size of the Main only at runtime.
4. The same LRU replacement algorithm is used for both Main and Aux.

The size of Aux is any thumb number [1]. For example, it is twice the number of
the objects that represent the given SD or hit ratio (1 SD is 68.4%) if a single bell
curve is used as the driving PD.

Fig. 6 shows the two bell-shape data sets, which are selected for demonstration
from the many different PD patterns used in the experiments. Each bell curve is used
independently to study the effect of the variability/spread on a static cache, when the
CACHERP is absent. They are also interleaved randomly to simulate the timely
changes in a PD. Other bell curves are used in the similar manner and purposes.

Table 1. The setup paramerters of the experiments

Parameter Name Value
Number of different objects 40,000
Mean of the objects (Mean object position in PD) 20,000
Average Object Size 5k bytes
Number of requests 1,000,000
Rate of requests 0.67 request per second
Initial Main Cache Size 1 SD of first bell cuve
Initial Aux Size 2 * capacity of Main
Initial sample size of n 10
The equation used of the CACHERP Model SR (Equation 3.1)
Replacement algorithm LRU

CACHERP: A Novel Dynamic Cache Size Tuning Model 417

Fig. 6. The two normal distributions for the 40,000 data objects

4.2 Experimental Results

Experiments were carried with different PD patterns, and some of the results are
shown in the Fig. 7. It was observed that the PE approach could generate serious hit
ratio fluctuations for the CACHERP dynamic tuning process. It generated high hit
ratios for different PD patterns, for example, 66.5% for the kk 105 → interleaving
sequence (Fig. 10). The kk 105 → sequence means that “the bell curve with
the 5k standard deviation is interleaved with the 10k one” in a cyclical manner.
The PE approach, however, also produced hit ratios that are lower than the expected

PD Pattern
...105 kk →

PD Pattern
...462 kkk →→

PD Pattern
...8453 kkkk →→→

Fig. 7. Average hit ratios for Fixed Cache System and CACHERP with different PD patterns

R.S.L. Wu, A.K.Y. Wong, and T.S. Dillon 418

Fig. 8. The hit ratio changes for the fixed (size) cache system with the PD pattern generated by
the bell curve interleaving sequence: kkkk 8453 →→→

percentage (e.g. 49.8% for the sequence: kkk 462 →→ in Fig.10). When
compared to the fixed (size) cache system, which works with a static cache size as the
control for comparison in the verification experiments, the PD sequence: kk 105 →
yields an improvement of 50% [i.e. (66.5%-44.1%)/44.1%]. For the sequences:

kkkk 8453 →→→ and kkk 462 →→ , the hit ratio improvement by CACHERP
are only 22% [i.e. (49.7%-40.8%)/40.8%] and 37% [i.e. (49.8%-36.4%)/40.8%]
respectively, with the fixed cache system as the control for comparison. Fig. 8 and
Fig. 9 show the changes of the hit ratio of the fixed cache system and CACHERP for
the different PD sequences/patterns. Fig. 8 shows that the hit ratio of the fixed cache
system drops a lot when the standard deviation of the requests increases/widens
suddenly. Fig. 9 shows how the CACHERP tries to tune the cache size for the current
standard deviation so that the given hit ratio could be maintained.

From the preliminary experimental results we conclude that the CACHERP is
indeed capable of using dynamic cache size tuning to maintain the given hit ratio,
independent of the changes in the Internet traffic pattern. The CACHERP mechanism

Fig. 9. The hit ratio changes for the CACHERP with the PD pattern generated by the bell curve
interleaving sequence kkkk 8453 →→→

CACHERP: A Novel Dynamic Cache Size Tuning Model 419

working with the PE approach, however, cannot maintain the given hit ratio in a
consistent manner. This implies the following: a) other alternative statistical
methods based on the central limit theorem should be explored, b) accurate dynamic
buffer tuning with relative object popularity as the sole parameter is viable, and c)
the concept of using the popularity ratio as the tuning mechanism is technically
sound because its simplicity requires short computation to minimize deleterious
effects.

5 Conclusion

The novel CACHERP model proposed in this paper is for dynamic cache size tuning,
with the aim to maintain the given hit ratio adaptively on the fly. By doing so it
reduces the chance of retransmission in the information retrieval process over the
Internet and thus the ANT consistently. The CACHERP tuner leverages the relative
object popularity as the sole parameter for its statistical operation, which is
independent of traffic pattern changes in the environment. To attain traffic
insensitivity the point-estimate approach, which is based on the central limit
theorem, is adopted for estimating the mean and standard deviation of the current
popularity distribution. From two successively estimated standard deviations the
popularity ratio, which decides the magnitude of the cache size adjustment on the
fly, is computed. The results confirm that the CACHERP model is indeed adaptive,
but the PE approach does not upkeep the given hit ratio in a consistent manner. The
next step in the near future is therefore to explore other suitable methods so that the
CACHERP can maintain the given hit ratio under all conditions with stability and
consistency.

Acknowledgement

The authors thank the Hong Kong Polytechnic University for the grant: HZJ91.

References

1. C. Aggarwal, J.L. Wolf and P. S. Yu, Caching on the World Wide Web, IEEE
Transactions on Knowledge and Data Engineering, 11(1), 1999

2. O. Mitsuru and K. Guenter, IBM Aglets Spec, http://www.trl.ibm.com/aglets/spec11.htm
3. L. Breslau et al, Web Caching and Zipf-like Distributions: Evidence and Implications,

Proc. of Infocom’99, April 1999
4. J.A. Chisman, Introduction to Simulation and Modeling Using GPSS/PC, Prentice Hall,

1992
5. S. Glassman, A Caching Relay for the World Wide Web, Proc. of the 1st International

Conference on the World Wide Web, Geneva, Switzerland, May 1994
6. S.M. Lewandowski, Frameworks for Component-Based Client/Server Computing, ACM

Computer Survey, March 1998, 3–27
7. S. Michel et al., Adaptive Web Caching: Towards a New Caching Architecture, Computer

Network and ISDN Systems, November 1998

R.S.L. Wu, A.K.Y. Wong, and T.S. Dillon 420

8. V. Milutinovic, Caching in Distributed Systems, IEEE Concurrency, 8(3), July-September
2000

9. D. Wessels, Web Caching, O’Reilly & Associates Inc., 2001
10. Kun-lun Wu and Philip S. Yu, Latency-Sensitive Hashing for Collaborative Web Caching,

IBM Research Report RC21672, February 2000
11. Richard S.L. Wu, Allan Kang Ying Wong and Tharam S. Dillon, E-MACS: A Novel

Dynamic Cache Tuning Technique to Maintain the Prescribed Minimum Hit Ratio
Consistently for Internet/www Application, WSEAS Transactions on Computers, 2(3),
April 2004, 430–434

Implementation of a New Cache and Schedule
Scheme for Distributed VOD Servers

Han Luo and Ji-wu Shu

Department of Computer Science and Technology, Tsinghua University,
Beijing 100084, China

lh98@mails.tsinghua.edu.cn

Abstract. A VOD server’s caching and scheduling performance deter-
mine its service performance efficiency. This paper describes a new cache
model and content replacement strategy, based on the Zipf-like Law and
the characteristics of media stream service, which can reduce the disk
I/O ratio by 6.22%. A performance analytical model for a disk load
schedule was constructed, based on the Stochastic Process and Queuing
Theory, and a new disk load strategy suitable for VOD systems was also
formulated. This strategy reduces the disk block time by 3.71% on av-
erage. This paper also describes a content schedule scheme which was
designed by constructing, analyzing and simplifying the SPN model de-
duced from the MSMQ theory. This scheme can guarantee the quality of
service(QoS) and distribute program content automatically. An experi-
ment was conducted, and the results showed that VOD servers embedded
with the new cache and using the new schedule strategy could reduce the
average response time to user requests by 7% to 19%.

1 Introduction

Video-On-Demand (VOD) service is an essential component of many multimedia
applications. The service allows geographically distributed users to interactively
access video files from remote VOD servers. Due to the real-time and synchro-
nization of audio-video stream transport, and the large size of video files, the
network transport requests and disk capacity requirements exceed those of other
services, such as web and e-mail, when the server serves the same quantity of
subsequent users.

2 Related Work

To support more subsequent users, VOD servers ordinarily have distributed
system architecture. The multi-level distribution of service can guarantee the
response time and support more subsequent users and the multi-level distribu-
tion of storage could, theoretically, increase the storage capacity to an unlim-
ited amount of space. However, this distribution increases the complexity of the
scheduling among servers. And the large scale of the video-file sizes makes tradi-
tional cache mechanisms unsuitable. In addition, the number of video files on the

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 421–432, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

422 H. Luo and J.-w. Shu

internet has been increasing geometrically, leading to a rapid rise in the demand
for increased storage capacity on servers. At present, most VOD systems are
equipped with multi-level distributed storage. When a user request arrives and
the video file does not exist in local storage, there are two possible solutions: get
the video file from other servers, or redirect the task to other servers. Presently,
most research and implementation focuses on task redirection, not on the storage
schedule. But in practical use, by reason of network and operator, task redirec-
tion may cause a load imbalance, making it impossible to guarantee the QoS.
Therefore, the storage schedule must be addressed before the performance and
robustness of VOD servers can be guaranteed.

Content Distribution Networks, (CDNs)[3], are commonly placed between
the server and users as a cache device for network service. A CDN caches the
data stream from server to user, and when the data is requested again, the
CDN can provide the data directly. [4] compares the performance of a CDN
device in different services. However, the kernel technology of CDNs is cache
management and traditional multimedia content transport proxy, whereas the
kernel technology of multimedia stream systems is the high-speed transport and
distribution of stream data. And in CDN devices, any content is a Web Object,
no matter what the files size or predicted characteristics are. CDN devices do not
consider the application logic and data characteristics of the service; therefore
low efficiency of CDN is unavoidable.

In the field of disk scheduling, most research has focused on how to provide
an I/O stream more effectively on one disk. [5] described a block storage scheme
to reduce disk seek time during multitasking. [6] introduced the DIOMS sched-
ule strategy for multi-disk-request application. Howeverin real applications most
servers correspond with several disk arrays, and even with multi-level storage,
which is composed of flash, disk array and tape device storage. The disk service
time is much longer for VOD service than for other services, which means that
the probability of a disk block is much greater. Therefore, to ensure the robust-
ness of VOD servers, how to guarantee the disk service is more important than
how to provide a more effective I/O stream on one disk.

In this study, we adopted service-embedded cache architecture and designed
a new cache replacement strategy, which adequately considers the application
logic and service characteristics of VOD systems, such as the Zipf−like [11] Law
and the population of a program. The new strategy improves the cache hit rate,
keeps more content of the most popular programs in the cache, and reduces the
disk output. To address disk scheduling, we developed a new schedule strategy
by deducting the disk-blocking probability function based on the Queue Theory,
and by calculating the extremum as the reference of the schedule strategy. The
new disk schedule strategy can reduce the disk-blocking probability and improve
system robustness. For the content scheduling, based on the MSMQ theory,
we deducted a content schedule blocking probability function, and designed a
strategy by function extremum. The new content schedule scheme distributes
the new video files from one server to other servers automatically and balances
the load among servers.

Implementation of a New Cache and Schedule Scheme 423

Moreover, to implement caching and scheduling, we provided for compatibil-
ity with IA64, and utilized the high performance and large RAM capability of
IA64 to improve the performance of VOD servers.

3 Multi-level Distributed VOD System Architecture

Our VOD system had a hierarchical distributed structure, consisting of several
VOD server units, following the DAVIC protocol. One VOD server unit consisted
of one application server (AS), one management server (MS), and one or several
pump servers (PSs). The AS was responsible for the response to users’ requests,
the transmission of the playbill, and the load balancing of the PSs. The PSs
were responsible for reading the video files, the transmission of the multimedia
stream, and the response to the users’ VCR requests. The MS was responsible
for the management of users and video-files. Each VOD server unit could provide
the self-contained VOD service for a stated amount of users, including ordering
programs and managing users.

Our VOD system had a hierarchical distributed structure with n levels. The
first level consisted of central server units (0 . . . M1), where M1, an arbitrary
natural number, denotes the number of central server units. The second level
consisted of region server units (0 . . . M2), where M2, an arbitrary natural num-
ber, denotes the number of region server units. The last level, which provides
service directly to the users, consisted of end server units (0 . . . Mn), where Mn,
an arbitrary natural number, denotes the number of end server units.

Any user request will be assigned to a PS, which can be located by a vector:
PS(m1, m2, . . . , mn)),where 0 ≤ m1 ≤ M1, 0 ≤ m2 ≤ M2, . . . , 0 ≤ mn ≤ Mn, n
is level depth of PS.

The performance of VOD servers is determined by these two factors:

1. The amount of subsequent streams and network I/O bandwidth supported
by one PS.

2. The response time for user requests, including ordering requests and VCR
requests.

In the entire VOD system, a program has a unique identifier: Pi, for which
0 ≤ i < Pcount, and Pcount is the count of all programs. In order to accelerate the
disk’s multi-task seeking and reading, the VOD storage employs block-deposit
technology. Therefore a program can be divided into a vector:

Pi = (Pi,1, Pi,2, . . . , Pi,length(Pi)), where length(Pi) is the count of Pi’s block.
We defined tick(Pi,j) as the transmit start time of Pi’s j-th block.
We defined some variables for PS(m1, m2, . . . , mn):

1. C(m1, m2, . . . , mn): The maximal amount of subsequent streams supported
by PS(m1, m2, . . . , mn).

2. ΩLocal(m1, m2, . . . , mn): The set of all program blocks in PS(m1, m2, . . . ,
mn)’s local storage.

3. ΩCache(m1, m2, . . . , mn): The set of all program blocks in PS(m1, m2, . . . ,
mn)’s cache.

424 H. Luo and J.-w. Shu

When a user request for Pi is assigned to PS(m1, m2, . . . , mn), PS(m1, m2,
. . . , mn) starts to prepare all the blocks of Pi, copying each block to the memory,
and pushing the block to the user consecutively.

There are three possibilities for the prefetching of program block Pi,j :

1. Pi,j ∈ ΩCache(m1, m2, . . . , mn).
2. Pi,j ∈ ΩLocal(m1, m2, . . . , mn).
3. Pi,j ∈ [

⋃
ΩCache(m

′
1, m

′
2, . . . , m

′

n′)] ∪ [
⋃

ΩLocal(m
′
1, m

′
2, . . . , m

′

n′)], where
(m

′
1, m

′
2, . . . , m

′

n′) �= (m1, m2, . . . , mn).

4 Cache Scheme for Distributed VOD Servers

When Pi,j satisfies the first condition, Pi,j ∈ ΩCache(m1, m2, . . . , mn), the block
is in the local cache and prefetching has finished.

However, cache devices are much more expensive than disk storage devices.
Therefore how to utilize the finite cache space is the key to the cache scheme.

By statistical analysis, we learned that the program request would allow the
Zipf − like Law [11]. Assuming that there are N programs in the VOD system,
and sorting these program by access frequency, the access frequency can be
obtained by this formula:

PN (i) =
Ω

iα
, where Ω = (

N∑
i=1

1
iα

)−1. (1)

This is known as the Zipf − like Law. For the Zipf Law, α = 1. But in our
experiment, α was usually between 0.8 and 0.9.

We deducted the formula above, and obtained the access frequency for the
top k programs:

φN (k) =
k∑

i=1

PN (i) =
k∑

i=1

Ω

iα
≈ Ωk1−α

1− α
, where Ω = (

N∑
i=1

1
iα

)−1 ≈ 1− α

N1−α
. (2)

And we found that φN (k) = (k
N)1−α.

Making the cache hit rate equal to β, we found that

φN (k) = (
k

N
)1−α = β ⇒ k = Nβ

1
1−α . (3)

For instance, if N = 1000 and α = 0.8 , and we want β = 50%, then
k = 1000 × 0.55 ≈ 32. This means that the cache capacity of the server unit
must be large enough to contain 32 video files. If we want β = 60%, then
k = 1000× 0.65 ≈ 78.

Among the traditional cache replacement strategies, Perfect-LFU (Least-
Frequently-Used) can maintain the highest cache hit rate. We improved the
Perfect-LFU strategy, adapting it for VOD service.

Implementation of a New Cache and Schedule Scheme 425

First the AS calculates the access frequency of every program, and sorts
them. Secondly, the AS can be conscious of the cache table of all PSs in the
server unit. The cache table includes the program block’s ID and a count for
this block. When a user request arrives, the AS queries the cache table and
looks for an appropriate PS to assign the task to, matching the task to the PS’s
cache content. Therefore the cache content can be utilized fully.

When the AS assigns the user request to a PS, the AS tells the PS the access
frequency of the program. The PS initializes or increases the count of cache page
by this frequency. This ensures that the most popular programs are not deleted
from the cache page.

For the program Pi, Pi = (Pi,1, Pi,2, . . . , Pi,length(Pi)), each block corresponds
to a cache page, and the initial values of the count of cache pages constitute a
vector: Ci = (Ci,1, Ci,2, . . . , Ci,length(Pi)).

Most VOD operators will establish a rule: when the program’s run time does
not exceed , the user does not need to pay. According to the statistical data, the
access frequency of each block in one program satisfies: Freqi(j) = ρ(τu

vj), where
ρ is a scale factor, and v is each block’s run time.

When initializing the cache page, the PS adds weight to the initial count by
the access frequency, thus Ci,j = HP (τu

vj), where HP is the access frequency of
the program.

When the AS calculates the access frequency, the AS also exchanges access
frequency information with the parent AS, and thus both the AS and its parent
are updated. By this means, servers can anticipate the trend of changes in the
most popular programs, and maintain the cache hit rate.

5 Disk Schedule for Distributed VOD Servers

When Pi,j satisfies the second condition, the block is in local storage and will be
fetched. The stream of all the disk requests is regarded as a Poisson Process. The
rate is λ and the average serving time is t, thus the traffic intensity is A = λt.

According to the Queue Theory, each disk is an M/G/n/n queue system, in
which n is the count of subsequent I/O streams the disk supports. Assume disk
k provides the αk for all streams. According to the Erlang B formula, when disk
k provides ηk streams, the block probability of disk k is

Bαk
=

(Aαk)ηk/ηk!∑ηk

i=0(Aαk)i/i!
, where αk ≥ 0 (4)

Assume that there are D disks in a server unit. Then the block probability
of the server unit is:

B =
D∑

k=1

αkBαk
=

D∑
k=1

αk
(Aαk)ηk/ηk!∑ηk

i=0(Aαk)i/i!
, where

D∑
k=1

αk = 1 (5)

Import an arbitrary constant K, define as:

426 H. Luo and J.-w. Shu

G =
D∑

k=1

αk
(Aαk)ηk/ηk!∑ηk

i=0(Aαk)i/i!
−K(

D∑
k=1

αk − 1) (6)

Then let

∂G

∂αk
=

∂

∂αk

(
αk

(Aαk)ηk/ηk!∑ηk

i=0(Aαk)i/i!

)
−K = 0 (7)

Assume vector αmin = (αmin
1 , αmin

2 , . . . , αmin
D) is the solution of the equation

above. Then

(Aαmin
k)ηk

ηk!

∑ηk

i=0
(Aαmin

k)i(ηk+1−i)
i!

(
∑ηk

i=0
(Aαmin

k
)i

i!)2
= K (8)

viz.
Bαmin

k
[ηk + 1−Aαmin

k (1−Bαmin
k

)] = K (9)

Using the iterative method, we can get the vector αmin = (αmin
1 , αmin

2 , . . . ,
αmin

D). The disk schedule strategy is that α must satisfy min(|αmin − α|).

6 Program Schedule for Distributed VOD Servers

When Pi,j satisfies the third condition, the block does not exist in local storage
and will be fetched from another PS and pushed to the user. This operation is
called as program schedule task r classified by i,j. Because there are multiple PS
servers for program scheduling, the system can be considered as a multi-server-
multi-queue (MSMQ) system, as illustrated in Fig. 1.

For description convenience, we make the following assumption:

1. Each system contains m servers, and accepts n class of tasks. The i-th task
is named ri, and the j-th server is named sj .

Fig. 1. MSMQ’s SPN Model

Implementation of a New Cache and Schedule Scheme 427

2. Each server contains a cache queue. sj ’s queue is marked as qj , and qj ’s
cache capacity is marked as bj . qij denotes the logistic queue of sj to accept
task ri. bij is the capacity of qij , and M(qij) is the number of the token of
ri in qij .

3. The arrival of any class of task is a Poisson Process. The arrival rate for ri is
λi, and ri can be assigned into any queue. When all of the queues are filled
up, the task will be rejected.

4. The service time for every server to process each task can be different. sj ’s
service rate is defined as μj .

From among the RR, SQR, SEDR and OSEDR schedule algorithms, we
selected the SEDR because it can maintain high performance in most conditions.
We controlled the schedule performance by setting bij .

We constructed a corresponding Markov chain of the SPN model. Because
the computers currently in use can not accurately solve a m× n Markov chain,
we disassembled the model to several simple sub models.

The whole SPN model is divided into m× n simple sub models. Fig. 2 illus-
trates the disassembled sub model Aij . cij is the time transition of task ri being
assigned to qij .

We used P [M(qij)] to denote the steady status probability of M(qij), and
defined some steady status probability for some conditions:

P [M(qik) > t] =
∑

x=t+1

P [M(qik) = x], (10)

P [tik ×M(qik) > t] =
∑
x>t

P [tik ×M(qik) = x] (11)

P

⎡
⎣ n∑

y=1

M(qyk) >

n∑
i =x=1

M(qxj) + t

⎤
⎦ =

∑⎧⎨
⎩

n∏
y=1

P [M(qyk) = fyk]×
n∏

i =x=1

P [M(qxj) = hxj]

⎫⎬
⎭ (12)

Fig. 2. Disassembled SPN model

428 H. Luo and J.-w. Shu

P

⎡
⎣ n∑

y=1

tyk ×M(qyk) >

n∑
i =x=1

txj ×M(qxj) + t

⎤
⎦ =

∑⎧⎨
⎩

n∏
y=1

P [tyk ×M(qyk) = fyk]×
n∏

i =x=1

P [txj ×M(qxj) = hxj]

⎫⎬
⎭ (13)

where
n∑

y=1

fyk >

n∑
i =x=1

hxj + t

The schedule transition probability can be denoted in sub model Aij : (1 ≤
j ≤ m, 1 ≤ i ≤ n). In the SEDR schedule strategy, the enforceable probability
of transition cij is

pij =
m∑

j =k,k=1

P [tik ×M(qik) > t] + · · ·

+
∏

j =k,k∈Q

P [tik ×M(qik) > t]×
∏

j =x,x/∈Q

P
[
M(qix) = b(ix)

]
+ · · ·

+
m∏

j =k,k=1

P [M(qik) = bik] + · · ·+ 1
‖Q‖

∏
k∈Q

P [tik ×M(qik) = t]

×
∏
x/∈Q

P [tix ×M(qix) > t]×
∏
y/∈Q

P [M(qiy) = biy]

where tij ×M(qij) = t.
We solved the m × n submodel by the SPNP software, and obtained the

response time of the system:

f(b11, . . . , bij , . . . , bnm) = tResponseTime. (14)

Then

∂

∂bij
f = 0, where 1 ≤ j ≤ m, 1 ≤ i ≤ n. (15)

The calculation of b is very complex. However it does not need to be calculated
in real time. Therefore, enough data could be collected in the experiment period,
and the SPN model could be solved to get the best matrix b.

7 Experiment and Result

We implemented the cache and schedule scheme, and conducted a series of ex-
periments. In each experiment, we built two VOD servers, the one was the old

Implementation of a New Cache and Schedule Scheme 429

Fig. 3. Cache hit rate

server, the other was the new server embedded with the new cache and using the
new schedule strategy. By this way, we could estimate the efficiency improved
by the new scheme.

First, we conducted a cache hit rate experiment. The local storage contained
512 video files in each unit, and the central storage contained 4096 video files.
We set the prospective cache hit rate to 50%. The data in the experiment was
sampled at periods of 10 min/time.

As shown in Fig. 3, the average cache hit rate of the old server was 45.5716%,
however the new server’s was is 51.3697%. In addition, the network output of
the new server within one week was 73.325TB, and the data read from the cache
was 39.053TB, accounting for 53.26%. However the network output of the old
server within one week was 68.195TB, and the data read from the cache was
32.076TB, accounting for 47.04%.

In the disk schedule experiment, we first tracked the disk block times and
subsequent user counts of the new and old servers and compared the two results.
When the subsequent user count was low, the two schemes were indistinguishable
from each other. However when the subsequent user count exceeded 1000, the
new scheme could reduce disk block times in comparison to the old one. When
the subsequent user count was between 1000 and 1300, the average disk block
times decreased 3.71%, as shown in Fig. 4.

We also needed to determine whether the new scheme would lead to a load
imbalance. As shown in Fig. 5, the load assigned to the three disks of the eight
experimental disks was very balanced.

In the program schedule experiment, we constructed 8 experimental server
units. The first one was the central server unit, and the others were regional
server units that provided service for users. We analyzed the network connect-
ing the units, and simulated a multi-operator environment. Then we obtained
matrix b :

430 H. Luo and J.-w. Shu

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
1 0 0.53 0.55 0.44 0.32 0.12 0.17
1 0.53 0 0.58 0.39 0.31 0.13 0.09
1 0.55 0.58 0 0.77 0.73 0 0
1 0.44 0.39 0.77 0 0.70 0 0
1 0.32 0.31 0.73 0.70 0 0 0
1 0.12 0.13 0 0 0 0 0.62
1 0.17 0.09 0 0 0 0.62 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

In the experiment, we copied some video files to each server unit, and ensured
that there were more than 10 different video files between every two servers. The
network stream was traced for 3 days, and the result was: (Unit = 10GB)

Fig. 4. Relationship of disk block times and subsequent user load

Fig. 5. Load assigned to three of eight disks used in the experiment

Implementation of a New Cache and Schedule Scheme 431

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
19.3 0 22.8 24.9 23.2 23.9 9.33 17.3
22.1 24.4 0 23.4 39.1 41.3 12.3 3.43
15.3 33.2 19.2 0 32.1 55.2 0 0
12.3 25.1 22.8 32.9 0 33.2 0 0
24.3 17.9 23.9 22.8 41.2 0 0 0
22.1 10.2 17.3 0 0 0 0 32.3
18.2 9.78 7.03 0 0 0 54.2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

After a week, we checked the local storage and the cache of the eight units,
and found that each server unit had a copy of the top 10 video files. The program
schedule worked as we designed it to.

In the last experiment, we focused on the relationship of average user re-
sponse time and subsequent user count and the incremental percentage of the
performance.

Fig. 6. Relationship of user response time and subsequent user count

As shown in Fig. 6, when the subsequent user count was the same for both
servers, the new server’s user response time was lower than that of the old server.
And when the subsequent user count was between 500q0 and 8000, the response
time was reduced by 7%-19%, which is considerable.

8 Conclusion

The new scheme described in this paper improves the VOD server’s performance
by implementing cache, disk schedule and program schedule. The new cache re-
placement strategy considers the application logic and data characteristics fully.
The new disk schedule strategy considers not only the load balance but also the
disk block probability. Implementing the new program schedule strategy among

432 H. Luo and J.-w. Shu

multiple server units can guarantee QoS and automatic program distribution.
The result of the experiment proved that , by adding these three new strategies
into VOD servers, the response time could be reduced effectively, and disk read
and block times could also be reduced obviously. In future work, we will research
how to take advantage of network bandwidth and reduce the redundancy in the
network output by multicast and stream patching technology.

Acknowledgement

The work described in this paper was supported by the National High-Tech
Research and Development Plan of China under Grant (No.2001AA111110 and
No.2004AA111120).

References

1. Sang-Ho Lee, Kyu-Young Whang, Yang-Sae Moon, Wook-Shin Han, Il-Yeol Song,
Dynamic buffer allocation in video-on-demand systems, Knowledge and Data En-
gineering, IEEE Transactions on, Volume 15, Issue 6, Nov.-Dec. 2003 Pages:1535-
1551

2. Yu Chen, Qionghai Dai, Research on model and scheduling algorithm for double-
mode VoD servers, Computer Networks and Mobile Computing, 2003. ICCNMC
2003. 2003 International Conference on, 20-23 Oct. 2003 Pages:297-302

3. Gang Peng, CDN: Content Distribution Network, Experimental Computer Systems
Lab Technical Reports, State University of New York, Jan. 2003.

4. Serge A. Krashakov, Lev N. Shchur ,Comparative measurements of Internet traffic
using cache-triangle (2001), WCW2001 proceedings, June, 2001

5. P. Bocheck, H. Meadows, and S.-F. Chang, A Disk Partitioning Technique for Re-
ducing Multimedia Access Delay, Conference on Distributed Multimedia Systems
and Applications, Honolulu, Aug., 1994.

6. Hai Jin, Jie Xu, Bibo Tu, Shengli Li, Disk I/O mixed scheduling strategy for VoD
servers Circuits and Systems, 2003. ISCAS03. Proceedings of the 2003 International
Symposium on, Volume 2, 25-28 May 2003 Pages:II-504 - II-507 vol.2

7. M. Barreiro, V. M. Gul’as, Cluster setup and its administration. In Rajkumar
Buyya, editor, High Performance Cluster Computing, Vol. I. Prentice Hall, 1999.

8. S. A. Barnett and G. J. Anido, A cost comparison of distributed and centralized
approaches to video-on-demand, IEEE J. Select. Areas Commun., vol. 14, pp. 1173-
1183, Aug. 1996.

9. J. Armstrong, R. Virding, C. Wikstrom, M. Williams. Concurrent Programming
in Erlang, Second Edition, Prentice-Hall. 1996.

10. The Digital Audio-Visual Council (DAVIC) Opening Forum
11. Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker. Web caching and

zipf-like distributions: Evidence and implications , Technical report, University of
Wieconsin-Madison, Department of Computer Science, 1210 West Dayton Street,
July 1998.

12. A. Dan, er’al, Buffering and Caching in large-scale video servers, IEEE CompCon
Conference, pp.217-224, 1995.

 J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 433-445, 2004.
© Springer-Verlag Berlin Heidelberg 2004

UML Based Statistical Testing Acceleration of
Distributed Safety-Critical Software1

Jiong Yan, Ji Wang, and Huo-wang Chen

National Laboratory for Parallel and Distributed Processing, Changsha, P.R. China
yanjiong7172@vip.sina.com, jiwang@mail.edu.cn

Abstract. It is necessary to assess the reliability of distributed safety-critical
systems to a high degree of confidence before they are deployed in the field.
However, distributed safety-critical software systems often include some rarely
executed critical functions that are often inadequately tested in statistical testing
based reliability estimation. This paper presents a method that can accelerate
statistical testing of distributed safety-critical software. The method starts with
the derivation of scenario usage diagram model (SUD) from UML diagrams
annotated with usage related attributes and reliability attributes. Then the statis-
tical testing accelerating method based on importance sampling is presented.
When both the critical scenarios and the entire software are adequately tested,
the method can still compute the unbiased software reliability from the test re-
sults with much less test cases. Thus, the statistical testing cost of distributed
safety-critical software can be reduced effectively.

1 Introduction

Distributed process-control systems are widely used because of the price/performance
ratio, flexibility and scalability. It is important to build high dependable distributed
process-control systems because these systems are often safety-critical, whose failures
are often catastrophic. Thus, the validation of non-functional requirements, such as
reliability, is becoming more important for distributed process-control software.

The general method to assess software reliability is to test the software according
to the software Markov chain usage models, which is called statistical testing, sug-
gested by the Cleanroom Software Engineering [11]. However, statistical testing
based reliability assessment for the distributed safety-critical software has drawbacks.

Distributed safety-critical software often includes some critical functions, which
are rarely executed and are often inadequately tested in statistical testing. However,
any failure of these functions can result in catastrophic loss of life and property.
Hence, it is essential to ensure that these functions meet their reliability requirements
prior to deploying them in the field. Though we can adjust the usage distribution to

1 This work is supported by National Natural Science Foundation of China under Grant

No. 60233020 and No. 90104007, National Hi-Tech Program of China under Grant No.
2001AA113202 and No. 2001AA113190, and Huo Ying Dong Education Foundation under
Grant No.71064.

J. Yan, J. Wang, and H. W.Chen 434

ensure that those critical functions are tested more frequently, however, this may
make the estimation from test does not yield an unbiased reliability estimate anymore.

The aim of this paper is to show that this disadvantage of statistical testing can be
solved in such a way that, one may get unbiased reliability estimates, and at the same
time, can effectively reduce the number of test cases needed while both the software
and critical functions are tested adequately. Thus, the statistical testing can be effec-
tively accelerated and the test cost can be reduced.

While UML has been the de-facto standard object-oriented modeling language,
the UML artifacts provide a common notation ground to represent and validate soft-
ware system. Thus, making the relevant technique based on UML artifacts will make
the reliability estimation and statistical testing acceleration very appealing to software
engineering practitioners. In this paper we use annotated UML diagrams to support
statistical testing acceleration in the early stage of distributed software development.

The rest of the paper is organized as follows. Section 2 discusses the derivation of
scenario usage diagram model (SUD) from UML diagrams. Section 3 proposes how to
accelerate statistical testing based on SUD. Section 4 presents a case study. Section 5
reviews the related work. We conclude with a summary and future work in section 6.

2 Deriving SUD from UML Artifacts

2.1 Annotated UML Artifacts

In the UML based software development, use cases describe software high-level
functionalities, and sequence diagrams describe scenarios, which depict how system
components and actors interact in order to provide a system level functionality [7].

To execute a use case, specific preconditions must be satisfied. Thus, a use case
UC can be defined as UC = (preuc, SDSetuc) where SDSetuc is the set of sequence dia-
grams associated with the use case, preuc is the precondition of the use case, specified
with Object Constraint Language (OCL) [7]. The environment of the software system
is represented by actors.

We assume that for each use case, all the relevant scenarios have been identified
and specified with sequence diagrams. Let cmpntm be a set of identifiers and failure
probabilities of the components of the software system that participate in the interac-
tion of the sequence diagram m, that is, cmpntm={(c1, cpf1), (c2, cpf2),…, (cn, cpfn)},
where ci is the component identifier and cpfi is the component failure probability.

Sequence diagrams provide the information about the order in which interactions
occur. When an interaction enters a component’s axis (i.e., the component receives a
service request), the component is invoked. For each use case, the execution of differ-
ent scenario may cause the software enter different state. Thus, we attach a postcondi-
tion for each sequence diagram. A sequence diagram m annotated with usage annota-
tions can be defined as a 4-tuple: m = (cmpntm, msgm, postm, pfm), where

 cmpntm is a finite set of components.
 msgm is a finite set of messages between components. A message is labeled by a

message name and corresponding parameter list. We assume that all messages in
a sequence diagram are totally ordered.

UML Based Statistical Testing Acceleration 435

 postm is the execution postcondition of the sequence diagram m, specified with
OCL, which determines the next use case to be executed.

 pfm is the execution probability of m in its associated use case, which means that
for all sequence diagram m in use case U, 1=

∈Um mpf .

Use cases not only have <<extend>> and <<include>> relationships but also exe-
cution sequence relations which reflect the business process the software supports [1].
Software testing must consider the use case execution sequence relations because
different execution sequences may trigger different failures. We can represent execu-
tion sequence relations between use cases by an activity diagram [2]. In such a dia-
gram, vertices are use cases and the edges are execution sequence relations between
use cases. The join and fork synchronization bars may present the synchronization
among use cases. The execution sequence relations of use cases can be defined as
UCExecRelation = (UCSet, s0, sf, V, , δ), where

 UCSet is the set of software use cases.
 s0 is the initial node of the software execution and sf is the final node.
 V = {s0, sf} ∪ UCSet.
 = ∪(preuc ∪ postm), which is the state set specified in the preconditions of use

cases and the postconditions of sequence diagrams.
 δ: V × × [0, 1] → V is the function that specifies the execution sequence rela-

tions between use cases, initial node and final node.

Thus, a UML model that describes the software functionalities can be defined as:

system = (actors, UCSet, UCExecRelation)

where actors is the set of software users, UCSet is the set of software use cases and
UCExecRelation is the execution sequence relations of use cases.

It is necessary to consider the reliabilities of the communications between compo-
nents in a distributed software system. The UML artifact deployment diagram shows
the distributed platform configuration where the nodes represent platform sites and
links represents hardware connectors. Software components are placed into the sites
where they are loaded. We annotate a deployment diagram with the failure probabili-
ties over the connectors among sites. Thus a failure probability is assigned to each
interaction between two components of a sequence diagram. These failure probability
annotations reflect the reliabilities of the communications between components in a
distributed software system. We assume that the communications among components
residing on the same site is fully reliable, i.e. the failure probability is 0.

2.2 Deriving SUD from UML Artifacts

A SUD describes the probabilistic scenario transition process that represents the soft-
ware execution, which is inherently a Markov chain and is a convenient model for
statistical testing and reliability estimation of a broad spectrum of applications.

A SUD is a 5-tuple: (S, , , q0, qend), where

 S is the set of nodes of software scenarios. Each node is labeled with the corre-
sponding scenario name.

 is the set of transitions. Each transition is labeled with a transition probability.

J. Yan, J. Wang, and H. W.Chen 436

 qend is the additional node representing the end of software execution.
 q0 is the additional node representing the start of software execution.
 δ: S ∪ {q0, qend }× → S ∪ {q0, qend }, which is the transition relation.

Figure 1 is the algorithm that derives SUD from the annotated UML artifacts.

Algorithm: Deriving SUD from UML artifacts
Input: Annotated UML artifacts.
Create a SUD and insert node q0 and qend;
Insert all scenario nodes into SUD, let the nodes’ labels be the name of the scenarios;
FOR each pair of scenario nodes n1 and n2

IF the state specified in the postcondition of the scenario n1 ∈ the state set specified
in the precondition of the use case that the scenario n2 belongs to THEN

Link n1 with n2 by a transition whose transition probability is the transition
probability in UCExecRelation from the use case that scenario n1 belongs to,
to the use case that scenario n2 belongs to;

ENDIF
ENDFOR
Elicit the set N of scenarios nodes that are s0’s successive use cases in UCExecRela-

tion, as well as the execution sequence relation’s probabilities (SRP);
Link q0 with the nodes in N by transitions with corresponding probabilities in SRP ;
Elicit the set M of scenarios nodes that are the use cases whose successive nodes are

sf in UCExecRelation, as well as the execution sequence relation’s probabili-
ties (SRP);

Link the nodes in M with qend by transitions with corresponding probabilities in SRP .

Fig. 1. Algorithm for deriving SUD from annotated UML artifacts

2.3 SUD-Based Software Statistical Testing and Reliability Estimation

The software reliability R is the probability that no failure occurs during a particular
program execution [11]. For the sake of simplicity we use failure probability F to
represent software reliability, note that F=1-R.

The software execution can be considered as the execution of a sequence of
scenarios. A particular execution of the software corresponds to a path x=(x1, x2, …, xL)
that traverses the SUD from node q0 to qend, where x1 is q0, and xL is qend. xi (i=2,
3,…,L-1) are the scenarios traversed. The next node to execute is selected according
to the probabilities of the outgoing transitions of current node. Each statistical test
case corresponds to a particular path x, that is, a particular scenario execution
sequence.

The simplest way of obtaining unbiased reliability estimates of software is to test
the software based on SUD. We can test the software with the paths X1, X2, …, XN
selected according to the SUD. A function f(X) is defined with the parameter of path
X: once the path fails, f(X)=1, otherwise, f(X)=0. Then, the arithmetic mean of f(X) is
an unbiased estimate of F.

UML Based Statistical Testing Acceleration 437

3 Accelerating Statistical Testing of Distributed Software

However, the method explained in Section 2.3 does not consider the consequence of
potential failures. The safety-critical software often includes some critical scenarios
that provide critical functions and whose execution probabilities are very low. It often
requires too many test cases to test these scenarios adequately and thus makes statisti-
cal testing based safety-critical software reliability estimation infeasible [3].

3.1 Accelerating Statistical Testing with Importance Sampling

We use the Importance Sampling (IS) technique to accelerate statistical testing. IS
technique can be used to speed up Monte Carlo simulations that involves rare events
[12]. Assume that the SUD of software under testing is P, we can get another SUD Q
by shifting the probabilities of those transitions whose transition probabilities are not
1. Select N paths from q0 to qend according to Q, let j

iX be the i-th scenario executed

in the j-th path, and)(j
iXP and)(j

iXQ are the probabilities of transitions from 1−j
iX to

j
iX according to P and Q respectively. We assume that)(1

iXP =)(1
iXQ =1. Let

)(

)(
)(

1

1
j

t
L
t

j
t

L
t

j
XQ

XP
XW

=

=

∏
∏

= (1)

where L is the path length. Let

)()(XWXfS = (2)

where X is a path selected according to Q and f(X) is the failure probability of X, W(X)
is used to compensate for the transition probabilities shifting and is called likelihood
ratios. The expression S is an unbiased estimator of f(X), since

==)()()())()(()(XWXfXQXWXfESE QQ

===))(()()(
)(

)(
)()(XfEXPXf

XQ

XP
xfXQ P

where ET denotes the expectation with respect to SUD T.
By increasing the execution probabilities of the transitions related to the critical

scenarios, we can test the critical scenarios more frequently. At the same time, we use
S with SUD Q instead of f(X) with SUD P to achieve an unbiased estimate of f(X).
The idea behind IS based statistical testing acceleration is to increase the execution
probabilities of critical scenarios, and likeliness ratio is used to compensate for the
transition probabilities shifting.

3.2 Computing the Optimal SUD

For practical reasons we use the Q that produces the minimal variance while estimat-
ing the software failure probabilities, which is called the optimal SUD in this paper.

J. Yan, J. Wang, and H. W.Chen 438

In order to compute the optimal SUD, we first calculate the failure probability of
scenario m with the following steps, which is a variant of the method of [5].

We assume that the failure probability of an invoked method equals to the failure
probability of the component to which the method belongs. Assume the k-th interac-
tion in the scenario is that the component i sends a message to component j and in-
vokes the method of component j. Thus the failure probability of the k-th interaction
can be calculated with the formula:

)1()1(1 ijjk Connectorcpfpf −×−−= (3)

where cpfj is the failure probability of component j and Connectorij is the failure prob-
ability of the connector of component i and j, which represents the failure of commu-
nication. The failure probability of scenario m can be calculated as:

∏
∈

−−=
mk

km pffail)1(1 (4)

Algorithm: Computing optimal SUD Q from SUD P
Input: SUD P;

Tmax and Tmin: Temperature parameters;
CScnSet: Critical scenario set;
FAIL: Scenarios’ failure probability vector.

Output: SUD Q.
Step 1: Add the low probabilities transitions, which lead to the execution of the sce-

narios in CScnSet , to critical transition set CTS;
Step 2: Shift the none 1 transition probabilities in SUD P and produce SUD Q;
Step 3: k←0; Tk←Tmax;
Step 4: ISSimulation(P, Q, e, var, FAIL);
Step 5: Repeat Until Tk < Tmin

1. Shift the none 1 transition probabilities in SUD Q and produce SUD Q ,
make sure that the transition probabilities of these transitions in CTS are no
less than the counterparts in P;

2. ISSimulation(P, Q , e , var , FAIL);
3. If var < var Then let Q←Q , tmp← var, var← var , Goto 5;
4. If exp[- (var – var)/ Tk] > random(0, 1) Then let Q←Q , tmp← var, var←

var ; Otherwise go to 1;
5. If |tmp-var < ε Then go to 6, otherwise go to 1;
6. Tk+1←decrease(Tk), k←k+1;

Step 6: return Q.

Fig. 2. Algorithm for computing optimal SUD

The scenarios’ failure probabilities form the scenarios failure probability vector,
FAIL. We then select a number of paths with respect to SUD Q and simulate the
execution of the software with these paths. Based on the simulation results, we can
compute the failure probability and the variance. By adjusting the transition probabili-

UML Based Statistical Testing Acceleration 439

ties, we can get different Qs and corresponding variances. The Q with the minimal
variance is the optimal SUD. In order to handle complex system, we use the simu-
lated annealing algorithm [8] to compute Q, which is depicted in figure 2.

The procedure ISSimulation(P, Q, VAR e, VAR var, FAIL) depicted in figure 3 is
used to simulate the testing process with Q and returns failure probability and vari-
ance. Note that failure probability of each path is weighted with W(Xj), which is de-
fined in formula (1).

PROCEDURE ISSimulation(P, Q, VAR e, VAR var, FAIL)
Step 1: Generate test paths X1, X2, …, XN with respect to SUD Q;
Step 2: Repeat the following procedure for each path X j

f(X j) ←0, which is the failure probability of path Xj;
Traverse the scenarios invoked in path X j. During the traverse process, if sce-
nario i fails in simulation, that is, random(0, 1) < the i-th element in FAIL
then let f(X j) be 1 and continue with path Xj +1;

Step 3: e←
=

N

j
jj XWXf

N 1

)()(
1

;

Step 4: var ←
=

−
N

j
jj eXWXf

N 1

))()((
1

;

ENDPROCEDURE.

Fig. 3. Algorithm for IS based simulation

3.3 Assumptions and Discussions

For practical reason we have made several assumptions. First, we assume that the
failures among different scenarios are independent. This assumption simplifies the
estimation task. Another assumption is that the scenario failures follow the principle
of regularity, i.e., that a scenario is expected to exhibit the same failure rate whenever
it is invoked. The algorithms in section 3.2 are only valid under these assumptions.

The prior information, scenario failure probability vector FAIL, can be computed
from the pre-specified upper bounds of components failure probabilities and commu-
nications failure probabilities. FAIL is used to compute the optimal SUD and is not
necessarily the real failure probabilities of scenarios (which is usually unknown).

Finally we adopt the simulated annealing algorithm to compute optimal SUD,
which enables to handle large and complex applications, because the computation of
optimal SUD with general optimization algorithm, such as Frank-Wolfe-type algo-
rithm, is often time consuming and inapplicable to large and complex system [6].

4 Case Study

This section explains the method with a simplified distributed process-control system,
which is called NPCS (Nuclear Plant Control System).

J. Yan, J. Wang, and H. W.Chen 440

4.1 A Case of Process-Control System

The use case diagram of NPCS is shown in figure 4. The preconditions are:
preInitialize=Idle, preOperate=Initialized or Operating, and preEmgcyShutdown=Emergency. Figure 5
depicts the architecture of the NPCS by a UML deployment diagram.

Initialize

Operate

Emgcy Shutdown

Operator

Fig. 4. The use case diagram of NPCS

PanelCmpnt

CtrlCmpnt EmgyCmpnt

Connector2
Connector1

Fig. 5. The deployment diagram of NPCS

Figure 6 depicts the execution sequence relations between use cases of NPCS with
a UML activity diagram (the transition probability is 1 if it is not labeled.). The transi-
tion labels are the states specified in the preconditions of use cases and postconditions
of scenarios.

Figure 7 to 11 depict the scenarios.
Table 1 specifies execution probabilities of each scenario in its associated use

case, as well as the states specified in the postconditions.
Figure 12(a) shows the SUD P of NPCS, which is derived with the algorithm pre-

sented in figure 1.

Initialize

Operate

Emgcy Shutdown

[Idle]

[Initialized]

[Emergency]

[Idle]

S0

Sf

[Idle]

[Operating]

Fig. 6. NPCS use cases execution sequence relations

UML Based Statistical Testing Acceleration 441

Operator PanelCmpnt CtrlCmpnt

IN

IN

Fig. 7. Scenario 1 of use case Initialize, named as Scn1

Operator PanelCmpnt CtrlCmpnt

Op(X)

OpAns

Op(X)

Fig. 8. Scenario 1 of use case Operate, named as Scn2

Operator PanelCmpnt CtrlCmpnt

Stdby

StdbyAns

Stdby

Fig. 9. Scenario 2 of use case Operate, named as Scn3

Operator PanelCmpnt CtrlCmpnt

Op(X)

Emergence

Op(X)

Fig. 10. Scenario 3 of use case Operate, named as Scn4

Operator PanelCmpnt CtrlCmpnt

EmgyShutdwn

EmgyCmpnt

Fig. 11. Scenario 1 of use case Emgcy Shutdown, named as Scn5

Table 1. Annotations of scenarios

 Scn
1
 Scn

2
 Scn

3

 Pf
1
 post

1
 pf

2
 post

2
 pf

3
 post

3

Operate 0.7 Operating 0.29 Idle 0.01 Emergency
Emgcy Shutdown 1 Idle - - - -

Initialize 1 Initialized - - - -

J. Yan, J. Wang, and H. W.Chen 442

q0

Scn1

Scn2 Scn4Scn3

Scn5qend

1

0.7

0.29

1

0.01

1

0.29

0.7

0.01

1

q0

Scn1

Scn2 Scn4Scn3

Scn5qend

1

0.58

0.23

1

0.19

1

0.25

0.62

0.13

1

(a) (b)

Fig. 12. SUD P and SUD Q of NPCS

We assume that the failure probabilities of components PanelCmpnt, CtrlCmpnt
and EmgyCmpnt are 10-4, 10-4 and 10-5, and the failure probabilities of connector1 and
connector2 are 10-3 and 10-6 respectively. We assume that the communication between
operator and PanelCmpnt never fails. Thus we can compute the failure probabilities
of the five scenarios with formula (3) and (4):

failScn1=1-[(1-10-4) ×(1-0)] ×[(1-10-4) ×(1-10-3)]=0.0012
failScn2=1-[(1-10-4) ×(1-0)] ×[(1-10-4) ×(1-10-3)] ×[(1-10-4) ×(1-10-3)]=0.0023
failScn3= failScn4= failScn2=0.0023
failScn5=1-[(1-10-5) × (1-10-6)]=0.000011

The critical scenario is the emergency shutdown scenario Scn5, which is rarely
executed. The critical transition set (CTS) includes all the low probability transitions
that lead to the execution of the critical scenarios. In SUD P, the CTS includes the
transition from Scn1 to Scn4 and the transition from Scn2 to Scn4. The optimal SUD Q
is computed with the algorithm presented in figure 2 and the result is depicted in
figure 12(b). The transition probabilities of the transitions in CTS in SUD P have
been increased from 0.01 to 0.13 and 0.19 respectively. Thus, the critical scenario
Scn5 will acquire more tests with SUD Q.

4.2 Statistical Testing Simulation with Fixed Test Budget

Testing with fixed budge requires testing the software with a limited number of test
cases. While estimating the unbiased software reliability from the test results, we
hope that the faults in the critical scenarios can be detected as many as possible.

Assume that the failure probabilities of components PanelCmpnt, CtrlCmpnt and
EmgyCmpnt are 10-5, 10-5 and 10-7, and that the failure probabilities of connector1 and
connector2 are 10-6 and 10-7 respectively. Thus we can compute the failure probabili-
ties of the five scenarios with formula (3) and (4), which are: 0.000021, 0.000032,
0.000032, 0.000032 and 0.0000002 respectively.

Table 2 shows the results of 10,000 test simulation. While no failure of Scn5 is re-
vealed in both processes, the results show that the Scn5 acquires more tests with the
acceleration method while unbiased failure probability estimate is obtained.

UML Based Statistical Testing Acceleration 443

Table 2. Simulation results of statistical testing for 10,000 times

 Software failure
probability

Variance of failure
probability

Execution num-
ber of Scn5

IS 1.281e-4 8.471e-8 3,747
Standard 1.279e-4 8.078e-9 338

4.3 Statistical Testing Simulation Under Scenarios’ Reliability Constraints

In order to test the critical scenarios until their reliability requirements are met, testers
often have to execute many extra test cases even the system reliability is satisfied.
Since we discuss the safety-critical software testing, we assume that test reveals no
failure. Thus, we can compute that we should test each critical scenario without fail-
ure no less than 106 times with the following formula [10], while its failure probabil-
ity is no higher than 10-6:

)(bata ++=θ (5)

where t is the number of testing. We assume that testers know nothing about the reli-
ability of the program, thus a and b are both 1. The simulation results in table 3 shows
that the acceleration method can effectively reduces the number of test cases required
while the critical scenarios are adequately tested.

Table 3. Simulation results of testing critical scenario for 106 times

 Execution number of Scn5 Software test number
IS 106 2,668,588

Standard 106 29,603,316

5 Related Work

Study on model based software reliability assessment has resulted in several tech-
niques that can be used to estimate the application reliability. State-based models
assume that the transfer of control between modules has a Markov property, and
software reliability is estimated by analyzing the model that combines software con-
trol transfer with failure behavior [4]. However, it is often very difficult to analyze
complex state models. The path-based models estimate system reliability based on the
possible execution paths of the program[9][13]. [9] takes an experimental approach to
assessing the reliability of component-based applications. However, the distributed
property is not considered. [13] develops a probabilistic model to analyze component
software reliability using scenarios, the model can be used to estimate the reliability
of distributed applications. [5] introduces a method that assesses software reliability
from annotated UML artifacts. While all these works focus on model based software
reliability estimation, they are not to attempt to assess software reliability from the

J. Yan, J. Wang, and H. W.Chen 444

results of statistical testing, which is the main concern of this paper. [14] presents a
method that derives Markov chain usage model from annotated UML models but
gives no consideration to safety-critical scenarios’ testing.

6 Conclusion and Future Work

This paper discusses a statistical testing acceleration technique for distributed safety-
critical software. The method is fully integrated with annotated UML artifacts. First,
SUD is derived from UML artifacts. Based on SUD and annotated UML artifacts, this
paper presents a method to accelerate the statistical testing of distributed safety-
critical software. The simulation results shows that the method can effectively reduce
the test cost while obtaining the unbiased software reliability estimates.

We are currently working on a set of automated tools to support the method. The
tools support to annotate the UML artifacts and derive the SUD P. When the critical
scenarios with low execution probabilities are specified, the tool can compute the
optimal SUD Q.

References

1. Binder, R.: Testing Object-Oriented Systems. Addison-Wesley, (1999)
2. Bruegge, B., Dutoit A.H.: Object-Oriented Software Engineering: Conquering Complex

and Changing Systems. Prentice Hall, (2000)
3. Butler, R.W., Finelli, G.B.: The Infeasibility of Quantifying the Reliability of Life-critical

Real-time Software. IEEE Transactions on Software Engineering, Vol. 19(1). (1993) 3–12
4. Cheung R.C.: A User-Oriented Software Reliability Model. IEEE Transactions on Soft-

ware Engineering, Vol.6(2). (1980) 118-125
5. Cortellessa V., Singh H. Cukic B.: Early reliability assessment of UML based software

models. In Proc. Of the Third International Workshop on Software and Performance
(WOSP2002), Rome (2002) 302-309

6. Gutjahr W.J.: Software dependability evaluation based on Markov usage models. Per-
formance Evaluation, Vol. 40(4). (2000) 199 – 222

7. Rumbaugh J., Jcobson I., Booch G.: The Unified Modeling Language Reference Manual.
Addison-Wesley, (1999)

8. Kirkpatric S., Gelatt C.D., Vecchi M.P.: Optimization by simulated annealing. Science,
Vol. 220(4598). (1983) 671 – 680

9. Krishnamurthy S., Mathur A.P.: On the Estimation of Reliability of a Software System
Using Reliabilities of its Components. In Proc. Of the eighth International. Symposium of
Software Reliability Engineering (ISSRE’97), (1997) 146-155

10. Miller K.W.: Estimating the Probability of Failure when Testing Reveals No Failures.
IEEE Transactions on Software Engineering, Vol.18(1). (1992) 33 – 41

11. Prowell, S.J., Trammell C.J., Linger R.C., Poore J.H.: Cleanroom Software Engineering:
Technology and Process. Addison-Wesley, (1999)

12. Smith P.J., Shafi H., Gao H.: Quick simulation: a review of importance sampling tech-
niques in communication systems. IEEE Journal on Selected Areas in Communications,
Vol.15(5). (1997) 597 – 613

UML Based Statistical Testing Acceleration 445

13. Yacoub S., Cukic B., Ammar H.: Scenario-Based Reliability Analysis of Component-
Based Software. In Proc. of the 10th International Symposium of Software Reliability En-
gineering (ISSRE’99), (1999) 22-31

14. Yan J., Wang J., Chen H.W.: Automatic Generation of Markov Chain Usage Models from
Real-time Software UML Models. In: Proc of 4th International Conference On Quality
Software (QSIC2004), Braunschweig, GERMANY(2004) 22-31

 J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 446–450, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A Metamodel for the CMM Software Process*

Juan Li
1, 2

, Mingshu Li
1
, Zhanchun Wu

1
, and Qing Wang

1

1 Institute of Software, Chinese Academy of Sciences, Beijing, China
lijuan@itechs.iscas.ac.cn

2
Graduate School of the Chinese Academy of Sciences, Beijing, China

Abstract. With the increasing complexity of software system, geographically
distributed development has become mainstream. Managing a software process
in which team members are physically distributed is challenging. How to use
the Capability Maturity Model (CMM) in geographically distributed
development is an area with a number of open research issues. We define a
CMM Software Process (CSP) by a set of generic process elements in
accordance with the requirements of the CMM. Using the Model Driven
Architecture (MDA), the CSP model can be transformed into distributed CMM
implementation process models. This paper presents a metamodel for the CSP
model, named MM-CSP, and provides the abstract syntax and the semantic of
the MM-CSP as well as a UML profile for the MM-CSP. Based on the MM-
CSP, a prototype tool for CSP modeling is developed.

1 Introduction

In software engineering environment, use of the Internet as a medium for conducting
distributed software engineering activities has been on the rise in recent years [1,2].
Managing a software process in which team members are physically distributed is
challenging. As a widely used software process improvement model, the Capability
Maturity Model (CMM) plays a major role in hundreds of software organizations
worldwide [3,4]. However, the CMM does not specify the details of how to
effectively implement the process improvement activities in the distributed
development environment. In order to solve this problem, we start from the
fundamental description mechanism for the CMM and define a CMM Software
process (CSP), which is a general software process. Distributed development teams
can add their characteristics into the CSP to achieve their CMM implementation
processes. Model Driven Architecture (MDA) [5] provides a systematic framework to
manage and transform models. By introducing the MDA, transforming the CSP model
into distributed CMM implementation models can be performed systematically and
effectively. This paper present a metamodel for the CSP model, named MM-CSP. The
MM-CSP defines a language for describing the CSP model and provides the
foundation for transforming the CSP model using the MDA. In addition, the MM-
CSP is a CMM-based extension of the Software Process Engineering Metamodel
(SPEM) [6]. We define the MM-CSP based on the Meta Object Facility (MOF) [7]
and implement the MM-CSP through a CSP modeling tool.

* This research is supported by the National Natural Science Foundation of China (60273026),

and the Chinese National “863” High-Tech Program (2002AA116060, 2001AA113080).

A Metamodel for the CMM Software Process

447

2 The Metamodel for the CSP Model

A metamodel is an explicit model of the constructs and rules needed to build specific
models within a domain of interest [8]. The MM-CSP describes concepts and their
relationships for the purpose of building and interpreting the CSP model. The CSP
model is not a process model of a specific organization and the distributed teams can
add their characteristics into the CSP model to create their CMM implementation
process models. In this paper, we choose the SPEM as the basis for designing the
MM-CSP, because the SPEM provides many process elements for the MM-CSP and
can be used as the metamodeling backbone according to the MOF. We introduce the
extension to the SPEM and represent the structural aspect of the MM-CSP in a new
package, called CmmElements, which is located in the package Extension of the
SPEM.
 The abstract syntax of the MM-CSP is shown in Figure 1. Due to space
restrictions, we present only a part of the abstract syntax.

Fig. 1. Abstract syntax of the MM-CSP

− MaturityLevel
This element represents a well-defined evolutionary plateau toward achieving a
mature software process. It has three attributes: name (inherited from ModelElement),
islevel and achived.
− KPA
The KPA element identifies a group of related activities that achieve a set of goals
required for establishing process capability at that MaturityLevel. The KPA element
has name (inherited form ModelElement) and satisified as its attributes.
− CmmAct
The CmmAct element defines actions in the CMM, such as review and audit. Its
attributes contain name (inherited from ModelElement), role, precondition,
postcondition, input, output, step and resource.

J. Li et al. 448

− CmmWorkproduct
The CmmWorkproduct element represents the work product in the CMM. It has name
(inherited from ModelElement) and isDeliverable (inherited from WorkProduct) as its
attributes.
− CmmRole and CmmGroup
The CmmRole element represents the roles described in the CMM. The CmmGroup
element can be composed of several CmmRole elements. Both the CmmRole and
CmmGroup have name (inherited from ModelElement) and responsibility (string
type) as its attributes.
– Well-formed rules defined the rules and constraints on valid models. We define
Well-formed rules using the Object Constraint Language (OCL). Due to space
restrictions, we present only a portion of well-formed rules for the MM-CSP.
− MaturityLevel
[C1] To achieve a maturity level, the KPA for that level must be satisfied.
context MaturityLevel inv:
self.KPA->forall(k|k.satisfied=true) implies self.achieved=true
− KPA
[C2] Every KPA has 5 common features.
context KPA inv:
self.commonFeature->size()=5
[C3]All the KpaGoal must be achieved to satisfy that KPA.
context KPA inv:
self.KpaGoal->forall(g|g.achieved=true) implies self.satisfied=true

Fig. 2. Virtual metamodel

 With the UML profiling mechanism [9], the MM-CSP can be implemented by
integrating with UML CASE tools. The UML profile is based on stereotypes, tagged
values, and constraints. The stereotype provides a way of classifying model elements
as if they were instances of new virtual metamodel constructs. The formal definition
of stereotypes and tags are given in the Figure 2. The isDeliverable tag of the
CmmWorkproduct stereotype is true if CmmWorkproduct is defined as a formal

A Metamodel for the CMM Software Process

449

deliverable work product of the process. The tags of the MaturityLevel stereotype are
isLevel and achieved. The tag of the KPA is satisfied. The constraints are also
described by the OCL. Several constraints are listed as follows:

− CmmWorkflow:
[R1] A CmmWorkflow behavior is defined using no more than a single Activity Graph
and in no other way.
context CmmWorkflow inv:
self.behavior->size<=1
and
self.behavior->forall(b| b.oclIsTypeOf(ActivityGraph))
− ActionState
[R2] An ActionState is either a CmmAct or refers to a CallAction for another
CmmWorkflow.
context ActionState inv:
self.stereotype.name=”CmmAct” or
(self.entry->size=1 and
self.entry.oclIsKindOf(CallAction) and
self.entry.operation.oclIsKindOf(CmmWorkflow))

3 A Modeling Tool and Applications

Using the MM-CSP, we have developed a prototype of a modeling tool, named
MDA-SPMT (MDA-Software Process Model Transformation), to support modeling
the CSP model. The MDA-SPMT supports the MM-CSP and provides a graphical
modeling environment, as shown in Figure 3. Also this tool can validate the CSP
model. The CSP model consists of four parts: Roles, Work Products, KPAs and
Rules. Every part is a package, which is composed of some subpackages. Besides, we
use the OCL to define the rules in the CSP model. These rules prescribe the invariant
to perform the activities, ensure the model’s accuracy and provide the semantic
support for the model transformation.

Fig. 3. MDA-SPMT

 We have summarized the characteristics of the distributed development teams.
Based on these characteristics, we transform the CSP model into the different CMM
implementation process models manually. The distributed development teams can

J. Li et al. 450

access their CMM implementation models via the Web. And it is important to
maintain the CMM implementation model consistency in the distributed development
environment.

4 Conclusions and Future Work

In recent years geographically distributed development has become mainstream. It is
challenging to use the CMM in managing the software process of the distributed
development environment. This paper proposes a metamodel, MM-CSP, for building
the CSP model, which is the foundation for transforming the CSP model using the
MDA. We choose the SPEM as the metamodeling basis for the MM-CSP and present
the abstract syntax and the semantic of the MM-CSP as well as a UML profile for the
MM-CSP. Based on the MM-CSP, we developed a prototype of a CSP modeling tool,
named MDA-SPMT. Future work will focus on the modeling approach for the
distributed organization characteristics model. Furthermore, research should be
related to the study of the transformation mechanism on how to automatically or
semi-automatically transform the CSP model and the distributed organization
characteristics model into the distributed CMM implementation process models. The
MDA-SPMT tool will be enhanced to support modeling distributed organization
characteristics models and the model transformation.

References

1. J. Dominigue, P. Mulholland: Fostering debugging communities on the Web.
Communications of the ACM, Vol.40, No.4 (1997) 65-71

2. L. Cai, C. K. Chang, J. Cleland-Huang: Supporting agent-based distributed software
development through modeling and simulation. The Ninth IEEE Workshop on Future
Trends of Distributed Computing Systems (FTDCS'03) (2003) 56-62

3. B. Pitterman: Telcordia Technologies: The Journey to High Maturity. IEEE Software,
Vol.17, No.4 (2000) 89-96

4. G. Yamamura: Software Process Satisfied Employees. IEEE Software, Vol.16, No.5 (1999)
83-85

5. J. Miller, J. Mukerji, (eds.): Model Driven Architecture. OMG Document: ormsc/2001-07-
01, OMG (2001)

6. OMG: Software Process Engineering Metamodel (SPEM) 2.0 Draft Request For Proposal.
OMG Document: ad/2003-10-09, OMG (2004)

7. OMG: Meta Object Facility (MOF) Specification, Version 1.4. OMG Document: formal/02-
04-03, OMG (2002)

8. A. Kleppe, J. Warmer, W. Bast: MDA Explained: The Model Driven Architecture™:
Practice and Promise. Boston: Addison Wesley Press (2003)

9. S.F. David: Model Driven Architecture: Applying MDA to Enterprise Computing. New
York: John Wiley & Sons (2003)

 J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 451-462, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Performance Tuning for Application Server OnceAS*

Wenbo Zhang1, 2, Bo Yang1, 2, Beihong Jin1, Ningjing Chen1, 2, and Tao Huang1

1 Institute of Software, Chinese Academy of Sciences, Beijing, China
2 Graduate School of the Chinese Academy of Sciences, Beijing, China

{wellday, yangbo, jbh, river, tao}@otcaix.iscas.ac.cn

Abstract. The J2EE application server provides a primary solution to develop
enterprise-wide applications, which uses containers to hold application com-
ponents. The container framework relieve developers’ burden greatly because
it encapsulates all the system level services and the developers are able to use
these services directly without knowing underlying details. The processing
capacity of application servers is becoming more and more important with the
requirements of achieving higher performance and higher scalability. This
paper uses ECperf, a performance benchmark tool for application servers, to
studies the performance issues of the application server OnceAS, which is
developed by the Institute of software, Chinese Academy of Sciences, and
presents optimization approaches including bean instance pools and high
speed naming service. These optimizations are implemented in OnceAS and
proved to be effective through ECperf benchmark evaluation.

1 Introduction

The J2EE application server is playing a major role in developing enterprise applica-
tions. It provides a developing and runtime platform for enterprise applications with
various system services. Developers need not to implement these system services by
themselves. They just invoke the ready-made services in the application server and
only focus their attention on actual business logics so as to achieve high development
efficiency and robust application systems. Meantime, it is the application server that
provides non-functional features including performance, scalability and so on for en-
terprise applications.

EJB (Enterprise Java Bean) is one of the most important technologies in the J2EE
specification [1] to develop portable and scalable applications. EJBs are deployed in
the EJB container, which acts as the runtime environment for beans. Beans are not
exposed to clients directly and should be accessed by certain interfaces specified in
the EJB specification. EJB container delegates all the invocations for beans. It pro-
vides the runtime services for EJB clients such as security, transaction, external re-
source retrieving and manages the lifecycle of beans including creation, destruction
and persistence.

* This work was supported by the National Grand Fundamental Research 973 Program of

China under Grant No. 2002CB312005; the National Hi-Tech Research and Development
863 Program of China under Grant No. 2001AA113010; and the National Natural Science
Foundation of China under Grant No. 60173023.

W. Zhang et al. 452

Naming service [2] is one of the most basic services in a J2EE application server. It
provides the function of locating the components, resources and services deployed in
the system. This service is so fundamental that every application server should pro-
vide it as an indispensable component. Thus its performance usually has an impact
upon the performance of application server.

OnceAS is an application server developed by Institute of Software, Chinese
Academy of Sciences, following the J2EE1.3 specifications. By using ECperf [3]
benchmark as performance test tool, we found there were great performance bottle-
necks in the EJB container and the naming service. We tried a variety of tuning ap-
proaches for these two components, including implementing instance pool for EJBs in
EJB container and localizing the invocation for the naming service.

The remainder of the paper is organized as follows. Section 2 describes background
knowledge about performance tuning of application server. Section 3 analyzes the
performance bottlenecks of the OnceAS by the ECperf testing. Section 4 present our
optimization approaches for the OnceAS and section 5 provides a performance
evaluation. Section 6 discusses some related works. Finally, section 7 provides con-
clusions.

2 Background

2.1 EJB Container

EJB specification [4] provides a framework to develop EJB components and EJB
technology can be used to develop enterprise applications with distributed component
architectures. Each EJB is a distributed and highly reusable component implementing
specific business logics. EJB container provides the runtime environment for beans.

The container manages the actions and states of beans after they are deployed in the
container. Additionally, the container provides the system level services for beans
such as transaction management, security control, logging, etc. EJB framework de-
fines a precise boundary between business logics and system functions. Bean devel-
opers only consider how to implement the business logics and are relieved from the
burden of system programming. At the same time, each bean only provides the busi-
ness function and does not depend on any specific runtime environment. This makes
it convenient to manage and migrate the J2EE applications.

An EJB container should obey the following principles to provide system level ser-
vices for the enterprise beans residing in it [5]:

Contract: Contracts define the boundary of different components in the EJB frame-
work. They provide the interfaces for components to cooperate so that the compo-
nents need not to know the implementation details. This ensures the compatibility of
EJB technology.

Service: EJB container supplies system level services such as naming service, security
service and transaction service to beans. All these services are transparent to beans.

Interference: EJB container interferes in the invocations of beans and provides the
required services during the interference.

Performance Tuning for Application Server OnceAS 453

Fig. 1. The Model of EJB Container

Figure 1 describes the framework of the EJB container. The performance of EJB
container is a critical issue in the overall performance of the application server be-
cause of its extremely important role. How the EJB container schedules and manages
the invocation affects its throughput to process requests. Additionally, how it accesses
the system service brings another potential impact for the system performance.

2.2 ECperf Benchmark Suite

ECperf is a benchmark suite proposed by Sun Corporation and some other IT compa-
nies in order to test the performance and scalability of J2EE application servers. It is
complicated enough to simulate an actual electronic business system and is able to re-
flect the processing capability of an application server. It makes use of several kinds of
beans and system services such as naming service, distributed transaction, cache
mechanism, object persistence and resource management pool to fulfill the business
model. So it is an ideal tool to measure the performance of J2EE application servers [6].

Fig. 2. Application Model of ECperf

The structure of ECperf is shown in Figure 2. The metrics for ECperf benchmark is
the throughput: BBops/min (Benchmark Business Operations per minute), which is

W. Zhang et al. 454

the amount of requests that are successfully processed in one minute by the SUT
(Server Under Test). Each request is not limited to one transaction but could possibly
be several transactions, which depend on the complexity of the request. There is an
important parameter Ir (Transaction Injection Rate) in ECperf, which tightly affects
the throughput. Ir reflects how many clients are simulated: larger value represents
more clients and higher request concurrency arrived at the application server. More
information about ECperf specification can be found in [7].

We adopt ECperf as the tool to evaluate the performance of OnceAS. The follow-
ing sections will analyze the performance problems encountered in the benchmark test
and then present out tuning approaches.

3 Performance Analysis

We deployed the ECperf application in a distributed system following the ECperf
specification as shown in Figure 3.

Fig. 3. ECperf Deployment Environment

During the initial experiments, we found that the throughput did not always aug-
ment with the increase of Ir as expected. On the contrary, it fell suddenly when Ir ar-
rived at some point and the application server behaved so bad that the benchmark
could not complete normally. The reasons were that the SUT’s CPU usage rate was
too high and the database server’s CPU usage rate was very low and even idle some-
times. It was easily to infer SUT became the performance bottleneck during the tests
since the database would never be idle in a normal case.

In order to further locate the bottleneck, we used the Borland’s performance tuning
tool Optimizeit [8] to detail the CPU usage during the benchmark. It was seen that too
much CPU time was spent on accessing the naming service and the time increased
more while adding Ir. This CPU time ratio is illustrated in Figure 4.

Performance Tuning for Application Server OnceAS 455

Fig. 4. CPU Time Ratio of Naming Service Access

Obviously the naming service consumes too much of CPU time. There are usually
many naming service invocations in the creation of EJB instances because the beans
need to query the naming service to acquire all the resources they will use. Take
ECperf for an example. It will averagely create 35 EJB instances to complete a
manufacturing business operation and access the naming service for 60 times. The
processing pressure in ECperf is linearly proportional to Ir and the number of clients
in manufacturing domain is Ir*3. When Ir reaches 30, the access to naming service
will arrive at 5400 times for each manufacturing business operation. Thus, the fre-
quent creations of EJB instances and the corresponding naming service accesses be-
came the main performance bottlenecks for OnceAS.

There are two possible approaches to resolve this problem: one is to manage the
beans’ lifecycle carefully and make use of pools to cache EJB instances so as to avoid
frequent creation and destruction of EJBs; the other is to optimize the naming service
by minimize the overheads to access it. We will discuss the two approaches separately
in the following sections and evaluate their effects.

4 Performance Tuning

4.1 EJB Instance Pool

The instance pool provides caching for managing the EJB instances effectively.
Such pools cache the bean instances in some state where they are irrelevant to any
particular client. For example, an instance can be placed in the pool rather than be
discarded after it has been removed by the client, so that this instance can be reused
for another client without creating a new instance. This technology improves the
reusability of instances and reduces the performance overheads caused by frequent
bean creations.

There are three types of beans used in ECperf benchmark: stateless session bean,
stateful session bean and entity bean. Each of them has different lifecycles and state
transitions. Figure 5 shows the state transitions of three types of bean.

W. Zhang et al. 456

(a) Stateless Session Bean (b) Stateful Session Bean (c) Entity Bean

Fig. 5. LifeCycles of Enterprise Java Beans

Although different types of EJBs have different lifecycles, they all have a similar
state “method-ready” where the bean instances have been created and are ready for
invocations from clients. Instances in this state can be cached in a pool: an EJB in-
stance removed by one client can be allocated to another client transparently. For dif-
ferent type of beans, we adopt different pooling policies.

Stateless Session Bean: Instances of a stateless session bean are identical to all clients
because they do not contain any information of the clients. All such instances can be
placed in the pool after the clients finish their invocations. This is called complete
pooling policy.

Stateful Session Bean: Instances of a stateful session bean are specific for their corre-
sponding clients so all the instances cannot be reused. Here we adopt a non-pooling
policy.

Entity Bean: Instances of an entity bean are not specific to client in the method-ready
state. They are only initialized with particular clients when ejbCreate method is in-
voked. In this case, instances after an ejbFind method can be pooled but instances af-
ter ejbCreate and following methods must be discarded. So we employ a part-pooling
policy for entity bean.

We implement all the three pooling policies in OnceAS and improve the perform-
ance of EJB container because pooling the instances cuts down the access to naming
service greatly.

4.2 High Efficient Naming Service

Naming service provides a convenient way to access the objects, for examples users,
machines, services, components, etc., in distributed systems. It binds a unique name
of each object in the system and then these objects can be located by their names. In
this way, it provides a unified mechanism to store and retrieve all kinds of objects in
the system. Naming service integrates all the components, services and resources to-
gether and helps them to cooperate correctly. Thus it is the most fundamental service
of an application server.

OnceAS implements a naming service based on Java RMI technology. There are
three roles in typical naming operations:

Performance Tuning for Application Server OnceAS 457

Client: A client acts as the invocator, who issues all the operations on naming service
such as lookup and bind.

Fig. 6. Access of Naming Service

Naming Server: The naming server is a subsystem storing the objects, managing their
names and responding to the clients. It has a corresponding RMI stub, which is used
by client to communicate with the server remotely. All the invocations on the stub
will be forwarded to the naming server by RMI mechanism.

NamingContext: NamingContext is the service provider defined by the JNDI specifi-
cation [2]. It is the bridge between clients and the naming server, providing the ac-
cessing interfaces and delegating naming requests to the naming server. The Nam-
ingContext contains the naming server’s stub to communicate with the server. From
the view of clients, the NamingContext serves as a map from names to objects and
clients can look up names and bind names to specific objects in the map.

The outline of accessing naming service in OnceAS is described in Figure 6.
A client gets an initial NamingContext as the entry if it wants to access the naming

service, and then invokes the operations of the NamingContext. The naming server
performs the naming operations in its storage space responding to the arrived requests
transmitted by RMI and then returns the results to the client also via RMI. Examining
the whole process, network communication spends much time and should be reduced
as much as possible. From what is described above, the performance bottleneck may
appear in the RMI communication between clients and the naming server. We present
an optimized naming service solution in order to minimize the network communica-
tion as shown in Figure 7.

The tuning procedure can be divided into three parts:

1) Local Server Mechanism Once. AS initializes a naming server instance when it
starts up, which called local server. The name server is running in the same JVM as
OnceAS and thus can be accessed by local method invocation in OnceAS. That is to
say clients in the server side can invoke the naming server directly without using
RMI. Now the clients of Naming Server can be classified into two categories: local
clients reside in the same JVM with OnceAS and remote clients outside the JVM of
OnceAS. The former can invoke the naming server directly but the latter has to access
the naming server via RMI communication. This is called the local server mechanism.

In ECperf, most requests to naming service are issued by EJBs or Servlets on the
server side and they are all the local clients of the naming server. So the local server
mechanism is able to convert a great number of invocations from RMI ones to local
invocations and lessen the executing time seriously, which improves the performance
considerably.

W. Zhang et al. 458

Fig. 7. Opertimized Naming Service

Any access to Naming Service needs to locate the naming server. We force all the
local clients of naming server use the local server as their default one while all the
remote clients need use the naming server by RMI. Because the obvious performance
difference between a local invocation and an RMI invocation, the optimization will
benefit OnceAS server significantly.

2) Naming Cache. As to remote clients, caching the results in NamingContext is an
effective way to speed up the looking up operations and to relieve the burden of the
naming server. The naming cache in Figure 7 stores the known naming bindings,
which will be updated after every invocation of NamingContext. A remote client will
search in the naming cache firstly every time when it tries to resolve a name. It will
only connect to the remote naming server in the case it fails to get the name in the
cache. The accessing pattern in ECperf is very regular and some naming entries are
visited repeatedly. So the hit ratio for the cache is so high that most requests of remote
clients are performed locally and the burden of the naming server is relived greatly.

There is a problem to maintain the consistence between the cache and the naming
server because the server is unaware of the clients and it is hard for the server to up-
date the content in the cache. We make the server aware of its remote clients by stor-
ing the stub of each client in the server. The naming server will communicate with all
the clients to clear their cache once the naming bindings change on the server side. In
actual system naming changes often happen in startup time, deployment time, rede-
ployment time and seldom happen in regular running time. So the extra overhead for
the naming service to keep consistency can be omitted when considering the overall
performance of the application server.

3) Cache of Naming Server Stub. Any client to access of naming service need to lo-
cate an available naming server, and then it will ask the naming server to transfer the
stub to it. Another optimization for remote clients is to cache the stub of the naming
server. The stub will be stored in a cache of NamingContext once it is transferred to a
remote client, which is called stub cache in Figure 7. All the following requests issued
in the same JVM are able to utilize this stub instantly without transferring it again.
There is no consistence problem here because the naming server does not change dur-
ing the running time and thus the stub is always valid.

Performance Tuning for Application Server OnceAS 459

5 Experiments and Results

We carried out further tests on OnceAS in order to evaluate the performance im-
provement caused by the optimizations. There were several groups of experiments
according to different optimization approaches: one is performed after implementing
the instance pools in EJB container, another is performed after integrating the local
server and the caches into naming service, and the last one is performed after adopting
both two optimizations. We will analyze the effect of different optimizations by
studying the benchmark results.

Transaction Injection Rate

Fig. 8. Ecperf Test Results of OnceAS

The tests ran in the same environment as shown in Section 3.1 and followed several
principles to avoid any impacts caused by other factors:

1) Clear and initialize the database before every test.
2) Reboot OnceAS before every test.
3) Warm up the system at least 5 minutes to utilize all the caches.
4) Specify enough pool size after employing instance pool in EJB container.

Figure 8 describes the ECperf metrics achieved in different tests. Series 1 is the
case before any performance tuning, where the throughput arrives at the peak value
when Ir reaches 15 and the tests fail to complete when Ir is 27 or 30 because the test
pressure is too high for OnceAS. Series 2 is the case with instance pools. The maxi-
mum throughput is 1148, which is 37.9% more than the non-optimized system, and
then the throughput decreases with greater Ir because the system becomes less over-
loaded. Series 3 is the case with the high speed naming service, which performs much
better than the instance pools optimization. The throughput reaches its maximum
value 2105 when Ir is 24. This result is 153% better than that without any performance

W. Zhang et al. 460

Fig. 9. CPU Time Ratio of Naming Service Access before and after Naming Service Tuning

tuning and is also 83% better than that with only the instance pools. Series 4 is the
case with the both instance pools and high speed naming service. The result is close to
Series 3 when Ir is low but the difference begins greater when Ir is 18. When Ir
reaches 30, the peak value is 2884, which improves 246.5% more than the no per-
formance tuning and also 37% more than Series 3.

Act ual Response Ti me i n Manuf act ur i ng
Domai n bef or e and af t er Tuni ng

0

1

2

3

3 6 9 12 15 18 21 24 27 30

I nj ect i on Rat e(I r)

1

2

Fig. 10. Actual Response Time in Manufacturing Domain before and after Tuning

From Series 1 and 2 in Figure 8, it is shown that instance pools do help to improve
the system performance but they are not able to resolve all the problems ultimately.
The system does not perform well especially in heavy load situations.

After the optimization for naming service, the system performance is improved
considerably. Further more, we studied the CPU usage ratio again, which is shown in
Figure 9. The ratio decreases from 70.8% to 13.5% after the optimization and this re-
duction relieves the burden of the application server greatly, so that it helps to im-
prove the overall performance greatly. Compared with the instance pool, the optimi-
zation for naming service is more fundamental and effective because the former only
reduce the invocations of naming service partly and some other necessary invocations
still hinder the improvement of system performance.

The fact that OnceAS’s performance is increased furthermore after both optimiza-
tion approaches are adopted shows that there is still some extra overhead after the

Performance Tuning for Application Server OnceAS 461

optimization for naming service. Through proper policies for different pools, the in-
vocations of naming service can be cut down much more. This change is easy to be
observed in ECperf’s another metrics – response time, which is shown in Figure 10.

These curves represent the response time in the manufacturing domain of ECperf.
Series 1 is the case with only naming service optimization and Series 2 is the case
with both instance pool optimization and naming service optimization. From the fig-
ures above, even though the throughput in ECperf does not improve obviously after
both optimizations are adopted, the average response time is decreased by 76.3% from
1.18 seconds to 0.28 seconds because the instance pools avoid many invocations of
the naming service. This kind of optimization is more evident in a heavy load system.

6 Related Work

The performance tuning for application servers have become one hot spot in the area
of distributed system. ECperf, as a perfect benchmark tool in J2EE performance tests,
has been noticed by many industry corporations and research institutes. Much work
has been taken to the tuning for application servers based on ECperf. For example,
Samuel D. Kounev [9] has discussed how to resolve the performance problems using
pessimistic control policy databases and Martin Karlsson [10] has studied the behav-
iour of system memory in ECperf tests.

There is still much work related to the performance of application servers: Paul
Brebner and Shuping Ran [11] have analyzed the performance of different submitting
patterns and Emmanuel Cecchet has compared the performance and scalability of dif-
ferent open source J2EE application servers [12].

This paper studies more fundamental components: EJB container and especially
naming service of an application server. The optimizations help to improve the per-
formance of almost all kinds of J2EE applications and this has been validated in our
ECperf benchmarks on OnceAS server.

7 Conclusions

Performance tuning for the J2EE application server is a complicated problem. We use
ECperf to detect the main performance bottlenecks and present the corresponding
tuning methods, including implement instance pools in EJB container and naming
service optimization. Instance pools provide an effective way to manage the EJB in-
stances and naming service optimization is mainly embodied in the local method in-
vocation mechanism and the cache mechanism. All these optimizations are imple-
mented in OnceAS and proved to be feasible and effective by ECperf benchmark
results.

References

1. Sun Microsystems, Inc. Java 2 Platform Enterprise Edition Specification, v1.4. 2003.11
2. Java Naming and Directory Interface 1.2 Specification, Sun Microsystems Inc., July

14,1999

W. Zhang et al. 462

3. TheServerSide.com J2EE Community. The ECPerf homepage. http://ecperf.theserverside.
com/ecperf/

4. Sun Microsystems, Inc. Enterprise JavaBeans 1.1 and 2.0. Specifications. http://java.sun.
com/products/ejb/

5. Subrahmanyam Allamaraju. Professional Java Server Programming J2EE 1.3 Edition.
Wrox Press, ISBN 1861005377, 2001

6. S. Deshpande, B. Martin, and S. Subramanyam. Eight Reasons ECperf is the Right Way to
Evaluate J2EE Performance.TheServerSide.com J2EE Community, 2001. http://www. the-
serverside.com/

7. Sun Microsystems, Inc. The ECperf 1.0 Benchmark. Specification, June 2001. http://java.
sun.com/j2ee/ecperf/

8. OptimizeIt Profiler – http://www.borland.com/optimizeit/
9. S. Kounev and A. Buchmann. Performance Issues in E-Business Systems. In Proc. of the

International Con-ference on Advances in Infrastructure for e-Business, e-Education,
e-Science, and e-Medicine on the Internet -SSGRR-2002w, 2002

10. M. Karlsson, K. Moore, E. Hagersten, and D. Wood. Memory Characterization of the
ECperf Benchmark. In Proceedings of the 2nd Annual Workshop on Memory Performance
Issues (WMPI 2002)

11. P. Brebner and S. Ran. Entity Bean A, B, C’s: Enterprise Java Beans Commit Options and
Caching. In Proc. of IFIP/ACMInternational Conference on Distributed Systems Platforms
-Middleware, 2001

12. E. Cecchet, J. Marguerite, W. Zwaenepoel. Performance and scalability of EJB applica-
tions, OOPSLA 2002

 J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 463–468, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Systematic Robustness-Testing RI-Pro of BGP∗

Lechun Wang, Peidong Zhu, and Zhenghu Gong

School of Computer Science, National University of Defense Technology,
Changsha, 410073, P.R.China

{genjade, gzh}@nudt.edu.cn, zpd136@sina.com

Abstract. Robustness testing is a very active research area in protocol testing.
This paper starts with the analysis of RI-Pro of BGP-4, and then builds Scenario
Model to describe the process of route update. The new model studies the
RI-Pro from the relationship of available sources instead of the function of
RI-Pro. Based on this model, a novel generation method of robustness-testing
suite is presented. All above compose the systematic robustness testing
approach. This approach eliminates the test scaffolding of ISO9646 essentially.
Robustness testing experiments of Cisco 7200 indicates that, compared with
positive test suite, the error-detecting capability of negative test suite generated
by this approach is enhanced 1.3 times.

1 Introduction

The Border Gateway Protocol version 4 [1] is the de-facto standard inter-domain
routing protocol in today’s Internet. Although BGP implementation has passed the
conformance testing and interoperation testing, faults in BGP implementations [2] or
mistakes [3] in the way it is used affect the reliability of Internet directly. Before the
implementation of BGP deployed to the Internet, the robustness testing must be taken.

Routing protocols are used to update the routing table dynamically. The main
functions of a routing protocol can be divided into two parts: network communicating
(NC) and routing information processing (RI-Pro). The NC usually can handle
low-layer network accessing, detect changes of local network connections, and
establish reliable communication channels for routing information flows. In order to
describe NC of BGP, [4] constructs the RFSM (Robustness Finite State Machines)
and generates robustness test cases based on it. This paper is based on the assumption
- NC of BGP is robustness. The RI-Pro usually consists of routing information
origination and propagation as well as routing table calculation and update. Based on
the insight RI-Pro of BGP, a Scenario Model is presented to describe its all the
external observable behaviors. Generating negative test cases based on Scenario
Model are discussed also. The result of testing practice validates its effectiveness.

The rest of this paper is organized as follows. The Scenario Model is presented in
Section 2. Section 3 describes the method of generation and realization of
robustness-testing suite of BGP. Finally, we draw some conclusions in Section 4.

∗ Support by National Basic Research Program of China (Grant 2003CB314802), Natural

Science Foundation of China (Grant 90204005), Hi-Tech Research and Development
Program (Grant 2003AA121510).

L. Wang, P. Zhu, and Z. Gong

464

2 Analysis of RI-Pro and Scenario Model

The UPDATE message handling in [1] gives the standard of BGP RI-Pro. Figure1
shows the processing of an UPDATE. Implementations must guarantee the
conformance with the specification from external observation. But the internal
processing can be varied. For example, Cisco’s optimum route selection modifies the
specification greatly. Table1 shows the differences.

Table 1. The process of optimum route selection

RFC1771 CISCO
Check the NEXT_HOP attribute of a BGP route Check the NEXT_HOP attribute of a BGP route
Select the only route or the one that has highest
degree of preference

Select the route that has the highest value of weight

Select the route that has the lowest value of the
MED (MULTI_EXIT_DISC) attribute

Select the route that has the highest value of the
LOCAL_PREF attribute

Select the route that has the lowest cost Select the route that is advertised by itself
Select the route that is advertised by the BGP
speaker in a neighboring AS whose BGP
Identifier has the lowest value

Select the route that has the shortest sequence of
AS path segments.

Select the route that is advertised by the BGP
speaker whose BGP Identifier has the lowest
value

Select the route based on the ORIGIN attribute
(IGP<EGP< INCOMPLETE)

 Select the route that has the lowest value of the
MED attribute

 The order of selection is: EBGP > confederation >
IBGP

 Select the route that can be reached by the nearest
neighbor of IGP

 Select the route that is advertised by the BGP
speaker whose BGP Identifier has the lowest value

Although there are great differences among implementations, different
implementations can interoperate well in the Internet for having consistent external
controls and behaviors. The new model of RI-Pro should keep the same external
controls and behaviors, but ignore those details of internal process.

BGP Routing
Algorithm

Adjacency
RIB IN-j

UPDATE
from ASjAdjacency

RIB IN-i

UPDATE
from ASi

Local Policy
Database

Local
RIB

Change LOC-RIB
Only if Needed

Send UPDATE
To other ASes

If LOC-RIB Changed, Generate
UPDATEs for Neighbor ASes

Fig. 1. RI-Pro in specification

Systematic Robustness-Testing RI-Pro of BGP

465

All of the sessions, input data, output data, and control information compose the
environment of RI-Pro. Scenario Model of RI-Pro is an abstract description of the
environment for route decision process and update process, which does not concern
the internal process or the implementation algorithm, but only studies the stimulations
and the configuration that can reflect the behaviors of RI-Pro and trigger appropriate
output data. Figure2 shows the Scenario Model of RI-Pro.

Input policy

RI-Pro

UPDATE
from Session i

Loc-RIB

Output policy

RTLog
UPDATE

to Session j
Notification
to Session k

Parameters

Fig. 2. Scenario Model of RI-Pro

A Scenario Model is a 5-tuple F= <S, I, K, O, >, where S, I, K, O, is the
session set, the input set, the configuration set, the output set, the relationship set
respectively.

S = {Se, Si}, Se is an external session set; Si is an internal session set.
I = {ui, D, I’}, ui is an UPDATE packet (in). D is a redistributed route set. I’ is RIB.
D = {si, ci, fi, P}, si is a static route, ci is a connect route, fi is a default route, P is

the route set generated by IGP.
P = {p| p is the route to redistribute route among routing protocols}
K = {E, Z, H}, E is the input policy set, Z is the parameter set, H is the output

policy set.
E = { 1, 2, 3…}, i is an input policy.
Z = { 1, 2, 3…}, i is a parameter of BGP.
H = { 1, 2, 3…}, i is an output policy.
O = {uo, T, l, n}, uo is an UPDATE packet (out), T is the route table, l is the Log

file, n is the Notification event.
T = {r1, r2, r3…}, ri is an item in route table.

 = { | is a relationship}, is an abstract relationship, which expresses the
dependency or restriction. For example, ki kj (ki, kj ∈ K) means that the two
parameters must obey relation.

Scenario Model modifies the standard RI-Pro [1] greatly. It does not concern
internal decision process or update process. But the new model reserves and classifies
all the external observable behaviors. The Scenario Model adds a set of relationship to
describe the relationship of available sources. Because of the adoption of relationship

L. Wang, P. Zhu, and Z. Gong

466

set, the new model is neither the duplication of the specification nor the only outside
observable black box degraded from specification. The presented model provides a
new view of RI-Pro from the relationship of available sources instead of the function
of RI-Pro. In term of external observable behaviors, the Scenario Model is the same
as the specification. However, the Scenario Model depicts the RI-Pro more
comprehensively and hits the essence of RI-Pro.

3 Generate the Test Suite Based on the Scenario Model

Scenario means a certain instance of Scenario Model, which is an indispensable
environment for RI-Pro to perform route decision and update process. When the
elements in S, I, K of the Scenario Model have been assigned, the Scenario Model
becomes a real scenario of RI-Pro. Combining all independent elements in S, I, K of
the Scenario Model will generate the complete set of scenarios for the RI-Pro. The
combining procedure can be implemented automatically, but this simple enumerating
approach is inappropriate because it has the problem of combinational explosion, and
cannot control the generation of representative scenario.

If the scenario obeys all the rules in relationship set, it can be used to conformance
testing. It reflects the RI-Pro normal process with proper input data, parameters, and
policies. If the scenario violates some rules in relationship set, it can be used to
negative testing; it reflects the behaviors of RI-Pro in scenario with conflict
relationship. The conflict relationship of means that it could cause errors or failures
in RI-Pro. The set of conflict relationship can be constructed from the following
aspects:

Specifications of protocol and statements of implementation
Previous work of research
Real-world instances
Conflict relationship expansion

When constructing , the key problem of expanding is to find out Search space.
Search space gives the range to search new conflict relationships. There are two
search spaces that can be used to expand BGP conflict relationships, which are about
route and configuration, shown in above and below parts of figure 3 respectively.

The method of generating robustness-testing case is to reconstruct application
scenario based on the conflict relationships in relationship set Δ. The principles for
generating the test case are as follows:

Constructed scenario must be as simple as possible.
Only one conflict relationship exists in a constructed scenario.
Constructed scenario should not use the unnecessary parameters or policies.
Constructed scenario uses default configurations as many as possible.
In addition, the constructed scenario should reflect the generality of conflict
relationship, so it should select typical testing configuration and testing
stimulation to reflect the conflict relationship.

Systematic Robustness-Testing RI-Pro of BGP

467

R o u te

R o u te T ab le

U P D A T E R ed istribu te

A n n ou n cem en t W ith d raw al

N ew D up lica te Im plic it W ithd raw al

T ab le E x ch an g e F lapP la in N ew S am e A S P ath D ifferen t A S P ath

C on n ec ted S ta tic IG P

O S P F R IP

C o n f ig u r e d In fo r m a t io n

P o l ic y

P a ra m e te r I n p u t P o lic y

In tr a - A S

O u tp u t P o l ic y

A t tr ib u te s I n te r - A S

N e x t_ h o p
A S _ P a th

W e ig h t
M e d

O r ig in

A g g r e g a to r
A to m ic _ A g g re g a te

L o c a l-P r e f

Fig. 3. Search space framework of route and configured information

3.1 Realization and Result

Based on five years practical testing experience for BGP and original instances from
Cisco, NANOG, Agilent, etc, we generated the negative test suite for RI-Pro of BGP
using the approach of this paper presented.

Compared with the methodology employed by Fuzz [5], our approach can generate
more effective test cases than Fuzz which merely submits random input streams. Fuzz
only tells whether the implementation failed or not, but it can’t give the reason of
failure. Our reconstructed negative test case is based on the conflict relationship. The
flaws of implementation can be found out easily.

Compared with the methodology presented by Ballista [6], our approach can
generate more various test cases because Ballista views protocol header fields as
parameters, so it only can identify invalid test values in update message. Our test suite
includes cases about route anomalies, misconfiguration, route flap, policy changes,
stress testing, scalability testing, and even protocol divergence, besides the invalid
update message like Ballista.

Section 6 of BGP RFC [1], i.e., “error handling”, provides an important reference
for the generation of negative test suite. Table2 lists the negative test cases of ANVL

[7] and negative test cases based on Scenario Model. Table3 lists the error-detecting
ability of the positive suite of ANVL and the negative test suite based on Scenario
Model. (The target BGP platform is Cisco 7200, ISO version 11.3)

Table 2. Test cases of ANVL and Scenario Model

Test suit No# Overlapped Ratio
ANVL 37 35 94.6%

Scenario
Model

96 39 40.6 %

L. Wang, P. Zhu, and Z. Gong

468

Table 3. Error-detecting capability of the positive and negative test suites

Test suite No# Fails Ratio
Positive 57 6 10.5%
Negative 96 23 23.9 %

Among 96 negative cases from Scenario Model, 52 cases are derived from the
specification, and 44 cases come from real-world examples. The size of generated test
suite is double the one derived only from the protocol specifications. Testing results
show that the error-detecting capability of negative test suite generated by this
approach is enhanced 1.3 times than positive test suite.

4 Conclusion

A Scenario Model is proposed to describe RI-Pro of BGP. Based on the model, this
paper presents an approach, which eliminates the test scaffolding of ISO9646 [8]
essentially, to generate robustness-testing suite. Based on the observation that many
test cases fail because SUT cannot process unexpected events, we think the
vulnerabilities come from the flaws of implementation and some inadequate
definitions in specifications. The implementation should concern the environments
much more; and the implementer should do more work for the user, such as doing the
consistence and relativity check for configured policies and parameters. The
specification should define all the objects that the RI-Pro used clearly just like the
definition of update message. At last we hope to raise the level of consciousness of
robustness when protocols are at the design stage. It is suggested that the RFC
documents should contain a “Robustness Considerations” section, which will be of
more practical use than the current “Security Considerations” section.

References

1. RFC1771: A Border Gateway Protocol 4 (BGP), March 1995
2. C. Labovitz, G. R. Malan, and F. Jahanian. Origins of Internet Routing Instability. In IEEE

INFOCOM, June 1999
3. Ratul Mahajan, David Wetherall and Tom Anderson, Understanding BGP

Misconfiguration. ACM SIGCOMM, 2002
4. Wang Lechun, Zhu Peidong, Gong Zhenghu, “Study of Robustness Testing Based on

RFSM”. Proceedings of INC2004, Plymouth, UK, July 2004.
5. http://www.cs.wisc.edu/~bart/fuzz.
6. http://www.ece.cmu.edu/~koopman/ballista/index.html
7. http://www.ixiacom.com/products/caa/anvl_testsuitedesc.php
8. ISO 9646(1-7): Conformance testing methodology and framework

 J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 469-473, 2004.
© Springer-Verlag Berlin Heidelberg 2004

MPICH-GP: A Private-IP-Enabled MPI Over
Grid Environments

Kumrye Park1, Sungyong Park1,*, Ohyoung Kwon2, and Hyoungwoo Park3

1 Dept. of Computer Science, Sogang University, Seoul, Korea
{namul, parksy}@sogang.ac.kr

2 Korea University of Technology and Education, Chonan, Korea
3 Korea Institute of Science and Technology Information, Daejeon, Korea

Abstract. This paper presents an overview of MPICH-GP, which extends the
MPICH-G2 functionality to support private IP clusters. To support the
communication among private IP clusters, the MPICH-GP uses a
communication relay scheme combining the NAT and a user-level proxy. The
benchmarking results show that MPICH-GP outperforms the user-level two-
proxy scheme used in PACX-MPI and Firewall-enabled MPICH-G, and also
show comparable application performance to that of original MPICH-G2,
especially in large message (or problem) size.

1 Introduction

As cluster systems become more widely available, it becomes feasible to run parallel
applications across multiple private clusters at different geographic locations as a Grid
environment. In the MPICH-G2 library [1], an implementation of the Message
Passing Interface standard over Globus-based Grid environment, it is impossible for
any two nodes located in different private clusters to communicate with each other
directly across the public network.

In PACX-MPI [2], another implementation of MPI aiming to support the coupling
of high performance computing systems distributed in a Grid, the communications
among multiple private IP clusters are handled by two user-level daemons that allow
the library to bundle communications and avoid having thousands of open
connections between systems. However, since these daemons are implemented as
proxies running in user space, the total bandwidth is only about half of the bandwidth
obtained from kernel-level solutions [3]. It also suffers from higher latency due to the
additional overhead of TCP/IP stack traversal and switching between kernel and user
mode.

This paper presents the design and implementation of MPICH-GP, which is a
private-IP-enabled MPI solution over Grid environments. To support private IP
clusters, the MPICH-GP uses a communication relay scheme combining the NAT
service with a user level proxy. In this approach, only incoming messages are handled
by a user-level proxy to relay them into proper nodes inside the cluster, while the
outgoing messages are handled by the NAT service at the front-end node of the

* Corresponding author

K. Park et al. 470

cluster. We have benchmarked our message relay scheme and compared it with the
user-level two-proxy scheme used in PACX-MPI [2] and Firewall-enabled MPICH-G
[4]. The performance results show that our NAT-based scheme outperforms the user-
level two-proxy scheme. We have also benchmarked the performance of NAS Parallel
Benchmark suite over MPICH-GP and compared it with those of MPICH-G2 and
PACX-MPI. The results indicate that the overhead incurred by using a user-level
proxy is minimal, especially in large message (problem) size, and the performance is
at least better than that of PACX-MPI.

The rest of the paper is organized as follows. Section 2 presents an overview of the
MPICH-GP architecture. The experimental results of MPICH-GP are presented in
section 3. Section 4 concludes the paper.

2 Overview of MPICH-GP Architecture

In this section we present the design and implementation issues of the MPICH-GP
architecture such as how the proxy process is designed including the communication
relay scheme and protocol conversion, and the global rank management scheme used
in MPICH-GP.

2.1 NAT-Based Communication Relay Scheme

In private IP clusters where each node within the cluster has a private IP address and
thereby cannot directly communicate with public networks, a proxy that forwards
incoming and outgoing messages is needed. The proxy process, in general, can be
implemented either within the kernel or as a user-level process. Although the kernel-
level proxy approach has the best performance, it is not widely used due to its poor
portability. The user-level proxy scheme [2][4] is easy to implement but has the
performance overhead such as those incurred by the TCP/IP stack traversal and the
context switching between the kernel and the user mode. All packets sent from one
node to the other nodes located in other clusters have to go through the user-level
proxy twice, which decreases the performance further.

In MPICH-GP, only incoming messages are handled by a user-level proxy to relay
them into proper nodes inside the cluster, while the outgoing messages are handled by
the NAT service at the front-end node of the cluster. This brings performance
improvement against the user-level two-proxy scheme since all packets pass through
the user-level proxy once. By using the NAT service, which is generally provided by
traditional operating systems, we could easily apply our scheme to MPICH-GP and
implement a user-level proxy without modifying operating system kernel.

2.2 User-Level Proxy Daemon

In MPICH-GP, a user-level proxy daemon is running at the front-end node. This
proxy daemon accepts requests from one end of the MPI process and forwards the
requests to the other MPI process. Since the protocol between MPI_Send and
MPI_Recv is stateful (i.e., Each MPI process maintains states such as
‘await_instruction’, ‘await_format’, ‘await_header’, ’await_data’ and etc.), the proxy
daemon is developed with a stateful server approach, where the daemon keeps the

MPICH-GP: A Private-IP-Enabled MPI Over Grid Environments 471

same states with the MPI processes (See Fig. 1). To maintain the source-level
consistency with Globus, we designed the user-level proxy daemon with Globus I/O
library [5], where we heavily used the callback mechanism for the communications
among processes.

Fig. 1. User-level Proxy Daemon in MPICH-GP

2.3 Locating the Destination

When the MPI_Send operation is invoked in MPICH-GP, it first has to decide if the
destination node is within the same cluster or outside the cluster. This allows us to
determine if we need to send the data directly to the destination (if the destination is
within the same cluster) or send the data via the proxy (if the destination is outside of
the cluster). To decide the location of the destination, we have defined and added one
proprietary field called GP_GUID into the channel data structure in Globus.

The GP_GUID structure contains the name or IP address of the front-end node
where the compute node is located, the name or IP address of the compute node, etc.
If the compute nodes are connected to the public network, the name of the front-end
node is the same as that of the compute node. The name or IP address of the front-end
node is initially set with an environment variable and is given to each MPI process.
When each MPI process starts execution with MPI_Init function, it obtains the
information from the environment variable and builds the GP_GUID structure. With
the information in GP_GUID structure, any MPI process can decide whether we can
directly connect to the destination node or via the proxy.

3 Experimental Results

In this section we present two benchmarking results to evaluate the performance of
MPICH-GP. The first benchmarking is to check the overhead of the user-level proxy
and to compare the performance with that of the user-level two-proxy scheme used in
PACX-MPI. The performance of MPICH-GP is also evaluated via applications and is
compared with that of PACX-MPI. For the application benchmarking, we use the
NAS Parallel Benchmark suite [6]. We only report the IS benchmark in this paper.

K. Park et al. 472

3.1 Forwarding Performance

The goal of the measurements presented here is a comparison of two different
approaches, our NAT-proxy scheme and two-proxy scheme. Fig. 2 shows the latency
between two private IP clusters. The latency was measured via ping-pong program
using small sized messages (i.e., 128 bytes). As we can see from Fig. 2, the NAT-
proxy scheme shows large performance improvement over two-proxy approach by
about 144%. For example, the measured latency using NAT + proxy was 1923 usec,
while the latency using two user-level proxies was 2756 usec. It is clear from the
result that the overhead incurred by using NAT was much lower than that of using
two user-level proxies.

Latency

1923
2756

0

500

1000

1500

2000

2500

3000

NAT + Proxy Two Proxies

Fig. 2. Latency Between Two Private IP Clusters

3.2 Application Performance

To evaluate the latency impact on applications, the NAS Parallel Benchmark suite
(NPB 3.1) [6] was run both on MPICH-GP and MPICH-G2. We have selected three
benchmarks, IS, CG and LU. However, we only report the performance results of IS
benchmark in this paper. By varying the problem size of the benchmarks from class S
to class B (S<W<A<B), we measured the latency. The number of processors was
fixed to 4.

Fig. 3 shows the experimental results of IS benchmark. The latency means the total
execution time of the benchmark. The line with a tag GP/G2 indicates the ratio of the
performance, MPICH-GP/MPICH-G2 (that is the overhead of MPICH-GP compared
to that of MPICH-G2). As we can see from Fig. 3 (a), the latency increases as we
increase the message size and the overhead of using user-level proxy keeps
decreasing. This means that the overhead of using proxy gets amortized as we
increase the message size. Fig. 3 (b) compares the latency between MPICH-GP,
MPICH-G2 and PACX-MPI using IS benchmark. For small messages, PACX-MPI
shows the worst performance, but as we increase the message size, PACX-MPI shows
the best performance among them. It should be noted that PACX-MPI compresses the
messages by default before sending and it can achieve better performance as we
increase the message size.

MPICH-GP: A Private-IP-Enabled MPI Over Grid Environments 473

 (a) (b)

Fig. 3. IS Benchmark

4 Conclusions

In this paper we have presented the implementation issues of MPICH-GP and
evaluated our implementation. We have also proposed a communication relay scheme
based on the NAT and a user-level proxy, and compared our scheme with that of two
user-level proxy scheme. From the forwarding bandwidth experiments, we showed
that the performance of our scheme was better than that of two user-level proxy
scheme. The application performance also indicated that the overhead of using proxy
is minimal, especially in large message size.

References

1. Karonis, N.T., Toonen, B., Foster, I.: MPICH-G2: A Grid-Enabled Implementation of the
Message Passing Interface, ANL/MCS Technical Reports P942-0402, (2002)

2. Gabriel, E., Resch, M, Beisel, T., Keller, R.: Distributed computing in a heterogeneous
computing environment, LNCS 1497 (1998) 180–188

3. Müller, M., Hess, M., Gabriel, E.: Grid enabled MPI solutions for Clusters, CCGRID’03
(2003) 18–24

4. Tanaka, Y., Sata, M., Hirano, M., Nakata, H., Sekiguchi, S.: Performance Evaluation of a
Firewall-compliant Globus-based Wide-area Cluster System, HPDC 2000 (2000) 121–128

5. Ian Foster, Carl Kesselman eds, Grid: Blueprint for a Future Computing Infrastructure,
Morgan Kaufmann Publishers (1999)

6. NAS Parallel Benchmarks, http://www.nas.nasa.gov/Software/NPB

Paradigm of Multiparty Joint Authentication:
Evolving Towards Trust Aware Grid Computing�

Hui Liu and Minglu Li

Department of Computer Science and Engineering,
Shanghai Jiaotong University, 200030 Shanghai, China

{liuhui, li-ml}@cs.sjtu.edu.cn

Abstract. This paper introduces the semantic of Multiparty Joint Au-
thentication (MJA) into the authentication service, which is to find
simplified or optimal authentication solutions for all involved principals
through their transitive trust instead of to authenticate each pair of prin-
cipals in turn. MJA is designed to support multiparty security contexts
in grids with a specified, understood level of confidence and reduce the
time cost of mutual authentications. Graph theory model is employed to
define MJA, and analyze its mathematical properties. Two algorithms
to find an n-principal, n-order MJA solution are also presented. MJA
is indeed a trust aware mechanism and will promote trust aware grid
computing eventually.

1 Introduction

Grid computing is just on the way towards popular, prosperity and progressive.
However, before any desktop in the cyberworld plug into some grids to share
resources, grids must prove to be security enough for both their providers and
consumers. Therefore, security for grids is just like Achilles’ heel, it can either
boost or baffle the growth of grid computing.

According to OGSA security roadmap, future OGSA security architecture
will leverage the existing and emerging WS security specifications as much as
possible, fitting them into a layered grid security model [1]. The fundamental
of grid security model rests with using web services to integrate different in-
teroperability security components for the purpose of defining, managing and
enforcing trust through virtual organization (VO). Obviously, authentication is
an inescapable entry for any kinds of trust model.

This paper introduces the semantic of Multiparty Joint Authentication (MJA)
into the authentication service, which is to find simplified or optimal authenti-
cation solutions for all involved principals as a whole instead of to authenticate
each pair of principals in turn. MJA supports multiparty security contexts in

� This research is supported by the National Grand Fundamental Research 973
Program of China (No.2002CB312002), ChinaGrid Program of MOE, China Post-
doctoral Science Foundation, and Grand Project of the Science and Technology
Commission of Shanghai Municipality (No.03dz15027).

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 474–483, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Paradigm of Multiparty Joint Authentication 475

grids with a specified, understood level of confidence and reduces the total time
cost of mutual authentications. Furthermore, if MJA service is designed to sup-
port OASIS SAML specification [2], authentication assertion can be used to
deduce the trust emphasizing uncertain and venturesome relationship, i.e., the
trust that is not processed as true or false binary logic. Therefore, the paradigm
of MJA will facilitate developers building some trust aware grids.

The rest of this paper is organized as follows. Section 2 reviews related work
about trust model and multiparty authentication. The graph theory model of
multiparty authentication and the definition of MJA are proposed in section 3.
In section 4, basic mathematical properties of MJA are analyzed in the form
of theorems. Section 5 presents two algorithms to find a possible MJA solution.
Section 6 makes some discussion about MJA and concludes this paper.

2 Related Work

Trust is a metric for principals to establish security relationships. However, trust
in digital security contexts is always being processed as true or false binary logic,
which is not consistent with the real behavior pattern in the human society.
Therefore, some new models emphasize the uncertainty and venture of trust,
and intend to reinstall the underlying trust mechanisms of the offline world into
the online world in the same way or to the same degree [3].

We have classified this kind of trust model as mission-unaware identity trust
model, mission-aware identity trust model, mission-unaware behavior trust model
and mission-aware behavior trust model. If a trust model possesses only static
security policies, it is an identity trust model. If some security policies evolve
their values or contents according to the principals’ behavior histories, it can
be correspondingly termed as behavior trust model. On the other hand, if se-
curity decision is directly depending on the characteristics of the mission, such
as cost, QoS, etc., it becomes mission-aware trust model. Otherwise, it falls into
mission-unaware trust model [4]. All trust models can be regarded as selective
projection of a mission-aware behavior trust model.

The first trust aware resource management system (TRMS) for grids suggests
that the trust and reputation should decay with time [5]. The mathematical
functions used in TRMS are different from that in literature [6], which suggests
that recommender weights should be employed to reduce the computing cost of
reputation. Trust model is also used for risk analysis in E-Commerce [7]. We
have proposed a formal description of mission-aware behavior trust model based
on ASM [4], and its concrete illustration can be found in literature [8].

OASIS SAML suggests a flexible and uniform architecture to define, manage
and enforce trust, which is an XML based framework for exchanging security
information expressed in form of assertions about subjects. Assertions convey
information about authentication actions that previously performed by different
SAML authorities [2]. By means of SAML architecture, authentication and au-
thorization actions are separable, and the trust can be calculated by different
authorities and be enforced at each PEP.

476 H. Liu and M. Li

Authentication is an inescapable entry for any kinds of trust model. However,
current mainstream security infrastructure in grid communities only supports
two-party oriented authentication, and there has not any published literature
dedicated to the research on multiparty authentication in grids.

Multiparty issues have been widely studied in the fields of multimedia, group
communication, symmetric group encryption, security computation, etc. How-
ever, these researches concern with how to improve multicast mechanisms, how
to compute, distribute, or agree on group secret key, how to protect privacy
and avoid corrupted parties. One authenticated group key agreement protocol
proposes implicit key authentication for multiple parties, by which the key is
not directly authenticated between an arbitrary two-party of Pi and Pj (i �= j).
Instead, all key authentication is performed through one fixed party Pn [9]. This
protocol indicates that multiparty authentication can be simplified. However,
to the best of our knowledge, none of the researches deals with using transitive
trust to simplify mutual authentication for the large, dynamic principal group.

Grid security model adopts trust model, authentication services and SAML
as its building blocks, the research in this paper is going to weave all these
elements into a feasible and profitable solution for typical grid applications.

3 Semantic of Multiparty Joint Authentication

3.1 What Is Multiparty Authentication

The real-life network applications reveal that C/S model and two-party inter-
action have some inherent drawbacks. Multiparty interaction mechanism that
encloses multiple participants performing a set of activities together is of great
demand. In a multiparty interaction, a group of participants come together to
produce some intermediate and temporary combined state,use this state to ex-
ecute some activity or transfer information.

Such applications include distributed online game, distributed VR environ-
ments, distributed interactive simulation, distributed cooperative edit, distributed
control and monitor, etc. When we want to improve security for such applica-
tions, the problem of multiparty authentication emerges.

Multiparty authentication is an extension of two-party authentication, which
is going to confirm each participant’s identity with a specified, understood level
of confidence. Traditionally, multiparty authentication can be regarded as an
accumulation of a series of two-party authentications.

Because a grid system intends to provide coordinated resources sharing, prob-
lem solving or services outsourcing in dynamic, multi-institutional VO [10], a typ-
ical grid application often spreads over multiple resource hosting sites and needs
multiparty authentication. For example, the computational power providers of a
computation job may need multiparty authentication, the idle resource providers
of a cryptographic problem may need multiparty authentication, the search ser-
vice providers of a parallel searching engine may need multiparty authentication,
thousands of players participated in an online game may need multiparty authen-
tication, a set of web services constituting an outsourcing workflow may need

Paradigm of Multiparty Joint Authentication 477

multiparty authentication, etc. In these scenarios, it seems awkward for develop-
ers to regard multiparty authentication as a series of two-party authentications,
especially when thousands of or millions of participants are involved.

There are two main approaches to establish multiparty relationships: in the
static manner, all the parties involved must be known and presented in advance
of authentications; in the dynamic manner, old involved parties can quit the
multiparty relationship while new parties involved can join the multiparty re-
lationship. Obviously, the latter can be achieved by using the static multiparty
approach together with the two-party approach repeatedly. This paper focuses
on multiparty relationships formed in the static manner unless explicitly stated.
On the other hand, the actions after multiparty authentication are beyond the
scope of this paper.

3.2 Graph Theory Model of Multiparty Authentication

Denote each principal to be authenticated by a vertex, and let the edge connect-
ing a pair of vertices represent that two principals have confirmed the counter-
party’s identity mutually. Multiparty authentication that involves n principals
can be modeled as a graph of order n. We denote such a graph by MAGn. After
authenticating each pair of distinct principals, MAGn become a complete graph
Kn with n(n− 1)/2 edges.

A straightforward simplification is to choose one principal as a trusted third
party and let it to mutually authenticate with the other principals in turn. This
simplification changes MAGn into a complete bipartite graph K1,n−1 called a
star, needing only (n− 1) mutual authentications. A further simplification is to
distribute the responsibility of the trusted third party and to establish the MJA
supposition as follows:

MJA Supposition. One principal can regard another principal as a trusted
third party if either of the following conditions is satisfied:

1. Two principals have authenticated each other mutually.
2. Two principals have authenticated with one common trusted third party in

advance.

Based on the MJA supposition, another simplification changes MAGn into
a Hamilton chain of the complete graph Kn, which also needs (n − 1) mutual
authentications.

3.3 Defining Multiparty Joint Authentication

Definition 1. Multiparty Joint Authentication (MJA) is to find a simplified or
optimal authentication solution in a multiparty security context that involves n
principals, which is based on three conditions below:

1. If principal Pi, Pj have authenticated with one common trusted third party,
then both Pi and Pj can confirm the counterparty’s identity with a specified,
understood level of confidence even without a real mutual authentication.

478 H. Liu and M. Li

2. The relationship between a principal and its trust third party must satisfy the
MJA supposition (or other feasible substitute).

3. There are m(1 ≤ m ≤ n) principals to act as the trusted third parties to
serve certain subsets comprising different principals. For short, let m be the
order of the n-principal MJA, denote them by n:m.

The Hamilton chain of the complete graph Kn is one possible MJA solu-
tion, however, it is not the optimal answer to MAGn if we take some practical
constraints into account:

1. Different mutual authentications have different QoS and cost.
2. Users insist on performing mutual authentication for certain pairs of princi-

pals.
3. The MJA service provider can cache some mutual authentications performed

by several principals and trusted third parties for a period of time.
4. The policies for a principal to become a trusted third party are of great

varieties.
5. A principal may trust a trusted third party with different policies and secu-

rity level.

These constraints indicate how to find an optimal MJA solution face lots of
challenges. In this paper, we focus on n-principal, n-order MJA, i.e., n:n MJA.

4 Basic Mathematical Properties of n:n MJA

Theorem 1. The spanning tree of a complete graph Kn is an n:n MJA solution.

This theorem indicates that finding a solution of n:n MJA can be achieved by
growing a spanning tree of a complete graph Kn (The proof of different theorems
are omitted in this paper).

Theorem 2. The spanning tree of a complete graph Kn is one of the simplest
n:n MJA solution.

In this theorem, the word ”simplest” can be comprehended as ”most relaxed”,
which means every principal can become a trusted third party and hence how
to choose a trusted third party comes under no constraints.

Theorem 3. The number of n:n MJA solutions is nn−2.

This theorem indicates that searching the optimal solution of n:n MJA by
enumeration is an unsolvable problem. If we can design a nondeterministic Turing
machine algorithm to find the optimal n:n MJA solution with polynomial-time
computation, this unsolvable problem become an NP problem.

Theorem 4. Suppose it spends the time of T for each pair of principals to
authenticate mutually, and each principal can carry out only one two-party au-
thentication once a time. Then, the theoretical minimum time cost of an n:n
MJA solution is 2T .

Paradigm of Multiparty Joint Authentication 479

This theorem determines the infimum of the theoretical minimum time cost
of an n:n MJA solution.

Theorem 5. Denote a spanning tree of a completed graph Kn by Tn. Suppose
it spends the time of T for each pair of principals to authenticate mutually,
and each principal can carry out only one two-party authentication once a time.
Then, the theoretical minimum time cost of an n:n MJA solution is mT if the
maximum value of the degree sequence of Tn is deg(Pk) = m.

This theorem implies that greedy algorithm to grow a spanning tree of a
completed graph Kn would not always finding the optimal n:n MJA solution.

Theorem 6. Suppose it spends the time of T for each pair of principals to
authenticate mutually, and each principal can carry out only one two-party au-
thentication once a time. Then, the maximum value of the theoretical minimum
time cost of an n:n MJA solution is (n− 1)T .

Theorem 4, 5 and 6 indicate that the bigger the number of the trusted third
party is, the smaller the theoretical minimum time cost is. If all principals can
act as a trusted third party, the theoretical minimum time cost takes its mini-
mum value 2T ; If only one principal act as a trusted third party, the theoretical
minimum time cost takes its maximum value (n− 1)T .

Theorem 7. Let T be a spanning tree of a connected graph G. Let α = {a, b} be
an edge of G which is not an edge of T . Then there is an edge β of T such that
the graph T ′ obtained from T by inserting α and deleting β is also a spanning
tree of G [11].

This theorem is very useful for us to construct some algorithms to find n:n
MJA solutions.

5 Algorithms to Find n:n MJA Solution

If each pair of principals spends the same time to authenticate mutually (other
factors can be converted into the equivalent time cost), a Hamilton chain of a
completed graph Kn stands for one optimal n:n MJA solution. Algorithm 1 is
to grow this kind of spanning tree.

Algorithm 1.

1. Number n principals with one of the numbers 1, 2, . . . , n.
2. Generate a permutation of natural number n, denoted by p1, p2, . . . , pi, . . . , pn,

where pi ∈ N ∧ 1 ≤ pi ≤ n.
3. Join p1, p2, . . . , pi, . . . , pn in turn, the chain in the form of p1 − p2 − . . . −

pi . . .− pn is an n-principal, n-order MJA solution.

480 H. Liu and M. Li

Theorem 8. If all mutual authentication spends the same time, algorithm 1 can
find one optimal n:n MJA solution.

Generally, different pair of principals spends different time to authenticate
mutually (including converted factors). Therefore, we must design some algo-
rithms to grow a weighted spanning tree from a weighted complete graph Kn.
The most straightforward algorithm is the greedy algorithm, which can be used
to grow a minimum-weight spanning tree. Let Kn be a weighted complete graph
with weight function c, the greedy algorithm is shown as follows.

Algorithm 2.

1. Put F = φ, V = φ.
2. Put an edge α that has minimum weight in F , at the same time, put two

vertices which are incident with α in V .
3. While there exists an edge α not in F such that F ∪ {α} put only one new

vertex in V , determine such an edge α of minimum weight and put α in F ,
at the same time, put the new vertex that is incident with α in V .

4. Put T = {V, F}, which is a minimum-weight spanning tree of Kn.

Theorem 9. If different mutual authentication spends different time, algorithm
2 can find an n:n MJA solution that has the minimum-time-cost.

However, greedy algorithm may not find the optimal n:n MJA solution be-
cause the real time cost of an n:n MJA solution depends not only on the time
cost for each pair of principals to authenticate mutually, but also on how many
mutual authentications are to be performed by each principal (the degree se-
quence of the spanning tree).

This conclusion can be illustrated by one concrete example. Suppose it takes
the time of T for principal Pi to authenticate mutually with all other (n − 1)
principals, and it takes the time of 2T for each pair of principals, not including Pi,
to authenticate mutually. Then, the minimum-weight spanning tree grown with
greedy algorithm is a star whose center is Pi. The theoretical minimum time cost
of such a MJA solution is (n−1)T . However, we can construct a Hamilton chain
as follows: firstly, find a Hamilton chain for all (n− 1) principals, excluding Pi,
with algorithm 1; secondly, join Pi with either end vertex of the previous Hamil-
ton chain to form a new Hamilton chain. Obviously, the theoretical minimum
time cost of this MJA solution is 4T , which is better than the former.

On the other hand, different trust model can be designed to custom MJA
solutions. For example, the weight of each edge may represent trust or risk
between the corresponding principals, then, greedy algorithm can be used to
find MJA solution with maximum level of trust and (or) minimum level of risk.
This indicates that MJA will redound to trust aware grid computing.

Paradigm of Multiparty Joint Authentication 481

6 Discussion and Conclusion

Grid application aims to share resource deployed within the VO. High level defi-
nitions of grid have been formalized with abstract state machine (ASM) [12]. Ac-
cording to such definitions, typical grid application has three important behavior
rules: Resource Abstraction maps the abstract resource in the grid to the real
resource on some hosting machines; User Abstraction maps the grid global user
onto local users that carry their own credentials; Resource Selection is achieved
by repeating Resources Abstraction and User Abstraction. Because current au-
thentication is two-party oriented, resource selection, account and other related
services are confined by this semantic, including

1. Restriction on resources selection. When abstract resource in the request
is mapped onto physical resource, no authentication and authorization are
performed, therefore, the selected and mapped physical resource may not be
granted to the users for the reason of changing on security considerations,
payment in arrears, etc. This would make an optimal resource scheduling
solution abort during the execution.

2. The time cost of mutual authentication for large group users is tremendous.
For example, during the start time of a popular grid game, 150,000 users
may rush into the battle field for security authentication (otherwise, their
time and energy will go to waste), which needs 11,249,925,000 mutual au-
thentications without any simplification.

3. No support for the semantic of multiparty authentication. Current GSI does
not directly support the semantic of multiparty authentication. Therefore,
no multiparty authentication services are available now, especially for the
application that needs all participants to authenticate each other simultane-
ously before executing their cooperative activities.

4. Restriction on dynamic resource sharing. When a grid application wants
to dynamically allocate some new resources, or, resources want to migrate
to some new hosting machines, the time cost of mutual authentication is
tremendous. For example, new resource process would authenticate to all
available resource processes, or, several different multiparty may want to
participate into available grid application simultaneously. In these scenarios,
the semantic of multiparty authentication seems to be very useful.

5. The Single Sign On (SSO) mechanism in the current GSI is not security
enough. GSI implements SSO through proxy certificates. However, the proxy
certificates may derive a vulnerable trust chains, where compromising of any
proxy (child-proxy) acting on behalf of the user (parent-proxy) would destroy
believes of the original user as a whole and result in trust crisis.

6. No support for the trust model that emphasizes the uncertainty and venture
of trust relationships. GSI focuses on providing authentication and access
control mechanism for the grid environment. It proposes and implements a
security architecture based on four interoperability protocols that are used
to handle U-UP, UP-RP, RP-P and P-P interactions cooperatively. In these
protocols, authentication and authorization are often coupled together and
expressed as true or false logic.

482 H. Liu and M. Li

MJA bases itself upon multiparty authentication and has trust aware com-
puting in mind, which can be used to eliminate restrictions above and bring
some value-added points for grid applications, including

1. Support for authenticated resources selection. MJA introduces SAML as-
sertions into the security mechanisms. Therefore, resources providers and
consumers can design their own policies to establish different security level
and security context. On the other hand, resource optimal selection and re-
source mapping can be performed by executing MJA firstly to assure their
successful access control rights.

2. MJA is designed to reduce the time cost of multiparty authentication. Sup-
pose all mutual authentications spend the same time and denote this time
cost by one unit, a traditional multiparty authentication needs n(n − 1)/2
mutual authentications and spends n(n−1)/2 units of time. Because an n:n
MJA needs only (n − 1) mutual authentications, the time cost reduces to
(n − 1) units. That is, if there are 150, 000 principals for an online game,
an n:n MJA solution spends only 149, 999 units of time. On the other hand,
parallel techniques can be used to speed up processing and to make response
more efficiently. For example, if all principals act as a trusted party and
different principals perform mutual authentications in parallel, an n:n MJA
solution for 150, 000 principals can be finished just in 2 units of time.

3. MJA supports the semantic of multiparty authentication. After authenti-
cation, multiple participants can use group secret key for security group
communication, or, they can use other participant’s public key to establish
privacy conversation. How to get the group secret key is beyond the scope
of this paper.

4. Support for flexible dynamic resource sharing. By means of MJA, there
are two approaches for dynamic resource sharing to assure their security.
If only one mutual authentication is needed, two-party authentication would
be employed; if multiparty authentications are needed, the MJA would be
employed.

5. Support for new SSO mechanisms. By means of MJA, all principals have
been authenticated as a whole. The group secret key together with the pub-
lic key form a temporary security token for the purpose of confidential-
ity, integrity and nonrepudiation. MJA does not produce proxy certificates.
However, some trust parties may corrupt, this makes MJA deserving further
research.

6. Support for trust aware computing. MJA simplify mutual authentication
through transitive trust between authenticated principals. Therefore, MJA
is essentially a trust aware mechanism, which will eventually benefit from
mission-aware behavior trust model. Of course, if MJA services are widely
deployed within grid communities, grid applications will become trust aware
correspondingly.

The essential of MJA is to increase the efficiency of multiparty authentica-
tion by distributing the responsibility of the trusted third party. It find some

Paradigm of Multiparty Joint Authentication 483

simplified or optimal authentication solutions for multiple principals by means
of their transitive trust instead of to authenticate each pair of principals in turn.
It is designed to support multiparty security scenarios in grids with a specified
level of confidence and reduce the time cost of authentications.

By means of graph theory model, this paper reveals some mathematical prop-
erties of MJA and puts forward two algorithms to find an n:n MJA solution.
Future research topics on MJA includes: 1) MJA performance modeling and
simulating; 2) MJA secret group key; 3) MJA assertions; 4) MJA protocols; 5)
MJA services; 6) MJA based authorization; 7) MJA based Leave/Join services;
8) Policy based MJA; 8) MJA based security communication; 9) new algorithms
to find MJA solutions with certain constraints; 10) MJA based trust model, etc.

References

1. Siebenlist, F., Welch, V., Tuecke, S., Foster, I., Nagaratnam, N., Janson, P., Dayka,
J., Nadalin, A.: OGSA Security Roadmap. GGF OGSA Sec. Workgroup Doc.
(2002)

2. Website: http://www.oasis-open.org/specs/index.phpsamlv1.1
3. Daignault, M., Shepherd, M., Marche, S., Watters, C.: Enabling Trust Online. In:

Williams, A. (ed.): Proc. of IEEE 3rd Intl. Symposium on Electronic Com. IEEE
Press, California (2002) 3-12

4. Li, M., Liu, H., Cao, L., Yu, J., Li, Y., Qian, Q., Jin, W.: Semantics and For-
malizations of Mission-Aware Behavior Trust Model for Grids. In: Li, M., Sun,
X., Deng, Q., Ni, J. (eds.): GCC 2003. Lecture Notes in Computer Science, 3032
(2004) 883-890

5. Azzedin, F., Maheswaran, M.: Evolving and Managing Trust in Grid Computing
Systems. In: Kinsner, W., Sebak, A., Ferens. K., (eds.): Proc. of the IEEE Canadian
Conf. on Electrical and Computer Eng. IEEE Press, Manitoba, Canada (2002)
1424-1429

6. AbdulRahman, A., Hailes, S.: Supporting Trust in Virtual Communities. In: Ralph,
H., Sprague, J. (eds.): Proc. of the 33rd Ann. Hawaii Int. Conf. on Sys. Sci. IEEE
Press, Hawaii (2000) 1769-1777

7. Manchala R.: E-Commerce Trust Metrics and Models. IEEE Internet Computing.
4 (2000) 36-44

8. Liu, H., Peng, Q., Shen, J., Hu, B.: A Mission-Aware Behavior Trust Model for Grid
Computing Systems. In: Han, Y. (ed.): Proc. of the 2002 Int. Workshop on Grid
and Cooperative Computing. Electronics Industry, Hainan China (2002) 897-909

9. Ateniese, G., Steiner, M., Tsudik, G.: New Multiparty Authentication Services and
Key Agreement Protocols. IEEE J. on Selected A. in Com. 4 (2000) 628-639

10. Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid, Enabling Scalable
Virtual Organizations. Intl. J. of H. Performance Computing Applications 3 (2001)
200-222

11. Brualdi, R.: Introductory Combinatorics, Third Edition. Pearson Ed. Inc. (1999)
12. Zsolt, N., Vaidy, S.: Characterizing Grids: Attributes, Definitions and Formalisms.

J. of Grid Computing 1 (2003) 9-23

 J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 484–488, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Design and Implementation of a 3A Accessing
Paradigm Supported Grid Application and

Programming Environment

He Ge, Liu Donghua, Sun Yuzhong, and Xu Zhiwei

Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100080
{hege, dliu, yuzhongsun}@ict.ac.cn

Abstract. The mobile grid users accessing to grid services has become a
normally paradigm for getting grid resources. To improve their working
productivity in dynamic and open grid environment it should provide the
mobile grid users an access-point decoupled and access-time decoupled way to
access grid services. In development of the VEGA Grid, corresponding to the
user accessing module in the Service-Oriented Architecture, we developed a
kind of we called “3A(anytime, anywhere, and on any device) accessing para-
digm” supported Grid Application and Programming Environment(GAPE). To
the 3A accessing paradigm, we mean a mobile grid user not only could access
grid services at anytime anywhere and on any device, but also could continu-
ously manage the executing state of his grid applications even if he changed his
access point or access time. This article analyzes the 3A accessing paradigm,
and introduces the implementation of the VEGA GAPE.

1 Introduction

Owing to the dynamic and open characteristics, accessing and programming grid
resources have special difficulties. To make grid resources useful and accessible ef-
fectively, it requires a new software environment to improve the user’s productivity,
and facilitate the user’s accessing and managing grid services. We define a Grid Ap-
plication and Programming Environment (GAPE) as a set of tools and technologies
that allow users “easy” access to Grid resources and applications.

With the development of the mobile computing technology, the mobile grid user’s
accessing grid services has become a normally paradigm for getting grid resources.
So the need for managing the transparency of the grid services and the mobility of the
grid users requires a suitable GAPE. It should provide a physics-decoupled, time-
decoupled, and space-decoupled grid resources accessing paradigm, which we called
“3A (anytime, anywhere, and on any device) accessing paradigm”. For the 3A access-
ing paradigm, we mean a mobile grid user not only could access grid services at any-
time anywhere and on any device, but also could continuously manage the executing
state of his grid applications even if he changed his access point or access time. This
interaction model could cut costs and then increase the productivity of the mobile grid
users.

Design and Implementation of a 3A Accessing Paradigm Supported GAPE 485

In GGF, there have an Applications, Programming Models and Environments Area
to collect and coordinate the related works. Their works focused on grid portal such
as GPDK [2], application development middleware such as NetSolve [3], or largely
problem solving environments such as ECCE [4].Their works mainly focus on the
implementation of the computing functions, but rarely consider the accessing models,
and the 3A accessing requirement. In the mobile computing research, there have
many works focus on the user mobility such as WebMC [5]. These works generally
solved problems of the mobility in a computer or network architecture level. Differ-
ently, our works solve the problem in a higher application level.

In development of the VEGA Grid [6], which is the name of the grid research pro-
ject at the Institute of Computing Technology, Chinese Academy of Sciences, we
analysis the characteristics and requirements of the 3A accessing paradigm, develop a
3A accessing paradigm supported GAPE. By this way it adapts to the loosely-coupled
characteristic of the grid environment, and provides a more powerful interaction
module between the grid users and the grid resources.

2 Overview of VEGA GAPE

The system architecture of the VEGA GAPE is shown in Fig. 1.

Fig. 1. VEGA grid application and programming environment overview

GSML(Grid Service Markup Language) is a Service-Oriented Programming Lan-
guage implemented in VEGA Grid project, which aimed to provide the end-users
with a way to express services request in a grid environment. GSML provides an
easy-to-use and flexible method for the grid end-users to access and integrate the grid
services. The GSML is suitable for description of the interaction between the grid
users and the grid systems. It provides the grid users with a light-weight alternative to
describe the requests for accessing or composing grid services. Meanwhile, it gives a
declarative specification of the externally visible behaviors. We will particularly in-
troduce the design and implementation of the GSML in another paper.

GSML Browser is designed as the interface for the end-users to access the grid re-
source. GSML Composer is the toolkit developed for the users to edit the “.gsml”

H. Ge et al. 486

files. The whole procedure for an end user to program and execute his grid applica-
tion is: firstly, he edits “.gsml” files helped by the Composer using the GSML
language at the client to express his accessing requirements to the grid services. Then
he submits the file to a GSML Server, which would interpret and execute the “.gsml”
file. The Server would access the physical grid services for the end users. After
getting the accessing results, it would return the results to the Browser, which will
display the accessing results in the client.

3 3A Accessing Paradigm Analysis

In dynamic and open grid environment, To improve the productivity of the mobile
grid users, the GAPE should provide a set of decouples between the grid users and
grid resources, which includes: physics decoupled, which means a grid application
should be independent of the physical property of the computing node; time decoup-
led, which means the executing of a grid application should be decoupled of the
physical time, and need not be continuous in time; and space decoupled, which means
the executing space of a grid application should be independent of the physical space,
especially at the access point.

From the classification of the trigger when activating a new task and the functions
needed to manage a gird application in its whole life-cycle, we summarize the 3A
request instructions, which include:

1. Normal. Executing the application normally.
2. Suspend. The user suspends the executing state of a grid application.
3. Resume. Resuming the state of a grid application from its suspended point.
4. Subscribe. The user subscribes an access to grid service.
5. Notify. When executing a grid application, the user could send the “notify” re-

quest and closed his client environment. After the executing finished, the system
would notify the executing results to the user.

6. Back. Returning to the latest running page. The user may need go back to the
latest running state and re-execute his program.

The GAPE should provide grid users with enough approaches to express his 3A
accessing requirements. The user may express it in the aforehand description. Or the
user may be able to press some button to express his 3A accessing request when he
managing the executing state of his grid applications.

4 Architecture Design and Implementation of the GSML Server

GSML Server is a session-based 3A accessing paradigm supported server for the grid
users to access grid services. It receives and interprets the user’s grid service access-
ing requirement file, which is a “.gsml” file, and accesses to the physical grid services
for the users. Meanwhile, it provides the supports for the 3A accessing paradigm. The
architecture design of GSML Server is shown in Fig. 2.

Design and Implementation of a 3A Accessing Paradigm Supported GAPE 487

Fig. 2. Architecture design of the GSML Server

The “Requirement Receiver Layer” is a “gsrpd” daemon, which listens to the
server port waiting for the user’s requirement, and manages the processing handler.

The “Requirement Process Layer” interprets the user’s accessing requirement file;
provides the supports for the 3A accessing paradigm according to the content of the
3A requirement; and realizes the really accessing to the physical grid services. At last
it returns the executing results to the upper layer. The relationship of the modules in
this layer is shown in Fig. 3.

Fig. 3. Relationship of the modules in requirement process layer

H. Ge et al. 488

 The “User Management Module” authenticates the identity of the user. The “3A
Parsing Module” parses the contents of the user’s 3A request. The “Interpreting Man-
agement Module” interprets and executes the user’s requirement according the
“.gsml” file. It listens to and receives the content and the 3A request, and then exe-
cutes the corresponding process for realizing the 3A functions. It may call the inter-
face of the Workspace Management module to store the session of the application in
the user’s workspace. The “Workspace Management Module” manages and maintains
the middle results of the service accessing and executing state information when sus-
pending an application. We use a database, namely session manage server to store
and manage the user’s session data. In VEGA GAPE we redefined the context data
needed to support the 3A accessing paradigm to ensure the state of the session pro-
vide sufficient context data for the user’s application to return its executing state, and
continues the session from where it was suspended. The “Subscribe/Notification
Management Module” realizes the function of subscribing and notifying. The
“Endpoint_reference Management Module” binds the service address described in
“.gsml” file by GSML language to the physical service address.

5 Conclusion

Availability is becoming one of the most important factors for the widely usage of the
grid system. The users require new application paradigm and supported software
platform to realize a friendly interface and environment for accessing grid services.
By this way it could improve the productivity of the grid users from the whole life-
cycle of the grid applications. Still the mobile grid user needs the GAPE provide the
support with the 3A accessing paradigm. In the VEGA Grid project, we developed a
3A accessing paradigm supported GAPE in SOA context. We provide a flexible,
robust, and efficient way to manage the context data of the gird applications to realize
the virtual connection migration of the mobile grid users.

References

1. G. Fox, M. Pierce, D. Gannon, M. Thomas, “Overview of Grid Computing Environments”,
Global Grid Forum, http://forge.gridforum.org, 2003

2. Jason Novotny, “The Grid Portal Development Kit”, Concurrency and Computation: Practice and
Experience, Vol. 14, Grid Computing Environments Special Issue 13-15, page 1129-1144, 2002

3. D. Arnold, H. Casanova, J. Dongarra, “Innovations of the NetSolve Grid Computing Sys-
tem”, Concurrency and Computation: Practice and Experience, Vol. 14, Grid Computing
Environments Special Issue 13-15, page 1457-1480, 2002

4. Karen Schuchardt, Brett Didier, Gray Black, “Ecce – A Problem Solving Environment’s Evolu-
tion Toward Grid Services and a Web Architecture”, Concurrency and Computation: Practice and
Experience, Vol. 14, Grid Computing Environments Special Issue 13-15, page 1221-1240, 2002

5. N. Li, S. Vuong, “WebMC: A Web-based Middleware for Mobile Computing”, Internet
Computing, 2000

6. Xu Zhiwei, Li Wei, “Research on VEGA grid architecture”, Journal of Computer Research
and Development, 2002, 39(8):923-929

VAST: A Service Based Resource Integration
System for Grid Society�

Jiulong Shan, Huaping Chen, Guangzhong Sun, and Xin Chen

National High Performance Computing Center,
Department of Computer Science and Technology,
University of Science and Technology of China,

230027 Hefei, Anhui, China
jlshan@mail.ustc.edu.cn

Abstract. Grid and P2P are two different ways of organizing hetero-
geneous resources. However, the similarity in their target of resource
sharing determines that they could be and should be treated together.
Reference [4] proposed the concept as well as system model of ‘Grid Soci-
ety’, which describes the Grid-P2P mixed environment and demonstrates
the similarity between Grid Society and Human Society. Following this
idea, we continued by an in-depth analysis of Grid Society environment
from systematical aspect and designed a service-based architecture for
VAST, a resource integration system. In VAST, Grid and P2P Resource
Access Entry assists the Portal to co-schedule resources by providing a
set of well-defined service interfaces; DCI, a P2P software system, was
also developed to meet the special requirements of Portal; and Portal,
coordinator of the whole system, links those two Access Entries and pro-
vides a friendly interface to the End Users for controlling and monitoring
the submitted jobs. VAST has already been implemented using Java and
Web Service technologies, which helps to achieve good portability. Fur-
ther more, an experiment of parameter sweep application has also been
conducted to test the prototype of VAST and through it VAST shows a
promising potential for the collaboration of different kinds of resources.

Keywords: Resource Integration, Grid Society, Web and Grid Service.

1 Introduction

The traditional client/server model can not meet the increasing requirements
for computing ability, whereas many independently deployed supercomputers,
clusters and PCs do not reach an efficient usability. This unmatched situation
leads to the birth of Grid and P2P.

� This work was supported by the National ‘863’ High-Tech Programme of China under
the grant No. 2002AA104560 and National Science Foundation of China under the
grant No. 60273041.

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 489–498, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

490 J. Shan et al.

Grid [1] is a geographically distributed computing platform that aims at re-
source sharing and problem solving among heterogeneous ‘LARGE’ resources.
These are done through high speed interconnection networks and are QoS en-
sured. On the contrary, P2P [2] is a class of applications that accumulate avail-
able resources distributed at the Internet’s edges, which are relatively ‘SMALL’.
And the resources provided in this way are generally non-QoS ensured.

Nevertheless, they both concerned with the coordinated sharing of distributed
resources within an overlay structure. Therefore, in spite of great difference, the
similarity in target determined that these two systems could be and should be
treated together as a whole to get an efficient collaboration of the QoS ensured
and non-ensured resources [3] [12]. The paper ‘Grid Society: A System View of
Grid and P2P Environment [4]’ proposed the concept and system model of ‘Grid
Society’, which mixed access to both ‘LARGE’ and ‘SMALL’ resources.

In this paper we will discuss our further work on Grid Society, the design and
implementation of the VAST resource integration system for Grid Society, which
serves as a service-based architecture consisting of distributed Web Services and
Grid Services.

The rest of this paper is organized as follows: The next section discusses
the related works. Section 3 describes the VAST system design principle and
functionality in details. Experiments of a chemical parameter sweep application
is shown in section 4. Finally, some concluding remarks are made and future
work is outlined in section 5.

2 Related Works

As we mentioned above, characteristic of resources, ‘LARGE’ or ‘SMALL’, dis-
tinguished Grid and P2P. On each side, there exist presently some successful
projects. Besides, some other projects are making effort to collaborate them.

Globus [5] and UniCore [6] are two well-known Grid Systems that treat
‘LARGE’ ones, and some included technologies have already been accepted as
the de facto standards for Grid Computing. Globus is an open source project,
aiming to provide Grid building tools as well as environment. UniCore provides
a science and engineering Grid environment combining resources of supercom-
puters on the Internet.

For ‘SMALL’ resources, projects such as SETI@Home [7], Folding@Home [8]
and many others have already got a good performance. SETI@Home, with other
common software such as BONIC [9], UD [10] and Entropia [11], all concern on
utilizing the idle resources within a campus, a company or the whole Internet at
a low cost.

Besides, more and more researchers now move their attentions to the merging
of different kinds of resources. In [12], Ian Foster and Adriana Iamnitchi made
a comparison between Grid and P2P on the aspects of target communities,
incentives, resources and applications, and came to the conclusion that ‘The Grid
and P2P communities are approaching the nirvana from different directions and
collaboration is the direction of future’.

VAST: A Service Based Resource Integration System for Grid Society 491

ZENTURIO [13] is an experiment management tool for cluster and Grid
architectures. Based on a set of pre-defined directives, it can automatically in-
strument the applications and generate the corresponding set of experiments.
However, it only concerns on a dedicate environment, overlooking the QoS re-
quirements of applications and the value of ‘SMALL’ resources.

The Community Grids Lab of Indiana University developed a Web Service
based ‘Peer-to-Peer Grids system [14]’ including Grids and P2P networks. In this
system, all involved entities are organized in P2P mode and linked by messages.
Although it can collaborate different types of resources, it loses sight of the
differences in their characteristics, and has not considered the co-scheduling issue
for specific applications.

3 VAST Resource Integration System

In [4], Grid Society is defined as a mixed system of different kinds of resources.
These resources can be classified, according to the QoS they provided, into Server
Entity (‘LARGE ones’) and Servent Entity (‘SMALL’ ones). It is found that Grid
Society and Human Society have a strong similarity in their targets and basic
elements. And such draws the conclusion that ‘Grid Society and Human
Society are similar system. Issues in Grid Society can be solved using
corresponding solutions of similar issues in Human Society’ . However,
how can a method in Human society be migrated into Grid Society and under
which constraints will this migration be possible have not yet been solved.

The VAST system goes further on the above point. It facilitates the theory of
Grid Society to collaborate different kinds of resources, especially to support effi-
cient problem solving for compute intensive and data intensive applications. We
performed an in-depth analysis of Grid Society environment from systematical
aspect and gave the system architecture design.

3.1 System Architecture Design

In Human Society, organizations with different capabilities are made up from
single persons and they are structured into a layered architecture with the help
agents. All organizations will be co-scheduled by agents for the execution of
complex tasks. Learned form it, we classified the involved entities of Grid Society
into five basic roles according to their functionality and capability.

1. Grid Service Provider refers to the resources with high computing or stor-
age capability and can provide QoS ensured resource sharing, such as the su-
percomputer ASCI White in LLNL and the Human Genome Database server.

2. P2P Service Provider includes machines who contribute their resources
voluntarily. All volunteers can join and leave the system freely, which pro-
duces a volatile resource sharing.

3. P2P Service Coordinator plays an important role in P2P Computing
system (such as in SETI@Home and Folding@Home), who is in charging of
the management and coordination of the joined peers.

492 J. Shan et al.

4. End User is the one who submits jobs to the system and pays for the results.
5. Portal, coordinator of the whole system, provides a seamless linking between

Service Provider and End User.

Each of the above roles has its corresponding part in Human Society. And just
the same as Agent in Human Society, Portal is the most important component of
Grid Society. With the help of Portal, the involved resources are also organized
into a layered architecture. First, P2P Service Providers register themselves to
one or more coordinators according to their locations. After that, P2P Service
Coordinators and Grid Service Providers are centralized to Portals based on their
locations and the supported applications. Finally, the Portals will collaborate
with each other in a self-organized way.

Based on the analysis above, a service-based architecture for VAST was de-
signed, as shown in Fig. 1.

Fig. 1. VAST System Architecture

In VAST, users can submit their jobs to the system through Portal. After the
authentication and authorization phase, the submitted job will be partitioned
into small sub-tasks and assigned to the select resource providers through Grid
and P2P Resource Access Entry. When the resources held by a Portal can not
meet the user’s requirements, it will redirect part or whole of the job to another
friend Portal in VAST and this can achieve the sharing of resources in the whole
Grid Society. Job Monitoring and Data Visualization are also provided by the
Portal.

By adopting the ‘Service Orientated Schema’, all functions of VAST are
presented as a set of well-defined Service Interfaces, which facilitate the co-
scheduling of resources. The prototype of the system has already been
implemented based on Java and Web Service technologies, and is currently run-
ning on our testbed which accumulates resources from PCs, clusters to super-
computers.

In the following subsections, Grid Resource Access Entry (GRAE), P2P Re-
source Access Entry (PRAE) and Portal, the three key pillars of VAST, will be
described in details.

VAST: A Service Based Resource Integration System for Grid Society 493

3.2 Access to Grid Resources

The Grid Resource Access Entry (GRAE), acting as an assistant of the Portal,
works to integrate Grid Resources that are available as services. In VAST design,
GRAE is defined as a set of service interfaces supporting the efficient commu-
nication between Portal and remote Grid Service Provider. Currently GRAE
supports Grid Service Providers equipped with Globus Toolkit 3 (GT3), and we
will make it also support UniCore in our next step work.

GT3 is the first implementation of Open Grid Service Architecture (OGSA)
[15]. To integrate resources equipped on GT3, we deploy an abstract base class
AbstractGridService, which is inherited from the ServiceInterface of GT3, and
extend it by adding functions for access to remote Grid Services. For a specific
Grid Service deployed on the remote Grid Service Provider, GRAE will first get
the corresponding GSWDL through GT3’s ContainerRegistryService and then
generate the client service code by extending AbstractGridService automatically.
Through the client service code, Instance Management Module can assign sub-
tasks to selected remote Grid Service Providers.

3.3 Access to P2P Resources

The P2P Resource Access Entry (PRAE), another assistant component of Por-
tal, aims at the integration of volunteer resources wide around the Internet edges.
By providing a set of service interfaces, PRAE supports the communication be-
tween Portal and P2P Service Coordinator. To cooperate with the PRAE, the
P2P Service Coordinator must meet some special requirements such as provid-
ing the service interface for job co-scheduling with GRAE. Because of there no
existing P2P system can meet these requirements, thus we developed on our own
a Distributed Computing Infrastructure (DCI). In this part, the ideas, or we can
say, features of the DCI are discussed.

First, we carried out the principles of Web Service technology, both in DCI
architecture design and its implementation. By inheriting a set of standard ser-
vice interfaces, DCI can cooperate with PRAE seamlessly. Particularly, DCI is
designed as a stand-alone component thus it can be used independently.

Second, DCI is well designed for computing intensive and data intensive ap-
plications, such as parameter sweep and coupled parallel simulation. For each
kind of applications, there is a corresponding processing template inside DCI,
which will binding to them automatically, just the same as the scheduler interface
in Portal.

Besides, a combination of the duplication (send n copies of a sub-task si-
multaneously at the beginning) and timeout (resend a sub-task when the corre-
sponding result does not come back in a time period of t) scheduling policy is also
supported in DCI. We found after investigating that building a 2-dimensional
scheduling metric from those two 1-dimensional metrics can achieve a better
system performance [17].

494 J. Shan et al.

3.4 Portal

Portal is the key component of the whole system [18], it provides a friendly user
interface for users to submit theirs jobs, query the results as well as monitor on
the execution. What’s more, GRAE and PRAE can work together with the help
of Portal to collaborate Grid and P2P Service Providers.

The Job Scheduling Module (JSM) will processes the submitted jobs after
job owner finished their security checking. Each kind of applications has its cor-
responding specific processing template (scheduler) which is inherited from the
interface AbstractScheduler (such as BioScheduler for Molecular Dynamic Sim-
ulation application, ParaSweepScheduler for all parameter sweep applications)
and will binding to them automatically. Afterwards, according to the informa-
tion provided by the user and the Information Management Module (InfoMM),
the JSM will partition the job, select the providers, make the mapping, gener-
ate the schedule result and then pass it to the Instance Management Module
(InstMM).

The InstMM receives the schedule result from JSM, starts a monitoring pro-
cess for this job immediately and then assigns those sub-tasks through GRAE
and PRAE to the service providers as scheduled.

During execution, the Job Monitoring Module (JMM) watches on the job
until it finished. If the collected status shows a mismatch to the user’s require-
ments, the JMM will call the JSM to adjust the initial scheduling. The JMM is
also responsible for system information collection, including load of providers,
job queue lists and application runtime information. All the collected informa-
tion are stored by InfoMM in a repository. The monitoring functions of JMM
are implemented in two ways, pull and trigger.

Data Visualization Module (DVM) is always the last step of applications. It is
in charge of the visualization of the monitoring information and the result data.
For the former type of information, pictures are mostly generated locally. As to
the result data, the visualization work includes the following steps. First, when
submitting the job, user should specify in advance the result data file name, the
demanded visualization tool and the needed processing script (see Example
4.2). Then the DVM will choose the place to process result data. In case the
needed software is not installed locally, DVM will submit this visualization work
as a new job to JSM on behalf of the user and then get the result.

Finally, we use the Portlet technology [19] for arranging all these modules into
Portlets. With Portlet, users or administrators can customize their own individ-
ualized user interface according to their own preferences easily. This technology
also facilitates the development and management of services.

4 Experiments

In order to evaluate our prototype implementation, the experiment of a chemical
parameter sweep application ‘thermodynamic protein folding’, which studies the
protein folding mechanism from thermodynamics angle, was conducted using
VAST.

VAST: A Service Based Resource Integration System for Grid Society 495

Experiments were run on our testbed in USTC, consisting of one Grid Ser-
vice Provider (HP Beowulf Cluster with 4 nodes, each node containing 2 Intel
Itanium 2 Madison 1.5GHz CPU), 16 P2P Service Providers (16 single node
PC, with Intel Pentium 4 2.4GHz CPU). All the 16 P2P Service Providers were
coordinated by one P2P Service Coordinator, and the coordinator was deployed
together with the Portal on the same server.

For parameter sweep applications, the submitted job will be first parsed by
ParaSweepSechduler in Portal, then InstMM submit those partitioned sub-tasks
to remote service providers through GRAE and PRAE. GRAE uses GT3’s de-
fault job manager ManagedJobFactoryService for submitting sub-tasks and gets
the result back using GridFTP, while PRAE communicates with DCI to handle
this.

To submit a parameter sweep job, what the user only needs to do is to provide
the application’s source code, input parameter files, result linking program’s
source code, make files and two special VAST script files. These VAST script files
include: (1)source script file (see Example 4.1) that describes the parameters,
expected deadline and result data file name; (2)result script file (see Example
4.2) that sets the name of visualization software and corresponding manipulate
scripts. The generated schedule result file (see Example 4.3) specifies the
sub-task’s information, including the destination provider’s URL, the assigned
parameter space and the arranged processor numbers of Grid Service Provider.
Result data will be linked by the result linking program and visualized by DVM.

The parameter study was performed by varying the input parameter runtimes
among 20000, 40000, 60000 and 80000. Example 4.1 describes one scenario
where the runtime equals to 40000 with a fixed step length 10. The expected
deadline is set to 0 means no such requirement and the result data will be stored
in the file result.dat. Example 4.2 shows that the result data will be processed
by GNUPlot with specified scripts.

Example 4.1 vast.source

$ParaNumber 1
$Para

$Start 1
$End 40000
$Step 10

$EndPara
$Time 0
$ResultDataFile ‘result.dat’

Example 4.2 vast.result

$VisualTool ‘GNUPlot’
$VisualResultFile ‘result.png’
$VisualScript

set terminal png
set output ‘$VisualResultFile’

496 J. Shan et al.

set xlabel ‘Engery Bands’
set ylabel ‘Endis (1e + 05)’
plot ‘$ResultDataFile’ using 1:($3/100000) \

w lp lt 1 pt 1 t ‘runtimes = 40000’
$EndVisualScript

Besides, by selecting resources by ParaSweepScheduler automatically, users
can also specify the needed service providers and the sub-tasks assignment pro-
portion themselves. In the experiments, 2, 3 and 4 nodes of HP Cluster were
selected for each value of runtimes separately, and for each resource selection 11
kinds of sub-tasks assignment proportions were used. Example 4.3 is a gener-
ated schedule result file, in which the job was partitioned into equally two half
and all the four nodes (8 CPUs) of HP Cluster were selected together with the
P2P Service Providers.

Example 4.3 vast.scheduling

$SubTask
$Provider 0 /*0 representing Grid Service Provider*/
$URL ‘http://hpc.grid.ustc.edu.cn/’
$ParaNumber 1
$Para

$Start 1
$End 20000
$Step 10

$EndPara
$ProcessorNumber 8
$ResultDataFile ‘result.dat’

$EndSubTask

$SubTask
$Provider 1 /*1 representing P2P Service Provider*/
$URL ‘http://summer.grid.ustc.edu.cn/’
$ParaNumber 1
$Para

$Start 20001
$End 40000
$Step 10

$EndPara
$ResultDataFile ‘result.dat’

$EndSubTask

Fig. 2 shows the visualized result data for those four runtimes values. We can
see from it that with the incensement of runtimes user can get a more centralized
result. It also results in the increasing needs for computing ability, which make
collaborating different resources more necessary.

Fig. 3 shows the application’s execution time under different settings while
the runtimes is fixed at 40000, in which the X axis denotes the proportion of

VAST: A Service Based Resource Integration System for Grid Society 497

 0

 5

 10

 15

 20

 25

 30

 0 100 200 300 400 500 600 700 800 900 1000

E
nd

is
 (

1e
 +

 0
5)

Engery Bands

runtimes = 20000
runtimes = 40000
runtimes = 60000
runtimes = 80000

Fig. 2. Result data for diff. runtimes

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 20 40 60 80 100

E
xe

cu
tio

n
T

im
es

 (
se

c)

Task Proportions Assigned to Grid Service Provider (%)

optimal schedule

2 nodes
3 nodes
4 nodes

Fig. 3. Execution time for diff. settings

sub-tasks assigned to HP Cluster and Y axis denotes the application’s execution
time (ET). In VAST, ET is the larger one of the Grid Service Provider’s execution
time (EG) and the P2P Service Provider’s execution time (EP). From Fig. 3 we
can see that with the increasing proportion of sub-tasks assigned to HP Cluster
from zero to 100%, the ET reduced first, but then increased. Moreover, the ET

also decreased when selecting more HP Cluster nodes. This means that, by se-
lecting an optimal resource setting and sub-tasks assignment proportion we can
get a minimum ET for the application. In this experiment, it was obtained when
all the 4 HP Cluster nodes were selected and the assignment proportion was 50%.

From the above experiments, we can see that VAST has a promising potential
for collaboration of different kinds of resources.

5 Conclusion and Future Works

In this paper, we have presented a comprehensive view of the VAST resource
integration system with description of GRAE, PRAE and Portal separately.
The main contributions of VAST can be concluded in the following aspects.
First, by using Human Society for reference, an efficient method for collaborating
‘LARGE’ and ‘SMALL’ resources in Grid Society was proposed. Second, the
design of service-based architecture significantly increased the system scalability
and facilitated the cooperation of resources. What’s more, application specific
processing template, employed in both Portal and DCI, helped achieving good
performance.

For future works, we plan to develop necessary service interfaces in GRAE to
integrate UniCore equipped resources and extend the job processing templates
in Portal and DCI to support for more kinds of applications.

References

1. I. Foster, C. Kesselmann, editors, The Grid: Blueprint for a New Computing In-
frastructure, Morgan Kaufman Publishers, 1998.

2. Dejans S. Milojicic, Vana Kalogeraki, et al., Peer-to-Peer Computing, HPL-2002-
57R1, HP Labs 2002 Technical Reports, 2002.

498 J. Shan et al.

3. Domenico Talia, Palol Trunfio, Toward a Synergy Between P2P and Grid, IEEE
Internet Computing, 2003.

4. Jiulong Shan, Guoliang Chen, et al., Grid Society: A System View of Grid and
P2P Environment, International Workshop on Grid and Cooperative Computing
(GCC2002), 2002.

5. I. Foster, C. Kesselman, Globus: A Metacomputing Infrastructure Toolkit, Interna-
tional Journal of Supercomputer Applicaitons and High Performance Computing,
1997.

6. M. Romberg, The UNICORE Architecture: Semeless Access to Distributed Re-
sources, International Symposium on High Performance Distributed Computing
(HPDC-8), 1999.

7. David P. Anderson, Jeff Cobb, et al., SETI@home: An Experiment in Public-
Resource Computing. Communications of the ACM, 2002.

8. Michael Shirts, Vijay Pande, Screen savers of the world, Unite!, Science, 2000.
9. BONIC: Berkeley Open Infrastructure for Network Computing,

http://boinc.berkeley.edu/index.html
10. B. Uk, M. Taufer, et al., Implementation and characterization of protein folding

on a desktop computational grid. Is CHARMM a suitable candidate for the United
Devices MetaProcessor? International Parallel and Distributed Processing Sympo-
sium (IPDPS 2003), 2003.

11. Andrew Chien, Brad Calder, et al., Entropia: Architecture and Performance of an
Enterprise Desktop Grid System, Journal of Parallel Distributed Computing, 2003.

12. I. Foster, A. Iamnitchi, On Death, Taxes, and the Convergence of Peer-to-Peer and
Grid Computing, International Workshop on Peer-to-Peer Systems (IPTPS’03),
2003.

13. Radu Prodan, Thomas Fahringer, A Web service-based Experiment Management
System for the Grid, International Parallel and Distributed Processing Symposium
(IPDPS 2003), 2003.

14. Geoffrey Fox, Dennis Gannon, et al., Peer-to-Peer Grid, IBM Research Presenta-
tion, 2002.

15. I. Foster, C. Kesselman, et al., The Physiology of the Grid: An Open Grid Services
Architecture for Distriubuted Systems Integration, The Globus Project, 2002.

16. Wenrui Wang, Guoliang Chen, et al., A Grid Computing Framework for Large
Scale Molecular Dynamics Simulations, International Workshop on Grid and Co-
operative Computing (GCC2003), 2003.

17. Guangzhong Sun, Jiulong Shan, et al., A Study on the Scheduling Policies of
Global Computing System, submitted to The 3rd International Workshop on Grid
and Cooperative Computing (GCC2004)

18. Jiulong Shan, Guoliang Chen, et al., Design and Implementation of Hefei Grid
Portal, Journal of Mini-Micro Systems, to be published.

19. JSR-000168 Portlet Specification, http://www.jcp.org/en/jsr/detail?id=168

Petri-Net-Based Coordination Algorithms for
Grid Transactions

Feilong Tang1, Minglu Li1, Joshua Zhexue Huang2, Cho-Li Wang3, and
Zongwei Luo2

1 Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai 200030, China

{tang-fl,li-ml}@cs.sjtu.edu.cn
2 E-Business Technology Institute, The University of Hong Kong, China

jhuang@eti.hku.hk
3 Department of Computer Science, The University of Hong Kong, China

clwang@cs.hku.hk

Abstract. Transaction proceesing in Grid is to ensure reliable execu-
tion of inherently distributed Grid applications. This paper1 proposes
coordination algorithms for handling short-lived and long-lived Grid
transactions, models and analyzes these algorithms with the Petri net.
The cohesion transaction can coordinate long-lived business Grid appli-
cations by automatically generating and executing compensation trans-
actions to semantically undo committed sub-transactions. From analysis
of the reachability tree, we show that the Petri net models of above al-
gorithms are bounded and L1-live. This demonstrates that transactional
Grid applications can be realized by the proposed algorithms effectively.

1 Introduction

The goals of Grid computing are to share large-scale resources and accomplish
collaborative tasks [1]. Many of inherently distributed Grid applications require
high reliability, which can be achieved by transaction processing technologies.

The traditional distributed transaction has the ACID properties [2]:

– Atomicity. Participants of a transaction are either all committed or all aborted.
– Consistency. A transaction changes the system from one consistent state to

another.
– Isolation. Intermediate results of a non-committed transaction are not read

or written by other concurrent transactions.
– Durability. Effects of a transaction are durable once it commits.

However, the strict ACID transaction only satisfies the following conditions:
(1) the transaction is short-lived, (2) the coordinator has the full control power

1 This paper is supported by 973 Program of China (No.2002CB312002), ChinaGrid
Program of MOE of China and grand project of the Science and Technology Com-
mission of Shanghai Municipality (No.03dz15027).

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 499–508, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

500 F. Tang et al.

to participants, and (3) the application systems are tightly coupled. As such, the
coordination algorithms for Grid services [3] have to relax the ACID semantics
because Grid transactions are mostly long-lived and lock of resources is not often
allowed because of the autonomy of Grid services.

Coordination algorithms of Grid transactions consist of sets of messages and
rules that regulate the interactions among the involved Grid services to achieve
consistent outcomes in an orderly fashion. With the Petri net, the correctness of
algorithms can be validated.

A Petri net is an abstract and formal modeling tool for representation and
analysis of parallel processes. It is able to represent most coordination problems,
easy to use and understand, and shares common properties, such as bounded-
ness, liveness, deadlock-freeness, proper termination and completeness [7]. It can
model systems’ events, conditions and the relationships among systems. The oc-
currence of these events may change the state of the system, causing some of the
previous conditions to cease holding and other conditions to begin to hold [12].

In this paper, we use Petri nets to explicitly model the states and transitions
of Grid transactions during the coordination process, and verify the correct-
ness of proposed coordination algorithms applicable to short-lived and long-lived
transactional Grid applications.

2 Related Work

The Petri net is a powerful method for describing and analyzing the flow of
information and control in systems, particularly those systems involving asyn-
chronous and concurrent activities. Petri nets have been widely researched and
applied in many areas [12,13].

Jacinto et al. [6] used Petri nets to model and analyze a distributed process-
ing system based on the OSI-TP and OSI-CCR mechanisms for the two phase
commit procedure, which takes advantage of the characteristics of the Petri nets
and the abstraction concept based on the observational equivalence. [4] proposed
a scheduling method using the Petri net techniques. The Petri net model incor-
porates the conditions that have to be met before an action can be taken. Petri
nets are used to explicitly model the states and transitions of a power system
during the restoration process. The time required to perform an action is also
modeled in the net. A token passing and a backward search process are used to
identify the sequence of restoration actions and their timing. Another Petri net
model [5] of the coordination level of an intelligent mobile robot system (IMRS)
can specify the integration of the individual efforts on path planning, supervisory
motion control, and vision system that are necessary for autonomous operations
of the mobile robot in a structured dynamic environment. The model can also
be used to simulate task processing and evaluate efficiency of the operations and
responsibility of the decisions in the coordination level of the intelligent mobile
robot system.

Petri-Net-Based Coordination Algorithms for Grid Transactions 501

3 Framework of Grid Transaction Processing

Fig. 1 shows the transaction processing framework we propose. Its core element
Agent consists of following complements:

Result
Initiate

Grid servic e

User Rem ote Grid Servic e

Agent

Coordinator

Create

Agent

Parc itipant
/Candidate

Create

Applic ation

(1) C
oordinationContext

(3) C
oordinatio

n M
essa

ges
(2

) R
esp

onse

Fig. 1. Transaction processing framework for Grid services

– Time Service, which generates time-driven events to rollback failed trans-
actions or start corresponding compensation transactions for undoing the
effect of the committed sub-transactions.

– Compensation Generator, which automatically generates the compensation
operations for sub-transactions of a cohesion transaction and combines them
into compensation transactions when the sub-transactions commit.

– Log Service, which records coordination operations and state information.
– Interface, including application interfaces invoked by application programs,

and the Rule Pre-definition interface for setting up compensation rules.
– Coordinator and Participant/Candidate, which are dynamically generated

to coordinate transactions.

4 Grid Transaction Processing

4.1 Flow of Grid Transaction Processing

In the Grid service environment, transaction processing typically involves the
following procedures [8,16].

– an initial agent, which initiates a global transaction for an application, dis-
covers and selects the qualified Grid services as participants according to
applications’ requirements. Further information is described in [15].

– the agent negotiates with the participants. For remote Grid services to join
a transaction, the agent sends the CoordinationContext (CC) messages to

502 F. Tang et al.

them and creates a local coordinator. The CC message includes the neces-
sary information to create a transaction, including the transaction type, the
transaction identifier, the coordinator address and expire time. The agent
of each participant returns a Response message to the coordinator, and lo-
cally creates a participant (for an atomic transaction) or a candidate (for a
cohesion transaction).

– the created coordinator and participants interact to control the transaction
execution. The detail is described in the following subsections.

4.2 Coordination Algorithms

According to the demands of practical applications, we divide Grid transactions
into two types[11]: atomic transaction (AT) for coordinating short-lived activities
and cohesion transaction (CT) for coordinating long-lived business activities. All
participants of an atomic transaction have to commit synchronously. However,
a cohesion transaction allows some sub-transactions to commit while others fail.

Coordination of an Atomic Transaction. The process includes three steps,
initiation of an atomic transaction, preparation for the commit, and commit of
the transaction. The coordination algorithms and the state conversion diagram
are shown in Fig. 2 and Fig. 3(a) respectively.

ActionOfParent{
step1: initiate an AT
agent creates Coordinator;
agent sends CC to all agents of Pi;
wait for Response from agent of Pi;
if timeout

exit;
step2: prepare for the transaction
send Prepare to all Participants;
while (t ≤ T1) and (n1<N)

wait for and record incoming messages;
step3: commit the transaction
if (n1=N)and(n1 messages are Prepared){

record commit in log;
send Commit to all Participants;
while (t≤T2) and (n2<N)

wait for and record incoming message;
if (n2<N)or(not N Committed messages)
{ send Rollback to all Participants;

exit after receiving all Rollbacked; }
} else { send Abort to all Participants;

exit after receiving all Aborted;
}}

(a) Coordinator algorithm

ActionOfChild{
step1: join in the transaction
agent creates Participant after receiving

CoordinationContext;
agent sends Response to Coordinator;
step2: reserve resources
wait for Prepare from Coordinator;
if timeout exit;
success:=reserves resources;
if (success){

send Prepared to Coordinator;
step3: commit sub-transaction

while(t≤T3)and(not Commit or Abort)
wait for incoming message;

if (message is Commit){
allocate reserved resources;
record commit in log;
commit sub-transaction;

//nested transaction,call ActionOfParent;
send Committed to Coordinator;

}else{ cancel reservation;
send NotPrepared to Coordinator;
exit; }}}

(b) Participant algorithm

Fig. 2. Coordination algorithms of the atomic transaction

Petri-Net-Based Coordination Algorithms for Grid Transactions 503

Prepared

Ac tive

Preparing

Rollbac king

Com m itting

Ended

Com m it

Prepared

Prepare

Rollbac k

Response

Abort

Rollbac ked

Aborted

Com m itted

Aborting

(a) Atomic transaction.

Com m itted

Ac tive

Com m itting

Canc elling

Confirm ing

Confirm

Com m itted

Enroll

Response

Aborted

Confirm ed

Canc elled

Confirm ed

Canc el

Canc elled

T im eout

(b) Cohesion transaction.

Fig. 3. State conversion diagram

Coordination of a Cohesion Transaction. The process includes initiation of
a cohesion transaction, independent commit of sub-transactions, confirmation of
a user, and confirmation of successful candidates. The coordination algorithms
and the state conversion diagram are shown in Fig. 4 and Fig. 3(b) respectively.

5 Petri Net Models of Grid Transactions

5.1 Modeling Coordination Algorithms with Petri Nets

The Petri net model is a powerful modeling tool. A very complex activity can
often be quickly and easily translated to a Petri net representation. Petri net
models have proved effective in net analysis for deadlock detection and behav-
ior trends in asynchronous systems, thus for determining the correctness and
efficiency of proposed systems [7].

A Petri net model consists of a set of places and a set of transitions. The
places and transitions are connected by a set of directed arcs. A transition is
said to be enabled if there are enough tokens in each of the input places as
specified by the arcs connecting the input places to the transition. An enabled
transition can fire if the other conditions associated with the transition are sat-
isfied [10,12]. We model above algorithms and verify their correctness with Petri
nets. In the models, the places (denoted by circles) correspond to the states and
the transitions (denoted by lines) represent the actions related to the states. For
the purpose of intuition, we express the coordinator states with corresponding
messages.

Properties of the Petri net model with two participants are similar to those of
more members. For convenience, let an atomic transaction consist of two partic-

504 F. Tang et al.

ActionOfSuperior{
step1: initiate a CT
agent creates Coordinator;
while(a CT doesn’t complete){

agent sends CC to agents of
Candidates;

wait for Response messages;
step2: enroll candidate

send Enroll to all candidates;
step3: confirm/cancel candidate

while (t ≤T) {
wait for & record messages;
if (message is Committed)

if (user selects some){
send Confirm to them;
wait for Confirmed;

} else{
send Cancel to them;
wait for Cancelled;

}
}

} }

(a) Coordinator algorithm

ActionOfInferior{
step1: join in the transaction
agent creates Candidate on receiving CC;
send Response to Coordinator;
step2: commit sub-transaction
wait for Enroll from Coordinator;
if timeout exit;
reserve and allocate resources;
record commit in log;
commit & generate compensation transaction;
//nested transaction,call ActionOfSuperior
step3: confirm/compensate
if (commit successfully){

send Committed to Coordinator;
while (t ≤ T){

wait for incoming messages;
if (message is Cancel){

call its compensation transaction;
send Cancelled;

} else {
if (message is Confirm){

send Confirmed;
} } } } }

(b) Candidate algorithm

Fig. 4. Coordination algorithms of the cohesion transaction

ipants and a cohesion transaction two candidates. Without losing the generality,
in the cohesion transaction, we let candidate P1 successfully commit while P2 fail
to commit. Their Petri net models are depicted in Figs. 5 and 6, where the “C”
means the coordinator and the “Pi” refers to the ith participant of an atomic
transaction or the ith candidate of a cohesion. The weight value above the arcs
indicates the number of the changed (i.e. added or removed) tokens whenever
the firing happens, and all “1”s are omitted.

5.2 Analysis of the Petri Net Models

Problems analyzed in modeling parallel systems by Petri nets are usually dealing
with dynamic aspects of the control structure. Such problems are (partial or
total) deadlock freeness, or liveness of the system [9].

The Petri net model can analyze the behavioral properties, which depend on
the initial marking, including reachability, boundedness, liveness, coverability,
reversibility, persistence and so on. For a bounded Petri net, however, all the
above problems can be solved by the reachability tree [13]. Peterson pointed
out that in Petri nets, many questions can often be reduced to the reachability
problem [12]. Hack also showed that the liveness problem is reducible to the
reachability problem and that in fact the two problems are equivalent [14].

Petri-Net-Based Coordination Algorithms for Grid Transactions 505

T 1

S1: P1-Ac tive S2: P2-Ac tive S3: C-Prepare S4: P1-Preparing S5: P2-Preparing S6: P1-Prepared
S7: P2-Prepared S8: C-Com m it S9: P1-Com m itting S10: P2-Com m itting S11: Ended S12: C-Abort
S13: P1-Aborting and P2-Aborting S14: C-Rollbac k S 15: P1-Rollbac king and P2-Rollbac king
T 1: P1 prepares for c om m it T 2: P2 prepares for c om m it T 3: P1 returns Prepared T 4: P2 returns Prepared
T 5: P1 c om m its T 6: P2 c om m its T 7: P1 returns Com m itted T 8: P2 returns Com m itted T 9: P1 and P2 abort
T 10: P1 and P2 return Aborted T 11: P1 and P2 rollbac k T 12: P1 and P2 return Rollbac ked

S 4

S 3

S 2

S 1

S 9

S 6

T 7

S 5 S 7

S 11

T 2

T 5
T 3

2

2

2

2
S 8

S 12 S 13

S 14

S 10

T 8

2

S 15
2

T 4

T 9

T 6

T 10

T 11
T 12

2

Fig. 5. Petri net model of the atomic transaction coordination algorithms(ATPNM)

T 1

S1: P1-Ac tive S2: P2-Ac tive S3: C-Enroll S4: P1-Com m itting S5: P1-Com m itted
S6: C-Com firm S7: P1-Confirm ed S8: C-Canc el S9: P1-Canc elling S10: Canc elled
S11: P2-Com m itting T 1: P1 c om m its T 2: P1 returns Com m itted
T 3: P1 returns Com firm ed T 4: P1 c om pensates T 5: P1 returns Canc elled
T 6: P2 perpares for om m it T 7: P2 fails to c om m it and returns Aborted

S 4

S 3

S 2

S 1 S 7

S 5

S 11

T 6

T 2

S 8

S 9

T 4

S 6 T 3

S 10

T 5
T 7

Fig. 6. Petri net model of the cohesion transaction coordination algorithms(CTPNM)

The state of a Petri net is the distribution of tokens to the places. The initial
state of the Petri net is called its initial marking. For the atomic transaction’s
Petri net model ATPNM, let M=(M1, M2,. . . , M15) be a marking, where Mi is
the number of tokens in place Si. ATPNM has three initial markings, correspond-

506 F. Tang et al.

ing to successful commit, preparation failure and commit failure respectively,
that is:

– M0s=(1,1,2,0,0,0,0,2,0,0,0,0,0,0,0), when the global transaction commits suc-
cessfully.

– M0a=(1,1,2,0,0,0,0,0,0,0,0,2,0,0,0), when at least one participant can not pre-
pare for commit.

– M0f=(1,1,2,0,0,0,0,0,0,0,0,0,0,2,0), when at least one participant can not cor-
rectly commit.

For the cohesion transaction’s Petri net model CTPNM, let M=(M1, M2,. . . ,
M11) be a marking. CTPNM has two initial markings as:

– M0confirm=(1,1,2,0,0,1,0,0,0,0,0), when the commit of the candidate P1 is
confirmed while P2 fails to commit.

– M0cancel=(1,1,2,0,0,0,0,1,0,0,0), when the commit of the candidate P1 is can-
celled and P2 fails to commit.

Below, we mainly analyze the boundedness and reachability, using reacha-
bility analysis which checks whether some properties can occur by considering
all reachable states of the model being analyzed. By analysis of the reachability
trees of ATPNM and CTPNM, we can draw the following conclusions.

Theorem 1. ATPNM and CTPNM are bounded.

Proof: A Petri net (N, M0) is said to be k-bounded or simply bounded if the
number of tokens in each place does not exceed a finite number k for any mark-
ing reachable from the initial marking, i.e., Mi ≤ k for every place Si and every
marking M∈R(M0) which refers to the set of all possible markings reachable
from the initial one M0 [13]. By inspection of the reachability trees of ATPNM
and CTPNM, ω (a symbol to represent an arbitrarily large value) does not occur
anywhere. The number of tokens in every place in the ATPNM and CTPNM is
never greater than 2. Therefore, they are bounded.

Theorem 2. ATPNM and CTPNM are L1-live.

Proof: A transition t is L1-live if t can be fired at least once in some firing
sequences. A Petri net is L1-live if ∀ t ∈ T, which is the set of transitions in a
model, t is L1-live.

For a bounded Petri net, the reachability tree explicitly contains all possible
markings. According to Theorem 1, both ATPNM and CTPNM are bounded. By
inspection of the reachability trees of ATPNM and CTPNM again, any marking
is reachable and every transition can be fired at least once from one of the initial
markings M0s, M0a and M0f in ATPNM, and M0confirm or M0cancel in CTPNM.
Thus, ATPNM and CTPNM are L1-live.

Theorem 2 indicates that ATPNM and CTPNM can be deadlock-free as long
as the firing starts with one of their initial markings, that is, the coordination
process can proceed until the end of a global transaction, whether successful or
not. Thus, the coordination algorithms are correct.

Petri-Net-Based Coordination Algorithms for Grid Transactions 507

6 Implementation

Using Java as the main development language and SQL Server 2000 as the
database server, we developed a prototype system. The action of its core com-
ponent Agent depends on the request. If the Agent is requested to initiate a
transaction, it creates a coordinator. If the Agent receives a CC message, it
creates a participant/candidate. The coordinator and participant/candidate in-
teract messages to coordinate the transactional activities and live until the end
of a global transaction.

The Agent provides a set of interfaces called by applications.

beginTransaction(In txType, Out txHandle): starts a new transaction and
gets a transaction identifier.

prepareCommit(In txHandle): reserves resources to prepare for commit.
commit (In txHandle): commits the transaction.
rollback(In txHandle): undoes operations taken previously.
enroll(In txHandle): requires a candidate of a cohesion transaction to commit

a sub-transaction.
setTransactionTimeout(In txHandle): sets timeout for the specified transac-

tion.
startCompensationTransaction(In ci): starts the compensation transaction ci

for a cohesion transaction.
getTransactionStates(In txHandle, Out state): gets the current state of the

transaction.

We encapsulate all interfaces into the TX portType of Grid service. Each
interface and its input and output parameters are defined as operation and
messages respectively.

7 Conclusions and Future Work

We have presented the Petri-net-based coordination algorithms for Grid appli-
cations. It has the abilities to coordinate short-lived operations and long-lived
business activities. From the analysis of the reachability tree, it can be concluded
that the Petri net models of these algorithms are bounded and L1-live, which
theoretically prove the correctness of the algorithms. The proposed coordination
algorithms can recover systems from various failures but shield the complex pro-
cess from users. Next, we are going to incorporate security mechanism with the
algorithms to enable them to withstand vicious attacks.

References

1. I. Foster, C. kesselman and S. Tuecke, The anatomy of the grid: enabling scalable
virtual organizations. International Journal of Supercomputer Applications, 2001,
15(3): 200-222.

508 F. Tang et al.

2. Y. Breitbart, H. Garcia-Molina and A. Silberschatz. Overview of multidatabase
transaction management. The VLDB Journal-The International Journal on Very
Large Data Bases, October 1992, 1(2): 181-239.

3. I. Foster, C. Kesselman, J. M. Nick and S. Tuecke, The Physiology of the Grid-An
Open Grid Services Architecture for Distributed Systems Integration. June, 2002.

4. J. S. Wu, C. C. Liu, K. L. Liou et al.. A Petri Net Algorithm for Scheduling of
Generic Restoration Actions. IEEE Transactions on Power Systems, Vol. 12, No.
1, February, 1997. pp. 69-76.

5. F. Y. Wang, K. J. Kyriakopoulos, A. Tsolkas et al.. A Petri-Net Coordination
Model for an Intelligent Mobile Robot. IEEE Transactions on Systems, Man, and
Cybernetics, Vol. 21, No. 4, July-August, 1991, pp. 777-789.

6. R. Jacinto, G. Juanole, K. Drira. On the application to OSI-TP of a structured
analysis and modeling methodlogy based on Petri Net models. Proceedings of the
IEEE. 1993.

7. P. B. Thomas. The Petri net as a modeling tool. Proceedings of the 14th annual
Southeast regional conference. April 22 - 24, 1976. pp. 172-179.

8. F. L. Tang, M. L. Li and J. Z. X. Huang. Real-time transaction processing for auto-
nomic Grid applications. Accepted by the Special Issue on “Autonomic Computing
and Automation” at Engineering Applications of Articial Intelligence, 2004.

9. E. W. Mayr. An algorithm for the general Petri net reachability problem. Pro-
ceedings of the thirteenth annual ACM symposium on Theory of computing, May
1981. pp. 238-246.

10. A. K. Murugavel and N. Ranganathan. Petri net modeling of gate and intercon-
nect delays for power estimation. Proceedings of the 39th conference on Design
automation. June 2002. pp. 455-460.

11. F. L. Tang, M. L. Li, and J. Cao, A Transaction Model for Grid Computing.
Proceedings of the 5th International Workshop on Advanced Parallel Processing
Technologies (LNCS 2834), September. 2003.

12. J.L.Peterson, Petri Nets. Computing Surveys, Vol 9, No.3, September 1977, pp.
223-252.

13. T. Murata, Petri Nets: Properties, Analysis and Applications. Proceedings of the
IEEE, Vol 77, No. 4, April, 1989, pp. 541-580.

14. M.Hack, The recursive equivalence of the reachability problem and the liveness
problem for Petri nets and vector addition systems. Proceedings of the 15th Annual
Symposium Switching and Automata, New York, 1974.

15. F. L. Tang, M. L. Li, J. Cao et al.. GSPD: A Middleware That Supports Publication
and Discovery of Grid Services. Proceeding of the Second International Workshop
on Grid and Cooperative Computing (LNCS 3032). December, 2003, pp.738-745.

16. F. L. Tang, M. L. Li, and J. Z. X. Huang. GridTS: A Transaction Service for Intel-
ligent Grid Environment. To appear in “Intelligent Grid Environment: Principles
and Applications”, special issue of Future Generation Computer Systems, 2004.

 J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 509–518, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Building Infrastructure Support for Ubiquitous
Context-Aware Systems

Wei Li, Martin Jonsson, Fredrik Kilander, and Carl Gustaf Jansson

Department of Computer and Systems Sciences,
Swedish Royal Institute of Technology,

Forum 100, 164 40 KISTA, Sweden
{liwei, martinj, fk, calle}@dsv.su.se

Abstract. Many context-aware systems have been demonstrated in lab envi-
ronments; however, due to some difficulties such as the scalability and privacy
issues, they are not yet practical for deployment on a large scale. This paper
addresses these two issues with particular interest in user’s privacy protection
and spontaneous system association. A person-centric service infrastructure is
proposed together with a context-aware call forwarding system constructed as a
proof-of-concept prototype based on the Session Initiation Protocol (SIP).

1 Introduction and Motivation

During the last decade, numerous efforts in the Ubiquitous Computing arena at-
tempted to realize Mark Weiser’s vision of the 21st century computers – to enable
computers “weave themselves into the fabric of everyday life” [1]. The purpose of
making computers invisible is to diminish the unnecessary distraction introduced by
computers so that users can concentrate on the higher level tasks they are currently
involved in. Meanwhile, computers should assist behind the scene [2] without the oc-
cupation of users’ attention.

Today, with the rapid development in mobile and distributed computing, espe-
cially the flourish of wireless communication and resource discovery technologies,
various computing resources, in terms of services, are becoming transparently
available everywhere. In the meantime, sensor technologies have been widely
adopted to provide rich information for facilitating user’s interaction. In the midst of
the trend that services and sensors become pervasive, the goal of ubiquitous
computing has been approached by many researchers with their prototypes in
different testbed lab environments [2, 3, 4].

One common issue, however, among these existing systems is scalability. Due to
the fact that each of these systems uses individual data expression and communication
means, they are not interoperable with each other. As none of them could be domi-
nant in the field, a mobile user roaming from one system to another normally have to
conduct a significant number of interactions, typically involving in new software in-
stallation and configuration, to be able to obtain an access to the new surroundings.
These extra interaction efforts that often result in a deviation of the user’s attention

W. Li et al. 510

are in many cases unappreciated or not even unaffordable by mobile users who are
inherently confronted with more interaction and communication constraints during
the move.

Another serious issue is user’s privacy in ubiquitous computing environments.
With the advance of sensor technology, ever more information can be captured from
both the environment and the user. This might give more possibility to simplify user’s
interaction with computer systems, but also introduce a strong risk towards user’s pri-
vacy intrusions. The exposure of fractional personal information occasionally slowly
over time may still result in a substantial privacy loss after accumulation. Therefore it
is becoming a critical issue in the ubiquitous computing field how to protect the user
information acquired by the systems from being misused or disclosed to other unde-
sired parties.

By identifying these two crucial issues, along with other important concerns, we
claim today’s ubiquitous computing environment should have the following charac-
teristics:

Open and Standard: A ubiquitous computing system should be based on open data
formats over standard communication protocols to achieve better scalability.

Low Demands on User Devices: To become widely available, a ubiquitous comput-
ing system should not demand too much of user’s terminal devices, e.g., their compu-
tation and battery power etc. It should instead accommodate the most widely
used/affordable off-the-shelf devices such as today’s mobile phones and Personal
Digital Assistants (PDAs).

Exploiting Infrastructure Support: It is of great significance to alleviate the re-
source-limited user terminal devices by migrating computation into the system infra-
structure, exploiting the vast resources available on the local and remote computers.

Context-Awareness Support: It is impractical or even impossible for a mobile user
to manually select services from a big amount and maintain the interactions with
them. Hence a common support is needed to enable the system make decisions on be-
half of the users based on information regarding their current situation (or context).

Privacy-Protected: Due to the risk of privacy leak, the major challenge is how to en-
sure the users, participating in a large-scale ubiquitous context-aware system, which
is likely to cross multiple organizations and administrations, with an acceptable de-
gree of control of their personal information.

To meet the characteristics listed above, we propose a person-centric system
architecture which we believe suitable for a large-scale deployment. Within this ar-
chitecture, we have addressed context processing and transportation difficulties with
particular interest in user’s privacy protection. We have also tackled the dynamic sys-
tem association (also referred to as bootstrapping) problem with special concerns for
mobile users. We have developed a set of software components and services, for the
purpose of this paper, the toolkit is called Service Toolkit for Adaptive Context-
Aware Systems – STACS, to simplify the development of context-aware services and
the construction of ubiquitous computing systems.

Building Infrastructure Support for Ubiquitous Context-Aware Systems 511

In section 2, we first introduce our system architecture in general, and then give
more details on how to enhance security and privacy protection by enabling pseudo-
nym-based communication. In section 3, we elaborate our service toolkit – a set of
software components and services, together with a prototype context aware call for-
warding system to illustrate how STACS can be used to build a ubiquitous computing
system in a simple manner. Then in section 4, we discuss some related work with
comparisons. And finally in section 5, we draw some conclusions based on our ex-
perience with some words of the future work.

2 System Architecture

We designed a person-centric software architecture in our ACAS project [5], to pro-
vide affordable and adaptive support for facilitating mobile users’ interactions with
services in ubiquitous computing environment. In this architecture, we assume each
user has a persistent digital representative, called Personal Server (PS). This Personal
Server is connected to the Internet, and most likely resides on the user’s Home net-
work. Each user is equipped with a mobile device, an off-the-shelf mobile phone or
PDA. As the users move around, across different ubiquitous computing environments,
they will be associated (and de-associated) with those systems spontaneously and the
relevant context information (location and available services) will be reported to their
individual home Personal Servers.

Communication &
Coordination

ServiceAnonymizer
Proxy
Server

Personal
Server

Public Service
Infrastructure

Context Generator
(Hardware Sensors)

Bootstrapping Context Generator
(Service Aggregator)

S SSS S. S.US US USPersonal Area
Network

Fig. 1. System Architecture (Context Flow) US: end-User Service and S: Sensor

Two non-mutually exclusive interaction models are possible in such a setting: (1)
users (with their devices) interact with the local systems directly or, (2) the PS acts as
a remote intermediary between the user and local systems. We prefer the later model
due to its simplicity (towards the user) that a single event to the PS is necessary for

W. Li et al. 512

associating (bootstrapping) user’s interaction with the local environment. Once the PS
acknowledges the local system, it may conduct more interactions on behalf of the
user, e.g., to employ the services in that location. Hence the computation and
communication efforts required to maintain secure interaction can be reduced greatly
from user’s mobile devices. This complies well with what we claimed for a large-
scale ubiquitous computing system: Low demands on user devices and Exploiting
infrastructure support. In contrast, the former model is more subject to difficulties
such as increased battery power drain and vulnerability to network-based attacks, al-
though we do not deny the necessity and flexibility of direct interactions, especially
when the PS is incapable (or unreachable) to handle the interaction with local re-
sources. However, this method does not provide sufficient means to protect the user’s
privacy since the PS is exposed to the local infrastructure system, which results in the
presence of our Anonimizer Proxy Server. As shown in Figure 1, our infrastructure
consists of two sub-systems: the Public Service Infrastructure and the user’s Personal
Server.

Public Service Infrastructure (PSI): each PSI is an instance of a ubiquitous comput-
ing environment. A PSI may be confined to a room, a vehicle, an organization or any
other natural or abstract boundary. Although PSIs are orthogonal to geo-location
spaces it is likely to be conceptually convenient to create mappings between them.
Within the PSI, context data is produced by context generators which are attached to
hardware sensors that measure physical properties (e.g., temperature), or software
sensors that measure computing properties (e.g., available services) of a PSI.

The PSI representative is called the Communication and Coordination Service
(CCS), which manifests a PSI to the Internet as an addressable entity and would
communicate with Personal Servers for exchanging context information. A CCS re-
ceives context data produced by the context generators from the same container PSI.
When context indicates that a user having a home Personal Server is present within
the PSI, the CCS adds the user’s PS address as a temporary resource of context and
services.

Interaction Bootstrapping: There are two complimentary ways to associate user in-
teraction with a PSI: (1) the user informs her PS of the current PSI, or (2) the PSI ac-
tively contacts the user’s PS if it gets her PS address when detecting the user. In our
design, these steps are augmented by sensor technologies to support spontaneous
bootstrapping.

Anonymizer Proxy Server (APS): A user who does not wish to be tracked by PSIs
should use an APS to protect her true identity (superior than turning off some device
capabilities). Instead of providing a PSI with the real address to the user’s Personal
Server (which is assumed to be persistent), the user offers a temporary token, previ-
ously negotiated with the APS. The token allows a PSI to communicate with the
user’s Personal Server via the APS until the token expires or is withdrawn. Disclosure
of additional information is then determined by the user’s Personal Server.

Personal Server (PS): As the persistent on-line representative of a user, the Personal
Server contains a set of service components including the individual’s context reposi-

Building Infrastructure Support for Ubiquitous Context-Aware Systems 513

tory and a personal context manager (Figure 2). The context repository comprises dif-
ferent sets of information: the user device information, such as those in the Personal
Area Network (PAN); personal contacts, calendar, and preferences (policies for shar-
ing personal context); as well as the dynamic contextual data reported from the user’s
current PSI or personal devices.

The Context Manager handles the context reports and requests received through
the Personal Context Portal, which gives an interface for external access to the user’s
context. It could also validate the reported context data before putting it into the Con-
text Repository; or authenticate the context requester against the user’s access poli-
cies. The external communication and interaction (with the owning user) requests ar-
rive through the Communication Portal offering different access means, e.g., a set of
Web Services over SOAP/HTTP. These communication requests are handled by dif-
ferent context-aware applications which can interface with the Personal Server sys-
tem. Each application utilizes a relevant set of context information through the Con-
text Manager to determine its application-specific logic and present the result to the
user in different adaptive ways.

Context
Manager

Personal Server System

Personal

Context

Portal

Context
Repository

Context
Report / Request

Profile
Pref.

Policy etc

Context
Refiner …

CA
App. 2

CA
App. 1

CA
App. n…

Communication Portal

Commu-
nication

&
Interaction

Context
Manager

Personal Server System

Personal

Context

Portal

Context
Repository

Context
Report / Request

Profile
Pref.

Policy etc

Context
Refiner …

CA
App. 2

CA
App. 1

CA
App. n…

Communication Portal

Commu-
nication

&
Interaction

Fig. 2. Personal Server Inner Structure CA: Context-Aware

We also introduce context refiners which are used to produce abstract higher-level
context information based on the data in the repository. A context refiner consists of a
set of rules combined with a rule engine. The rules are compiled from documents,
normally one set for each context-aware application. Whenever new context data ar-
rive in the PS, the rules are applied by the reasoning engine to filter out irrelevant
context information and insert new inferences. The result set derived is posted back
into the context repository as available context data. For instance, a context refiner
could generate an ‘in-meeting’ event based on the information of a user’s current lo-
cation and the nearby persons. This is implemented in our prototype (see Section 3.3).

W. Li et al. 514

2.1 Security and Privacy Protection

User preference and policy together with data encryption technologies have been
commonly used to provide security and individual privacy protection in existing ubiq-
uitous computing systems like [6, 7, 8, 9].

Different from those methods, we leverage the pseudonym communication
mechanism (which was mentioned briefly with the introduction of Anonymizer
Proxy Server (APS)), which grants access to users’ context information without
exposing their real identities. We thus propose a secure context exchange approach:
A set of user pseudonyms (in form of some neutral tokens generated by randomiza-
tion) are registered with an authentication authority in advance, and each pseudo-
nym will be used as a subject reference to which a context requester (PSI or an-
other user) will ask the authority for access. This request may trigger an
authentication process and only the ones who pass the authentication will be
granted to further contact the APS. In a simplified case, an APS can act as an au-
thentication authority simultaneously since they are based on similar principles. By
using pseudonyms, a context requester (PSI or other people) would not know and
therefore could not retain personally identifiable information, but when needed can
deal with abuse through the help of the authority or APS. By using multiple and re-
placeable pseudonym, issued access grants can be audited, revoked and blocked.
Finally, with an authentication authority, system integrity is improved by prevent-
ing fraudulent access. However, a pseudonym only makes sense when the number
of users is reasonably large, so that the user can hide in the crowd behind the APS.
Also as most computer communication relies on low-level static identification such
as IP and network card MAC addresses, a user is always at risk of being identified
or tracked through the local communication [10].

3 Implementation

We have developed a set of software components as well as some services built on
top of these components, which all together form our prototype service toolkit –
STACS. We believe that by using the STACS, the construction of scalable ubiquitous
context-aware systems conforming to the characteristics we claimed can be simplified
and accelerated.

3.1 Communication Components

The context distributing in our architecture is based on a Subscribe/Notify/Publish
mechanism. The Session Initiation Protocol (SIP) [11] is used as the underlying
communication protocol, mainly because of the agile tolerance SIP defines for han-
dling communication sessions over unreliable networks, as well as its openness and
wide acceptance. Our implementation conforms to the SIP Presence Framework [12]:
A SIP Presence User Agent (context producer) publishes sensed (low-level) context

Building Infrastructure Support for Ubiquitous Context-Aware Systems 515

data to a SIP Presence Agent (context provider) which, after some processing of the
data, will notify the SIP Presence Watchers (context consumers) who have registered
interest about the generated (high-level) context results. These three SIP Presence en-
tities have been implemented as the primary software communication components in
our STACS. By making a diverse use of these SIP components (as context sockets),
various system entities can be plugged into each other to construct a dynamic context
information network.

The Context Manager in a user’s home Personal Server system employs an internal
Presence Watcher to subscribe and receive context information about a PSI through
its Communication and Coordination Service (CCS), which is implemented based on
a Presence Agent. This subscription goes through an APS which is also implemented
as a Presence Agent. The Context Generators work as PUAs, publishing derived con-
text information to the infrastructure CCS, and some of them (desired by some users’
Context Manager) will be further delivered to their Personal Server systems as con-
text notifications. The Context Manager in a Personal Server may also employ a Pres-
ence Agent for sharing personal context with PSIs or other users. There are other
ways of using these components for delivering context data: e.g., a Personal Server
may hire a Presence Watcher to subscribe to user’s mobile devices for acquiring con-
text data from a Presence Agent running on that device, or the user may start a PUA
on the device to publish context to her Personal Server. The combination use of these
components gives great flexibility for context acquisition, processing and distribution
among entities across the network, or within the Personal Server and PSI systems.
The superior scheme can be determined according to the requirements in concrete
scenarios.

Fig. 3. (a) Bluetooth Detector using a TDK USB Bluetooth dongle. (b) The system entry ad-
dresses (sip:fuse@dsv.su.se) and (c) the Note part of a system Welcome vCard received by
user’s mobile phone (SonyEricsson P800)

P800 || 009002034BFC || Wei Li || SIP:123@anonymizer || ht
iPaq_1 || 009005054BCE ||Hidden ||SIP:223@anonymizer||htt
BTGPS|| 009003134EFA || None || None || None
Laptop || 008002154FFB || Hidden || SIP:224@anonymizer ||ht

P800 || 009002034BFC || Wei Li || SIP:123@anonymizer || ht
iPaq_1 || 009005054BCE ||Hidden ||SIP:223@anonymizer||htt
BTGPS|| 009003134EFA || None || None || None
Laptop || 008002154FFB || Hidden || SIP:224@anonymizer ||ht

(b)(a) (c)

W. Li et al. 516

3.3 Prototype System

A Context Aware Call Forwarding application based on our person-centric system ar-
chitecture with the use of STACS has been developed as a prototype example. This
application monitors a user’s context changes, and will set the call forwarding when a
meeting situation is determined depending on two facts: if the user is in a meeting
room and not being alone. The detailed communication flow is illustrated in Figure 4.

A desktop PC in our meeting room, acting as an Infrastructure (PSI) server, runs a
Bluetooth detection service to detect and retrieve a vCard file (step 2.) from a user’s
mobile device. It will then report the location (meeting room) to the pseudonym ad-
dress (placed in the retrieved vCard) referred to as the user’s Personal Server System.
This context report will first arrive (3.(a)) at the corresponding Anonymous Proxy
Server and then be forwarded (3.(b)) to the Context Manager (with an internal Con-
text Repository) within the user’s Personal Server system. The location report will be
further delivered (step 4.) to the Meeting Monitor service (a context refiner) as a con-
text notification, which will trigger it to infer (step 5.) the meeting status. Once ap-
proved, the Meeting Monitor will activate (step 6.) the Call Policy Generator to pro-
duce a call forwarding script (in Call Processing Language [15]) according to the
user’s preference, and finally upload it to the user’s Personal Communication Server
for enforcement (step 7.). The Personal Communication Server used is Vovida Vocal
[16], an open-source SIP proxy server with support of call processing scripts. Xten X-
Pro 1.0 [17] has been tested as SIP softphones on HP iPAQ 5550.

6. Trigger to
generate Call
Forwarding
Policy

2. Bluetooth
Discovery
& vCard

Desktop
PC iPaq

SIP-UA
(XLite)

1. Register

Bluetooth
Detection
Service

Call Policy
(CPL)

Generator

Personal Server System

Context
Manager
& Context
Repository

R

WLAN

8. Any later Incoming Calls8. Any later Incoming Calls

7. Upload
Policy
(CPL)

9. Redirect
(e.g., Voice Mail)

Personal
Commu-
nication
Server

Other
SIP

Clients
...

Other
SIP

Clients
...

5. Infer
Meeting
Status

Meeting
Monitor

(Context
Refiner)

0. Location
Subscribe
0. Location
Subscribe

4. Notify New
Location

PSI System
BluetoothBluetooth

Anonymizer
Proxy
Server

(Authority)

3.(b) Location
Report Redirect
3.(b) Location

Report Redirect
3.(a) New Location

Report

Bluetooth

Fig. 4. Context-Aware Call Forwarding System

Building Infrastructure Support for Ubiquitous Context-Aware Systems 517

4 Related Work

Due to the large number of research works to date in ubiquitous and context-aware
computing area, we will only address some of them which are most relevant to our
work. K. El-khatib et al. [18] used Personal Agent (also implemented on SIP) to de-
termine how to render mobile user’s incoming calls in a ubiquitous computing envi-
ronment with support for better performance and interaction means according to a
user’s profile and the available services. Stefan Beger and Henning Schulzrinne et al.
have elaborated comprehensively in a recent paper [19] on how to construct ubiqui-
tous computing system using SIP together with many other standard protocols. We
agree with them that a global-scale ubiquitous computing system should be divided
into different domains, and through the SIP servers in those domains, the user can
utilize the rich resources in the visited domains. However, except for many similari-
ties mainly because of the use of common technologies and standard protocols such
as Bluetooth and SIP, there are clear differences to distinguish our work: firstly, we
have described how the local infrastructure instead of user’s mobile device, can de-
liver context data back to the home Personal Server system without exposing user’s
identifiable information; secondly we introduced a context refiner concept located at
the user’s home system to infer high-level context information. In additional there are
many differences in design details, for example our Bluetooth detection service does
not need any action by the user, while theirs needs the user’s device to discover the
Bluetooth access point to generate location information etc.

5 Conclusion

To achieve a practical large-scale ubiquitous computing system, we argue that light-
weight and off-the-shelf mobile devices should be used by the user to interact with
context-aware systems. Thus we employ the local infrastructure together with the
home Personal Server system to do most of the work to support user’s interaction. We
have also proposed a solution for protecting the user’s privacy based on an intermedi-
ary Anonymizer Proxy Server using pseudonym mechanism. We will further imple-
ment and evaluate our system to observe what and how much user will appreciate
from the decreased interactions by using these intermediary proxy-based services in
the infrastructure.

References

1. Mark Weiser: The Computer for the Twenty-First Century, Scientific American, pp. 94-
10, September 1991

2. A. Fox, B. Johanson, P. Hanrahan, and T. Winograd: Integrating Information Appliances
into an Interactive Workspace, IEEE Computer Graphics and Applications, May/June,
2000, pp. 54-65.

3. Patrik Werle, Fredrik Kilander, Martin Jonsson, Peter Lönnqvist, and Carl Gustaf Jansson:
A ubiquitous service environment with active documents for teamwork support, Ubi-
Comp2001, LNCS, pp. 139–155.

W. Li et al. 518

4. Manuel Román et al: Gaia: A Middleware Infrastructure to Enable Active Spaces, IEEE
Pervasive Computing, pp. 74-83, Oct-Dec 2002.

5. http://psi.verkstad.net/ACAS/
6. Ginger Myles et al: Preserving Privacy in Environments with Location-Based Applica-

tions, IEEE Pervasive Computing, January-March 2003 (Vol. 2, No. 1) pp. 56-64.
7. W3C: A P3P Preference Exchange Language 1.0 (Appel 1.0), working draft, WorldWide

Web Consortium, Apr. 2002, www.w3.org/TR/P3P-preferences
8. Xiaodong Jiang , Jason I. Hong , James A. Landay: Approximate Information Flows: So-

cially-Based Modeling of Privacy in Ubiquitous Computing, Proceedings of the 4th inter-
national conference on Ubiquitous Computing, p.176-193, 2002.

9. J. Cuellar, Joel Morris, and D. Mulligan: Geopriv requirements. Internet draft, Internet
Engineering Task Force, March 2003. Work in progress.

10. A. Harter et al: The Anatomy of a Context-Aware Application, Proc. 5th Ann. Int’l Conf.
Mobile Computing and Networking (Mobicom 99), ACM Press, New York, 1999, pp. 59-
68.

11. J. Rosenberg, Henning Schulzrinne, G. Camarillo, A. R. Johnston, J. Peterson, R. Sparks,
M. Handley, and E. Schooler: SIP: session initiation protocol. RFC 3261, Internet Engi-
neering Task Force, June 2002.

12. Jonathan Rosenberg: A presence event package for the session initiation protocol (SIP),
Internet draft, Internet Engineering Task Force, January 2003. Work in progress.

13. Internet Mail Consortium: vCard Specification, http://www.imc.org/pdi/
14. Bluetooth.org: Bluetooth Specification Volume 1, Core 1.1, February 2001
15. J. Lennox and Henning Schulzrinne: Call processing language framework and require-

ments. RFC 2824, Internet Engineering Task Force, May 2000.
16. http://www.vovida.org/
17. http://www.xten.com
18. K. El-Khatib, N. Hadibi, and G.v Bochmann: Support for Personal and Service Mobility

in Ubiquitous Computing Environments, EuroPar 2003.
19. Stefan Berger, Henning Schulzrinne, Stylianos Sidiroglou, Xiaotao Wu: Ubiquitous

computing using SIP, 13th International Workshop on Network and Operating Systems
Support for Digital Audio and Video (NOSSDAV’2003)

 J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 519–528, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Context-Awareness in Mobile Web Services1

Bo Han, Weijia Jia, Ji Shen, and Man-Ching Yuen

Department of Computer Engineering and Information Technology,
City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong

Bo.Han@student.cityu.edu.hk

Abstract. Context-aware computing is a computing paradigm in which
applications can take advantage of contextual information. Quality of network
connection is a very important factor for mobile web services. However, the
conditions of mobile networks may change frequently and dynamically. Thus,
providing support for context-aware applications is especially important in
mobile web services. Recently, a number of architectures supporting context-
aware applications have been developed, but little attention is paid to the
special requirements of mobile devices which particularly have many
constraints. This paper discusses a client-proxy-server architecture that supports
context-awareness by considering types of device, network and application
characteristics. The contribution of this paper mainly lies in the division of
labor between proxy and server. Application specific proxy is used to tailor the
original resource based on the mobile user’s context information. To prove the
feasibility, a context-aware image management system is designed and realized.

1 Introduction

With the popularity of mobile devices, people can communicate easily at anytime
anywhere. In current market, mobile devices are able to support different platforms. It
is necessary to maintain a centralized storage with an easy access interface, so it can
provide guaranteed QoS (Quality of Service) to any wired and wireless devices. To
achieve this, we have proposed a web-based platform named AnyServer [10], which
provides flexible services to different types of mobile (client) devices.

Context is any information that can be used to characterize the situation of an
entity. An entity may be a person, place, or object that is considered relevant to the
interaction between a user and an application [1]. Context-awareness means that one
is able to use context information. A system is context-aware if it can extract,
interpret and use context information and adapt its functionalities to the current
context. The challenge for such systems lies in the complexity of collecting,
representing, processing and using contextual data. The use of context information is
especially important in mobile environment, where the quality of network connection
provided to mobile users always changes frequently, dramatically, and without
warning. Moreover, size and weight constraints on mobile devices limit the
computing resources. Besides, battery life is also a nagging concern. As a
consequence, mobile applications need to be capable of adapting to these changes to
ensure that they could offer the best possible level of service to the user [12], while

1 The work is supported by Research Grant Council (RGC) Hong Kong, SAR China, under

grant nos.: CityU 1055/00E and CityU 1039/02E and CityU Strategic grant nos. 7001587.

B. Han et al. 520

context information is an indispensable component in these applications. In this paper,
a client-proxy-server model is built based on our AnyServer platform for using
contextual information. Our objectives are (1) to efficiently obtain and transmit
contextual information, (2) to use context information to achieve better system
performance and user experience, and (3) to implement software architecture for
supporting the utilization of contextual information.

The rest of the paper is organized as follows. In Section 2, we introduce some
related context-aware applications and their system models. Sections 3 and Section 4
describe our approach to integrate context-awareness in AnyServer platform and the
software architecture. The implementation aspects are given in Section 5. We point
out future directions and summarize major results in Section 6 and Section 7.

2 Related Work

This section introduces some context-aware mobile applications. The ParcTab system
was developed at the Xerox Palo Alto Research Center [2]. The system was develop-
ed to experiment with context-awareness in an office environment. The ParcTab
worked as a mobile personal digital office assistant. There were also several applica-
tions developed for context-aware experimentation. Cyberguide [3] is a computer
system that provides information services to a tourist about his/her current location.
For example, he/she can find directions, retrieve background information, and leave
comments on the interactive map. Knowledge of the user’s current location, as well as
past locations, is used to provide the kind of service which comes from a real tour
guide. More context-aware wireless mobile applications could be found in [6]. Most
of the existing applications actually use only few context values, and the most
commonly used ones are location, identity and time. The reason for this probably lies
in the difficulty for computer systems to obtain and process context information.

Recently a number of architectures were proposed which provided support for
context-aware applications in mobile scenarios. Thomas et al. [9] believed that
applications had to adapt dynamically and transparently to the resources available at
runtime. To achieve this goal, they extended the convention of the client-server model
into a client-proxy-server model. Logically, the proxy hided the “mobile” client from
the server, which thought that it communicated with a standard client. In [14], the
authors identified requirements for a context-aware architecture including light-
weight, extensibility and robustness. To meet these requirements, they proposed a
three layers architecture which comprised an application layer, a management layer
and an adaptor layer. However, all these three layers were located on a single device,
so devices exchanged their context information in ad hoc manner and extra
requirements were supposed on these mobile devices. Bruce et al. [8] presented a
proxy based communication model in which filters executing on an intermediary host
drop, delay or transform data moving between mobile device and fixed host. The
design and capabilities of this proxy were presented, along with sample filters that
addressed “real world” protocols. However, the limitation is that in order to facilitate
proxy filtering, all traffic traveling to and from a particular mobile host must pass
through a single gateway, the Proxy Server.

Context-Awareness in Mobile Web Services 521

3 Context-Awareness in Any Server Platform

To make AnyServer Platform (as shown in Fig. 1) provide adaptive services based on
user’s context information, some additional sensors or programs are generally
required to capture context information. Moreover, a common representation format
for such information should be adopted, so different applications are able to use the
same context information. Furthermore, AnyServer must intelligently process
these information and deduce the meaning. Device-aware, network-aware and
application-aware, these three factors are the most useful in AnyServer platform.
The contextual data used in AnyServer include user device information (e.g. screen
size, computational power and battery life), network conditions (e.g.
network connectivity and transmission delay), and application type (e.g. real-time
video/audio, or web browsing). Direct context information sharing is not needed in
AnyServer platform.

Fig. 1. Any Server Platform

3.1 Information Capturing

In this subsection we will answer the following three How-to questions:

How to Obtain Device Information? Device information retrieval can be based on
Universal Plug and Play (UPnP). As depicted in [4], UPnP is designed to support
zero-configuration, “invisible” networking, and automatic discovery for a breadth of
device categories from a wide range of vendors. In UPnP the properties associated

Mobile Telecom

Data

Gateway

Base Station

PDA

Anyserver

TCP/IP, HTTP,
SOAP

T
C

P/IP, H
TT

P,
S

O
A

P

Internet
TCP/IP, HTTP,

SOAP

B. Han et al. 522

with the device are captured in an XML based device description document that the
device would host or could be obtained from a specific URL. That is when the client
sends request to AnyServer, a device description document or a specific URL
accompanies with the request. The device information could be managed by
AnyServer as part of user profile (to be detailed later) for future use. Based on the
device information, some adaptive transmission could be carried out.

How to Capture Network Condition Information? In Any Server platform, round
trip time (RTT) is chosen to measure the transmission delay. When measuring RTT
several probing messages will be sent out and the following notations will be used to
calculate more exact values:
RTT: the record stores the round trip time value of every probing.
EA_RTT: the record stores the exponential average of RTT.

Considering dynamic estimate of variability in estimating RTT, EA_RTT is
averaged as:

EA_RTT (n) = β* EA_RTT (n – 1) + (1 – β) * RTT (n) (1)

We would like to give the greater weight to more recent instance of RTT. Thus we
use β= 0.1. If the mobile device has strong computational capability, it is responsible
to conduct the probing. Otherwise the probing is the responsibility of the proxy.
Network condition is runtime information and will be captured every now and then.

How to Know Application Related Information? Applications supported by
AnyServer platform can be divided into two kinds based on timing consideration and
tolerance of data loss. Timing consideration is important for many applications that
are highly delay-sensitive but loss-tolerant, such as real-time interactive audio and
video. Meanwhile, tolerance of data loss is important for many applications that are
not loss-tolerant but delay non-sensitive, such as file downloading. In AnyServer
platform, different applications will be served by different proxies.

3.2 Information Representing

Instead of creating a new kind of description language, we use eXtensible Markup
Language (XML) for representing contextual information. XML is the universal
format for structured data on the Web. And XML can place nearly any kind of
structured data into a text file. Also the platform independent feature of XML easily
tackles the obstacle that the heterogeneity of mobile devices brings to us. And using
XML we can easily extend our contextual information to extra aspects. When a new
family of mobile device is evolving, we can reuse the design for the old devices in an
optimal way. As a result, XML is used in contextual information description. Fig. 2 is
an example of device information depicted in XML.

4 Software Architecture

AnyServer must have the ability to change its behavior depending on the current
context o f users. In this way, a lot of personalized applications can be built based on

Context-Awareness in Mobile Web Services 523

Fig. 2. XML example of device information

Any Server platform. Some architectures [8][9][14] have been introduced in Section
2. Our approach is the extension of the conventional client-server model, which is
also used in [9] but with quite different functionalities. In [9], the proxy shares the
application logic of the “standard client” with mobile clients to adapt to dynamic
wireless environment and to address the limitations of portable devices. But in our
architecture the proxy relatively shares the logic of “standard server” with AnyServer.
More details will be given below.

4.1 The Approach in Any Server Platform

Our client-proxy-server model naturally comes from the requirement of system
scalability. To alleviate the load of AnyServer and provide the best level of service to
mobile users, a proxy is introduced to the traditional client-server model. This model
is primarily made up of three components listed below:

• Client: The mobile client can be PDA (Personal Digital Assistant), mobile
phone or laptop. It can enjoy the attractive applications provided by
AnyServer platform.

• Proxy: The user traffic would be redirected to the proxy if necessary. The
proxy could also be used to probe the network condition of mobile users and
tailor the original data for adaptive transmission.

• AnyServer: The server provides intelligent integrated services, such as short
message services, image uploading and downloading, on-line audio and video.
It is also the context information server that manages these information as user
profiles.

• This communication among client, proxy and AnyServer is shown in Fig. 3.
The detail is depicted as follows:

 <?xml version=”1.0” encoding=”big5”?>

 <Device>

 <Resolution>

 <Properties>

 <Property NAME = “Height”> 800 </Property>

 <Property NAME = “Width”> 600 </Property>

 </Properties>

</Resolution>

<Screen>

… …

</Screen>

… …

</Device>

Context-Awareness in Mobile Web Services 525

4.2 User Profile Management

Customizations of mobile services to various kinds of terminals, user preferences, and
varying network characteristics are attractive aspects in mobile computing. Different
applications typically have different preferences for latency and integrity of data.
Mobile clients need to express their preferences using voluntary profiles. The simplest
way to manage the user profiles is to use a centralized context server, which provides
contextual information to the applications. Schilit’s mobile application customization
system [5] contained dynamic environment servers, which managed a set of variable
names and values representing an environment. It delivered updates to clients that had
previously shown interest by subscribing to the server. The Rome system [7]
developed at Stanford was based on the concept of a context trigger, which consisted
of a condition and an action. This system allowed decentralized evaluation of triggers
by embedding triggers in end devices. However, it did not allow context sharing.

In our architecture, user profile can be managed by AnyServer platform. Examples
of user profiles are: (1) User Information Profile, such as name, identity, e-mail
address; (2) Device Profile, such as device type, screen capability, memory size; (3)
User Preference Profile, such as the preferred display pattern, favorite background
color. User profile can also be used to save the session information. Due to the poor
wireless network connection, mobile users may connect to AnyServer many times to
complete one task. If the related information of each session can be properly saved,
the remainder task of the previous session can be resumed in the new session when
the mobile users reconnect to AnyServer platform.

5 Implementation Aspects

To prove the feasibility of our presented architecture, a prototype has been developed
on AnyServer platform. Pocket PC is chosen as the first client device in
the first phase. Pocket PC Client (PPCClient) is developed with Microsoft.
NET Compact Framework. The reasons of this combination can be concluded as
follows:

1. If a GSM (Global System for Mobile) modem is inserted into a Pocket PC, the
Pocket PC will be a PDA phone that can connect to the Internet.

2. The popularity of smart phones with Microsoft .NET Compact Framework is
gradually increasing, so that the programs developed for Pocket PC can be easily
migrated to those smart phones.

3. More functionalities can be implemented for Pocket PC than mobile phones
currently due to lack of processing power and computing capability of the mobile
phones.

The PPCClient is running on Pocket PC 2003 operating system, which is the same
as that for smart phones. Using Pocket PC, we can choose either IEEE 802.11 or
GPRS (General Packet Radio Services) to connect to Internet. Besides, C# and
embedded C++ are used as programming languages.

In Section 5.1, AnyServer, the proxy and mobile client are introduced. Uploading
and downloading image are used as examples for context-awareness implementation
in AnyServer platform, and they are presented in Section 5.2.

B. Han et al. 526

5.1 Any Server, Proxy and Mobile Client

The server side in AnyServer platform, called AnyServer, is a physical server linked
with a database. For the mobile clients, the request can be sent through different
network protocols in order to provide flexibility and adaptability features to those
heterogeneous client devices that may only accept one specific network protocol.
Database is a vital component in AnyServer platform, the user profile is
managed by the database. General speaking, the proxy has two main functionalities:
one is to gather the network condition information; the other is to tailor
the original resource provided by AnyServer based on the mobile user’s context
information. In Fig. 4, the proxy may take following actions: (1) Degrade
video stream, that is selectively dropping some structured data, such as frames in
MPEG data stream; (2) Drop heuristically some unstructured data, such as quoted text
from email body; (3) Compress data instead of dropping it. These actions are
application specific. For different applications, the proxy would take different filter
policies.

Fig. 4. Data Flow in Any Server platform

5.2 Example: Context-Aware Image Management System

In this section, an image management system is implemented based on AnyServer
platform. When a user retrieves his multimedia materials on AnyServer platform, it
involves two actions. Firstly, the user will get all the headers of the multimedia
materials belong to him/her. As a result, the corresponding XML format headers
information will be retrieved and therefore it reduces the network transmission
volume. This feature will benefit those mobile users who use the service through
mobile telecommunication networks which charge the user based on the volume of
data sent. Then, when the user really selects a particular item to view, the actual
content (maybe filtered) will be downloaded from the server side to the client device.
Fig. 5 is an example of image filtering and shows both the original image and the
filtered one.

Proxy
AnyServer

AnyServer
Service Center

Content
Filter

Pocket
PC

Client

Profile
Collector

Profile
Management

Original
Data

Filtered
Data

Context-Awareness in Mobile Web Services 527

Fig. 5. Image Filtering

6 Future Works

Context-aware computing has been proved to provide a reliable and flexible platform,
especially for resource limited mobile devices. A natural thinking is to extend this
platform to support end-to-end communications between terminals. Our future work
is to build an end-to-end multimedia communication system. In this system, adaptive
transmission technology will be realized and the proxy will support more
functionalities.

Adaptive transmission is a hot research topic in wireless networking [11][12]
where various mobile devices must be supported and the network condition fluctuates
dynamically. The relative resource poverty of mobile elements as well as their lower
trust and robustness argues for reliance on static servers. But the need to cope with
unreliable and low-performance networks, as well as the need to be sensitive to power
consumption argues for self-reliance [13]. Any viable approach to mobile computing
must strike a balance between these competing concerns. As the circumstances of a
mobile client change, it must react and dynamically reassign the responsibilities of the
proxy. In other words, the proxy must be adaptive.

With the development of mobile devices, users may desire not only
communicating with servers, but also direct end-to-end data transmission. However, it
is not easy for various types of wireless devices of different capabilities to
communicate with each other. For example, a mobile phone could not play the video
file of some format transferred from a laptop. We are now building a system to
support reliable, comfortable and compatible end-to-end communication. At the
moment, the role of proxy in our AnyServer platform is just a content filter, and it
tailors original content based on the context information of mobile users. In our future
work, the proxy can evolve into a content server and AnyServer will take the role of
an index server. Under this framework, more challenges will be faced, such as
distributed content management and update, resource allocation between content
servers.

B. Han et al. 528

7 Conclusion

Context-awareness offers many new possibilities for mobile web services. Motivated
by this, we propose in this paper a client-proxy-server architecture trimmed to the
special needs of mobile users. This architecture takes the special requirements of the
mobile devices, such as limited capability of memory and power, into consideration.
Moreover, it supports context-awareness by considering types of device, network and
application. This architecture brings division of labor between proxy and server.
Application specific proxy provided by AnyServer platform is used to tailor the
original resource based on the mobile user’s context information. We also implement
our architecture and demonstrate its feasibility by a context-aware application.

References

1. Dey, A.K., Abowd, G.D.: Toward a better understanding of context and context-
awareness. In Proceedings of the CHI 2000 Workshop on The What, Who, Where, When,
and How of Context-Awareness (2000)

2. Want, R., Schilit, B.N., Adams, N.I., Gold, R., Pedersen, K., Goldberg, D., Ellis, J.R.,
Weiser, M.: An Overview of the PARCTAB Ubiquitous Computing Environment. IEEE
Personal Communications 2(6) (1995) 28–43

3. Abowd, G.D., Atkeson, C.G., Hong, J., Long, S., Kooper, R., Pinkerton, M.: Cyberguide:
A mobile context-aware tour guide. Baltzer/ACM Wireless Networks 3(5) (1997) 421–433

4. Universal Plug and Play Forum, Understanding Universal Plug and Play.
http://www.upnp.org/download/UPNP_UnderstandingUPNP.doc (2000)

5. Schilit, B.N., Theimer, M.M., Welch, B.B.: Customizing mobile applications. In
Proceedings of USENIX Mobile & Location-Independent Computing Symposium (1993)
129–138

6. Chen, G.L., Kotz, D.: A Survey of Context-Aware Mobile Computing Research. Technical
Report TR2000-381, Dept. of Computer Science, Dartmouth College (2000)

7. Huang, A.C., Ling, B.C., Ponnekanti, S., Fox, A.: Pervasive computing: What is it good
for? In Proceedings of the ACM International Workshop on Data Engineering for Wireless
and Mobile Access (1999) 84–91

8. Zenel, B.: A general purpose proxy filtering mechanism applied to the mobile environment.
Wireless Networks 5(5) (1999) 391–409

9. Kunz T., Black, J.P.: An architecture for adaptive mobile applications. In Proceedings of
the 11th International Conference on Wireless Communications (1999) 27–38

10. AnyServer. http://anyserver.cityu.edu.hk
11. Nahrstedt, K., Xu, D.Y., Wichadakul, D., Li, B.C.: QoS-aware middleware for ubiquitous

and heterogeneous environments. IEEE Communications Magazine 39(11) (2001) 140–
148

12. Katz, R.H.: Adaptation and Mobility in Wireless Information Systems. IEEE Personal
Communications 1(1) (1994) 6–17

13. Satyanarayanan, M.: Fundamental Challenges in Mobile Computing. In Proceedings of the
fifteenth annual ACM symposium on Principles of distributed computing (1996)

14. Hofer, T., Schwinger, W., Pichler, M., Leonhartsberger, G., Altmann, J., Retschitzegger,
W.: Context-Awareness on Mobile Devices - the Hydrogen Approach. In Proceeding of
the 36th Annual Hawaii International Conference on System Sciences (2003)

 J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 529–533, 2004.
© Springer-Verlag Berlin Heidelberg 2004

CRL: A Context-Aware Request Language for
Mobile Computing

Alvin T.S. Chan, Peter Y.H. Wong, and Siu-Nam Chuang

Department of Computing, The Hong Kong Polytechnic University,
Hung Hom, Kowloon, Hong Kong

{cstschan, csyhwong, cssiunam}@comp.polyu.edu.hk

Abstract. This paper introduces an XML-based generic Context Request
Language (CRL), whose construction is part of a web services framework in the
domain of mobile context sensing. The paper describes an implementation of
the technique that is in accordance with the formal mathematical
representational model, using first-order temporal language [6]. The language is
an attempt to introduce intelligence into context-aware computing by defining
context-sensing elements into logical entities. The use of first-order calculus in
this language definition serving on web service technology allows users to
utilize context aggregation and to embed user control in contextual information.
By carrying out on-the-fly context inferences at the middleware level, we can
achieve a complete separation of concerns between user application and context
sensing. Moreover, the declaration of contextual knowledge based on situations
and events within the predicate domain allows users to express changes in
contextual information and to quantify these elements among times and
durations.

1 Introduction

A review of current context-aware applications [1], [2], [3], [4] suggests some
important areas in designing context-aware applications still need to be addressed. In
particular, we believe there needs to have a methodology that allows applications to
utilize and intelligently reason about contextual semantics and achieves a complete
separation of concerns between applications and contextual information. Such
methodology is invaluable in making intelligent context-aware applications. In this
paper we describe our attempt to implement a generic rule-based language called
Context Request Language (CRL) that provides a solution for an intelligent
technique to context sensing. Our effort focuses on incorporating temporal predicate
calculus, which is used in agent planning [5], with an XML-based syntax for
extensibility [6]. This language allows applications to specify inferences for
monitoring contextual information. The use of predicate calculus in this language
definition enables users to utilize context aggregation and precise control over
contextual information. CRL forms an integral part of our new Web Services
architecture, CRL Framework, which supports dynamic reflective reconfiguration,
asynchronous communication, and predefinition of context composition through
CRL-rule definitions. In this architecture we have adopted a layered approach to relax

A.T.S. Chan, P.Y.H. Wong, and S.-N. Chuang 530

applications participation in context sensing while still allowing applications to gain
control over their context requirements. This layered approach enables the separation
of mobile applications and their surrounding environment. Its key layers and
components are briefly described as follows:

- Application Layer. This describes mobile and remote clients such as PDAs,
Pocket PCs, etc. This layer is where local applications conceptually sit and they
can either be dependent or independent of the context environment.

- Web Service Requester. This is a client agent that uses a stub that discovers
context-aware web services through service registry [7]. It also hosts the Context
Request Builder for constructing CRL-instances. A CRL-instance is an XML
document that can either be a real-time construction of inference rules about one or
more contexts or a specific definition for a particular common environment that is
sometimes referred as smart space [4]. These CRL-instances are then enveloped as
SOAP messages and transported to the particular web service provider that
provides context inference via HTTP.

- Web Service Provider. This is a mediator between the context requester and the
contextual environment. As it receives an SOAP call from a remote application, it
uses the Context Request Parser (CRParser) that validates both the semantic and
the syntax of the CRL-instances against the CRL schema, and transforms it into a
set of CRL-based inference rules before passing it for context sensing.

- Context Layer. This layer contains a set of components that offers context-sensing
ability at the hardware level and context inferences using the CRL-inference
engine. There is also a CRL-rule repository that contains common CRL-rules so
that applications are able to refer to pre-defined instances in the repository using
key referencing.

- CRL-Rule Repository. It contains CRL-rules used in smart spaces [4], such as an
intelligent meeting room or a smart vehicle. Since CRL-instances are written based
on the CRL XML schema, these rules are intended to be organized in a tree
structure. The process of updating a CRL-instance on the context layer is thus
modeled as a specific algorithm in relation to the addition and deletion of nodes in
a tree.

- CRL-Management Module. This module is part of the Context Layer and it
contains a collection of components that provides administrative functionalities
such as registering context sensors, providing meta-controlling, processing
notification policy.

 This architecture approach addresses the important issues of application
participation. Using SOAP allows clients’ applications to submit CRL-instances
asynchronously, which means that applications are not engaged in listening to
contextual feedback from the Context Layer. This is an important feature which
provides the separation of concerns. The second feature is allowing user to embed
predicate logic into each CRL-instance. This enhances the inference process at the
context layer. The notion of reflective reconfiguration, inspired by the unique
approach employed in MobiPADS [1], allows CRL-rules, either parsing through the
CRL-inference engine or residing at the CRL-rule repository, to be updated at real
time. Thus a highly transparent framework that does not compromise the preferred
feature of separation of concerns is thus achieved.

CRL: A Context-Aware Request Language for Mobile Computing 531

2 An Overview of CRL

CRL plays an important role in CRL Framework, enabling it to reason about context.
The complete CRL is a collection of language grammars expressed in XML for
context request definition, context definition and meta-control definition. During the
construction of the CRL framework we have developed a total of one core inference
language (CRL-instance) and six other supplementary languages.

CRL-Instance is the core language component for constructing context request
rules. Its grammar is in accordance with temporal predicate calculus [5]. We have
chosen to use temporal predicate calculus as the underlying logic for the following
reasons:

- It offers basic propositional logics that are common to all inference systems
- Unlike the logical systems used by other context-aware application, predicate

calculus extends the premature propositional logics in that it provides a mechanism
to express, and reason generically which is the key advantage of CRL.

- Furthermore, temporal predicate calculus extends predicate calculus to provide a
mechanism for reasoning about contextual information and their changes at
different time intervals.

- It offers a set of fundamental control structure to increase the flexibility and the
complexity of CRL-instance.

- It provides a formal mathematical base in context-awareness which is novel in the
field of context-aware mobile computing.

 By encapsulating a proven logical system into a standard language such as XML,
CRL-instance becomes a truly generic, platform independent and flexible rule-based
language. The aims of CRL-instance are to provide the following:

- A language for users/applications to construct context request rules to reason about
past and present contextual information.

- A set of control structures for users/applications to condition the enquiry of present
and future contextual information.

- A mechanism for users or applications to specify sequential and concurrent sensing
of context.

- A facility for users or applications to actively interact with the context environment
using user-specific actions.

- A well-known syntax for users and applications to construct context inference
rules.

 Up to six supplementary languages are defined under the CRLsup language group.
They are system languages designed to enable meta-control, flexible user context
feedback and error handling. They are briefly described as follows:

- CRL-Rule. This language is designed to cache common CRL rules in the CRL-
rule repository used in smart spaces [4].

- CRL-Feedback. This is used to assist the transitioning of context information back
to the Application Layer.

- CRL-Control. This is a meta-language that helps the monitoring and the
manipulation of CRL rules that have already been defined. This enables meta-

A.T.S. Chan, P.Y.H. Wong, and S.-N. Chuang 532

adaptation and therefore ensures the CRL framework is working in a conflict–free
environment.

- CRL-CTree. This defines the context entities that a CRL-inference engine
monitors.

- CRL-User. This defines users’ hierarchy, including user-specific information.
- CRL-Error. This language is used to assist the CRL framework in error handling

during context inference process.

3 Context Layer

While constructing CRL, an implementation of the Context Layer was developed. We
have chosen Java™ 2 Standard Edition (J2SE™) [8] to be the implementation
language, as it is a platform-independent, object-oriented programming language that
supports web service architecture and XML processing. In this implementation,
Java™ API for XML Processing 1.2 specification is required to validate any CRL
document against the CRL Schema. For developmental purposes, our current
implementation of the Context Layer contains the CRL-Inference Engine, CRL
Management Module and it also contains a fully functional CRParser which, although
not part of the Context Layer, is a vital part of the framework to carry out logical
inferences. Moreover, the Context Layer also contains a collection of Java objects that
represent contextual sensors and a graphical user interface for purposes of emulation.

The current implementation of the Context Layer allows individual rules to be
proxy-assigned. Proxy-assigned CRL-rules means that while the rules reside in the
inference engine, each of them will have constructed a notification policy. These
policies are a collection of triples, each containing the condition, the name of the rule
that has set up the policy and the engine thread which contains the rules. Part of the
implementation of the CRL Management Module is the CRL Proxy; once policies are
constructed they are sent to the CRL (sensor) proxy which monitors them against any
changes in the relevant contexts. There are two types of proxy-assignments –
temporal notification and event notification. Two separate Java packages have been
implemented to emulate our web services framework.

4 Conclusion

By introducing temporal predicate calculus into context sensing, an XML-based
Context Request Language (CRL) has been defined to support the passing of a user’s
request to a Web Service framework for context retrieval. Importantly, CRL supports
the novel concept of out-of-band separation of context co-ordination and rules from
the application. The representation of CRL is intended to bridge the gap of linking the
formalism in theoretical logics to the implementation of intelligent context-aware
applications. A CRL definition forms an important step in bringing intelligent
inferences into context sensing. We have employed the well-known temporal calculus
which is an extension of predicate logics and applied this formal logic to a context-
aware environment. In making CRL to be a truly flexible logical rule-based language,
we have defined a collection of supplementary languages to assist in controlling

CRL: A Context-Aware Request Language for Mobile Computing 533

context inferences and rules manipulation. We have also adopted a layered-approach
to formulate the CRL Framework which leverages on web service’s standard
messaging protocol to achieve a complete separation of application concerns toward
context environments. During the stage of designing the framework, we implemented
the Context Layer, which includes a CRL-inference engine to test and demonstrate the
usability of CRL.

Furthermore, the CRL, its supplementary languages and CRL-inference engine
have been tested with RedPoint which is a locally developed local positioning system
evolved from [9]. Their performance results have been measured and are subject to
future publications.

Acknowledgement

This project is supported by the Hong Kong Polytechnic Central Research
Grant GT-877.

References

1. Alvin T.S. Chan, Siu Nam Chuang, “MobiPADS: A Reflective Middleware for Context-
Aware Mobile Computing”, IEEE Transactions on Software Engineering, vol. 29, no. 12,
Dec 2003, pp. 1072-1085.

2. A. K. Dey, “Providing Architectural Support for Building Context-Aware Applications”,
PhD thesis, College of Computing, Georgia Institute of Technology, December 2000.

3. H. Chen, S. Tolia, C. Sayers, T. Finin, A. Joshi, “Creating Context-Aware Software
Agents”, Article, First GSFC/JPL Workshop on Radical Agent Concepts, September 2001

4. H. Chen, T. Finin, A. Joshi, “An Intelligent Broker for Context-Aware Systems”,
InCollection, Adjunct Proceedings of Ubicomp 2003, October 2003.

5. E. Davis, “Representations of Commonsense Knowledge”, Morgan Kaufmann Publishers,
1990

6. H.S. Thompson, D. Beech, M. Maloney, N. Mendelsohn, “XML Schema Part 1: Structures”,
May 2001, Available at http://www.w3.org/TR/xmlschema-1

7. F. Curbera, W. Nagy, S. Weerawarana, “Web Services: Why and How”, OOPSLA 2001
Workshop on Object-Oriented Web Services, Florida, USA, 2001

8. Java™ 2 Platform, Standard Edition, Available at http://java.sun.com/j2se/
9. Alvin T.S. Chan, Hong Va Leong, Joseph Chan, Alan Hon, Larry Lau, Leo Li, “BluePoint:

A Bluetooth-based Architecture for Location-Positioning Services”, Proceedings of the
ACM Symposium on Applied Computing (SAC2003), 9-12 March 2003, Florida, USA, pp.
990-995.

 J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 534–543, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A Resource Reservation Protocol for
Mobile Cellular Networks*

Ming Xu, Zhijiao Zhang, and Yingwen Chen

School of Computer, National University of Defense Technology,
Changsha, Hunan 410073, P.R. China

ywch_nudt@hotmail.com

Abstract. This paper proposed a protocol named RSVP-C, which aims at re-
serving resources for mobile cellular networks. In RSVP-C, both active and
passive resource reservation routes could be established. We described the
whole architecture and all the management principles. The messages format
and reservation mechanism are illuminated in details. Simulation results based
on a discrete-event simulation model are given as well. Compared with
MRSVP, RSVP-C shows its better performance in most mobile cellular net-
works.

1 Introduction

With the rapid increase of mobile hosts and mobile application fields, people pay
more and more attention to the Quality of Services (QoS), such as bandwidth and
delay, and the methods to keep the protocol overhead to the minimum. IETF has
proposed the IntServ model, which can provide QoS guarantees in data transmitting,
especially multimedia real-time services in networks[1][2]. ReSource reserVation
Protocol (RSVP) is a very important part of the IntServ framework, which gives real-
time traffics hard QoS guarantees in network. RSVP sets up resource reservations for
real-time applications and works with a routing protocol. In RSVP, the receiver initi-
ates the reservations. From the beginning, the sender sends a Path message along the
route determined by a routing protocol, and the receiver transmits a Resv message in
reverse along the same path as the Path message was originally transmitted after it
receives the Path message. Both the Path and Resv messages can be used to set up
and maintain soft-states on the nodes along the reservation route. The soft-state
mechanism maintains the group membership and route dynamically in a RSVP net-
work. Further more, RSVP protocol supports tunneling, by which messages can be
delivered through regions that do not support RSVP.

While QoS provisioning is an active topic in broadband IP networks such as the
Internet, it is especially important in wireless networks, where hosts are untethered
and mobile.

* The research is supported by the National Natural Science Foundation of China under Grand

No.60073002.

A Resource Reservation Protocol for Mobile Cellular Networks 535

2 Resource Reservation Problems in Mobile Networks

In mobile network, there is a well-known problem called handover (also called hand-
off)[5], which does not occur in fixed network however. In order to get seamless
handover, the system must reserve resources in advance. There are two types of re-
source reservations[10]. The reservation for a data flow on a link is called “active”,
just when packets of that flow are traveling over the link to a receiver, and called
“passive” when resources are reserved for the flow on the link, but actual data packets
of the flow are not being transmitted over the link.

Tazlukar et al. described a protocol named MRSVP[6], which is proposed to re-
serve resources for the mobile hosts. There are many problems in running this proto-
col. Firstly, MRSVP assumes that the multiple locations where the Mobile Host (MH)
may possibly visit can be acquired before the MH starts moving, and this set of loca-
tions is defined as MSPEC. But in practice, it is very difficult to do that. If we reserve
resources in any possible area where the MH will enter, there must be too many re-
dundant resource reservation routes in the network. Secondly, the protocol depends
on mobile IP[10] for routing. Mobile IP is not suitable in the condition that mobile
host causes frequent handover; because route table at the home agent needs to be
updated every time the handover occurs. When a mobile host moves frequently, other
nodes sometimes can not get its current care-of-address because the home agent
hasn’t updated the route table in time, thus leads to the communication failure.

I. Mahadevan et al. proposed an architecture, which used a modified RSVP proto-
col to provide QoS support for mobile hosts[7]. But they validated their model only in
a small network with a few base stations, and didn’t put forward a complete resource
reservation protocol.

In this article, we proposed a new protocol based on mobile cellular network
named RSVP-C (Resource Reservation Protocol for Cellular System). We will de-
scribe the detailed structure and management principles, including network topology,
process of the resource reservation, RSVP-C messages, merging different reservations
and reservation switching issues, etc.

3 Resource Reservation Protocol for Cell System (RSVP-C)

Most mobile networks can be considered as the composite of two parts, the fixed
stations and the mobile hosts. In cellular network systems, the whole area is divided
into many regions. These small regions are called “cell”, and each cell has a fixed
Base Station (BS), which serves the region. BSs are always linked together and con-
nected with upper layer nodes that can communication with the Internet. When a
mobile host enters a region, the BS in the region serves it until it moves to another
cell. When the mobile host enters a new cell, the BS in the new cell then supports it.
Some other networks can be regarded as a cellular system, such as the satellite net-
work, in which satellites play the role of the base stations.

Our research is based on the general cellular network. Cells represent the mobile
part. The BS of the cell is linked to the fixed part by an edge router. All the BSs can

M. Xu, Z. Zhang, and Y. Chen 536

provide resource reservation service for mobile hosts that enter the cell regions, and
we define these region areas as Resource Reservation Domain (RRD). For example,
the wireless network in a campus can be considered as a RRD. When a mobile host
enters this region, the BSs in the RRD can provide resource reservation for the mobile
host. When the mobile host moves out of the campus, the BSs in the campus won’t
provide resource reservation for it any more. Figure 1 illustrates a RRD.

Fig. 1. A Resource Reservation Domain

In figure 1, each hexagon represents a cell, and the dot in the center of a cell repre-
sents a BS. A mobile host takes the BS of the current cell as a proxy to communicate
with other fixed or mobile nodes in the network. The rectangle R represents an edge
router, which can communicate with every BS in the RRD and is linked with other
routers in upper network. The “node” here refers to the edge router, BS, or the mobile
host. When a mobile host requests an application, the BS in its current cell reserves
resources on the wireless interface.

In the cellular system, each cell has a constant maximal number of neighbors (6
neighbors), so it only needs to reserve resources for a mobile host in its neighboring
cells without forecasting its movement. There are two ways to set up a reservation
route: extending an existing rout, or establishing a new route from the edge router to
the neighboring BS. We can choose the first one to reduce the overload of the reser-
vation process.

Our research is based on the following hypotheses:

• All nodes in the network support RSVP-C. They can support both active
and passive reservation;

• Each BS doesn’t need to know the topology of the whole network. But it
should know all its neighboring cells, so that they can communicate with
each other directly;

• Each BS can acquire the QoS parameters of the link such as latency, band-
width, etc.

3.1 Process of Resource Reservation When the Receiver Is a Mobile Host

As is mentioned above, a mobile network always consists of the fixed part and the
mobile part. The fixed part conducts the active resource reservation process, which is
the same as that in RSVP. We only need to discuss the passive reservation process in
the mobile part of the network.

A Resource Reservation Protocol for Mobile Cellular Networks 537

Process of Active Reservation. Like in RSVP, reservation is receiver-initiated in
RSVP-C. After a receiver joins a multicast group by using the Internet Group
Membership Protocol (IGMP), the sender starts sending a Path message to it. The
receiver will send a Resv message along the reserve route as soon as it receives the
Path message. A Resv message contains a FLOWSPEC object, which has two sets of
parameters, i.e. RSPEC and TSPEC. They describe the desired QoS parameters and
the traffic characteristics of the data flow. All the Path and Resv messages are
delivered hop by hop. Each node receives a Resv message will perform admission
control to decide whether it will reserve resources for the receiver or not.

There are two types of admission control:

1) Admission control on wireless interface. The BS decides whether the band-
width on the wireless link is enough for a receiver’s request. The BS will
send a ResvErr message to the receiver if there isn’t enough bandwidth.

2) Admission control on fixed nodes. The BS supporting the receiver acts as a
proxy, and forwards a Resv message for active reservation upstream. Each
node receiving the message will perform admission control and policy con-
trol. If the request fails at some node, the node will return a ResvErr message.
As the condition of fixed links is much better than the wireless ones, the res-
ervation failure probability of the fixed links is much less than that of the
wireless links.

 The sender periodically sends Path messages downstream, and the receiver peri-
odically sends Resv messages upstream. All these messages maintain a soft-state on
the nodes that have received them. Each RSVP message carries a SESSION object.
The SESSION object contains the destination IP address of the flow, the protocol ID
and the destination port number, which identifies a unique reservation from others.
When the mobile host doesn’t need the resources to be reserved any more, the sender
or the receiver can deliver TearDown messages to clean up the soft-state. Figure 2 can
illustrate all the process of the active reservation.

Fig. 2. Process of active reservation when the receiver is a mobile host

Process of Passive Reservation. In mobile network, the key issue of resource
reservation is to make a passive reservation, which is very important for seamless
handover. In RSVP-C, the passive reservation route changes while the mobile host
migrates. We needn’t forecast where the mobile host will move. The number of
neighbors of a given cell is not more than six, so there are only a few passive
reservation routes need to set up. There are two ways to extend passive reservation

M. Xu, Z. Zhang, and Y. Chen 538

routes: to create passive routes between the BS supporting the mobile host and its
neighboring BSs, as shown in Figure 3(a), or to create passive routes from the edge
router to the neighboring BSs, as shown in Figure 3(b).

New mechanisms are needed to implement passive reservation. When the mobile
receiver moves, the network chooses the current BS or the edge router as its proxy to
initiate the passive reservation. The proxy sends reverse reservation request (Re-
verseResv) messages to the neighboring BS. “Reverse” here means the message is
sent from the proxy to the neighbors. Its direction is the same as that of the possible
dataflow in the future, and is opposite to that of the active Resv messages. The Re-
verseResv message also carries a FLOWSPEC object, which specifies the desired QoS
parameters and the traffic characteristics. Figure 3(a) shows the BS, which supports
the mobile receiver sends the ReverseResv message to a neighboring BS. Figure 3(b)
shows the ReverseResv message is sent from the edge router. The neighboring BS
decides whether it can provide resource reservation service for the mobile host. If
admission control shows it can provide the service, the neighboring BS will send back
a Confirm message, or it will return a ReverseResvErr message to reject the request.

Fig. 3. Process of passive reservation when the receiver is a mobile host

In RSVP, Path messages are used to route the Resv messages hop-by-hop in the
reverse direction. But in RSVP-C, when the receiver is a mobile host, passive reserva-
tion doesn’t use a reverse route, so it doesn’t need to send Path messages.

In a RSVP-C message, there is one bit named A/P, showing whether the message
is sent for active reservation or for passive reservation. The advantage is obvious:
resources reserved for a passive reservation can be used for some other data flows
such as best-effort data flows, which prevents resources from being wasted.

Tear Down of Resource Reservation. In active reservation, if a mobile host doesn’t
need the resources to be reserved any more, or there are some other problems cause
the reservation interrupted, ResvTeardown messages can be used. The sender or the
receiver can initiate it to remove the reservation soft-state without waiting until
lifetime expiration.

In passive reservation, when the mobile receiver migrates to a new region, the pas-
sive reservation for it in this new cell will be changed into an active one, and the

A Resource Reservation Protocol for Mobile Cellular Networks 539

passive reservations in the old neighboring cells won’t be used. Then the BS in the
old cell will send ResvTeardown messages to the neighbors to cleanup those unused
passive soft-states.

If the receiver is a mobile host, the messages used for passive reservation are
shown in Table 1.

Table 1. RSVP-C messages format

Message Description
ReverseResv The proxy of the mobile receiver sends this message to the

neighboring cells to request passive reservation. The message
contains a FLOWSPEC object describing the traffic characterizes
and desired QoS parameters.

Confirm The BS in the neighboring cell sends this message to the proxy if
it can provide resources for passive reservation.

ReverseResvErr The BS in the neighboring cell sends this message to reject a
passive reservation request.

ResvTeardown After the mobile receiver migrates to a new cell, the old BS will
send this message to cleanup passive soft-states in the neighbor-
ing cells.

3.2 Process of Resource Reservation When the Sender Is a Mobile Host

In RSVP-C, when the sender is a mobile host the process of active resource reserva-
tion is similar with that in RSVP. The proxy of the mobile sender sends Path
messages downstream, and the receiver sends Resv messages upstream. These messages
maintain soft-states on the nodes along the reservation route. Besides being reserved on
the fixed nodes, resources need to be reserved on the wireless interfaces as well.

When the active reservation finishes, passive reservations are still needed for the
mobile sender. The BSs in neighboring cells perform admission control, and passive
Path messages will be sent to the proxy of the sender.

For passive reservation, if a node does not have enough resources, it will send a
ResvErr message to the proxy of the mobile sender to reject the request. The
proxy receiving the passive ResvErr message knows that the passive reservation has
failed.

3.3 Merging Reservations

Generally speaking, there are two kinds of reservation merging: (1) merging active
and passive reservations of the same sender and receiver; (2) merging reservations for
different applications.

There are both active and passive reservations for a mobile host, and one mobile
host may request several passive reservations simultaneously. These passive and
active reservations would be merged at the proxy, while the active reservations have
higher prior than the passive ones. If the proxy receives a passive Path message from

M. Xu, Z. Zhang, and Y. Chen 540

a mobile sender while it already has had an active Path soft-state, it won’t create a
new soft-state. At the same time it won’t deliver the passive message downstream
either.

How to merge different reservation requests is defined in the Integrated Services
Specification[8]. The final FLOWSPEC after merging should be the largest of all the
FLOWSPECs of the reservation requests.

There are three cases for merging reservations in mobile cellular network:

1) Merging several active reservations
This follows the definition in the Integrated Service Model.
2) Merging passive reservations of different sessions.

The final FLOWSPEC should be the largest of all the FLOWSPECs of the reser-
vation requests, and the soft-state must be defined as a passive state. So the resources
reserved can be used by other applications temporarily, especially those with best-
effort requirements.

3) Merging both active and passive reservations.

 In this case, a simple method is to merge reservations directly, and mark the
merged reservation with an active reservation. When the resources reserved for pas-
sive reservations are larger than those for active reservations, this method may lead to
resource waste. An alternative method is to calculate the FLOWSPEC of the active
reservations and passive reservations separately. Hence redundant resources of pas-
sive reservations can be used by other applications before they change into an active
one.

3.4 Reservation Switching

When a mobile host has an active data flow migrates to a new location, the active
reservation at its previous location may be turned into a passive reservation and the
passive reservation in the new location will be turned into an active reservation.
When to switch between active and passive reservations must be defined in handover
protocol. There are four approaches to support seamless handover[5]: redundant ser-
vice, new domain service, old domain service and interrupted service. The redundant
service will not interrupt the transactions performed on a mobile host, and can main-
tain QoS guarantees at a good level. But in nodes with redundant service will receive
redundant packet, and duplicate data must be filtered out.

4 Simulation Analysis

We established a discrete-event simulation model with Markov chains to evaluate the
overhead of RSVP-C protocol, which shows the blocking probability in wireless link
in different conditions.

In our experiment, we suppose there are three kinds of reservation requests, i.e.
Class A, Class B and Class C, which demands 10%, 20% and 50% of the whole
bandwidth on a wireless link respectively, and the numbers of these reservation re-

A Resource Reservation Protocol for Mobile Cellular Networks 541

quests are equal. Our research focuses on a RRD, where the mobile host can move to
any cell region. The MSPEC in MRSVP is the whole RRD.

Figure 4 shows the relationship between the data flow intensity and the reservation
blocking probability. When the data flow intensity increases, the blocking probability
increases as well. This is because when the data flow intensity becomes larger, there
are more data flows to request reservations and occupy the bandwidth for more time.
So the latter reservation requests are more likely to be rejected.

Figure 5 shows influence of the handover rate on the blocking probability of data
flows. The blocking probability also becomes larger as the handover rate increases.
This is because when a mobile host migrates to the new cell, it will request active
reservation in the new cell and passive reservations in the neighboring cells.

Figure 6 and figure 7 show a comparison between RSVP-C and MRSVP when the
data flow intensity is 0.15 and the handover rate is 0.5. Figure 6 indicates the differ-
ence among Class A, Class B and Class C data flows, and figure 7 shows the all the
blocking probability in RSVP-C and MRSVP.

Fig. 4. Influence of Data Flow Intensity

Fig. 5. Influence of handover rate

M. Xu, Z. Zhang, and Y. Chen 542

Fig. 6. Comparison of RSVP-C and MRSVP –1

Fig. 7. Comparison of RSVP-C and MRSVP -2

We can conclude from figure 6 and figure7 that when a RRD contains a certain
number of cells, RSVP-C performs much better than MRSVP does. That is because it
doesn’t need to predict the movement of the mobile host in RSVP-C, and it only
reserves resources on the neighboring cells. While in MRSVP the network should
reserve resources in all the MSPEC.

5 Conclusion

This paper proposed a resource reservation protocol for mobile cellular networks.
RSVP-C protocol supports both active and passive reservations. It is more suitable to
reserve resources for real-time applications for mobile hosts in cellular networks than
existing protocol MRSVP. Our protocol manifests itself with several characteristics:
(1) decreases the network overhead by extending existing resource reservation route
rather than setting up a new one; (2) defines reverse reservation messages, which
simplify the implementation of the resource reservation; (3) results in a good per-
formance without predicting the movement of a mobile host.

A Resource Reservation Protocol for Mobile Cellular Networks 543

We are devoted to further studies on the following aspects:

1) Making further improvement of the protocol according to different mobile net-
work architecture.

2) Setting up more precise mathematics model to analysis the performance of the
resource reservation protocol.

3) Doing experiments in a real mobile cellular network, and measuring the metrics
of the QoS guarantees in real data service.

References

1. R. Braden, D. Clark, S. Shenker. Integrated Service in the Internet Architecture: An Over-
view. RFC 1633, June 1994.

2. J. Wroclawski. The Use of RSVP with IETF Integrated Services. RFC 2210, September
1997.

3. L. Zhang. Resource Reservation Protocol - Version 1 Functional Specification. RFC 2205,
September 1997.

4. Resource Reservation Protocol. Cisco Internetworking Technologies Overview Handbook,
Chapter 43. June 1999.

5. M. Endler, V. Nagamuta. General Approaches for Implementing Seamless Handover.
ACM 1-58113-511-4/02/0010, 2002.

6. A. K. Talukdar, B. R. Badrinath, A. Acharya. MRSVP: A Resource Reservation Protocol
for an Integrated Services Network with Mobile Hosts. The Journal of Wireless Networks,
vol. 7, no.1, 2001.

7. Mahadevan, K. M. Sivalingam. An Experimental Architecture for providing QoS guarantees
in Mobile Networks using RSVP. In Proc. IEEE PIMRC '98, (Boston, MA), Sept. 1998.

8. J. Wroclawski. The Use of RSVP with IETF Integrated Services. RFC 2210, September 1997.
9. A. K. Talukdar, B. R. Badrinath, A. Acharya. On Accommodating Mobile Hosts in an

Integrated Services Packet Network, In Proc. IEEE INFOCOM’97, April 1997.
10. J. D. Solomon, Mobile IP, The Internet Unplugged, Prentice Hall PTR, 1998.
11. T. Li, Y. Rekhter. A Provider Architecture for Differentiated Services and Traffic Engi-

neering. RFC 2403, October 1998.
12. D. Awduche, J. Malcolm, J. Agogbua, M. O'Dell, J. McManus. Requirements for Traffic

Engineering Over MPLS. RFC 2702, September 1999.
13. M. Seaman, A. Smith, E. Crawley, J. Wroclawski. Integrated Service Mappings on IEEE

802 Networks. RFC 2815, May 2000.
14. S. Herzog. Signaled Preemption Priority Policy Element. RFC 2751, January 2000.
15. L. Zhang. Resource Reservation Protocol - Version 1 Functional Specification. RFC 2205,

September 1997.
16. D. Chalmers, M. Slornan. QoS and Context Awareness for Mobile Computing. Imperial

College, London SW72BZ, U.K, the Journal of Lecture Notes in Computer Science,
Vol.1707, 1999.

17. R. Yavatkar, D. Pendarakis, R. Guerin. A Framework for Policy-based Admission Control.
RFC 2753, January 2000.

18. G. L. Chen, David Kotz. A Survey of Context-Aware Mobile Computing Research. Dept.
of Computer Science, Dartmouth College, November 2000.

19. M. Oliveira, E. Monteiro. An Overview of QoS Service Routing Issues. In Proceedings
the 5th World Multiconference on Systemics, Cybernetics and Informatics (SCI 2001),
July 2001.

 J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 544–549, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Using the Linking Model to Understand the Performance
of DHT Routing Algorithms1

Futai Zou, Shudong Cheng, Fanyuan Ma, Liang Zhang, and Junjun Tang

Department of Computer Science and Engineering Shanghai Jiao Tong University,
200030 Shanghai, China

zoufutai@cs.sjtu.edu.cn

Abstract. The various proposed DHT routing algorithms embody different
underlying routing geometries such as ring, hypercube etc. The routing
performance depends on the geometry. In this paper, we anatomize the
construction of the geometry and propose the linking model for the geometry to
understand the performance of DHT routing algorithms. The effect of the
different types of links on the performance is analyzed. Especially, randomized
long link is considered as a new approach to optimize the performance. Our
experiments show that the routing performance is greatly affected by the links,
and the performance of CAN is improved with additional links.

1 Introduction

We introduce “link” to capture a dynamic geometry for the structured P2P system.
The link is the relationship among nodes. In fact, it is similar to the edge among nodes
in the geometry. However, it is very different the edge from the dynamic characteristic.
The link can be dynamically adjusted according to the change of node’s neighbors and
it reflects how well the node senses the system. It may be unidirectional or
bidirectional.

Though it depends on the requirements for all kinds of DHT, in essence, there exist
two types of links in the geometry: short link and long link. Short links are the link
from a node to its nearest nodes. Short links maintain the basic connectivity of the
geometry so that a request can be routed to any node in the P2P system. Long links
are the link from a node to the long distant nodes in the node space. Furthermore,
short links may be divided into two types: basic short links and redundant short links.
Basic short links are these linked edges in the minimal connected geometric graph,
where the weight of the edge is the hops between two vertexes. Therefore the basic
short links are these links between the node and its adjacent nodes with only one hop
in the ID space. Similarly, redundant short links are these links sequentially following
the basic short link. That means they are these links between the node and its adjacent
nodes with over one hop. Redundant short links can assist the connectivity of this
geometric in the face of node failure.

1 Research described in this paper is supported by The Science & Technology Committee of

Shanghai Municipality Key Technologies R&D Project Grant 03dz15027 and by The Science
& Technology Committee of Shanghai Municipality Key Project Grant 025115032.

Using the Linking Model to Understand the Performance of DHT 545

DHT systems can forward a request only using its basic short links; however, it is
usually inefficient and unreliable. Therefore, to design a DHT system, one should add
additional links to the nude DHT geometry so as to enhance the system performance.
As mentioned above, redundant short links can enhance the connectivity of the
geometry that improves the fault tolerance and long links can shorten the diameter of
the geometry that reduces the average path length. Experiments have showed the
linking model is an efficient approach to understand and analyze DHT routing
algorithms.

2 Links Analysis and Construction

In this section, links analysis and construction are given. We use CAN [1] as a
demonstrated application.

2.1 Links Analysis

We use links to capture the dynamic relationship of nodes in structured P2P systems.
These links form a structured geometry. A well-organized and connected geometry in
the structured P2P systems is the radical difference from the disordered geometry in
the unstructured P2P systems. According to the different function in the geometry, we
distinguish three types of links: the basic short link, the redundant short link, the long
link. Although each kind of link has its function, the basic short link is the radical link
of the geometry and is decided inherently by the geometry. Hence we emphasize on
how the long links and the redundant short links impact the routing performance of
P2P systems. We analyses the two metrics, average path length and resilience.

2.1.1 Average Path Length
The average path length is the average hops between every pair of nodes. It identifies
how quickly a request is forward to the destination. The long link is an efficient way
to improve the average path length. Chord [2] adds long links to the basic geometry to
get an optimizing average path length. CAN don’t have long links in that it gets a
longer average path length. The methods to add long links are diversified and have
still more widely space to be explored. However it needs the tradeoff between the
number of links and the maintenance overheads of links. Randomizing techniques
have a great help in the tradeoff [3] [4].

2.1.2 Resilience
Resilience measures the extent to which DHT can route around trouble even without
the aid of recovery mechanisms that fix trouble. The basic short link is inner structure
of the DHT geometry and redundant short links provide the chance to enhance its
connectivity. The connectivity embodies the routing resilience to node failure. The
lack of redundant short links would be less resilience, which will be frail for node
failure or spend a long path to be rewound. Resilience is an important aspect of P2P
systems. As for a special geometry without redundant short links, it is suggested to
add redundant short links to improve the resilience.

F. Zou et al. 546

2.2 Links Construction

The performance of CAN would be improved with additional links. In this section, we
show the construction of additional links.

2.2.1 Additional Randomized Long Links
For a d-dimensional CAN, each node can establish k additional long links, where k is
a constant. One node chooses a node as its long link with the probability inverse
proportion to the distance between two nodes according to Kleinberg’s construction
[3]. Although Kleinberg’s model considers all long links as being generated initially,
at random, we invoke the “Principle of Deferred Decision”-a common mechanism for
analyzing randomized algorithms [4] and assume that the long links of a node s are
generated only when the message first reaches t. We know the probability that s

chooses t as long link is s,t || ||

1
p =(1/c)

s t
×

−
, where

|| ||s t

1
c =

s t≠ −
 is a normalizing

constant. The constructed long link is called randomized long link.

2.2.2 Additional Redundant Short Links
Redundant short links can be introduced into traditional CAN to provide improved
resilience performance. Redundant short links can make routing continue to the
destination even if the basic short links haven’t been recovered from the failure. As a
node N, its redundant short links are added by establishing links to its adjacent nodes
in the hypercube with hops 2, 3, 4 etc.

Fig. 1 shows an illustration of additional links in CAN.

Fig. 1. An illustration of additional links in CAN with nodes distributed in a 16*16 lattice

3 Experiments

In this section, we present results from our simulation experiments. How the links
impact on DHT routing performance are analyzed by adding different types of links
into CAN. Our simulator is developed on the basis of [5].

Using the Linking Model to Understand the Performance of DHT 547

64 128 256 512 1024 2048 4096
0

5

10

15

20

25

30

35
A

ve
ra

ge
 p

at
h

le
ng

th
(h

op
s)

The number of nodes

 CAN(D=2,RLL=0)
 CAN(D=2,RLL=1)
 CAN(D=2,RLL=2)
 CAN(D=2,RLL=3)
 CAN(D=2,RLL=4)

0 2 4 6 8 10 12 14 16 18 20
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

A
ve

ra
g

e
pa

th
 le

ng
th

(h
o

ps
)

The number of randomized long links (RLL)

 CAN(D=2,RLL=0,1,2,3,....21)

Fig. 2. The effect of randomized long links on fixed dimensional CAN. Left: Average path
length for varying numbers of randomized long links (RLL) in the networks ranging from 64 to
4096 nodes in size. Right: Average path length for varying numbers of randomized long links
(RLL) ranging from 0 to 21 in the network with 1024 nodes

3.1 The Effect of Randomized Long Links

Randomized long links are added to CAN according to Section 2.2.1. Due to the
different dimensions for the construction of CAN, randomized long links should
consider the effect of the dimension. Simply the effect is divided into two cases: fixed
dimension and varying dimension. The experimental results are presented
respectively in Fig. 2 and Fig. 3.

64 128 256 512 1024 2048 4096

5

10

15

20

25

30

35

A
ve

ra
ge

 p
at

h
le

ng
th

(h
op

s)

The number of nodes

 CAN(D=2,RLL=0)
 CAN(D=2,RLL=1)
 CAN(D=4,RLL=0)
 CAN(D=4,RLL=1)
 CAN(D=6,RLL=0)
 CAN(D=6,RLL=1)

Fig. 3. The effect of randomized long links (RLL) on varying dimensional CAN. The
comparison of average path length between 0 and 1 randomized long link (RLL) to different
dimensional CAN in the networks ranging from 64 to 4096 nodes in size

As shown in the left graph of Fig. 2, average path length gradually decreases with
the increasing long links. Obviously, with the number of nodes increases, long links
decrease the average path length more significantly. It can be explained that long links
have more widely space to shorten the diameter of the network as the number of
nodes increases. Moreover, average path length dramatically decreases with the first
long link. The reason is that the long link is very different from the short link on the

F. Zou et al. 548

effect to the average path length. For short links focus on the connectivity of the
network, long links shorten the diameter of the network. That means only one long
link can improve the routing performance greatly. The question is whether the
average path length would decreases equally as the number of long links increases.
The experimental result presents that the average path length decreases slowly and it
tends to be smooth, which is shown in the right graph of Fig. 2.

The comparison of the effect of long links on average path length in varying
dimension of CAN is shown in Fig. 3. It is clear that the effect of long links do less
significant effects on the average path length as the dimensions increase. It can be
explained by the fact that the diameter of the network would decrease while the
dimension increases. As a result, the effect of long link will decrease.

3.2 The Effect of Redundant Short Links

Redundant short links are added to traditional CAN with the methods described in
Section 2.2.2. As mentioned earlier, short links focus on the connectivity of the
network. The basic short link is the inner structure of the DHT geometry and
redundant short links provide the chance to enhance its connectivity. The connectivity
embodies the routing resilience to node failure. To observe how short links impact on
the resilience, we let some fixed fraction of uniformly chosen nodes fail and disable
the failure recovery mechanism. Failed routing is the situation that any two alive
nodes can not be connected. Fig. 4 shows the simulated results. The higher failed
routing is because the failure recovery mechanism has been disabled. The left graph in
Fig. 4 presents the resilience would be gradually improved with the increasing short
links. It is due to the enhanced connectivity with short links. The right graph in Fig. 4
plots the resilience in different dimension CAN. It clearly shows that the
improvement in higher dimension would be less significant. This is because higher
dimension CAN has more basic links than lower dimension. Hence, the effect of
redundant short links would decrease accordingly.

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

100

F
ai

le
d

ro
ut

in
g(

%
)

Failed nodes(%)

 CAN(D=2,RSL=0)
 CAN(D=2,RSL=1)
 CAN(D=2,RSL=2)
 CAN(D=2,RSL=3)
 CAN(D=2,RSL=4)

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

100

F
ai

le
d

ro
ut

in
g(

%
)

Failed Node(%)

 CAN(D=2,RSL=0)

 CAN(D=2,RSL=2)

 CAN(D=4,RSL=0)

 CAN(D=4,RSL=2)

 CAN(D=6,RSL=0)

 CAN(D=6,RSL=2)

Fig. 4. The effect of redundant short links. Left: The percentage of failed routing for varying
percentages of node failures considering varying numbers of redundant short links (RSL) to
fixed dimensional CAN in the network of 1024 nodes. Right: The comparison of failed routing
between 0 and 2 redundant short links to different dimension CAN in the network of 1024
nodes

Using the Linking Model to Understand the Performance of DHT 549

4 Conclusions

Various DHT routing algorithms have been proposed in recent years. All these
algorithms have tried to maintaining a uniform structured geometry while nodes join
and leave. We use the linking model to catch the dynamic characteristics of the
geometry and hence it provides a deep understanding on the performance of DHT
routing algorithms. Our experiments show that the routing performance is greatly
affected by the links. We expect that the linking model would provide more insight on
understanding the performance of DHT routing algorithms and help to design new
DHT routing algorithms or improve current DHT routing algorithms.

References

1. S. Ratnaswamy, P. Francis, M. Handley, R. Karp, and S.Shenker. A scalable content-
addressable network. ACM SIGCOMM, 2001.

2. I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A peer-to-peer
lookup service for internet applications. ACM SIGCOMM, 2001.

3. J. Kleinberg. The small-world phenomenon: an algorithmic perspective. Cornell Computer
Science Technical Report 99-1776, 2000.

4. R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.
5. JavaSimulator. http://iris.ee.unsw.edu.au/p2p/.

 J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 550–555, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Packet-Mode Priority Scheduling for Terabit
Core Routers

Wenjie Li and Bin Liu

Department of Computer Science and Technology,
Tsinghua University, Beijing 100084, P.R. China

lwjie00@mails.tsinghua.edu.cn, liub@tsinghua.edu.cn

Abstract. Existing packet-mode schedulers will result in long waiting time for
short control packets in IP networks. To overcome this problem, this paper pro-
poses a packet-mode practical scheduling algorithm called short-packets-first
(SPF). With uniform Poisson arrival process and low to medium offered load,
we prove that SPF can reduce the average packet waiting time for overall
packets by greatly lowering the average packet waiting time for short packets.
Moreover, simulations under a real traffic model demonstrate that SPF per-
forms very well compared with other packet-mode and cell-mode scheduling
algorithms, especially for short packets under heavy offered load.

1 Introduction

Input queueing architecture is receiving much attention due to its high scalability and
100% throughput with virtual output queueing (VOQ) [1][2]. Based on this architec-
ture, many practical scheduling algorithms are proposed, such as DRRM [3], iSLIP
[4] and iLPF [5]. All of these algorithms operate on the fixed time slot, which is de-
fined as the duration of a cell, or a fixed-length unit. This type of scheduling is called
cell-mode scheduling. In routers, they need segmentation and reassembly (SAR)
module to segment incoming packets into cells for scheduling and switching in the
ingress side, and then reassemble cells after being switched for recovering original
packets in the egress side.

Through modification of cell-mode scheduling, the idea of transferring cells of the
same packet like a train without being interleaved with cells of other packets is first
systemically studied in [6]. This type of scheduling is called packet-mode scheduling,
which is the focus of this paper. Packet-mode scheduling reduces the reassembly
buffer requirement at output ports and the complex control logic to reassemble pack-
ets, because cells of a packet remain contiguous in the delivery to an output port. Fur-
thermore, it has been proven that under any admissible re-generative traffic, maxi-
mum weight packet-mode scheduling is stable [7].

This research is supported by NSFC (no. 60173009 and no. 60373007) and China 863 High-
tech Plan (no. 2002AA103011-1 and no. 2003AA115110).

Packet-Mode Priority Scheduling for Terabit Core Routers 551

However, short packets (less than 64 bytes) suffer from long delay for the con-
tinuous transferring of cells of long packets in packet-mode scheduling. From the lat-
est research results on traffic characters [8][9], we know that packets less than 64
bytes occupy approximate 50% of Internet packets, and most of these packets are
TCP acknowledgment and control segments such as SYN, FIN and RST. Blocking
these short packets will cause more TCP packets to be retransmitted due to timeout of
acknowledgment packets, and therefore the offered load of networks will increase. So
reducing the delay for short packets will improve the performance of TCP flows.

To overcome the problem of blocking short packets in packet-mode scheduling,
we propose the short-packets-first (SPF) scheduling algorithm. The key idea is to
buffer short packets in separate VOQs, and always schedule short packets first. The
idea is simple, but there are some reasons for the idea is not introduced in the design
of traditional scheduling algorithms. First of all, the first priority of short packets may
cause out of sequence of packets belonging to the same flow of mixed short and long
packets. Second, cell-mode scheduling is adopted widely in traditional router designs
and it does not block short packets. Third, the hardware implementation complexity is
increased, whatever slightly or greatly.

Through performance analysis in theory and by simulations, this paper shows that
SPF achieves better average packet waiting time performance for both short packets
and overall packets than general packet-mode scheduling, and also better than cell-
mode scheduling under some condition. SPF is a simple practical scheduling algo-
rithm, so it can be easily implemented in hardware.

The rest of this paper is organized as follows. Section 2 illustrates the iterative
scheduling process of SPF. Section 3 presents the analysis on the performance of av-
erage packet waiting time. Section 4 performs some simulations and shows the
corresponding results of SPF, cell-mode and packet-mode scheduling. Finally, the
concluding remarks are given in section 5.

2 SPF Scheduling Algorithm

SPF includes three iterative steps: connection request, output grant and input accept.

Step 1: Connection Request.
An idle input port sends at most two connection requests to each output port in one
time slot: one for short packets and the other for long packets. To release a connec-
tion, a disconnection request must be sent in the last cell of a packet.

Step 2: Output Grant.
Each output port j (1 j N≤ ≤) maintains two pointers: OutPointer_S(j) for short
packets and OutPointer_L(j) for long packets.

A busy output port still grants its connected input port if it does not receive a dis-
connection request. A busy output port becomes idle immediately after receiving a
disconnection request. An idle output port j grants an input port that sends a request

W. Li and B. Liu 552

for short packets to j and appears next in a fixed round-robin schedule from the high-
est priority port with the pointer OutPointer_S(j). If an idle output port j does not re-
ceive any requests for short packets, it will grant requests for long packets with the
pointer OutPointer_L(j) similarly. An idle output becomes busy and the correspond-
ing pointer is updated to the one next to the granted input port, if and only if its ac-
knowledgment is accepted by an input port in step 3.

Step 3: Input Accept.
Each input port i (1 i N≤ ≤) maintains two pointers: InPointer_S(i) for short pack-
ets and InPointer_L(i) for long packets. If input port i receives any grants for short
packets, it will accept the one that appears next in a fixed round-robin schedule from
the highest priority output port with the pointer InPointer_S(i) and then update
InPointer_S(i) to the one next to the accepted output port (modulo N). Otherwise, if
input port i receives any grants for long packets, it will accept one output port and
update the pointer InPointer_L(i) as the process for short packets.

The first priority of short packets may decrease the performance of long packets,
so multiple iterations of SPF can be performed to improve overall system perform-
ance. But similar to iSLIP, all pointers are updated only during the first iteration to
avoid starvation of some input ports.

3 Performance Evaluation

Packet delay is defined as the time interval starting when the last cell of a packet ar-
rives at an input buffer and ending when the last cell of this packet is transferred
through the switch fabric. The packet service time is defined as the time a packet oc-
cupies the switch fabric, which is related to the packet length. The packet waiting
time is defined as the time a packet spends in one VOQ, which equals the packet
delay minus the packet service time.

If there are two or more acknowledgments to an input port in the same time slot,
only one can be accepted. To estimate the average packet delay by queueing theory,
we have to neglect this type of conflict. The results are only suitable for low to me-
dium load, and not accurate for heavy load. For the convenience of the following
analysis, some notations by queueing theory are defined first.

1) shortλ , longλ , λ : the packet arrival rate of short, long and overall packets.
2) shortμ , longμ , μ : the packet service rate of short, long and overall packets.
3) shortρ , longρ , ρ : the offered load of short, long and overall packets.
4) ()E S : the average packet service time of overall packets.
5) vC : the coefficient of variation of the packet service time.
6) ()cellE W , ()packetE W : the average packet waiting time for overall packets in cell-mode

and packet-mode scheduling, respectively.

Packet-Mode Priority Scheduling for Terabit Core Routers 553

7) () SPF _ SE W , ()SPF _ LE W and ()SPFE W : the average packet waiting time for short, long

and overall packets in SPF.

A cell-mode scheduling algorithm can be paralleled to processor-sharing service
model [6][10]. A packet-mode scheduling algorithm is corresponding to M/G/1 FCFS
queueing model [11]. Therefore

() ()
1cell

E S
E W

ρ
ρ

=
−

, (1)

() ()
21

2
v

packet cell

C
E W E W

+
= × . (2)

We use the non-preemptive priority model [11] to evaluate the average packet
waiting time in SPF. There are two priorities: high priority for short packets and low
priority for long packets. With the non-preemptive priority model, we have

() () 21

1 2
v

SPF _ S

short

E S C
E W

ρ
ρ

+
= ×

−
, (3)

() ()
()()

21

1 1 2
v

SPF _ L
short

E S C
E W

ρ
ρ ρ

+
= ×

− −
. (4)

Combining (3) with (4), we obtain

() () () ()1

1
longshort short

SPF SPF _ S SPF _ L packet
short short

/
E W E W E W E W .

/

λλ λ μ
λ λ λ μ

−
= + = ×

−
 (5)

From (5), we know that ()SPFE W is always less than ()packetE W . This is be-
cause shortμ μ> is always true when the arrival rate of long packets is greater than
zero. When vC < 1, the average packet waiting time for overall packets in SPF is less
than both cell-mode and packet-mode scheduling.

4 Simulations

To study the performance of SPF under heavy load condition, simulations are per-
formed in this section.

4.1 Simulation Environment

The switch size is 16 × 16. The scheduling algorithm in cell-mode is 2-iSLIP [4], in
packet-mode is 2-iSLIP packet modification [6], and two iterations of SPF are simu-
lated. 1,000,000 time slots are run and steady results between 20,000 and 980,000 are
recorded. The arrival process is Poisson. Destinations of packets are uniformly dis-
tributed over all output ports. Packet length follows TRIMODEL distribution.

TRIMODEL(a, b, c, Pa , Pb): Packet lengths are chosen equal to either a cells with
probability Pa , or b cells with probability Pb , or c cells with probability 1 – Pa – Pb .

W. Li and B. Liu 554

Under TRIMODEL, we set a = 1, b = 9, and c = 24, Pa = 0.559 and Pb = 0.200.
These parameters are the same as results shown in [6], which are measured in actual
backbone networks. Similar parameters are also reported in [9][12], so the model is
accurate to describe real Internet traffic.

4.2 Simulation Results

Fig. 1 shows simulation results on the average packet waiting time for overall pack-
ets. When ρ < 0.8, the average packet waiting time in cell-mode scheduling is less

than packet-mode. This is because the coefficient of variation of arrival traffic is a
little larger than 1.0, cell-mode scheduling performs better under low to medium
offered load. Moreover, in Fig. 1 we can also get that SPF is always better than
packet-mode scheduling just as results analyzed in theory. When ρ > 0.7, the average

packet waiting time in SPF becomes the best. With the increase of offered load, con-
flicts, which should be arbitrated by the scheduling algorithm, occur more and more
frequently. In cell-mode scheduling, all cells from the same packet need to be sched-
uled separately. Compared with SPF and packet-mode, the scheduling task in
cell-mode is much heavy, and thus results of scheduling algorithms have more impact
on the average packet waiting time. In SPF and packet-mode scheduling, only one ar-
bitration is needed by every packet. If a packet is granted, all its following cells can
be transferred continuously. So under heavy load, SPF and packet-mode scheduling is
preferable. When ρ > 0.8, the advantage of SPF becomes more and more obvious.

E.g., the average packet waiting time in SPF, packet-mode and cell-mode scheduling
is 227, 334, and 714 cells, respectively, when the offered load is 0.95.

Fig. 2 shows the average packet waiting time for short packets. Under low to me-
dium load, the average packet waiting time of cell-mode scheduling is the best, and
the performance curve of SPF is between cell-mode and packet-mode scheduling.
When the offered load goes up, the average packet waiting time in cell-mode and
packet-mode increases more and more sharply, and SPF becomes the best under
heavy load (ρ > 0.8). Even when the offered load is 1.0, the average packet waiting

time for short packets in SPF is still less than 160 cells.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
100

101

102

103

104

A
ve

ra
ge

 P
ac

ke
t W

ai
ti

ng
 T

im
e

(C
E

L
L

)

Offered Load

 SPF
 Cell
 Packet

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

100

200

300

400

A
ve

ra
ge

 P
ac

ke
t W

ai
ti

ng
 T

im
e

(C
E

L
L

)

Offered Load

 SPF
 Cell
 Packet

Fig. 1. Average packet waiting time for over-
all packets

Fig. 2. Average packet waiting time for short
packets

Packet-Mode Priority Scheduling for Terabit Core Routers 555

5 Conclusions

This paper points out that short control packets in a flow should be guaranteed higher
priority than long packets, and then proposes the scheduling algorithm called SPF.
Under low to medium offered load, it is proven that the average packet waiting time
for overall packets in SPF is less than both cell-mode and packet-mode scheduling
when the coefficient of variation of the packet service time is less than 1.0. Further-
more, simulation results demonstrate that SPF can greatly reduce the average packet
waiting time for short packets under heavy load. For networks full of TCP flows, such
as Internet, the result is particularly valuable.

In this paper, we do not address how to solve the out-of-sequence in SPF. What-
ever, the sequence of short packets and the sequence of long packets are guaranteed
individually in SPF. Then we expect a low probability of out of sequence under the
condition of Terabit core routers, and this will be a topic for future papers.

References

1. Anderson T.E., Owicki S.S., Saxe J.B., Thacker C.P.: High-Speed Switch Scheduling for
Local Area Networks. ACM Trans. Computer Systems, Vol. 11, 4 (1993) 319–352

2. Keslassy I., McKeown N.: Analysis of Scheduling Algorithms that Provide 100%
Throughput in Input-Queued Switches. Proceedings of the 39th Annual Allerton Confer-
ence on Communication, Control and Computing, Monticello, Illinois (2001)

3. Chao H.J.: Saturn: a Terabit Packet Switch Using Dual Round Robin. IEEE Commun.
Mag., Vol. 38, 12 (2000) 78-84

4. McKeown N.: The iSLIP Scheduling Algorithm for Input-Queued Switches. IEEE/ACM
Trans. Networking, Vol. 7, (1999) 188-201.

5. Mekkittikul A., McKeown N.: A Practical Scheduling Algorithm to Achieve 100%
Throughput in Input-Queued Switches. IEEE INFOCOM 1998, Vol. 2, (1998) 792-799

6. Marsan M.A., et al.: Packet-Mode Scheduling in Input-Queued Cell-Based Switches.
IEEE/ACM Trans. Networking, Vol. 10, (2002) 666-678

7. Ganjali Y., Keshavarzian A., Shah D.: Input Queued Switches: Cell Switching vs. Packet
Switching. IEEE INFOCOM 2003, Vol. 3, (2003) 1651-1658

8. Thompson K., Miller G.J., Wilder R.: Wide-Area Internet Traffic Patterns and Character-
istics. IEEE Network, Vol. 11, 6 (1997) 10-23

9. Fraleigh C., et al.: Packet-Level Traffic Measurements from the Sprint IP Backbone. IEEE
Network, Vol. 17, 6 (2003) 6-16

10. Allen A.O.: Probability, Statistics, and Queueing Theory with Computer Science Applica-
tions, New York Academic Press (1978)

11. Wolff R.W.: Stochastic Modeling and the Theory of Queues. Prentice-Hall Inc. (1989)
12. Mellia M., Carpani A., Cigno R.L.: Measuring IP and TCP Behavior on Edge Nodes.

IEEE GLOBECOM 2002, Vol. 3, (2002) 2533-2537

Node-to-Set Disjoint Paths Problem
in Bi-rotator Graphs

Keiichi Kaneko

Tokyo University of Agriculture and Technology,
Koganei-shi, Tokyo 184-8588, Japan

k1kaneko@cc.tuat.ac.jp

Abstract. A rotator graph was proposed as a topology for interconnec-
tion networks of parallel computers, and it is promising because of its
small diameter and small degree. However, a rotator graph is a directed
graph that sometimes behaves harmful when it is applied to actual prob-
lems. A bi-rotator graph is obtained by making each edge of a rotator
graph bi-directional. A bi-rotator has a Hamilton cycle and it is also
pan-cyclic. In this paper, we give an algorithm for the node-to-set dis-
joint paths problem in bi-rotator graphs with its evaluation results. The
solution achieves some fault tolerance such as file distribution based in-
formation dispersal technique. The algorithm is of polynomial order of
n for an n-bi-rotator graph. It is based on recursion and divided into
three cases according to the distribution of destination nodes in classes
into which all the nodes in a bi-rotator graph are categorized. The sum
of lengths of paths obtained and the time complexity of the algorithm
are estimated. Average performance of the algorithm is also evaluated
by computer experiments.

Keywords: node-to-set disjoint paths problem, bi-rotator graphs, fault
tolerance, parallel computation.

1 Introduction

Currently, researches on parallel and distributed computation is getting more
significant. In addition, so-called massively parallel processing systems are ea-
gerly studied for these years. Therefore, many interconnection networks based
on complicated topologies instead of simple networks such as meshes, tori, hy-
percubes and so on have been proposed. Most of those new topologies are vari-
ants of the Cayley graph[1, 6] and there are intensive research activities about
them[2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 15]. A rotator graph[6] is one of such topologies,
and it is very promising because of its small diameter and its small degree. How-
ever, a rotator graph is a directed graph that sometimes behaves harmful when
it is applied to actual problems.

A bi-rotator graph[12] is obtained by making each of a rotator graph bi-
directional. A bi-rotator has a Hamilton cycle and it is also pan-cyclic. Among
the unresolved problems exists the node-to-set disjoint paths problem: in a k-
connected graph G = (V, E), for a source node s and a set of k destination

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 556–567, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Node-to-Set Disjoint Paths Problem in Bi-rotator Graphs 557

nodes D = {d1,d2, · · · ,dk} (s �∈ D), find k paths from s to di (1 ≤ i ≤ k) that
are node-disjoint except for s. This is one of important issues in parallel and
distributed computing systems[5, 8, 10, 14] as well as the node-to-node disjoint
paths problem[9, 15].

In general, the node-disjoint paths are obtained by using the maximum flow
algorithm in polynomial order of the number of the node in the graph |V |. There
are n! nodes in an n-bi-rotator graph. Hence this approach is impractical. In this
paper, we give an algorithm of polynomial order of n instead of n!, estimate the
theoretical performance of the algorithm, and conduct the computer experiment
to evaluate its average performance.

The rest of this paper is structed as follows. Section 2 gives some definitions
and properties. Section 3 describes our algorithm in detail and the proof of
its correctness and the estimation of its complexities are given in Section 4. In
Section 5, the computer experiment is conducted. We conclude and give future
works in Section 6.

2 Preliminaries

In this section, we give definitions of a bi-rotator graph and a class, then a simple
routing algorithm route between a pair of nodes.

Definition 1. For an arbitrary permutation u = (u1, u2, · · · , un) of n symbols
1, 2, · · · , n and an integer i (2 ≤ i ≤ n), we define the positive and negative
rotation operations R+

i (u) and R−
i (u) as follows:

R+
i (u) = (u2, u3, · · · , ui, u1, ui+1, ui+2, · · · , un),

R−
i (u) = (ui, u1, u2, · · · , ui−1, ui+1, ui+2, · · · , un).

Note that R+
2 and R−

2 represent a same rotation operation and there are
2n− 3 distinct rotation operations.

Definition 2. An n-bi-rotator graph, BRn, has n! nodes. Each node has a
unique address that is a permutation of n symbols 1, 2, · · · , n. The node whose
address is u = (u1, u2, · · · , un) is adjacent to the nodes whose addresses are the
elements of the set {R+

i (u), R−
i (u) | 2 ≤ i ≤ n}, and it is not adjacent to any

other nodes. Let the neighbor node set of u be denoted by N(u).

Table 1 shows comparisons an n-bi-rotator graph with other graphs. Tn, Qn,
B(n, k), and K(n, k) represent an n× n torus, an n-dimensional hypercube, an
(n, k)-de Bruijn graph, and an (n, k)-Kautz graph, respectively. Currently, the
average diameter of an n-bi-rotator graph is unknown. As for the integration
ratio defined by Number of Nodes/(Degree × Diameter), an n-bi-rotator graph
is inferior to an (n, k)-de Bruijn graph and an (n, k)-Kautz graph. However, an
bi-rotator graph has recursive structure described below and it has a merit that
it can easily implement algorithms such as divide-and-conquer in parallel.

Figure 1 shows examples of 2- to 4- bi-rotator graphs. Note that an address
(u1, u2, · · · , un) is denoted by u1u2 · · ·un in the figure to save space.

558 K. Kaneko

Table 1. Comparison of a bi-rotator graph with other graphs

Number of Nodes Degree Diameter Integration
BRn n! 2n − 3 n − 1 n!/(n − 1)/(2n − 3)
Tn n2 4 n n/4
Qn 2n n n 2n/n2

B(n, k) nk n k nk−1/k

K(n, k) nk + nk−1 n k (nk−1 + nk−2)/k

1234

2134

23143124

1324 3214

2341

3241

3421
4231

24314321

4123

1423

1243
2413

4213 2143

3412

4312

4132 1342

31421432

#B

#Β

#A

#A

#C

#C
#D

#D

#E

#E

#F

#F

12

21

123

213

231312

132
321

BR2

BR3 BR4

Fig. 1. Examples of 2- to 4- bi-rotator graphs

Definition 3. In an n-bi-rotator graph, a sub graph induced by the nodes that
have a common symbol k at the right-most positions in their addresses comprises
an n − 1-bi-rotator graph. The sub graph is denoted by BRn−1k by using the
common symbol k.

Definition 4. For a node u in an n-bi-rotator graph BRn, the class of u be the
set of nodes that are obtained by applying R+

n (·) to u repeatedly. In the rest of
this paper, let C(u) denote the class of u.

For classes in an n-bi-rotator graph BRn, following properties hold.

1. Each node belongs to exactly one class.
2. Each class consists of n nodes that comprise a ring structure.
3. In each sub bi-rotator graph, exactly one node belongs to each class.
4. Each node has two neighbor nodes that belong to the same class as that

node itself. The remaining 2n− 5 neighbor nodes belong to different classes
each other.

For instance, a BR4 has 6 classes each of which consists of 4 nodes: C1 =
{(1, 2, 3, 4), (2, 3, 4, 1), (3, 4, 1, 2), (4, 1, 2, 3)}, C2 = {(1, 3, 2, 4), (3, 2, 4, 1), (2, 4, 1,
3), (4, 1, 3, 2)}, C3 = {(2,1,3,4), (1,3,4,2), (3,4,2,1), (4,2,1,3)}, C4 = {(2,3,1,4),
(3,1,4,2), (1,4,2,3), (4,2,3,1)}, C5 = {(3,1,2,4), (1,2,4,3), (2,4,3,1), (4,3,1,2)}, and

Node-to-Set Disjoint Paths Problem in Bi-rotator Graphs 559

C6 = {(3,2,1,4), (2,1,4,3), (1,4,3,2), (4,3,2,1)}. Moreover, if we traverse each class
from the beginning, we can find that they comprise a ring structure.

Definition 5. In a bi-rotator graph, a class path is a sub path that is a part of
a ring structure formed by a class.

Following lemma holds for classes.

Lemma 1. If n ≥ 4, for two different nodes u and v that belong to a class in
BRn, there is a node in neighbor nodes of u that belongs to the different class
from those which the neighbor nodes of v belong to.

Proof. Let u = (u1, u2, · · · , un). Then from v ∈ C(u) we can denote v =
(uk, uk+1, · · · , un, u1, · · · , uk−1) for some k. First we assume that k �= n − 1.
In this case, take w = (un−1, u1, u2, · · · , un−2, un). Then w is a neighbor node
of u and from the fact that n ≥ 4 it is not possible to insert un−1 between un

and u1 with a single rotation operation for v. Hence, there is no neighbor node
of v that belongs to the same class as w. Next we assume that k = n − 1. In
this case take w = (u2, u3, · · · , un−1, u1, un). Then w is a neighbor node of u,
and from the fact that n ≥ 4 it is impossible to insert u1 between un−1 and un

with a single rotation operation for v. Hence, there is no neighbor node of v that
belongs to the same class as w.

Because the shortest-path routing algorithm for an n-bi-rotator graph in
polynomial-order time of n is still unknown, we use a simple unicast routing
algorithm shown in [12] that is called route in this paper. The algorithm gener-
ates a path of which length is O(n) in O(n2) time complexity. It is shown in [12]
that two paths route(s, t) and route(t, s) are internally disjoint between s
and t.

Moreover, in our algorithm, for four nodes s, t, u, and v in BRn it is necessary
to construct a path from s to t without including nodes u and v. If n = 3, then
there are three internally disjoint paths between s and t if they are not adjacent,
and the problem is trivial. Therefore, we give an extended routing algorithm in
case of n ≥ 4:

Case 1. If ∃h s. t. s, t, u, v ∈ BRn−1h, then apply the algorithm recursively
inside BRn−1h and terminate.
Case 2. If ∃h s. t. s, t ∈ BRn−1h, v �∈ BRn−1h, then construct two internally
disjoint paths between s and t inside BRn−1h and select one of them that does
not include u and terminate.
Case 3. If ∃h, l s. t. h �= l, s, u, v ∈ BRn−1h, t ∈ BRn−1l, then select a class
path from s to BRn−1l∩C(s) and select a path from BRn−1l∩C(s) to t inside
BRn−1l and terminate.
Case 4. If ∃h, l s. t. h �= l, s ∈ BRn−1h, t ∈ BRn−1lCu �∈ BRn−1h, v �∈ BRn−1l,
then select x so that x ∈ {s} ∪ N(s) s.t. x �∈ C(u) ∪ C(v) holds. If x �= s,
then select edge (s,x). Construct a class path from x to BRn−1l ∩ C(x). In
addition, construct two internally disjoint paths between BRn−1 ∩C(x) and t,
and select one of them that does not include u and terminate.

560 K. Kaneko

s

d2n-4 d2n-3

BR nn-1

Fig. 2. Recursive application of the
algorithm

s

d2n−4 d2n−3

BR nn−1BR 1n−1 BR (n−1)n−1

R (s)+
n R (s)−

n

Fig. 3. Construction of two disjoint paths
by class paths

3 Algorithm

3.1 Classification

In a BR3, the problem is trivial. Hence, we assume that n ≥ 4. Taking advantage
of the symmetric property of a BRn, we fix the source node to s = (1, 2, · · · , n).
Let the destination node set be D = {d1,d2, · · · ,d2n−3} and the set of classes
to which destination nodes belong be C = {C1, C2, · · · , Ck}. Now let us consider
the following cases:

Case 1. All destination nodes belong to the same sub bi-rotator graph as the
source node (D ⊂ BRn−1n)D
Case 2. Exactly one destination node is not included in the sub bi-rotator
graph to which the source node belongs (|D − BRn−1n| = 1)D
Case 3. More than one destination nodes are not included in the sub bi-rotator
graph to which the source node belongs (|D − BRn−1n| ≥ 2)D

3.2 Case 1

This section gives Procedure 1 which constructs 2n − 3 paths from the source
node s to the destination node set D = {d1,d2, · · · ,d2n−3} that are node-disjoint
except for the source node in case that D ⊂ BRn−1n.

Step 1. Apply the algorithm recursively inside BRn−1n and obtain 2n − 5
paths from s to D− {d2n−4,d2n−3} that are node-disjoint except for s. If one
of these paths, say the path from s to dm, contains d2n−4, then discard the sub
path from d2n−4 to dm and exchange the indices of d2n−4 and dm. For d2n−3,
perform similar operation. After this step, we can obtain paths as shown in
Figure 2.
Step 2. Select the edges (s, R+

n (s)) and (s, R−
n (s)). Then construct class

paths from the destination nodes d2n−4 and d2n−3 to C(d2n−4)∩BRn−11 and
C(d2n−3)∩BRn−1(n−1), respectively, without including the nodes C(d2n−4)∩
BRn−1(n − 1) and C(d2n−3) ∩ BRn−11. Apply route inside the sub graphs
BRn−11 and BRn−1(n− 1), and construct paths from C(d2n−4)∩BRn−11 and
C(d2n−3)∩BRn−1(n− 1) to R+

n (s) and R−
n (s), respectively. See Figure 3. The

horizontal dashed lines represent class ring structures. We assume that the both
edges of each dashed line is connected.

Node-to-Set Disjoint Paths Problem in Bi-rotator Graphs 561

s

d2n−4 d2n−3

BR nn−1 BR hn−1

Fig. 4. Recursive application of our
algorithm

s

d2n−4 d2n−3

BR nn−1BR ln−1 BR hn−1

u

Fig. 5. Construction of two class paths

3.3 Case 2

This section gives Procedure 2 which constructs 2n − 3 paths from the source
node s to the destination node set D = {d1,d2, · · · ,d2n−3} that are node-disjoint
except for the source node in case that |D − BRn−1n| = 1.
Step 1. We can assume that d2n−3 is the destination node that is outside of
BRn−1 without loss of generality. Inside BRn−1n, apply our algorithm recur-
sively to obtain 2n−5 paths from s to D−{d2n−4,d2n−3} that are node-disjoint
except for s. If one of these paths, say the path from s to dm, contains d2n−4,
then discard the sub path from d2n−4 to dm and exchange the indices of d2n−4
and dm. After this step, we can obtain paths as shown in Figure 4.
Step 2. For the destination node d2n−4, apply either R+

n (·) or R−
n (·) to se-

lect the edge (d2n−3,u) such that u belongs to the sub graph BRn−1l that is
different from the sub graph BRn−1h to which d2n−3 belongs. Construct two
class paths from s to C(s)∩BRn−1h and C(s)∩BRn−1l that are node-disjoint
except for s. See Figure 5.
Step 3. Inside sub graphs BRn−1h and BRn−1l, apply route to construct
from C(s) ∩ BRn−1h and C(s) ∩ BRn−1l to d2n−3 and u, respectively, and
terminate. See Figure 6.

3.4 Case 3

This section gives Procedure 3 which constructs 2n − 3 paths from the source
node s to the destination node set D = {d1,d2, · · · ,d2n−3} that are node-disjoint
except for the source node in case that |D − BRn−1n| ≥ 2.
Step 1. Let D1 be the set of the destination nodes that are first reachable
by repeating the rotation operation R+

n (·) zero or more times from each node
Ci ∩ BRn−1n. Additionally, if C(s) ∈ C, then let D1 include the destination
node that are first reached by repeating R−

n (·) one or more times from s.
Without loss of generality, we can assume that D1 = {d1,d2, · · · ,dp}Cand
D −D1 = {dp+1,dp+2, · · · ,d2n−3}. See Figure 7.
Step 2. For each destination node di in D − D1, find its neighbor node ci

that satisfies following conditions in a greedy manner:

– C(ci) �∈ C,
– C(ci) �= C(cj), if i �= j.

From the fact that |D − D1| ≤ 2n − 4 and Property 4 of classes, these
neighbor nodes are selectable except for the final destination node, say d2n−3.

562 K. Kaneko

s

d2n−4 d2n−3

BR nn−1BR ln−1 BR hn−1

u

Fig. 6. Construction of paths in sub
bi-rotator graphs

dp+1

d2n−3

BR nn−1

d1

dp

D−D1D1

Fig. 7. Classification of destination nodes

dp+1

d2n−3

BR nn−1

u

d1

dp c2n−3

cp+1

D−D1D1

Fig. 8. Selection of neighbor nodes of
D − D1

dp+1

d2n−3

BR nn−1

u
dp c2n−3

cp+1

D−D1D1

d1

Fig. 9. Selection of class paths and edges

If all the neighbor nodes of d2n−3 belong to the classes of other destination
nodes or the nodes ci, then perform the following process. If there exists a
node in {R+

n (d2n−3), R−
n (d2n−3)} − BRn−1n that is not a destination node,

select the node u and the edge (d2n−3,u). Among the neighbor nodes of u,
select one node c2n−3 that does not belong to the class of any other destination
node nor any other ci. Lemma 1 ensures the existence of this neighbor node.
Figure 8 represents this case. Otherwise, if either R+

n (d2n−3) or R−
n (d2n−3) is

a destination node that does not belong to D1, then for that destination node
dj release the node cj that are selected previously, and among the neighbor
nodes of dj , newly select the node cj that does not belong to the class of
any other destination node nor any other ci. Lemma 1 ensures the existence of
this neighbor node. By this operation, among the neighbor nodes of d2n−3, it is
possible to select the neighbor node c2n−3 that belongs to the same class as the
neighbor node of dj that is previously released. If neither of above conditions
is satisfied, it induces that R+

n (d2n−3) ∈ BRn−1n and dj = R−
n (d2n−3) ∈ D1.

Then remove dj from D1 and add d2n−3 to D1. Moreover, for dj select its
neighbor node cj that does not belong to the class of any other destination
nodes nor any other ci. Lemma 1 ensures the existence of this neighbor node.
Step 3. For each destination node di in D1, construct a class path from
C(di) ∩ BRn−1n to it so that the path does not include any other destination
nodes. Next, for each ci, construct a class path from the node in C(ci) ∩
BRn−1n to ci. In these path constructions, if di is reachable without including
other destination by repetition of both of R+

n (·) and R−
n (·), the shorter path is

selected. Select an edge between each ci and corresponding di. See Figure 9.
Step 4. If any path from s is not constructed yet, proceed to Step 5. Otherwise,
if two paths from s are already constructed, proceed to Step 7. In the rest
of this step, we assume that there is exactly one path from s and the path
includes R−

n (·) without loss of generality. Select the edge between s and R+
n (s).

Node-to-Set Disjoint Paths Problem in Bi-rotator Graphs 563

s

dp+1

d2n−3

BR nn−1BR 1n−1

u

d1

dp c2n−3

cp+1

D−D1D1

v

Fig. 10. Construction of a path

s

dp+1

d2n−3

BR nn−1BR ln−1 BR hn−1

u
dp c2n−3

cp+1

D−D1D1

v
w

d1

Fig. 11. Construction of two paths

If there is a node in BRn−11 that is included in a path already constructed,
then construct a path from R+

n (s) to one of such nodes v without including
other such nodes. Discard the sub path of the already constructed path from
the node inside BRn−1n to v. See Figure 10. If there is no node in BRn−11
that is included in the path already constructed, for the nodes on the already
constructed paths of which length is one or more, consider the set of nodes in
BRn−11 that belong to the same class as them, but does not belong to the same
class as the nodes on the path that include s as its terminal. If this set is not
empty, construct a path from R+

n (s) to one node in the set v so that the path
does not include any other such nodes. Let w be the first node on the already
constructed path that is reachable by repeating either R+

n (·) or R−
n (·) from v

without passing the sub graph BRn−1n. For the path that was constructed in
Step 3 and includes w, discard its sub path from the terminal node in BRn−1n
to w. Construct a path from v to w by repeating either R+

n (·) or R−
n (·) without

passing the sub graph BRn−1n and without including other ci’s and di’s. If
none of above two conditions is satisfied, then |D − BRn−1n| = 2 holds and
these two destination nodes belong to a same class. First, discard the paths to
these two destination nodes. Next, construct a class path from s to the nodes in
the sub graphs to which these two destination nodes belong by repeating either
R+

n (·) or R−
n (·). Moreover, construct paths to the destination nodes inside the

sub graphs. Proceed to Step 7.

Step 5. Let v and w be two nodes that are on two different paths P1 and
P2 already constructed, respectively, and that are in different two sub graphs
BRn−1h and BRn−1l that are different from BRn−1n, respectively. If these
two nodes cannot be obtained, all the nodes on the already constructed paths
belong to a single sub graph except for BRn−1n. In this case, we can obtain
the above mentioned two nodes by substituting one of the paths constructed
in Step 3 of which length is one or more with the longer class path.

Step 6. Obtain class paths from s to the nodes t1 and t2 in BRn−1h and
BRn−1l, respectively, by repeating R+

n (·) and R−
n (·). Additionally, construct

paths from t1 and t2 to v and w avoiding at most two nodes on P2 and P1 by
applying the extended routing algorithm in BRn−1h and BRn−1l, respectively.
If these paths include some nodes on the already constructed paths other than v
and w, let the nearest nodes from t1 and t2 be v and w, respectively. However,
if two different nodes on a single path are obtained, keep the nearer node to
the destination and ignore the another one. Discard sub paths from sub graph
BRn−1n to v and w. See Figure 11.

564 K. Kaneko

Step 7. Apply our algorithm recursively inside BRn−1n, and obtain 2n − 5
paths from s to the terminal nodes of paths other than s that are node-disjoint
other than s, and terminate. See Figure 12.

s

dp+1

d2n−3

BR nn−1BR ln−1 BR hn−1

u
dp c2n−3

cp+1

D−D1D1

v
w

d1

Fig. 12. Recursive application of our algorithm

4 Proof of Correctness and Estimation of Complexities

In this section, we give proof of correctness of our algorithm and the time com-
plexity of our algorithm and the sum of path lengths obtained by our algorithm.
We use the term ‘disjoint’ to express ‘node-disjoint’ in this section.

Theorem 1. The paths generated by our algorithm are disjoint except for the
source node s. Let T (n) and L(n) be the time complexity of our algorithm and
the sum of path lengths generated by our algorithm for an n-bi-rotator graph.
Then T (n) = O(n5) and L(n) = O(n3).

(Proof) Based on induction on n, this theorem can be proved from the following
lemmas.

Lemma 2. The paths generated by Procedure 1 are disjoint except for the
source node. The time complexity of Procedure 1 is T (n−1)+L(n−1)×O(n)+
O(n2), and the sum of path lengths is L(n− 1) + O(n).
(Proof) The paths obtained in Step 1 are disjoint except for s from the hypothesis
of induction. One of the two paths generated in Step 2 consists of the nodes in
BRn−11 and the sub path of the class of d2n−4 that does not pass BRn−1(n−1).
Another path consists of the nodes in BRn−1(n − 1) and the sub path of the
class of d2n−3 that does not pass BRn−11. Hence these two paths are disjoint
except for s each other. Additionally, these two paths contains the nodes outside
of BRn−1n except for these terminal nodes. Therefore, these two paths are also
disjoint with other paths generated in Step 1.

The time complexity of Step 1 is T (n − 1) + L(n − 1) × O(n). The sum of
path lengths generated in Step 1 is L(n − 1). The time complexity of Step 2 is
O(n2) and the sum of lengths of two paths obtained in Step 2 is O(n). Hence,
the total time complexity of Procedure 1 is T (n− 1) + L(n− 1)×O(n) + O(n2)
and ths sum of path length obtained by Procedure 1 is L(n− 1) + O(n).

Node-to-Set Disjoint Paths Problem in Bi-rotator Graphs 565

Lemma 3. The paths generated by Procedure 2 are disjoint except for the
source node. The time complexity of Procedure 2 is T (n−1)+L(n−1)×O(n)+
O(n2), and the sum of path lengths is L(n− 1) + O(n).

(Proof) The paths obtained in Step 1 are disjoint except for s from the hypothesis
of induction. The two paths generated in Steps 2 and 3 consist of nodes on
different class paths that share only s, sub paths in different sub graphs, and
the destination node d2n−3. Hence they are disjoint each other. These paths do
not have the nodes in BR2n−3n except for s and d2n−3. Hence they are also
disjoint from the paths generated in Step 1.

The time complexity of Step 1 is T (n − 1) + L(n − 1) × O(n). The sum of
path lengths generated in Step 1 is L(n − 1). The time complexities of Steps 2
and 3 are both O(n2) and the sums of lengths of two paths obtained in Steps
2 and 3 are both O(n). Hence, the total time complexity of Procedure 2 is
T (n − 1) + L(n − 1) × O(n) + O(n2) and the sum of path length obtained by
Procedure 2 is L(n− 1) + O(n).

Lemma 4. The paths generated by Procedure 3 are disjoint except for the
source node. The time complexity of Procedure 3 is T (n− 1) + O(n4), and the
sum of path lengths is L(n− 1) + O(n2).

(Proof) The paths constructed in Steps 2 and 3 consist of different class paths,
different class paths followed by edges from their terminal nodes to different
destinations, or a class path followed by two edges (c,u) and (u,d2n−3). The
node u, if any, is selected so as not to be shared by other paths. Hence, any pair
of these paths are disjoint each other. In Step 4, if one path is generated, then
it consists of a class path followed by a path in BRn−11. The path may be still
followed by another class path, if necessary. In either case, the path is connected
to the previously constructed path at the node that is first encountered. Hence,
it is disjoint from other paths except for one that shares s. If two paths are gen-
erated in Step 4, we can prove that they are disjoint each other and also disjoint
from other paths except for s similarly to Step 6. The two paths generated in
Step 6 are disjoint except for s because they only share s. The nodes v and w
are the first encountered nodes that are on other paths in different sub graphs.
Hence, they are disjoint from other paths that does not include v nor w. The
paths generated in Step 7 are disjoint from induction hypothesis. These paths
are inside BRn−1n and they are connected to the previously constructed paths
inside BRn−1n. Hence the connected paths are also disjoint.

The time complexity of Step 1 is O(n3) that is necessary to obtain C. In
Step 2, finding ci’s requires O(n4). The time complexity of Step 3 is O(n3).
The sum of paths obtained in Step 3 is O(n2). In Step 4, finding v and w is
governing and it requires O(n3) time complexity. The sum of a path or tow paths
generated in Step 4 is O(n). The time complexity of Step 5 is O(n2). In Step 6,
the time complexity is O(n3) and the sum of path lengths is O(n). Finally, the
time complexity in Step 7 is T (n− 1) and the sum of path lengths is L(n− 1).

566 K. Kaneko

Fig. 13. The average execution time of our
algorithm

Fig. 14. The average sum of path lengths
obtained by our algorithm

5 Computer Experiment

To evaluate average performance of our algorithm, we conducted computer ex-
periment by repeating following steps at least 1, 000 times for random combina-
tions of destination nodes for each n between 3 and 50.

1. In an n-bi-rotator graph, fix the source node s to the identity permutation
(1, 2, · · · , n) taking advantage of its symmetric property.

2. Set 2n− 3 destination nodes other than s.
3. Invoke our algorithm and measure the execution time and the sum of path

lengths.

Our algorithm is implemented by the functional programming language Haskell
and the program is compiled by ghc (glasgow Haskell compiler) with -O and
-fglasgow-exts options. The operating system of the machine is FreeBSD 3.5.1.
The CPU of the machine is Celeron 400MHzCand it is equipped with a 128MB
memory unit.

Figures 13 and 14 show the results of the execution time and the sum of path
lengths, respectively. In each figure, the horizontal axis represents n for an n-bi-
rotator graph. The vertical axis of Figure 13 represents the average execution
time in second while that of Figure 14 represents the average sum of path lengths
obtained by our algorithm.

From these figures, we can conclude that our algorithm obtains 2n− 3 paths
from the source node to the destination nodes that are node-disjoint except for
the source node in the average execution time of O(n3.9) for an n-bi-rotator
graph, and the average sum of these path lengths is O(n3.0).

6 Conclusion

In this paper, we have proposed an algorithm for the node-to-set disjoint paths
problem in an n-bi-rotator graph. Its time complexity and the sum of path
lengths are O(n5) and O(n3), respectively. Computer experiment showed that

Node-to-Set Disjoint Paths Problem in Bi-rotator Graphs 567

our algorithm gives disjoint paths with those complexities. The computer exper-
iment showed that the average execution time of our algorithm is O(n3.9) and
the average sum of path lengths is O(n1.9). Future work includes improvement
of our algorithm to generate shorter paths in shorter time.

Acknowledgements

This study is partly supported by Grant-in-Aid for Scientific Research (C) of
Japan Society for the Promotion of Science under the Grant No. 16500015.

References

1. Akers, S. B., Krishnamurthy, B.: A group theoretic model for symmetric intercon-
nection networks. IEEE Trans. Comp. 38(1989) 555–566

2. Akl, S. G., Qiu, K.: Parallel minimum spanning forest algorithms on the star
and pancake interconnection networks. Proc. Joint Conference Vector and Parallel
Processing (1992) 565–570

3. Akl, S. G., Qiu, K: A novel routing scheme on the star and pancake interconnection
networks and its applications. Parallel Computing 19(1993) 95–101

4. Akl, S. G., Qiu, K., Stojmenović, I.: Fundamental algorithms for the star and
pancake interconnection networks with applications to computational geometry.
Networks 23(1993) 215–226

5. Berthomé, P., Ferreira, A., Perennes, S.: Optimal information dissemination in
star and pancake networks. IEEE Trans. Parallel and Distributed Systems 7(1996)
1292–1300

6. Corbett, P. F.: Rotator graphs: an efficient topology for point-to-point multipro-
cessor networks. IEEE Trans. Parallel and Distributed Systems 3(1992) 622–626

7. Garfgano, L., Vaccaro, U., Vozella, A.: Fault tolerant routing in the star and pan-
cake interconnection networks. Information Processing Letters 45(1993) 315–320

8. Gu, Q.-P., Peng, S.: Node-to-set disjoint paths problem in star graphs. Information
Processing Letters 62(1997) 201–207

9. Hamada, Y., Bao, F., Mei, A., Igarashi, Y.: Nonadaptive fault-tolerant file trans-
mission in rotator graphs. IEICE Trans. Fundamentals E79-A(1996) 477–482

10. Kaneko, K., Suzuki, Y.: An algorithm for node-to-set disjoint paths problem in
rotator graphs. IEICE Trans. Inf. & Syst. E84-D(2001) 1155–1163

11. Kaneko, K., Suzuki, Y.: Node-to-set disjoint paths problem in pancake graphs.
IEICE Trans. Inf. & Syst. E86-D(2001) 1628–1633

12. Lin, H.-R., Hsu, C.-C.: Topological properties of bi-rotator graphs. IEICE Trans.
Inf. & Syst. E86-D(2003) 2172–2178

13. Qiu, K., Meijer, H., Akl, S. G.: Parallel routing and sorting on the pancake network.
Proc. Int’l Conf. Computing and Information (1991) 360–371

14. Rabin, M. O.: Efficient dispersal of information for security, load balancing, and
fault tolerance. JACM 36(1989) 335–348

15. Suzuki, Y., Kaneko, K.: An algorithm for node-disjoint paths in pancake graphs.
IEICE Trans. Inf. & Syst. E86-D(2003) 610–615

 J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 568–577, 2004.
© Springer-Verlag Berlin Heidelberg 2004

QoSRHMM: A QoS-Aware Ring-Based Hierarchical
Multi-path Multicast Routing Protocol

Guojun Wang1,2, Jun Luo2, Jiannong Cao1, and Keith C. C. Chan1

1 Department of Computing, Hong Kong Polytechnic University,
Hung Hom, Kowloon, Hong Kong

2 School of Information Science and Engineering, Central South University,
Changsha, Hunan Province, P. R. China 410083

Abstract. We propose a QoS-aware multicast routing protocol called
QoSRHMM based on a ring-based hierarchical network structure, which
establishes a Ring-Tree by the principle of “ring in the same tier of the
hierarchy and tree in different tiers”. It forms one shortest-delay path and
multiple paths with delay-constrained minimal-cost between the sender and
each receiver. When establishing a connection on demand, a node joins a
logical ring while satisfying some QoS constraints. Mobile hosts are served in
time with multicast services even in case of handoff.

1 Introduction

QoS-aware multicast shares the same goals as QoS-aware unicast: to find routing path
that satisfies QoS constraints, and to utilize network resources effectively. In
multimedia multicast applications, multimedia data are transmitted via a network
using multicast path with delay-constrained minimal-cost. After receiving a
connection request, the node establishes a multicast path as quickly as possible, and it
is delay-constrained for transmitting data from a source to all destinations. The whole
cost of the transmissions should be minimal. It is well known that it is an NP-
complete problem to find a path satisfying the two constraint conditions.

Researchers have proposed many QoS-aware solutions such as Dijkstra, Prim,
Kruskal and Bellman-Ford algorithms [2-3]. Because of the frequent change of the
network topologies, these algorithms can’t be directly applied to wireless networks.
Wu and Hou proposed an adaptive framework to guarantee QoS in wireless IP
networks [4]. Talukdar extended RSVP to MRSVP in mobile Internet [5]. Acampora
and Naghshineh constructed a Virtual Connection Tree (VCT) for handoff processing
in wireless ATM networks [6]. Gao and Acampora established a VCT in a micro-
mobility domain to guarantee QoS [7]. We have also got some valuable information
from references [8-10].

We propose a QoS-aware multicast routing protocol in mobile Internet called
QoSRHMM (QoS-aware Ring-based Hierarchical Multi-path Multicast routing
protocol). QoSRHMM is a protocol based on a ring-based hierarchical network
structure. The main advantages of the proposed protocol are the following:

1. It inherits some advantages from the ring-based hierarchical network structure,
such as high stability and scalability.

A QoS-Aware Ring-Based Hierarchical Multi-path Multicast Routing Protocol 569

2. There are a shortest-delay path and multiple paths with delay-constrained minimal-
cost between the sender and each receiver.

3. In case of handoff, mobile hosts may be served in time without reconstructing the
multicast tree.

4. It is a distributed protocol that all the paths are established by local information
only.

2 The Ring-Based Hierarchy

We proposed a ring-based hierarchical network structure in mobile Internet for group
membership in [1]. The basic idea is that all the members in a multicast group are
organized into four tiers: Border Router Tier (BRT), Access Gateway Tier (AGT),
Access Proxy Tier (APT), and Mobile Host Tier (MHT). The higher three tiers are
organized into logical rings. Each ring has a leader that is also responsible for
interacting with upper tiers. Access Proxies (APs) are the Network Entities (NEs) that
communicate directly with the Mobile Hosts (MHs). Access Gateways (AGs) are the
NEs that communicate either between different wireless networks or between one
wireless network and one wired network. Border Routers (BRs) are the NEs that
communicate among administrative domains.

The proposed protocol builds a Ring-Tree based on the ring-based hierarchy.
Network nodes are organized as rings according to some QoS requirements. The
structure becomes a multicast tree if we look each ring as one node.

3 The Basic Concepts of the Ring-Tree

In this section, we define some QoS parameters and concepts. In Fig. 1, we give an
example Ring-Tree to illustrate these concepts.

Logical Ring: There are some logical rings in which some nodes are in the same tier
of the Ring-Tree to function similarly. Every node in a logical ring records
information about its leader, rear, previous, and next neighbors. A logical ring can
overlap with each other, i.e., a member of a ring can also be a member of another
ring. A logical ring is associated with a Ring-Strong-Path and a Ring-Weak-Path. We
use ring as logical ring for short. In Fig. 1, there exist 12 rings called R1, R2, …,
R12, and R12 contains only one node.

Leader: There’s one leader in a ring to communicate with upper ring and maintain the
ring. If upper ring exists, it is the child of the rear of its direct upper ring. For
example, R1’s leader is BR1 and both R8 and R3’s leaders are AG1.

Rear: There’s only one rear in a ring. It is responsible for the construction of a ring.
When receiving a join request from a lower tier, the node sets itself the rear and sets
itself the parent node of the leader of its direct lower ring. At the same time, it issues a
connection request to establish a ring from itself to the leader. For example, BR2 is
R1’s rear, AG3 is R3’s rear, and AG2 is R8’s rear. R3 and R8 share the same leader
AG1 and a path from AG2 to AG1. While being a member node in R3, AG4 is also
the rear in R9.

G. Wang et al. 570

Ring-Strong-Path: It is a path from rear to leader in a ring. It is the shortest-delay
path and the main multicast data transmission path. A Ring-Strong-Path is shown in a
solid curve, and a shared Ring-Strong-Path is shown in bold (e.g., one path is shared
by R3 and R8, another by R6 and R10).

Fig. 1. The Ring-Tree

Ring-Weak-Path: It is a path with delay-constrained minimal-cost. It forms the
closed logical ring together with a Ring-Strong-Path. If required, it can also function
as an alternative multicast data transmission path. A Ring-Weak-Path is shown in a
dashed curve, and a shared Ring-Weak-Path is shown in bold, dashed curve (e.g., one
path is shared by R9 and R4, another by R7 and R11).

The network is represented by an undirected weighted graph, where V=(v1,v2,…,vn)
is the set of nodes that represent hosts or routers in the network, E=(e1,e2,…,el) is the
set of links between node-pairs. A link from node i to node j defines two positive real
weighted value (COSTi,,j, DELAYi,j). COSTi,j is the cost of data transmission from i to j
and it reflects the utilization of link resources. DELAYi,j is the delay of data
transmission from i to j and it includes queuing-delay and transmission-delay. We
assume that COSTi,,j=COSTj,i and DELAYi,,j=DELAYj,i.

A QoS-Aware Ring-Based Hierarchical Multi-path Multicast Routing Protocol 571

Consider a QoS-constrained multicast connection request R=(s, D, Δ), where s is
the source node, D is a set of destination nodes, Δ is the delay constraint. We
construct a Ring-Tree (RT) with s, D, and Δ. We define DISTi as the maximum
distance between the leader and rear of ring Ri. Therefore the whole cost of Ri is
COST(DISTi). If we treat each Ri as a node, then the multicast tree is

),(TT VET = ,{ }niRVEE iTT i
...2,1,, ==⊂ . The whole cost of RT is:

∈=
+=

),(1

)()()(
DsEe

n

i T

eCOSTDISTiCOSTRTCOST (1)

Where n is the number of RT’s rings, and),(DsET is the set of paths from

source to destinations in a tree T.
Suppose delay from source s to receiver v is DELAY(s, v), then RT’s delay is:

DddsDELAYRTDELAY ∈∀=)),,(max()((2)

We consider the delay constraint condition:

Δ≤)(RTDELAY (3)

In this paper, we design a distributed routing algorithm to construct a multicast
Ring-Tree based on the ring-based hierarchy. It gets an optimal value of formula (1)
when satisfying formula (3).

4 The QoSRHMM Protocol

4.1 The Basic Idea of QoSRHMM

The QoSRHMM protocol is a hierarchical protocol. Multicast data coming from a
multicast source are forwarded by BRs along BR ring downward to its lower tiers
finally to MHs. Our goal is to establish a Ring-Tree from BRs to all the member
MHs. We assume all the nodes in the network have the knowledge of their neighbors
through which they can attach to the Ring-Tree.

QoSRHMM establishes a Ring-Tree by the principle of “ring in the same tier of the
hierarchy and tree in different tiers”. If we look each ring as a node, the Ring-Tree is a
tree with height of 4.

In a tier, there are some nodes that directly connect upper tier or lower tier: If one
of these nodes finds a node in its direct lower tier that need to join a multicast group,
it must be the rear of a ring. If one of these nodes finds a node in the same tier that
need to communicate with upper tier via itself, it must be the leader of a ring. We call
such nodes as border-nodes.

A rear first finds a leader in the same tier and establishes a path through which it
can reach the source. This path from a rear to a leader called a Ring-Strong-Path. A
Ring-Strong-Path has the shortest delay to the source. After that, the rear tries to find
another path with delay-constrained minimal-cost using the proposed K-BFS
algorithm, which is an extension to the Breadth-First-Search algorithm. To avoid
packets flooding, at most K packets are forwarded at each node to find the path. The

G. Wang et al. 572

path is called a Ring-Weak-Path. A Ring-Strong-Path and a Ring-Weak-Path form a
logical ring.

Consider that multiple rings may overlap with each other. When a node in an
existing Ring-Strong-Path needs to form a new ring, there must be a shared path from
itself to the leader because all the nodes in the Ring-Strong-Path have the shortest
delay destined to the source. Therefore, we only need to establish a new Ring-Weak-
Path that destined to the source with delay-constrained minimal-cost.

A node within an existing Ring-Weak-Path forms a new ring by re-establishing a
Ring-Strong-Path and a Ring-Weak-Path. To decrease the delay of establishment,
multicast data may transmit along the existing Ring-Weak-Path before new Ring-
Strong-Path has been established because the existing Ring-Weak-Path is with delay-
constrained minimal-cost.

We introduce three cases that build ring-strong and ring-weak paths in Fig.1:

1. Assume R6 does not exist. Consider AP7 needs to join a multicast group because
of receiving the request from an attached MH. It sets itself a rear and forms a ring
R6 with a Ring-Strong-Path and a Ring-Weak-Path in APT.

2. Assume R3 and R1 exist. Consider AP1 in R5 needs to attach to AG2. AG2 sets
itself the rear of a new ring R8. Since R8 shared a Ring-Strong-Path with R3, it
then constructs a new Ring-Weak-Path from itself to AG1 only.

3. Assume AG4 is in the Ring-Weak-Path of R3. Consider it needs to form a logical
ring with AG5 as leader. It constructs a new Ring-Strong-Path from itself to AG5.
After that, it tries to construct a Ring-Weak-Path to form a ring R9. It then shares a
Ring-Weak-Path from AG6 to AG5 with R4.

 When forming a Ring-Weak-Path, the proposed K-BFS algorithm may find
multiple paths from the rear to the leader. We obey the principle of “forming a larger
ring” by allowing the number of nodes to join a ring as large as possible. Therefore,
we argue that it is very probable for the neighbors of an AP node where the MH
attached to join a ring more easily. That is, when an MH hands-off to a new AP, it is
very probable for the MH to get multicast services in time. Assuming two paths Pi and
Pj, if Pi > Pj (i.e., the number of nodes in path Pi is more than that in Pj), we adopt Pi as
the current Ring-Weak-Path.

4.2 The Basic Data Structure and Basic Operations

CR_TAB, DR_TAB: They represent Cost-Router-Table and Delay-Router-Table,
respectively. The potential output links of minimum-cost/shortest-delay are recorded
in the tables. The first output link is the main link while others are candidates. These
tables may be formed based on Distance-Vector or Link-Status routing algorithms.

Join_request: It is sent by a child node to inform the parent node to let the node to
join the multicast group.

S_search, W_search: They are sent by a rear to initiate the Ring-Strong-Path or Ring-
Weak-Path and they will be forwarded in the same tier only. When forwarding, they
collect information about nodes along the path.

Strong_Path_OK, Weak_Path_OK: When the leader receives S_search/W_search, it
assumes that the Ring-Strong-Path/Ring-Weak-Path has been correctly established.

A QoS-Aware Ring-Based Hierarchical Multi-path Multicast Routing Protocol 573

Strong_Path_OK/Weak_Path_OK is sent back to the rear by the leader to confirm the
Ring-Strong-Path/the Ring-Weak-Path.

Status(id): A set of node’s current status such as its node id, ring_id, rear(id),
leader(id), strong-path-list(id), weak-path-list(id). It may also record child node or
parent node for a rear or leader. As mentioned before, a ring’s member node can also
be another ring’s member. We identify these attributes of one node in different rings
by ring_id.

Connection_OK: When a node gets to know that the path up to the sender has been
successfully established, it sends a Connection_OK downward to the receiver along
the Ring-Strong-Path to inform it to wait for data transmission.

In addition, some assisted functions such as search_path() and new() are used for
searching a path and for id assignment.

4.3 The Description of the QoSRHMM Protocol

QoSRHMM is receiver-oriented. Assuming a mobile host MHi needs to join a
multicast group, it sends a Join_request message to its attached APi:

1. After receiving a Join_request, if the node is the sender, a rear, or a leader, then go
to step (7); If the node is in a Ring-Strong-Path, then change itself to a new rear
and the Ring-Strong-Path to be a new Ring-Strong-Path and go to step (4);
Otherwise change itself to be a new rear and go to step (2).

2. The rear searches DR_TAB and finds a link with the shortest-delay and sends an
S_search through the link.

3. After receiving an S_search, if it is a border-node that an S_search message first
reaches, it then requests to join the upper tier by searching DR_TAB, changes itself
to be a leader, and sends back a Strong_Path_OK to the rear. If not a border-node,
it just forwards S_search.

4. After receiving a Strong_Path_OK, the rear sends a W_search to search a Ring-
Weak-Path to the leader by the K-BFS algorithm.

5. After receiving a W_search, the leader sends a Weak_Path_OK to the rear.
6. Go to step (1).
7. Send back a Connection_OK.
8. The receiver receives a Connection_OK and then waits for data transmission.

The K-BFS algorithm used for searching a leader is described as follows:

1. A rear sends a W_search along all its adjacent links.
2. For forwarding the W_search, each node only selects at most K links with delay-

constrained minimal-cost in order to reduce the flooding of messages. If more than
one W_search message has been received, only one W_search is forwarded.

3. After receiving a W_search, the leader establishes a Ring-Weak-Path. If receiving
more than one W_search message, the leader replaces the Ring-Weak-Path with an
optimal one by the principle of “forming a larger ring”.

The pseudo-code of QoSRHMM is as follows:

ParFor each node running QoSRHMM {

On Receiving Join_request:

 if (node.is_sender || node.leader!=NULL || node.rear!=NULL)

G. Wang et al. 574

 send(receiver, “Connection_OK”);

 elseif (node.in_ring_strong_path){

 ring_id = new(ring_id);

 node.rear(ring_id) = node.rear(pre_ring_id);

 node.leader(ring_id) = node.leader(pre_ring_id);

 node.strong_path_list(ring_id)=

 node.strong_path_list(pre_ring_id);

 ParFor (i =1; i <= K; i++){//search a ring_weak_path

 //by K-BFS

 next_hop = search_path(CR_TAB, DR_TAB, QoS, i);

 send(next_hop, “W_search”);}}

 else {//ready to form a new ring

 ring_id = new(ring_id); node.rear(ring_id) = node.id;

 next_hop = search_path(DR_TAB,shortest_delay);

 send(next_hop,“S_search”);}

 pre_hop = Join_request.source_id;

 node.child(ring_id) = pre_hop;

On Receiving S_search:

 ring_id = S_search.ring_id;

 next_hop = search_path(DR_TAB, shortest_delay),
“S_search”);

 if (next_hop is in an upper tier){//S_search reaches

 //the leader

 node.parent(ring_id) = next.hop;

 node.leader(ring_id) = node.id;

 node.rear(ring_id) = S_search.source_id;

 node.strong_path_list(ring_id)=S_search.path_list;

 send(next_hop, “Join_request”);

 send(node.rear(ring_id), “Strong_Path_OK”);}//send back

 //to confirm

 else send(next_hop,“S_search”);//forward the message

On Receiving Strong_Path_OK:

 ring_id = Strong_Path_OK.ring_id;

 if (node.rear(ring_id) != NULL){ //node is the rear

 node.strong_path_list(ring_id)=Strong_Path_OK.path_list;

A QoS-Aware Ring-Based Hierarchical Multi-path Multicast Routing Protocol 575

 for (i=1; i <= K; i++){//search a ring_weak_path

 //to ring leader by K-BFS

 next_hop=search_path(CR_TAB,DR_TAB,QoS,i);

 send(next_hop, “W_search”);}}

 else send(Strong_Path_OK.destination,“Strong_Path_OK”);

On Receiving W_search:

 ring_id = W_search.ring_id;

 if (W_search is received the first time){

 if (node. id == W_search.destination){//W_search reaches

 // the leader

 node.weak_path_list(ring_id)= W_search.path_list;

 send(node.rear(ring_id), “Weak_Path_OK”);}

 else{ //forward W_search by K-BFS

 for (i=1; i <= K; i++){

 next_hop=search_path(CR_TAB,DR_TAB,QoS,i);

 send(node.status(next_id).leader, “W_search”);}}

 elseif (node.id == W_search.destination) //multiple

 //W_search messages

 if(W_search.path_list > node.weak_path_list(ring_id))

 //replace the path

 node.status(id).weak_path_list=W_search.path_list;}

On Receiving Weak_Path_OK:

 ring_id = Weak_Path_OK.ring_id;

 if (node.rear(ring_id) != NULL){ //it is the rear

 node.weak_path_list(ring_id) = Weak_Path_OK.path_list; }

 else send(Weak_Path.destination, “Weak_Path_OK”);//forward

 //the message

On Receiving Connection_OK:

 send(receiver, “Connection_OK”);

}

4.4 The Algorithmic Analysis

Theorem 4.1: A sender and all the receivers in a group are included in the Ring-Tree
constructed by QoSRHMM protocol, and one shortest-delay path and multiple paths
with delay-constrained minimal-cost are established between the sender and each
receiver.

G. Wang et al. 576

Proof: All the multicast paths are established on demand. Obviously, the Ring-Tree
includes a sender and all the receivers in a group.

When a receiver joins a multicast group, an S_search is forwarded along the path
that is selected with the shortest delay. When a ring is being constructed, the border-
node that the S_search first reaches becomes the leader.

Ring-Weak-Path is established by forwarding W_search messages and K paths are
selected with minimal-cost based on the delay constraint. Assuming the ring id is i,
RSi is the Ring-Strong-Path and RWi is the Ring-Weak-Path,

then niRWDELAYRSDELAY ii ∈∀≤),()(. Then we got:

Δ≤≤
==

)()(
11

n

i
i

n

i
i RWDELAYRSDELAY (4)

which completes the proof.

Lemma 4.1: The time complexity of QoSRHMM for a member-join operation is that
of ring’s establishment plus that of message transmissions between different tiers.

Proof: The QoSRHMM is receiver-oriented. The relationship of different tiers is that
of parent node and child node. Because firstly a ring in the same tier is formed and
then the tree is constructed in different tiers, we conclude that the time complexity is
that of the establishment of logical rings plus that of message transmissions between
different tiers.

Theorem 4.2: The maximum running time of QoSRHMM for a member-join
operation is 4Δ.

Proof: Firstly there are three transmissions of the Join_request message in a
connection process. That is a Join_request transmission from MHs to APs, from APs
to Ags, and from AGs to BRs. The transmissions are all from a child node to a parent
node. Secondly S_search and W_search messages transmit in the same tier and the
forwarding between nodes is delay-constrained. Therefore, the running time of
S_search and W_search satisfies with Δ. Finally the Strong_Path_OK and
Connection_OK are transmitted along Ring-Strong-Path. All these messages satisfy
with Δ. Consider Weak_Path_OK is forwarded concurrently with Connection_OK, its
delay is less than that of Connection_OK.

3*DELAYi,j (Join_request)+3*DELAYring_rear,ring_leader(S_search) < Δ (5)

DELAYring_rear, ring_leader (W_search) < Δ (6)

DELAYring_leader, ring_rear(Strong_Path_OK) < Δ (7)

DELAYsender, receiver (Connection_OK) < Δ (8)

According to (5)+(6)+(7)+(8) < 4Δ, we conclude from Lemma 1 that the maximum
running time of QoSRHMM is 4Δ.

Theorem 4.3: The total communication complexity of QoSRHMM for a member-join
operation is O(n).

A QoS-Aware Ring-Based Hierarchical Multi-path Multicast Routing Protocol 577

Proof: In the process of constructing a Ring-Tree, the Join_request, S_search,
Strong_Path_OK, Weak_Path_OK, and Connection_OK messages are all less than
O(n). Since the W_search messages are transmitted in parallel, the complexity is
O(n). Therefore, the total communication complexity is O(n).

Acknowledgements

This work was supported by the Hong Kong Polytechnic University Central Research
Grant G-YY41, the University Grant Council of Hong Kong under the CERG Grant
PolyU 5170/03E, and the China Postdoctoral Science Foundation (No. 2003033472).

References

1. Wang G., Cao J., Chan K.C.C.: RGB: A Scalable and Reliable Group Membership
Protocol in Mobile Internet, Proceedings of the 33rd International Conference on Parallel
Processing (ICPP 2004), Montreal, Quebec, Canada, Aug. 2004, pp. 326-333.

2. Cormen T.H., Leiserson C.E., Rivest R.L., Stein C.: Introduction to Algorithms, second
edition, Boston: McGraw-Hill, 2001, pp. 580-607.

3. Lynch N.A.: Distributed Algorithms, San Francisco: Morgan Kaufmann Publishers, Inc,
1996, pp. 274-302.

4. Wu D., Hou Y.T., Zhang Y.-Q.: Scalable Video Transport over Wireless IP Networks,
Proceedings of the IEEE International Symposium on Personal, Indoor and Mobile Radio
Communication (PIMRC 2000), London, UK, 2000, pp. 18-21.

5. Talukdar A.K., Badrinath B.R., Acharya A.: MRSVP: A Resource Reservation Protocol
for an Integrated Services Network with Mobile Hosts, Wireless Networks, 2001, 7(1): 5-
19.

6. Acampora A., Naghshineh M.: An Architecture and Methodology for Mobile-Executed
Cell Hand-off in Wireless ATM Networks, IEEE Journal on Selected Areas in
Communications, 1994, 12(8): 1365-1375.

7. Gao Q., Acampora A.: Connection Tree based Micro-mobility Management for IP-centric
Mobile Networks, Proceedings of the IEEE International Conference on Communications
(ICC 2002), Denmark, 2002, pp. 3307-3312.

8. Du D.Z., Smith J.M., Rubinstein J.H.: Advances in Steiner Trees, Boston: Kluwer
Academic Publishers, 2000, pp. 163-174.

9. Lee H.Y., Youn C.H.: Scalable Multicast Routing Algorithm for Delay-Variation
Constrained Minimum-cost Tree, Proceedings of the IEEE International Conference on
Communications (ICC 2000), New Orleans, USA, 2000, pp. 1343-1347.

10. Baldi M., Ofek Y., Yenter B.: Adaptive Group Multicast with Time-driven Priority,
IEEE/ACM Transactions on Networking, 2000, 8(1): 31-43.

A Dynamic Task Scheduling Algorithm for
Grid Computing System

Yuanyuan Zhang1, Yasushi Inoguchi2, and Hong Shen1

1 Graduate School of Information Science,
2 Center for Information Science,

Japan Advanced Institute of Science and Technology,
1-1 Asahidai, Tatsunokuchi, Ishikawa, 923-1292, Japan

{yuanyuan, inoguchi, shen}@jaist.ac.jp

Abstract. In this paper, we propose a dynamic task scheduling algo-
rithm which assigns tasks with precedence constraints to processors in a
Grid computing system. The proposed scheduling algorithm bases on a
modified static scheduling algorithm and takes into account the hetero-
geneous and dynamic natures of resources in Grid.

1 Introduction

Grid computing[1], the internet-based infrastructure that aggregates geograph-
ically distributed and heterogeneous resources to solve large-scale problems, is
becoming increasingly popular. Heterogeneity, dynamicity, scalability and au-
tonomy are four key characteristics of Grid.

A critical issue for the performance of Grid is that of task scheduling. Task
scheduling problem is, in general, the problem of scheduling tasks to processors
so that all the tasks can finish their execution in the minimal time. Since this
problem is NP-complete in general, it is necessary to employ heuristics to arrive
at a near-optimal solution.

Many task scheduling heuristics have been proposed for heterogeneous system
[2, 3, 4], however, most of these algorithms can’t work for Grid directly because
resources in Grid are typically heterogeneous and the performance of the re-
sources dynamically fluctuates over time as the resources are not dedicated to
Grid.

In this paper, we propose a new scheduling algorithm which assigns
precedence-constrained tasks to the processors in a Grid computing system. Our
algorithm takes the dynamicity and heterogeneity of Grid into consideration so
that it can better deal with the dynamics of dynamically varying resource state
in Grid.

The rest of this paper is organized as follows: We formalize the problem
and describe the proposed algorithm in Section 2 and Section 3 concludes the
paper.

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 578–583, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

A Dynamic Task Scheduling Algorithm for Grid Computing System 579

2 The Proposed Algorithm

2.1 Problem Statement

An application to be executed on the Grid system consists of many precedence-
constrained tasks. The application is represented by a Directed Acyclic Graph
in which every node represents a task of the application, and each directed edge
represents a communication(comm. in short) link between two tasks. Edge ei,j

represents the dependence relationship between task Ti and task Tj that Ti must
finish before Tj can start.

For edge ei,j , we call Tj a successor of Ti, and Ti a predecessor of Tj . The size
of data communicated from Ti to Tj is datai,j . A task is called an entry task if it
has no predecessor, while a task is called an exit task if it has no successor. We
assume that there is only one entry task and one exit task in the application.

The communication cost between task Ti and Tj , denoted by Ci,j , is the
expected transfer time of the data for the communication given current network
conditions. For this purpose, Network Weather Service(NWS) can be used to
obtain an estimate of the current network latency and bandwidth. It is assumed
that the communication cost on a processor is neglectable.

Let τi denote the workload of Grid task Ti, and υm be the speed of processor
Pm, then τi/υm is the time to implement Ti on Pm when Pm is dedicated to
execute Ti. However, the actual speed of Pm delivered to Grid is less than υm

and varies over time since the resource owner also uses it and the local jobs
have higher priority over the Grid tasks. This may dramatically impact the
performance of Grid resources, and makes the problem more difficult.

The objective function is to schedule the tasks of the application to the
processors in Grid so that to minimize the total execution time.

2.2 The Proposed Task Scheduling Algorithm

Most static scheduling algorithms assume that task execution times and data
transfer times can be estimated accurately and are commonly used with dedi-
cated resources. However, the fact in Grid is that it is often difficult to obtain
such accurate estimation before execution. Therefore, dynamic scheduling algo-
rithms may have better performance on Grid because they are able to adapt to
environmental dynamicity. In this paper we propose a new dynamic algorithm
to deal with the dynamic and heterogeneous features of Grid.

First we must solve the nondedicated feature of Grid: during the implemen-
tation of a Grid task on a processor, the local jobs on the processor will arrive
and interrupt the implementation of the Grid task. We consider the execution
of the local jobs as non-preemptive, i.e., a local job must run until completion
once it starts. The execution of the local jobs follows the rule of first-come first-
serve. From the viewpoint of the Grid task, the state of the processor alternates
between available and unavailable: when the processor is executing its own jobs,
it’s unavailable for the Grid task, otherwise it’s available for the Grid task.

If we assume the arrival of the local jobs in processor Pm follows a Poisson
distribution with arrival rate λm, and their execution process follows an expo-

580 Y. Zhang, Y. Inoguchi, and H. Shen

nential distribution with service rate μm, then the local job process in Pm is an
M/M/1 queuing system.

The expected execution time ωe
i,m of task Ti on Pm can be expressed as:

ωe
i,m = Xm

1 + Y m
1 + Xm

2 + Y m
2 ... + Xm

Nm
+ Y m

Nm
, (1)

where Nm is the number of local jobs which arrive during the execution of
Ti, and Xm

j , Y m
j (j = 1, ..., Nm), are respectively the computing time of a section

of the Grid task and a local job. Y m
j (j = 1, 2, ..., Nm) are independent identical

distribution(i.i.d.) random variables. We have:

Xm
1 + Xm

2 + ... + Xm
Nm

= τi/υm. (2)

From the knowledge of queuing theory, we have:

E(Nm) = λmτi/υm, E(Y m
j) = 1/(μm − λm). (3)

Since Nm and Yj are independent(j = 1, ..., Nm), we can derive:

E(ωe
i,m) = E(E(ωe

i,m|Nm)) = τi

υm(1−ρm) . (4)

where ρm = λm/μm, is the utilization rate of Pm.
For a processor Pm with utilization rate ρm, we can use τi

υm(1−ρm) as the
expected execution time of Ti on Pm. However, ρm is a value that reflects the
dynamicity of the Grid during a long time. It can not reflect the dynamicity
during the execution of the application, therefore we introduce the concept of
processor credibility which reflects the history of prediction accuracy for a pro-
cessor during the execution of a Grid application. We denote the credibility of
Pm as δm, which has the original value of 1 when we schedule the application.
After a task Ti finishes execution on Pm, we can obtain its actual execution time
ωa

i,m and so that δm is modified as:

δm = (1− α)δm + α ∗ ωa
i,m/ωe

i,m, (5)

where α is a value between 0 and 1 and can be modified.
Therefore the expected execution time ωe

i,m of Ti on Pm is modified as:

ωe
i,m =

τiδm

υm(1− ρm)
. (6)

The average execution time of Ti, which is denoted by ωi, is defined as:

ωi =
q∑

m=1

ωe
i,m/q =

q∑
m=1

τiδm

υmq(1− ρm)
, (7)

where q is the number of processors in Grid.
The dynamic algorithm we propose bases on a static algorithm which is a

modified Heterogeneous Earliest Finish Time(HEFT) algorithm[3]. HEFT is a

A Dynamic Task Scheduling Algorithm for Grid Computing System 581

traditional task scheduling algorithm for precedence-constrained tasks in hetero-
geneous systems. The scheduling process of this algorithm includes two phases:
task selection and processor selection. In task selection phase, the tasks are
queued by non-increasing ranks. For task Ti, its rank ranku(Ti), is computed
as:

ranku(Ti) = ωi + max
Tj∈succ(Ti)

(Ci,j + ranku(Tj)). (8)

Here Ci,j = L + datai,j

B . (9)

In the above equation succ(Ti) is the set of the successors of Ti. L and B
are respectively the average communication startup time and average bandwidth
among all the processors. ranku of each task is computed by traversing all the
tasks upward, starting from the exit task whose ranku is defined as:

ranku(Texit) = ωexit. (10)

In processor selection phase, the first task in the list is selected and allocated
to the processor which gives it the minimal earliest finish time(EFT).

For task Ti, let EST(Ti,Pm) and EFT(Ti,Pm) denote its earliest start time
and earliest finish time on processor Pm. AFT(Ti) is its actual finish time.
avail[Pm] denotes the time when Pm is ready for executing new tasks. We also
denote the comm. finish time between Ti and its successor Tj as CFT(Ti,Tj).

In the HEFT algorithm, when computing EFT(Ti,Pm) of Ti on Pm, the al-
gorithm computes CFT(Tj ,Ti) between Ti and its predecessor Tj which has not
been scheduled to Pm, and determines EST(Ti,Pm) as the maximum value be-
tween CFT(Tj ,Ti) and avail[Pm]. If we have decided to schedule Ti on processor
Pm, and if avail[Pm] is less than CFT(Tj ,Ti), then Pm will remain idle when it
is waiting for the finish of communication between Tj and Ti. However, if we
adopt the idea of task duplication scheme in this algorithm, that is, when the
communication time is long compared with computation time, we duplicate Tj

which has been scheduled to other processors on Pm, thus the communication
time will be removed, so that the total execution time of the tasks will be prob-
ably shortened. We name this modified HEFT algorithm as Duplication-based
HEFT(DHEFT) algorithm.

The performance of DHEFT depends heavily on the granularity of commu-
nication between the tasks. For communication-intensive applications, it can
achieve much better performance than HEFT algorithm, otherwise its advantage
will be trivial. So we use DHEFT algorithm only for communication-intensive
Grid application, otherwise we use the original HEFT algorithm. In our future
work the threshold of comm.-comp. ratio for judging if an application should be
scheduled using DHEFT or not will be determined.

In our dynamic scheduling algorithm, at first we relate every task with a
level so that tasks with same level are independent. The level of a task is de-
fined as the length of the longest path from the entry task to the present task.
By the length of a path we mean the number of tasks on the path. The level of

582 Y. Zhang, Y. Inoguchi, and H. Shen

Tentry is 1. After we schedule Tentry to a processor, we begin its execution im-
mediately. Then when tasks with level i-1 start execution(i>1) we dynamically
schedule tasks with level i using DHEFT algorithm for communication-intensive
tasks or HEFT algorithm. When i>2, since tasks with level less than i-1 have
finished execution when we schedule tasks with level i , we use the estimation
error of the finished tasks to modify the credibility of every processor using
equation (6), so that to regulate the estimated execution time of the tasks in
level i .

The following pseudocode shows the implementation process of DHEFT al-
gorithm and the dynamic scheduling algorithm:

Duplication-based HEFT Algorithm Dynamic Task Scheduling
(DHEFT) Algorithm

Sort the tasks in list Q1 by decreasing ranku Compute the level of every task
While there are tasks remained in Q1 { EST(Tentry) = 0

Select the first task Ti from Q1 For every processor Pm

For processor Pk { t = avail[Pk] avail[Pm] = 0
If all the predecessors of Ti are on Pk or Q1 ← set of tasks whose level is 1

Ti is the entry task Compute ranku of every task in Q1

EFT(Ti, Pk) = t + ωe
i,k Schedule the tasks in Q1

Else Start the execution of tasks in Q1

EST(Ti, Pk) = t Q1 ← set of tasks with level 2
Sort predecessors of Ti which are not Compute ranku of tasks in Q1

on Pk in Q2 by decreasing ranku Schedule the tasks in Q1

Select the first task Tj from Q2 For i = 2; i < level(Texit); i++;
If EFT(Tj) + Cj,i ≤ t + ωe

j,k Wait until any task in level i begins
EST(Ti, Pk) = MAX(t, EFT(Tj) + Cj,i) execution
Else Refresh the credibility of every

t = t + ωe
j,k processor using actual execution

EST(Ti, Pk) =t times of tasks in level i-1
EFT(Ti, Pk) = EST(Ti, Pk) + ωe

i,k} Q1 ← set of tasks with level i+1
Allocate Ti to Pm which gives it the minimal Compute ranku of tasks in Q1

EFT(Ti, Pm) Schedule the tasks in Q1

avail[Pm] = EFT(Ti,Pm) }

3 Conclusion

In this paper, we propose a task scheduling algorithm for Grid computing system.
The proposed scheduling algorithm considers the dynamicity and heterogeneity
of Grid. It combines the list scheduling and task duplication scheme. It also uses
the execution results of the finished tasks to regulate the expected execution
times of the tasks to be scheduled, so that to obtain more accurate estimation
and arrive at better scheduling result.

A Dynamic Task Scheduling Algorithm for Grid Computing System 583

References

1. I. Foster and C. Kesselman, The Grid: Blueprint for a New Computing Infrastruc-
ture, Morgan Kaufmann Publishers, San Fransisco, CA, 1999.

2. C. Banino, O. Beaumont, A. Legrand, and Y. Robert, ”Scheduling strategies for
master-slave tasking on heterogeneous processor grids,” Applied Parallel Comput-
ing: Advanced Scientific Computing: 6th Int’l Conf., pp. 423-432, Jun. 2002.

3. H. Topcuoglu, S. Hariri, and M.-Y. Wu, ”Performance-Effective and Low-
Complexity Task Scheduling for Heterogeneous Computing,” IEEE Trans. Parallel
and Distributed Systems, vol. 13, no. 3, pp. 260-274, Mar. 2002.

4. J.-C. Liou and M.A. Palis, ”An Efficient Task Clustering Heuristic for Scheduling
DAGs on Multiprocessors,” Workshop on Resource Management, Symposium on
Parallel and Distributed Processing. 1996.

 J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 584–593, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Replica Selection on Co-allocation Data Grids

Ruay-Shiung Chang, Chih-Min Wang, and Po-Hung Chen

Department of Computer Science and Information Engineering,
National Dong Hwa University,
Shoufeng, Hualien 974, Taiwan

rschang@mail.ndhu.edu.tw

Abstract. Data Grid supports data-intensive applications in a large scale grid
environment. It makes use of storage systems as distributed data stores by
replicating contents. On the co-allocation architecture, the client can divide a
file into k blocks of equal size and download the blocks dynamically from
multiple servers by GridFTP in parallel. But the drawback is that faster servers
must wait for the slowest server to deliver the final block. Therefore, designing
efficient strategies for accessing a file from multiple copies is very import. In
this paper, we propose two replica retrieval approaches, abort-and-retransfer
and one by one co-allocation, to improve the performance of the data grids. Our
schemes decrease the completion time of data transfer and reduce the workload
of slower serves. Experiment results are also done to demonstrate its
performances.

1 Introduction

Grid computing can be seen as one of the most important next generation network
applications. In the future, people can exchange information and share knowledge
using Grid technologies. Grid computing concepts can be applied to various
application areas. Grid, via the broadband networks, efficiently integrates various
distributed computing devices, databases, software, instruments, and even
professional expertise. At the same time, Grid provides a platform that is secure,
stable and simple to operate by the use of middleware. In a Grid system, each device
shares their resources and coordinates the cooperation through the network.

In the future, there will be more and more data-intensive applications in some
specific realms. Examples of these applications include data generated by
supercomputers, experimental analyses, and simulations in scientific discoveries.
These applications all have the same characteristics of accessing and handling a large
data set. The ability of a single computer is difficult to meet all requirements of these
scientific applications. This is where Grid can be of help. Grids seek to make use of
geographically distributed computing resources around the world. For example, the
Large Hardron Collider (LHC) [3] at the European physics center CERN will
continuously generate several terabytes, even petabytes, of raw data per year for
approximately fifteen years. The data produced are of two types: experimental data
(information gathered by the experiment) and metadata (information about this

Replica Selection on Co-allocation Data Grids 585

experiment). Many experts in this project will access experimental physics data and
metadata at many sites around the world. These users will number in the hundreds or
thousands. Data Grids provide a basic architecture for such data-intensive applications
to work.

Replicating [12][13][16][17] popular content in many servers is a widely used
practice. In a DATAGRID environment [9][10][11], datasets are significantly large in
size. Recently, this practice is being put to use in large-scale, data-sharing scientific
communities where large datasets are replicated over several sites. Because these
replica locations have different architecture, system load and network connectivity,
clients downloading large datasets from anyone of the replica locations can leads to a
very different end-user experience. There is only one stream in a typical internet
download between a client and a server. This may suffer from some problem when we
download large datasets in a DATAGRID environment. The bandwidth achievable is
limited by several bottlenecks. For example, one is the congestion in the link
connecting the server and the client. The other is the bandwidth of the server’s
connection to the internet. One way to improve download speeds is to download data
from multiple locations in parallel. This is the replica selection problem that users or
brokers may want to be able to determine the site from which particular data sets can
be retrieved most efficiently, especially as data sets of interest tend to be large.

The co-allocator of data transfers handles the selection of downloading servers.
The client can access the data from multiple servers around the networks. And the
aggregate bandwidth of downloading is the summation of the individual transfer rates
of each flow. If some servers fail, the co-allocator adapts to the situation to keep
downloading the data from other servers. Therefore, it can improve the performances
compared to the single server case and ease the internet congestion problem [16].

In this paper, based on the basic architecture for co-allocating Grid data transfers,
we improve the performances for downloading data in parallel from multiple servers.
We propose two methods, the abort-and-retransfer approach and the one by one co-
allocation approach. Simulation Results demonstrate their superiority over previous
methods.

The rest of this paper is organized as follows. Section 2 is the related work about
replica selection. In Section 3, we introduce the co-allocation architecture. We
propose our approaches in Section 4. We analyze the performances in Section 5.
Section 6 provides the conclusions.

2 Related Works

There are many different sites in a Data Grids environment. These sites may have
various performance characteristics, such as different storage system architectures,
network connectivity, and system load. The datasets which we want to access are
probably located at some of these sites. The information infrastructure is handled by
MDS (Metacomputing Directory Service) within Globus [1]. We can query MDS
about the information of these replica locations. The storage broker architecture
[7][12] provides a replica selection mechanism to find a suitable replica for accessing

R.-S. Chang, C.-M. Wang, and P.-H. Chen 586

using a high-speed file transfer protocol, GridFTP. But this protocol just accesses a
file from the best matched server. It does not perform the operation in parallel.

In [14][15], an approach to predict future performances based on the observations
of past transfers is proposed. The goal is to obtain an accurate prediction of the time
required to transfer a file. The predictive framework combines three main parts. First,
it needs to record the information about every data transfer. It modified GridFTP by
adding mechanisms to log performance information for every file transfer. The
second step is making prediction of future behavior based on past information. The
third step is integrating this information with a resource provider and then allowing
this information to be discovered in the context of an information service.

In [16], the author employed the prediction techniques and developed several co-
allocation mechanisms to establish connections between servers and a client. The
most interesting one is called Dynamic Co-Allocation. The dataset that the client
wants is divided into “k” disjoint blocks of equal size. Each available server is
assigned to deliver one block in parallel. When a server finishes delivering a block,
another block is requested, and so on, until the entire file is downloaded. Faster
servers can deliver the data quickly, thus serving larger portions of the file requested
when compared to slower servers. One downside of this approach is that faster servers
must wait for the slowest server to deliver the final block. [16] also adds some
functionality to the load balancing scheme: (1) progressively increase the volume of
data requested from faster servers; and (2) reduce the volume of data requested from
slower servers. An alternative way is to stop the slowest flow and to retransfer the
data from the other servers. Our work is based on the co-allocation architecture and
employs the prediction technique to improve the Dynamic Co-Allocation. We propose
two techniques: (1) abort and re-transfer, (2) one by one co-allocation. These
techniques can increase the volume of data requested from faster servers and reduce
the volume of data fetched from slower servers.

3 Co-allocation Architecture

Based on the Globus resource management architecture [1][9], the co-allocation
architecture, is shown in Figure 1 [16]. It has three components [1][4][5][16]:

1. Application: Most application developers focus on the problem of achieving high
efficient and simultaneous computing. Data accesses from different sources and
resources sharing are also very important in Grid applications. When a user
executes an application to access the data, the job of the application is to present
the description of the data to broker.

2. Broker/co-allocator: The user needs a broker to identify the available and
appropriate resources in the Grid system for his tasks. Then, across the co-allocator
agent queries MDS about the information of these replica locations to download
the data in parallel using GridFTP, an extension of ftp standard. GridFTP has
features to fit the Data Grid architecture. It can also provide secure transfer through
GSI (Grid Secure Infrastructure) which is also one of the Globus Toolkit
components.

Replica Selection on Co-allocation Data Grids 587

3. Local storage systems: The storage systems provide basic mechanisms for
accessing and managing the data located such as high performance storage system
(HPSS) and distributed parallel storage system (DHSS).

Application

Broker

Information
Service

Co-allocator

GASS GASS GASS

DPSS HPSS UNIX FS

Data Access/Transport using GridFTP

Forecasts

Queries &
Info

ClassAd/RSL

Local
Storage
System

Application

Broker

Information
Service

Co-allocator

GASS GASS GASS

DPSS HPSS UNIX FS

Data Access/Transport using GridFTP

Forecasts

Queries &
Info

ClassAd/RSL

Local
Storage
System

Fig. 1. The Co-allocation Architecture for Grid Data Transfer

4 Replica Selection Mechanisms

In Co-allocation architecture [16], three techniques, brute-force co-allocation, history-
based co-allocation and dynamic co-allocation were proposed to allocate the data
blocks and to map the replica locations for downloading. The most efficient one is the
Dynamic Co-Allocation described previously. One drawback of this approach is that
faster servers must wait for the slowest server to deliver the final block. In this
following, we propose two techniques to improve it.

4.1 Abort and Retransfer

In consideration of the drawback that the faster servers must wait for the slowest
servers, we propose a scheme to allow a client to abort the slower server delivery and
retransfer data block from faster servers. First, the client can calculate two parameters,
Tfastest and Rslowest.

bandwidthserveravailablefastest

sizeblockdata
T fastest −−−

−−= (1)

bandwidthserverslowest

remainedblockdata
Rslowest −−

−−= (2)

R.-S. Chang, C.-M. Wang, and P.-H. Chen 588

Tfastest is the time needed for the fastest available sever to transmit a complete data
block. RSlowest is the remaining time needed before the slowest server completes a block
delivery. The scheme is shown in Figure 2. It adapts the dynamic co-allocation to
allocate the data blocks. When all data blocks are assigned, it executes our procedure
to check the situation waiting for slowest server. If RSlowest > Tfastest, the client aborts the
slowest server delivery, allocates the block to faster server and checks the waiting
situation recursively. If the constraint of waiting situation fails, it ends the procedure.

Rslowest > Tfastest

Abort the Sslowest

and
Allocate the Block to Sfastest

Yes

END

No

Waiting for the slowest
server

Rslowest > Tfastest

Abort the Sslowest

and
Allocate the Block to Sfastest

Yes

END

No

Waiting for the slowest
server

Fig. 2. Abort and Re-allocation

The approach to determining the bandwidth is to observe the historical
information about data transfer rate of GridFTP [13][14][15][16]. We can calculate
the average transfer bandwidths as a predictor of future transfer times. For example,
NWS (Network Weather Service) and Iperf are used to measure network performance
for wide area networks. We can use these techniques for predicting the bandwidth.

4.2 One by One Co-allocation

Even though the abort and retransfer approach improves the performance of data
transfer, it still can not prevent the allocation to the slowest server. Assume there are n
servers. For each server Si, 1 ≤ i ≤ n, we can obtain the transfer rate Bi of each server
to a client by the prediction technique [14][15]. Using this information, we can
calculate the time needed to transmit one data block.

i
i B

M
T = (3)

Where M is the data block size and Bi is the predicted transfer rate. If a file in
question is divided into k blocks of equal size, the progress of the one by one co-

allocation is illustrated in Figure 3. Let iii ATC ×= , where Ai is the number of

blocks assigned to Si. Ci is the completion time of transmitting Ai blocks from Si.

Replica Selection on Co-allocation Data Grids 589

Let)1(+×= iii ATE , where Ei is the estimated completion time assigned one more

block. R is the number of blocks remained.

Fig. 3. One by One Co-allocation

With one by one approach, the client divides the files into k blocks and the
initial value of R is equal to k. On the Co-allocation architecture, the client presents
the description of k blocks to the broker by running the application. The
broker identifies the file locations that can be fetched across the information services
and informs the co-allocator agent. Then, the agent runs the recursive program to
assign the data blocks to faster servers and downloads the data in parallel using
GridFTP.

We present an example for one by one co-allocation. Figure 4 shows the example.
In Figure 4, assume that there are 6 servers. The file is divided into 5 blocks. Ti is also
shown. In the first run, if we assign one block to S1, the increase in completion time
will be minimized. Therefore, the co-allocator assigns one block to it (A1 =1). In the
next run, a block is assigned to S3. The rest may be deduced by analogy. After the 5th
run, we have the final allocation: We can see that S1 gets 3 blocks, S2 gets 1 block and
S3 gets 1 block. Set Ci = {15, 12, 8, 0, 0, 0} is the final completion time for each server
and the maximum value 15 is the completion time of this downloading job. Relatively
our approach avoids fetching the data blocks from slower servers in looks. It not only
decreases the completion time of data transfers, but also reduces the workload of
slower serves.

Assign one block to Sj
Aj=Aj+1

Cj=Ej
R=R-1

Estimated Completion Time
if assigned one more block

Ei = Ti (Ai + 1)
1 ≤ i ≤ n

R 0

END

R=0

Find the Server Sj
whose Ej is minimum

Assign one block to Sj
Aj=Aj+1

Cj=Ej
R=R-1

Estimated Completion Time
if assigned one more block

Ei = Ti (Ai + 1)
1 ≤ i ≤ n

R 0

END

R=0

Find the Server Sj
whose Ej is minimum

R.-S. Chang, C.-M. Wang, and P.-H. Chen 590

000005Ci

4R

000001Ai

4030208125Ei

S6S5S4S3S2S1first
Run

000005Ci

4R

000001Ai

4030208125Ei

S6S5S4S3S2S1first
Run

000805Ci

3R

000101Ai

40302081210Ei

S6S5S4S3S2S12nd
run

000805Ci

3R

000101Ai

40302081210Ei

S6S5S4S3S2S12nd
run

0008010Ci

2R

000102Ai

403020161210Ei

S6S5S4S3S2S13rd
run

0008010Ci

2R

000102Ai

403020161210Ei

S6S5S4S3S2S13rd
run

00081210Ci

1R

000112Ai

403020161215Ei

S6S5S4S3S2S14th
run

00081210Ci

1R

000112Ai

403020161215Ei

S6S5S4S3S2S14th
run

00081215Ci

0 (END)R

000113Ai

403020162420Ei

S6S5S4S3S2S15th
run

00081215Ci

0 (END)R

000113Ai

403020162420Ei

S6S5S4S3S2S15th
run

000000Ai

5The number of
blocks

4030208125Ti

i = 6Si

000000Ai

5The number of
blocks

4030208125Ti

i = 6Si

Fig. 4. An Example of One by One Co-allocation

5 Result and Analysis

In this section, we analyze the performances of our approaches. The results are
compared with dynamic co-allocation. We evaluate three co-allocation schemes: (1)
dynamic co-allocation, (2) abort and retransfer and (3) one by one co-allocation. In

0
5

10
15
20

25
30
35
40
45

50M 100M 500M 1G

Data Size

One by One Co-Allocation

Abort-and-Retransfer

Dynamic Co-Allocation

C
om

pl
et

io
n

T
im

e Number of Blocks = 5

0
5

10
15
20

25
30
35
40
45

50M 100M 500M 1G

Data Size

One by One Co-Allocation

Abort-and-Retransfer

Dynamic Co-Allocation

C
om

pl
et

io
n

T
im

e Number of Blocks = 5

Fig. 5. Completion time of different Methods

Replica Selection on Co-allocation Data Grids 591

the Data Grid environment, we assume the client can download a file from 6 servers
across the broker. We calculate the ratio of the cost time of different schemes by
obtaining the prediction information.

In Figure 5, we analyze the effect of the data size. The required data is divided
into 5 blocks. We increase the data size from 50M to 1G. Obviously, Figure 5 shows
that one by one co-allocation reduces the time efficiently. And the results of the abort
and retransfer method are better than the dynamic co-allocation and worse than the
one by one co-allocation method.

0

0.5

1

1.5

2

2.5

3

5 10 15 20

The Number of Blocks

One by One Co-Allocation

Abort-and-Retransfer

Dynamic Co-Allocation

C
om

pl
et

io
n

T
im

e Data Size =1G

0

0.5

1

1.5

2

2.5

3

5 10 15 20

The Number of Blocks

One by One Co-Allocation

Abort-and-Retransfer

Dynamic Co-Allocation

C
om

pl
et

io
n

T
im

e Data Size =1G

Fig. 6. Completion time using different number of blocks

Fig. 7. Completion time using different number of fetched servers

In Figure 6, we discuss the influence of the amount of data blocks. We fix the data
size to 1G and adjust the number of blocks from 5 to 20. We observe that there are no

0.

1

1.

2

2.

2 4 6 8

0

0.5

1

1.5

2

2.5

2 4 6 8

The Number of Fetched Servers

One by One Co-Allocation

Abort-and-Retransfer

Dynamic Co-Allocation

C
om

pl
et

io
n

T
im

e

R.-S. Chang, C.-M. Wang, and P.-H. Chen 592

performance improvements when a file is divided into too many blocks. The
completion time of the one by one co-allocation and the abort-and-retransfer do not
improve when the amount of data blocks is larger than 10. And the completion of the
dynamic co-allocation does not decrease when the data is divided into 20 blocks. It
increases instead.

If there are a lot of servers providing to fetch a file, we can divide the file and
download quickly in parallel. But if these fetched servers include some slower
servers, they may influence the performances described in Figure 7. The dynamic co-
allocation downs the performances when the number of fetched servers from 4 to 8.
And the method which we proposed is not influenced and the performances keep after
the number of servers rising to 4.

6 Conclusions

Different replica locations can provide different transfer rates because of different
architectures, system load and network connectivity. The co-allocation architecture
provides a coordinated agent to assign the data block. On this architecture, dynamic
co-allocation scheme had good performances, but faster servers must wait the slowest
server to deliver the final block. Thus, we propose the abort-and-retransfer and the
one by one co-allocation schemes to improve the data transfer performances on the
co-allocation architecture in [16]. The abort-and–retransfer approach allows the client
to abort the slower servers if there are some faster servers that can complete the
transfer fast. The one by one co-allocation was pre-scheduling to allocate the data
block in advance. In this paper, we not only decrease the completed time of data
transfer, but also reduce the workload of slower serves. The experimental results
show that our approaches obtain a better result.

Acknowledgements. This work is supported in part by the national center for high-
performance computing under contract number NCHC-KING-010200.

References

1. http://www.globus.org/, The Globus Project.
2. http://www.hpclab.niu.edu/mpi/, MPICH-G2.
3. http://lhc-new-homepage.web.cern.ch/, LHC - The Large Hadron Collider Home Page.
4. Enabling Applications for Grid Computing with Globus, ibm.com/redbooks, 2002.
5. I. Foster, C. Kesselman, S. Tuecke., and International J. “The Anatomy of the Grid:

Enabling Scalable Virtual Organizations,” Supercomputer Applications, 15(3)(2001).
6. G. Aloisio, M. Cafaro, E. Blasi and I. Epicoco, “The Grid Resource Broker, a Ubiquitous

Grid Computing Framework,” To appear in Journal of Scientific Programming, Special
Issue on Grid Computing, IOS Press, Amsterdam. http://sara.unile.it/grb/grb.html

7. “Storage Resource Broker, Version 2.0,” SDSC (http://www.npaci.edu/dice/srb).
8. Moore R., and A. Rajasekar, “Data and Metadata Collections for Scientific Applications,”

High Performance Computing and Networking, Amsterdam, NL, June 2001.

Replica Selection on Co-allocation Data Grids 593

9. K. Czajkowski, l. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, and S. Tueche,
“A Resource Management Architecture for Metacomputing Systems,” IPPS/SPDP ’98
Workshop on Job Scheduling Strategies for Parallel Processing, 1998.

10. Bill Allcock, Joe Bester, John Bresnahan, Ann L. Chervenak, Ian foster, Carl Kesselman,
Sam Meder, Veronika Nefedova, Darcy Quesnel, Steven Tuecke, ”Data Management and
Transfer in High-performance Computational Grid Environments,” Parallel Computing
Journal, Vol. 28 (5), May 2002, pp. 749-771.

11. Ann Chervenak, Ian Foster, Carl Kesselman, Charles Salisbury, Steven Tuecke, “The Data
Grid: Towards an Architecture for the Distributed Management and Analysis of Large
Scientific Datasets,” Journal of Network and Computer Applications, 23:187-200, 2001
(based on conference publication from Proceedings of NetStore Conference 1999).

12. Heinz Stockinger, Asad Samar, Bill Allcock, Ian Foster, Koen Holtman, Brain Tierney,
“File and Object Replication in Data Grids,” Journal of Cluster Computing, 5(3)305-314,
2002.

13. S. Vazhkudai, S. Tuecke, I. Foster, ”Replica Selection in the Globus Data Grid,”
IEEE/ACM International Symposium on Cluster Computing and the Grid, May 2001, pp.
106 – 113

14. S. Vazhkudai, J.M. Schopf, “Predicting Sporadic Grid Data Transfers,” IEEE International
Symposium on High Performance Distributed Computing, HPDC-11 2002.July 2002, pp.
188 – 196.

15. S. Vazhkudai, J.M. Schopf, I. Foster, “Predicting the Performance of Wide Area Data
Transfers,” International Parallel and Distributed Processing Symposium, IPDPS
2002, April 2002, pp. 34 – 43.

16. Sudharshan Vazhkudai, “Enabling the Co-Allocation of Grid Data Transfers,”
International Workshop on Grid Computing, 17 Nov. 2003, pp. 44 – 51.

A Novel Checkpoint Mechanism Based on Job
Progress Description for Computational Grid�

Chunjiang Li, Xuejun Yang, and Nong Xiao

School of Computer,
National University of Defense Technology,
Changsha, 410073 China, +86 731 4575984

chunjiangli@263.net

Abstract. In this paper, we argue that application-level uncoordinated
checkpointing with user-defined checkpoint data is the favorable in grid
environment where heterogeneity is essentially popular. We present a
novel application-level uncoordinated checkpoint protocol based on Job
Progress Description (JPD) which is composed by a Job Progress Record
Object and a group of Job Progress State Objects, these two kinds of
objects act as checkpoint data for the job and the methods of them can be
used as checkpoint APIs. By extending this protocol with sender-based
message logging, it can be used by the message passing applications in
computational grid. Emulation with a kind of master-worker message-
passing applications shows that using this checkpointing protocol can
dramatically reduce the wall-time of the application when failure occurs.

1 Introduction

Computational Grid [1, 2] enable the coupling and coordinated use of geograph-
ically distributed resources for such purposes as large-scale computation, dis-
tributed data analysis, and remote visualization. A computational grid that
contains hundreds to thousands of machines and multiple networks has a small
mean time to failure. The most common failure modes include machine faults
in which hosts go down and network faults where links go down. When some
resources fail, the applications using such resources have to stall, then wait for
repair or migrate to other resources. In order to reduce the recovery time of
the jobs, checkpoint and recovery service is absolutely necessary, which can save
partial results and job states, avoids restarting the job from the very beginning.

In this paper,for simplicity, we focus on the stoping model in which a faulty
process (due to resource failure) hangs and stops responding to the rest of the
system, neither sending nor receiving messages [3].There are many interesting
problems to be solved even in this restricted domain. Moreover, a good solution

� This work is supported by the National Science Foundation of China under Grant
No.60203016 and the National High Technology Development 863 Program of China
under Grant No.2002AA131010 and 973 project NO. 2003CB316900.

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 594–603, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

A Novel Checkpoint Mechanism Based on JPD for Computational Grid 595

for this failure model can be a useful mechanism in addressing the other fault
models.

Checkpoint and recovery (CPR) techniques have been studied for a few
decades. But in computational grid which coupling a lot of independent, wide
area distributed and essentially heterogeneous computing systems, how to check-
point jobs is still a open issue that needs hard work and needs some standards
to be established. In this paper, we present an application-level checkpointing
protocol for computational grid based on Job Progress Description. Which re-
quires the user of the application to make slight modifications to both source
code and job scripts, and each job should be divided into independent job pro-
gresses and the job states of each progress are defined by the user. At the end
of each progress, checkpoint APIs are called to save the partial results and the
job states to stable storage. The partial results and the job states facilitate the
recovery of the failed jobs. We argue that by extending this protocol with sender-
based message logging, it is also suitable for the message passing applications in
computational grid.

The rest of the paper is organized as follows. In section 2, related work
for checkpoint and recovery in computational grid is discussed. The idea of
our application-level checkpoint protocol is explained in section 3. The sender-
based message logging mechanism used with this checkpoint protocol is discussed
in section 4. Emulation results of this checkpoint mechanism with a massage-
passing application are presented in section 5. Conclusion and future work are
discussed in section 6.

2 Related Work

Checkpoint recovery is a service to facilitate automated recovery and continu-
ation of interrupted computations with the aids of periodically recorded check-
point data. A checkpoint data set represents a sufficient collection of information
required to allow the checkpoint recovery services to correctly reschedule the
computational job and the job can resume computations from a ”known good”
state. The primary objective is to avoid having to restart a job from the very
beginning.

Traditionally, for a single computing system, checkpointing can be realized
at three levels: kernel level, library level and application level [4]. Most operat-
ing systems do not support checkpointing, especially for parallel programs. The
widely used checkpointing mechanisms is implemented at library level, such as
Condor [5] and Libckpt [6], but most current checkpointing libraries are static,
meaning the application source code must be available. The application level im-
plementation of checkpointing needs the application to be modified by inserting
checkpointing functions, and the transparency is lost, however, it has the ad-
vantage that the user can specify where to checkpoint, this is helpful to reduce
checkpointing overhead.

A key requirement of Grid Checkpoint Recovery (GridCPR) service is recov-
erability of jobs among heterogeneous grid resources. In other words, resources

596 C. Li, X. Yang, and N. Xiao

on which jobs are checkpointed need not be of the same type as those on which
the jobs are recovered, as long as the application code operating on the check-
pointing resource can be built for and run on the recovery platforms. So, the
system level (includes kernel level and library level) checkpoint protocols which
record the process image of the running job as checkpoint data is not suitable
for the grid environment, because the process image on one computing system
can hardly be restored on a heterogeneous platform. As well as, the overhead of
checkpoint in system level checkpointing is very high and can not be controlled
by the application it self. On the contrary, the application level checkpoint-
ing protocol is suitable for the grid environment, because user can construct
portable application code and can manipulate the overhead of checkpointing.
Even if checkpointing at application level, the checkpoint data must be defined
by the user other than the process image of the running job in order to facilitate
recovery on heterogeneous platforms.

In computational grid which couples multiple heterogeneous computing sys-
tems, how to chechpoint jobs is still challenging. In several meetings of GGF held
recently, the Grid Checkpoint Recovery (GridCPR) Working Group presented
some memo [7] and drafts [8, 9] which provided information to the grid commu-
nity regarding a proposed architecture for grid checkpoint recovery services and
a set of associated Application Programmer Interface (API). The consensus is
that application level checkpointing protocol is the only one suitable for the grid
environment. But their work was also very elementary, and there is still much
work has to be done.

In the work of the European DataGrid [10] project, they proposed an appli-
cation level checkpoint protocol for the data processing applications [11], which
divides the job into several job steps, and records user-defined job states at the
end of each job step as the checkpoint data for job recovery.

Message-passing models are still well-suited for computational grids. Many
implementations and variants of MPI have been produced. The most prominent
for grid computing is MPICH-G2 [12, 13]. But MPICH-G2 does not support any
fault tolerant mechanism. MPICH-V [14] is an implementation of MPI standards
for grid computing, it presents fault tolerance by checkpointing and message log-
ging. It supports fully transparency of fault tolerance. But it has two limitations.
First, its checkpointing mechanism is at the library level recording the image of
MPI processes, which makes it difficult for recovering a MPI process on another
heterogeneous computing node. Second, its message logging records all the com-
munication context of each process and store them in a Channel Memory (CM),
which makes it less general enough.

3 Basic Idea of JPD-Based Checkpointing

In this section, we describe our application level checkpointing mechanism based
on Job Progress Description. Firstly we give following definitions:

Job Progress (JP). A group of continuous operations in a job. For example,
a group of continuous statements in the source code of the job make up a Job

A Novel Checkpoint Mechanism Based on JPD for Computational Grid 597

Progress. So, the single threaded job can be divided into a series of continuous
Job Progresses.

Independent Job Progress (IJP). If the running of one job progress does
not depend on the running environment of the other job progresses, then this
job progress is called independent job progress.

Job Progress States (JPS). The user defined states of the job at the end of
each independent job progress. It can be expressed by a series of < var, value >
pairs or other directive comments on the work has been done .

3.1 Checkpoint Data Set

We use two kinds of abstract data objects as the checkpoint data of a job, the
definition of these two kinds of objects is given below:

Job Progress States Object (JPSO). The object which records the job states
for one IJP.

Job Progress Record Object (JPRO). The object which records the series
of IJPs of a job and the latest IJP finished by the job.

So, during the running of a job, one JPRO and a series of JPSOs can record
the job states, we call them as Job Progress Description (JPD), which acts
as the checkpoint data of the job. The structure of JPD is illustrated in Fig. 1.

Fig. 1. Data Elements in JPD

This kind of organization of checkpoint data can benefit to the job control in
computational grid. For in computational grid, most applications consist multi-
ple tasks, by checking the JPRO of each task, the job manager can grasp the
information about the states of each task and can determine the progress of the
whole work.

3.2 Checkpoint APIs

The methods of JPRO and JPSO act as checkpoint APIs. The detailed def-
inition is given in Fig. 2. Each IJP has a distinguished name that identifies it

598 C. Li, X. Yang, and N. Xiao

unambiguously. The first data member (Label t) in JPSO represents such iden-
tifier. In the JPRO of the job, the identifiers of all the IJPs and the identifier
of current IJP are recorded. So, when the job restarts, it reads the JPRO of
it, can know the progress of the whole work. The methods of JPRO mainly
focus on processing the JPSOs of the job, such as load and save JPSOs, get
the identifier of current, former, next IJPs of the job, check the ending of the
job, measure the size of one JPSO. The JPRO acts as the general controller
of the whole job. On the other hand, the methods of JPSO mainly focus on
recording and retrieving states values into and from JPSO. Using the methods
in these two objects, user can write application level checkpoint jobs. Naturally,
the methods of each job can be extended for particular purpose.

Fig. 2. Checkpoint APIs

3.3 A Simple Use Case

In Fig. 3, we present a simple use case of the chechpointing APIs in a serial
job. It is obvious that once restart a failed job on a computing resource, the job
retrieves the JPRO and the nearest JPSO from the checkpoint data set of this
job, and reconstruct the running environment of the latest IJP, then reenter the
program segment of the latest IJP, continue the interrupted work of the job.
In order to facilitate the control of running job, the user of the computational
grid usually writes a job scripts and submit it together with the source code file
of the job. In the job scripts of a checkpoint job, the user should define all the
IJPs of the job. When initiating gridCPR service, the runtime library reads the
job scripts then constructs the data structure of checkpoint data (mainly one
JPRO and some JPSOs) for the job which record the states of the job in the
running process.

When restarting a failed job on a heterogeneous resource, the job should
be recompiled and relinked with the running time library of checkpoint service.

A Novel Checkpoint Mechanism Based on JPD for Computational Grid 599

Fig. 3. An Sample Serial Job Using JPD-based Checkpoint APIs

During the running process of the restarted job, the job retrieves JPRO and
JPSOs of the job from the global storage used for checkpoint and recovery. This
global storage can be accessed from every computing resource. According to the
retrieved JPRO and JPSO, the job can determine the latest states of the job
before failure occurs, then reestablish the running environment and continue to
do the rest of the work.

In practice, the data objects of JPRO and JPSO could be expressed in a
XML file. Each checkpoint job can use one XML file to store its checkpoint data:
including one JPRO and a series of JPSOs. The data objects in JPD (JPRO
and JPSOs) themselves can be recorded as a data item in XML file.

Using the checkpoint protocol proposed in this paper, users can submit its
program with a XML file as checkpoint data file which initially record the IJPs
of the program. During the running of this program at any platform, when check-
pointing, it write the mane and value of each variables,partial result (expressed
as < var, value > pairs) of the program into the checkpoint file. Then once the
program restart at another heterogeneous platform, after rebuilding the source
code of the program, the program can rerunning from the nearest IJP of the
program as well as the XML file transmit with the program at the same time.

Each time the program start to run, it read its JPRO from its checkpoint file,
to get the identifier of the IJP that has been done last time, then use it to reload
the corresponding JPRO which records the environmental variables and partial
result at last time. Then it sets up the running environment for the next IJP, and
goes to the location of next IJP in the program, begins to do the residual work.

600 C. Li, X. Yang, and N. Xiao

4 Sender-Base Message Logging

In order to support message-passing applications with our grid checkpointing
mechanism, we record each sending message during a job progress into the cor-
responding JPSO. That is, we use sender-based message logging mechanism to
expand this application level checkpoint protocol. Sender-based message logging
can dramatically reduce the overhead of message logging, because when one pro-
cess sends a message to another, the sender and the receiver naturally get a copy
of the message, it is faster to simply save a copy in local storage on the sending
machine [15].

A logging record for a message includes the following data elements:
SSN : the sequence number of the message sent by the sender process;
SJPN : the job progress number of the sender process;
RJPN : the job progress number of the receiver process;
MCON : the content of the message;
RSN : the sequence number of the message received by the process.

It is obvious that we record the correspondence of message to job progress in
the logging record. The checkpoint architecture of application level checkpointing
mechanism for message-passing applications is shown in Fig. 4

Fig. 4 depicts two processing node in computational grid for running message-
passing applications. The Grid Level Checkpoint Service presents a stable global
storage for checkpoint data and provides mechanisms for storing and retrieving

Fig. 4. The Architecture for Checkpointing Message-Passing Applications in Compu-
tational Grid

A Novel Checkpoint Mechanism Based on JPD for Computational Grid 601

checkpoint data. At each processing node, there is a local storage for buffering
checkpoint data. The storage management of checkpoint data in local check-
point service is responsible for storing and retrieving JPSOs in and from local
and global checkpoint data storage. In order to conduct message logging and
replay messages, we design a communication library adapter over the MPI com-
munication library. It hooks the message-passing functions presented by MPI,
and expanding message logging information to each JPSO of the task. When
replaying messages, it retrieves the logging of the messages from JPSOs by call-
ing the storage management of checkpoint data, and resend-ing the messages in
ascending order by RSN .

5 Emulations

We evaluate the prototype implementation of this checkpointing protocol by
emulating in a master-worker style application which is running on four hetero-
geneous clusters that contain more than 50 computing nodes and we suppose
there are 50 worker jobs and one master job, each worker job contains only one
program. The master job partitions the input data into 50 segments and each
data segment is sent to a worker job that runs on a computing node. Each worker
job applies four algorithms to process the input data. The results generated by
the worker are gathered by the master job. We divide each worker job into four
IJPs according to the four algorithms, and insert checkpoint APIs in the source
code at the end of each IJP. And write a simple job script for each worker job.
The JPRO of each worker job records the progress of it. In the job scripts of the
master job, all the IJPs of the whole application are recorded, and the JPRO of
the master job records the progress of the whole application. During the running
process, each worker job checkpoint itself un-coordinately, creating JPSOs and
writing job states user-defined checkpoint data into it. The JPRO and JPSOs
of the worker job are saved in a file. And all the checkpoint file of worker jobs
can be accessed across these clusters. So, when one computing node failed, the
worker job running on this failed node can be migrated to another node, re-
compiled and relinked with the checkpoint library for the sake of heterogeneity,
then with the aids of the checkpoint file, it can continue to run the rest IJPs
of the job. In order to evaluate the effectiveness of this checkpointing protocol,
we insert failure mode manually to the worker nodes, and randomly generate
failure sequences of them. We suppose there are at most 18 nodes in the failure
sequence. Under the same failure sequence, we compare the wall-time of whole
application under two different failure process methods, one is checkpointing,
the other is restarting. The result is shown in Fig. 5, in this figure, we suppose
the wall-time without any failure is 100 seconds,and the each IJP of one job
uses 25 seconds to fulfill its work. It is obvious that with this checkpointing pro-
tocol, the application need not restart the job from the very beginning, which
can dramatically reduce the wasted computation.

602 C. Li, X. Yang, and N. Xiao

Fig. 5. Emulation Results

6 Conclusion and Future Works

In this paper, we proposed the Job Progress Description based checkpoint mech-
anism for checkpointing at application level in computational grid, and also
described the implementation of combining this checkpoint protocol with sender-
based message-logging mechanism. JPD-based checkpoint mechanism uses
markup method to partition job into Independent Job Progresses, and defines
checkpoint data by programmer at application level. So, this mechanism is suit-
able for checkpointing in computational grid in which resource heterogeneity is
popular.

There are still much work need to be done for consummating this check-
pointing mechanism, such as how to design programming model and tools for
facilitating the composition of checkpoint jobs with this checkpoint protocol,
how to define the job progress in the job script, how to design tools for segment-
ing the jobs in to subjobs containing IJPs, how to manage the checkpoint data
generated in checkpointing, how to optimize the performance of checkpointing
and recovery.

References

1. Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann Publishers (1999)

2. Foster, I.: The grid: A new infrastructure for 21st century science. Physics Today
54(2) (2002)

3. Lynch, N.: Distributed Algorithms. Morgan Kaufmann Publishers (1996)
4. Hwang, K., Xu, Z.: Scalable Parallel Computing, Technology, Architecture, Pro-

gramming. McGraw-Hill Companies, Inc. (1997)
5. Litzkow, J.B.M., Tannenbaum, T., Livny, M.: Checkpoint and migration of unix

processes in the condor distributed processing system. Technical Report 1346,
University of Wisconsin-Madison (1997)

6. Plank, J.S., Beck, M., Kingsley, G., Li, K.: Libckpt: Transparent checkpointing
under unix. Technical Report UT-CS-94-242 (1994)

A Novel Checkpoint Mechanism Based on JPD for Computational Grid 603

7. GridCPR Working Group: An architecture for grid checkpoint recovery services
and a gridcpr api. http://www.gridforum.org/Meetings/ggf7/drafts/
GridCPR001.doc (2003)

8. GridCPR Working Group: Gwd-i: An architecture for grid check-
point recovery services and a gridcpr api, current draft is version 1.0.
(http://gridcpr.psc.edu/GGF/docs/draft-ggf-gridcpr-Architecture-1.0.pdf)

9. GridCPR Working Group: Gwd-i: Use cases for grid checkpoint and recovery,
current draft is version 1.0. (http://gridcpr.psc. edu/GGF/docs/draft-ggf-gridcpr-
UseCases-1.0.pdf)

10. DataGrid: European datagrid project. (http://www.eu-datagrid.org/)
11. Gianelle, A., Peluso, R., Sgaravatto, M.: Job partitioning and checkpointing. (Tech-

nical Report DataGrid-01-TED-0119-0-3)
12. Foster, I., Karonis, N.T.: A grid-enabled mpi: Message-passing in heterogeneous

distributed computing systems. In Proceedings of International Conference on
High Performance Networking and Computing,SC98,IEEE (1998)

13. Karonis, N.T., Toonen, B., Foster, I.: Mpich-g2: A grid-enabled implementation
of the message passing interface. Journal of Parallel and Distributed Computing
(JPDC) (2003) 551–563

14. Bosilca, G., Bouteiller, A., Cappello, F., Djilali, S., Fedak, G., Germain, C., Her-
ault, T., Lemarinier, P., Lodygensky, O., Magniette, F., Neri, V., Selikhov., A.:
Mpich-v: Toward a scalable fault tolerant mpi for volatile nodes. In Conference
on High Performance Networking and Computing archive Proceedings of the 2002
ACM/IEEE conference on Supercomputing (2002)

15. Johnson, D., Zwaenepoel, W.: Sender-based message logging. In Digest of Papers,
FTCS-17, The 17th Annual International Symposium on Fault-Tolerant Comput-
ing (1987) 14–19

A Peer-to-Peer Mechanism for
Resource Location and Allocation Over the Grid

Hung-Chang Hsiao1, Mark Baker2, and Chung-Ta King3,�

1 Computer and Communication Research Center, National Tsing-Hua University,
Taiwan 300

hchsiao@cs.nthu.edu.tw
2 The Distributed Systems Group, University of Portsmouth, UK, PO1 2EG

Mark.Baker@computer.org
3 Department of Computer Science, National Tsing-Hua University, Taiwan 300

king@cs.nthu.edu.tw

Abstract. Recent advances in P2P lookup overlays provide an appeal-
ing solution for distributed search without relying on a single database
server. In addition to performing resource discovery, these P2P substrates
also offer membership management for dynamic peers. In this paper, we
propose a publicly shared architecture called VC2A that takes advantage
of a P2P lookup substrate for computational applications. VC2A targets
computational master-slave applications. An application running in VC2A
dynamically allocates resources from the system on the fly. These allo-
cated resources then self-manage and -heal. We have implemented an
architecture based on our previous efforts that include an enhanced P2P
lookup overlay and a mobile agent system on top of this overlay. We
show that VC2A is not only scalable but robust, and takes advantage of
heterogeneity of the resources.

1 Introduction

Peer-to-peer (P2P) computing research is extremely active. The first genera-
tion of P2P substrates, such as Gnutella, implemented the flooding-based search
protocol to locate resources. Due to the potential burden of network traffic in-
troduced by the flooding protocol, and the consequential inefficiency of resource
discovery, research projects such as CAN, Chord, Pastry, Tapestry and Tornado
implement distributed hash tables (DHT) for efficiently locating resources [1].
The DHT-based P2P overlay is thus appealing, and can serve as an ideal overlay
infrastructures for managing resource information. A DHT-based P2P overlay,
however, is unable to offer complex search capabilities for resource discovery.
Recent proposals have shown that a DHT-based P2P overlay can be enhanced
to perform keyword and/or range searches [1].

� This work was supported in part by National Science Council, Taiwan, under Grant
NSC 93-2752-E-007-004-PAE, and National Center for High-performance Comput-
ing, under Grant NCHC–KING 010200.

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 604–614, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

A Peer-to-Peer Mechanism for Resource Location and Allocation 605

One use of DHT-based P2P substrates is for computational applications,
which are based on the master-slave programming paradigm. Here, the master
is responsible for control the workflow of the entire task, which includes providing
the input to, and collecting output from, computational tasks, while the slaves
perform the computation. Examples of this type of P2P application includes
SETI@home, computational biology, and parameter-sweep applications. In this
study, we are interested in designing a “publicly shared” P2P substrate that
allows the execution of multiple master-slave applications. Unlike a proprietary
design, such as SETI@home, running multiple applications in a shared infras-
tructure can have several benefits. For example, (1) application developers only
need to take care of the development of their applications regardless of design,
deployment and maintenance the infrastructure. (2) A resource provider can
have a simple, but complete, control of their resources and can delegate its con-
trol to the shared substrate without paying attention to each application that
may be executed using their resources, and (3) running multiple applications
can further increase the utilization of resources in the substrate, and pooling
resources together increases the possibility for an application to discover those
resources that can meet the application’s demand.

Running these applications in a shared substrate can have the following re-
quirements. (1) Expressiveness. First, the substrate should be capable of allow-
ing an application to designate what specific characteristics allocated resources
should be met. These parameters could include, for example, the current loads
of the designated resources, the processor speed, or the available memory size.
(2) Code mobility. The shared infrastructure should be capable of running
any application. It could be possible that the infrastructure does not know what
applications will be deployed in advance and how many resources will be al-
located to a particular application. The shared infrastructure should allow an
application to arbitrarily deploy its computational logic at any place within the
playground formed by the resources that are allocated on-the-fly. (3) Auton-
omy. Since resources in the substrate may have their own utilisation plans and
each of these plans may vary, resources allocated to a particular application
should not violate their local policies1. In addition, resources allocated to an
application should self-configure and -heal in order to relieve the burden on an
application developer of needing to set up the dynamically formed execution
environment. (4) Robustness. In a publicly shared environment, resources may
dynamically join and leave the system. The substrate should be reliable enough
for any application. A robust computing environment can also mitigate the load
of an application developer to handle failure during the execution of his applica-
tion. It is unlikely to rely on a central control point for managing information,
and allocating and scheduling resources. This is because the central point can

1 The local policy that is defined for a resource can be for example, the load that a
resource can sustain, or the time over which it can be. The local policy may further
depend on the policy defined by its domain administrator. Defining a local policy is
out of the scope of this paper.

606 H.-C. Hsiao, M. Baker, and C.-T. King

become the single point of failure. (5) Scalability. The number of resources
appearing in the shared environment is unknown, but may be very large. An
approach based on a central point of management will become a performance
bottleneck if the number of resources is large. A substrate should thus be de-
signed with the scalability in mind to accommodate any number of resources
allocated to an application. (6) High performance. The resources allocated to
an application should be effectively utilized. This will accelerate the execution of
the application. A P2P infrastructure for supporting computational applications
should bear performance criteria in mind.

In this work, we propose a publicly shared P2P infrastructure architecture
called VC2A for computational applications. Particularly, we implement the VC2A
architecture using our previous efforts, i.e., a DHT-based overlay called Tor-
nado [2] along with an enhanced search ability [1]. The enhanced lookup overlay
allows an application to efficiently and effectively perform similarity and range
searches for resources in a large and dynamic environment. In addition, VC2A is
integrated with a mobile agent system called Armada [3]. In VC2A, an application
designer develops their application using Armada agents. Agents in Armada can
be deployed on any resources that are dynamically discovered; they can commu-
nicate with each other regardless of their movements. VC2A is thus programmable
on the fly. Since in VC2A a resource defines its own local policy and helps overall
computation according to this local policy. When the resources are discovered
for an application without violating their local policies, they self form an indi-
vidual tree overlay 2. The tree overlay self manages without involving any effort
from the application. It can arbitrarily be scaled to any size while each resource
only maintains a constant number of members in the associated tree. VC2A en-
sures that a tree overlay is robust by taking advantage of the heterogeneity of
resources. Moreover, a tree in VC2A is nearly balanced. This allows the spread of
computational tasks to the allocated resources and to collect the results, rapidly.
This also provides the responsiveness needed for maintenance.

Our contributions of this work include that (1) we propose a novel archi-
tecture to leverage DHTs for grid resource discovery. (2) We design a scalable
tree-based overlay which robustly organizes allocated resources, helps dissem-
inate computational tasks, and provide an execution environment for mobile
agents. (3) We integrate the DHT-based and tree-based overlays for resource
discovery and organization.

2 VC2A

Overview. Figure 1(a) shows an example that illustrates the operations of VC2A.
Each peer in VC2A initially publishes its resource descriptor to the system using
the Tornado DHT interfaces (i.e., the publish interface). For example, node 3

2 Actually, VC2A maintains “tree-like” overlays in the system, where redundant links
in a tree are used for tolerating faults. We will not differentiate the terms–“tree”
and “tree-like” overlays.

A Peer-to-Peer Mechanism for Resource Location and Allocation 607

0

1
2

7

8
6

5

4

3

(b)

lookup

lookup
lookup

lookupTasks

0

1
2

7

8
6

5

4

3

(a)

publish

Tasks

publish

publish

0

1
2

8
6

5

4

3

(e)

8
4

2Tasks

7

0

1
2

7

8
6

5

4

3

(f)

8
4

2
Task 1

Task 2

Task 3

0

1
2

7

8
6

5

4

3

(d)

Join

Join

Join

Tasks

0

1
2

7

8
6

5

4

3

(c)

Tasks

inform

inform
inform

inform

Fig. 1. An example of VC2A consisting of nine nodes, where (a) node 3 publishes its
resource descriptor to the system, (b) node 0 looks up the resources for its compu-
tational task by consulting nodes 2, 4, 5 and 7, (c) nodes 2, 4, 5 and 7 respectively
inform nodes 4, 8, 2, and 1 that have the designated resources, (d) nodes 2, 4 and 8 can
help perform the computational task for node 0, (e) nodes 2, 4 and 8 self-form a tree
overlay for receiving the computational tasks issued by node 0, and (e) node 0 submits
the tasks to the tree overlay using Armada agents

publishes its resource descriptor to nodes 1, 6 and 8. A peer that has a com-
putational task to accomplish then discovers the resources that can satisfy its
requirements using the lookup interface. In Figure 1(b), node 0 issues the lookup
requests to nodes 2, 4, 5 and 7. Those peers receiving the lookup requests in-
form the nodes (i.e., nodes 4, 8, 2 and 1) that can provide designated resources
for the computational demands (see Figure 1(c)). If the matched peers can ac-
cept the computational tasks (i.e., nodes 2, 4 and 8 in Figure 1(d)) according
to their local policies, they self-form a tree overlay, where the root of the tree
is the entry point that can accept the tasks submitted by the task producer
(Figures 1(e) and (f)).

We assume that a peer registers its resource descriptor into the system using
enhanced DHT lookup interfaces. Enhanced DHTs include PeerSearch, Meteoro-
graph, Neuron, Squid and XenoSearch [1]. These enhanced DHTs can efficiently
perform keyword and/or range searches, for example. Figure 2 shows an exam-
ple of describing demanded resources. VC2A can discover resources that have the
attribute values shown in Lines 4 and 5 of Figure 2 via searching by keywords
as well as the range search for Lines 1, 2, 3 and 6. A peer publishes its resources
using the similar description.

1: CPU ≥ 1.5 GHz
2: Main memory ≥ 256 Mbytes
3: Disk ≥ 256 Mbytes & ≤ 1024 Gbytes
4: OS Linux kernel 2.4 version
5: Domain cs.nthu.edu.tw | nchc.gov.tw
6: Idle from GMT 10:00 PM to GMT 7:00 AM

Fig. 2. An example of a resource descriptor

608 H.-C. Hsiao, M. Baker, and C.-T. King

VC2A is designed with scalability, high performance and robustness in mind.
For scalability, VC2A is based on a scalable DHT-based P2P overlay (i.e., Tor-
nado). Each node in Tornado only maintains a number of O(k × logn

k) connec-
tions, where k is a constant and n is the total number of nodes appearing in the
system. In addition, a node joining in a tree overlay for accepting computational
tasks only maintains a constant number of connections to its tree members. For
high performance and robustness, by placing more capable nodes near the job
producer, tasks can be more rapidly assigned to more capable nodes and the
overall system’s throughput is boosted.

Note that a node in VC2A may join multiple trees if its corresponding resource
descriptor matches several different lookup requests and meanwhile it is capable
of performing multiple tasks without violating its local policy. We also note that
the publish, lookup, inform and join messages are routed using the routing
algorithm provided by the DHT-based overlay. The routing algorithm ensures
that the routing is resilient.

Notations. Without loss of generality, we assume that the capability3 of a node
x is measured by the maximum number of connections (we note that connections
maintained in a VC2A overlay are duplex TCP/IP links) that it can accommodate,
which is denoted c(x). Based on c(x), x estimates the maximum number of
connections mi(x) that are used by an overlay i. If x joins p tree overlays,
then

∑p
j=1 mj(x) ≤ c(x). Note that the overlays may have different sizes. The

larger the overlay, the larger the number of connections allocated. To simplify
the discussion, we concentrate on operations that manipulate “one” overlay. We
thus drop the subscript i in the following discussion, i.e., using m(x) instead of
mi(x).

A node x will maintain at most m(x) pointers pointing to its children
(x.child[i], where i = 1, 2, 3, . . . , m(x) − 1) and parent (x.parent). These nodes
are the active neighbors of x. The nodes x.parent and x.child[i] are initialized
with null pointers. Node x also maintains a look-ahead cache indicating potential
parent nodes of x. Each entry in the look-ahead cache consists of the IP address,
the port number and the maximum number of connections of a node that can
become the parent of x. Finally, x maintains a value height(x) that indicates
its height in the tree, where height(x) = 0 initially. The variable d(x) is used to
indicate the number of connections in use.

Self-Configuration and -Healing. When a node intends to join a tree overlay,
it first connects to the root node of the tree corresponding to the overlay. The
two nodes then compare their heights. Since the height of the new node is always
zero, it will become the child of the root, as long as the root node has not reached
its capability limit, i.e., the maximum number of connections. In general, a node

3 A node’s capacity (in terms of number of connections) is defined by mixing its
“static” machine characteristics such as the computational power and communica-
tion speed as well as the policy of how the resource provider contributes his resources.

A Peer-to-Peer Mechanism for Resource Location and Allocation 609

x becomes a child of another node y if y has not reached the limit of its capacity
and height(y) > height(x).

On the other hand, if the root of the tree has exhausted its capacity, it
designates a child that has the maximum remaining capacity as the parent of
the new node. If no child node can accept that node as a child due to capacity
limitation, the root node randomly picks a child to forward the joining request
of the new node. That child node performs similar operations as the root node
until a child can accommodate the joining request of the new node. After the
new node joins the overlay, the nodes along the path to the root update their
heights if necessary. Due to the space limitation, we refer readers to [4] for the
details.

A VC2A tree may be fragmented due to node failure or departure. To solve
this problem, each node periodically broadcasts its IP address, port number and
maximum capacity to its children. The broadcast horizon is specified by a small
constant s. If a node receives such a message, it pushes the associated IP address,
port number and capacity value into its look-ahead cache. In this way, a node
can “look ahead” s nodes (including the parent) to the tree root.

A node x first checks whether its parent is active. If the parent is not active,
the node then creates a connection to the closest ascendant node u, which is
found through the look-ahead cache and has a free connection. If u does not
have a free connection, then it helps to discover a descendant node that can
accept x’s connection. Note that if the ascendant nodes maintained in the look-
ahead cache are not available, x consults the root of the tree for rejoining.

Since nodes periodically monitor the “aliveness” of their parent, the moni-
toring message can piggyback the value height(x) to the parent. The parent can
then determine whether its height is maintained according to the height values
from all the children. We note that there must be a sibling of x, j, such that
height(x.parent) = height(j) + 1, where height(j) is the maximum compared
with other siblings. If the height value of x’s parent is not equal to height(j)+1,
height(j) + 1 is taken as the height value of x’s parent.

Exploiting Heterogeneity of Nodes. The algorithms mentioned above do
not guarantee that nodes with higher capacities are placed close to the root of
a tree, because a joining node may be connected to a node whose capacity is
smaller than it own. Thus, a node in VC2A needs to monitor the capacities of
its children and to determine whether a child node more capable of providing
connections to accommodate new nodes. If a node can be replaced, the node
is moved to the position of the child node in the tree. Notably, a node is only
replaced by one of its children by locking the data structures it maintains.

We note that in our algorithm we not only organize more capable nodes
around the task producer in order to boost the system throughput, but ensure a
robust tree overlay. This is because volatile nodes will not appear in the nearby
of the task producer and will not fail the tree structure. This thus allows the
task producer to submit its jobs to the peers in the tree overlay.

610 H.-C. Hsiao, M. Baker, and C.-T. King

Tasks Multicasting and Termination. The task producer submits its
computational tasks using Armada mobile agents to the root of its associated
overlay tree. The root then clones the mobile agents and migrates the cloned
agents to each of its children. A node receiving an agent performs a similar
operation.

In addition, to submit a cloned agent, an installed agent retrieves the asso-
ciated data set before performing the computation associated with that agent.
In VC2A an agent will be automatically programmed by implicitly specifying its
input as its parent agent or explicitly designating a location outside the system.
Similarly, an agent can designate its output using the same way. We note that
an application developer may manually configure the input and output for an
agent. In addition, VC2A allows an agent to designate the communication proto-
col used, such as HTTP and FTP, in order to interact with an entity that is not
in the system.

If an agent has the input data set to compute and the node hosting the agent
is not overloaded according to its local policy, then the agent performs the com-
putation. If the agent does not overload its hosting peer and its input queue is
not full, it tries to obtain (or wait for) another data set from its parent agent
for further computation. We note that (1) the delivery of data sets and the com-
putation performed by the agent can be handled, simultaneously. In the current
implementation, a node computes its tasks, sends tasks in its input queue, and
returns the results stored in its output queue in the round-robin fashion. (2)
It is possible that a number of k′ input data sets can be only sent k′ children
nodes out of the k requesting ones, where k′ < k. In such a case, the parent node
selects top-k′ more capable peers from k ones to receive the input data sets. (3)
We also note that the scheduling of computation and communication in order
to maximize the utilization of resources in a tree overlay is an orthogonal design
space. In addition, with the application knowledge to push a task to its children
or pull a task from its parent is left to the application developer.

VC2A is based on the Armada mobile agent system in which agents in differ-
ent locations can communicate with each other. This allows VC2A to support an
application that has complex interactions among agents. We preserve this capa-
bility for investigating applications that have complex communications among
agents in the future.

For termination of an application, the task producer broadcasts a termina-
tion message to the root of the associated tree overlay. The termination message
is then broadcasted down to the tree. Each of the tree nodes receiving the ter-
mination message leaves the tree overlay.

Multiple Tree Overlays. We have discussed operations that manipulate a
single overlay. However, a node may join several overlays. Here, we discuss how
a node manages the available connections for the participating overlays.

Initially, a VC2A node x allocates an equal number of connections to each of
the overlays that it joins. Assume that x may participate in g overlays at most.
Then, x will have mi(x) = c(x)

g , where i = 1, 2, 3, . . . , g. The node periodically
monitors the number of connections (di(x)) used by the ith participating overlay.

A Peer-to-Peer Mechanism for Resource Location and Allocation 611

It then assigns the connections to the participating overlays proportionally as
mi(x) =

⌊
di(x)∑g

j=1 dj(x) × c(x)
⌋
.

Consequently, if an overlay comprises of a small number of nodes, these nodes
must use few connections to link with each other. The above assignment ensures
that nodes use few connections to participate in a small overlay and more con-
nections for a large overlay. This reduces the height of a tree since nodes joining
in a large overlay have relatively large degrees; can allow tasks to be rapidly sent
to nodes by traversing a smaller number of nodes.

To estimate the size of a tree overlay, the root node of a tree broadcasts a
counting message to each of its child nodes. Upon receiving a counting message
from the parent, a node recursively performs the same operation. If a node (i.e.,
a leaf node) does not have any children, it returns the number of children (i.e.,
zero) to its parent. When a node receives the number of child nodes from each of
its children, it can then estimates the total number of its descendant nodes and
reports such a number to its parent. In this way, the root node can eventually
determine the total number of nodes in the tree. It then broadcasts such a value
to each tree member. Finally, a peer can determine how many connections should
be allocated for each tree overlay that it participates. We show that the depth
of a tree overlay is bounded by the logarithmical size of a tree overlay (see [4]).

Clustering Nearby Nodes. It is possible that an application may restrict
the resources that meet its requirements on their network-specific constrains
in order to conform to the performance aim of the application. For example,
an application may want to allocate resources that are geographically nearby
by designating the delay or the bandwidth between the task producer and the
resources having above or below a certain value. If so, in the absence of network
weather services resources in VC2A that can meet an application’s demand need
to measure the delay or bandwidth between the designated location and itself.
Only those resources that satisfy the delay or bandwidth requirement can join
the tree overlay formed for the application.

Security. First, malicious peers have several ways to potentially break down
VC2A. For example, a malicious peer may not honestly perform the protocol
operations, such as, publish, lookup, inform and join. To prevent malicious
peers joining the system, VC2A includes additional “authentication nodes”. It
should be noted that these nodes are not used for any other VC2A purpose, apart
from authentication. A node intending to join the system needs to access an
authentication node, and only after being authenticated can nodes join VC2A
and participate in a computation.

However, authenticated nodes that have joined the system may be compro-
mised, i.e., authenticated nodes may not be trusted. Since VC2A integrates the
security mechanism in [5], the compromised nodes cannot modify the protocol
codes and thus change their behavior (e.g., by stopping forwarding or maliciously
forward a message to another compromised node). This ensures that a message
will be correctly forwarded to its destination.

612 H.-C. Hsiao, M. Baker, and C.-T. King

Third, it is possible that a number of compromised nodes could introduce
cycles to the system by repeatedly and rapidly joining and leaving the system.
Since VC2A is implemented on top of the resilient DHT-based overlay, which can
self-heal and consequently tolerate cycles introduced by compromised nodes.
Unless all VC2A nodes are compromised, it is difficult to fail the entire system.
Possibly, malicious nodes could overhear messages exchanged by overlay nodes
and then tailor their messages to break down the system. For such a case, VC2A
is further integrated with the secure communication mechanism [6] proposed for
DHT-based overlay networks. The secure communication mechanism can set up
secure channels among overlay peers.

Fourth, compromised nodes can be used to “attack” the system. This can be
achieved by letting compromised nodes send a large amount of normal traffic
(e.g., the join messages) to the root of a tree overlay. In this way, the root could
be busy processing large amounts of normal traffic, which may prevent further
participants from joining the tree. The root may also be unable to clone agents
for its established child nodes, or send tasks to, and receives results back from
these nodes.

For relieving such an attack, the root (denoted as r) of a tree overlay desig-
nates a few nodes in VC2A as “secret” entry points into the overlay. r can only
accept messages from its designated secret nodes. These secret nodes ensure the
rate-limited communication (r informs the secret nodes its maximum communi-
cation bandwidth). To select k secret points requires k distinct hash functions
(Hi, where i = 1, 2, . . . , k). The secret nodes will have the node ID closest to
Hi(name) (this can be simply achieved by routing a message to the node, i.e.,
the secret node, that has the closest ID to Hi(name)) and the name is r’s IP
address. Thus, node x in VC2A, which meets the resource description and intends
to join r’s tree, sends a join message with the destination address r. The join
message will reach one of the secret node that can help x to join r’s tree.

Since the message communication in VC2A is a multi-hop end-to-end commu-
nication, compromised nodes cannot easily determine the ultimate destination
(i.e., the secret nodes) of a message transfer by simply eavesdropping the source
and the destination fields of one TCP/IP end-to-end connection. To determine
which nodes are secret nodes requires globally monitoring all communication
traffic in VC2A and then analyzing the traffic. Consequently, compromised nodes
cannot simply shut down the secret nodes in order to break down the associated
tree overlay.

Finally, compromised nodes could arbitrarily send a large amount of overlay-
irrelevant traffic (e.g., the TCP SYN flooding) to a tree root at the same time in
order to the shut down the root. For such a case, the tree root needs to set up a
few proxy nodes (the proxy node is not part of VC2A computation) in its vicinity.
The proxy node can act as a router that is responsible for forwarding network
messages to the tree root. The tree root simply configures those proxy nodes to
accept traffic from the secret nodes that had been previously established. Traffic
that is not from a secret node will be discarded. Note that if the proxy nodes
are the high-powered routers, attackers cannot easily attack the network routers

A Peer-to-Peer Mechanism for Resource Location and Allocation 613

since these devices can discard traffic that is not from the secret nodes at line
speed.

3 Comparison with Alternatives

We compare the previously mentioned architectures with VC2A from two aspects:
resource discovery and organization of allocated resources. Both are the funda-
mental components for assembling a computational infrastructure. The details
including references can be found in [4].

Resource Discovery. Recent projects such as SETI@home/BONIC, Entropia
and XtremWeb have taken the first steps towards realizing a large-scale systems
to include worldwide desktop machines. Both systems employ a central server to
manage the participating resources. However, the use of a central control leads
to the usual issues, such as the performance bottlenecks and a single point of
failure.

In contrast, OurGrid and NaradaBrokering are based on a Gnutella-like P2P
network model that adopts broadcasting to discover resources without relying
on a central server. Although broadcasting does not have the issues as those
introduced by SETI@home/BONIC, Entropia and XtremWeb, it may generate
a significant amount of traffic and does not have the guarantees for discovering
demanded resources in terms of efficiency and effectiveness. Triana is a workflow
management system, which is based on JXTA. JXTA does not exactly mandate
how resource discovery is done. A possible decentralized discovery mechanism
in JXTA is through utilizing rendezvous peers. Resource providers publish their
resource metadata information to rendezvous peers. A set of rendezvous peers
acts as a search network that implements a Gnutella-like search protocol. To
discover resources is to send a query message to the search network.

Butt et al. [7] propose to take advantage of network locality for resource dis-
covery by exploiting the geographically close neighbors in a DHT-based overlay.
However, nearby resources may not meet the request demand. Although their
design has incorporated with an expanded ring search mechanism, this may lead
to the system to degenerate into a broadcasting-based P2P network similar to
Gnutella.

In contrast to previous architectures, VC2A is based on the enhanced DHTs [1]
to support complex queries. These enhanced DHTs provide the efficient perfor-
mance bounds for discovering the demanded resources.

Organization of Allocated Resources. To our best knowledge, SETI@home/
BONIC, Entropia, XtremWeb, OurGrid and Triana all rely on a central control
point to manage resources that satisfy the demand of the requester. The central
point in SETI@home/BONIC, Entropia and XtremWeb is a standalone sever,
while in OurGrid and Triana the requester handles all requested peers. Clearly,
this is a non-scalable design.

Butt et al. extend Condor to the Internet using Pastry. No explicit mechanism
for managing resources discovered from different Condor pools is provided. The

614 H.-C. Hsiao, M. Baker, and C.-T. King

architecture Butt et al. propose strongly relies on each central manager of each
Condor pool. Similarly, NaradaBrokering does not offer the ability for discovered
resources to self-manage. However, NaradaBrokering provides the messaging ca-
pabilities including the publishing/subscribing and the secure channel for nodes
in the system.

In VC2A, discovered resources autonomously structure into a tree overlay ac-
cording to their capabilities without involving entities that not are not allocated
in the publicly shared infrastructure of VC2A. Such a design is not only scalable,
but can tolerate faults. Moreover, this allows the requester to utilize relatively
more capable resources in order to speed up their computation.

4 Conclusions and Project Status

We have presented the design of P2P-based system called VC2A. VC2A is based on
a DHT-based overlay, which further incorporates a tree structured P2P overlays
and takes advantage of nodes’ heterogeneity. We have shown how to manage the
overlay and manipulate it using mobile agents. Due to space limitation, we refer
readers the performance results of VC2A to [4]. We have prototyped VC2A and
will implement a real application to examine the system in the near future. The
results will be reported when they are available, as will be our experiences using
the system.

References

1. Hsiao, H.C., King, C.T.: Resource Discovery in Peer-to-Peer Infrastructure. In:
High Performance Computing: Paradigm and Infrastructure. John Wiley & Sons
Ltd (2004)

2. Hsiao, H.C., King, C.T.: Tornado: A Capability-Aware Peer-to-Peer Storage Over-
lay. Journal of Parallel and Distributed Computing 64 (2004) 747–758

3. Hsiao, H.C., Huang, P.S., Banerjee, A., King, C.T.: Taking Advantage of the Over-
lay Geometrical Structures for Mobile Agent Communications. In: Proceedings of
the International Parallel and Distributed Processing Symposium, IEEE Computer
Society (2004)

4. Hsiao, H.C., Baker, M., King, C.T.: VC2A: Virtual Cluster Computing Architecture.
Technical report, Department of Computer Science, National Tsing-Hua University,
Hsinchu, Taiwan (2004) http://www.cs.nthu.edu.tw/∼hchsiao/projects.htm.

5. Castro, M., Druschel, P., Ganesh, A., Rowstron, A., Wallach, D.S.: Security for
Structured Peer-to-Peer Overlay Networks. In: Proceedings of the International
Symposium on Operating Systems Design and Implementaion. (2002)

6. Freedman, M.J., Morris, R.: Tarzan: A Peer-to-Peer Anonymizing Network Layer.
In: Proceedings of the International Conference on Computer and Communications
Security, ACM Press (2002) 193–206

7. Butt, A.R., Zhang, R., Hu, Y.C.: A Self-Organizing Flock of Condors. In: Proceed-
ings of the International Conference on High Performance Networking and Com-
puting. (2003)

 J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 615–624, 2004.
© Springer-Verlag Berlin Heidelberg 2004

The Model, Architecture and Mechanism
Behind Realcourse*

Jinyu Zhang and Xiaoming Li

Department of Computer Science,
Peking University, Beijing, 100871, China

{zjy2,lxm}@pku.edu.cn

Abstract. Realcourse is a video stream service supported by a collection of
physical servers distributed all over China. This article provides a comprehen-
sive description on the model, architecture, and operation mechanism behind
realcourse. In particular, the highly-availability feature and dynamic
re-configurability is emphasized.

1 Introduction

Since its birth in April of 2003, University Course Online, http://realcourse.grids.cn
(realcourse in short) has been in non-stop operation for more than one year, in spite
of some of the servers up-and-down, in-and-out from time to time. As of this writing,
realcourse is composed of 20 servers distributed on CERNET as in the following,
which was grown up from initially 4 servers within Peking University campus. Table 1.

Bei-
jing

Shan
ghai

Guang-
zhou

Harbin Xian Wuhan Shenyang Jinan Nanjing chengdu

9 1 2 1 2 1 1 1 1 1

Besides the servers that share the single URL as above, there are more than 1500
hours of quality course video being served, and as a result we normally observe
around 100 on line users at any time. The course videos are from different universi-
ties, including Peking University, Tsinghua University, and Huazhong Unversity of
Science and Technology, etc. They are uploaded to different servers concurrently with
permanent backup copies created in servers other than original ones, and flow from
server to server on demand.

2 Model

A few elements can be identified behind realcourse. },...,,{ 21 msssS = , an open

collection of servers. si also represents the name of the server. The word “open” indi-
cates its dynamic nature, namely m may be different from time to time, which reflects

* This work is supported by ChinaGrid project and 973 grant (G1999032706).

J. Zhang and X. Li

616

servers down-and-up or in-and-out. },...,,{ 21 ncccC = , an open collection of

video clip names. While C is of particular importance in maintaining system single
image, there are two physical copies of each video, the original copy and the backup
copies) respectively. The distribution of C among S is modeled by two mappings

SCf →: ; SCg →:)()(, cgcfi ≠∀ .)(cf is the name of the server

where the original copy of c is stored while)(cg is the name of the server where the

backup copy of c is stored. There is a collection of users or client, ,...},{ 21 uuU = .

An access is started by the execution of a mapping from U to S. SUv →: . v(u)
indicates a particular server of S is chosen to serve a user.

2.1 Functional Objectives

1. If a user u places a visit to the system, no matter which server it is connected to, a
complete C should be presented to him.

2. Any download operation should be completed successfully and transparently,
whether the physic content of c is initially on v(u) or not.

3. The result of any upload operation should be reflected in C, all servers in S host an
identical C. The execution of f and g on every server should get the same re-

sult.

2.2 Collective and Dynamic Objectives

Realcourse is meant to be used by open public. We think failures should be allowed
on servers or network. Thus, we have the following special objectives:

1. A user should not notice the failure or shutdown of a server. More specifically, the
function SUv →: should always be mapped to active servers and they should
always collectively host a complete C. Each server in Realcourse must host a com-
plete C, which we defined as the consistency of C in this paper.

2. A new server or a recovery server should be brought to a consistent state within
certain time frame.

Before proceeding to the following sections that describe our design to implement
these functions, we indicate so-called system state of realcourse is nothing but the
quaternary (S, C, f, g). The task of maintaining a consistent system state means to
have all the servers have identical (S, C, f, g) as timely as possible (or as needed as
possible). In one word, the technical essence of realcourse is maintaining a consistent
system state with respect to gradual change of S and with the promise of non-stop,
complete, and efficient service.

3 Architecture

The architecture of realcourse reflects a design and implementation of f, g and v as
defined in the model above. In particular, each si in S is a Linux server with a unique

The Model, Architecture and Mechanism Behind Realcourse

617

name of si currently deployed on the Internet at 10 different cities in China. All servers

form a loop, as shown in Fig 1.

Fig. 1

On each server, a circular linked-list is used to represent the loop. Each server
knows its predecessor and successor by checking the linked-list. Formally, an opera-

tor suc can be defined as: }1,...,1,0{,)(mod1 −∈= + Nisssuc Nii , N is the total

number of elements in S. Note, Realcourse allows the servers to be inserted or deleted
without stopping the service. Thus, N is actually a changing number (though not dra-
matically). The server-adding and server-deleting procedures are designed to keep
track the live status of S and send the changed information to all active members of S.
The modification of this linked-list on each server is triggered by a Linux signal send
to the service process (instead of restarting the process). This signal causes the proc-
ess to re-read the file that contains the linked-list distributed in advance. The consis-
tency of this linked-list among all running servers is equal to the consistent state of S.
It is also fundamental to the consistency of C because each server needs to inform any
uploading event to all other servers.

In realcourse, g is then defined as:))(()(cfsuccg =

In other words, the two permanent physical copies of c are stored on two succes-
sive servers. Then, it is clear that the consistency of g is based on f and S.

Finally, the consistency of C and f among all servers is the major challenge to
realcourse. We define the consistency of C as “all servers must host an identical C”
while the consistency of f is defined as “all servers know the location of co and the
location of cb ”. Once a video clip is uploaded to one of the servers, the fact of this
uploading (not the clip itself) must be known by all other active servers as quick as
possible. The key technology we use to maintain the consistency is broadcast based
on a reliable asynchronous messaging middleware. Asynchronous messaging mid-
dleware[1] guarantees that a message sent from place A to place B would finally arrive
at B even if the network between A and B fails or B is temporally unavailable. How
long the middleware keep the message can be adjusted by changing the length of the
queue used to store the messages. Any event occurred in realcourse on server si that
changes the state of C is transformed into a message by si and broadcasted to all other
servers. Although the treatment is simple and effective, we understand there are times

J. Zhang and X. Li

618

that the system is not consistent. Nevertheless, with respect the nature of our applica-
tion and observing the following three points, we feel the hazard is neglectable:

• The length of this broadcast message is kept very short, usually several bytes in
realcourse. Together with the infrequency of upload operations, the broadcast
will not cause observable traffic.

• The time it takes to complete the broadcast is normally around one millisecond
when both the network and the target servers are in normal status. This implies
that inconsistency of the system is kept within a very limited situation.

• Realcourse aims at a middle scale system, say hundreds of servers, which we
consider is enough for such an application.

With these in mind, it can be assumed that C of all servers will be put into consis-
tency after all messages finally arrived at their destinations.

Upon an upload, in addition to c,)(cf and)(cg are also broadcasted. All serv-

ers will generate a global directory based on messages they receive in the form of
(c,)(cf ,)(cg). By checking this directory, each server can know what c is in real-

course and where to find those two permanent copies of c. f(c) is the place from
where c is first uploaded. If a server fails in the middle of an uploading of one file, it
will simply delete the uploaded partial content of file and no broadcast is done. If a
server fails in the middle of a downloading, the client can resume the downloading
later like most other ftp servers do.

SUv →: is a more complicated function which can be explained like

),,(SLDv , D stands for the a vector of network distance between u and servers, L

means a vector of the current loads of all servers, S is the vector of free space of all
servers. The execution of v actually means that realcourse will choose the “fastest”,
“light loaded” server with enough storage space for users. The execute mechanism of
v is described in the next section.

Before jumping into the description of the mechanism, some other implementation
issues should be mentioned. In realcourse, each “c” is a video clip with a size of
around 100MB. The communication applied in realcourse includes:

Between two servers: FTP is used for video data, MQSeires is used for message
broadcast.

Between client and server: HTTP or FTP. In order to browse the video course, a
video player is required. currently realcourse supports only RealPlayer and will be
extent to support Media Player of Windows.

In terms of software, a server can be best described as in Fig 2.

4 Mechanism

With emphasis of the dynamic nature of the system, several critical events that occur
in realcourse operations are carefully studied. They are: uploading a video-clip to
realcourse; download (watch) a video from realcourse; add a server, and remove a
server. ConsistencyCheck() function is run by each server every day. First of all, the
implementation of v is introduced because all user-related events begin by the execu-
tion of v. ‘v’ is essential to make failures of some server invisible to users. Realcourse
always choose the currently “active” and “best” server to serve the user.

The Model, Architecture and Mechanism Behind Realcourse

619

ed or cn jp ed gri or
(ds)

u

Local DNS
Server .

.

. .
.

.

.

..

4.1 Implementation of),,(SLDv

Users access realcourse in two ways. Pointing web browser at the URL
http://realcourse.grids.cn/ or by installing a detecting plug-in and pointing the
browser at a special semi-URL “realcourse”.

For the first way, an enhanced central DNS server “ds” (Fig 3) is deployed. It is
the authorized server for sub domain grids.cn. Each server in realcourse collects the
load information and storage space information of its own and sends them to ds in
every minute. The resolution request for domain name “.realcorse.grids.cn” will fi-
nally arrived at ds following the protocol of Domain Name Service[2][3] in 8 steps, ex-
plained in Fig3. Note: The CACHE of Domain Name Servers are disabled by setting
the TTL of DNS record to zero.

Fig. 2.

Fig. 3.

Base on the current load and storage space information about all servers and the
network position of the local DNS Server, ds will choose a “best” server and return

HTTP
Server

FTP
Server

FTP
Client

MQSer-
ies

 Communication Channels t

all other Servers

TCP/IP

Global Directory build on
 (c,f(c), g(c)) D

etect S
erver &

 L
oad Info sender

J. Zhang and X. Li

620

the IP address of this server to u at step . Here, we can assume that u is close to the
“local” DNS server.

For the second way, user is required to install a piece of browser helper object on
Windows. This piece of hook code will start a detecting procedure once user input
“realcourse” in the address area of IE browser. First, it communicates with one server
and retrieves current Linked-List of S, it then sends a detecting package to all servers
consecutively. Each server runs a Detect Server as showed in Fig2. After receiving
the detecting package, the Detect Server will decide a delay of response based on the
current load of itself and free space storage. The first response that arrives at user in-
cludes the IP address of the “best” server and it will also stop the following delivery
of detecting package.

4.2 Implementation of Key Events in Realcourse

Some critical events in realcourse are:

• Upload(u, c,); user u uploads one course named c to R;
• Download(u,c); user u browse a course named c;
• Addition of one server to realcourse;
• Deleting of one server from the realcourse;
• ConsistencyCheck(si); Each si in S runs the consistency check function independ-

ently.

The high availability features of realcourse could be best certified by analysis of
Upload and Download function while the re-configurability of realcourse comes from
the ability to add and delete server in dynamic. In the following section, a language
similar to C is used to describe the upload, download and Consistency check event of
realcourse. Several functions are defined in advance:

− ftp(c,s,d); transport the physical content of c from s to d by FTP, s and d are both
computers with unique IP address. It may be a client or a server. This function re-
turns TRUE if succeed and FALSE if fail.

− Broadcast(c, si, sj); one server send a message to all servers in S to inform that c is
now in C and co is at si and cb is at sj. Note: the destination server of message in-
cludes the sender itself.

− Recv(sk,(c, si, sj)); Server sk received a message (c,si,sj)
− exist(c, si); test if the physical content of c is at si, if yes, return TRUE else return

FALSE.
− isin(s,S); test if element s is in set S, returns TRUE if yes, else returns FALSE.
− yj_download(c,si,sj); copy the physical content of c from si to sj. Both si and sj are

machines with IP addresses. The physical content of c might not be at si,
yj_download will goto f(co) or g(cb) to copy the physical content.

/********Upload********/

Upload(u,c){

si =v(u);/*the currently best server for u is si */
ftp(c,u, si);
sj=suc(si);
broadcast(c,si,sj); /* send message (c,si,sj) to all server */

The Model, Architecture and Mechanism Behind Realcourse

621

for each sk in S{ /*include the sender itself*/
recv(sk, (c,si,sj))

}; /*see below*/

}

recv(sk, (c,si,sj)){
C=C+c; //put the C into consistency
f(co)=si; //put the f into consistency
g(cb)=sj; //put the g into consistency
if(sk==sj){

ftp(c,si,sj); //copy the physical content of c to sj
} // end of if(sk==sj)

} //end of recv
/*********Download********/
Download(u,c){

si=v(u);
yj_download(c,si,u); //download the file from si to u
return;

}
yj_download(c,si,sj){
if(exist(c,si)==TRUE){
ftp(c,si,sj);
return;

}else if(f(co)==si){ /*The content of c should be at si , but
it is corrupted */

yj_download(c,g(cb),si);
}else if(f(cb)==si){ //Server si should have the cb ,but it is

corrupted
 exit; exit;

}else{
if(yj_download(c,f(co), si)==FALSE){

if(yj_download(c,f(cb), si)==FALSE{
exit;

}
}

}
ftp(c.si.sj);
return;

}

/*Note 1: yj_download() is a distributed recursive function. Since the migration of
data between servers is done by FTP, one endless loop could happen in case of both
the original copy and backup copy of c are corrupted. The “exit” statement at is
necessary to avoid this endless loop.

Note 2: Execution of download will transfer file among servers as needed. We name
these physical copies of c as cc. The existence of cc will minimize the response time of
the next download for c.*/

/********ConsistencyCheck********/

ConsistencyCheck(si){

for each c in C{

if(!isin(f(co), S)&& !isin(g(cb),S)){

exit(-1);

J. Zhang and X. Li

622

} /*Both the server of f(co) and g(cb) are deleted. This
situation should be avoid */

if(!isin(f(co), S)&& isin(g(cb),S)){

f(co)=g(cb);

g(cb)=suc(g(cb));

} /*The server of f(co) was deleted, the g(cb) becomes f(co)
and suc(g(cb)) becomes g(cb)*/

if(isin(f(co), S)&& !isin(g(cb),S)){

g(cb)=suc(f(co);

} //The server of g(cb) was deleted, the suc(f(co) becomes g(cb)

if(isin(f(co), S)&& isin(g(cb),S)){

if(g(cb)!= suc(f(co){

g(cb)= suc(f(co);

}

} /*One server is added between f(co) and g(cb), it becomes
g(cb)*/

if((g(cb)==si)&&exist(c,si)==FALSE)){

ftp(c,f(co),si); /*to be sure that one physical copy of c
is at g(cb) */

}

}//end of for

}

Addition of one server sn to realcourse starts by capturing the state of (C,f,g) of
one old server so and copy it to sn. The major challenge comes from that during the
capture of (C, f, g), events may happen and the state we put the new server in may not
be in consistency with other servers. The temporal storage capacity of Asynchronous
Middleware can be used to overcome this issue. What we do in realcourse are in four
steps:

1. At time t1, choose one light-loaded server so, halt the execution of recv function,
inform the addition of sn to all other servers in S including so. All events happen in
realcourse before time t2(see below) will be stored as messages in the Messaging
Middleware.

2. Capture the state of so at t1, copy it to sn and put the sn in state of t1. Suppose this
step end at t2,

3. Right at time t2, recover the executing of recv function on so and start the executing
of recv function at sn. Then, both sn and so will catch up with all other servers in
realcourse.

4. Put sn into the candidate list of best server selection.

Note: the addition of one server into realcourse will put the state of f and g into an
inconsistent state. But, this addition will not affect the normal download and upload
function of realcourse. After execution of ConsistencyCheck() on each server , the
consistency of f and g will recover.

The Model, Architecture and Mechanism Behind Realcourse

623

Deleting one server from realcourse is somewhat easy. If a server si fail for a long
time, it should be deleted from the system. The Linked-List on all other servers will
be updated to tell the absence of si. Realcourse will finally go into consistency after
the execution of ConsistencyCheck()

Note: If two consecutive servers fail between two executions of ConsistencyCheck().
Some c will finally be deleted by a process TaoTai() which is run once a month on each
server. Process TaoTai() deletes those cc that have not be accessed since its last execution.

5 Related Work

Realcourse is a successful application of distributed computing [4] technologies in a
geographically wide area. Different from some traditional distributed fault-tolerant
services like ISIS[5], realcourse emphasizes on giving clients access to the ser-
vice-with reasonable response times-for as much of the time as possible. In
fault-tolerant systems, all replica-managers(servers in case of realcourse)are informed
of the updates operation of users in an “eager” fashion: all replica-managers receive
the updates as soon as possible and they reach collective agreement before passing
control back to client. Compare to other distributed highly-available services such as
The Gossip architecture[6], Bayou storage system[7] and The coda file system[8] , real-
course owns some distinguished characters:

Realcourse aims at non-critical application of video on demand and file storage in
which temporal inconsistency is acceptable only if consistency of whole system will
finally reached. Coda, on the contrast is designed and implemented for a general file
system. By eliminating the “update” operation, realcourse greatly reduce the consis-
tency requirement, while in Gossip architecture and Bayou much effort is made to
maintain the casual order of “updates” operation among replica managers.

The servers in realcourse are not equal to each other. Only two servers are chosen
to keep two permanent physical copies of files. No effort is made to keep track of
those temporal copies of files but the existence of these copies greatly improve the
performance of downloading operation in a way of Wide Area Network Cache. In the
new version of consistency-check procedure a pervasive search is started to find those
“lost” copies in case that both two permanent copies of file are corrupted.

The loop topology of all servers makes it possible for each server to run a Consis-
tency-check procedure independently without any overhead.

By exploiting the reliable communication provided by Asynchronous Messaging
Middleware, realcourse hides the failures of network, which is not rare by our obser-
vation in a Wide Area Network from servers. The consistency of servers is eventually
kept in a “delayed” fashion.

6 Conclusions

Realcourse has been running for more than one year. To our knowledge, with its 20
servers spanned over 10 major cities, it is the first non commercial wide area distrib-
uted content delivery system deployed in China*. In our opinion, the success mainly
comes from the following:

* We don’t know if there is a comparable commercial system running in China or not.

J. Zhang and X. Li

624

• A conceptually clear design. For example, to avoid complexity, we did not
choose to employ a more sophisticated topology among the servers, and we
chose to use simple double backup strategy.

• Careful implementation. For example, to provide efficiency in across-server
download, we chose to use asynchronous socket communication to effectively
form a pipeline, instead of store-forward fashion.

• Using as much open source as possible. Besides the MQ (which is a great help),
all our code is based on opensource, including FTP and Appache.

As for future work, we see the most meaningful next step is to introduce the con-
cept of cache-only servers. Let call the servers discussed above backbone server. The
cache-only server differs from backbone server in: it will neither be a point of upload
operation, nor have the duty to hold permanent backup copies for video clips. Once
this concept is implemented, a lot more servers may be added to the system from the
places with less advanced network conditions, but to serve local client better. We
should see this happen in next few months.

References

1. IBM MQSeries System Administration SC33-1873-01 [DB/CD]
2. P. Mockapetris DOMAIN NAMES - CONCEPTS AND FACILITIES, RFC1034 1987

[S/OL]
3. P. Mockapetris DOMAIN NAMES - IMPLEMENTATION AND SPECIFICATION

RFC1035 1987 [S/OL]
4. George Coulouris, Jean Dollimore, Tim Kindberg, Distributed System Concepts and De-

sign(Third version), ISBN 7-111-11749-2, China Machine Press
5. Birman, K.P. (1993). The process group approach to reliable distributed computing.

Comms. ACM, Vol. 36, No. 12, pp. 36-53
6. Ladin, R., Liskov, B., Shrira, L. and Ghemawat, S.(1992). Providing Availability Using

Lazy Replication. ACM Transactions on Computer System, Vol. 10, No. 4, pp. 360-91.
7. Terry, D., Theimer, M.., Petersen, K., Demers, A, Spreitzer, M. and Hauser, C. (1995).

Managing update conflicts in Bayou, a weakly connected replicated storage system. Pro-
ceeding of the 15th ACM Symposium on Operation Systems Principles, pp. 172-183

8. Satyanarayanan, M., Kistler, J.J., Kumar, P., Okasaki, M.E., Siegel, E.H. and Steere, D.C.
(1990). Coda: A Highly Available File System for a Distributed Workstation Environment.
IEEE Transactions on Computers, Vol. 39, No. 4, pp. 447-59

Managing Irregular Workloads of Cooperatively
Shared Computing Clusters

Percival Xavier, Wentong Cai, and Bu-Sung Lee

School of Computer Engineering,
Nanyang Technological University,
Nanyang Avenue, Singapore 639798

{asxpercival,aswtcai,ebslee}@ntu.edu.sg

Abstract. Cooperative resource sharing enables distinct organizations
to form a federation of computing resources. A functional broker is de-
ployed to facilitate remote resource access within the community grid.
A major issue is the problem of correlations in job arrivals caused by
seasonal usage and/or coincident resource usage demand patterns where
high levels of burstiness in job arrivals can cause the job queue of the
broker to grow to an extent such that its performance becomes severely
impaired. Since job arrivals cannot be controlled, management strategies
must be employed to admit jobs to sustain the resource allocation per-
formance of the broker. In this paper, we present a theoretical analysis of
the problem of job traffic burstiness on resource allocation performance
in order to elicit the general job management strategies to be employed.
Based on the analysis, we define and justify a job management frame-
work for the resource broker to cope with overload conditions caused by
job arrival correlations.

1 Introduction

Grid computing evolved from the need to deploy large-scale applications on
a multitude of computing systems across computer networks. The ability for
such applications to cross administrative domains not only contributes to the
processing capabilities of the grid, but also broadens users’ space for resource
acquisition on the grid. Middleware for computational grids makes it very easy to
connect the computer of a potential user to the grid. We look at the possibility
where organizations are willing to ‘pool’ their computing and data resources
together to form a virtual computing platform. The reason for this is that since a
grid is likely to involve a diverse community of resource users who are themselves
also contributors of resources, there is a likelihood that computing cycles can
frequently be traded in the event that, while some organizations are experiencing
resource shortage, others may not be utilizing their resources at all. Although this
mode of sharing has been described in many instances especially in the domains
of peer-to-peer methodologies [2, 5], little publicly known work has theoretically
explored the management issues associated with a grid formed by cooperative
federated computing clusters.

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 625–634, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

626 P. Xavier, W. Cai, and B.-S. Lee

Following this section, we present a theoretical study of the problems and
explain the necessary mechanisms to counteract them. In the analysis, we first
evaluate the size of queue storms based on the contributions made by partici-
pating organizations. Next, we observe the effect of introducing slack time into
deadline jobs to evaluate the improvement in resource allocation performance.
In section 3, we then propose a job queue management framework based on the
conclusions derived from the experiments. In section 4, we present the related
work, which is followed by the conclusions and future directions in section 5.

2 Analysis of Cooperative Resource Sharing

The grid consists of a set of computing clusters belonging to a consortium of
physical organizations that are located geographically within the same WAN.
A Clearinghouse, which is essentially a resource broker, manages the federation
of shared resources and is therefore the access point where requests for remote
resources are made [14]. In this experiment, we demonstrate the physical conse-
quence on resource management if all resource providing agents do not share out
sufficient resources with respect to the community’s workload. Specifically, the
following experiments reflect the importance of a job admissions control strategy
to deal with resource overload conditions that lead to queue storms.

2.1 Experimental Model

Variables. The parameters in the following list reflects the experimental vari-
ables that were expressed in the analysis.

– Ts - Defines the total number of simulation intervals, where each interval is
assumed to be 1 day. Ts was set to 1000 for all experiments.

– N - The total number of organizations to be simulated.
– L - The peak number of jobs created for a single simulation interval for each

organization (assumed to be the same for all organizations).
– η - The load-contribution ratio of all organizations.
– H - This value is proportional to the extent of job arrival correlations.

Job Submissions. The frequency of job arrivals was simulated based on the
fast fractional gaussian noise generator (FGN). This mathematical workload has
been used to model long-range dependencies of job inter-arrivals on supercom-
puters and a myriad of other applications [7]. FGN is modelled using the synthe-
sis of a high frequency Gaussian-markov process and a low frequency Gaussian
process. The parameter that dictates the extent of job arrival correlations result-
ing from long-range dependencies is the H. Synthetic traces were first generated
from the FGN workload model. It was then modified to obtain the community
workload intensity profile. This information is necessary to define the proportion
of job arrivals for the entire simulation window. To generate n number of jobs
at t, the simulator uses a generator function n(t) = wH(t) × LN , where wH(t)

Managing Irregular Workloads of Cooperatively Shared Computing Clusters 627

is the community workload intensity profile for a given H value for 0 < t ≤ Ts.
The generator simulates jobs for all organizations by assuming that they have
the same profile of traffic burstiness and load (number of submitted jobs) for
any given time index t. This is done because we want to observe the ‘collective’
behavior of the community as a whole and then examine its impact on the overall
resource allocation performance. Each job is assumed to require one CPU. The
length of jobs were simulated using a random normal distribution with a mean
value of 3 days with a standard deviation of 2 days.

Simulation Model. The diagram in Figure 1, is the simulation model designed
for the following experiments. The community workload defined by n(t) is di-
rected to the clearinghouse. It acts as a central broker to process job submissions
and relies on a job dispatcher to submit admitted jobs to an appropriate cluster
resource manager. The round-robin allocation policy is used by the job dispatcher
to handle the submission of jobs from the broker’s queue to the respective clus-
ters. The job dispatcher will only submit jobs to clusters that are not utilized at
their full capacity. Each resource as shown in Figure 1 represents a cluster that
belongs to a distinct organization. It has a constant quantity representing the
number of jobs it can execute concurrently. Each cluster manages its jobs based
on the EASY backfilling algorithm [11].

Org 1

Org 2

Clearinghouse

Org 2

n(t)

Resource Clusters of
each Organization

SubmitQueue

Fig. 1. Simulation Model of the Clearinghouse

Performance Measures

– Q - The measure of a queue storm is a value that is obtained from the
Cumulative Distribution Function (CDF) of queue length, q, from a given
simulation run. This value is expressed as q > Q at p = 5%. This expression
gives queue size Q, so that q is greater than Q with 0.05 probability for the
entire simulation run.

– JobAllocationSuccess - It is the ratio of the number of jobs that meet their
required execution deadlines and the total number of submitted jobs. This
is a common performance measure for many scheduling algorithms involving
jobs with deadlines.

628 P. Xavier, W. Cai, and B.-S. Lee

– JobAllocationFailure - It is the ratio of the number of jobs that cannot
meet their required execution deadlines and the total number of submitted
jobs.

2.2 Analysis of Queue Storms Based on Load-Contribution Ratio

In order to analyze the impact that the simulation parameters have on queue
storms, measurements on the rate of change of queue storms were taken for dif-
ferent values of N and η. Figure 2 shows the results of the analysis. MRCN and
MRCη are measurements of the rate of change of Q at a given N and η respec-
tively for two intensities of burstiness (i.e. H = 0.6 and H = 0.8). From Figure 2,
we can observe from MRCN that, provided if all organizations are consistently
cooperating to contribute resources at a given η, then the initial rate of change
of queue storms would first increase to a certain peak value before dropping to
a very low value with further increases in N . This means that, once the level of
membership exits the critical point (peak), then further increments in participa-
tion would not further degrade the performance of the system. Also, notice that
if with improved load-contribution ratios (smaller values), this transition would
become less visible.

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

Organizations

M
ar

gi
na

l C
ha

ng
e

in
 Q

ue
ue

 S
to

rm

H=0.6

L/C = 1.2
L/C = 1.3
L/C = 1.4
L/C = 1.5
L/C = 1.6

0 5 10 15 20 25 30
0

10

20

30

40

50

60

Organizations

M
ar

gi
na

l C
ha

ng
e

in
 Q

ue
ue

 S
to

rm

H=0.8

L/C = 1.2
L/C = 1.3
L/C = 1.4
L/C = 1.5
L/C = 1.6

1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6
0

10

20

30

40

50

60

70

80

90

Load−Contribution Ratio

M
ar

gi
na

l C
ha

ng
e

in
 Q

ue
ue

 S
to

rm

H = 0.6

N = 4
N = 6
N = 8
N = 10
N = 12
N = 15
N = 20
N = 30

1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6
0

50

100

150

200

250

300

350

400

Load−Contribution Ratio

M
ar

gi
na

l C
ha

ng
e

in
 Q

ue
ue

 S
to

rm

H=0.8

N =4
N =6
N = 8
N = 10
N = 12
N = 15
N = 20
N = 30

Fig. 2. Marginal Effect of N (MRCN) for H=0.6 and H=0.8 and the Marginal Effect
of η (MRCη) for H=0.6 and H=0.8 on Queue Storms

Figure 2 also shows the change of queue storms for MRCη by varying η. It can
be seen that if the entire community (at worst case) were to increase their η, that

Managing Irregular Workloads of Cooperatively Shared Computing Clusters 629

is to say, lower their contributions or increase their average loads alone, then the
rate of change of queue storms would increase considerably. It can be especially
so if N is large for H=0.8 when compared with H=0.6. The MRCN graph shows
that as N increases to a large value, the size of queue storms would not increase
indefinitely. The extent of a storm would be influenced more significantly by the
stipulated η for the community. If unacceptable queue storms subsequently do
occur due to changes in average load for some organizations, instead of limiting
or reducing membership N , it is more sensible to keep η of each organization in
check. This is especially true if correlations in job arrivals are likely to exist.

2.3 Effect of Introducing Slack Time for Job Management

In this experiment, we will investigate how the introduction of allowable slack
time can lead to improved system management given the presence of queue
storms. Slack time allowance is the additional time delay allowed for a single
job to remain in the queue. Longer slack time of jobs allow a greater chance
for the management system to schedule jobs more effectively, especially when
demand exceeds availability. While there are many schemes suggested in the
literature of supercomputing to handle the scheduling of jobs with allowable
slack time [1, 3, 4], we want to investigate how the introduction of slack time
can influence the successful management of jobs by a brokering system. For
successful execution of an arbitrary job p, it means that the following conditions
must hold:

p.startT ime ≤ p.slackT ime + p.submitT ime (1)

An issue concerned is then how users in a community would define the al-
lowable slack time for their submitted jobs. Although, there may be a plethora
of schemes that reflect the users’ psychology on tolerable slack time, we assume
that it is proportionally related to the execution time of the job. As such, a slack
tolerance factor (STF) was used. STF influences the allowable slack time of a
job as given:

p.slackT ime = STF × p.jobLength (2)

We varied STF from 0.1 to 0.5 for both H=0.6 and H=0.8 in Figure 3.
The impact of introducing slack tolerance to counteract the effects of queue
storms only if there is relatively lower level of burstiness (H=0.6). Note that
when H=0.8, if the queue size is large, then the resource allocation performance
remains poorer than H=0.6 regardless of the extent of relaxing STF.

In a community of cooperators where job arrivals are not that highly corre-
lated, allowable slack time is highly effective to counteract the presence of queue
storms. This fact however, cannot be applied if the correlations are high. As such,
reducing the size of queues therefore becomes a greater necessity. In reality, it
can be difficult to measure correlations on job arrivals of the community work-
load and hence apply differential treatment to the ensuing burstiness. Therefore,
as a matter of convenience and assurance, queue storms must be exacerbated to

630 P. Xavier, W. Cai, and B.-S. Lee

Fig. 3. Impact of Slack Tolerance on Job Allocation Success given the Presence of
Queue Storms for H=0.6 and H=0.8

an extent such that its effects are acceptable before mechanisms for enforcing
allowable slack time on jobs are implemented.

3 Job Queue Management Framework

We have shown that it is necessary to control the size of queue storms prior
to the introduction of slack allowance in order for job management to be effec-
tive. To attack the problem of queue storms, a critical question we asked was
if an optimal threshold on queue size exists such that it minimizes the number
of unsuccessful job allocations given a certain level of load in the system. We
expect this because due to the incidence of sudden surges in job arrivals, those
with longer execution times may inadvertently slow down the servicing time of
the system. Since longer jobs cannot be delayed indefinitely, admission control
on such jobs may significantly improve the global performance of resource al-
location. On the other extreme, it must be controlled otherwise no jobs would
be executed. Therefore, if an optimal queue size threshold does exist, how and
what variables would influence this value? We noted that the threshold was gen-
erally influenced by the statistical nature of the job mix. We define the statistical
structure of a job mix as follows:

T = (tavg, σtavg , STFavg, σSTFavg) (3)

tavg and STFavg are the average execution time and average allowable slack
factor. σtavg and σSTFavg are their corresponding standard deviations, assuming
a normal distribution. Also, due to the dynamism of the community, we expect
fluctuations in job mix characteristics because of seasonal usage coming from
different workflows. From our experiments, we found that STFavg has a more
significant influence on the optimal queue size threshold using the current perfor-
mance measure. To cope with the resulting variations of optimal thresholds due
to STF, we employed both static and adaptive thresholding for admission con-
trol. In the static-based approach, we chose the threshold that gave the average

Managing Irregular Workloads of Cooperatively Shared Computing Clusters 631

job allocation performance. In addition, since we expected the job mix fluctua-
tions to be quite severe especially in the case that the level of membership as well
as the servicing capacity of resources in the sharing community may be varying
in the long run, we designed an adaptive mechanism to dynamically compute
the optimal threshold according to the nature of submitted jobs at discrete time
intervals. The pseudocode in Algorithm 1 gives an overview of the process of job
admissions control by the clearinghouse as in Figure 1. The admissions control
process is triggered only upon an arrival of a new job. When a job arrives, the
queue size threshold will be obtained from GetThreshold. If a static scheme is
employed, a constant value will be returned. But if an adaptive scheme is used,
GetThreshold will communicate with a JobPropertyMonitoring thread and ap-
ply a mapping function to compute the actual queue threshold size. If the current
queue size is greater than the threshold, the job’s originating organization will
be found through Membership. η is the instantaneous load-contribution ratio of
organization j. We measure the average consumed load using JobAvgLoad and
the contribution by calculating the total number of executed jobs not belonging
to j using JobAvgSrv. We employ this mode of measure to dynamically assess
an organization’s true contribution. Due to the fact that the shared resources
are likely to be heterogeneous, the value computed by JobAvgSrv is a direct
measure of users’ preferences over any computing clusters contributed by their
respective organizations. φ represents a fixed time interval prior to the arrival
time of the job. If the load-contribution ratio η is smaller than the stipulated
ratio denoted by ηnom, then the job is admitted and therefore pushed into the
job queue. Otherwise, the job is rejected.

Algorithm 1: Admission Control Process
On Event Job p Arrival
K = GetThreshold
if Queue size > K then

j = Membership(p)
η = JobAvgLoad(j,φ)

JobAvgSrv(j,φ)
if η < ηnom then

Enqueue(p)
else

ReplyFail
end if

else
Enqueue(p)

end if

We observed the effect of thresholding on resource allocation, for four dis-
tinct classes of hypothesized workloads with different statistical properties of
submitted jobs. They are listed in Table 1.

The results for resource allocation with respect to the predefined workloads,
are given in Figure 4. For job mix 1, because of the presence of thresholding, the
deletion of jobs in the queue has benefitted the majority of jobs given their very

632 P. Xavier, W. Cai, and B.-S. Lee

Table 1. Workloads to Examine Effect of Queue Size Thresholding for Job Manage-
ment

No Description Specification
1 Low STF STFavg=0.3 σSTFavg=0.2
2 High STF STFavg=0.6 σSTFavg=0.2
3 Rand1 STF Alternate 25 Days

(1)STFavg=0.2 σSTFavg=0.1
(2)STFavg=0.6 σSTFavg=0.1

4 Rand2 STF Alternate 50 Days
(1)STFavg=0.2 σSTFavg=0.1
(2)STFavg=0.6 σSTFavg=0.1

short STF. This improvement was less observable when job mix 2 was used as
more jobs were able to tolerate allocation delays. Also, note that adaptive thresh-
olding was more successful on job mix 1 than 2 because the nominal threshold
for static management was much closer to the latter job mix. Since the adaptive
scheme can track the statistical nature of the workload, it was able to progres-
sively modify the optimal threshold to improve the management of the queue
size. Job mix 3 and 4, were used to demonstrate the effectiveness of adaptive
management of the queue threshold under different degrees of fluctuations in the
overall workload statistics. It can be seen that if fluctuations occur at a lower
frequency as in job mix 4, the differences in performance is more significant than
high frequency fluctuations. When fluctuations are less frequent, the threshold
mechanism is able to respond more effectively to changes in job mix statistics.

Fig. 4. Performance of Resource Allocation for Different Job Mixes given Different
Queue Size Thresholding Methods

Managing Irregular Workloads of Cooperatively Shared Computing Clusters 633

4 Related Work

In our work, jobs are handled in FCFS manner. Common FCFS batch job man-
agers support different types of priority FCFS algorithms without admission
control mechanisms. Job admissions on computing resources have largely fo-
cused on real-time, periodic applications in which the tasks have highly variable
utilization requirements and that their deadlines are firm [3]. A popular method
of jobs admissions is to apply slack stealing into the scheduling process that has
been applied in many instances [9, 10]. With complete knowledge of the system’s
execution requirements, slack stealing determines whether there is adequate time
in the system to admit an aperiodic task at a given priority level.

Tia et. el. employed a task classification method (using a threshold) to sepa-
rate jobs guaranteed under the Rate-Monotonic Scheduled conditions from those
which would require additional scheduling effort [13] . Slack-based (SB) Algo-
rithm proposed in [12] uses a backfilling algorithm to improve system throughput
and user response times. The main idea of of this algorithm is also to assign al-
lowable slack for each job. The scheduler assigns the slack by using cost functions
that take into consideration certain priorities associated with the job. The Real-
Time (RT) algorithm, proposed in [8] is an approach to schedule uni-processor
tasks with hard real time deadlines on multi-processor systems. This algorithm
tries to meet the specified deadlines for the jobs by using heuristic functions.
QoPS proposed in [6] tries to find a feasible schedule that is able to meet the
deadlines of all jobs for every newly arriving job. When a violation occurs, the
newly arrived job will fail to be scheduled.

Although the above works perform job admission functions, they generally
re-process the current schedule of allocated jobs to ‘find’ an allocation for a
newly arrived jobs. Although, such methodologies when translated to a grid can
be performed distributively at each organization’s resource manager, they would
still require substantial computational effort. In our work, we focus on employing
‘adaptiveness’ - that is, by making use of a separate running thread to evaluate
the current statistical properties of the community’s job mix to control the queue
size. Without the need for direct scheduling based on the slack allowable for each
newly arriving job, the job management framework eliminates the need to use
of algorithms to perform admission control.

5 Conclusions and Future Work

We have justified a job management framework for a computational grid to re-
duce the negative effects of irregular job arrivals. The critical aspect of managing
community workloads is to take into account the fluctuating statistical proper-
ties of submitted jobs to compute a threshold for the job admissions process.
Also, in a cooperative community, fair play is achieved by enforcing a certain
load-contribution ratio for each organization to act as a throttle to prevent over-
loading due to unusually high number of job arrivals. The admitted jobs are
further filtered by controlling the size of queues according to statistical prop-

634 P. Xavier, W. Cai, and B.-S. Lee

erties of the job mix before being allocated to resources. Although the generic
framework is in place, the practical competence of the system has not been fully
investigated. For this to be done, realistic workloads characterizing the specific
behavior of users and their application models must be derived and applied into
the analysis.

References

1. P. Altenbernd and H. Hansson. The slack method: A new method for static allo-
cation of hard real-time tasks. Real-Time Systems, 15(2):103–130, 1998.

2. N. Andrade, W. Cirne, and F Brasileiro. Our Grid: An approach to easily assemble
grids with equitable resource sharing. 9th Workshop on Job Scheduling Strategies
for Parallel Processing, pages 53–68, Jun 2003.

3. A. Atlas and A. Bestavros. Slack stealing job admission control scheduling. Tech-
nical Report 1998-009, Boston University, 2 1998.

4. R. I. Davis, K. W. Tindell, and A. Burns. Scheduling slack time in fixed priority
preemptive systems. In IEEE Real-Time Systems Symposium, IEEE Computer
Society Press, pages 222–231, 1993.

5. D. Epema, M. Livny, R. Van Dantzig, X. Evers, and J. Pruyne. A worldwide flock
of condors: Load sharing among workstation clusters. Future Generation Computer
Systems, 12:53–65, 1996.

6. M. Islam, Balaji P., Sadayappani P., and D. K. Pandai. QoPS: A QoS based scheme
for parallel job scheduling. In Job Scheduling Strategies for Parallel Processing: 9th
International Workshop, Jun 2003.

7. S. Kleban and S. Clearwater. Quelling queue storms. In 13th International Con-
ference High-performance and Distributed Computing, Jul 2003.

8. K. Ramamritham, J. A. Stankovic, and P. Shiah. Efficient scheduling algorithms for
real-time multiprocessor systems. IEEE Transactions on Parallel and Distributed
Systems, 1(2), Apr 1990.

9. S. Ramos-Thuel and J. Lehoczky. On-line scheduling of hard deadline aperiodic
tasks in fixed-priority systems. Real-time Systems Symposium, Dec 1993.

10. S. Ramos-Thuel and J. Lehoczky. Algorithms for scheduling hard aperiodic tasks
in fixed-priority systems using slack stealing. Real-time Systems Symposium, Dec
1994.

11. J. Skovira, W. Chan, H. Zhou, and D. Lifka. The EASY-loadleveler api project.
Job Scheduling Strategies for Parallel Processing, pages 41–47, 1996.

12. D. Talby and D. G. Feitelson. Supporting priorities and improving utilization of
the ibm sp2 scheduler using slack based backfilling. In 13th Intl. Parallel Processing
Symposium, pages 513–517, Apr 1997.

13. T. Tia, Z. Deng, M. Shankar, M. Storch, J. Sun, L. Wu, and J. Liu. Probabilistic
performance guarantees for real-time tasks with varying computation times. In
Real-time Technology and Applications Symposium, Jun 1997.

14. P. Xavier, B. Lee, and W. Cai. A decentralized hierarchical scheduler for a grid-
based clearinghouse. In Workshop on Massively Parallel Processing in conjunction
with IPDPS’03, Apr 2003.

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 635–647, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Performance-Aware Load Balancing for Multiclusters∗

Ligang He, Stephen A. Jarvis, David Bacigalupo, Daniel P. Spooner,
and Graham R. Nudd

Department of Computer Science, University of Warwick,
Coventry, CV4 7AL, United Kingdom
liganghe@dcs.warwick.ac.uk

Abstract. In a multicluster architecture, where jobs can be submitted through
each constituent cluster, the job arrival rates in individual clusters may be un-
even and the load therefore needs to be balanced among clusters. In this paper
we investigate load balancing for two types of jobs, namely non-QoS and QoS-
demanding jobs and as a result, two performance-specific load balancing strate-
gies (called ORT and OMR) are developed. The ORT strategy is used to obtain
the optimised mean response time for non-QoS jobs and the OMR strategy is
used to achieve the optimised mean miss rate for QoS-demanding jobs. The
ORT and OMR strategies are mathematically modelled combining queuing
network theory to establish sets of optimisation equations. Numerical solutions
are developed to solve these optimisation equations, and a so called fair work-
load level is determined for each cluster. When the current workload in a cluster
reaches this pre-calculated fair workload level, the jobs subsequently submitted
to the cluster are transferred to other clusters for execution. The effectiveness of
both strategies is demonstrated through theoretical analysis and experimental
verification. The results show that the proposed load balancing mechanisms
bring about considerable performance gains for both job types, while the job
transfer frequency among clusters is considerably reduced. This has a number
of advantages, in particular in the case where scheduling jobs to remote re-
sources involves the transfer of large executable and data files.

1 Introduction

As grid technologies gain in popularity, separate clusters are increasingly being inter-
connected to create multicluster computing architectures for the processing of scien-
tific and commercial applications [1][2][5]. These constituent clusters may be located
within a single organization or across different geographical sites [3][6]. Load balanc-
ing across such architectures is recognised as a key research issue. If users located at
different administrative domains submit jobs through domain-specific portals, there
may be different submission patterns. Without intervention, this may lead to an un-
balanced workload distribution among different domains; and the overall performance
may be compromised.

∗ This work is sponsored in part by grants from the NASA AMES Research Center (adminis-

trated by USARDSG, contract no. N68171-01-C-9012), the EPSRC (contract no.
GR/R47424/01) and the EPSRC e-Science Core Programme (contract no. GR/S03058/01).

L. He et al. 636

Performance requirements are likely to vary depending on the job type. When the
jobs have associated QoS demands (which we call QoS-demanding jobs or QDJs),
performance is usually used to measure the extent of QoS-demand compliance; when
jobs have no associated QoS demands (which we call non-QoS jobs or NQJs), a
common performance criteria is to reduce the mean response time [9][12]. An exam-
ple of the QoS is job slack [10][14]. The QoS of a job is satisfied if the job' waiting
time (in the system) is less than its slack [15]; otherwise, the QoS is failed. Mean miss
rate captures the aggregate slack failure and is therefore used as a performance metric
to measure the proportion of jobs whose QoS demands fail.

In this paper, load balancing techniques are addressed for both QoS-demanding
jobs (QDJs) and non-QoS demanding jobs (NQJs) to improve the job type-specific
performance requirements in a multicluster. Two multicluster load balancing strate-
gies, Optimised mean Response Time (ORT) and Optimised mean Miss Rate (OMR),
are developed. The aim of ORT is to achieve optimised mean response time for NQJ
workloads and the aim of OMR is to achieve the optimised mean miss rate for QDJ
workloads. The ORT and OMR strategies are mathematically modelled combining
queuing network theory to establish sets of optimisation equations. Numerical
solutions are developed to solve the optimisation equation sets and determine a fair
workload level for each cluster. When the current workload in a cluster reaches the
pre-calculated fair workload level, the jobs subsequently submitted to the cluster are
transferred to remote less-loaded clusters for execution.

There are a number of established workload allocation techniques in parallel and
distributed systems [12][9]. A static workload allocation strategy is investigated in
[12] to achieve the optimised mean response time; this strategy is specifically limited
to a single cluster environment. Workload allocation techniques for multiclusters are
addressed in [9] where it is assumed that the multicluster has a central entry point for
the receipt of submitted jobs. In this paper, we assume that jobs can be
submitted through each local cluster, and therefore the further problems brought
about by the uneven submission patterns of jobs at the clusters also needs to be
considered.

The problem of uneven job arrival patterns in different resources is addressed in a
number of load balancing techniques [8][13]. A load balancing mechanism is pre-
sented in [8] for multi-domain environments. The mechanism identifies the least
loaded computer among all domains and when a job is submitted to the system it is
scheduled on that computer, whichever domain the job is actually submitted to.
Hence, a job has to be transferred to a remote domain if the local domain does not
contain the current least loaded computer.

In this paper however, a fair workload level is calculated for each cluster. Only
when the current workload in a cluster exceeds its specified fair workload,
does the cluster transfer the newly submitted job to a remote cluster. Although the
load balancing technique presented in this paper may not achieve the best possible
response time for a specific job, theoretical analysis and experimental studies show
that considerable performance gains are still achieved in terms of the jobs' mean
response time. Moreover, the job transfer frequency among clusters is dramatically
reduced. This is desirable when jobs require the transfer of large executable and data
files.

Performance-Aware Load Balancing for Multiclusters 637

The workload allocation and load balancing techniques referenced above are ap-
plied to non-QoS jobs (NQJs). In this paper, techniques for allocating QoS-
demanding jobs (QDJs) in multiclusters are also presented. The technique is similar to
that for NQJs, except that a fair workload level for each cluster is otherwise calculated
to obtain the optimised mean miss rate for the QDJs.

The rest of the paper is organized as follows. The system and workload model is
discussed in Section 2. Section 3 presents the load balancing techniques for NQJs and
QDJs in multiclusters. The performance of these techniques is evaluated in Section 4.
Section 5 concludes the paper.

2 System and Workload Model

The multicluster architecture assumed in this paper is shown in Fig.1. The system
consists of n different clusters, where each cluster comprises a set of homogeneous
computers. Cluster i (1≤i≤n) is modelled using an M/M/mi queue, where mi is the
number of computers in cluster i. Jobs can be submitted through each local cluster,
where they are queued for scheduling. The clusters in the multicluster are intercon-
nected through an agent system [7], which is able to monitor the job submission in
each cluster and determine the mean arrival rate of the jobs submitted to the entire
multicluster. The mean arrival rate is utilized by the multicluster workload manager
(which we call MUSCLE) to calculate the fair workload level for each cluster through
the ORT and OMR strategies (for NQJs and QDJs, respectively).

Job submission

Processing computers

Local Schedulers

Waiting queues

…

…

…
Agent

MUSCLE

Fig. 1. The multicluster architecture

The fair workload level for each cluster is measured by the mean number of jobs in
its waiting queue. The local scheduler in each cluster is informed of its fair workload
level. When the current number of jobs in the waiting queue in a cluster reaches its
specified fair workload level, subsequent jobs are then transferred by MUSCLE (and
the supporting agent system) to other suitable clusters. Each local scheduler processes
locally submitted and remotely transferred jobs based on a First-Come-First-Served
basis. The scheduling itself is non-preemptive. The jobs investigated in this
paper are independent and each QDJ has a slack which follows a uniform distribution
in [sl, su].

L. He et al. 638

3 Load Balancing Techniques

Suppose that the mean arrival rate of the jobs submitted to the multicluster is λ. The
overall performance of the job execution depends on the workload distribution among
the clusters. The fair workload level for each cluster, measured by the mean number
of jobs in its waiting queue, is determined in this section. The approaches for NQJs
and QDJs differ as they have different performance requirements.

3.1 ORT (Optimised Mean Response Time) Strategies for NQJs

The ORT strategy aims to optimise the mean response time of the NQJs in the multi-
cluster. The response time of a job is defined as the time from when the job arrives at
the system until it is completed. The following analysis first establishes the optimisa-
tion equations for the mean response time, then a numerical solution to the optimisa-
tion equations is developed and the fair workload level is determined.

The response time of a job is its waiting time in the queue plus its execution time.
Hence, the average response time of the jobs in cluster i, denoted as Ri, can be com-
puted using Eq.1, where iW is the mean waiting time of the jobs in cluster i and ui is
the service rate of the computers in cluster i.

i
ii

u
WR

1+= (1)

Cluster i, containing mi computers, is modelled using an M/M/mi queue (1≤i≤n).
According to queueing theory [11], the mean waiting time of jobs, iW , is computed
using Eq.2, where ρi is the utilization of cluster i and W0i is the mean remaining execu-
tion time of the jobs in service when a new job arrives.

i

i
i

W
W

ρ−
=

1

0 (2)

The formula for W0i is given in Eq.3 [4], where Pmi is the probability that the system
has no less than mi jobs.

ii

mi
i

um

P
W =0 (3)

Suppose that in the total workload in the entire multicluster, the fraction of work-
load allocated to cluster i is αi, then,

ii

i
i

um

λαρ = (4)

Pmi in Eq.3 is given in Eq.5 [4][11].

−
+−

=
−

= !)1(

)(

!

)(
!)1(

)(
1

0 m

m

k

m
m

m
P

i

k
ii

m

k

k
ii

ii

m
ii

mi
i

i

ρ
ρρρ

ρ (5)

Using Eqns.1-5, the formula for Ri, in terms of αi, is derived and is shown in Eq.6.

Performance-Aware Load Balancing for Multiclusters 639

i

iii

um

m

u
m

k

k

u
i

m

u
ii

i
u

um
k

m

um
R

ii

i

i

i

i
i

i

i

i

i

i

1

)(
)1(

)(

!

)(
!

)(

2
1

0

+

−
−

+

=
−

=

λαλα

λαλα

λα

(6)

Thus, the mean response time of the incoming jobs over these n clusters, denoted
by R, can be computed - see Eq.7.

=
= n

i
iiRR

1
α (7)

Hence, in order to achieve the optimal mean response time of the job stream in the
multicluster, the aim is to find a workload allocation {α1, α2…,αn} that minimizes

Eq.7 subject to
=

=
n

i

i

1

1α and 0≤αi≤
λ

iium (the constraint αi≤
λ

iium is used to ensure

that cluster i does not become saturated). This is a constrained-minimum problem and
according to the Lagrange multiplier theorem, solving this problem is equivalent to
solving the following equation set.

≤≤=−
∂
∂−

∂
∂

≤≤=

==

=

)(10)1()(

)(0,1

11

1

bnkvR

a
um

n

i
i

k

n

i
ii

k

ii

i

n

i
i

α
α

α
α

λ
αα

(8)

Since αi is the only unknown variable in the expression of Ri, Eq.8 can be reduced
to Eq.9 by solving the partial differential equations in Eq.8.b.

≤≤=
∂
∂

≤≤=
=

)(1)(

)(0,1
1

bnkvR

a
um

kk
k

ii
i

n

i
i

α
α

λ
αα

(9)

It is impossible to find the general symbolic solution {α1, α2…,αn} from Eq.9,
however, we identify a property of Eq.9.b that enables us to develop a numerical solu-
tion. The property is shown in Theorem 1 (the proof is omitted). Based on this prop-
erty, we develop a numerical solution to solve Eq.9 and therefore derive the optimised
workload allocation {α1, α2…,αn}. The numerical solution is shown in Algorithm 1.

Theorem 1.)(kk
k

R α
α∂
∂ is a monotonically increasing function of αk.

Algorithm 1. Computation of workload allocation among
clusters for optimised mean response time
1. Let lower and upper limits of the mean response
time be v_lower and v_upper;
2. while (v_lower≤v_upper)
3. v_mid=(v_lower+ v_upper)/2;
4. for each cluster i (1≤i≤n) do

L. He et al. 640

5. if (v_mid<
0|)(=∂

∂
i

ii
i

R αα
α

)

6. αi=0;

7. else if (v_mid>
λ

iium)

8. v_upper=v_mid;
9. continue;
10. while (α_lower≤α_upper)
11. α_mid=(α_lower+α_upper)/2;
12. v_cur=

midii
i

i
R _|)(ααα

α =∂
∂ ;

13. if (the difference between v_cur and
v_mid is less than v_valve)
14. αi=α_mid;
15. if (v_cur is less than v_mid)
16. α_lower=α_mid;
17. else
18. α_upper=a_mid;
19. end for

20. α_sum=
=

n

i
i

1

α ;

21. if (the difference between α_sum and 1 is less
than α_valve)
22. the current set of αi (1≤i≤n) is the cor-
rect workload allocation;
23. else if (α_sum is less than 1)
24. v_lower= v_mid;
25. else
26. v_upper= v_mid;
27. end while

Since a binary search technique is used to search for v and αi in their respective
search spaces [v_lower, v_upper] and [α_lower, α_upper], the time complexity of
Algorithm 1 is)loglog(αkknO v

, where kα and kv are the number of elements in the

search space of v and αi, which equal
ϕ

lowervupperv __ − and
γ

αα lowerupper __ − ,

respectively (ϕ and γ represent the precision in the calculation). Since ϕ and γ are pre-
defined constants, the time complexity is linear with the number of clusters, that is n.

The feasibility and effectiveness of Algorithm 1 are shown in Theorem 2.

Theorem 2. The workload allocation strategy {α1, α2…,αn} computed by Algorithm 1
minimizes the average response time of the incoming job stream in a multicluster sys-
tem of n clusters.

After αi (1≤i≤n) is determined, the mean number of jobs in the waiting queue of
cluster Ci, denoted by Ni, can be calculated using Eq.10 [11]; where Wi is the jobs'
mean waiting time. Wi can be calculated using the first item to the right of Eq.6.

Performance-Aware Load Balancing for Multiclusters 641

iii WN ×= λα
(10)

Ni is regarded as the fair workload level for cluster i. When the current number of
jobs in the waiting queue of cluster i is less than Ni , the arriving jobs are scheduled
locally; otherwise, the local scheduler of cluster i transfers the arriving jobs to the
supporting agent system where they are further dispatched to the cluster with the least
load (defined by Eq.11) among those clusters whose current number of jobs in the
waiting queue is less than its fair workload level (if such a cluster does not exist, the
jobs are scheduled to the cluster with the least load among all clusters).

ii

i
i um

mqueuewaitingtheinnumberjobthe
load

+
= (11)

3.2 OMR (Optimised Mean Miss Rate) Strategy for QDJs

The QoS of a QDJ fails if its waiting time is greater than its slack. The performance
criterion for evaluating the scheduling of QDJs differs from that for NQJs in that it
typically aims to minimize the fraction of jobs that miss their QoS, termed the miss
rate. In this subsection, a workload allocation strategy called OMR is developed,
whose aim is to optimise the mean miss rate of the submitted QDJs in the multiclus-
ter. Every QDJ has some slack that follows a uniform distribution. Its probability den-
sity function S(x) is given in Eq.12, where su and sl are the upper and lower limits of
the slack, respectively.

lu ss
xS

−
= 1

)((12)

We continue to model cluster i (of mi computers) as an M/M/mi queue (1≤i≤n). As
in queuing theory [11], in an M/M/mi queue the probability distribution function of
the job waiting time, Pw(x) (which means that the probability that the job waiting time
is less than x), is given by Eq.13 [11], where ρi and Pmi are the same variables as those
found in Eq.2 and Eq.3.

xum
miw

iiiePxP)1(1)(ρ−−−= (13)

Using the probability density function of slack, the miss rate of the QDJs allocated
to cluster i, denoted by MRi, and can be computed by Eq.14.

MRi= dxxPxS
u

l

s

s
w−))(1)(((14)

)()(
)1(

)(

!

)(
!

][)(

2
1

0

)()(

luiii

ii

i

k

i

i
m

k

k

i

i

i

sumsumm

i

i
ii

i

ssum

um

u
k

um

ee
u

um
MR

i

uiiiliiii

−−
−

+

−
=

−

=

−−−−

λαλα

λαλα

λα λαλα (15)

Applying Eq.12 and Eq.13 and solving the integral, Eq.14 becomes Eq.15, where
the workload fraction αi for cluster i is the only unknown variable.

L. He et al. 642

The mean miss rate (denoted by MR) of the QDJs over these n clusters can be
computed using Eq.16.

=
×= n

i
iiMRMR

1
α (16)

Similar to the case of minimizing the mean response time, this is a constrained-
minimum problem. This requires identifying a workload allocation that minimizes

MR in Eq.16 subject to 1
1

=
=

n

i
iα and 0≤αi≤

λ
iium . This is equivalent to solving the

following equation set.

≤≤=×
∂
∂

≤≤=
=

)(1)(

)(0,1
1

bnkvMR

a
um

kk
k

ii

i

n

i
i

α
α

λ
αα

 (17)

In the previous subsection, we state that the numerical solution to Eq.9 is based on
the property that)(kk

k
R α

α∂
∂ is a monotonically increasing function of αk. Theorem 3 is

introduced to establish the case that)(kk
k

MR α
α

×
∂
∂ in Eq.17 also monotonically in-

creases over αk. The proof of the theorem is omitted for brevity. With this property, a
numerical solution is also developed to solve Eq.17. The solving algorithm is similar
to that found in Algorithm 1 and the proof of the algorithms effectiveness is similar to
Theorem 2. Hence, they are omitted in the paper.

Theorem 3.)(kk
k

MR α
α

×
∂
∂ is a monotonically increasing function of αk.

As in the case of NQJs, the mean number of jobs in the waiting queue of cluster i
(i.e. Ni) can be obtained using Eq.10. The fair workload level for cluster i for QDJs
can be subsequently determined. If the current number of jobs in the waiting queue of
cluster i is greater than Ni , then the arriving jobs are transferred to the cluster with
the least miss rate among those clusters whose number of jobs in the waiting queue is
less than its fair workload level (if such clusters do not exist, the jobs are scheduled to
the cluster with the least miss rate among all clusters).

4 Experimental Evaluation

An experimental simulator is developed to evaluate the performance of the proposed
workload allocation techniques under a wide range of system settings and workload
levels. Two types of job stream (NQJs and QDJs) are generated using the same pa-
rameters, with one exception, in that every QDJ has an additional slack metric which
follows a uniform distribution. Each job stream includes 500,000 independent jobs.
The job arrival follows a Poisson process and a job is submitted to the multicluster
through a randomly selected cluster. The run of the first 100,000 jobs is considered as
the initiation period, allowing the system to achieve a steady state, and the run of the
last 100,000 jobs is considered the ending period. Statistical data are collected from

Performance-Aware Load Balancing for Multiclusters 643

the middle 300,000 jobs. The job size follows an exponential distribution. The mean
size of the incoming jobs is set to be the inverse of the average of the speeds of all
processing computers multiplied by the average of the number of computers in each
cluster, that is,

(sec)
11

2

==

n

i
i

n

i
i mu

n

Based on the mean job size, the job arrival rate at which the system becomes satu-
rated, can be computed. The incoming workload levels in the experiments are meas-
ured using the percentage of the saturated arrival rate.

An intuitive load balancing strategy, the weighted strategy [12][9], takes into ac-
count the heterogeneity of the clusters' performance. In this strategy, the workload
fraction αi allocated to cluster i (1≤i≤n) is proportional to its processing capability,
miui. Hence, αi is computed as Eq.18.

=

=
n

i
ii

ii
i

um

um

1

α (18)

Consequently, under the weighted strategy the corresponding fair workload level
for each cluster can be determined using Eq.10.

The Multi-domain Load Balancing mechanism (MLB) of [8], which is based on a
dynamic least load algorithm, can be used as the ideal bound of the mean response
time obtained by the ORT strategy. Using this approach the arriving jobs are sched-
uled on the computer with the least load. Hence a job is transferred to a remote do-
main while the local domain does not contain the least loaded computer. In the load
balancing mechanism presented in this paper, the job transfer frequency among clus-
ters can be dramatically reduced so as to improve the scheduling cost. Similarly, a
dynamic least miss-rate (DLM) strategy is used as the upper bound of the mean miss
rate of QDJs in the multicluster. The DLM strategy schedules newly arriving QDJs to
the cluster with the least miss rate.

These five load balancing strategies (ORT, OMR, Weighted, MLB and DLM)
are evaluated in these experiments. The performance metrics used in the
experiments include the mean response time (for NQJs) and the mean miss rate
(for QDJs). Each point in the performance curves are plotted as the average
result of 5 independent runs of the job streams with different initialisation random
numbers.

4.1 Workload

Fig.2.a and Fig.2.b show the impact of the incoming workload levels on the mean re-
sponse time and the mean miss rate of the incoming jobs under these load balancing
strategies. The multicluster in this experiment consists of 4 clusters whose configura-
tions are listed in Table 1. For QDJs, the job slacks follow a uniform distribution in
the range [0, 30]. In order to gain insight into the difference of the load balancing be-
haviours between OMR and ORT, the ORT strategy is also used to balance QDJs, and
OMR is used to balance NQJs.

L. He et al. 644

Table 1. System setting in Figure 2

 Cluster 1 Cluster 2 Cluster 3 Cluster 4
mi 3 5 7 9
ui 20 16 12 8

50

70

90

110

130

150

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

workload

M
ea

n
re

sp
on

se
 ti

m
e

MLB
ORT
Weighted
OMR

0
10
20
30
40
50
60
70
80
90

100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

workload

M
ea

n
m

is
s

ra
te DLM

OMR
Weighted
ORT

 (a) (b)

Fig. 2. Impact of the incoming workload levels on a) mean response time and b) mean miss rate

It can be observed from Fig.2.a that the ORT strategy performs significantly better
than the weighted strategy in terms of the mean response time. Furthermore, the per-
formance difference increases as the workload decreases. This trend can be explained
as follows. The weighted strategy allocates the same fraction of workload to a cluster
even if the workload varies. However, the waiting time accounts for a lower
proportion of the response time as the workload decreases. Hence, in order to reduce
the response time, a higher proportion of the incoming workload should be allocated
to the cluster with the greater ui (the number of computers mi in each cluster has less
impact). The ORT strategy is able to satisfy this allocation requirement. Fig.2.b
shows the impact of the incoming workload on the mean miss rate. It can be observed
that the OMR strategy outperforms the weighted strategy at all incoming workload
levels.

In Fig.2.a, although the MLB outperforms ORT, the performance difference is
small, especially when the workload is low. A similar pattern can be observed be-
tween the DLM and OMR strategies. This suggests that applying the ORT and OMR
schemes will achieve competitive performance with relatively low cost, especially
when the system load is low.

It can be observed from Fig.2.a and Fig.2.b that in most incoming workload levels,
the OMR strategy obtains the worst performance in terms of mean response time
while the ORT strategy obtains the worst performance in terms of mean miss rate.
These results suggest that the performance-specific load balancing strategies are nec-
essary to achieve good respective performance.

Performance-Aware Load Balancing for Multiclusters 645

4.2 Computer Speed

Fig.3 demonstrates the impact of the difference of computer speed. Here the multi-
cluster consists of 4 clusters and the number of computers in each cluster is set to be
4. The speed of the computers in cluster 1 varies from 21 to 6 with a decrement of 3,
while the speed of all computers in the other three clusters increases from 1 to 6 with
an increment of 1. Thus, the multicluster ranges from a highly heterogeneous system
to a homogeneous system, while the average speed of all computers remains constant
(i.e., 6). The slack of the QDJs follows a uniform distribution in [0, 10].

40

60

80

100

120

140

160

180

[21,
1]

[18,
2]

[15,
3]

[12,
4]

[9, 5] [6, 6]

speed difference

M
ea

n
re

sp
on

se
 ti

m
e

MLB

ORT

Weighted

2

4

6

8

10

[21, 1] [18, 2] [15, 3] [12, 4] [9, 5] [6, 6]

speed difference

M
ea

n
m

is
s

ra
te DLM

OMR

Weighted

 (a) (b)

Fig. 3. The impact of speed difference on a) the mean response time and b) the mean miss rate;
the arrival rate is 50% of the saturated arrival rate

Fig.3.a shows the impact of the difference of computer speed on the mean response
time. It can be observed in this figure that the mean response time decreases
significantly under the ORT strategy as the speed difference increases, while it
remains approximately the same under the weighted strategy. This is because as the
speed difference increases, despite the average computer speed remaining constant, a
higher proportion of the workload is allocated to cluster 1 under the ORT strategy
(higher than

=

n

i
iiumum

1
11 /), while the weighted strategy does not make full use of

the computing power of cluster 1. This suggests that under the ORT strategy, the
speed difference among the clusters is a critical factor for the mean response time.

The first observation from Fig.3.b is that the OMR strategy performs better than
the weighted strategy under all speed combinations, as is to be expected. A further
observation is that under OMR, the mean miss rate remains approximately the same
as the speed difference varies. The experimental results for other incoming workload
levels show similar patterns. This suggests that under OMR, the speed difference
among the clusters is not an important parameter for the mean miss rate. This differs
from the characteristic of the ORT for mean response time. This divergence may
originate from the difference between the expressions of the response time and the

L. He et al. 646

miss rate (see Eq.6 and Eq.15): we note the occurrence of 1/ui in Eq.6 while this is ab-
sent in Eq.15.

5 Conclusion

Two load balancing strategies (ORT and OMR) for multicluster architectures are pro-
posed that deal with different types of jobs. The ORT strategy can optimize the mean
response time of NQJs, while the OMR strategy can optimize the mean miss rate of
QDJs. The effectiveness of these proposed load balancing strategies is demonstrated
through theoretical analysis. The proposed strategies are also evaluated through ex-
tensive experimental studies. The results show that the ORT and OMR strategies can
achieve considerable performance gain with relatively low overhead.

References

1. O. Aumage, “Heterogeneous multi-cluster networking with the Madeleine III,” Interna-
tional Parallel and Distributed Processing Symposium (IPDPS 2002), 2002.

2. S. Banen, A.I.D. Bucur, and D.H.J. Epema, “A Measurement-Based Simulation Study of
Processor Co-Allocation in Multicluster Systems,” Ninth Workshop on Job Scheduling
Strategies for Parallel Processing, D.G. Feitelson, L. Rudolph and U. Schwiegelshohn
(eds), 2003.

3. M. Barreto, R. Avila, and P. Navaux, “The MultiCluster model to the integrated use of
multiple workstation clusters,” Proc. of the 3rd Workshop on Personal Computer-based
Networks of Workstations, 2000, pp. 71–80.

4. G. Bolch, Performance Modeling of Computer Systems, 2002.
5. A.I.D. Bucur and D.H.J. Epema, “The maximal utilization of processor co-allocation in

multicluster Systems,” Int'l Parallel and Distributed Processing Symp. (IPDPS 2003), 2003,
pp. 60-69.

6. R. Buyya and M. Baker, “Emerging Technologies for Multicluster/Grid Computing,” Pro-
ceedings of the 2001 IEEE International Conference on Cluster Computing, 2001.

7. J. Cao, D. J. Kerbyson, and G. R. Nudd, “Performance Evaluation of an Agent-Based Re-
source Management Infrastructure for Grid Computing,” Proceedings of 1st IEEE/ACM
International Symposium on Cluster Computing and the Grid (CCGrid'01), 2001.

8. S.T. Chanson, W. Deng, C. Hui, X. Tang, M. To, “Multidomain Load Balancing,” 2000
International Conf. on Network Protocols, Japan, 2000.

9. L. He, S.A. Jarvis, D.P. Spooner, G.R. Nudd, “Optimising static workload allocation in
multiclusters,” Proceedings of 18th IEEE International Parallel and Distributed Processing
Symposium (IPDPS'04), 2004.

10. B. Kao and H. Garcia-Molina, “Scheduling soft real-time jobs over dual non-real-time
servers,” IEEE Trans. on Parallel and Distributed Systems, 7(1): 56-68, 1996.

11. L. Kleinrock, Queueing system, John Wiley & Sons, 1975.
12. X.Y. Tang, S.T. Chanson, “Optimizing static job scheduling in a network of heterogeneous

computers,” the 29th International Conference on Parallel Processing, 2000.
13. M. Wu, “On Runtime Parallel Scheduling for Processor Load Balancing,” IEEE Transac-

tion on Parallel and Distributed Systems, 8(2): pp.173-186, Feb. 1997.

Performance-Aware Load Balancing for Multiclusters 647

14. W. Zhu, “Scheduling soft real-time tasks on cluster,” In proc. of 1999 Annual Australian
Parallel and Real-Time Conference, 1999.

15. W. Zhu and B. Fleisch, “Performance evaluation of soft real-time scheduling on a multi-
computer cluster,” The 20th International Conference on Distributed Computing Systems
(ICDCS 2000), 2000.

 J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 648–655, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Scheduling of a Parallel Computation-Bound
Application and Sequential Applications Executing

Concurrently on a Cluster – A Case Study

Adam K. L. Wong and Andrzej M. Goscinski

School of Information Technology, Deakin University,
Geelong, Vic 3216, Australia

{aklwong, ang}@deakin.edu.au

Abstract. Studies have shown that most of the computers in a non-dedicated
cluster are often idle or lightly loaded. The underutilized computers in a non-
dedicated cluster can be employed to execute parallel applications. The aim of
this study is to learn how concurrent execution of a computation-bound and
sequential applications influence their execution performance and cluster
utilization. The result of the study has demonstrated that a computation-bound
parallel application benefits from load balancing, and at the same time
sequential applications suffer only an insignificant slowdown of execution.
Overall, the utilization of a non-dedicated cluster is improved.

1 Introduction

Although individual PCs of a non-dedicated cluster (called a cluster) are used by their
owners to run sequential applications (local jobs), the cluster as a whole or its subset
can also be employed to run parallel applications (cluster jobs) even during working
hours. The reason is that PCs in their working environments are on average idle for
much more than 50% of time [2,5,13]. Therefore, a cluster has the potential of
concurrently running a mixture of parallel and sequential applications that could lead
to performance improvement and better utilization of computing resources.

Computer applications can share the computational resources of a cluster in two
dimensions: space and time. However, space and time sharing of computational
resources in a cluster does not have to be considered separately. Consequently, an
effective global scheduling scheme is needed in such a multi-user and multi-process
environment to allocate resources among different applications to improve the
execution performance of applications and the utilization of a cluster.

To our knowledge, only a small number of projects studied the influence of a
mixture of parallel and sequential applications on their execution performance in a
cluster. Also, those studies were carried out by simulation [1,3,12,15]. The only
existing but often referenced paper which had addressed this scheduling problem by
an experimental approach is [14]. However, the scope and depth of this study is
unsatisfactory. Therefore, we are strongly convinced that a detailed experimental
study of this problem will provide not only a better understanding of the problem but
also form a background for the development of global scheduling facilities for
computer clusters.

Scheduling of a Parallel Computation-Bound Application and Sequential Applications 649

The aim of this paper is to report on the outcome of our experimental study into
the scheduling and influence of a mixture of parallel and sequential applications on
their execution performance and the cluster utilization. Here, we address the
computation-bound parallel applications executing with both CPU-bound and IO-
bound sequential applications concurrently on a non-dedicated cluster.

2 Dynamic Load Balancing Based Scheduling of a Computation-
Bound Parallel Application and Sequential Applications

To study the behavior of a concurrently executing mixture of parallel and sequential
applications on a cluster, we propose to use a two level scheduling system, where the
upper level is responsible for global scheduling of processes of a parallel application
and the lower level schedules local processes (parallel and sequential) running on
each local computer of the cluster.

We selected dynamic load balancing to provide scheduling at the upper level for
the following reasons. Dynamic load balancing is an efficient method of scheduling
processes of computer applications in a cluster. By taking advantage of a process
migration facility, allocation of processes to computers of a cluster can be changed
dynamically according to the actual workload on each of the computers [9]. This
method can also provide a unified way to utilize both space- and time-sharing.

2.1 The openMosix Dynamic Load-Balancing System and LAM/MPI

Here, we describe openMosix and an implementation of MPI [8] that can support the
scheduling of a mixture of a parallel and sequential applications.

The openMosix [10] system is a Linux-based open source version of the Mosix
dynamic load balancing system developed by Barak et al [6]. The openMosix/Mosix
system consists of the Preemptive Process Migration mechanism and a set of
algorithms for adaptive resource sharing. We have set openMosix to make load
balancing decisions based on the workload of each of the computers. The version of
the openMosix-enabled Linux kernel that we used is openMosix-2.4.20.

Executing parallel applications on a cluster relies on some support from a run-time
environment such that the parallel applications can utilize distributed computers. One
of the most important supports is provided by the IPC mechanism that allows
processes of a parallel application to communicate. LAM/MPI [4] was selected for
our project because it could be used with the openMosix system without too much
difficulty. The version of LAM/MPI used in our project is LAM/MPI-6.5.9.

2.2 Structure of the Global Scheduling Prototype

A flexible way to execute an MPI parallel application in our openMosix cluster was to
place its processes on one computer initially and allow the openMosix system to
migrate them from that computer to other computers to balance the cluster load [6].
This can be achieved by providing a LAM/MPI network topology to the openMosix
cluster, which specifies that only one computer is used to initiate an MPI application.
Consequently, all processes are located on one computer in the MPI level but the
processes are migrated to many computers in the openMosix level. The actual

A.K.L. Wong and A.M. Goscinski 650

communication mechanism for the distributed processes is therefore relied on the IPC
subsystem of openMosix rather than the LAM/MPI daemon.

3 Experimental Environment and Experiments

In this section, the parallel and sequential applications used and the experiments
constructed for the execution of the selected applications are described.

3.1 Parallel Application

Our study of scheduling a mixture of parallel and sequential applications on a cluster
at this stage is concentrated on how a computation-bound parallel application interacts
with CPU-bound and I/O-bound sequential applications. Therefore, a computation-
bound parallel application, MPI-Povray [15] (a parallelized Povray ray-tracer [11]),
has been chosen. MPI-Povray distributes work among a number of processors and the
communication between the processes, that is infrequent, is achieved by MPI message
passing.

3.2 Sequential Benchmarks

To achieve the aim of our research, there was a need to identify and determine the
influence of different sequential applications (with workloads ranging from CPU-
bound to I/O-bound) executing concurrently with a parallel application on a cluster.

Ideally, our scheduling experiments should be constructed by running a parallel
application together with some real user-oriented sequential applications. However,
there are three major drawbacks of this approach. First, it is difficult to control the
amount of workload to be executed on a computer (controllability). Second, the same
amount of workload on each of the computers is also difficult to be repeated for
different experiments (repeatability). Third, sequential applications should execute for
a period of execution comparable to the period of execution of a parallel application,
which changes with the number of computers that application runs on (durability).

The BYTE’s Unix Benchmark Suite. Controllability, repeatability and durability
can be achieved by using sequential benchmarks. Following our study of sequential
benchmarks, we have selected the BYTE’s Unix Benchmark Suite [7].

Table 1. Classification of the BYTE Unix Benchmark applications

Category Program

CPU-bound
dhry2reg, whetstone-double, pipe, spawn, shell, syscall, arithoh, short, int, long, float,
double, C, dc, Hanoi

IO-bound execl, fstime, fsbuffer, fsdisk, context1

The BYTE Suite consists of a set of sequential applications, which were designed
to test the performance of a single-processor computer system. Each application can
be classified as either I/O-bound or CPU-bound as shown in Table 1.

Scheduling of a Parallel Computation-Bound Application and Sequential Applications 651

Micro-benchmarks. A set of sequential benchmarks can be constructed by choosing
different applications from the BYTE suite and packing them together into groups
according to the particular workloads required.

We constructed three sets of sequential benchmarks with different workload
compositions, SeqIO, SeqIB and SeqCPU. SeqIO, SeqIB and SeqCPU represent I/O-bound, In-
Between and CPU-bound sequential benchmarks with a workload of 20%, 50% and
80% CPU utilization respectively, as shown in Table 2.

Table 2. Workload Compositions

Workloads Components

SeqIO fstime, idle-burst, fsbuffer, idle-burst, fsdisk, idle-burst

SeqIB execl, context1, spawn, fsdisk, whetstone-double, C, fstime, syscall, hanoi, dc

SeqCPU
dhry2reg, whetstone-double, pipe, spawn, shell, syscall, arithoh, int, double, C, execl,
context1, hanoi, short, float

3.3 Experiments

All scheduling experiments were carried out on our openMosix cluster. The cluster
contains 16 Pentium III nodes, each with 383 Mb memory, connected by a 100Mbit/s
Fast Ethernet. Each computer runs the Red Hat Linux operation system with the
dynamic load-balancing support using the openMosix system.

We carried out computations of the MPI-Povray parallel application with each of
the SeqIO, SeqIB and SeqCPU sequential benchmarks executed on 2, 6 or 10 computers.
In each case the parallel application was run on 14, 10 and 6 computers, respectively.
Depending on the total number of sequential benchmarks, N, used in each case of the
scheduling experiments, the total number of computers initially available for the
parallel application became varied, i.e., (16 – N). However, 16 processes were created
for the parallel application to run on the cluster such that some of the parallel
processes could take the advantage of dynamic load-balancing by migrating to
computers executing sequential processes.

4 Results and Analysis

The execution times of the parallel and the sequential applications in each of the nine
scheduling experiments described in Section 3.3 were measured. We defined the
relative speedup to refer to the speedup achieved by the parallel application executed
with sequential benchmarks on the cluster. It was calculated by dividing the execution
time of the parallel application measured when there was no sharing by that when
sharing was exploited. We also defined the relative slowdown to refer to the slowing
down of a sequential benchmark executed when computers in the cluster were shared
with processes of the parallel application. It was calculated by dividing the execution
time of the sequential application measured when there was no sharing by that when

A.K.L. Wong and A.M. Goscinski 652

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

2 6 10

Number of Owner-Users

R
el

at
iv

e
S

lo
w

d
o

w
n

CPU-Bound

In-Between

I/O-Bound

sharing was exploited.1 We calculated the relative speedup of the parallel application
and the relative slowdown of the sequential benchmarks for each scheduling
experiment. Furthermore, the summation of the execution times of the parallel and
sequential applications in the two situations: sharing and non-sharing were also
compared. The results are presented in Table 3.

Table 3. Speedup, Slowdown and Execution time of Applications

Execution Time (min.) of both
Sequential Application

and
Parallel Application

Number of
Active

Owner-Users

Relative Speedup
of Parallel

Application
(MPI-Povray)

Relative Slowdown

of Sequential
Application

 Non-sharing Sharing

(a) I/O-Bound

2 +1.13 -0.09 244 240

6 +1.44 -0.06 349 307

10 +2.28 -0.04 581 429

(b) In-Between

2 +1.08 -0.17 250 266

6 +1.28 -0.13 360 349

10 +1.87 -0.10 594 491

(c) CPU-Bound

2 +1.04 -0.15 249 265

6 +1.16 -0.16 358 368

10 +1.57 -0.12 598 534

Fig. 1. (a) Relative Speedup of parallel application (b) Relative Slowdown of sequential
applications

Two observations related to the execution performance of the parallel application
can be made using Table 3. First, as the workload of sequential applications
decreases, that is, moving from CPU-Bound towards I/O-Bound, the relative speedup
increases. Second, as the number of computers that are used by their owner-users
increases, the relative speedup of the parallel application executing with each of the

1 We use a negative value to represent a relative slowdown.

0

0.5

1

1.5

2

2.5

2 6 10

Number of Owner-Users

R
el

at
iv

e
S

p
ee

d
up

CPU-Bound

In-Between

I/O-Bound

Scheduling of a Parallel Computation-Bound Application and Sequential Applications 653

three categories of sequential workload also increases. Thus, a computation-bound
parallel application benefits from the sharing of cluster computers executing
concurrently with sequential applications. These observations are shown by the
plotting of the relative speedup of the parallel application with different sequential
applications in Fig. 1(a).

On the other hand, sequential applications suffer in all cases as can be seen from
the plotting of the relative slowdown of sequential applications as shown in Fig. 1(b).

However, the relative slowdown of the sequential applications in the case of I/O-
Bound workload is much less significant to affect its owner-user than the other two
cases: In-Between and CPU-Bound workloads. In general, although the relative
slowdown generated in each case may be noticeable to an owner-user, we contend
that it would be acceptable to most of the users.

Fig. 2. Total execution turnaround time of parallel and sequential applications with and without
sharing

The second part of our study aimed at cluster utilization. The summations of
execution times of the parallel and sequential applications are compared in two
situations: sharing and no sharing. Fig. 2 shows that the cluster is best utilized under
the sharing of a computation-bound parallel application with I/O-Bound sequential
applications followed by a computation-bound parallel application with In-Between
sequential applications; and a computation-bound parallel application with CPU-
Bound sequential applications.

5 Conclusions

The concurrent execution of a computation-bound parallel application and sequential
applications of various workloads on a non-dedicated cluster demonstrated that a
parallel application can benefit from migrating its processes from heavily loaded
computers to lightly loaded computers executing sequential applications. Such a
dynamic load-balancing based scheduling of a mixture of parallel and sequential
applications offers gains particularly when the workload of the computers is low (I/O-
Bound workload) and the number of such computers is large. By sharing the
computers executing sequential applications, which are not accessible in a dedicated
cluster, parallel applications can gain extra processing power to perform ‘CPU-

0

100

200

300

400

500

600

700

I/O
-B

oun
d

(2
)

I/O
-B

oun
d

(6
)

I/O
-B

oun
d

(1
0)

In
-B

et
wee

n
(2

)

In
-B

et
wee

n
(6

)

In
-B

et
wee

n
(1

0)

CPU-B
oun

d
(2

)

CPU-B
oun

d
(6

)

CPU-B
oun

d
(1

0)

Sequential Benchmark (No. of Owner-Users)

E
xe

cu
ti

on
 T

im
e

(m
in

.)

No Sharing

Sharing

A.K.L. Wong and A.M. Goscinski 654

hungry’ computations. On the other hand, users of computers executing sequential
applications suffer from a slight degradation of CPU services in such sharing. The
degradation of the CPU services trends to be insignificant when the workload of the
computers move towards I/O-bound and the number of computers executing
sequential applications is large in the cluster. Nevertheless, the overall utilization of
the non-dedicated cluster can be improved. In conclusion, parallel computation-bound
applications can be successfully executed on a non-dedicated cluster.

Acknowledgement

We wish to express our gratitude to Dr J. Abawajy and Dr J. Silcock for their
constructive comments that helped us to generate this version of the paper. This
project was partly supported by the ARC Discovery Scheme.

References

1. R H. Arpaci, A. C. Dusseau, A. M. Vahdat, L. T. Liu T. E. Anderson and D. A. Patterson.
The Interaction of Parallel and Sequential Workloads on a Network of Workstations. In
Proceedings of 1995 ACM Joint International Conference on Measurement and Modeling
of Computing Systems, p267-278, May, 1995.

2. A. Acharya, G. Edjlali and J. Saltz. The Utility of Exploiting Idle Workstations for Parallel
Computation. In Proceedings of 1997 ACM Sigmetrics International Conference on
Measurement and Modeling of Computer Systems, p225-236, May, 1997.

3. C. Anglano. A Comparative Evaluation of Implicit Coscheduling Strategies for Networks
of Workstations. In Proceedings of 9th International Symposium on High Performance
Distributed Computing (HPDC9), p221-228, August, 2000.

4. G. Burns, R. Daoud and J. Vaigl. LAM: An Open Cluster Environment for MPI. In
Proceedings of Supercomputing Symposium, p379-386, University of Toronto, 1994.

5. W. Becker. Dynamic Balancing Complex Workload in Workstation Networks --
Challenge, Concepts and Experience. In Proceedings High Performance Computing and
Networking (HPCN) Europe Lecture Notes on Computer Science (LNCS), p407-412, 1995.

6. A Barak, S. Guday and R. G. Wheeler. The MOSIX Distributed Operating System, Load
Balancing for UNIX. Springer-Verlag.

7. BYTE’s UnixBench. The BYTE’s Unix Benchmark Suite. URL: http:// www.tux.org/pub
/tux/niemi/unixbench.

8. The MPI Forum. MPI: a message passing interface. In Proceedings of the 1993
Conference on Supercomputing, p878-883, 1993.

9. A. M. Goscinski. Distributed Operating Systems, The Logical Design. Addison-Wesley,
Sydney, 1991.

10. The openMosix Homepage. URL: http://openmosix.sourceforge.net.
11. The POVRAY Homepage. Persistence of Vision Ray-tracer. URL: http:// www.povray.

org.
12. K. D. Ryu and J. K. Hollingsworth. Linger Longer: Fine-Grain Cycle Stealing for

Networks of Workstations. In Proceedings of the 1998 ACM/IEEE Conference on
Supercomputing (CDROM), p1-12, 1998.

Scheduling of a Parallel Computation-Bound Application and Sequential Applications 655

13. F. Tandiary, S. C. Kothari, A. Dixit and E. W. Anderson. Batrun: Utilizing Idle
Workstations for Large-scale Computing. IEEE Parallel and Distributed Technology,
4(2):41-48, 1996.

14. F. C. Wong, A. C. Arpaci-Dusseau and D. E. Culler. Building MPI for Multi-Programming
Systems using Implicit Information. In Proceedings of the 6th European PVM/MPI User's
Group Meeting, p215-222, 1999.

15. L. Verrall. MPI-Povray: Distributed Povray Using MPI Message Passing. URL: http://
www.verrall.demon.co.uk/mpipov.

16. B. B. Zhou, X. Qu and R. P. Brent. Effective Scheduling in a Mixed Parallel and
Sequential Computing Environment. In Proceedings of the 6th Euromicro Workshop of
Parallel and Distributed Processing, p32-37, January, 1998.

 J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 656–665, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Sequential and Parallel Ant Colony Strategies for
Cluster Scheduling in Spatial Databases

Jitian Xiao and Huaizhong Li

School of Computer and Information Science, Edith Cowan University,
2 Bradford Street, Mount Lawley, WA 6050, Australia

{j.xiao, h.li}@ecu.edu.au

Abstract. In spatial join processing, a common method to minimize the I/O
cost is to partition the spatial objects into clusters and then to schedule the
processing of the clusters such that the number of times the same objects to be
fetched into memory can be minimized. The key issue of cluster scheduling is
how to produce a better sequence of clusters to guide the scheduling. This pa-
per describes strategies that apply the ant colony optimization (ACO) algorithm
to produce cluster scheduling sequence. Since the structure of the ACO is
highly suitable for parallelization, parallel algorithms are also developed to im-
prove the performance of the algorithms. We evaluated and illustrated that that
the scheduling sequence produced by the new method is much better than exist-
ing approaches.

1 Introduction

Spatial join queries in spatial databases usually access a large number of spatial data.
They are the common spatial query type that requires a high processing cost due to
the large volume of spatial data and the computation-intensive spatial operations. To
reduce the CPU and I/O costs for spatial join processing, most spatial join processing
methods are performed in two steps (i.e., filter-and-refine approach) [1]. The first step
chooses pairs of data that are likely to satisfy the join predicate. The second step ex-
amines the predicate satisfaction for all those pairs of data passing through the filter-
ing step. During the filtering step, a conservative approximation of each spatial object
is used to eliminate objects that cannot contribute to the join result, and a weaker
condition for the spatial predicate is applied on the approximations. This step pro-
duces a list of candidates that is a superset of the joinable candidates. These candi-
dates are usually represented as pairs of object identifiers. All candidates are then
checked in the refinement step by applying the spatial operation on the full descrip-
tions of the spatial objects to eliminate the "false drops''. The join cost can be reduced
because the weaker condition is usually computationally less expensive to evaluate
and the approximations are small in size than the full geometry of spatial objects.
Generally, the refinement cost consists of two parts: one is the cost for fetching ob-
jects from the database, and the other is the cost for checking spatial relationship of
pairs of objects using computational geometry algorithm. The former cost dominates

Sequential and Parallel Ant Colony Strategies 657

the refinement cost when the spatial objects are small (e.g., tens to hundreds of verti-
ces), and the later cost dominates for large spatial objects. In this paper, we focus on
reduction of former cost in the refinement step.

To reduce the I/O cost, we proposed a method to partition candidates into clusters
so that spatial objects join as many other objects as possible within their cluster and
join as few objects as possible across clusters [2], thus significantly reduce the I/O
cost when the join operations are processed cluster by cluster. In [3], we proposed an
approach to further reduce I/O cost by carefully scheduling the clusters such that a
maximum number of overlapping objects between consecutive clusters in the sched-
uling sequence can be reused when processing the next clusters (i.e., they do not need
to be fetched into memory again). In this way, a significant reduction on disk accesses
has been achieved and demonstrated through simulations.

Even so, our simulation shows that, in some cases, it may still take long time (e.g.,
up to hours) to complete a single spatial join operation. We propose to improve the
performance of spatial join processing by employing parallel mechanism. The goal is
to be achieved by three steps: (1) partition in parallel the spatial candidates into clus-
ters such that the number of overlapping objects among clusters is minimized; (2)
produce a cluster scheduling order such that the total number of overlapping objects
between consecutive clusters is maximized; and (3) schedule the spatial join, cluster
by cluster, in the cluster scheduling order produced in step (2) in the refinement step
for spatial join processing. Preliminary experiments have shown that the parallel
algorithms work well for spatial join processing, especially when the number of spa-
tial objects in a join is large. In this paper we focus on producing the cluster schedul-
ing order using parallel Ant Colony Optimization (ACO) approach (the parallelization
of step (1) will be discussed separately). We will illustrate that the new approach
produces better solutions than those produced by the former method.

The reminder of the paper is organized as follows. In Section 2, we formalize the
problem by reviewing our previous work in this area. Section 3 summarizes the
sequential algorithm of producing cluster scheduling order developed in [3]. Section
4 presents strategies using ant colony optimization approach to produce better orders
for cluster scheduling in spatial join processing. Conclusions are presented in Section 5.

2 Problem Definition

Let S and T be the two spatial database tables for spatial join operation, denoted
by TS . Objects in S and T are indexed by their unique IDs. The filter operation of
the spatial join produces a set of pairs of S and T objects. Let F be the set of ID pairs
produced by the filter operation:

F = {(sid, tid)| sid and tid are IDs of objects in S and T,
 respectively, that meet the weaker join condition}

where an ID pair (sid, tid)∈F is called a candidate. Fig. 1 (a) shows an example of F.
Note that F is available in the main memory after the filter operation. F contains only
IDs of the candidates, not the data objects.

J. Xiao and H. Li 658

The refinement step is to perform TS on the pairs of objects indexed by F to
produce the final join results. At this step, the S and T objects need to be fetched into
the main memory for the full spatial join test. Since the memory size is limited and it
can not keep all objects of F in memory at the same time, the objects need to be parti-
tioned into clusters. Objects in the same clusters are brought into the memory together
and processed in a batch. For example, Fig. 1 (b) is a partitioning of the candidate set
shown in Fig. 1 (a).

Fig. 1. An example of a candidate set and its clustering.

Assume that the spatial objects referenced in F have been partitioned into clusters
(e.g., by using approaches given in [2]). Our goal is to schedule the clusters in a way
such that the repeatedly fetch of the overlapping objects between consecutive clusters
is minimized. The I/O cost, in this paper, is measured in terms of the size of object
data (e.g., number of vertices of the spatial object) that are fetched into the memory
for the refinement operation.

Let V = {v1, v2, …, vk} be the set of objects referenced in F, and V1, V2, …, Vn the
clusters of V. For each i (1 = i = n), Vi = {

miii vvv ,...,,
21

} (m = 1), ∈
jiv V (1= j = m).

That is, i
n
i V1= = V and φ≠iV for each i (1= i = n). Define

∈
=

iVvi vsVsize)()(as

the sum of the sizes of objects in Vi, where s(v) is the size of object v. We introduce a
weighted graph G = (V, E, w), upon V, called cluster overlapping (CO) graph, to
represent the overlapping relationships between data clusters. The node set V = {V1,
V2, …, Vn} is a set of clusters, and the edge set E is defined as: for each node pair Vi
and Vj (i ≠ j), there is an edge Eij=(Vi, Vj) if w(Vi, Vj) = 0)(≠∩ ji VVsize . Here w(Vi,

Vj) is the weight of edge Eij.
At refinement step, if the clusters are processed in the sequence of V1, V2, …, Vn

(i.e., no scheduling), then the total I/O cost is:

).()(1

1

11
/ +

−

==

∩−= i

n

i
i

n

i
iOI VVsizeVsizeC (1)

B1
B2
B3

B1
B2
B3

B1
B3
B4

 A1
 A2
 A3

A4
 A5
 A6

 A6
 A7
 A8

S_id T_id
A1 B1
A2 B1
A3 B2
A3 B3
A4 B3
A5 B1
A6 B2
A6 B4
B7 B1
A8 B3
A8 B4

(a) A candidate set (b) A candidate clustering

Sequential and Parallel Ant Colony Strategies 659

When processing cluster Vi+1, objects in 1+∩ ii VV are already in memory just after

processing Vi. There is no need to load these objects again.
Generally, for a schedule p which determines the processing sequence of V1, …, Vn

as
n

VVV πππ ,...,,
21

, where VV
i
∈π and

ji
VV ππ ≠ for i ≠ j, the I/O cost for schedule p is

).()(
1

1

11
/ +

∩−=
−

==
iii

VVsizeVsizeC
n

i

n

i
OI πππ

π (2)

When the clusters are given,)(
1=

n

i i
Vsize π is a constant. Let y be:

).(
1

1

1
+

∩=
−

=
ii

VVsizey
n

i
ππ (3)

Our goal is to find a schedule such that such that y is maximized, which is the case

that π
OIC / is minimized.

3 Cluster Scheduling Sequence

In our previous work [3], a maximum overlapping (MO) order was defined in a CO
graph, and a sequential algorithm was developed to produce an approximation to the
MO (AMO) order for an arbitrary CO graph. The AMO order was then used as a
scheduling sequence for cluster scheduling in spatial join processing.

Given a CO graph G = (V, E, w) with V = {V1, V2, …, Vn}, a maximum overlapping
(MO) order among sets V1, V2, …, Vn is a sequence

niii VVV ,...,,
21

such that wMO

=)(
1

1

1 +
∩

−

= ll i

n

l i VVsize reaches the maximum among all permutations of V. wMO is

called the (total) overlapping weight of the MO order.
An MO order in a CO graph G is a permutation of nodes in G such that the total

size of overlapping objects between adjacent nodes reaches the maximum. A simplest
algorithm to find an MO order is to check all permutations of V to examine which one

makes the max{)(
1

1

+
∩

−

ll i

n

l i VVsize }. The complexity of such a method clearly has

factorial order and is certainly not practical. Although an MO order exists for each
CO graph G, the problem of finding an MO order in a CO graph is NP-complete [3].
However, the task of finding an MO order can be reduced to the case where G is a
connected graph (see Theorem 2 in [3]).

In our previous work, a maximum spanning tree (MST) based algorithm was de-
veloped in [3] to produce an AMO order of relative “high” overlapping weight in the
sense that the weight of the AMO order produced by the algorithm is always greater
than or equal to half the overlapping weight of an optimal MO order. The algorithm
consists of three steps: The first step produces a maximum spanning tree T of the CO
graph G; the second step conducts a depth-first search (DFS) on T and, in the third
step, an AMO order is built, which is the traversal order of the DFS on T. The com-
plexity of the algorithm is O(m2 log2 m), where m = max(|V|, |E|).

J. Xiao and H. Li 660

4 The Ant Colony Optimization Based Algorithms

We now develop sequential and parallel algorithms, based on the ant colony optimi-
zation algorithm [4, 5, 6], to produce a better AMO order of higher overlapping
weight. For simplicity, we limit our discussion to connected CO graphs. The algo-
rithms and the related discussion can be easily extended to the case of unconnected
CO graphs (see Theorem 2 in [3]).

4.1 The ACO Approach

The Ant Colony Optimization (ACO) metaheuristic is a population-based approach to
the solution of discrete optimization problems. It has been applied to many combina-
torial optimization problems [5, 6]. It imitates real ants searching for food, e.g., find-
ing the shortest path from a food source to their nest without strength of vision. The
ants use an aromatic essence, called pheromone, to communicate information regard-
ing the food source. While ants move along, they lay pheromone on the ground which
stimulates other ants rather to follow that trail than to use a new path. The quantity of
pheromone a single ant deposits on the path depends on the total length of the path
and on the quality of the food source discovered. As other ants observe the phero-
mone trail and are attracted to follow it, the pheromone on the path will intensified
and reinforced and will therefore attract even more ants. In other words, pheromone
trails leading to rich, nearby food source will be more frequented and will grow faster
than trails leading to low-quality, far-away food source.

The typical application of ACO is the traveling salesman problem (TSP) [4, 6], de-
fined as follows: A graph G=(V, E, w) with node set V and edge set E is given; each
edge e∈E has a weight w(e) associated, representing the length of it. The problem is
to find a minimal-length closed tour that visits all the nodes once and only once1. In
the ACO approach each edge of the graph has two associated measures: the heuristic
desirability ηij, which is defined as the inverse of the edge length and never changes
for a given problem instance, and the pheromone trail τij, which is modified at run-
time by ants. Each ant has a starting node and its goal is to build a solution, that is, a
complete tour. A tour is built node by node: when ant k is in node i it chooses to
move to node j using a probabilistic rule that favors nodes that are close and con-
nected by edges with a high pheromone trail value. Nodes are always chosen among
those not yet visited in order to enforce the construction of feasible solutions. Then
pheromone trail is updated on the edges of the solutions. The guiding principle is to
increase pheromone trail on the edges that belong to short tours. Pheromone trails
also evaporate so that memory of the past is gradually lost (this prevents bad initial
choices from having a lasting effect on the search process). The approach, here in-
formally described, can be implemented in many different ways and details about
specific implementation choices for the TSP can be found in [4, 5] and therein.

1 The algorithm is called an ACO-TSP algorithm in this paper, and the shortest closed tour

produced by the algorithm is called a TSP solution.

Sequential and Parallel Ant Colony Strategies 661

The structure of the ACO is highly suitable for parallelization of the algorithm. A
parallel version algorithm for the TSP can be found from [6].

4.2 The Sequential Algorithms for Finding Cluster Scheduling Order

To apply the parallel ACO approach for finding an AMO order for an arbitrary CO
graph G=(V, E, w), we make some modifications to the ACO-TSP algorithm.

The first change is to make the ACO-TSP algorithm find a longest tour instead of
shortest one. For this purpose, we extend G to a complete graph G’=(V, E’, w’): for
any pair of nodes vi, vj ∈V, 1≤i, j≤n, add an edge (vi, vj) to E’. If (vi, vj)∈E, we define
w’(vi, vj) = wmax - w(vi, vj)+1; otherwise define w’(vi, vj) = wmax+1, where wmax =
max{w(vi, vj)| (vi, vj)∈E}. We take w’(vi, vj) as the length between nodes vi and vj, and
call G’ the converted CO graph. It is evident that a shortest closed tour in G’ corre-
sponds to a longest closed tour in G, and an MO order of G corresponds to a longest
path of G (we conceptually assume that G is a completed graph, i.e., if there exists not
an edge between vi ∈V and vj ∈V, for any pair i and j, we conceptually add an edge
(vi, vj) with a weight w (vi, vj) = 0).

One way to obtain and AMO order for a CO graph G is to apply the ACO-TSP al-
gorithm to its converted CO graph G’ to find a TSP solution, which is a shortest
closed tour on G’ (or, a longest closed tour on G). And then take a longest path within
the tour of G (shortest path within the tour of G’), i.e., by simply removing a shortest
edge from the tour, as an AMO order of G. A simplified algorithm of such strategy is
described as follows:

Algorithm acoBasedAMO(G)
Input: G=(V, E, w); // A CO graph with V = { nVVV ,...,, 21 }

Output:
niii VVV ,...,,

21
; // An AMO order of G.

BEGIN
(a) Convert G into a converted CO graph G’;
(b) Find a TSP solution of G’ using ACO-TSP algorithm;
(c) Find an AMO order of G based on the output produced
 in step (b);
END

In the above step (c), the AMO order of G is formed as: Without loss generality,
assume that the TSP solution of G produced in step (b) is V1, V2, …, Vn, V1. We select
one edge (Vl,Vl+1) in the tour that makes min{w(Vi,Vi+1)| i=1,2, …, n} ∪ {w(Vn,V1)}),
and choose the sequence Vl+1, Vl+2, …,Vn, V1, V2, …,Vi as the AMO order.

However, the above algorithm does not always produce the best solution because a
longest (shortest) closed tour does not necessarily contain a longest (shortest) path of
the graph. For example, in the CO graph shown in Fig. 2 (a), the longest closed tour is
V1, V2, V3, V4, V1. When removing one of the minimal weighted edge (say, (V3,
V4), as shown in thick dotted line) from it, a longest path within the tour can be pro-
duced as V4, V1, V2, V3, with a total edge weight 11. However, the longest path of
the figure is actually V4, V1, V3, V2, with a total edge weight 12, as shown in solid
lines in Fig. 2 (b).

J. Xiao and H. Li 662

To produce a better solution, we make further modification to the ACO-TSP algo-
rithm on G’: each ant builds a shortest path instead of a shortest closed tour. For each
iteration, an ant’s shortest path can be obtained from its shortest closed tour by re-
moving one edge of maximal weight from the tour. Since the length of the shortest
path is shorter than that of the shortest closed tour, this modification results in a re-
duction on the quantity per unit of length of pheromone laid on edge (vi, vj) (i.e., Δτij
in [4]) by each ant.

Another modification to the ACO-TSP algorithm is to set the predetermined itera-
tion parameter, NC, of the algorithm. Although NC is independent from the number
of nodes of G’ and the number of ants placed at each node, its value significantly
affects the quality of the TSP solution [4, 5]. To make an efficient algorithm without
loss much of the convergence speed, we set NC as the same number of nodes in the
graph. Our experiments show that this setting works well. The resultant algorithm
based on this strategy is called Modified ACO-TSP, and named m_acoBasesAMO(G).
The description of the algorithm is similar to acoBasedAMO(G), and is thus omitted
here.

Fig. 2. (a) A CO graph, with a longest closed tour shown in thick lines. If the dotted line was
removed, an AMO (but not an MO) order can be formed from the tour. (b) An MO order of the
CO graph (shown in thick lines)

The complexity of both algorithms is the same as that of ACO algorithm, which is
O(NC⋅n2m) [4], where NC is the predetermined iteration parameter of the ACO algo-
rithm, and m the number of ants. It was proved that a reasonable setting is to set m=n,
i.e., one ant for each node of the graph. In this case, the complexity of both algo-
rithms can be written as O(NC⋅ n3).

Example 1. Let V = {a1, a2, …, a36} be a spatial object set and V = (V1, V2, …, V6) a
set of clusters on V. The corresponding CO graph is given in Fig. 3. In this example,
the sizes of all objects are identical, thus are not important. For simplicity, an object ai
is expressed by its index i in the figure, and the size of ai is taken as 1 unit, for all 1≤ i
≤36. By applying the MST based algorithm [3] to the CO graph, an AMO order was
produced as shown in thick solid lines in Fig. 4 (a), which is V1, V4, V2, V3, V6, V5,
with the total overlapping weight 31.

 3

4

 1 4

V2

V1 V4

V3
2

 (a) (b)

4

 3
 3

4

 1 4

V2

V1 V4

V3

4

 3

Sequential and Parallel Ant Colony Strategies 663

Fig. 3. A CO graph reproduced from [3]

By applying algorithm acoBasedAMO() to the CO graph G in Fig. 3, a TSP solu-
tion, which corresponds to a longest closed tour of G, was produced as shown in thick
solid/dotted lines in Fig. 4 (b). In the third step of the algorithm, an edge with mini-
mum weight in the tour is removed to produce an AMO order. In this example, both
edges (V1, V5) and (V1, V3), as shown in dotted lines in the figure, have the minimum
weight (i.e., 4). By removing (V1, V5) we get an AMO order V1, V3, V2, V4, V5, V6. If
(V1, V3) was removed, we would obtain an alternative AMO order V3, V2, V4, V5, V6 ,
V1. Similarly, when applying m_acoBasedAMO() to G, an AMO order V3, V2, V4, V5,
V6 , V1 is produced, which is the same as one of the AMO orders produced by aco-
BasedAMO().

Fig. 4. (a) AMO order produced by the MST based algorithm. (b) An ACO-TSP solution

By comparing the outputs of the AMO orders produced by the MST based and the
ACO-based algorithms, we find that the ACO-based algorithms produce better solu-
tions. This can be illustrated by the fact that the total overlapping weight of the AMO
order produced by the MST algorithm is 31, while the overlapping weight of the
AMO orders produced by the ACO-based algorithms is 33, which is the optimal MO
order for this example. Furthermore, initial experiments show that acoBasedAMO()
and m_acoBasedAMO() always produce a better solution than the MST based
algorithm does, and m_acoBasedAMO() always produces the best solution among the
three algorithms.

3 3

5

8

2

4
4

6

4
6

3

9
V2

V4

V1 V5

V6

V3

(a)

5

8

2

4
4

6

4
6

9 V2

V4

V1 V5

V6

V3

(b)

42

V4 V6

V3V2

V5

V1

3
9

34

6

6

8

5

4
 {1~2, 15~21} {18 ~ 30}

 {1 ~ 12} {1~2, 9~16,
22-24}

{22 ~ 36}
 {1~8,15~17,

31~36}

J. Xiao and H. Li 664

4.3 The Parallel Algorithms for Finding Cluster Scheduling Order

To reduce the response time of a spatial join operation, we parallelize the sequential
algorithms described in section 4.2. A straight forward parallelization strategy for the
algorithms is to compute the path/tour in parallel. An initial process would spawn a
set of subprocesses, one for each ant. After distributing initial information about the
problem (e.g., the length information between nodes), each process can start to draw
up the path/tour and compute the length for its ant. After finishing this procedure, the
result (i.e., the path/tour and its length) is sent from each processor back to the master
process. The master process updates the trail levels and checks for the best path/tour
found so far. Then a new iteration is initiated by sending out the updated trail levels.

Assume that N processors are available for parallel computation. If ignoring any
communication overhead, this approach may imply optimum (linear) speedup
Tseq(n)/Tpara(n) = O(NC⋅ n3)/ O(NC⋅ n3/N) =O(N), where Tseq(n) is the computational
complexity of the sequential algorithm and Tpara(n) the computational complexity of
the parallel algorithm.

4.4 Parallel Cluster Scheduling

Once the AMO order is produced, the next step is to schedule the spatial data of
clusters among the parallel processors for the refinement step in spatial join process-
ing. Assume processors P1, P2, … Pk, k≥2, are available to do the join operations in
parallel, i.e., clusters of spatial data can be scheduled to k sites for join processing.

Suppose the parallel spatial join operations are processed based on the coarse-
grained multicomputer (CGM) model, that is, all processors have the same memory
capacity, say q. For the purpose of balanced-loading among multiprocessors, every
processor needs to process r = n/k clusters except Pk, who needs to process the last n
- r*k clusters. Normally, n>>k, thus r>>1.

Without loss generality, assume that the AMO order produced is V1, V2, V3, …, Vn.
During the spatial join processing, we set processor Pi load and process clusters
V(i-1)*r+1, V(i-1)*r+2, …, Vi*r, (i=1, 2, …, k-1) in order, and Pk loads and processes the other
clusters, i.e., V(i-1)*r+1, V(i-1)*r+2, …, Vn in order. For each process, the overlapping objects
between two consecutive clusters are not to be fetched into the memory again when
processing the next cluster. As the clusters are mostly processed in the maximum
overlapping order, most I/O cost for fetching overlapping objects will be saved.

Note that when k=1, the above scheduling method degenerates to sequential
scheduling over one processor. In this case the saving the I/O cost for fetching over-
lapping objects between consecutive clusters reaches the maximum.

5 Conclusion

In spatial join processing, spatial objects are usually partitioned into clusters and then
are processed cluster by cluster. Since two clusters may have overlapping, the over-
lapping objects may be repeatedly loaded into memory. We proposed a method in [3]
that schedules the processing of the clusters in such a sequence that two consecutive

Sequential and Parallel Ant Colony Strategies 665

clusters in the sequence have maximal number of overlapping objects. As it is not
needed to load those overlapping objects when processing the next cluster because
they are already in the memory, the total I/O cost can, therefore, be minimized.

The key issue behind this method is how to produce a better AMO order to guide
the cluster scheduling. This paper proposed to apply ACO approach for finding AMO
orders. Both sequential and parallel version algorithms are developed. We illustrated
that the new algorithms can produce a better AMO order than the existing MST based
algorithm in the sense that the average overlapping weight of the AMO order pro-
duced by the new algorithms can be greater than that of the MST.

References

1. H. Samet and Walid Aref, Spatial Data Models and Query Processing. Modern Database
Systems, Addison-Wesley Publishing Company, Inc, 1995

2. J. Xiao, Y. Zhang and X. Jia. Clustering Non-uniform- Sized Spatial Objects to Reduce I/O
Cost for Spatial Join Processing, The Computer Journal, Vol. 44, No.5, 2001

3. J. Xiao, Y. Zhang, X. Jia and X. Zhou. A Schedule of Join Operations to Reduce I/O Cost in
Spatial Database Systems, Data & Knowledge Engineering, Elsevier Science B.V, Vol. 35,
pp. 299–317, 2000

4. L. M. Gambardella, M.Dorigo, An Ant Colony System Hybridized with a New Local
Search for the Sequential Ordering Problem, INFORMS Journal on Computing, vol.12 (3),
pp. 237–255, 2000

5. M. Dorigo, V. Maniezzo & A. Colorni. The Ant System: Optimization by a colony of coop-
erating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B, Vol. 26, No.
1, pp. 29–41, 1996

6. B. Bullnheimer, G. Kotsis, C. Strauss. in R. De~Leone, A. Murli, P. M. Pardalos, G.
Toraldo, (eds.): Parallelization Strategies for the ANT System, High Performance Algo-
rithms and Software in Nonlinear Optimization, Kluwer International Series in Applied Op-
timization, Vol. 24, Kluwer Academic Publishers, Dordrecht, 1998

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 666–676, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Cost-Effective Buffered Wormhole Routing

Jinming Ge

Engineering & Computer Science,
Wilberforce University,

Wilberforce, OH 45384, USA
jge@wilberforce.edu

Abstract. The cost-effectiveness of wormhole torus-networks is systematically
evaluated with emphasis on new buffered-wormhole routing algorithms. These
algorithms use hardwired datelines and escape channels to alleviate bottleneck
and bubble problems caused by previous algorithms and so to improve the
buffer efficiency with little hardware overhead. A two-part evaluation environ-
ment is developed consisting of a cycle-driven simulator for high-level meas-
urements such as network capacity and an ASIC design package for low-level
measurements such as operating frequency and chip area. This environment is
used to demonstrate that the new routers are more cost-effective than their
counterparts under various workload parameters.

1 Introduction

The principal objective of this paper is to look for a cost-effective buffered wormhole
router in a multicomputer torus network, especially that implemented on a single chip
where cost is as important as performance. This involves several tasks. First, tech-
niques are developed to enhance routing performance. Second, the performance, es-
pecially the buffer usage efficiency of various routing algorithms is evaluated on a
common platform. Third, the router implementation cost, chip area and clock timing
are derived using standard ASIC design flow with respect to current technology. Fi-
nally, combining the simulation result and the synthesis report, the cost-effectiveness
of each router can be compared.

Buffered wormhole routing has gained popularity with improved VLSI technology.
As more and more gates can be integrated in a single chip, it is possible to make the
buffers larger and so release some congested physical links. A special case of buff-
ered wormhole, the Virtual Cut Through (VCT), guarantees buffer space for any in-
coming packets, but it is less flexible than the Buffered wormhole routing because the
restriction on the ratio of buffer space to maximum packet size.

A key challenge of routing design is the deadlock problem. The most common and
practical way to avoid deadlock is to design deadlock-free algorithm [1][2] because of
the high cost and performance degradation of recovery schemes [3][4]. There are
several adaptive wormhole routing algorithms developed by using the concept of vir-
tual channels and channel dependency graphs [2][5][6]. As presented by Aoyama and
Chien, however, the virtual channels also substantially increase the router cost [2].
Duato devised the most attractive algorithm [7][8] of this type and its revised versions

Cost-Effective Buffered Wormhole Routing 667

have been integrated into the design of the Cray T3E [9] and the MIT Reliable Router
[10]. This algorithm relaxed Dally’s deadlock-free condition by allowing cycles to ex-
ist in the channel dependency graph as long as there is a routing sub-function whose
extended channel dependency graph is acyclic. In this cycle-tolerance scheme, only
two or three VCs per direction are necessary for partial adaptive (named as DP_like in
the following discussion) or fully adaptive (named as DF_like in the following dis-
cussion) routing respectively. Although it can allocate the traffic evenly among vir-
tual channels, a bottleneck link is formed. The ‘non-co-residence’ assumption on all
buffers [3][7] also results in bubbles along the communication link and degraded per-
formance for small packets. To tackle the bottleneck link and the bubble problems, a
routing strategy was introduced in [11]. A hardwired dateline is defined along each
uni-directional ring of the torus network to alleviate the bottleneck; and flits belong to
different packets can co-reside in a buffer of one of the virtual channels – the escape
channel so that the buffer space can be used more efficiently. Algorithms based on
this strategy, the DynBal with DP_like as its counterpart, and the F_DynBal with
DF_like as its counterpart, were proven to be deadlock-free and shown to be more ef-
ficient in the buffer space usage by a flit-level performance simulator.

This paper continues the previous evaluation by considering both the performance
and the buffer and control implementation cost in chip area and clock frequency. The
cost of various routing schemes, DynBal, F_DynBal, DP_like, and DF_like are re-
ported after actually modeling the routers in Verilog HDL, and synthesizing using
Synopsys and targeting to a state-of-the-art ASIC (LSI G11-p) technology. By com-
bining previous performance simulation result and the synthesis report, the
cost-effectiveness of each router can be compared with others. The major results are
characterized by the chip area budget. Constrained by a low chip area budget, the
DynBal router is the most cost-effective among the routers evaluated. F_DynBal is
the most cost-effective one if high chip area budget available and highly non-uniform
workload applied.

The rest of this paper is organized as follows. The routing strategy and algorithms
presented in [11] are discussed briefly in Section 2. Section 3 presents the basic per-
formance evaluation results of the algorithms developed. The chip area and speed of
the routers ASIC design derived in Section 4 are then combined with the performance
evaluations to compare the cost-effectiveness in Section 5. Finally, concluding re-
marks are given and further directions are discussed in Section 6.

2 Routing Strategy and Algorithms

This section briefly reviews the two definitions, the routing schemes and the dead-
lock-free proofs introduced in [11].

2.1 Hardwired Dateline and Escape Channel

The analysis is based on two definitions. The basic dateline concept [12] is redefined
to remove the bottleneck formed in the original DP_like routing algorithm. An escape
channel distinguishes itself from a cyclic channel, uses the buffer space more effi-
ciently, and still avoids the deadlock situation.

J. Ge 668

 N0

 C00

 C01

 N1

C10

C11

 N2

C20

C21

 N3

C30

C31

dateline

 VC0

 VC1

Fig. 1. The hardwired dateline crossing a unidirectional ring

Hardwired Dateline. It is a dateline that cuts a ring so that it can only be crossed by
traffic in the appropriate VC. The position of the dateline is recorded as the node
address where the dateline crosses the switch, and is known by each node on the ring.

In the DP_like [11], since only a packet heading to its right, as illustrated in Fig. 1,
can use virtual channel VC1, the virtual channel between No and N3 and buffer C30
cannot be used while there are two channels for all other links along the ring. The
hardwired dateline for the ring crosses the link where the bottleneck is formed. The
purpose of making the dateline hardwired is that we want to do the VC balancing dy-
namically and in a distributed manner rather than by using static off-line optimization
as used in the T3D [12]. There will be no real connection between the input buffer of
C00 and the output buffers C31 or C30. That is, a packet that arrives in input buffer
C01 can use either C30 or C31 to reach its destination so that the bottleneck is re-
moved.

Escape Channel. It is an open-loop channel that consists of a set of VC buffers
without a cyclic direct-dependency among them.

The escape channel can be identified from Fig. 1 or from its corresponding chan-
nel-dependency graph [2]. The virtual channel VC0, consisting of the set of CX0, is
open-looped so that it is an escape channel, while the virtual channel VC1 is a cyclic
channel. The critical difference between the two kinds of channels is that routing on
the former will never cross the dateline, while on the latter, it may cross if a packet is
heading to the right of its current position.

The assumptions of the cycle-tolerance theory [7] are used except for one change:
the queue in an escape channel can hold flits belonging to different packets, while the
queue in a cyclic channel cannot. In addition, we assume that a hardwired dateline ex-
ists for each unidirectional ring of the network.

2.2 The Basic Algorithm

The ideas of hardwired dateline and the escape channel can be used to develop a new
routing strategy. The algorithm, DynBal, for routing in a single unidirectional ring is
presented first and then adapted to a bi-directional ring and finally to a multiple di-
mensional torus.

Routing in a single ring is depicted in Fig. 1:

Cost-Effective Buffered Wormhole Routing 669

For routes intended to crosses the hardwired dateline, VC1, the cyclic channel
(CX1) only, must be selected.
If the route is not intended to cross the hardwired dateline, VC0, the es-
cape channel (CX0), for a high priority, or VC1, the cyclic channel (CX1),
for a low priority may be selected.

The requests to the cyclic channel can be granted if the output queue is empty and
those to the escape channel can be granted if output queue space is available, so as to
satisfy the assumptions.

The proof of deadlock-freedom of the basic algorithm is detailed in [11].

2.3 Algorithms Extended to Multiple Dimensions and Fully Adaptive Routing

The DynBal can be used for routing along a bi-directional ring by breaking the tie be-
tween the rings in opposite directions. A packet is routed to a specific directional ring at
the source node, and keeps proceeding in the same ring until it reaches its destination.
There are no dependencies between the rings in opposite directions, so that a packet in
one ring never blocks a packet in the other ring. The selection of rings in the source
node is based on the shortest path, and there are two different datelines for each ring.

Just as shown in the DP_like algorithm, crossing dimensions on a multi-dimensional
torus should use the dimension order routing (DOR), and in each dimension routing, the
packet along a particular ring should follow the rules of the above algorithms.

The DynBal algorithm adopts adaptivity within a ring. If a third virtual channel is
introduced to DynBal as a fully adaptive channel used to cross dimensions in a arbi-
trary order, by a similar method used in the development of DF_like from DP_like
[7], a fully adaptive wormhole routing algorithm, F_DynBal, can be developed.
F_DynBal can be proven to be deadlock-free by the same approach used above: the
fully adaptive channel works in a similar way to a cyclic channel in DynBal.

3 Performance Evaluation

To evaluate routing performance, the router and the network must be first modeled
with reasonable assumptions. Following a description of the evaluation tool, a flit-
level cycle-driven simulator, the efficiency of buffer usage by different algorithms
under both dynamic and static workloads is discussed.

The following discussion is based on a bi-directional, 2-dimension 16x16 torus
where each node can communicate with each other node by an attached router. Each
node has an input (injector) and output (ejector) port to communicate with the router.
Buffering at both input and output is modeled inside the router. Each virtual channel
can be constructed with several lanes for performance reasons rather than for dead-
lock prevention [13]. All virtual channels (and the lanes constructed within them) in
the same direction share the same physical channel. The width of the physical channel
(phits) is assumed to be equal to that of flits.

The message unit of workload is a packet that consists of a header flit containing
the destination node address as well as other control bits, data flits, and a tail flit.
Packets are mapped to each node based on a global communication pattern, but
packet flits are injected to an input buffer iff buffer space is available. A packet is
consumed as soon as it reaches its destination because of an un-limited ejection
buffer.

J. Ge 670

The workload can be mapped either dynamically or statically. A dynamic work-
load, in which packets are generated at every cycle of the simulation, can be used to
test the performance in throughput and average latency. On the other hand, in a static
workload, the generation is done just once and is used to measure how many cycles
are needed to deliver all the packets mapped. For example, a data matrix (e.g. a pic-
ture) can be mapped to the physical torus network where each node is mapped on a
certain fraction of the matrix.

A flit takes one cycle to transfer from an input buffer to an output buffer or from
an output buffer to a downstream input buffer if there is no congestion. A header flit
entering into an empty input buffer will have to take one extra cycle to get the routing
done. The routing for the header flit following the tail of another packet (note only if
the algorithm for this VC permits packet co-residence) will be done parallel with the
transmission of the flit ahead of it. The routing algorithms evaluated are those dis-
cussed so far, which are DynBal, DP_like, F_DynBal, and DF_like.

3.1 Efficiency of Using Node Buffer Space

For a particular algorithm and packet size, the buffer size affects performance in sev-
eral ways. A minimum of two flits per buffer is required for asynchronous Physical
Channel wormhole routing; otherwise, it would introduce bubbles [1][3][11]. When

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200 250 300
Node Buffer Space (flits)

T
hr

ou
gh

pu
t (

fl
its

 /
no

de
 /

cy
cl

e)

F_DynBal

DF_like

DynBal

DP_like

Fig. 2. The effect of buffer space to various routing algorithms (8-flits-packet, uniform traffic

the buffer size gets bigger, blocked packets hold fewer buffers as well as fewer links
so that a big buffer improves the performance. However, increasing buffer size also
exacerbates the Head-Of-Line problem, so there is an optimal size that should be con-
sidered. We also found that various algorithms use buffer space with different effi-
ciencies, as shown in Fig. 2, where all of the four algorithms are evaluated based on
the same buffer space per node.

Both of the two fully adaptive algorithms perform better than non-fully adaptive
ones. One of the reasons is that the average buffer size per lane for these two fully
adaptive ones is smaller than the two non-fully adaptive ones and so that less bubbles
introduced.

Cost-Effective Buffered Wormhole Routing 671

If the buffer gets bigger, the bubble problem of the DP_like and the DF_like be-
comes significant because the bigger buffer space along all channels is just wasted
due to the restriction of non-packet-co-residence. In general, the dynamic balance
scheme (DynBal and F_DynBal) uses buffer space more efficiently.

3.2 Dynamic and Static Workload

Static workloads are applied to measure the number of clock cycles required to com-
plete a task, while dynamic workload is used to measure the throughput. During the
static workload delivery process different algorithms may use network capacity dif-
ferently, as shown in Fig. 3, where DynBal uses fewer cycles than DP_like and
F_DynBal uses fewer cycles than DF_like to deliver all packets.

0

0.1

0.2

0.3

0.4

0 0.2 0.4 0.6 0.8 1

Fraction Finished

T
hr

ou
gh

pu
t (

fl
its

 /
no

de
 /

cy
cl

e)

F_DynBal

DF_like

DynBal

DP_like

Fig. 3. Throughput during the delivery of a static load

The intensive bubbles introduced by DP_like, especially when more buffers have
already resided some flits of other packets, cause inefficient use of bandwidth. This
phenomenon is more typical for DF_like. Both DF_like and F_DynBal reach nearly
the same delivery rate after 10% of the packets are drawn, but the rate is forced to
slow down more quickly for DF_like because more “cyclic-channel” buffers need to
be emptied before accepting other packets. This leads to the better performance of
F_DynBal over DF_like under static workload.

4 ASIC Design of Routers

The implementation cost in the chip area and timing is extracted after modeling the
routing algorithms and synthesis onto ASIC technology. All routers discussed are
modeled similarly to the F_DynBal shown in Fig.4, depending on the number of VCs
used for deadlock avoidance. We assume routing on a two dimensional torus with a
physical link for each direction. For clarity, only part of the router, the schematic
graph on the positive direction along x dimension and the local node interface (injec-

J. Ge 672

tion and ejection) is presented. The switch is used as the data path from input lanes to
output lanes and is implemented as a multiplexer on the side of output channels.
The number of physical link bits (phits) is assumed equal to that of flow control bits
(flits). The header flit of a packet contains eight bits for the destination node address (x,
y) and two bits for the header/tail tag. The buffer depth unit is a bit, and the buffer width
is the same as a flit. It has a centralized output channel status monitor and an
optimal path generator. These facilitate the parallelization of header decoding and
path selection. There is a round-robin arbiter sitting on each output virtual channel
and the physical channel, and a routing and path selection controller on each input vir-
tual channel.

FIFO

Routing &
Path Selection

X+ Adaptive VC Input

FIFO

Routing &
Path Selection

Injector Channel

FIFO

Routing &
Path Selection

X+ Cyclic VC Input

FIFO

Routing &
Path Selection

X+ Escape VC Input

FIFO

Roud-Robin
Arbiter

X+ Adaptive VC Output

FIFO

Roud-Robin
Arbiter

X+ Escape VC Output

FIFO

Roud-Robin
Arbiter

X+ Cyclic VC Output

R
ou

d-
R

ob
in

A
rb

it
er

X+ PC
MUX

FIFO

Roud-Robin
Arbiter

Ejector Channel

Output Channels
Status Monitor

&
Optimal Path

Generator

Flit
Req
 / NE

Ack
 / NF

Channel
Status

Optimal Path
For All

Possible Sets

uNF_XP

uWt_XP

DOut_XPDIn_XP

dNF_XP

dWt_XP

DOut_Ej
uWt_Ej

uNF_Ej
dNF_Inj
DIn_Inj
dWt_Inj

X-, Y+, Y- Channels
......

dE_XP uE_XP

Fig. 4. The Schematic graph of the XP channel and the interface to the local injector/ejector of
the F_DynBal router

The model is then described in Verilog HDL and the logic can then be verified by
using simulation tools like SILOS. Finally, the design can be mapped into a specific
process technology (LSI G11-p here) to be synthesized and optimized for area cost
and clock frequency.

The chip area/clock timing for each of the four wormhole routers: DynBal,
DP_like, F_DynaBal and DF_like is: 155K cells/1.25ns, 154K cells/1.25ns, 229K
cells/1.47ns, and 223K cells/1.47ns respectively. Thirteen lanes are used for fully
adaptive algorithms, nine lanes for the other two algorithms – one lane per VC and
one lane for ejector/injector. No lanes used for performance enhancement, as it is too
expensive as shown in [13].

Cost-Effective Buffered Wormhole Routing 673

5 The Cost-Effective Router

By combining the performance simulation results with the synthesis results, the cost-
effectiveness of the routing algorithms under various workloads can be compared.

5.1 Uniform Traffic

The cost-effectiveness of various algorithms discussed is shown in Fig. 5. The
DP_like and DF_like routing perform worse than DynBal and F_DynBal, respec-
tively, because of both the bottleneck and the bubbles. Compared with the perform-
ance evaluation (Fig. 2), although the performance simulation shows that fully adap-
tive routing has much higher throughput than non-fully adaptive, it becomes much
less attractive when the cost and speed are considered [9].

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 100 200 300 400 500

Area (1000's cells)

T
hr

ou
gh

pu
t (

fl
its

/n
od

e/
ns

)

F_DynBal

DF_like

DynBal

DP_like

 (a) Dynamic Workload

0

5

1 0

1 5

2 0

0 1 00 20 0 30 0 400 500
A rea (1000 's cells)

D
el

iv
er

yT
im

e
(u

S
)

F_D ynBal

D F_like

D ynBal

D P_like

 (b) Static Workload

Fig. 5. Cost-effectiveness of routers under uniform workload with 8-flits maximal packets

Compared with the dynamic workload performance, the F_DynBal router gets
much better performance than DF_like under static workload, as shown in Fig. 5b.

J. Ge 674

F_DynBal may use as low as 60% of the time for DF_like router to drain off
the packets.

0.00

0.05

0.10

0.15

0.20

0.25

0 100 200 300 400 500

Area (1000's cells)

T
hr

ou
gh

pu
t (

fl
its

/n
od

e/
ns

)

F_DynBal

DF_like

DynBal

DP_like

Fig. 6. Cost-effectiveness of routers under non-uniform (Dimension Reversal) traffic (8-flits-
packet)

5.2 Non-uniform Traffic

Dimension reversal is a typical pattern of the non-uniform traffic. As shown in Fig. 6,
the fully adaptive routing algorithms, when chip area budget available, perform much
better than non-fully adaptive ones because it is number of optional paths lead to the
avoidance of congestion. For the same reason, the difference between the new algo-
rithms and the old ones is nearly not recognizable.

Compared Fig. 5 and Fig. 6, the DynBal is cost-effective for random traffic con-
centrated workloads. But the fully adaptive routing algorithms lead to a much better
performance for non-random traffic concentrated loads.

5.3 The Cost-Effective Router

The original intention for developing the three routing algorithms was to find a low
cost yet high performance router design. DynBal was developed to contend with
DP_like routing; F_DynBal was developed to contend with DF_like routing. We
demonstrated that each of theses two algorithms is a good design choice between two
different chip area budgets: low, and high respectively.

A SoC multi-computer is plausible following the trends of process technology. If
EZ4102 TinyRISC from LSI Logic is used as a local node PE, each node (PE and
router) takes 6.18 mm2 if using the same ASIC technology, promising a SoC with tens
even hundred nodes.

Cost-Effective Buffered Wormhole Routing 675

6 Discussion

The main goal of this paper is to evaluate the cost-effectiveness of router designs for
the domain of torus buffered wormhole routing. This has been accomplished in a sys-
tematic manner. First, a new scheme was presented to enhance the performance of
previous algorithms. Then, performance was evaluated under various workloads by
using a flit-level, cycle-driven simulator. Finally, routers based on state-of-the-art
ASIC technology were constructed for detailed cost and speed evaluation. The cost-
effective router is recommended based on two chip area budgets. We suggest that the
DynBal be used as a low cost yet high performance router for random traffic domi-
nated workloads and that the F_DynBal be used as a high cost yet high performance
router for broader band traffic.

The routers implementing the various routing algorithms are constructed based on
the same canonical model and the same state-of-the-art ASIC technology: this results
in a fair comparison. As micron technology changes following Moore’s Law, we can
implement buffered wormhole algorithms and more complicated control as more
gates are available, but there is still a challenge in making the routers faster to meet
the needs of higher speed local nodes.

In the current simulator, a workload is generated according to the communication
pattern specified and the mapping style – either dynamic or static. More realistic
workloads are preferable. One way to accomplish this is to let a top level massively
parallel processing (MPP) simulator control the execution of the cycle-driven network
simulator and measure the performance under a real workload environment estab-
lished by the top level.

References

1. Chien, A. A. and Kim, J. H., Planar-Adaptive Routing: Low-cost Adaptive Networks for
Multiprocessors, Proceedings of the 19th International Symposium on Computer Architec-
ture, IEEE Computer Society, May 1992, 268-277

2. Dally, W. J. Virtual channel flow control. IEEE Trans. On Parallel and Distributed Sys-
tems Vol. 3, No. 2, March, 1992, 194-205

3. Duato, J., Yalamanchili, S., and Ni, L. Interconnection Networks: An Engineering Ap-
proach (IEEE Computer Society Press, Los Alamitos, CA, 1997)

4. Pinkston, T.M., Flexible and Efficient Routing Based on Progressive Deadlock Recovery,
IEEE Transactions on Computers, Vol. 48, No. 7, July 1999, 649-669.

5. Dally, W. J., and Seitz, C. L. The torus routing chip. Distributed Computing 1 (1986), 187-
196

6. Dally, W. J., Deadlock-Free Adaptive Routing in Multicomputer Networks Using Virtual
Channels. IEEE Trans. On Parallel and Distributed Systems Vol.4, No.4, 1993, 466-475

7. Duato, J., A Necessary and Sufficient Condition for Deadlock-free Adaptive Routing in
Wormhole Networks, IEEE Trans. on Parallel and Distributed Systems, Vol.6, No.10,
1995, 1055-1067

8. Ould-Khaoua, M., A Performance Model for Duato’s Fully Adaptive Routing Algorithm
in k-Ary n-Cubes, IEEE Transactions on Computers, Vol. 48, No. 12, Dec. 1999, 1297-
1304.

J. Ge 676

9. Scott, S., and Thorson, G. The Cray T3E Network: Adaptive Routing in a High Perform-
ance 3D Torus, Proc. of HOT Interconnects Symposium IV, Stanford U., Aug. 1996, 147-
156.

10. Dally, W.J., Dennison L.R. and etc., Architecture and Implementation of the Reliable
Router, Proceedings of Hot Interconnects II, Palo Alto, CA, Aug. 1994, 122-133

11. Ge, J., An Efficient Buffered Wormhole Routing Scheme, Proceedings of the IASTED In-
ternational Conference on Communications and Computer Networks, Cambridge (MIT),
MA. November 4-6, 2002, pp281-286.

12. Scott, S., and Thorson, G. Optimized routing in the Cray T3D. In Proc. Of the Workshop
on Parallel Computer Routing and Communication (1994), 281-294

13. Herbordt, M. C., Ge, J., Sanikp, S., Olin, K., Le, H., Design Trade-Offs of Low-Cost Mul-
ticomputer Network Switches, Proceedings of the 7th Symposium on the Frontiers of Mas-
sively Parallel Computation, Annapolis, MD, Feb. 1999, 25-34

Efficient Routing and Broadcasting Algorithms
in de Bruijn Networks

Ngoc Chi Nguyen, Nhat Minh Dinh Vo, and Sungyoung Lee

Computer Engineering Department, Kyung Hee Univerity,
1, Seocheon, Giheung, Yongin, Gyeonggi 449-701 Korea

{ncngoc, vdmnhat, sylee}@oslab.khu.ac.kr

Abstract. Recently, routing on dBG has been investigated as shortest
path and fault tolerant routing but investigation into shortest path in
failure mode on dBG has been non-existent. Furthermore, dBG based
broadcasting has been studied as local broadcasting and arc-disjoint
spanning trees based broadcasting. However, their broadcasting algo-
rithms can only work in dBG(2,k). In this paper, we investigate shortest
path routing algorithms in the condition of existing failure, based on the
Bidirectional de Bruijn graph (BdBG). And we also investigate broad-
casting in BdBG for a degree greater than or equal to two1.

1 Introduction

For routing in dBG, Z. Liu and T.Y. Sung [1] proposed eight cases shortest paths
in BdBG. Nevertheless, Z. Liu’s algorithms do not support fault tolerance. J.W.
Mao [4] has also proposed the general cases for shortest path in BdBG (case
RLR or LRL). For fault tolerance issue, he provides another node-disjoint path
of length at most k + log2k +4 (in dBG(2,k)) beside shortest path. However, his
algorithm can tolerate only one failure node in binary de Bruijn networks and it
cannot achieve shortest path if there is failure node on the path. Broadcasting
problems on dBG have been investigated as local broadcasting[6] and arc-disjoint
spanning trees[7][8]. Nonetheless, the above can only work in a binary de Bruijn
network (dBG(2,k)).

Considering limitations of routing and broadcasting in dBG, we intend to
investigate shortest path routing in the condition of failure existence and broad-
casting in BdBG with a degree greater than or equal to two. Two Fault Free
Shortest Path (FFSP) routing algorithms and one broadcasting algorithm (for
one-to-all broadcasting in the all port communication model) are proposed.
Time complexity of FFSP2 in the worst case is 0(2

k
2 +1d) in comparison with

0((2d)
k
2 +1) of FFSP1 (in dBG(d,k) and k=2h). Our study shows that the max-

imum time steps to finish broadcast procedure is k regardless of the broadcast
originator, time complexity at each node is 0(3

2d), and no overhead happens in
the broadcast message.

1 This research was partially supported by ITRC project of Sunmoon University.

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 677–687, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

678 N.C. Nguyen, N.M.D. Vo, and S. Lee

The rest of this paper is organized as follows. Background is discussed in
section 2. In section 3, FFSP routing algorithms are presented. Performance
analysis for FFSP routing algorithms is carried in section 4. Section 5 discuss
about broadcasting algorithm in dBG(d,k). Finally, some conclusions will be
given in Section 6.

2 Background

The BdBG graph denoted as BdBG(d,k)[1] has N=dk nodes with diameter k and
degree 2d. If we represent a node by d0d1...dk−2dk−1, where dj ∈ 0, 1, ..., (d− 1),
0≤j≤(k-1), then its neighbor are represented by d1...dk−2dk−1p(L neighbors, by
shifting left or L path) and pd0d1...dk−2(R neighbors, by shifting right or R
path), where p = 0, 1, ..., (d−1). We write if the path P = R1L1R2L2 consists of
an R-path called R1, followed by an L-path called L1, an R-path called R2, an
L-path called L2, and so on, where subscripts are used to distinguish different
sub-paths. Subscripts of these sub-paths can be omitted if no ambiguity will
occur, e.g., P = R1LR2 or P=RL. Shift string of a node A is a binary string (0
for left shift and 1 for right shift) which represents path from originator to A.

For simplest broadcasting mechanism, the originator initiates the process by
making a ”call” to other neighboring vertices in the graph informing them of the
message. Subsequently, the informed vertices call their neighboring vertices and
the process continues until all vertices in the graph are informed. Basically, this
mechanism is like flooding phenomenon. Note that the interval during which a
call takes place will be referred to as a time step or simply step. In flooding
broadcasting (FB), level of a node A is the number of steps by which a message
from originator reaches A (or shortest path length between A and originator).

The following fig. 1a shows us an example for BdBG(2,4). Fig. 1b shows us
eight cases of shortest path routing on BdBG. The gray areas are the maximum
substring between source (s) and destination (d). The number inside each block
represents the number of bits in the block.

Fig. 1. a)The BdBG(2,4); b)Shortest path types[1]

Efficient Routing and Broadcasting Algorithms in de Bruijn Networks 679

3 Fault Free Shortest Path Routing Algorithms

In order to provide shortest path in the condition of failure existing, several
paths of a specific source destination pair must be provided. Then FFSP is
found among those paths. Therefore, the following concepts are proposed. For
those, we assume that there is a separately protocol which detects failure nodes
and then let other nodes know in periodically.

Definition 1: the level mth discrete set (DSm) is a set which contains all neigh-
bors of each element in discrete set level m-1; in the constraint that there is no
existent element of discrete set level m coincides with another element of discrete
set level qth (q ≤ m) or failure node set.

Lemma 1: DSm is fault free.

Lemma 2: all the neighbors of a node belong to DSm are in DSm−1, DSm and
DSm+1, except failure nodes.

Proof: obviously we see that DS1 and DS2 contain all the neighbors of DS1
except failure nodes; DS1, DS2 and DS3 contain all the neighbors of DS2 except
failure nodes. So Lemma 2 is right at m=1,2. Assuming that lemma 2 is right
until p, now we prove it is right at p+1. Suppose it’s wrong at p+1. That means
there exist a neighbor A of an element B∈DSp+1, and A ∈ DSi, i < p. Because
lemma 2 is right until p, hence all the neighbors of A are in DSi−1, DSi and
DSi+1 except failure nodes. Therefore, there exists an element B’∈DSi−1, DSi

or DSi+1, and B’=B. It contradicts with definition 1. So Lemma 2 is right at
p+1. Following inductive method, lemma 2 is proved.

Lemma 3: there exists no neighbor of any element of DSm, which is a duplicate
of any element of DSh, ∀h≤m-2.

Proof: suppose there is a neighbor A of an element B ∈ DSm duplicates with
an element A’ of DSh (h ≤ m-2). Following Lemma 2, all the neighbors of A’
are in DSh−1, DSh and DSh+1. Therefore, there must exist a neighbor B’ of A’
in level h-1 or h or h+1, and B’=B. It contradicts with definition 1.

Corollary 1: for duplicate checking at the next level of DSq, it is not necessary
to check with any element of DSm,∀m≤q-2.

By assigning source node S to DS1, then expanding to the higher level, we
have the following theorem.

Theorem 1: in BdBG(d,k), we can always find a FFSP from node S∈DS1 to
node Ax ∈DSx(∀x≤k), if it exists.

Proof: we use inductive method to prove this theorem. When x=1, 2, theorem
1 is right. Assuming that theorem 1 is right until m, m ≤ k. Now we prove it is
right until m+1. Suppose that path from S to Am+1 is not the FFSP. Then we
have the following cases,

680 N.C. Nguyen, N.M.D. Vo, and S. Lee

• There exist Ap∈DSp, Ap = Am+1and p < m+1.It contradicts definition 1.
• There exists a FFSP, S→B1→B2→...→Bk→...→Bz→...→Am+1, and Bk,

Bk+1,..., Bz not belonging to any DSi (∀ i≤m+1). Because Bk−1 ∈DSj (j≤m+1).
Following Lemma 2, all the neighbors of Bk−1 are in DSj−1orDSjorDSj+1, ex-
cept failure nodes. Therefore, Bk must be a failure node.

→Theorem 1 is right at m+1. Theorem 1 is proved.

Corollary 2: path length of a path from S∈DS1 to Ax ∈DSx is x-1.

Fault free shortest path algorithm 1 (FFSP1) is proposed as a result of the-
orem 1 (shown in fig. 2a). It can always find FFSP in all cases (fault free mode,
arbitrary failure mode) if the network still remain connected.

Proof of FFSP1: suppose path s→...→aip→bjk→...→d is not FFSP, and then
we have the following cases,

• There exist a FFSP s→...→ai′p′→bj′k′→...→d (i’≤i, j’≤j). It contradicts
with the above assumption that aip and bjk are the first neighbors between
discrete sets A and B.
• There exist a FFSP s→...→ai′p′→c1→...→cm→bj′k′→...→d (i′ < i, j′ < j),

and c1, c2, ..., cm do not belong to any discrete set Ap or Bq (p≤i, q≤j). Due to
ai′p′ ∈Ai′ and following lemma 2, all the neighbors of ai′p′ are in Ai′−1, Ai′ and
Ai′+1 except failure nodes. Therefore c1 must be a failure node.

Example 1: we want to find a FFSP from source 10000 to destination 01021,
failure node 00102 (dBG(3,5)).

Applying FFSP1, we have, A1 = (10000) B1 = (01021) A2 = (00000, 00001,
00002, 01000, 11000, 21000) B2 = (10210, 10211, 10212, 00102, 10102, 20102).

However, 00102 is a failure node. So B2=(10210, 10211, 10212, 10102, 20102).
A3 = (20000, 00010, 00011, 00012, 00020, 00021, 00022, 10001, 10002, 00100,
10100, 20100, 01100, 11100, 21100, 02100, 12100, 22100).

Then we find that 02100 and 10210 in A3 and B2 are the first neighbors.
FFSP is found by tracking back from 02100 to 10000 and 10210 to 01021. We
have FFSP 10000 → 21000 → 02100 → 10210 → 01021. In this example, FFSP1
can provide 2 shortest paths (in the case of no failure node) 10000 → 21000 →
02100 → 10210 → 01021 and 10000 → 00001 → 00010 → 00102 → 01021. We
pick up one FFSP 10000→21000→02100→10210→01021 (node 00102 is fail).

Furthermore, we shall see that other elements like 00000, 00002, 01000, 11000
in A2 are useless in constructing a FFSP. So, eliminating these elements can
reduce the size of A3 (reduce the cost at extending to next level) and improve
the performance of our algorithm. It shows the motivation of FFSP2. Before
investigating FFSP2, we give some definition and theorem.

Definition 2: a dominant element is an element which makes a shorter path
from source to a specific destination, if the path goes through it.

Efficient Routing and Broadcasting Algorithms in de Bruijn Networks 681

Example 2: from the above example 1 we have 2 shortest paths (in the case 00102
is not a failure node) 10000 → 21000 → 02100 → 10210 → 01021 and 10000 →
00001→ 00010→ 00102→ 01021. Thus 00001 and 21000 are dominant elements
of A2, because they make shorter path than others of A2.

Therefore, by eliminating some non-dominant elements in a level, we can
reduce the size of each level in FFSP1 and hence, improve the performance of
FFSP1. A question raised here is how we can determine some dominant elements
in a DSk and how many dominant elements, in a level, are enough to find FFSP.
The following theorem 2 is for determining dominant elements and corollary 3
answer the question, how many dominant elements are enough.

Theorem 2: If there are some elements different in 1 bit address at leftmost or
rightmost, the dominant element among them is an element which has shorter
path length toward destination for cases RL2, R (shown in fig. 1b) for leftmost
bit difference and LR2, L for rightmost bit difference.

Proof: as showing in fig. 1b, there are eight cases for shortest path. Only four
cases RL2, R, LR2 and L make different paths when sources are different in
leftmost bit or rightmost bit.

Example 3: following example 1, we check the dominant characteristic of three
nodes A 01000, B 11000 and C 21000 (in A2) to destination D 01021. Three
nodes A, B and C are leftmost bit difference. So, type RL2, R are applied.

• Apply type R: the maximum match string between A 01000 and D 01021
is 0, between B 11000 and D 01021 is 1, and between C 21000 and D 01021 is
2 → min path length is 3, in case of node C.
• Apply type RL2: the maximum match string [5] between A 01000 and D

01021 is 1 (path length: 6), between B 11000 and D 01021 is 1 (path length: 7),
and between C 21000 and D 01021 is 2 (same as case R) → min is 3, node C.

Therefore, minimum path length is 3 and dominant element is C.

Corollary 3: when we apply theorem 2 to determine dominant elements, the
maximum elements of DSm+1 are 2p(p is the total elements of DSm).

Proof: the maximum elements of DSm+1 by definition 1 are 2pd (dBG(d,k)).
We see that in 2pd there are 2p series of d elements which are different in 1 bit at
leftmost or rightmost. By applying theorem 2 to DSm+1, we obtain 1 dominant
element in d elements differed in 1 bit at leftmost or rightmost.

Fault Free Shortest Path Algorithm 2 (FFSP2) is proposed in fig. 2b.
The condition in line 5 and line 8 (fig. 2a, 2b) let us know whether there exists

a neighbor of array A and B of discrete set, ∀aip ∈A[i],∀bjk ∈B[j] . The SPD(M)
function, line 14 fig. 2b, finds the next level of DS M (DS N) and eliminates non-
dominant elements in N followed theorem 2. Expand(M) function, line 14 fig. 2a,
finds the next level of DS M. Pathlength type p function, line 19,23 fig. 2b, checks
path length followed type p of each element in T toward destination. Eliminate
function, line 20, 24, eliminates element in T, which has longer path length than

682 N.C. Nguyen, N.M.D. Vo, and S. Lee

Fig. 2. a)Fault Free Shortest Path Algorithm 1 (FFSP1); b)Fault Free Shortest Path
Algorithm 2 (FFSP2)

the other. The duplicate check(N) function, line 17 fig. 2a and line 27 fig. 2b,
check if there is a duplicate of any element in N with other higher level DS of N.
For duplication checking, we use the result from corollary 1. Then, we get FFSP
by going back from aip to s and bjk to d.

Example 4: we try to find FFSP as in example 1. By applying FFSP2, we have,
A1 = (10000) B1 = (01021) A2 = (00001, 21000) B2 = (10210, 00102). However,
00102 is a failure node. So B2 becomes (10210).

A3 = (00010, 10000, 10001, 02100). However, node 10000 coincides with 10000
of A1. So A3 becomes (00010, 10001, 02100). Then we find that 02100 and 10210
in A3 and B2 are the first neighbors. FFSP is found by tracking back from 02100
to 10000 and 10210 to 01021. We have FFSP 10000 → 21000 → 02100 → 10210
→ 01021.

4 Performance Analysis for FFSP1 and FFSP2

Mean path length is the significant to analyze and compare our algorithm to
others. Z. Feng and Yang [2] have calculated it based on the original formula,
Mean path length = Totalinternaltraffic

Totalexternaltraffic for their routing performance. We can

Efficient Routing and Broadcasting Algorithms in de Bruijn Networks 683

use the above equation to get the mean path length in the case of failure. We
assume that failure is random, and our network is uniform. That means the
probability to get failure is equal at every node in the network.

Table 1 shows the results in the simulation of mean path length using six
algorithms, SCP[3], RFR, NSC, PMC[2], FFSP1 and FFSP2. Our two algorithms
show to be outstanding in comparison with the four algorithms. They always
achieve shorter mean path length than the other algorithms.

Table 1. Mean path length of FFSP1, FFSP2 in comparison with others

This section is completed with study in time complexity of our algorithms.
As A. Sengupta [9] has shown that dBG(d,k) has connectivity of d-1. Hence, our
time complexity study is based on assumption that the number of failures is at
most d-1 and our study is focused on large network with high degree (d>>1).
Therefore, diameter of our network in this case is k. We have the following cases,

• For FFSP1, the second level DS lies in the complexity class 0(2d) , the
third level DS lies in the complexity class 0(2d(2d-1))≈ 0(4d2), the fourth lies in
0(2d(2d−1)2) ≈ 0(8d3), etc... Hence, time complexity of FFSP1 lies in the com-
plexity class 0((2d)n), the value of n equals to the maximum level DS provided by
FFSP1. In the worst case, time complexity of FFSP1 lies in 0((2d)

k
2 +1) (k=2h),

or 0((2d)
k+1
2) (k=2h+1), k is maximum path length from source to destination

(the diameter).
• The computation time of FFSP2 can be divided into 2 parts. One is per-

forming computation on expanding to next level, checking for duplicate and

684 N.C. Nguyen, N.M.D. Vo, and S. Lee

neighboring checking between DS A[m] and B[q]. This part is like FFSP1, the
difference is that each DS here grows following a geometric progression with
common quotient 2 and initial term 1 (as shown in corollary 3). The other part
is performing computation on finding dominant elements. Hence, the second
level DS lies in the complexity class 0(2+2d)≈0(2d), the third level DS lies in
the complexity class 0(4+4d)≈0(4d), the fourth lies in 0(8+8d)≈0(8d), etc...
Hence time complexity of FFSP2 lies in the complexity class 0(2nd), the value
of n equals to the maximum level DS provided by FFSP2. FFSP2 would cost us
0(2

k
2 +1d) (k=2h), or 0(2

k+1
2) (k=2h+1) time in the worst cases, k is maximum

path length from source to destination (the diameter).

5 Broadcasting Algorithm in dBG(d,k)

By applying FB, we can easily obtain k as the maximum number of steps to
finish broadcasting. However, message overhead is very high in FB. Thus, how
to reduce message overhead (or letting each informed vertices call its uninformed
neighbors only) in FB states the motivation for our algorithm. We assume that
each packet sent to the other node must contain originator address, sender’s
level, a shift string of receiver and all calls take the same amount of time.

There are two cases of message overhead when an informed node A wants to
inform node X. Case 1, node X has been informed already. Thus, X must have
lower or equal level to A. Case 2, uninformed node X can be informed by nodes
B,C,D, which have the same level as A, at the same time. For case 1, we need
to compare the shortest-path length between X and A to originator. And X is
informed by A if X level is higher than A’s level and case 2 not happen. For
case 2, we have to define some conditions, based on these conditions only A or
B or C or... inform X. The following theorems are proposed for calculating path
length.

Theorem 3: given p is shortest-path length between node a and b, the minimum
length of matched strings between a and b is k-p (dBG(d,k)).

Proof: as shown in fig. 1b, there are 3 types for determining shortest path (R,L;
RL,LR; R1LR2, L1RL2). The minimum matched string[5] can be obtained in
type R,L among them. And length for this minimum matched string is k-p.

Theorem 4: path length between node s and d is min(2sj +si +di, 2si +sj +dj),
where si and di are the left indices, and sj and dj are the right indices of matched
string in s and d respectively.

Proof: path length 2sj + si + di, 2si + sj + dj are for case Rsj
Lsj+si

Rdi
and

Lsi
Rsi+sj

Ldj
respectively . These cases are the general cases for 3 types pre-

sented in fig. 1b(ex. if si, sj , di, dj �=0, they become type R1LR2 and L1RL2).
To solve the above two cases of message overhead, a Boolean valued function

SPL is proposed. SPL has inputs: originator S, current node P, neighboring node
X, current level n (level of P), shift string Q (q0q1q2...qz−1, length z≤k) (from S
to X through P). Fig. 3a shows SPL algorithm. Step 1,2,3 solve message overhead

Efficient Routing and Broadcasting Algorithms in de Bruijn Networks 685

of case 1. Step 1 is a result of theorem 3. Step 4,5,6 solve case 2 message overhead.
In case 2, we have several shortest paths from S to X. One shortest path must
be chosen based on the following conditions:

• Shortest path corresponds with shortest matched string of S and X(step5).
• In the case, there exist 2 shortest path from the first condition. Then,

shortest path which begin with shifting right is chosen. (step 6)

Step 7 compares shift string Q to the condition gotten from step 5 and 6 to
determine whether X should be informed or not.

Fig. 3. a)SPL function algorithm; b)Typeiden function algorithm; c)Broadcasting al-
gorithm for dBG(d,k)

Example 5: in dBG(3,10), given input S: 0012111001, P: 0111012110, n=7, X:
1110121100, Q=01111100. By applying SPL, we have

Step 1: find all matched strings[5] which have length higher or equal 10-7-1=2.
These strings are 11, 111, 1110, 01, 012, 0121, 01211, 110, 1100.
Step 2: path lengths for strings in step 1 are 12, 10, 8, 14, 12, 10, 8, 13, 11.
Step 3: shortest path length is 8.
Step 4: matched string, which make shortest path length 8, are 1110, 01211.
Step 5: minimum size string from step 4 is 1110, b=false.
Step 6:Typeiden(input si = 0, sj = 6, di = 4, dj = 2)→returned value: 1,a=1.
Step 7: there are 2 places in Q in which two adjacent bits are different→ a=-1
�=0. Consequently, X is an uninformed node (step 3,8>n), but it isn’t informed
by P (message overhead case 2) due to our priority given in step 5 and 6.

686 N.C. Nguyen, N.M.D. Vo, and S. Lee

If we apply SPL for all 2d neighbors of one node, then it cost 0(2d) for running
our algorithm. The following theorems reduce from 0(2d) to 0(1.5d). Following
are some notations used, where T is the previous shifting string.

R↔T: total number of right shift in T > total number of left shift in T
L↔T: total number of left shift in T > total number of right shift in T

Theorem 5: by shifting RLR/LRL, results are duplicate with shifting R/L.

Proof: given a node a0a1...an−1. By shifting RLR in dBG(d,k), we have a0a1...
an−1→ αa0a1...an−2→ a0a1...an−2β→γa0a1...an−2, 0≤α, β, γ<d.

Substitute α for γ → γa0a1...an−2≡αa0a1...an−2.
By proving similarly for case LRL, theorem 5 is proved.

Theorem 6: if R↔T/L↔T, results provided by next shift LR/RL are duplicate.

Proof: assume the beginning node is a0a1...an−1. For case R↔T, we have the
following cases:

•T = RuLvRw, T = LuRvRw, T = LuRv. By shifting LR, we have shift
string R1L1R2L2 or L1R1L2R2, which are not existed for shortest path (as
shown in Lemma 1 of [1]).
•T = RuLv (u>v). By shifting R u times and L v times respectively, we have

a0a1...an−1→βu−1...β1β0a0a1...an−u−1 →βu−v−1...β1β0a0a1...an−u−1δ0δ1
...δv−1 where 0≤βi, δj <d, 0≤i<u, 0≤j<v. By shifting LR we have,

βu−v−1...β0a0...an−u−1δ0...δv − 1 → βu−v−2...β0a0...an−u−1δ0...δv →
γβu−v−2...β0a0...an−u−1δ0...δv − 1 (K)
Substitute γ(0≤ γ<d) for βu−v−1 → K is duplicate.

• R=Ru. Shift string RuLR makes duplicate as shown in theorem 3.

By proving similarly to case L↔T, we prove theorem 6.
As a result, broadcasting algorithm is proposed as shown in fig. 3c.

Theorem 7: in the worst case, time complexity for our broadcasting algorithm
is 0(1.5d).

Proof: probability for theorem 5 happening is 25%, and for theorem 6 is less
than 25%. Therefore, the probability for CONTINUE command (line 10, 18 fig.
3c) happening is 25%. So, theorem 7 is proved.

6 Conclusion

We have proposed new concepts, routing algorithms and distributed broadcast-
ing algorithm in dBG(d,k). Our routing algorithms can provide shortest path in
the case of failure existence. Our simulation result shows that FFSP2 is an ap-
propriate candidate for the real networks with high degree and large number of
nodes, while FFSP1 is a good choice for high fault tolerant network with low de-
gree and small/medium number of nodes. In broadcasting, our algorithm requires

Efficient Routing and Broadcasting Algorithms in de Bruijn Networks 687

maximum k steps to finish broadcasting process in dBG(d,k). And there is no
message overhead during broadcasting. Time complexity at each node is 0(3

2d).
Therefore, the algorithms can be considered feasible for routing and broadcasting
in real interconnection networks.

References

1. Zhen Liu, Ting-Yi Sung, ”Routing and Transmitting Problem in de Bruijn Net-
works” IEEE Trans. on Comp., Vol. 45, Issue 9, Sept. 1996, pp 1056 - 1062.

2. O.W.W. Yang, Z. Feng, ”DBG MANs and their routing performance”, Comm.,
IEEE Proc., Vol. 147, Issue 1, Feb. 2000 pp 32 - 40.

3. A.H. Esfahanian and S.L. Hakimi, ”Fault-tolerant routing in de Bruijn communica-
tion networks”, IEEE Trans. Comp. C-34 (1985), 777.788.

4. Jyh-Wen Mao and Chang-Biau Yang, ”Shortest path routing and fault tolerant
routing on de Bruijn networks”, Networks, Vol. 35, Issue 3, Pages 207-215 2000.

5. Alfred V. Aho, Margaret J. Corasick, ”Efficient String Matching: An Aid to Bibli-
ographic Search”, Comm. of the ACM, Vol. 18 Issue 6, June 1975.

6. A.H.Esfahanian, G. Zimmerman, ”A Distributed Broadcast Algorithm for Binary
De Bruijn networks”, IEEE Conf. on Comp. and Comm., March 1988.

7. E.Ganesan, D.K.Pradhan, ”Optimal Broadcasting in Binary de Bruijn Networks and
Hyper-deBruijn Networks”, IEEE Symposium on Parallel Processing, April 1993.

8. S.R.Ohring, D.H.Hondel, ”Optimal Fault-Tolerant Communication Algorithms on
Product Networks using Spanning Trees”, IEEE Symp. on Parallel Processing, 1994.

9. A. Sengupta, A.Sen, and S.Bandyopadhyay, ”Fault tolerant distributed system de-
sign”, IEEE Trans. Circuit Syst., Vol. CAS-35, pp. 168-172, Feb. 1988

Fault-Tolerant Wormhole Routing Algorithm in
2D Meshes Without Virtual Channels�

Jipeng Zhou1 and Francis C.M. Lau2

1 Department of Computer Science, Jinan University,
Guang Zhou 510632, P.R. China

jpzhoucn@sohu.com
2 Department of Computer Science,

The University of Hong Kong, Pokfulam, Hong Kong, P.R. China
fcmlau@cs.hku.hk

Abstract. In wormhole meshes, many routing algorithms prevent dead-
locks by enclosing faulty nodes within faulty blocks. None of them how-
ever can tolerate the convex fault model without virtual channels. We
propose a deterministic fault-tolerant wormhole routing algorithm for
mesh networks that can handle disjoint convex faulty regions. These re-
gions would not contain any nonfaulty nodes. The proposed algorithm
does not use any virtual channels, which routes the messages using an
extended X-Y routing algorithm in the fault-free regions. The algorithm
is deadlock- and livelock-free.

1 Related Work

The efficiency of routing algorithms is important for achieving high performance
in multiprocessor systems. There are two types of routing methods: determinis-
tic routing, which uses a single path from the source to destination; and adaptive
routing, which allows more freedom in selecting message paths. Most commer-
cial multiprocessor computers use deterministic routing because of its deadlock
freedom and ease of implementation.

Numerous deterministic fault-tolerant routing algorithms [2][7] in meshes
have been proposed in recent years, most of which augment the dimension-order
routing algorithm to tolerate certain faults. Boppana and Chalasani proposed
a fault-tolerant routing algorithm in mesh networks [2], or in mesh and torus
networks [1]. The key idea of their algorithms is that, for each fault region, a
fault ring or fault chain consisting of fault-free nodes and channels can be formed
around it; if a message comes in contact with the fault region, the fault ring or
chain is used to route the message around the fault region. Deadlocks can be
prevented by using four virtual channels per physical channel for deterministic
(dimension-order) fault-tolerant routing. Their fault model is rectangle or spe-
cial convex. Sui and Wang [7] proposed a fault-tolerant routing algorithm using

� This research is supported by GDNSF (04300769), SRF for ROCS, SEM and JNU
Grant (640581).

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 688–697, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Fault-Tolerant Wormhole Routing Algorithm in 2D Meshes 689

three virtual channels per physical channel to tolerate the rectangle fault model.
Zhou and Lau [10] proposed a fault-tolerant wormhole routing algorithm using
three virtual channels, which can tolerate the convex fault model. Tsai [8] and
Ho [5] proposed fault-tolerant routing algorithms using two virtual channels.

Wu [9] proposed a fault-tolerant extended X-Y routing protocol, which is
based on dimension-order routing and the odd-even turn model and does not
use any virtual channels in 2D meshes. He uses extended faulty blocks (disjoint
rectangles), consisting of connected unsafe and faulty nodes. Wu’s protocol can
be applied in 2D meshes with orthogonal faulty blocks (convex polygons). The
extended X-Y routing protocol, however, cannot reach certain locations of faults
and destinations, and their fault model may include nonfaulty nodes.

Our deterministic fault-tolerant wormhole routing algorithm can be con-
trasted to [2][7][8][9][10]. The convex fault model used would not include any
nonfaulty nodes and would not prohibit routing to any desired location. The
proposed fault-tolerant algorithm does not use virtual channels; it routes the
messages by X-Y routing in fault-free region, and is deadlock- and livelock-free.

2 Fault Model and Disjoint Boundaries of Fault Regions

There are two different types of faults, either the entire processing element
(PE) and its associated router can fail or a physical link may fail. When a
PE and its router fail, all physical links incident on the failed PE are also
marked as being faulty. Only faulty PEs are considered a basic faulty element,
for simplicity, and the disjoint fault-connected regions are used as fault model
in this paper. In order to find fault-connected regions, each PE should know
the states (faulty or safe) of its encompassing PEs after running a diagnostic
program. Two PEs p0 = (x0, y0) and p1 = (x1, y1) are called 4-neighbors if
|x0 − x1| + |y0 − y1| = 1, 8-neighbors if max{|x0 − x1|, |y0 − y1|} ≤ 1. Con-
nectivity of faulty PEs is defined in terms of adjacency relation among faulty
PEs.

Definition 1. Given that C is the connectivity relation in a mesh M . For any
pair of processors p, q ∈M and a given faulty processor set F , we have (p, q) ∈ C
if and only if p, q ∈ F and there exist a1, a2, . . . , an ∈ F such that a1a2 . . . an is a
connected path in F , where p = a1, q = an, and the connectivity is 8-connectivity;
that is, ai+1 is a 8-neighbor of ai, 1 ≤ i ≤ n− 1.

Definition 2. Let d(p1, p2) = |x1 − x2|+ |y1 − y2| denote the distance between
PEs p1 = (x1, y1) and p2 = (x2, y2). Two fault regions, F1 and F2, are said
to be disjoint if for any processor p1 = (x1, y1) ∈ F1 and p2 = (x2, y2) ∈ F2,
d(p1, p2) ≥ 3 when x1 = x2 or y1 = y2; d(p1, p2) ≥ 4 when x1 �= x2 and y1 �= y2.

It is clear that the relation C is an equivalence relation that partitions
the faulty processors into disjoint equivalence classes. Each equivalence class
is called a fault-connected region. Two fault-connected regions are disjoint if the
boundary ring of one fault-connected region does not intersect with the other

690 J. Zhou and F.C.M. Lau

fault-connected region. Two convex fault-connected regions are given in Fig. 7,
one consisting of the set of PEs {((1, 2), (1, 3), (1, 4), (2, 4)}, and another con-
sisting of {(4, 2)}. The fault model proposed in this paper is that of the disjoint
convex fault-connected region, which is different from the fault model in [6][9]. It
does not demand that the distance of two fault regions in at least one dimension
is not smaller than 3. For example, in Fig. 7, the distance of two fault region
is smaller than 3 in two dimensions, but they are disjoint. The proposed fault
model does not contain any nonfaulty nodes.

The routing algorithm presented in the paper can tolerate disjoint convex
faults without using any virtual channels. In order to make the problem easy to
understand, we do not consider boundary faulty nodes of the network.

2.1 Setting Up Disjoint f-Rings

To present the fault-tolerant wormhole routing algorithm, we need to connect
the safe PEs and channels around the fault regions to form directional rings
which are to be used as detour routes. If a fault-connected region does not touch
a boundary PE of the mesh, then the safe PEs around it can form a directional
ring, which is called an f-ring.

Fig. 1. The eight neighbors and ports of a PE

In this paper, every PE (except a boundary PE) of the mesh has eight neigh-
bors which are represented by the eight Boolean variables a,b,c,d,e,f,g,h. The
PE communicates with its neighbors through its input ports {W1, E1, N1, S1}
and output ports {W2, E2, N2, S2}, as shown in Fig. 1. A variable has value 1
if the corresponding neighbor is a safe PE; 0 if the corresponding neighbor is a
faulty PE. The routing paths around the fault-connected regions will be set up
in this section. The disjoint f-rings in clockwise or counter-clockwise direction
are set in the network.

The disjoint f-rings around the fault-connected regions in counter clockwise
and clockwise direction can be set up according to a simple procedure. In con-
stant time, every PE can detect the states of its eight neighbors, which are either
safe or faulty. Each then PE sets its port connections according to Table 1 and

Fault-Tolerant Wormhole Routing Algorithm in 2D Meshes 691

Table 1. The port setting for disjoint f-rings in counter clockwise direction

{W1, N2} = hāb {E1, S2} = dēf {N1, E2} = bc̄d {S1, W2} = fḡh
{W1, E2} = hb̄d {E1, W2} = df̄h {N1, S2} = bd̄f {S1, N2} = fh̄b
{W1, S2} = hb̄d̄f {E1, N2} = df̄ h̄b {N1, W2} = bd̄f̄h {S1, E2} = fh̄b̄d

Table 2. The port setting for disjoint f-rings in clockwise direction

{N1, W2} = hāb {S1, E2} = dēf {E1, N2} = bc̄d {W1, S2} = fḡh
{E1, W2} = hb̄d {W1, E2} = df̄h {S1, N2} = bd̄f {N1, S2} = fh̄b
{S1, W2} = hb̄d̄f {N1, E2} = df̄ h̄b {W1, N2} = bd̄f̄h {E1, S2} = fh̄b̄d

Table 2. in clockwise orientation. The f-rings of different connected fault regions
can all be set up in O(1) time.

2.2 Preprocessing for Fault-Tolerant Routing

When the f-rings are set up, we need to locate four special nodes, called the
boundary points, which are used to direct the misrouting around the fault re-
gions. Since we only consider fault regions with f-rings, the four nodes with
minimal/maximal x-coordinate/y-coordinate on the contour of a fault region
are selected as boundary points of the fault region.

Definition 3. Given a fault region F in the mesh, the four special nodes are
called the left-, right-, up- and down-boundary point of F , which are defined as
follows:

Left- (right-) boundary point: left = (leftx, lefty) (right = (rightx, righty));
a node with minimal (maximal) x-coordinate on the contour of the fault region F .

Up- (down-) boundary point: up = (upx, upy) (down = (downx, downy)); a
node with minimal (maximal) y-coordinate on the contour of F .

Note that by Definition 3, the boundary points of a fault region are not
unique. The rectangle, which consists of the four edges in X and Y direction
with the four boundary points, is called the boundary rectangle. Examples of
boundary points are shown in Fig.7. We can run a preprocessing program, to let
every node on the contour of a fault region obtain the coordinates of the four
boundary points.

3 Fault-Tolerant Wormhole Routing in 2D Meshes

3.1 Extended X-Y Routing

In a 2D mesh, X-Y routing is made deadlock-free by prohibiting a turn from the Y
dimension to the X dimension. Glass and Ni [4] presented the turn model method

692 J. Zhou and F.C.M. Lau

for designing partially adaptive wormhole routing algorithms that require no
virtual channel. Chiu [3] proposed an odd-even turn model for designing partially
adaptive and deadlock-free routing algorithms in meshes without virtual channel.
The basic idea of the odd-even turn model is to restrict the locations where some
of the turns can occur so that an EN turn and an NW turn would not be taken at
nodes in the same column; similarly for an ES turn and an SW turn. Specifically,
the odd-even turn model tries to prevent the formation of the rightmost column
segment of a cycle. In a 2D mesh, a column is called an even (respectively, odd)
column if the X-coordinate of the column is an even (respectively, odd) number.
Chiu gave two rules for the odd-even model [3]:

Rule 1. Any packet is not allowed to take an EN turn at any nodes located in
an even column, and not allowed to take an NW turn at any nodes located in an
odd column.
Rule 2. Any packet is not allowed to take an ES turn at any nodes located in
an even column, and not allowed to take an SW turn at any nodes located in an
odd column.

Fig. 2 shows these two rules on the EN, NW, ES, and SW turns. The permissi-
ble turns are represented as small triangles, and forbidden turns are represented
as ones with dashed lines. A turn in an even (odd) column is denoted by E (O).
The turn model does not eliminate any type of turns for message routing; it only
restricts the locations at which certain turns can be taken so that a circular wait
can never occur.

Fig. 2. Permissible and forbidden turns in the odd-even model

To propose deadlock-free wormhole routing by using the odd-even turn model,
we modify the regular X-Y routing. Let S = (xs, ys) and D = (xd, yd) be the
source and destination nodes, respectively. Let Δx = |xs−xd| and Δy = |ys−yd|.
The routing is divided into two situations:

– If xs > xd, then regular X-Y routing is used, which consists of two phases.
In the first phase, the offset Δx along the X dimension is reduced to zero;
in the second phase, the offset Δy along the Y dimension is reduced to zero,
such as in Fig. 3(a) and Fig. 3(b).

– If xs ≤ xd and xd is odd, then regular X-Y routing is used; If xs ≤ xd and
xd is even, then first the offset Δx along the X dimension is reduced to 1;

Fault-Tolerant Wormhole Routing Algorithm in 2D Meshes 693

i.e., the routing head is on xd− 1 column; second, the offset Δy along the Y
dimension is reduced to zero; finally, the offset Δx along the X dimension is
reduced to zero; as in Fig. 3(c) and Fig. 3(d), where if the destination is on
an even column, the routing in the Y dimension is along the dashed line.

Since the above extended X-Y routing meets the two rules for the odd-even
model proposed by Chiu [3], it is deadlock-free.

(a)

S

D S

D

(b) (c)

S

D S

D

(d)

WS

WN
EN

EO

ES

EO

Fig. 3. Extended X-Y routing by using the turn model

3.2 Fault-Tolerant Routing Algorithm

We propose a fault-tolerant routing algorithm here. In a 2D mesh, messages
are routed by the extended X-Y routing algorithm in fault-free regions. When
routing becomes misrouting, it is routed around a fault-region in clockwise or
counter-clockwise direction, which is based on certain rules. The goal is to route
around the fault region without using any forbidden turns.

SW turn

WS turn

left

up

(a)

up

right

NW turn

WN turn

right

down

(b) (c)

NE turn

EN turn
down

left

(d)

ES turn

SE turn

OE O E

E O

EO

Fig. 4. Routing along the different sections around a fault region in counter clockwise
direction

Since the f-ring of a fault region in clockwise or counter clockwise direction is
divided into four segments by its boundary-points, all routings, (X+, X−, Y +,
or Y −), in different sections around the fault region are according to certain
odd-even routing rules.

When the message is routed around a fault region in counter clockwise di-
rection, the routing in different sections along the f-ring of the fault region is
carried out as follows.

694 J. Zhou and F.C.M. Lau

1. When the routing message reaches the nodes between the up-boundary point
and the right-boundary point of the fault region, there are two kinds of turns:
SW turn and WS turn, as shown in Fig. 4(a), where WS turn is not allowed
on odd column. If a WS turn along the f-ring of the fault region is on an
odd column, the routing message takes one hop to the west, then takes the
WS turn on an even column and routes the message along this column to
the f-ring, such as the dashed line shown in Fig. 4(a). Since all WS turns are
on even columns, so all turns in the section are permissible turns.

2. When the routing message reaches the nodes between the right-boundary
point and the up-boundary point of the fault region, there are two kinds of
turns: NW turn and WN turn, as shown in Fig. 4(b), where NW turn is not
allowed on an odd column. If the routing along the f-ring reaches a node
which is one hop from the node at a WN turn on an odd column and on the
f-ring, then the routing head takes a WN turn and the message is routed
along this column until its right node on the f-ring has a NW turn, such as
the dashed line shown in Fig. 4(b). In this section, all routings are along the
f-ring of the fault region, except the channels on the ring and on the odd
column. Since all NW turns are on even columns, so all turns are permissible
turns.

3. When routing message reaches the nodes between the down-boundary point
and the right-boundary point of the fault region, there are two kinds of turns:
NE turn and EN turn, such as those shown in Fig. 4(c), where EN turn is
not allowed on an even column. So if an EN turn along the f-ring of the fault
region is on an even column, the routing message goes one hop to the east,
then takes the EN turn on an odd column and proceeds to the f-ring, such
as the dashed line shown in Fig. 4(c). Since all EN turns are on the odd
columns, so all routings in this section are permissible turns.

4. If routing head is on the node between the left-boundary point and the down-
boundary point, such as that shown in Fig. 4(d). Since ES turn on an even
column is not allowed, all routings are along the f-ring, except for routing
along the f-ring that reaches the node which is one hop to the node with an
ES turn on an even column and on the f-ring; then the routing head takes
an ES turn there and the message is routed along this column until its east
node on the f-ring has an ES turn, such as the dashed line shown in Fig.
4(d). Since there are two kinds of turns, SE turns and ES turns, and all ES
turns are on the odd columns, so all turns are permissible turns.

When the message is routed around a fault region in clockwise direction, the
routing in different sections along the f-ring of the fault region is similar and as
depicted in Fig. 5. We omit the detailed descriptions here.

The fault-tolerant wormhole routing algorithm, FTRouting, is given in Fig. 6.
For simplicity and because of space limitation, we assume that the destination is
not a boundary node of any faulty region, as in Wu’s paper [9]. In the FTRouting
algorithm, although X+ and X− may be changed to Y + or Y − routing, when
X+ routing is changed to Y + (Y −) routing, Y + (Y −) will leave the f-ring of the
fault region; when X− routing is changed to Y + (Y −) routing, Y + (Y −) will

Fault-Tolerant Wormhole Routing Algorithm in 2D Meshes 695

EN turn

NE turn

left

up

(a)

up

right

ES turn

SE turn

right

down

(b)
(c)

WS turn

SW turn
down

left

(d)

NW turn

WN turn

EO
E O O E

OE

Fig. 5. Routing along the different sections around a fault region in clockwise direction

/* Let S = (xs, ys) and D = (xd, yd) be the addresses */
/* of source and destination. Let C = (xc, yc) denote */
/* the current PE. Initially, xc = xs, yc = ys */
1. If xc = xd and yc = yd,

Then consume routing message and return.
2. If routing message does not reach the boundary of a fault region

Then use extended X-Y routing
3. If routing message will reach the boundary of a fault region

Then
(1) If the routing is X+ ,

Then
(a) If (dy ≥ lefty and dx ≤ downx) or (dy ≥ righty and dx ≥ downx)

Then message is forwarded along f-ring in counter clockwise direction
(b) If (dy ≤ lefty and dx ≤ upx) or (dy ≤ righty and dx ≥ upx)

Then message is forwarded along f-ring in clockwise direction
(2) If the routing is X− routing,

Then
(a) If cy ≤ righty

Then message is forwarded along f-ring in counter clockwise direction
(b) If cy > righty

Then message is forwarded along f-ring in clockwise direction
(3) Y + routing is forwarded along f-ring in counter clockwise direction
(4) Y − routing is forwarded along f-ring in clockwise direction

Fig. 6. Fault-tolerant wormhole routing algorithm

go around the fault region in the same direction, or leave the f-ring of the fault
region, so a 180o turn cannot occur. All routings (X+, X−, Y +, orY −) never
pass through the right-boundary point of a fault region, since NW turn and SW
turn are forbidden on an even column and EN turn and ES turn are forbidden
on an odd column there, such as in Fig. 2.

An example of using algorithm FTRouting is shown in Fig. 7, where there are
two routing messages, one from source (0, 2) to destination (4, 0), and another
from source (5, 4) to destination (0, 1). For the routing from (0, 2) to (4, 0), when
the routing header is at source (0, 2), it is X+ misrouting, and the routing head
is at a boundary node of faulty region, since dy ≤ righty and dx ≥ upx, where

696 J. Zhou and F.C.M. Lau

0,0 1,0 2,0

0,1 1,1 2,1

0,2 1,2 2,2

3,0 4,0

3,1 4,1

3,2 4,2

5,0

5,1

5,2

0,3 1,3 2,3

0,4 1,4 2,4

3,3 4,3

3,4 4,4

5,3

5,4

routing path
from (0,2)
to (4,0)

routing path
from (5,4)
to (1,0)

6,0

6,1

6,2

6,3

6,4

0,5 1,5 2,5 3,5 4,5 5,5 6,5

left right

up

down

left

right

up

down

safe PE

Faulty PE

Fig. 7. Two fault-connected regions and the routing paths for the fault-regions with
f-rings by using the algorithm FTRouting

dy = 0, righty = 5, dx = 4, upx = 1, so X+ misrouting is in the clockwise
direction. Since the destination is on an even column, X+ routing has an EN
turn at (3, 1) on xd−1 column, and then takes an NE turn at (3, 0) to destination.

For the routing from (5, 4) to (1, 0), when the routing header is at source
(5, 4), it is X− normal routing; its forward node is on the boundary of a fault
region, and since cy ≤ righty, where cy = 4, righty = 5, the X− routing would
be in the counter-clockwise direction; and since (3, 4) is on an odd column, so
it takes a WN turn at (4, 4) on an even column; the routing head reaches (4, 3),
where it has an NW turn on an even column; the message is routed to (3, 3) in
the X− direction, where its forward node has a WN turn on an even column; so
the message is routed along the f-ring in the clockwise direction to (1, 1) on the
destination column, and the message is routed to destination from there.

Theorem 1. The fault-tolerant routing algorithm FTRouting is deadlock-free
and livelock-free. (Proof is omitted)

4 Conclusion

Deadlock- and livelock-free fault-tolerant routing is essential to guarantee the
delivery of messages in real multicomputer environments that are faulty. We
propose a fault-tolerant wormhole routing algorithm in 2D meshes without vir-
tual channels in this paper. The proposed algorithm can tolerate the disjoint
convex fault model, which does not contain any nonfaulty nodes and would not
prohibit any routing as long as nodes outside the faulty regions are connected in
the mesh network, except when the destination is on the boundary of a faulty
region. We will try to derive adaptive and optimal solutions (uni- and multi-cast)
for more popular fault models without virtual channels in meshes in the future.

Fault-Tolerant Wormhole Routing Algorithm in 2D Meshes 697

References

1. Boppana, R.V., Chalasani, S.: Fault-tolerant communication with partitioned
dimension-order routers. IEEE Trans. on Parallel and Distributes systems, Vol.
10, No. 10 (1999), 1026–1039.

2. Chalasani, S., Boppana, R.V.: Communication in multicomputers with nonconvex
faults. IEEE Trans. Computers, Vol. 46, No. 5 (1997), 616–622.

3. Chiu, G.M.: The odd-even turn model for adaptive routing. IEEE Trans. Parallel
and Distributed Systems, Vol. 11, No. 7 (2000), 729–737.

4. Glass, C.J., Ni, L.M.: The turn model for adaptive routing. Proc. 19th Ann. Int’l
Symp. Computer Architecture (1992), 278–287.

5. Ho, C.-T., Stockmeyer, L.: A new approach to fault-tolerant wormhole routing
for mesh-connected parallel computers. IEEE Trans. Computers, Vol. 53, No. 4
(2004), 427–438.

6. Su, C.C., Shin, K.G.: Adaptive fault-tolerant deadlock-free routing in meshes and
hypercubes. IEEE Trans. Computers, Vol. 45, No. 6 (1996), 666–683.

7. Sui, P.H., Wang, S.D.: An improved algorithm for fault-tolerant wormhole routing
in meshes. IEEE Trans. Computers, Vol. 46, No.9 (1997), 1040–1042.

8. Tsai, M.J.: Fault-tolerant routing in wormhole meshes. Journal of Interconnection
Networks, Vol. 4, No. 4 (2003), 463–495.

9. Wu, J.: A fault-tolerant and deadlock-free routing in 2D meshes based on odd-even
turn model. IEEE Trans. Computers, Vol. 52, No. 9 (2003), 1154–1169.

10. Zhou, J.P., Lau, F.C.M.: Fault-tolerant Wormhole Routing in 2D Meshes. Proc.
2000 International Symposium on Parallel Architectures, Algorithms and Networks
(2000), Dallas/Richardson, Texas, USA.

11. Zhou, J.P., Lau, F.C.M.: Multiphase minimal Fault-tolerant Wormhole Routing in
Meshes. Parallel Computing, Vol. 30 (2004), 423–442.

 J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 698–704, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Fault Tolerant Routing Algorithm in Hypercube
Networks with Load Balancing Support

Xiaolin Xiao1, Guojun Wang1,2, and Jianer Chen1,3

1
School of Information Science and Engineering, Central South University,

Changsha, Hunan Province, P.R. China, 410083
2

Department of Computing, Hong Kong Polytechnic University,
Hung Hom, Kowloon, Hong Kong

3
Department of Computer Science, Texas A&M University,

College Station, TX77843-3112, USA

Abstract. We introduce load balancing support to our original fault tolerant
routing algorithm in hypercube networks. We design an improved routing
algorithm based on load balancing in hypercube networks. Our routing
algorithm is simple and powerful, which preserves the advantages of our
original algorithm. Firstly, our routing algorithm is applicable no matter
whether the given hypercube network satisfies the required conditions or not.
Secondly, our algorithm is distributed and local-information-based. Finally, our
algorithm is effective and efficient. The contribution is that we realize load
balancing in fault tolerant routing algorithm in hypercube networks in a creative
way to make our algorithm perform better.

1 Introduction

Routing has been a popular topic in the study of computer networks, researchers have
proposed many interconnection network topologies and related routing algorithms,
among which the most typical one is routing in hypercube networks.

Because of the quick increase in network size, the self-contradiction of supply and
demand on the network is increasingly revealed. Due to the fact that users provide
traffic load to the network, which is usually over the capacity of network resources
and above the ability that network can process, it will cause the phenomenon of dead
lock and congestion. These phenomena are mainly caused by unbalanced distribution
of network resources and traffic flow. However, these problems cannot be completely
avoided, when relying only on the increase of network size to enhance network
capacity. If we do not use some mechanisms to coordinate and control the
equipments, these problems will appear consequently. Therefore, research on
techniques to solve these problems is popular, especially on congestion control, flow
control and load balancing. However, most of the current research on these problems
focuses on Internet, ATM networks, and adaptive mesh networks [2-8].

Routing usually suffers the conflicts of network resources, regardless of concrete
structure of networks. Then congestion and dead lock may occur in hypercube
networks. Researchers have put forward many load balancing algorithms [2-8].

Fault Tolerant Routing Algorithm in Hypercube Networks

699

However, most of them are designed according to these network structures. To the
authors’ knowledge, there has been little development of efficient routing algorithms
based on load balancing for the hypercube that allows faulty nodes. Some researchers
have been engaged in research on a non-uniform analytical model of adaptive
wormhole routing in hypercube in the presence of hot spot traffic [9-10]. But their
research primarily aims at solving dead lock in network communication, which
doesn’t consider fault tolerance.

To overcome the above shortcomings, we introduce load balancing support to our
original fault tolerant routing algorithm in hypercube networks [1]. Our improved
routing algorithm is efficient and powerful. The proposed routing algorithm in
hypercube networks can be extended in the Internet if combined with methods such as
Dynamic Virtual Hypercubes and Logical Hypercubes in [7-8], which introduced the
good properties of hypercube into the Internet.

The rest of the paper is organized as follows. Section 2 describes the improved
routing algorithm in locally connected hypercube networks with load balancing
support. Section 3 validates the performance of the improved algorithm through
simulations. Section 4 concludes this paper.

2 Routing in Locally-Connected Hypercube Networks with Load
Balancing Support

We have proposed a locally k-subcube-connnected fault-tolerance model and some
routing algorithms in hypercube networks in [1]. However, load balancing is not
involved in the original algorithms. Therefore, we take the load of flow as an
important parameter to improve traditional routing algorithms and design an
improved routing algorithm in hypercube networks with load balancing support in this
paper. Our routing algorithm uses some load balancing strategy, such as the least
connection balancing [6], to choose to arrange routing in some links with less load of
flow for realizing load balancing. Our improved algorithm can be divided into two
major parts as follows.

1. Based on the locally k-subcube-connnected fault-tolerance model, we set a flow
index for each non-faulty node in every basic k-dimensional subcube Hk to record the
number of connections flowing along each non-faulty node. Specifically, the flow
index of each non-faulty node is to record the number of routing paths passed through
the node. Firstly, routing is done in the hypercube network with faulty nodes
according to the original algorithm. After a period of time, the value of flow index for
each node will not be the same as each other, which indicates the unbalanced
distribution of load of flow in the whole hypercube network. We calculate an average
flow index for every basic k-dimensional subcube Hk from the number of nodes in Hk

and the sum of all nodes’ value of flow index in Hk. The value of average index is
uniform for each node in the same basic k-dimensional subcube.
2. According to the above definition of average flow index, routing is done based on
some load balancing strategy.

The improved algorithm with load balancing support is given in Fig. 1. Most of
the algorithm’s running time is spent at Step 5 and Step 6. In conclusion, if the input

X. Xiao, G. Wang, and J. Chen 700

n−cube Hn is locally k-subcube-connected [1], then the algorithm constructs a path of
non-faulty nodes from u to v. The running time of the algorithm is bounded by O((n-
k)2k)+ O(2k)=O(n 2k). The proof of some theorems and corollaries that are related to
the running time of the algorithm can be found in [1]. We give some remarks here.

Remark 1. The input and output conditions of the improved algorithm are the same as
that of the original algorithm, except for the concrete implementation of finding the
path from a non-faulty node in Hk to another non-faulty node in some k−subcube next
to Hk. In the improved algorithm, we choose the routing path through a k−subcube Hk-
min whose “average flow index” is minimum among all the non-visited Hk in Hn.
While in the original algorithm, the path of non-faulty nodes is extended according to
a fixed sequence [1].

Fig. 1. Routing in a Locally k-Subcube-Connected n-Cube with Load Balancing Support

Remark 2. The improved algorithm is based on load balancing. In the best case, only
one shift in a non-faulty node makes the path extend into the k−subcube where
destination node v resides. In the worse case, it needs the running time of O((n-k)2k)
after visiting a sequence of Hk in Hn. Obviously, the improved algorithm terminates
within limited steps, though the path length may be longer than that of the original
algorithm. Moreover, the improved algorithm always tries to search all of the n-k non-
visited adjacent k−subcubes for a k−subcube Hk-min.

The Improved Algorithm
Input: an n-cube Hn with faults and two non-faulty nodes u and v in Hn
Output: a path of non-faulty nodes in Hn that connects u and v
1. let u = u1u2…un and v = v1v2…vn , where ui and vi are binary bits;
2. w = w1w2…wn, where wj = uj for all j;
3. initialize the path P = [u]; let i = 1;
4. initialize the visited flag of all the basic k−subcubes;
5. while (w1w2…wn-k ≠ v1v2…vn-k) do

{at this point, we have, inductively, constructed a fault-free path P from
u = u1u2…un to w = w1w2…wn , where wj = vj for j = 1,2,…,i-1.}

5.1 find a k−subcube Hk-min whose average flow index is the minimum
within all of the n-k non-visited k−subcubes adjacent to w.

5.2 find two adjacent non-faulty nodes
w’ = w1w2…wn-kxn-k+1…xn and v’, and v’ Hk-min;

5.3 extend P from w to w’ in the k−subcube w1w2…wn-k**, then to v’;
5.4 reset the visited flag of k−subcube w1w2…wn-k** and Hk-min;
5.5 let w = v’; let i = i + 1;

6. {at this point, we have wj = vj for all j = 1,2, …, n – k}
extend the path P from w to v in the k−subcube v1v2…vn-k**.

{Remark. if at any point the algorithm could not proceed, then
Stop: the n-cube Hn is not locally k-subcube-connected. }

Fault Tolerant Routing Algorithm in Hypercube Networks

701

Remark 3. In the improved algorithm, our definition of average flow index is the
average value of the total number of routing paths passed for each non-faulty node in
every basic k−subcube Hk in Hn. Our definition is easy to apply and meaningful, since
this definition has close relation with least connection balancing [6], one of the typical
load balancing algorithms. Of course, it is possible to seek other definitions for
average flow index and contrast their performance.

Remark 4. The improved algorithm is distributed and local-information-based, in the
sense that no global information about the network Hn is required by the algorithm.
The only thing we assume is that from each non-faulty node, our algorithm can
request the status of its neighbors.

Remark 5. If our algorithm cannot proceed at any step, then the algorithm stops and
reports that the n−cube Hn is not locally k-subcube-connected. Therefore, our
algorithm is applicable no matter whether the given hypercube network satisfies the
required conditions or not.

3 Performance Analysis

3.1 Simulation Results

We have conducted simulations to validate the performance of the improved
algorithm in hypercube networks with a variety of probability distributions of node
failures. Especially, we concentrate more on whether the improved algorithm can
realize load balancing or not. Our simulations are based on uniform probability
distributions of node failures, i.e., we assume that each node has an equal and
independent failure probability pf. The simulation results are given in Table 1.

The explanation of each parameter and testing way in Table 1 is the same as those
of the original algorithm [1]. Obviously, the parameter “NodesExamined” is essentially
the running time of the algorithm. Considering that the main purpose of our algorithm
is to realize load balancing, we add some background flow to the hypercube networks
before the algorithm runs, which makes our simulations more reasonable. These
background flows are generated randomly by a random function.

3.2 Discussions

In this subsection, we make a comparison of the simulation results between the
improved algorithm and the original algorithm [1]. We present the difference of their
performance in probability of constructing the routing paths successfully in Fig. 2 and
Fig. 3. We observe that the improved algorithm preserves the advantages of the
original algorithm. Moreover, probability of successfully constructing the routing
paths of the improved algorithm is obviously greater than that of the original
algorithm, which is very important to show that the proposed algorithm really
improves the original algorithm.

However, the improved algorithm is not perfect. The time in constructing a
routing path and length of the constructed routing path are longer than the original
algorithm. This is mainly due to the searching procedure of Hk-min whose average
flow index is minimal among the n-k non-visited adjacent k−subcubes. But we point

X. Xiao, G. Wang, and J. Chen 702

out that the increase in “PathLen” is not significant. Since few researchers focus on
studying on routing in hypercube networks with load balancing support, the improved
algorithm is a breakthrough.

Table 1. Simulation Results of the Improved Algorithm

To overcome the above shortcomings, we give some modifications to the original
definition of “average flow index”. For example, we can design another definition —
“average flow threshold”. When executing Step 5.1 in Fig. 1, if the average flow
index of current adjacent k-subcube Hk is lower than average flow threshold, the
routing will directly proceed in hypercube network without finding Hk-min in all n-k
non-visited adjacent k−subcubes. Furthermore, we can define “average flow index”

n k
pf

(%)
k-sc
(%)

PathFound
(%)

PathLen
(%)

Nodes
Examined

(%)
10 3 0.1 100.0 100.0 100.1 138.7
10 3 0.5 100.0 100.0 100.3 139.2
10 3 30.0 0.0 94.1 127.7 223.2
10 4 0.1 100.0 100.0 100.1 222.9
10 4 0.5 100.0 100.0 100.3 223.3
10 4 30.0 0.0 99.7 123.0 337.9
10 5 0.1 100.0 100.0 100.1 519.7
10 5 0.5 100.0 100.0 100.4 521.8
10 5 30.0 14.4 100.0 124.7 619.7
15 3 0.1 100.0 100.0 100.1 139.1
15 3 0.5 100.0 100.0 100.4 141.7
15 3 30.0 0.0 90.1 131.4 225.5
15 4 0.1 100.0 100.0 100.1 223.7
15 4 0.5 100.0 100.0 100.4 224.0
15 4 30.0 0.0 98.3 132.0 338.2
15 5 0.1 100.0 100.0 100.1 520.1
15 5 0.5 100.0 100.0 100.4 523.0
15 5 30.0 0.0 100.0 130.1 619.9
20 3 0.1 100.0 100.0 100.1 144.1
20 3 0.5 84.0 100.0 100.4 145.7
20 3 30.0 0.0 87.9 132.8 226.4
20 4 0.1 100.0 100.0 100.1 223.9
20 4 0.5 100.0 100.0 100.4 224.4
20 4 30.0 0.0 96.8 133.5 339.0
20 5 0.1 100.0 100.0 100.1 520.6
20 5 0.5 100.0 100.0 100.4 523.2

20 5 30.0 0.0 99.7 131.9 621.1

Fault Tolerant Routing Algorithm in Hypercube Networks

703

Fig. 3. Probability of Successfully Constructing the Routing Paths in the Improved Algorithm

in another way that we record “average flow index” in a representative node in each
basic k-subcube Hk, not in every non-faulty node in Hk. These definitions will bring us
different results, with the former saving some running time and the later reducing
some memory requirements.

Fig. 2. Probability of Successfully Constructing the Routing Paths in the Original Algorithm

0 5 10 15 20 25 30

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

P
at

h
F

ou
nd

Probability of Faulty Nodes(%)

 n=10,k=3
 n=10,k=4
 n=10,k=5
 n=15,k=3
 n=15,k=4
 n=15,k=5
 n=20,k=3
 n=20,k=4
 n=20,k=5

0 5 10 15 20 25 30

82

84

86

88

90

92

94

96

98

100

102

P
at

h
F

ou
nd

Probability of Faulty Nodes(%)

 n=10,k=3
 n=10.k=4
 n=10,k=5
 n=15,k=3
 n=15,k=4
 n=15,k=5
 n=20,k=3
 n=20,k=4
 n=20,k=5

X. Xiao, G. Wang, and J. Chen 704

4 Conclusions

Based on load balancing, we improved the original fault tolerant routing algorithm in
locally subcube-connected hypercube networks. The improved algorithm preserves
the advantages of the original algorithm and increases the probability of successfully
constructing routing paths in hypercube networks. Although our algorithm is not
perfect, it has successfully realized load balancing on fault tolerant routing in
hypercube networks. Currently we are working on how to eliminate the bad effects of
this algorithm with regard to routing time and path length. For preliminary results, we
discussed some different schemes for the implementation of average flow index in
this paper. In the future, we will make further research according to these schemes.

Acknowledgments

The research was supported in part by the China Postdoctoral Science Foundation
(No. 2003033472) and in part by the Hong Kong Polytechnic University Central
Research Grant G-YY41.

References

1. Chen J., Wang G., Chen S.: Locally Subcube-Connected Hypercube Networks: Theoretical
Analysis and Experimental Results, IEEE Transactions on Computers, 2002,51(5):530-
540.

2. Sarkar S., Tassiulas L.: A Framework for Routing and Congestion Control for Multicast
Information Flows, IEEE Transactions on Information Theory, 2002,48(10): 2690-2708.

3. Cortes A., Ripoll A., Cedo F., et al.: An Asynchronous and Iterative Load Balancing
Algorithm for Discrete Load Model, J. Parallel Distributed Computing, 2002,62:1730-
1746.

4. Lan Z., Taylor V.E., Bryan G.: A Novel Dynamic Load Balancing Scheme for Parallel
Systems, J. Parallel Distributed Computing, 2002,62:1736-1781.

5. Rabin M.A.: Efficient Dispersal of Information for Security, Load Balancing, and Fault
Tolerance, Journal of ACM, 1989, 36(2): 335-348.

6. Oliker L., Biswas R.: Plum: Parallel Load Balancing for Adaptive Refined Meshes, J.
Parallel Distrib. Comput., 1997, 47(2), 109-124.

7. Yero E.J.H., Henriques M.A.A.: A Method to Solve the Problem in Managing Massively
Parallel Processing on the Internet, Proceedings of the Seventh Euromicro Workshop on
Parallel and Distributed Processing (PDP 1999), February 1999: 256-262.

8. Liebeherr J., Sethi B.S.: A Scalable Control Topology for Multicast Communications,
Proceedings of the IEEE Seventeenth Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM 1998), Vol.3, March-April 1998: 1197-1204.

9. Mohamed O.K., Hamid S.A.: An Analytical Model of Adaptive Wormhole Routing in
Hypercubes in the Presence of Hot Spot Traffic, IEEE Transactions on Parallel and
Distributed Systems, 2001,12(3): 283-292.

10. Sarbazi-Azad H., Ould-Khaoua M., Mackenzie L.M.: An Analytical Model of Fully-
Adaptive Wormhole-Routed k-Ary n-Cubes in the Presence of Hot Spot Traffic, IEEE
Transactions on Computers, 2000, 49(2): 1042-1049.

Proxy Structured Multisignature Scheme from
Bilinear Pairings

Xiangxue Li, Kefei Chen, Longjun Zhang, and Shiqun Li

Department of Computer Science and Engineering, Shanghai Jiaotong University,
Shanghai 200030, P.R. China

xxli@sjtu.edu.cn

Abstract. In the past few years, proxy signatures have become an im-
portant research area and many excellent schemes have been proposed.
Proxy signatures can combine other special signatures to obtain some
new types of proxy signatures. A multisignature scheme is said to be
structured if the group of signers is structured. Due to the various ap-
plications of the bilinear pairings in cryptography, many pairing-based
signature schemes have been proposed. In this paper, we propose a proxy
structured multisignature scheme from bilinear pairings. This scheme
provides a possible solution to the problem that ordinary structured
multisignature relies on the presence and cooperating of all the entities
of the signing group. We support the proposed scheme with security and
efficiency analysis.

1 Introduction

In 1996, Mambo, Usuda and Okamoto first introduced the concept of proxy
signatures([13]). In the proxy signature scheme, an original signer is allowed
to authorize a designated person as his proxy signer. Then the proxy signer is
able to sign on behalf of the original signer. Since then, many proxy signature
schemes have been proposed([8], [9], [14]). Proxy signature schemes have been
shown to be useful in many applications, particularly in distributed comput-
ing where delegation of rights is quite common, such as e-cash systems, mobile
agents for electronic commerce, mobile communications, grid computing, global
distribution networks, and distributed shared object systems. Proxy signatures
can combine other special signatures to obtain some new types of proxy signa-
tures. Till now, there are various kinds of proxy signature schemes have been
proposed([3], [5], [6], [16], [17]).

A multisignature is a digital signature that allows multiple signers to generate
a single signature in a collaborative and simultaneous manner([7]). A multisig-
nature scheme is said to be structured if the group of signers is structured([2]).
The structure takes into account the signing order of the entities of the sign-
ing group. A structured multisignature scheme may play important role in the
following scenario: When multiple entities sign a document, the signing order
often reflects the role/position of each signer and signatures generated by the

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 705–714, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

706 X. Li et al.

same group with different signing order are regarded as multisignatures with
different meanings. The multisignature has to be checked against the organiza-
tional structure, or it will be considered as invalid. Till now, several structured
multisignature schemes have been proposed([11], [12], [15], [18]). In [12], C. Lin
et al. proposed a scheme that could resolve signing structures of serial, parallel,
and the mix of them.

One problem of structured multisignatures is that they rely on the cooperat-
ing of the entities of the signing group. If one of the entities should become un-
available, such as might be expected in case of default on the signing operations,
then the structured multisignature cannot be generated. Especially, when the
same signing group has made agreement on a number of different signing struc-
tures, the problem becomes more serious. One solution to this case is to use proxy
structured multisignature. In this paper, based on Boneh et al.’s short signature
proposed at the Asiacrypt’01 conference ([1]), we present a new proxy signature
scheme from bilinear pairings, which can be viewed as a special case of proxy mul-
tisignatures. The proposed scheme provides a possible solution to this problem.

The paper will proceed as follows. In section 2 we will briefly review the se-
curity requirements of ordinary proxy signatures, the definition and basic prop-
erties of bilinear pairings, some problems, and Boneh et al.’s pairing-based short
signature scheme. Section 3 discusses the definition of series-parallel graph, which
represents the signing structure in a structured multisignature scheme. We will
present our pairing-based proxy structured multisignature scheme and its secu-
rity and efficiency analysis in Section 4 and Section 5, respectively. The paper
ends with some concluding remarks and acknowledgements.

2 Preliminaries

2.1 Security Requirements of Proxy Signatures

In the proxy signature scheme, an original signer is allowed to authorize a des-
ignated person as his proxy signer. Then the proxy signer is able to sign some
messages on behalf of the original signer. When receiving a proxy signature, the
verifier can validate its correctness and then is convinced of the original signer’s
agreement on the signed message. Basically, a secure proxy signature scheme
should satisfy the following requirements([8]).

Strong Unforgeability: Only the legitimate proxy signer can generate a valid
proxy signature; even the original signer can not.
Verifiability: Anyone can verify the signature and then is convinced of the
original signer’s agreement on the signed message.
Strong Identifiability: Anyone can determine the identity of the corresponding
proxy signer.
Strong Undeniability: The proxy signer can not repudiate the signature which
he ever generates.
Prevention of Misuse: The signed message should conform to the delegation
warrant, and the proxy key pair should not be used for other purposes.

Proxy Structured Multisignature Scheme from Bilinear Pairings 707

Like the general proxy signature, a secure proxy structured multisignature
scheme should provide the security properties as above.

2.2 Bilinear Pairings

In this subsection, we will describe the basic definition and properties of the
bilinear pairings.

Let G1 be a cyclic additive group generated by P, whose order is a prime q,
and G2 be a cyclic multiplicative group of the same order q. Let a, b be elements
of Z∗

q . We assume that the discrete logarithm problems (DLP) in both G1 and
G2 are hard. A bilinear pairings is a map e : G1 ×G1 −→ G2 with the following
properties:

1) Bilinear: e(aP, bQ) = e(P, Q)ab;
2) Non-degenerate: There exists P and Q ∈ G1 such that e(P, Q) �= 1;
3) Computable: There is an efficient algorithm to computa e(P, Q) for all

P, Q ∈ G1.

Modified Weil Pairing and Tate Pairing are examples of cryptographic bi-
linear maps. Currently active research is being carried out to obtain efficient
algorithms to compute pairings. Our work excludes this area.

2.3 Some Problems

Now we specify some versions of Diffie-Hellman problems. Let G1 be a cyclic
additive group generated by P, whose order is a prime q, and G2 be a cyclic
multiplicative group of the same order q, a bilinear pairing e : G1 ×G1 −→ G2:

1) Computational Diffie-Hellman Problem (CDHP): Given P, aP, bP for a, b ∈
Z∗

q , to compute abP .
2) Decision Diffie-Hellman Problem (DDHP): Given P, aP, bP, cP for a, b, c ∈

Z∗
q , to decide whether c = ab mod q.

Gap Diffie-Hellman(GDH) group: A prime order group G1 is a GDH group if
there exists an efficient polynomial-time algorithm which solves the Decision
Diffie-Hellman Problem in G1 and there is no probabilistic polynomial-time
algorithm which solves the Computational Diffie-Hellman problem with non-
negligible probability of success. The domains of bilinear pairings provide exam-
ples of GDH groups.

2.4 Pairing-Based Short Signature Scheme

At the Asiacrypt’01 conference, Boneh et al. introduced a short signature scheme,
which is secure against existential forgery under a chosen message attack (in the
random oracle model) assuming the Computational Diffie-Hellman assumption
is hard on certain elliptic curves([1]). Their scheme works in any Gap Diffie-
Hellman group where the Computational Diffie-Hellman problem (CDHP) is
hard, but the Decision Diffie-Hellman problem (DDHP) is easy. Now we are
ready to review Boneh et al.’s scheme.

708 X. Li et al.

Throughout this paper, we define the system’s parameters as follows. Let G1
be a cyclic additive group of prime order q, G2 be a cyclic multiplicative group
of the same order q, P be a generator of G1. The bilinear pairing is giving by
e : G1×G1 −→ G2, two secure cryptographic hash functions H1 : {0, 1}∗ −→ Zq

and H2 : {0, 1}∗ −→ G1 are also required.

[Key generation]. Pick s ←−R Z∗
q , and compute PK = sP . The public key is

PK. The secret key is s.
[Signing]. Given a secret key s and a message m ∈ {0, 1}∗, compute Pm ←−
H2(m), and Sm ←− sPm. The signature is Sm ∈ G∗

1.
[Verification]. Given a public key PK, a message m and a signature Sm, check
whether the following equation holds:

e(Sm, P) = e(H2(m), PK).

Based on Boneh et al.’s short signatures, we will propose a proxy struc-
tured multisignature scheme from bilinear pairings, and support the proposed
scheme with security analysis. Before the proposal, we will first recall the graph
representation of the signing group with a signing structure Λ in a structured
multisignature scheme in the following section.

3 Series-Parallel Graph

Assume the signing group is {u1, ..., un}. In a structured multisignature scheme,
the structure Λ of the signing group can be represented as a directed group G,
called series-parallel graph. A series-parallel graph is a graph which is generated
by series and parallel compositions of series-parallel graphs. The simplest series-
parallel graph is a base graph of two vertices and an edge. Interested readers can
refer to [10] for more details. Figure 1 illustrates a typical series-parallel graph.

s•�
�

��u2

• �u3 •
	

	
		�

u4

�u1 •�
�

���u8

•
	

	
		�

u9

•�u7

	
	

		�
u5

•�
�

���
u6

t

Fig. 1. A series-parallel graph G

In the signing structure shown in Figure 1, the entity u3 in the signing group
has to sign after the entity u2 and in advance to the entity u4, and u8 has to
sign after u1 and u4. In a signing structure, we denote Ginit as the group of
signers with no incoming edges in the graph representation G, Gprev(ui) as the
group of signers whose edges are connected to ui in G, and Glast as the group

Proxy Structured Multisignature Scheme from Bilinear Pairings 709

of signers whose edges are combined into the output in G. Take the structure
represented in Figure 1 for example, Ginit = {u1, u2}, Gprev(u8) = {u1, u4}, and
Glast = {u6, u7, u9}.

4 Proxy Structured Multisignature Scheme from
Bilinear Pairings

Based on Boneh et al.’s pair-based short signature, this section proposes a proxy
structured multisignature scheme. Some initial settings of the scheme are as-
sumed in Boneh et al.’s scheme.

Our proxy structured multisignature scheme consists of five phases: System
setup phase, Public key of the group generation phase, Proxy generation phase,
Proxy structured multisignature generation phase, and Verification phase.

[System Setup Phase]
The system’s parameters are {G1, G2, e, q, P,H1, H2}.

Let {u1, ..., un} be n original signers in the signing group with signing struc-
ture Λ. For 1 ≤ ∀i ≤ n, ui has private key si and corresponding public key
PKi = siP . Let B be a proxy signer designated by all ui. B has secret key sb

and corresponding public key PKb = sbP .

[Public Key of the Group Generation Phase]
This algorithm generates partial public keys for each original signer ui and the
public key of the group.

The partial public keys of the original signers in the signing structure Λ are
computed as the following two steps.

– The partial public key of signer ui in Ginit is simply yi = siP (= PKi).
– For all i such that ui does not belong to Ginit, ui’s partial public key is

yi = si(P +
∑

j:uj∈Gprev(ui)

yj).

The public key y of the signing group with the structure Λ is generated by
computing y =

∑
j:uj∈Glast

yj .

[Proxy Generations Phase]
With signing structure Λ, the original signers {ui} jointly ask the proxy signer B
to carry out signing a document m for them altogether. To do this, {ui} generate
U from their private keys {si}, and send U to the proxy signer B. On receiving
U, the proxy signer B can create the proxy key SP from U and his own secret
key sb. From the security requirements, si should not be computed from SP and
U , and SP should not be computed from U .

To delegate the signing capability to B, the original signers in the structure
Λ have to make the signed warrant mw. The warrant mw specifies the necessary

710 X. Li et al.

proxy details, such as the identity information of the proxy signer and all the
original signers who have made agreements on the special signing structure Λ
and on delegating signing capability to the designated proxy signer, the partial
public key, the public key of the group, what kind of messages can be delegated,
etc. If the following process is finished successfully, the proxy signer B gets a
proxy key SP .

– All ui, which belong to Ginit,
compute Ui = siH2(mw).

– All ui, which do not belong to Ginit,
compute Ui = si(H2(mw) +

∑
j:uj∈Gprev(ui)

Uj).

The structured multisignature on the warrant mw is computed as:

U =
∑

j:uj∈Glast

Uj

(mw, U) is delivered to the proxy signer B.

– B confirms U by checking whether the following equality holds:

e(P, U) = e(y, H2(mw)).

– If U passes above equality, then B computes the proxy key as:

SP = U + sbH2(mw).

Using SP , the proxy signer B can sign any message which conforms to the del-
egation warrant mw on behalf of original signers {Ai} with the signing structure
Λ.

[Proxy Structured Multisignature Generation Phase]
When B signs a document m for u1, ..., un, he performs the following process:

chooses x←−R Z∗
q

computes r = e(P, P)x

c = H1(m||r)
S = xP − cSP

outputs (c, S, mw) as the proxy structured multisignature on the docu-
ment m.

[Verification Phase]
After receiving the proxy structured multisignature (c, S, mw), and the message
m, the verifier operates as follows.

Proxy Structured Multisignature Scheme from Bilinear Pairings 711

(1) Verify the authenticity of the public key y of the original signing group by
checking whether or not the following equalities hold:

for i such that ui ∈ Ginit, yi = PKi,
for i such that ui does not belong to Ginit,

e(PKi, P +
∑

j:uj∈Gprev(ui)

yj) = e(P, yi),

y =
∑

j:uj∈Glast
yj .

If y does not pass the authenticity verification, stop. Otherwise, continue.
(2) Check whether or not the message m conforms to the warrant mw. If not,
stop. Otherwise, continue.
(3) Check whether or not the proxy signer B is authorized by these n original
signers {ui} in the warrant mw. If not, stop. Otherwise, continue.
(4) Compute r = e(P, S)e(PKb + y, H2(mw))c,
(5) Accept the proxy structured multisignature if and only if c = H1(m||r).

5 Analysis of the Proposed Proxy Structured
Multi-signature Scheme

5.1 Corectness

The propertiy of correctness is satisfied. In effect, if the proxy structured mul-
tisignature is correctly generated, then:

r = e(P, P)x

= e(P, S + cSP)
= e(P, S)e(P, SP)c

= e(P, S)e(P, sbH2(mw) + U)c

= e(P, S)e(PKb + y, H2(mw))c

5.2 Efficiency

When analyzing computational costs, we assume that the pairing evaluation is
the operation which takes the most running time. Under this assumption, we
consider the number of pairing computations in the proposed scheme.

In the proxy structured multisignature generation phase, B needs one expo-
nentiation in G2, and one evaluation of the type of aP + bQ in G1(the pairing
evaluation e(P, P) can be pre-computed). As for the verification phase, if the ver-
ifier often has to communicate with the original group u1, ..., un with the signing
structure Λ and the proxy signer B, he does not have to verify the authenticity of
the public key y of the group, in other words, all e(PKi, P +

∑
j:uj∈Gprev(ui)

yj)
and e(P, yi)(for i such that ui does not belong to Ginit),

∑
j:uj∈Glast

yj , and
e(PKb + y, H2(mw)) can be pre-computed. Thus, in every verification opera-
tion, the verifier only needs one pairing evaluation.

712 X. Li et al.

From above discussions, we can conclude that our proxy structured mul-
tisignature scheme not only provides a possible solution to the problem that
ordinary structured multisignatures rely on the cooperating of the entities of the
signing group , but also is more efficient than the ordinary structured multisig-
natures([12]).

5.3 Security Concerns

In this subsection, we will show that the proposed proxy structured multisigna-
ture scheme satisfies all the requirements stated in Section 2. During the proof,
we assume that the warrant mw specifies the necessary proxy details, such as
the identity information of the proxy signer and all the original signers who have
agreement on the signing structure Λ and on delegating signing capability to the
designated proxy signer, the signing structure, the partial public key, the public
key of the group, what kind of message can be delegated, etc.

Unforgeability-On the one hand, any third party, who wants to forge the proxy
signature of an message m′ for the proxy signer and these original signers, must
have the original signers’ structured multisignature on the warrant mw. But he
can not forge the signature. To see this, suppose that the adversary knows P and
y, and tries to find U such that the equality e(P, U) = e(y, H2(mw)) holds. This
is equivalent to forge Boneh et al.’s short signature. Any third party that can
forge a proxy structured multisignature must be able to forge a Boneh et al.’s
short signature. Since Boneh et al.’s pairing-based short signature scheme([1]) is
proven to be secure against existential forgery under a chosen message attacks
(in the random oracle model) assuming the Computational Diffie-Hellman Prob-
lem(CDHP) is hard on the chosen elliptic curves, the adversary cannot forge a
valid proxy structured multisignature by this way.

On the other hand, since the proxy signer’s private key is used in the al-
gorithm of the proxy structured multisignature generation, and we use Hess’s
scheme([4]), which is secure under the hardness of CDHP and the random oracle
model, to generate the proxy multisignature, even these original signers can not
generate a valid proxy signature.

Verifiability-Because the warrant contains the identity information and the
limit of the delegated signing capability, the verifier can verify the signature and
check whether the signed message conforms to the delegation warrant or not.

Identifiability-Since there is the delegation warrant mw in a valid proxy struc-
tured multisignature, anyone can determine the identity of the corresponding
proxy signer from mw.

Undeniability-Since the warrant is signed by the original signers in the struc-
ture Λ using Boneh et al.’s short signature scheme in the proxy generation phase
and must be verified in the verification phase, the proxy signer can not modify
the warrant. Thus, once he creates a valid proxy signature, he can not repudiate
the creation of a valid proxy signature against anyone.

Proxy Structured Multisignature Scheme from Bilinear Pairings 713

Prevention of Misuse-There is the warrant that has an explicit description of
delegated signing capability, so the proxy signer can not sign any message that
has not been authorized by the original signing group.

From above discussions, we can conclude that the proposed scheme is a secure
proxy signature scheme, and actually provides all the security properties stated
in Section 2.

6 Conclusions

In electronic world, proxy signature is a solution of delegation of signing capa-
bilities. Proxy signatures can combine other special signatures to obtain some
new types of proxy signatures. Various type proxy signatures are important in
many applications. A multisignature scheme is said to be structured if the group
of signers is structured. The structure takes into account the signing order of
the entities of the signing group. In this paper, we proposed a proxy structured
multisignature scheme from bilinear pairings. We analyzed the proposed scheme
from security and efficiency points of view. We have shown that the scheme
actually satisfied all the security properties required by proxy signatures. The
proposed scheme provides a possible solution to the problem that ordinary struc-
tured multisignatures rely on the cooperating of the entities of the signing group,
especially when the group has many different signing structures.

Acknowledgements

The authors thank to the anonymous reviewers for helpful comments. This work
is supported by NSFC under the grants 60273049 and 90104005.

References

[1] D.Boneh, B.Lynn, H.Shacham. Short signatures from the weil pairing. In: Ad-
vances in Cryptology-Asiacrypt 2001, LNCS 2248, pages 514-532. Springer-Verlag,
2003.

[2] M.Burmester, Y.Desmedt,H.Doi, M.Mambo, E.Okamoto, M.Tada, Y.Yoshifuji. A
structured ElGamal-type multisignature scheme. Proseedings of 3rd International
Workshop on Practice and Theory in Public Key Cryptosystems(PKC 2000),
Springer-Verlag, pages 466-483, 2000.

[3] X.Chen, F.Zhang, K.Kim. ID-based Multi-Proxy Signature and Blind Multisigna-
ture from Bilinear Pairings. In: Proceeding of KIISC conference 2003, pages 11-19,
2003, Korea.

[4] F.Hess. Efficient identity based signature schemes based on pairings. Proceedings
of 9th workshop on selected areas in cryptography-SAC2002. Lecture Notes in
Computer Science. Springer-Verlag.

[5] S.Hwang, C.Chen. New multi-proxy multi-signature schemes. Applied Mathemat-
ics and Computation, 147 (2004), pages 57-67.

[6] S.Huang. C.Shi. A simple multi-proxy signature scheme. Proceedings of the 10th
National Conference on Information Security. Hualien, Taiwan, ROC, 2000, pages
134-138.

714 X. Li et al.

[7] K.Itakura, K.Nakamura. A public-key cryptosystem suitable for digital multisig-
nature. NEC Research and Development, Vol 71, Oct 1983, pages 1-8.

[8] S.Kim, S.Park, D.Won. Proxy signatures,revisited. Proc.of ICICS ’97, Interna-
tional Conference on Information and Communications Security, LNCS 1334,
pages 223-232, 1997.

[9] B.Lee, H.Kim, K.Kim. Strong proxy signature and its applications. Proc.of SCIS.
pages 603-608, 2001.

[10] T.Lengauer. Combinatorial algorithms for integerated circuit layout. B.G.Teubner
Stuttgart, John Wiley & Sons, 1990, 468.

[11] C.Lin, T.Wu, J.Hwang. ID-based structured multisigature schemes. Advances in
Network and Distributed systems Security. Kluwer Academic Publisher(IFIP Con-
ference Proceedings 206), pages 45-59, 2001.

[12] C.Lin, T.Wu, F.Zhang. A structured multisignature scheme from the Gap Diffie-
Hellman Group. Cryptology ePrint Archive, Report 2003/090. Available at
http://eprint.iacr.org/2003/090.

[13] M.Mambo, K.Usuda, E.Okamoto. Proxy signature: delegation of the power to sign
messages. IEICE Trans.Fundamentals. E79-A:9, pages 1338-1353, 1996.

[14] M.Mambo, K.Usuda, E.Okamoto. Proxy signature for delegating signing opertion.
Proc. of 3rd ACM Conference on Computer and Communications Security, ACM
Press New York, pages 48-57, 1996.

[15] C.Mitchell. An attack on an ID-based multisignature scheme. Royal Holloway,
University of Landon, Mathemaitics Department Technical Report RHUL-MA-
2001-9, December 2001.

[16] L.Yi, G.Bai, G.Xiao. Proxy multi-signature scheme: a new type of proxy signature
scheme. Electronics Letters 36(6), 2000, pages 527-528.

[17] F.Zhang, R.Safavi-Naini, C.Lin. New proxy signature, proxy blind signature, proxy
ring signature schemes from bilinear pairings. Cryptology ePrint Archive, Report
2003/104. Available at http://eprint.iacr.org/2003/104

[18] D.Zheng, K.Chen. An attack on a multisignature scheme. Cryptology ePrint
Archive, Report 2003/201. Available at http://eprint.iacr.org/2003/201.

 J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 715–724, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A Threshold Proxy Signature Scheme Using
Self-Certified Public Keys

Qingshui Xue1,2 and Zhenfu Cao1

1 Department of Computer Science and Engineering, Shanghai Jiao Tong University,
200030, Shanghai, P.R.C.

{xue-qsh, zfcao}@cs.sjtu.edu.cn
2 Department of Basic Theory, Shandong P.E. Institute, 250063, Jinan, P.R.C.

{ares, xue-qsh}@sjtu.edu.cn

Abstract. So far, all of proposed threshold proxy signature schemes are based
on public key systems with certificates and most of them use Shamir’s
threshold secret share scheme. Self-certified public key system has attracted
more and more attention because of its advantages. Based on Hsu et al’s self-
certified public key system and Li et al’s proxy signature scheme, one threshold
proxy signature scheme is proposed. The new scheme can provide the
properties of proxy protection, verifiability, strong identifiability, strong
unforgeability, strong repudiability, distinguishability, known signers and
prevention of misuse. In the proxy signature verification phase, the
authentication of original and proxy signers’ public keys and the verification of
the threshold proxy signature are executed together. In addition, the
computation overhead and communication cost of the scheme are less than
previous works with Shamir’s secret share protocol and the public key system
based on certificates.

1 Introduction

The proxy signature scheme [1], a variation of ordinary digital signature schemes,
enables a proxy signer to sign messages on behalf of the original signer. Proxy
signature schemes are very useful in many applications such as electronics transaction
and mobile agent environment.

Mambo et al. [1] provided three levels of delegation in proxy signature: full
delegation, partial delegation and delegation by warrant. In full delegation,
the original signer gives its private key to the proxy signer. In partial delegation,
the original signer produces a proxy signature key from its private key and gives it to
the proxy signer. The proxy signer uses the proxy key to sign. As far as delegation by
warrant is concerned, warrant is a certificate composed of a message part and a public
signature key. The proxy signer gets the warrant from the original signer and uses the
corresponding private key to sign. Since the conception of the proxy signature was
brought forward, a lot of proxy signature schemes have been proposed [2-19].

Recently, many threshold proxy signature schemes were proposed [2, 6-14]. In
threshold proxy signature schemes, a group of n proxy signers share the secret proxy

Q. Xue and Z. Cao 716

signature key. To produce a valid proxy signature on the message m, individual proxy
signers produce their partial signatures on that message, and then combine them into a
full proxy signature on m. In a),(nt threshold proxy signature scheme, the original

signer authorizes a proxy group with n proxy members. Only the cooperation of t or
more proxy members is allowed to generate the proxy signature. Threshold signatures
are motivated both by the demand which arises in some organizations to have a group
of employees agree on a given message or document before signing, and by the need
to protect signature keys from attacks of internal and external adversaries.

In 1999, Sun proposed a threshold proxy signature scheme with known signers
[9]. Then Hwang et al. [7] pointed out that Sun’s scheme was insecure against
collusion attack. By the collusion, any t-1 proxy signers among t proxy signers can
cooperatively obtain the secret key of the remainder one. Meanwhile, they also
proposed an improved scheme which can guard against the collusion attack. After
that, [6] showed that Sun’s scheme was also insecure against the conspiracy attack. In
the conspiracy attack, t malicious proxy signers can impersonate some other proxy
signers to generate valid proxy signatures. To resist the attack, they also proposed a
scheme. Hwang et al pointed out [8] that the scheme in [7] was also insecure against
the attack by the cooperation of one malicious proxy signer and the original signer. In
2002, Li et al. [2] proposed a threshold proxy signature scheme full of good properties
and performance. In [14], we pointed out there were some errors in Sun’s and Hwang
et al.’s scheme and also proposed an improved version.

All of the proposed schemes are based on Shamir’s secret share protocol and the
public key systems using certificates, which have some disadvantages such as finding
the certificate list when needing certificates, and high computation overheads and
communication cost.

So far, there are three kinds of public key systems involving using certificates,
identity-based and self-certified public keys. Currently, identity-based public systems
are not pretty mature, as makes it not used in the real life.

The self-certified public key system is first introduced by Girault in 1991 [20]. In
self-certified public key systems, each user’s public key is produced by the CA
(Certification Authority), while the corresponding private key is only known to the
user. The authenticity of public keys is implicitly verified without the certificate. That
is, the verification of public keys can be performed with the subsequent cryptographic
applications such as key exchange protocols and signature schemes in a single step.
Compared with other two public systems, the system has the following advantages
[18]: (1) the storage space and the communication overheads can be reduced since the
certificate is not needed; (2) the computation overhead can be reduced as it requires
no public key verification.

There are four trust levels for the security of public key systems [12]. Hsu et al
[18] pointed out that the self-certified public key systems might be the ideal choice
for realizing cryptographic applications according to security and efficiency. Further,
Hsu et al proposed a kind of self-certified public key system. In 2003, Li et al [17]
proposed a generalization of proxy signature based on discrete logarithms. In the
paper, based on Hsu et al’s self-certified public key system and Li et al’s proxy
signature scheme, a threshold proxy signature scheme using self-certified public
system is proposed. The main advantage of the proposed scheme is that the
authenticity of original and proxy signers’ public keys, and the verification of the

A Threshold Proxy Signature Scheme Using Self-Certified Public Keys 717

proxy signature can be simultaneously executed in a single step. As far as we know,
this threshold proxy signature scheme is the first one using self-certified public key
system. The proposed scheme can provide the security properties of proxy protection,
verifiability, strong identifiability, strong unforgeability, strong nonrepudiability,
distinguishability, known signers and prevention of misuse of proxy signing power.
That is, internal attacks, external attacks, collusion attacks and public key substitution
attacks can be efficiently resisted. In addition, the new scheme is more efficient than
previous works, which were implemented with Shamir’s secret share protocols and
public key systems based on certificates, in terms of computational overheads and
communication cost.

In the paper, we organize the content as follows. In section 2, we will detail the
proposed threshold proxy signature scheme. The security of the new scheme will be
analyzed and discussed in section 3. In section 4, we will analyze the computational
overheads and communication cost of the new scheme. Finally, the conclusion is given.

2 The Proposed Scheme

In the scheme, a system authority (SA) whose tasks are to initialize the system, the
original signer OU , certification authority (CA) whose tasks are to generate the public

key for each user, the proxy group of n proxy signers },...,,{=
21 nPPPP UUUG , one

designated clerk C whose tasks are to collect and verify the individual proxy
signatures generated by the proxy signers, and construct the final threshold proxy
signature, and the signature verifier are needed.

Throughout the paper, p and q are two large primes with q|(p-1) and g is a
generator of)(pGF with order q. h is a secure one-way hash function. The

parameters),,(gqp and the function h are made public. Let iID be the identifier of

the user iU . Assume that CAx and CAy are the private and public keys of the CA,

respectively, where *
qCA Zx and

pgy CAx
CA mod= . (1)

wm is a warrant which records the identities of the original signer and the proxy
signers of the proxy group, parameters t and n, message type to sign, the valid
delegation time, etc. ASID denotes the identities of the actual proxy signers.

The proposed scheme consists of four phases: registration, proxy share generation,
proxy signature issuing without revealing proxy shares and proxy signature
verification. We detail them below.

2.1 Registration

Step 1. Each user iU selects an integer *
qi Zt at random, computes

pgv ii IDth
i mod=),((2)

and sends),(ii IDv to the CA.

Q. Xue and Z. Cao 718

Step 2. Upon receiving),(ii IDv from iU , the CA selects *
qi Zz , calculates

pgIDhvy iz
iii mod)(= 1- (3)

qxIDyhze CAiiii mod),(+= (4)

and returns),(ii ey to iU .

Step 3. iU computes

qIDthex iiii mod),(+= (5)

and confirms its validity by checking that

)(mod=)(),(pgyIDhy i
ii x

ii
IDyh

CA (6)

If it holds, iU accepts),(ii yx as his private and public keys. Moreover, the CA

publishes sU i ' public key iy when the registration is complete. Note that the CA

needn’t issue extra certificate associated with iy .

2.2 Proxy Share Generation

Step 1. The original signer chooses an integer *
po Zk randomly, computes

pgK ok
O mod= (7)

qmhxKk woooo mod)(+= (8)

and sends),,(oow Km to each of proxy signers.

Step 2. After receiving),,(oow Km , each of proxy signers confirms the validity of

),,(oow Km by

)(mod))((=)(
),(pyIDhyKg w

ooo
o mh

oo
IDyh

CA
K

o (9)

 If it holds, each of proxy signers regards o as its proxy share.

2.3 Proxy Signature Issuing Without Revealing Proxy Shares

Without loss of generality, the proposed scheme allows any t or more proxy signers to
represent the proxy group to sign a message m cooperatively on behalf of the original
signer oU .

Let },...,,{=
'21' tPPPP UUUG be the actual proxy signers for ntt ' . 'PG as a group

performs the following steps to generate a threshold proxy signature.

Step 1. Each proxy signer 'PP GU
i

 chooses an integer *
qi Zk at random, computes

pgK ik
i mod= (10)

and sends it to the other t’-1 proxy signers in 'PG and the designated clerk C.

A Threshold Proxy Signature Scheme Using Self-Certified Public Keys 719

Step 2. Upon receiving jK),',...,2,1=(ijtj , each 'PP GU
i

 computes K and is

as follows:

`mod�
'

1

pKK
t

j

j

=

= (11)

))(mod,()+'(+= 1- qASIDmhxtKks
iPoii (12)

 Here, is is an individual proxy signature which is sent to C.

Step 3. For each received js)',...,2,1=(tj , C checks whether the following

congruence holds:

pyIDhyyIDhyKKg ASIDmh
jj

IDyh
CA

tmh
oo

IDyh
CA

K
o

K
j

s jj
w

ooo
j mod})(]))(({[=),(

),(
1')(

),((13)

 If it does,),(ii sK is a valid individual proxy signature of m. If all the individual

proxy signatures of m are valid, the clerk C computes

�

'

1=

mod=
t

j

j qsS (14)

 Then,),,,,,(ASIDSKmKm ow is the proxy signature of m.

2.4 Proxy Signature Verification

After receiving the proxy signature),,,,,(ASIDSKmKm ow for m, any verifier can

verify the validity of the threshold proxy signature by the steps below.

Step 1. According to wm and ASID , the verifier can obtain the value of t and n, the
public keys of the original signer and proxy signers from CA and knows the number
't of the actual proxy signers. Then the verifier checks whether tt ' , if it holds,

he/she continues the following steps, or else, he/she will regard the threshold proxy
signature),,,,,(ASIDSKmKm ow invalid .

Step 2. The verifier confirms the validity of the proxy signature on m by checking

)(mod])()(

[
),('

1

'

1

)()(

]),()(),([

� �

�

'

1

pyIDhyIDh

yKKg
ASIDmht

j

t

j

jj
mh

o
mh

o

IDyhmhIDyh
CA

K
o

KS

ww

t

j
jjwooo

= =

+
==

 (15)

If it holds, the proxy signature),,,,,(ASIDSKmKm ow is valid.

3 Security Analysis

In the section, we will analyze the security properties of the proposed scheme. Several
theorems about the security will be proposed and proved below.

Q. Xue and Z. Cao 720

Theorem 1. The user can’t forge his/her private key without interaction with the CA
and the CA can forge the user’s public key without the interaction with the user
neither.

Proof. From Eq. 4, we know that although the user can select a random integer
*
qi Zz and compute pgIDhvy iz

iii mod)(= 1- , because of having no the knowledge

of the CA’s private key CAx , he/she can’t get a valid value of ie to construct his self-
certified private key. Obviously, the user can forge a valid private key with the
probability of q/1 . That’s, the user’s private key has to be set up by the interaction

with the CA. Similarly, if the CA wants to forge the user’s new public key which
satisfies Eq. 6, he/she has to solve the difficult discrete logarithm problem, as we
know it is impossible. Thus, the CA can’t forge a new public key of the user. To
generate the user’s public key, the CA has to interact with the user.

Theorem 2. The user can’t forge his public key by its private key without the
interaction with the CA and the CA can’t get the user’s private key from the
interaction with the user either.

Proof. If the user wants to forge his/her new public key which satisfies Eq. 6, he/she
has to solve the difficult discrete logarithm problem, as we know it is impossible.
Thus the user can’t forge a new public key of the user without the interaction with the
CA. From Eq. 5, we know that because the CA has no the knowledge of *

qi Zt

selected by the user, the CA can’t obtain the user’s private key ix . In addition, from

the verification Eq. 6, the CA is unable to get the user’s private key ix since he/she is
faced with the difficulty of solving discrete logarithms. Therefore, we can draw the
above conclusion.

Theorem 3. Any tt <'' proxy signers can’t generate a valid threshold proxy signature
on a new message 'm .

Proof. From Eqs. 12 and 14, we have

))(mod,(+),(+= ��

'

1=

'

1=

qASIDmhxASIDmhKkS
t

j

Po

t

j

j j
 (16)

 Because any tt <'' proxy signers have no the knowledge of jk or � jk , and
jPx or

�
jPx of other ''tt proxy signers, any tt <'' proxy signers are unable to cooperate to

generate the valid proxy signature on a new message 'm . Although any tt <'' proxy
signers can generate),,,',,(ASIDSKmKm ow and it can pass the verification Eq. 15,

the number of actual proxy signers is less than t, as makes it can’t pass the verification
step 1. Thus the forged proxy signature),,,',,(ASIDSKmKm ow by tt <'' proxy

signers is invalid.
From the Eq. 16, any tt <'' proxy signers are unable to get the values of jk or

� jk , and
jPx or �

jPx of other ''tt proxy signers, if the message m is replaced

with 'm , any tt <'' proxy signers can’t get the new value of 'S . Also, from the

A Threshold Proxy Signature Scheme Using Self-Certified Public Keys 721

verification Eq. 15, when m is replaced with 'm , given fixed some variables of the set
},,,,{ ASIDSKKm ow , the values of the other variables in the set

},,,,{ ASIDSKKm ow will be unable to be gotten because of the difficult discrete

logarithm and secure hash function. That is, from a known proxy signature
),,,,,(ASIDSKmKm ow , any tt <'' proxy signers can’t generate valid threshold

proxy signature on a new message 'm
So the theorem is proved to be true.

Theorem 4. Any tt <'' proxy signers can’t forge another valid threshold proxy
signature on the original message m from the proxy signature),,,,,(ASIDSKmKm ow .

Proof. On one hand, from Eq. 16, any tt <'' proxy signers can’t get the knowledge of

jk or � jk , and
jPx or �

jPx of other ''tt proxy signers. Thus, the values of

some variables in set },,{ ASIDSK can’t be changed by changing the values of the

other variables in set },,{ ASIDSK . Here note that as far as any tt <'' proxy signers

are concerned, the values of wm and OK can’t be changed, as can be guaranteed by
Eq. 9. On the other hand, from the verification Eq. 15, by fixing some variables of the
set },,,,{ ASIDSKKm ow , the values of the other variables in the set

},,,,{ ASIDSKKm ow will not be able to be obtained due to the difficult discrete

logarithm and secure hash function. Therefore, the theorem is proved.
Because of the similar causes, we can obtain the following theorems. The related

proofs will be omitted.

Theorem 5. The original signer and any tt <'' proxy signers can’t cooperatively
generate a valid threshold proxy signature on a new message 'm .

Theorem 6. The original signer and any tt <'' proxy signers can’t cooperatively
forge another valid threshold proxy signature on the original message m from the
proxy signature),,,,,(ASIDSKmKm ow .

Theorem 7. Any third party, the original signer and any tt <'' proxy signers can’t
cooperatively generate a valid threshold proxy signature on a new message 'm .

Theorem 8. Any third party, the original signer and any tt <'' proxy signers can’t
cooperatively forge another valid threshold proxy signature on the original message m
from the proxy signature),,,,,(ASIDSKmKm ow .

Theorem 9. Anyone can be convinced of the original signer’s agreement on the
signed message from the proxy signature),,,,,(ASIDSKmKm ow .

Theorem 10. Anyone can identify the actual proxy signers from the proxy signature
),,,,,(ASIDSKmKm ow .

Theorem 11. Anyone can distinguish proxy signatures from normal signatures.

Theorem 12. The proxy signers can’t repudiate having produced the proxy signature
which had ever been signed to any one.

Q. Xue and Z. Cao 722

Theorem 13. The proxy signers can’t misuse the proxy signing power on other purposes.

From the above several theorems, we know that the proposed scheme can fulfill the
securities of verifiability, strong identifiability, distinguishability, strong unforgeability,
strong nonrepudiation, proxy protection and prevention of misuse of proxy signing
power. In other words, the proposed scheme can resist equation attacks, collaboration
attacks, public key substitution attacks, internal attacks and external attacks. In addition,
the certificates of users are not needed in the proposed scheme. If users want to change
his private key or the CA wants to change users’ public key, both have to interact to
finish it, or else neither of the two parties can succeed. The verifier only needs to obtain
the public keys of the original signer and the proxy signers and needn’t verify their
validity as the verification of their public keys and the proxy signature is executed
together. Thus, the self-certification of public keys can be realized.

4 Performance Analysis

We denote the following notations to facilitate the performance evaluation:

hT : The time for performing a one-way hash function h.

expT : The time for performing a modular exponentiation computation.

mulT : The time for performing a modular multiplication computation.

addT : The time for performing a modular addition computation.

invT : The time for performing a modular inverse computation.
|| x : The bit-length of an integer x.

The computational overhead and communication cost of the proposed scheme are
stated in Table 1 and 2, respectively.

Table 1. Computational overhead of the proposed scheme

Phases Computational overhead

Registration
User: haddmul TTTT 43 exp +++

The CA: hinvaddmul TTTTT 23exp ++++

Proxy share generation
The original signer: hmul TTT ++ 2exp

Each proxy signer: hmul TTT 334 exp ++

Proxy signature issuing
Each proxy signer: hinvaddmul TTTTtT +++++ 2)2'(exp

The clerk: hinvaddmul TtTtTtTtTt '6')1'('7'8 exp ++++

Proxy signature verification haddmul TtTtTtT)5'2(')4'2(7 exp +++++

Total a

hinv

addmul

TtTt

TtTtTt

)10'8()1'(

)1'2())11'10()14'8(exp

+++

++++++

a The total computation overhead excludes the registration phase.

A Threshold Proxy Signature Scheme Using Self-Certified Public Keys 723

Table 2. Communication cost of the proposed scheme

Phases Communication cost
Registration ||+||2+||2 iIDqp

Proxy share
generation

||+||+|| wmqp

Proxy signature
issuing

||'+||' qtpt

Proxy signature
verification

||+||+||+||+||2 ASIDmmqp w

Total b
||

+||+||2+||)2+'(+||)3+'(
ASID

mmqtpt w

b The total communication cost excludes the registration phase.

From the Tables 1 and 2, we know that the proposed scheme needs less
computation overhead and communication cost than other threshold proxy signature
schemes [2, 6-13] which were based on the certificate-based public key system and
Shamir’s secret share scheme. Therefore, the proposed scheme is more efficient than
those schemes in terms of computational complexity and communication cost.

5 Conclusions

In the paper, based on Hsu et al’s self-certified public key system and Li et al’s proxy
signature scheme, one threshold proxy signature scheme with self-certified public key
system and non Shamir’s secret share protocol has been proposed. As far as we know,
it is the first scheme using self-certified public keys. The new scheme can provide the
security properties of proxy protection, verifiability, strong identifiability, strong
unforgeability, strong nonrepudiability, distinguishability, known signers and
prevention of misuse of proxy signing power, i.e., internal attacks, external attacks,
collusion attacks, equation attacks and public key substitution attacks can be resisted.
In the proxy signature verification phase, the authentication of the original signer and
the proxy signers’ public keys and the verification of the threshold proxy signature are
executed together. In addition, the computation overhead and communication cost of
the proposed scheme are more efficient than previous works with Shamir’s secret
share protocol and the public key system with certificates.

Acknowledgment

The author would like to thank anonymous referees for their suggestions to improve
the paper. This paper is supported by the National Science Fund for Distinguished
Young Scholars under Grant No. 60225007 and the National Research Fund for the
Doctoral Program of Higher Education of China under Grant No. 20020248024.

Q. Xue and Z. Cao 724

References

1. Mambo, M., Usuda, K. Okamoto, E.: Proxy Signature for Delegating Signing Operation.
In: Proceedings of the 3.th ACM Conference on Computer and Communications Security.
ACM Press, New York (1996) 48–57

2. Li, J.G., Cao, Z.F.: Improvement of a Threshold Proxy Signature Scheme. Journal of
Computer Research and Development 9(11) (2002) 515-518 (in Chinese)

3. Li, J.G., Cao, Z.F., Zhang, Y.C.: Improvement of M-U-O and K-P-W Proxy Signature
Schemes. Journal of Harbin Institute of Technology (New Series) 9(2) (2002) 145–148

4. Li, J.G., Cao, Z.F., Zhang, Y.C.: Nonrepudiable Proxy Multi-signature Scheme. Journal of
Computer Science and Technology 18(3) (2003) 399–402

5. Li, J.G., Cao, Z.F., Zhang, Y.C., Li, J.Z.: Cryptographic Analysis and Modification of
Proxy Multi-signature Scheme. High Technology Letters 13(4) (2003) 1–5 (in Chinese)

6. Hsu, C.L., Wu, T.S., Wu, T.C.: New Nonrepudiable Threshold Proxy Signature Scheme
with Known Signers. The Journal of Systems and Software 58 (2001) 119~124

7. Hwang, M.S., Lin, I.C., Lu Eric, J.L.: A Secure Nonrepudiable Threshold Proxy Signature
Scheme with Known Signers. INFORMATICA 11(2) (2000) 1–8

8. Hwang, S.J., Chen, C.C.: Cryptanalysis of Nonrepudiable Threshold Proxy Signature
Scheme with Known Signers INFORMATICA 14(2) (2003) 205–212

9. Sun, H.M.: An Efficient Nonrepudiable Threshold Proxy Signature Scheme with Known
Signers. Computer Communications 22(8) (1999) 717–722

10. Sun, H.M., Lee, N.Y., Hwang, T.: Threshold Proxy Signature. IEEE Proceedings-
computers & Digital Techniques 146(5) (1999) 259–263

11. Zhang, K.: Threshold Proxy Signature Schemes. In: Information Security Workshop,
Japan (1997) 191–197

12. Hsu, C.L., Wu, T.S., Wu, T.C.: Improvement of Threshold Proxy Signature Scheme.
Applied Mathematics and Computation 136 (2003) 315–321

13. Tsai, C.S., Tzeng, S.F., Hwang, M.S.: Improved Non-Repudiable Threshold Proxy
Signature Scheme with Known Signers. INFORMATICA 14(3) (2003) 393–402

14. Xue, Q.S., Cao, Z.F.: On Two Nonrepudiable Threshold Proxy Signature Schemes with
Known Signers. INFORMATICA to appear

15. Denning, D.E.R.: Cryptography and Data Security. Addison-Wesley, Reading, MA, (1983)
16. Pedersen, T.: Distributed Provers with Applications to Undeniable Signatures. LNCS,

Vol.547, Springer-Verlag New York (1991)
17. Li, L.H., Tzeng, S.F., Hwang, M.S.: Generalization of proxy signature-based on discrete

logarithms. Computers & Security 22(3) (2003) 245–255
18. Hsu, C.L., Wu, T.S.: Efficient proxy signature schemes using self-certified public keys.

Applied Mathematics and Computation, In Press, Corrected Proof, Available online 9
(2003)

19. Hwang, M.S., Tzeng, S.F., Tsai, C.S.: Generalization of proxy signature based on elliptic
curves. Computer Standards & Interfaces 26(2) (2004) 73–84

20. Girault: Selt-certified public keys. In: Advance in Cryptology-EUROCRYPT, Springer-
Verlag, (1991) 491–497

 J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 725–729, 2004.
© Springer-Verlag Berlin Heidelberg 2004

The Authentication and Processing Performance of
Session Initiation Protocol (SIP) Based Multi-party

Secure Closed Conference System

Jongkyung Kim1, Hyuncheol Kim1, Seongjin Ahn2, and Jinwook Chung1

1
Department of Computer Engineering, Sungkyunkwan University, Suwon, Korea

{jongkkim,hckim,jwchung}@songgang.skku.ac.kr
2
Department of Computer Education, Sungkyunkwan University, Seoul, Korea

sjahn@comedu.skku.ac.kr

Abstract. This paper presents, a new SIP based multi-party secure closed con-
ference system. In the traditional participants, except of captain, conference
system doesn’t have a privilege for UA (User Agent) that accepts or declines
new participants. On the other hand, closed conference system supports this
function. We also propose for closed conference system authentication proce-
dure. By means of a real implementation, we provide an experimental perform-
ance analysis of SIP security mechanisms.

1 Introduction

The system configuration for multi-party SIP based conference (including 3 parties or
over) can be largely classified into three models. As shown in Fig. 1(a), an end user
system should cover all the signaling and media mixing during the conference, result-
ing in a significant overload on the system. In the case of distributed multipoint con-
ference model, as shown in Fig. 1(b), an additional terminal leads to an increase in
multicast recipient. This means that an additional INVITE message is inefficiently
required whenever such process is repeated. Finally, Ad-hoc conference model adopts
a simple structure where the central media server or MCU (Multipoint Control Unit)
processes all the signaling messages and performs media mixing so that each end user
manages only his own traffics [1][2].

The SIP message contains information that a user or server wishes to keep private.
Securing SIP header and body information can be motivated by two reasons. One is
that we need maintain private user and network information in order to guarantee a
certain level of privacy. Another is that we have to avoid SIP sessions being set up or
changed by attackers faking the identity of someone else. The SIP UAC (User Agent
Client), calling side, can identity itself to a UAS (User Agent Server), called side.
Therefore, SIP authentication applies only to user-to-user, user-proxy or user-registrar
communication [3]

A representation of the SIP digest authentication procedure is given in Fig. 2. The
function F() used to compute the response specifies how to combine the input pa-

Generate the
nonce value

CHALLENGE

REQUEST

nonce, realm

Compute response
= F(nonce, username, password, realm)

REQUEST

nonce, realm, username, response

Authentication
compute F(nonce, username, password,

realm) and it compare response

�

Fig. 2. The Procedure of Digest Authentication

In case of the existing conference system, as shown above, only the captain of
conference has the right of invitation of additional participants. However, closed
conference system needs all participants’ anonymous agreement is needed to invite
additional participants. In this paper, the closed conference model and the extended
header will be proposed. The reminders of this paper are organized as follows. The
authentication procedure for closed conference system is proposed in section 2. The
section 3 describes the methodology for the evaluation of processing cost and ex-
perimental results. Finally, we make a conclusion.

J. Kim et al. 726

rameter with some iterations of a digest algorithm [4][5]. The authentication proce-
dure is run when the UAS, a proxy server, or the registrar server requires the calling
side (UAC) to be authenticated before accepting the call, forwarding the call, or ac-
cepting the registration.

MCP(Multipoint Control Unit)
Conference Bridge + Media Bridge

(a) End user conference model

MCP(Multipoint Control Unit)
Conference Bridge + Media Bridge

(b) Distributed Multipoint conference model

(c) Ad-Hoc conference model

Fig. 1. Configuration for SIP-Based Multi-Party Conference System

The Authentication and Processing Performance of Session Initiation Protocol 727

2 Proposed Authentication Procedure for Closed Conference
System

The simple expansion of 1:1 connection isn’t able to guarantee satisfactory confi-
dence. For instance, when a new participant joins conference session, existing partici-
pants and new one have to know the information of who has joined conference. That
is why any one among them doesn’t want to join conference together. Therefore, we
need to know all participants of conference. We use the method that is the usage of
INVITE message’s SDP (Session Description Protocol) from the conference server [6].

Fig. 3 shows the procedure of the invitation of a participant in the closed confer-
ence system. To begin with Alice and Bob setup call session through authentication
procedure. When the captain, Bob, invites Carol, Bob’s UA sends NOTIFY message
to Alice in order to agree an additional invitation. When Alice agrees to invite Carol,
UA sends 200 OK message (F25). However, when he doesn’t want to do that, it sends
603 declined message (F25). If Alice agrees the invitation of Carol, next time, Con-
ference Server asks Bob to join conference. Bob checks the received information of
participants. If he doesn’t want to join that conference, he sends 603 messages (F43).
This procedure presents with gray box in Fig. 3.

The states of the proposed UA can be divided into StateIdle (initial state),
StateTrying, StateRinging, and StateInCall. The initial state is changed to StateRing-
ing state when a phone is answered and followed by a receipt of ringing message, as
shown in Fig. 4. When a ring is given someone, INVITE message is sent so that the
status is set at StateTrying state. In the case of conference during the process, the
REFER message is sent. If an INVITE message is received during StateIdle state, a
negotiation of multimedia to be used in the session is followed by sending Ringing
OK message (Real message: 180 Ringing). After that, it is changed to StateRinging
state. At that time, if network resources are lacking or the phone is on the line, a re-
ceipt of PRACK message during StateRinging state results in sending 200 OK and
INVITE OK(200) messages. After that, it is changed to StateInCall state.

3 Methodology for the Evaluation of Processing Cost and
Experimental Results

In order to experiment with advanced feature in SIP, we have realized a test bed [7].
The goal of this test bed was twofold: firstly verification of the function behavior of
the various elements and their interoperability; secondly the possibility of making
some performance analysis. In particular regarding performance analysis, an interest-
ing point is the evaluation of the cost to be paid in terms of performance for in the
introduction of security mechanisms.

The results of our evaluation are reported in Table 1. The Third column reports the
experiential average cost of twenty times in terms of second. Note that this through-
put corresponds to 100 percent utilization of elements processing resources. The two
rightmost columns are the most important ones and report the throughput value con-
verted in a relative processing cost.

J. Kim et al. 728

The result show that the introduction of SIP security accounts for nearly 30 percent
of processing cost of no authentication procedure. This increase can be explained
with the increase in number of exchanged SIP messages. Another interesting finding
is that the incensement of processing time cost increase accidentally, when third at-
tendant joins conference.

Carol Bob Alice Conference Server Media Server

INVITE F1

180 Ringing F5

200 OK F6

ACK F7

RTP

BYE F8

200 OK F9

INVITE (SDP Bob) F10

180 Ringing F14
INVITE (SDP Bob) F15

200 OK (SDP MS) F16

ACK F17
200 OK Contact:conf-id (SDP MS) F18

ACK F19

RTP

SUBCRIBE sip:conf-id F20

200 OK F21
NOTIFY F22

NOTIFY F36

REFER sip:conf-id Refer-To: Alice F26

202 Accepted F27

INVITE Contact:conf-id:isfocus(no SDP) F28

180 Ringing / 200 OK(SDP Alice) F29

INVITE (SDP Alice) F30
200 OK (SDP MS) F31

ACK F32

ACK(SDP MS) F33

RTP

SUBSCRIBE sip:conf-id F34

200 OK F35

200 OK F23

200 OK F37

NOTIFY F38

200 OK F39
REFER sip:conf-id Refer-To:Carol F40

202 Accepted F41

INVITE Contact:conf-id:isfocus(particaint information SDP) F42
603 Decline F43

NOTIFY(Information of decline) F44
200 OK F45

407 Proxy Authentication F2

ACK F3

INVITE F4

ACK F12

INVITE F13

407 Proxy Authentication F11

NOTIFY F24
200 OK / 603 Decline F25

�����������

(
(StateRinging)

(StateIdle)

(StateTrying)

Tx : INVITE,
REFER

: CANCELTx : CANCEL

: Ringing OKTx : Ringing OK

: BUSYTx : BUSY

/Rx: BYETx /Rx: BYE

(StateInCall) Rx: INVITE OKTx : INVITE OK

�

Fig. 3. The Procedure of Closed Fig. 4. Proposed SIP UA State Transition
Conference System Diagram

The Authentication and Processing Performance of Session Initiation Protocol 729

Table 1. Experimental results

 Procedure/scenario Processing time cost(second) Relative cost
1 No authentication, 2 attendants 2.873 * 10^-2 100
2 No authentication, 3 attendants 4.022 * 10^-2 140
3 No authentication, 4 attendants 4.252 * 10^-2 148
4 No authentication, 5 attendants 4.453 * 10^-2 155
5 No authentication, 6 attendants 4.683 * 10^-2 163
6 Authentication, 2 attendants 3.735 * 10^-2 130
7 Authentication, 3 attendants 5.200 * 10^-2 181
8 Authentication, 4 attendants 5.545 * 10^-2 193
9 Authentication, 5 attendants 5.746 * 10^-2 200
10 Authentication, 6 attendants 6.119 * 10^-2 213

4 Conclusion

In this study, SIP based multi-party closed conference system and authentication
procedure is described. The performance aspects of SIP authentication for closed
conference system are considered with pure experimental approach. The processing
costs of different security procedure/scenario are compared under a reference imple-
mentation. Although the performance results are obviously conditioned by the spe-
cific implementation aspects, they can be rough idea of relative processing cost of SIP
security procedures.

References

[1] Jonathan Rosenberg, et al.: Models for Multi Party Conferencing in SIP, Jan. 2003
[2] A. Johnson: SIP Call Control-Conferencing for User Agents, Oct. 2003
[3] Rohan Mahy: A Call Control and Multi-party usage Framework for the Session Initiation

Protocol (SIP), September 2003
[4] J, Franks et al.: HTTP Authentication: Basic and Digest Access Authentication, IETF

RFC 2617, June 1999
[5] R. Rivest: The MD5 Message-digest Algorithm, IETF RFC 1321, Apr 1992
[6] Janet R. Dianda, et al.: SIP, Bell Labs Technical Journal 7(1), 3-23(2002)
[7] Guy J. Zenner, Mark H.Jones, Amit A. Patel: Emerging Uses of SIP in Service Provider

Networks, Bell Labs Technical Journal 8(1), 43-63(2003)

 J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 730–734, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A Method for Authenticating Based on ZKp in
Distributed Environment1

Dalu Zhang, Min Liu, and Zhe Yang

Department of Computer Science and Technology, Tongji University,
Shanghai, P.R.C. 200092

daluz@public.sta.net.cn, {judygsf, hatasen}@hotmail.com

Abstract. A new ZKp identity protocol is proposed in this paper. It is more
appropriate than the traditional identity protocol in distributed environment
without an identical trusted third party. The security of this protocol relies on
the discrete logarithm problem on conic over finite fields. It can be designed
and implemented easier than those on elliptic curve. A simple solution is
proposed to prevent a potential leak of our protocol.

1 Introduction

Zero-knowledge protocol is introduced to overcome restrict of D-H key distribution
that some trust in the identity of the communicating parties has been established. In
distributed environment, such as Grid and P2P, this kind of trust is not easy to
establish. The Globus uses the Grid Security Infrastructure (GSI) [15] for enabling
secure authentication and communication over an open network. GSI public-key
security mechanisms are used to verify credentials and to achieve mutual
authentication between information consumers and information providers. Public key
authentication requires consideration of the trustworthiness of the certifying
authorities for the purpose of public key certification. With traditional public key
encryption the authentication chain must set up firstly. When a fixed trusted third
party is not available, that becomes difficult. Certificates can comprise a chain, where
a certificate of its issuer follows each certificate. Reliable authentication of a public
key must be based on a complete chain of certification which starts at an end-entity
certificate, includes zero or more CA certificates and ends at a self-signed root
certificate. Zero Knowledge Proofs of Identity [1] is the first widely accepted paper
that presented a sound, complete, and resource sensitive ZKp(zero knowledge proofs)
algorithm for identity verification. A fixed trusted third party is not indispensable. In
ZKp schemes, a trusted third party is helpful in the first phrase to produce the public
information. The author of [1] thought that zero knowledge proofs might reveal one
bit of knowledge. Its security depends on the difficulty of factoring. In fact, the
algorithm is not satisfying because of vast information to be exchanged. Guillou
proposed an algorithm for ZKp of Identity [11] in 1988. They decreased the
information need to be exchanged by increasing the amount of computation. In [12]

1 Supported by the National Natural Science Foundation of China under Grant No. 90204010

A Method for Authenticating Based on ZKp in Distributed Environment 731

Brandt carried out ZK authentication scheme and secret key exchange in a single
algorithm. And the identification is mutual, that is to say, both parties identify to one
another concurrently. But unfortunately, it is not clear how valid and applicable this
algorithm is [14]. In our paper a zero-knowledge proofs of identity protocol based on
ElGamal on conic over finite field is proposed.

2 ElGamal Cryptosystem on Conic

Miller [2] applied ellipse curve to cryptography, he showed that elliptic curves had a
rich enough arithmetic structure so that they would provide a fertile ground for
planting the seeds of cryptography.These years, in China, some people considered that
implementing cryptosystem on conic was easier and more convenient than that on
ellipse curve.

Fp is a finite field (p is a prime number except 2), considering the conic C over
affine plane A2(Fp):

C: 2 2 mod y ax bx p= − . , , , 0pa b F a b∈ ≠ (1)

Origin O (0, 0) is a point on C. if 0x ≠ , we suppose y xt= , and we can infer from

equation (1) that

2() mod x a t b p− = . (2)

if 2a t≠ then
2 1()x b a t −= − .

2 1()y bt a t −= − .

Paper [6] defined the characteristic of operator ⊕ for points on C(Fp)(where C(Fp)
means conic C over finite field). The origin O can be denoted by)(∞P . Let H

represent the set of { } { }2,pt F t a∈ ≠ ∞ .

For every point () ()pP t C F∈ , t H∈ , defining:

() () () () ()P t P P P t P t⊕ ∞ = ∞ ⊕ = . (3)

)()()(tnPtPtP
n

=⊕…⊕ .

For points
1 2(), () ()pP t P t C F∈ , Htt ∈21, , ∞≠21, tt ,

1 2 3() () ()P t P t P t⊕ =

=+∞
≠+++

=
−

0)(,

0)(,))((

21

21
1

2121
3

tt

ttttatt
t . (4)

For points
1 2 3(), (), () ()pP t P t P t C F∈ ,

1 2 3 1 2 3(() ()) () () (() ())P t P t P t P t P t P t⊕ ⊕ = ⊕ ⊕ is

also easy to be proved.The operator ⊕ on conic over finite field satisfies
commutative and associative law of composition, and ((), , ())pC F P⊕ ∞ constitutes a

finite Abel group.

D. Zhang, M. Liu, and Z. Yang 732

3 ZKp of Identity on Conic

Our protocol can be implemented on ellipse curve as defined above as well as on
conic as defined below:

One selects a conic over finite field Fp (p is a prime number except 2), and a point
P C∈ . Peggy chooses a random integer { }1,2, , 1a p∈ − as Peggy’s private key.

Peggy computes aP, and uses (C, P, aP)as her public key.
The simple version of our identification protocol can be described as follows:

(1) Peggy chooses an integer k randomly, and computes X = a(kP). Then she sends
X to Victor.

(2) Victor generates a bit of random binary digit b. If b = 0, M = 0; otherwise Victor
generates a random integer i, and sets M = iP; Victor sends (b, M) to Peggy.

(3) If b = 0, Peggy sends k to Victor; or else Peggy computes Y = a(M), and sends Y
to Victor.

(4) If b = 0, Victor verifies if X is equal to k(aP). So he believes that Peggy knows
the value of k or not. If b = 1, Victor verifies if Y is equal to i(aP). So he is
convinced that Peggy knows the value of a or not.

This is a single round of the protocol. Peggy and Victor can repeat it t-rounds
until Victor concludes that the prover is Peggy indeed or not.

Let’s suppose that an adverse person Alice wants to cheat Victor that she is Peggy.
She can find out an appropriate integer k and cheats Victor when b is equal to zero
though she doesn’t know the value of a. But when b is not equal to zero, Alice can’t
find out the value of i from iP, so she can’t choose an appropriate i(aP) to cheat Victor.
Obviously, it is impossible for Alice to deceive Victor in both cases. The probability
for Alice to cheat Victor in one round is 50% even if the difficulty of extract i from iP
and P is not taken into consideration. After t-rounds of protocol, the probability for
Alice to cheat Victor successfully is 2- t. We deem that with this protocol no one
except Peggy can prove to Victor that “I am Peggy”.

In order to convince Bob that he “is” Peggy, Victor can send integer k received
from Peggy to Bob. There is 1/2 chance for Bob that chooses the same value of b with
Victor. So after one round of the protocol, for Victor, the chance of cheating Bob is
50%. After t rounds of this protocol, the chance of succeeding for Victor is not more
than 2- t. So we deem that nobody can prove to others that he is the person who has
proved identity to him before.

4 Chess Grandmaster Leak Analysis�

The default condition of carrying out our protocol correctly is that all of the
participants follow the protocol [13]. Now we assume that there is an adversary
named Mallory. Mallory pretends to be a friendly party, while she doesn’t follow the
protocol. Mallory acts as a middle-man. It is obviously that Mallory doesn’t know
Peggy’s private key a, but she makes Victor convinced that she knew it. Mallory acts
as a middleman in this process. It is Peggy who proves to Victor that she know the
value of a. But the result is that Victor believed that Mallory knew a, and believed
that Mallory had the identity of “Peggy”. This is similar to the problem of chess

A Method for Authenticating Based on ZKp in Distributed Environment 733

grandmaster in ZKp of identity. Y.Desmedt pointed out the same kind of attack aimed at
identity proofs of Feige-Fiat-Shamir in [4]. If Mallory doesn’t generate b randomly, she
could send b obtained from Victor to Peggy. In this case Mallory can easily impersonate
Peggy by referring Victor’s questions to Peggy and answering as Peggy does.

The author of [4] introduced some solutions applied to Smart Card and proposed
a new solution which makes use of a trusted active warden. The difference between
active warden and former passive warden is that the warden does not only listen to
catch up subliminal senders, but also interacts in the communication in a special way
to better enforce the subliminal freeness. In other words, he participates actively in the
communication between all participants and can modify the information that is
communicated. But there are some shortcomings for this solution. It is not easy to
understand and complicated to be implemented. Moreover its security depends on
warden extremely.

Our main idea is to take an overtime limit ttimeout into consideration, and enhance
our protocol through simple modification.

5 Unsolved Problems �

The value of round number t affects the speed and security degree of our protocol
directly. If t is too large, the demand on security is satisfied. But the speed of protocol
drops because the calculation is increased. If t is not large enough the speed of
protocol increase, but the security is not guaranteed in this case. Further more the
value of t has impact on the characteristic of ZKp. So the selection for t is basilic.

Peggy’s commitment integer k in the first step can be regard as a commitment
Peggy makes to Victor. Its randomicity also affects the security degree and
characteristic of ZKp. The randomicity of Victor’s random binary digit b in the
second step is the same. We won’t emphasize these problems here.

The enhanced protocol with overtime limit is simple in form, but it is difficult to
decide the ttimeout. The overtime limit ttimeout must satisfy two terms:

1) The probability that timeout is true equals to zero with negligible probability if
Mallory is absent;

2) The probability that timeout is false equals to zero with negligible probability
if Mallory tries to intervene in the protocol. Moreover, without the ideal condition
(participants are synchronous), the timestamps is difficult to deal with.

6 State of the Art
In 1985, T.ElGamal proposed El-Gamal signature scheme, and its security relied on
the difficulty of computing discrete logarithms over finite fields in [10]. It can be used
to encrypt messages as well as sign a document. N.Koblitz and Miller [2] presented
encryption based on ellipse curve respectively in the same year. Most of the
encryption can be implemented on ellipse curve over finite field. In 1988, Beth
brought a Fiat-Shamir like authentication protocol for the El-Gamal Scheme forward
in [9]. Cao Zhenfu used conic instead of ellipse curve, and simulated El-Gamal,
Massey-Omura and RSA in [3] and [8] apart.

D. Zhang, M. Liu, and Z. Yang 734

7 Conclusion

We have presented a ZKp identify protocol based on ElGamal on conic and proposed
the parallel version of it. Then a potential leak to our protocol is described, and a
description for the enhanced version of it is given. At last we described some
problems that have not been solved in this paper. Some implicit preconditions were
considered ideally in this paper though the implementation in real world was more
complicated.

References

1. U. Feige, A. Fiat and A. Shamir, “Zero Knowledge Proofs of Identity,” Journal of
Cryptology, Vol.1, No. 2, 1988, pp.77-94.

2. V. Miller. “Use of Elliptic Curves in Cryptography,” Advances in Cryptology -
CRYPTO’85 Proceedings, Springer- Verlag, 1986, pp.417-426.

3. Zhenfu Cao, “A Public Key Crypto -system Based on a Conic Over Finite Fields Fp,”
CHINACRYPT’98, 1998, pp.45-49

4. Y. Dsemedt, “Abuses in Cryptology and How to Fight Them,” Advances in Cryptology -
CRYPTO’88 Proceedings, Springer-Verlag, 1990,pp.375-389.

5. O. Goldreich H. Krawcyzk, “On the Composition of Zero-Knowledge Proof
Systems,”17th ICALP, 1990,pp. 268-282.

6. Mingzhi Zhang, “Factoring Integers With Conic,” Journal of Sichuan University(Natural
Science Edition), Vol.33,No.4, 1996,pp.356-359

7. Dingyi Pei, Xueli Wang, “Encryption Authentication Code on Conic over Finite Field,”
Science In China (Series E), Vol.26 No.5 1996,pp.385-394

8. Zhenfu Cao “Conic analog of RSA cryptosystem and some improved RSA cryptosystems”,
Journal of Natural Science of Heilongjiang University, Vol.16 No.4, 1999,pp15-18

9. T.Beth, “Efficient zero-knowledge identification scheme for smart cards,” Advances in
Cryptology: Proceedings of Euro-crypt '88, Springer-Verlag, NY1988, pp77-84

10. ElGamal, “A public key cryptosystem and a signature scheme based on discrete
logarithms.” IEEE Trans. Inform. Theory, 31(4): 1985,pp469-472.

11. L.C.Guillou J-J.Quisquater, “A practical zero-knowledge protocol fitted to security
microprocessor minimizing both transmission and memory,” Advances in
CryptologyEUROCRYPT’88 proceedings, Springer-Verlag, 1988,pp123-128

12. Jorgen Brandt, Ivan Damgard, Peter Landrock, et al. “Zero knowledge scheme with secret
key exchange.” In Proceedings on Advances in Cryptology, 1990,pp 583-585

13. O.Goldreich, “Foundations of crypto- graphy: basic tools,” Cambridge: New York,
Cambridge University Press, 2001,pp270-274

14. J. Binder and H-P. Bischof. “ Zero knowledge proofs of identity for ad hoc wireless
networks,” 2003. http://www.cs.rit.edu/~jsb7384/zkp-survey.pdf

15. I.Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A security architecture for
computational grids. In ACM Conference on Computers and Security, pages 83–91. ACM
Press, 1998.

 J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 735–745, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A Load-Balanced Parallel Algorithm
for 2D Image Warping

Yan-huang Jiang, Zhi-ming Chang, and Xue-jun Yang

School of Computer Science, National University of Defense Technology,
Changsha, 410073, HuNan Province, P.R. China

yanhuangjiang@21cn.com

Abstract. 2D image warping is a computation-intensive task and plays an im-
portant role in many fields. All existing parallel image warping algorithms are
only suitable for limited geometric transformations. This paper proposes a dis-
tributed parallel image warping algorithm PIWA-LIC, which partitions the
valid area of the output image in a balanced way, and each computing node
does resampling for one sub output image. To guarantee data locality, a line
segment approximation (LSA) method is exploited to get the corresponding in-
put area for each sub output image. For any 2D geometric transformations with
one-to-one mapping, PIWA-LIC achieves high performance because of good
load balance and data locality.

1 Introduction

2D image warping [1] deals with a 2D geometric transformation between two images.
It has played an important role in a variety of applications, such as medical imaging
[2], remote sensing [3] and computer vision [4].

Image warping methods can be classified as forward mapping, inverse mapping,
and separable mapping [5]. All the three strategies are computationally intensive and
time consuming. Parallel processing is an effective way to speed up computing in
many applications. Existing parallel algorithms for 2D image warping mainly
include: Warpenburg [6] developed a parallel resampling method through adjusting
local offsets under a SIMD environment. The performance of the algorithm will de-
grade with the severity of the skew between the original and resampled images. Wit-
tenbrink [7] presented a parallel image warping algorithm under a SIMD architecture.
The algorithm is only suitable for nonscaling affine transform including skewings,
translations, and rotations. Sylvain [8] proposed a load-balanced parallel algorithm
for forward mapping methods, yet it can’t partition the input image properly for com-
plex geometric transformations. Lee [9] implemented a parallel convolution method
on a network of workstations, which can be only used to enlarge or shrink images. Ji-
ang [10] exploited a distributed parallel image warping algorithm (We name it PIWA-
LOC, which is the abbreviation for Parallel Image Warping Algorithm based on Local
Output-area Computing) with good data locality. However, for some complex geo-
metric transformations, the load distribution is unbalanced.

 Y.-h. Jiang, Z.-m. Chang, and X.-j. Yang 736

This paper presents a distributed parallel image warping algorithm based on local
input-area computing (PIWA-LIC) for inverse mapping methods. PIWA-LIC parti-
tions the load of resampling computation uniformly, and achieves data locality
through calculating the input area for each sub output image. PIWA-LIC is suitable
for any 2D geometric transformations with one-to-one mapping.

In the following sections, the discussed distributed parallel environments adopt
host-node mode, where one node is the managing node engaged in global operations,
and the others are computing nodes dealing with parallel computing.

2 Limitation of PIWA-LOC

PIWA-LOC [10] divides the input image into p subimages with equal sizes, where p
is the number of computing nodes. Each computing node saves one of the subimages,
then gets the corresponding area in the output space for the locally saved sub input
image, and does resampling for the output pixels in the area. At last, all sub output
images are gathered and stitched into the integrated output image. PIWA-LOC has
good data locality and saves a lot of data communication time, since almost all the
data needed during parallel computing are stored in local memory.

x

y

u

v
Input image Output image

P4

P3

P2

P1

P4

P3

P2

P1

Warping

Fig. 1. Unbalanced load distribution of PIWA-LOC

However, for some complex geometric transformations, regular partition of the
input image may lead to unbalanced load distribution. Fig. 1 depicts such an instance,
where the regular vertical partition of the input image makes the load of computing
nodes P1 and P4 much more than that of P2 and P3. To sufficiently exploit the perform-
ance of each computing node, we propose a load–balanced algorithm PIWA-LIC for
2D image warping in the next section.

3 PIWA-LIC

Different from PIWA-LOC, PIWA-LIC partitions the output image into p sub output
images with almost the same computational load. Each computing node does resam-

A Load–Balanced Parallel Algorithm for 2D Image Warping 737

pling for one sub output image, and saves the corresponding input image blocks of
the sub output image locally.

Forward
mapping
functions

Input
image

G
et inverse m

apping
functions by least squares

A
cquire the valid output area

L
ocal input-area com

puting

Next output pixel

Parallel Computing

Output
image

L
oad distribution

D
ata partition

G
et the conjugated point

for a local output pixel

O
btain the intensity value

of the output pixel

G
ather and stitch sub

output im
ages

Fig. 2. Flow chart of PIWA-LIC

Fig. 2 shows the flow chart of PIWA-LIC. The main phases of the algorithm are as
follows:

1. Get inverse mapping functions: This step is just the same as that of PIWA-LOC.
2. Get the valid area of the output image: We use LSA method (see section 3.3) to

get the corresponding output area for the input image according to the given for-
ward mapping functions.

3. Load partition: The computational load of the image warping task can be meas-
ured by the number of the pixels in the valid output area. We distribute the load
in a balanced way, where each computing node does resampling for almost the
same number of output pixels (see section 3.4).

4. Local input-area computing: For each sub output image, we get its corresponding
input area. In this step, LSA method is also used to obtain the irregular-shaped
input image blocks.

5. Data partition: The IIB structures (see section 3.2) of both one sub output image
and the corresponding input area are sent to a related computing node.

6. Local resampling: Each computing node does resamping for all the pixels in the
local sub output image.

7. Data gathering: All the resulting sub output images are gathered and stitched into
the integrated output image on the managing node.

Among all the above phases, the local resampling phase is implemented parallelly
on the computing nodes, while all the other phases are global operations realized on
the managing node.

3.1 Load Balance and Data Locality of PIWA-PIC

Fig. 3 depicts the load balance and data locality of PIWA-LIC, where Fig. 3(a) shows
the processing of a rotation, and Fig 3(b) shows the processing of a complex

 Y.-h. Jiang, Z.-m. Chang, and X.-j. Yang 738

geometric transformation. After load distribution, each sub output image is irregularly
shaped and has almost the same number of pixels in it. Partition of the input image is
decided by the result of local input-area computing. From Fig. 3, we can see that, the
input image blocks may have different shapes or sizes after data partition.

u

v

Input image

Output image

Rotation

x

y

x

y

u

v

 A complex geometric
transformation

(a) (b)

Load
distribution

Data partition

Input image

Output image

Load
distribution

Data partition

P4

P3

P2

P1

P4

P3

P2

P1

P4

P3

P2

P1

P4

P3

P2

P1

Fig. 3. Load balance and data locality of PIWA-LIC: (a) rotation; (b) a special warping

PIWA-LIC is a load-balanced algorithm, since it distributes the computational
load uniformly. Furthermore, PIWA-LIC is a parallel algorithm with good data local-
ity, since all the needed input data are stored locally during the local resampling
phase. The above properties make PIWA-LIC a suitable approach for any 2D geomet-
ric transformations with one-to-one mapping.

3.2 IIB Structure

To facilitate processing, we adopt a dedicated data structure named IIB (Irregular-
shaped Image Block) structure to save irregular-shaped image blocks, which is firstly
provided in reference [10]. Besides the intensity values of the pixels, IIB structure has
several information items used to decide the coordinates of the pixels. Let the image
block be in [u, v] space, these items can be described as follows:

1v : the minimum v-coordinate value of the pixels in the image block;

L : the number of scanlines on which there are valid pixels;

A Load–Balanced Parallel Algorithm for 2D Image Warping 739

is : the number of pixel segments on the ()Lii th ≤≤1 scanline of the image block;

iku : the u-coordinate value of the first pixel on the ()i
th skk ≤≤1 pixel segment;

ikr : the number of pixels on the ()i
th skk ≤≤1 pixel segment;

IIB structure ignores the background pixels, and only saves the valid pixels line by
line. Figure 4(a) depicts an irregular-shaped image block abcd in the image ABCD.

There are two pixel segments on the thi scanline of abcd. The starting u-coordinate
values of these two pixel segments are 1iu and 2iu , and the numbers of pixels on

them are 1ir and 2ir respectively.

u

v

1iu 2iu

1ir 2ir

Block head

(b)

1,vL

1111,ru

22, ii ru null11, ii ru

null

11, LL ru null

(a)

e

f

a

b

d

c

L

1v

iv

D

CB

A

Fig. 4. Data structure for irregular-shaped image blocks: (a) information items of the irregular-
shaped image block abcd; (b) IIB structure of abcd

IIB structure has two sub data structures. One is BlockHead, which saves L , 1v ,

and a pointer array with L elements. Each element points to the pixel segment
information of the corresponding scanline. The other sub structure is SegHead, which
saves the information of each pixel segment, including ikik ru , , memory address of the

intensity values for these ikr pixels, and the address of the next pixel segment on the

same scanline. The definitions of these two sub data structures are as follows:

struct BlockHead
{
 int StartVertical;
 int BlockHeight;
 struct SegHead** SegInfo;
 }

struct SegHead
{
 int StartHorizontal;
 int SegW idth;
 int* Intensity;
 struct SegHead* NextSeg;
 }

Fig. 4(b) gives the IIB structure of abcd in Fig. 4(a). The value of item is need

not be saved since it can be gotten from SegHead structure.

 Y.-h. Jiang, Z.-m. Chang, and X.-j. Yang 740

To save irregular-shaped image blocks, IIB structure has two advantages: (1). The
data structure ignores invalid output pixels (background pixels), so it saves memory
space and data communication time for PIWA-LIC; (2). The data structure provides
both the coordinate values and the intensity value for each valid pixel, which affords
facilities for local resampling phase.

3.3 Line Segment Approximation Method

Both phase 2 and phase 4 of PIWA-LIC use line segment approximation (LSA)
method to get the transformed area of an image block. LSA method is provided to ac-
quire the target area of a source image block after a geometric transformation. The
input of LSA method is the IIB structure of the source image block, and the output of
it is the IIB structure of the target image block.

a*
b*

c*

d*

u

v

iv

x

y

a

b c

d

(a) (b)

Source image block Target image block

Fig. 5. The area of image blocks before and after geometric transformation: (a) boundary pix-
els of the source image block; (b) approximation boundary for the target image block

LSA method gets the conjugated point for each boundary pixel of the source image
block, then uses line segments connected end to end with each other to depict the
ideal boundary of the transformed image block, where two end points of each line
segment are the conjugated points of two neighbored source boundary pixels. All
line segments will shape a closed area, whose information is saved as an IIB structure.
Let the source space be [x, y], and the target space is [u, v], the following is the de-
tailed description of LSA method:

1. Get all the boundary pixels of the source image block in sequence: In Fig. 5(a), all
gray dots are the boundary pixels of the source image block. We can select any of
the boundary pixels as the starting one, and save them in clockwise direction.

2. Compute the conjugated points of the source boundary pixels: We access the
source boundary pixels in the same sequence as step 1. For each boundary pixel
(a,b), we get its conjugated point (c,d), where ()baTc ,1= and ()baTd ,2= .

Thereinto, T1 and T2 are the transform functions from the source space to the tar-
get space for the target horizontal and vertical coordinate values respectively.

A Load–Balanced Parallel Algorithm for 2D Image Warping 741

3. Acquire the item values in BlockHead structure for the target image block:

min1 vv = , 1minmax +−= vvL , where minv (maxv) is the minimum (maxi-

mum) v-coordinate value of the conjugated points obtained in step 2. We let
1min0 −= vv and 0=i .

4. Obtain all the pixel segments on the ()thi 1+ scanline of the target image block:

(1). If Li ≥ , LSA method has been finished; else 1+= ii , 11 += −ii vv .

(2). Compute the intersections of the thi scanline with line-segment boundary:
We access all the conjugated points in sequence. Suppose there are two neighbor
conjugated points s and s’, which satisfy 'sis vvv ≤≤ , the u-coordinate value of

the intersection t is () ''
'

'
sss

ss

si
t uuu

vv

vv
u +−⋅

−
−

= . This step is repeated until all

the conjugated points have been accessed.
(3). Get the pixel segments on this scanline: After step (2), we will get even num-
ber of intersections on the scanline. Let the sequence of their u-coordinate values
be rmlmrlrl uuuuuu ,,,,,, 2211 from the left to the right of the scanline, there are m

pixel segments on this scanline. The starting u-coordinate value of the thk
()mk ≤≤1 pixel segment is lkik uu = , and the number of the pixels on it is

1+−= lkrkik uur . In Fig. 5(b), there are two pixel segments with 4 and 6

pixels on them respectively for the scanline ivv = .

5. Turn to step 4, and calculate the pixel segment information for the next scanline.

After the above process, we will get all the information items of the IIB structure
for the target image block.

3.4 Load Distribution

According to the information items of the IIB structure for the valid output area ob-
tained in phase 2 of PIWA-LIC, we can distribute the computational load in a bal-
anced way. The load distribution method can be described as follows: (1) Get the
number of all the pixels in the valid output area; (2) Divide the area into p sub output
image, each of which has almost the same number of valid output pixels.

For the output image, we let L be the number of scanlines that have valid pixels, si
be the number of pixel segments on the ith ()Li ≤≤1 scanline, and rij be the number of

pixels on the jth pixel segment ()isj ≤≤1 , the number of total valid output pixels is:

≤≤
=

Li
irTotal

1

, where
≤≤

=
isj
iji rr

1

The best load balance is that every computing node does resampling for the same
number of valid output pixels, which equals to pTotalr /= . In PIWA-LIC, the pix-

els on the same scanline are not distributed to different computing nodes. Fig. 6 gives
the pseudo code of our load distribution method.

 Y.-h. Jiang, Z.-m. Chang, and X.-j. Yang 742

k=1; i=0; m=0;
While (pk ≤)

1. Initialize: numk=0; flag=1; m=i
2. while (Li < && flag=1)

1. i=i+1;

2. numk=numk+ri;
3. If (rnumk ≥ || () 2/1+<− ii rnumr) then flag=0;

3. The valid output pixels from the mth scanline to the ith scanline are

allocated to the kth computing node;

4. k=k+1;

Fig. 6. Pseudo code of the load partition

By means of the above load partition method, each computing node does resam-
pling for almost the same number of valid output pixels, so PIWA-LIC is a load-
balanced parallel algorithm. The stitching phase of PIWA-LIC is simpler than that of
PIWA-LOC since the valid pixels of one scanline are in the same sub output image.

3.5 Data Partition and Local Resampling

After phase 4, we will get the information items of the IIB structure of the corre-
sponding input image block for each sub output image by LSA method. The intensity
information of the IIB structure can be obtained easily since the position of each pixel
in the input image blocks is known. In phase 5, the IIB structure of each sub output
image and the IIB structure of the corresponding input image blocks are sent to a
related computing node.

In local resampling phase, the position of each pixel in the locally saved sub out-
put image is computed firstly. Let the position be ()vu, , the inverse mapping func-

tions are used to acquire its conjugated point ()yx, in the input space. According to

the neighbor input pixels of ()yx, , we can get the intensity value of ()yx, through

convolution. This value is just the intensity value of the output pixel ()vu, .

After local resampling, each computing node gets the intensity values for all pix-
els in the local sub output image. At last, all the resulting sub output images are trans-
ferred to the managing node and stitched into the integrated output image.

4 Experimental Results

We compare the performance of PIWA-LIC with that of PIWA-LOC under two
distributed parallel platforms. The first platform is a cluster system (CL) which has 16
PCs connected by 100Mbps fast ethernet switch. Each PC is configured with a Pen-
tium4-2GHz CPU and 1GB RAM, and the operating system is LINUX. The second
one is a parallel machine (PM) with 16 nodes, and the network topology is a fat tree

A Load–Balanced Parallel Algorithm for 2D Image Warping 743

with transfer speed of 1.2Gb/s. Each node has 1GB local memory, and the operating
system is UNIX. The communication of the algorithms is implemented based on MPI.

Two image warping tasks are selected to evaluate the performance. Both tasks
have the same input image with the size of 1000010000× . The inverse mapping
functions for either of the tasks are complete cubic polynomials obtained by least
squares. Intensity interpolation is implemented by cubic convolution [11]. Fig. 8
gives the input and output images of these two tasks. For the first task, both PIWA-
LOC and PIWA-LIC has good load balance and data locality. For the second one,
PIWA-LIC achieves better load balance than PIWA-LOC.

(a) (c)(b)

Fig. 8. Results of the image warping tasks: (a) input image; (b) output image of task1; (b) out-
put image of task2

0
1
2
3
4
5
6
7
8
9

10

1 3 5 7 9 11 13 15

Number of computing nodes

S
pe

ed
up

 (
ta

sk
1)

LOC(CL) LIC(CL)

LOC(PM) LIC(PM)

0
1
2
3
4
5
6
7
8
9

10

1 3 5 7 9 11 13 15

Number of computing nodes

S
pe

ed
up

 (
ta

sk
2)

LOC(CL) LIC(CL)

LOC(PM) LIC(PM)

(a) (b)

Fig. 9. Speedup results of PIWA-LOC and PIWA-LIC: (a) task1; (b) task2

 Y.-h. Jiang, Z.-m. Chang, and X.-j. Yang 744

The time results of the serial processing for the first task (task1) under CL and PM
are 173.765s and 156.869s respectively, and those of the second task (task2) are
166.382s and 152.347s accordingly. That is, the computing capabilities of the nodes
in CL and PM platforms have only a slight difference.

We abbreviate PIWA-LOC and PIWA-LIC to LOC and LIC respectively. Fig.
9(a) shows the speedup results of PIWA-LOC and PIWA-LIC for task1. We can see
that the performance of these two algorithms has less difference. Fig. 9(b) illustrates
the speedup results for task2, where PIWA-LIC gets much higher performance than
PIWA-LOC under the same platform. This result indicates that PIWA-LIC suitable
for more geometric transformations than PIW-LOC because of better load balance.
All results illustrate that the performance of PIWA-LIC implemented on PM platform
is much better than that implemented on the CL platform. This is also true for PIWA-
LOC. The reason is that PM platform has much higher network bandwidth than CL
one, which reduces the data transfer time considerably.

5 Conclusion

2D image warping is an important and computation-intensive task. This paper pro-
poses a parallel image warping algorithm PIWA-LIC under a distributed parallel en-
viorment. PIWA-LIC distributes the computational load in a balanced way, and
achieves data locality through local input-area computing. PIWA-LIC is suitable for
more complex geometric transformations than PIWA-LOC, and achieves good paral-
lel performance, especially under the distributed parallel systems with high network
bandwidth.

Acknowledgement

This research is supported by the National Natural Science Foundation of China un-
der grant number 69825104.

References

1. Wolberg, G.: Digital image warping. IEEE Computer Society Press, Los Alamitos, CA
(1990)

2. Unser, M.: Splines: a perfect fit for medical imaging. Proceedings of the SPIE Interna-
tional Symposium on Medical Imaging: Image Processing (MI'02), San Diego CA, USA,
Vol. 4684, Part I, (2002) 225-236

3. Mather, Paul M.: Computer processing of remotely-sensed images: An Introduction, (Sec-
ond Edition). Wiley Chichester, (1999)

4. Beier, T., Neely, S.: Feature-based image metamorphosis. Computer Graphics, Vol. 26.
2(1992), 35-42

5. Wolberg, G., Sueyllam. H.M., Ismail, M.A., Ahmed, K.M.: One-dimensional resampling
with inverse and forward mapping functions. Journal of Graphics Tools, Vol. 5. 3 (2001)
11–33

A Load–Balanced Parallel Algorithm for 2D Image Warping 745

6. Warpenburg, M.R., Siegel, L.J.: SIMD image resampling. IEEE Transactions on Com-
puters, Vol.31. 10(1982) 934-942

7. Wittenbrink, C.M., Somani, A.K.: 2D and 3D optimal image warping. Journal of Parallel
and Distributed Computing, Vol.25. 2(1995) 197-208

8. Sylvain, C.-V., Miguet, S.: A load-balanced algorithm for parallel digital image warping.
International Journal of Pattern Recognition and Artificial Intelligence, Vol.13. 4(1999)
445-463

9. C.-K., Hamdi, M.: Parallel image processing applications on a network of workstations.
Parallel Computing, Vol.21. (1995) 137-160

10. Jiang, Y.-H., Yang, X.-J., Dai, H.-D., Yi, H.-Z.: A distributed parallel resampling algo-
rithm for large images. APPT2003, Xiamen, China, September 2003. Lecture Notes in
Computer Science, Vol. 2834. Springer Verlag (2003) 608-618

11. Keys, R.G.: Cubic convolution interpolation for digital image processing. IEEE Transac-
tions on Acoustics, Speech, and Signal Processing, Vol.29. 6(1981) 1153-1160

 J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 746–756, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A Parallel Algorithm for Helix Mapping
Between 3D and 1D Protein Structure

Using the Length Constraints

Jing He, Yonggang Lu, and Enrico Pontelli

Dept. of Computer Science, New Mexico State University,
Las Cruces, NM 88003, USA

{jinghe, ylu, epontell}@cs.nmsu.edu

Abstract. Determining 3-dimensional (3D) structures of proteins is still a
challenging problem. Certain experimental techniques can produce partial in-
formation about protein structures, yet not enough to solve the structure. In this
paper, we investigate the problem of relating such partial information to its pro-
tein sequence. We developed an algorithm of building a library to map helices
in a 3D structure to its 1-dimensional (1D) structure using the length constraints
of helices, obtained from such partial information. We present a parallel algo-
rithm for building a mapping tree using dynamic distributed scheduling for load
balancing. The algorithm shows near linear speedup for up to 20 processors
tested. If the protein secondary structure prediction is good, the library contains
a mapping that correctly assigns the majority of the helices in the protein.

1 Introduction

Proteins are responsible for nearly every function required for life. The sequence of a
protein is considered as the primary (1D) structure and is composed of a chain of 20
types of amino acids. A functional protein can be thought of as a properly folded chain
of amino acids in 3-dimensional space (3D). The 3D structure of a protein is crucial in
understanding its function, because the function of a protein is determined by the 3D
structure rather than the primary sequence. Due to the constraints imposed by the local
environments in a folded protein and the linearity of an amino acid chain, segments of
protein exist as three types of secondary structure elements: helices, β-sheets and
coils in a folded protein. Figure 1 shows the sequence of a protein, 184 amino acids
long, and its corresponding 3D structure from the Protein Data Bank (PDB). Each of
the helices in 3D corresponds to a segment of the protein sequence. The length of a
helix is the number of amino acids it has. The four helices with length greater than five
are labeled with their corresponding amino acids on the sequence.

3D protein structure determination is a challenging problem particularly for large
protein complexes and membrane proteins that are not easy to crystallize[1], [2]. Elec-
tron cryomicroscopy is a potential experimental technique to determine 3D structures
of these proteins to atomic resolution [2]. Current advances of electron cryomicro-
scopy technique are able to determine a rough protein shape in the form of the density
distribution of electrons. Such a rough protein shape is usually called the density map
of a protein and is at resolution of 6-9 Å, the intermediate resolution [3], [4]. At this

A Parallel Algorithm for Helix Mapping Between 3D and 1D Protein Structure 747

resolution, amino acid side chains that can be used to distinguish different amino acids
are not generally visible. Therefore, it is a challenging problem to identify the trace of
amino acid sequence in 3D space. For example, it is not clear in general where the
beginning of the protein sequence is located in the 3D density map. The density map
of the protein (1CC5 in Figure 1) is shown at 7 Å resolution in Figure 2 using the
simulated method in the EMAN software package [5]. The orientation of the density
map in Figure 2 is the same as that in the structure in Figure 1. The corresponding
helices are marked using a stick in the density map, and their lengths can be computa-
tionally determined [6]. The helical nature of the helices can be visualized in the den-
sity map. However, it is not clear which segment on the protein sequence corresponds
to which of the helices in the density map if only the density map is given. In this
paper, we use protein secondary structure prediction results as a guide to locate the
corresponding sequence segments for the helices visualized in 3D.

Fig. 1. The 3D and 1D structure of protein 1CC5 in the PDB. Helices in the 3D structure are
labeled with their corresponding segments of amino acids (in boxes) on the sequence

For any protein sequences, computational methods such as PHD and PSI-PRED
can generate a prediction on possible locations for secondary structures [7], [8], [9].
Hence, likelihood for each amino acid being involved in a helix is provided by the
prediction method. Figure 2 shows an example of secondary structure prediction with
the predicted likelihood, expressed as a value in the range of 0 to 9, where 9 indicates
the highest likelihood of presence of a helical structure. The prediction was obtained
using the PHD prediction server. As many prediction methods, protein secondary
structure prediction is not 100% correct. On average, the accuracy of the secondary
structure methods is about 76-78% for the best prediction methods [9]. Such an error
in the protein secondary structure prediction potentially generates a lot of freedom in
mapping the 3D helices to the 1D sequence using the prediction as a guide.

2 The Problem

The methodology proposed in this paper is outlined in Figure 2. Let us assume that we
are given the length distribution of the helices in a 3D protein density map (illustrated
in the middle box in Figure 2), obtained from the data collected from electron cryomi-
croscopy technique. Then our method will produce a library of possible mappings of
such helices onto the protein sequence. The idea is to combine the result of protein

J. He, Y. Lu, and E. Pontelli 748

secondary structure prediction and the helix length information to map helices in a
way to maximize the likelihood for all the helices.

Because of the exponential nature of the problem and the errors in the secondary
structure prediction result, the method proposed here does not attempt to generate all
the possible mappings for the helices in the 3D density map. Rather, it generates a
subset of all the possible mappings which is likely to contain the true solution. For
example, if the secondary structure prediction is 100% correct, the goal of this method
is to generate a subset of all the possible mappings in which the true solution is ranked
on top. Because of the use of the secondary structure prediction as a guide, the helices
in 3D are mostly placed near the high score populations (e.g. 8999999998) of the
“pred-conf” that indicates the likelihood of having helices. Thus, the problem be-
comes how to assign 3D helices with known lengths onto the protein sequence so that
the score of the overall assignment is above certain threshold.

Fig. 2. The approach of building mapping library for helices between 3D and 1D structure by
combining the information from protein secondary structure prediction and the protein density
map at intermediate resolution

In this paper, we approached the problem of identifying the sequence segments for
helices in 3D by building a library of possible mappings. Each element in the library
suggests an overall arrangement of the sequence in 3D by mapping segments of se-
quence to the helices in 3D. The significance of building such a possible mapping
library is that the library can be used as a starting point for further structural predic-
tion. Since the problem addressed in this paper is closely related to the very recent
advances in the electron cryomicroscopy technique, we are not aware of any previous
approaches to the problem.

3 Building Mapping Library

The goal of our method is to map a given number of 3D helices to the protein se-
quence so that the score of the overall assignment is higher than a threshold provided
by a user. We define the score of assigning n helices as the sum of the confidence for

A Parallel Algorithm for Helix Mapping Between 3D and 1D Protein Structure 749

all the positions where the n helices are assigned. In particular, Assignment
score = Σ (Pred-confi) where i ∈S, and S is a set of positions, where helices are as-
signed, on the sequence. The confidence (Pred-conf) at each amino acid position is
the likelihood for that amino acid being in a helix (in our case, determined using
PHD). The average score of assigning n (n>=1) helices is the score of assigning the n
helices divided by the total length of the n helices. For example, the assignment of
Helix 4 in Figure 1 is 77 and its average score is 7.7 (using Figure 1 and Figure 2).

The overall process of building the helix mapping library consists of two steps:
building an initial library and assembling a mapping tree. The step of building an
initial library is not computationally intensive, and it is not paralleled. The computa-
tionally intensive step of building a mapping tree is paralleled.

3.1 Initial Library

The first step is to build an initial library that provides a list of possible locations on
the sequence for each helix in 3D. For example, for helix H1 (from Figure 2) that is
visualized in 3D, a list of possible assignment locations (L1

1, L
1
2 , …, L1

n1) is gener-
ated by scanning the protein sequence using a window of length 16 (Figure 2 and 3).
The number of elements in each list is smaller than m-h+1 where m is the length of the
protein sequence and h is the length of the helix. This is because we eliminated those
elements with average score less than 3. In order to reduce the size of the mapping
tree, we eliminated the locations that are less likely to be selected for an overall as-
signment that results in a high score. Moreover, each list in the initial library is ar-
ranged in the decreasing order of the score. For example, L1

1 is the location with the
highest score for assigning H1 among L1

1, L1
2 , …, L1

n1 . Again, the initial library
gives priority to the locations with high scores. This is because the locations on top of
the lists will be considered first in the next step of building the mapping tree.

Fig. 3. Building a mapping tree in two steps: initial library and assembling the tree

3.2 Mapping Tree

3.2.1 Overall Approach
The first step provides assignment choices for each helix. During the first step, helices
are dealt independently from each other. The second step is to assemble the choices
to form a single assignment for all the helices on the sequence. Each node in the

J. He, Y. Lu, and E. Pontelli 750

mapping tree corresponds to the assignment of a helix to a certain location. Each path
from the root to a leaf is a possible assignment for all the helices in 3D. It is noticed
that long helices are predicted more correctly than shorter helices in general (data not
shown), presumably because the signal of a long helix is easier to be identified than
that of a shorter helix. During the mapping tree assembly, priority is given to longer
helices. Thus, the longer helices are assigned in the higher levels while the shorter
helices appear in the nodes close to the leaves.

3.2.2 Adding a Node to the Mapping Tree
The computation of tree building is a process that expands a node of the tree by add-
ing children to it (Figure 3). The nodes that are to be expanded are stored in one (in
sequential algorithm) or more (in parallel algorithm) task queues. A node is com-
posed of information about this particular node (such as the level of the tree it resides,
the length of the helix) as well as the information about the assignment down to the
node. A node contains a linked list of the placement for helices from the root to the
current node. For example, if a node is on the 3rd level of the tree (double circled node
in Figure 2), node.assignment (line 7 in Algorithm Computation) contains the infor-
mation of assigning H1 at L1

1 and H2 at L2

2. For each node n, that is in charge of as-
signing helix Hi, to be expanded, the procedure scans the list of possible choices (Li

1,
Li

2 , …, Li

ni) provided in the initial library (line 11 in Computation). Before adding a
new branch, the algorithm performs three checks: overlapping, sparseness, and aver-
age score (Computation).

1. Algorithm Computation (T, MinDistance, Threshold)
2. //This algorithm expands a node in the mapping tree. It takes a task queue (T) of nodes as
input and output a task queue with the node replaced with its children.
3. //MinDistance and Threshold are user defined parameters.
4. node ← last (T);
5. delete last(T) from T;
6. i ← node.level; //Suppose the node is at the i-th level of the tree.
7. P ← node.assignment; //see text for assignment
8. endOfSameLevel points to last(T);
9. sibling points to NULL;
10. tooCloseToSibling ← FALSE;
11. L ← (Li+1

1, L
i+1

2 , …, Li+1
ni+1); //possible locations for Hi+1 in initial library

12. for each j in L
13. if (j not overlap with P)
14. while (sibling != endOfSameLevel && sibling != NULL) //check overlap with left
siblings that reside in the tail portion of T
15. k ← sibling.location;
16. if (| j – k | < MinDistance)
17. tooCloseToSibling ← TRUE; //j overlaps with a left sibling, ignore j
18. sibling ← NULL;
19. else
20. sibling--; //points to the next node in T
21. if (tooCloseToSibling =FALSE)
22. score ← node.score + score of assigning Hi+1 to j;
23. if (score / (node.length + length of Hi+1) > Threshold)

A Parallel Algorithm for Helix Mapping Between 3D and 1D Protein Structure 751

24. CREATE newNode; //update its level, score, location etc.
25. newNode.assignment ← add j to P;
26. push newNode to the tail of T;
27. sibling points to last(T);
28. return T;

The first is to make sure that the new branch will not result in overlapping place-
ment of helices on the path from the root to the current node (line 13). The second is
to ensure that the branches out from the same node are sparse enough to have good
representation (lines 14-20). A user given parameter “MinDistance” is used to specify
the sparseness. For example, when branch L2

2 is created from H2 to H3, L
2
2 is at least

10 (MinDistance=10) amino acids away from L2
1 who is to the left of L2

2
(Figure 3). By introducing MinDistance, the number of branches from each node is
reduced because not all the choices in the list of the initial library are used to create
branches.

In order to further reduce the size of the tree, we continuously check the assign-
ment score during the construction, and use it to trim the tree in those nodes that rep-
resent assignments with insufficient global score (Figure 3). Each node on the tree is
associated with a path from the root to the node (Figure 3 and line 7 in Computation).
The score of a node is the score of assigning all the helices along such a path (section
3.1). If the average score of a node is less than a given threshold (called Threshold in
the algorithm) that is predetermined by the user, the last node on the path is eliminated
before any further consideration (line 23 in Computation). As we mentioned earlier,
only part of the mapping tree is actually generated, our approach tries to focus on
those branches that are most likely to contain the actual solution. Our experiments
have indicated that it is generally preferable to keep nodes in the upper levels (i.e.
closer to the root) of the tree than those at the lower levels. In order to accommodate
this heuristics, we implemented a variable threshold, which assumes a different value
at a different level of the tree. For example, the threshold is 3 at the upper most level
while it is 7 at the lowest level. This scheme allows our algorithm to explore more
mappings with large likelihood.

4 Parallel Algorithm

In this project we propose a parallel scheme for the construction of the mapping li-
brary. In particular, we focus on the parallelization of the construction of the mapping
tree, as this step is considerably more expensive than the step of building initial li-
brary. The general idea is to allow different processors to concurrently build different
parts of the mapping tree. In order to support the parallel execution, we designed a
complex data structure for the representation of each node of the mapping tree. The
representation of each node stores sufficient information to summarize the mapping of
helices performed from the root of the tree down to the node in question. This choice
is analogous to the idea of Environment Closure, widely adopted in other applications
that parallelize the construction of search trees [10]. Environment Closure allows an
idle processor to start constructing a subtree of the mapping tree – thus with minimal
need for communication between processors.

J. He, Y. Lu, and E. Pontelli 752

4.1 Scheduling

Our approach is to proceed in the parallelization by distributing the task of construct-
ing a tree among different processors. In particular, we put a processor in charge of
constructing a subtree, by initially assigning a root of the subtree it is in charge of. The
parallel algorithm uses a dynamic distributed scheduling for load balancing among
processors [11], [12]. The problem solved here bears many similarities to the problem
of distributing a search-tree construction [10].

Each processor manages a local task queue. Initially, each processor goes through
a common initialization phase, which includes activities such as reading the initial
library file (line 3 in Algorithm Schedule). Processor 0 initiates the process by creat-
ing its own task queue. Each processor then begins by sending requests and processing
the messages it receives. If the message requests a task, it pops a node from its task
queue only if the length of its task queue is greater than a threshold. If the message is a
task that was requested earlier by the processor, it is pushed to the tail of its task
queue (line 13 in Schedule). A ring-termination is used in our algorithm to determine
global termination of the computation [13], [14]. After processing messages, the proc-
essor performs computation. When the task queue is empty, it sends a request to other
processors in the order of (0, 1, 2, …, m) where m is the total number of processors.
Only when a request fails, it sends another request to the next processor.

After processing messages, each processor performs computation by extracting a
node from the local task queue. We noticed that the nodes at the upper levels of the
tree are to be expanded more than those at lower levels of the tree. Therefore, the
upper level nodes carry heavier work than the lower level nodes. Our algorithm im-
plements a strategy to send heavier work to other processors to keep them busy. This
strategy corresponds to what is called top level scheduling in the context of parallel
search-tree exploration [15]. When a node is to be extracted from a task queue, if it is
for its own processor, the node is removed from the tail of the queue (line 4-5 in Algo-
rithm Computation). If a node is to be extracted for another processor, the node is
removed from the head of the tail (line 18 in Schedule). This is because that the head
has heavier work than the tail in general. As a result, each processor tends to do a
depth-first expansion for the tree. During the depth-first expansion, the processor is
busy with the work that resides in its own machine.

1. Algorithm Schedule (Threshold)
2. //Each processor uses this algorithm to schedules the communication and computa-
tion. A task is given out if the length of the task queue is greater than Threshold that is set by
the user.
3. Initialization;
4. probing ← false;
5. if (processor = 0)
6. i ← 1;
7. else
8. i ← 0;
9. While (1)
10. message ← receive messages;
11. if (message = termination) {terminate;}
12. if (message = task)

A Parallel Algorithm for Helix Mapping Between 3D and 1D Protein Structure 753

13. push task to the tail of my task queue; probing = false;
14. if (message = reject)
15. probing = false; i ← next processor;
16. if (message = request)
17. if (size of my task queue > Threshold)
18. extract a task from the head of my task queue;
19. send task to the requesting processor;
20. termination process using ring termination;
21 if (task queue not empty) {do computation on the queue;} // see Computation
22 if (task queue empty && probing = false)
23 send a request message to processor i;
24 probing = true;

4.2 Performance and Quality of the Mapping Library

We have implemented the parallel algorithm for the step of building a mapping tree
using C++ and MPI on a PC cluster running Linux. Each node of the Beowulf cluster
is a dual processor with 1.7 GHz CPUs. The PC nodes are connected by Myrinet-2000
SAN switches. We tested the parallel algorithm on nine proteins, each of which has 4
to 10 helices (Table 1). The ten proteins are taken from the Protein Data Bank where
3D structures of the proteins are available (http://www.pdb.org). We extracted the
length distribution information from the 3D structures for the ten proteins. Then, we
sent the amino acid sequences of the ten proteins to the PHD prediction server. Since
the prediction accuracy for short helices are generally low, helices with length less
than 7 have not been considered.

Table 1. Run time (in seconds) of assembling a mapping tree is shown for sequential and
parallel algorithm. The resulting mapping library is shown with its size and the best match,
expressed as the number of matched helices over the total number of helices (in parenthesis)

Table 1 shows the running time for different number of processor used. The run-
ning time is the period of time after initialization to the time when all the processors
are terminated. Barriers were put after the initialization and after all the processors are
terminated. The time for initialization is not counted in the running time in Table 1,
because it is quite short compared to that of computation. The time for copying the
resulting library to a central location is not included in the running time in Table 1.
Therefore, the running time in Table 1 reflects purely the computation and scheduling.
We performed the same test three times and calculated the average of running time,

Protein # of Processors Best_Match Size of
Id(# of Helices) 1(Sequential) 1 2 4 6 8 10 20 matched(total) library

1CC5(4) 0.001 0.002 0.001 0.001 0.001 0.002 0.002 0.004 4(4) 9
6TMN_E(7) 0.103 0.107 0.055 0.030 0.021 0.017 0.015 0.014 0(7) 0
3TIM_A(5) 0.820 0.912 0.457 0.233 0.157 0.119 0.097 0.061 5(5) 24881
2TSC_A(7) 0.852 0.961 0.485 0.246 0.166 0.129 0.104 0.060 6(7) 3286
1ECA(7) 1.191 1.329 0.666 0.337 0.228 0.173 0.140 0.081 7(7) 3338

1GD1_O(6) 1.602 1.805 0.905 0.460 0.308 0.234 0.189 0.107 6(6) 14643
1L58(8) 7.803 8.833 4.439 2.230 1.484 1.120 0.901 0.469 6(8) 6948
2PHH(7) 58.026 64.000 32.100 16.010 10.710 8.031 6.428 3.249 7(7) 883327

2CYP(10) 547.617 600.75 305.7 153.15 102.08 76.54 61.23 30.9 7(10) 39616

J. He, Y. Lu, and E. Pontelli 754

although the variation is small among the three sets of running time collected. The
running time for the sequential algorithm that does not include MPI message handling
is also shown in Table 1. The running time of the sequential algorithm (column 2 in
Table 1) is comparable to, slightly less than, the running time of the parallel algorithm
using 1 processor (column 3 in Table 1).

Each protein has its PDB ID with the number of helices considered in parenthesis
(e.g. 1CC5(4) in Table 1). We noticed that there is a big variation for the running time
for different proteins even for a single processor. The rows in Table 1 are ordered by
the running time of the sequential algorithm. For example, 1CC5 has the smallest
amount of work, while 2CYP has the largest amount of work. The factors affecting
the running time includes the length of the protein sequence and the length distribution
of the helices. Figure 4 shows the speedup compared to a single processor. We noticed
that the speedup for protein 1CC5 is not good. However, it is to do with the small
amount of work 1CC5 has. Even for the sequential algorithm, the running time for
1CC5 is 0.001 second (Table 1). As the amount of work increases, the speedup be-
comes better (Figure 4). The speedup is very close to linear even for 20 processors for
proteins such as 2PHH and 2CYP that have larger amount of work (Table 1 and Fig-
ure 4). For example, the speedup for protein 2CYP, that has the longest running time,
is 19.4 when 20 processors are used.

In order to measure the communication among the processors, we measured the
major time factor during the communication – the number of tasks received for 20
processors for each protein. Ranging from a small job to a big job, the total number of
tasks received for protein 1ECA, 2PHH, and 2CPY are 391, 1600, and 3158 respec-
tively. Considering the running time for the above three proteins, the job of 2PHH is
about 47 times heavier than that of 1ECA, and the job of 2CYP is about 458 times
heavier than that of 1ECA. However, the number of tasks received for 2PHH and
2CYP are only about 3 times and 7 times more than that of 1ECA. This means that the
number of tasks circulating among the processors grows significantly slower than
the amount of work. Therefore, we think that the strategies we applied to reduce the

Fig. 4. Speedup. The sequential algorithm result is numbered as 0

A Parallel Algorithm for Helix Mapping Between 3D and 1D Protein Structure 755

communication have been effective. A number of techniques we implemented have
contributed to the near linear speedup: the data structure of a node, depth-first expan-
sion of the tree, and sending heavy jobs to other processors.

Among the possible mappings provided in the mapping library, Table 1 also shows
the result of the best mapping in the library. For example, the best mapping in the
library of 3TIM_A is able to assign all the 5 helices correctly. Since the library is not
a complete library and is meant to have as sparse representative as it could be, a helix
is considered assigned correctly if it is assigned within 5 amino acids distance from
the true solution. Such a matching difference is expected to be corrected in further
refinement steps using energy minimization. Among the nine proteins tested, our
method is able to map most of the helices in the protein by the best match in the li-
brary except protein 6TMN_E. We noticed that the protein secondary structure pre-
diction accuracy plays an important role in the quality of the library. The secondary
structure prediction result of 6TMN_E completely missed two out of the seven helices
so that the initial library is poorly constructed. In fact, we have done a test to generate
fake predictions in which we corrected the major mistakes in the secondary structure
prediction result. Our method is then able to rank all of the tested proteins at the top of
the library using the fake predictions (data not shown).

5 Conclusion

In this paper, we presented a parallel algorithm for building the possible mapping
library for helices between 3D and 1D protein structure. The algorithm generates a
near linear speedup for up to 20 processors we tested. A number of techniques appear
to contribute to the near linear speedup: the data structure of the node, the depth-first
expansion of the tree and keeping light works for itself while sending heavy works to
other processors. The results indicate that our method is able to work with small to
medium-sized proteins. Improvement needs to be made to work with large proteins
and to increase the quality of the library.

Acknowledgement. NSF Advance Program at NMSU, NSF EIA-0220590, NSF-
HRD-0420407, and the SURP program at Sandia National Laboratories.

References

1. Gonen, T., Sliz, P., Kistler, J., Cheng, Y. Walz, T.: Aquaporin-0 Membrane Junctions
Reveal the Structure of a Closed Water Pore. Nature.429, (2004) 193–7.

2. Chiu, W., Baker, M. L., Jiang, W. Zhou, Z. H.: Deriving Folds of Macromolecular Com-
plexes through Electron Cryomicroscopy and Bioinformatics Approaches. Curr Opin
Struct Biol.12, (2002) 263–9.

3. Zhou, Z. H., Dougherty, M., Jakana, J., He, J., Rixon, F. J. Chiu, W.: Seeing the Herpesvi-
rus Capsid at 8.5 Å. Science.288, (2000) 877–880.

4. Zhou, Z. H., Baker, M. L., Jiang, W., Dougherty, M., Jakana, J., Dong, G., Lu, G. Chiu,
W.: Electron Cryomicroscopy and Bioinformatics Suggest Protein Fold Models for Rice
Dwarf Virus. Nat Struct Biol.8, (2001) 868–73.

J. He, Y. Lu, and E. Pontelli 756

5. Ludtke, S. J., Baldwin, P. R. Chiu, W.: Eman: Semi-Automated Software for High Resolu-
tion Single Particle Reconstructions. J Struct Biol.128, (1999) 82–97.

6. Jiang, W., Baker, M. L., Ludtke, S. J. Chiu, W.: Bridging the Information Gap: Computa-
tional Tools for Intermediate Resolution Structure Interpretation. J Mol Biol.308, (2001)
1033–44.

7. Pollastri, G., Przybylski, D., Rost, B. Baldi, P.: Improving the Prediction of Protein Sec-
ondary Structure in Three and Eight Classes Using Recurrent Neural Networks and Pro-
files. Proteins.47, (2002) 228–35.

8. Przybylski, D. Rost, B.: Alignments Grow, Secondary Structure Prediction Improves. Pro-
teins.46, (2002) 197–205.

9. Jones, D. T.: Protein Secondary Structure Prediction Based on Position-Specific Scoring
Matrices. J Mol Biol.292, (1999) 195–202.

10. Gupta, G., Pontelli, E., Ali, K., Carlsson, M. Hermenegildo, M.: Parallel Execution of
Prolog: A Survey. ACM TOPLAS.23, (2001) 472–602.

11. Chow, K.-P. Kwok, Y.-K.: On Load Balancing for Distributed Multiagent Computing.
IEEE Transactions on Parallel and Distributed Systems.13, (2002) 787–801.

12. Shivaratri, N. G., Krueger, P. Singhal, M.: Load Distributing for Locally Distributed Sys-
tems. Computer.25, (1992) 33–44.

13. Misra, J.:Detecting Termination of Distributed Computations Using Markers In: Annual
Symposium on Principles of Distributed Computing. ACM Press, (1983) 290–4.

14. Wilkinson, B. Allen, M.: Parallel Programming. Prentice Hall(1998)
15. Beaumont, A. J. Warren, D. H. D.:Scheduling Speculative Work in or-Parallel Prolog

Systems In: Proceedings of the International Conference on Logic Programming. MIT
Press, (1993) 135–49.

 J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 757–764, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A New Scalable Parallel Method for Molecular
Dynamics Based on Cell-Block Data Structure1

Xiaolin Cao and Zeyao Mo

High Performance Computing Center, State Key Laboratory of Computational
Physics, Institute of Applied Physics and Computational Mathematics,

P. O. Box 8009, 100088, Bei-Jing P. R. China
{xiaolincao, zeyao_mo}@iapcm.ac.cn

Abstract. A scalable parallel algorithm especially for large-scale three dimen-
sional simulations with seriously non-uniform particles distributions is pre-
sented. In particular, based on cell-block data structures, this algorithm uses
Hilbert space filling curve to convert three-dimensional domain decomposition
for load distribution across processors into one-dimensional load balancing
problems for which measurement-based multilevel averaging weights(MAW)
method can be applied successfully. Against inverse space-filling partition-
ing(ISP), MAW redistributes blocks by monitoring change of total load in each
processor. Numerical experimental results have shown that MAW is superior to
ISP in rendering balanced load for large-scale multi-medium MD simulation in
high temperature and high pressure physics. Excellent scalability was demon-
strated, with a speedup larger than 200 with 240 processors of one MPP. The
largest run with 1.1×109 particles on 500 processors took 80 seconds per time
step.

1 Introduction

Molecular dynamics(MD) simulation is an important tool in studying the properties
of condensed matter and their dynamic interactions that can be difficult to obtain by
other means. In order to make reasonable comparison with experiment, it is often
necessary to simulate features on a micron scale. Realistic MD simulations of this size
require at least 108~109 particles, preferably more. Non-uniform distribution of vari-
ous kinds of particles in space produces a highly irregular computational load. Also,
as the simulations evolves, the movement of particles causes changes in the load
distribution of processor used. These factors make it difficult to achieve high scalabil-
ity. Therefore a good load balancing scheme is necessary to enhance scalability.

Mo[1] has presented a robust iterative 1-D DLB algorithm(i.e. MAW) to be suitable
for 2-D parallel link-cell MD simulation. Hayashi[2] generalized the cellular automation
diffusion scheme to the 3-D simulation by introducing a concept of permanent cell to

1 Research supported by Chinese NSF(60273030), Chinese 863 program(2002AA104570)

and CAEP Funds.

X. Cao and Z. Mo 758

minimize inter-processor communication overheads. Against ORB and ORB-MM,
Pilkington[3] have shown that of the three strategies, only Inverse Space-filling Parti-
tioning(ISP) is able to render highly balanced workloads without incurring elaborate
bookkeeping on a uniform mesh of N-body problem. NAMD[4] relies on a measure-
ment-based DLB scheme to achieve high scalability for biomolecular systems. However,
these DLB schemes are not suitable for our real application.

Based on these research described above, a measurement-based multilevel averaging
weight DLB scheme based on Hilbert space-filling curve(HSFC)[5] was presented for
our large-scale multi-medium MD simulation in high temperature and high pressure
physics, which computational load is unpredictably and non-uniform with position and
time. Then a new cell-block data structure required to describe MD simulation was
constructed in order to help DLB scheme provide assistance with the movement of data.
After data are moved between processors, the data structures must be rebuilt and the
inter-processor communication patterns need to be updated. The DLB scheme and cell-
block data structure, along with some auxiliary function, were integrated into a new
parallel MD algorithm aimed at utilizing large parallel machines in a scalable manner.

The new parallel MD algorithm is described in section 2. The results of some per-
formance evaluation are discussed in section 3. Against ISP, our DLB scheme can get
better load balance with monitoring change of total load in each processor instead of
monitoring change of workload in each block. Two numerical experimental results
have showed that this new parallel MD algorithm can achieve high scalability for
large-scale multi-medium MD simulation in high temperature and high pressure phys-
ics. Finally, we give some conclusions in section 4.

2 Parallelization Strategy

Provided that P is the number of processors, traditional link-cell domain decomposi-
tion method(DDM) partitions space into P sub-spaces (one per processor). It is highly
scalable while particle densities are uniform. However, it has some disadvantages: (1)
It is hard to use if the number of processors cannot be factored into three roughly
equal factors; (2) Non-uniform distribution of particles can result in load imbalance;
(3) Its data structure is not suitable for most DLB methods. In order to solve these
problems, our method firstly partitions space into Q(Q >>P) fixed-size blocks and
creates cell-block data structure. Secondly, Hilbert space filling curve(HSFC) im-
poses a linear order(i.e. HSFC index) of the blocks in the high-dimensional space,
which is the foundation of our DDM and DLB scheme. Thirdly, it constructs cell-
block DDM based on HSFC and maps multiple blocks to each processor. Finally, a
measurement- based multilevel averaging weight DLB scheme based on HSFC is
used to get better load balance by redistributing blocks.

2.1 Cell-Block Data Structure

Our method firstly partitions physical space into Q blocks and then each block is

subdivided into smaller volumes named cells with a side length δ+= cL rR , where

A New Scalable Parallel Method for Molecular Dynamics 759

cr is “cut-off radius”, δ is a small positive number. In Fig. 1, each block includes

4×4 computing cells (white). A layer of empty cells (shade) is padded to each block.
We call these extra cells auxiliary cell, which stores temporarily some indices of par-
ticles moving to neighbor blocks. Because link-cell data structure can result in irregu-
lar memory access, we adopt compact memory management in cell-block data struc-
ture. Particles in the same cell are always stored sequentially in a list. So we designed
a cell head pointer describing initial memory address of particles in the cell and an
integer number describing the number of particles in the cell.

0 1 2 3 4 5 60

1

2

3

4

5

6

31 32 33 34 35 36

25 26 27 28 29 30

19 20 21 22 23 24

13 14 15 16 17 18

07 08 09 10 11 12

01 02 03 04 05 06

Fig. 1. Cell-Block structure include compute cell(white) and auxiliary cell(shade), where num-
ber in cell is index of cell

2.2 Cell-Block DDM Based on HSFC

Given a non-uniform model as shown in Fig. 2(a), simulation space was divided into
8×8 blocks, the total number of blocks Q is 64. Load of each block was first evalu-
ated approximately by counting particle number in block. Then we adopt Zoltan
method[6] generating HSFC, which is valid for any shape space. As shown in Fig.
2(b), HSFC visit every block of 2-D space. Meanwhile, we numbered all blocks from
1 to 64 along HSFC. The mapping of the hyperspace to the line is done once only,
and is therefore a pre-processing step. Moreover, we construct a fast transform table
in order to manage the mapping information. Finally, we apply 1-D recursive bisec-
tion to cut HSFC into 4 logically contiguous segments containing almost equal loads
that correspond to physically irregular partitions, as shown in Fig. 2(b). Loads of 4
sub-domain is 511(dot: 1-18), 508(up diagonal line: 19-33), 525(white: 34-49),
543(down diagonal line: 50-64), respectively. Each segment includes a collection of
blocks, which can be assigned to corresponding processors. So we can implicitly

X. Cao and Z. Mo 760

partition the hyperspace by partitioning simply and effectively 1-D line, which trans-
forms hyperspace load balance problem into 1-D load balance problem. It can achieve
better load balance, but arise irregular hyperspace partitions, which must manage
unstructured communication. Therefore, bookkeeping information is required for
each block. In real large-scale simulation, the number of blocks are generally far less
than the number of cells, which reduce overheads of managing communication and
the memory of bookkeeping information to O(Q). Moreover, 1D recursive bisection
partitioning cost is O(Q). So we use block instead of cell as a allocable and mobile
unit in order to reduce these overheads.

0 50 100 150 200 250 300
0

50

100

150

200

250

300

1

2 3

4 5 6

78

9 10

111213

1415

16

17 18

1920

21

22 23

24 25

26 27

28

2930

31 32 33 34

3536

37

38 39

40 41

42 43

44

4546

47 48

49

5051

525354

55 56

5758

59 60 61

62 63

64

0 50 100 150 200 250 300
0

50

100

150

200

250

300

00

06 37

07 13 18

4359

39 51

483625

4517

15

14 38

4722

04

00 03

21 38

08 13

51

6953

31 69 79 81

6576

42

19 12

26 15

09 05

07

2239

47 29

31

3054

586983

52 50

3926

15 13 10

25 12

07

(a) (b)

Fig. 2. HSFC-based domain decomposition. (a) load of 8×8 blocks, the number in each block
represent load of owned block (b) partitioning results, the number in each block represent the
HSFC index of owned block

2.3 Measured-Based MAW DLB Based on HSFC

In our MD application, the movement of particles cause load fluctuation, and this
phenomenon becomes more and more critical as the time evolves. This may cause
severe load imbalance. It is often necessary to adjust the loads very quickly to be
balanced. Paper[3] adopt ISP method to solve this imbalance in N-body problem. It
exhibits several disadvantages in our large-scale multi-medium MD simulation in
high temperature and high pressure physics. The main difficulty was determining the
computational load of single block. ISP evaluates load of each block by a simple
time-dependent function, such as the number of particles in the block and maybe the
number of particles in neighboring blocks. It is not suitable for our MD simulation
because load of each block is dependent on the number of particles, the geometric
distribution of particles and the type of particles. Moreover, processor speed and
cache effect both also affect this load. So a new DLB scheme needs to be designed for
this MD simulation.

A New Scalable Parallel Method for Molecular Dynamics 761

Once the hyperspace has been mapped to the line by HSFC, 1-D MAW[7] can be
used to solve load balance problem arising from our MD application. So a measure-
ment-based MAW DLB scheme based on HSFC and cell-block data structure was
presented. It redistributes blocks sorted by HSFC index by monitoring change of total
load in single processor instead of monitoring change of workload in single block.
Simulation executes in the following procedure to perform DLB. First, the simulation
runs for a small number of steps, typically lasting a few minutes. Actual computing
time of local processor is measured during this time. After a particular simulation step,
the main processor collects the load data from each processor, computes a new blocks
distribution by calling MAW method. Since its partitioning time is linear with the
number of blocks(Q) that is O(Q), partitioning overheads on a single processor will
remain modest for large problems so long as Q scaled accordingly. A table describing
the complete partitioning with an O(P) storage may be broadcasted to all processors,
where P is the number of processors. Each processor can maintain the change in its
load. Then, only the blocks near the boundary of HSFC contiguous segments need to
be considered for exchanging with the neighbor processor to balance the load assum-
ing that the particles do not move quickly. If the processors are sorted by one dimen-
sion, a processor typically communicates with only its two neighbors on the line.
Communication is therefore inexpensive for adjusting load by migrating block. After
migrating blocks are moved between processors, the data structures must be rebuilt
and the inter-processor communication patterns need to be updated.

2.4 Force Calculation Schemes

The calculation of force on each particle is the most expensive step in our MD simu-
lation. So it must be calculated both efficiently and in a manner which can be readily
parallelized and load-balanced. We have enabled parallelization within our MD algo-
rithm by dividing force computation into two classes of compute function: self-block
and pair-block. The self-block function calculates pair interactions between particles
within a particular block. The pair-block function calculates pair interactions between
pairs of particles residing in neighboring blocks. If one neighbor block lies in the
other processor, the system triggers a pair-block function when these data in the
neighbor block are received. For managing these calculations, we create two index
tables with exploitation of Newton’s 3rd law. One is pair cell in single block, the other
is pair cell in neighbor blocks sorted by neighbor relationship between block. These
tables along with cell head pointer and the number of particles in the cell can improve
executing efficiency by avoiding some jump instruction. These are much more suit-
able for instruction-level parallelism in advanced computer architecture.

3 Parallel Performance and Scalability

We have implemented a MD code based on these algorithm described above on the
distributed memory MPP with MPI. It is suitable for our large-scale multi-medium
MD simulation in high temperature and high pressure physics. For simplicity, we call
this code PMD2D/3D. In this section, we examine parallel efficiency and scalability

X. Cao and Z. Mo 762

of our algorithm. These are run on a MPP including hundreds of processors. All units
are given in a dimensionless form. We define the following variables: N = number of
particles; Q = number of blocks; P = number of Processor used; PE is parallel effi-
ciency; LBE is load balancing efficiency.

3.1 Parallel Performance

The first model is: N=1,560,000, Q=2000, P=1~64. Each block includes 3×3×3 cells
in x, y, z direction. MD simulation lasted 1,000 time-steps. We adopt three parallel
strategies: (1) regularly geometric partitioning (RGP); (2) ISP; (3) our method. RGP
is often used by classical link-cell MD, which doesn’t adjust load balance. So PE of
RGP decreases quickly while P increases. ISP and our DLB method are much better
than RGP in rendering balanced loads because they can adjust load distribution on
time. Our DLB method is superior to ISP, which has improved LBE by 10%. The
main reason is that load in single block change quickly and is very difficult to evalu-
ate accurately. By comparison, our DLB relies on actual measurement of time spent
by each processor to achieve a much more efficient load distribution as shown in
figure 3(b). So its PE decreases slowly while P increases, while P=64, PE•60%. Part
of the efficiency loss is inevitable due to communication overhead because communi-
cation and compute ratio grows when P increases. Part of this loss is idle time and
partitioning time. We believe that improvements to our DLB method will allow us to
decrease the idle time further.

(b)
1 2 4 8 16 32 64

0.4

0.6

0.8

1.0

P

PE

(a)

LBE

STEP
0 200 400 600 800 1000

0.4

0.6

0.8

1.01

2

3

1

2

3

Fig. 3. N=1,560,000 parallel efficiency (a) and load balance efficiency while P=64 (b) of
PMD2D/3D using RGP(line 1), ISP(line 2) and our method(line3) respectively

3.2 Scalability

In order to make reasonable comparison with experimental data, it is often necessary
to be able to simulate features on a micro-scale system with at least hundreds of mil-
lions of particles, preferably more. So we simultaneously increase the system size and
the number of processors, such that N/P=const. Table 1 gives the corresponding

A New Scalable Parallel Method for Molecular Dynamics 763

parallel efficiency of 2-D simulation while keeping N/P=1,600,000 and 3-D simula-
tion keeping N/P=1,100,000, where tstep is time per integration step in seconds. Obvi-
ously, PMD2D/3D has gained very good performance for all number of processors
ranging from 2 to 240. Both achieve good scalability with speedup of over 200 on
240 processors even on large numbers of processor for sufficiently large simulations.
On 240 processors, it takes about 10 second every step to simulate 380,000,000 parti-
cles in 2-D and about 37 second to simulate 276,000,000 particles in 3-D. These re-
sults have showed that our algorithm is very effective in modeling hundreds of mil-
lions of particles in both 2-D and 3-D.

Table 1. Parallel efficiency with N/P=constant

P 2-D
tstep (s)

2-D
E (%)

3-D
tstep (s)

3-D
E (%)

1 8.882 100.0 32.509 100.0
4 9.127 97.3 33.331 97.5

16 9.240 96.1 35.757 90.9
64 9.340 95.1 36.802 88.3

120 9.564 92.8 37.002 87.8
240 9.991 88.9 37.328 87.1

3.3 Comparable Performances

In the last few years, many research groups[8-10] reported their record of MD simu-
lation. For comparison, we list these results and our current record together in Table 2.
However, we have not yet done experiments to compare the performance of MD with
other programs for identical molecules with identical potential parameters and identi-
cal machines. From Table 2, it is shown that our MD code can simulate the same
magnitude number of particles within the same magnitude time costing compared
with the world record reported.

Table 2. Comparable Performance in 3-D MD simulation

Groups Machine P N tstep (s)
Lohmdahl [8] CM-5 1024 100,000,000 3.5
Plimpton [9] Paragon 3680 600,000,000 242
Stadler [9] T3E 512 1,213,857,792 180
Roth [10] T3E 512 5,180,116,000 387
Our team One MPP 500 1,100,000,000 80

X. Cao and Z. Mo 764

4 Conclusion

We have described the design of the new scalable parallel MD algorithm for large-
scale multi-medium MD simulation in high temperature and high pressure physics. It
uses cell-block DDM based on HSFC to attain practical scalability. It uses a Meas-
ured-based MAW DLB based on HSFC to attain high parallel efficiency even while
simulating non-uniform MD systems. Our DLB scheme is superior to ISP in real
application. Excellent scalability was gained, with a speedup of above 200 on 240
processors of one MPP in both 2-D and 3-D.

Although the parallel performance of our algorithm is quite good, it still leaves
room for improvement. We believe that improvements to our DLB scheme, combined
with the use of computation and communication overlap will allow us to decrease the
idle time further. Moreover, parallel I/O and corresponding parallel visualization will
be developed in order to help physicists analyze results and penetrate deeply motion
of particles.

References

1. Mo Zeyao, Zhang Jinglin Dynamic Load Balancing for Short-Range Parallel Molecular
Dynamics Simulations. Intern. J. Computer Math. 79 (2002) 165-172.

2. Hayashi R., Horiguchi S.: Efficiency of Dynamic Load Balancing Based on Permanent
Cells for Parallel Molecular Dynamics Simulation. Proc. Of IPDPS, Cancun, Mexio(2000)
85-92.

3. Pilkington R., Baden B.: Dynamic Partitioning of Non-Uniform Structured Workloads
with Spacefilling Curves. IEEE Trans. on Parallel and Distributed Systems. 7 (1996) 288-
299.

4. Kale, L., Skeel, R., Bhandarkar M.: NAMD2: Greater Scalability for Parallel Molecular
Dynamics. J. Computational Physics, 151(1999) 283-312.

5. Sagan, H.: Space-Filling Curves. Springer, New York (1994).
6. http://www.cs.sandia.gov/Zoltan/ug_html/ug_alg_hsfc.html.
7. Mo Zeyao, Zhang Baolin: Multilayer Averaged Weight Method for Dynamic Load Imbal-

ance Problems. Intern. J. Computer Math. 76 (2001) 463-477.
8. Plimpton S.: Fast Parallel Algorithms for Short-range Molecular Dynamics. J. of Compu-

tational Physics, 117 (1995) 1-19.
9. Stadler J., Mikulla R., Trebin H. R.: IMD: A Software Package for Molecular Dynamics

Studies on Parallel Computes. Intern. J. Modern Physics. 8 (1997) 1131-1140..
10. Roth J., Gahler F., Trebin H.: A Molecular Dynamics Run with 5,180,116,000 Particles.

Int. J. Modern Physics C. 11 (2000) 317-322.

Parallel Transient Stability Simulation
for National Power Grid of China

Wei Xue, Jiwu Shu, and Weimin Zheng

Department of Computer Science, Tsinghua Univ.,
Beijing, P.R.China, 100084

{xuewei, shujw, zwm-dcs}@tsinghua.edu.cn

Abstract. With the development of modern power system, real-time
simulation and on-line control are becoming more and more critical.
Transient stability analysis, where the most intensive computation lo-
cates, is the bottleneck of real-time simulation for large-scale power sys-
tem. Thus, the key to achieve the real-time simulation of large scale
power systems is to find the new transient stability algorithms and par-
allel software with high-performance computers. This paper presents a
new spatial parallel transient stability algorithm including an improved
parallel network algorithm and an optimal convergence checking method.
The simulation software with the spatial parallel algorithm is designed
and implemented on a SMP-cluster system. The test cases of national
power grid of China show that the optimal computation time of the par-
allel software is only 38% of the actual dynamic process. It is suggested
that the algorithms described in this paper can achieve the super real-
time simulation of very large scale power system and make the complex
on-line power applications, especially on-line supervision and control for
large scale power system, feasible.

1 Introduction

Power system transient stability analysis is a powerful simulation tool in power
system research. For power system operation and plan of modern power system,
real-time simulation and on-line control are becoming more and more critical.
However, with the development of the power system scale, computation tasks are
increasingly becoming heavier and more complex. Traditional sequential compu-
tation is inadequate for real-time simulation and on-line control in power system
plan and operation. Thus, the key to realize the real-time simulation of large
scale power system dynamics is to find the new transient stability algorithms
and parallel software with high-performance computers. Meanwhile, the new de-
velopment of high performance computing technology, especially the mature use
of cluster systems with a good balance of high performance and low price, makes
real-time simulation for large-scale power network feasible.

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 765–776, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

766 W. Xue, J. Shu, and W. Zheng

To accomplish the task of power system transient stability computation, a
set of DAEs (Differential Algebraic Equations) must be solved.{

Ẋ = f(X,V) = AX + Bu(X,V)
0 = I− Y (X) ∗V

(1)

In (1), the nonlinear differential equations describe the dynamic character-
istics of the power system devices and the second algebraic nonlinear equations
present the restriction of the power network, where X is the state vector of indi-
vidual dynamic devices; I is the vector of current injection from the devices into
the network; V is the node voltage vector; Y (X) is the complex sparse matrix,
which is not constant with time; and u is the function of X and V.

The most common used sequential algorithm for transient stability analy-
sis is the interlaced alternating implicit approach (IAI algorithm) [1]. The IAI
algorithm uses the trapezoidal rule as its integration method, and solves differ-
ential equations and algebraic equations alternately and iteratively, which not
only maintains the advantages of the implicit integration approach, but also
has modelling and computing flexibility. According to the IAI algorithm, net-
work equation solution is the most intensive computation part of the algorithm.
With the optimal schemes for node ordering and sparse matrix computation,
the computation complexity of factoring of the network equations is O(N1.4)
and the complexity of forward and backward iteration of the network equa-
tions is O(N1.2) [2], where N is the dimension of the coefficient matrix. Thus,
the time consumed for transient stability analysis increases super-linearly as
the power system’s size increases. The performance of sequential transient sta-
bility simulations is not adequate for real-time simulation of large-scale power
grid. Therefore, it is very important to study practical parallel algorithms and
software. Currently, the wide use of scalable cluster systems, which have high
performance and low cost, has made parallel and distributed real-time tran-
sient stability analysis possible for large-scale power system. The research on
cluster-based parallel algorithms for transient stability analysis has become a
new hotspot in this field [3] [4].

This paper analyzes the known parallel algorithms of transient stability anal-
ysis, presents a cluster-based spatial parallel algorithm including an improved
parallel network algorithm and an optimal convergence checking method. In the
new spatial parallel algorithm, a hierarchical Block Bordered Diagonal Form
power network algorithm, which uses message-passing and share-memory mod-
els simultaneously, is presented to optimize the computation of sequential part
in the parallel algorithm and to improve the scalability of the algorithm on clus-
ter system. The convergence checking method, in which the preferential local
convergence scheme is introduced and the relative deviation of current injection
is regarded as the new convergence checking variable, is developed to cancel
the redundant computation and reduce the communication costs. Finally, the
simulation software with the spatial parallel algorithm is designed and imple-
mented on a SMP-cluster system, and the numerical results of national power
grid of China show that the optimal computation time of the parallel simula-
tion is only 38% of the actual dynamic process. It can be concluded that the

Parallel Transient Stability Simulation for National Power Grid of China 767

algorithm described in this paper can achieve the super real-time simulation of
very large scale power system and fulfill the requirements of on-line transient
stability analysis and on-line control for the future nationwide power grid in
China. Furthermore, the cluster computing technology is the most promising
high performance computing technology for future complex power applications.

2 The New Spatial Parallel Algorithm for Transient
Stability Analysis

Research on the parallel algorithm for transient stability analysis is focused on
the parallel algorithm construction and task scheduling. According to the analy-
sis of IAI algorithm, the solution of power network equations is the most intensive
computation part of the computation. Thus, an effective parallel algorithm for
power network equations is very critical for parallel transient stability analysis.
Meanwhile, for the convergence checking scheme has to deal with the cooperation
of each computing process in parallel environment and then more communica-
tion will be introduced, the smart design of convergence checking scheme is also
very important for the parallel algorithm on cluster system. In this paper, our
work is focused on power network algorithm and the corresponding convergence
checking scheme. As to the task scheduling scheme, the latest research advance
can be found in [5] [6] and the multilevel partition scheme described in [6] is
used in this paper.

2.1 Research Advance on Parallel Transient Stability Algorithm

Through two decades’ studies, parallel algorithms for transient stability analy-
sis are well developed in two directions, spatial parallelism and time parallelism
[7] [8] [9] [10] [11]. Spatial parallel algorithms, including Partition method and
Parallel Factoring algorithm, take a time-domain integration method and decom-
pose each time step computation into sub-tasks among processors. As a coarse
granularity parallel algorithm, Partition method can be implemented easily and
achieve higher efficiency and gains on distributed architecture, while Parallel
Factoring scheme is better on shared memory machines. In order to get better
performance on more processors, the simultaneous multiple time step solutions,
such as WR (Waveform Relaxation) method and parallel-in-time Newton algo-
rithm, are introduced into the parallel computation of transient stability analysis.
These time parallel algorithms enlarge the scale of transient stability problem
to be solved simultaneously. At the same time, the overall speedups of the algo-
rithms are improved effectively. However, it is difficult to achieve good parallelism
degree while maintaining a high convergence rate. In addition, another limiting
factor hindering parallelism in time is that more invalid computation may be
brought into simulation when random events happen in the “time window” of
computing. Therefore, the coarse granularity spatial parallel algorithm is the
most appropriate selection for implementation on cluster system.

768 W. Xue, J. Shu, and W. Zheng

2.2 Hierarchical BBDF Algorithm for Power Network Equation
Solution

It is well known that large scale power system comes from the connection of re-
gional networks. The nodes in the regional power network are more strongly con-
nected than those between the region power networks. Therefore, the partition
algorithm is well fit for solving network equations on the cluster system. For more
inherent parallelism developed in network computation, a node-oriented branch
splitting scheme is used to construct the network equations. In this scheme, the
branches between subsystems and the fault branches are separated from the orig-
inal network to form the boundary system, which suggests the relation of the sub-
systems. And the boundary system equations are formulated by admittance ma-
trix of the terminals of the branches. Based on the node-oriented branch splitting
scheme, the network equations can be reformed in the Block Bordered Diagonal
Form [12], as shown in (2). The following network equations are for two sub-areas.[

Y M
MT ZCF

] [
U
ICF

]
=

[
Ip

0

]
(2)

In which,

Y =

⎡
⎢⎢⎢⎢⎢⎢⎣

Y1p

Y2p

Y1n

Y2n

Y1z

Y2z

⎤
⎥⎥⎥⎥⎥⎥⎦

,U =

⎡
⎢⎢⎢⎢⎢⎢⎣

U1p

U2p

U1n

U2n

U1z

U2z

⎤
⎥⎥⎥⎥⎥⎥⎦

,Y =

⎡
⎢⎢⎢⎢⎢⎢⎣

Y1p

Y2p

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

MCF−1p

MCF−2p

MCF−1n

MCF−2n

MCF−1z

MCF−2z

⎤
⎥⎥⎥⎥⎥⎥⎦

,

ZCF = (YC + YF)−1.

In (2), the subscripts 1 and 2 represent the sub-area number, and the sub-
scripts p, n, z represent the positive, negative, and zero sequence networks re-
spectively. Y1p, Y2p, Y1n, Y2n, Y1z and Y2z are the admittance matrices of
three (positive, negative and zero) sequence networks respectively. ZCF is the
impedance matrix for cutting branches and fault branches. YC and YF are the
admittance matrices of cutting branches and fault branches respectively. They
are also the coefficient matrix of boundary equations in the BBDF computation.
M and MT are the associated matrices between Y and ZCF .

According to the traditional parallel scheme used in BBDF equations, the
limiting factor hindering parallelism is the computation of the boundary sys-
tem, which is the sequential part in the whole parallel algorithm. With the in-
crease of sub-areas, the time required completing the boundary equations and the

Parallel Transient Stability Simulation for National Power Grid of China 769

time spends on the communication between processors increase sharply. Because
of the network equations constructed with the node-oriented branch splitting
scheme, the nodes of the boundary system in different sub-areas are different
and then the equivalent circuits of the boundary system are not correlative.
Therefore further parallel schemes can be introduced to the computation of the
boundary system.

First of all, the formulation of the admittance matrix and the equivalent
current vector of the boundary system converted from each sequence network
and each sub-area equations can be solved simultaneously as well as the current
injection from the boundary system to the sub-areas.

Furthermore, to improve the computation performance of boundary equa-
tions, the Block Bordered Diagonal Form scheme is introduced in this paper.
In the algorithm, the coefficient matrix of the boundary system are reordered
by positive, negative, zero sequence parts of cutting branches in front of fault
branches, as described in (3).⎡

⎢⎢⎢⎢⎢⎢⎣

YCp NCp

YCn NCn

YCz NCz

NpC

NnC YF

NzC

⎤
⎥⎥⎥⎥⎥⎥⎦

(3)

Where YCp, YCn and YCz are the three sequence node admittance matri-
ces of cutting branches; YF is the admittance matrix of fault nodes; and NCp,
NCn, NCz, NpC , NnC , and NzC are the associated matrices. Because some fault
forms have invalid impedance matrices, an admittance matrix is adopted in (2)
and (3).

It is noted that the boundary equations are much smaller than network
equations. And most of their computation focuses on reforming the boundary
equations and factoring the coefficient matrix when events happen. Therefore, a
dynamic multithread scheme is used to solve the boundary equations in this pa-
per, which is more effective for clusters that consist of shared memory machines
(SMP-Cluster). When this hierarchical network equation algorithm is applied
to transient stability problems, it not only dramatically improves the efficiency
and gains, but also enhances the scalability of the program. At the same time,
the new boundary system computation scheme provides two other benefits. One
is reduction of computation time based on the symmetry of negative and zero
parts in the boundary system, and the other is fewer conditions in the boundary
matrix. This improves the precision and robustness of the algorithm.

Compared with the traditional boundary system equations algorithm, the al-
gorithm proposed in this paper reduces the time consumed for solving boundary
system equations largely. And the performance comparison between these two
algorithms for different scale boundary system is shown in Fig. 1. For the same
boundary system, the computation time with the BBDF algorithm presented in
this paper is only one fifth to one sixth of the computation time with traditional
algorithm. In the hierarchical BBDF power network algorithm proposed in this

770 W. Xue, J. Shu, and W. Zheng

Fig. 1. Time-ratio of traditional boundary system equations algorithm to BBDF
boundary system equations algorithm proposed in this paper

paper, BBDF parallel scheme is applied to both the power network solution and
the boundary system solution. By this way, the computation performance of the
power network equations is improved and the overall efficiency and scalability
of the spatial algorithm are enhanced.

2.3 Optimal Convergence Checking Scheme

The convergence checking scheme on parallel architecture is more complex than
that on sequential systems because it had to take into account the cooperation
of the computing processes. In this paper, based on the analysis of different
convergence rate of sub-tasks, a new convergence checking scheme is developed
to improve the computation’s efficiency.

As we known, for large scale power system, the electric variables near faults
vary more intensively than faraway power networks. It is the famous phenomena
“influence localization of fault”. In the dynamic process simulation, the conver-
gence rate of solving network equations near faults will be much slower. There-
fore, the convergence met in the near fault subsystems becomes the main factor
hindering the simulation. And the other subsystems have to be solved repeat-
edly before global convergence is reached. But these computations didn’t bring
any precision improvement. According to the phenomena “influence localization
of fault”, the computation of subsystem can be finished early before the global
convergence is reached. The preferential local convergence checking scheme re-
duces the redundant subsystem computation and enhances parallel efficiency of
the simulation.

Meanwhile, in traditional sequential algorithms, the derivation of node volt-
age in two successive iterations is checked to decide whether the convergence is
reached. In parallel environment, the node voltage scheme introduces another
global communication into each iteration of spatial parallel algorithm. In order
to reduce the communication costs and get the similar convergence rate to the
node voltage scheme, the relative derivation of current injection is used as the
variables to be checked in convergence scheme.

The convergence checking scheme proposed in this paper can be described in
detail as follows:

1. Relative derivation of currents injected is regarded as variables to check
local area convergence.

Parallel Transient Stability Simulation for National Power Grid of China 771

2. Every subsystem checks convergence locally. If local convergence occurs,
the corresponding process informs the control process (the same as the process
for computing the boundary system) with a local convergence flag instead of
with the new corrected vector. Then this subsystem waits for the global conver-
gence flag or the new solutions of the boundary equations. If global convergence
is reached, the simulation enters into the next time step; if not, whether or
not the local computation is performed depends on the preferential convergence
checking.

3. The control process collects the local convergence flags from all subsystems.
After the global convergence is met, the results are sent to each subsystem. If
global convergence is not reached, the boundary equations have to be solved
once more.

It is noted that the solution of subsystem equations depends on not only
the current injection from devices into subsystem, but also the current injection
from boundary system into subsystem. So the local preferential convergence is
met only when the current injection derivation from device to subsystem and
from boundary system to subsystem are less than the threshold simultaneously.

2.4 Flow Chart of the Improved Spatial Parallel Algorithm

In the simulation, a large system represented by (1) is broken into N subsystems
based on the partition scheme proposed in [6]. N subsystems are respectively
assigned to N processor for computing; for example, the k-th subsystem is pro-
cessed by the processor Pk(k = 1, 2, , N). Each subsystem is calculated inde-
pendently with the solution of the boundary system. Then the solution to the
boundary equations comprises the computation results for each subsystem. This
process is repeated until convergence is reached, as described in the following
flow chart.

3 Test Results

The national power grid of China is constructed to test the transient stability
algorithm proposed in this paper. The Chinese power grid test system includes
six power grids of China, such as North-east power grid, North power grid,
Central power grid, Chuanyu power grid, South power grid and East power grid.
Shandong province power system, Fujian province power system and Yangcheng
power system are also considered. The national power grid is a huge scale power
system with 10188 buses, 13499 branches, 1072 generators (the traditional 5
Order dynamic model is used), 3003 loads (induction motor model is concerned)
and 4 Direct Current Systems, as shown in Fig. 2.

For testing the parallel software, a cluster of Tsinghua Univ. is used in this
paper. The cluster consists of multi nodes. Each node is a Symmetry Multi-
Processor (SMP) computer and has four Intel Xeon PIII700 MHz CPUs, 36-
gigabyte hard disks, and 1 gigabyte of memory. The communication medium
between SMP nodes is Myrinet with a bandwidth of 2.56Gb/s. The software

772 W. Xue, J. Shu, and W. Zheng

Parallel Simulation by Processor P1, ..., PN

For TimeStep = 1, ..., MaxTimeStep (Simulation Loop)
For Iter = 0, ..., MaxIters (Iteration Loop)
1: Include new events;
2: Solve the differential equations of subsystem k with
the trapezoidal rule;

Ẋk = f(Xk,Vk) = AXk + Bu(Xk,Vk)
3: Compute the current injected into subsystem k

Ik(Xk,Vk);
4: Check local convergence of subsystem k;

‖Ikt−Ik(t−1)

Ik(t−1)
‖ < εI

t is the iteration number, εI is the threshold of current
convergence checking.
5: Solve the vector and matrix corrected in subsystem k;⎧⎪⎨

⎪⎩
ΔZkm = MT

kmY−1
kmMkm

ΔUkp = MT
kpY

−1
kp Ikp

ΔYkm = ΔZ−1
km

ΔIkp = ΔYkpΔUkp

, m = p, n, z

Communication of collection between processors

6: Global convergence checking, If convergence is reached,
then break the iteration loop;
7: Solve boundary systems;⎡

⎢⎢⎢⎢⎢⎣

YCp NCp

YCn NCn

YCz NCz

NpC

NnC YF

NzC

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

UCp

UCn

UCz

UFp

UFn

UFz

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

ITp

0
0
IFp

0
0

⎤
⎥⎥⎥⎥⎥⎦+

∑k

m=1 ΔIkp

Communication of scattering the solution of
boundary equations or the global convergence flag

8: If local convergence of subsystem k is reached,
Check preferential convergence in subsystem k;

‖Ikm−CF,t−Ikm−CF,t−1

Ikm−CF,t−1
‖ < εI{

Ikm−CF,t = MkmΔYkm(UCF−km,t − ΔUkm,t)
ΔUkn,t = ΔUkz,t = 0

m = p, n, z, t is the iteration number.
9: Solve the node voltages in subsystem k;⎧⎨

⎩
Ukp = Y−1

kp (Ikp − MkpΔYkp(ΔUkp − UCF−kp))
Ukn = Y−1

knMknΔYknUCF−kn

Ukz = Y−1
kz MkzΔYkzUCF−kz

End For iter (End Iteration Loop)
End For TimeStep (End Simulation Loop)
End Parallel Simulation

Parallel Transient Stability Simulation for National Power Grid of China 773

Fig. 2. The National power system of China tested in this paper

environments are Redhat Linux 7.2 (kernel version 2.4.7-10smp), Intel compiler
for Linux (version 6.0), high performance math library MKL (version 6.1) and
gm-1.5pre4, which is the network protocol running on Myrinet. The program-
ming environments supported are Message-Passing Interface (MPI) and Open
Multi Processing programming (OPENMP).

For all the test cases of national power system of China, a permanent A-phase
fault in the middle point of the transmission line between North-east and North
power grid is assumed. The A-phase line is tripped when 0.08 seconds passed,
and re-closed on 1.08s. Then the lines of three phases are re-tripped on 1.16s.
The time step is 0.01s, and convergence tolerance is 10−4.

Fig. 3 show the speedups and simulation velocity of the parallel computing
with the national power grid data described above.

Fig. 3. The speedups (SP) and simulation velocity (SV) of test case

774 W. Xue, J. Shu, and W. Zheng

In Fig. 3, SP stands for speedup, which is the ratio of the time required
for parallel simulations with partitions to the time required for sequential sim-
ulations without partitions. SV stands for the simulation velocity, which is the
same as the ratio of the real running time of the power grid transient process
to the simulation time on the cluster for the same power grid. If the value of
SV is bigger than 1.0, it is shown that the simulation is faster than the actual
transient stability process and achieve the super real-time simulation.

The analysis of Fig. 3 leads to several conclusions.

1. The high speedups are achieved in the national power grid of China and
even some super-linear speedups are achieved. These results suggest that the
improved spatial parallel algorithm proposed in this paper is effective, and can
be used for real-time power system transient stability analysis.

2. Based on cluster, the transient process simulation runs faster than the
real-time process for the national power system of China. For example, when
single CPU is used, the transient simulation takes four times more time than
the actual transient process, which is not adequate for the requirement of real-
time simulation. When 12 CPUs are used in the test case, the simulation time is
only 38% of the actual transient process time and a super real-time simulation
is achieved. It is almost fifteen times faster than on single CPU. So the parallel
processing is necessary to improve the simulation velocity. This also proves that
the improved spatial algorithm for transient stability analysis proposed in this
paper is very satisfying.

The performance improvement of the new convergence checking scheme is
shown in Fig. 4. This convergence checking scheme uses the relative deriva-
tion of current injection as the checking variable and performs the preferential
subsystem convergence checking to cancel the redundant computation and re-
duce the communication costs. So its advantages are emerged with the parti-
tions increased. In Fig. 4, when 12 processors used, the simulation with the new
convergence scheme in this paper is 20% faster than that with the traditional
convergence scheme.

Fig. 4. Performance comparison between the traditional convergence checking scheme
with the node voltage checking (CNV) and the optimal scheme in this paper (CRCP)

Parallel Transient Stability Simulation for National Power Grid of China 775

In addition, it is shown in Fig. 3 that the efficiency of this parallel algorithm
exceeds 100% with 2 CPUs to 12 CPUs. In the sequential computation, the
data size of factoring and iteration in power network computation, which is 1.5
MB, exceeds the cache size of Xeon PIII CPU (1MB). So more memory access,
more time is consumed in the sequential simulation. In parallel simulations, more
CPUs are used and larger cache size is available. And the overall time required
by this algorithm decreases for higher cache hitting. Therefore, the well-known
“cache effect” brings super-linear speedups in the transient simulation of large
scale power system.

4 Conclusion

This paper proposes an improved spatial parallel algorithm for transient stabil-
ity analysis, which includes a hierarchical Block Bordered Diagonal Form power
network algorithm and a convergence scheme with preferential local convergence
checking. In this spatial parallel algorithm, message-passing and share-memory
models are used simultaneously. The spatial parallel algorithm is designed and
implemented on a SMP-cluster system. Simulations are performed for national
power system of China show that the optimal speedup with the parallel algo-
rithm is 14.5 with 12 CPUs, and the corresponding parallel efficiency is 121%.
The time consumed for the parallel simulation is only 38% of the actual dynamic
process. The numerical results suggest that the algorithm gains much higher per-
formance than the spatial algorithms described in [13] and [14]. This algorithm,
with adequate efficiency and scalability, is a feasible selection for the real-time
transient simulation of future on-line power applications. And the cluster com-
puting technology is becoming the most promising high performance computing
technology for on-line power applications of large scale power systems.

References

1. B. Stott.: Power System Dynamic Response Calculations. IEEE Proc., 1979,
67(2):219–241

2. F.L.Alvarado: Computational Complexity in Power Systems. IEEE Trans. On PAS,
1976, PAS-95(4):1028–1036

3. W. Xue, J. W. Shu, X. F. Wang, W. M. Zheng: Advance of parallel algorithm for
power system transient stability simulation, Journal of system simulation, 2002,
14(2):177–182(In Chinese)

4. Y. L. Li, X. X. Zhou, Z. X. Wu: Parallel algorithms for transient stability simulation
on PC cluster. PowerCon 2002, Vol.3:1592–1596

5. K.W.Chan, R.W.Dunn, A.R.Daniels: Efficient heuristic partitioning algorithm for
parallel processing of large power systems network equations. IEE Proc.-Gener.
Transm. Distrib..1995, 142(6):625–630

6. Shu Jiwu, Xue Wei, Zheng Weimin: An Optimal Partition Scheme of Transient Sta-
ble Parallel Computing in Power System. Automation of Electric Power Systems.
2003, 27(19):6–10(In Chinese)

776 W. Xue, J. Shu, and W. Zheng

7. Daniel J.Tylavsky, Anjan Bose: Parallel processing in power systems computation,
IEEE Trans. On PWRS, 1992, 7(2):629–638

8. Chai J.S, Bose A.J.: Bottlenecks in Parallel Algorithms for Power System Stability
Analysis. IEEE Trans. On PWRS, 1993, 8(1):9–15

9. D.M.Falcao: High Performance Computing in Power System Applications. Proc.
2nd International Meeting on Vector and Parallel Processing, Porto, Portugal,
1996, 1–23

10. Han Xiaoyan, Han Zhenxiang: The Research on Inherent Parallel Algorithm for
Power System Transient Stability Analysis. Proceedings of CSEE. 1997, 17(3):145–
148(In Chinese)

11. Wang Fangzong: Parallel algorithm of highly parallel relaxed Newton method for
real-time simulation of transient stability. Proceedings of CSEE. 1999, 19(11):14–
17(In Chinese)

12. A. Torralba: Three methods for the parallel solution of a large, sparse system of
linear equations by multiprocessors, International journal of energy systems, 1992,
12(1):1–5

13. I. C. Decker, D. M. Falcao: Conjugate gradient methods for power system dynamic
simulation on parallel computers, IEEE Trans. On PWRS, 1996, 11(3):1218–1227

14. M. Nagata, N. Uchida: Parallel processing of network calculations in order to speed
up transient stability analysis, Electrical Engineering in Japan, 2001, 135(3):26–36

 J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 777–782, 2004.
© Springer-Verlag Berlin Heidelberg 2004

HPL Performance Prevision
to Intending System Improvement1

Wenli Zhang1, 2, Mingyu Chen1, and Jianping Fan1

1 National Research Center for Intelligent Computing Systems,
Institute of Computing Technology, Chinese Academy of Sciences

2 Graduate School of the Chinese Academy of Sciences,
NCIC, P.O. Box 2704, Beijing, P.R. China, 100080

zhangwl@ncic.ac.cn

Abstract. HPL is a parallel Linpack benchmark package widely adopted in
massive cluster system performance test. On HPL data layout among
processors, a law to determine block size NB theoretically, which breaks
through dependence on trial-and-error experiments, is found based on in-depth
analysis of blocked parallel solution algorithm of linear algebra equations and
implementation mechanics in HPL. According to that law, an emulation model
to toughly estimate HPL execution time is constructed. Verified by real system,
the model is used to do some scientific prevision on the benefits to Linpack test
brought by intending system improvement, such as respectively memory size
increase, communication bandwidth increase and so on. It is expected to
conduce to direct system improvement on optimizing HPL test in the future.

1 Introduction

Linpack[1] is a prevailing performance test benchmark at present. HPL[2] (high
performance Linpack) is the first open standard parallel Linpack test package on
large-scale distributed-memory parallel computing, used in Top500[3] test widely. In
order to obtain optimal results, users can use any number of CPUs to any problem
size and use various kinds of optimization methods based on Gaussian Elimination.

Performance test is actually to calculate the floating-point operation rate— Gflops.
In LU factorization, it is

(2n3/3 + 3n2/2) / t. (1)

 Generally, to obtain HPL peak value, the problem size should be as large as close
to 80% of total memory capacity. NB is influential to HPL test time, but till now, its
determination mainly depends on experience, which brings about the deficiency of
reliability emulation model of performance test.

1 This research is supported by Chinese National High-tech Research and Development (863)

Program (grants 2003AA 1Z2070) and by the foundation of Knowledge Innovation Program
(grants 20036040), Chinese Academy of Sciences (CAS).

W. Zhang, M. Chen, and J. Fan 778

Therefore section 2 of this paper will probe the basis for determining NB
theoretically, and try to construct an emulation model of HPL test. In section 3 the
emulation model is verified further. Section 4 forecasts the Linpack test prevision
with system improvement using the verified model. Finally section 5 concludes.

2 Model Introduction

The main problem of HPL is to solve dense linear algebra equations

Ax = b. (2)

Clearly, LU factorization[4, 5, 6, 7] is the main part of linear equations solution,
accounting for O (n3) operations. The two-dimensional block-cyclic data distribution
of dense matrix among processors is confirmed after series of analysis and
comparison[8]. But the efficient determination of NB is still hanging.

2.1 Theoretical Determination of Block Size NB

In experiments, we found that the efficiency factor , defined as ratio of test time and
the amount of operation, varies little with N gemination increase, but does distinct
change with NB to a great extent. After our inference verified, it seems proper to
choose suitable NB in quality referring to tendency of small-scale matrix efficiency
curve. It will undoubtedly reduce the blindness of NB determination, as well as benefit
emulation model construction. Detail description is in Reference [9].

2.2 Emulation by Constructing Model

Since computing is the main part in single processor, it is convinced to construct an
emulation model for cluster based on computing and communication parts.
By Tcomm = + L, communication time can be defined. Where = Communication
latency, = 1/bandwidth, L = Communication package size. By efficiency factor ,
computing time can be emulated utilizing operation amount. Then according to
analyzed HPL panel execution flow and execution logic, detailed in reference [9], an
estimating emulation model was implemented. Using the law in section 2.1 proper NB
is chosen, then emulation model was activated after acquiring the parameters
correlative to architecture, such as communication latency, bandwidth and so on.

3 Model Verification

To emulation model, verification is done on an AMD64 node and part of Dawning
4000A, which listed No. 10 in the newest Top500 lists with 11.264 Tflops theoretical
peak performance, respectively described in Table 1. Clearly, estimated results shown
in Table 2 are really close to real ones, and obviously better than the rough estimate
time, denoted as D in table, described in reference [1].

HPL Performance Prevision to Intending System Improvement 779

Table 1. Summary of tested architectures

Arch. Proc.
no.

Freq.
(Ghz)

Peak
Perf.

(Gflops)

Bandwidth
(Gb/s)

Latency
(ns)

Mem. Size
per node

(GB)
AMD64 single

Node ()
1×2 1.6 3.2 0.664 25000 2

Dawning 4000A
Nodes ()

16×4 2.4 4.8 2.5 5000 8

Table 2. Comparison of real system record time and estimated one

Tested
Arch.

Matrix
Dim.

N

Proc.
Array
P×Q

Real
Time

(s)

Estimate
Time

(s)

Diff.
(%)

D Time
(s)

D Diff.
(%)

8000 2×1 70.04 70.25 0.2998 71.88 2.6271
14140 1×2 354.88 354.13 -0.2113 356.49 0.4537
57780 2×2 8196.63 8159.42 -0.4540 8123.27 -0.8950

115760 2×8 16625.72 16552.34 -0.4414 16309.29 -1.9032

Note: The arch. I and II are corresponding to the ones in Table 2.

The above verification further strengthens the credibility of emulation model.

4 Prevision of Potential Test Performance

Referring to system status of Dawning 4000A, rough forecast is attempted on
potential performance to be brought by intending system improvement by the above
model. It can be beneficial to leverage efforts on architecture optimization.

4.1 When Memory Size Changes by Gemination

The adjustment of memory size is simulated by matrix dimension N. Estimated
results in Table 3 indicate that, with memory size increasing by gemination, the
increase scale of system efficiency decreases and the difference is only several
permillage. Although reference [10] arguments that there is no limitation for the
factorization of huge matrix, due to the time completing once row copy of 9000
elements is 1.8 milliseconds, it seems that reducing matrix size to store in row and
column simultaneously is more of feasibility than enlarging the matrix size auxiliary
by hard disk prefetching. Moreover, in large scale, the difference between Dongarra
estimated time and the model estimated is not up to 3%, which assures the model
estimation believable to some extent.

W. Zhang, M. Chen, and J. Fan 780

Table 3. To estimate performance improving scale with simulated memory change

Mem.
Size
(G)

Matrix
Dim.

N

Estimate
Time

(s)

D Time
 (s)

FP Op
Rate

(Gflops)

Gflops
Diff

(Gflops)

Effi.
(%)

Incr.
Scale
(%)

2560 509120 12609.8 12256.2 6976.8 61.9391

5120 720000 35164.0 34476.2 7076.3 99.4847 62.8223 0.8832

10240 1018230 98483.1 97134.4 7146.3 70.0316 63.4441 0.6217

20480 1440000 276643.6 273984.8 7195.7 49.3921 63.8826 0.4385

4.2 When Bandwidth Increases by Ten Times

Based on estimated results shown in Table 4, to gigabit per second bandwidth level, it
will be only 0.8% performance improvement to HPL with ten times increase of
bandwidth. It is obviously inferior to the former ten times improvement to Gb/s
acquiring 8.6% increase. The developing potential distinctly diminishes.

Table 4. To estimate performance improving scale with bandwidth change

Bandwidth
(Gb/s)

Estimate Time
(s)

FP Op Rate
(Gflops)

Efficiency
(%)

Incr. Scale
(%)

0.25 40768.19 6103.6 54.1864

2.5 35163.99 7076.3 62.8223 8.6359

25 34714.57 7167.9 63.6356 0.8133

4.3 When Latency Decreases by Thousand Times

Clearly, results in Table 5 show that in large scale once the latency reduces to
nanosecond level its decrease is of little real meaning to performance improvement.

Table 5. To estimate performance improving scale with latency change

Latency Estimate Time
(s)

D Time
(s)

Time Diff.
(%)

5ms 53756.93 53050.33 1.3144

5us 35182.56 34494.77 1.9549

5ns 35163.99 34476.21 1.9559

HPL Performance Prevision to Intending System Improvement 781

4.4 When Efficiency Factor Varies

The estimated results in Table 6 indicate that, varying +/- 0.1 from current value
0.35 causes system floating point operation rate to change by a large scale, and the
increased scale increases with further improvement. Unfortunately, is acting by
complex factors, related to main frequency and number of FPU etc. Limited by its
complexity, further insulated analysis on correlated factors for should be done.

Table 6. To estimate performance improving scale with efficiency factor change

Effi. factor

Estimate Time
(s)

FP Op Rate
(Gflops)

Incr. Scale
(%)

0.45 45438.57 5476.2
0.35 35441.02 7021.0 28.2090
0.25 25443.48 9779.8 39.2931

5 Conclusions

Theoretical analysis and actual system verification show that, it is feasible and
credible to use the characteristic of efficiency factor to determine NB and further
construct emulation model to estimate HPL execution time. The estimated results
demonstrate that to expectative system improvements, such as memory size,
communication bandwidth etc., HPL performance is not improved as obviously as
that brought by little change of . It further indicates that updating computation
accounts for absolute portion of Linpack test, whose little change will cause
obvious performance increase. Yet due to acting by complex factors, work here
corresponding to is to be done further. The model is to be amended to do more
precise forecast.

References

1. Jack J. Dongarra, Piotr Luszczek and Antoine Petitet. The LINPACK Benchmark: Past,
Present, and Future, Concurrency and Computation: Practice and Experience 15, 2003

2. A. Petitet, R. C. Whaley, J. Dongarra, A. Cleary. HPL – A Portable Implementation of the
High-Performance Linpack Benchmark for Distributed-Memory Computers, http://www.
netlib.org/benchmark/hpl/

3. Hans W. Meuer, Erik Strohmaier, Jack J. Dongarra and H.D. Simon. Top500
Supercomputer Sites, 17th edition, November 2 2001. (The report can be downloaded
from http://www.netlib.org/benchmark/top500.html)

4. Zhang BL, etc. Theory and method of numeric parallel computing, Beijing: National
defense industry press, 1999,7

5. Lin CS. Numeric computing method (Column A), Beijing: Science press, 1998
6. Chen GL. Parallel computing: structure, algorithm, programming (modified version),

Beijing: Advanced education press, 2003.8

W. Zhang, M. Chen, and J. Fan 782

7. Sun ZZ. Numeric analysis (second edition), Nanjing: South-east university press, 2002.1
8. http://www.cs.utk.edu/~dongarra/WEB-PAGES/SPRING-2000/lect08.pdf
9. Zhang Wenli, Fan Jianping, Chen Mingyu. Efficient Determination of Block Size NB for

Parallel Linpack Test. Proceedings of the IASTED International Conference on Parallel
and Distributed Computing and Systems (PDCS 2004), MIT, Received.

10. Eddy Caron, Gil Utard. On the performance of parallel factorization of out-of-core
matrices, parallel computing, 30 (2004) 357-375

A Novel Fuzzy-PID Dynamic Buffer Tuning Model to
Eliminate Overflow and Shorten the End-to-End

Roundtrip Time for TCP Channels

Wilfred W. K. Lin1, Allan K. Y. Wong1, and Tharam S. Dillon2

1 Department of Computing, Hong Kong Polytechnic University, Hong Kong SAR
{cswklin, csalwong}@comp.polyu.edu.hk

2 Faculty of Information Technology, University of Technology, Sydney, N.S.W. 2000
tharam@it.uts.edu.au

Abstract. The novel Fuzzy-PID dynamic buffer controller/tuner eliminates
overflow at the user/server/application level adaptively. As a result it shortens
the end-to-end roundtrip time (RTT) of a client/server TCP interaction due to
improved fault tolerance. The Fuzzy-PID, which is independent of what occurs
at the system/router level, is formed by combining fuzzy logic with the extant
algorithmic model, the pure PID (P2ID) tuner. It eliminates the shortcomings
from the P2ID component but preserves its power. Its operation is independent
of the traffic pattern, and this makes it suitable for the Internet, where the traffic
pattern switches suddenly, for example, from LRD (long-range dependence) to
SRD (short-range dependence) or multi-fractal.

1 Introduction

The proposed novel dynamic buffer controller/tuner, the Fuzzy-PID, eliminates over-
flow at the user/server/application level. It adaptively tunes the buffer size so that it
always covers the queue length by the given margin Δ . The fuzzy logic strengthens
the power of its component pure PID (P2ID) controller [1]. The result is that the
channel roundtrip time (RTT) is shortened due to better fault tolerance, reliability,
availability and dependability. Although the deployment data for the extant P2ID
tuner working alone shows that it always eliminates server buffer overflow, it has two
distinctive shortcomings: a) it locks up too much unused buffer memory even when
remedial control is no longer needed, and b) the queue length can get dangerously
close to the buffer length with a sudden influx of requests.

2 Related Work

The “P+D” algorithm was among the first models to deal with user-level overflow [2]
by dynamic buffer tuning. It uses queue length (Q) changes for proportional (P) con-

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 783–787, 2004.
© Springer-Verlag Berlin Heidelberg 2004

W.W.K. Lin, A.K.Y. Wong, and T.S. Dillon 784

trol and the rate of Q changes, dt
dQ for derivative (D) control. Although it worked

perfectly well in simulations, it failed frequently in real-life deployments. The desire
to strengthen the “P+D” control led to the P2ID development [3], which adds integral
(I) control to improve the anticipative power of the “P+D” model. The I control uses
the IEPM (Internet End-to-End Performance Measurement) technique to sample the
trend of Q changes automatically and quickly at runtime as the feedback to auto-tune
the control process.

3 The Novel Fuzzy-PID Controller

The novel Fuzzy-PID controller eliminates the P2ID shortcomings and preserves its
merits at the same time. It achieves this by dynamic maintenance of the given safety

margin Δ for the chosen 2},0{ Δ objective function. The fuzzy logic in the controller

divides the P2ID control domain into a set of small fuzzy regions. Table 1 shows the
fuzzy regions of a Fuzzy-PID design, which is a FLC (Fuzzy Logic Controller) matrix
(the FLC(4x4) matrix in this case). The fuzzy rules for the fuzzy regions together
form the fuzzy knowledge base for fuzzy control. The adaptive adjustment of the
buffer length (i.e. dynamic buffer tuning) by addition or subtraction depends on the
current fuzzy region, which is either manned by an inert “don’t care” state (marked
by X in Table 1) or a unique fuzzy rule. The purpose of the inert states is to shorten
the execution time of Fuzzy-PID by requiring no computation.

Table 1. A Fuzzy-PID controller design example; FLC(4x4)

4 Experimental Results

The Fuzzy-PID model was verified with simulations in the Aglets environment,
(Figure 1), where the driver and the server are aglets (agile applets) that collaborate
within a single computer. The driver picks a waveform (e.g. Poisson) or a trace (e.g.
self-similar [4]) from the table and uses it to generate the inter-arrival times for the
simulated merged traffic for the server queue buffer. A trace is a pre-collected set of
requests over a TCP channel (e.g. between Hong Kong PolyU and LaTrobe Univer-
sity in Australia). The trace, which embeds a real-life traffic pattern, verifies that the
Fuzzy-PID precision and stability is indeed independent of traffic patterns. The traffic
characteristic of a chosen waveform or trace, for example, LRD or SRD, are checked
and analyzed at the same time. The checking is called “traffic pattern analysis” [5] as
shown by the box in Figure 1. In the experiments different tools were used to identify

A Novel Fuzzy-PID Dynamic Buffer Tuning Model 785

Fig. 2. Trace analysis with the Selfis Tool (R/S Estimator invoked)

the exact waveform/trace character. For example, the Selfis Tool [21], which provides
the R/S (rescaled adjusted statistics) plot, can estimate the Hurst (H) effect/value for
the results presented here. The usefulness of the H value is as follows: 15.0 ≤< H

indicating LRD, and 5.00 ≤< H implying SRD.

Fig. 1. The setup for the verification experiments

4.1 Case 1 – SRD (Random Traffic)

For the random RTT traffic trace chosen for demonstration the R/S plot of the Selfis
Tool yields H=0.482, with 99.84% confidence for its SRD character (Figure 2).

W.W.K. Lin, A.K.Y. Wong, and T.S. Dillon 786

Figure 3 shows that both the Fuzzy-PID and P2ID controllers produce no overflow
for this trace. The exponential or random nature of the RTT trace is confirmed by
calculating and comparing its mean (m) and standard deviation (δ), which are 99

ms and 93 ms respectively. The “ 9399 ≈ ” (i.e. δ≈m) condition indicates that the
traffic comes from a Poisson process of the SRD nature.

Fig. 3. Experimental results for the Intra-
net Traffic

Fig. 4. Fuzzy-PID performance for a self-
similar traffic pattern (Figure 4)

4.2 Case 2 – LRD (Self-Similar Traffic)

Self-similar traffic contains bursts that can inundate the server queue buffer. It is
important for the Fuzzy-PID to nullify its ill effect by auto-tuning. Figure 4 shows the
Fuzzy-PID performance for the self-similar pattern confirmed in Figure 5.

Fig. 5. Trace analysis with the Selfis Tool (R/S Estimator invoked

A Novel Fuzzy-PID Dynamic Buffer Tuning Model 787

5 Conclusion

The novel Fuzzy-PID dynamic buffer tuner improves the reliability and the response
timeliness of the end-to-end client/server interaction over a TCP channel. It achieves
this by eliminating buffer overflow at the server/user level. Together with the AQM
mechanism(s) at the system/router level it forms a unified solution for buffer over-
flow prevention along the path of client/server interaction. This enhances the chance
of success for running time-critical applications on the Internet, especially in the soft
sense. The Fuzzy-PID is, however, independent of the system operations and traffic
patterns. In this way it enhances the client/server interaction reliability, which means
better service continuity to satisfy the QoS requirements.

Acknowledgement

The authors thank the Hong Kong PolyU for the HZJ1 and A-PF75 research grants.

References

[1] May T.W. Ip, Wilfred W.K. Lin, Allan K.Y. Wong, Tharam S. Dillon and Dian Hui Wang,
An Adaptive Buffer Management Algorithm for Enhancing Dependability and Perform-
ance in Mobile-Object-Based Real-time Computing, Proc. of the IEEE ISORC’2001,
Magdenburg, Germany, May 2001, 138-144

[2] Allan K.Y. Wong and Tharam S. Dillon, A Fault-Tolerant Data Communication Setup to
Improve Reliability and Performance for Internet-Based Distributed Applications, Proc. of
the1999 Pacific Rim International Symposium on Dependable Computing (PRDC’99),
Dec.1999, Hong Kong (SAR), China, 268-275

[3] Allan K.Y. Wong, Tharam S. Dillon, Wilfred W.K. Lin and T.W. Ip, M2RT: A Tool
Developed for Predicting the Mean Message Response Time for Internet Channels, Jour-
nal of Computer Networks, vol. 36, 2001, 557-577

[4] Glen Kramer, Generator of Self-Similar Network Traffic, http://wwwcsif.cs.ucdavis.edu/
~kramer/code/trf_gen2.html

[5] T. Karagiannis, M. Faloutsos, M. Molle, A User-friendly Self-similarity Analysis Tool,
ACM SIGCOMM Computer Communication Review, 33(3), July 2003, 81-93
(http://www.cs.ucr.edu/~tkarag/Selfis/Selfis.html)

[6] B. Tsybakov and N.D. Georganas, Self-similar Processes in Communications Networks,
IEEE Transactions on Information Theory, 44(5), September 1998, 1713-1725

[7] S.I. Resnick, Heavy Tail Modeling and Teletraffic Data, The Annals of Statistics, 25(5),
1997 1805-1869

 J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 788–797, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Communication Using a Reconfigurable and Reliable
Transport Layer Protocol

Tan Wang and Ajit Singh

Department of Electrical and Computer Engineering,
University of Waterloo,

Waterloo, Ontario, Canada, N2L 3G1
t7wang@engmail.uwaterloo.ca, asingh@etude.uwaterloo.ca

Abstract. Although TCP is known to be inefficient over networks such as
wireless, satellite, and log-fat-pipes, it is still the most widely used transport
layer protocol even on these networks. In this paper, we explore an alternative
strategy for designing a reliable transport layer protocol that is much more
suitable for today’s mobile and other types of non-conventional networks. The
objective here is to have a single protocol that is compatible with today’s com-
munication software and can be easily made to perform better over all types of
network. The outcome of the research is a reconfigurable, user-level, reliable
transport layer protocol, called RRTP (Reliable and Reconfigurable Transport
Protocol) that is TCP-friendly, i.e. it asymptotically converges to fairness as in
the case of LIMD (Linear Increase Multiplicative Decrease) algorithms. The
protocol is implemented on top of UDP, but it can also easily be incorporated
into OS kernels. The paper presents the RRTP algorithm and the key parame-
ters that are necessary for its reconfiguration. We evaluate our protocol using
the standard network simulation tool (ns2). Several representative network
configurations are used to benchmark the performance of our protocol against
TCP in terms of network throughput and congestion loss rate. It is observed
that under normal operating conditions, our protocol has a performance advan-
tage of 30% to 700% over TCP in lossy, wireless environments as well as high
bandwidth, high latency networks.

1 Motivation

The ubiquitous reliable transport protocol TCP leaves a lot to be desired under certain
modern network environments. For instance, according to a previous research work,
TCP treats all losses as signs of network congestion [1]. As a result, deploying TCP
over wireless network, where wireless losses instead of congestion losses are com-
monplace, will result in poor performance. In addition to providing unsatisfactory
performance in wireless environments, TCP is also ill suited for high bandwidth high
latency networks [2]. In this paper, we propose a solution that targets several non-
conventional categories of network environments where the performance of TCP is
known to be unsatisfactory. At the same time, our solution should provide competi-
tive performance in other environments. Our approach differs from the traditional
routes for improving the performance of TCP in several ways:

Communication Using a Reconfigurable and Reliable Transport Layer Protocol 789

• We design and implement a reliable transport protocol that would meet or exceed
the performance level of TCP under various types of networks.

• Instead of requiring the algorithm to be implemented in the kernel of an operating
system, the algorithm can be demonstrated at the user level. At the same time, OS
developers can adopt the algorithm later for implementation at the kernel level.

• We suggest the approach of designing a single algorithm that is reliable, robust,
and is configurable to provide better performance over different types of net-
works. For this approach, the research suggests a few key network characteristics
that can be used to configure the algorithm.

• The approach can take advantage of an application developer’s or an end-user’s
knowledge of the operating environment and provide better performance. How-
ever, it is capable of working well even in the absence of such knowledge.

The new algorithm is called RRTP. For the purpose of evaluating RRTP, we
study its behavior under several representative network environments that include:
wireless last-hop topology, wireless backbone topology, as well as high bandwidth
high latency networks (also known as long-fat-pipes). From these studies, the
throughput of RRTP is compared to that of TCP in each scenario. Our simulation
results demonstrate that significant improvements can be made to enhance a user’s
experience with wireless networking through the appropriate usage of parameters for
congestion avoidance and loss differentiation. In addition, re-configurability is
shown to be of key importance for the superior performance of RRTP. The remainder
of the paper details our work so far with the RRTP protocol.

2 The RRTP Approach

This section presents the design approach of the RRTP protocol. First, we focus on
the congestion control mechanism of RRTP. According to Chiu and Jain [3], the
LIMD (Linear Increase Multiplicative Decrease) approach to congestion control is the
only paradigm that will settle down to a state of fairness with an arbitrary starting send
rate. The congestion control mechanism of RRTP, like many other TCP variants, fol-
lows the basic framework of LIMD approaches but with a significant difference. In-
stead of taking TCP’s approach of flow control window ramping and adjustment, RRTP
uses a rate-based algorithm that reacts to incipient congestion and consequently limits
the rate of traffic flow below the maximum available bandwidth most of the time.
RRTP implements a 4-way handshake connection establishment in order to avoid the
DoS (Denial of Service) phenomenon suffered by TCP. During the handshaking
process, the nominal value of network RTT (round trip time) is determined. This
RTT value refers to the ideal situation in which no network congestions are present.

Once the connection is established, the sender will send out two successive packets
for the purpose of probing the network capacity and determining the initial send rate.
Let us suppose the send interval of these two packets is X milliseconds. Once the
receiver gets both packets, it will advertise to the sender the observed receive interval
(Y milliseconds) for the two packets. The sender will calculate the initial send rate
based on max(X, Y).

T. Wang and A. Singh 790

After the initial send rate is determined, the upper layer applications will be able to
start using RRTP to transfer information. In the ideal situation where the application
user/programmer has an accurate knowledge of the network throughput capability
and configures the send rate accordingly, RRTP should be able to instantaneously
operate at just below the maximum network capacity. This ensures both minimum
wasted bandwidth and stress-free network conditions.

Without user configuration, RRTP will make an educated guess as to the approxi-
mate network configuration based on the measured initial send rate and RTT. Each
type of network configuration has a pre-defined set of parameter values associated
with it. These parameters are: SendRatemax and SendRatemin which, as the names imply
define the upper and lower bounds respectively for the data send rate.

SendRatemax serves the purpose of preventing the newly computed send rate from
exceeding the maximum network capacity. SendRatemin prevents the underutilization
of the network that sometimes occurs due to the downward fluctuations of the newly
computed send rate.

In protocol design terminology, an epoch refers to a certain interval of packet in-
terchange. In RRTP, we define an epoch to be the interval in which ten packets are
sent or received. Since the packet interval time is a key network parameter that we
use in RRTP’s rate-based congestion control mechanism, we keep two running aver-
ages of it: the long-term and the short-term running average. The long-term packet
interval average is used for calculating the send/receive rate ratio and adjusting the
current send rate. The short-term packet interval average is computed during each
epoch. If it significantly deviates from the long-term average, the network would
most likely be under stress (congestion due to link failure or additional traffic). At
such times, the short-term average is used for the purpose of send rate adjustment
instead of the long-term average in order to accurately reflect the network conditions.

Because of the fact that the send rate is only adjusted at the end of each epoch,
constant fluctuation of network traffic is minimized. This results in a more stable
network connection. At the time of send rate adjustment, the newly adjusted rate is
subjected to comparison with two parameters mentioned earlier: SendRatemax and Sen-
dRatemin. In other words, the new rate must fall within the range of SendRatemin to
SendRatemax. This is done to minimize the chance that an overshoot occurring when
RRTP ramps up the send rate during the linear increase phases and the occurrence of
unnecessary reduction in the send rate during the multiplicative decrease phases.
SendRatemax and SendRatemin are not fixed values. They are re-calculated based on
changes of network dynamics as discussed in the previous paragraph.

The send rate adjustment is carried out using the following algorithm: first, we de-
fine an additive increase factor α with different initial values based on the type of
network RRTP is operating on as well as a multiplicative decrease factor β with an
initial value of 0.05. If the send/receive rate ratio is greater than 1.05, RRTP is oper-
ating at a level above the maximum network throughput capacity. Our protocol treats
such situations as signs of incipient congestion and will carry out the following ad-
justment: SendRatenew = SendRateprev × max((1-β), 0.5). The value of β is doubled for
every consecutive multiplicative decrease phase until it reaches the upper bound of
1-β > 0. Here, we take max((1-β), 0.5) to be the adjustment factor to ensure that the

Communication Using a Reconfigurable and Reliable Transport Layer Protocol 791

rate reduction factor will never drop below 0.5. In other words, when RRTP first
detects signs of incipient congestion, it gently reduces the send rate with a small value
of β. If the incipient congestion persists over several epochs, the value of β will be
doubled every epoch to more effectively suppress incipient congestions. Now on the
other hand, if the send/receive rate ratio is less than 0.95, RRTP is operating well below
the maximum network capacity. This results in a linear increase phase in which Sen-
dRatenew = SendRateprev + α. In addition, β is reset to its initial value of 0.05.

With the rate-based congestion avoidance mechanism described above, RRTP is
able to avoid several situations for congestion that would be encountered by TCP.
However, there are situations that will result in congested network even with RRTP as
the end-to-end transport mechanism. Such situations include temporary link failures
and sudden surges of new traffic. Under ill-fated network conditions like this, pack-
ets may be lost due to severe congestion. RRTP aggressively reduces the send rate
(by 50% for each congested epoch) in response to detected congestions. Such efforts
are needed to avoid a total network collapse. When the signs of congestion disappear,
instead of carrying out the slow start used in TCP, RRTP performs an instantaneous
send rate recovery by using the last recorded characteristic send rate as the one for the
next send/receive cycle.

For the case in which the user mis-configures the initial send rate, our algorithm is
smart enough to detect that. Send rate convergence is still guaranteed in this scenario
due to the nature of RRTP’s rate control mechanism.

Let us now discuss the issues of reliability and re-configurability. The ability to re-
configure to adapt to different network platforms is the key feature that sets RRTP
apart from most of the other protocols of its kind. Reconfigurability is built into
RRTP by the means of the parameterization of a set of key network parameters. Our
experiments indicate that only a small set of parameters is needed to design a re-
configurable transport protocol algorithm that would provide a good performance on
different types of networks. These parameters are: (1) SendRatenominal that denotes the
normal channel capacity, (2) RoundTripTimenominal which defines the normal end to
end latency, and (3) LossRatenominal which is the characteristic data loss rate for the
channel.

To ensure a reliable transport, the receiver sends two kinds of acknowledgements
to the sender: cumulative acknowledgement, and negative acknowledgement. Nega-
tive acknowledgements are coupled with timeouts. Our timeout mechanism uses
RTT. Cumulative acknowledgements serve as confirmation of received packets dur-
ing normal network operations. When a cumulative acknowledgement is received by
the sender, the sender can safely remove the corresponding acknowledged buffered
packets. The cumulative acknowledgement interval is defined to be the period during
which 32 packets are received.

Finally, we turn our focus to loss differentiation algorithm of RRTP. Several pub-
lished research works on the issue of TCP performance enhancement over wireless
networks have considered sender-based loss differentiation. RRTP, on the other hand,
is based on the intuition that the receiver usually has more accurate and timely knowl-
edge of packet losses. Consequently, the receiver is responsible for figuring out the
cause of a particular loss and informing the sender to take the appropriate action.

T. Wang and A. Singh 792

For wireless last hop networks, RRTP makes two assumptions regarding the
path characteristics. The first assumption states that the wireless link has the low-
est bandwidth and thus is the bottleneck of the network. Secondly, the wireless
base station is assumed to serve strictly as a routing agent between the wired and
the wireless network with no additional smart capabilities. As one can, quite easily
see, with the big difference in bandwidth between wired LAN (100 Mbps) and
cellular wireless (around 19.2 Kbps), packets traveling on the wired network would
get congested at the base station while adapting to the lower send rate imposed by
the wireless network. As a result, the packets transmitted on the wireless connec-
tion tend to be clustered together. If a packet loss occurs due to random wireless
transmission errors, the receiver should be able to observe a certain time interval in
which the packet is expected but not received. Such an event can be interpreted to
be the sign of wireless loss due to transmission errors. Following this reasoning,
RRTP can distinguish between wireless losses form congestion losses using the
following heuristics: let Tmin be the minimum observed packet interval for the re-
ceiver and Tseparation be the interval between the time when the last correct packet is
received and the time when the lost packet is detected by the receiver. Suppose n
packets were lost, the loss is characterized as wireless loss if the following relation
holds: (n + 1) Tmin < Tseparation < (n + 1.75) Tmin. The number we choose are experi-
mentally determined to cause the lowest misclassification rate between congestion
and wireless losses.

For the wireless LAN topology, the assumptions that we made in the previous
situation are usually not true. Conventional wired LAN is not much faster than
high-speed wireless LAN. As a result, packets don’t necessarily travel in close
succession on the wireless LAN connection. Consequently, the previous LDA
heuristic will not perform as well as in wireless last hop topology. As a result, an
alternative approach is used in this case to distinguish between wireless loss and
congestion losses.

In order to achieve good accuracy in distinguishing between the two types of
packet losses for the wireless LAN topology, RRTP uses the ROTT (Relative One-
way Trip Time) measurements as congestion indicators. ROTT is defined to be the
time between the moment when the packet is sent and the moment when the packet is
received. It is measured at the receiver end. During periods of smooth traffic flow,
ROTT measurements will remain relatively stable. When the network starts to be-
come congested, the receiver will detect rising ROTT values. The default behavior of
RRTP in this situation is that the receiver will issue an explicit incipient congestion
notification to the sender to throttle the send rate. In the event that the rise in ROTT
values is coupled with packet losses, the receiver can be confident that the packet
losses are caused by congestion. However, if the packet losses are not accompanied
by a rise in ROTT value, the receiver will categorize these losses to be due to wireless
errors. As it was discussed above, two different LDA schemes are used by RRTP.
Depending on the actual wireless network in use, RRTP selects the appropriate LDA
to achieve optimum performance.

Communication Using a Reconfigurable and Reliable Transport Layer Protocol 793

3 Simulation Results

To evaluate the actual performance of RRTP, we have created various simulation
scenarios using the ns2 simulator [4]. Tests were conducted under the simulated
environments with RRTP, TCP Reno, TCP New Reno and TCP Vegas. The charac-
teristics of these environments are summarized in Table 1.

Table 1. Testing Environment Specifications

Environment Bandwidth One-way
Latency

% Loss

High Latency &
High BW

100 Mbps 100 ms 1%

CDMA 19.2 Kbps 100 ms 1%
Satellite 256 Kbps 100 ms 1%

LAN 100 Mbps 5 ms 0%
Wireless LAN 11 Mbps 10 ms 1%

Fig. 1. Protocol Performance for High Speed High Latency Environment with 1% Data Loss
Rate

In a high latency high bandwidth topology, a typical protocol that relies on sender-
receiver feedbacks will inevitably suffer from the slowness of its response to chang-
ing network condition. This is due to the fact that round trip return time is extremely
large and consequently, it is difficult to rely on feedbacks to adjust the send rate.
Fairness can be severely limited as newly entered traffic will almost always be
starved by previously established traffic. However, because of the fact that RRTP is
reconfigurable, good estimates of the network conditions can be provided to the ap-
plication before the transfer starts, allowing a much higher throughput than conven-
tional TCP as demonstrated in Figure 1.

High Speed High Latency Netw ork at 1% Loss

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6 7 8 9 10

Tim e (sec)

T
o

ta
l P

ac
ke

ts
 S

en
t

Reno

New Reno

Vegas

RRTP

T. Wang and A. Singh 794

Fig. 2. Protocol Performance for CDMA Environment with 1% Data Loss Rate

Fig. 3. Protocol Performance for Satellite Environment with 1% Data Loss Rate

Fig. 4. Protocol Performance for Wireless LAN Environment with 1% Data Loss Rate

Both CDMA and satellite network can be considered to be roughly wireless last
hop topologies. As demonstrated in Figure 2 and Figure 3, RRTP performs much
better than TCP Reno and TCP New Reno on both types of network platforms. This
is expected since when losses are encountered, TCP invokes its congestion control
mechanisms right away without making an effort to distinguish among the different
types of losses. In this scenario, results are quite similar to the wireless last hop topol-
ogy. The Spike LDA enables RRTP to differentiate between congestion losses and

CDMA at 1% Loss

0

50

100

150

200

250

300

1 10 20 30 40 50 60 70 80 90 100

Tim e (sec)

T
o

ta
l P

ac
ke

ts
 S

en
t

Reno

New Reno

Vegas

RRTP

Wireless LAN at 1% Loss

0

200000

400000

600000

800000

1000000

1200000

1400000

1 2 3 4 5 6 7 8 9 10 11

Tim e (sec)

T
o
ta

l P
ac

ke
ts

 S
en

t

Reno

New Reno

Vegas

RRTP

Satellite at 1% Loss

0

500

1000

1500

2000

2500

3000

3500

1 10 20 30 40 50 60 70 80 90 100

Time (sec)

T
ot

al
 P

ac
ke

ts
 S

en
t

Reno

NewReno

Vegas

RRTP

Communication Using a Reconfigurable and Reliable Transport Layer Protocol 795

wireless losses, resulting in a superior performance in term of throughput as shown in
Figure 4. In addition to the three network platforms mentioned above in which RRTP
demonstrates superior performance, the simulation result shown in Figure 5 also
demonstrates that the performance of RRTP on conventional LAN closely matches
that of TCP Vegas. This implies that not only could RRTP outperform TCP in certain
network configurations, it could also serve as a viable substitute in the more tradi-
tional network settings.

Fig. 5. Protocol Performance for LAN Environment with 0% Data Loss Rate

4 Comparison with Related Works

Many approaches to improve the performance of TCP over wireless have been pre-
sented in the data communications literature. The first category of approach uses
link-layer retransmissions and thus shields wireless losses from TCP as proposed by
DeSimone et al. [5]. Such approaches work well when the latency over the wireless
link is small as compared to the coarse grain TCP timer. There are also TCP-aware
snoop mechanisms that have a snoop-agent module at the wireless base station as
proposed by Balakrishnan et al. [6]. In WWAN environments, snoop does not work
well because it exacerbates the problem of large and varying round trip times by
suppressing negative ACKs.

In the past, a number of researchers have also proposed end-to-end solutions to im-
prove the performance of TCP in certain cases. Casetti et al. [7] proposed an end-to-end
modification of the TCP congestion window algorithm, called TCP Westwood that
relies on end-to-end bandwidth estimation to discriminate the cause of packet loss.
However, most of their evaluations are based on the wireless link being the last link to
the receiver. This algorithm is also highly dependent on the TCP ACKing scheme.

Biaz and Vaidya have looked at two different approaches to the end-to-end loss
differentiation for TCP connections. They first looked at a set of “loss predictors”
based upon three different analytic approaches to congestion avoidance that explicitly
model connection throughput and/or round-trip time (e.g., TCP Vegas) [8]. Their
results were negative in that these algorithms, formulated to do loss differentiation,
were poor predictors of wireless loss. In subsequent work, they proposed a new algo-

LAN at 0% Loss

0

200000

400000

600000

800000

1000000

1200000

1400000

1 10 20 30 40 50 60 70 80 90 100

Tim e (sec)

T
o

ta
l P

ac
ke

ts
 S

en
t

RRTP

Reno

New Reno

Vegas

T. Wang and A. Singh 796

rithm that uses packet inter-arrival time to differentiate losses. Using simulation, they
show that it works well in a network where the last hop is wireless and is also the
bottleneck link. But they failed to evaluate their algorithm when the wireless link is
not the last hop and nor the bottleneck of the network.

One of the fundamental design decisions we made in the making of RRTP is the
conscientious effort of congestion avoidance. By promoting congestion avoidance,
network throughput can be significantly enhanced as less congestion related situations
are encountered during the lifetime of the network connection. This design approach
can also be seen in TCP Vegas. However, in the case of TCP Vegas, there is one
significant drawback in its design. Lai and Yao [9] have shown in their study that
when different traffic flows compete with each other in the same channel, traffic
running under older and more widespread version of TCP such as TCP Reno and TCP
Tahoe tends to be much more aggressive than the ones that are running under TCP
Vegas in terms of competing for the available network bandwidth. RRTP, on the
other hand, does not suffer from the same problem. In fact, it is observed to be as
aggressive as TCP Reno and TCP New Reno in terms of bandwidth acquisition.

Another major advantage of RRTP is that it is reconfigurable in nature. The user
does not have to restrict himself to any particular network configuration for optimum
network conditions when RRTP is used as the underlying transport layer protocol. In
a way, RRTP tries to be a generic protocol like TCP. The main deviation from TCP’s
design philosophy is that RRTP takes advantage of user’s knowledge of the network.
By doing so, RRTP can perform just as well as the various solutions discussed in this
section in each individual special cases while still remaining insensitive to the varying
network configurations.

The research done by Sinha et al. [10] on WTCP has significant commonality with
the present work. WTCP is an end-to-end transport layer protocol that uses a rate-
based mechanism for congestion control and the Biaz [8] LDA for differentiating
between congestion losses and wireless losses. Although it is able to achieve good
results on wireless last hop networks, the authors did not test WTCP on other types of
wireless platforms such as wireless backbone network and wireless LAN. In fact, we
believe that WTCP will likely perform poorly on the two latter network platforms.
The reason is that the Biaz LDA is only optimized for wireless last hop networks.
When we tested the Biaz LDA on networks with wireless LAN configuration, we
found that the algorithm resulted in a lower throughput than the Spike [11] LDA.
RRTP addresses this shortcoming of WTCP by designing a LDA mechanism that is
closer to the Spike LDA for better performance on wireless backbone and wireless
LAN networks.

Another advantage of RRTP over WTCP is its faster send rate convergence. Since
RRTP allows the user to specify the ideal sending rate for the network platform of
interest, accurate user inputs could potentially help RRTP to converge to the ideal
send rate within the initial connection establishment period. This really translates into
the avoidance of many unnecessary overshoots that would otherwise be encountered
if WTCP were used as the transport layer protocol. For short-lived connections,
RRTP will be able to out perform WTCP by several folds since the user inputs for the
initial send rate essentially eliminate the need for network capacity probing phase.

Communication Using a Reconfigurable and Reliable Transport Layer Protocol 797

5 Summary

The paper presents a novel reliable and reconfigurable transport protocol, called
RRTP, that is able to not only provide better performance on non-conventional net-
works where TCP’s performance is known to be unsatisfactory, it also provides a
performance competitive to TCP on conventional networks such as the common LAN
environment. The option of user-level implementation facilitates quicker adoption of
the protocol on most platforms whereas optional re-configuration would allow tuning
of the protocol for better performance under various types of networks. Once the user
community gathers enough experience with the protocol, it could be adapted for im-
plementation at the kernel level. The work is continuing on creating an application
programmer’s interface (API) for RRTP, based on sockets, that is very similar to the
socket interface for TCP in Linux and Windows OS environments.

References

1. Balakrishnan, H., Padmanabhan, V., Seshan, S., Katz, R.: A Comparison of Mechanisms
for Improving TCP Performance over Wireless Links. IEEE/ACM Transactions on Net-
working, Vol.5, no. 6, (1997) 756-769

2. Jacobson, V., Braden, R., Borman, D.: TCP Extensions for High performance. RFC 1323,
(1992)

3. Chiu, D., Jain, R.: Analysis of the Increase/Decrease Algorithms for Congestion Avoid-
ance in Computer Networks. Journal of Computer Networks and ISDN Systems, vol. 17,
no. 1, (1989)

4. ns-2 Network Simulator (version 2). LBL, URL: http://www.isi.edu/nsnam/ns
5. DeSimone, A., Chuah, M.C., Yue, O.: Throughput Performance of Transport Layer Proto-

cols over Wireless LANs. Proceedings of IEEE GLOBECOMM, (1993)
6. Balakrishnan, H., Seshan, S., Amir, E., Katz, R.: Improving TCP/IP Performance over

Wireless Networks. Proceedings of ACM MOBICOM, (1995)
7. Casetti, C., Gerla, M., Mascolo, S., Sanadidi, M.Y., Wang, R.: TCPWestwood: Bandwidth

Estimation for Enhanced Transport over Wireless Links. Proc. ACM Mobicom 2001 Con-
ference, Rome Italy (2001) 287-297

8. Biaz, S., Vaidya, N.: Distinguishing Congestion Losses from Wireless Transmission
Losses: A Negative Result. Proc. 7th Intl. Conf. on Computer Communications and Net-
works, Lafayette LA (1998)

9. Lai, Y.C., Yao, C.-L.: The Performance Comparison between TCP Reno and TCP Vegas.
Proc. of Seventh International Conference on Parallel and Distributed Systems, Iwate, Ja-
pan, (2000)

10. Sinha, P., Nandagopal, T., Venkitaraman, N., Sivakumar, R. Bharghavan, V.: WTCP: A
Reliable Transport Protocol for Wireless Wide-Area Networks. Wireless Networks 8,
(2002) 301-316

11. Tobe, Y., Tamura, Y., Molano, A., Ghosh, S., Tokuda, H.: Achieving Moderate Fairness
for UDP Flows by Path-status Classification. Proc. 25th Annual IEEE Conf. on Local
Computer Networks (LCN 2000), Tampa FL (2000) 252–261

Minicast: A Multicast-Anycast Protocol
for Message Delivery

Shui Yu, Wanlei Zhou, and Justin Rough

School of Information Technology, Deakin University,
Geelong, Victoria, Australia

{syu, wanlei,ruffy}@deakin.edu.au

Abstract. Anycast and multicast are two important Internet services.
Combining the two protocols can provide new and practical services. In
this paper we propose a new Internet service, Minicast: in the scenario of
n replicated or similar servers, deliver a message to at least m members,
1 ≤ m ≤ n. Such a service has potential applications in information
retrieval, parallel computing, cache queries, etc. The service can provide
the same Internet service with an optimal cost, reducing bandwidth con-
sumption, network delay, and so on. We design a multi-core tree based
architecture for the Minicast service and present the criteria for calculat-
ing the subcores among a subset of Minicast members. Simulation shows
that the proposed architecture can even the Minicast traffic, and the
Minicast application can save the consumptions of network resource.

1 Introduction

Dramatic development of the Internet has led to many communication paradigms
providing all sorts of Internet-based services. Multicast delivers a packet from
a source to n members in the multicast group [1] and has applications of data
synchronization, Internet meeting, etc. Anycast delivers a packet from a source
to the “best” receiver among n replicated servers [2] and has applications in
information retrieval; it can reduce the cost for the relative Internet services.
Combining the two protocols can provide new practical Internet services. PAM-
cast [3] is a good example, generalizing both anycast and multicast by delivering
packets to m out of the total n group members (1 ≤ m ≤ n). However in
PAMcast m is constant, although we can change m from time to time. PAM-
cast emphasizes message delivery over information retrieval and with a fixed
parameter m is not flexible and costs network resources.

Information retrieval is increasingly important given the growth content on
the Internet. In this paper, we propose a new packet delivery service, Minicast,
which generalizes both anycast and multicast for the purpose of information
retrieval. Minicast delivers packets to any m out of n total group members (1 ≤
m ≤ n). Minicast has potentially a wide range of applications, including: parallel
information retrieval (searching for a message from a group of similar web sites),
parallel cache queries (given several cache replicas a client can query a subset for

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 798–803, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Minicast: A Multicast-Anycast Protocol for Message Delivery 799

desired data), parallel grid computing (selection of computers to service a job
given a large number of members), and parallel downloading (request m servers
send separate portions of the same file).

This paper is organized as follows. Section 2 introduces related work on any-
cast and the multicast, including combinations. The Minicast architecture is
presented in Section 3. A performance evaluation and analysis is in Section 4.
Finally in Section 5, conclusions and future work are presented.

2 Related Work

Multicast, recognized as an important facility because of its growing usage in
distributed systems, sends packets to all members of a group [1]. A recent sur-
vey concluded that there are five classes of multicast routing algorithms [4]:
flooding, spanning tree, reverse path forwarding, core-based tree, and solution
to the travelling salesman problem. There is also good research on core based
multicast algorithms [5–8]. Partridge, Mendez, and Milliken proposed the idea
of anycast for the delivery of packets to at least one host in a group, preferably
only one host [2]. Initial research focused on network-layer anycast [9–12] but
due to limitations development moved to application-layer anycast [13, 14].

Jia et al. proposed integration of multicast and anycast, where multicast
provides update consistency and anycast assists multicast requests to reach the
“nearest” member in the multicast group [10]. The combination of anycast and
multicast offers bi-directional service for distributed data processing systems:
multicast provides data synchronization among the multicast group, and anycast
finds the “best” server in the anycast group. Furthermore, anycast is a good
methodology for both server load balance and network load balance.

3 The Minicast Multi-core Architecture

In this section, we propose a multi-core architecture for the Minicast service. To
describe the architecture simply and clearly, we do not address network reliabil-
ity. Instead, we assume a reliable network with no local failures. The multi-core
architecture for the Minicast service is shown in Fig. 1. All Minicast receivers
are defined as members of a Minicast group; all the Minicast group members are
connected by Minicast routers (routers capable of Minicast routing). Minicast
routers may be distributed anywhere in a network. The network is partitioned
into N domains by organizations, regions or other metrics. A router is selected
in each domain as a local core, and a local Minicast tree rooted on the local core
is established of which Minicast members become leaves. The local core holds
all information about the local tree, such as number of members and number of
hops to each member. All local cores exchange tree information when necessary.

For the whole network, we have N cores for a Minicast group. For performance
reasons, we organize the N cores into an anycast group. Anycast addresses are
used to ensure client queries are delivered to the “nearest” anycast member (the

800 S. Yu, W. Zhou, and J. Rough

R1 R2

R3

R4

R5 R6

R8 R7

C: Core Router
R: Router

C1

C2 C3

Fig. 1. Multi-core Architecture

C

R1 R2 R3

R4
R5 R6

G

G

G

H

H

G

C: Core Router
R: Router
G: Group member
H: Host
 Tree link
 Non-tree link

R8

G H

R7

Fig. 2. Local Minicast Tree Example

core). Without loss of generality, we suppose that a local tree has k members.
If k ≥ m, where m is the Minicast parameter, the packet is delivered to at
least m members and close to k members by the local core setting a suitable
TTL and multicasting the packet on the local tree. If k < m, the local core
similarly multicasts the packet to the local tree but simultaneously forwards the
Minicast query with parameter m−k to the nearest remote core. The remote core
continues the procedure until at least m Minicast members receive the packet.

Fig. 2 shows an example local Minicast tree. All local domain members are
included in the tree, and there is a core (members are shaded). Note that a router
may be in a local Minicast tree without any directly connected members, such
as router R3. The local core knows the hops to each member, so that it can set
the TTL when sending packets. We define Minicast radius as the number of hops
for delivering a packet to at least m members. For example, to send to at least
three members the Minicast radius is set to three. Packets are discarded after
three hops, and within that distance, the message is delivered to four members.
Local core selection is achieved similar to Gupta and Srimani [5], as follows:

1. Randomly select one node from the member in a given domain, assume the
node is the local core, and build the local Minicast tree base on the core.

2. The core calculates the sum of the weights of each subtree, and detects when
it is no longer a centroid of the local Minicast tree.

3. The current local core starts a migration towards the current centroid of the
local Minicast tree.

4 Performance Analysis

We conducted several simulations of Minicast in an experiment environment
consisting of 20 Minicast members, 3 local core and 17 non-core. All local trees
containing a similar number of members is called a symmetric Minicast tree,
otherwise asymmetric. We conducted traffic concentration simulations for both

Minicast: A Multicast-Anycast Protocol for Message Delivery 801

Local Tree Involved

0

20

40

60

80

100

120

140

1 3 5 7 9 11 13 15 17 19

Parameter M

T
im

es
 In

vo
lv

ed

Local Tree 0
Local Tree 1
Local Tree 2

Fig. 3. Asymmetric Tree

 Local Tree Involved

0

20

40

60

80

100

120

140

1 3 5 7 9 11 13 15 17 19

Parameter M

T
im

es
 In

vo
lv

ed

Local Tree 0

Local Tree 1

Local Tree 2

Fig. 4. Symmetric Tree

0
5

10
15
20
25
30
35
40
45

1 2 3 4 5 6 7 8 9 10

Number of Information Holders

D
el

ay
(m

s)

m=2
m=6
m=10
m=14

Fig. 5. Minicast Application in Information Caching

symmetric and asymmetric Minicast trees. During each experiment, Minicasts
are randomly initiated from the local trees, and count the times a local core is
used in packet delivery to measure the distribution of the traffic on the Minicast
tree given an increasing m.

For the asymmetric tree (Fig. 3), local trees 0, 1, and 2 have 10, 6, and 4
Minicast members respectively. Based on the analysis of the curves, we can con-
clude that in general, the packet distribution is even among the local Minicast
trees. For the symmetric tree (Fig. 4), the local trees have 7, 6, and 7 mem-
bers. It is obvious that the packet distribution is even among the three local
Minicast trees. The two experiments show that the Minicast solves the traffic
concentration problem and has even packet distribution among members.

To simulate the application of Minicast in information retrieval, we exam-
ine an information caching application (Fig. 5). Here there are 23 hosts in a
Minicast group, some of which hold information (we do not know which). Given
that we want to use minimal bandwidth, we measure the network delay as a
metric. We did the simulation on the asymmetric Minicast tree scenario with
m values of two, six, ten, and four. The simulation shows that the performance
(delay) is mostly not sensitive to the value of m or the number of the informa-
tion holders. Therefore, in practical applications a small m can be used to save
bandwidth.

802 S. Yu, W. Zhou, and J. Rough

5 Conclusions and Future Work

In this paper, we proposed a new Internet service, Minicast, a combination of
anycast and multicast services which given n replicated servers delivers a mes-
sage to at least m members (1 ≤ m ≤ n). The essential advantage of this ser-
vice is that the proposed model provides same service in terms of QoS with less
cost for Internet applications. We proposed a multi-core tree architecture for
the Minicast service, where the cores are organized into an anycast group to
ensure queries are first delivered to the “nearest” core using anycast and then
delivered to at least m members using multicast. Simulations show that Mini-
cast can handle traffic concentration very well, and that Minicast can reduce
network resource consumption while maintaining performance for information
caching.

Further issues such as the relationship between the performance and the
number of local cores for a Minicast group, the issue of fault-tolerance in the
Minicast services, a comparison of the performance of Minicast and related ser-
vices, should be explored. Further simulations will be completed in the near
future to assess the Minicast service.

References

1. Deering, S.E., Cheriton, D.R.: Multicast routing in datagram internetworks and
extended lans. ACM Transactions on Computer Systems 8 (1990)

2. Partridge, C., Mendez, T., Milliken, W.: Host anycasting service. Technical Report
RFC1546 (1993)

3. Chae, Y., Zegura, E.W., Delalic, H.: Pamcast: Programmable any-multicast for
scalable message delivery. In: Proceedings of IEEE OpenArch. (2002)

4. Vincent, R., Luis, C., Rolland, V., Anca, D., Serge, F.: A survey of multicast
technologies (2000)

5. Gupta, S.K.S., Srimani, P.K.: Adaptive core selection and migration method for
multicast routing in mobile ad hoc networks. IEEE Transactions on Parallel and
Distributed Systems 14 (2003)

6. Jia, W., Xu, G., Zhao, W.: Efficient internet multicast routing using anycast path
selection. Journal of Network and Systems Management 12 (2002) 417–438

7. Thaler, D., Ravishankar, C.V.: Distributed center location algorithms. IEEE
Journal on Selected Areas in Communications 15 (1997) 291–303

8. Yoon, J., Bestavros, A., Matta, I.: Somecast: A paradigm for real-time adaptive
reliable multicast. In: IEEE Real-Time Technology and Applications Symposium
(RTAS), Washington DC (2000)

9. Basturk, E., Engel, R., Haas, R., Peris, V., Saha, D.: Using network layer anycast
for load distribution in the internet. Technical report (1997)

10. Jia, W., Xu, G., Zhao, W.: Integrated fault-tolerant multicast and anycast routing
algorithms. IEE Proceedings of Computers and Digital Techniques 147 (2000)

11. Katabi, D., Wroclawski, J.: A framework for scalable global ip-anycast (gia). In:
SIGCOMM, Stockholm, Sweden (2000)

Minicast: A Multicast-Anycast Protocol for Message Delivery 803

12. Xuan, D., Jia, W.: Distributed admission control for anycast flows with qos require-
ments. In: IEEE International Conference on Distributed Computing Systems.
(2001)

13. Bhattacharjee, S., Ammar, M.H., Zegura, E.W., Shah, V., Fei, Z.: Application-
layer anycasting. In: IEEE INFOCOM, Kebe, Japan (1997)

14. Fei, Z., Bhattacharjee, S., Zegura, E.W., Ammar, M.H.: A novel server selection
technique for improving the response time of a replicated server. In: IEEE INFO-
COM. (1998)

 J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 804–814, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Dependable WDM Networks with
Edge-Disjoint P-Cycles

Chuan-Ching Sue1, Yung-Chiao Chen2, Min-Shao Shieh1, and Sy-Yen Kuo2

1 Department of Computer Science and Information Engineering,
National Cheng Kung University, Tainan, Taiwan

{suecc, sms}@mail.ncku.edu.tw
2 Department of Electrical Engineering, National Taiwan University,

Taipei, Taiwan
{ycchen, sykuo}@cc.ee.ntu.edu.tw

Abstract. In this paper, we propose a fault tolerant mechanism on the optical
network design with edge-disjoint P-cycles (EDPC). EDPC is a special type of
traditional P-cycles, that is, no common edges are allowed to exist between any
two P-cycles. Previously published schemes for computing P-cycles are time
consuming and do not survive multiple link failures when P-cycles have com-
mon edges. Instead of using the complex ILP, a heuristic method based on link
state routing which is compatible to the traditional open shortest path first
(OSPF) network protocol is proposed to speed up the construction of EDPC.
The results show that the EDPC method can tolerate more link failures and im-
prove the restoration efficiency for traditional P-cycles with the decrease of two
working units for every two P-cycles.

1 Introduction

Protection and restoration are both important issues in dependable WDM networks.
On such topic, there are four approaches as following: loop-back and redundant trees
[8], [9], [12], Protection cycles (without chords) [3], P-cycles (with chords) [5], [6],
and shared path protection in WDM networks [11], [12]. In this paper, we will focus
on the improvement of the P-cycles.

The simplest way to think about P-cycles is that they are like rings, but with sup-
port for the protection of chord spans as well as the usual ring spans of the ring itself.
A chord span is one that has its end-nodes on the P-cycles, but is not itself part of the
P-cycles. The key distinction of P-cycles as opposed to any kind of ring or cycle
covers is the protection of chord spans which themselves can each bear two units of
working capacity and zero spare capacity.

P-cycles introduced by Grover and Stamatelakis [1-2] can be characterized as pre-
configured protection cycles in a mesh network. With the hybrid cycle and mesh
approach, the P-cycle concept is able to benefit from the advantages of both worlds.
Ring protection mechanisms offer very fast recovery times (about 50-60 ms), but the
required spare to working resources ratio is at least 100%, in real networks sometimes

Depdendable WDM Networks with Edge-Disjoint P-Cycles 805

more than 200%. For mesh networks, however, the required spare to working re-
sources ratio can typically be in the range of only 50-70% for well-connected physi-
cal network graphs. The concept of P-cycle utilizes the benefits of both alternatives:
the efficiency of mesh restoration and the recovery speed of ring networks.

In this paper, we assumed WDM node can often be very reliable, e.g., internal re-
dundancy is used and only the link failure is considered. Although one P-cycle
provides protection against single link failure, it cannot protect against double simul-
taneous failures on that P-cycle. If multiple link failures happen in such a way that
there is at most one link failure on each P-cycle, the P-cycles can actually protect
against such multiple failures. However, without careful consideration, there are
many overlapped edges among the P-cycles. Single link failure on the overlapped
edge causes multiple associated P-cycles failing to survive one additional link failure.
Instead of computing P-cycles with Integer Linear Programming (ILP), we are inter-
ested in efficient construction of many edge-disjoint P-cycles (EDPC) that can really
protect multiple link failures. The construction scheme is based on the link state rout-
ing which is compatible to the traditional open shortest path first (OSPF) network
protocol. We then extend the scheme by selective reconfiguration or rerouting when
EDPC lost its protection ability due to double link failures in a P-cycle.

In order to explain the difference between the traditional P-cycle and our EDPC,
Fig. 1(a) shows only one P-cycle with a long restoration path, Fig. 1(b) shows four P-
cycles with shorter restoration paths but the limited fault tolerance for multiple link
failures due to shared edges between P-cycles, and Fig. 1(c) compromises the length
of restoration path but with the increased ability for multiple link failures.

(a) (b) (c)

Fig. 1. (a) One P-cycle. (b) Four P-cycles with overlapped edges. (c) Two p-cycles with
edge-disjoint edges

The rest of this paper is organized as follows. In Section 2, we give the prelimi-
naries for our edge-disjoint P-cycles scheme. In Section 3, the heuristic method of
constructing the edge-disjoint P-cycles is detailed. The time complexity of EDPC is
also discussed. Section 4 depicts the performance evaluation and discusses the pros
and cons of our EDPC. Finally, we conclude our study in Section 5.

2 Preliminaries

Edge-disjoint P-cycles (EDPC) inherit many advantages of P-Cycle. One is that for
chord link failures, the length of protection paths are on average half the length of the
individual small protection cycle circumference, whereas in rings, protection paths

C.-C. Sue et al. 806

are essentially the full circumference of the ring. Because EDPC are formed in the
spare capacity only, they can be adapted to suit the working path layer at any time,
without any impact on working demands. In contrast, rings assert the routing that
demands must take, rather than adapting to the routes they want to take. Jointly opti-
mizing the working path routing with EDPC placement should yield even further
capacity savings and the efficiency of restoration.

EDPC can not only speed up the recovery time, but also offer more resilience for
link failures when the network size is large. Fig. 2(a) shows the allocated spare capac-
ity with dashed lines in the traditional P-cycle and Fig. 2(b) shows the protected
working capacity with solid lines using the traditional P-Cycle. The length of the
average recovery route is eight hops long and only one link failure can be survived.
On the other hand, Fig. 3(a) shows the spare capacity by way of EDPC with three
overlapped nodes and none overlapped edge. Fig. 3(b) shows another possible alloca-
tion of the spare capacity by way of EDPC with two overlapped nodes and none over-
lapped edges. Both Fig. 3 (a) and (b) have the same protected working capacity with
the traditional P-Cycle in Fig. 2(b). But EDPC can increase the efficiency of failure
recovery, i.e., achieving shorter restoration route and surviving two simultaneous link
failures. Further, between the edge-disjoint P-cycles, the number of overlapped nodes
is proportional to the number of the allocated spare capacity. Fig. 3(b) can support the
same number of working capacity but with the fewer spare capacity than Fig. 3(a)
because it has only two not three overlapped nodes. EDPC needs two additional spare
units at least with one additional overlapped node. Thus, our method would construct
the EDPC with the fewer number of overlapped nodes as possible.

0

1

2

7

8
3

4 6

5

0

1

2

7

8
3

4 6

5

(a) (b)

Fig. 2. (a) Spare capacity in the traditional P-cycle. (b) Working capacity in the traditional P-
cycle

0

1

2

7

8
3

4 6

5

0

1

2

7

8
3

4 6

5

0

1

2

7

8
3

4 6

5

0

1

2

7

8
3

4 6

5

(a) (b)

Fig. 3. (a) Spare capacity in the EDPC with 3 overlapped nodes. (b) Spare capacity in the
EDPC with 2 overlapped nodes

Depdendable WDM Networks with Edge-Disjoint P-Cycles 807

Take an example that we have a request from node3 to node6 and the result of the
shortest path routing is edge 3-6. If the edge 3-6 failures, the traditional P-Cycle in
Fig. 2 must be routed four or five hop counts on average from this failure. But EDPC
is routed three or four hop counts on average in Fig. 3(a), and two or four hop counts
on average in Fig. 3(b). Our design can reduce two hop counts distance on average
for recovering from failure.

EDPC provide guaranteed protection against single link failure that is on a P-cycle
of EDPC, it can’t protect against simultaneous failures to two links on that cycle (for
example, (1,3) and (2,6) in Fig. 3). If failures of multiple links happen in such a way
that there is at most one failure on each P-cycle of EDPC, then the EDPC can actually
protect against such multiple failures (e.g. (1,3) and (7,8)). More P-cycles can protect
against more simultaneous failures. The probability of double on-cycle failures
should increase with the growth of network scale. Our method should take the proper
measure to adjust the node number of each P-cycle in EDPC, and form a better pro-
tection partition to protect against more simultaneous link failures.

EDPC allows at least two overlapped nodes when it finds the secondary P-cycle.
Because the property of P-cycle is two-connected, one link failure along the cycle
does not affect the ability of spare capacity. This property is similar to the short leap
share protection (SLSP) [4]. SLSP uses a path-switch LSR (PSL) and a path-merge
LSR (PML), which switches over and merges back the affect traffic during a failure,
respectively. The design of SLSP has four nodes overlapped with each adjacent p-
domain, but EDPC has at least two nodes overlapped for each adjacent P-cycle.

3 Heuristic Method

According the explanation of the above section, we need to propose a method to
decide the number of P-cycles in EDPC and the number of nodes in each P-cycle. For
simplicity, we assumed that each partition (P-cycle) has the same number of nodes.

In accordance with above assumption, we generate a mathematical formulation to
probe how many partitions we should make with different network sizes. With the
number of partition increases, the number of overlapped nodes and the number of
induced spare edges will grow up. In the same situation, we can endure more links
failure simultaneously for EDPC when the partition regions grow in number. We can
obtain a better performance tradeoff on spare usage and restoration efficiency. Let the
increasing spare edges due to overlapped nodes be represented by formula K, the over-
head of spare edges utilization for all partitions by formula X and the effect of hop
counts for restoration paths on average by formula Y. Our goal is to minimize the value
of objective function for the weighted sum of X and Y to decide the number of partition.

Define:
R: partition number.
K: the increasing spare edges due to overlapped nodes.
X: the overhead of spare resource utilization.
Y: the overhead of failure recovery.
V: the network area’s total node number.

C.-C. Sue et al. 808

Formula K:
When one partition is added and is edge-disjoint with the adjacent partitions, there

are at least two overlapped nodes and thus at least two spare edges are increased, e.g.
(R,K)= (1,0), (2,2), (3,4), (4,6), (5,8) …etc.

K= 2*(R-1).

Formula X:
We extend the probability of spare edges utilization to total edges for each parti-

tion in [6] to consider the effect of increased spare edges. The formula X represents
the overhead of the spare edges. The increasing number of partitions can increase the
number of spare edges but also increase the number of tolerated link failures. On the
other hand, fewer partitions can reduce the number of spare edges but also decrease
the number of tolerated link failures. In order to detail the formula, we further define
the following variables.

M: the number of spare edges when only one P-cycle is allowed.
Ni: the number of spare edges in each P-cycle i of EDPC.
S: the number of fully connected edges in each P-cycle of EDPC, i.e., a 4-node P-
cycle has the same number of edges in K4 for simplicity.
M= Ni ,i=1…R.

We can use Ni/Ni+2(S-Ni) to represent the utilization of spare edges in one of R
partitions. And R*[Ni/Ni+2(S-Ni)] is used to represent the relationship between the
number of partitions and the utilization of spare edges without considering the effect
of overlapping nodes. K/M is to used to consider the effect of overlapped nodes on
the usage of spare edges.

Thus X=R*[Ni/Ni+2(S-Ni)]+K/M can simultaneously take the number of parti-
tions and the number of overlapped nodes into account to represent the overhead of
spare edges.

Formula Y:
One advantage of EDPC as well as P-cycle is that for chord link failures, the hop

counts of protection paths are on average half that of the P-cycle circumference,
whereas in rings protection paths are essentially the full circumference of the ring [7].
With the increasing number of partitions, the failure recovery time will also increase
in our model.

Thus Y = 0.5*(V/R) is used to represent the overhead of the restoration speed.
As for the objective function, we use the weighted sum of X and Y, i.e., min

[BX+(1-B)Y]. B is a constant value. This value is set 0.5 because we don’t favor X
or Y.

We follow this formula to analyze how many partitions we should make with dif-
ferent network sizes (e.g, according to the number of nodes). We depict one of the
results of the objective function with different network sizes. For example, when V =
30, the minimum value is R=5, Ni=6, S=15, K=8, M=30, X=5[6/6+2(15-
6)]+(8/30)=1.517, Y=0.5(30/5)=3, and BX+(1-B)Y=2.259.

The complete result for the number of partitions is further shown in Fig. 4. It
shows the number of partitions can be increased with the increasing network sizes.

Depdendable WDM Networks with Edge-Disjoint P-Cycles 809

After deciding the number of partition number, the heuristic method based on the
link-state routing can construct the EDPC. Each link-state routing table of individual
node has recorded the weighted value to other nodes, so we can choose a node as the
starting node before partitioning with the whole network area. Then we sort these metric
values of starting node’s routing table and decide the range of each partition and the
starting node of each partition according to the number of partitions decided by Fig. 4.

Fig. 4. The results of the proper partition number under various network sizes

For example, we observe the node0’s routing table in Fig. 5. At first, we take the
node 0 as the starting node of partition I. Second, we allow two nodes to overlap, so
the number of partition I is 6 and the number of partition II is 5. This is because we
take the ceiling of (9/2) + 1 to obtain the range of partition I. And the last two nodes
in the range of partition I are also in the partition II. Third, we enlarge the range of
each partition with overlapped nodes to avoid the condition of no disjoint edges be-
tween adjacent partitions. The enlargement of the range is an adjustable parameter.
We take no more than 1/3 of the original number of nodes in one partition. It is to
bound the number of overlapped nodes between each partition. Fourth, each starting
node in each partition finds an edge-disjoint P-cycle according to the range and fi-
nally an adjustment stage is performed in our heuristic method to try to reduce the
number of overlapped nodes to 2.

39

27

26

25

14

13

12

11

-0

costNext node number

Node(0)’s routing table

39

27

26

25

14

13

12

11

-0

costNext node number

Node(0)’s routing table

Fig. 5. Link-state routing table for node 0 in Fig. 2

C.-C. Sue et al. 810

The whole procedure of our EDPC is depicted in the following. The physical to-
pology is represented by G(V, E), where V is the set of nodes and E is the set of
edges. T is the link-state routing table of the first starting node. R is the set of parti-
tions’ information including each partition range and the starting node.

Procedure EDPC algorithm ()
Begin

Partition phase (G(V,E),T)
Construction phase (G(V,E),R)
Adjustment phase (R)

End Procedure EDPC algorithm.

Function Partition phase(G(V,E),T)
Begin
 Set r = Decide the number of partitions for G(V,E).
 For each partition i
 Decide the initial range of each partition with 2 additional overlapped nodes
 Enlarge the partition range according to degree factor, i.e., adding the nodes

with larger degree in partition i-1 and partition i+1 to partition i.
 End for
 Decide the starting node of all the partitions by the resulting partition range

through the help of T
End

Define the operation of routing a P-cycle as using the depth-first search (DFS) [10]
to find the path in the partition and verify that the ending node of the path has a back
edge to the root node to form a cycle.

Function Construction phase (G(V,E),R)
Begin
 For each partition R[i]
 If R[i] is the first partition do
 Route a P-cycle from its range.
 Else
 Route a P-cycle from R[i] and make such P-cycle edge-disjoint with the P-

cycle of R[i-1] as possible.
 End If
 End for
End

The final stage is to adjust the overlapped nodes between partition i and partition
i-1 to be minimal. Its purpose is to decrease the utilization of spare edges.

Function Adjustment phase (R)
Begin

For each partition R[i] and R[i+1]
 Fix one larger partition of the partition R[i] and partition R[i-1], and mark the

other partition adjustable.

Depdendable WDM Networks with Edge-Disjoint P-Cycles 811

 For any three consecutive overlapped nodes in the adjustable partition
 If there is an edge existed between two ending nodes
 Delete the middle node from the member of this adjustable partition.
 End For

End For
End

In the adjustment phase, let the middle node for any three consecutive overlapped

nodes in the adjustable partition be node M, and the other two nodes are nodes S1 and
S2. Deleting the middle node M implies that the two edges between the middle node
and the ending nodes (ie. (M, S1) and (M, S2)) are automatically released and the
edge between two ending nodes (S1, S2) is formed.

The time complexity of our EDPC heuristic method can be decomposed into
three components. The most time-consuming component is the time of the con-
struction phase. Although using the depth-first search (DFS) only requires O(n+m)
for a physical topology with n nodes and m edges, the P-cycle is not guaranteed to
be found in one run. Therefore, routing a P-cycle for a partition with k nodes takes
O(k!) time in the worst case. Thus O(r x k!) time is necessary for r partitions in the
worst case. Due to the proper partition, the nodes in each partition k can be thought
as a constant. In addition, the time complexity of the partition phase and the ad-
justment phase is also polynomial. Thus, the time complexity of our EDPC algo-
rithm is polynomial in practice.

4 Evaluation and Discussion

In this section, we compare the ability of tolerating multiple link failures between
EDPC and the traditional P-cycles. Three example networks: New Jersey LATA
network, APPANET network, and National Network are protected by our EDPC and
traditional P-cycles.

For New Jersey LATA network with 11 nodes, two partitions are constructed with
no overlapped edges for EDPC and two overlapped edges for traditional P-cycles. For
APPANET network with 20 nodes, three partitions are constructed with two over-
lapped edges for EDPC and three overlapped edges for traditional P-cycles. For Na-
tional network with 24 nodes, four partitions are constructed with eight overlapped
edges for EDPC and two overlapped edges for traditional P-cycles. When the multi-
ple link faults is assumed to be occurred in the different P-cycles, we found that the
number of link failures can be tolerated is the same as the number of P-cycles for
EDPC with the probability at least 80% while for traditional P-cycles with the prob-
ability as low as 43%. The complete result is shown in Table 1.

As the above comparison, our EDPC heuristic method is not guaranteed to gener-
ate edge-disjoint P-cycles. The possible results are classified as three cases. For case 1,
the EDPC is successfully constructed. For case 2, the EDPC can not be found. For
case 3, the EDPC is not complete with some edge-joint P-cycles. Fig. 6(a) shows the
possibility of case 2. There exists two edge-disjoint P-cycles but we can not obtain the
result from EDPC because the partition phase can not adapt to such unbalanced parti-

C.-C. Sue et al. 812

tions. Fig. 6(b) shows the edge-joint P-cycles can be constructed when there are
shared edges between two partitions. Our algorithm uses the enlargement to reduce
the possibility of case 2 and 3, i.e., the worst case of our EDPC is degenerated to
traditional P-cycles.

Table 1. The probability of the successful multiple link failure protection

Probability Tolerating 2 faults
 EDPCs P-cycles

New Jersey LATA network 100% 83%
APPANET network 87.31% 81.29%
National network 81.29% 66.59%

Probability Tolerating 3 faults

 EDPCs P-cycles

New Jersey LATA 0% 0%

network

APPANET network 81.29% 72.88%

National network 86.68% 53.91%

Probability Tolerating 4 faults

 EDPCs P-cycles

New Jersey LATA
network

0% 0%

APPANET network 0% 0%

National network 82.45% 43.39%

(a) (b)

Fig. 6. (a) Case 2. (b) Case 3

As for the case 1, we can use table 2 to compare the four performance criteria with
three different methods. The four performance criteria would include restoration

Depdendable WDM Networks with Edge-Disjoint P-Cycles 813

speed, the number of risk sharing edges, the spare resource utilization, and the protec-
tion range.

Table 2. Comparison of four different methods

Medium ~
high

Low ~ medium Low ~ mediumFast EDPC

LowHighHighMedium Mesh protection

MediumMediumHighFastMany protection
cycle

All (high)LowLowSlow One protection cycle

Protection
range

Spare resource utilizationThe number of risk
sharing edge

Restoration speed

Medium ~
high

Low ~ medium Low ~ mediumFast EDPC

LowHighHighMedium Mesh protection

MediumMediumHighFastMany protection
cycle

All (high)LowLowSlow One protection cycle

Protection
range

Spare resource utilizationThe number of risk
sharing edge

Restoration speed

5 Conclusions

This paper proposed an improved protection mechanism for WDM networks without
the help of edge-disjoint P-cycles (EDPC) to speed up the restoration time and toler-
ate more link failures. The proposed heuristic method is based on the local link-state
routing table to decide the partition range, construct the EDPC, and adjust the EDPC
for tradeoff between the overhead of spare resources and the protection ability. The
time complexity of our EDPC is only polynomial instead of NP-hard. Compared with
the traditional P-cycles, EDPC can not only tolerate multiple link failures but also
shorten the construction time. In the future, we will propose the failure recovery
method when the EDPC loses the protection ability due to double link failures in a P-
cycle.

References

1. W.D. Grover and D. Stamatelakis: Cycle-oriented distributed preconfiguration: ring-like
speed with mesh-like capacity for self-planning network restoration, Proc. IEEE Interna-
tional Conf. Commun., pp. 537-543, June 1998.

2. D. Stamatelakis and W.D. Grover: IP layer restoration and network planning based on
virtual protection cycles, IEEE JSAC Special Issue on Protocols and Architectures for
Next Generation Optical WDM Networks, vol.18, no.10, pp. 1938 – 1949, October 2000.

3. G. Ellinas, G. Halemariam, and T. Stern: Protection cycle in mesh WDM network, IEEE
Journal on Selected Areas in Communications, vol. 18, no. 10, pp. 1924-1937, Oct. 2000.

4. P.-H Ho and H. T. Mouftah: A framework for service-guaranteed shared protection in
WDM mesh network, IEEE Communications Magazine, Vol. 40, No. 2, pp. 97–103,
2002,.

5. Guoliang Xue and Ravi Gottapu: Efficient Construction of Virtual P-Cycles Protecting All
Cycle-Protectable Working Links, Workshop on High Performance Switching and Rout-
ing, pp. 305 – 309, June 2003.

6. A. Sack and W. D. Grover: Hamiltonian p-Cycles for Fiber-Level Protection in Homoge-
neous and Semi-Homogeneous Optical Networks, IEEE Network, Special Issue on Protec-
tion, Restoration, and Disaster Recovery, vol.49-56, 2004

C.-C. Sue et al. 814

7. W. D. Grover, J. Doucette, M. Clouqueur, D. Leung, and D. Stamatelakis: New Options
and Insights for Survivable Transport Networks, IEEE Communications Magazine, vol.
40, no. 1, pp. 34-41, January 2002

8. Muriel Médard, Richard A. Barry, Steven G. Finn, Wenbo He, and Steven S. Lumetta:
Generalized Loop-Back Recovery in Optical Mesh Networks, IEEE Trans. Networking,
vol. 10, pp.153-164, 2002.

9. Muriel Medard, Steven G. Finn, Richard A. Barry, and Robert G. Gallager: Redundant
Trees for Prepalnned Recovery in Arbitrary Vertex-Redundant Graphs, IEEE/ACM Trans-
actions on Networking, vol. 7, no. 5, pp. 641-652, Oct. 1999.

10. R.E. Tarjan: Depth First Search and linear graph algorithm, SIAM Journal on Computing,
vol. 1, pp. 146-160, 1972.

11. C.Qiao and D.Xu: Distributed partial information management (DPIM) schemes for sur-
vivable network, IEEE INFOCOM, pp.301-311, 2002.

12. L. Sahasrabuddhe, S. Ramamurthy and B. Mukherjee: Fault management in IP-over-
WDM network: WDM protection versus IP restoration, IEEE Journal on Selected Areas in
Communications, vol. 20 , pp 21 – 33, Jan. 2002.

 J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 815–824, 2004.
© Springer-Verlag Berlin Heidelberg 2004

An Efficient Fault-Tolerant Approach for MPLS
Network Systems

Jenn-Wei Lin and Hung-Yu Liu

Department of Computer Science & Information Engineering,
Fun Jen Catholic University, Taipei, Taiwan

jwin@csie.fju.edu.tw

Abstract. Multiprotocol label switching (MPLS) has become an attractive
technology for the next generation backbone networks. To provide high quality
services, fault tolerance should be taken into account in the design of a
backbone network. In an MPLS based backbone network, the fault-tolerant
issue concerns how to protect traffic in a carried path (label switched path
(LSP)) against node and link failures. This paper presents a new efficient fault-
tolerant approach for MPLS. When a node or link failure occurs in a working
LSP, the traffic of the faulty LSP (the affected traffic) is distributed to be
carried by other failure-free working LSPs. To minimize the affections on the
failure-free LSPs, the affected traffic distribution is transferred to the minimum
cost flow to be solved. Finally, extensive simulations are performed to quantify
the effectiveness of the proposed approach over previous approaches.

1 Introduction

With rapid growth of Internet and increase in real-time and multimedia applications,
hop-by-hop packet forwarding is insufficient to support current networking demands.
The IETF has proposed multiprotocol label switching (MPLS) as a new forwarding
technology for meeting the requirement of explosive Internet traffic. To provide high
quality services, fault tolerance is also an important issue in addition to fast
forwarding. If an Internet service provider (ISP) adopts the MPLS technology to
design its backbone network, a fault-tolerant mechanism is necessitated to protect the
carried traffic of a label switched path (LSP) against node and link failures. The LSP
is a transmission path in the MPLS network. Currently, many papers have addressed
the fault-tolerant issue of MPLS [1-7], which are based on the IETF two MPLS
recovery models: protection switching and rerouting [8].

In this paper, we propose a new fault-tolerant approach. In the proposed
approach, once detecting a failure in a working LSP, other failure-free working LSPs
are organized as a recovery path set. The traffic of the faulty LSP (the affected
traffic) is distributed to be carried by the failure-free working LSPs in the recovery
path set. To minimize the affections on the failure-free LSPs, the minimum cost flow
is applied to perform the affected traffic distribution. Unlike the protecting switching,
the recovery path of an LSP is not pre-established. The resources in the MPLS
network can be all used to created working LSPs to carry traffic. In addition, the

J.-W. Lin and H.-Y. Liu 816

proposed approach utilizes failure-free working LSPs to constitute a recovery path
set. The routes of failure-free working LSPs and their resources have been set up at
their creations. Compared to rerouting, the proposed approach can reduce much
recovery time.

The rest of this paper is organized as follows. Section 2 gives background
knowledge. Section 3 proposes our approach. Section 4 compares the proposed
approach with previous approaches. Concluding remarks are made in Section 5.

2 Background

This section describes the background knowledge of this paper. First, the MPLS
network model is given. Then, related work is reviewed.

2.1 Network Model

The network model referred to this paper is shown in Fig. 1, which consists of an
MPLS backbone network and two IP based access networks, and an OAM center. In
the MPLS backbone network, a number of label switched paths (LSP) are established.
Each LSP consists of an ingress label switching router (ingress LSR), one or more
intermediate label switched routers (intermediate LSRs), and an egress label
switching router (egress LSR). The creation of an LSP is accomplished by the label
distribution protocol (LDP) [9], which assigns appropriate labels to the LSRs on the
created LSP. By the label assignment, the created LSP is responsible for carrying the
packets with a particular forwarding equivalence class (FEC) type. The FEC
represents a set of packets with the same traffic requirements.

MPLS backbone nework

IP
Source
Access

Network

IP
Destination

Access
Network

Intermediate LSRs
Ingress LSRs Egress LSRs

Source hosts Destination hosts

LSR: Label switching router

OAM Center

LSR2

LSR5 LSR6

LSR3

LSR7

LSR10LSR9

LSR1

LSR4

LSR8

Fig. 1. The MPLS network model

When a source host sends an IP packet to a destination host, the packet is sent
through the IP source access network to an entry point (an ingress LSR) of the MPLS

An Efficient Fault-Tolerant Approach for MPLS Network Systems 817

backbone network. The ingress LSR determines the FEC of the packet based on the
some header fields of the packet. According the FEC, the packet is carried by one
corresponding LSP. Then, the ingress LSR inserts a label into the packet and
forwards the packet to the next LSR on the carried LSP. Next, each intermediate LSR
on the carried LSP use label switching to forward the packet within the MPLS
backbone network. Finally, the packet will be forwarded at the exit point (the egress
LSR) of the carried LSP. The egress LSR removes the label of the packet and uses
the conventional IP forwarding to forward the packet to the destination host via the IP
destination access network.

To be an ISP backbone network, an OAM center is also necessitated for managing
network components, verifying network performance, and monitoring network status.
The IETF has defined the OAM functions for an MPLS network system in [10].

2.2 Related Work

All existing MPLS recovery approaches are based on the IETF two MPLS recovery
models (protection switching and rerouting) [8] to pre-establish or dynamically
establish a recovery path for a faulty LSP.

The previous approaches of [1-4] belong to the protection switching model. In the
approach of [1], each working LSP has a disjoint backup path between its ingress
LSR and egress LSR. The backup path is pre-established, and it does not share any
intermediate LSRs with the working LSP. When a failure is detected in a working
LSP, a failure indication signal (FIS) is sent to the ingress LSR of the faulty LSP.
Upon receiving the FIS, the ingress LSR reroutes the incoming packets through the
disjoint backup path. However, the approach of [1] has the packet loss problem.

To solve the packet loss problem, the approach of [2] additionally pre-establishes
a backward path. The route of the backward backup path is reverse with the
working LSP. Although the approach of [2] can solve the packet loss problem, it
additionally introduces the packet disorder problem. To overcome the packet disorder
problem, the approach of [3] uses tagging and buffering techniques to improve the
approach of [2].

Unlike the above protection switching approaches, the approach of [4] pre-
establishes several backup paths to protect the traffic of a faulty LSP (the affected
traffic). In the approach of [4], its fault-tolerant idea is not novel, which is fully based
on the local recovery to protect the affected traffic. The main contribution in the
approach is to quickly compute the minimum capacity requirement for each backup
path.

For the approaches of [5-7], they belong to the rerouting model. In the approach
of [5], a pre-qualified recovery mechanism was proposed, as follows. Whenever a
working LSP is created, each LSR on the LSP also determines the route of its
corresponding recovery path. Unlike traditional rerouting approaches, the approach
of [5] does not take time to find the route of the recovery path after a failure since the
route has been determined before a failure. However, the approach of [5] incurs the
route calculation overhead during the normal time.

In the approach of [6], a technical term: candidate protection merging LSR
(candidate PML) is first defined. Then, the concept of the candidate PML is utilized
to reroute affected traffic along the least-cost recovery path. The approach of [6] can
easily handle multiple simultaneous failures since the route of the recovery path is

J.-W. Lin and H.-Y. Liu 818

dynamically found and established. But, the approach incurs a non-trivial recovery
time due to dynamically finding the least-cost recovery path.

So far, the above described approaches do not allow failures to occur at the edge
LSRs (the ingress or egress LSRs). Now, only the approach of [7] proposed a
rerouting solution to tolerate the ingress LSR failure, but the approach cannot be
applicable to the intermediate or egress LSR failure.

3 Proposed Approach

This section presents a new fault-tolerant approach for MPLS. Compared to the
rerouting based approaches, the proposed approach can reduce much recovery time.
In addition, the resource utilization in the proposed approach is more efficient in
comparison to the protection switching based approaches.

3.1 Basic Idea

In an MPLS network, the bandwidth capacity of an LSP is usually larger than the
bandwidth requirement of its carried traffic. Therefore, when a failure occurs in a
working LSP, other failure-free working LSPs may have residual bandwidth
capacities. This observation triggers an idea that one or more failure-free working
LSPs can substitute the faulty LSP to carry the affected traffic. To achieve the idea,
the following problems need to be solved first.

• How to redirect the affected traffic to failure-free LSPs
• How to distribute the affected traffic to failure-free LSPs without degrading the

bandwidth requirement
• How to forward the affected traffic along the route of a failure-free LSP

3.2 Problems to be Solved

For the first problem, a switchover mechanism is used to redirect the affected traffic.
As shown in Fig. 1, the packets to the MPLS backbone network are via the IP source
access network. For a source host, it has a corresponding access router in the IP
source access network. In theory, the access router can forward the packets of the
source host to any ingress LSR in the MPLS backbone network. After one ingress
LSR receives the packets, the packets are then carried by the corresponding LSP.
With the assistance of the access router, the redirection of the affected traffic can be
done as follows.

Upon detecting a failure in the desired LSP of the source host, the corresponding
access router of the source host initiates a switchover mechanism to forward incoming
packets to the ingress LSRs of other failure-free LSPs, as shown in Fig. 2. Then, the
failure-free LSPs can substitute the faulty LSP to carry the packets of the source host.
Here, the access router can be regarded as a load redirector to redirect the affected
traffic to other failure-free LSPs. The switchover mechanism in the access router can
be implemented by a software module which deletes the routing entry corresponding
to the faulty LSP and adds the routing entries corresponding to failure-free LSPs.
Based on the added routing entries, the access router can split the affected traffic to
multiple failure-free LSPs.

An Efficient Fault-Tolerant Approach for MPLS Network Systems 819

9

1

3

2

7

6

L S P 1

L S P 2

L S P 3

A c c e s s
r o u t e r

T r a f f i c
s w i t c h o v e r

S o u r c e h o s t

I P S o u r c e
A c c e s s N e t w o r k

M P L S B a c k b o n e N e t w o r k s

4 5

8

F a i l u r e

Fig. 2. The redirection of the affected traffic

Due to using multiple failure-free LSPs to carry the affected traffic, the proposed
approach has the problem of the affected traffic distribution (the second problem).
However, each failure-free LSP has different the residual bandwidth capacity and
delivery delay. The two factors will affect the cost of the affected traffic distribution.
To obtain the optimal distribution, the affected traffic distribution is transferred to the
minimum cost flow [11] to be solved, described as follows.

• Extract all failure-free LSPs to form a simple graph, as shown in Fig. 3. First, the
two edge LSR of each failure-free LSP are put in the simple graph as the ingress
and egress nodes. Between each ingress-egress node pair, an edge is set to connect
them. The cost and capacity in the edge are set to be the delivery delay and
residual bandwidth of its corresponding failure-free LSP. Based on the above
graph modeling, the available bandwidths in failure-free LSPs and their
corresponding delivery delay are mapped in the simple graph. However, from
Fig. 1, we can see that the packets from the source host to the destination host are
through two IP access networks in addition to the MPLS backbone network.
Therefore, the affected traffic distribution should also consider the redirection costs
in the two IP access networks. To take this consideration, a source node and a
destination node are additionally put in the most left and right positions of the
simple graph, respectively. For the source node of the simple graph, it corresponds
to the above mentioned load redirector. A number of edges are set from the source
node to all the existing ingress nodes in the simple graph. Each of such edges
corresponds to one transmission path in the IP source access network. The cost of
such each edge is set to the number of transit hops in its corresponding
transmission path. The capacity of each such edge is set to infinity. The reason is
that a transmission path in an IP access network has no QoS guarantee and it is
based on the best effort to forward packets. For the destination node of the simple
graph, it corresponds to the access router of the destination host in the IP
destination access network. Between the destination node and each egress node,
there is also an edge to connect them, which corresponds to a transmission path of
the IP destination access network. The transmission path is used to forward the
affected traffic from the egress LSR of one failure-free LSP to the destination host.
As for each edge of the destination node, its cost and capacity are set based on the
same way as the edge of the source node.

J.-W. Lin and H.-Y. Liu 820

M PL S Backbone N etw ork

In g re ss
 n o d e o f L S P 2

E g re ss
 n o d e o f L SP 2

1

9

3

4 5 6 7

8 10

M PL S B ackbone
N etw ork

L SP 1

L SP 2

L SP 3

2

IP S o u rce
A cc ess

N e tw o rk

IP D estin atio n
 A ccess

N e tw ork

In g res s
N o d e o f L S P3

E g re ss
 n o d e o f L SP 3

D estin a tion
 ho stsS o u rce

ho sts
F ai lu re

A c ce ss ro u te r o f
so u rce h o st

A cc e s s ro u te r o f
d es t in a t io n h o st

Fig. 3. The modeling of a simple graph

• Transfer the affected traffic distribution to the minimum cost flow. After forming
the simple graph, a traffic flow with x units of data rate is supplied to the source
node, where x is set to be equal to the bandwidth requirement of the affected
traffic. Given the simple graph with an input traffic flow, the affected traffic
distribution is transferred to the problem how to send the traffic flow from the
source node to the destination node with a minimum cost (the minimum cost flow
problem). Based on [11], the minimum cost flow problem can use the following
linear equation to represent it:

=

n

k
kk xcMinmize

1

 (1)

Subject to

=

=
n

k
LSPk

f
bx

1

nkallforrx kk 10 =≤≤

(2)

where xk represents what amount of the affected traffic is redirected to failure-free
LSPk. ck is the unit cost of a packet carried by failure-free LSPk, rk is the residual

bandwidth of failure-free LSPk, fLSPb is the bandwidth requirement of the affected

traffic, n is the number of failure-free LSPs.
Next, the third problem (how to forward the affected traffic along the route of a

failure-free LSP) is solved by using the header encapsulation and decapsulation
techniques. As mentioned in section 2.1, the packets carried by an LSP have the same
FEC type. The FEC type decision of a packet is based on some fields in its header
(e.g. source address and/or destination address, or port number). In another words, if
two packets are carried by the same LSP, some header fields in them must be same
since an LSP associates one type of packet header. This triggers an idea that if a

An Efficient Fault-Tolerant Approach for MPLS Network Systems 821

packet is encapsulated with a header type, it can be carried by the LSP associated with
the header type. The idea can be further utilized to make the affected traffic be
carried by a failure-free LSPs. An example is given in Fig. 4.

1 3

LSP 2

LSP 3

Destination host d1

4 7

8 10

LSP 1

Source host s1

Failure

5 6

9

2
FEC 1Payload

FEC 1 FEC 2Payload

FEC 1 FEC 3Payload
FEC 1Payload

FEC 1PayloadFEC 1 FEC 2Payload

FEC 1 FEC 3Payload

IP source access
network

IP destination access
network

Fig. 4. Header encapsulation and decapsulation

4 Comparison

For making the quantitative comparisons between the previous approaches and the
proposed approach, simulations are performed by extending the given MPLS
simulation module in the Network Simulator version 2 (NS-2) [12]. In the
simulations, there are 18 LSR nodes and 30 links in the MPLS network. The capacity
and delay for each link are fixedly set to 20 Mbps and 1 ms, respectively. Three
working LSPs are set in the MPLS network. The traffic flows carried by the three
working LSP are CBR traffic. The bandwidth requirements for the three traffic flows
are 10Mbps, 8Mbps, and 9Mpbs, respectively. Based on the above network model
and traffic parameters, each comparison approach perform 4 different simulation runs
to make the number of failures in each failure occurrence be 1, 2, 4, and 8,
respectively. Note that the failures randomly occur in 18 nodes and 30 links, and the
time of a simulation run is set to 200 seconds. For each failure occurrence, if one
approach can tolerate the failures successfully, 256 packets are next fed into the
recovery path to observe the transmission delay of the 256 packets. Here, the
transmission delay is used to represent the recovery quality. If the transmission delay
in one approach is smaller than one another, it represents that the recovery path of the
former approach is better than that of the later approach.

The simulation results for the fault-tolerant capability, recovery time and recovery
quality are illustrated in Fig.5-7, respectively. From Fig. 5-7, we can obviously see
that the proposed approach has the best performance in the fault-tolerant capability,
packet loss, packet disorder, and recovery qualify. With the fault-tolerant capability,

it is quantified as the restoration ratio:
occurring failures ofnumber the

 toleratedfailures ofnumber the
. From Fig. 5,

we see that the protection switching based approaches have a larger drop in the
restoration ratio if the number of simultaneous failures is more than 2. The reason is
explained as follows. The protection switching based approaches worry about failure
occurrence at the pre-established paths. If the number of simultaneous failures is more

J.-W. Lin and H.-Y. Liu 822

than 2, there is a high probability that there are also failures in the pre-established
backup paths. For the proposed approach, its fault-tolerant capability is superior to
the rerouting based approaches. Unlike the rerouting based approach, the proposed
approach uses failure-free working LSPs as the recovery path candidates. The
proposed approach can tolerate many simultaneous failures as long as there is a
failure-free LSP with sufficient residual bandwidth in the MPLS network. The
rerouting based approaches use the redundant path being able to bypass the failure
segment of the faulty LSP as the recovery path. By simulations, the probability of
existing a failure-free working LSP is larger than the probability of existing repairable
paths in redundant paths.

With the recovery time, most of the protection based approaches have less
recovery time in comparison with the proposed approach since they pre-establish
backup paths to make that the activation of a recovery path become easy. Especially,
the approach of [4] pre-establishes several backup segments to perform the local
recovery; therefore, it has the least recovery time. However, these protection
switching based approaches do not consider the packet loss and packet disorder
problems. Only the approach of [3] considers the two problems. If the time for
handling the two problems is taken into the recovery time, it is not true that the
protection switching based approaches are always better than the proposed approach
in the recovery time. For example, comparing between the proposed approach and
the approach of [3], the proposed approach has a better recovery time.

(a) (b)

Fig. 5. Fault-tolerant capability comparison (a) protection switching (b) rerouting

As for the recovery quality, the proposed approach has the best performance. In
the protection switching based approaches, the pre-establishment of a backup path
only considers the bandwidth requirement for the traffic carried on a working LSP.
The delivery delay of the backup path is not concerned. For the rerouting based
approaches, they dynamically establish a shortest recovery path without considering
the bandwidth requirement for the affected traffic. In contrast to the proposed
approach, it considers the bandwidth requirement and delivery delay to distribute the
affected traffic to multiple failure-free working LSPs. Due to using multiple LSPs to
carry the affected traffic, the proposed approach has a better recovery quality.

An Efficient Fault-Tolerant Approach for MPLS Network Systems 823

However, when multiple failures occur simultaneously, few failure-free working
LSPs can be used to carry the affected traffic. In such case, the recovery quality of
the proposed approach becomes same as other approaches.

(a) (b)

Fig. 6. Recovery time comparison (a) protection switching (b) rerouting

(a) (b)

Fig. 7. Recovery quality comparison (a) protection switching (b) rerouting

5 Conclusions

This paper has presented an efficient approach to protecting traffic in an MPLS
network. The proposed approach utilizes the available resources in other failure-free
LSPs to constitute a virtual LSP to be the backup of the faulty LSP. Based on the
virtual LSP, the traffic of the faulty LSP can be distributed to be carried by multiple
failure-free LSPs. Extensive simulations were also performed to make the detailed
comparisons between the proposed approach and previous approaches.

J.-W. Lin and H.-Y. Liu 824

Acknowledgement

This research was partially supported by the Nation Science Council, Taiwan, under
Grant NSC 93-2745-E-030-005-URD.

Reference

1. C. Huang, V. Sharma, K. Owens and S. Makam, ”Building reliable MPLS networks using
a path protection mechanism,” Communications Magazine, IEEE , Volume: 40 , Issue:
3 , Pages:156 – 162, March 2002

2. D. Haskin and R .Krishnan, “A Method for Setting an Alternative Label Switched Paths
to Handle Fast Reroute,” IETF Internet Draft, draft-haskin-mpls-fast-reroute-
05.txt, November 2000

3. L. Hundessa and J.D. Pascual, ”Fast rerouting mechanism for a protected label switched
path,“ 2001. Proceedings Tenth International Conference on Computer Communications
and Networks, pp. 527 -530.,Oct. 2001

4. Pin-Han Ho and H.T. Mouftah, ”Reconfiguration of spare capacity for MPLS-based
recovery in the Internet backbone networks,” Networking, IEEE/ACM Transactions
on, Volume 12, Issue 1,Pages73 - 84, Feb. 2004

5. S. Yoon, H. Lee, D. Choi, Y. Kim, G. Lee and M. Lee, ” An efficient recovery mechanism
for MPLS-based protection LSP,” 2001. Joint 4th IEEE International Conference on ATM
(ICATM 2001) and High Speed Intelligent Internet Symposium, pp. 75 -79, April 2001

6. G. Ahn, J. Jang, and W. Chun, "An Efficient Rerouting Scheme for MPLS-Based Recovery
and Its Performance Evaluation," Telecommunication Systems, Vol. 19, No. 3, 2002

7. A. Agarwal and R. Deshmukh, ”Ingress failure recovery mechanisms in MPLS
network,“ MILCOM 2002. Proceedings , pp.1150 -1153 , vol.2, Oct. 2002

8. V. Sharma, Metanoia and F. Hellstrand, ”Framework for Multi-Protocol Label Switching
(MPLS)-based Recovery,” IETF RFC 3469 , February 2003

9. L. Andersson, P. Doolan, N. Feldman, A. Fredette and B. Thomas,” LDP Specification,”
IETF RFC 3036, January 2001

10. Thomas D. Nadeau, Monique Morrow, George Swallow, David Allan and Satoru
Matsushima, ”OAM Requirements for MPLS Networks,” IETF Internet Draft, draft-ietf-
mpls-oam-requirements-02.txt, June 2003

11. Thomas H. Cormen et al., “Introduction to Algorithms,” Second Edition, MIT Press, 2001
12. UCB/LBNL/VINT Network Simulator Version 2, ns-2, URL: http://www-mash.cs.

berkeley.edu/ns.

A Novel Technique for Detecting DDoS Attacks
at Its Early Stage

Bin Xiao1, Wei Chen1,2, and Yanxiang He2

1 Department of Computing,
The Hong Kong Polytechnic University,

Hung Hom, Kowloon, Hong Kong
{csbxiao, cswchen}@comp.polyu.edu.hk

2 Computer School, The State Key Lab of Software Engineering,
Wuhan University, Wuhan 430072, Hubei, China

yxhe@whu.edu.cn

Abstract. Spoofing source IP addresses is always utilized to perform
Distributed Denial-of-Service (DDoS) attacks. Most of current detection
and prevention methods against DDoS ignore the innocent side, whose
IP is utilized as the spoofed IP by the attacker. In this paper, a novel
method has been proposed to against the direct DDoS attacks, which
consists of two components: the client detector and the server detector.
The cooperation of those two components and their interactive behavior
lead to an early stage detection of a DDoS attack. From the result of
experiments, the approach presented in this paper yields accurate DDoS
alarms at early stage. Furthermore, such approach is insensitive to the
false suspect alarms with adopted evaluation functions.

1 Introduction

Distributed Denial-of-Service (DDoS) attacks are one of the most serious threats
to the internet. As more business and commerce services depend on the internet,
DDoS attacks can bring numerous financial loss to these e-business companies.
As Moore [1] reported, the majority of attack packets is the TCP type. In the
TCP case, SYN flooding is the most common attack behavior [2, 3].

Current TCP based DDoS attacks are usually performed by exploiting TCP
three-way handshake [4]. The SYN flooding attack is launched by sending nu-
merous SYN request packets towards a victim server. The server reserves lots of
half-open connections which will quickly deplete system resource, thus prevent-
ing the victim server from accepting legitimate user requests.

Lots of work has been done to detect and prevent the TCP based DDoS
attack. Current counteracting methods are mostly deployed at the victim server
side, or the attacker side or between them. The information at the innocent host,
whose IP is utilized as the spoofed IP, is totally ignored. Detection at the side
of a victim server can is more practical but can hardly produce an alarm at
the early stage of a DDoS attack because abnormal deviation can only be easily

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 825–834, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

826 B. Xiao, W. Chen, and Y. He

found until the DDoS attack turns to the final stage. Counteracting methods
near the side of attack source mainly belong to the prevention mechanism, such
as filtering suspicious packets before forwarding them to the internet. Providing
an early DDoS alarm near the side of an attacker is a difficult task because
the attack signature is not easy to capture at this side. The information at
the innocent host side will be used in our approach because the innocent side
will receive abnormal TCP control packets for the three-way handshake. These
abnormal packets for three-way handshake provide valuable information to give
alarms at the early stage.

In order to detect a TCP based DDoS attack at its early stage, in this paper
we have made the contributions as follows:

– The client detector performs detection at the side of innocent hosts because
this side can provide valuable information. Another benefit of such deploy-
ment is to make the detection system itself invulnerable to direct DDoS
attacks. To our best knowledge, there is no literal report about detection at
the innocent host side.

– A novel cooperative detection system composed of the client detector and the
server detector is presented. The cooperation improves the alarm accuracy
and shortens the detection time.

– The server detector can actively send queries to the client detector to confirm
the existence of a DDoS attack. This active scheme enhances the earlier
DDoS detection.

The remainder of the paper is organized as follows: Section 2 will introduce
some related works in spoofed DDoS detection. In Section 3 the TCP-based
DDoS attack will be discussed. The techniques for cooperative DDoS detection,
including the client detector and the server detector, will be presented in section
4. Some experiment results will be given in Section 5 to evaluate the performance
of the proposed method. In Section 6 we will conclude our work and discuss future
work.

2 The Related Work

Most of current DDoS attack detection and prevention schemes can be classified
into three categories according to the location of the detector: at the victim
server side, at the attack source side and between them.

Detecting DDoS at the victim server side is more concerned by researchers.
In [3] Wang detected the SYN flooding attacks at leaf routers that connect
end hosts to the Internet. The key idea of their method is the SYN-FIN pair’s
behavior should show invariant in normal network traffic and a non-parameter
CUSUM method is utilized to accumulate these pairs. In Cheng’s work [5], their
approach utilizes the TTL(Time-To-Live) value in the IP header to estimate the
Hop-Count of each packet. The spoofed packets can be distinguished by Hop-
Count deviation from normal ones. A method incorporating SYN cache and
cookies method is evaluated in Lemon [6] work. The basic idea is to use cache

A Novel Technique for Detecting DDoS Attacks at Its Early Stage 827

or cookies to evaluate the security status of a connection before establishing
the real connection with a protected server. For those methods that provide
detection at the victim server side, the main challenge is to consume the least
recourse to record the state of numerous connections and evaluate the safety of
each connection.

The detection at the attack source side seems more difficult than at the server
side because the signatures at the attack source side are not easy to detect
however prevention at the attack source side is more effective. For example the
RFC2827 [7] is to filter spoofed packets at each ingress router. Before the router
forwards one packet to the destination, it will check whether the packet belongs
to its routing domain. If not, this packet is probably a spoofed one and the router
will drop it.

Detection and prevention between these two sides mainly include traceback [8–
11] and pushback [12]. Tracing back attempts to identify the real location of the
attacker. During a DDoS attack, the source IPs are often forged and can not
be used to identify the real location of the attack source. Most of the traceback
schemes are to mark some packets along their routing paths or send some special
packets [11], together with monitored traffic flow. With these special marks, the
real routing path can be reconstructed and the true source IP can be located.
With the identification of real path of the spoofed packets, pushback techniques
can be applied to perform advanced filtering. The pushback is always performed
at the last few routers before traffic reaches target.

3 The TCP-Based DDoS Attack

Detecting DDoS attack at its early stage is a challenging problem. For a DDoS
attacking packet, its source IP address is usually forged. The normal three-way
handshake to build a TCP connection would be changed consequently.

The normal three-way handshake is shown in Figure 1(a). First the client
C sends a Syn(k) request to the server S1. After receiving such request, server
S1 replies with a packet, which contains both the acknowledgement Ack(k + 1)
and the synchronization request Syn(j)(denoted as Ack(k + 1) + Syn(j) in the
following paper). Then client C sends Ack(j + 1) back to finish the building
up of the connection. k and j are sequence numbers produced randomly by
the server and client during the three-way handshake. During the normal three-
way handshake procedure, Syn(k), Ack(k + 1) + Syn(j) and Ack(j + 1) can be
observed at the edge router(Rc in Figure 1(a)) near the client.

If the IP-Spoofed attack happens, the normal authentication process is mod-
ified. As Figure 1(b) shown, the innocent host I, whose IP is used as spoofed
source IP, is usually not in the same domain with the attacker host A. In fact,
to avoid being traced back, the attacker usually uses the IP address belonging
to other domains to make a spoofed packet. In Figure 1(b) the edge router Ra

in the attacker domain forwards the Syn(k) packet with the spoofed address
PI , the IP address of the innocent host I, to the server S2. The sever S2 replies
with an Ack(k + 1) + Syn(j) packet. This Ack(k + 1) + Syn(j) will be sent to

828 B. Xiao, W. Chen, and Y. He

the innocent host I because the server S thinks the Syn(k) packet is from I ac-
cording to the spoofed source IP PI in it. So the edge router RI at the innocent
host side will receive the Ack(k +1)+Syn(j) packet from victim server S2. But
there is no previous Syn(k) request forwarded by the client detector at RI . This
scenario is different from the normal one. Our approach is proposed on the base
of this difference.

Normal User

Server

A
SS

S

AS
S

AS

Rc

Rs
Internet

C

S1

AS
S

S: Syn(k)
AS: Ack(k+1)+Syn(j)
A: Ack(j+1)

A

A

A

A

(a) Normal three-way handshake

RI

Rv

Innocent Host

A
S

S

AS S

AS

AS

Ra

S

S

Attacker

Internet

A I

S2

Server

S: Syn(k)
AS: Ack(k+1)+Syn(j)

(b) Spoofed three-way handshake

Fig. 1. The process of the TCP three-way handshake

4 Techniques for DDoS Cooperative Detection

In order to detect DDoS at its early stage, the client detector and the server
detector are introduced in the presented techniques. The client detector is de-
ployed at the edge router of innocent hosts. For example, the client detector will
be installed on the router RI in Figure 1(b). It checks the TCP control packets
flowing through the edge router. When it captures suspicious events, the alarm
about the potential DDoS attack will be sent to the side of protected server.
The server detector, employed by the protected server, can perform detection
not only by passively listening the warning from the client detector, but also by
actively sending queries to the client detector to confirm alarms.

4.1 The Client Detector

One of the main tasks for the client detector is to monitor the TCP control
packets that comes in and goes out of the domain. Although a TCP connec-
tion may hold for several seconds or even for several minutes, most three-way
handshake can be finished in a very short period(e.g., less than 1 seconds) at
the beginning phrase of the connection. Compared with other stateful defense
mechanisms which maintain states for the whole TCP connection, keeping the
states only for the three-way handshake will reduce the computing and storage
overhead.

A Novel Technique for Detecting DDoS Attacks at Its Early Stage 829

Monitoring States for the Three-Way Handshake. To keep the states
for a three-way handshake, a record is created in the hash table. There exist
three states for each record: ‘syn’, ‘ack’ and ‘suspicious’. To illustrate the state
transition well, R is denoted for the record mapped by the hash function using
source and destination IP address values as input. The Syn(k), Ack(k + 1) +
Syn(j) and Ack(j + 1) are denoted for TCP control packets used by the three-
way handshake. These packets will trigger the creation of a new record R or the
state transition of a existing record R. Two sub-detectors, egress detector(ED)
and ingress detector(ID), are designed to process the outgoing and incoming
packets individually. When abnormal traffic flowing through the edge router is
observed, Suspect Alarm(SA) will be generated and will be sent to the client
detector. The final alarm will be decided by evaluating these SAs. The total
state transition for R is shown in Figure 2.

R is not in
the table

R is
created

State:Syn

State:Ack

Normal

R is
created

State:Sus Send SA to
the client
detector

R is
released

ED: Egress Detector
ID: Ingress Detector
SA: Suspect Alarm

Receive Ack(j+1) at ID

Exceed Threshold Tsa

Receiv e Sy n(j) a
t

ED

Receive
Ack(k+1) at E D

Receive Ack (k+1) at ED

T TL of R Expires

Receive

Ack(j+1)+ Syn(k) at ID

Fig. 2. States transition for R in the hash table

At the first phase of three-way handshake, A Syn(k) packet will be sent from
the client C to the server S to initialize a new TCP connection. When this packet
is observed in outgoing traffic by ED, a new record R is created and the state of
the record is set to ‘syn’. This ‘syn’-state record will be stored in the table with
a Time To Live(TTL). If the TTL expires, this record will be deleted from the
table.

When the server S receives the Syn(k) packet from the client C and is ready
to start the TCP session, it sends a Ack(k +1)+Syn(j) packet to C. When the
Ack(k +1)+Syn(j) packet arrives, ID will check if there exists a corresponding
‘syn’-state record previously created. If the matched one is found, the state
‘syn’ will be modified to ‘ack’. Otherwise, a ‘suspicious’-state record R will be
created. It means there may exist IP spoofing behaviors, or the previous R
has been deleted because the TTL of R has expired. It is ‘suspicious’ because
it need to be verified in the third step of three-way handshake. Though the
packet is suspicious, the edge router will continue to forward the packet to the
destination C. If the Ack(k + 1) + Syn(j) packet is a legitimate one, the client
C will reply with a Ack(j + 1) packet to finish the three-way handshake. If the
Ack(k + 1) + Syn(j) packet is caused by a spoofed packet, there will be no any
response for the handshake.

830 B. Xiao, W. Chen, and Y. He

During the final stage of handshake, when the Ack(j + 1) packet arrives the
edge router, the ED will search for the corresponding record of this three-way
handshake. If it is in the table and the current state is ‘ack’ , it means a normal
three-way handshake has been finished. The record will be released from the
table. If the current state is ‘suspicious’, the record will also be deleted because
this ‘suspicious’ state is caused by expiration instead of spoofed packets. As we
have mentioned above, if the TTL of a ‘syn’-state record expires, this record will
be deleted from database and a ‘suspicious’-state record will be generated. So
this ‘suspicious’ record can be safely released from the hash table.

On the contrary, in the scenario of the spoofed handshake, no response will
be generated because the spoofed IP is unreachable or the client C will send
back a RST instead of a Ack(j + 1) packet. The ’suspicious’-state record will
not be released from the table. If a ’suspicious’-state record stays for a certain
time longer than the threshold, Ttime, a Suspect Alarm(SA) will be generated
and sent to the client detector.

Egress Detector and Ingress Detector. With the state transition descrip-
tion in Figure 2, the algorithms for ED and ID are defined individually in the
Figure 3 and Figure 4. ED and ID process outgoing and incoming TCP control
packets separately. They share the same hash table that contain the records for
three-way handshakes. In the algorithm, the P is denoted to the TCP control
packet observed at the edge router. The ED handles the Syn(k) and Ack(j + 1)
packets because these two kinds of packets are going out from the domain to
the internet. The ID process the Ack(k +1)+Syn(j) packets from the incoming
traffic.

VOID Outgoing Packets Process (INPUT: P) {
if P is a Syn(k) packet then

R=hash(source IP, destination IP)
Create R
Set R state = syn

else if P is a Ack(j+1) packet then
R=hash(source IP, destination IP)
if R is found in the Hash Table AND R state == ack then

Release R
else if R is found in the Hash Table AND R state == suspicious then

Release R
end if

end if
}

Fig. 3. The algorithm for the Egress Detector

A Novel Technique for Detecting DDoS Attacks at Its Early Stage 831

VOID Incoming Packets Process (INPUT: P) {
if P is Ack(k+1)+Syn(j) packet then

R=hash(destination IP, source IP)
if R is found in Hash Table AND R state == syn then

Set R state=ack
else if R is not found then

Create R
Set R state= suspicious

end if
end if
}

Fig. 4. The Algorithm for Ingress Detector

Detection Scheme for Client Detector. If a ‘suspicious’ record in the hash
table stays for a period of time longer than the threshold Tsa, a Suspected
Alarm(SA) will be generated and will be stored in the local database. The client
detector will analyze the source IP distribution of SAs in database. When SAs
with the same source IP Pvictim are reported in a short period, there probably
exists a DDoS attack targeting the host Pvictim. But if each SA has a differ-
ent source IP, it is most likely caused by some other reasons. To evaluate the
distribution of the source IP of alarms, an expression is presented below:

score =
∑

s∈IPList

(|Xs| − 1)2

Where Xs stands for a subset of the total SA set. All the elements in Xs are
SAs that have the same IP value s in a certain period. The score will increase
dynamically when the number of SAs with the same source IP increases. On
the other hand if each of the SAs has a different source IP, the score will reach
minimum.

4.2 The Server Detector

The server detector is deployed at the protect server, such as S2 in Figure 1(b).
On the one hand, the server detector may passively wait for the potential di-
rect DDoS alarm from the client detector. When enough potential DDoS attack
alarms come, the server detector will give the confirmed direct DDoS attack
alarm to server.

On the other hand it also can perform more active detection by sending
queries to client detectors as soon as any suspicious event is found at the pro-
tected server. Sometimes the source IPs of spoofed packets is widely distributed.
The number of SAs at one client detector is not enough for it to send a poten-
tial DDoS alarm to the server detector. In this scenario, the server detector will
select several cooperative client detectors to query the number SAs. The client
detectors will report the number of SAs with the special source IP, then the

832 B. Xiao, W. Chen, and Y. He

server detector will analyze these SAs replied from different client detectors and
confirm whether the half-connection is caused by spoofed DDoS packets or by
some other reason.

Many other DDoS detection methods have to wait for capturing sufficient
DDoS attack evidences before taking further action. This waiting delays detec-
tion and prevention against the forthcoming DDoS. In our approach, both the
client detector and the server detector do not need to wait passively for spe-
cial evidences, so this cooperative detection system can give DDoS alarm at the
earlier stage.

5 Experiment

To evaluate the cooperative detection system, experiments are designed to test
whether the cooperative detection approach can detect DDoS at the early stage.
In the experiment, 10 zombies are simulated to perform SYN flooding attacks
toward the server. The cooperative detection system include five client detectors
and one server detector. The rate of the attack packets rises from 10 packets/sec
to 1000 packets/sec in 10 seconds and 100 seconds respectively. The maximum
rate is set to 1000 packets/sec because it is enough to shut down some services
as Chang reported [13]. In simulation only 1% of Ack(k + 1) + Syn(j) packets
replied by the victim server are designed to arrive client detectors. These packets
will trigger client detectors to generate SAs. The number of SAs generated by
the client detectors is shown in the Figure 5.

0 1 2 3 4 5 6 7 8 9
0

5

10

15

20

25

30

35

40

Time Inteval(second)

T
he

 N
um

be
r

of
 S

us
pe

ct
 A

la
rm

s

(a) Within 10 seconds

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

Time Inteval(second)

T
he

 N
um

be
r

of
 S

us
pe

ct
 A

la
rm

s

(b) Within 100 seconds

Fig. 5. The number of SA generated by the client detector after receiving 1% of Ack(k+
1) + Syn(j) packets from the protected server. The attacking packets rate reaches to
1000 packets/sec within (a)10s (b)100s

Although only 1% spoofed attack packets can be received by client detec-
tors, client detectors still give accurate SAs. The number of SAs is enough for
client detectors to give a further potential DDoS alarm at the early stage of the

A Novel Technique for Detecting DDoS Attacks at Its Early Stage 833

DDoS attack. The detection results are satisfying even when the DDoS attacker
increases the attack packets slowly. From experiment results,the SAs number
raises stably in the Figure 5(a) because the DDoS attack is launched in a short
time. In the Figure 5(b) the number of SAs seems a little vibrated because the
attack packets rise up at a much slower rate.

Considering there exist network errors or latency which may cause false SA
at the client detector, the false tolerance ability of the approach is evaluated. To
test the sensibility to true SA and tolerance to false one , three different data
sets are involved in the second experiment. The first data set contains no false
alarms. The number of false alarms contained in the second data set is as many
as the true alarms. The number of false alarms in the third one is as many as
two times of the true alarms. The experiments result is given in Figure 6.

0 5 10 15
0

5

10

15

20

25

Time Inteval

S
co

re

No False Alarm
False Alarms:True Alarms=1:1
False Alarms:True Alarms=2:1

Fig. 6. Insensitive to false alarms

The experiment results show that even the false SAs are more than 50% of
total SAs, the score will not be influenced much. The reason is that the score
evaluated by the client detector raises rapidly when the SAs have the same IP
while reach minimum when the SAs have different IP addresses. So SA evaluation
expression is insensitive to false alarms. In the real code running on real machine,
more than 50% suspect alarms are expect to be true because false SA caused by
the network errors or latency is rather occasional.

6 Conclusion and Future Work

In this paper a novel detection method against the direct DDoS attack is pre-
sented. The detection system consists of the client detector and the server de-
tector. The client detector performs detection at the side of innocent hosts and
this is quite different from current methods which are often deployed at the sides
of the victim server or the attacking source. The server detector is employed by
the protected server and can perform both passively and actively DDoS detec-
tion. The benefit of this method is to yield accurate alarms at the early stage of
DDoS attack. The key idea in the cooperative detection is based on the difference

834 B. Xiao, W. Chen, and Y. He

between the normal TCP three-way handshake and the spoofed one. The exper-
iment results are given in section 5 and the proposed approach is effective to
detect DDoS at its early stage. The results also show the SA evaluation method
is insensitive to the false SAs.

In the future research work we will apply method to real environment to
test the memory and computing cost for actual running because the presented
method will need more storage and computing cost than some other stateless
methods [14] [3]. Some advanced hash algorithms for recording the states of
three-way handshake will be researched to compress the storage space and im-
prove the query efficiency.

References

1. Moore, D., Voelker, G., Savage, S.: Inferring internet denial of service activity. In:
Proceedings of USENIX Security Symposium. (2001)

2. Chen, Y.: Study on the prevention of SYN flooding by using traffic policing. In:
Network Operations and Management Symposium 2000 IEEE/IFIP. (2000) 593–
604

3. Wang, H., Zhang, D., Shin, K.G.: Detecting SYN flooding attacks. In: Proceedings
of IEEE INFOCOM. Volume 3. (2002) 1530–1539

4. Postel, J.: Transmission control protocol : DARPA internet program protocol
specification,RFC 793 (1981)

5. Jin, C., Wang, H.N., Shin, K.G.: Hop-count filtering: An effective defense against
spoofed DDoS traffic. In: Proceedings of the 10th ACM conference on Computer
and communication security(CCS), ACM Press (2003) 30–41

6. Lemon, J.: Resisting SYN flood DoS attacks with a SYN cache. In: In Proceedings
of the BSDCon 2002 Conference. (2002)

7. Ferguson, P., Senie, D.: (Network ingress filtering: Defeating denial of service
attacks which employ IP source address spoofing,RFC2827)

8. Song, D.X., Perrig, A.: Advanced and authenticated marking schemes for IP trace-
back. In: INFOCOM 2001. (2001) 878–886

9. Sung, M., Xu, J.: IP traceback-based intelligent packet filtering: A novel technique
for defending against internet DDoS attacks. IEEE Transactions on Parallel and
Distributed Systems 14 (2003) 861–872

10. Snoeren, A.C.: Hash-based IP traceback. In: Proceedings of the ACM SIGCOMM
Conference, ACM Press (2001) 3–14

11. Bellovin, S.M.: ICMP traceback messages. Technical report (2000)
12. Ioannidis, J., Bellovin, S.M.: Implementing pushback: Router-based defense against

DDoS attacks. In: Proceedings of Network and Distributed System Security Sym-
posium, Catamaran Resort Hotel San Diego, California, The Internet Society
(2002)

13. Rocky.K.Chang: Defending against flooding-based distributed denial-of-service at-
tacks: a tutorial. Communications Magazine, IEEE 40 (2002) 42–51

14. Yaar, A., Perrig, A., Song, D.: SIFF: A stateless internet flow filter to mitigate
DDoS flooding attacks. In: Proceedings. 2004 IEEE Symposium, Security and
Privacy. (2004) 130–143

Probabilistic Inference Strategy in Distributed
Intrusion Detection Systems

Jianguo Ding1,2, Shihao Xu1, Bernd Krämer2, Yingcai Bai1,
Hansheng Chen3, and Jun Zhang1

1 Shanghai Jiao Tong University, Shanghai 200030, P.R. China
Jianguo.Ding@sjtu.edu.cn

2 FernUniversität Hagen, D-58084 Hagen, Germany
Bernd.Kraemer@FernUni-Hagen.de

3 East-china Institute of Computer Technology, P.R. China

Abstract. The level of seriousness and sophistication of recent cyber-
attacks has risen dramatically over the past decade. This brings great
challenges for network protection and the automatic security manage-
ment. Quick and exact localization of intruder by an efficient intrusion
detection system (IDS) will be great helpful to network manager. In this
paper, Bayesian networks (BNs) are proposed to model the distributed
intrusion detection based on the characteristic of intruders’ behaviors.
An inference strategy based on BNs are developed, which can be used
to track the strongest causes (attack source) and trace the strongest
dependency routes among the behavior sequences of intruders. This pro-
posed algorithm can be the foundation for further intelligent decision in
distributed intrusion detection.

1 Introduction

Increased complexity, availability of vulnerability information and distributed
network services make the whole network society attractive and easy to be at-
tacked. Intruders in cyberspace benefit greatly from the anonymity, speed, and
vast amounts of information present in that environment. Tracing of intruder
in DIDS (Distributed Intrusion Detection System) will help to stop and prevent
the potential attack in the future and provide important evident for prosecution
and civil legal proceedings.

There are two categories of intrusion detection techniques: anomaly detection
and misuse detection. Anomaly detection uses models of the intended behavior
of users and applications, interpreting deviations from this “normal” behavior
as a problem [4, 10, 6]. Misuse detection systems essentially define what’s wrong.
They contain attack descriptions (or “signatures”) and match them against the
audit data stream, looking for evidence of known attacks [7, 17, 14].

Most current approaches to intrusion detection attempt only to detect and
prevent individual attacks. However, it is not the attack but rather the in-
truder against networks, which must be defended. Through understanding the

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 835–844, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

836 J. Ding et al.

behaviours of intruders, it is possible to develop a clearer picture of what is
occurring. To do this, the information being provided by IDS must be gath-
ered and and be analyzed, so that the activity of individual intruder is made
clear. Some researches have been done some research to improve the intrusion
detection based on the intruders’ behaviour property [8, 13].

Since intruders jump from one computer to another, obfuscating the source
of the attack, intruders are able to make themselves difficult to be traced. But
the management systems in the network still keep lots of discontinue information
which the intruders left such as login record, ports scanning, files modification or
deleting, account modification, database searching and so on. Thus it provides
possibility to understand more about the intruders.

For a sensitive network, it suffers numerous attacks from different intrud-
ers. Under this situation, it is really hard to provide one intrusion detection
method to deal with all kinds of intruders. Hence, divide and rule is more
effective to defend against intruders. The challenge is how to identify the in-
truders by their behaviours. Fortunately the activities of individual intruders
as they move across networks expose the characteristic of themselves. The ex-
isting data that is already being collected by IDS scattered across networks
is helpful to understand the intruders’ behaviour. Generally, the individual in-
truder has stable characteristics in behaviours during the attacking and this
is recorded by his/her activity sequence. But the individual action is random
and not certain. That means the probability is another property for intruders’
behaviour.

It is therefore proposed to apply Bayesian networks to model the behaviour
sequence and provide efficient methods to locate the intruder in uncertain situ-
ations, and eventually to automate part of the IDS.

In this paper Strongest Dependence Route (SDR) algorithm for backward
inference in BNs will be developed. The SDR algorithm will allow user to trace
the the attack source based on the backward inference. It also provides the
dependency sequence of the causes from considered effects in face of the multiple
attacks at the same time, such as quick localization of attack sources under DDoS
(Distributed Denial of Service) attacks.

BNs model for intrusion detection is discussed in Section 2. The Strongest
Dependency Route algorithm for backward inference in Bayesian Networks is
presented in Section 3. Section 4 concludes and identifies directions for further
research.

2 Bayesian Networks for DIDS

2.1 Model of Bayesian Networks

Bayesian networks (BNs), known as Bayesian belief networks, probabilistic net-
works or causal networks, are an important knowledge representation in Artificial
Intelligence [18, 2]. BNs use DAGs (Directed Acyclic Graphs) with probabil-
ity labels to represent probabilistic knowledge. BNs can be defined as a triplet
(V, L, P), where V is a set of variables (nodes of the DAG), L is the set of

Probabilistic Inference Strategy in Distributed Intrusion Detection Systems 837

causal links among the variables (the directed arcs between nodes of the DAG),
P is a set of probability distributions defined by: P = {p(v | π(v)) | v ∈ V };
π(v) denotes the parents of node v. The DAG is commonly referred to as the
dependence structure of a BN.

An important advantage of BNs is the avoidance of building huge JPD (Joint
Probability Distribution) tables that include permutations of all the nodes in the
network. Rather, for an effect node, only the states of its immediate predecessor
need to be considered. Fig. 1 shows a simple example of DIDS. The JPD of the
dependency between the activities of intruders are denoted in Fig. 2.

Fig. 1. Example of Bayesian Network for Distributed Intrusion Detection

Fig. 2. The Probability Distribution for Bayesian Network in Fig. 1

In the example (see Fig. 1), the event A1, A2 are the causes for event B1.
The annotation p(B1|A1A2) = 58% (see Fig. 2) can be explained as: B1 hap-
pens in the probability 58% while A1 does not happen but A2 happens. Other
annotations can be read in the similar way. From the viewpoint of management,
some evidences (effect events)are easy to be detected, but the cause events are
not obvious to be observed. One important task in DIDS is to infer the hidden
factors from the available evidences.

838 J. Ding et al.

Due to the dense knowledge representation of BNs, BNs can represent large
amounts of interconnected and causally linked data as they occur in DIDS. Gen-
erally speaking: (1) BNs can represent knowledge in depth by modeling the
functionality of the transmission network in terms of cause and effect relation-
ships among the activities of intruders. (2) They have the capability of handling
uncertain and incomplete intrusion information due to their grounding in prob-
ability theory. (3) They provide a compact and well-defined problem space since
they use an exact solution method for any combination of evidences.

2.2 Mapping Distributed Intrusion Detection Systems to BNs

When the event sequences in a DIDS are modelled as a BN, two important
processes need to be resolved:

(1) Ascertain the Dependency Relationship between Events.
Dependencies represent consumer and provider relationship between various

cooperating events which are generated by intruders. When one event requires a
service performed by another event in order to execute its function, or one event
is invoked by another event, this relationship between the two events is called
a dependency. A dependency graph of a system may be obtained using direct
or indirect methods [1]. The notion of dependencies can be applied at various
level of granularity. Two models are useful to get the dependency between events
which are invocated by intruders in DIDS.

Functional model defines generic service dependencies and establishes the
principle constrains to which the other models are bound. A functional depen-
dency is an association between two events, typically captured first at design
time, which says that one event requires some services from another.

Time sequence model contains the detailed descriptions of events which one
is invoked by another based on time sequence.

(2) Obtain the Measurement of Dependencies.
Single-cause and multi-cause are two kinds of general assumptions to consider

the dependencies between events in DIDS. A non-root node may have one or sev-
eral parents (causal nodes). Single-cause means any of the causes must lead to
the effect. While multi-cause means that one effect is generated only when more
than one cause happens simultaneity. Intrusion detection information statistics
are the main source to get the dependencies between the events in DIDS. The
empirical knowledge of experts and experiments are useful to determine the de-
pendency. Some researchers have done useful works to discover the dependencies
from the application view in distributed systems [5, 9]. The principles can be
used as dependency obtaining in DIDS.

3 Backward Inference in Bayesian Networks

3.1 Inference in Bayesian Networks

The most common task in an uncertain reasoning system for DIDS is probabilis-
tic inference which traces the causes from effects. In BNs, one node may have

Probabilistic Inference Strategy in Distributed Intrusion Detection Systems 839

one or several parents (if it is not a root node), and we denote the dependency
between parents and their child by a JPD.

Fig. 3. Basic Model for Backward Inference in Bayesian Networks

Consider the basic model for backward inference in BNs (see Fig. 3), which
X be the set of causes of Y , X = (x1, x2, . . . , xn). Then the following variables are
known: p(x1), p(x2), . . . , p(xn), p(Y |x1, x2, . . . , xn) = p(Y |X). Here x1, x2, . . . , xn

are mutually independent, so p(X) = p(x1, x2, . . . , xn) =
∏n

i=1 p(xi). By Bayes’

theorem, p(X|Y) = p(Y |X)p(X)
p(Y) = p(Y |X)p(X)∑

X
[p(Y |X)p(X)]

=

p(Y |X)
n∏

i=1

p(xi)

∑
X

[p(Y |X)
n∏

i=1

p(xi)]
,

which computes to p(xi|Y) =
∑

X\xi
p(X|Y).

Hence the individual conditional probability (backward dependency) p(xi|Y)
can be achieved from the JPD p(Y |X), X = (x1, x2, . . . , xn).

3.2 Strongest Dependency Route Algorithm for Backward
Inference

Before we describe the SDR algorithm, the definition of strongest cause is given
as follows:

Definition 1. In a BN, let C be the set of causes, E be the set of effects. For
ei ∈ E, Ci be the set of causes based on effect ei, iff p(ck|ei) = Max[p(cj |ei),
cj ∈ Ci], then ck is the strongest cause for effect ei.

The detailed description of the SDR algorithm is described as follows:

Pruning of the BNs. Generally, multiple effects (symptoms) may be observed
at a moment, so Ek = {e1, e2, . . . , ek} is defined as initial effects. In the operation
of pruning, in every step only current nodes’ parents are integrated and their
brother nodes are omitted, because their brother nodes are independent with
each other. The pruned graph is composed of the effect nodes Ek and their
entire ancestor.

SDR Algorithm. After the pruning operation, a simplified sub-BN is obtained.
The SDR algorithm use product calculation to measure the serial strongest de-
pendencies between effect nodes and causal nodes.

Input: BN = (V, L, P); Ek = {e1, e2, . . . , ek}, Ek ⊂ V .

840 J. Ding et al.

Output: T : a spanning tree of the BN , rooted on Ek.
Variables: depend[v]: the strongest dependency between v and all its descen-

dants; p(v|u): the probability can be calculated from JPD of p(u|π(u)), v is the
parent of u; ϕ(l):temporal variable to record the strongest dependency between
nodes.

Initialize the SDR tree T as Ek; // Ek is added as root nodes of T
Write label 1 on ei; //ei ∈ Ek

While SDR tree T does not yet span the BN
For each frontier edge l in BN

Let u be the labelled endpoint of edge l;
Let v be the unlabelled endpoint of edge l; //v is one parent of u
Set ϕ(l) = depend[u] ∗ p(v|u);

Let l be a frontier edge for BN that has the maximum ϕ-value;
Add edge l (and vertex v) to tree T ;
depend[v] = ϕ(l);
Write label depend[v] on vertex v;

Return SDR tree T and its vertex labels;
The result of the SDR algorithm is a spanning tree T . Every cause node

cj ∈ C is labeled with depend[cj] = p(cj |Mk, ei), ei ∈ Ek, Mk is the transition
nodes between ei and cj .

Proof of the Correctness of SDR Algorithm. When a vertex u is added
to spanning tree T , define d[u] = weight(ei, u) = −lg(depend[u]). Because 0 <
depend[δj] ≤ 1 so d[δj] ≥ 0. Note depend[δj] �= 0, or else there is no dependency
relationship between δj and its offspring.

Proof: suppose to the contrary that at some point the SDR algorithm first
attempts to add a vertex u to T for which d[u] �= weight(ei, u).

Fig. 4. Proof of SDR Algorithm

See Fig. 4. Consider the situation just prior to the insertion of u and the true
strongest dependency route from ei to u. Because ei ∈ T , and u ∈ V \T , at some
point this route must first take a jump out of T . Let (x, y) be the edge taken by
the path, where x ∈ T , and y ∈ V \T . We have computed x, so

d[y] ≤ d[x] + weight(x, y) (1)

Probabilistic Inference Strategy in Distributed Intrusion Detection Systems 841

Since x was added to T earlier, by hypothesis,

d[x] = weight(ei, x) (2)

Since < ei, . . . , x, y > is sub-path of a strongest dependency route, by Eq.(2),

weight(ei, y) = weight(ei, x) + weight(x, y) = d[x] + weight(x, y) (3)

By Eq. (1) and Eq. (3), we get d[y] ≤ weight(ei, y). Hence d[y] = weight(ei, y).
Since y appears midway on the route from ei to u, and all subsequent

edges are positive, we have weight(ei, y) < weight(ei, u), and thus d[y] =
weight(ei, y) < weight(ei, u) ≤ d[u]. Thus y would have been added to T before
u, in contradiction to our assumption that u is the next vertex to be added to T .
So the algorithm must work. Since the calculation is correct for every effect node.
It is also true that for multiple effect nodes in tracing the strongest dependency
route.

Analysis of the SDR Algorithm. In SDR algorithm, every link (edge) in BN
is only calculated one time, so the size of the links in BN is consistent with the
complexity. The number of edges in a complete DAG is n(n−1)/2 = (n2−n)/2,
where n is the size of the nodes of the DAG. Normally a BN is an incomplete
DAG. So the calculation time of SDR is less than (n2−n)/2. The complexity of
SDR is O(n2).

Compared to other inference algorithms in BNs [2, 19], the SDR algorithm
belongs into the class of exact inferences and it provides an efficient method
to trace the strongest dependency routes from effects to causes and to track
the dependency sequences of the causes. It is useful in fault localization, and
it is beneficial for performance management. Moreover it can treat multiple
connected networks modelled as DAGs.

Researchers have used hidden Markov model for anomaly detection [20], but
Markov model is lack of historic remembering, thus can not take good use of
the great deal of statistic data in DIDS. Statistic technology is another popular
approach in intrusion detection, but BNs model expose the advantages in deal
with the the correlation and dependency between multiple variables.

Simulation Measurement in Backward Inference. For the simulation in
DBNs, a robust and reliable random number generator plays an important part.
Based on the TGFSR (Twisted Generalized Feedback Shift Register) algorithm
[15, 16] for the random number generation, we develop a simulator. The simulator
can generate the BNs (see Fig. 5)and the data set (see Fig. 6) for inference test.
In Fig. 5, the cause set C = {A, B, C, D, E}, the effect set E = {R, T, S}. The
JPD which describes the Bayesian network is denoted in Fig. 6.

Consider the backward inference in BNs. Based on the SDR algorithm, a
spanning tree, which holds the strong dependency routes, is obtained (see Fig. 7).

From the spanning tree, the strongest routes between effects and causes can
be obtained by depth-first search. Meanwhile the inference also provides a cause
sequence, in which the strongest route between effect nodes and cause nodes can
be achieved too.

842 J. Ding et al.

Fig. 5. Simulation of Backward Inference in BNs

Fig. 6. The JPD of BN in Fig. 6. (0: normal state, 1: abnormal state.)

Fig. 7. The Spanning Tree for BN in Fig. 5

Probabilistic Inference Strategy in Distributed Intrusion Detection Systems 843

During the 10000 tests, the simulation results are presented in Fig. 8. From
the simulation result, more than 80% cause nodes can be detected by only check-
ing less than 50% of the whole cause nodes.

Fig. 8. Comparison between SDR Detection and Random Detection

Comparing this with the random or exhaustive detection, the backward in-
ference in DBNs provides a more efficient approach to catch the causal nodes.
When the set of causal nodes is larger, the detection rate is more optimal.

4 Conclusions and Future Work

In DIDS, the unstable, uncertain and incomplete information about the be-
haviour of intruders should be concerned. Fortunately Bayes’ theory provides a
scientific foundation to deal with probability of real systems. Hence it is reason-
able to use BNs to represent the knowledge of events and model the probabilistic
reasoning between them. Bayesian inference is the popular operation for a rea-
soning system. The SDR algorithm presents an efficient method to trace the
causes from effects in backward inference. It is useful for intruders’ localization
even in face of multiple intrusions.

However, dynamically update from their structures, topologies and their de-
pendency relationship between intrusion events bring more challenges to DIDS.
To accommodate sustainable changes and to maintain a healthy DIDS, learning
strategies that allows us to modify the cause-effect structure and also the de-
pendencies between the nodes of a Bayesian networks correspondingly should be
investigated. Further the proactive intrusion detection strategies based on the
dynamic inference and prediction will greatly improve the efficiency in DIDS.

References

1. S. Bagchi, G. Kar, J. L. Hellerstein. Dependency Analysis in Distributed Systems
using Fault Injection: Application to Problem Determination in an e-commerce
Environment. 12th International Workshop on Distributed Systems: Operations &
Management 2001.

2. R. G. Cowell, A. P. Dawid, S. L. Lauritzen, D. J. Spiegelhalter. Probabilistic Net-
works and Expert Systems. New York: Springer-Verlag, 1999.

844 J. Ding et al.

3. Eugene Charniak, Robert P. Goldman. A Semantics for Probabilistic Quantifier-
Free First-Order Languages, with Particular Application to Story Understanding.
Proceedings of IJCAI-89, pp. 1074-1079, Morgan-Kaufmann, 1989.

4. D.E. Denning. An Intrusion Detection Model. IEEE Trans. Software Eng., vol. 13,
no. 2, Feb. 1987, pp. 222-232.

5. M. Gupta, A. Neogi, M. K. Agarwal and G. Kar. Discovering Dynamic Depen-
dencies in Enterprise Environments for Problem Determination. Proc. of 14th
IEEE/IPIP International Workshop on Distributed Systems Operations and Man-
agement. Heidelberg, Germany, 2003.

6. A.K. Ghosh, J. Wanken, and F. Charron. Detecting Anomalous and Unknown
Intrusions Against Programs. Proc. Annual Computer Security Application Con-
ference (ACSAC’98), IEEE CS Press, Los Alamitos, Calif., 1998, pp. 259-267.

7. K. Ilgun, R.A. Kemmerer, and P.A. Porras. State Transition Analysis: A Rule-
Based Intrusion Detection System. IEEE Trans. Software Eng. vol. 21, no. 3, Mar.
1995, pp. 181-199.

8. K. Julisch and M. Dacier, Mining Intrusion Detection Alarms for Actionable
Knowledge, Proc. 8th ACM International Conference on Knowledge Discovery and
Data Mining, Edmonton, July 2002.

9. A. Keller, U. Blumenthal, G. Kar. Classification and Computation of Dependencies
for Distributed Management. Proceedings of 5th IEEE Symposium on Computers
and Communications. Antibes-Juan-les-Pins, France, July 2000.

10. C. Ko, M. Ruschitzka, and K. Levitt. Execution Monitoring of Security-Critical
Programs in Distributed Systems: A Specification-Based Approach. Proc. 1997
IEEE Symp. Security and Privacy, 1997, pp. 175-187.

11. S. Klinger , S. Yemini , Y. Yemini , D. Ohsie , S. Stolfo. A coding approach to
event correlation. Proceedings of the fourth international symposium on Integrated
network management IV, p.266-277, January 1995.

12. I. Katzela and M. Schwarz. Schemes for fault identification in communication net-
works. IEEE Transactions on Networking. 3(6): 733-764, 1995.

13. W. Lee. A Data Mining Framework for Constructing Features and Models for
Intrusion Detection Systems. PhD thesis, Columbia University, June 1999.

14. U. Lindqvist and P.A. Porras. Detecting Computer and Network Misuse with the
Production-Based Expert System Toolset. IEEE Symp. Security and Privacy, IEEE
CS Press, Los Alamitos, Calif., 1999, pp. 146-161.

15. M. Matsumoto and Y. Kurita. Twisted GFSR generators. ACM Trans. on Modeling
and Computer Simulation, 2(1992), pp. 179-194, .

16. M. Matsumoto and Y. Kurita. Twisted GFSR generatos II. ACM Trans. on Mod-
eling and Computer Simulation, 4(1994)pp. 254-266.

17. V. Paxson. Bro: A System for Detecting Network Intruders in Real-Time. Proc.
Seventh Usenix Security Symp., Usenix Assoc., Berkeley, Calif., 1998.

18. J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Mateo, CA, 1988.

19. J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge, England: Cam-
bridge University Press. New York, NY, ISBN: 0-521-77362-8, 2000.

20. Q. Yin, L. Shen, R. zhang, X. Li, H. Wang. Intrusion Detection Based on Hidden
Markov Model. Proc. of 2003 IEEE Conference on Machine Learning and Cyber-
netics , Volume: 5, pp. 3115 - 3118, 2003.

 J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 845–857, 2004.
© Springer-Verlag Berlin Heidelberg 2004

An Authorization Framework Based on
Constrained Delegation*

Gang Yin, Meng Teng, Huai-min Wang, Yan Jia, and Dian-xi Shi

Institute of Network Technology & Information Security,
Department of Computer Science,

National University of Defense Technology, China
jack_nudt@yahoo.com.cn

Abstract. In this paper, we distinguish between authorization problems at
management level and request level in open decentralized systems, using
delegation for flexible and scalable authorization management. The delega-
tion models in existing approaches are limited within one level or only
provide basic delegation schemes, and have no effective control over the
propagation scope of delegated privileges. We propose REAL, a Role-based
Extensible Authorization Language framework for open decentralized
systems. REAL covers delegation models at both two levels and provides
more flexible and scalable authorization and delegation policies while capa-
ble of restricting the propagation scope of delegations. We formally define
the semantics of credentials in REAL by presenting a translation algorithm
from credentials to Datalog rules (with negation-as-failure). This translation
also shows that the semantics can be computed in polynomial time.

1 Introduction

Many new style applications are emerging in today’s Internet or large scale Intranet
and playing important role in daily life, such as resource sharing in decentralized
systems (coalitions, multi-centric collaborative systems and grid computing),
electronic commerce, health care systems, etc. Authorization in these scenarios is
significantly different from that in centralized or closed distributed systems. Among
numerous new features of these large-scale, open, decentralized systems, there are
mainly two kinds of features essentially making authorization challenging, which lead
to new authorization problems at management level and request level respectively:

Multi-centric Management. Today’s open decentralized systems are often composed
of many systems and each system has its own authorization management domain.

* This work is supported by the National Grand Fundamental Research 973 Program of China

under Grant No.G1999032703; the National High Technology Development 863 Program of
China under Grant No.2003AA115210; Foundation of Weapons Research in Advance under
Grant No.51415030203KG01, “security technologies in multi-database systems”.

G. Yin et al.

846

Specially, if a domain has a very large scale, its authorization management structure
may also be multi-centric.

Cascaded Request. When a user calls on a service to perform some operations, the
service may not complete the operations itself, but will call on other services to do so.
This will usually result in cascaded request. Cascaded request mainly caused by ser-
vice integration or service composition in open decentralized systems.

Traditional access control mechanisms usually make authorization decisions based
on the identity of the resource requester [13]. We can show that this may be ineffec-
tive in above scenarios. First, multi-centric management may fall out that the resource
owner (authorizer) and the requester are unknown to each other. The authorizer can-
not make authorization decision because requester’s identity is outside of authorizer’s
management domain and it is not a trusted identity. Second, cascaded request is a
chain of calls on authorizer’s services. It is still difficult for the authorizer to make
authorization decisions because there maybe more than one identity (or privileges)
related to the request.

In this paper, we use delegation to solve the two kinds of problems described
above. Section 2 studies the usage of delegation in different authorization scenarios
and sum-up two kinds of delegation models and corresponding constraint models
based on trusted scope. In Section 3, we propose a language framework based on our
delegation model and introduce its usage with a serial of examples. We translate
credentials of REAL into Datalog rules (with negation-as-failure) in section 4. Then
we discuss the implementation issues, future and related work in section 5 and 6, and
conclude in section 7.

2 Delegation Models in REAL

Delegation is a promising approach to realize more flexible and scalable authorization
management for the distributed systems. We distinguish three kinds of authorization
scenarios based on the way they use delegation, and find that the delegation can be
mainly classified into two levels, as shown in fig. 1.

Fig. 1. The Role of Delegation in the Authorization Activities

In fig. 1, S is the server that has services to be protected; U is the user making re-
quests. In centralized multi-user systems, authorization and access request are made
directly, and there is no delegation between U and S, as fig. 1.a. The delegation exist-
ing in this scenario happens within the operation system context on S, such as the

Management Level

Request Level

Management Level

Request Level

US

Management Level

Request Level

S U U S

a. b. c.

MA

RA RA

An Authorization Framework Based on Constrained Delegation

847

delegation mechanism in hydra [20]. When distributed systems were used, user may
firstly logon to workstation, delegating his identity or capabilities to the workstation,
and then the workstation accesses the server on behalf of the user. The workstation is
called RA (request agency) here, as shown in fig. 1.b. This scenario is the background
of some well-known authentication logic [1] and delegation protocols [9, 18], and it
originates the form of cascaded request. When the small closed distributed systems
merged into large-scale, open, decentralized systems such as Internet, the authoriza-
tion management structure of these merged systems are multi-centric. S delegates
some of its authority to third party to make authorization decision collaboratively.
This third party is called MA (management agency) here, as shown in fig. 1.c. Many
trust managements [3, 11, 12, 13] have been proposed to address this kind of delega-
tion. At request level of this scenario, there are more complex and dynamic forms of
cascaded request. In fact, delegation activities at management level and request level
are not unattached, they are interdependent.

REAL distinguish between above two kinds of delegation, delegation of authority
and delegation of capability, which belong to delegation activities of management
level and request level respectively. This section then describes our delegation models
based on the elements of RBAC.

2.1 Delegation at Management Level

Authority is a basic concept for security management. In [2], the authors use the
notion of “authority” as a prerequisite for creating and changing management struc-
tures as well as for creating and deleting permissions. We define authority as follows,

Definition 1 (Authority). Authority is the privilege to manage authorization of per-
missions for a specified entity. The idea of delegation of authority is that one entity
hands off authorities to another entity to make authorization (within the scope of the
delegated authority) on behalf of the former. It will expand the administrative scope
of an authorizer and make the security administrative work more efficient.

Fig. 2. The control model of delegation of authority

We propose to use administrative roles [15] to express authority. For a role S.r
(means the role “r” is defined by S), we use a(S.r) to denote its administrative role. In
fig. 2, S wants to share its resources controlled by S.r to the users (e.g., U) in another
domain, S may delegate the authority a(S.r) to a MA (MA1) within or close to this
domain. MA1 may directly authorize the role S.r to U, or may re-delegate the author-
ity to another MA (MA2) more close to U, and so on. The final MA (MAn) in the
chain will do the actual authorization to U. In the process of delegation of authority, S

U S MAn MA2 MA1

Final AuthorizerIntermediate AuthorizersSource of Authority

a(S.r) a(S.r) a(S.r) S.r

Control Point

G. Yin et al.

848

is the source and the control point of the delegated authority, totally controls the
propagation of authorities and permissions. MA1 to MAn-1 are intermediate authorizers,
they can pass on the authority and may also set constraints on the delegation process,
and the final authorizer MAn authorizes the role S.r to U.

2.2 Delegation at Request Level

We use delegation of capability to model the delegation activities within the context
of a request. In centralized systems, a capability is an unforgettable pair made up of
an object identifier and a set of authorized operations (an interface) on that object [7],
and capabilities are only given to processes. In distributed role-based authorization
systems, capabilities can be modeled as role activations [12].

Definition 2 (Capability). Capability is the privilege to exercise the permission of a
specified entity. The idea of delegation of capability is that one entity hands off capa-
bilities to another entity to access resources on behalf of the former. A good model
for delegation of capability will cut the complexity of authorization decision making
for cascaded requests.

Fig. 3. The control model of delegation of capability

RT [12] uses “U as S.r” to express the capability holding by a session (process),
while the subject of the session is U, and its activated role is S.r. We follow this ap-
proach, using c(U, S.r) to denote the capability with the same meaning.

In fig. 3, U creates a process with the capability c(U, S.r). The process calls a
server (e.g., RA1) to perform some operations, delegating its capability c(U, S.r) to
RA1. RA1 may call another server (RA2) with the capability to finish the operation,
and so on. This cascaded request will end when the final requester (RAn) calls the
target server (S) and provides the capability c(U, S.r). Among the entities in delega-
tion chain, S only care about two entities, the initiating requester and the final re-
quester. S only needs to check whether final requester can be authorized with the
roles in delegated capabilities (e.g. S.r), which are only related to initiating requester.
There are two control points in this model. U may control which RAs can exercise his
capability, while S may also need to control which RAs are trusted to use the privi-
leges delegated from initiating requester.

2.3 Propagation Scope of Delegation

Delegation is a flexible and scalable approach for authorization in decentralized sys-
tems. However, abuse or misuse of delegation will cause undesirable propagation of

S URAn RA2 RA1

Final Requester Intermediate Requesters

c(U,S.r) c(U,S.r) c(U,S.r) c(U,S.r)

Control Point Control Point

An Authorization Framework Based on Constrained Delegation

849

privileges. We propose to use trusted scope to restrict the propagation scope of dele-
gation.

Definition 3 (Trusted Scope). Trusted scope is a collection of entities with certain
attributes, which can be trusted by the delegator not to abuse or misuse the privileges
(permissions, authorities or capabilities) assigned to them within a specified context.
We use role intersections to denote trusted scope. For example, A.r∩B.r’ is a role
intersection, expressing the collection of entities that are both members of the role A.r
and B.r’.

Administrative Scope. We use trusted scope to constrain the administrative scope (AS)
of delegated authority, as shown in fig. 4.a. An authorizer with the delegated author-
ity can only authorize the permission to entities within the AS defined by the preced-
ing entities in the delegation chain. The first AS is defined by the control point of the
delegated authority (e.g. S), which is represented by the dashed rectangle in fig. 4.a.
Any authorizer (from MA1 to MAn) in the delegated chain can never authorize the
role S.r to a user outside of this combined AS.

Fig. 4. Propagation scope of delegated privileges

Proxy Scope. We can also use trusted scope to constrain the proxy scope (PS) of the
delegated capability, as shown in fig. 4.b. The control model at request level is more
complex than that at management level (there are two control points in delegation of
capability), we further distinguish the PS between Forward PS (FPS) and Backward
PS (BPS) for the delegated capability. Suppose S has authorize (directly or indirectly)
the role S.r to U. The FPS of the delegated capability is the PS specified by requesters
(U or RAs). A requester with the delegated capability can only delegate the capability
to entities within the FPS defined by the preceding requesters in the delegation chain.
Fig. 4.b shows the FPS set by U, which means the following requesters (from RA2 to
RAn) must be in the FPS. On the other hand, the BPS of the delegated capability is the
PS specified by S. When S makes authorization decision for a request from the direct
requester (e.g. RAn), S may need to constrain the PS for the capabilities the requester
exercising, which means the preceding requesters must belong to the BPS as shown in
fig. 4.b (e.g. from RAn-2 to RA1). If the requester uses the capabilities coming from un-

S

a(S.r)
a(S.r)

a(S.r)

Administrative scope of delegated
authority in management level

S.r S.r S.r

MA1 MA2

MAn

U
U U

U

U

U U

U

U

RAn

S.r

c(U,S.r) c(U,S.r)

RA2
RA1

S

c(U,S.r)

Forward proxy scope

Backward proxy scope

c(U,S.r)

(a) administrative scope (b) proxy scope

G. Yin et al.

850

trusty entities (e.g. from outside of BPS), S will not allow the delegation. We call this
the authorization of capabilities from S to RA n-1.

3 The REAL Language

In this section, we propose REAL (Role-based Extensible Authorization Language), a
language framework for above two delegation models and corresponding constraint
models using credentials. The general form of a credential in REAL is:

issuer subject: < privilege, constraint >

The general meaning of above credential framework is that the issuer authorizes
(or delegate) the privilege to the subject while the constraint must be satisfied. The
credential is signed by the issuer. The issuer and subject are single entities, which are
denoted using capitals or words begin with capitals, such as A, B, Alice, etc (in a
practical system, entities are public keys). The subject can also be the set of entities,
which are denoted using distributed roles in this paper. We use different types of
structures to express privilege and constraint. The syntax and brief introductions for
privilege and constraint are shown in table 1 and table 2 respectively. According to
different type of privileges and constraints, we can reify the above general credential
form into different types of credentials.

Table 1. Privilege Structures in REAL

Privilege Type Syntax Description

distributed role A.r The role defined by entity A, and r is the role name.

authority a(A.r) The administrative role for A.r.

capability c(D, A.r) The role activation held by a session process, which is
created by the entity D using role A.r.

abstract capability ac(A.r) The capability set which are created by the entities using
role A.r, where the entities are members of the role A.r.

Table 2. Constraint Structures in REAL

Constraint Type Syntax Description

constraint on authoriza-
tions

cau(ts) cau denotes the prerequisite roles in authorization
credentials.

constraint on delegated
authorities

cda(ts) cda is the AS for the delegated authorities.

constraint on authoriza-
tion of capabilities

cac(ts) cac is the BPS for the authorized capabilities.

constraint on delegated
capabilities

cdc(ts) cdc is the FPS for the delegated capabilities.

In above constraint structures, ts has the type of trusted scope and can be “*”, which means all
entities in the system. The corresponding constraint structure are also denoted as “*”.

An Authorization Framework Based on Constrained Delegation

851

Credentials in REAL can be used to express four kinds of policies: 1) authoriza-
tion; 2) delegation of authority; 3) authorization of capability; 4) delegation of capa-
bility. Each kind includes basic credentials (subject is an entity) and scalable creden-
tials (subject is a role). Now let’s get down to the details.

3.1 Authorization (Type-I Credentials)

The type-I credentials are used to express authorization polices. Credential (I) means
that A authorizes B with the role C.r, and B must comply with the constraint cau(ts).
Credential (I+) expresses the authorization to entities who are members of B.r’.

(I) A B: < C.r, cau(ts) >
(I+) A B.r’: < C.r, cau(ts) >

Example 1. A book store (BS) wants to give a discount (BS.discount) to students of a
nearby university (Univ.student). But the students must be the members of BS
(BS.member). Suppose Alice is a student of Univ and a member of BS. We can ex-
press these policies using following authorization credentials:

(1) BS Univ.student: < BS.discount, cau(BS.member) >
(2) BS Alice: < BS.member, * >
(3) Univ Alice: < Univ.student, * >

According to REAL semantics, Alice will be authorized with the role BS.discount
by BS, so she will enjoy the discount provided by BS. Example 1 is motivated by the
example in [12].

3.2 Delegation of Authority (Type-II Credentials)

The type-II credentials are used to express delegation of authority. Credential (II)
means that A delegates the authority a(C.r) to B, and the administrative scope of the
delegated authority is constrained by cda(ts). Credential (II+) expresses the delegation
to entities who are members of B.r’.

(II) A B: < a(C.r), cda(ts) >
(II+) A B.r’: < a(C.r), cda(ts) >

Example 2. Continue with example 1, BS trusts its security administrator (BS.sa) to
determine the membership (BS.member). BS also requires that its members must
have been registered (BS.registered). Suppose Bob and Carol both are BS’s security
administrators. Alice has registered in BS and Bob accepts Alice as the member of BS.
These policies can be expressed using following credentials:

(4) BS BS.sa: < a(BS.member), cda(BS.registered) >
(5) BS Bob: < BS.sa, * >
(6) BS Carol: < BS.sa, * >
(7) BS Alice: < BS.registered, * >
(8) Bob Alice: < BS.member, * >

G. Yin et al.

852

According to credentials (4)(5)(7)(8), the semantics for REAL should support that
Alice is a member of BS.

3.3 Authorization of Capability (Type-III Credentials)

The type-III credentials are used to express the policies of authorization of capability
in request level. Credential (III) means that A allows B to exercise the capability c(?x,
A.r), where ?x is the entity who is the member of A.r. The BPS of the delegated capa-
bility is constrained by cac(ts). Credential (III+) expresses the authorization to entities
who are members of B.r’.

(III) A B: < ac(A.r), cac(ts) >
(III+) A B.r’: < ac(A.r), cac(ts) >

Example 3. Continue with above examples. BS allows its agencies (BS.agency) to act
as the proxies for BS’s members (BS.member). VBS is a virtual book store, which is an
agency for BS (BS.agency). We can describe the policies using following credentials:

(9) BS BS.agency: < ac(BS.member), cac(BS.agency) >
(10) BS VBS: < BS.agency, * >

According to REAL semantics, if a request is initiated by a BS’s member, with
VBS acting as the proxy for the request, then BS will finally authorize the request.

3.4 Delegation of Capability (Type-IV Credentials)

The type-IV credentials are used to express delegation of capability in request level
authorization activities. Credential (IV) means that A delegates the capability c(C, D.r)
to B, and the FPS of the delegated capability is constrained by cdc(ts). Credential (IV+)
expresses the delegation to entities who are members of B.r’.

(IV) A B: < c(C, D.r), cdc(ts) >
(IV+) A B.r’: < c(C, D.r), cdc(ts) >

Example 4. Continue with above examples, Alice buys a book from VBS, delegating
her role BS.member to VBS, but restricting the forward proxy scope of delegated
capability within BS.agency. Suppose VBS can not process the request from Alice
and forward to another virtual book store (AVBS), AVBS is also an agency for BS
and finally submit the request to the BS server successfully. We can describe the
delegation process using following credentials:

(11) BS AVBS: < BS.agency, * >
(12) Alice VBS: < c(Alice, BS.member), cdc(BS.agency) >
(13) VBS AVBS: < c(Alice, BS.member), * >

According to REAL semantics, BS will finally authorize the request from AVBS
and provide discount for the current bill. This example also introduces a mechanism
for the security problem in fault tolerance scenarios.

An Authorization Framework Based on Constrained Delegation

853

4 Semantics

We now define a translation from each credential to one or more Datalog rules (with
negation-as-failure) [19]. This translation serves both as a definition of the semantics
and also as one possible implementation mechanism. We define the translation using
the semantic translation algorithm (STA) shown in table 3. In the output language, we
use 3 special predicates: auth, doa and doc.

The core predicate is auth(issuer, subject, r), which means that issuer authorizes
subject with the role r. The predicate doa(issuer, subject, au, ts) means that issuer
delegates (directly or indirectly) the authority au to subject, while the AS of au is ts.
The predicate doc(issuer, subject, capa, proxy, id) means that issuer delegates (di-
rectly or indirectly) the capability capa to subject, where proxy is one of the entities
in the delegation chain; id is an integer uniquely identifies the predicate, 0 is the
default value for id. When issuer directly delegates capa to subject, proxy takes “Θ”
as the value, which is the default value for proxy; if there is an entity in the delega-
tion chain does not belong to BPS of capa (which is specified in type-III creden-
tials), then we use “Ω” to denote that entity. The first 2 arguments of each predi-
cates take an entity as the value.

To simplify the presentation of the translation rules, we add a new predicate
auths_ts, which takes an entity and trusted scope (role intersection) as arguments.
auths_ts is used to check whether the entity complies with the trusted scope. For ex-
ample, auths_ts(D, A.r∩B.r’) is true if and only if both auth(A, D, A.r) and auth(B, D,
B.r’) are true.

We do not present the translation for scalable credentials (such as I+,II+,III+ and
IV+) because it is similar to the translation in table 3, we just need to add one auth
predicate denoting that B authorizes B.r’ to a variable and replace B with this variable
in each rule. We call the translation algorithm for all credentials Full-STA (FSTA).

Table 3. Datalog-based Semantics for REAL

Semantic Translation Algorithm (STA)

(I) Translate credential “A B: < C.r, cau(ts) >” to,
1. auth(A, C, B.r) :- auths_ts(B, ts).

(II) Translate credential “A B: < a(C.r), cau(ts) >” to,
1. doa(A, B, a(C.r), ts).
2. auth(A, ?x, C.r) :- auth(B, ?x, C.r), auths_ts(?x, ts).
3. auth(A, ?z, C.r) :- doa(B, ?x, a(C.r), ?yts), auth(?x, ?z, C.r), auths_ts(?z, ts), auths_ts(?z, ?yts).

(III) Translate credential “A B: < ac(A.r), cac(ts) >” to,
1. auth(A, B, A.r) :- doc(?x, B, c(?x, A.r), ?y), ¬ doc(?x, B, c(?x, A.r), Ω, id).
2. doc(?x, B, c(?x, A.r), Ω, id) :- doc(?x, B, c(?x, A.r), ?y), ¬ auths_ts(?y, ts).
where id is a global unique identifier generated during translation.

(IV) Translate credential “A B: < c(C, D.r), cdc(ts) >” to,
1. doc(A, B, c(C, D.r)) :- auth(D, C, D.r).
2. doc(A, ?x, c(C, D.r), B) :- doc(B, ?x, c(C, D.r)), auths_ts(?x, ts).
3. doc(A, ?x, c(C, D.r), ?y) :- doc(B, ?x, c(C, D.r), ?y), auths_ts(?y, ts).

G. Yin et al.

854

When a server (S) receives a request, which is denoted by a structure R(creds, op),
R is the identity of the final requester to S, creds is the credentials provided by R and
op are the operations on S which R wants to invoke. Suppose an entity must be au-
thorized with role S.ri (i=1,…,s) before it can perform the op on S. Now we can de-
fine the POC (proof of compliance) problem [11] for the current request: given the set
of credentials C∪creds, whether the rule set FSTA(C∪creds) can prove auth(S, R, S.ri),
where C is the credential set held by S and i=1,…,s.

Given a set of REAL credentials C, let FSTA(C) be the Datalog program resulting
from the translation. The implication of C, defined as the set of auth predicates im-
plied by C, is determined by the minimal model of FSTA(C). In the following, we
show that this model can be constructed in polynomial time.

Proposition 1. Given a set C of REAL credentials, computing the implications of C
can be done in time O(N5), where N is the number of credentials in C.

Proof. We follow the analysis approach in [12]. Consider the translation of one cre-
dential c; let FSTA(c) be the resulting rule. FSTA(c) has up to 4 variables (FSTA will
add one variable to each rule in table 3) introduced after the translation. When
instantiate these variables, only the (at most 2N) entities that appear in the issuer and
subject field of basic credentials in C need to be considered, and only the (at most N)
trusted scope that appears in the cau constraint of type-II credentials need to be con-
sidered. So there are O(N) ways to instantiate each variable. For each rule there are at
most O(N4) ways to instantiate it, and there are at most 3N (FSTA will translate each
credential of type-II or type-III into 3 Datalog rules) rules in FSTA(C). Therefore the
size of the ground program is O(N5).

5 Implementing Issues

We use SICStus Prolog (SICSP) [6] as Datalog inference engine. SICSP supports
negation as failure (NSF), for example, the NSF form of a predicate P is “\+P”. The
compound terms in SICSP make it very convenient to express roles, authorities and
capabilities in REAL. We use list structure to express role intersection. For example,
we design the predicate auths_ts using three SICSP rules:

auths_ts(_, *). auths_ts(_, []). auths_ts(X, [r(Y,R)|TS]) :- auth(Y, X, r(Y,R)), auths_ts(X, TS).

We have implemented TMB (Trust Management Broker), a new-style authoriza-
tion management middleware based on a CORBA [17] platform, using REAL as its
authorization language and policy compliance checking engine. We are now design-
ing the credential distribution and revocation schemes.

6 Related Work and Future Extensions

Delegation is attracting much research interest all along. In this paper, we contribute
in two aspects, delegation classification and constraint on delegation.

An Authorization Framework Based on Constrained Delegation

855

Delegation Classification. We classify delegation based on two types of privileges
being delegated, i.e., authority and capability, and clearly describe the application
scenarios for the two kinds of delegations. E. Barka and R. Sandhu focus on the
human to human form of delegation [4], classifying delegation by the characteristics
such as such as permanence, totality, levels of delegation, etc. Their work is limited to
management level and belongs to some kind of delegation of authority. B.S. Firoza-
badi distinguishes between delegation as creation of new privileges and delegation by
proxy [2], which can be regarded as the rudiment of delegation of authority and dele-
gation of capability. But their classification only based on whether the delegatee
receives his own privilege or not, and they only realize the first type of delegation.

Constraint on Delegation. It seems a contradiction that using delegation to provide
more flexible and scalable authorization management while at the same trying to
restrict it. The key point is to find the balance. O. Bandmann proposed constrained
delegation model [14], using regular expressions to constrain the shape of delegation
trees. The model is essentially centralized because it uses group information to restrict
the delegation tree, which is stored in a central authorization server. Furthermore, the
author does not give the computational model. N. Li propose to use delegation depth
to control the propagation of delegation in DL [13]. Delegation depth is oppugned by
some authors [3] and may not reflect the trustworthiness in delegation or authoriza-
tion (e.g. delegation within one domain for several steps may be safer than one-step
delegation across different domains). We use trusted scope to restrict the propagation
scope of delegated privileges, which has following merits,

(1) Security administrators can directly control the AS of authorities without car-
ing about delegation process. In practical security systems, administrators must be
careful to set AS for delegated authorities, since AS can be strongly affected (or even
controlled) by the issuers of the roles in AS.

(2) The capabilities coming from its owner to the finial requester through a dele-
gation chain, every entity in the chain must sign a type-IV credential for the authori-
zation checking in the server. The FPS and BPS of delegated capability allow both
user and server to control the use of delegated capabilities. This is very applicable for
the delegation policies in distributed object systems [17].

(3) We distinguish between authorization and delegation of authority. Many au-
thorization models do not distinguish this, such as SPKI [3] and KeyNote [10]. In
these systems, entities will be authorized with the permission by default if they are
delegated with the corresponding authority. This is unreasonable in many scenarios.
REAL support constraint on AS of delegated authorities, so even if an entity has the
authority of some permission, it still can not be authorized with the permission if it is
outside of the AS of this authority.

Future Extensions 4.4. REAL has been influenced by RT [12]. It borrows the idea of
ABAC (attribute-based access control) and the concept of role activations in RT. But
REAL can express more flexible delegation policies (credentials of type-II and IV),
more scalable authorization policies (type-I credentials) and authorization of capabili-
ties (type-III credentials), as well as the constraints to restrict the propagation of dele-
gated privileges.

G. Yin et al.

856

We can extend the constraint structure in REAL to support more flexible trusted
scope (now we only use role intersection to express trust scope) and different types of
constraints, such as time and trust level constraints [16]. We can also extend subject
structure to support separation of duty policies. Future research work includes creden-
tial retrieval and credential revocation. We are now designing a revocation checking
algorithm based on FSTA semantics to enforce different revocation policies.

7 Conclusions

We introduce REAL framework, a Role-based Extensible Authorization Language
framework for open decentralized systems. REAL supports delegation of authority
and delegation of capability, covering authorization activities at management level
and request level. We also propose to use trusted scope to prevent undesirable
propagation of authorizations in the delegation models. Using simple credential forms,
REAL provides more flexible and scalable authorization and delegation policies
while capable of restricting the propagation scope of delegations. REAL ensures the
privacy of policy storage and policy transmission in authorization process based on
public cryptography. REAL can be used to address the policies for proxy mechanisms
in Globus [5], all kinds of delegation policies in CORBA CSIv2 specification [17]
and the distributed authorization policies for virtual organization in data grid [8].

Acknowledgements

The authors would like to thank Hai-ya Gu, Jian-qiang Hu and Ning-hui Li for their
helpful discussions and the anonymous reviewers for their valuable comments.

References

1. Butler Lampson, Martin Abadi, Michael Burrows, and Edward Wobber. Authentication in
distributed systems: Theory and practice. ACM Transactions on Computer Systems,
10(4):265–310, November 1992.

2. B. S. Firozabadi, M. Sergot, and O. Bandmann. Using Authority Certificates to Create
Management Structures. In Proceeding of Security Protocols, 9th International Workshop,
Cambridge, UK, April 2001. Springer Verlag. In press.

3. C. M. Ellison, B. Frantz, B. Lampson, R. Rivest, B. M. Thomas, and T. Ylonen. SPKI
Certificate Theory. IETF RFC 2693, 1998.

4. Ezedin Barka and Ravi Sandhu. Framework for Role-Based Delegation Models. In
Proceedings of 16th Annual Computer Security Application Conference, New Orleans,
LA, December 11-15 2000, pages 168-176

5. Grid Computing - Making the Global Infrastructure a Reality, Edited by Fran Berman,
Geoffery Fox, Tony Hey, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England, 2003

6. Intelligent Systems Laboratory, Swedish Institute of Computer Science, SICStus Prolog
User’s Manual, Release 3.11.1, February 2004

An Authorization Framework Based on Constrained Delegation

857

7. Jonathan S. Shapiro, Jonathan M. Smith, David J. Farber, EROS: a fast capability system,
17th ACM Symposium on Operating Systems Principles (SOSP'99).

8. L. Pearlman, C. Kesselman, V. Welch, I. Foster, S. Tuecke, The Community Authoriza-
tion Service: Status and Future, CHEP03, March 24-28, 2003, La Jolla, California

9. M. Gasser, E. Mcdermott, An architecture for practical delegation in a distributed system.
In Proceedings of the IEEE Symposium on Security and Privacy (May 1990), pp. 20-30.

10. M. Blaze, J. Feigenbaum, John Ioannidis, and Angelos D. Keromytis. The KeyNote trust-
management system, version 2. IETF RFC 2704, September 1999.

11. M. Blaze, Joan Feigenbaum, John Ioannidis, and Angelos D. Keromytis. The role of trust
management in distributed systems. In Secure Internet Programming, volume 1603 of
Lecture Notes in Computer Science, pages 185–210. Springer, 1999.

12. Ninghui Li, John C. Mitchell, and William H. Winsborough. Design of a role-based trust
management framework. In Proceedings of the 2002 IEEE Symposium on Security and
Privacy, pages 114-130. IEEE Computer Society Press, May 2002.

13. Ninghui Li, Benjamin N. Grosof, and Joan Feigenbaum. Delegation logic: A logic-based
approach to distributed authorization. ACM Transaction on Information and System Secu-
rity (TISSEC), February 2003.

14. Olav Bandmann, Mads Damy, Babak Sadighi Firozabadi, Constrained Delegation, Pro-
ceedings of the 2002 IEEE Symposium on Security and Privacy (S&P'02)

15. Ravi Sandhu, Venkata Bhamidipati and Qamar Munawer, "The ARBAC97 Model for
Role-Based Administration of Roles", ACM Transactions on Information and System
Security, Volume 2, Number 1, February 1999, pages 105-135.

16. S. Schwoon, S. Jha, T. Reps, S. Stubblebine, On Generalized Authorization Problems,
Proceedings of the 16th IEEE Computer Security Foundations Workshop (CSFW'03)

17. The Common Object Request Broker: Architecture and Specification, Object Management
Group, July 2002 Version 3.0

18. Vijay Varadharajan, Philip Allen, Stewart Black. An Analysis of the Proxy Problem in
Distributed systems. IEEE Symposium on Research in Security and Privacy. Oakland, CA
1991.

19. Van Gelder, A., Ross, K.A., Schlipf, J.S. The Well-Founded Semantics for General Logic
Programs. JACM 38(3): 620~650

20. W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and F. Pollack. HYDRA:
The kernel of a multiprocessor operating system. Communications of the ACM,
17(6):337–345, June 1974.

 J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 858–865, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A Novel Hierarchical Key Management Scheme
Based on Quadratic Residues

Jue-Sam Chou1, Chu-Hsing Lin2, and Ting-Ying Lee
2

1
Department of Information Management, Nanhua University Chiayi,

622 Taiwan, R.O.C
jschou@mail.nhu.edu.tw

2
Department of Computer Science and Information Engineering,

Tunghai UniversityTaichung, 407 Taiwan, R.O.C
chlin@mail.thu.edu.tw

Abstract. In 1997, Lin [1] proposed a dynamic key management scheme using
user hierarchical structure. After that, Lee [2] brought to two comments on
Lin’s method. In 2002, Lin [3] proposed a more efficient hierarchical key
management scheme based on Elliptic Curve. Lin’s efficient scheme solves the
weaknesses appearing in Lee’s scheme in [1]. In this paper, we further use
Quadratic Residues (Q.R.) theorem to reduce the computing complexity of
Lin’s method.

1 Introduction

Assume that in a hierarchical key management scheme, there exists n groups,

1 2, , ..., nS S S with a relationship “ ” in a set S . If j iS S , it represents
group jS has a higher privilege than group iS . This means that jS can derive the
group secret key ik of iS , but not vice versa.

In 2002, Lin proposed an efficient hierarchical key scheme using Elliptic Curve
cryptography (ECC). The newer scheme reduces the computing complexity and
solves the two comment problems proposed by Lee [2]. The two comments which
will be stated in Section 2 are aimed at the scheme proposed by Lin [1] in 1997.

2 Background

In this section, we will introduce both Lin’s schemes, Lee’s two comments on Lin’s
dynamic key management scheme, and in the last, we also describe quadratic residue
theorem used in our scheme.

2.1 Lin’s Scheme (Proposed in 2002)

In this scheme, CA is responsible for generating all the related parameters. There are
three phases in it listed as follows:

A Novel Hierarchical Key Management Scheme Based on Quadratic Residues 859

2.1.1 Group Key Generation Phase
Step 1: CA must choose an elliptic curve EC over pZ and a generation point

()pG EC Z∈ , then find a large prime q satisfying q G O× = .
Step 2: CA computes its public key P K G= × , where K is the private key selected by
CA in advance.
Step 3: Each group iS selects a random number [1, 1]ik q∈ − as his group secret
key, then computes (,)i i i ip k G x y= × = as its corresponding group public key. We
call group secret key as group key for an abbreviation throughout the rest of this
article.
Step 4: Each group encrypts this key pair by using CA’s public key P and then
sends ()P iE k to CA.
Step 5: CA decrypts message ()P iE k by his private key K . Finally, CA computes
the related parameters jir for each relation j iS S according to the following
equation.

(((||)))ji j i i ir k h x y G k= Χ ⊕ × ⊕ , where ()h denotes a one-way hash function and
()Χ is defined in equation (1).

((,))i i i ip x y x yΧ = ⊕ , where (,)i i ip x y is a point in ()pEC Z (1)

2.1.2 Group Key Derivation Phase
For the group relation j iS S , group jS requests parameter jir and ip from CA
and derives ik with the parameters jir , jk and ip by using the following
equation.

(((||)))i j i i jik k h x y G r= Χ ⊕ × ⊕ (2)

2.1.3 Group Key Modification Phase
If group iS wants to modify his group key ik , iS will generate a new key

* [1, 1]ik q∈ − and send *()p iE k back to CA. CA will then decrypt the message
*()p iE k and compute a new related parameter *

jir .

2.2 Lee’s Two Comments

In 1997, Lin proposed a scheme based on discrete logarithm, he used the equation
(mod)j ik ID

ji ir Z p k
⊕= ⊕ to generate the related parameter jir . Afterward, Lee

proposed two comments on Lin’s scheme. We describe the comments as follows:

Comment 1: What happens if the old used group key is obtained by an attacker
after it has been changed and discarded.

Assume that a group iS changes his old group key ik to a new one *
ik . If the

attacker can obtain the old group key ik , he can perform the following two steps and
obtain the new group key *

ik .

J.-S. Chou, C.-H. Lin, and T.-Y. Lee 860

Step 1: The attacker computes ji ir k⊕ to get modj ik ID
Z p

⊕
.

Step 2: In order to obtain iS ’s new group key *
ik , the attacker computes

*(mod)j ik ID

jiZ p r
⊕ ⊕ , where *

jir is *(mod)j ik ID

iZ p k
⊕ ⊕ .

The reason why this comment can work successfully is that the value
modj ik ID

Z p
⊕

 is never changed when group iS modifies its group key ik , so the
attacker can perform a computation like Step 1 to get modj ik ID

Z p
⊕

. Then, he can
obtain * *((mod))j ik ID

ji ir Z p k
⊕= ⊕ from CA and compute *(mod)j ik ID

jiZ p r
⊕ ⊕ to

get the new group key *
ik .

Comment 2: A few bits difference between the IDs of any two groups will suffer a
sibling attack.

Assume iID of group iS and lID of group lS have only a few bits
difference and they have the same parent jS , then iS can easily obtain
(mod)j lk ID
Z p

⊕
 by comparing iID with lID . Thus, iS can crack the group key

lk of lS by computing (mod)j lk ID

jlZ p r
⊕ ⊕ .

2.3 Quadratic Residue Theorem

We use Q.R. theorem as our method’s basis; thus, we briefly introduce the feature of
Q.R. theorem [5] first. Under the assumption that there exist two large primes

 and p q such that n p q= i . If 2 (mod)x a n≡ has a solution, then a is called a
quadratic residue mod n . The symbol nQR denotes the set of all quadratic residue
number in [1, 1n −]. It is computationally infeasible to solve x by just knowing a
and n , because of the difficulty of factoring n [12].

3 Proposed Scheme

In this section, we propose a new scheme based on quadratic residue theorem. Like in
Lin’s scheme except for the initial step, there are also three phases in our method
described as follows:

3.1 Group Key Generation Phase

Initial Step: In this step, CA pre-generates some parameters for the system
construction. CA generates a secret key SK , sends it to each group iS through a
secure channel and chooses two large primes p and q , satisfying (1) | 4p + and
(1) | 4q + respectively, then computes n pq= . CA also computes all pQR and

qQR then encrypts all of pQR and qQR using his secret key SK . Finally, CA
sends (,)SK p qE QR QR to each group.

Step 1: Each group , 1,2,...,iS i n= , decrypts the message (,)SK p qE QR QR , then
selects a group key i p qk QR QR∈ ∩ . He encrypts ik using SK , then sends

()SK iE k to CA.

A Novel Hierarchical Key Management Scheme Based on Quadratic Residues 861

Step 2: CA decrypts the encrypted message ()SK iE k and obtains ik . Then, CA
computes ia for each group iS by equation (3).

2 modi ia k n= (3)

The relation between ik and ia is one-to-one. That is, whenever we are given a
()n iQR a= , we can uniquely determine ik . We prove that the key ik can be

determined uniquely when given ia by contradiction. If there are two keys, 1k and

2k , satisfying 2
1 1 modk a n≡ and 2

2 1 modk a n≡ correspondingly. Subtract both
sides of the two equations gives 2 2

1 2 0 modk k n− ≡ , and using factoring yields

1 2 1 2()() 0 modk k k k n+ − ≡ . We can easily see that 1 2() 0 modk k n+ ≠ , as required.
Step 3: For each group relation j iS S , CA computes the related parameters jir by
equation (4).

()ji j i ir h k a k= ⊕ ⊕ (4)

Step 4: CA maintains all parameters jir and ia on each group iS ’s requests.

3.2 Group Key Derivation Phase

For the group relation j iS S , jS can derive ik by performing equation (5).

()i j i jik h k a r= ⊕ ⊕ (5)

Basically, there are three steps in this phase, we describe it as follows:

Step 1: jS requests the parameters , i jia r from CA.
Step 2: CA sends (,)SK i jiE a r to jS .
Step 3: jS derives iS ’s group key ik by equation (5).

3.3 Group Key Modification Phase

Step 1: iS selects a new group key *
i p qk QR QR∈ ∩ and sends *()SK iE k to CA.

Step 2: CA will then compute a new Q.R. * * 2(() mod)i ia k n= for group iS .
Step 3: CA computes the related parameter *

jir by using equation (6).
* * *(())ji j i ir h k a k= ⊕ ⊕ (6)

Step 4: CA uses *
jir , *

ia to replace jir , ia respectively and maintains them.

4 Example

4.1 Group Key Generation Phase

Initial Step: CA selects a secret key SK , sends it to each group iS through a secure
channel and chooses two large primes 19p = and 23q = , then
computes 19 23 437n p q= = =i i . CA also computes 19 {1, 4,5,6,7,9,11,16,17}QR =
and 23 {1, 2,3, 4,6,8,9,12,13,16,18}QR = then encrypts all of 19QR and 23QR
using his secret key SK and sends 19 23(,)SKE QR QR to each group.

J.-S. Chou, C.-H. Lin, and T.-Y. Lee 862

Step 1: Group 1S , decrypts the message 19 23(,)SKE QR QR , then selects a group key

1 9k = . He sends 1()SKE k to CA.
Step 2: CA decrypts the encrypted message 1()SKE k and obtains 1k . Then, CA
computes 2 2

1 1 mod 437 9 mod 437 81a k= = = for group 1S .
Step 3: We assume that the group key 2k selected by 2S is 6 and the relation
between 1S and 2S is 2 1S S . CA computes the related parameters

21 2 1 1() (6 81) 9r h k a k h= ⊕ ⊕ = ⊕ ⊕ .
Step 4: CA maintains all parameters 21r and 1a on each group 2S ’s requests.

4.2 Group Key Derivation Phase

If group 2S want to derive group 1S ’s group key 1k , he must do some steps as
fallows:

Step 1: 2S requests the parameters 1 21, a r from CA.
Step 2: CA sends 1 21(,)SKE a r to 2S .
Step 3: 2S derives 1S ’s group key 1 21 2 1() 9k r h k a= ⊕ ⊕ = .

4.3 Group Key Modification Phase

Step 1: 1S selects a new group key *
1 4k = and sends *

1()SKE k to CA.

Step 2: CA will then compute a new Q.R. *
1 16a = for group 1S .

Step 3: CA computes the related parameter * * *
21(()) (6 16) 4j i ir h k a k h= ⊕ ⊕ = ⊕ ⊕ .

Step 4: CA uses *
21r , *

1a to replace 21r , 1a respectively and maintains them.

5 Security of Analysis

In this section, we will propose some attacks on our scheme. After analyzing, we find
that each attack can’t work successfully.

5.1 Attack 1: Contrary Attacks

We assume that there exists a group relation j iS S . If iS wants to obtain jk , he
will perform the calculation as equation (7), but jk is protected by the one-way hash
function.

()j i ji ih k a r k⊕ = ⊕ (7)

5.2 Attack 2: Interior Collecting Attacks

If there exists a user U in group iS which has m parents, namely jS , 1jS + ,…,

j mS + . The user U can collect the related parameters jir , (1)j ir + ,.., ()j i mr + of all his
parent groups as well as his own. Then, he can get (), 1, 2,...,j v ih k a v m+ ⊕ = , but he
has to face the difficulty in trying to reverse the one-way hash function. Obviously, it
is infeasible to find any relationship in these values.

A Novel Hierarchical Key Management Scheme Based on Quadratic Residues 863

5.3 Attack 3: Exterior Collecting Attacks

If an outside attacker wants to perform a process like Attack 2, it is computationally
infeasible for him to crack the group key jk . Since, he not only has no group key ik
but also need to reverse the one-way hash function.

5.4 Attack 4: Collaborative Attacks

Suppose that a group jS has two child groups, iS and lS , and suppose an user in
group iS and another user in group lS want to crack jS 's group key jk
collaboratively. Although they can obtain jir and jlr by equation (8) and equation
(9) from CA successfully, they will face the same problem that exists in Attack 2
eventually.

()ji j i ir h k a k= ⊕ ⊕ (8)

()jl j l lr h k a k= ⊕ ⊕ (9)

5.5 Attack 5: Sibling Attacks

Another situation is that when group iS , with a parent group jS , wants to crack the
group key lk of lS which has the same parent as group jS , and that the attacker

iS only owns jir computed by equation (8), under this circumstance, iS will then
face a more difficult problem than that exists in Attack4. Thus, he can’t crack the
group key lk of lS .

5.6 Attack 6: Using Lee’s Comments on Lin’s Scheme

Comment 1: What happens if the old used group key is obtained by an attacker
after it has been changed and discarded.

The value ia in equation ()ji j i ir h k a k= ⊕ ⊕ will be changed to *
ia each time

when group iS modifies its group key ik to a new one *
ik . So that the value

()j ih k a⊕ will be changed as well. Therefore, the weakness mentioned in comment
1 will not exist.

Comment 2: A few bits difference between IDs of two groups will suffer a sibling
attack.

For identity of each group doesn’t be used in the equation ()ji j i ir h k a k= ⊕ ⊕ in
our method, so that the weakness doesn’t exist as well.

6 Time Complexity Comparison

In this section, we discuss the performance of our proposed scheme in worst case. For
simplicity, we first define some notations as follows:

J.-S. Chou, C.-H. Lin, and T.-Y. Lee 864

MULT : the time needed by a 1024-bit modular multiplication.

HT : the time needed by a 160-bit one-way hash function operation.

_EC MULT : the time needed by the elliptic curve multiplication with 160-bit
multiplier.

According to [7], we known that _ 29EC MUL MULT T≈ .
We list the time needed in the three phases of each method, Lin’s and ours in Table

1. We can see that our scheme has lower time complexity than Lin’s schemes.
Especially in group key derivation phase, our scheme only needs HnT . For group iS
just need to perform the equation ()ji j ir h k a⊕ ⊕ . In group key generation phase,
CA must generate each group’s ia by computing 2 modik n and compute the
related parameter jir by performing the equation ()ji j i ir h k a k= ⊕ ⊕ , so the time
complexity needed is ()MUL Hn T T+ . In group key modification phase, CA performs
the equation as does in the group key generation phase, so the time complexity needed
is also ()MUL Hn T T+ . Therefore, our scheme is more efficient than Lin’s scheme.

Table 1. Time complexity comparisons

 Lin’s scheme Our scheme
Group key generation phase (58 29) MULn T+ ()MUL Hn T T+

Group key derivation phase (58 29) MULn T+ HnT

Group key modification phase (58 29) MULn T+ ()MUL Hn T T+

7 Conclusion

In our scheme, we use the group key to compute ia , a Q.R. modulo of n . The value
can be made public, but it is computationally infeasible to compute the group key ik
inversely for the hard factorization problem. Furthermore, the time complexity of
computing ia just needs one multiplication operation. Thus, our scheme is far more
efficient than Lin’s schemes. For more secure, we can choose two large prime
numbers additionally and do one more computation of square in equation (3) by
adding some parameters [13].

References

1. C. H. Lin, “Dynamic key management schemes for access control in a hierarchy,”
Computer Communications, 20, 1997, pp.1381-1385.

2. N. Y. Lee and T. Hwang, “Research note Comments on ‘dynamic key management
schemes for access control in a hierarchy’,” Computer Communications, 22, 1999,
pp.87-89.

3. C. H. Lin and J. H. Lee, “An Efficient Hierarchical Key Management Scheme Based on
Elliptic Curves,” Journal of Interdisciplinary Mathematics, Vol. 5, No. 3, October 2002,
pp.293-301.

A Novel Hierarchical Key Management Scheme Based on Quadratic Residues 865

4. C. C. Chang, S. M. Tsu, “Remote scheme for password authentication based on theory of
quadratic residues,” Computer Communications, 18, 1995, pp.936–942.

5. K. H. Rosen, “Elementary Number Theory and Its Applications,” Addison-Wesley,
Reading, MA (1988).

6. K. J. Tan, H. W. Zhu, “Research note A conference key distribution scheme based on the
theory of quadratic residues,” Computer Communications, 22, 1999, pp.735–738.

7. N. Koblitz, A. Menezes and S. Vanstone, “The State of Elliptic curve Cryptography,”
Design, Codes and Cryptography, 19, 2000, pp.173-193.

8. Draft FIPS 180-2, Secure Hash Standard (SHS), U.S. Doc/NIST, May 30, 2001.
9. N. Koblitz, “A Course in Number Theory and Cryptography,” New York,

NY:Spring-Verlag, Second edition, 1994.
10. A. Menezes, “Elliptic curve Public Key Cryptosystems,” Kluwer Academic Publishers,

1993.
11. L. Harn, L. Y. Lin, “A Cryptographic Key Generation Scheme for Multi-Level Data

Security,” Computer and Security 9, 1990, pp.539-546.
12. W. Patterson, “Mathematical Cryptology for Computer Scientists and Mathematicians,”

Rowman, 1987.
13. C. I. Fan, and C. L. Lei, “Low Computation Partially Blind Signatures for Electronic

Cash,” to appear in IEICE Trans. on Fundamentals of Electronics, Communications and
Computer Sciences, Vol. E81-A, No. 5, 1998.

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 866–874, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Soft-Computing-Based Intelligent Multi-constrained
Wavelength Assignment Algorithms in IP/DWDM Optical

Internet*

Xingwei Wang1, Cong Liu1, and Min Huang2

1 Computing Center, Northeastern University, Shenyang, 110004, China
wangxw@mail.neu.edu.cn

2 School of Information Science & Engineering, Northeastern University,
Shenyang, 110004, China

Abstract. Wavelength assignment is one of the most important research areas in
IP/DWDM optical Internet. Taking multiple constraints into account, including
cost, power, network performance etc., the wavelength assignment is made much
fit to the actual network configurations, however, the problem complexity
increases correspondingly, leading to the adoption of a layered solution
framework. As each layer sub-problem is NP complete, soft-computing
algorithms, including Simulated Annealing Algorithm (SAA) and
Simulated-annealing-Genetic Algorithm (SGA), and heuristic algorithms are
used jointly to design the intelligent multi-constrained wavelength assignment
algorithms respectively. Simulation results have shown that these proposed
algorithms are feasible and effective.

1 Introduction

IP/DWDM optical Internet is considered to be a promising candidate for the Next
Generation Internet (NGI) backbone. Routing and Wavelength Assignment (RWA) is
one of the most important means of improving resource utilization in IP/DWDM
optical Internet [1]. A lot of static WA algorithms, using integer linear programming
and graph-coloring methods etc., and dynamic WA algorithms, using first fit, least
used, most used, min-product, least loaded, max-sum strategies etc., have been
presented [2-7]. However, most of them solve WA problem under the relatively ideal
conditions, often only taking the network topology and wavelength resource into
account. In order to make the wavelength resource allocation much fit to the actual
network configurations, multiple constraints should be considered, such as cost, power
[8], network performance etc. In this paper, the cost considered concludes Wavelength
Converter (WC) [9] cost and wavelength amplifier cost.

* This work is supported by the National Natural Science Foundation of China under Grant No.

60473089, 60003006 (jointly supported by Bell Lab Research China) and No. 70101006; the
National High-Tech Research and Development Plan of China under Grant No.
2001AA121064; the Natural Science Foundation of Liaoning Province in China under Grant
No. 20032018 and No. 20032019; the Modern Distance Education Engineering Project of
China MoE.

Soft-Computing-Based Intelligent Multi-constrained WA Algorithms 867

From this new viewpoint, an intelligent solution is proposed in this paper, and more
practical and better configuration can be obtained under the multi-constraints. Due to
the problem’s complexity, a four-layered solution framework is adopted, and optimal
WA solution can be approached by the cooperation among these four layers. As each
layer sub-problem is NP complete [10], two soft-computing algorithms, i.e., Simulated
Annealing Algorithm (SAA) [11] and Simulated-annealing-Genetic Algorithm (SGA)
[10], and heuristic algorithm are used. Simulation results have shown that the proposed
algorithms are feasible and effective.

2 Problem Formulations

2.1 Basic Assumptions

IP/DWDM optical Internet can be modeled as a graph),(EVG , where V is the set of
nodes representing wavelength routers or Optical Cross-Connect (OXC) and E is the
set of edges representing optical fibers.

Assume that each node is equipped with enough amounts of optical receivers and
transmitters. OXC can be classified into Wavelength Selective Cross-Connect (WSXC)
and Wavelength Interchanging Cross-Connect (WIXC). In addition, assume that the
attenuation of signal power only exists in optical fibers and all other optical equipments
are active.

2.2 Related Concepts and Parameters

Node pair set is denoted by (){ }VzVzzzZ ∈∧∈= 2121 |, . Minimum Number of Hop

(MNH) of node pair Zz∈ equals the minimum number of the spanned edges minus 1,
denoted by ZzzmEVGzMNH ∈∀=),()),(,(. The lightpath set of Zz∈ is denoted by

})()(|{, ezmplpA ez +≤= , where p represents one of the lightpaths of Zz∈ with the

non-looped edges,)(pl represents the number of the spanned edges along p , and e is
called path-extending width, =e 0,1,2,…. Each fiber can carry W wavelengths,
labeled 1~ W correspondingly. Demand matrix represents requests arrived at the
network, and demand number represents the total number of the arrived requests.

2.3 Solution Framework Descriptions

Under multiple constraints, a four-layered solution framework is designed, composed
of WC, Pure RWA (PRWA), EDFA and power layers from top to down (see Fig.1).
Correspondingly, all these four layers have their own optimization objectives, and
cooperate through them. For WC layer, the goal is to minimize the number of WCs
deployed in the network, at the same time approach network performance optimization.
For PRWA layer, the goal is to establish lightpaths as much as possible, based on
demand matrix and WC layer’s result. For EDFA layer, the goal is to minimize the
number of EDFAs on links based on PRWA layer’s result. For power layer, the goal is
to optimize the lightpath establishment further based on the above three layers’ results,
with power limitations in mind.

X. Wang, C. Liu, and M. Huang 868

Fig.1. A four-layered solution framework

3 Soft-Computing-Based Multi-constrained WA Algorithms

3.1 SAA-Based Intelligent Algorithm

Intelligent Algorithm for WC, EDFA and Power Layers

Solution Expression. Adopt binary encoding in WC layer, each bit of the binary cluster
indicates whether the corresponding node is configured with WC or not, the length of
solution S equals the total node number in the network topology. Adopt floating
encoding in EDFA layer, the EDFAMAXNUM amount of EDFAs are pre-configured on

each link, every pre-configured EDFA has a corresponding item in S , its value
representing its position on the link. Adopt floating encoding in power layer, each item
represents the initial power for the corresponding connection, valued within [0, maxP],

maxP denotes the maximum power of transmitter, and the length of the solution equals

demand number.

Neighborhood Structure. In WC layer, do reverse operation on one bit or two bits of the
solution, corresponding to single node or double nodes. Call the former fine-tuning and
the latter coarse-tuning. Use fine-tuning at the early stage, and then do coarse-tuning, so
that the algorithm efficiency is improved. In EDFA layer, using the formed template as
the reference point, position of each EDFA can float forwards or backwards. The
floating range is],0[AVELEN , where AVELEN is the average distance between adjacent

EDFAs on the link. Then, using it as a framework, get a new solution randomly for
EDFA deployment. The only difference between power layer and EDFA layer is that
the floating range in the former is],0[maxP .

Fitness Function. In WC layer, define the following fitness function:

≤<

×+×=
snumi

wci GbCostSaG
0

2111 , where 1a and 1b are two coefficients, representing

cost and network performance weights respectively, wcCost represents the cost of WC,

snum is the length of the solution, iS is the value of the thi item, and 2G represents

the result in PRWA layer. In EDFA layer, define the following fitness function:

≤<

×+×=
snumj

EDFA GbCostjcheckaG
0

4333)(, where 3a and 3b are two coefficients,

WC Layer

PRWA Layer

Power Layer

EDFA Layer

Soft-Computing-Based Intelligent Multi-constrained WA Algorithms 869

representing cost and power performance weights respectively, EDFACost represents the

cost of wavelength amplifier, j is the sequence number of item in the solution, and 4G

represents the result in power layer. Define)(jcheck as follows: if ≤< jS0 the length

of the corresponding link, its value is 1, otherwise 0. If the value of the thj item is
within the range of the link length, the cost of the corresponding EDFA should be
considered. In power layer, define the following fitness function:)(4 SGetnumG = ,

where)(SGetnum represents the maximum connection number obtained under the
corresponding power distribution strategy with regard to all items of the solution. The
procedure of getting)(SGetnum is described as follows:

Step1. Compute path gain for every connection, sort them in descending order and put
them into set P ; initialize the number of the successfully established connections to be 0.
Step2. If P is not empty, take a connection with maximum path gain out of it, go to
Step 3; otherwise, return the number of the successfully established connections, the
algorithm ends.
Step3. Add this connection to the network topology.
Step4. Judge whether fiber or EDFA power saturation along this added connection
emerged or not. If emerged, remove that connection from the network topology;
otherwise, conserve it in the network topology, and increase the number of the
successfully established connections by 1. Go to Step 2.

Generating Initial and Feasible Solution. In WC layer, if the scale of the network
topology is smaller, initialize all the items of the initial solution to be 0, otherwise
initialize them randomly.

In EDFA layer, the maximum number of EDFAs on each link is determined as
follows: 1)(+= αAVEMAXEDFAMAX LENLENNUM , where MAXLEN represents the
maximum link length in the network and α is the signal attenuation ratio in optical
fiber. Then, { }fbmaxmaxmaxsigmax PPNUMMINP ,×= , where sigmaxP is the maximum
total power of the transmitted signal in optical fiber, fbmaxP is the maximum total
power of optical fiber and maxNUM is the maximum number of wavelengths carried
by optical fiber. Thus, EDFAMAXNUML × indicates the length of the solution.

As EDFAs are configured according to the requirement of the longest link, not all the
links need such amount of EDFAs. When the value of the item is bigger than the length
of its link, it means that the corresponding EDFA has been deployed beyond the link,
i.e., that EDFA does not exist actually. The optimization goal is to reduce the number of
EDFAs deployed along fibers as much as possible.

EDFAs are configured as inline amplifiers and deployed according to AVELEN link
by link. By this way, an initial solution template is obtained.

In power layer, it is almost the same as that in EDFA layer, and the only difference is
that the items’ random floating values of the solution are within],0[maxP .

Cooling Schedule. The cooling schedules for WC, EDFA and power layers are similar.
The initial temperature is determined as follows: cTTT minmaxINI)(−= ,

131211 aCostNumcaPaT wcnetmax +××+×= , 1211 bPbT netmin +×= , where 11a , 12a , 13a ,

11b and 12b are coefficients, valued according to the actual situation, 10 << c , netP

X. Wang, C. Liu, and M. Huang 870

represents the network performance metric value, denoted by the number of lightpaths
with wavelengths successfully assigned in PRWA layer, Numc is the total node
number in the network, maxT and minT represent the maximum and minimum
temperature respectively, denoted by the corresponding maximum and minimum cost.

Adopt constant coefficient declining temperature strategy. Here, let TC denote the
constant coefficient.

Iterative times criterion for each temperature and termination rule are both based on
non-improvement rule. Let MetroMax be the maximum iterative times under certain
temperature and SAMax be the maximum times of declining temperature. When
temperature declines from 0T to |2/|SAMaxT , coarse-tuning is adopted, however, from

1|2/| +SAMaxT to SAMaxT , fine-tuning is adopted.

Heuristic Algorithms for PRWA Layer

Routing Algorithm. The routing criterion is to allocate the least congested lightpath for
each request. The algorithm is described as follows:

Step1. According to demand matrix, for Zz ∈∀ , use extended shortest path algorithm
[10] to compute ezA , .
Step2. For Zz ∈∀ , sort lightpaths of ezA , in descending order according to their MNH.
Those lightpaths with equal MNH are sorted randomly.
Step3. For Ej ∈∀ , 0=jc , where jc represents the number of the carried lightpaths by
link j .
Step4. Select node pair z from Z .
Step5. ∞=loadMAX and ∞=loadPATH .
Step6. Select one lightpath p from ezA , .

Step7. For pj ∈∀ , =cM Maximum)(jc and
∈

=
pj

jc cS .

Step8. If (loadc MAXM <) or (loadc MAXM = and loadc PATHS <), targetP p= ,

cload MMAX = , cload SPATH = and }{,, pAA ezez −= .
Step9. If φ≠ezA , , go to Step6.
Setp10. For ∈∀j targetP, 1+= jj cc , =ezA , {targetP} and }{zZZ −= .
Setp11. If φ≠Z , go to Step4; otherwise, the algorithm ends.

Then, a ligthpath has been established for every node pair, and all these established
ligthpaths have distributed in the network topology as uniformly as possible, avoiding
such phenomenon that some lightpaths occupy the same physical link while other
physical links are quite idle.

WA Algorithm. WA algorithm is based on the results of WC deployment. Due to no
wavelength continuity constraint within paths passing WIXC and due to wavelength
continuity constraint within paths only passing WSXC (i.e., passing no WIXC), a
method splitting the existing lightpaths for approaching the optimal wavelength
assignment is proposed. The so-called splitting is that make lightpath passing WIXCs

Soft-Computing-Based Intelligent Multi-constrained WA Algorithms 871

be split into sub-lightpaths passing no WIXC, then use these sub-lightpaths as the basic
units to assign wavelengths. The algorithm is described as follows:

Step1. Select node pair z from Z .
Step2. If OXCs along targetP contain x WIXCs, split targetP into 1+x
sub-lightpaths iSP (10 +≤< xi), replacing targetP with all its corresponding iSP into

ezA , .
Step3. Sort all iSP in ezA , in descending order according to their MNH. Those iSP
with equal MNH are sorted randomly.
Step4. For Ej ∈∀ , φ=jW , where jW is the set of wavelength sequence number,
representing the occupied wavelengths on link j .
Step5. Select one iSP from ezA , .
Step6. Examine jW in this iSP , find out the maximum sequence number of the used
wavelengths, mark it as w , and 1+= ww . If Ww > , there is no wavelength available
and the corresponding request is blocked, go to Step8; otherwise, assign wavelength w
to this iSP , }{wWW jj ∪= , and }{,, iezez SPAA −= .
Step7. If φ≠ezA , , go to Step5.
Step8. }{zZZ −= . If φ≠Z , go to Step1; otherwise, the algorithm ends.

Using the above algorithm, an initial result can be obtained. However, whether the
ligthpath with wavelength assigned can be established actually under the power
limitations or not still need to be verified in EDFA layer. Thus, the fitness function in
PRWA layer is defined as follows: 3222 GbNumaG con ×+×= , where 2a and 2b are
coefficients, whose values can be set according to the actual situation, conNum is the
maximum number of the established connections according to demand matrix.

By the way, heuristic algorithms for PRWA layer in the SGA-based solutions are the
same as the above ones.

3.2 SGA-Based Intelligent Algorithm

The main differences of the SGA-based intelligent algorithm from the SAA-based one
are described as follows.

Traditionally, only the current solution is conserved from the beginning to the end in
SAA [11]. In some modified versions of SAA, one variable is added to conserve the
best solution up to the present iteration [12], however, some inherent limitations in
SAA itself still cannot be well solved. Thus, the population concept and the
competition mechanism of Genetic Algorithm (GA) [11] are introduced into SAA to
construct SGA. In this paper, based on SAA framework, GA is embedded into the
neighborhood structure of SAA. Firstly, generate initial population after a new solution
produced by SAA, and then do crossover and mutation operations on it. Use fitness
function (refer to section 3.1) to deal with the current population, generate the new
population, choose the best chromosome, and return it as the new state for the other
SAA operations. Making full use of the available knowledge for search in the solution
space, the solution quality is improved further by SGA.

X. Wang, C. Liu, and M. Huang 872

4 Performance Evaluations

A simulation software for the proposed intelligent multi-constrained WA algorithms
has been developed, and simulations have been done over some actual network
topologies, including NSFNET and CERNET, etc [10].

For SAA-based algorithm, the influence of WC/EDFA cost on network
performance is shown in Fig.2. It can be seen that the cost of WC and EDFA has an
effect on network performance to some extent. The influence of
SAMax / MetroMax / TC on network performance and runtime are shown in Fig.3 and
Fig.4 respectively. It can be seen that the number of the established connections
increases with SAMax , MetroMax and TC , the influence of SAMax being much
significant. However, increasing tendency of the number of the established
connections becomes relatively flat after reaching certain critical point. The runtime
increases significantly with SAMax / MetroMax , while not obviously with TC .
Similar evaluations on both EDFA and power layers have also been done and the resu
lts are rather satisfied [10].

Fig. 2. Influence of WC/EDFA cost on network performance

Fig. 3. Influence of SAMax/MetroMax/TC on network performance

Soft-Computing-Based Intelligent Multi-constrained WA Algorithms 873

Fig. 4. Influence of SAMax/MetroMax/TC on runtime

For SGA-based algorithm, its performance evaluation is similar to the above [10].
Table 1 is the comparisons of the established connection number, deployed WC

number, deployed EDFA number and runtime under the same simulation conditions
between these two proposed algorithms, using the result of the SGA-based one as the
benchmark. It can be seen that the results of the SGA-based one are superior to the
SAA-based one in most cases, whereas the former commonly has higher runtime
overhead.

Table 1. Performance comparisons between the two proposed algorithms

5 Conclusions

In this paper, WA problem in IP/DWDM optical Internet is solved from a new
viewpoint, considering multiple constraints, such as network topology, wavelength,
WC cost, EDFA cost and power etc., and helping to guarantee the network performance
at the same time. A four-layered solution framework is proposed with soft-computing
and heuristic algorithms used jointly to solve it, meeting with user requests as much as
possible under these multi-constraints. Simulation results have shown that the proposed
algorithms are both feasible and effective.

Established
Connection Number

(SAA: SGA)

Deployed
WC Number
(SAA: SGA)

Deployed
EDFA Number
(SAA: SGA)

Runtime
(SAA: SGA)

1.0172:1 1.1429:1 1.0059:1 0.5645:1
0.9701:1 0.7500:1 1.0030:1 0.5703:1
0.9825:1 1.200:1 1.0000:1 0.5699:1
1.0058:1 1.3333:1 1.0029:1 0.5669:1
0.9661:1 0.8750:1 1.0118:1 0.5716:1
0.9181:1 0.8000:1 1.0030:1 0.5533:1
0.9769:1 1.0000:1 1.0088:1 0.5689:1

X. Wang, C. Liu, and M. Huang 874

References

1. Daniel, Y.A., Mohammad, T.F., William, J.G., et al.: Optical Networking. Bell Labs
Technical Journal, Vol. 3, No. 1. (1998) 39–61

2. Gangxiang, S., Sanjay, K.B., Tee, H.C., et al.: Efficient wavelength assignment algorithms
for light paths in WDM optical networks with/without wavelength conversion. Photonic
Network Communications, Vol. 2, No. 4. (2000) 349–359

3. Podcameni, A., Lopes, J.: Using a simple algorithm and platform in optical DWDM
networks for reaching a satisfactory wavelength-routing assignment. Microwave and
Optical Technology Letters, Vol. 28, No. 6. (2001) 406–410

4. Bampis, E., Rouskas, G.N.: The scheduling and wavelength assignment problem in optical
WDM networks. Journal of Lightwave Technology, Vol. 20, No. 5. (2002) 782–789

5. Ozdaglar, A.E., Bertsekas, D.P.: Routing and wavelength assignment in optical networks.
IEEE/ACM Transactions on Networking, Vol. 11, No. 2. (2003) 259–272

6. Kuri, J., Puech, N., Gagnaire, M., et al.: Routing and wavelength assignment of scheduled
lightpath demands. IEEE Journal on Selected Areas in Communications, Vol. 21, No. 8.
(2003) 1231–1240

7. Wang, X.W., Cheng, H., Li, J., Huang, M.: A multicast routing algorithm in IP/DWDM
optical Internet. Journal of Northeastern University (Natural Science), Vol. 24, No. 12.
(2003) 1165–1168(in Chinese)

8. Ali, M., Ramamurthy, B., Deogun, J.S.: Routing and wavelength assignment with power
considerations in optical networks. Computer Networks, Vol. 32, No. 5. (2000) 539–555

9. Chu, X.W., Li, B., Chlamtac, L.: Wavelength converter placement under different RWA
algorithms in wavelength-routed all-optical networks. IEEE Transactions on
Communications, Vol. 51, No. 4. (2003) 607–617

10. Liu, C.: Research and simulated implementation of multi-constrained wavelength
assignment algorithms in IP/DWDM optical Internet. Shenyang: Northeastern University,
(2004) (in Chinese)

11. Xing, W.S., Xie, J.X.: Modern optimization computational methods. Beijing: Tsinghua
University Press, (1999) (in Chinese)

12. Kang, L.H., Xie, Y., et al.: Non-numerical parallel algorithm. Beijing: Science Publishing,
(1994) (in Chinese)

Data Transmission Rate Control in Computer
Networks Using Neural Predictive Networks�

Yanxiang He1, Naixue Xiong1, and Yan Yang2

1 The State Key Lab of Software Engineering,Computer School of Wuhan University,
Wuhan, 430072 P.R. China

yxhe@whu.edu.cn,xiongnaixue@hotmail.com
2 Department of Computer Science, Central China Normal University, Hubei Wuhan,

430079 P.R. China
Y.Yang@mail.ccnu.edu.cn

Abstract. The main difficulty arising in designing an efficient conges-
tion control scheme lies in the large propagation delay in data transfer
which usually leads to a mismatch between the network resources and the
amount of admitted traffic. To attack this problem, this paper describes
a novel congestion control scheme that is based on a Back Propagation
(BP) neural network technique. We consider a general computer com-
munication model with multiple sources and one destination node. The
dynamic buffer occupancy of the bottleneck node is predicted and con-
trolled by using a BP neural network. The controlled best-effort traffic
of the sources uses the bandwidth, which is left over by the guaranteed
traffic. This control mechanism is shown to be able to avoid network
congestion efficiently and to optimize the transfer performance both by
the theoretic analyzing procedures and by the simulation studies.

1 Introduction

With the rapid development of computer networks, more and more severe con-
gestion problems have occurred. Designing efficient congestion control scheme
is, therefore, a crucial issue to alleviate network congestion and to fulfill data
transmission effectively. The main difficulty in designing such scheme lies in the
large propagation delay in transmission that usually leads to a mismatch be-
tween the network resources and the amount of admitted traffic. The crucial
issue of the network control is that we should adapt the controllable flows to the
changing network environment, so as to achieve the goal of the data transfer and
to alleviate network congestion. Congestion is the result of a mismatch between
the network resources capacity and the amount of traffic for transmission.

Many control schemes are presented to resolve the network congestion. The
paper [1] reviews all kinds of congestion control schemes having been proposed

� This research has been supported by National Natural Science Foundation of China
under Grant No. 90104005 and by the Key Project of Natural Science Foundation
of Hubei Province under Grant No. 2003ABA047

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 875–887, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

876 Y. He, N. Xiong, and Y. Yang

for computer networks. Among these schemes, the representative one, which is
in common use, is the rate-based congestion control (see, e.g., [2-3]). The basic
techniques include the Forward Explicit Congestion Notification (FECN) and
the Backward Explicit Congestion Notification (BECN) [3-4].

The time delay in data transmission will result in slow transient behavior of
buffer occupancy. The responsiveness of the congestion control scheme is cru-
cial to the stability of the whole network system. The non-stability of dynamic
network influences the network’s performance. To deal with this difficulty, the
authors in [5] suggest using the method of fuzzy control to realize the rate-based
network congestion control, and the application of heredity algorithm in queue
strategy is presented in [6-7]. Furthermore, the recent papers [8-9, 19-22] use
a multi-step neural predictive technique to predict the congestion situation in
computer networks, but the longer predictive steps has still existed and the ef-
fectiveness is greatly limited in existed papers. And yet the responsiveness of
the congestion control scheme is crucial to the stability of the whole network
system and the relevant performance, this issue is, however, not considered in
these works. So this paper aims to improve the predictive scheme. We implement
the neural predictive controller at the sources rather than at the switch. This
is due to the fact the less prediction horizon usually leads to better accuracy,
whereas in the proposed scheme the predictive horizon is linked with the network
structure. Under the same circumstance, we use less predictive steps than that
in [8-9], this then usually brings forth better performance in terms of predictive
accuracy and efficiency.

Our main contribution is the significant development of a multi-step neural
network predictive technique for the congestion control. Through simulations of
actual trace data from the real-time traffic, we demonstrate that the technique
improves the control performance. Compared with the methods discussed in
[8-9], this paper introduces a BP neural network, analysis the neural network
architectures and evaluates control performance.

The rest of this paper is organized as follows: In section 2, we introduce a
noval improved congestion control scheme based on neural networks. In section
3, we describe the predictive control scheme for resource management and in
section 4, we use simulation to validate and evaluate the performance of our
scheme. Finally, in section 5, we present the conclusions and the future work.

2 Congestion Control Model

The congestion control technique in this paper provides such an approach for
the dynamic evaluation of the low priority traffic in the network: the evaluation
and distribution functions which compute the rate allocated to each individual
source are based on a neural network control strategy, and the functions control
the filling level of the low priority traffic buffer.

The paper considers a general model as shown in Figure 1-2 with different
connections and with various traffic requirements being mapped into different
classes. The rate control algorithm computes the low priority bandwidth λL(t)

Data Transmission Rate Control in Computer Networks 877

left by the sum of the highest priority traffic λH1 and the higher priority traffic
λH2. xL(t) is the number of λL packets waiting at time t in the queue, x0(t) is
queue threshold at time t, usually x0(t) is a constant [8-9].

Fig. 1. A simple model of one source,λL is controlled

2.1 The Predictive Control Model of a Bottleneck Buffer

It describes the control procedures for multiple sources transmitting data to the
buffer of a common bottleneck node. A control algorithm running at the source
node evaluates the resource need of each source and distributes the estimated
available resources accordingly [8].

In modelling the traffic through these nodes, one has to know the number
of source/destination pairs and the rates at which these sources send control
packets (CPs) to the network. It’s assumed to be N though the number of

Fig. 2. A model of multiple sources and a bottleneck with controller

878 Y. He, N. Xiong, and Y. Yang

active sources denoted by M may vary with time t. The switching node has a
finite buffer space K to store the incoming CPs and has an output link to serve
them at a constant data rate of v.

The control procedure works in the following manner: each source sends data
to the bottleneck node at regular intervals. According to the current loading
state, the bottleneck node feedbacks the information to the source along the
original route. According to this reception information, the sources can decide
the most suitable amount of resources that each source should be available. Thus,
the sources can adjust sent-out rates correspondingly. It is clear that the key
point of this control architecture lies in the control algorithm that is employed
at the source node.

Under the above notations and assumptions, the dynamic system of a switch-
ing node in a network can be described by the following non-linear time-variant
and time-delayed equation [10-11].

ẋ(t) = SatK{
N∑

i=1

eiλi(t− τ
′
1i)− ν}, (1)

where K is the buffer size, ẋ(t) is the buffer occupancy at time t, and

ei =
{

1, activesource;
0, otherwise.

SatK{x} =

⎧⎨
⎩

K, x > K;
x, 0 ≤ x ≤ K;
0, x < 0.

If a feedback control is applied to the above system, we assume the signals
get sampled every T seconds. It is reasonable because one can always add a small
delay to the input delay so that it is a multiple of T when timing. So we can
come to the virtual connection (VC) delay di = the input delay τ1i from the ith

source node to the switching node + the feedback delay τ2i from the switching
node to the ith source node. λiL(n), λiH2(n) and λiH1(n) respectively denote the
low priority traffic rate, the higher priority traffic rate and the highest priority
traffic rate from the ith source, and λi(n) denotes the sending rate of source
i, i.e., λi(n) = λiL(n) + λiH1(n) + λiH2(n).The low priority traffic can only
be transmitted when no congestion appears in the network. Furthermore, we
assume that the service is FCFS (first-come-first-served) and the packet length
is constant. The buffer occupancy x(n) is measured, the CPs are sent back to
the controlled sources every T seconds. The rate control algorithm computes
the low priority traffic rate λL(n), i.e., the rate left by the high priority traffic
λH1(n) and λH2(n).

When N sources transmit data towards a single bottleneck node, there is a
control-loop delay between each source and the bottleneck node. The round trip
delay (RTD), d, is set to be a single representative value d = min(d1, d2, ..., dN),
and the input representative delay,τ1,is set as τ1 = min(τ11, τ12, ..., τ1N). So
d = τ1+τ2(τ2 is the backward path delay). The best result in system performance

Data Transmission Rate Control in Computer Networks 879

is taken for granted the minimum delay [11]. Let λi(n) = T · λi(nT) denote the
total numbers of data packets flowing into the destination node from the ith VC
during the nth interval of T . The component μ = Tν denotes the number of
packets sent out from the switching destination node during the nth interval of
T . The equation can be written into

x(n + 1) = SatK{x(n) + ΣN
i=1eiλi(n− τ1i)− μ}. (2)

The control algorithm employs the following four steps [8-9]:

(i) Predict the buffer occupancy x̂(n + 1) using the multi-step predictive
technique.

(ii) Compute the total expected rate of the all sources λ(n) at the time n and
λ(n) = ΣN

i=1λi(n). This value varies dynamically with the buffer occupancy.
(iii) Compute the proportion of each source,δi(n), which is the most efficient

share of the available resources to be attributed to source number i,(1 ≤ i ≤ N ,∑N
i=1 δi(n) = 1),δi(n) = λi(n)/λ(n).
(iv) Compute the adjusted low priority traffic rate λiL(n). In this section,

every source equally shares the available network bottleneck bandwidth, λi(n)
can be expressed as: λi(n) = δi(n) · λ(n). Based on the equation (4), the source
i regulates the lowest priority traffic rate λiL(n).

3 The Predictive Control Technique

3.1 The BP Neural Network Architecture

The BP neural network algorithm is introduced into this paper as a predictive
mechanism. We assume the number of input neuron is N , and the number of
sample study group is M0. The sample study groups are independent from each
other. We further assume the output of the study sample group (teaching assigns)
is R

(k)
j (j ∈ [0, N],k ∈ [1, M0]), and the actual output for output element j in the

network is O
(k)
j . So E(k) is set to be the kth group input goal function. Therefore,

we have E(k) = Σj(R
(k)
j − O

(k)
j)2/2. The total goal function is J = ΣkE(k).If

J ≤ ε0, ε0 is a constant that is small enough and ε0 > 0, then the algorithm
is terminated; Otherwise adjust the weight W between the implicit layer and
output layer until it satisfy the expected difference value [12-15].

3.2 Multi-step Neural Predictive Technique

We apply a neural network technique to determine how a BP-based algorithm
satisfies its data transfer requirement by adjusting its data transfer rate in a
network. As shown in figure 2, the BPNN predictive controller is located at the
sources. In order to predict the buffer occupancy efficiently, the neural model for
the unknown system above can be expressed as:

x̂(n + 1) = f̂ [x(n), ..., x(n− l + 1), λ(n− τ1 − 1),

..., λ(n− τ1 −m− L)], (3)

880 Y. He, N. Xiong, and Y. Yang

where x(n−i) (1 ≤ i ≤ l−1)is the history buffer occupancy and λ(n−j)(τ1+1 ≤
j ≤ τ1+m+L) is the history sending rate of the source j. L is predictive step,L =
τ1+1, and L, m are constant integers. f̂ [·] is the unknown function, which may be
expressed by the neural network. The explicit mechanism of BP neural network

Fig. 3. The Back Propagation (BP) L-step ahead prediction, and x̂(n+L) is the L-step
predictions of x(n)

L-step ahead prediction is shown in Figure 3, the value of buffer occupancy x(n)
and the history value (the past buffer occupancy: x(n−1), ...x(n−l+1); the past
source sending rates:λ(n− τ1 − 1), ..., λ(n− τ1 −m−L)) are used as the known
inputs of neural network. Every layer denotes one-step forward predictive, so
x̂(n + L) in the output layer is the L-step prediction of x(n).We can compute
the expected total rate λ̂(n) of the N sources using the following equation:

x̂(n + L) = SatK{x̂(n + L− 1) + λ̂(n)− μ}, (4)

Based on the rate λ̂(n) the source i adjusts the sending rate λiL(n) =
λ̂(n)δi(n)−λiH1(n)−λiH2(n), and δi(n) is a factor of share the available resources
to source i (1 ≤ i ≤ N). The specific algorithm is given in the following (Figure
4), At the next instant n + 1, we can get new real measured value x(n + 1) and
new history measure values: x(n), ..., x(n−l+2); λ(n−τ1), ..., λ(n−τ1−m−L+1)
which can be used as the next instant inputs of neural network. Then the buffer
occupancy x̂(n + L + 1) can be predicted.

4 The Simulation Results

To evaluate the performance of the proposed congestion control method based
on neural network, we focus upon the following simulation model with eleven

Data Transmission Rate Control in Computer Networks 881

Fig. 4. Algorithm for on-line control and neural network training at sources

sources and one switch bottleneck node (Figure 5), and assume that the sources
always have data to transmit. The congestion controller is used to adjust sending
rate over time in sources. The higher priority traffic, i.e., the sum of λiH1 and
λiH2 traffic in source i with multiplexing of actual trace data, is acquired from
the real time traffic.

Fig. 5. A simulation model of multiple sources single buffer network

882 Y. He, N. Xiong, and Y. Yang

As shown in Figure 6, the maximum sending rate of every source is λ0 =
15.5Mbps. We use a simple resource sharing policy, i.e., the network bottleneck
node equally shares the available bandwidth among every source. The sources
start to transmit data at time t = 1msec together. We assume the sending rate
of the switch node is ν = 155Mbps. The sampling time T is 1msec and the
congestion threshold is set as x0 = 1000Kb.

We propose to use a direct multi-step neural predictive architecture with 3
layer neural network, wherein the number of the input data, the input neurons,
the hidden neurons and the output neurons are all (L + m + l). There are l(l =
8)terms of buffer occupancy x and (L + m)terms of the total input μ. The
prediction horizon is L = τ1 + 1, and the control horizon is N = L− τ1 + 1 = 2.

To investigate the performance of this model, we set the distance from sources
to switch node to be 300Km with the forward path delay and the feedback path
delay being τ1i = 3msec, τ2i = 3msec (i = 1, 2, ..., 11) respectively. Therefore
the RTD is d = 6msec.We assume that the RTD is dominant compared to other
delays such as processing delays and queuing delay, etc.

For this case, the prediction horizon is L = 4, and m = 4. Figure 6 shows
the rate of higher priority (λH1 + λH2) traffic. The dynamic of buffer occu-
pancy is shown in Figure 7,where the predictive buffer occupancy and the actual
buffer occupancy are described with broken line and real line respectively. The
predictive value of the buffer occupancy is acquired beginning from the time
(τ1 + L + 9). Figure 8 shows the transmitting rate of the lowest priority traffic,
which is yielded on the basis of the equation (1) and the predicted buffer occu-
pancy from the time slot 12 to (500 − τ1 − L) = 493, and Figure 9 shows the
total input rates.

From Figure 7, one observes that buffer occupancy is acquired beginning from
the time slot n = 16 and that the queue size is maintained to be close to the
threshold of 1000Kb by the proposed neural networks predictive technique. The
average relative error between the predictive buffer occupancy and actual buffer
occupancy is 1.5099e-002, which is excellent in terms of accuracy.

Figure 10-12 show the performance that we set the sources 2600Km away
from the switch node, and assume the forward delay and the feedback delay

Fig. 6. High priority traffic rate sampled from the real time video traffic

Data Transmission Rate Control in Computer Networks 883

Fig. 7. The buffer occupancy for L = 4 step prediction

Fig. 8. The lowest priority traffic rate for L = 4 step prediction, based on the predictive
value in Figure 7

being τ1i = 13msec, τ2i = 12msec,(i = 1, 2, ..., 11) respectively. Therefore the
RTD is d = 25msec. We take the prediction horizon L = 14 and m = −6.
Figure 10 shows the buffer occupancy has the value that begins from the time
slot at n = 36. The neural predictive congestion control technique is also able
to maintain the queue size close to the threshold of 1000Kb, and the average
relative error between the predicted buffer occupancy and the actual buffer
occupancy is 3.7026e-002. Figure 11 shows the lowest priority traffic rate for
L = 14 step prediction, and it is yielded on the basis of the original flow equa-
tion (1) and the predicted buffer occupancy, and Figure 12 shows total input rate
prediction.

The performance of the system is excellent for queue service rates. However,
the performance is found to be better in the 4-step prediction than in 14-step
prediction case. This is probably due to the fact that the less prediction horizon
usually leads to better accuracy, whereas in our scheme the predictive horizon
is linked with the forward path delay τ1 .

884 Y. He, N. Xiong, and Y. Yang

Fig. 9. The total input rates of L = 4

Fig. 10. The buffer occupancy for L = 14 step prediction

To compare our algorithm with the conventional approaches like in [8-9], the
following remarks can be given.

(i)This paper introduces a new congestion control model based on neural
network. The BP network model and algorithm develop the ideas and methods
in [8-9].

(ii)The quicker transient response of the source rates is acquired in our mech-
anism. Under the same circumstance, we use less predictive steps than that in
[8-9], because in this paper the neural predictive controller is located at the
sources rather than at the switch, this usually brings forth the better perfor-
mance in terms of prediction accuracy.

(iii)The authors of [14 -17] suggest that only one implicit layer is enough,
and it could be randomly mapped into Rm space. With the same number of the

Data Transmission Rate Control in Computer Networks 885

Fig. 11. The lowest priority traffic rate for L = 14 step prediction, based on the
predictive value in Figure 10

Fig. 12. The total input rates of L = 14

implicit layer node, the algorithm will be more efficient if there are less layers. So
the implicit layer of BP algorithm in this paper has just one layer and it could
improve study efficiency with reasonable study accuracy.

(iv)We have explored the relevant theory on BPNN multi-step predictive
architecture and training algorithm, and give relevant simulation analysis.

5 Conclusion

This paper has described a dynamic resource management mechanism for com-
puter communication networks on the basis of an adapting BP neural network
control technique. Also we further explored the relevant theoretic foundations as
well as the detailed implementation procedure for congestion control. The sim-

886 Y. He, N. Xiong, and Y. Yang

ulation results demonstrate that the proposed neural network architecture and
training algorithm are excellent from the point of view of the system response,
predictive accuracy and efficiency, and that it well adapts the data flows to the
dynamic conditions in the data transfer process. We believe that the neural net-
work predictive mechanism provides a sound scheme for congestion control in
communication networks.

Areas for further research would cover, for example, the issue of congestion
control for multicast communication systems by using the neural network pre-
dictive method to deal with the challenge of low responsiveness, which is due to
the heterogeneous multicast tree structure.

Acknowledgment

This research has been supported by National Natural Science Foundation of
China under Grant No. 90104005 and by the Key Project of Natural Science
Foundation of Hubei Province under Grant No. 2003ABA047.

References

[1] C. Q. Yang, A. A. S.Reddy,A taxonomy for congestion control algorithms in packet
switching networks, IEEE Network Magazine, July/August 1995, Vol. 9, No.5,
pp.34 - 45.

[2] S. Keshav, A control-theoretic approach to flow control, in: Proceedings of ACM
SIGCOMM’911991Vol. 21, No. 4, pp.3-15.

[3] D. Cavendish,Proportional rate-based congestion control under long propagation
delay, International Journal of Communication Systems, 1995, Vol. 8, pp. 79-89.

[4] R. Jain, S. Kalyanaraman, S. Fahmy, R. Goyal. Source behavior for ATM ABR
traffic management: an explanation, IEEE Communication Magazine, 1996, Vol.
34, No. 11, pp. 50-57.

[5] Rose Qingyang Hu and David W. Petr, A Predictive Self-Tuning Fuzzy-Logic
Feedback Rate Controller, IEEE/ACM Transactions on Networking, December
2000, Vol. 8, No. 6, pp. 689 - 696.

[6] Giuseppe Ascia, Vincenzo Catania, and Daniela Panno, An efficient buffer man-
agement policy based on an integrated Fuzzy-GA approach, IEEE INFOCOM 2002,
New York, June 23 - 27, 2002, No.107.

[7] G. Ascia, V. Catania, G. Ficili and D. Panno, A Fuzzy Buffer Management Scheme
for ATM and IP Networks, IEEE INFOCOM 2001, Anchorage, Alaska, April 22-
26, 2001, pp.1539-1547.

[8] J. Aweya, D.Y. Montuno, Qi-jun Zhang and L. Orozco-Barbosa, Multi-step Neural
Predictive Techniques for Congestion Control -Part 2: Control Procedures, Inter-
national Journal of Parallel and Distributed Systems and Networks, 2000, Vol. 3,
No. 3, pp. 139-143.

[9] J. Aweya, D.Y. Montuno, Qi-jun Zhang and L. Orozco-Barbosa, Multi-step Neural
Predictive Techniques for Congestion Control -Part 1: Prediction and Control
Models, International Journal of Parallel and Distributed Systems and Networks,
2000, Vol. 3, No. 1, pp. 1-8.

Data Transmission Rate Control in Computer Networks 887

[10] L. Benmohamed and S. M. Meerkov, Feedback Control of Congestion in Packet
Switching Networks: The Case of Single Congested Node, IEEE/ACM Transaction
on Networking, December, 1993, Vol. 1, No. 6, pp. 693-708.

[11] J. Filipiak, Modeling and Control of Dynamic Flows in Communication Networks,
Springer Verlag Hardcover, New York, May 1, 1988.

[12] S. Jagannathan, and G. Galan, A one-layer neural network controller with pre-
processed inputs for autonomous underwater vehicles, IEEE Trans. on Vehicular
Technology, Vo. 52, no. 5, Sept. 2003.

[13] D. H. Wang, N. K. Lee and T. S. Dillon, Extraction and Optimization of Fuzzy
Protein Sequence Classification Rules Using GRBF Neural Networks, Neural In-
formation Processing - Letters and Reviews, Vol.1, No.1, pp. 53-59, 2003.

[14] R. Yu and D. H. Wang, Further study on structural properties of LTI singular
systems under output feedback, Automatica, Vol.39, pp.685-692, April, 2003.

[15] S. Jagannathan and J. Talluri, Adaptive Predictive congestion control of High-
Speed Networks, IEEE Transactions on Broadcasting, Vol.48, no.2, pp.129-139,
June 2002.

[16] Simon Haykin, Neural Networks: A Comprehensive Foundation ,(2nd Edition),
Prentice Hall, New York, July 6, 1998.

[17] F. Scarselli and A C Tsoi, Universal Approximation Using FNN: A Survey of
Some Existing Methods and Some New Results, Neural Networks, 1998, Vol. 11,
pp. 15-37.

[18] J. Alan Bivens, Boleslaw K. Szymanski, Mark J. Embrechts, Network congestion
arbitration and source problem prediction using neural networks, Smart Engineer-
ing System Design, vol. 4, N0. 243-252, 2002.

[19] S. Jagannathan, Control of a class of nonlinear systems using multilayered neural
networks, IEEE Transactions on Neural Networks, Vol.12, No. 5, September 2001.

[20] P. Darbyshire and D.H. Wang, Learning to Survive: Increased Learning Rates by
Communication in a Multi-agent System, The 16th Australian Joint Conference
on Artificial Intelligence (AI’03), Perth, Australia, 3-5 December 2003.

[21] Lin, W. W. K., M. T. W. Ip, et al. , A Neural Network Based Proactive Buffer
Control Approach for Better Reliability and Performance for Object-based Inter-
net Applications, International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA 2001), Las Vegas, Nevada, USA, CSREA
Press.

Optimal Genetic Query Algorithm for
Information Retrieval

Ziqiang Wang and Boqin Feng

Department of Computer Science, Xi’an Jiaotong University, Xi’an 710049,
P.R.C(China)

wzqagent@xinhuanet.com

Abstract. An efficient immune query optimization algorithm for infor-
mation retrieval is proposed in this paper. The main characteristics of
this algorithm are as follows: The genetic individual is a query, each gene
corresponds to a weighted term, immune operator is used to avoid de-
generacy, local search procedure based on the concept of neighborhood
is used to speed up the abilities of finding better query vector. Experi-
mental results show that the proposed algorithm can efficiently improve
the performance of the query search.

1 Introduction

With the increasingly widespread use of information networks, there is emerg-
ing an environment in which the user can access tremendous amounts of online
information. As a consequence, the role of information retrieval (IR) systems is
becoming more important.Recently, there has been a growing interest in applying
genetic algorithm(GA) to the information retrieval domain with the purpose of
optimizing document descriptions and improving query formulation[1-3]. In ad-
dition,Immune Algorithm(IA)[4] has also attracted many researchers interests
and successfully applied to several NP-hard combinatorial optimization prob-
lems, but the use of the algorithm for query optimization, in the context of
information retrieval, is a research area where few people explored. Our goal is
to build an IA that can find an optimal set of documents which best match the
user’s need by exploring different regions of the document space simultaneously.

2 Immune Algorithm for Information Retrieval

The proposed system is based on a vector space model in which both documents
and queries are represented as vectors. The goal of our IA is to find an optimal
set of documents which best match the user’s need by exploring different regions
of the document space simultaneously.

2.1 Encoding of Query Individual

The genetic individual is a query. Each gene or chromosome corresponds to an
indexing term or concept. The locus (the existence or the absence of certain

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 888–892, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Optimal Genetic Query Algorithm for Information Retrieval 889

gene) is represented by a real value and defines the importance of the term in
the considered query. Each individual representing a query is of the form:

Qu(qu1, qu2, · · · , quT) (1)

where T is total number of stemmed terms automatically extracted from the
documents and qui is the weight of the ith term in Qu.Initially, a term weight is
computed as the following formula[5]:

qui =
(1 + log(tfui)) · log(N

ni
)√∑T

k=1((1 + log(tfui)) · log(N
ni

))2
(2)

where tfui is the frequency of term ti in document du, N is the total number of
documents, and ni is the number of documents containing the term ti.

2.2 Fitness Function

A fitness is assigned to each query in the population. This fitness represents the
effectiveness of a query during the retrieving stage. Its definition is as follows:

Fitness(Q(s)
u) =

1
N
·
∑

dj∈D
(s)
r

Sim(dj , Q
(s)
u)∑

dj∈D
(s)
nr

Sim(dj , Q
(s)
u)

(3)

where N is the total number of documents, D
(s)
r is the set of relevant docu-

ments retrieved at the generation(s) of the IA,dj is the jth document,D(s)
nr is

the set of non-relevant documents retrieved at the generation(s) of the IA, and
Sim(dj , Q

(s)
u) is a similar measure function defined as follows:

Sim(dj , Q
(s)
u) = Cos(dj , Q

(s)
u) =

∑T
i=1(q

(s)
ui · dji)√∑T

i=1 q2
ui ·

√∑T
i=1 d2

ji

(4)

2.3 Genetic Operator

The selection procedure is based on the well-known tournament selection.The
crossover operator does not use a crossing point, our method is to modify the
term weights according to their distribution in the relevant and non-relevant
documents.Let Q

(s)
u and Q

(s)
v are two (query) individuals selected for crossover,

the reproduction new individual Q
(s+1)
y is defined as follows:

Qs+1
yi =

{
max(q(s)

ui , q
(s)
vi) : w(ti, Ds

r) ≥ w(ti, Ds
nr)

(q(s)
ui

+q
(s)
vi

)
2 : otherwise

(5)

where w(ti, Ds
r) is the weight of term ti in the set of relevant documents D

(s)
r ,

and w(ti, Ds
nr) is the weight of term ti in the set of non-relevant documents

D
(s)
nr .Their definition are as follows:

890 Z. Wang and B. Feng

w(ti, D(s)
r) =

∑
dj∈D

(s)
r

dji (6)

w(ti, D(s)
nr) =

∑
dj∈D

(s)
nr

dji (7)

Our mutation operator essentially consists of exploring the terms in the doc-
uments in order to adjust the corresponding gene values in the query selected
for the mutation. Let Q

(s)
u is the selected individual query, the produced new

individual query is Q
(s+1)
u after mutation. The mutation operator definition is

as follows:

Qs+1
ui =

{
avg(Q(s)

u) : random(p) < pm

max(Q(s)
u)−min(Q(s)

u) : otherwise
(8)

where random(p) generates a random number p in the range [0,1], max(Q(s)
u)

is the maximum term weight of Q
(s)
u , min(Q(s)

u) is the minimum term weight of
Q

(s)
u , and avg(Q(s)

u) is the term weight average of Q
(s)
u .

2.4 Immune Operator

The idea of immunity is mainly realized through two steps based on reasonably
selecting vaccines, i.e., a vaccination and an immune selection,of which the former
is used for raising fitness and the latter is for preventing the deterioration.

The Vaccination: Given an individual query Q
(s)
u , a vaccination means mod-

ifying the genes on some term weight q
(s)
ui in accordance with the similarity

between the query and documents retrieved so as to gain higher fitness with
greater probability. This operation must satisfy the following two conditions.
Firstly, if the information on each term weight of an individual query q

(s+1)
ui is

is wrong, i.e., each term weight of it is different from that of the optimal one,
then the probability of transforming from Q

(s)
u to Q

(s+1)
u is 0. Secondly, if the

information on each term weight of Q
(s)
u is right , i.e., is the optimal one, then

the probability of transforming from Q
(s)
u to Q

(s)
u is 1. Suppose a population is

Q
(s)
u = (q(s)

u1 , q
(s)
u2 , · · · , q(s)

unp), then the vaccination on Q
(s)
u means the operation

carried out on np = αn individuals which are selected from Q
(s)
u in proportion

as α.
The immune selection: This operation is accomplished by the following two

steps. The first one is the immune test, i.e., testing the antibodies. If the fit-
ness is smaller than that of the parent, which means serious degeneration must
have happened in the process of crossover or mutation, then instead of the in-
dividual the parent will participate in the next competition; the second one is
the annealing selection, i.e., selecting an individual q

(s)
ui in the present offspring

Q
(s)
u = (q(s)

u1 , q
(s)
u2 , · · · , q(s)

uT) to join in the new parents with the probability as
follows:

Optimal Genetic Query Algorithm for Information Retrieval 891

p(q(s)
ui) =

e
q
(s)
ui
Tk

T∑
i=1

e
q
(s)
ui
Tk

(9)

where Tk is the temperature-controlled series approaching 0, i.e.,

Tk = ln(
T0

k
+ 1) (10)

2.5 Local Search Procedure

To reinforce the local search abilities of IA, our algorithm adopts a neighborhood-
based local search procedure to find a better query vector near the original query
vector after applying the immune operator.Let Q

(s)+
u and Q

(s)−
u be the neighbors

of the query vector Q
(s)
u , their definition is as follows:

q
(s)+
ui = q

(s)
ui · (1 + β) (11)

q
(s)−
ui = q

(s)
ui · (1− β) (12)

where the value of β decides the ratio of increase or decrease. Each weight in
a query vector generates two neighboring vectors. From all neighboring vec-
tors, the vector Qs

u(new) which has the best fitness function value is selected.If
avg(Qs

u(new)) is larger than Qu,then the Qu is replaced by Qs
u(new).

2.6 Retrieved Relevant Documents Merging

At each generation of IA, these retrieved relevant documents by all the individ-
ual queries of the query population are merged to a single document list, and
presented to user. Our adopted merging methods according to following range
formula:

Rels(dj) =
∑

Q
(s)
u ∈Pop(s)

Fitness(Q(s)
u) ·RSV (Q(s)

u , dj) (13)

where Pop(s) is the population at the generation(s) of the IA, RSV (Q(s)
u , dj) is

the retrieval status value(RSV) of the document dj for the query Q
(s)
u at the

generation(s) of the IA.

3 Experimental Results and Comparison

To test the performance of the proposed immune query optimization algorithm,
we used the best known TREC collections[6],and evaluated the results of the re-
trieval via the classical measures of recall and precision.The parameter settings of
the immune algorithm are as follows: mutation probability pm = 0.02,vaccination
proportion factor α = 1.5,the ratio β of increase(decrease) in local search is set

892 Z. Wang and B. Feng

Table 1. Comparison the Number of Relevant Document

Algorithm Iter-1 Iter-2 Iter-3 Iter-4 Iter-5
IA 107(107) 58(165) 53(218) 55(273) 43(314)
GA 96(96) 64(160) 55(215) 51(266) 32(298)

0.05 , and the number of iterations is fixed at 5.The comparison of the number
of relevant document retrieved using IA and GA are shown in Table 1.We can
clearly see that IA more effective than GA in retrieving relevant documents.
Indeed the cumulative total number of relevant documents using IA through all
the iterations is higher than using GA. Therefore, our proposed immune query
optimization algorithm efficiently improves the performance of the query search.

4 Conclusions and Future Works

This paper proposes a novel immune query optimization algorithm.Experimental
results show that the proposed algorithm can improve the precision of document
retrieval compared with genetic algorithm. In future, we plan to combine other
efficient heuristics methods to further improve the document retrieval perfor-
mance.

References

1. Chen,H.:Machine learning for information retrieval:neural networks, symbolic learn-
ing and genetic algorithms.Journal of the American Society for Information Science
46(1995)194–216

2. Horng,J.T.,Yeh,C.C.:Applying genetic algorithms to query optimization in docu-
ment retrieval.Information Processing and Management 36(2000)737–759

3. Boughanem,M.,Chrisment,C.,and Tamine,L.:Genetic approach to query space ex-
ploration.Information Retrieval 1(1999)175–192

4. Jiao,L.C.,Wang,L.:A novel genetic algorithm based on immunity.IEEE Transactions
on Systems,Man,and Cybernetics-Part A 30(2000)552-561

5. Singhal,A.,Buckley,C.,Mitra,M.:Pivoted document length normalisation.Proc.of the
19th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval,Zurich, Switzerland,ACM Press(1996)21-29

6. Harman,D.K.:Overview of the first text retrieval conference(TREC-1).Proc.of the
1st Text Retrieval Conference,Gaitherburg,USA,(1992)32-59

 J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 893–902, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A Genetic Algorithm for Dynamic Routing and
Wavelength Assignment in WDM Networks

Vinh Trong Le1, Son Hong Ngo1, Xiaohong Jiang1, Susumu Horiguchi1,2,
and Minyi Guo3

1 Graduate School of Information Science, Japan Advanced Institute of Science and
Technology, Japan

{vt-le, sonhong, jiang, hori}@jaist.ac.jp
2 School of Information Sciences, Tohoku University, Sendai, Japan

3 School of Computer Science and Engineering, The University of Aizu, Japan
minyi@u-aizu.ac.jp

Abstract. In this paper, we study the challenging problem of Dynamic Routing
and Wavelength Assignment (DRWA) in WDM (Wavelength-Division-
Multiplexing) networks with wavelength continuity constraint, and propose an
improved genetic algorithm (GA) for it. By adopting a new fitness function to
consider simultaneously the path length and number of free wavelengths in cost
estimation of a route, the new genetic RWA algorithm can achieve a good load
balance among route candidates and result in a lower blocking probability than
both the fixed alternative routing algorithm and the previous GA-based
algorithm for DRWA, as verified by an extensive simulation study upon the ns-
2 network simulator and some typical network topologies.

1 Introduction

All optical networks using wavelength-division-multiplexing (WDM) technology
have been one of key technology to realize the next generation Internet because
WDM can provide huge bandwidth capacity effectively. In wavelength-routed optical
networks, data are routed in optical channels called lightpaths. To establish a lightpath
without wavelength conversion, the same wavelength is required on all the links along
the path, which is referred to the wavelength continuity constraint. Given a set of
connection requests, lightpaths are setup by routing and assigning wavelength to each
request. These problems are known as the routing and wavelength assignment (RWA)
problem [1].

The RWA problem is usually divided in two types: static RWA and dynamic RWA.
In the static RWA problem, the entire set of connections is known in advance, and the
problem is to set up lightpaths for these connections so that used network resources
such as the number of wavelengths or the number of fibers in the network are
minimized. This problem is well known as an NP-complete problem [2]. In the
dynamic RWA problem, since connection requests arrive randomly, it is more
difficult to solve the problem. Generally, dynamic RWA algorithms aim to minimize
the total blocking probability in the entire network. To make the RWA problem more
tractable, it is usually decoupled into two sub-problems that are solved separately: the

V.T. Le et al. 894

routing problem and the wavelength assignment problem. There are three major
routing schemes: fixed routing, fixed-alternate routing and adaptive routing. In the
first scheme, a single fixed route is predetermined for each source-destination pair.
Whenever a request arrives, its fixed route is attempted for wavelength assignment.
Fixed routing scheme is simple for implementation but usually causes a high blocking
probability. In the fixed-alternate routing scheme, a set of routes is pre-computed for
each source-destination pair. As a connection request arrives, one route is selected
from the set of pre-computed routes. Fixed alternate routing always achieves a better
performance than that of fixed routing. In the third scheme, the route is computed at
the arrival of a request based on the current network state, thus it obtains the best
performance. However, it is difficult to implement due to high computational
complexity. As for wavelength assignment sub-problem, many algorithms are
available now, among them the First-Fit (FF) algorithm is a simple yet efficient one.
In the FF algorithm, each wavelength has a number associated with it, and the
searching starts from the lowest-numbered wavelength and stops as soon as an
available wavelength has been found or all the wavelengths have been searched. A
survey of routing and wavelength assignment problem can be found in [1].

Genetic algorithm (GA) is one promising approach to solve dynamic RWA
problems in WDM networks, and some GA-based RWA algorithms have been
proposed recently. In [3][4], the authors formulated both the static RWA and dynamic
RWA problems as a multi-objective optimization problem and solved it using genetic
algorithms. In their approach, each gene in an individual represents one of the k-
shortest paths between the source and destination nodes. Whenever a new connection
arrives, the genetic algorithm will consider all the individuals in order to find the
optimal RWA solution for the entire network. This approach can solve well the static
RWA problem. However, to find the optimal solution, some lightpaths need to be re-
routed because all the existing connection requests in the network are considered
together in the optimization. This re-routing scheme is not suitable for a network with
highly dynamic traffic because of the high cost for setting up and tearing-down the
lightpath. Thus, this approach is not suitable for the dynamic RWA problem. Bisbal et
al. [5] proposed a novel GA-based distributed algorithm for dynamic routing and
wavelength assignment problem. In this approach, an individual represents a route
between a source-destination node pair and a generation is a set of possible routes
between the source and the destination. Whenever a new connection arrives, the
genetic algorithm will find the best individual based on the current network state. This
best individual corresponds to the best route to be setup in term of blocking
probability. This algorithm not only obtains low total blocking probability but also
employs a very short computation time. In addition, the algorithm can be extended
easily to provide fault tolerance capability and fairness among connections.

In this paper, we focus on the dynamic RWA problem and propose an improved
GA for it based on the algorithm presented in [5]. We will show through extension
simulation by adopting a more general fitness function to consider both the path
length (number of hops) and the number of free wavelength in the cost estimation of a
route, the new algorithm can achieve a better load balance and thus it results in a
lower blocking probability than that of both the fixed alternative routing algorithm
and the previous genetic algorithm in [5].

A Genetic Algorithm for Dynamic Routing and Wavelength Assignment 895

The rest of this paper is organized as follows: Section 2 introduces briefly the main
idea of GA algorithms and also the GA-based RWA algorithm proposed in [5].
Section 3 presents our improved GA algorithm for dynamic RWA under the
constraint of wavelength continuity. Section 4 presents our simulation and analysis
results, and finally, section 5 concludes this paper.

2 Dynamic Routing and Wavelength Assignment Using Genetic
Algorithms

In this section, we first present the main idea of genetic algorithm, and then we
introduce briefly the GA-based dynamic RWA algorithm proposed in [5].

2.1 Genetic Algorithms (GAs)

GA is a class of search strategies based on the mechanism of biological evolution.
The GA is able to reduce search space and also converge to a global good solution of
the problem. In a GA application, the first step is to specify the representation of each
possible solution as an individual. The next step is to define a population of N
individuals with theirs initial values, a fitness value for each individual in the
population, the genetic operators such as crossover, mutation, and reproduction. The
main steps of the operation in GAs are as follows:

Initialization: In most GAs, the first generation of individuals is initialized with
random values.

Determination of Fitness: The effectiveness of an individual in a population is
evaluated by the fitness function. This function assigns a cost to each individual in the
current population according to its capability to solve the problem. The better the
solution solves the problem, the higher its fitness value is.

Crossover: This is a variety-generating feature of GA, where pairs of individuals
(parents) mate to produce offspring. Each offspring draws a part from one parent and
a part from the other.

Mutation: Implement a change in an individual to a new individual.

Reproduction and Stopping Conditions: GA applies genetic operators on current
population. After that, GA selects individuals to generate next generation. This
process is called reproduction, which is repeated until a good individual of the
problem is found. However, it is not assured that the optimal solution can be found
since GA is stochastic searching process. Hence, the reproduction should be stopped
after a certain number of generations. More details about genetic algorithms can be
found in [6][7].

2.2 The Original GA-Based RWA Algorithm

We introudce briefly here the Genetic Routing and Wavelength Assignment (GRWA)
algorithm proposed in [5]. The GRWA is designed for a WDM network without
wavelength conversion capability. The GRWA is executed when a lightpath is
requested. It works with a population where each individual is a possible route

V.T. Le et al. 896

between the requested source-destination node pair. The coding of a route is a vector
of integer where each number identifies a node of the route. For example, with the
network shown in Fig.1, the coding of two routes from node 0 to node 5 are vector (0,
1, 2, 5) and (0, 2, 4, 5). The main steps of GRWA are as follows:

Initialization
Initialization randomly creates a population with P individuals (P routes between
source-destination nodes pair of the request and P is a design parameter). To
randomly create a route between a source-destination nodes pair, the source node is
firstly set as the beginning of the route. It is marked as visited and also the current
node. The next node is randomly selected among the adjacent nodes of current one
that are not marked as visited. Then the selected node becomes the current node and is
marked as visited. The process is repeated until it reaches the destination node.

Determination of Fitness
The fitness value is evaluated as the inverse of the cost of the route. In case there is
least one common free wavelength on all the links of the route, the cost is the number
of fiber links it traverses (number of hops). Otherwise, the cost of the route is infinite.
According this definition, shorter routes are always preferred as they have higher
fitness values.

Crossover Operator
This operator can only be applied to a pair of routes that have at least one node in
common, apart from the source and destination nodes. This common node is called
crossover point. If there are many common nodes, one of them is chosen randomly.
The offspring is generated by interchanging the second halves of its parent as
illustrated in Fig. 2.

In the crossover stage, GRWA examines all the possible pairs of routes, beginning
with the pairs that include the individual with higher fitness value, until either all
combinations is considered or the population size becomes twice of the original size.

Mutation Operator
To do mutation, a node is first randomly selected from the route and the selected node
is called mutation point (node). Then, the part from the mutation node to the
destination node is randomly generated again. In the mutation stage, the mutation
operator is applied to all individuals whose fitness value is below a threshold, which
is chosen from the mean fitness value of current generation.

0 1

3

4 5

2

0 1

3

4 5

2

Fig. 1. The two routes from node 0 to node 5 are encoded as (0 1 2 5) and (0 2 4 5)

A Genetic Algorithm for Dynamic Routing and Wavelength Assignment 897

Reproduction and Stopping Conditions
After applying the genetic operators above, the reproduction stage selects P fittest
individuals that have higher value from both parents and children. This process is
repeated until the stopping condition is fulfilled and the best individual is selected.
Let G denotes the maximum number of generations and S denotes the satisfactory cost
value of a route between a node-pair with its initial value being the cost value of the
shortest rout between the node-pair, then is pseudo code of GRWA algorithm can be
summarized as follows:

t = 0;
Initialize randomly P routes & evaluate fitness values;
S = shortest distance between (s, d) nodes;
while (t < G AND doesn’t exist a route that have
length lower or equal S) do
 Crossover & evaluate fitness value for children;
 Mutation & evaluate fitness value for children;
 Select P fittest individuals;
 S = S + 1;
 t = t + 1;
end while

3 The Improved GRWA

In the GRWA algorithm proposed in [5], the fitness value fi of an individual route i
can be computed from the number of hops hi of the route as follows:

i
i h

f
1=

(1)

This fitness function considers only the number of hops of the route. As a result,
the GRWA tends to find the shortest available path and take this path for the
connection request. It was shown in some previous work [8][9] that this shortest-path
based approach usually lead to a case in which one link has to tolerate more load
while other links remain unloaded, thus result in an unbalanced link utilization and
degraded performance in the network. To increase the utilization and load balancing
in the network, it is necessary to distribute the traffic evenly among links.

The above observation motivates us to introduce a new fitness function to improve
the GRWA algorithm’s performance. To maintain load balancing as much as possible
while keeping the GA search towards the shortest available path, the new fitness

Parents 0 1 22 5 0 22 4 5

Children 0 1 22 4 5 0 22 5

Crossover point Crossover point

Parents 0 1 22 5 0 22 4 5

Children 0 1 22 4 5 0 22 5

Crossover point Crossover point

Fig. 2. Example of crossover operation

V.T. Le et al. 898

value should not only be inversely proportional to the length of the route but should
also be proportional to the number of free wavelength of the route. Let li be the length
of the route i between source-destination node pair, lmin denote the length of the
shortest route, and fwi be the number of free wavelength on the route i. If fwi >0, we
introduce new fitness function as follows:

W

fw

ll
f i

i
i)1(

1

1

min

αα −+
+−

= (2)

Where α∈[0,1] is a design parameter and W is total number of wavelengths on a
link. If fwi =0, we just set fi as zero.

The parameter α should be chosen such that the shorter route has a higher fitness
value. Let d = li – lmin + 1, then α should meet the following requirement:

W

W

dWd
)1(

1

11
).1(

1 αααα −+
+

>−+ (3)

which equivalents to:

ddWW

ddW

)1)(1(

)1)(1(

+−+
+−>α (4)

For a given value of W, the right hand side of (3) increases as d increases. From the
definition of d we can see easily that 1 ≤ d ≤ N-2, where N is number of the network
nodes. Thus, we have:

NNWW

NNW

)1)(1(

)1)(1(

−−+
−−>α (5)

The performance of genetic RWA algorithm for each value of α will be next
discussed in our experimental works.

The complexity of the original GRWA algorithm is O(G.(P.W.N+P2.N)), where N
is the number of nodes of the network, W is the number of available wavelength per
link, G (maximum number of generations) and P (population size) are two evolution
parameters of genetic algorithm [5]. In fact, the complexity to compute the number of
free wavelengths on a route (improved GRWA algorithm) is similar to the complexity
in the worst case to verify if a route has a free wavelength (original GRWA
algorithm). Thus, the costs to compute the fitness value in both algorithms are the
same. By consequence, our improvement does not increase the complexity of this
genetic algorithm.

4 Simulation Results and Analysis

In this section, we examine the performance of the improved GRWA algorithm by an
extensive simulation study upon the ns-2 [10] and three typical network topologies
(NSF, APRA2 and EON network topologies) as illustrated in Fig. 3.

A Genetic Algorithm for Dynamic Routing and Wavelength Assignment 899

For the performance comparison, we run each experiment with three routing
algorithms: FA (Fixed-Alternate routing algorithm), Old-GRWA (the original GRWA
algorithm in [5]) and New-GRWA (our improved GRWA algorithm with new fitness
function). As explained in many related works [1], Fixed-Alternate Routing is a very
promising algorithm for RWA problem. In our experiments, two alternative routes are
used (k=2).

In our experiments, we use a dynamic traffic model in which the connection
requests arrive at the network according to Poisson process with an arrival rate λ
(call/seconds). The session holding time is exponentially distributed with mean
holding time μ (seconds). The connection requests are distributed randomly on all the
network nodes. If there are N sessions over the network, then the total network load
is measured by N*λ* μ (Erlands). Thus we can modify N, λ, μ parameters to have
different values of workload.

For each experiment, the same values of GA parameters are used in both Old-
GRWA and New-GRWA algorithms in order to fairly show the effect of our new
fitness function. We take P=16 and G=8 for the NSF network, P=32 and G=8 for the
ARPA2 network, and P=16 and G=8 for the EON network. Fig.4 show the
sensitiveness of the performance of New-GRWA algorithm to the variations of
parameter α.

As shown in Fig.4 and explained in Section 3, the value α =0.9 should be used
because it satisfies inequation 5. (The case in which selected route is the one that has
the biggest number of free wavelengths among the shortest available paths).

0

1

2

3
4

5 8

9

7
6

10
13

1211

 1

2

0
3

4

7

5

6

128 11

9

10 15

14

13

16 18

20

19 17
(a) (b)

0

1

2
3

4

5

6

7

8

9

10

11
12

13

14
15

16

17
18

(c)

Fig. 3. Network topologies adopted in simulation. (a) NSF network with 14 nodes and 21
links. (b) APRA2 network with 21 nodes and 26 links. (c) EON network with 19 nodes and
35 links

V.T. Le et al. 900

35 40 45 50 55 60 65 70 75
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0.022

B
lo

ck
in

g
pr

ob
ab

ili
ty

Load

 Alpha=0.9
 Aplha=0.1
 Alpha=0.5

20 25 30 35 40
0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

B
lo

ck
in

g
pr

ob
ab

ili
ty

Load

 Alpha=0.9
 Aplha=0.1
 Alpha=0.5

 (a) (b)

60 70 80 90 100 110
0.000

0.005

0.010

0.015

0.020

0.025

B
lo

ck
in

g
pr

ob
a

bi
lit

y

Load

 Alpha=0.9
 Aplha=0.1
 Alpha=0.5

 (c)

Fig. 4. Blocking probability Versus Network load with different value of α: (a) NSF network,
(b) ARPA2 network, (c) EON network

Fig. 5 shows the relation between the blocking probability and the network
load over three algorithms. The comparisons in Fig.5 show clearly that the
GRWA algorithms always outperform significantly the Fixed Alternate routing
algorithm. In all the network topologies, the New-GRWA algorithm is always
better than the Old-GRWA algorithm in terms of blocking probability. The
running time of both GRWA algorithms are the nearly same because we keep the
same genetic parameters. Moreover, the above experiments show that the New-
GRWA algorithm is better than the Old-GRWA algorithm in a practical range of
blocking probability (0-5%), this is an practical advantage of GA approach with
the new fitness function.

We also notice that both of GRWA algorithms perform much better than the FA
routing algorithm in case of EON and NSF topologies. However, the difference is not
very significant with the ARPA2 topology. The reason is that the NSF and EON
network have bigger average node degree than ARPA2 network, so that the GRWA
algorithms can be more adaptive because it has more chances to find a good path
among more alternate routes (Fig.5 (a), (c)). However, for a large network with a
relatively small average node degree (such as the APRA-2 network), there are only a

A Genetic Algorithm for Dynamic Routing and Wavelength Assignment 901

35 40 45 50 55 60 65 70 75
0.00

0.01

0.02

0.03

0.04

0.05

0.06

B
lo

ck
in

g
pr

ob
ab

ili
ty

Load

 FA
 Old-GRWA
 New-GRWA

20 25 30 35 40

0.00

0.01

0.02

0.03

0.04

0.05

B
lo

ck
in

g
pr

ob
ab

ili
ty

Load

 FA
 Old-GRWA
 New-GRWA

 (a) (b)

60 70 80 90 100 110
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

B
lo

ck
in

g
pr

ob
ab

ili
ty

Load

 FA
 Old-GRWA
 New-GRWA

(c)

Fig. 5. Blocking probability vs. Network load: (a) NSF network, (b) ARPA2 network, (c) EON
network

few alternate routes (about two) between two nodes. Hence the GRWA algorithms
cannot be much better than FA algorithm (Fig.5 (b)).

5 Conclusion and Future Works

In this paper, we proposed an improved genetic algorithm for dynamic routing and
wavelength assignment in optical networks. By using a new fitness function that
considers both the path length and the number of free wavelengths in route
evaluation, the genetic RWA algorithm can not only find a good route for a
connection request but also keep the load balance among the possible routes. Our
simulation shows that the improved RWA algorithm always outperforms the Fixed-
Alternate routing and the original genetic RWA algorithms in terms of blocking
probability. Moreover, our algorithm does not increase the complexity time in
comparison with the original genetic RWA algorithm. In the future, we will extend
this algorithm for the dynamic RWA problem in optical networks with wavelength
converters.

V.T. Le et al. 902

Acknowledgement

This research is partly conducted as a program for the “Fostering Talent in Emergent
Research Fields” in Special Coordination Funds for Promoting Science and
Technology by Ministry of Education, Culture, Sports, Science and Technology.

References

1. Zang H. et al.: A review of routing and wavelength assignment approaches for
wavelength-routed optical WDM networks. Optical Networks Magazine, vol. 1, no. 1
(2000) 47-60.

2. Ramaswami, R., Sivarajan, K.N.: Routing and wavelength assignment in all-optical
networks. IEEE/ACM Transactions on Networking, vol. 3 (1995) 489-500.

3. Banerjee, N., Mehta, V. and Pandey, S.: A genetic algorithm approach for solving the
Routing and Wavelength Assignment Problem in WDM Networks - International
Conference on Networks, ICN'04, Pointe-a-Pitre, Guadeloupe, French Caribbean
(2004).

4. Pandey, S., Banerjee, N., and Mehta, V.: A new genetic algorithm approach for solving the
Routing and Wavelength Assignment Problem in WDM Networks - 7th IEEE International
conference on High speed Networks and Multimedia Communications (HSNMC'04),
Toulouse, France (2004).

5. Bisbal, D., et al: Dynamic Routing and Wavelength Assignment in Optical Networks by
Means of Genetic Algorithms, Photonic Network Communications, 7:1(2004) 43-58.

6. D.E. Goldberg: Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison-Wesley Publishing Company, Inc., 1997

7. Michalewicz, Z.: Genetic Algorithms + Data Structres = Evolution programs, Springer-
Verlag, 1992.

8. Hsu, C.F, Liu, T.L, Huang, N.F: Perfomance of adaptive routing in wavelength-routed
networks with wavelength conversion capability, Photonic Network Communications,
5:1(2003), 41-57.

9. Chu, X., Li, B., Zhang, Z.: A dynamic RWA algorithm in a wavelength-routed all-optical
network with wavelength converters. IEEE INFOCOM’03 (2003), 1795-1804.

10. The Network Simulator, ns-2. http://www.isi.edu/nsnam/ns/index.html (2003).

Ensuring E-Transaction Through a Lightweight
Protocol for Centralized Back-End Database

Paolo Romano, Francesco Quaglia, and Bruno Ciciani

DIS, Università “La Sapienza”, Roma, Italy

Abstract. A reasonable end-to-end reliability guarantee for three-tier
systems, called e-Transaction (exactly-once Transaction), has been re-
cently proposed. This work presents a lightweight e-Transaction protocol
for centralized back-end database. Our protocol does not require coordi-
nation among the replicas of the application server and does not rely on
any assumption for what concerns the processing order of messages ex-
changed among processes, as instead required by some existing solution.

1 Introduction

The concept of “e-Transaction” (exactly-once Transaction) has been recently
introduced in [5] as a desirable, yet realistic, form of end-to-end reliability guar-
antee for three-tier systems. In this paper we present an e-Transaction protocol
for three-tier systems in which the application servers interact, as in the case
of most e-Commerce applications, with a centralized back-end database. Our e-
Transaction protocol handles failures (or suspect of failures due to reduced sys-
tem responsiveness possibly caused by host/network overload) by simply letting
the client perform a timeout based retransmission logic of its request to differ-
ent replicas of the application server. On the other hand, we use some recovery
information, locally manipulated at the database side, to guarantee that the
corresponding transaction is committed exactly one time. Manipulation of the
recovery information does not require coordination among the application server
replicas, which do not even need to know each other existence. Our proposal is
therefore inherently scalable, and well suited for both local and geographic dis-
tribution of the replicas themselves.

Beyond providing the description of the protocol, together with its correct-
ness proof and experimental measures demonstrating its minimal overhead, we
present an extended comparative discussion with existing proposals in support
of reliability, pointing out the advantages from our solution. The discussion will
also outline that the proposal closest to our protocol (both in terms of structure
and overhead compared to a baseline approach that does not provide reliability
guarantee), namely the one in [4], relies on specific assumptions for what con-
cerns the order of message processing to avoid duplication of transactions at the
back-end database. Our solution does not require any of those assumptions, thus
being suitable for a wider range of system settings.

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 903–913, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

904 P. Romano, F. Quaglia, and B. Ciciani

2 System Model

The target three-tier system we consider, consists of a set of processes, which
communicate through message exchange. Processes can fail according to the
crash-failure model. If a process does not fail, we say that the process is correct,
and we assume there is at least a correct application server process at any time.
Communication channels between processes are assumed to be reliable, therefore
each message is eventually delivered unless either the sender or the receiver
crashes during the transmission. In what follows we present features of each
class of processes in the system, i.e. client, application server and database server,
together with basics about the recovery information maintained at the back-end
database.

Client. A client process does not communicate with the database server, it only
interacts with the application servers in the middle-tier. It sends a request to
an application server in order to invoke the transactional logic on this server
(i.e. the application server is requested to perform some updates on the back-
end database) and then waits for the outcome. The client sends the request by
invoking the function issue, which takes the request content as a parameter.
issue returns only upon the receipt of a positive outcome (commit) for the
transaction (1).

Application Server. Application server processes have no affinity for clients.
Moreover, they are stateless, in the sense that they do not maintain states across
requests from clients. A request from a client can only determine changes in the
state of the back-end database. Application servers have a primitive compute,
which embeds the transactional logic for the interaction with the database. This
primitive is used to model the application business logic while abstracting the
implementation details, such as SQL statements, needed to perform the data
manipulations requested by the client. compute executes the updates on the
database inside a transaction that is left uncommitted, therefore the changes
applied to data are not made permanent as long as the database does not de-
cide positively on the outcome of the transaction. The result value returned by
the primitive compute captures the output of the execution of the transactional
logic at the database, which must be communicated to the client. We assume
the primitive compute returns, together with the output of the execution of the
transactional logic, the identifier assigned by the database server to the corre-
sponding transaction. compute is assumed to be non-blocking, which means it
eventually returns unless the application server crashes.

Database Server. The system back-end consists of a database server which is
assumed to eventually recover after a crash. Also, there is a time after which

1 For simplicity of presentation, we model with positive outcome also transactions
for which the application logic cannot admit update on the database, e.g. like in
a bank transfer operation with not enough money on the corresponding account,
but that are correctly handled by the database, e.g. with no rollback caused by the
concurrency control mechanism.

Ensuring E-Transaction Through a Lightweight Protocol 905

the database stops crashing and remains up, allowing any legal transaction to
be eventually committed (2). In practice, this means assuming the database can
experience a period of instability during which it can crash and recover, and
then experiences a period during which it does not crash, which is long enough
to allow a legal transaction to be eventually committed.

The database server has a primitive decide which can be used to invoke the
commitment of a pending transaction. This primitive is called by the database
server (with a transaction identifier as the unique parameter) upon the receipt
of a message from the application server that asks for a final decision (com-
mit/rollback) for a pending transaction. decide returns commit/rollback de-
pending on the final decision the database takes for the transaction, together
with any exception possibly raised during the decision phase. We assume that the
decide primitive is non-blocking, i.e. it eventually returns unless the database
server crashes after the invocation. Also, as in conventional database technology,
if the database server crashes while processing a transaction, then, upon recov-
ery, it does not recognize that transaction as an active one. Therefore, if the
decide primitive is invoked with an identifier associated with an unrecognized
transaction, then the return value of this primitive is rollback.

Recovery Information. The database offers an abstraction called “testable trans-
action” originally presented in [4]. With this abstraction, the database stores
recovery information that can be used to determine whether a given transaction
has already been committed. Specifically, each transaction is associated with a
unique client request identifier, which is stored within the database as a part of
the transaction execution itself, together with the result of the transaction. If the
identifier is stored within the database, then this means that the corresponding
client request originated a transaction that has already been committed. Note
that the testable transaction abstraction can be implemented in a transparent
way to the client by simply modifying the application server transactional logic.
Specifically, as in [4], we assume application servers have an additional primitive
insert allowing them to ask the database server to write the identifier of a client
request within the database together with the result obtained by the execution
of the compute primitive. Additionally, just like compute, the primitive insert
is non-blocking, i.e. it eventually returns unless the application server crashes.

3 The Protocol

The protocol we present ensures the following two properties synthesizing the
e-Transaction problem as introduced in [4, 5]:

Safety. The back-end database does not commit more than one transaction for
each client request.

2 We use the term “legal” to refer to a transaction that does not violate any integrity
constraint on the database. As an example, the attempt to duplicate a primary key
makes a transaction illegal.

906 P. Romano, F. Quaglia, and B. Ciciani

Liveness. If a client issues a request, then unless it crashes, it eventually receives
a commit outcome for the corresponding transaction, together with the result of
the transaction.

It is important to note that, according to the specification of liveness guar-
antees as proposed in [4, 5], an e-Transaction protocol is not required to ensure
liveness in the presence of client crash. This is because the e-Transaction frame-
work deals with thin clients having no ability to maintain recovery information.
This reflects a representative aspect of current Web-based systems where access
to persistent storage at the client side can be (and usually is) precluded for a
variety of reasons. These range from privacy and security issues (e.g. to contrast
malicious and/or intrusive Web sites invasively delivering cookies) to constraints
on the available hardware (e.g. in case of applications accessible through cell
phones).

We present the protocol describing its behavior separately for every class of
processes in the system, i.e. client, application server and database server.

Client Behavior. The pseudo-code defining the behavior of the function issue
used by the client is shown in Figure 1. The client generates an identifier as-
sociated with the request, selects one application server and sends a Request
message to this server, together with the request identifier. It then waits for the
reply. In case it receives commit as the outcome for the corresponding transac-
tion, issue simply returns. In any other case, it means that something wrong
might have occurred. Specifically: (i) Timeout expiration means the application
server and/or the database server might have crashed. (ii) Rollback outcome
means instead that the database could not commit the transaction, for example
because of decisions of the concurrency control mechanism. In both cases, issue
reselects an application server (possibly different from the last selected one) and
retransmits the Request message to that application server, with the already se-
lected request identifier. Upon successive timeout expirations, the client keeps on
retransmitting the Request message (with that same identifier) until it receives
the commit outcome.

result issue(request content req){
1. generate a new id;
2. select an application server AS;
3. set outcome=ROLLBACK;
4. send Request[req,id] to AS;
5. while (outcome is not COMMIT){
6. await receive Outcome[outcome,res,id] or TIMEOUT;
7. if (TIMEOUT or outcome is not COMMIT){
8. select an application server AS;
9. send Request[req,id] to AS;
10. } /* end if */
11. } /* end while */
12. return res;
13. }

Fig. 1. Client Behavior

Ensuring E-Transaction Through a Lightweight Protocol 907

Application Server:
1. result res;
2. transaction identifier tid;
3. while(true){
4. await receive Request[req,id] from client;
5. [res,tid]=compute(req);
6. outcome=TestableTransaction(res,id);
7. send Outcome[outcome,res,id] to client;
8. } /* end while */

outcome TestableTransaction(result res, request identifier id){
9. insert(res,id); /* where id is a primary key */
10. repeat{
11. send Decide[tid] to the database server;
12. await receive Outcome[outcome,exception,tid] or TIMEOUT;
13. }until(received Outcome[outcome,exception,tid]);
14. if(exception.type = duplicated primary key exception){
15. set res=exception.result;
16. return COMMIT;
17. } /* end if */
18. return outcome;
19. }

Fig. 2. Application Server Behavior

Application and Database Server Behaviors. The application server behavior
is shown in Figure 2. Upon the receipt of a Request message, this server in-
vokes the primitive compute to start a transaction on the back-end database.
The transaction identifier assigned by the database server is returned to the
application server and maintained by tid. The application server then invokes
TestableTransaction. Within this function, the application server first exe-
cutes insert, in order to store the client request identifier within the database,
together with the result of the transaction. It then sends a Decide message with
that tid to the database server and waits for the outcome. This same message is
periodically retransmitted in case of subsequent timeout expirations.

We assume the client request identifier to be a primary key for the database,
which is the mechanism we adopt to guarantee the safety property. Therefore,
any attempt to commit multiple transactions associated with the same client
request identifier is rejected by the database itself, which is able to notify the
rejection event by rising an exception. This makes the client request for updat-
ing data within the database an idempotent operation, i.e. the request can be
safely retransmitted multiple times to different application servers. We note that
assuming the client request identifier to be a primary key is a viable solution
in practice. In case we can modify the database schema, this primary key can
be easily added. In case the schema is predetermined and not modifiable (e.g.
legacy databases), as suggested in [4] while describing supports for the testable
transaction abstraction, an external table can be used.

Upon the receipt of the Outcome message in reply from the database server,
the flag exception is checked to determine whether the same request identifier
was already in the database. In the positive instance, a transaction associated
with that same client request has already been committed. As a result, the
exception allows the application sever to return an Outcome message with the
commit indication to the client together with the already established result.
In any other case (i.e. exception is not raised), the outcome received by the

908 P. Romano, F. Quaglia, and B. Ciciani

Database Server:
1. while(true){
2. await receive Decide[tid] from an application server;
3. [outcome,exception]=decide(tid);
4. send Outcome[outcome,exception,tid] to the application server;
5. }

Fig. 3. Database Server Behavior

database server is sent back to the client. The outcome might be rollback, e.g.,
due to decisions of the concurrency control mechanism.

The behavior of the database server is shown in Figure 3. For simplicity
we only show the relevant operations related to transaction commitment, while
skipping the data manipulation associated with the business logic. This server
waits for a Decide message from an application server which asks to take a
final decision for a transaction associated with a given tid, and then attempts to
make the transaction updates permanent through the decide primitive. The final
result (commit/rollback) is then sent back to the application server, together
with the exception, possibly indicating the attempt to duplicate a primary key
(i.e. the identifier of the client request) within the database.

3.1 Proof of Correctness

Theorem 1. - Safety
The back-end database does not commit more than one transaction for each client
request.

Proof. (By Contradiction). Given the structure of the protocol, it is possible that
multiple transactions associated with the same client request are activated by the ap-
plication servers. Assume, by contradiction, that a generic number N > 1 of them
are eventually committed. In this case, the database server must have received multi-
ple Decide messages from the application servers for transactions associated with the
same client request. By the application server pseudo-code, this server sends the De-
cide message to the database server (see line 11 in Figure 2) only after it has executed
a whole transaction that encompasses both the data manipulation proper of the ap-
plication business logic through the compute primitive (see line 5 in Figure 2), and
the storing of the request unique identifier together with the result of the data ma-
nipulation through the insert primitive (see line 9 in Figure 2). As a consequence,
the N > 1 transactions associated with the same client request, which are eventually
committed, must perform a successful insertion of the unique request identifier within
the database. However, this is impossible since the database maintains a primary key
constraint on the request identifier, hence no more than one of those N transactions
can perform that insertion successfully. Therefore the assumption is contradicted and
the claim follows.

Lemma 1. If a correct application server sends a Decide message to the database
server asking for a decision on a transaction, the application server eventually
receives an Outcome message for that transaction from the database server.

Ensuring E-Transaction Through a Lightweight Protocol 909

Proof. (By Contradiction). Assume by contradiction that a correct application
server sends a Decide message to the database server and that no Outcome message
from the database server is ever received for the corresponding transaction. In this
case, the correct application server keeps on retransmitting the Decide message to the
database server indefinitely (see lines 10-13 in Figure 2). Hence, a Decide message will
be sent by the application server to the database server at time t′ > t, where t be the
time after which the database server stops crashing and remains up. Given that after
time t both the correct application server and the database server are always up, for
the assumption on the reliability of the communication channels we can claim that the
database server will eventually receive the Decide message. Also, the database server
will eventually take a decision through the decide primitive (since it does not crash
anymore) and will send an Outcome message to the application server. Again, since
communication channels are assumed to be reliable, the correct application server will
eventually receive that Outcome message. Therefore the assumption is contradicted
and the claim follows.

Theorem 2. - Liveness
If a client issues a request, then unless it crashes, it eventually receives a com-
mit outcome for the corresponding transaction, together with the result of the
transaction.

Proof. (By Contradiction). Assume by contradiction that the client issues a request,
does not crash and does not eventually receive a commit outcome. In this case, the client
keeps on retransmitting the Request message to the application servers indefinitely (see
lines 5-11 in Figure 1). As we have assumed that channels are reliable and that at
least an application server is correct (i.e. it does not crash), an unbounded amount of
Request messages will eventually be delivered to a correct application server. Moreover,
if an Outcome message is sent back by a correct application server to the client, this
message will eventually be received, since the client does not crash. Then, to show that
the previous assumption is wrong, we only need to show that a correct application
server receiving an unbounded amount of Request messages will eventually send to the
client an Outcome message with a commit indication.

When a correct application server receives a Request message from the client, it calls
the primitives compute and insert (see lines 5 and 9 in Figure 2). These primitives,
being non-blocking, eventually return, therefore the application server eventually sends
to the database server the Decide message (see line 11 in Figure 2). By Lemma 1, an
Outcome message for the transaction is eventually sent back by the database server
and is eventually received by the correct application server (recall this message also
carries the value of the exception flag). There are two possible cases:

A.1 If the Outcome message received from the database server carries a commit indi-
cation or the exception flag notifies the attempt to duplicate a primary key, then
an Outcome message with commit is sent back to the client together with the
transaction result. Therefore, the assumption is contradicted.

A.2 If the Outcome message received from the database server carries a rollback indica-
tion, with the exception flag notifying no attempt to duplicate a primary key, then
the transaction was legal but such a reply from the database server implies that
the database was unable to commit the required operations (e.g. due to decisions
of the concurrency control mechanism). In this case, an Outcome message with a
rollback indication is sent to the client.

910 P. Romano, F. Quaglia, and B. Ciciani

We note anyway that case A.2 (i.e. the only one that does not contradict the
assumption) can’t occur indefinitely as we have assumed that there is a time after
which the database server remains up and is able to commit any legal transaction.
We can therefore assert that we eventually fall in case A.1, which contradicts the
assumption. Hence, the claim follows.

3.2 Protocol Overhead

Our protocol is essentially based on logging recovery information (i.e. the client
request identifier and the result of the transaction) at the back-end database
while processing the transaction associated with the client request. The cost
of logging this recovery information is actually the unique overhead we pay as
compared to a baseline protocol for the three-tier organization, which is not able
to provide any end-to-end reliability guarantee. We argue that this overhead is
negligible in practice since it only consists of the cost for a single SQL INSERT
statement. To support this claim, we have performed some measurements re-
lated to the New-Order and the Payment Transactions specified by the TPC
BENCHMARKTM C [10], both reflecting on-line database activity, as typically
found in production environments, but exhibiting different profiles for what con-
cerns read/write operations. The measurements have been taken by running the
Solid FlowEngine 4.0 DBMS on top of a multi-processor system, equipped with
4 Xeon 2.2 GHz, 4 GB of RAM and 2 SCSI disks in RAID-0 configuration, run-
ning Windows 2003 Server. The application logic was implemented in JAVA2
with stored procedure technology. The below table reports the cost of database
activities for both the baseline protocol and our proposal. Each reported value,
expressed in msec, is the average over a number of samples that ensures con-
fidence interval of 10% around the mean at the 95% confidence level. These
experimental data clearly show that the overhead exhibited by our protocol for
logging the recovery information is minimal, never exceeding 2%, even for the
lighter transaction profile, namely the Payment Transaction.

Baseline Our protocol Overhead
New-Order Transaction 72.2 73.1 +1.21%
Payment Transaction 46.4 47.3 +2.06%

4 Related Work and Discussion

A typical solution for providing reliability consists of encapsulating the process-
ing of the client request within an atomic transaction to be performed by the
middle-tier (application) server [6]. This is the approach taken, for example,
by Transaction Monitors or Object Transaction Services such as OTS or MTS.
However, this solution does not deal with the problem of loss of the outcome
due, for example, to middle-tier server crash. The work in [7] tackles the lat-
ter issue by encapsulating within the same transaction both processing and the
storage of the outcome at the client. This solution imposes the use of a dis-
tributed commit protocol, such as two-phase commit (2PC), since the client is

Ensuring E-Transaction Through a Lightweight Protocol 911

required to be part of the transactional system. Therefore, it exhibits higher
communication/processing overhead as compared to our protocol.

Several solutions based on the use of persistent queues have also been pro-
posed in literature [1, 2], which are commonly deployed in industrial mission crit-
ical applications and supported by standard middleware technology (e.g. JMS
in the J2EE architecture, Microsoft MQ and IBM MQ series). However, per-
sistent queues are transactional resources, whose updates must be performed
within the same transactional context where the application data are accessed
(i.e. the request message must be dequeued within the same distributed transac-
tion that manipulates application data and enqueues the response to the client).
This needs coordination among several transactional resources just through a
distributed commit protocol (e.g. 2PC). Therefore, compared to our protocol,
also in this case the communication/processing overhead is higher. Addition-
ally, as discussed in [3, 5], the use of persistent queues, in combination with
classical 2PC as the distributed commit protocol, imposes explicit coordination
among the application servers to support fail-over of an application server (i.e.
the coordinator of the distributed transaction) suspected to have crashed. This
originates additional overhead and reduces scalability. Since our protocol does
not use any coordination scheme among the application server replicas, it pro-
vides better system performance and scalability, thus being attractive especially
in the case of high degree of replication of the application access point, with
the replicas possibly distributed on a geographic scale, e.g. like in Application
Delivery Networks (ADNs) such as those provided by Sandpiper, Akamai or
Edgix (3).

Message logging has also been used as a mean to recover from failures in multi-
tier systems [8]. A client logs any request sent to the server, which also logs any
request received. This allows the server to reply to multiple instances of the same
request from a client without producing side effects on the back-end database
multiple times. The server also logs read/write operations on the database, in
order to deal with recovery of incomplete transaction processing. Differently
from our proposal, this solution primarily copes with stateful client/middle-tier
applications, e.g. like CAD or work-flow systems.

Frolund and Guerraoui have presented three different e-Transaction protocols
[3, 4, 5]. The solutions in [3, 5] are based on an explicit coordination scheme
among the replicas of the application server, so they have to pay an additional
overhead due to coordination. As a consequence, they are mainly tailored for the
case of replicas of the application server hosted by, e.g., a cluster environment,
where the cost of coordination can be kept low thanks to low delivery latency
of messages among the replicas. Since coordination among the replicas is not
required in our protocol, we can avoid that overhead at all, with performance

3 These infrastructures result as a natural evolution of classical Content Delivery Net-
works (CDNs), where the edge server has not only the functionality to enhance the
proximity of contents to clients, but also to enhance the proximity between clients
and the application (business) logic, and to increase the application availability.

912 P. Romano, F. Quaglia, and B. Ciciani

benefits especially in case of high degree of replication of the application server
and distribution of the replicas on a geographical scale (e.g. like in ADNs).

Like our solution, the third protocol by Frolund and Guerraoui [4] relies on
the testable transaction abstraction (4), and has the advantages of not requiring
explicit coordination across the middle-tier and of not using any distributed com-
mit scheme. However, differently from our proposal, it handles failure suspicions
through a “termination” phase executed upon timeout expiration at the client
side. During this phase, the client sends, on a timeout basis, terminate messages
to the application servers in the attempt to discover whether the transaction
associated with the last issued request was actually committed. An application
server that receives a terminate message from the client tries to rollback the
corresponding transaction, in case it were still uncommitted (possibly due to
crash of the application server originally taking care of it). At this point the ap-
plication server determines whether the transaction was already committed by
exploiting the testable transaction abstraction. In the positive case, the applica-
tion server retrieves the transaction result to be sent to the client. Otherwise, a
rollback indication is returned to the client in order to allow it to safely send a
new request message (with a different identifier) to whichever application server.

Our protocol avoids the termination phase since it makes retransmissions
of a same request idempotent operations thanks to the use of a primary key
constraint imposed on the recovery information. From the point of view of per-
formance, the avoidance of the termination phase reduces the fail-over latency
as compared to [4]. More importantly, avoiding the termination phase makes our
protocol a more general solution. In fact, by admission of the same authors, the
employment of such a phase limits the usability of their protocol to environments
where it can be ensured that a request message is always processed before the
corresponding terminate messages. This is due to the fact that, according to the
specifications of the standard interface for transaction demarcation, namely XA,
when a rollback operation is performed for a transaction with a given identi-
fier, the database system can reuse that identifier for a successive transaction
activation (see [9] - state table on page 109). Hence, if a terminate message
was processed before the corresponding request message in the protocol in [4],
the latter message could possibly give rise to a transaction that gets eventu-
ally committed. On the other hand, upon the receipt of a reply to a terminate
message, the client might activate a new transaction, with a different identifier,
which could eventually get committed, thus leading to multiple updates at the
database and violating safety. In order to achieve the required processing order
constraint for request and terminate messages, the authors suggest to delay the
processing of the terminate messages at the application servers. This expedient
might reveal adequate in case the application is deployed over an infrastruc-
ture with controlled message delivery latency and relative process speed, e.g.
a (virtual) private network or an Intranet. However, if the system can experi-

4 Also this protocol logs some recovery information at the database while processing
the transaction through a similar insert primitive.

Ensuring E-Transaction Through a Lightweight Protocol 913

ence periods during which the message delivery latency gets unpredictably long
and/or the process speeds diverge, e.g. like in an asynchronous system, sim-
ply delaying the processing of a terminate message would not suffice to ensure
such an ordering constraint. The latter constraint could be enforced through
additional mechanisms (e.g. explicit coordination among the servers), but these
would negatively affect both performance and scalability of this protocol. By
all means, delaying the processing of terminate messages, even if adequate for
specific environments, would further penalize the user perceived system respon-
siveness during the fail-over phase as compared to our solution. Conversely, our
protocol does not rely on any constraint on the processing order of messages
exchanged among processes, thus it requires no additional mechanism to enforce
such an order and can be straightforwardly adopted in an asynchronous system,
e.g. an infrastructure layered on top of public networks over the Internet.

References

1. P. Bernstein, M. Hsu and B. Mann, “Implementing Recoverable Requests Using
Queues”, Proc. 19th ACM Conference on the Management of Data, pp.112-122,
1990.

2. E.A. Brewer, F.T. Chong, L.T. Liu, S.D. Sharma and J.D. Kubiatowicz, “Remote
Queues: Exposing Message Queues for Optimization and Atomicity.” Proc. 7th
ACM Symposium on Parallel Algorithms and Architectures, Santa Barbara, CA,
pp.42-53, 1995.

3. S. Frolund and R. Guerraoui, “Implementing e-Transactions with Asynchronous
Replication”, IEEE Transactions on Parallel and Distributed Systems, vol.12,
no.133-146, pp.2001.

4. S. Frolund and R. Guerraoui, “A Pragmatic Implementation of e-Transactions”,
Proc. 19th IEEE Symposium on Reliable Distributed Systems, pp.186-195. 2000.

5. S. Frolund and R Guerraoui, “e-Transactions: End-to-End Reliability for Three-
Tier Architectures”, IEEE Transactions on Software Engineering, vol.28, no.4, pp.
378-398, 2002.

6. J. Gray and A. Reuter, “Transaction Processing: Concepts and Techniques”, Mor-
gan Kaufmann, 1993.

7. M.C. Little and S.K. Shrivastava, “Integrating the Object Transaction Service with
the Web”, Proc. 2nd IEEE Workshop on Enterprice Distributed Object Computing,
pp.194-205, 1998.

8. D. Lomet and G. Weikum, “Efficient Transparent Application Recovery in Client-
Server Information Systems”, Proc. 27th ACM Conference on the Management of
Data, pp.460-471, 1998.

9. The Open Group, “Distributed Transaction Processing: The XA+ Specification
Version 2”, 1994.

10. Transaction Processing Performance Council (TPC), “TPC BenchmarkTM C,
Standard Specification, Revision 5.1”, 2002.

Cayley DHTs — A Group-Theoretic Framework for
Analyzing DHTs Based on Cayley Graphs

Changtao Qu1, Wolfgang Nejdl1, and Matthias Kriesell2

1 L3S and University of Hannover
Expo Plaza 1, D–30539 Hannover, Germany

{qu, nejdl}@l3s.de
2 Institute of Mathematics (A), University of Hannover

Welfengarten 1, D-30167 Hannover, Germany
kriesell@math.uni-hannover.de

Abstract. Static DHT topologies influence important features of such DHTs such
as scalability, communication load balancing, routing efficiency and fault toler-
ance. While obviously dynamic DHT algorithms which have to approximate these
topologies for dynamically changing sets of peers play a very important role for
DHT networks, important insights can be gained by clearly focussing on the static
DHT topology as well. In this paper we analyze and classify current DHTs in terms
of their static topologies based on the Cayley graph group-theoretic model and
show that most DHT proposals use Cayley graphs as static DHT topologies, thus
taking advantage of several important Cayley graph properties such as vertex/edge
symmetry, decomposability and optimal fault tolerance. Using these insights, Cay-
ley DHT design can directly leverage algebraic design methods to generate high-
performance DHTs adopting Cayley graph based static DHT topologies, extended
with suitable dynamic DHT algorithms.

1 DHTs and Static DHT Topologies

Two important characteristics of distributed hash tables (DHTs) are network degree
and network diameter. As DHTs are maintained through dynamic DHT algorithms,
high network degree means that joining, leaving and failing nodes affect more other
nodes. Based on network degree, we group static DHT topologies into two types: non–
constant degree DHT topologies, whose network degree increases (logarithmically) with
the number of nodes in the network, and constant (average) degree DHT topologies,
whose network degree stays constant even when the network grows. Consequently,
DHTs can be classified into non-constant degree DHTs such as HyperCup(hypercubes),
Chord (ring graphs), Pastry/Tapestry (Plaxton trees), etc., and constant degree DHTs
such as Viceroy (butterfly), Cycloid (cube connected cycles), and CAN (tori).

Though this classification is certainly useful, the listed DHT topologies seem to have
nothing more in common. Each topology exhibits specific graph properties resulting in
specific DHT system features. Consequently, DHTs have so far been analyzed comparing
individual systems, without a unified analytical framework which allows further insight
into DHT system features and DHT system design.

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 914–925, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Cayley DHTs — A Group-Theoretic Framework for Analyzing DHTs 915

The unified analytical framework discussed in this paper – Cayley DHTs –
allows us to compare DHT topologies on a more abstract level and character-
izes common features of current DHT designs. In a nutshell, we show that most
current static DHT topologies such as hypercubes, ring graphs, butterflies, cube-
connected cycles, and d-dimensional tori fall into a generic group-theoretic model,
Cayley graphs, and can be analyzed as one class. These Cayley graph based
DHTs (hereafter Cayley DHTs), including both non-content degree DHTs and con-
stant degree DHTs, intentionally or unintentionally take advantage of several im-
portant Cayley graph properties such as vertex/edge symmetry, decomposability,
good connectivity and hamiltonicity to achieve DHT design goals such as scal-
ability, communication load balancing, optimal fault tolerance, and routing effi-
ciency. Several non-Cayley DHTs also utilize techniques in their dynamic DHT al-
gorithms that try to imitate desirable Cayley graph properties, again showing the
close relationship between Cayley graph properties and desirable DHT system fea-
tures.

2 Cayley DHTs — A Group-Theoretic Model for Analyzing DHTs

2.1 Groups and Cayley Graphs

Cayley graphs were proposed as a generic group-theoretic model for analyzing sym-
metric interconnection networks [1]. The most notable feature of Cayley graphs is their
universality. Cayley graphs embody almost all symmetric interconnection networks, as
every vertex transitive interconnection network can be represented as the quotient of two
Cayley graphs [2]. They represent a class of high performance interconnection networks
with small degree and diameter, good connectivity, and simple routing algorithms. The
following paragraphs give the formal definitions.

A group is a pair Γ := (V, ·) such that V is a (nonempty) set and · : V × V −→ V
maps each pair (a, b) of elements of V to an element a · b of V with a · (b · c) = (a · b) · c
for all a, b, c ∈ V , such that there exists an element 1 ∈ V with the following properties:
(i) 1 · a = a for all a ∈ V and (ii) for every a ∈ V , there exists some b ∈ V with
b · a = 1.

1 is the unique element having properties (i) and (ii). It is called the neutral element
of Γ , and a · 1 = a holds for all a ∈ V . b as in (ii) is uniquely determined by a and is
called the inverse of a, written as b = a−1. It is the unique element b for which a · b = 1
holds. If a · b = b · a holds for all a, b ∈ V then Γ is called an abelian group. This is
usually expressed by additive notation, i. e. by writing Γ = (V, +), 0 for the neutral
element, and −a for the inverse of a. Groups are fundamental objects of mathematics,
and the foundation for Cayley graphs.

Let Γ := (V, ·) be a finite group, 1 its neutral element, and let S ⊆ V −{1} be closed
under inversion (i. e. x−1 ∈ S for all x ∈ S). The Cayley graph G(Γ, S) = (V, E) of
(V, ·) and S is the graph on V where x, y are adjacent if and only if xy−1 ∈ S.

We can also define directed versions of this concept, which are obtained by omitting
the symmetry condition S−1 = S to S. The condition 1 �∈ S keeps Cayley graphs
loopless. Note that Cayley graph are sometimes called group graphs.

916 C. Qu, W. Nejdl, and M. Kriesell

2.2 Non-constant Degree Cayley DHTs

HyperCup [3] Though HyperCup itself is not a DHT system, it is a topology for struc-
tured P2P networks which could also be used for DHT design, and which represents
an important type of Cayley graphs, hypercubes. So far there are no DHTs which use
pure hypercubes as static DHT topologies, even though some literature (i.e. [4, 5]) ar-
gue that Pastry/Tapestry and Chord emulate approximate hypercubes when taking into
account the dynamic DHT algorithm design. However, differentiating cleanly between
static DHT topologies and dynamic DHT algorithms, it is more appropriate to describe
their static topologies as Plaxton trees and ring graphs respectively.

Hypercubes are typical Cayley graphs. For a natural number m, let (Zm, +) denote
the group of residuals mod m. Consider the group Γ := (Zd

2 , +), where Zd
2 denotes

the set of all 0, 1-words of length d and + is the componentwise addition mod 2. We
want to make a, b adjacent whenever they differ in exactly one digit, i.e. whenever a− b
is a word containing precisely one letter 1. So if S is the set of these d words then
S is closed under inversion, and Hd

2 := G(Γ, S) is called the (binary) d-dimensional
(binary) hypercube.

It is also possible to give a hierarchical description of Hd
2 by means of the following

recursion. Set H1
2 = ({0, 1}, {01}), and for d > 1 define Hd

2 recursively by V (Hd
2) :=

{xv : x ∈ {0, 1}, v ∈ V (Hd−1
2)} and E(Hd

2) := {xvyw : xv, yw ∈ V (Hd
2) and:

(x = y ∧ vw ∈ E(Hd−1
2)) or (x �= y ∧ v = w)}. Roughly, in every step, we take

two joint copies of the previously constructed graphs and add edges between pairs of
corresponding vertices.

This concept can be generalized by looking at cartesian products of graphs: For
graphs G, H , let their product G × H be defined by V (G × H) := V (G) × V (H)
and E(G × H) := {(w, x)(y, z) : (w = y ∈ V (G) ∧ yz ∈ E(H)) or (y = z ∈
V (H)∧wx ∈ E(G))}. Clearly, G×H and H×G are isomorphic (take (x, y) !→ (y, x)
as an isomorphism). Defining K2 := ({0, 1}, {01}) to be the complete graph on two
vertices, we see that H1

2 is isomorphic to K2 and Hd
2 is isomorphic to Hd−1

2 ×K2 for
d > 1, which is in turn isomorphic to K2 × · · · ×K2 (d factors K2).

As every finite group is isomorphic to some group of permutations, it is possible to
unify the Cayley graph notion once more. Without loss of generality, we can assume that
the generating group Γ is a permutation group. This is certainly useful when describing
algorithms on general Cayley graphs. For the presentation here, it is, however, more
convenient to involve other groups as well, e.g. permutation groups: For Γ , we take
the subgroup of the permutation group S6 := ({f : {1, . . . , 6} −→ {1, . . . , 6} : f
bijective}, ◦) generated by S := {213456, 124356, 123465} (here a1 · · · a6 denotes the
permutation f of {1, . . . , 6} with f(1) = a1, f(2) = a2, . . . , f(6) = a6). f ◦ g is the
permutation defined by (f ◦ g)(x) = f(g(x)) for all possible x.)

Chord [6] Chord uses a 1-dimensional circular key space, in which the node responsi-
ble for a key is the node whose identifier most closely follows the key in the numeric order
(the key’s successor).All nodes in Chord are arranged into a ring graph. In a m-bit Chord
key space, each Chord node maintains two sets of neighbors: a successor list of k nodes
that immediately follow it in the key space, and a finger list of O(log N) nodes spaced
exponentially around the key space. The ith entry of the finger list points to the node that
is 2i away from the current node, or to that node’s successor if that node does not exist.

Cayley DHTs — A Group-Theoretic Framework for Analyzing DHTs 917

The graphs approximated here are special circulant graphs,i. e. Cayley graphs
obtained from the cyclic group (Zn, +) and an arbitrary (inversion–closed) gen-
erator set.The most prominent example is the cycle Cn := G(Zn, {±1}) =
(Zn, {01, 12, 23, . . . , (n − 1)n, n0}) of length n. For the topology of the ideal d-bit
Chord key space, we simply take the Cayley graph Rd := G((Z2d , +), {±2k : k ∈
{0, . . . , d− 1}}).

2.3 Constant Degree Cayley DHTs

Cycloid [4] Cycloid is a constant degree DHT emulating a cube connected cycle as
its static DHT topology. In Cycloid, each node is specified by a pair of cyclic and cube
indices. In order to dynamically maintain connectivity of the DHT topology, the dynamic
DHT algorithm of Cycloid forces each node to keep a routing table consisting of 7 entries.
Among them, several entries (so-called leaf sets) only make sense for the dynamic DHT
algorithm to deal with network connectivity in sparsely populated identifier spaces. A
d-dimensional cube connected cycle graph is obtained from a d-dimensional cube by
replacing each vertex with a cycle of d nodes. It contains d · 2d nodes of degree d each.
Each node is represented by a pair of indices (k, v), where k ∈ Zd is a cyclic index and
v ∈ Zd

2 is a cube index. A cube connected cycle graph can be viewed as a specific case
of Cayley Graph Connected Cycles (CGCC) [7], defined as:

Let Γ = (V, ·) be a group and S := {s1, . . . , sd} ⊆ V −{1} closed under inversion
with d ≥ 3. The Cayley graph connected cycles network CGCC(Γ, S) = (V ′, E′) is
the graph defined by V ′ := Zd × V and E′ := {(i, x)(j, y) : (x = y ∧ i = j ± 1) or
(i = j ∧ x = si · y)}.

CGCC(Γ, S) is obtained by replacing each vertex of the Cayley graph G(Γ, S)
with a cycle of length d and replacing each edge of G(Γ, S) with an edge connecting
two members of a cycle in a certain way. The edges (i, x)(j, y) with i = j form cycle
connections, the others form cayley graph connections. [8] proves that these graphs are
Cayley graphs. Following the definition of CGCC, the n-dimensional cube connected
cycle is a graph built from a n-cube replacing each node with a cycle of length n.

Viceroy [9] Viceroy is a constant degree DHT emulating an approximate butterfly
graph as its static DHT topology. The dynamic DHT algorithm of Viceroy is rather in-
volved. It works based on a rough estimate of the network size and forces each node to
keep a routing table containing 5 to 7 entries [9]. Similar to Cycloids, part of the entries
only make sense for the dynamic DHT algorithm to deal with a sparsely populated iden-
tifier space (i.e. ring links [9]). For Viceroy we can only guarantee with high probability
that the constructed DHT topology is a butterfly graph.

The d-dimensional binary wrapped directed butterfly Bd
2 is a graph with vertices

V = V (Bd
2) = Zd−1 × Zd

2 such that there is an edge from a = (i, v1 · vd) ∈ V to
b = (j,w1 · wd) ∈ V if and only if i ∈ {0, . . . , d− 1}, j = i + 1 and vk = wk for all
k ∈ {0, . . . , d− 1} − {i}.One can think of i, j as of the levels of a and b, respectively,
and some level i vertex (i, v) has precisely two neighbors (i+1, v) and (i+1, v′), where
v′ is obtained from v by adding 1 (mod 2)in the ith component of v. The d-dimensional
binary wrapped butterfly Bd

2 is the underlying graph of the digraph Bd
2, where there is

a (single) edge ab whenever there is an edge (a, b) or an edge (b, a) in Bd
2. As we can

see, Bd
2 is 4-regular for d ≥ 3.

918 C. Qu, W. Nejdl, and M. Kriesell

The advantage of taking the wrapped rather than the unwrapped version of the
butterfly is that Bd

2 is a Cayley graph, whereas unwrapped ones are not even reg-
ular, since for d ≥ 3 the vertices on the border levels have degree 2 and the oth-
ers have degree 4. We represent Bd

2 as a Cayley graph of the wreath product of the
groups (Zd, +) and (Zd

2 , +). For (i, v) and (j,w) in V , we define (i, v) • (j, w) :=
(i+j, (v0 +w−�, v1 +w−�+1, . . . , vd−1 +w−�+d−1)). Note that i+j and the indices at
the components of v and w are to be taken mod d. This operation constitutes a group Γ =
(V, •), with neutral element (0, 0). By taking S = {(1, 0), (1, (1, 0, . . . , 00 · · · 0))} ⊆ V
we obtain the representation Bd

2 = G(Γ, S) of Bd
2 as a Cayley graph (for more details

see [8]).
CAN [10] CAN is an (adjustable) constant degree DHT using a virtual d-dimensional

Cartesian coordinate space to store (key, value)–pairs. The topology under this Carte-
sian coordinate space is a d-dimensional torus. Let Tm,n := Cm × Cn of length
m and n be the Cartesian product of two cycles Cm, Cn. The componentwise ad-
dition + establishes a group Γ (Zm × Zn, +) on its vertices, and clearly Tm,n =
G(Γ, {(0,±1), (±1, 0)}). Hence the torus is a Cayley graph as well. One could con-
sider such a toroidal graph as a rectangular grid, where the points on opposite borders
are identified. We can extend this definition easily to higher dimensions: Let n1, . . . , nd

be numbers ≥ 2. Componentwise addition + of elements in V := Zn1 × · · · × Znd

establishes a group Γ (V, +), and by taking S to be the set {(z1, . . . , zd) ∈ P : there is
an i ∈ {1, . . . , d} such that zi = ±1 and zj = 0 for all j �= i in {1, . . . , d}} and we
obtain a d-dimensional torus Tn1,...,nd

= G(Γ, S). Explicitly, Tn1,...,nd
is a graph on

the vertex set V , where (v1, . . . , vd) and (w1, . . . ,wd) are adjacent if and only if they
differ in exactly one component and the difference in this component is either +1 or−1.
As the presence of i’s with ni = 2 stretches formal arguments slightly (for example,
when considering degrees), some authors force ni ≥ 3 for all i ∈ {1, . . . , d}. They
lose then, however, the possibility to consider the d-dimensional hypercube as a special
torus, namely as T2,...,2 (d indices 2).

2.4 Non-cayley DHTs

P-Grid [11] Among non-Cayley DHTs, to the best of our knowledge, only P-Grid [11]
still retains most of the advantages of Cayley networks. P-Grid uses prefix based routing,
and can be considered as a randomized approximation of hypercube. The routing network
has a binary trie abstraction, with peers residing only at the leaf nodes. Each peer is thus
responsible for all data items with the prefix corresponding to the peer’s path in the
trie. For routing, peers need to maintain routing information for the complimentary
prefix for each of the intermediate nodes in its path. However, routing choice can be
made for any peer belonging to the complimentary paths, and P-Grid exploits these
options in order to randomly choose routing peer(s), which in turn provides query-
forwarding load-balancing and by choosing more than one routing options, resilience.
Additionally, the choices can be made based on proximity considerations, and though
routing is randomized, since it is to complimentary key-space partitions, P-Grid routes
have the added flexibility to be either bidirectional or unidirectional.

Pastry/Tapestry [12] [13] The static DHT topology emulated by Pastry/ Tapestry are
Plaxton trees. However, when taking the dynamic DHT algorithms of Pastry/Tapestry

Cayley DHTs — A Group-Theoretic Framework for Analyzing DHTs 919

into account, we find that the static DHT topology of Pastry/Tapestry behaves quite
similar to an approximation of hypercubes. As analyzed in [5], in the Pastry/Tapestry
identifier space, each node on the Plaxton tree differs from its ith neighbor on only the ith
bit, dynamic routing is done by correcting a single bit at a time in the left-to-right order.
This turns out to be the same routing mechanism adopted by DHTs using hypercubes as
static DHT topologies, even though hypercube based DHTs allow bits to be corrected
in any order.

3 Cayley Graph Properties and DHTs

Cayley graphs have a specific set of properties which can be closely associated with
important DHT system features. The following paragraphs include a discussion of these
Cayley DHT properties and provide a good insight into Cayley DHT design.

Symmetry and Load Balancing. The most useful properties of Cayley graphs are
symmetry properties. Recall that an automorphism of some graph G is a bijection ϕ :
V (G) −→ V (G) with ϕ(x)ϕ(y) ∈ E(G) if and only if xy ∈ E(G).

A graph G is called vertex symmetric or vertex transitive if for arbitrary x, y ∈ V (G)
there exists an automorphism ϕ of G such that ϕ(x) = y. As the automorphism z !→
z · x−1 · y maps x to y, we obtain the following classical observation.

Theorem 1. Every Cayley graph is vertex transitive.

This property results in an important feature of Cayley graphs — routing between
two arbitrary vertices can be reduced to the routing from an arbitrary vertex to a special
vertex [1]. This feature is significant for Cayley DHTs because it enables an algebraic
design approach for the routing algorithm. Suppose that Γ = (V, ◦) is a group of
permutations, let S ⊆ V − {idV } be closed under inversion and consider the Cayley
graph G = G(Γ, S). For a path P = x0, . . . , x� from x0 to x� set si := xi−1x

−1
i for

i ∈ {1, . . . , �}. Then the sequence s1, . . . , s� in S represents the path P , and it also rep-
resents the path from x0x

−1 to idV . Consequently the routing problem G is equivalent
to a certain sorting problem [1]. Taking V to be the set of all permutations of some set
and S ⊆ V to be the set of all transpositions will produce a bubble sort graph (see [8]).

We can leverage this property to implement optimized routing algorithms for Cay-
ley DHTs through purely algebraic approaches supported by sets of mature algebraic
methods. Furthermore, vertex transitivity provides a unified method to evaluate com-
munication load on DHT nodes. In Cayley DHTs, the communication load is uniformly
distributed on all vertices without any point of congestion. In contrast, non-Cayley DHTs
exhibit congestion points. As communication load balancing is one of the principal de-
sign concerns of DHTs, this points out major drawback of non-Cayley DHTs.

In addition to vertex transitivity, Cayley graphs may also have another important
property, edge transitivity. A graph G is edge symmetric or edge transitive if for arbitrary
edges wx, yz there exists an automorphism ϕ such that ϕ(w)ϕ(x) = yz. Clearly, every
edge transitive graph without isolated vertices is vertex transitive, but the converse is not
true. For a discussion of the problem of determining the edge transitiv Cayley graphs
we refer to [1] and [8].

920 C. Qu, W. Nejdl, and M. Kriesell

Among Cayley DHTs, HyperCup (hypercubes), CAN(d-dimensional torus), and
Viceroy (butterfly) are edge transitive, whereas Chord (ring graphs) and Cycloid (cube
connected cycles) are not. Non–Cayley DHTs are not edge transitive. Edge transitivity
results in a unified method to evaluate communication load on edges. In edge transi-
tive Cayley DHTs communication load is uniformly distributed on all edges without
points of congestion. For constant degree Cayley DHTs such as Cycloid, the loss of
edge transitivity can be seen as a reasonable tradeoff against the constant degree prop-
erty. For non-constant degree Cayley DHTs such as Chord, the loss of edge transitivity is
disadvantageous, and has to be compensated through the design of the routing algorithm.

Hierarchy, Fault Tolerance, and Proximity. Recall that < S >Γ is the subgroup of
Γ = (V, ·) generated by S ⊆ V i. e. the smallest subgroup of Γ which contains S. Let
Γ = (V, S) be a group and S ⊆ V (G) − {1} such that S−1 = S. The Cayley graph
G(Γ, S) is strongly hierarchical if S is a minimal generator for G, i. e. if < S >G= G
but < S − {s, s−1} >G is a proper subgroup of G for every s ∈ S.

Among Cayley DHTs, HyperCup (hypercubes) and Chord (ring graphs) can be
proven to be hierarchical [8]. Hierarchical Cayley graphs “often allow inductive
proofs by decomposing (stripping) the graph into smaller members of the same
family, thus are scalable in the sense that they recursively consist of copies of
smaller Cayley graphs of the same variety” [8]. In DHT design, hierarchy can
strongly affect the node organization and aggregation, which is closely associ-
ated with two important DHT system features: fault tolerance (i.e. network re-
silience) and proximity (i.e. network latency). Most hierarchical Cayley DHTs, ex-
cept for a very particular family, are optimally fault tolerant as their connectiv-
ity is equal to their degree [14]. Furthermore, in hierarchical Cayley DHTs, there
usually support easy solutions to dynamically organize nodes (or node aggrega-
tions) to ensure proximity of DHTs. Hierarchical Cayley graphs have not yet
been intensively investigated for DHT design. Two promising hierarchical Cay-
ley graphs not yet utilized in DHT design are star graphs and pancake net-
works [15], which have smaller network diameter than hypercubes of the same de-
gree.

Connectivity and FaultTolerance. A graph G is disconnected if it contains two vertices
x, y such that there is no x, y-path in G. The connectivity κ(G) of a finite (nonempty)
graph is the minimum cardinality of a set X of vertices such that G−X is disconnected
or has less than two vertices.

A graph is called d-regular if every vertex has degree d. For example, every vertex
transitive graph is regular. Clearly, d is an upper bound for the connectivity of a d-regular
graph. Let us call a d-regular graph G optimally fault tolerant if its connectivity equals
d.For example, complete graphs are optimally fault tolerant, so are hypercubes (as one
can prove by induction on the dimension, using the recursive characterizations). For
edge transitive graphs, we have the following.

Theorem 2. [16, 17, 18] (cf. [19]) Every connected edge transitive graph is optimally
fault tolerant.

In general, connected Cayley graphs are not optimally fault tolerant; the smallest
example showing this is the 5-regular circulant graph G := G(Z8, {±1, ±3, 4}), as

Cayley DHTs — A Group-Theoretic Framework for Analyzing DHTs 921

G − {0, 2, 4, 6} is disconnected. However, the following theorem on connected vertex
transitive graphs shows that connectivity and degree can’t differ too much.

Theorem 3. [16, 17, 18] (cf. [19]) The connectivity of a connected vertex transitive
d-regular graph is at most d and at least 2

3 (d + 1).

In particular, for d ∈ {2, 3, 4}, every d-regular connected vertex transitive graph
is d-connected, i.e. optimally fault tolerant. For d = 5, this statement is wrong even
for Cayley graphs as seen in the previous example, but for d = 6 it’s true “again”:
Every 6-regular vertex transitive graph is 6-connected. This follows easily from the main
result in [16] which implies that every triangle free connected vertex transitive graph
is optimally fault tolerant. More generally, every vertex transitive graph without four
pairwise adjacent vertices is optimally fault tolerant [17]. This gives alternative proofs
of the optimal fault tolerance of hypercubes and of d-dimensional tori Tn1,...,nd

with
ni ≥ 4 for all i ∈ {1, . . . , d}. The graph G(Z8, {±1,±3, 4}) indicates that it might be
already a problem to characterize the optimally fault tolerant circulants (solved in [20]).

Edge connectivity is less interesting from the point of view of optimal fault tolerance,
as every d-regular vertex transitive graph has edge connectivity equal to d [17, 18]
(cf. [19]). Hierarchical Cayley graphs as in Definition 3 and as in [8] or [14] are also
known to be optimally fault tolerant unless they belong to a particular family of graphs
whose d-regular members still have connectivity d − 1. For the technical details, we
refer the reader to [8] or [14].

Among Cayley DHTs, HyperCup (hierarchical Cayley graphs), Chord (hierarchi-
cal Cayley graphs), Cycloid (3-regular Cayley graphs) and Viceroy (4-regular Cayley
graphs) are optimally fault tolerant based on their static DHT topology perspective.
CAN (d-regular Cayley graphs) can also be proven optimally fault tolerant based on
its dynamic DHT algorithm features such as multiple realities and multiple dimensions
[10]. For non-DHTs it is much harder to prove optimal fault tolerance. However, as fault
tolerance is one of the principal design concerns of DHTs, most non–Cayley DHTs have
included various techniques in their dynamic DHT algorithms to pursue possibly higher
fault tolerance, although optimality cannot guaranteed. One possible such technique is
to force each node to maintain a successor list in dynamic DHT algorithms.

For DHTs whose static DHT topologies are optimal fault tolerant, it is much easier to
also ensure this in the dynamic algorithm design for sparsely populated DHT identifier
spaces, or frequently leaving / failing nodes. Possible techniques include the successor
list in Chord [6] or the state-machine approach based replication in Viceroy [9].

Hamiltonicity and Cyclic Routing. A path or cycle which visits every vertex in a
graph G exactly once is called a hamiltonian path or hamiltonian cycle, respectively.
Hamiltonicity has been received much attention of theorists in this context, as it is still
open whether every 2-connected Cayley graph has a hamiltonian path.

The question of hamiltonian cycles and paths in Cayley graphs has a long history
[21]. All aforementioned topologies of Cayley DHTs such as hypercubes, ring graphs,
butterfly, cube-connected cycles, and d-dimensional tori have been proven to be hamil-
tonian.

Hamiltonicity is important for DHT design because it enables DHTs to embed a ring
structure so as to implement ring based routing in dynamic DHT algorithms. Ring based

922 C. Qu, W. Nejdl, and M. Kriesell

routing, characterized by the particular organization of the DHT identifier space and en-
suring the DHT fault tolerance in a dynamic P2P environment by means of maintaining
successor/predecessor relationships between nodes, is used by almost all DHT propos-
als. Gummadi et al. [5] observes that the ring structure “allows the greatest flexibility
and hence achieves the best resilience and proximity performance of DHTs”. Although
in terms of our analytical framework, we do not fully agree with Gummadi et al. on the
conclusion that ring graphs are the best static DHT topologies, we agree that an hamil-
tonian cycle should exist in static DHT topologies in order to ease the dynamic DHT
algorithm design. From the static DHT topology perspective, all aforementioned DHTs
are hamiltonian except for Pastry/Tapestry (Plaxton trees), which, however, maintain a
ring structure through their dynamic DHT algorithm.

4 Discussion and Related Work

Some desirable DHT system features are inconsistent with each other, which means that
tradeoffs must be considered when deciding on a static DHT topology. As a general
conclusion, we have shown that Cayley DHTs have clear advantages over non–Cayley
DHT designs, naturally supporting desirable DHT features such as communication load
balancing and fault tolerance.

Cayley DHTs cover both non-constant degree DHTs and constant degree ones, so
in each case we can start from Cayley graphs as underlying topology for DHT design.
Constant-degree Cayley graphs have the main advantage that their “maintainability”
(regarding leaving / failing nodes) is independent of the size of the network. In a dynamic
P2P environment, maintainability of nodes might be preferrable to other desirable DHT
system features such as communication load balancing and fault tolerance, since the
loss of other DHT system features can often be compensated through some additional
techniques in the dynamic DHT algorithm design, whereas maintainability is almost
uniquely determined by the static DHT topology.

When designing constant degree Cayley DHTs, cube connected cycles are an espe-
cially promising family of static DHT topologies in terms of our analytical framework,
taking into account the simplicity they enable for dynamic DHT algorithm design in
comparison to for example butterfly graphs. This conclusion can be extended to a gener-
alized type of constant degree Cayley graphs: Cayley Graph Connected Cycles (CGCC),
as we have discussed in Section 2.3. We therefore expect that different variants of CGCC
will heavily influence the design mainstream for future constant degree Cayley DHTs.

Looking at non-constant degree Cayley DHTs, the most promising family are hyper-
cubes, as they achieve all desirable DHT system features except for the constant degree
property. This conclusion can be extended to k-ary n-cube, which can be regarded as
a generalization of the d-dimensional hypercube by taking k = 2. Formally, the k-ary
d-cubes can be defined as in [22]:

Consider the group Γ := (Zd
k , +), where V := Zd

k denotes the set of all words of
length d over the alphabet Zk and where + is the componentwise addition mod k. Let
S be the set of all (k− 1) · d words in V which have exactly one entry±1 and all others
entries being 0. The graph Hd

k := G((Zd
k , +), S) is the k-ary d-cube. By definition,

k-ary n-cubes are Cayley graphs. They can be defined recursively as well: Denoting by

Cayley DHTs — A Group-Theoretic Framework for Analyzing DHTs 923

Ck the cycle of length k, we see that H1
k is isomorphic to Ck and Hd

k is isomorphic to
Hd−1

k × Ck for d > 1, which is in turn isomorphic to Ck × · · · × Ck (d factors).
Most current Cayley DHTs such as HyperCup, CAN, and Chord use static DHT

topologies that are either k-ary d-cubes or isomorphic to k-ary d-cubes such as ring
graphs, tori, direct or undirected d-cubes [22]. Even for constant degree Cayley DHTs
or non-Cayley DHTs, the static DHT topologies of Cycloid (cube-connected cycles) and
Pastry/Tapestry (Plaxton trees) are closely associated with k-ary d-cubes. As we have
mentioned, Plaxton trees can be viewed as approximate hypercubes, whereas cube-
connected cycles can be viewed as a variant of hypercubes.

Gummadi et al. [5] investigate some commonly used static DHT topologies and ex-
plore how these topologies affect static resilience and proximity routing by analyzing the
flexibility of different DHTs, i.e. the algorithmic freedom left after the static topologies
has been chosen. Manku’s [23] analysis starts from static DHT topologies, but then heav-
ily involves dynamic DHT algorithms. His classification for DHT systems (deterministic
and randomized) are certainly of value, but cannot serve as an analytical framework for
comparing static DHT topologies. Datar [24] provides an in-depth investigation to but-
terfly graphs and further proposes a new DHT system using multi-butterfles as the static
DHT topology. Castro et al. [25] make a comparative study of Pastry, taking Chord and
CAN as reference systems.

5 Conclusions

We have discussed DHT topologies in the framework of Cayley Graphs, which is one
of the most important group-theoretic models for the design of parallel interconnection
networks. Associating Cayley graphs with DHTs enables us to directly leverage the
research results for interconnection networks for the DHT design without the need of
starting from scratch. Cayley graphs explicitly support an algebraic design approach,
which allows us to start with an arbitrary finite group and construct symmetric DHTs
using that group as the algebraic model, concisely specifying a DHT topology by pro-
viding the appropriate group plus a set of generators. This algebraic design approach
also enables us to build new types of structured P2P networks in which data and nodes
do not necessarily need to be hashed in order to build content delivery overlay networks,
as discussed in [3, 26] for hypercube topologies. Such non-hashed, structured P2P net-
works allow us to apply semantic Web and database technologies for data organization
and query processing and implement expressive distributed information infrastructures
which are not implemented easily based on pure DHT designs.

Our analytical framework and its notion of Cayley DHTs provides a unified view
of DHTs, which gives us excellent insight for designing and comparing DHT designs.
Identifying a DHT design as Cayley DHTs immediately allows us to infer all generic
properties for this design, and, through the correspondence of Cayley graph properties to
DHT system features, allows us to directly infer the generic DHT features implemented
by this design. Furthermore, we can investigate the various tradeoffs between different
DHT designs features and use them to guide the design of future DHTs.

Casting and understanding static DHT topologies in a common framework is but
the first important step towards principled DHT design. In order to cover all features

924 C. Qu, W. Nejdl, and M. Kriesell

of a particular design, we also have to explore the general design of dynamic DHT
algorithms which can in principle be used to emulate any Cayley graph based static
DHT topologies. Such dynamic DHT algorithms need not necessarily be bound to any
individual Cayley graph, instead they could be universally applicable to any Cayley
graphs, leveraging algebraic design methods in order to build arbitrary Cayley DHTs.
Some of these methods and design issues are currently investigated in more detail in our
group.

References

1. Akers, S.B., Krishnamurthy, B.: A group-theoretic model for symmetric interconnection
networks. IEEE Trans. Comput. 38 (1989) 555–566

2. Sabidussi, G.: Vertex–transitive graphs. Monatsh. Math. 68 (1964) 426–438
3. Schlosser, M., Sintek, M., Decker, S., Nejdl, W.: Hypercup - hypercubes, ontologies and

efficient search on p2p networks. In: Intl. Workshop on Agents and Peer-to-Peer Computing,
Bologna, Italy (2002)

4. Shen, H., Xu, C., Chen, G.: Cycloid: A constant-degree and lookup-efficient p2p overlay
network. In: Intl. Parallel and Distributed Processing Symposium, Santa Fe (2004)

5. Gummadi, K., Gummadi, R., Gribble, S., Ratnasamy, S., Shenker, S., Stoica, I.: The impact
of dht routing geometry on resilience and proximity. In: ACM Annual Conference of the
Special Interest Group on Data Communication, Karlsruhe, Germany (2003)

6. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A scalable peer-
to-peer lookup service for internet applications. In: Annual Conference of the ACM Special
Interest Group on Data Communications, San Diego, CA, USA (2001)

7. Oehring, S.R., Sarkar, F., Das, S.K., Hohndel, D.H.: Cayley graph connected cycles : A new
class of fixed-degree interconnection networks. In: 28th Annual Hawaii Intl. Conference on
System Sciences, Hawaii, USA (1995)

8. Heydemann, M.C., Ducourthial, B.: Cayley graphs and interconnection networks. Graph
Symmetry, Algebraic Methods and Applications,“NATO ASI C” 497 (1997) 167–226

9. Malkhi, D., Naor, M., Ratajczak, D.: Viceroy: A scalable and dynamic emulation of the
butterfly. In: 21st ACM Symposium on Principles of Distributed Computing (PODC 2002),
Monterey, California, USA (2002)

10. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-addressable
network. In:Annual Conference of theACM Special Interest Group on Data Communications,
San Diego, CA, USA (2001)

11. Aberer, K., Datta, A., Hauswirth, M.: Ch. 21, “Peer-to-Peer-Systems and Applications”. In:
P-Grid: Dynamics of self-organization in structured P2P systems. Springer LNCS (2004)

12. Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object location and routing for large-
scale peer-to-peer systems. In: IFIP/ACM Intl. Conference on Distributed Systems Platforms
(Middleware), Heidelberg, Germany (2001)

13. Zhao, B.Y., Huang, L., Stribling, J., Rhea, S.C., Joseph, A.D., Kubiatowicz, J.D.: Tapestry:
A resilient global-scale overlay for service deployment. IEEE Journal on Selected Areas in
Communications 22 (2004)

14. Alspach, B.: Cayley graphs with optimal fault tolerance. IEEE Trans. Comput. 41 (1992)
1337–1339

15. BerthomT, P., Ferreira, A., Perennes, S.: Optimal information dissemination in star and
pancake networks. IEEE Tran. on Parallel and Distrubuted Systems 7 (1996)

16. Mader, W.: Eine Eigenschaft der Atome endlicher Graphen. Arch. Math. (Basel) 22 (1971)
333–336

Cayley DHTs — A Group-Theoretic Framework for Analyzing DHTs 925

17. Mader, W.: Über den Zusammenhang symmetrischer Graphen. Arch. Math. (Basel) 21 (1970)
331–336

18. Watkins, M.E.: Connectivity of transitive graphs. J. Combinatorial Theory 8 (1970) 23–29
19. Boesch, F., Tindell, R.: Connectivity and symmetry in graphs. In: Graphs and applications

(Boulder, Colo., 1982). Wiley-Intersci. Publ. Wiley, New York (1985) 53–67
20. Boesch, F., Tindell, R.: Circulants and their connectivities. J. Graph Theory 8 (1984) 487–499
21. Curran, S.J., Gallian, J.A.: Hamiltonian cycles and paths in Cayley graphs and digraphs—a

survey. Discrete Math. 156 (1996) 1–18
22. Dally, W.J.: A VLSI Architecture for Concurrent Data Structures. Hingham, MA: Kluwer

(1987)
23. Manku, G.S.: Routing networks for distributed hash tables. In: 22nd ACM Symposium on

Principles of Distributed Computing (PODC 2003), Boston, USA (2003)
24. Datar, M.: Butterflies and peer-to-peer networks. In: 10th Annual European Symposium.

Lecture Notes in Computer Science, Rome, Italy, Springer (2002)
25. Castro, M., Druschel, P., Hu,Y.C., Rowstron, A.: Exploiting network proximity in distributed

hash tables. In: Intl. Workshop on Future Directions in Distributed Computing, Bertinoro,
Italy (2002)

26. Nejdl, W., Wolpers, M., Siberski, W., Schmitz, C., Schlosser, M., Brunkhorst, I., L÷ser, A.:
Super-peer-based routing and clustering strategies for rdf-based peer-to-peer networks. In:
12th Intl. World Wide Web Conference, Budapest, Hungary (2003)

 J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 926–936, 2004.
© Springer-Verlag Berlin Heidelberg 2004

BR-WRR Scheduling Algorithm in PFTS

Dengyuan Xu, Huaxin Zeng, and Chao Xu

School of Computer and Communication Engineering,
Southwest Jiaotong University, Chengdu, Sichuan, China, 610031

xudave@tom.com, xudave@126.com

Abstract. The novel concept of Physical Frame Time-slot Switching (PFTS)
over DWDM, proposed by Sichuan Network and Communication technology
key laboratory (SC-Netcom Lab), has been around for some time. It differs
from existing switching techniques over DWDM by its superior QoS mecha-
nisms embedded in and its capability to simplify Internet into a Single physical-
layer User-data transfer Platform Architecture (SUPA).
 This paper proposed a Borrow & Return Weighted Round Robin (BR-WRR)
algorithm of output scheduling and dispatching in a multiple-priority queue en-
vironment in PFTS nodes. In such nodes, there are multi-ports in a DWDM-
based PFTS node and each port contains multi-lambdas. Furthermore, multiple
queues with different priorities plus burst queue with the highest priority are
devised for each output lambda. A Borrow-and-Return mechanism is introduced
to improve the orthodox WRR in PFTS, which cannot satisfy continuous
transmitting privileged data of a burst to maintain its integrity. Comparison of
the results between simulation of BR-WRR and that of WRR is provided in
this paper and shows that BR-WRR has better performance with regard to fair-
ness and important QoS parameters such as transit delay, jitters, and non-
disordering.

1 A Brief Introduction to PFTS

PFTS (Physical Frame Time-slot Switching)[1,2] is a physical-layer switching tech-
nique, which takes the format of Ethernet MAC-frame as that of its physical frame
called EPF (Ethernet-like Physical Frame) and the time duration of transmitting the
fixed length of EPF (1530 Byte) is defined as the basic time-slot for interleaving user-
data.

When entering the PFTS domain, a MAC frame is mapped onto an EPF at the
physical layer and the destination-address field of the MAC frame will be replaced by
a PFTS switching field. When an EPF exits from the PFTS domain, it will be treated
as a MAC frame and the destination-address of MAC frame will be restored. PFTS is
connection-oriented and it provides Permanent Virtual Connection (PVC) and
Switched Virtual Connection (SVC) services.

Based on PFTS and out-band signaling concept, a Single-layer User-data transfer
Platform Architecture Network (SUPANET) [3] was proposed, where user data is
transferred in a single-layer platform and Internet protocol stacks are remained in
transfer signaling and management information. To further enhance QoS provisioning,

BR-WRR Scheduling Algorithm in PFTS 927

a few protocols are introduced at the application layer, such as QoS Negotiation pro-
tocol (QoSNP), Admission Control Protocol (ACP), and Traffic Monitoring informa-
tion Exchange Protocol (TMEP) [4]. Consequently, SUPANET is directly interoper-
able with Internet and more acceptable for Internet communities compared with com-
plicated No 7 and 2 signaling protocol based protocol stacks [5].

Various QoS support-mechanisms are defined in PFTS, some of which are embed-
ded in the PFTS switching field of an EPF (Ethernet-like Physical Frame) loaded in
PFT (Physical Frame Timeslot) as shown in Figure 1.

Fig.1. Switching Field of an EPF to loaded in Physical Frame Timeslots

Similar to VPI/VCI in ATM cells, VCII (Virtual Connection Identifier Index) in fig-
ure 1 is a local VC identifier for a virtual connection within a lambda between adjacent
PFTS nodes while an end-to-end path is uniquely identified by concatenated VCIs. Edge
routers in PFTS domain are responsible for assigning a value to the 3-bit priority-field
according to QoS negotiation agreement; while in congestion condition, all nodes in
PFTS domain may discard an EPF with D-bit set. The E-bit is used to signal the end of a
one-way connection and to remind the switch to return resources reserved for the VC to
the system. Two special fields in an EPF need further explanation:

A HFS (Half Step Forward Switching)

Destination IP address in Internet, label in MPLS, and VPI-VCI in ATM networks,
are used to look up the routing/switching tables to find the right output port. Unlike
these techniques, PFTS takes fully the advantage of connection-oriented service by
utilizing information about the output lambda and output port of the next node deter-
mined during QoS negotiation in signaling plane. Therefore, NOPN and NO N fields N fields
carried in an EPF can be used to direct it to the appropriate output queue as soon as it
arrives without looking up the switching table. Looking-up function is left for output
unit to find the new VCII, NOPN, and NO N while the input of an EPF (1530 bytes)
is still in progressing. With the highest lambda data rate of 80 Gbps up to date, the
receiving time for an EPF is 153 ns. Considering that SRAM available with a 333
MHz clock, its access latency can be as low as 6-ns, there should be enough time left
for looking-up. This novel technique is called the Half step Forward Switching (HFS).

D. Xu, H. Zeng, and C. Xu 928

B Bursting Phenomenon and the B-Bit in EPF

Bursting has been observed by long-term network monitoring; moreover, traffic/time
diagrams thus plotted are very similar disregarding variation in sampling durations (in
seconds, milliseconds, or microseconds). This phenomenon has been referred to as
“Self-similar nature” of network traffic [6]. Bursts appear as contiguous packet/frame
sequences, whose integrity is particularly important for time-critical traffic. An output
queues may be piled up with packets/frames when long bursts or simultaneous bursts
from different input ports are instantly directed to the same output lambda. And
worse still, congestion may occur unless excessive frames/packets can be dropped in
time. Packet loss may not important for text transportation since end-to-end retrans-
mission at transport layer can recover, while for time-critical data, especially in high-
speed networks, long time delay for retransmission is intolerable. This is the exact
reason for having a B-bit in an EPF to indicate that at least one more EPF in a burst
follows right away. In a PFTS network, all the EPFs in a burst will be treated as an
integral data sequence with the highest priority therefore no EPF from outside of the
burst is allowed to be inserted into the output bit-stream of a burst. But this imposes a
new problem to be solved as discussed in the following sections.

This paper is devoted to scheduling and dispatching issues in PFTS switching
nodes, where there are multi-priority queues plus burst queues for each lambda.
Analysis shows that existing scheduling algorithms, such as Round Robin (RR) and
Weighted Round Robin (WRR) [7], are not catered for such working environment. A
Borrow-and-Return Weighted Round Robin (BR-WRR) dispatching algorithm is
proposed in this paper to make a trade-off between fairness among data in different
queues and other criteria such as maintaining the integrity of bursts. Results of simu-
lating WRR and emulating BR-WRR are provided in this paper and analysis shows
that BR-WRR can make a better trade-off between fairness and maintaining the integ-
rity of bursts.

2 Weighted Round Robin (WRR)

Round Robin (RR) is the simplest and fair scheduling algorithm by taking out one
packet/frame each time from different queues by turn. However, RR does not con-
sider the priority of the data to be output. An improved algorithm to RR is called
Weighted Round Robin (WRR) [7], with which numbers of packets/frames taken
from a queue in an output cycle is proportional to the priority of the queue. Assuming
that there are four Queues numbered with 1st through 4th respectively; let us assign
Queue1 with the highest priority and 4-frame to be sent out in a scheduling cycle, and
assign Queue4 with the lowest priority hence only one frame can be sent out in the
same cycle. With such an assignment, output order for individual frames can still be
different. For example, we can start from Queue1 and dispatch all the packets within
its quota first in a cycle, and then Queue2, Queue3, and Queue4 subsequently. The
arrangement can ensure that only when all the frames within its cycle quota in a
higher priority queue have been sent out, can frames in the queue of next higher pri-

BR-WRR Scheduling Algorithm in PFTS 929

ority be sent out within its quota. Alternatively, an output cycle can be divided into
multiple sub-cycles.

It should be emphasized that fairness of RR or WRR is valid to CBR (Constant Bit
Rate). In Internet, packets or frames are most likely variable in lengths; it might not
be fair with regard to bits sent out per cycle from different queues. Considering that
output bits per cycle is more or less associated with throughput (one of important QoS
parameters), it would be more meaningful in the context of fixed-length packet
switching, where throughput of a user stream in queue can be quantifiably determined
to some extent with RR or WRR.

Indeed, these scheduling approaches can be used into PFTS, since EPFs are always
1530 bytes in length. However, further complication arises with WRR in handling
bursting phenomenon, which has been observed by long-term traffic monitoring in
different networks [6].

A burst in a queue is treated as a continuous output EPF-sequence without inter-
leaving with EPFs from any other services. One could argue that with PQ (Priority
Queue) scheduling, the continuity of a burst can be ensured. It is true under the condi-
tion that the quota assigned for a given VC during QoS negotiation is enough for
transmit a long burst in PQ, but it is unfair for the lower services; otherwise the time-
slots has to be stolen from other lower queues to ensure the integrity of a burst. To
make the trade-off between fairness and burst integrity, a Borrow & Return WRR
algorithm is introduced.

3 Borrow and Return WRR (BR-WRR)

Since burst queues have the highest priority in output process, bursts for time-critical
streams, such as CBR (Constant Bit Rate) and RT-VBR (Variable Bit Rate)[8] stream
should be transmitted first before EPFs in other queues. However, a VC has an output
quota, i.e. the number of EPFs per second agreed between service users and PFTS
service providers (i.e. intermediate nodes), and its upper limit is EBR (Extended Burst
Rate) [4]. A long burst may easily exhaust its assigned quota for a scheduling cycle. It
is better to borrow timeslots from lower priority queues to maintain its integrity. The
basic idea of BR-WRR is to reduce unfairness caused by such instant timeslot bor-
rowing through a returning mechanism.

A BR-WRR scheduler is best described with event/state/action transition diagram
as shown in figure 2, where:

• States: Representing the status of the scheduler: Idle, WRR-scheduling (WRR-S),
BR-WRR–scheduling (BR-S). WRR-S represents the conventional WRR scheduling
when there is no Burst to be scheduled in Queue1. In BR-S state, all EPFs of a Burst
in Queue1 are transmitted continuously, and during that time it may have to borrow
time-slots from those of lower priority Queues when the time-slots needed exceed the
quota for that VC, and borrowed time-slots should be registered and be returned in
next few cycles. An Idle state is defined for a condition that no EPF is in any queue to

D. Xu, H. Zeng, and C. Xu 930

be sent out and in this state the only thing for a scheduler is to poll all the queues in a
round robin fashion until an EPF arrives at a queue.
• Events: The most important event is the commencement of scheduling a Burst,
which causes re-scheduling in the state of BR-S and the events leading to borrow or
return time-slots are also important events.
• Actions: representing all the process at a given state as response to the event.

Figure 2 illustrates the state transition state transition graph of BR-WRR.

Fig. 2. State transition graph of BR-WRR

There are two important issues in application of BR-WRR: Time to start to borrow
and time to return borrowed timeslots.

Borrowing time-slot is done when the Burst in high priority queue starts to be
scheduled, that is, the high priority Burst queue is polled in WRR and the first frame
of the Burst is at the head of the queue. The frames of the same Burst are dispatched
continuously until the whole Burst is transmitted completely and once one time-slot

E1: the 1st frame of a Burst in Queue1 starts to be scheduled;
E2: the B-bit of current frame is equal to 1, which means that it belongs to the Burst

and is scheduled continuously; and the slots of Queue1 in WRR are used up;
E3: current Burst is scheduled completely and the number of borrowed time slots

exceeds upper threshold;
E4: the number of time-slots borrowed is less than upper threshold;
E5: there exists frame in Queues;
E6: all Queues are empty;
A1: schedule according to traditional WRR;
A2: borrow a time-slot from the lower priority Queues;
A3: return a time-slot to the lower priority Queues

BR-WRR Scheduling Algorithm in PFTS 931

of the lower priority services is borrowed, the variable BT, which means the number
of borrowed time-slots, is increased by 1.

Scheduling starts from conventional WRR in the state “WRR-S” as figure 2 and the
state “BR-S ” is arrived into when high priority Burst starts to be scheduled. Suppos-
ing that Burst starts to be transmitted at Queue1 and the first time-slot used by the
Burst belongs to its own, the variable BT is equal to 0, next time-slot is owned by
Queue 2, which means the Burst borrows one time-slot from Queue 2, and BT is
increased by 1. This is done by action “E2” for several times until the Burst is
transmitted completely. The value of BT is the total number of timeslots borrowed by
the Burst.

It should be noted that Burst can only borrow time-slots from the lower priority
queues in order to provide that higher priority service, such as CBR service, doesn’t
be affected in BR-WRR.

When current Burst is transmitted completely and the number of borrowed time-
slots (identified by variable BT) is larger than the upper threshold (identified by vari-
able UT), borrowed timeslots should be returned, which is the action “E3” done;
During this time, scheduler polls Queue1 (Burst is in Queue 1), the frames in Queue1
don’t be scheduled and polling pointer moves to next in WRR scheduling table, and
the variable BT decreases by 1, which means that Queue1 returns one time-slot. This
is done several times until the value of BT is less than upper threshold of UT, then
BR-WRR comes into the state “WRR-S”. It should be noted that if scheduler polls
Queue1 and it is empty in the state “WRR-S”, Queue 1 is ignored and the value of BT
decreases by 1, which means that lower queues borrow Queue1’s timeslot. Once there
exists a burst in Queue1 being transmitted, Queue1 will take back its loaned timeslots.

The BR-WRR scheduling algorithm can be described as below with a pseudo-
programming language:

<variable definition>
BTi: the number of time-slots borrowed by queue i from lower priority queues
UT: the upper threshold of the number of time-slots borrowed by Burst
Ptr: polling pointer in conventional WRR algorithm
Ptri: the polling pointer of queue i in BR-WRR, which assures the Burst in queue i
can only borrow the time-slots from the lower queues

<algorithm>
Initialization: BTi=0; Ptr points to one timeslot in WRR scheduling table in fig. 2

Borrowing Time-Slots:
if (BTi<UT)
ptri=ptr;
do /*Transmitting frames of the same Burst continuously */
if (ptri>i)
{ send one frame of the Burst in queue i;
BTi__}_/* queue i borrows one time-slot*/
else/*The time-slots of higher priority queue can NOT be borrowed by queue i*/
{ transmitting according to conventional WRR_}
while (B-bit==1)/*until all frames of the Burst are transmitted completely*/

D. Xu, H. Zeng, and C. Xu 932

Returning Time-Slots:
/*it is done after all frame of one Burst are scheduled completely */
if (BTi > UT)
do
{ ptr polls by conventional WRR;
if (ptr polls queue i)
{the frame of queue i does NOT be scheduled;
ptr++;
BTi--; /*Queue i returns one time-slot */
} while (BTi> BT) || _ Ci<BT && Queue i is empty_

4 Simulation and Analysis

In order to simulate the behavior of WRR and that of BR-WRR, and to further make a
comparison between these two scheduling methods, a simulation configuration is
defined as shown in figure 3, which consists of 4 data generators, an EPF classifier, 4
output queues with Queue1 (burst queue) assigned to the highest priority, an EPF-
Scheduler..

Fig. 3. Simulating model

4.1 EPF Generators (EPF-G)

EPF Generators (EPF-G) are simulation-data sources, which will be fed into input
source of individual queues. The EPF Generator Src1 generates class 1 stream which
has both Burst and non-Burst, we make the Src1 generates Burst with a probability,
such as 1/3, and then the probability of nonBurst is 2/3. And the length of Burst be-

BR-WRR Scheduling Algorithm in PFTS 933

longs to uniform distribution. Assuming that bursts appear only in class 1 data
streams, we could concentrate on how to ensure the integrity of bursts in class 1 and
other QoS criteria. Source Src2, Src3 and Src4 generate the non-Bursting data of class
2, class 3 and class 4 separately.

4.2 Average Queue Length of Each Class

Supposing that total generating rate of all classes is equal to the scheduling rate and
generating rate of all classes are equal and the length of all output queues is long
enough to hold all waiting frames. The average numbers of frames in waiting for
different classes of data with WRR and BR-WRR are listed in table 1.

It is considered in conventional WRR that the higher the priority is, the shorter the
average queue is, which is right to non-bursting classes, such as the frames in Queue
2 and Queue 3. Due to the priority of class 2 is higher than that of class 3, the average
queue length of class 2 is shorter than that of class 3. The case will be changed if class
1 has a burst, For example, even that class 1 has the highest priority, its queue length
is longer that of class 2 and class 3. The reason is that once a burst comes into queue
1, several frames have to wait there to be scheduled in conventional WRR even if in
majority time Queue1 is empty. While class 2 has no Burst, only one frame arrives
into the queue each time, so its average queue length is shorter. But Burst frames in
class 1 can be transmitted continuously in BR-WRR, which can reduce the average
queue length in class 1 from 5.5 frames to 2.6 frames which can be seen in table 1.

Table 1. A comparison of average queue length of WRR and BR-WRR

Frame Schedule proce-
dure
Type of class

WRR (Frame)

BR-WRR (Frame)

class 1 5.5 2.6
class 2 2.4 2.9
class 3 3.1 3.4
class 4 8.6 8.8

It should be noted that average queue lengths of other lower priority classes are in-
creased in different degrees in BR-WRR. This is because that Burst of class 1 bor-
rows the timeslots from lower priority classes temporarily, which makes more frames
of lower priority classes wait in their own queues.

4.3 Queue Delay

Figure 4 is the queue delay of 4 different priority classes in conventional WRR. Al-
though class 1 have the highest priority, its waiting time is longer than that of class 2
and class 3, even longer than that of class 4 sometimes because of the Burst service in
class 1. Also it can be seen from figure 4 that the time jitter of class 1 is intense.

D. Xu, H. Zeng, and C. Xu 934

However Figure 5 shows the queuing delay of different priority classes in BR-WRR.
It can be seen that the waiting time for class 1 is shorter than those of other classes,
even though there exist bursts in class 1. And the jitter in class 1 in figure 5 is shorter
than that in figure 4. The reason is that once a burst starts to be forwarded, all frames
in this Burst are done with continuously, so its jitter becomes shorter. It should be
noted that QoS guarantee of Burst in class 1 makes the waiting time in other classes
increase. Table 2 is the average time delay of 4 classes in a PFTS node. It can be seen
that the average waiting time in class 1 reduces by 1.04 millisecond (ms) in BR-WRR,
while the average delays in class 2, class 3 and class 4 increase 0.55, 0.94 and 1.03
millisecond (ms) respectively, which also shows that BR-WRR reduces the waiting
time in class 1 at the cost of increasing the queue time of other classes.

Fig. 4. Queue delay in WRR

Fig. 5. Queue delay in BR-WRR

BR-WRR Scheduling Algorithm in PFTS 935

Table 2. A comparison of average delay of WRR and BR-WRR

5 Conclusion

In PFTS, time-critical streams demand a data transfer service with high throughput
and low latency, and with tolerable jitters. This paper improves the WRR algorithm in
a PFTS environment with a novel concept of “borrow and return”. Simulations show
that BR-WRR makes a better tradeoff between fairness and maintaining integrity of a
burst. Our simulation results have also shown that very long bursts or frequent occur-
rence bursts in class 1 could cause an increase in waiting time for other classes of data
and data losses. Therefore, it is necessary to impose admission control to prevent such
conditions. Through our preliminary simulation, we are convinced that BR-WRR is a
promising technique in improving the traditional WRR, especially in a switching
environment like PFTS nodes.

Acknowledgement

The work presented in this paper has been sponsored by Natural Science Foundation
of China (Project ratification No: 60372065) and Ph.D student Creative Foundation
of Southwest Jiaotong University. The authors would like to acknowledge the finan-
cial support from them.

References

1. Huaxin Zeng, Dengyuan Xu, Jun Dou: On Physical Frame Time-slot Switching over
DWDM, Proceedings of PACAT03, IEEE press, Aug (2003) 535-540

2. Huaxin Zeng, Dengyuan Xu, Jun Dou: Promotion of Physical Frame Timeslot Switching
(PFTS) over DWDM, to be published in: IEC Annual Report of Communications, Vol. 57
(2004).

3. Huaxin Zeng, Jun Dou, Dengyuan Xu: Single physical layer U-plane Architecture (SUPA)
for Next Generation Internet, to be published in: IEC Annual Review of IP Applications
and Services (2004)

4. Zeng Hua-xin, Dou Jun, Wang Hai-ying: On the Single Physical Layer User Plane Architec-
ture Network, Journal of Computer Applications (Chinese) vol. 24. June (2004) 1-5

5. ITU, I.120 – Integrated Services Digital Networks (ISDN)

Frame Schedule procedure
Type of class

WRR (ms)

BR-WRR (ms)

class 1 1.78 0.74
class 2 0.57 1.12
class 3 0.83 1.77
class 4 1.10 2.13

D. Xu, H. Zeng, and C. Xu 936

6. An Ge, et al: On Optical Burst Switching and Self-Similar Traffic, IEEE Communication
Letters, vol. 4. Mar (2000)

7. D. Stiliadis et al.: Weighted round-robin cell multiplexing in a general-purpose ATM switch
chip, IEEE J.Sel. Areas Commun., vol. 9. (1991).

8. "Traffic Management Specification Version 4.0",ATM Forum, Apr (1996)

VIOLIN: Virtual Internetworking on
Overlay Infrastructure

Xuxian Jiang and Dongyan Xu

Purdue University, West Lafayette, IN 47907, USA
{jiangx, dxu}@cs.purdue.edu

Abstract. We propose a novel application-level virtual network archi-
tecture called VIOLIN (Virtual Internetworking on OverLay INfrastruc-
ture). VIOLINs are isolated virtual networks created on top of an overlay
infrastructure (e.g., PlanetLab). Entities in a VIOLIN include virtual
end-hosts, routers, and switches implemented by software and hosted by
physical overlay hosts. Novel features of VIOLIN include: (1) a VIOLIN
is a “virtual world” with its own IP address space. All its computa-
tion and communications are strictly confined within the VIOLIN. (2)
VIOLIN entities can be created, deleted, or migrated on-demand. (3)
Value-added network services not widely deployed in the real Internet
can be provided in a VIOLIN. We have designed and implemented a
prototype of VIOLIN in PlanetLab.

1 Introduction

Current Internet only provides basic network services such as IP unicast. In
recent years, overlay networks have emerged as application-level realization of
value-added network services, such as anycast, multicast, reliable multicast, and
active networking. While highly practical and effective, overlays have the follow-
ing problems: (1) Application functions and network services are often closely
coupled in an overlay, making the development and management of overlays com-
plicated. (2) The development of overlay network services is mainly individual
efforts, leading to few standards and reusable protocols. Meanwhile, advanced
network services [1][2][3][4][5] have been developed but not widely deployed. (3)
It is hard to isolate an overlay from the rest of the Internet, making it easy for
a compromised overlay node to attack other Internet hosts.

In this paper, we propose a novel virtual network architecture called VIOLIN
(Virtual Internetworking on OverLay INfrastructure), motivated by recent ad-
vances in virtual machine technologies [6][7]. The idea is to create virtual isolated
network environments on top of an overlay infrastructure. A VIOLIN1 consists of
virtual routers, LANs, and end-hosts, all being software entities hosted by over-
lay hosts. The key difference between VIOLIN and application-level overlay is

1 With a slight abuse of terms, VIOLIN stands for either the virtual network technique
or one such virtual network.

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 937–946, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

938 X. Jiang and D. Xu

that VIOLIN re-introduces system(OS)-enforced boundary between applications
and network services. As a result, a VIOLIN becomes an “advanced Internet”
running value-added network-level protocols for routing, transport, and manage-
ment.

The novel features of VIOLIN include: (1) Each VIOLIN is a “virtual world”
with its own IP address space. All its computation and communications are
strictly confined within the VIOLIN. (2) All VIOLIN entities are software-based,
leading to high flexibility by allowing on-demand addition/deletion/migration/
configuration. (3) Value-added network services not widely deployed in the real
Internet can be provided in a VIOLIN. (4) Legacy applications can run in a
VIOLIN without modification, while new applications can leverage the advanced
network services provided in VIOLIN.

We expect VIOLIN to be a useful complement to application-level overlays.
First, VIOLIN can be used to create testbeds for network-level experiments.
Such a testbed contains more realistic network entities and topology, and pro-
vides researchers with more convenience in experiment setup and configuration.
Second, VIOLIN can be used to create a service-oriented (virtual) IP network
with advanced network services such as IP multicast and anycast, which will
benefit distributed applications such as video conferencing, on-line community,
and peer selection.

We have designed and implemented a prototype of VIOLIN in PlanetLab.
A number of distributed applications have also been deployed in VIOLIN. The
rest of the paper is organized as follows. Section 2 provides an overview of VI-
OLIN. Section 3 justifies the design of VIOLIN and its benefit to distributed
applications. Section 4 describes the implementation and ongoing research prob-
lems of VIOLIN. Section 5 presents preliminary performance measurements in
PlanetLab. Section 6 compares VIOLIN with related works. Finally, section 7
concludes this paper and outlines our ongoing work.

2 VIOLIN Overview

The concept of VIOLIN is illustrated in Figure 1. The low-level plane is the real
IP network; the mid-level plane is an overlay infrastructure such as PlanetLab;
and the top-level plane shows one VIOLIN created on the overlay infrastructure.
All entities in the VIOLIN are hosted by overlay hosts; and there are three types
of entities like in the real network: end-host, LAN, and router.

– A virtual end-host (vHost) is a virtual machine running in a physical over-
lay host. Meanwhile, it is possible that one physical overlay host supports
multiple vHosts belonging to different VIOLINs.

– A virtual LAN (vLAN) is constructed by creating one virtual switch (vSwitch,
not shown in Figure 1) that connects multiple vHosts.

– A virtual router (vRouter) is also a virtual machine with multiple virtual
NICs (vNICs). A vRouter interconnects two or more vLANs.

VIOLIN: Virtual Internetworking on Overlay Infrastructure 939

v

v

v

v

v

v

Overlay infrastructure

Internet

One VIOLIN

Virtual end−host Virtual router
Overlay host

v

Internet router

v

Fig. 1. VIOLIN, overlay infrastructure, and underlying IP network

planetlab01.cs.washington.edu

planetlab−1.cs.princeton.edu planetlab1.cs.duke.edu

planetlab1.millennium.berkeley.edu

vHost3 vHost4

vHost1 vHost2

192.168.2.2

192.168.1.2

192.168.2.3

192.168.1.3

planetlab2.cs.purdue.edu

planetlab2.cs.duke.edu

vRouter1

vSwitch1

One simple VIOLIN in PlanetLab

192.168.1.1

192.168.2.1

vNIC

vSwitch2

planetlab1.cs.purdue.edu

Fig. 2. A VIOLIN in PlanetLab (with names of physical PlanetLab hosts and virtual
IP addresses)

Figure 2 shows a simple VIOLIN we create in PlanetLab. Two vLANs are
interconnected by one vRouter (vRouter1 hosted by planetlab1.cs.purdue.edu):

One vLAN comprises vHost1, vHost2, and vSwitch1; while the other one com-
prises vHost3, vHost4, and vSwitch2. The links between these entities emulate
cables in the real world. The IP address space of the VIOLIN is completely inde-
pendent. Therefore, it can safely overlap the address space of another VIOLIN
or the real Internet.

940 X. Jiang and D. Xu

3 VIOLIN Design Justification

In this section, we make the case for VIOLIN and describe how applications
(including network experiments) can benefit from VIOLIN.

3.1 Virtualization and Isolation

Analogous with the relation between virtual machine and its host machine, VI-
OLIN involves network virtualization and leads to isolation between a VIO-
LIN and the underlying IP network. Virtualization makes it possible to run
unmodified Internet protocols in VIOLINs. Furthermore, entities in a VIOLIN
are decoupled from the underlying Internet. For example, if we perform tracer-
oute from vHost1 (hosted by planetlab-1.cs.princeton.edu) to vHost3 (hosted by
planetlab01.cs.washington.edu) in Figure 2, we will only see vRouter1 as the
intermediate router and the hop count is two, although the PlanetLab hosts at
Princeton and at UW are many more hops apart in the actual Internet. More
interestingly, it is potentially feasible to repeat such virtualization recursively:
a level-n VIOLIN can be created on a level-(n− 1) VIOLIN, with level-0 being
the real Internet.

Network isolation is with respect to (1) administration: the owner of a VIO-
LIN has full administrator privilege - but only within this VIOLIN; (2) address
space and protocol: the IP address spaces of two VIOLINs can safely overlap
and the versions and implementations of their network protocols can be differ-
ent - for example, one running IPv4 while the other running IPv6; (3) attack
and fault impact: any attack or fault in one VIOLIN will not affect the rest
of the Internet; (4) resources: if the underlying overlay infrastructure provides
QoS support [8][9], VIOLIN will be able to achieve resource isolation for local
resources (such as CPU and memory [10]) of VIOLIN entities and for network
bandwidth between them.

Benefit to Applications. System-level virtualization and isolation provide
a confined and dedicated environment for untrusted distributed applications
and risky network experiments. From another perspective, applications requir-
ing strong confidentiality can use VIOLIN to prevent both internal information
leakage and external attacks.

3.2 System-Enforced Layering

Contrary to application-level overlays, VIOLIN enforces strong layering in or-
der to disentangle application functions and network services. In addition, OS-
enforced layering provides better protections to network services after the
application level software is compromised. We note that layering itself does not
incur more performance overhead compared with application-level overlays. We
also note that layering is between application and network functions, not between
network protocols. In fact, VIOLIN can be used as a testbed for the protocol heap
architecture [11].

Benefit to Applications. Application developers will be able to focus on ap-
plication functions rather than network services, leading to clean design and easy

VIOLIN: Virtual Internetworking on Overlay Infrastructure 941

implementation. In addition, legacy applications can run in a VIOLIN without
modification and re-compilation.

3.3 Network Service Provisioning

VIOLIN provides a new opportunity to deploy and evaluate advanced network
services. There exist a large number of well-designed network protocols that are
not yet widely deployed. Examples include IP multicast, scalable reliable multi-
cast [2][4], IP anycast [3], and active networking [1][5]. There are also protocols
that are still in the initial stage of incremental deployment (e.g., IPv6). VIOLIN
is a platform to make these protocols a (virtual) reality.

Benefit to Applications. VIOLIN allows applications to take full advantage
of value-added network services. For example, in a VIOLIN capable of IP mul-
ticast, applications such as publish-subscribe, layered media broadcast can be
more conveniently developed than in the real Internet. We further envision the
emergence of service-oriented VIOLINs, each with high-performance vRouters
and vSwitches deployed at strategic locations (for example, vRouters close to
Internet routing centers, vSwitches close to domain gateways), so that clients
can connect to the VIOLIN to access its advanced network services.

3.4 Easy Reconfigurability

Based on all-software virtualization techniques, VIOLIN achieves easy reconfig-
urability. Different from a physical network, vRouters, vSwitches, and vHosts
can be added, removed, or migrated dynamically. Also, vNICs can be dynam-
ically added to or removed from vHosts or vRouters; and the number of ports
supported by a vSwitch is no longer a hardware constraint.

Benefit to Applications. The easy reconfigurability and hot vNIC plug-and-
play capability of VIOLIN is especially useful to handle the dynamic load and/or
membership of distributed applications. Not only can a VIOLIN be created/torn
down on-demand for an application, its scale and topology can also be adjusted in
a demand-driven fashion. For example, during a multicast session, a new vLAN
can be dynamically grafted on a vRouter to accommodate more participants.

4 VIOLIN Implementation

4.1 Virtual Machine

All VIOLIN entities are implemented as virtual machines (VMs) in overlay hosts.
We adopt User-Mode Linux (UML) [12] as the VM technology. UML allows most
Linux-based applications to run on top of it without any modification. Based on
ptrace mechanism, UML - the guest OS for a virtual machine, performs system
call redirection and signal handling to emulate a real OS. More specifically, the
guest OS will be notified when an application running in the virtual machine
issues a system call, the guest OS will then redirect the system call into its own
implementation and nullify the original call. One important feature of UML is

942 X. Jiang and D. Xu

that it is completely implemented at user level without requiring host OS kernel
modifications.

Unfortunately, the original UML has a serious limitation: both virtual NICs
and virtual links of virtual machines are restricted within the same physical host.
Inter-host virtual links, which are essential to VIOLIN, have not been reported
in current VM projects [6][7][13]. To break the physical host boundary, we have
performed non-trivial extension to UML and introduced transport-based inter-
host tunneling.

More specifically, we use UDP tunneling in the Internet domain to emulate
the physical layer in the VIOLIN domain. For example, to emulate the physical
link between a vHost and a vSwitch, the guest OS for the vHost opens a UDP
transport connection for the vNIC and obtains a file descriptor - both in the host
OS domain. To receive data from the vSwitch, SIGIO signal will be generated
by the host OS for the file descriptor whenever data are available. The vSwitch
maintains the IP address and UDP port number (in the Internet domain) for
the vNIC of the vHost, so that the vSwitch can correctly emulate data link layer
frame forwarding. Such virtualization is transparent to the network protocol
stack in the guest OS. Finally, inter-host tunneling enables hot plug-and-play of
vNICs (Section 3.4); and it does not exhibit MTU effect as in the EtherIP [14]
and IP-in-IP [15] approaches.

4.2 Virtual Switch

A vSwitch is created for each vLAN and is responsible for packet forwarding at
the (virtual) data link layer. Figure 3 shows a vSwitch which connects multiple
vHosts. vSwitch is emulated by a UDP daemon in the host OS domain. The
poll system call is used to poll the arrival of data and perform data queuing,
forwarding, or dropping. More delicate link characteristics may also be imple-
mented in the UDP daemon. The poll system call also notifies the UDP daemon
of the arrival of a connect request from a new vHost joining the vLAN, so that
a new port can be created for the vHost, as shown in Figure 3.

13

2

vHost vHost vHost

vNICvNICvNIC

port port port Control port

Step 3: Physical connection established

vSwitch

Setp 2: New port created for vHost

Setp 1: Request from a new vHost

Fig. 3. vSwitch and steps of port creation

VIOLIN: Virtual Internetworking on Overlay Infrastructure 943

4.3 Virtual Router

Interestingly, there is no intrinsic difference in implementation between vHost
and vRouter, except that the latter has additional packet forwarding capability
and user level routines for the configuration of packet processing policies. Linux
source tree makes it possible to accommodate versatile and extensible packet
processing capabilities.

When a UML is bootstrapped, a recognizable file system will be located and
mounted as root file system. Based on UML, the vRouter requires kernel-level
support for the capability of packet forwarding, as well as user-level routines,
namely route, iproute2, ifconfig for the configuration of interface addresses and
routing table entries. Beyond the packet forwarding capability, it is also easy to
add firewall, NAT, and other value-added services to the UML kernel. In the
VIOLIN implementation, we adopt the zebra [16] open-source routing package,
which provides a comprehensive suite of routing protocol implementations. Re-
cently, to enable active network services, we have also incorporated Click [17] as
an optional package for vRouters.

5 VIOLIN Performance

We have implemented a VIOLIN prototype and deployed it in PlanetLab. To
evaluate the performance of VM communications in a VIOLIN, we have per-
formed end-to-end throughput and latency measurement between VMs. Figures
4(a) and 4(b) show a set of representative results. Two VMs are hosted by Plan-
etLab nodes planetlab8.lcs.mit.edu and planetlab6.cs.berkeley.edu, respectively.
We measure the TCP throughput and ICMP latency between the VMs, with and
without the vSwitches performing UDP payload encryption. As a comparison,
we also measured the TCP throughput and ICMP latency between the two Plan-
etLab hosts. Our measurement results show that VIOLIN introduces an average
of 5% degradation in TCP throughput, compared with the TCP throughput

(a) TCP throughput (b) ICMP latency

Fig. 4. TCP throughput and ICMP latency between two VMs in VIOLIN

944 X. Jiang and D. Xu

between the two underlying physical hosts. The addition degradation due to
VM traffic encryption is 5% on the average. The degree of ICMP latency degra-
dation (increase) is even less than that of TCP throughput.

To demonstrate VIOLIN’s support for advanced network services, we run
WaveVideo, a legacy video streaming application, in VIOLIN. WaveVideo
requires IP multicast and therefore is not runnable in PlanetLab. However,
WaveVideo is able to execute in a VIOLIN with 9 VMs. The VM hosted by
planetlab2.cs.wisc.edu is the source of the video multicast session. It streams a
short 300-frame video clip using (virtual) IP multicast address 224.0.0.5. The
other 8 VMs are all receivers in three different domains: Princeton, Purdue, and
Duke. The average peak signal noise ratios (PSNR) of video frames observed by
VMs in the three domains are shown in Figure 5.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 80 100 120 140 160 180 200 220 240 260 280

P
S

N
R

 (
db

)

Frame number

Purdue
Princeton

Duke

Fig. 5. Video streaming quality in an IP-multicast-enabled VIOLIN

6 Related Work

VIOLIN is made possible by PlanetLab [18], which itself provides resource vir-
tualization capability called slicing. Netbed [19] is another wide-area testbed
for network and distributed system experiments. Because of its high portability,
VIOLIN can also be deployed in Netbed.

Application-level overlays have achieved significant success in recent years.
For example, RON [20] achieves robust routing and packet forwarding for appli-
cation end-hosts; and the Narada protocol [21] brings high network efficiency to
end system multicast. VIOLIN is proposed as an alternative and complement to
application-level overlays, especially for legacy applications or untrusted appli-
cations that require strong network confinement.

Machine virtualization has recently received tremendous attention. VMware
[13] fully virtualizes the PC hardware, while Denali [7] and Xen [6] take the
paravirtualization approach by creating a virtual machine similar (instead of
identical) to the physical machine. Inspired by machine virtualization, VIOLIN
is our initial effort toward network virtualization.

VIOLIN: Virtual Internetworking on Overlay Infrastructure 945

The X-Bone [15] provides automated deployment and remote monitoring of
overlays, and allows network entities (hosts, routers) to participate in multiple
overlays simultaneously. By taking the two-layer “IP-in-IP” tunneling approach,
X-Bone makes real Internet IPs visible to entities in the overlay domain, leading
to a lower degree of isolation and confinement than VIOLIN.

7 Conclusion and Ongoing Work

We present VIOLIN as a novel alternative and useful complement to application-
level overlays. Based on all-software virtualization techniques, VIOLIN creates
a virtual internetworking environment for the deployment of advanced network
services, with no modifications to the Internet infrastructure. The properties of
isolation, enforced-layering, and easy reconfigurability make VIOLIN an excel-
lent platform for the execution of high-risk network experiments, legacy appli-
cations unaware of overlay APIs, as well as untrusted and potentially malicious
applications. Our ongoing work includes:

– Performance evaluation and comparison. VIOLIN involves virtualization
techniques and is based on the overlay infrastructure. How to evaluate the
performance, resilience, and adaptability of VIOLIN, compared with the real
Internet and with application-level overlays? Especially, to match the perfor-
mance of application-level overlays, how much additional computation and
communication capacity need to be allocated? Our video multicast appli-
cation in VIOLIN demonstrates performance comparable to its counterpart
in an application-level overlay. However, more in-depth evaluation and mea-
surement are needed before these questions can be answered.

– Refinement of network virtualization technique. Our inter-host tunneling im-
plementation is initial and there is plenty of room for refinement and im-
provement. For example, how to improve the reliability of virtual links?
Should we adopt another transport protocol (such as TCP), or integrate
error correction (such as FEC) into UDP, or simply let the transport pro-
tocols in the VIOLIN domain to achieve reliability? To monitor the status
of virtual links, is it possible to leverage the routing underlay [22] for better
Internet friendliness?

– Topology planning and optimization. Our implementation provides mecha-
nisms for dynamic VIOLIN topology setup and adjustment. However, we
have not studied the the problem of VIOLIN topology planning and opti-
mization. More specifically, given the overlay infrastructure, where to place
the vRouters and vSwitches, in order to achieve Internet bandwidth effi-
ciency and satisfactory application performance? How should a VIOLIN re-
act to the dynamics of Internet condition and application workload using its
dynamic reconfigurability (Section 3.4)?

946 X. Jiang and D. Xu

Acknowledgements

We thank the anonymous reviewers for their reviews. This work is supported in
part by the National Science Foundation (NSF) under the grant SCI-0438246.

References

1. Calvert, K., Bhattacharjee, S., Zegura, E., Sterbenz, J.: Directions in Active Net-
works. IEEE Communications Magazine (1998)

2. Kasera, S., Hjalmtysson, G., Towsley, D., Kurose, J.: Scalable Reliable Multicast
Using Multiple Multicast Channels. IEEE/ACM Trans. on Networking (2000)

3. Katabi, D., Wroclawski, J.: A Framework for Scalable Global IP-Anycast (GIA).
Proc. of ACM SIGCOMM 2000 (2000)

4. Liu, C., Estrin, D., Shenker, S., Zhang, L.: Local Error Recovery in SRM: Com-
parison of Two Approaches. IEEE/ACM Trans. on Networking (1998)

5. Wetherall, D., Guttag, J., Tennenhouse, D.: ANTS: Network Services without the
Red Tape. IEEE Computer 32 (1999)

6. Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Pratt, I., Warfield, A.,
Barham, P., Neugebauer, R.: Xen and the Art of Virtualization. Proc. of ACM
SOSP 2003 (2003)

7. Whitaker, A., Shaw, M., Gribble, S.D.: Scale and Performance in the Denali
Isolation Kernel. Proc. of USENIX OSDI 2002 (2002)

8. Stoica, I., Shenker, S., Zhang, H.: Core-Stateless Fair Queueing: a Scalable Ar-
chitecture to Approximate Fair Bandwidth Allocations in High-speed Networks.
IEEE/ACM Trans. on Networking 11 (2003)

9. Subramanian, L., Stoica, I., Balakrishnan, H., Katz, R.: OverQoS: Offering Internet
QoS Using Overlays. Proc. of ACM HotNets-I (2002)

10. Jiang, X., Xu, D.: vBET: a VM-Based Emulation Testbed. Proc. of ACM SIG-
COMM 2003 Workshops (MoMeTools) (2003)

11. Braden, R., Faber, T., Handley, M.: From Protocol Stack to Protocol Heap Role-
Based Architecture. Proc. of ACM HotNets-I (2002)

12. Dike, J.: User Mode Linux. (http://user-mode-linux.sourceforge.net)
13. : VMware. (http://www.vmware.com)
14. Housley, R., Hollenbeck, S.: EtherIP: Tunneling Ethernet Frames in IP Datagrams.

http://www.faqs.org/rfcs/rfc3378.html (2002)
15. Touch, J.: Dynamic Internet Overlay Deployment and Management Using the

X-Bone. Proc. of IEEE ICNP 2000 (2000)
16. Ishiguro, K.: Zebra. (http://www.zebra.org/)
17. Kohler, E., Morris, R., Chen, B., Jannotti, J., Kaashoek, M.F.: The Click Modular

Router. ACM Trans. on Computer Systems (2000)
18. Peterson, L., Anderson, T., Culler, D., Roscoe, T.: A Blueprint for Introducing

Disruptive Technology into the Internet. Proc. of ACM HotNets-I (2002)
19. White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S., Newbold, M., Hi-

bler, M., Barb, C., Joglekar, A.: An Integrated Experimental Environment for
Distributed Systems and Networks. Proc. of USENIX OSDI 2002 (2002)

20. Andersen, D.G., Balakrishnan, H., Kaashoek, M.F., Morris, R.: Resilient Overlay
Networks. Proc. of ACM SOSP 2001 (2001)

21. Chu, Y.H., Rao, S.G., Zhang, H.: A Case For End System Multicast. Proc. of
ACM SIGMETRICS 2000 (2000)

22. Nakao, A., Peterson, L., Bavier, A.: Routing Underlay for Overlay Networks.
Proc. of ACM SIGCOMM 2003 (2003)

 J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 947–951, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Increasing Software-Pipelined Loops
in the Itanium-Like Architecture

Wenlong Li
1
, Haibo Lin

2
, Yu Chen

1
, and Zhizhong Tang

1

1 Department of Computer Science and Technology,Tsinghua University,
100084 Beijing, P.R. China

{liwenlong00, chenyu00}@mails.tsinghua.edu.cn,
tzz-dcs@tsinghua.edu.cn

2 Intel China Research Center, 100080 Beijing, P.R. China
jason.h.lin@intel.com

Abstract. The Itanium architecture (IPF) contains features such as register
rotation to support efficient software pipelining. One of the drawbacks of
software pipelining is its high register requirement, which may lead to failure
when registers provided by architecture are insufficient. This paper evaluates
the register requirements of software-pipelined loops in Itanium architecture
and presents two new methods, which try to reduce static general register
requirements in software pipelined loops by either reducing instructions in the
loop body or allocating unused rotating registers for variants using static
registers. We have implemented our methods in the Open Research Compiler
(ORC) targeted for Itanium processors, and experiments show that number of
software-pipelined loops in NAS Benchmarks increased. For some benchmarks,
the performance is improved by more than 18%.

1 Introduction

The Itanium architecture (IPF) contains many features to enhance parallel execution,
such as an explicit parallelism, large register files, predication, and register rotation
[1] to support efficient software pipelining. Software pipelining [2] tries to improve
the performance of a loop by overlapping the execution of several successive
iterations. This improves the utilization of available hardware resources by increasing
the instruction level parallelism (ILP).

The drawback of aggressive scheduling techniques [3] such as software pipelining
is that they increase register requirements [4]. There have been proposals to perform
register allocation for software-pipelined loops [5]. If the number of registers required
is larger than available ones provide by architecture, actions must be taken.
Introducing spill code [6] or increasing II could reduce register usage. However spill
codes also reduce performance and increase schedule complexity, and increasing II
reduces parallelism exploited from software pipelining; therefore some compilers just
skip software pipelining when available registers are insufficient.

Itanium provides 128 general registers, 128 floating-point registers, and 64
predicate registers. The general registers are partitioned into two subsets. GR0-GR31

W. Li et al. 948

are termed the static general registers. GR32-GR127 are termed the stacked
general registers. The stacked registers are made available to a program by allocating
a register stack frame consisting of a programmable number of local and
output register. The floating-point registers and predicate registers are also partitioned
into two subsets respectively. FR0-FR31 (PR0-PR15) are termed the static floating-
point (predicate) registers. FR32-FR127 (PR16-PR63) are termed the rotating
floating-point (predicate) registers.

2 Register Requirements of Software Pipelining and Software
Pipelining Failure in the Itanium Architecture

We have evaluated the register requirements of all the innermost loops in the NAS
Benchmarks that are suitable for software pipelining in the Itanium architecture.
These loops have been obtained with the ORC compiler. A total of 372 software-
pipelinable loops have been used.

Fig. 1 shows the cumulative distribution of the requirements for static general
registers for all 372 software pipelinable loops in NAS benchmarks. There are three
type of variants requiring static general registers. Dedicated variants require special
general registers, such as global pointer (gp), memory stack pointer (sp). Loop
invariants are repeatedly used by a loop in each iteration. Base post-increment
variants perform both a read and a write in one single operation1. Notice that 4 or 5
static general registers are occupied by architecture for special purpose; therefore only
27-28 out of 32 are available for software pipelining. 6.2% of the loops require such
many static general registers, and these loops will fail in software pipelining phase.

0%

20%

40%

60%

80%

100%

0 10 20 30 40
Number of static registers

%
 o

f l
oo

ps

dedicated variant
loop invariant
base post-increment variant
static

Fig. 1. Cumulative distribution of variants requiring static general registers. Each point (x,y) of
the graph represents the percentage y of loops having less than x registers

We also estimated the cumulative distribution of rotating general registers.
Experiments shows that 95% of the loop can be scheduled with 40 registers and all
loops can be scheduled with 64 registers. This is much less than the maximum
number of 96, which Itanium provides. In general, it is indicated that software

1 For example, in memory operation “ld4 r1=[r2],4”, r2 is read and then added by 4.

Increasing Software-Pipelined Loops in the Itanium-Like Architecture 949

pipelining fails mainly due to insufficient static general registers in the Itanium
architecture.

3 Register Sensitive Unrolling (RSU)

Theorem 1. Assume loop L has Nd dedicated variants, Ni loop invariants, and Nb base
post-increment variants, then after unrolling L by K times, the number of static
registers required by unrolled loop L´ is less than or equal to Nd + Ni + K*Nb.

Proof. The number of dedicated variants (Nd) and loop invariants (Ni) doesn’t change
however the loop body is unrolling. Only the number of base post-increment variants,
which hold the value of memory address that ld/st instruction refers, increases linearly
with the degree of unrolling. After redundant load/store elimination, the number of
base post-increment variants in unrolled loop body will be less than or equal to K*Nb.
Given that 1 variable requires 1 static register, the number of static registers required
by L´ is less than or equal to Nd + Ni + K*Nb.

Register Sensitive Unrolling (RSU) is a new unrolling heuristic considering non-
rotating register pressure based on above theorem. Generally speaking, the number of
dedicated variants and loop invariants will not increase with loop unrolling, while the
number of base post-increment variants often increases linearly with unrolling degree.
RSU firstly computes a maximal unrolling degree (Kmax) allowable for software
pipelining according to the number of base post-increment variants, then takes the
minimum between Kmax and original unrolling degree Kold as new unrolling degree Knew.
The detailed formulations are given below:

−−
=∞+

=
otherwise

N

NNN

 N if

K

b

ida

b

max

0

 (1)

()
=

=
otherwise KKmin

K if K
K

maxold

maxold
new ,

0
 (2)

Na, Nd, Ni and Nb above refer to the number of available static general registers, the
number of dedicated variants, the number of loop invariants, and the number of base
post-increment variants, respectively.

4 Variable Type Conversion (VTC)

As illustrated in section 2, rotating registers in Itanium are sufficient for software
pipelining and base post-increment variants use most of the static general registers.
Here we propose VTC method to convert base post-increment variant to loop variant
which is allocated on available rotating registers, and thus reduce static general
register pressure.

For the base post-increment variant in instruction ld4 r1=[r2],4, we convert
this instruction to ld4 r1=[r2] and adds r2=r2,4, which perform the same
task of original ld4 r1=[r2],4. For the two instructions, variant r2 is a loop
variable and then could be allocated a rotating register instead of a static register.

W. Li et al. 950

VTC just converts base post-increment variant to loop variant through splitting
instruction with the form of REG1=OPCODE [REG2], Imm into two instructions
REG1=OPCODE[REG2] and ADDS REG2=REG2, Imm or REG1=OPCODE
[REG2], REG3 into REG1=OPCODE[REG2] and ADD REG2=REG2,REG3
instructions, respectively. In Itanium processor, OPCODE could be ld, st, lfetch,
and their relative variants. The number of base post-increment variants to be
converted to loop variants is determined as follows:

Num_Convert = Nd + Ni + Nb - Na where Na, Nd, Ni and Nb above refer to the number
of available static general registers, the number of dedicated variants, the number of
loop invariants, and the number of base post-increment variants, respectively.

5 Experimental Results

We have implemented RSU and VTC methods in ORC [7] for Itanium. In this
section, we compare the results of applying these two techniques and the original
implementation in ORC in the NAS benchmarks. The benchmarks were compiled at
the –O3 optimization level without profile feedback and Inter-Procedural Analysis
(IPA). The measurements were performed on an HP workstation i20000 equipped
with single 733MHz Itanium processor running Redhat Linux 7.2.

0.8

0.9

1.0

1.1

1.2

BT CG EP FT IS LU MG SP AV

NAS benchmarks

Sp
ee

du
p

RSU

VTC

Fig. 2. Performance of RSU and VTC

Fig. 2 shows the percentage improvements of the two methods. RSU provides an
overall 2% gain and a peak 19.7% gain in measured performance for all of NAS
Benchmarks. VTC shows an overall of 2.6% and a peak 13.7% performance
improvement. This result is rather exciting because only 6.2% of loops are optimized.

Note that RSU degrades the performance of FT by 2.3%. Detailed observation
shows that only one more loop is software-pipelined after changing unrolling degree
from 8 to 7. When performing loop scheduling, the scheduling length is 17 cycles, so
each iteration is completed in 17/8=2.125 cycles on average. When performing
software pipelining, the kernel contains only 1 stage, and II is 15 cycles. As a result,
each iteration is completed in 15/7=2.143 cycles on average. Taking into account the
prolog and epilog overhead, the performance of software pipelining is even worse
than that of loop scheduling. In such case, software pipelining should be skipped.

Increasing Software-Pipelined Loops in the Itanium-Like Architecture 951

6 Conclusions

In this paper we have evaluated the static and rotating register requirements of
software-pipelined loops in NAS Benchmarks on Itanium architecture. We also
showed that some loops with high static general register requirements fail in software
pipelining phase. Then we proposed two new methods for increasing software-
pipelined loops on Itanium architecture. One of them reduces the number of
instructions in a loop body by limiting the degree of unrolling. The other tries to
convert base post-increment variants which occupy static general registers to loop
variants. The experimental results that we have obtained with our methods show
significant improvements in the execution time of NAS Benchmarks over existing
techniques for software pipelining loops.

Acknowledgements

Comments from colleagues at Intel China Research Center (ICRC) and University of
Delaware improve the presentation of the paper. We deeply appreciate their support
and encouragement.

References

1. Dehnert J. C., Hsu P. Y., Bratt J. P.: Overlapped Loop Support in the Cydra 5. Proceedings
of ASPLOS'89. (1989) 26-38

2. Allan V. H., Jones R. B., Lee R. M., Allan S. J.: Software Pipelining. ACM Computing
Surveys. 27 (1995) 367-432

3. Huff R. A.: Lifetime-sensitive modulo scheduling. Proceedings of PLDI'93. (1993) 58-267
4. Llosa J.: Reducing the Impact of Register Pressure on Software Pipelining. PhD thesis.

Universitat Politècnica de Catalunya (1996)
5. Rau B. R., Lee M., Tirumalai P., Schlansker P.: Register allocation for software pipelined

loops. Proceedings of PLDI'92. (1992) 283-299
6. Llosa J, Valero M, Ayguadé E: Heuristics for register-constrained software pipelining. In

Proceedings of the MICRO-29 (1996). 250-261
7. Ju R, Sun C, Wu C Y: Open Research Compiler for Itanium Processor Family(IPF). In

Proceedings of MICRO-34 (2001)

 J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 952–964, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A Space-Efficient On-Chip Compressed Cache
Organization for High Performance Computing*

Keun Soo Yima, Jang-Soo Leeb, Jihong Kima, Shin-Dug Kimc, and Kern Koha

a School of Computer Science and Engineering, Seoul National University, Seoul, Korea
b IBM Poughkeepsie, NY, USA

c Department of Computer Science, Yonsei University, Seoul, Korea
{ksyim, kernkoh}@oslab.snu.ac.kr, jangsoo@us.ibm.com,

jihong@davinci.snu.ac.kr, sdkim@cs.yonsei.ac.kr

Abstract. In order to alleviate the ever-increasing processor-memory perform-
ance gap of high-end parallel computers, on-chip compressed caches have been
developed that can reduce the cache miss count and off-chip memory traffic by
storing and transferring cache lines in a compressed form. However, we ob-
served that their performance gain is often limited due to their use of the
coarse-grained compressed cache line management which incurs internally
fragmented space. In this paper, we present the fine-grained compressed cache
line management which addresses the fragmentation problem, while avoiding
an increase in the metadata size such as tag field and VM page table. Based on
the SimpleScalar simulator with the SPEC benchmark suite, we show that over
an existing compressed cache system the proposed cache organization can
reduce the memory traffic by 15%, as it delivers compressed cache lines in a
fine-grained way, and the cache miss count by 23%, as it stores up to three
compressed cache lines in a physical cache line.

Keywords: Parallel processing, processor-memory performance gap, on-chip
compressed cache, fine-grained management, internal fragmentation problem.

1 Introduction

As the performance gap between processor and memory has increased by 28-48%
every year, the memory system performance typically dominates the whole computer
system performance [1]. In order to improve the memory performance, high-end
computers are based on large size on-chip caches with a high off-chip memory band-
width. Although these are effective in improving the memory performance, they are
restricted by physical device limits such as the on-chip area and off-chip pin count.

On-chip compressed cache is an alternative approach of improving the memory
performance. Compressed caches, e.g. SCMS [2] and CC [3], store and transfer some
cache lines in a compressed form, thereby, reducing both the on-chip cache miss
count and off-chip memory traffic without having to face the physical limits. The
existing compressed caches manage variable-size compressed cache lines in a coarse-
grained manner. Specifically, as exemplified in Figure 1, if a cache line can be com-

* “This research was supported by University IT Research center project in korea”.

A Space-Efficient On-Chip Compressed Cache Organization 953

pressed to less than half of the original size, they treat the cache line size as half of the
original size, thereby, incurring internally unused space, namely internal
fragmentation. Otherwise, they do not handle the cache line in a compressed form.
Thus, at most two compressed cache lines can be stored in a physical cache line, and
only 1 bit is required to specify the status of a physical cache line whether it embeds
two compressed lines or one uncompressed line.

However, their performance gain is often limited by this coarse-grained manage-
ment. Figure 2 shows a cumulative compression rate distribution of L2 data cache
lines on an Alpha machine simulator using the SPEC CPU2000 benchmark suite [7]
where the compression rate is defined as the ratio of the compressed data size and the
original data size. It shows that over 60% of cache lines are compressed to less than
25% of the original cache line size. This high compression efficiency, mainly due to
the frequent value locality [4], strongly suggests that the coarse-grained management
is overly conservative.

In order to fully exploit this high compression efficiency, in this paper we present
the Fine-grained Compressed Memory System (FCMS) based on the four key tech-
niques. First, the FCMS manages compressed cache lines in a fine-grained manner so
that it reduces the fragmented space. This implies that the FCMS is more effective in
reducing the off-chip memory traffic than the existing compressed caches. Second,
based on this fine-grained management, the FCMS stores up to 3 compressed cache
lines in a physical cache line in order to further reduce the cache miss count. Unfor-
tunately, this fine-grained management can bring out a large size of metadata. Third,
we thus present two additional techniques that limit an increase in the size of both on-
chip cache tag address and VM page table without diminishing the obtained perform-
ance gain. Fourth, we firstly apply the cooperative parallel decompression technique
[5] to on-chip compressed caches in order to reduce the decompression time without
harming the compression efficiency significantly.

In order to evaluate the effectiveness of the FCMS, we modified the SimpleScalar
[6] simulator and used the SPEC benchmarks. The experimental results show that the
FCMS reduces the average execution time by 5% and 12% over the SCMS and a
conventional cache system, respectively. In particular, the FCMS reduces the on-chip
L2 cache miss count by 23% and 25% and the off-chip memory traffic by 15% and
46% over the SCMS and the conventional system, respectively, in an average case.

25
%

Compress

Store

Line Size

Uncompressed
Cache Line

Compressed
Cache Line

Internal
Fragmentation

75%

Store

25
%

Compress

Line Size

Managed in a
Compessed Form

Managed in an
Uncompessed Form

Reserved
for Future Use

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
compression rate

cu
m

ul
at

iv
e

di
st

rib
ut

io
n

MAX
AVG
MIN

Fig. 1. The existing coarse-grained com-
pressed cache line management

Fig. 2. A cumulative compression rate distri-
bution of on-chip L2 data cache lines

K.S. Yim et al.

954

The rest of this paper is organized as follows. In Section 2, we provide the organi-
zation of the FCMS. The experimental methodology is described in Section 3, while
the evaluation results are given in Section 4. We review the related work in Section 5
and conclude this paper with a summary and a future work in Section 6.

2 Fine-Grained Compressed Memory System (FCMS)

Figure 3 illustrates the overall cache and memory organization of the FCMS, in which
both the on-chip unified L2 cache and the main memory are managed in a com-
pressed form. When a data memory page is firstly loaded into the main memory, all
L2 cache lines in the page are individually compressed using a hardware compressor.
We use the X-RL compression algorithm [8] because of some of its desirable proper-
ties, such as the high compression efficiency with small size data and fast
(de)compression speed of at least four bytes per cycle. If a compressed cache line
stored in the memory is accessed, the off-chip memory bandwidth can be expanded as
the line is transferred to the on-chip cache in a compressed form. Moreover, as the
line is stored in the on-chip L2 cache in a compressed form, the effective L2 cache
capacity is also expanded.

While the line is stored in the L2 cache, the line is concurrently decompressed on
the fly using a hardware decompressor in order to deliver the required L1 cache line
to the L1 cache. As the remaining L1 cache lines in the decompressed L2 cache line
have a high probability of accessing in the near future due to spatial locality, the de-
compressed L2 line is stored in a decompression buffer which can be accessed in one
cycle. The decompression buffer consists of a small fully-associative cache (8 entries
[2]) and is managed in the same way as the victim cache does [9]. In this paper, we
assume that the decompression buffer can be concurrently accessed with the L1
caches for the fair performance evaluation with the conventional cache systems.

In the FCMS, only data cache lines are managed in a compressed form. As in-
struction cache lines result in the lower compression efficiency while incurring the
larger decompression overhead, the overall cache and memory system performance
can be degraded if they are managed in a compressed form. Fortunately, as instruc-
tion cache lines are not generally modified at runtime, several off-line code compac-
tion techniques [10] can be used for instruction cache lines for better performance.

2.1 Fine-Grained Compressed Cache Line Management

The size of compressed cache lines is various. In order to efficiently manage the vari-
able size data, on-chip compressed caches are typically based on a fixed-size alloca-
tion method [11]. In this paper, the fixed unit of managing the compressed cache line
is called as cache bucket, and the cache bucket unit (CBU) is defined as the ratio of
the cache bucket size and the original cache line size. The fixed-size allocation uses
several consequent cache buckets for a variable size data. Thus, the last cache bucket
can incur internal fragmentation, and the average fragmentation size is equal to half
of the cache bucket size.

A Space-Efficient On-Chip Compressed Cache Organization 955

We can notate 1/2 as CBU of the coarse-grained management of the SCMS and
the CC. As the CC is targeting for embedded processors, we only use the SCMS as a
compressed cache which uses the coarse-grained management scheme. This implies
that due to the internal fragmentation the coarse-grained management wastes about
25% of compressed cache space in an average case. In order to reduce the fragmented
space, we use the fine-grained compressed cache line management in the FCMS.
Thus, the variable-size compressed cache lines can be stored in a more fitting cache
bucket while reducing the internal fragmentation. Figure 4 visualizes the fraction of
internal fragmentation as a function of the compression rate where CBU of the FCMS
is assumed to be 1/16. In the figure, white area means the compressed data size, red
areas mean the internally fragmented space for both the FCMS and the SCMS, blue
areas mean the saved space for the FCMS and the fragmented space for the SCMS,
and gray area means the saved space for both the FCMS and the SCMS. Thus, the
amount of internal fragmentation space can be greatly reduced in the FCMS.

from/to compressed main memory

from/to CPU

L1 Data Cache
(Uncompressed)

Decompression
Buffer (DB)

L1 Write
Buffer

Parallel
Decompressor

Parallel
Compressor

Unified L2 Cache
(Compressed)

MUX

MUX

L1 Inst. Cache
(Uncompressed)

Storage Space100
%

0%

Saved Space

Compression
Rate

100%
12.5%

25%
37.5%

50%
62.5%

75%
87.5%

Compressed Data

Internal
Fragmentation

SCMS: Internal
 Fragmentation
FCMS: Saved Space

Fig. 3. Overall cache and memory hierarchy
organization of the FCMS

Fig. 4. Space efficiency of the fine-grained
management of the FCMS (CBU=1/16)

In the SCMS, cache lines whose compression rate is higher than or equal to 50%
do not provide any space-efficiency although they are managed in a compressed form
because of the internal fragmentation. On the other hand, in the FCMS, cache lines
that have high compression rate of up to (CBU-1-1)/CBU-1 % (93.75% if CBU is 1/16)
can provide performance benefits. However, the provided benefits of the inefficiently
compressed lines are quite small, while the compressed lines bring out the decom-
pression overhead. Thus, we use the selective compression technique [2] where a
cache line is managed in a compressed form only if its compression rate is less than a
specified threshold value (THRD). If the threshold value is set to be a lower value,
both the performance benefit and the decompression overhead are reduced because
only small fraction of cache lines are compressed. Otherwise if the value is set to be a
higher one, conversely both the benefit and the overhead are increased.

K.S. Yim et al.

956

In the FCMS, maximum CBU-1 (16 if CBU = 1/16) numbers of compressed cache
lines can be stored in a physical cache line when all the compressed cache lines can
be stored in a bucket whose size is CBU. Actually, in order to do this, the FCMS has
to use CBU-1 numbers of tag addresses, valid bits, and dirty bits per every physical
cache line. However, this requires a large overhead in terms of on-chip area and en-
ergy consumption, while typically only a part of the CBU-1 tag addresses is used. Thus,
the number of tag address (NTAG) is another design parameter of the FCMS. In addi-
tion, we use LRU as the replacement algorithm of compressed cache lines stored in a
physical cache line.

2.2 Metadata Size Reduction Techniques

The fine-grained management at the same time requires a large amount of metadata,
lgCBU-1 bits (e.g. 4 bits if CBU is 1/16), to specify the number of cache buckets used
for a compressed cache line, while the coarse-grained management where CBU is 1/2
requires only 1 bit for a cache line. When the L2 cache line size is 128 bytes and the
memory page size is 4 kilobytes, the fine-grained management requires 4096/128*
lgCBU-1 bits (e.g. 128 bits if CBU is 1/16) of metadata per every memory page. This
metadata size required by the FCMS is relatively large as compared with the VM
page table entry size of about 32 bits.

In order to reduce this metadata size without lowering the granularity of managing
compressed cache lines, we use a metadata grouping technique. Specifically, we ob-
served that the number of cache buckets used for all compressed cache lines in an
identical memory page is quite similar to each other because the cache lines have
relatively similar compression rate mainly due to the spatial locality of data. There-
fore, in the FCMS, we only store the maximum number of all cache buckets used for
all cache lines in a same memory page as the metadata. Then, the metadata size of the
FCMS is only lgCBU-1 bits (4 bits if CBU is 1/16) per memory page. In this paper, we
assume that this small size of metadata can be embedded in the VM page table entry,
which typically has some unused bits.

Moreover, if the physical memory capacity is 256 megabytes and cache line size
is 128 bytes, the size of tag addresses for a cache line in the compressed cache is
NTAG*lg(256M/128) bits (63 bits if NTAG is 3). In order to reduce this tag field size,
we use a segmented addressing technique. Specifically, a tag address is divided into a
tag segment and a tag offset, and all compressed cache lines stored a physical cache
line should have an identical tag segment. With this technique, if the tag offset size is
TOFF bits, the tag field size per a cache line is only lg(256M/128) – TOFF + NTAG *
TOFF bits (36 bits if TOFF is 7 bits and NTAG is 3), while that for a conventional
cache is lg(256M/128) = 21 bits. As the FCMS aims to an L2 unified cache where the
cache line size is between 512 bits and 2048 bits, we believe that the additional bits
used for tag fields in the FCMS are acceptable design overhead.

2.3 FCMS-Based Direct-Mapped Cache Organization

Figure 5 shows the compressed L2 cache organization of the FCMS in a direct-
mapped scheme. The same organization technique applies for set-associative caches.

A Space-Efficient On-Chip Compressed Cache Organization 957

In this organization, the tag address count (NTAG) is 3, the tag offset size (TOFF) is 4
bits, and the cache bucket unit (CBU) is 1/16. Thus, the tag RAM has three valid bits,
three dirty bits, a tag-segment address, and three tag-offset addresses per every cache
line, and the data RAM is divided into 16 cache buckets.

When a request is generated, the tag segment and the 3 tag offsets of the re-
quested cache set are concurrently compared with that of the generated address.
The results are analyzed by using three OR-gates and an AND-gate so as to deter-
mine the hit or miss. Because only three gates are additionally used in the critical
path of the FCMS as indicated by the bold lines in Figure 5, we assume that the
FCMS-based compressed caches do not cause any additional delay as regarded in
the access time. Moreover, we can use a three-input OR-gate instead of the three
two-input OR-gates to decide the hit or miss, and this reduces the gate delay as
regarded in the access time.

1st compressed line
2nd compressed line
3rd compressed line

address from CPU

Uncompressed Line

Tag Index Offset

Tag RAM Data RAM

Hit

(4 bits)

(16 cache buckets)

Parallel
Decompressor

Left Shifter

0000

=
D

ecoder

Data (128 Bytes)

==

000110

.

.
.
.

011111

DV location

100101

001111
01110101

01011000
10101110

11110101
0000

1010
1000

1100
1010

0100
1000

1000

tag seg. tag offset
1011

0100
0000

1001
1011

0101
0000

1001
0000

1010
0000

1010

=

MUX

Fig. 5. A fine-grained compressed cache architecture in direct-mapped scheme

We use lgCBU-1 = 4 bits to encode the location of a compressed cache line stored
in the data RAM. Since the location of the first compressed cache line is always fixed
as 0, we use only 8 bits for the location field. The location information is used as an
input of the MUX logic, which selects an appropriate one and routes to the left shifter
and parallel decompressor logic. The size of the requested compressed cache line is
concurrently calculated by subtracting the two adjacent location values.

For example, if the second compressed cache line whose tag area is marked by
gray color is accessed, a cache hit occurs and the location data of 0100(2) = 4 is
routed to the left shifter logic, which performs a left shift operation for 4 cache

K.S. Yim et al.

958

buckets. Also its size is calculated by subtracting its location value from the loca-
tion value of the third one. The result is 1010(2) – 0100(2) = 6 cache buckets. Then,
the selected cache buckets are routed to the cooperative parallel decompressor
logic. Finally, they are delivered to a decompression buffer and an L1 cache in an
uncompressed form.

In on-chip compressed caches, the decompression time can seriously degrade
the effectiveness of the data compression technique. For example, the X-RL
decompressor takes up to 3+LS/4 cycles for decompressing a cache line, whose size
is LS bytes. This means that a smaller compression unit size results in the shorter
decompression time. However, it simultaneously incurs the lower compression
efficiency. Fortunately, the cooperative parallel decompressor [5] can reduce the
decompression time by about 75% while it slightly degrades the compression effi-
ciency. Thus, we use the parallel (de)compressor in the FCMS and evaluate the
performance impact.

3 Experimental Methodology

In cache and memory compression systems, the size of both compressed cache lines
and memory pages is liable to change after performing a write operation. As a result,
the access time of the compressed cache and memory is not fixed but it depends on
runtime status. However, it is difficult to reflect this kind of runtime behaviors in
trace-driven simulations due to their use of static trace data. Moreover, trace-driven
simulations generally do not provide essential operations of superscalar micro-
processors such as out-of-order execution, which is used to adaptively cope with this
variable memory access time. Thus, we implemented FCMS and SCMS based on an
execution-driven simulator of SimpleScalar 3.0 [6]. We mainly modified the on-chip
cache, memory bus, and virtual memory modules of the simulator and newly supplied
the compression and decompression modules.

Specifically, we used Alpha instruction set architecture, which accurately reflects
the high-performance processor architecture. We used sim-outorder to quantitatively
evaluate the performance of cache and memory systems. Table 1 describes the base-
line model used in our experiments. The model follows an aggressive 8-issue out-of-
order processor. The cache configuration parameters for the base line model are as-
sumed to be two 32 kilobytes L1 caches and a unified 256 kilobytes L2 cache with
four-way associativity and 128 bytes cache line size. We referenced an accurate cache
timing model of CACTI for calculating the access time of on-chip caches [12].

We used the SPEC CPU2000 benchmark suite [7] with reference input workload.
The benchmark suite is compiled by using the Compaq Alpha compiler with SPEC
peak settings. The virtual memory image of this benchmark suite is captured after full
execution by using sim-safe. For the sim-outorder simulations, we used a fast for-
warding technique [13] where 1.5 billion instructions are accurately executed after a
coarse-grain simulation of 0.5 billion instructions so as to reduce the simulation time
without notably compromising the simulation accuracy.

A Space-Efficient On-Chip Compressed Cache Organization 959

Table 1. Base line model

Parameter Value

Processor Core
2.4 GHz (6 x 400 MHz), 0.13 Micron, Alpha ISA,
8 fetch/issue/decode/commit, 128-RUU, 128-LSQ.

Branch Predictor Bimodal 2K, 512-entry 4-way BTB, 8-entry RAS.
TLB (Inst. / Data) 16 / 32 entry, 4KB page size, 4-way, LRU, 72 cycle latency.

L1 Cache (Inst. / Data) Each 32KB, 1-way, 32B block, LRU, 1 cycle latency, write-back.
L2 Cache (Unified) 256KB, 4-way, 128B blocks, LRU, 7 cycle latency, write-back.

Main Memory 72 cycle latency, 8 bytes bandwidth, 400 MHz bus clock.

4 Performance Evaluations

In this section, we evaluate the performance of the FCMS over a conventional cache
system (CS), a conventional system with a decompression buffer (CSDB), and the
SCMS. In CSDB, the decompression buffer is only used for prefetching the L2 cache
lines to L1 caches.

First, as shown in Figure 6, we measured the average memory cycles spent to
transfer a data cache line where the memory latency is excluded. Because L2 cache
line size is 128 bytes and memory bus bandwidth is 8 bytes, both CS and CSDB re-
quire 8 memory bus cycles to deliver a cache line. On the other hand, in both SCMS
and FCMS, the required bus cycles are significantly reduced as they deliver data
cache lines in a compressed form. Although they use the same compression algorithm

0

2

4

6

8

10

12

14

16

gzip vpr gcc m cf crafty parser eon perlbm k gap vortex bzip2 twolf AVG

CS CSDB SCM S(CBU=1/2) FCM S(CBU=1/4)
FCM S(CBU=1/8) FCM S(CBU=1/16) FCM S(CBU=1/32)

Fig. 6. Average memory bus cycles elapsed to deliver a data cache line

and the same compression threshold value (50%), the FCMS with a finer-grained
cache bucket size uses the smaller memory bus cycles. This is because the fact that
the fine-grained management more accurately specifies the actual size of compressed
cache lines, thereby, reducing the internal fragmentation. As this tendency is stabi-
lized when CBU is larger than 1/16, we set 1/16 as CBU of the FCMS. The FCMS

K.S. Yim et al.

960

where CBU is 1/16 requires about 8.7 memory bus cycles, while the SCMS requires
about 10.2 cycles in an average case. This means that the FCMS reduce the amount of
memory traffic by 15% and 46% as compared with the SCMS and CS, respectively.

Second, we measured the miss count of the on-chip unified L2 cache as shown
in Figure 7. The miss count of CSDB is slightly higher than that of CS because its
decompression buffer filters several L2 cache accesses and consequently disturbs
the reference history of the L2 cache, incurring inefficient cache replacements. The
miss count of the SCMS is reduced by about 2% as compared with both CS and
CSDB in an average case. This is because in the SCMS two compressed cache lines
whose tag addresses are same except for the least significant bit can be stored in a
physical cache line. Thus, even cache lines are sufficiently compressed as shown

Fig. 7. Normalized miss count of an on-chip unified L2 cache

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

gzip vpr gcc m cf crafty parser eon perlbm k gap vortex bzip2 twolf AVG

CS CSDB SCM S(TOFF=1) FCM S(TOFF=1)

FCM S(TOFF=3) FCM S(TOFF=5) FCM S(TOFF=7) FCM S(TOFF=9)

Fig. 8. Normalized miss count of the FCMS as a function of TOFF value

A Space-Efficient On-Chip Compressed Cache Organization 961

in Figure 6, the probability of storing two compressed lines in a physical cache line is
quite low. On the other hand, in the FCMS the miss count is reduced by 22%, 25%,
25%, and 26% when the NTAG value is 2, 3, 4, and 5, respectively. Thus, we set the
NTAG to be 3 in the FCMS. For benchmarks gzip, eon, gap, and bzip2, the miss count
is slightly reduced in both the SCMS and the FCMS because their workload sizes are
relatively small, thereby, even if a twice large size cache is used the miss count is
seldom reduced.

Third, we measured the cache miss count of the FCMS by changing the TOFF
value as shown in Figure 8. In the FCMS, the miss count is reduced by 2%, 7%,
18%, 21%, and 23% when the TOFF value is 1, 3, 5, 7, and 9, respectively, in an
average case as compared with CS and CSDB. The miss count is stabilized when
the TOFF value is larger than 7 because the accessed cache lines have strong spa-
tial locality, and the address space covered by the tag-offset and cache line size,
27x128 = 16 kilobytes, is sufficient to cope this locality. Thus, we set the TOFF of
the FCMS to be 7.

Fourth, we evaluated the average memory access time (AMAT) in order to ana-
lyze the decompression overhead of the FCMS and the SCMS. We calculated the
code AMAT of these two systems in a similar way of calculating AMAT of CS and
CSDB [1]. On the other hand, Eq. 1 is used to calculate the data AMAT of the FCMS
and the SCMS. In the formula, A, M, C, and DO mean the access time, miss rate,
fraction of compressed lines, and decompression cycles respectively, while the small
symbols of L1, DB, L2, and MM mean the L1 data cache, decompression buffer, uni-
fied L2 cache, and main memory, respectively.

()+

++
++=

avgMMMMMML

avgLLL

DBDBLLData DOCAM

DOCA
MAMAAMAT

;2

;222

11 (1)

Based on this, we measured the data AMAT as shown in Figure 9. It shows that
the FCMS reduces the data AMAT by 29%, 14%, 16%, and 8% in an average case
as compared with CS, CSDB, SCMS, and the SCMS with the cooperative parallel
decompressor (SCMS-Parallel). Due to the use of parallel decompressor, the de-
compression overheads (L2_DO and MM_DO) are significantly reduced in both the
SCMS-Parallel and the FCMS. We used the early restarting technique, which pro-
vides the ability of accessing the critical word as early as possible without waiting
for the complete decompression of the whole cache line, and the decompression
time overlapping technique, which overlaps the transfer time of a compressed
cache line from the main memory and its decompression time, in order to lessen
DOL2 and DOMM, respectively. We observed that most of the decompression times
are absorbed by the decompression buffer in both the FCMS and the SCMS since
the hit ratio of the decompression buffer in the FCMS is over 40% in an average
case. We also observed that the FCMS reduces the code AMAT by about 1% as
compared with CS, CSDB, the SCMS, and the SCMS-Parallel as it reduces the miss
count of the unified L2 cache.

K.S. Yim et al.

962

0
1
2
3
4
5
6
7
8
9
10
11
12

A B C D E A B C D E A B C D E A B C D E A B C D E A B C D E A B C D E A B C D E A B C D E A B C D E A B C D E A B C D E A B C D E

gzip vpr gcc m cf crafty parser eon perlbm k gap vortex bzip2 twolf AVG

L1_AT D B_AT L2_AT L2_D O M _AT M _TT M _DO

Fig. 9. Average data memory access time (Data AMAT)
* DB: decompression buffer; MM: main memory; AT: access time; DO: decompression
overhead; TT: transfer time. (A: CS; B: CSDB; C: SCMS; D: SCMS-Parallel, E: FCMS)

Fifth, we measured the instructions per cycle (IPC) as shown in Figure 10. The
average IPC is 1.62, 1.65, 1.72, 1.74, and 1.82 in CS, CSDB, the SCMS, the SCMS-
Parallel, and the FCMS, respectively. This implies that the execution time of the
FCMS is reduced by 12%, 10%, 6%, and 5% in an average case as compared with CS,
CSDB, the SCMS, and the SCMS-Parallel, respectively. In this experiment, the com-
pression threshold of the FCMS is set to be 50%, which is identical configuration to
that of the SCMS. If the compression threshold is set to be a higher value, both the
performance gain and the decompression overhead are increased. Because of this, we
observed that in the FCMS, IPC is slightly influenced by the compression threshold
value, and it is maximized when the threshold value is set to be 50%.

Furthermore, when we use 93.75% (=15/16) as the threshold value, IPC of the
FCMS is only reduced by less than 1% in an average case. Since a higher threshold
value means that a large amount of cache lines is managed in a compressed form and

0

0.5

1

1.5

2

2.5

3

gzip vpr gcc m cf crafty parser eon perlbm k gap vortex bzip2 twolf AVG

CS CSDB SCM S SCM S-Parallel FCM S

Fig. 10. Instructions per cycle (IPC)

A Space-Efficient On-Chip Compressed Cache Organization 963

the fine-grained management of the FCMS significantly reduces the fragmented space
over the coarse-grained management of the SCMS, the FCMS has a higher potential
of expanding the effective main memory capacity than the SCMS. Therefore, we
believe that the real improvement in the execution time obtained with the FCMS will
be much greater than that we presented in this paper.

5 Related Work

Over the past ten years, several research groups have been studied the on-chip
cache and main memory compression systems in order to alleviate the performance
gap between processor, memory, and hard disk [14] as well as reduce the energy
consumption of memory systems [15] in high-end parallel computers. The existing
on-chip compressed caches are typically based on the coarse-grained compressed
cache line management because of its simplicity [2, 3]. Although as shown in this
paper the coarse-grained management is overly conservative, so far as we know,
none has been developed a compressed cache system in this perspective of manag-
ing compressed cache lines in a fine-grained manner and storing up to three com-
pressed cache lines in a physical cache line with the appropriate metadata reduction
techniques.

6 Conclusion

Recently on-chip compressed caches have been developed to alleviate the proces-
sor-memory performance gap in high-end parallel computers. However, we have
observed that the performance gain of the existing compressed caches is often lim-
ited mainly due to the high compression efficiency of on-chip cache lines. In order
to fully exploit the high compression efficiency, in this paper we have presented a
novel on-chip compressed cache system based on the four key techniques. First, the
proposed system manages the compressed cache lines in a fine-grained manner so
that it reduces the fragmented space and consequently reduces the memory traffic
over the existing compressed cache systems. Second, based on this, the proposed
cache stores up to three compressed cache lines in a physical cache line, thereby,
reducing the cache miss count over the existing systems. Third, in order to avoid an
increase in the metadata size, the proposed system uses two novel metadata reduc-
tion techniques. Fourth, we firstly have applied a parallel (de)compressor to the on-
chip cache systems and have shown the performance impact of using this. The
execution-driven simulation results have shown that the FCMS reduces the average
execution time by 5% and 12% over the an existing compressed cache system and a
conventional cache system, respectively. In particular, the FCMS reduces the on-
chip L2 cache miss count by 23% and 25% and the off-chip memory traffic by 15%
and 46% over the compressed system and the conventional system, respectively, in
an average case.

K.S. Yim et al.

964

References

1. J. L. Hennessy, D. A. Patterson, and D. Goldberg, Computer Architecture – A Quantitative
Approach, 3rd Ed., Morgan Kaufmann Publishers, 2002.

2. J. S. Lee, W. K. Hong, and S. D. Kim, “Design and Evaluation of On-Chip Cache Com-
pression Technology,” In Proceedings of the IEEE International Conference on Computer
Design, pp. 184–191, 1999.

3. J. Yang, Y. Zhang, and R. Gupta, “Frequent Value Compression in Data Caches,” In Pro-
ceedings of ACM/IEEE International Symposium on Microarchitecture, pp. 258–265, 2000.

4. Y. Zhang, J. Yang, and R. Gupta, “Frequent Value Locality and Value-centric Data Cache
Design,” In Proceedings of the ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, 2000.

5. P. A. Franaszek, J. Robinson, and J. Thomas, “Parallel Compression with Cooperative
Dictionary Construction,” In Proceedings of the IEEE Data Compression Conference, pp.
200–209, 1996.

6. T. Austin, E. Larson, and D. Ernst, “SimpleScalar: an Infrastructure for Computer System
Modeling,” IEEE Computer, Vol. 35, Issue 2, pp. 59–67, 2002.

7. J. L. Henning, “SPEC CPU2000: Measuring CPU Performance in the New Millennium,”
IEEE Computer, Vol. 33, Issue 7, pp. 28–35, 2000.

8. M. Kjelso, M. Gooch, and S. Jones, “Design and Performance of a Main Memory Hard-
ware Data Compressor,” In Proceedings of the 22nd EuroMicro Conference, IEEE
Computer Society Press, pp. 422–430, 1996.

9. N. P. Jouppi, “Improving Direct-Mapped Cache Performance by the Addition of a Small
Fully Associative Cache and Prefetch Buffers,” In Proceedings of the ACM/IEEE Interna-
tional Symposium on Computer Architecture, pp. 364–373, 1990.

10. A. Beszedes, R. Ferenc, T. Gyimothy, A. Dolenc, and K. Karsisto, "Survey of Code-Size
Reduction Methods," ACM Computing Surveys, Vol. 35, No. 3, pp. 223–267, 2003.

11. A. Silberschatz, P.B. Galvin, and G. Gagne, Operating System Concepts, 6th Ed., pp.
285–287, John Wiley & Sons Inc., 2003.

12. P. Shivakumar and N. P. Jouppi, “CACTI 3.0: An Integrated Cache Timing, Power, and
Area Model,” Compaq Computer Corporation Western Research Laboratory, Research
Report 2001/2, 2001.

13. I. Gomez, L. Pifiuel, M. Prieto, and F. Tirado, “Analysis of Simulation-adapted Bench-
marks SPEC 2000,” ACM Computer Architecture News, Vol. 30 , No. 4, pp. 4–10, 2002.

14. K. S. Yim, J. Kim, and K. Koh, “Performance Analysis of On-Chip Cache and Main
Memory Compression Systems for High-End Parallel Computers,” In Proceedings of the
International Conference on Parallel and Distributed Processing Techniques and Appli-
cations, pp. 469–475, 2004.

15. L. Benini, D. Bruni, A. Macii, and E. Macii, “Hardware-Assisted Data Compression for
Energy Minimization in Systems with Embedded Processors,” In Processing of the IEEE
Design, Automation and Test in Europe Conference and Exhibition, pp. 449–453, 2002.

 J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 965–974, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A Real Time MPEG-4 Parallel Encoder on Software
Distributed Shared Memory Systems

Yung-Chang Chiu1, Ce-Kuen Shieh1, Jing-Xin Wang2,
Alvin Wen-Yu Su2, and Tyng-Yeu Liang3

1 Department of Electrical Engineering National Cheng Kung University,
 Tainan, Taiwan, R.O.C.

{qson, shieh}@hpds.ee.ncku.edu.tw
2 Department of Computer Science and Information Engineering, National Cheng Kung

University, Tainan, Taiwan, R.O.C.
m8902005@chu.edu.tw, alvinsu@mail.ncku.edu.tw

3 Department of Electrical Engineering, National Kaohsiung University of Applied Sciences,
Kaohsiung, Taiwan, R.O.C.

lty@hpds.ee.ncku.edu.tw

Abstract. This paper is dedicated to developing a real-time MEPG-4 parallel
encoder on software distributed shared memory systems. Basically, the
performance of a MPEG-4 parallel encoder implemented on distributed systems
is mainly determined by the latency of data synchronization and disk I/O, and
the cost of data computation. For reducing the impact of data synchronization
latency, we invent a pipeline algorithm to minimize the number of data
synchronization points necessary for video encoding. In addition, we employ a
master-slave node structure to overlay computation and I/O in order for
alleviating the impact of I/O latency. On the other hand, we propose a two-level
partitioning method to minimize the cost of data computation, and overlap the
encoding times of two different GOVs. We have implemented the proposed
MPEG-4 encoder on a test bed called Teamster. The experimental results show
the proposed MPEG-4 encoder has successfully met the requirement of real
time through the support of previous techniques via 32 SMP machines, which
are equipped with dual 1.5 GHz Itanium II processors per node and connected
by Gigabit Ethernet.

1 Introduction

Since the amount of video data is huge, it needs a large storage device. Therefore, we
must compress the huge video data to reduce the size of video data before we store
them into storage device. At present, the proposed standards of video encoding are
MPEG-1, MPEG-2[1] and MPEG-4[2]. Compared to MPEG-1 and MPEG-2, MPEG-
4 can support lower bitrate, error-correction and rate control. Consequently, MPEG-4
recently becomes the most popular standard of video encoding. However, the
algorithm of MPEG-4 is so complex such that it needs huge data computation for
encoding video data. Although the technology of microprocessors has been greatly
improved, it is still impossible for one PC and workstation to encode video in real
time by using MPEG-4 algorithm. Therefore, how to effectively minimize the
encoding time is an important problem for applying the MPEG-4 specification.

Y.-C. Chiu et al. 966

For resolving this problem, one possible solution is to develop a parallel MPEG-4
encoder via software technology. There are two common methods to implement a
software MPEG-4 parallel encoder. One is to implement the MPEG-4 encoder on
shared memory multiprocessors by multithreading and another is to implement the
MPEG-4 encoder on a cluster of computers by multi-processes. In general, shared
memory multiprocessors are more expensive than PCs or workstations clusters, and
the processor number of shared memory multiprocessors machines is bound to the
contention of system bus. Therefore, computer clusters are better for implementing
parallel MPEG-4 encoders than shared memory multiprocessors machines based on
economics and scalability.

On the other hand, the proposed programming interfaces of cluster computing
mainly are classified into message passing such as MPI [3] and shared memory such
as DSM [4]. MPI is a library specification for message passing, which is proposed as
a standard by a broadly based committee of vendors, implementers, and users. When
users write their programs with the MPI interface, they must explicitly uses
send/receive primitives in the programs for data communication between processes
executed on different nodes. In other words, they need to control data distribution and
inter-node communication by themselves. Contrast to MPI, distributed shared
memory (DSM) is a run time system to emulate a virtual shared memory over a
computer network. With the support of DSM systems, users can use shared variables
instead of message passing to develop their programs on computer clusters. When a
DSM application is executed on a computer cluster, the cluster nodes can
communicate with each other though reading/writing shared variables. The DSM
systems will automatically maintain the data consistency of shared variables.
Consequently, users can put their attention on the development of program algorithm
but data communication. Therefore, DSM systems provide an easier programming
interface for users to develop applications on computer clusters than MPI.

According to the previous discussion, we devote ourselves to developing a real
time MPEG-4 parallel encoder on DSM systems in this paper. To accomplish the goal
of real time, i.e., encoding 30 frames per second, the proposed encoder uses a pipeline
algorithm for encoding video frame in parallel. With this algorithm, the proposed
encoder can effectively minimize the number of data synchronization happening in
video encoding such that the communication cost of video encoding can be hugely
minimized. In addition, the proposed encoder exploits a two-level data partition
method to minimize the cost of data computation, and overlap the encoding times of
different video frames. Moreover, it employs a master-and-slave node architecture to
overlap disk I/O and computation in order for alleviating the impact of disk I/O
latency. We have implemented the proposed MPEG-4 encoder on a test bed called
Teamster[5] and have evaluated the performance of the proposed MPEG-4 encoder on
a Linux-IA64 cluster which consists of thirty-two Intel SMP machines that are
equipped with two Itanium II 1.5GHz processors per node and are connected with
Gigabit Ethernet. The experimental results show that the proposed MPEG-4 parallel
encoder has successfully accomplished the goal of real time.

The rest of this paper is organized as follow: Section 2 discusses the related work
and Section 3 presents the proposed parallel encoder. Section 4 discusses our
experimental results. Finally, Section 5 gives the conclusions of this paper and our
future work.

A Real Time MPEG-4 Parallel Encoder 967

2 Related Works

Several software MPEG-4 parallel encoders have been proposed in [6][7][8]. In the
study [6], the authors proposed a scheduling policy to achieve load balance via buffer
synchronization. Since their work is carried on shared memory multiprocessors, they
did not consider the communication cost of video encoding. Therefore, their proposed
encoder is not suitable to be implemented on distributed systems. In the paper[7], the
authors proposed a dynamic shape-adaptive data partitioning strategy in the spatial
domain. They used the information of alpha plane to get the statistical distribution of
the contour and standard macroblocks. With the statistical distribution, the data
partition method of their proposed encoder can redefine the rectangular sub-alpha
plane to avoid the unnecessary computation and achieve load balance. However, this
partition method cannot make MPEG-4 encoders accomplish the goal of real time
when the size of images is large, i.e., 640x480, and the requirement of frame rate is
high, i.e., 30 frames per second. In the paper [8], the authors proposed a GOV-based
data partitioning method. The concept of this partition method is to partition video
sequence into a set of GOVs(Group Of Video object planes) and then assign different
GOVs onto different nodes for parallel execution. In addition, they proposed four
scheduling approaches: round robin, adapted batch size round robin, dynamic
scheduling, and adapted batch size dynamic scheduling. These scheduling approaches
are used for reducing the idle time of CPUs when video data are transferred over
network. However, their proposed encoder also cannot achieve the goal of real time as
the previous encoder. Compared to the previous work, the MPEG-4 parallel encoder
proposed in this paper can achieve the goal of encoding 30 frames per second even
when the resolution of image is 640x480. In addition, most of the past work was
implemented with MPI while this work is carried out with DSM.

3 Proposed Parallel Encoder

To accomplish the goal of real time, it is necessary to minimize the encoding time of
video frames as possible as we can. The MPRG-4 parallel encoder proposed in this
paper employs a pipeline-based algorithm, a two-level data partition method and a
master-and-slave node architecture to minimize the cost of data synchronization, the
cost of data computation and the impact of disk I/O latency. These technological
details of the proposed parallel encoder are described in the following subsections.

3.1 Pipeline-Based Algorithm

In DSM systems, the communication cost of maintaining data consistency is
dependent on the adopted consistency protocol. According to the release consistency
protocol [9], processors have to propagate their updates to shared data for maintaining
data consistency only when their local threads arrive at synchronization points such as
locks or barriers. Since the process of maintaining data consistency is time consuming
and processors keep idle during update-data propagation, it is necessary to minimize
the number of synchronization points in the MPEG-4 algorithm in order to minimize
the execution cost of data encoding.

Y.-C. Chiu et al. 968

Basically, the algorithm of the MPEG-4 sequential encoder can be divided into
two phases. One is the intra-frame (I frame) phase and the other is the inter-frame (P
frame) phase. In intra-fram, the first step is Loading Video Object Plane (LVOP) that
is used to load the data of VOPs (Video Object Planes) from disk to shared memory.
Then, the motion estimation (ME) is performed on the current block to find the best
matched block within the search window in the previous frame; the block size can be
either 16x16 or 8x8. The motion vector is the displacement between the current and
the best matched block from the previous frame. Motion compensation (MC) is used
to predict the error values between the previous reconstructed frame by motion
vectors and the current encoded frame. Discrete Cosine Transform (DCT), which
deals with the intra and residual data after motion compensation of VOPs. The DCT is
performed on each macroblock. The DC and AC coefficients, generated by DCT, are
then quantized by MPEG quantization method. For I-VOP and P-VOP, the intra DC
and AC coefficients can be predicted from the corresponding coefficients in the
previous neighboring blocks to get the differential DC/AC values. The process of
predicted DC/AC is called as ACDC prediction (ACDCP). As same as ACDCP, the
motion vector can be predicted from the respect to the neighboring three motion
vectors to get the differential motion vector values. After using a scanning method,
the quantized transform coefficients are further coded by variable length coding
(VLC).

A common method to implement a MPEG-4 parallel encoder is to use a master-
slave programming model. In other words, there is a master thread and a set of slave
threads created in the program. The master thread is responsible for loading video
frames from disk and storing the encoding results into disk. In addition, the master
thread has to propagate the video frames to slave threads for parallel encoding and
collect the encoding results from the slave threads. By contrast, the main job of slave
threads is responsible for data computation in each encoding step except for LVOP
and I/O. However, due to the data dependency between the steps of the encoding
process, it is necessary to insert three barriers into the algorithms of above mention in
order for data synchronization. After inserting the three barriers, the algorithms are
transferred to be Figure 1 and Figure 2, respectively. The first barrier is located
between LVOP and DCT. This is because each slave thread has to receive
macroblocks generated by the master thread in the step of LVOP. The second barrier
is located between Quantization and ACDCP since each slave thread need to reference
the macroblocks generated by the other slave threads in the step of Quantization to
perform ACDCP. The third barrier is located below the step of VLC since the master
thread has to collect the VLC results from all of the slave threads and then stores the
VLC results into disk. As same as Figure 1, the first barrier in Figure 2 is located
between LVOP and ME. This is because the operation of ME needs macroblocks
generated in the two steps of LVOP and RVOP (Reconstruct VOP) in order for
predicting motion vector. The second barrier is located before the step of ACDCP if
macroblocks are in intra-mode or is located before the step of MVP(Motion Vector
Prediction) if macroblocks are in inter-mode. This is because ACDCP and MVP need
the result of Quantization and ME, respectively. The third barrier is located between
VLC and I/O. The reason of adding this barrier is as same as that for the third barrier
in Figure 1. Figure 3 is an example of encoding a video sequence. In this example, the
process of encoding four frames needs 12 barriers. In other words, the MPEG-4
parallel encoder needs 3N barriers for encoding N frame. To minimize the cost of

A Real Time MPEG-4 Parallel Encoder 969

maintaining data consistency, we invent a pipeline-based algorithm to reduce the
number of barriers necessary for encoding video frames in this paper. The flow of the
pipeline-based algorithm is shown in Figure 4. The horizontal axis is the number of
barriers in the process of video encoding, and the vertical axle is the identifier number
of video frames. In this figure, the first frame is I-frame. The second and third frames
are P-frame. The fourth frame is the I-frame. Between B1 (Barrier 1) and B2, all of
working threads perform the DCT of the first frame, i.e., I-frame, and the I/O thread
execute the LVOP of the second frame, i.e., P-frame. Between B2 and B3, the threads
perform the ACDCP of the first frame and the ME of the second frame. Between B3
and B4, the threads execute the I/O of the first frame, the ACDCP of the second frame
or the MVP of the second frame, and the ME of the third frame. After B3, the threads
will complete the process of encoding the first frame, and they will finish the
encoding of a frame by an interval of barriers. Consequently, the MPEG-4 parallel
encoder needs N+2 barriers for encoding N frame when the pipeline algorithm is
adopted. Compared to the previous algorithm, the number of the minimized barriers is
theoretically 2N-2.

Fig. 1. Intra-frame flowchart with barriers

Fig. 2. Inter-frame flowchart with barriers

Fig. 3. Flow of video encoding with a common parallel algorithm

Fig. 4. Flow of video encoding with the pipeline-based algorithm

Y.-C. Chiu et al. 970

3.2 Two-Level Data Partition

The video sequence of the MPEG-4 simple profile is composed of a set of GOVs. A
GOV is composed of a I-VOP and a set of P-VOPs which follows to the I-VOP. The
number of VOPs in a GOV is typically 15. Most of the proposed MPEG-4 parallel
encoders usually partition the pending data of the problem into GOVs and distribute
different GOVs to different nodes since there is no data dependency between GOVs
and this way can make it easy to write programs. Different to the past work, the
proposed MPEG-4 parallel encoder employs a two-level partition method which not
only partitions GOVs into different clusters but also partition VOPs into the nodes of
each cluster. It is obvious that this two-level partition method is better for load
balance and parallelism than the previous method since the problem is partitioned into
finer granularity. Therefore, our partition method is effective for minimizing the cost
of data computation and overlap the encoding times of different frames.

3.3 Master and Slave Node Architecture

Common node architecture to execute parallel programs is peer-to-peer. In this
architecture, all of the processors participate in data computation. Therefore, the
computation power of all of the processors can be exploited completely. However,
this architecture is not suitable for executing the MPEG-4 parallel encoder. Generally
speaking, the process of video encoding is decomposed of three phases: loading VOP,
encoding VOP and storing encoding result. These three phases will be repeated
from the first VOP of a video sequence to the last VOP. In peer-to-peer node
architecture, the execution sequence of processors in encoding VOPs is shown in
Figure 5. When the master thread of the MPEG-4 parallel encoder is executed on
node 0, the other nodes will keep idle as node 0 loads a VOP from disk (I/O) and
propagate the VOP, called propagation delay (DP), to them. After the phase of loading
VOP, all of the nodes share the workload of encoding the loaded VOP, called
data computation (DC) in Figure 5. After all of the execution nodes cooperatively
finish the job of encoding the loaded VOP, node 0 collects the encoding results from
all of the nodes and stores the results into disk while the other nodes keep idle again
during the phase of storing the encoding results. Since the data amount of a video
sequence is very huge, node 0 must spend much time on reading/writing data from/to
disk and propagating data among processors. Consequently, the performance of the
proposed MPEG-4 encoder will be bound to the latency of I/O operation and data
propagation. In order to resolve this problem, the proposed MPEG-4 encoder employs
a master-and-slave node architecture as shown in Figure 6 to overlap the time of data
computation and the time of disk I/O and data propagation. In this architecture, the
master thread is located on an individual node called master node and the slave
threads are even distributed onto the other nodes called slave nodes. When the slave
nodes are busy in encoding the current VOP, the master node stores the encoding
result of the previous VOP into disk, loads the next VOP from disk and propagates the
VOP to the slave nodes. As a result, the times of disk I/O and data communication can
be effectively overlapped with the time of data computation in the master-and-slave
node architecture. Although the computation power of master node is wasted,
overlapping I/O and computation contributes more to the performance of the MPEG-4
encoder than making use of the computation power of master node in data
computation according to our current experience from performance evaluation.

A Real Time MPEG-4 Parallel Encoder 971

Fig. 5. The execution sequence of processors in peer-to-peer node architecture

Fig. 6. The execution sequence of processors in master-and-slave node architecture

4 Performance

The proposed parallel encoder has been implemented on a DSM system called
Teamster, which is built on a cluster of Intel SMP machines, which run Red Hat Linux
Enterprise Advance Server V2.1 and are connected with Gigabit Ethernet. There were
thirty-two SMP computers used in this performance evaluation, and each computer
has dual Itanium II 1.5GHz processors and 1,064 Gbytes memory. We only use a
video sequence in this performance evaluation since the complexity of data
computation is dependent to the length but the content of video sequence according to
the definition of proposed MPEG-4 simple profile. The size of VOP in our
experiments is 640x480. Since the motion estimation is time-consumed, we not only
executed the work of motion estimation in parallel but also adopt a three-steps search
algorithm [10] to improve data computation of motion estimation and keep a visual
quality close to that of the full search.

4.1 The Impact of Applying the Pipeline-Based Algorithm

Figure 7 shows the encoding rate for using different algorithms on IA-64 cluster. The
horizontal axel is the number of executing nodes, i.e., n, and the number of processors
on each executing node, i.e., p. In this experiment, each processor is assigned with a
single thread for execution. The vertical axel is the frame rate of encoding. In Figure 7,
3B indicates the algorithm needing three barriers for compressing a VOP, and 1B
indicates the algorithm applying a programming model of pipeline and then needing
only a barrier for encoding a VOP. Since the number of synchronization points of the
3B algorithm is more than that of 1B, the performance of 3B is worse than that of the
1B algorithm. Therefore, the more barrier needs the encoding algorithm, the more
cost spends this algorithm in joining all the slave threads at the same barriers. In
addition, the larger is the thread number, the more is the cost. The experimental result
shows that the performance of the 1B algorithm but the performance of the 3B
algorithm is obviously improved by using 15 nodes for data compressing. The
performance of the 1B algorithm is better than that of the 3B algorithm about 18%
when 15 nodes are used.

Y.-C. Chiu et al. 972

4.2 The Impact of Applying the Master-and-Slave Node Architecture

Table 1 shows the system parameters. The cost of I/O is composed of loading a VOP,
propagating VOP data, and storing the result of video encoding. Since the page size of
IA-64 cluster is 8192 bytes and the size of a VOP is 640*480, the parallel encoder
need to allocate 58 data pages for storing the VOP data. Consequently, the worst case
occurs when the content of the current VOP is different from the previous VOP. In the
worst case, the cost of propagating the data of a VOP is 51ms, i.e., 58*0.88ms. Since
the cost of the VOP propagation is lager than the cost of loading a VOP and storing
the result of video encoding, these two costs can be neglected. Table 2 shows the ratio
of execution time to propagation cost when the pipeline-based algorithm is applied.
The data-propagation cost of a VOP is increased while the execution time of encoding
VOP is reduced when the more nodes is used for data encoding. In Figure 7, when the
more than 8 nodes are used for video encoding, the latency of propagating VOPs is
lager than the time of computation. Therefore, the performance is bound to the data-
propagation cost of VOPs. When the master-and-slave node architecture is adopted,
the I/O operations included loading VOPs, storing the encoding results of VOPs, and
propagating VOPs, can be effectively overlapped with data computation. In Figure 7,
the MS indicates the master-and-slave node architecture. Compared with the
performance of 1B, the performance of the 1B+MS can be improved about 58% in the
case of 15 nodes. This experimental results show that overlapping I/O and
computation is very important for enhancing the performance of a MPEG-4 parallel
encoder on distributed systems, and applying the master-and-slave node architecture
can effectively overlap I/O and computation such that the performance of the
proposed MPEG-4 parallel encoder can be obviously improved.

Table 1. System parameters

Page size Propagation a page Load a VOP Store 4K bytes
8192 0.88 (ms) 0.1 (ms) 0.01 (ms)

Table 2. The ratio of execution time to propagation cost with pipeline-based algorithm

 n=2 n=4 n=8 n=15
Propagation cost per VOP(ms) 25 38 44 47
Execution time per VOP (ms) 205 128 90 82
Ratio (%) 12% 29% 48% 57%

4.3 The Impact of Applying the Two-Level Partition Method

In the Figure 7, 2LP indicates the two-level partition method. Since the video
sequence can be partitioned into several independent GOVs, different GOVs can be
concurrently processed on different clusters. In the experiment, we use two clusters
and each cluster is composed of 15 nodes for encoding GOVs. The experimental
result shows that the performance of the 1SP+MS+2LP is two times that of 1SP+MS
in the cases of the number of nodes is smaller than 8. However, the impact of the two-

A Real Time MPEG-4 Parallel Encoder 973

level partition method is degraded as the node number of each cluster is larger than 8.
The reason is that the bitstream center has to collect the results of data compressing
from each cluster and store the results into disk such that it becomes a bottleneck of
system performance. Compared to the 1SP+MS, the performance of the
1SP+MS+2LP is better about 56%.

0

5

10

15

20

25

30

35

 p=1 p=2 p=2 p=2 p=2 p=2

n=1 n=2 n=4 n=8 n=15

1B+MS+2LP
1B+MS
1B
3B

Fig. 7. Encoding rate on IA-64 cluster

5 Conclusions and Future Work

We have successfully developed a real time MEPG-4 parallel encoder on a DSM
system in this paper. To meet of the time constrain of a real time encoder, we reduce
the number of barriers necessary for encoding VOPs by applying a pipeline-based
algorithm in programming. In addition, we apply the master-and-slave node
architecture to overlap I/O and computation. In order to further improve the
performance of the encoder, we also propose a two-level partitioning method to
increase the parallelism of data computation and overlap the time of encoding
different GOVs. The experimental results show that the impact of minimizing the
number of barriers and overlapping computation and I/O is significant for improving
the performance of the MPEP-4 parallel encoder, and the two-level partition method
can effectively increase the frame rate of the proposed MPEG-4 encoder.

Recently, a new video encoding specification called H.264 is proposed. This
specification is to support a higher encoding rate than MEPG-4. However, the
algorithm of H.264 encoder is much more complex than MPEG-4. Therefore, we will
challenge in developing a real time H.264 parallel encoder in the future. In addition,
we will develop a parallel algorithm to retrieve objects from video sequence, and
individually encoding these objects in parallel in order to increase the encoding rate of
the proposed MPEG-4 parallel encoder.

Acknowledgements

The authors are grateful to the support received from the NCHC cluster of computers.
The web site is http://www.nchc.org.tw/.

Y.-C. Chiu et al. 974

References

1. ISO/IEC IS 13818 (1996) Information Technology-Generic Coding of Moving Pictures
and Associated Audio Information. (MPEG-2).

2. ISO/IEC (1999) MPEG-4 Overview –(Melbourne Version). JTC1/SC29/WG11 N2995,
Oct.

3. Peter S. Pacheco (1997) Parallel Programming with MPI. Morgan Kaufmann Publishers,
Inc, San Francisco, California.

4. Protic, J., Tomasevic M. and Milutinovic V. (1995) A survey of distributed shared
memory systems. 28th Hawaii International Conference on IEEE System Sciences ,vol:
1 , pp:74 - 84 vol. 1

5. J. B. Chang and C. K. Shieh (2001) Teamster: A Transparent Distributed Shared Memory
for Clustered Symmetric Multiprocessors. 1st IEEE/ACM International Symposium on
Cluster Computing and the Grid 2001, pp.508-513

6. Hamosfakidis, A.; Paker, Y.; Cosmas, J. (1998) A study of concurrency in MPEG-4
video encoder. Proceedings. IEEE International Conference on Multimedia Computing
and Systems, pp:204 – 207

7. Yong He; Ahmad, T.; Liou, M.L. (1998) MPEG-4 based interactive video using
parallel processing. IEEE International Conference on Parallel Processing, pp:329 – 336

8. Miguel Ribeiro, Oliver Sinnen, Leonel Sousa (2002) MPEG-4 Natural Video Parallel
Implementation on a Cluster. Image and Video Coding, RECPAD2002, pp:3

9. Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Philip ibbons, Anoop Gupta, and
John Hennessy (1990) Memory Consistency and Event Ordering in Scaleable Shared-
Memory Multiprocessors. 17th Annual International Symposium on Computer Architecture,
pp: 15-26.

10. T. Koga, K. Iinurna, A. Hirano, Y. Iijima, and T. Ishiguro (1981) Motion-compensated
interframe coding for video conferencing. NTC'81 (IEEE), Orleans, LA, pp. C9.6.1-9.6.5.

 J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 975–984, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A Case of SCMP with TLS

Jianzhuang Lu, Chunyuan Zhang, Zhiying Wang, Yun Cheng, and Dan Wu

School of Computer,
National University of Defense Technology,

Changsha, Hunan, China, 410073
lujz1977@163.com

Abstract. As an alternative way of chip design, Single Chip Multi-Processors
(SCMP) has been a hot topic in microprocessor architecture research all the
while. It achieves higher performance by extracting thread-level parallelism
(TLP). Thread-level speculation (TLS) is an important way to simplify TLP
extraction. This paper presents a new SCMP architecture called Griffon, which
aims at general-purpose applications. It implements thread partition in assembly
language. It supports thread-level speculation with simple logics and maintains
data dependence using a dual-ring structure. Simulation and synthesis results
show that Griffon can achieve ideal speedup, less design complexity and
accessorial hardware cost.

1 Introduction

The advancement of semiconductor processing helps us obtain more space when
designing a chip. To achieve more parallelism, conventional processors have
sought to extract ILP in superscalar or VLIW architectures. But all of these
techniques are preferable in a single thread. The parallelism in a single thread is
limited for an acceptable cost. The cost manifests in aspects of the die area, the
complexity in design and verification, the time of time-to-market and the time of
compiling, etc. [1][2]

Alternative ways have been explored, and we take SCMP as an example. It uses
relatively simple cores to exploit moderate parallelism in a thread, while executing
multiple threads in parallel across multiple processor cores [1]. Several projects have
been investigated on the research of SCMP architecture and several products are
developed with this architecture. All of them can be classified into two categories.
The first is throughout-focus [3]-[6]. Multiple threads running on these systems may
come from different processes. Most of them work well in special purpose
applications. For there are enough TLP to obtain, they do not support TLS.

The second category is latency-focus [7] [8]. TLS are supported by these systems.
The false read may occur if a more speculative thread prematurely read a word before
a less speculative one writes it. To avoid the violation of data dependencies, Hydra
uses a snooping-base method with special write buffers for each speculative thread on
L1 cache [9]. A directory-based MDT is designed to resolve these problems in
Illinois’ SCMP. The shortcoming of these architectures is the conflicts in maintaining
data dependence operations: snooping on bus or accessing the common structure.

J. Lu et al. 976

In order to make SCMP more balanced in use, it should be able to provide
competitive performance when running general-purpose applications. Most of them
are sequential programs. Extracting TLP is difficult in these applications, since some
inter-thread data dependencies cannot be determined accurately when partitioning
threads with software. Conservative strategies, synchronization on all possible data
dependencies, will draw back the performance. More aggressive strategies may result
in false execution. TLS makes it possible to detect and maintain data dependence in
runtime and simplifies the extraction of TLP. This paper presents a new SCMP
architecture called Griffon, which aims at general-purpose applications. It implements
thread partition in assembly language. A distributed control mechanism is adopted in
Griffon for scalable. It achieves thread-level speculation with simple logics.
Simulation and synthesis results show that Griffon can achieve ideal speedup as well
as less design complexity and accessorial hardware cost.

The remainder of this paper is organized as follows. Section 2 presents the Griffon
architecture. Section 3 describes the software support in Griffon. And section 4 is the
hardware support. Section 5 gives the evaluations of Griffon. Conclusions are given
in section 6.

2 Architecture

2.1 Design Guideline

Several problems must be resolved when running sequential applications on SCMP.
The first is to partition a sequential program into multiple threads. Hardware method
will increase the complexity of chip design. But for software method, recompiling all
sources of an application is not advisable. We prefer a trade-off method. The software
inserts thread control instructions in assembly codes based on its analysis of the
control and data dependence. Then, it is up to the hardware to check and maintain the
dependence and guarantee the correction of the execution.

The second is in execution mode. More threads can be run on a core concurrently.
Unfortunately it increases the complexity of the core. So another thread will not be
scheduled on a core until the running one finishes and a thread can spawn only one
thread in Griffon.

Communications among the cores is the key to achieve the control and data
dependence. Griffon uses explicit instructions for register level communications. The
data dependence in shared variables and memory disambiguation are resolved using
the cache level data path, dual-ring structure in Griffon.

2.2 Architecture

Fig. 1. illustrates the architecture of Griffon. It includes four cores and two-level
caches. The L1 caches are private. A core with its instruction cache (L1/I) and data
cache (L1/D) compose a process element (PE). The CPU core is designed as pipeline
execution. I_BUF is a buffer between L1/I and the core. Thread control unit (TCU) is
distributed in each core. The L2 cache is shared by all PEs. A common bus connects
L1 caches and L2 cache. Bus AB is an arbiter to determine which one of the L1s can
access L2 when conflict occurs.

A Case of SCMP with TLS 977

I_B U F

L 1/I L 1 /D

F ron t
en d

B ack
en d

T C U

I_ B U F

L 1/IL 1 /D

F ro n t
en d

B ack
en d

T C U

I_ B U F

L 1/IL 1 /D

F ro n t
en d

B ack
en d

T C U

I _BUF

L 1/I L 1 /D

F ron t
en d

B ack
en d

T C U

L 2 _ cach e

B us
A B

Fig. 1. Architecture of Griffon

This is a typical SCMP structure, similar to Hydra [7] and Illinois’ SCMP [8]. The
Superthreaded Architecture [10] developed in University of Minnesota adopted a shared
L1 data cache. But it introduces private memory buffers in each core. The main
differences in each SCMP are the ways to control TLS and the strategies to maintain
data dependence. The core in Griffon is very simple. It only has a single- issue pipeline.
The ISA is extended for thread control and explicit register level
data transfer. Several additional tags are expended in the data cache for data
dependence. Both write-through and write back policies are implemented in primary
cache, but only the non-speculative thread adopts write-through strategy. Write back is
used in L2 cache. The dual-ring structure, two rings in opposite directions among
L1/Ds, is introduced to maintain the inter-thread data dependence and cache coherence.

3 Software Support

3.1 Execution Mode

Before running on Griffon, applications will firstly be divided into threads. Thread
control instructions and register level transfer instructions are inserted in assembly
codes. An application will be loaded on one PE at the beginning. With the Griffon’s
running, threads are spawned in other PEs. A speculative thread can spawn an even
more speculative one. The creation of a thread may occurs before determine whether
the thread is in the right execution path. So control speculation arises naturally in
thread spawning. Speculation Level (SL) is defined here. At a moment, the non-

J. Lu et al. 978

speculative thread has the lowest SL value; the most speculative one has the highest
SL value. This guarantees applications running in a foreseeable speculation mode.
Fig.2. shows the ideal execution mode in Griffon.

Fig. 2. Execution Mode of Griffon

Data speculation is a inevitable result of TLS. Register level data transfer methods
ensure the thread with higher SL get the right data when it uses register value directly
from a thread with lower SL. The dual-ring structure propagates the loads and stores
information among the PEs when a core accesses its L1/D. The cache controller
checks these messages and transfers data from thread with lower SL to higher one if
necessary. If a pre-mature load is detected, the cache controller will inform the TCU
in the core. When the TCU receives this message it will execute some recover codes
or just restart. The information about its operations will be carried to more speculative
threads. The L1/D is used to store the speculative version data. Only the thread with
lowest SL can store its data to the common L2 cache.

Thread level pipeline is proposed in Superthreaded architecture, but it needs special
works in source codes. The SCMP in Illinois partitions threads based on the loops and
functions and the synchronizing scoreboard increase the overhead of thread spawning.
Wisconsin Multiscalar [11] uses speculation in multiple tasks execution. The ARB
makes it difficult to implement. Later, they proposed the speculative versioning
cache. The SVC [12] uses write-back primary caches to buffer speculative writes in
the primary caches, using a sophisticated coherence scheme.

3.2 Thread Partition

A simple algorithm for thread partition is proposed in this paper, which works on
assembly codes. It includes four steps. First, this algorithm constructs a weighted
control-flow graph (WCFG) on basic blocks by scanning and profiling the assembly
codes. Second, it builds candidates of threads from WCFG. Data dependence between
blocks and profiling information are considered in block selection and combination.
Thread size is also used as a criterion in this step. Third, it collects blocks not belong
to any thread, and inserts them into current thread candidates if possible or treats them
as independent threads if not. Thread control instructions and register level data
transfer instructions are inserted into threads candidate. In the last step, instruction
scheduling is done in threads to make loads advance and stores defer as possible.
Fig.3. shows an example of thread partition. The codes are the main loops in WC.

A Case of SCMP with TLS 979

Profiling information is not considered in Hydra and SCMP in Illinois. The
Superthreaded architecture inserts special codes in source codes [10], which increase
the overhead of thread partition and the size of codes.

for (C = buf; len--; ++C)
 switch(*C) {
 case 012:
 ++linect;
 case 011:
 case 040:
 gotsp = 1;
 continue;
 default:
 if (gotsp) {
 gotsp = 0;
 ++wordct;
 }
 }

addu $2,$fp,176
sw $2,65712($fp)

$L53:
lw $3,65720($fp)
addu $3,$3,-1
sw $3,65720($fp)
li $2,-1

lw
$3,65720($fp)
bne $3,$2,$L56
j $L48 #exit

$L56:
lw $2,65712($fp)
lbu $2,0($2)

 .
 .
 .

sw $3,65728($fp)
$L55:

lw $2,65712($fp)
addu $2,$2,1
sw $2,65712($fp)
j $L53

addu $2,$fp,176
sw $2,65712($fp)
$L53:

lw $3,65720($fp)
addu $3,$3,-1
sw $3,65720($fp)
li $2,-1

lw
$3,65720($fp)
bne $3,$2,$L56
j $L48

$L56:
cthreadi $L53 #add code
lw $2,65712($fp)
addu $2,$2,1
sw $2,65712($fp)
lbu $2,-1($2)

 .
 .
 .

sw $3,65728($fp)
$L55:

thend #added code

(a) (c)(b)

Fig. 3. Thread Partition

4 Hardware Support

4.1 Thread Control Units

Thread control instructions includes thread-creating instructions: cthread Ri and
cthreadi Imm; thread-ending instructions: thend, thendez Ri, thendnz Ri. They are
processed in two steps. First, they are fetched, decoded and executed in pipeline. The
address and the comparing result are computed in execution stage. TCU executes the
next step. So, local pipeline is not stalled by these instructions.

TCU is responsible for the following works. 1), It sends information to the
successor’s TCU when receiving spawning, committing or clearing requests from its
pipeline. Clearing is triggered when a mis-speculation is detected. When a committing
request is encountered, the TCU of speculative threads stalls the pipeline and waits
for becoming non-speculative. 2), It treats the information from the predecessor’s
TCU. It creates thread on the core, maintains the SL of the thread or clears the thread
according to the information. The clearing request is propagated if it is not the thread
with highest SL. If the core is busy, the remote spawning request is stalled. 3), It
controls thread-restart or recover if a premature load occurs.

Thread ID Register (TIR) in TCU is used to record the SL value of the thread. The
core with minimum value in TIR runs non-speculatively and the one with maximum
TIR executes the most-speculative thread. TCU changes the value in TIR to cope with

J. Lu et al. 980

the changing of the thread’s dynamic SL. A core ID is set in each core to distinguish
the core and initial the TIR. Fig.4. shows the way of using TIR to record the SL value.

Fig. 4. Using TIR to Record SL Value

4.2 Register Level Communications

Three categories of instructions: send Ri, wait Ri and free Ri, are extended for register
level transfer. A tag register, TR, is added in each core to record data transferring per
GPR, one bit for a GPR. When a new thread is spawned on a core, the TR is cleared.

When a thread encounters a send Ri instruction, it sends the value of Ri to
successor. The successor updates Ri with the value and set the corresponding bit in
TR. No data but a message is sent to successor if a free Ri met by a thread. The
receiver just set the corresponding bit in TR as answer. When a thread encounters a
wait Ri instruction, it stalls the pipeline until the bit in TR for that register is set to 1.

There may be register-level data dependencies in non-adjacent threads. In Griffon,
the thread partition algorithm checks these dependencies and changes them into
adjacent threads data dependence by inserting proper instructions. This work is
completed in step 3.

4.3 Memory Data Dependence

Griffon uses the dual-ring to maintain data dependence. Fig.5. shows it. Part (a) is an
extension of cache line’s tags. The V and D bits are used as in general cache. The RS
bit records if this line is modified by thread with higher SL. The U bit at word level
indicates whether the local processor writes that word. The L bit is set to 1 if the
thread loads this word speculatively. The S bit indicates if a store message needs to be
sent. Part (b) shows the dual-ring structure: the L-ring and the S-ring and the forward-
ing bus. L-ring is used to propagate load messages from threads with lower SL to
higher ones. On the contrary, the store messages are transmitted in opposite direction
on the S-ring. The forwarding bus and arbiter (Forward_AB) are used to transfer data
from lower SL threads to higher ones if necessary. The massages on these two rings
both include the SL of the sponsor, the tag for word i (Wi) in a cache line and cache
line address. A restart (R) bit is added in S-ring messages.

A Case of SCMP with TLS 981

Fig. 5. Dual-ring Structures

For load operations, the non-speculative thread needs not to perform any special
actions. Speculative threads may perform unsafe loads. They check the U and L bits
of the word firstly. If (U+L) is 0, it must propagate the load address to its predecessor
on the L-ring for the word in its cache may be not the new version. If a load miss
occurs, both accessing L2 and sending message do concurrently. For all stores, the U
bit is set to 1 and the S bit is checked at the same time. If S is 1, no more things
should be done. Otherwise, a store message must be sent on the S-ring to successor
and the S bit is set to 1. If a store miss occurs, the cache line will be got from L2
before tag checking and message sending.

When a L1/D receives a load message, it checks the U bit of the word the message
point to. If the U bit equals to 1, the word will be forwarded on the forwarding bus
and the S bit of the word is cleared. Also the Wi bit of the word in message is cleared.
If not all Wi bits in message are 0, the speculative threads will propagate the message
continuously. The non-speculative thread will send an ACK to the sponsor in that
condition. The load message is cleared if all Wi bits are 0 or it reaches the non-
speculative thread. When a store message is received, the L bit of the word is checked
if the receiver has higher SL. If L bit is 1, the L1/D cache informs the local TCU a
premature load occurs. The R bit in message is set to 1. Then the message is
propagated. If the receiver has lower SL according to the sponsor, the RS bit is set to
1 to indicate it should be invalided when new thread starts on this PE. Then it
propagates the message. The sponsor will clear the message in the end.

The message is propagated to next PE in one cycle. Based on the execution mode
in Griffon, more data dependencies occur in adjacent threads. The dual-ring structure
reduces the conflicts of messages. The forwarding bus transfers the data directly. So
only a few dependencies may be delayed by the propagation. For all loads and stores,
the thread needs not send a message only if the L or S bit has been set to 1. This also
reduces the message conflicts.

4.4 Issues on Hardware

Some issues must be settled for right execution. First, the message of the dual-ring
must be flushed when the TCU changes the TIR value. Because the th.id field in
message is invalid in the moment. Second, load and store messages for the same word
may be propagated concurrently. This will result in wrong operation if no special

J. Lu et al. 982

process is done. In this condition, the load message will be discarded. The sponsor of
the load message sends it again. The last is the cache line with L or U bit is 1 cannot
be replaced in speculative execution. In the worst case, the speculative thread is
stalled by the cache is full with such lines. Adding buffers can weaken the influence.
And fortunately, researches [7] [8] show it only needs a few buffers.

5 Evaluation

5.1 Evaluation Platform

To evaluate the performance of the Griffon efficiently, a prototype is implemented in
HDL, Verilog. A RTL description is used for synthesis. The logic cells and timing
information can be obtained after synthesis. The ISA of the core is base MIPS R3000.
Thread control instructions and register level data transfer instructions are extended.
The core only has a single-issue pipeline. Separated private L1 cache is used. Also a
common L2 cache and MIU is implemented.

For the model is very simple, relative results are more meaningful than absolute
ones. Table 1 shows the logic cells of a general core and the improvement in the
Griffon. Table 2 displays the influence on clock rate. From the tables we draw the
conclusion that Griffon brings little negative effect on hardware cost and clock rate.
The clock rate of L2 drops more deeply is according to appending the bus arbiter.

Table 1. The logic cells of components

 Core TCU(vs. core) L1 cache L2 cache
Single-processor 100% 0 100% 100%

In Griffon 108.2% 6.2% 110.6% 106.5%

Table 2. The clock rates

 Core TCU(vs. core) L1 cache L2 cache
Single-processor 100% 0 100% 100%

In Griffon 96.7% 118.3% 97.8% 89.3%

5.2 Evaluation

The following benchmarks are run on the platform. They are Matrix, Fibonaci, Wc,
Compress95, Queens and Eratosthenes’ Filter. Matrix has more loop level parallelism.
Typical inter-thread data dependencies exist in computing the Fibonacis. Wc and
Compress95 are real applications. Queens and Filter have many control dependencies.

Table 3. The Size Increment of Thread Partition

 Matrix Fibonaci Wc Compress95 Queens Filter
Original codes 100% 100% 100% 100% 100% 100%
After partition 108.8% 111.4% 105.5% 102.5% 101.8% 102.2%

A Case of SCMP with TLS 983

Table 3 gives the size increment after thread partition. The result indicates there is
not more increment in static codes. Matrix and Fibonaci increase larger than others.
That is because they are written and optimized manually.

Table 4. Thread Control Overhead

 Thread
spawning

SL changing Thread
clearing

Accuracy of control
speculation

Time cost 3.1 cycles 2.3 cycles 1 cycle 80.5%

Table 4 is the overhead of thread control. The thread size is from 30 to 60
instructions. So the overhead of thread control can be neglected compared with the
thread size. But the accuracy of control speculation is not optimistic. More works
should be done for it.

Table 5. The Overhead of Dual-ring Structure

 Best case Worst case Average
Load message 1 5 2.2
Store message 4 7 4.1

Data forwarding 1 3 1.3

Table 5 shows the overhead of dual-ring structure. The overhead of load message is
2.2 cycles. Data forwarding is 1.3 cycles in average. The read hit in L2 is 4 cycles. So
the delay of load message and data forwarding can be overlapped by the L2 read.
Store message should travel all the PEs. The average survival period is close to the
shortest 4 cycles.

Table 6. Speedup of Griffon

 Matrix Fibonaci Wc Compress95 Queens Filter
In Griffon 2.87 2.17 2.37 1.89 2.54 1.74

Table 6 is Griffon’s speedup over single core. Useful instructions per cycle (UIPC)
are used as the criterion. Matrix achieves the highest speedup for its internal
properties. Compress95 and filter get a lower speedup for more mis-speculation
caused by controls. With the tracing of accessing L2 cache, we know that blocking
access-mode leads more conflicts. Multi-ports or non-blocking access-mode in L2 can
resolve this problem.

6 Conclusions

This paper presents a new SCMP architecture with TLS, called Griffon. It aims at
general-purpose applications. A thread partition algorithm is developed on assembly

J. Lu et al. 984

codes for Griffon. It use a heuristic method based on WCFG, which is constructed
with profiling information. Simulation result shows that it did a small increment in
static codes size. TCU in Griffon is distributed in each core for scalable. Thread
spawning, committing, restarting and clearing are triggered by it efficiently. The
thread control instructions did not stall the pipeline themselves. The overhead of
thread control can be neglected compared with the thread size. No explicit
synchronization is used in Griffon. Explicit register level data transfer and dual-ring
structure are designed for register and memory level data dependence respectively.
The dual-ring structure avoids the conflicts as in bus snooping method. Most
overheads of dual-ring structure are overlapped by L2 accessing.

The evaluation shows that applications could be more benefit from Griffon. The
hardware cost and decrement of clock rate is acceptable. Control dependence and data
dependence caused by TLS are settled successfully. Griffon achieves the speedup
from 1.74 to 2.87 over single core.

References

1. L. Hammond, B.A. Nayfeh, K. Olukotun Stanford University. A Single-Chip
Multiprocessor. IEEE Computer Special Issue on “Billion-Transistor Processors”,
September 1997,pp. 79-85.

2. J. Hennessy. The Future of Systems Research. In IEEE Computer, Vol.32, No. 8, August
1999, pp. 27-33.

3. L. A. Barroso, K. Gharachorloo, R. McNamara, A..Nowatzyk, S..Qadeer,.B. Sano, S.
Smith, R.Stets, and B.Verghese. Piranha: A Scalable Architecture Based on Single-Chip
Multiprocessing.In Proceedings of the 27th Annual International Symposium on Computer
Architecture, June 2000

4. Kyoung Park et al. On-Chip Multiprocessor with Simultaneous multithreading. ETRI
Journal, Volume 22, Number 4, December 2000, pp. 13-24.

5. J. M. Tendler, S. Dodson, S. Fields, H. Le, B. Sinharoy. IBM POWER4 System
Microarchitecture. Technical White Paper. IBM Server Group October 2001

6. M. Tremblay. MAJC-5200: A VLIW Convergent MPSOC. In Microprocessor Forum,
October 1999.

7. L.Hammond,B. A. Hubbert, M. Siu, M.K. Prabhu, M. Chen and K.Olukotun. The
Stanford Hydra CMP. IEEE MICRO Magazine, March-April 2000, pp. 71-84.

8. V. Krishnan, J. Torrellas. A Chip-Multiprocessor Architecture with Speculative
Threading. IEEE Transactions on Computers,Vol. 48, No. 9, September 1999

9. L.Hammond, M.Willey and K.Olukotun. Data Speculation Support for a Chip
Multiprocessor. Proceedings of the Eighth ACM Conference on Architectural Support for
Programming Languages and Operating Systems, San Jose, California, October 1998.

10. J. Tsai, J. Huang, C. Amlo, D.J. Lilja, and P.-C. Yew. “The Superthreaded Processor
Architecture”.To appear in the IEEE Transaction on Computers, Special Issue on
Multithreaded Architectures, September, 1999.

11. Gurindar S. Sohi, Scott E. Breach, and T. N. Vijaykumar. Multiscalar processors. In
Proceedings of the 22nd Annual International Symposium on Computer Architecture,
pages 414–425, June 22–24, 1995.

12. S. Gopal et al. Speculative Versioning Cache. Proc. Fourth Int’l Symp. High-Performance
Computer Architecture (HPCA-4), IEEE Computer Society Press, Los Alamitos, Calif.,
Feb. 1998, pp. 195-205.

SuperPAS: A Parallel Architectural Skeleton
Model Supporting Extensibility and

Skeleton Composition

Mohammad Mursalin Akon, Dhrubajyoti Goswami, and Hon Fung Li

Department of Computer Science, Concordia University,
Montreal, QC, Canada H3G 1M8

{mm akon, goswami, hfli}@cs.concordia.ca

Abstract. Application of pattern-based approaches to parallel program-
ming is an active area of research today. The main objective of pattern-
based approaches to parallel programming is to facilitate the reuse of
frequently occurring structures for parallelism whereby a user supplies
mostly the application specific code-components and the programming
environment generates most of the code for parallelization. Parallel Ar-
chitectural Skeleton (PAS) is such a pattern-based parallel program-
ming model and environment. The PAS model provides a generic way
of describing the architectural/structural aspects of patterns in message-
passing parallel computing. Application development using PAS is
hierarchical, similar to conventional parallel programming using MPI,
however with the added benefit of reusability and high level patterns.
Like most other pattern-based parallel programming models, the ben-
efits of PAS were offset by some of its drawbacks such as difficulty in:
(1) extending PAS and (2) skeleton composition. SuperPAS is an exten-
sion of PAS that addresses these issues. SuperPAS provides a skeleton
description language for the generic PAS. Using SuperPAS, a skeleton de-
veloper can extend PAS by adding new skeletons to the repository (i.e.,
extensibility). SuperPAS also makes the PAS system more flexible by
defining composition of skeletons. In this paper, we describe SuperPAS
and elaborate its use through examples.

1 Introduction

The concept of design patterns has been used in diverse domains of engineer-
ing, ranging from architectural designs in civil engineering [1] to the design of
object oriented software [2]. In the area of parallel computing, (parallel) design
patterns specify recurring parallel computational problems with similar struc-
tural and behavioral components, and their solution strategies. Examples of such
recurring parallel patterns are: static and dynamic replication, divide and con-
quer, data parallel computation with various topologies, compositional frame-
work for control- and data-parallel computation, pipeline, singleton pattern for
single-process (single- or multi-threaded) computation, systolic and wavefront
computation.

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 985–996, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

986 M.M. Akon, D. Goswami, and H.F. Li

Several parallel programming systems have been built with the intent to
facilitate rapid development of parallel applications through the use of design
patterns. Some such systems are CODE [3], Frameworks [4], Enterprise [5],
Tracs [6], DPnDP [7], COPS [8], PAS [9], and ASSIST [10]. Most of the works
concentrate on the algorithmic/behavioral aspects of patterns, popularly know
as algorithmic skeletons [11]. Algorithmic skeletons are best expressed using the
various functional and logic programming languages [12].

In contrast, Parallel Architectural Skeletons (PAS) [13, 9] specify the archi-
tectural/structural aspects of patterns. Unlike algorithmic skeletons, architec-
tural skeletons in PAS can be well expressed using existing object-oriented lan-
guage(s). Consequently, the PAS approach is well suited to the main-stream of
parallel application developers where the popular object-oriented languages like
C++ and Java are the languages of choice.

Application development using PAS is hierarchical, and is similar to con-
ventional parallel programming using MPI [14] and PVM [15]. However, PAS
provides the added benefit of high level patterns and reusability. A developer,
depending upon the specific needs of a parallel application, chooses the appro-
priate skeletons, supplies the required parameters and application-specific code.
Architectural skeletons supply most of the code that is necessary for low-level
and parallelism-related issues. In other words, architectural skeletons take care
of application-independent parallel programming aspects, whereas the developer
largely supplies the necessary application code. Consequently, there exists a clear
separation between application dependent code and application independent is-
sues (i.e., separation of concerns).

Though reusability is a rather useful benefit, however the lack of extensibility
and the lack of support for pattern composition are some of the major concerns
associated with most of the pattern-based approaches to parallel programming,
including PAS. Most existing systems support a limited and fixed set of patterns
that are hand-coded into the systems. Generally, there is no provision for adding
a new skeleton without understanding the entire system and writing the skele-
ton from scratch (i.e., lack of extensibility). So if a required parallel computing
pattern demanded by an application is not supported, generally one has no al-
ternative but to abandon the idea of using the particular approach altogether
(lack of flexibility).

SuperPAS is an extension of PAS and it addresses the drawbacks mentioned
previously. It provides a skeleton description language (SDL) for the generic
PAS. Using SuperPAS, a skeleton developer can extend PAS by adding new
skeletons to the repository (i.e., extensibility). SuperPAS also makes the PAS
system more flexible by defining composition of skeletons, where two or more
existing skeletons can be composed to create a new skeleton.

The SuperPAS model is targeted for two different groups of users: (1) skele-
ton designers who design new skeletons using the provided SDL and add the
new skeletons to the skeleton repository. (2) Application developers who use the
skeletons already available in the skeleton repository. Unlike a skeleton devel-
oper, an application developer need not have any knowledge about SDL and she

A PAS Model Supporting Extensibility and Skeleton Composition 987

can directly develop application using C++. On occasions, a skeleton developer
and an application developer may be the same person.

This paper describes the SuperPAS model and its use. The paper is organized
as follows: section 2 provides a brief introduction to the PAS model. Section 3
describes the SuperPAS model from the perspectives of the two different user
groups. The following section illustrates SuperPAS through an example. The
concept of skeleton composition is discussed in section 5. Section 6 describes the
performance issues of PAS and SuperPAS, and concludes the paper.

2 Preliminaries

A skeleton in PAS encapsulates the structural/architectural attributes of a spe-
cific pattern in parallel computing. Each skeleton is parameterized, where the
value of a parameter is determined during the application development phase.
As an example: a k-dimensional data-parallel mesh skeleton in PAS encapsulates
the structural aspects of a data-parallel mesh pattern, together with the associ-
ated communication-synchronization primitives. The parameters of the skeleton
are: the number of dimensions of the mesh (i.e., k), and the length of each
dimension.

During the rest of the discussion, A PAS skeleton with unbound parameters
is called an abstract skeleton. An abstract skeleton becomes a concrete skele-
ton, when the parameters of the skeleton are bound to actual values during
the application development phase. A concrete skeleton is yet to be filled in with
application-specific code. A concrete skeleton which is completely filled in with
application-specific code is called a code-complete parallel module or simply a
module (the term skeleton is omitted here, because with application code it is
no longer a skeleton). As it will be discussed shortly, a parallel application is a
hierarchical collection of modules.

Fig. 1 (a) roughly illustrates the various phases of application development
using PAS. As is shown in the figure, binding different parameter values (ac-
cording to needs of the applications) to the same abstract skeleton can result in
different concrete skeletons. A concrete skeleton inherits all the properties asso-
ciated with an abstract skeleton. In object-oriented terminologies, an abstract
skeleton can be described as the generalization of a particular design pattern. A
concrete skeleton is an application-specific specialization of a skeleton.

Irrespective of the pattern type, an abstract skeleton, Am, consists the fol-
lowing set of attributes. Fig. 1 (b) diagrammatically illustrates the attributes of
an abstract and a concrete skeleton, where the skeleton is designed for 2-D mesh
topology.
– Representative represents the module in its action and interactions with

other modules. Initially, the representative is empty and is subsequently
filled in with application-specific code (refer to the following discussion).

– Back-end of an abstract skeleton Am can formally be represented as {Am1,
Am2, . . . , Amn}, where each Ami is itself an abstract skeleton. The type of
each Ami is determined after the abstract skeleton Am is concretized. Note

988 M.M. Akon, D. Goswami, and H.F. Li

Concrete
Skeleton

Code Complete
module

Other abstract
Skeleton

External
Primitives

Internal
Primitives

Abstract Skeleton

ConcretizationConcretization

Application Code Application Code

Abstract Skeleton

Representative

Back End

Concrete Skeleton

(a) (b)

Fig. 1. (a) Abstract skeleton, concrete skeleton and code-complete module, (b) Differ-
ent components of a skeleton

that collection of concrete skeletons inside another concrete skeleton results
in a hierarchy. Consequently, each Ami is called a child of Am, and Am is
called the parent. The children of a module are peers of one another.

– Topology is the logical connectivity between the skeletons inside the back-
end. It also includes the connectivity between the children and the represen-
tative.

– Internal primitives are the pattern-specific communication / synchronization
primitives. Interaction among the various modules is performed using these
primitives. The internal primitives are the inherent properties of the skeleton
and they capture the the parallel computing model of the pattern as well as
the topology.
There are pattern-specific parameters associated with some of the previous

attributes. For instance: if the topology is a mesh, the number of dimensions,
length of each dimensions, and the type of each child in the back-end are the pa-
rameters. Fixing these parameters, based on the needs of an application, results
in a concrete skeleton. A concrete skeleton Cm becomes a code-complete module
when: (i) the representative of Cm is filled in with application-specific code, and
(ii) each child of Cm is code-complete. This description obviously indicates that
application development using PAS is hierarchical.

In addition, we define the term external primitives of a concrete or a code-
complete module as the set of communication / synchronization primitives using
which the module (i.e., its representative) can interact with its parent and peers.
Unlike internal primitives, which are inherent properties of a skeleton, external
primitives are adaptable, i.e., a module adapts to the context of its parent by
using the internal primitives of its parent as its external primitives. While filling
in the representative of a concrete skeleton with application-specific code, the
application developer uses the internal and external primitives for interactions
with other modules in the hierarchy. Examples of some of these primitives for
a mesh structured topology are: SendToNeighbor(. . .), RecvFromNeighbor(. . .),

A PAS Model Supporting Extensibility and Skeleton Composition 989

ScatterPartitions(. . .), GatherResults(. . .), etc. Some of these primitives are il-
lustrated in section 4.

Interactions among modules are based on pattern-specific message-passing
primitives, which make the PAS model suitable for a network cluster. The high-
level abstractions provided by a skeleton hide most of the low-level details which
are commonly encountered in any parallel application development. Interested
readers can find a comprehensive description of the PAS model with detailed
examples in [13, 9]. Section 4 illustrates an example of application development
using SuperPAS, which is based on the PAS model described here.

3 Introduction to SuperPAS

In this section, we introduce SuperPAS. Subsection 3.1 describes the motiva-
tion behind SuperPAS. Subsection 3.2 describes the steps to develop a parallel
application using SuperPAS. Finally, in subsection 3.3, SuperPAS model is elab-
orated.

3.1 Motivation

Like most other pattern-based parallel programming systems, the original PAS
system repository of (abstract) skeletons was built by hand-coding and there was
no provision for adding new skeletons without writing them from scratch using
the associated high-level programming languages, e.g., C++. The problem with
this approach is that writing a skeleton from scratch is not easy. It requires in
depth knowledge of the implementation of the entire system. This is the reason
that PAS and all other similar systems are not extensible or very difficult to
extend.

The motivation behind SuperPAS is to make PAS extensible. In a nutshell,
SuperPAS is an extension of PAS that includes a skeleton description language
(SDL) to describe the generic skeletons in PAS. Using the SDL, a skeleton de-
signer can add new abstract skeletons to the skeleton library with minimum
efforts. SuperPAS provides a well-defined way to describe the generic PAS skele-
tons, along with their primitives and parameters. Moreover, the model of Super-
PAS allows a skeleton developer to compose two or more existing skeletons into
a new skeleton. More about composite skeleton is discussed in section 5.

3.2 Development Steps in SuperPAS

In SuperPAS, the development process starts with the skeleton designers writ-
ing the abstract skeletons in SDL and storing them in the repository. When
an application developer develops a parallel application, she chooses the proper
skeletons, concretizes them, and finally fills them with application specific code
to create the final parallel application. To concretize a skeleton written in Su-
perPAS SDL, the developer can directly modify the SDL code or can use the
provided tools. Then she uses the SuperPAS tools to generate C++ code for

990 M.M. Akon, D. Goswami, and H.F. Li

the concretized skeletons. In fact, there is no semantical differences between the
generated C++ concrete skeletons and concrete skeletons of original PAS.

The SuperPAS programming environment provides sufficient tools to: (1)
verify the SDL syntax of an abstract skeleton, (2) concretize an abstract skeleton,
(3) compile a concrete SDL skeleton into C++ code, and (4) manage the skeleton
repository.

3.3 The SuperPAS Model for the Skeleton Designer

SuperPAS is a programming environment for creating abstract PAS skeletons.
The environment provides an SDL together with other tools which facilitate the
skeleton developers to specify each of the components, i.e., topology, parameters,
primitives, etc., of a newly designed or composed abstract skeleton in PAS.

In order to be able to specify the (virtual) topology of a newly designed ab-
stract skeleton, SuprePAS provides a collection of multidimensional grids. Each
node of the grid can be visualized as a virtual processor and hence each grid
can be visualized as a virtual processor grid (VPG). SuperPAS also provides
the necessary basic communication, synchronization and structural primitives
using which the VPG nodes (i.e., virtual processors) can communicate with one
another. The choice of the basic primitives is based on research articles [16] and
our long experience with parallel programming using PAS, other pattern-based
systems and message passing libraries [14,15].

The specification of the topology of a newly designed abstract skeleton starts
with mapping rules which maps the individuals or groups of its children to the
VPG nodes. After the mapping is done, the internal primitives of the newly
designed skeleton are defined using the primitives of the VPG. Note that both
the mapping rules and the primitive definitions are governed by the logical un-
folding of the topology onto the grid structure. The example in the next section
illustrates these ideas when we design a PAS skeleton with the mesh topology.
SuperPAS divides the primitives of a newly designed skeleton into two categories:
private and public. Private primitives of a skeleton Am can only be used by the
representative of Am and are not inherited by its children as external primi-
tives. On the other hand, public primitives are available only to the children as
external primitives.

The choice of the grid structure is not arbitrary. There are several factors
which influenced the selection of a grid: First, a grid is a regular structure, which
enables a uniform way to address each node of the grid, which in turn makes
it suitable to be implemented on platform like MPI, PVM. Second, processor
grid being a very popular structure, a wide collection of suitable communication-
synchronization primitives for such a structure can easily be found in the existing
literature. Lastly, a regular structure commonly associated with a skeleton can
be easily unfolded and mapped into another regular structure. In the existing
literature [17, 18], many of such mappings onto processor grid can be found.
Moreover, any irregular structure (e.g., an arbitrary graph) also can easily be
mapped onto a processor grid.

A PAS Model Supporting Extensibility and Skeleton Composition 991

mapping by
runtime system

n Stage Pipeline Skeleton

Stage 1Stage 0

...

processors Cluster

Stage (n−1) VPG

Primitives

null nodesMapping (embedding the structure) by designer

Fig. 2. Mapping of a back-end of a pipeline skeleton into a grid and the grid into
physical processors

Note that there may be some VPG nodes which are not mapped onto and
they are defined as the null nodes. After concretization and at run-time, only
non-null nodes are mapped to physical processors. Also note that the VPG
and its primitives are completely hidden from the application developer. What
the application developer perceives are the skeletons with the required (virtual)
topologies and associated set of primitives (designed by skeleton designers).

The SuperPAS approach is shown pictorially in Fig. 2 in the process of design-
ing an abstract pipeline skeleton. In a pipeline skeleton, a child, i.e., a pipeline-
stage accepts output of the previous stage as input, computes, and then sends the
result to the next stage with the exception of the first and last stages. The un-
folding of a pipeline structure into a one dimensional grid structure is simple: the
i-th stage of the pipeline is mapped to the i-th node of the grid. The connectivity
among the various stages of the pipeline is reflected in the defined primitives for
the pipeline, e.g., SendToNextNode(. . .), RecvFromPreviousNode(. . .), Receive-
FromRep(. . .), SendToRep(. . .), IsFirstNode(), IsLastNode(), etc. In the figure,
the unmapped VPG nodes are shown as null nodes. While running the final
application program, only the non-null VPG nodes are mapped to the physical
processors.

4 Example

In this section, we describe parts of an application, developed using SuperPAS.
As an example, let us consider a parallel version of 2-D discrete image con-
volution application [19]. As will be discussed later, the algorithm uses a 2-D
data-parallel mesh skeleton and a singleton skeleton (i.e., a skeleton with an
empty back-end and hence no internal primitives). Assuming that both of these
skeletons do not exist, the next subsection illustrates the skeleton designer’s in-
volvement in designing such skeletons using the SDL. The subsequent subsection
illustrates the application developer’s involvement in developing the complete
parallel application.

4.1 The Abstract Data-Parallel Mesh and Singleton Skeleton

The SDL code for the abstract data-parallel 2-D mesh skeleton is shown in the
following. For simplicity, we show a 2-D mesh rather than a generic k-dimensional

992 M.M. Akon, D. Goswami, and H.F. Li

mesh with arbitrary k. The SDL code starts with a small description of the
skeleton. This description includes the name of the skeleton, an optional short
note about the skeleton and a list of VPGs along with their dimensions. Each
VPG is used for defining a specific topology. More than one VPGs are required
in the case of defining multiple topologies during skeleton composition, which is
discussed in the next section.
A short description of the skeleton
name "DataParallelSkeleton";
description "A 2-D data parallel mesh skeleton";
available VPGs and their dimensions
VPG DPGrid(1); # A 1-dimensional grid

begin DPGrid
the parameters
begin param

int $HEIGHT, $WIDTH;
end
SDL program variables
begin var

int $i;
end
mapping rules
begin typemap

$CHILDREN[0] to node {($i)} where
$i = {(0, $HEIGHT*$WIDTH - 1, 1)};

end
private primitives:
begin private primitive

bool ScatterPartitions(MsgVector &mv) {
assert(mv.size() == HEIGHT * WIDTH);
ScatterToAllNodes(mv);

}
bool GatherResults(MsgVector &mv) { ... }
...

end

public primitives:
begin public primitive

bool GetPartition(Msg & m) {
BCastFromRep(m);

}
bool SendResult(Msg &m) { ... }
// is the child located at left edge
bool IsAtLeftEdge(void) {

Position p = GetPosition();
return (p[0] % WIDTH == 0);

}
...
// send a message to a node located
// at (dimY, dimX) distance vector away
bool SendToNeighbor(int dimY, int dimX,

Msg &m) {
Position p = GetPosition();
p[0] += WIDTH * dimY + dimX;
return ISend(p, m);

}
// receive a message from a node
// at (dimY, dimX) distance vector away
bool RecvFromNeighbor(int dimY, int dimX,

Msg &m) { ... }
...

end
end

Let us assume that the height and width of the 2-D data parallel mesh are
W IDTH and HEIGHT respectively. So there will be W IDTH × HEIGHT
children, where each of them does the same computation, i.e., all of the children
are of the same type. To make the problem interesting, here we choose an one
dimensional grid structure, rather than a two dimensional structure, to unfold
the topology of the skeleton. The unfolding is shown pictorially in Fig. 3. In
the SDL code, DPGrid(1) represents the 1-dimensional grid. The corresponding
mapping rules and primitives for the associated mesh topology are defined inside
the DPGrid code block (i.e., between begin DPGrid and end).

The length of each of the two dimensions (i.e., HEIGHT and W IDTH) are
the skeleton parameters. In the very beginning of the DPGrid code block, these
parameters are declared as $HEIGHT and $WIDTH. SuperPAS SDL has a built-in
array ($CHILDREN) to hold the types of the children. In the typemap sub-block
a mapping rule maps $CHILDREN[0] to node $i, where $i is an SDL program
variable. An expression (start, end, inc) is used to iterate from start to
end with an increment of inc. So in the mapping rule, $i gets the values of 0,
1, . . . , HEIGHT ×W IDTH − 1 and hence the rule maps $CHILDREN[0] to all
the VPG nodes.

The private primitives for the mesh skeleton: ScatterPartitions(...),
GatherResults(...), etc. are implemented by the designer using the available
VPG-based primitives. Some examples of the basic VPG primitives, which are

A PAS Model Supporting Extensibility and Skeleton Composition 993

w w w

w = WIDTH
h = HEIGHT
c = $CHILDREN[0]

...

...

... ...h

}

}

}

...

...

...

Mapping of topology
null nodes

VPGData Parallel Mesh

w

c c c c c c cc c c

Legend:

c

Fig. 3. Mapping a data parallel mesh into a VPG

an integral part of SuperPAS SDL, are: BCastFromRep(...), GetPosition(),
ScatterToAllNodes(...), GatherFromAllNodes(...), etc. Similar approach
is taken to design the public primitives. Finally, the mapping rule together with
the definitions of the primitives complete the description of the topology of the
data parallel mesh skeleton.

The singleton skeleton is the simplest skeleton, as it has no child and hence
no internal primitive. Consequently, the definition of the singleton skeleton is
rather straightforward and is illustrated in the following:

name "SingletonSkeleton";
description "A skeleton for sequential computation";

4.2 Using the Skeletons

In this subsection, we demonstrate an use of the skeletons designed in the pre-
vious subsection. We use the skeletons to develop a parallel 2-D discrete image
convolution application.

Parallel 2-D Discrete Image Convolution: A parallel solution to the
2-D discrete image convolution problem can be achieved using the data par-
allel paradigm. The whole image is partitioned into columns and rows. Discrete
convolution of all the partitions can be performed in parallel, where the con-
volution of individual partition is a sequential operation. In order to compute
the convolution of a partition, some additional data from the neighboring parti-
tions are required. Consequently, nearest neighbor communications are involved
among partitions.

The Concrete Skeletons: Form the problem definition, it is clear that the
parallel 2-D discrete image convolution application can be implemented using the
data parallel mesh skeleton. Each child of the mesh is a singleton skeleton and it
handles the convolution of an individual partition. In order to develop the final
parallel application, the application developer needs to concretize both of the
data parallel and the singleton skeletons. To concretize the data parallel skeleton,
the $WIDTH and $HEIGHT parameters, as well as the $CHILDREN array (the type of
the children) should be bound. Concretization of the singleton skeleton is straight
forward as it does not have any parameters. Note that the application developer
has the option of using SDL directly, or the associated tools for concretizing a
skeleton.

994 M.M. Akon, D. Goswami, and H.F. Li

The Code Complete Modules: After concretization, the developer can use
the tools to compile the SDL code to native C++ code, and then develop the final
application using C++. In the native C++ code, each skeleton is represented by a
C++ class, bearing the same name as the skeleton. The representative is the Rep
method of the class, which is initially empty and is subsequently filled in with
application-specific code. Parts of the code-complete 2-D discrete convolution
application is shown in the following. The example also illustrates the use of
some of the primitives of the mesh skeleton, e.g., GatherFromChildren(...),
SendToNeighbor(...), etc.:

void TwoDImageConv::Rep(void) {
// declare variables
Image Mask, ImgIn, ImgParts, ImgOut;

...
BCastToChildren(Mask);
ScatterToChildren(ImgParts);
...
// gather the convoluted data from the children
GatherFromChildren(ImgParts);
...

}

void ConvolutePartition::Rep(void) {
Msg m; Image ImgIn, ImgOut, Mask;
...
// send image portion to the left neighbor
if (!IsAtLeftEdge()) {

SendToNeighbor(0, -1, m);
}
...
convolute(Mask, ImgIn, ImgOut);
...
SendResult(m);

}

5 Composition of Skeletons

SuperPAS defines skeleton composition to build more complex (abstract) skele-
tons from simpler (abstract) skeletons. In this section, we describe the motivation
and the model of skeleton composition.

A large-scale parallel application is a composition of multiple patterns. It will
be more desirable to have a single composite skeleton rather than a collection of
smaller skeletons, provided that the composite skeleton will be used for devel-
oping variations of similar applications. Another reason for having a composite
skeleton is performance. Let us consider the example shown in Fig. 4 (a), where a
wavefront and a pipeline skeleton are shown. The output of the lower-rightmost
child (node 1 in the figure) of the wavefront is send back to the representative;
the representative routes it to the representative of the pipeline skeleton, which
in turn again routes to the first stage (node 2) of the pipeline. The pseudo code
for the representatives are also shown in the figure. One way of composing these
two skeletons is shown in Fig. 4 (b). From the figure it is evident that composition
reduces the number of routings required from node 1 to node 2.

Let us specify the definition of the skeleton X using SuperPAS SDL as a
tuple: < Gx, Ax >, where Gx is a set of VPGs and Ax is a set of aliasing rules
(discussed later). The composition of a skeleton X with another skeleton Y will
result in another skeleton Z = X + Y . The corresponding default SDL skeleton
definition of Z is: < Gx ∪ Gy, Ax ∪ Ay >. Here the ∪ operator means a union
of two sets. Referring to Fig. 4, number of routings can be further reduced by
composing node 1 and node 2 directly into node 3, as shown in Fig. 4 (c). Such
types of composition among nodes from two different VPGs are also allowed in
SuperPAS and they are expressed as aliasing rules. A complete description of
these rules is beyond the scope of this paper and hence is omitted.

A PAS Model Supporting Extensibility and Skeleton Composition 995

ReceiveFromRep(m1);
ComputePipeline(m1, m2);
SendToNextNode(m2);

ReceiveFromLeftTop(m1);
ReceiveFromLeft(m2);
ComputeWaveFront(m1, m2, m3);
SendToRep(m3);

1

2

ReceiveFromRep(m1);
ComputePipeline(m1, m2);
SendToNextNode(m2);

ReceiveFromLeftTop(m1);
ReceiveFromLeft(m2);
ComputeWaveFront(m1, m2, m3);
SendToRep(m3);

1

2

3

ReceiveFromLeftTop(m1);
ReceiveFromLeft(m2);
ComputeWaveFront(m1, m2, m3);
ComputePipeLine(m3, m4);
SendToNextNode(m4);

Code for node 3:

null module

Composition

(c)

Code for node 1: Code for node 2:

(b)

Code for node 1: Code for node 2:

Representative

(a)

Fig. 4. (a) Two abstract skeletons, (b) Composition of abstract skeletons and (c) Com-
position of nodes

Note that composition of abstract skeletons to create another abstract skele-
ton, as described here, is different from hierarchical concretization of skeletons
during application development.

6 Conclusion and Future Work

SuperPAS is a on going research work in the domain of pattern-based parallel
programming. SuperPAS is targeted to make PAS extensible and more flexible.
The performance of the PAS system has already been discussed in detail in [9].
Being a thin layer over MPI, there was no observable performance degradation
in using PAS as compared to MPI. SuperPAS is an extension of PAS, which
can automatically generate PAS skeletons based on designer’s specifications.
Obviously, the automatically generated skeletons may not be as optimized as
the original hand-coded PAS skeletons. However, the generated code can always
be fine tuned for better performance. Another important issue is usability. The
performance and usability aspects of SuperPAS are currently being investigated
and will be reported in our future works.

References

1. Alexander, C., Ishikawa, S., Silverstein, M.: A Pattern Language: Towns, Buildings,
Construction. Oxford University Press, New York, USA (1977)

996 M.M. Akon, D. Goswami, and H.F. Li

2. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns Elements of
Reusable Object-Oriented Software. Addision-Wesley Publishing Company, New
York, USA (1994)

3. Browne, J.C., Azam, M., Sobek, S.: Code: A unified approach to parallel program-
ming. IEEE Software 6 (1989) 10–18

4. Singh, A., Schaeffer, J., Green, M.: A template-based tool for building applica-
tions in a multicomputer network environment. In: Parallel Computing 89, North-
Holland, Amsterdam (1989) 461–466

5. Schaeffer, J., Szafron, D., Lobe, G., Parsons, I.: The enterprise model for developing
distributed applications. IEEE Parallel and Distributed Technology: Systems and
Applications 1 (1993) 85–96

6. Bartoli, A., Corsini, P., Dini, G., Prete, C.A.: Graphical design of distributed appli-
cations through reusable components. IEEE Parallel and Distributed Technology
3 (1995) 37–50

7. Siu, S., Singh, A.: Design patterns for parallel computing using a network of
processors. In: 6th International Symposium on High Performance Distributed
Computing (HPDC ’97), Portland, OR (1997) 293–304

8. MacDonald, S., Szafron, D., Schaffer, J., Bromling, S.: From patterns to frame-
works to parallel programs. Parallel Computing 28 (2002) 1663–1683

9. Goswami, D., Singh, A., Preiss, B.R.: From design patterns to parallel architectural
skeletons. Journal of Parallel and Distributed Computing 62 (2002) 669–695

10. Vanneschi, M.: The programming model of assist, an environment for parallel and
distributed portable applications. Parallel Computing 28 (2002) 1709–1732

11. Cole, M.: Algorithmic Skeletons: Structured Management of Parallel Computation.
MIT Press, Cambridge, Massachusetts (1989)

12. Darlington, J., Field, A.J., Harrison, P.G.: Parallel programming using skeleton
functions. In: Lecture Notes in Computer Science. Volume 694., Munich, Germany
(1993) 146–160

13. Goswami, D.: Parallel Architectural Skeletons: Re-Usable Building Blocks for Par-
allel Applications. PhD thesis, University of Waterloo, Canada (2001)

14. MPI: Message passing interface forum (2004) http://www.mpi-forum.org/.
15. PVM: Parallel virtual machine (2004) http://www.csm.ornl.gov/pvm/pvm_home.

html.
16. Chan, F., Cao, J., Sun, Y.: High-level abstractions for message passing parallel

programming. Parallel Computing 29 (2003) 1589–1621
17. Quinn, M.J.: Parallel computing: Theory and Practice. McGraw-Hill, Inc, New

York, NY, USA (1993)
18. Grama, A., Gupta, A., Karypis, G., Kumar, V.: Introduction to Parallel Comput-

ing. Addison Wesley (2003)
19. Myler, H.R., Weeks, A.R.: The Pocket Handbook of Image Processing Algorithms

In C. Prentice-Hall, Englewood Cliffs, N.J (1993)

Optimizing I/O Server Placement for Parallel
I/O on Switch-Based Irregular Networks

Yih-Fang Lin1,2, Chien-Min Wang1, and Jan-Jan Wu1

1 Institute of Information Science,
Academia Sinica,

Taipei, Taiwan, R.O.C.
{ice, cmwang, wuj}@iis.sinica.edu.tw

2 Department of Computer Science and Information Engineering,
National Taiwan University,

Taipei, Taiwan, R.O.C.

Abstract. In this paper, we study I/O server placement for optimiz-
ing parallel I/O performance on switch-based clusters, which typically
adopt irregular network topologies to allow construction of scalable sys-
tems with incremental expansion capability. Finding optimal solution to
this problem is computationally intractable. We quantified the number
of messages travelling through each network link by a workload func-
tion, and developed three heuristic algorithms to find good solutions
based on the values of the workload function. Our simulation results
demonstrate performance advantage of our algorithms over a number of
algorithms commonly used in existing parallel systems. In particular, the
load-balance-based algorithm is superior to the other algorithms in most
cases, with improvement ratio of 10% to 95% in terms of parallel I/O
throughput.

1 Introduction

Network contention is one of the major factors that may cause delay in remote
data transfers on a distributed-memory system. Network contention occurs when
multiple messages want to use the same network links at the same time. Both
I/O traffic and inter-processor communication in a processing job can suffer from
network contention. Most previous research focused on network contention due to
inter-processor communication, whereas our focus is on contention due to parallel
I/O traffic. Parallel I/O traffic bears similarity to inter-processor communication,
but they differ in two aspects: (1) The size of messages in parallel I/O is much
larger, and (2) Since the I/O resources are shared by all the compute nodes in
the system, parallel I/O is even more prone to network contention.

Network contention in parallel I/O can be reduced in two steps: (1) Distribute
I/O traffic over more network links by choosing proper placement of I/O servers,
and (2) Once the locations of I/O servers are known, decide the proper execution
sequence of the batch of remote data transfer requests In this paper, we will focus
on the problem of I/O server placement.

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 997–1006, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

998 Y.-F. Lin, C.-M. Wang, and J.-J. Wu

Although I/O server placement has been extensively studied in multimedia
research [4, 5, 12, 13, 15, 16], unfortunately the results from these previous re-
search cannot be applied to parallel I/O, because these works all assume that
a client’s I/O request can be satisfied entirely by one I/O server, and the goal
is to place multiple copies of the server over the network such that each client
is within certain distance from at least one copy of the data. Parallel I/O, how-
ever, is more complicated in that the data are distributed over multiple I/O
servers and each parallel I/O operation involves multiple data transfer requests
to multiple I/O servers.

I/O resource placement has also been studied for traditional parallel machines
with regular network topologies such as mesh, tori, hypercube, and ring [1, 3, 11,
14]. Switch-based clusters of workstations/PCs, on the other hand, typically
adopt irregular topologies to allow the construction of scalable systems with
incremental expansion capability. These irregular topologies lack many of the
attractive mathematical properties of regular topologies, which makes optimizing
resource placement on irregular networks a difficult task.

In this paper, we study I/O server placement on switch-based irregular net-
works, with the goal to minimize the completion time of a parallel I/O oper-
ation. In network-based systems, the link that has the maximum number of
messages travelling through it at the same time (also called workload) be-
comes the bottleneck of parallel I/O performance for the whole system. Such
link is usually referred to as the “dominating link” or “hot spot”. Parallel
I/O performance improves with the removal of hot spots. It is known that
finding an optimal solution for I/O server placement is computationally in-
tractable. We have developed three heuristic algorithms for this problem. The
common goal of these heuristics is to remove “hot spots” in the network. We
quantified the number of messages travelling through each link by a work-
load function. The maximum-workload-based heuristic chooses the locations for
I/O nodes in order to minimize the maximum value of the workload func-
tion. The distance-based heuristic aims to minimize the average distance be-
tween the compute nodes and I/O nodes, which is equivalent to minimizing
average workload on the links. The load-balance-based heuristic balances the
workload on the links based on a recursive traversal of the routing tree for the
network.

We conducted extensive simulations to evaluate our algorithms. Our result
demonstrates performance advantage of our algorithms over a baseline algo-
rithm, a random selection algorithm, and an even distribution algorithm. In
particular, the load-balance-based algorithm is superior to the other algorithms
in most cases, with improvement ratio of 10% to 95% in terms of parallel I/O
throughput.

The rest of the paper is organized as follows: Section 2 gives an overview
of the up-down routing strategy that is commonly used for irregular networks,
and defines the workload functions and the I/O-server placement problem. Sec-
tion 3 presents the three heuristic algorithms we proposed. Section 4 reports our
experimental results, and Section 5 concludes.

Optimizing I/O Server Placement 999

2 Model

A switch-based system consists of switches and processors. Each switch has a set
of ports, which can be used to connect to processors or ports of other switches.
The topology of the network can be highly irregular. The connectivity of switches
in the network can be represented by a graph G = (V, E), where the set of
nodes V represents switches, and the set of edges E represents the bidirectional
connection channels among switches.

The up-down routing mechanism [6] first uses a breadth-first search to build
a spanning tree T for the switch connection graph G = (V, E). Since T is a
spanning tree of G, E is partitioned into two subsets – T and E − T . Those
edges in T are referred to as tree edges and those in E−T as cross edges (which
provide adaptivity in routing). Since the tree is built with a BFS, the cross edges
can only connect switches whose levels in the T differ by at most 1. A tree edge
going up the tree, or a cross edge going from a switch with a higher id to a switch
with a lower one, are referred to as up links. The communication channels going
the other direction are down links. In up-down routing a message must travel all
the up links before it travels any down links.

In this work, we consider the worst case scenerio that generates the heaviest
remote data transfer traffic: each compute node read/write data from/to all the
I/O nodes. Both read and write operations may exist in the application program
and the ratios of read and write operations are known (e.g. by profiling). Under
this model, the I/O server placement problem can be stated as follows. Given
a graph G = (V, E) which represents an irregular network with |V | switches
and |E| links, a network routing function (in this paper we consider up-down
routing), the number of processing nodes and the number of I/O nodes in the
network, what is the optimal locations for the I/O nodes such that the workload
on the dominating link is minimized? The problem is known to be NP-complete
by reducing the Partition problem. We developed heuristic algorithms to find
good solutions for this problem. The heuristic algorithms are based on workload
functions defined in the following.

Let N be the set of processing nodes in the system. Workload functions are
defined as follows.
– p(e, i, j) : the probability of edge e being used by the message with node i

as the source and node j as the destination. p(e, i, j) is determined by the
routing strategy for the network. For systems that do not support adaptive
routing, the value of p(e, i, j) equals to either 0 or 1.

– w(e) =
∑

∀i,j∈N p(e, i, j) : the weight of edge e. We give each edge a weight,
which is the sum of the probability of every message that travels through
this edge.

– L(e, A, rr, rw) =
∑

∀i∈A

∑
∀j∈N{rr ∗ p(e, i, j) + rw ∗ p(e, j, i)} : the workload

on edge e if all the nodes in set A are assigned to be I/O nodes. rr and rw

are the ratios of read and write operations respectively. p(e, i, j) and p(e, j, i)
are the probabilities for read and write operations respectively that need to
go through edge e. Let A, B and C be sets of nodes and C = A+ B, A∩ B = φ,
L(e, C, rr, rw) = L(e, A, rr, rw) + L(e, B, rr, rw).

1000 Y.-F. Lin, C.-M. Wang, and J.-J. Wu

– M(A, rr, rw) = max∀e,∀i∈A{L(e, {i}, rr, rw)} : the maximum load on the links
if all the nodes in set A are assigned to be I/O nodes. Let A, B and C be sets of
nodes and C = A+B, A∩B = φ, M(C, rr, rw) = max{M(A, rr, rw), M(B, rr, rw)}.

– Ls(A, rr, rw) =
∑

∀e L(e, A, rr, rw) : the sum of the workload of all links if all
the nodes in set A are assigned to be I/O nodes. Let A, B and C be sets of
nodes and C = A + B, A ∩ B = φ. Ls(C, rr, rw) = Ls(A, rr, rw) + Ls(B, rr, rw).

3 Heuristic Algorithms

In this section, we present the three heuristic strategies: maximum-workload-
based, distance-based, and load-balance-based. For clearity of presentation, with-
out loss of generality, in the rest of the paper we will use M(A) to denote
M(A, rr, rw) and use L(e, A) to denote L(e, A, rr, rw) when rr = rw = 1 (i.e.
when there are equal numbers of read and write operations).

3.1 Maximum Workload Based Heuristic

The idea of this heuristic is to assign the I/O nodes in the way that minimizes the
maximum workload of the dominating link. The selection can be done by enumer-
ating all the possible values of function (M({i})) for all node index i and choose
the node index that results in the smallest function value. For multiple I/O nodes,
the problem translates to finding a set of nodes A such that M(A) is minimized.

Algorithm Minimize Maximum Workload (MM)

Input: m: the number of I/O nodes, N: the set of all processing nodes, [rr, rw]:
the ratios of read and write operations.

Output: A: the set of nodes assigned to be I/O nodes.

Description
step 0: A← φ.
step 1: for (i = 1, m) do {

Find p ∈ N such that ∀j ∈ N, M(A+ {p}, rr, rw) ≤M(A+ {j}, rr, rw).
N← N− {p}, A← A + {p}. }

End

3.2 Distance Based Heuristic

The motivation for this heuristic is that the longer the distance between the
source and destination of a message, the higher the probability it may contend
with other messages in the network. This heuristic attempts to place an I/O
node such that each compute node in the network can access the I/O node by
traveling the shortest distance. We define the “distance” of multiple compute
nodes to an I/O node i to be the sum of the distances of the individual compute
nodes to the I/O node. This is equivalent to the sum of the workload of all edges,
i.e. Ls({i}). Our goal is to select the node id i such that Ls({i}) is minimized.
For multiple I/O nodes, the problem translates to finding a set of nodes, A, such
that Ls(A) is minimized.

Optimizing I/O Server Placement 1001

Algorithm Shortest Distance (SD)

Input: m: the number of I/O nodes, N: the set of all processing nodes., rr, rw]:
the ratios of read and write operations.

Output: A: the set of nodes assigned to be I/O nodes.

Description
step 0: A← φ.
step 1: for (i = 1, m) do {

Find p ∈ N such that ∀j ∈ N, Ls({p}, rr, rw) ≤ Ls({j}, rr, rw).
N← N− {p}, A← A + {p} }.

end

3.3 Load-Balance Based Heuristic

This heuristic is motivated by our observation that, on a complete d-ary rout-
ing tree T , parallel I/O performance is best when all the subtrees of T have
approximately the same number of I/O nodes. This is reasonable because such
distribution yields balanced workload on the links that connect the root and the
subtrees. The set of links will be referred to as subtree links of tree T . Balanced
workload on the subtree links avoids hot spots in remote data transfers. This
concept can be extended to more general up-down routing trees. Before pre-
senting the LB algorithm, we first define some related variables. Figure 1 gives
graphical illustration of these variables. The partial tree T has three subtrees
and three subtree links.

Fig. 1. Subtrees and some related variables

– T (s) the tree whose root is switch s.
– np(s) the number of processing nodes connected to switch s.
– nm(s) the number of I/O nodes connected to switch s.
– nn(T) the number of processing nodes in tree T .
– ni(T) the number of I/O nodes in tree T .
– rt(T) the root(a switch) of tree T and rt(T (s)) = s.

1002 Y.-F. Lin, C.-M. Wang, and J.-J. Wu

– nt(T) the number of subtrees connected to the root of tree T .
– T ′(T, i) the ith subtree of tree T .

Let mi be the number of I/O nodes on the tree T ′(T, i), m be the total number
of I/O nodes in the network, N be the set of all processing nodes. We define
the subtree-edge load, denoted by f(T, i, mi, m), to represent the workload on
the edge, denoted by e, pointing from switch rt(T) to switch rt(T ′(T, i)). There
are two kinds of message traffic tarvelling through edge e, one for writing data
to the I/O nodes on the subtree (T ′(T, i)) and the other for reading data from
the I/O nodes outside of subtree (T ′(T, i)). In the writing case, the workload is
mi ∗ (|N| − nn(T ′(T, i))) and in the reading case, the workload is nn(T ′(T, i)) ∗
(m −mi). The value of f(T, i, mi, m) for edge e is the sum of these two terms,
as shown in Equation 2.

– f(T, i, mi, m) the subtree-edge load between the switch rt(T) and the switch
rt(T ′(T, i)), with mi I/O nodes dispatched to the subtree T ′(T, i) and the
total number of I/O nodes in the network is m.

– q(T, i) the load quality factor of the edge connecting the switch rt(T) to the
switch rt(T ′(T, i)).

– c(T, i, m) the constant load quality of the edge connecting the switch rt(T)
to the switch rt(T ′(T, i)).

f(T, i, mi, m) = mi ∗ (|N| − nn(T ′(T, i))) + nn(T ′(T, i)) ∗ (m−mi) (1)
= mi ∗ q(T, i) + c(T, i, m) (2)

q(T, i) = |N| − 2 ∗ nn(T ′(T, i))
c(T, i, m) = nn(T ′(T, i)) ∗m

Our goal is to minimize the maximum value of f(T, i, mi, m), which is equiv-
alent to making the workload on the subtree edges as balanced as possible. We
approximate the solution for this problem by considering the following two cases.

Case 1: q(T (s), i) ≤ 0. If the ith subtree of tree T (s) satisfies the condition
that q(T (s), i) ≤ 0, then in order to make f(T, i, mi, m) as small as possible, mi

must be as large as possible (see Equation 2). That is, dispatching as many I/O
nodes to the ith subtree as possible.

Case 2: q(T (s), i) > 0. If the ith subtree of tree T (s) satisfies the condition
that q(T (s), i) > 0, then in order to make f(T, i, mi, m) as small as possible, mi

must be as small as possible (see Equation 2). That is, dispatching fewer I/O
nodes to the ith subtree.

Furthermore, in both cases, it is profitable to assign as many I/O nodes as
possible to the processing nodes connected to the root switch rt(T), because
doing so does not increase the subtree-edge load between any subtree and the
root switch, and it also reduces the number of dispatching. Once the number of
I/O nodes to be dispatched to each subtree at current tree level is determined,
the same process can be applied recursively to the subtrees at the next level until
the locations of the I/O nodes at all tree levels are determined. The recursive
process is implemented by the algorithm LB.

Optimizing I/O Server Placement 1003

Algorithm Load Balance (LB)

Input: T : the up-down routing tree, m : the number of I/O nodes to be dis-
patched to T .

Output: A the set of the nodes assigned to be I/O nodes.

Description
step 0: if nt(T) = 0 then mr ← m

else (mr, {m0, m1, · · · , mi, · · ·mnt(T)−1}) = Dispatch(T,m)
step 1: Randomly pick up mr nodes connected to the root switch rt(T) to

construct the set A’
step 2: ∀mi = 0,Ai ← φ.
step 3: ∀mi > 0,Ai ← LB(T ′(T, i), mi).
step 4: A← A’ + A0 + A1 + · · ·+ Ant(T)−1
end

4 Simulation Experiments and Results

In this section, we present results of simulation experiments to compare the
three algorithms we proposed, MM, SD, and LB. We also implemented a baseline
algorithm (BL), a random selection algorithm (RAN), and an even distribution
algorithm (EVEN) as the basis for comparison. BL always chooses the first m
processing nodes for I/O. RAN selects the I/O nodes randomly, and EVEN evenly
distributes the I/O nodes to all the switches.

We developed a CSIM-based simulator for our experiments. The simulator
can model wormhole routing switches with arbitrary network topologies. Other
system parameters, such as communication start-up time, communication link
transmission time, and router delay at switch, are all chosen based on the real
numbers we obtained from a Myrinet-connected, 16-node Pentium-III PC cluster
with an IDE disk hooked to each node. We chose system parameters as follows.
Communication start-up time was 5.0 microseconds, link transmission time was
10.5 nanoseconds, and routing delay at switch was 200 nanoseconds. The data
rate of I/O operation is 40 MB/sec. The compute nodes issue equal numbers of
data transfer requests to a contiguous block of I/O nodes with the start and end
of the block being randomly chosen based on the compute node’s ids. This type
of data transfer patterns commonly occur in many parallel computations.

For all experiments, we assumed a default system configuration of a 160-
processor system interconnected by twenty 16-port switches in an irregular topol-
ogy. Eight ports on a switch are connected to processors and the others are
connected to other switches. Links were not allowed between ports of the same
switch. A random number generator was used to decide the port and switch or
the processing node to which a given switch port should be connected to. We
varied the value of IR (the ratio of the number of I/O nodes v.s. the number of
switches). The number of I/O nodes is defined as (NS ∗ IR)/8, where NS is the
number of switches. For each data point in the performance figures, the number
was averaged over 150 different network topologies.

1004 Y.-F. Lin, C.-M. Wang, and J.-J. Wu

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 0 2 4 6 8 10 12 14 16

T
h

ro
u

g
h

p
u

t

refernce value of I/O node ratio

(a) RW = 0, NS = 20, and SP = 12

BL
EVEN

RAN
SD
MM
LB

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 0 2 4 6 8 10 12 14 16

T
h

ro
u

g
h

p
u

t

refernce value of I/O node ratio

(b) RW = 0, NS = 20, and SP = 16

BL
EVEN

RAN
SD

MM
LB

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 0 2 4 6 8 10 12 14 16

T
h

ro
u

g
h

p
u

t

refernce value of I/O node ratio

(c) RW = 0, NS = 32, and SP = 12

BL
EVEN

RAN
SD
MM
LB

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 4.5e+07

 5e+07

 0 2 4 6 8 10 12 14 16

T
h
ro

u
g
h
p
u
t

refernce value of I/O node ratio

(d) RW = 0, NS = 32, and SP = 16

BL
EVEN

RAN
SD

MM
LB

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 4.5e+07

 5e+07

 5.5e+07

 6e+07

 6.5e+07

 7e+07

 0 2 4 6 8 10 12 14 16

T
h

ro
u

g
h

p
u

t

refernce value of I/O node ratio

(a) RW = 2, NS = 20, and SP = 12

BL
EVEN

RAN
SD
MM
LB

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 0 2 4 6 8 10 12 14 16

T
h

ro
u

g
h

p
u

t

refernce value of I/O node ratio

(b) RW = 2, NS = 20, and SP = 16

BL
EVEN

RAN
SD

MM
LB

 3.5e+07

 4e+07

 4.5e+07

 5e+07

 5.5e+07

 6e+07

 6.5e+07

 7e+07

 0 2 4 6 8 10 12 14 16

T
h

ro
u

g
h

p
u

t

refernce value of I/O node ratio

(c) RW = 2, NS = 32, and SP = 12

BL
EVEN

RAN
SD
MM
LB

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 8e+07

 9e+07

 0 2 4 6 8 10 12 14 16

T
h

ro
u

g
h

p
u

t

refernce value of I/O node ratio

(d) RW = 2, NS = 32, and SP = 16

BL
EVEN

RAN
SD

MM
LB

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 4.5e+07

 5e+07

 0 2 4 6 8 10 12 14 16

T
h

ro
u

g
h

p
u

t

refernce value of I/O node ratio

(a) RW = 4, NS = 20, and SP = 12

BL
EVEN

RAN
SD
MM
LB

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 4.5e+07

 5e+07

 5.5e+07

 0 2 4 6 8 10 12 14 16

T
h
ro

u
g
h
p
u
t

refernce value of I/O node ratio

(b) RW = 4, NS = 20, and SP = 16

BL
EVEN

RAN
SD
MM
LB

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 4.5e+07

 5e+07

 5.5e+07

 0 2 4 6 8 10 12 14 16

T
h

ro
u

g
h

p
u

t

refernce value of I/O node ratio

(c) RW = 4, NS = 32, and SP = 12

BL
EVEN

RAN
SD
MM
LB

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 0 2 4 6 8 10 12 14 16

T
h

ro
u

g
h

p
u

t

refernce value of I/O node ratio

(d) RW = 4, NS = 32, and SP = 16

BL
EVEN

RAN
SD

MM
LB

Fig. 2. varied IR, the left column fixed RW = 0 with (a) NS = 20, and SP = 12 (b) NS
= 20, and SP = 16 (c) NS = 32,and SP = 12 (d) NS = 32, and SP = 16; the middle
column fixed RW = 2 with (a) NS = 20, and SP = 12 (b) NS = 20, and SP = 16 (c)
NS = 32, and SP = 12 (d) NS = 32, and SP = 16; the right column fixed RW = 4
with (a) NS = 20, and SP = 12 (b) NS = 20, and SP = 16 (c) NS = 32, and SP = 12
(d) NS = 32, and SP = 16

Optimizing I/O Server Placement 1005

Figure 2 shows the throughput comparison of these algorithms under RW=0
(all read operations), RW=2 (equal number of read and write operations), and
RW=4 (all write operations) respectively. In all cases, the baseline algorithm
BL performs the worst, and EVEN and RAN are competitive to each other. Our
three algorithms MM, SD and BL are superior to these three basic algorithms until
the value of I/O node ratio reaches a threshold value (in this experiment, the
threshold value is 8). This is because when the number of I/O nodes increases
beyond certain value, data transfer traffic becomes too heavy that it is not possi-
ble to avoid contention no matter what locations the I/O nodes are, which makes
the effect of optimization less noticeable. In cluster systems, which usually have
limited network bandwidth (compared with high-speed networks in traditional
parallel computers), the I/O node ratios are likely small.

5 Conclusion

In this paper, we investigated optimization of I/O server placement for switch-
based clusters with irregular network topology. We proposed three heuristic al-
gorithms to solve this problem. The maximum-workload-based algorithm (MM)
aims to minimize the maximum value of the workload function. The distance-
based algorithm (SD) minimizes the average distance between the compute nodes
and I/O nodes, which is equivalent to minimizing average workload on the links.
The load-balance-based algorithm (LB) balances the workload on the links based
on a recursive traversal of the routing tree. Our experimental results show that
optimizations of I/O server placement indeed are crucial to parallel I/O perfor-
mance, and our algorithms, LB in particular, are effective in improving parallel
I/O performance.

This work can be extended in several directions. First, in this paper we
only consider uniform-length data transfer requests. Currently we are investi-
gating the server placement problem for more general, non-uniform-length data
transfers. The other direction is optimizing server placement for heterogeneous
systems, in which the compute nodes and the I/O nodes may have different
computing power and storage capacity.

Acknowledgement. This work is supported in part by the National Science
Council of Taiwan under grant number NSC-93-2213-E-001-027.

References

1. M. Bae and B. Bose. Resource placement in torus-based networks. IEEE Trans.
Computers, 46(10):1083–1092, October 1997.

2. P. Brezany, T. A Mueck, and E. Schikuta. A software architecture for mas-
sively parallel input-output. In Proc. 3rd International Workshop PARA’96, LNCS
Springer Verlag, 1996.

3. Y. Cho, M. Winslett, M. Subramaniam, Y. Chen, S. W. Kuo, and K. E. Seamons.
Exploiting local data in parallel array i/o on a practical network of workstations. In
Proc. fifth Workshop on I/O in Parallel and Distributed Systems (IOPADS), 1997.

1006 Y.-F. Lin, C.-M. Wang, and J.-J. Wu

4. A. Dan and D. Sitaram. An on-line video placement policy based on bandwidth
to space ratio. In ACM SIGMOD International Conf. Management of Data, pages
376–385, 1995.

5. J. Dukes and J. Jones. Dynamic replication of content in the hammerhead
multimedia server. Technical report, Department of Computer Science, Trinity
College Dublin, Ireland, 2003.

6. M. D. Schroeder et. al. Autonet: A high-speed, self-configuring local area network
using point-to-point links. Technical Report SRC research report 59, DEC, April
1990.

7. M. Harry, J. Rosario, and A. Choudhary. Vipfs: A virtual parallel file system for
high performance parallel anddistributed computing. In Proc. 9th International
Parallel Processing Symposium, 1995.

8. J. Huber, C. L. Elford, D. A. Reed, A. A. Chien, and D. S. Blumenthal. Ppfs:
A high performance portable parallel file system. In Proc. 9th ACM International
Conference on Supercomputing, pages 485–394, 1995.

9. S. Moyer and V. Sunderam. Pious: A scalable parallel i/o system for distributed
computing environments. Technical Report Computer Science Report CSTR-
940302, Department of Math and Computer Science, Emory University, 1994.

10. Nils Nieuwejaar. Galley: A New Parallel File System for Scientific Workload.
PhD thesis, Dept. of Computer Science, Dartmouth College, 1996.

11. P. Ramananthan and S. Chalasani. Resource placement with multiple adjacency
constraints in k-ary n-cubes. IEEE Trans. Parallel and Distributed Systems,
6(5):511–519, May 1995.

12. D. N. Serpanos, L. Georgiadis, and T. Bouloutas. MMPacking: A Load and
Storage Balancing Algorithm for Distributed Multimedia Servers. IEEE Trans.
Circuits and Systems for Video Technology, 8(1):13–17, 1998.

13. S.R. Subramany, B. Narahari, and R. Simha. Placement of storage nodes in
a network. In International Conference on Parallel and Distributed Processing
Techniques and Applications, 1998.

14. N. F. Tseng and G. L. Feng. Resource allocation in cube network systems based on
the covering radius. IEEE Trans. Parallel and Distributed Systems, 7(4):323–342,
April 1996.

15. N. Venkatasubramanian and S. Ramanathan. Load management in distributed
video servers. In Inter. Conf. Distributed Computing Systems, 1997.

16. Y. Wang, J. Lin, D. Du, and J. Hsieh. Efficient video allocation for video-on-
demand services. In IEEE Multimedia Conference, 1996.

Designing a High Performance and Fault
Tolerant Multistage Interconnection Network

with Easy Dynamic Rerouting�

Ching-Wen Chen��, Phui-Si Gan, and Chih-Hung Chang

Department of Computer Science and Information Engineering,
Chaoyang University of Technology,

Wufeng, Taichung County, Taiwan 413, ROC
{chingwen, s9227601, s9227610}@mail.cyut.edu.tw

Abstract. Designing a reliable and high performance multistage inter-
connection network (MIN) should consider the following issues carefully:
(1) fault tolerance guarantee; (2) easy schemes and hardware design of
rerouting switches; (3) low rerouting resulting in a low collision ratio.
In this paper, we present the High Performance Chained Multistage In-
terconnection Network (HPCMIN) which has one-fault tolerance, des-
tination tag routing for easy rerouting, one rerouting hop, resulting
in a low collision ratio. From our simulation results, the HPCMIN re-
sults in a lower collision ratio than other dynamic rerouting networks.
The HPCMIN is embedded with the indirect binary n-cube network
(the ICube network) which is equivalent to many important MINs. Thus,
the design methods used in the HPCMIN can be applied to these MINs
so that they have the characteristics of the HPCMIN.

Keywords: Parallel computing, multistage interconnection network
(MIN), fault tolerance, collision, performance, destination tag routing.

1 Introduction

Multistage interconnection networks (MINs) are considered as cost-effective ways
of providing high-bandwidth communication in multiprocessor systems [1]. To
enhance the reliability of MINs, many researchers have investigated fault toler-
ance issues [2][3][4][5][6][7][8]. In previous work, providing disjoint paths [3][4][5]
and using dynamic rerouting [6][7][8][9] were often applied to MINs so that they
would have fault tolerance capability. However, when the method of providing
multiple disjoint paths is used to tolerate faults, it is necessary to know in ad-
vance the location of the faulty element. Then one of the fault-free paths can
be taken to deliver message packets. If the location of the faulty element were

� This research was supported by the National Science Council NSC-92-2213-E-324-
006.

�� Corresponding Author. Tel: +886-4-23323000 Ext. 4534 Fax: +886-4-23742375

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 1007–1016, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

1008 C.-W. Chen, P.-S. Gan, and C.-H. Chang

unknown, it is possible to send multiple packets simultaneously from the source
to the destination. However, the former one which chooses a fault-free path
cannot solve collision problems and the latter one of sending multiple packets
simultaneously arises more collision ratio. Instead of providing disjoint paths,
the dynamic rerouting method provides alternative paths to a destination when
a packet encounters a faulty or busy element. Thus, this method does not need
to know the location of faulty elements before a packet is sent. Consequently,
dynamic rerouting can be used to tolerate faults and solve collision problems.

Although, dynamic rerouting can be used to tolerate faults and prevent col-
lisions, some issues still need to be considered carefully in designing networks
with high performance and one-fault tolerance. The important issues are: (1)
guaranteeing one-fault tolerance; (2) providing easy rerouting schemes and low
hardware cost of switches to compute rerouting tags; and (3) taking low rerout-
ing hops to find alternative paths in order to reduce the collision ratio.

The Gamma network [6] and the B-network [7] both provide dynamic rerout-
ing capability to tolerate faults and prevent collision. However, some problems
still exist in these networks. For example, the Gamma network provides multiple
paths to prevent collisions, but it lacks a mechanism to guarantee one-fault tol-
erance. Only a single path exists in the Gamma networks when the source and
the destination are the same. In addition, although Gamma networks provide
multiple paths to prevent collisions, a collision that may occur at the straight
output link cannot be prevented. In the B-network, one-fault tolerance cannot
be guaranteed, so partial collisions can not be prevented. Besides, the B-network
cannot eliminate the possibility of a packet re-countering the same faulty element
again after rerouting.

In this paper, we propose a network called the High Performance Chained
Multistage Interconnection Network (the HPCMIN). The HPCMIN has the char-
acteristics of dynamic rerouting, one-fault tolerance, destination tag routing and
fixed one rerouting hop. The HPCMIN is embedded with the indirect binary n-
Cube network (the ICube network) [9], which is equivalent to the multistage
cube-type networks and to important multistage networks, for example, the
Omega network [10], and the Baseline network [11]. Thus, the destination tag
routing function can also be applied to the HPCMIN. In addition, the design
features of the HPCMIN can be applied to networks which are equivalent to the
ICube network so that these networks have the characteristics of the HPCMIN.
With the benefit of destination tag routing, the switches in the HPCMIN do
not need to compute the rerouting tag when a packet encounters a faulty or
busy element. As a result, the hardware cost and complexity of the switches is
lower and simpler than those of distance tag routing. To achieve high throughput
(i.e. to reduce the collision ratio), the HPCMIN takes only one rerouting hop to
reduce the probability of collisions.

The remainder of this paper is organized as follows. In Section 2, we intro-
duce the topology and destination tag routing in the ICube network. In Section
3, we present the topology and routing/rerouting methods in the HPCMIN. In
addition, in the HPCMIN, one-fault tolerance, destination tag routing, and per-

Designing a High Performance and Fault Tolerant MIN 1009

formance improvement resulting from a packet which does not re-encounter the
same faulty element are analyzed and presented. In Section 4, we present our
experimental results, which show the throughput results of the HPCMIN and
other related dynamic networks. Finally, Section 5 concludes our work.

2 Preliminaries

In this section, we present the previous network called indirect binary n-cube
network (the ICube network). In Section 2.1, we present the topology of the
ICube network. Destination tag routing is discussed in Section 2.2.

2.1 Indirect Binary n-Cube Network (ICube Network)

An ICube network of size N=2n consists of n stages labeled from 0 to n. Each
stage involves N switches [9]. Basically, switches of sizes 1x2 and 2x1 are coupled
with the first and last stages respectively. Moreover, each switch located at
the intermediate stages is a 2x2 crossbar. Figure 1 shows the ICube network
of size 8.

Fig. 1. An ICube network of size N=8. The routing condition is 1 for the source and
6 for the destination

2.2 Destination Tag Routing

In the ICube network, each switch number is given by the n-bit representation,
for example, jn−1jn−2 j 2j 1j 0 , where the bit jn−1 is the most significant
bit. To make the destination tag routing work, we mark the two output links of

1010 C.-W. Chen, P.-S. Gan, and C.-H. Chang

a switch: 0 is assigned to the upper link and 1 to the other. We illustrate the
general case in Figure 2. After the two output links are marked, the switch can
route packets by using their destination routing tag only. When a destination
tag T is used to route packets, we reverse the binary representation T from
tn−1tn−2 t2t1t0 to t0t1t2 tn−1, and use that as the routing tag. Therefore,
the switch sends a packet to the 1 or 0 output link according to the i th bit t i

of the routing tag. That is to say, if the i th bit of the destination tag is 0, then
the upper output link is taken. In contrast, if the i th bit of the destination tag
is 1, the lower output link is taken .Example 1 illustrates the destination tag
routing instance when the source is 1 and the destination is 6. Although the
ICube network provides the destination tag routing, yet there is only one path
between any source and destination pair.

Example 1: In the ICube network of size N=8, the source is 1 and the desti-
nation is 6. The routing tag is 011. The routing condition is shown in Figure 1
and is described as follows: 0(stage 1)→ 1(stage 0)→2(stage 2)→6(stage3)

Fig. 2. The output links’ routing tags of the switches from stage i to stage i+1

3 The Proposed Multistage Interconnection Network

In this section, we present a dynamic rerouting network called the HPCMIN,
in which the indirect binary n-cube network (the ICube network) is embedded
so that the HPCMIN has destination tag routing capability. In addition, the
HPCMIN has a chained link to connect two switches at the same stage to guar-
antee one-fault tolerance and to perform with a lower collision ratio than other
dynamic rerouting networks. With the advantage of destination tag routing, the
switches in the HPCMIN do not compute the rerouting tags for rerouting. Thus,
hardware cost and complexity can be reduced.

In Section 3.1, the topology of the HPCMIN is proposed. Section 3.2 describes
the routing and rerouting situations to guarantee one-fault tolerance.

3.1 Topology of the HPCMIN

A HPCMIN of size N=2n, consists of n+1 stages labeled from 0 to n, each stage
involving N switches. The HPCMIN is embedded with the ICube network and

Designing a High Performance and Fault Tolerant MIN 1011

adds one chained link for each switch. The chained link connects the switch j
at stage i to the switch (j -2i+1 mod N) at stage i, where 0≤i≤n-2. At stage
n-1, the chained link connects the switch j to the switch (j -2n−1 mod N).
The chained links are used when a packet encounters a faulty or busy element.
Because of destination tag routing, the HPCMIN does not need the hardware
for computing rerouting tags, so the architecture of the switches can be size 2x2
and 2x1 crossbars, respectively, at the first and the final stages and be size 3x3
crossbars at other stages. Figure 3 shows the topology of the HPCMIN with size
N equal to 8.

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0
000

001

010

011

100

101

110

111

Stage

000

001

010

011

100

101

110

111

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0
1

0

1

0

1

0
1

0
1

0
1

0
1

0
1

1 2 0 3

Fig. 3. The NRGIN of size N=8 and the routing condition of S=0 and T=5

3.2 Routing and Rerouting Methods

In this section, we present the routing and rerouting behaviors in the HPCMIN
that guarantee one-fault tolerance and prevent collisions. Moreover, the destina-
tion tag routing function is introduced in this section. In the final subsection, we
discuss the design that prevents a packet from meeting the same faulty element
again after rerouting.

Destination Tag Routing in the HPCMIN. To reduce the hardware cost of
re-computing the routing tag for the switches, the HPCMIN takes the destination
tag as the routing and rerouting tag. If the distance tag routing method is applied
and rerouting occurs, the switch must re-compute the routing tag. However,
destination tag routing always uses the destination tag to route packets, so

1012 C.-W. Chen, P.-S. Gan, and C.-H. Chang

the switch does not need to compute the new routing tag. In this section, we
introduce the destination tag routing function in the HPCMIN.

The HPCMIN is embedded with the ICube network, so destination tag rout-
ing used in the ICube network can be also used in the HPCMIN. In other words,
a packet can arrive at a destination via the destination tag routing function,
called the Forward function, defined in Definition 1 below. When switch j=
j 0j 1j 2....jn−1 at stage i wants to route a packet to the next stage, the switch
uses the ith bit of the destination tag D=d0d1d2....dn−1 to route the packet to
the next stage. If di is 0, the upper output link to the next stage is used. In
contrast, if di is 1, the other output link to the next stage is used. In order to
make destination tag routing work, we must mark the two output links to the
next stage 0 and 1. The upper link of the two output links to the next stage is
marked 0 and the other is marked 1. After all switches are marked, the switch
can use the function defined in Definition 1 below to route packets.

Definition 1: If a packet is at switch j at stage i

Forward (j, di) =
{

Take the 0 link if d i=0
Take the 1 link if d i=1

When a packet does not meet a faulty or busy element, the Forward desti-
nation tag routing function is applied. Example 2 shows the routing condition
when the source node is 0 and the destination is 5.

Example 2: Show the destination tag routing behavior in the HPCMIN when
the source S is 0 (=000) and the destination D is 5 (=101).

Solution: Because d0=1, link 1 (the straight link) is taken to switch 1 at stage
1. At stage 1, because d1=0, link 0 (the straight link) is taken to switch 1 at
stage 2. Finally, because d2=1, link 1 (the bottom, non-straight link) is taken
to the destination. This example is illustrated in Figure 3.

Dynamic Rerouting with a Fault or Busy Element. In this section, we
prove that the HPCMIN with the dynamic rerouting method has one-fault tol-
erance capability. In the HPCMIN, a switch sends packets in the chained link to
another switch at the same stage for rerouting. Therefore, we prove that a packet
at a switch that is connected by a chained link can also arrive at the destination
if the original one can. Before proving this fact, we define the partition concept
which means a set of switches at the same stage which can deliver packets to
some destination if one of them can deliver packets to the destination. As a re-
sult, we prove that the switch connected by a chained link can also route packets
to the destination nodes because the switch and the original switch belong to
the same partition. Finally, we prove that the HPCMIN has one-fault tolerance
with dynamic rerouting.

Definition 2: A partition at stage i is the set of the switches which have the
same i least significant bits, where i can be 0, 1, 2,, n.

Designing a High Performance and Fault Tolerant MIN 1013

Lemma 1: There are N /2i partitions at stage i.

Proof: By Definition 2, there are N partitions at stage 0, and each partition
contains only one switch. At stage i, each partition has 2i switches. Thus, there
are N /2i partitions at stage i.

From Definition 2 and Lemma 1, we know that there are N /2i partitions at
stage i, where i can be 0,1,2, ,n (=log2N). We name the partitions at stage
i Pi,0, Pi,1,, Pi,N/2i where i can be 0, 1, 2, , n. For example, there are N
partitions, Pi,0, Pi,1,, Pi,N , at stage 0 and there are N /2 partitions at stage 1
and so on. In Theorem 1, we prove that the switches in the same partition can
deliver packets to the destination if there is a switch in the partition delivering
packets to the same destination.

Theorem 1: A packet in the switches belonging to partition Pi,j can arrive at
some specific destination if one of the switches in the same partition Pi,j can
deliver a packet to this destination.

Proof: According to the destination tag routing function Forward, when a
packet is delivered from stage i to stage i+1, the (i+1)th bit of the switch
index at stage i+1 is the same as that of the destination index. As a result, the
routing behavior leads the packets to switch j at stage i and the i least bits of
the switch index j are the same as that of the index of the destination node. By
Definition 2, the switches in the same partition have the same i least significant
bits at stage i. Moreover, the Forward function leads packets to the switch at
stage n which has the same n-i most significant bits as the destination. Based
on these two facts, the n-bits of the switch at stage n are the same as the des-
tination. Accordingly, when a switch in some partition can lead packets to the
destination, the other switches in the partition can also deliver packets to the
destination by the Forward destination tag routing function.

From Theorem 1, we know that the other switches can also deliver packets to
the destination if one of the switches in the same partition can deliver packets
to the destination. In the following, we prove that the HPCMIN has one-fault
tolerance.

Theorem 2: The HPCMIN can tolerate one fault located in the middle of the
network.

Proof: Once a switch connects a completely faulty element in the middle stages,
the switch delivers a packet in the chained link to another switch belonging to
the same partition. By Theorem 1, the switch can also deliver the packet to the
destination if the packet does not meet the faulty element again. We assume
that a packets at switch j at stage i meets a faulty switch located in the middle
stage i+1. Hence, the packet at stage i is sent to switch (j -2i+1) mod N of the
same stage. Because the output non-straight links of the switch indexed (j -2i+1)
mod N and switch j at stage i are in the same direction (upward or downward),
the packet does not meet the same faulty switch at stage i+1 again where i can
be 0, 1, 2 n-2 (middle stages).

1014 C.-W. Chen, P.-S. Gan, and C.-H. Chang

Let us assume that the faulty element is a link from stage i to stage i+1 where
i can be 0, 1, 2 n-2 (middle stages). Since the rerouting vertical distance at
middle stages is less than N, the packet will not be rerouted to the same switch
j at stage i after one rerouting, that is, the packet does not encounter the faulty
link again. As a result, the HPCMIN can tolerate one fault in the middle stages
using chained links.

4 Experimental Results and Discussion

In this section, we evaluate the performance, under various traffic loads, of four
dynamic rerouting networks: Gamma networks, B-networks, and the HPCMIN.
In our simulations, we considered two cases, networks without faults and with
a faulty switch. However, collisions are considered in our simulation of both
cases. A collision means two or more packets at a switch are delivered to the
same output. When a collision of two packets occurs at a switch, the switch
reroutes one of these two packets to solve the collision situation. With regards
to the faulty switch, we assume that the faulty switch is completely faulty
and the switches at the previous stage use faulty information to reroute the
packets.

Figure 4 and Figure 5 show the performance comparison of these dynamic
rerouting networks with one fault and without any fault. In addition, Figure
6 shows the successful rerouting ratio. Although the Gamma network can find
an alternative path for rerouting, there is no alternative path when the straight
link is taken. Due to the lack of rerouting cases, the Gamma network performs
worse than the other networks except the B-network. Although the B-network
performs better than the Gamma network in light traffic, the overhead of four
rerouting hops in the worst case causes the B-network to have worst through-
put in heavy traffic of all the networks. Because of one-fault tolerance guarantee

Arrival rates without fault when N=16

70

75

80

85

90

95

100

6.25 18.75 31.25 43.75 56.25 68.75 81.25 93.75

Taffic load %

A
rr

iv
al

 r
at

e
%

GIN

B-network

HPCMIN

Fig. 4. Arrival rate without fault when the size of networks N=16

Designing a High Performance and Fault Tolerant MIN 1015

Arrival rates with one fault when N=16

65

70

75

80

85

90

95

100

6.25 18.75 31.25 43.75 56.25 68.75 81.25 93.75

Traffic load %

A
rr

iv
al

 r
at

e
%

GIN

B-network

HPCMIN

Fig. 5. Arrival rate with one fault when the size of networks N=16

Arrival rates with one fault when N=16

65

70

75

80

85

90

95

100

6.25 18.75 31.25 43.75 56.25 68.75 81.25 93.75

Traffic load %

A
rr

iv
al

 r
at

e
%

GIN

B-network

HPCMIN

Fig. 6. Rerouting successful rates with one fault when the size of networks N=16

and fixed one hop rerouting, HPCMIN has the best throughput of all these
networks.

5 Conclusion

In the design of fault tolerant networks, providing disjoint paths and using dy-
namic rerouting are often used. However, the dynamic rerouting method can
guarantee one-fault tolerance and solve collision problems. When the dynamic
rerouting method is used, the destination tag routing method can reduce hard-
ware cost and complexity in computing rerouting tags. Based on these reasons,
we designed a network called the HPCMIN. The HPCMIN has dynamic rerouting
to tolerate faults and prevent collision, destination tag routing, one-fault toler-
ance and one rerouting hop. Accordingly, the HPCMIN performs better than
other dynamic rerouting networks, based on our experimental results. Because
of the equivalent property of the ICube network and other important networks,
the design features of our work can be applied to those networks so that they
have high performance and one-fault tolerance.

1016 C.-W. Chen, P.-S. Gan, and C.-H. Chang

References

1. T. Y. Feng, ”A survey of interconnection networks”, IEEE Computer 14, Dec.
1981, pp. 12-27.

2. G. B. III Adams, D. P. Agrawal, and H. J. Siegel, ”A Survey and Comparison of
fault-tolerant Multistage Interconnection Networks,” IEEE Transactions on Com-
puter Vol. 20, No. 6, June 1987, pp. 14-27.

3. K. Yoon and W. Hegazy, ”The Extra Stage Gamma Network,” IEEE Transactions
on Computers, Vol. 37, No. 11, November 1988, pp.1445-1450.

4. P. J. Chuang ”CGIN: A Fault Tolerant Modified Gamma Interconnection Net-
work,” IEEE Transactions on Parallel and Distributed Systems. Vol. 7, No. 12,
December 1996, pp. 1301-1306.

5. S. W. Seo and T. Y. Feng, ”The Composite Banyan Network,” IEEE Transactions
on Parallel and Distributed Systems, Vol. 6, No. 10, October 1995, pp.1043-1054.

6. D. S. Parker and C. S. Raghavendra, ”The Gamma Network,” IEEE Transactions
on Computers, Vol. C-33, April 1984, pp.367-373.

7. K. Y. Lee and H. Yoon, ”The B-network: A Multistage Interconnection Network
with Backward Links,” IEEE Transactions on Computers vol. 39, no. 7, July 1990,
pp. 966-969.

8. R. J. McMillen and H. J. Siegel, ”Performance and Fault Tolerance Improvements
in the Inverse Augmented Data Manipulator Network,” 9th Symp. Computer Ar-
chitecture, Apr. 1982, pp. 63-72.

9. M. C. Pease III, ”The indirect binary n-cube microprocessor array.” IEEE Trans.
Computer, vol. C-26, May 1977, pp.458-473.

10. D. H. Lawrie, ”Access and alignment of data in an array processor”, IEEE Trans.
Computers 24, Dec. 1975, pp. 1145-1155.

11. C. L. Wu and T. Y. Feng, ”On a class of multistage interconnection networks”,
IEEE Trans. Computer 29, Aug. 1980, pp. 694-702.

 J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 1017–1023, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Evaluating Performance of BLAST on Intel Xeon
and Itanium2 Processors

Ramesh Radhakrishnan1, Rizwan Ali1, Garima Kochhar1, Kalyana Chadalavada2,
Ramesh Rajagopalan2, Jenwei Hsieh1, and Onur Celebioglu1

1 Scalable Systems Group, Dell Inc, Round Rock, Texas
http://www.dell.com/hpcc

2 HPCC Enterprise Solutions Engineering, Dell Inc, Bangalore, India

Abstract. High-performance computing (HPC) has increasingly adopted the
use of clustered Intel architecture–based servers. This paper compares the per-
formance characteristics of three Dell PowerEdge (PE) servers that are based on
three different Intel processor technologies. They are the PE1750 which is an
IA-32 based Xeon system, PE1850 which uses the new 90nm technology Xeon
processor at faster frequencies and the PE3250 which is an Itanium2 based sys-
tem. BLAST (Basic Local Alignment Search Tool), a high performance com-
puting application used in the field of biological research, is used as the work-
load for this study. The aim is to understand the performance benefits of the
different features associated with each processor/platform technology to
BLAST and explain the observations using other standard micro-benchmarks
like STREAM and LMBench.

1 Introduction

Computing clusters built from standard components using Intel processors are becom-
ing the fastest growing choice for high-performance computing (HPC). Twice yearly,
the 500 most powerful computing systems in the world are ranked on the Top 500
Supercomputer Sites Web page [1]. In June 2002 the ranking listed 44 entries using
Intel processors; two years later in June 2004, that number reached 287.

Industry standard Intel processors-based servers are changing the landscape of the
enterprise server market and in particular high-performance computing. Intel has
continuously introduced processors at higher frequencies, larger caches and faster
front-side buses. Technological innovations such as hyper-threading, Streaming
SIMD (Single Instruction Multiple Data) instructions and NetBurst micro-architecture
significantly increased 32-bit Intel processor performance [2]. 64-bit Itanium-2 proc-
essors are based on the EPIC (Explicitly Parallel Instruction Computing) architecture
and have claimed the top spot in several industry-standard benchmarks [3]. Intel re-
cently introduced a 90nm version of the 32-bit Xeon processors. The key architectural
differences are faster processor and front side bus (FSB) frequencies and larger
caches. In addition there are several bandwidth-enabling technologies like DDR2
(Double Data Rate) memory and PCI Express available in the new Dell servers sup-
porting the 90nm Xeon processors.

R. Radhakrishnan et al. 1018

This paper compares the performance characteristics of Dell PowerEdge server
models equipped with Intel Xeon (32-bit) processors, the new 90nm Xeon (Nocona)
and Itanium-2 (64-bit) processor using an HPC application, BLAST (Basic Local
Alignment Search Tool), that is widely used in the field of bioinformatics. The aim is
to understand the impact of the different features and technologies that are featured in
the Intel processors, as well as the impact of the memory technology on the perform-
ance of BLAST. To achieve this end, we use micro-benchmarks like LMbench [5]
and Stream [6], in addition to analysis tools that read the processor performance
counters. Furthermore we also look at the effect of the processor clock frequency on
the performance of BLAST.

Table 1. Servers used in this study

 PE1750 (IA-32) PE1850 (IA-32) PE3250 (IA-64)
CPU Dual Xeon @3.2

GHz (130 nm)
Dual Xeon @3.2 GHz

and @3.6 GHz (90nm)
Dual Itanium2 @1.5

GHz
FSB 64-bits @ 533 MHz 64-bits @ 800 MHz 128-bits @ 400 MHz

Cache size L2: 512 KB L3: 1 MB L2: 1 MB L2: 256MB L3: 6 MB
Memory 4 GB DDR-266 MHz 4 GB DDR2-400 MHz 4 GB DDR-266MHz

 Bandwidth 4.8 GB/s 6.4 GB/s 6.4 GB/s

Table 1 lists the servers used along with the processor technology in each of these
servers. In this paper we will use the Dell model names to avoid ambiguity between
the current generation 130nm process based IA-32 Xeon and the newer 90nm Xeon
processor. Empirical studies have shown that small-scale symmetric multiprocessing
(SMP) systems make excellent platforms for building HPC clusters. Thus in our study
all the servers used were two-processor systems. [4]

In the next section we describe the features of the three different processor and
server architectures. Section 3 illustrates the results and analysis done on these plat-
forms using BLAST and the micro benchmarks. We conclude in Section 4.

2 Comparison of the Intel Processor Based Systems

We use three servers - Dell PowerEdge 1750, PowerEdge 1850 and PowerEdge 3250
servers in this study. In the following sections we provide an architectural overview
of the processor and memory subsystems used in these servers since they have the
biggest impact on the performance of BLAST.

2.1 Processor Architecture Overview

The NetBurst™ micro-architecture is the core of Intel’s 130nm technology based 32-
bit Xeon processor used in the Dell PE1750. The NetBurst architecture uses a 20-
stage pipeline which allows higher core frequencies. The 130 nm Xeon processors
were introduced at speeds of 1.8 GHz and are currently available at speeds of up to
3.2 GHz. The system bus or FSB scaled from 400MHz in the initial 180nm Xeon
offerings to 533 MHz on the current 3.2 GHz 130nm technology based processors.

Evaluating Performance of BLAST on Intel Xeon and Itanium2 Processors 1019

The Xeon processor is a superscalar processor that combines out-of-order specula-
tive execution with register renaming and branch prediction to improve performance.
The processor uses an Execution Trace Cache that stores pre-decoded micro-
operations. Streaming SIMD (Single Instruction Multiple Data) instructions (SSE2)
are used to speedup media types of workload.

The PE1850 is the follow-on to the PE1750 which will use the new Intel Xeon
processor fabricated using a 90-nm process technology. The 90nm Xeon processor is
an extension of the 130-nm based Xeon processor. However, there are some architec-
tural changes between these two Xeon processors that will have an impact on applica-
tion performance. The 90nm Xeon processor is being introduced at a frequency of 3.6
GHz coupled with a faster 800 MHz system bus. It uses a longer 31-stage processor
pipeline that will facilitate higher frequencies in future versions.

The Dell PE3250 system is based on the Itanium Processor Family (IPF) which
uses a 64-bit architecture and implements the Explicitly Parallel Computing (EPIC)
architecture. Instructions in groups, called bundles, are issued in parallel, depending
on the available resources. The Itanium2 differs from the Xeon processors in the fact
that it uses software (compiler) to exploit parallelism, as opposed to complex hard-
ware to detect and exploit instruction parallelism. Software compilers provide the
information needed to execute parallel instructions efficiently.

Itanium2 processors are available in frequencies ranging from 1.0 GHz to 1.6 GHz
and use varying sizes of L3 caches ranging from 1.5 MB to 6MB. A 128-bit 400 MHz
system bus (FSB) is used to connect the processors. The Itanium2 processor has a
large number of registers compared to the Xeon processors (128 64-bit GPRs) that are
used by the compiler to keep the 6 Integer Functional Units busy.

2.2 Cache and Memory Subsystem Differences

The Dell PE1750 and PE3250 use DDR 266 or PC-2100 memory. The PE3250, how-
ever, operates at the speed of DDR 200. The PE1850 uses the new DDR2 memory
running at 400MHz (PC2-3200) which has a theoretical bandwidth of 3.2GB/s.
DDR2 architecture is also based on the industry-standard DRAM (Dynamic Random
Access Memory) technology. DDR2 standard contains several major internal changes
that allow improvements in areas such as reliability and power consumption. One of
the most important features is its ability to pre-fetch 4-bits of memory at a time com-
pared to 2-bits in DDR [7].

DDR2 transfer speed starts where the current DDR technology ends at 400 MHz. In
the future DDR2 will support 533 and 667 mega-transfers/sec (MT/s) to enable mem-
ory bandwidths of 4.3GB/s and 5.3GB/s. Currently only DDR2-400 is available,
which is the memory technology used in the PE1850 system. The performance advan-
tage of the new DDR2 technology is shown in Section 3, where we measure the band-
width and latency for the PE1850.

In addition to memory, the cache hierarchy also plays an important part in an
application’s performance The 130nm Xeon used in the PE1750 and Itanium2 used in
the PE3250 come with a Level 3 (L3) cache (optional in the Xeon processor). The
90nm Xeon only has 2 levels of caches. Section 5.2 enumerates the measured cache
latencies for the three processors.

R. Radhakrishnan et al. 1020

3 Performance Evaluation and Analysis

In this section we measure the cache latencies, memory latency and bandwidth on the
Dell PowerEdge servers. Results from executing BLAST [8] on the servers are also
studied in this section. BLAST was executed on each of the four configurations using
a database of about 2 million sequences with about 10 billion total letters. For our
study we executed blast against single queries of three different lengths – 94K charac-
ters (small), 206K characters (medium) and 510K characters (large). Runs were con-
ducted using both single and dual threads.

3.1 Cache/Memory Latency and Bandwidth results

The cache and memory latencies measured using LMbench is shown in Table 3. The
latencies are shown in absolute time (nanoseconds or 10-9 seconds), as well as in
terms of processor clock cycles (where one clock cycle = 1/CPU frequency).

Table 2. Cache and memory latencies measured using LMbench

PE1750
3.2 GHz
(130nm Xeon)

PE1850
3.2 GHz
(90nm Xeon)

PE3250
1.5 GHz
(Itanium2)

Cache/
Memory

Levels
Time cycles Time cycles Time cycles

L1 0.63ns 2 1.3ns 4 1.34ns 2

L2 5.7ns 18 9.0ns 29 4.02ns 6
L3 8.5ns 27 N/A -N/A- 13.7ns 21
memory 128ns 410 116ns 371 201ns 302

The L1 data cache access latency is observed to double for the new 90nm Xeon,
compared to the 130nm Xeon. This is due to the cache size being doubled. In terms
of clock cycles, the cache and memory access times for Itanium2 processor are
lower compare to the Xeon processors. However, when comparing absolute mem-
ory access times, the PE3250 has the highest value since it runs at a slower speed
of 200 MHz.

Figure 1 shows the measured memory bandwidth using the Stream benchmark. The
PE3250 and PE1850 show good improvements over the PE1750 due to a wider sys-
tem bus (128 bits) and faster memory clock speed (200 MHz) respectively.

3.2 BLAST Performance on the Three Intel Processors

In this section we evaluate the performance of BLAST on the four systems using
different query sizes, and running single and dual threads. The importance of proces-
sor frequency, architecture and memory subsystem design can be inferred from the
results obtained on the four configurations that the workload was tested against.

Evaluating Performance of BLAST on Intel Xeon and Itanium2 Processors 1021

32
82

31
55 33

91

35
24

36
66

36
75

37
37

36
46

24
27

24
31

21
94

21
62

0

500

1000

1500
2000

2500

3000

3500

4000

Copy Scale Add Triad

Th
ro

ug
hp

ut
 (M

B
/s

)

Itanium2 (1.5GHz) Xeon (3.2GHz, 90nm) Xeon (3.2GHz, 120nm)

Fig. 1. Sustainable memory bandwidth measured using Stream benchmark

Figure 2 shows run time in seconds to complete the various query sizes on the four
Dell systems. Three query sizes – 94k, 206k and 510k were chosen to represent a
small, medium and large query size respectively. The database that these queries were
matched against remained constant. The medium and large queries are 2.2 and 5.4
times larger than the small query size (94k). When comparing the run times from
Figure 1, the query completion times for medium and larger query sizes are 2.6 and
8.3 times longer for the single threaded runs and 2.7 and 8.8 times longer for the dual
threaded runs. This shows that as query sizes become larger, the run times increase
exponentially as opposed to increasing in a linear fashion.

30
5

16
1 78

6

43
3

25
33

14
21

48
8

26
8

11
53

67
4

35
36

22
71

52
1

27
9

12
45

69
9

38
34

25
36

70
5

38
2

17
50

10
24

32
59

56
24

0

1000

2000

3000

4000

5000

6000

94k
(1Thread)

94k
(2Thread)

206k
(1Thread)

206k
(2Thread)

510k
(1Thread)

510k
(2Thread)

Query size/ # of threads

R
u

n
 t

im
e

(s
ec

o
n

d
s)

Itanium2 (1.5GHz)

Xeon (3.6Ghz, 90nm)

Xeon (3.2GHz, 90nm)

Xeon (3.2GHz, 120nm)

Fig. 2. Completion time in seconds for the four test-beds

Figure 3 illustrates the speedup obtained when running queries using dual threads
compared to running in single threaded mode. When going to larger query sizes the
speedup from dual threads is lower compared to smaller query sizes. Figure 4 illus-

R. Radhakrishnan et al. 1022

trates the relative performance for the PE3250 and PE1850 when compared to the
PE1750 system running dual 120nm 3.2 GHz Xeon processors.

89
.4

4%

81
.5

2%

78
.2

5%

82
.0

9%

71
.0

7%

55
.7

0%

86
.7

4%

78
.1

1%

51
.1

8%

84
.5

5%

70
.9

0%

72
.5

7%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

94k 206k 510k
Query Sizes

P
er

fo
rm

an
ce

e
Im

pr
ov

em
en

t

Itanium2 (1.5GHz)
Xeon (3.6Ghz, 90nm)
Xeon (3.2GHz, 90nm)
Xeon (3.2GHz, 120nm)

Fig. 3. Percentage improvement for the three query sizes when running two threads

The PE3250 with the Itanium2 processor has the best performance for all query
sizes and exhibits speedup ranging from 123% to 137% over the PE1750. It was ob-
served that BLAST scaled more efficiently on the PE3250 with Itanium2 processor.
Therefore in Figure 4 the speedup for Itanium2 is slightly higher for dual threaded
runs.

2.
31 2.
37

2.
23 2.

36

2.
22 2.
29

1.
44

1.
43 1.
52

1.
52 1.
59

1.
44

1.
35

1.
37

1.
41 1.
46

1.
47

1.
29

1 1 1 1 11

0.00

0.50

1.00

1.50

2.00

2.50

94k
(1Thread)

94k
(2Thread)

206k
(1Thread)

206k
(2Thread)

510k
(1Thread)

510k
(2Thread)

Query size/ # of threads

R
u

n
 t

im
e

(s
ec

o
n

d
s)

Itanium2 (1.5GHz) Xeon (3.6Ghz, 90nm)
Xeon (3.2GHz, 90nm) Xeon (3.2GHz, 120nm)

Fig. 4. Performance speedup for PE3250 and PE1850 over the PE1750

Figure 4 also shows that frequency increase from 3.2 to 3.6 GHz (13% frequency
scaling) for the 90nm Xeon only resulted in a 6-11% improvement for small and

Evaluating Performance of BLAST on Intel Xeon and Itanium2 Processors 1023

medium query sizes. For the larger query size improvement from frequency scaling
was slightly higher at 12-15%. Therefore BLAST is observed to scale well with in-
creasing processor frequency on the Xeon processors, especially on larger query
sizes. Figure 4 also shows that the speedup for single and dual threads is in the same
ballpark for all systems except for the PE1850 when using a 510k query size. This
was observed in Figure 3, which showed that the scaling for dual threads on the No-
cona processors were only ~50% compared to 70 and 80% for smaller query sizes.

4 Conclusions

On the PE1750 and PE1850 the difference in performance is mainly from the im-
proved DDR2 technology. The measured cache miss rates were same, and so were
other metrics like branch prediction etc. Therefore, the cache miss penalty is higher
on the PE1850 due to larger cache access times and branch misprediction penalty is
higher due to a longer processor pipeline. In spite of this, the performance was better
on the PE1850 by 29% for the 3.2 GHz processor and 44% for the 3.6 GHz processor.
The 29% speedup is mainly due to faster memory and 44% is due to faster memory
plus the frequency scaling. Larger cache size on the Itanium2 processor, along with
ability to execute higher number of integer instructions per cycle help achieve speed-
ups of 130% on the larger query size.

References

1. Top 500 Supercomputer Sites. http://www.top500.org/
2. D. Koufaty, D. T. Marr,"Hyperthreading technology in the netburst microarchitecture",

Intel, IEEE Micro, Volume 23, Number 2, March/April 2003, p 56-65
3. H. Sharangpani, K. Arora,"Itanium Processor Microarchitecture", Intel, IEEE Micro, Vol-

ume 20, Number 5, September/October 2000, p 24-43
4. J. Hsieh, T. Leng, V. Mashayekhi, and R. Rooholamini, “Impact of Level 2 Cache and

Memory Subsystem on the Scalability of Clusters of Small-Scale SMP Servers”, Cluster
2000, Chemnitz, Germany, November 2000.

5. LMBench: http://www.bitmover.com/lmbench/
6. The Stream benchmark: http://www.streambench.org/
7. DDR2 Advantages for Dual-Processor Servers,

http://www.memforum.org/memorybasics/ddr2/DDR2_Whitepaper.pdf, August 2004
8. BLAST Home Page at NCBI. http://www.ncbi.nih.gov/BLAST/

 J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 1024–1029, 2004.
© Springer-Verlag Berlin Heidelberg 2004

PEZW-ID: An Algorithm for Distributed Parallel
Embedded Zerotree Wavelet Encoder

Zhi-ming Chang, Yan-huang Jiang, Xue-jun Yang, and Xiang-li Qu

School of Computer,
National University of Defense Technology, ChangSha, Hunan, China

cazimi@163.com

Abstract. The image compression algorithm based on EZW can get any
compression ratio as specified, which is widely used in the field of image
processing. However, with massive computation during wavelet transformation
and multiple scans of the transformed wavelet coefficient matrix during
encoding processing, much time is consumed. Therefore, both the parallelism
of wavelet transformation and zerotree encoding for EZW are necessary, and
then we present PEZW-ID: an algorithm for distributed parallel embedded
zerotree wavelet encoder. This paper describes the flow of the algorithm,
proves the validity, and shows the performance analysis. Finally, with the
experimental results under MPP, the parallelism and scalability of the algorithm
have been verified.

1 Introduction

Embedded Zerotree Wavelet encoder or EZW encoder algorithm[1, 2], first proposed by
Shapiro in 1993, which is based on progressive encoding to compress an image into a
bit stream with increasing accuracy. This means that when more bits are added to the
stream, the decoded image will contain more details; a property similar to JPEG
encoded images. Additionally, EZW encoder can be used in both loss compression
and lossless compression. The ratio of lossless compression with EZW can approach
3, which are close to JPEG-LS encoder algorithm[3]. Therefore, it became the
milestone of static wavelet-based image compression. Afterwards, zerotree encoder is
more and more recognized by many researchers, and many improved algorithms were
proposed, the most popular one is set partitioning in hierarchical trees (SPIHT) [4]
algorithm, given by A. Said and W. A. Pearlman in 1996. EZW has comprehensive
applications in many domains, such as medicinal images database, ISDN, and remote-
sensing images.

EZW algorithm, however, needs massive convolutions during wavelet
transformation before encoding; furthermore, it needs scan each coefficient in the
whole matrix to determine zerotrees and the scan times mainly depends on the
maximum coefficient of the transformed matrix. Both of these two sub procedures
make EZW encoder algorithm more time-consuming. It is surveyed that the
percentage of wavelet transformation and encoding is almost above 95%. Therefore, it

PEZW-ID: An Algorithm for Distributed Parallel Embedded Zerotree 1025

is necessary to parallelize EZW algorithm and we present an algorithm for Parallel
Embedded Zerotree Wavelet encoder based on Image Division (PEZW-ID) to solve
the problem.

The rest of the paper is organized as follows: in section 2 the flow of PEZW- ID is
described in detail, and then we prove the correctness and analyze the performance
for PEZW-ID. Section 3 gives the experimental results which can show the
parallelism. Finally, we draw a conclusion in PEZW-ID algorithm.

2 Description of PEZW-ID Algorithm and Its Analysis

In this section, we present a parallelization approach similar to an SPMD scheme, and
suppose that a management node is responsible to global operations and P computing
nodes each complete their own local computation.

2.1 Flow of PEZW-ID Algorithm

From the analysis above, we can know that almost all the computation of EZW
algorithm focuses on wavelet transformation and zerotree encoding. Therefore, the
main idea of PEZW-ID algorithm is as follows:

Fig. 1. The main procedures of PEZW-ID algorithm

First, Management node divides the source image into several subimages with
equal sizes by the number of computing nodes P and then sends these subimages
(broadcast) to all the computing nodes, each subimage should contain some
redundancy data of neighbors’. Second, each computing node begins to do wavelet
transformation and zerotree encoding, both of which are the same as the serial
algorithm. The initial threshold can be determined after wavelet transformation, for
each computing node broadcasts its local maximum of wavelet coefficients. Third,

Z.-m. Chang et al. 1026

these encoders and subband information will be sent (point to point) to management
node. Finally, management node would receive all the encoders and produce a
compressed file, which is the same as the serial algorithm does. The whole procedure
can be referred from Figure 1.

2.2 Validity of PEZW-ID Algorithm

However, the motivation of PEZW-ID algorithm is to improve processing speed and
decrease processing time under the guarantee that the compressed stream is the same
as the stream generated by the serial algorithm.

After each computing node does wavelet transformation for its own subimage,
every transformed wavelet coefficient does has a one-by-one correspondence to the
coefficient transformed by serial wavelet transformation. We use Mallet
decomposing algorithm [5] to do wavelet transformation. Thus we should add some
redundancy image data, which depend on the half-length of the wavelet base in
order to ensure the correctness of wavelet coefficients on each computing node.
PEZW-ID algorithm divides the source image equally by 4 computing nodes, as is
shown in figure 2(A).

(A) (B)

Fig. 2. The validity of PEZW-ID algorithm for 4 computing nodes

The resulting compression stream sorted by management node is the same as the
one generated by serial algorithm. Because of the correctness of wavelet coefficients
in all the computing nodes, the maximum of wavelet coefficients can be determined if
each computing node broadcasts its local maximum to all the computing nodes, and
the initial threshold will be determined as well. Furthermore, it is known that there
exists a kind of parent-child relationship [1] among wavelet coefficients seen in figure
2(B). Therefore, if we add scan order and subband values to encoders, management
node can restore the compression encoder of serial algorithm. This processing uses
the radix sort algorithm, which can sort all the encoders by priority keywords
(subband value <subimage id < scan order).

PEZW-ID: An Algorithm for Distributed Parallel Embedded Zerotree 1027

2.3 The Analysis of PEZW-ID Algorithm

In PEZW-ID algorithm, since both sending image data and encoder data are much
fewer (ignore to broadcast threshold) than the massive computation, we can learn that
the computation-to-communication is very ideal.

The algorithm has good data locality, since wavelet coefficients have a parent-child
relationship, thus a wavelet coefficient on one computing node can’t appear in other
nodes. Additionally, dividing source image equally can reach the goal of load
balancing of wavelet transformation while the same scan times of EZW encoder will
lead to similar time consumption. In general, we believe that PEZW-ID achieves high
performance because of good load balance and data locality.

3 Experimental Results

The fundamental environment of MPP for implementing PEZW-ID algorithm is as
follows: it has 32 homogeneous nodes, in which CPU processes 16.6 hundred
millions float operations per a second and has 1GB local memory, and the network
topology is based on Fat Tree with transfer speed of 1.2Gb/s; the operating system is
UNIX and the parallel communication is based on MPI message library. In the
following results, we set one node as management node; the maximum of computing
nodes correspondingly is 31.

Table 1 shows the results for lossless compression of Lena’s images with different
sizes on MPP. Since global operation will have some effects on the performance of
the parallel processing, the speedup will increase slowly in contrast to the number of
computing nodes. Additionally, larger image will obtain better speedup because the
ratio of communication-to-computing is less, as can be seen from figure 3(A).

Table 1. Results of lossless compression of Lena’s images

The number of nodes 1 2 4 8 16 31
Transformation 811 408 212 108 61 37
Encoding 4573 2291 1150 582 297 153

1024^2
(ms)

Total time 5935 3427 2174 1481 1261 1134
Transformation 3211 1612 809 407 212 114
Encoding 17716 8861 4435 2223 1122 584

2048^2
(ms)

Total time 22081 11415 6359 3673 2341 1749
Transformation 13384 6705 3358 1686 849 432
Encoding 75183 37603 18812 9415 4713 2362

4096^2
(ms)

Total time 89531 46204 24192 12612 6647 4230
Transformation 54870 27484 13806 6953 3504 1878
Encoding 313890 156997 78520 39268 19645 9886

8192^2
(ms)

Total time 371673 189770 97416 51414 27431 16414

PEZW-ID algorithm can be extended to loss compression, but the ratio of loss
compression is based on scan times. To implement any ratio compression, the
management node should omit some redundant data of the lossless compression
encoder, thus the result is similar to the above one. Results of different compression

Z.-m. Chang et al. 1028

ratio listed in Table 2 come from the processing for Lena’s image with size 2048
based on different scan times; also the speedup can be seen in figure 3(B).

Table 2. Results of loss compression of Lena’s images

Compression ratio in contrast to lossless compression (ms) The number of
computing nodes 100% 96% 70% 40% 12%

1 22081 21018 17196 12390 7885
2 11415 11061 9136 7112 4478
4 6359 6073 5061 3885 2762
8 3673 3512 3070 2566 1923
16 2341 2372 2084 1861 1490
31 1749 1730 1575 1418 1249

(A) (B)

Fig. 3. Speedup of PEZW-ID algorithm

4 Conclusions

This paper targets the problem that much time will be consumed in wavelet
transformation and encoding in EZW, and presents PEZW-ID: an algorithm for
distributed parallel embedded zerotree wavelet encoder. This algorithm has the some
advantages: first, it can reach nearly linear speedup; second, it has the property of
good data locality and load balancing.

In the paper, we describe the flow of the algorithm, prove the validity, and show
the performance analysis. Finally, the experimental results in MPP have verified the
speedup and scalability of the algorithm.

But currently PEZW-ID can’t reach any compression ratio effectively, and SPIHT
isn’t used to optimize the algorithm. All awaits our solutions in the near future.

References

1. Shapiro, J. M.: Embedded Image Coding Using Zerotrees of Wavelet Coefficents. IEEE
Transactions on Signal Processing (1993) 3445-3462.

PEZW-ID: An Algorithm for Distributed Parallel Embedded Zerotree 1029

2. Creusere, C. D.: A New Method of Robust Image Compression Based on The Embedded
Zerotree Wavelet Algorithm. IEEE Transactions on Image Processing (1997) 1436-1442.

3. Paul G. Howard, Jeffrey Scott Vitter.: Fast and Efficient Lossless Image Compression. IEEE
Computer Society/NASA/CESDIS Data Compression Conference (1993) 351-360.

4. Amir Said, William A. Pearlman.: A New, Fast, and Efficient Image Codec Based on Set
Parition in Hierarchical Trees. IEEE transactions on circuits and systems for video
technology. (1996).

5. Stephane G. Mallat: A Theory for Multiresolution Signal Decomposition: The Wavelet
Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence (1989)
674-693.

Enhanced-Star: A New Topology Based
on the Star Graph

Hamid Reza Tajozzakerin1 and Hamid Sarbazi-Azad1,2

1 School of Computer Science, IPM, Tehran, Iran
2 Computer Engineering Dept., Sharif Univ. of Technology, Tehran, Iran

azad@sharif.edu, {tajozzakerin, azad}@ipm.ir

Abstract. The star graph, though an attractive alternative to the hypercube, has
a poor network bandwidth due to a lower number of channels compared to that
in an equivalent hypercube. In order to alleviate this drawback, this paper
presents a generalization of the star graph topology with a richer connectivity,
called the enhanced-star. We also examine some topological properties of the
proposed network. Some useful functions such as multi-node broadcasting,
scattering, total exchange, and group communication, in the enhanced-star are
also addressed. We show these operations can be completed faster in the
enhanced-star (compared to the star).

1 Introduction

The interconnection network is a crucially important part of any parallel processing or
distributed system. A large variety of topologies have been proposed and analyzed.
Design features for an efficient interconnection topology include properties such as
low degree, regularity, small diameter, high fault tolerance, high connectivity, and the
existence of simple and efficient routing algorithms.

One of the most efficient interconnection networks is the well-known hypercube;
it has been employed in various commercial multiprocessor machines. Another family
of regular graphs called the star graphs has also received much attention as an
attractive alternative to the hypercube [1], [6]. The star graph belongs to the class of
Cayley graphs [2], is symmetric and strongly hierarchical, and has lower diameter and
node degree compared to those of an equivalent hypercube. The star graph of
dimension n (or the n-star), denoted as Sn, is regular of degree 1n − , has !N n=

nodes and a diameter of 3(1) / 2n − .

The Sn has !(1)n n − links which is smaller than that in a comparable hypercube.

This causes more traffic on the network channels that may dramatically reduce the
overall performance of the network. The enhanced-star reduces this effect while
preserving many properties of Sn, such as node symmetry and simple minimal routing.
It has some better properties discussed in the next sections.

The rest of the paper is organized as follows. Section 2 defines the enhanced-star
and introduces a minimal routing algorithm for it. In Section 3, we derive some
topological properties of the enhanced-star. In Section 4, some time-optimal basic

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 1030–1038, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Enhanced-Star: A New Topology Based on the Star Graph 1031

communication functions are introduced in the enhanced-star. In Section 5, an
efficient group communication function in the enhanced-star is proposed. In section 6,
compare our topology with other topologies developed base on star previously.
Finally, Section 7 concludes this study.

2 The Enhanced-Star: Definition and Properties

Definition1. Generator gfi is defined as)11121121()......(niiiniiii ppppppppppppgf +−+− =

and generator gli is defined as)......()......(11111121 inininiiii ppppppppppppgl −+−+− = where

nppp ...21 is a permutation of 123...n and 1 i n< < .

Definition 2. The enhanced-star, denoted as ESn, consists of n! nodes labeled with n!
different permutation of n distinct symbols n,,2,1 . Two nodes u and v are connected,

in an ESn, if and only if there exists a generator igf or igl such that ()igl u v= or

()igf u v= . Note that ()igl u v= if uvgli =)(, and ()igf u v= if uvgfi =)(.

For example, 3 (1234)=3214gf and 3(1234)=1243gl .

Alternatively, an ESn includes n! nodes, each addressed by a permutation of n

symbols n,,2,1 . A node)(1121 niii aaaaaaA +−= is connected to node

)(' 1112 niii aaaaaaA +−= and node)(" 1121 iini aaaaaaA +−= in

dimension i. Figure 1 shows the 3-dimensional and 4-dimensional enhanced-stars, ES3
and ES4.

2.1 Unicast Routing

We need two simple rules to find the path between two nodes. Due to node
symmetry property, we may, without lose of generality, show how to route from any

node to the identity node)123(nI k = .

RULE 1. If symbol 1 is the first symbol and n is the last symbol, move one of them to
any position not occupied by a correct symbol.
RULE 2. If x is the first symbol (where },,3,2{ nx ∈) or x is the last symbol

(where }1,,3,2,1{ −∈ nx), then move it to its correct position.

Like the algorithm for the star, the above rules ensure a minimal path between any
two nodes. As mentioned in [1], any permutation can be viewed as a set of cycles. For
example, node 3541762 consists of the cycles (134), (257) and (6) . Any symbol

already in its correct position (e.g. cycle 6), appears as a 1-cycle. We may consider
the above cycle representation for the enhanced-star. Now for a given permutation ,π

H.R. Tajozzakerin and H. Sarbazi-Azad 1032

let c1, the cycle of length of at least 2, include symbol 1 but not symbol n. Similarly,
assume that cn, the cycle of length of at least 2, includes symbol n but not symbol 1,
and c1,n is the cycle including both symbols 1 and n. Let c be the number of cycles
including other symbols (all symbols excluding 1 and n) and m be the total number of
symbols in these cycles (the number of symbols not in their correct positions). The

minimum distance ()d π from the identity node kI can be derived using Theorem 1.

Theorem 1. The distance)(πd from any node π to the identity node kI , in nES ,

is given by

1 1, 1

0, (1) 1 and ()

() 4, 0 and 0

2, otherwise
n n n

n n

d c c c c m c c

π π
π

= =
= + + + + − ≠ ≠ (1)

Proof. Assume the two rules mentioned above. In the ESn, we can swap the last
symbol and the first symbol, if required. Thus, it is not necessary to move a symbol,
wrongly occupying the last position, to the first position and then to its correct
position. That is, we can move such a symbol directly to its correct position, reducing
two additional steps when we have disjoint cycles including 1 and n (one cycle
includes 1 and another cycle includes n).

1a
2a

Fig. 1. Some enhanced-stars, (a) 3-D enhanced-star, and (b) 4-D enhanced-star

3214

3124

1234

2134

1324

2314

4231

2431

3421 2341
4321

3412

4312 1432

41321342

3142

2413

1423 4213

1243
2143

2b
1b

3b

1c

2c

1d 2d

2e

1e

f

2b g

1h

2h

1k

2k
2k

2d
2e m

n

p

1a

1e

1d

r

s

f t

t

q

u

1h
1b

1c

un

q

p

2c

2k

2h r

g

s

3b

m

4ES)b(

123

231

213321

132

312

3ES)a(

2a

3241

4123

Enhanced-Star: A New Topology Based on the Star Graph 1033

Suppose that cn 0. It means that a symbol (not symbol n) has occupied the last
position. It can move to its correct position at one step (unlike the star which requires
3 steps). For example, if 21453π = , the cycle representation is (12)(345) . So we

have, 1 1,=1, =1, =0, =0n nc c c c and =5m resulting in a distance of ()=3d π .

Note that the distance between node 21453π = and the identity node in the star is 5.

2.2 Diameter and Average Distance

In this section, we derive the diameter for the enhanced-star and the average inter-
node distance.

Assume n is even and the source node is A= 1]2][1[5432

12/21 −

−−
npairpairpair

nnn . It is

obvious that the distance between node A and the identity node is the maximum inter-
node distance (or diameter) in the network. To move from A to Ik, we require one
swap to correct the first and last positions and 3 swaps for every remaining symbol
pair. Thus, the distance to the identity node (network diameter) is

3(-1)
1+3(-2)/2=

2

n
n (2)

When n is odd, the node at the maximum distance from the identity node may

have an address in the form A= 2]2][1[65431

12/21 −

−−
npairpairpair

nnn . We require 2

swaps to correct positions of symbols 1, 2, and n, and 3 swaps for every remaining
symbol pair. Therefore, the maximum distance can be given by

3 -5
2+3(-3)/2=

2

n
n (3)

The average inter-node distance for any symmetric network is determined by the
summation of the distance between given node and all other nodes in the network
divided by the total number of destination nodes (network size minus 1). Since the
enhanced-star is node symmetric, the average inter-node distance equals the average

of distances between the identity node kI and all other nodes in the network. In [2]

the average inter-node distance of the n-dimensional star is given to be

2
4nn H

n
+ + − (4)

where nH is the n-th harmonic number given by
=

=
n

1i
n i

1
H .

Lets assume that average inter-node distance in an n-dimensional enhanced-star
is given by

H.R. Tajozzakerin and H. Sarbazi-Azad 1034

2
4nd n H x

n
= + + − − (5)

where x accounts for the reduction achieved in the enhanced-star compared to its
equivalent star. In what follows we try to calculate x. To this end, two different cases
must be considered.

a) when 1 is the first symbol and n is not the last, the distance is reduced by 2
(compared to the equivalent star). The number of address patterns with such
property is 1 (-2) (-2)!n n× × . Thus, the distance will be decreased by

2(-2)(-2)!n n hops in the total summation of inter-node distances. Hence,

an overall reduction of

1

2(-2)(-2)! 2(-2)

! 1 (1)

n n n
x

n n n
= ≈

− −
 (6)

may be achieved for the average inter-node distance.
b) when there are two disjoint cycles, in the node address pattern, one including

symbol 1 and the other including symbol n (as discussed above), some
reduction may be achieved for the average distance inter-node distance.
Since one symbol in each cycle is known (1 and n), the remaining n-2
symbols may be included in any of these two cycles. The first cycle may take
i, 0 2i n≤ ≤ − , remaining symbols leaving n-2-i symbols for the other

cycle. For each case (corresponding to some i), there are (1)!i +

permutations in cycle 1 (for symbol 1 and other i symbols) and (1)!n i− −

permutations in cycle 2 (for symbol n and other n-i-2 symbols). Therefore,
the total number of node address patterns with two cycles (the first cycle
with symbol 1 and the second cycle with symbol n) can be given as

2

0

2
(1)! (1)!

n

i

n
i n i

i

−

=

−
× + × − − (7)

For some of these patterns we might save 0, 1, or 2 swaps (compared to
the star). Thus, an upper bound of

2

0

2

2
2 (1)! (1)!

! 1

n

i

n
i n i

i
x

n

−

=

−
× + × − −

=
−

(8)

hops is reduced from the average inter-node distance in the enhanced-star
(compared to the star).

Therefore, the reduction x, for the average inter-node distance in the n-

dimensional enhanced-star, can be given by 1 2x x x= + . To have a fair comparison

between the star and the enhanced-star, let us consider the upper bound of the average

Enhanced-Star: A New Topology Based on the Star Graph 1035

inter-node diameter in the enhanced-star. To this end, we must use the lower bound

for x, i.e. 1x x= .

Table 1 shows the average inter-node distance in the enhanced-star (an upper
bound calculated above) and the star as a function of network dimensionality, n. As
can be seen in this figure, even when considering upper bounds, the enhanced-star has
a lower average inter-node distance compared to the star.

Table 1. Average inter-node distance in the enhanced-star and star

 N=4 N=5 N=6 N=7 N=8 N=9 N=10
ES 2.3 3.4 4.55 5.67 6.75 7.86 8.9
Star 2.58 3.68 4.79 5.88 6.97 8.05 9.13

3 Group Communication

In this section, we obtain lower bounds on multi-node communication operations
including broadcast, scatter, and total exchange [3].

Multi-node broadcasting is the problem where each node wishes to send a
message to all other nodes. In [3], lower bounds are determined under two
assumptions: SLA (single-link availability) and MLA (multiple-link availability). Let
us consider these assumptions for the enhanced-star. With the first assumption, the
results are similar to those in the star as it is independent of the node degree.
Therefore, the lower bound would be ! 1n − steps since there are !n links available

at each time step. Under the second assumption, all available 2 !(1)n n − links can

be used to transmit messages at each time step. Thus, similar to the approach taken in
[3] for the star, the minimum time required to complete a broadcast is given by

! 1

2(1)

n

n

−
− which is half of that for the star.

Single node scattering is the problem where a specific node wishes to send
different messages to any other node. Again, under SLA assumption, the minimum
time required is ! 1n − steps (like that in the star), and under MLA assumption the

minimum time required to complete a single node scatter can given by
! 1

2(1)

n

n

−
−

which is again half of that for the star.
Total exchange is the problem where each node wishes to send a distinct message

to every other node, i.e. it is equivalent to !n different single node scattering. The

minimum required number of message transmissions is ! !n n d× × . With SLA
condition, because of improvement in the average inter-node distance, the minimum
time required is smaller than that in the star. As discussed previously, !n links are

available resulting in a minimum time of !n d× steps. Under MLA assumption, all

H.R. Tajozzakerin and H. Sarbazi-Azad 1036

available)1(!2 −nn links may be used resulting in a minimum time of
!

2(1)

n d

n

×
−

steps to complete a total exchange. Table 2 shows the total exchange time in the
enhanced-star and the star as a function of network dimensionality, with both SLA and
MLA assumptions.

Some special group communication function. Let us now assume some special

type of group communication operation. Let)(1 iX n− denote all address patterns of

length n with i being the last symbol in the n-dimensional enhanced-star. Given

)(1 iX n− and)(1 jX n− , with ,ji ≠ it is required to exchange the contents of the

nodes in)(1 iX n− with those of the nodes in 1().nX j− Such a group communication

function can be effectively done in one communication step in the enhanced-star as
shown in Procedure Copy below.

Procedure COPY (i, j)
For all vertices *i and *j do in parallel

Exchange contents along dimension r, where r is
the position at which symbol j appears in *i or
the position at which symbol i appears in *j ;

 End For;
End Copy;

Note that in Step 2, every node in sub-network)(1 iX n− (or)(1 jX n−) exchange

its content along dimension r with its neighbor in sub-network)(1 jX n− (or

)(1 iX n−).

Table 2. The total exchange time in the enhanced-star and star with SLA and MLA assumptions

 N=4 N=5 N=6 N=7 N=8 N=9 N=10

ES under MLA 6.74 40.41 270.53 2031.74 17050.6 158787.43 1628618.8

Star under MLA 20.67 110.5 688.8 4938 40134.86 365201.9 3680800

ES under SLA 40.43 323.25 2705.3 24380.83 238708.4 2540598.9 29315138.06

Star under SLA 62 442 3444 29428 280944 2921615.96 33127199.94

4 Comparison to Other Star-Based Networks

In [7], incomplete star (IS) was introduced to achieve more scalability by filling the
wide gap between two consecutive sizes of the star graphs. However, it has some
drawbacks such as complex labeling and routing schemes. The IS network has the
same diameter as the star although some links and nodes have been removed that can

Enhanced-Star: A New Topology Based on the Star Graph 1037

cause more delay and traffic on links and may reduce network performance. Another
flavor of the star graph is the star-connected cycles (SCC) as an alternative to the
CCC (cube-connected cycles). Compared to the star graph, the SCC has a longer
diameter but a desirable fixed node degree. The third network from the family of the
star graph is the Macro-star (MS) [9]. It has many desirable properties but longer
diameter compared to the star [9].

Figure 2 shows the diameter and the cost of the network for different star-based
graph topologies. As can be seen in this figure the diameter of the ES is smaller that
that in any other compared network. The cost of the network is, however, worse than
others for large network sizes. Note that for practical network sizes, it is comparable
to other star-based networks.

The main advantage of the ES is more visible when networks are operating in real
conditions. Note that the arrival traffic rate on network channels and average inter-
node distance determine the message latency and overall network performance. Thus,
the ES with more channels, and hence, with a lower arrival traffic rate on its network
channels, and a lower diameter must look good among other star-based network
topologies.

Fig. 2. Comparison of different star-based topologies; (a) Diameter of networks vs. log(number
of nodes); (b) Cost of network vs. log(number of nodes)

5 Conclusions

The star graph is an attractive alternative to the hypercube with many desirable
properties. The lower number of channels, however, compared to the hypercube may
be a drawback when considering network traffic. In this paper, we proposed a new
topology, called the enhanced-stars, based on the star with a richer connectivity while
preserving most desirable properties of the star. We studied some topological
properties and routing functions in the enhanced-star.

(a)
(b)

(b)

H.R. Tajozzakerin and H. Sarbazi-Azad 1038

Our next objective is to realize accurate and detailed simulation of these networks
and comparing their performance empirically under different working conditions.
Developing some important algorithms, e.g. FFT, on the proposed network can also
be a challenging research line for future work.

References

1. Akers, S.B. and Harel, D. and Krishnamurthy, B. The star graph: an attractive alternative to
the hypercube. Proceedings of the International Conference on Parallel Processing, St.
Charles, IL, 1987, pp. 393–400.

2. Akers, S.B. and Krishnamurthy, B.: A group-theoretic model for symmetric interconnection
networks. IEEE Transaction on Computers, Vol. 38, No. 4, 1989, pp. 555–566.

3. Fragopoulou, P. and Akl, S.G. Optimal communication algorithm on star graphs using
spanning tree constructions. Journal of Parallel and Distributed Computing, Vol. 24, 1995,
pp. 55–71.

4. Akl, S.G. and Qiu, K.: A novel routing scheme on the star and pancake networks and its
applications. Parallel Computing, Vol. 19, No. 1, 1993, pp.95–101.

5. Latifi, S.: On fault diameter of star graphs. Information Processing Letters, Vol. 46, 1993,
pp.143–150.

6. Day, K. and Tripathi, A.: A comparative study of topological properties of hypercube and
star graphs. IEEE Trans. on Parallel and Distributed Systems, Vol. 5, N. 1, 1994, pp. 31–38.

7. latifi, S. and Bagherzadeh, N.: Incomplete star: an incrementally scalable network based on
the star graph. IEEE Trans. on Parallel and Distributed Systems, Vol. 5, No. 1, 1994, pp.
97–102.

8. Azevedo, M. M. and Bagherzadeh, N. and latifi, S.: Broadcasting algorithms for the star-
connected cycles interconnection network. Journal of Parallel and Distributed Computing,
Vol. 25, 1995, pp. 209–222.

9. Yeh, C. and Varvarigos, E.: Macro-star networks: efficient low-degree alternatives to star
graphs. IEEE Trans. on Parallel and Distributed Systems, Vol. 9, No. 10, 1998.

 J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 1039–1049, 2004.
© Springer-Verlag Berlin Heidelberg 2004

An RFID-Based Distributed Control System for
Mass Customization Manufacturing

Michael R. Liu1, Q. L. Zhang2, Lionel M. Ni1, and Mitchell M. Tseng2

1 Department of Computer Science, Hong Kong University of Science and Technology,
Clearwater Bay, Kowloon, Hong Kong,
{lrcomp, ni}@cs.ust.hk

2 Department of Industrial Engineering & Engineering Management, Hong Kong University of
Science and Technology, Clearwater Bay, Kowloon, Hong Kong,

{qlzhang,tseng}@ust.hk

Abstract. Mass customization production means to produce customized prod-
ucts to meet individual customer’s need with the efficiency of mass production.
It introduces challenges such as drastic increase of varieties, very small batch
size and random arrival of orders, thus brings to the manufacturing control sys-
tem requirements of flexibility and responsiveness which make mass customi-
zation production a fertile ground for intelligent agents. With RFID (Radio Fre-
quency Identification) integration, an applicable agent-based heterogeneous
coordination mechanism is developed to fulfill the requirements. In this paper,
we propose a distributed system framework including a number of intelligent
agents to collaborate in a virtual market-like environment. The proposed price
mechanism in our system has the advantage of improving the production effi-
ciency and total profit that the manufacturer will receive from a certain amount
of jobs by utilizing a mechanism of both resource competition and job competi-
tion. Based on the simulation results, we compare the total profit, average delay
and average waiting time of our agent-based price mechanism with those based
on the widely exploit FIFO (First In First Out) and EDD (Earliest Due Date)
scheduling mechanisms to show that when resources are with large queue
length, the agent-based price mechanism significantly outperforms the other
two.

1 Introduction

The increasing diversity of the customer requirements and the attraction of the mass
production efficiency shift the major manufacturing mode from mass production to
mass customization. Unlike mass production in which finished products need to be
stocked in inventory and wait to serve customer’s demands, mass customization con-
siders fulfilling individual customer needs while maintaining near mass production ef-
ficiency [12]. Unique information is provided by each customer so that the product
can be tailored to his or her requirements [15]. This mode of manufacturing requires
the production system to be very flexible and its control system adaptive to the rapid
changing customer demands.

While centralized planning and control systems are no longer suited to handle the
increasing system complexity in the high variety and rapid changing manufacturing

M.R. Liu et al. 1040

environments [2], distributed collaborative control and scheduling approaches have
been proposed. Early works, appeared from 1970s, started to introduce the auction
based distributed control mechanisms in the manufacturing applications [7] [9] [10]
[11]. Recently, multi-agent systems (MASs) for resolving manufacturing control
problems have drawn wide interest in many literatures [3] [4] [12] [14]. The MAS in-
corporates various types of market-like protocols to facilitate negotiations among
agents with different functionalities. It provides more flexibility and quicker reactions
to the control systems in dynamic changing environment such as mass customization
manufacturing environment.

Although a lot of research has been carried on in the area of collaborative control
and agent-based auction systems, very few have considered the implementation of
such systems in a real time basis. With the emerging of real time information
technologies such as RFID technology, this application opportunity has been enabled.
Object (part, component, sub-assembly, etc.) in the manufacturing environment is a
attached with an RFID tag which can carry the information such as its identification,
attribute values and production status. The data can be read by an RFID reader and be
forwarded to a subsystem such as PC, robot control system which will use the re-
ceived data to decide the correct operation to be performed at the position to the ob-
ject, without human intervention. The RFID reader can not only read and forward
data, but also write to the tag which makes possible the documentation of any state
changes of the object and therefore keeping track of the system’s status and predicting
the future. Enabled by RFID technology, the control system could become more dy-
namic and flexible in tackling instant changes in the manufacturing systems.

In this paper, we bring further the idea of using collaborative intelligent agents to a
more agent-suited stage with the help of RFID technology. An agent-based job shop
scheduling system is proposed. The agents will access, manage, and utilize the infor-
mation carried with RFID tags, and intelligently anticipate, adapt and actively seek
ways to manage the manufacturing procedure. A two-stage control mechanism is pro-
posed in this system. In the first stage, job agents make decisions about the job rout-
ings based on the job status (carried in RFID tags) and a set of bidding processes with
resource agents. In the second stage, the resource agents manage the queues and make
dispatching decisions in a collaborative manner based on job priority and emergency
factors.

This paper is organized as follows. Section 2 gives a brief introduction to RFID
technology and explains how it can be utilized in a decentralized control system. Sec-
tion 3 explains in detail our agent-based collaborative control mechanism. Section 4
shows the simulation results and performance evaluation. Section 5 concludes the pa-
per and presents future work.

2 RFID Technology

RFID (Radio Frequency Identification) is a means of storing and retrieving data
through magnetic or electromagnetic field. An RFID system is made up of two com-
ponents: RFID tag and RFID reader.

An RFID tag is a data-carrying device and normally consists of a coupling element
and an electronic microchip. A tag is categorized as either passive or active. A passive
tag does not possess its own voltage supply (battery). It absorbs power from the RF
field of the reader and reflects RF signal to the reader after adding information by

An RFID-Based Distributed Control System 1041

modulating the received RF signal. An active tag possesses its own power supply.
Thus it can maintain data in RAM, a temporary working memory for microprocessor.
Active tags usually have a bigger read range than passive tags and are suited to more
applications. However, active tags have limited operational lifetime due to power
constraint and are more expensive.

An RFID reader can read and write data received from RFID tags. It operates on a
defined radio frequency according to a certain protocol. A reader typically contains a
high frequency module (transmitter and receiver), a control unit, and a coupling ele-
ment to the transponder. In addition, many readers are fitted with an additional inter-
face (e.g., RS 232 and RS 485) to interconnect with another system such as PC and
robot control system.

As shown in Figure 1, the power required to activate the tag is supplied to the tag
through the coupling unit (contactless) as is the timing pulse and data [5].

Fig. 1. The reader and the tag are the main components of every RFID system

The characteristic of being contactless, which is achieved by using magnetic or
electromagnetic fields for data exchange and power supply instead of galvanic con-
tacts, gives RFID a broad range of applications from secure internet payment systems
to industrial automation and access control.

3 Agent-Base Collaborative Control System

In this section, we will present detailed introduction to the proposed collaborative
control system for the mass customization manufacturing. We consider a job shop en-
vironment with m flexible machines. Incoming customer orders will come in a ran-
dom manner with detailed customer requirements such as product type and due date.
Different product type requires unique set of operations and setups and therefore can
create different routings in the system. Each flexible machine can perform a set of op-
erations and its working efficiency defers from other machines. The ultimate goal of
the control system is to maximize the total profit which includes the basic job price
and the penalty cost if any delay occurs.

3.1 Distributed Control Mechanism

The control system is designed to coordinate a set of autonomous workstation that are
individually controlled by a local computer running agent programs and connected by

M.R. Liu et al. 1042

a local area network (see Figure 2). Similar to the mechanism proposed by [12], the
system schedule and control are integrated as an auction-based bidding process with a
price mechanism that rewards product similarity and responds to customer’s needs.
However, instead of making decision according to its own interests and market price
fact as [12], the mechanism proposed in this paper will coordinate the autonomous
workstation to act toward the optimal goal of the whole system.

A. Auction Based Bidding Process

The job agents broadcast the task announcements with their payments to resource
agents. Each resource agent collects the task announcements, calculates the profit rate
with which tasks are ranked, and constructs the bids which contains the information
of the resource cost. Each resource agent then sends its bid to the requesting job
agent. The job agent then collects all the bids and selects the resource with minimal
cost. The job agent then informs the select resource agent and assigns the operation to
the particular resource. (see Figure 3)

B. Autonomous and Collaborative Resource Agent

After receiving the job, the resource agent either processes the job immediately or
puts it in its queue. Instead of processing the jobs in the queue in a FIFO or EDD
manner, the resource agent selects a job based on the priority value each time a previ-
ous job is finished. Meanwhile, it checks for the emergency of each job in the queue.
If the emergency gets beyond a predefined and adjustable threshold, the resource
agent will play the role of a job agent to broadcast the task announcement and start
another round of bidding and select one resource agent to handle the job and assign
the operation to the selected resource agent. Notice that the selected resource agent
could be the originating resource agent, because the originating resource agent will
also take part in the bidding as shown in Figure 4.

Fig. 2. The layout of the computer controlled autonomous workstations

Fig. 3. The market-oriented price mechanism

An RFID-Based Distributed Control System 1043

C. Price Mechanism
The bidding process and the agent activities presented above are the steps that should
be performed one after another in the negotiation procedure. The price mechanism ac-
tually defines the negotiation principles and the information transmitted between job
agent and resource agent. We modify the market price mechanism proposed in [12],
which is based on market-oriented programming for distributed computation, in order
to make the autonomous agents cooperate towards the optimization of the whole sys-
tem (see Figure 5).

3.2 Parameter Definition:

• ci: Operation i completion time
• ct: Current time
• di: Due date of operation i which is calculated from the due date

of the job. di = ct + (pti/(ptj))
• Opportunity_Cost: Represents the cost of losing the particular

slack for other job agents due to the assignment of resource for
one job agent’s operation i

• pti: Standard processing time of operation i
• sti: Standard setup time of operation i
• PFAIndex: Represents the product family consideration in set-

ting up the manufacturing system. We set PFAIndex = 0, if the
two consecutive jobs, i and j, are in the same product family.
Thus the setup cost is eliminated for operation j.

• qti: The arrival time that entity i enters the latest queue
• s: setup cost

Fig. 4. Autonomous queue management flowchart

M.R. Liu et al. 1044

3.3 Functions

1. Job_Price = Basic_Price + Penalty_Price

2. Penalty_Price =
ctciepenalty −×

3. Emergency=Penalty/Basic_Price =
ctqtiepenalty −× /Basic_Price

4. Emergency Threshold = 0.5 (Justifiable)
5. Resource_Cost = Opportunity_Cost + Penalty_Cost

6. Penalty_Cost =
)(iiji stptptctd

epenalty
−−−−−× (ptj stands for

total processing time of entities in queue)

Fig. 5. Message-based collaborative control system

Specifically, the price mechanism can be expressed as follows:

3.4 Explanation

In the market model, the job agent is represented as a set of evaluation functions. The
job agent can dynamically adjust the parameters in the functions based on the internal
and external conditions.

The resource agent adjusts their charge on basis of their capability, queue length
and the requesting job agent. Mutual selection is made through bi-directional commu-
nication.

The autonomous queue management of each resource is based on priority and
emergency. The priority rule is actually a generalization of FIFO and EDD. If we re-
strict that (1) all the entities in the queue have the same due date and (2) different re-
sources have the same processing time for all types of entities, the priority rule be-
comes EDD. If we add to the previous two restrictions that the incoming entities are

 k×(Basic_Price +
offsetctdiepenalty −−× – PFAIndex × s)/ pti ,

if ct < di

 (Basic_Price + ctdiepenalty −× – PFAIndex × s)/pti ,

 if ct > di
Priority =

An RFID-Based Distributed Control System 1045

of the same type, the priority rule becomes FIFO. Besides, it takes into consideration
the effect of product family architecture, which can be utilized to reduce the complex-
ity of the mass customization manufacturing. We distinguish the calculation of prior-
ity on two different conditions by giving the second function an adjustable weight k
and an adjustable offset in order to balance the manufacturing polarization. Coeffi-
cient k and offset can be adjusted according to the simulation result. Figure 6 shows
the curve of the priority function. Offset stands for the parallel movement of the right
half curve to the left of di. The half curves on both sides of di are necessary. If there
only exists the left half curve, all resources will follow the trend of trying to pick up
the jobs whose due date are very close to the current time, the closer the due date of
the job is to the current time, the higher possibility that the job will be picked up,
leaving the overdue ones not concerned. Similarly, if there only exists the right half
curve, all resources will be busy with the overdue ones, thus the new jobs in the queue
tend to be ignored until they are overdue. Therefore, we should neither merely en-
courage the resource to try to finish the jobs as early as possible, nor should we
merely try not to delay the finishing of jobs, what we want is the balance, the aggre-
gation of the finishing time of each job to the point di.

Fig. 6. Priority Curve

The emergency rule is used to settle the potential problem that one single func-
tional resource has many entities in its queue in which some entities with low priority
can also be processed by other resources, which could be idle at the busy time of the
owner resource.

The decision rules of job agents are consistent with those of resource agents by the
function of Resource_Cost and the calculation of the final profit of manufacturing a
certain amount of products of different types. In other words, the goal of job agents is
to minimize the cost and the goal of resource agents is to maximize the profit that can
be achieved with no confliction.

The resource agent will dynamically raise its charge (Resource_Cost) when it has a
large queue length, so that it tends to diminish the demands and drive jobs to other re-
sources and lower its charge when the queue length is small in order to increase the
demand and attract more jobs. Thus, the global optimization is achieved with the dis-
tributed collaboration.

di Time

Priority

M.R. Liu et al. 1046

4 Simulation Results and Performance Analysis

“Computer simulation refers to a collection of methods for studying models of real-
world systems by numerical evaluation using software designed to imitate the sys-
tem’s operations or characteristics.” “It is a process of designing and creating a com-
puterized model of a real or proposed system for the purpose of conducting numerical
experiments to give us a better understanding of the behavior of that system for a
given set of conditions” [13].

The software we used for simulation is Arena 5.0 and we model the collaborative
control system as the message-based system as shown in Figure 5.

4.1 Simulation Setup

System Configuration:

1. System Entrance: 1 (Create Input Entities; Initialize Tag for Each Entity; Job
Agent)

2. Workstation: 3 (Queue up Incoming Entities; Modify Entity Priority and Select
Item; Check for Emergency; Resource Agent (Manage It’s Own Queue); Job
Agent (Auction for the Next Operation))

3. System Exit: 1 (Output Analysis; Dispose)

Input Settings:

1. Randomized Entity Creation
2. Replications: 5
3. Product Types: 4
4. Variables: Stored in Tables

Entity Settings:

1. Attributes: Order ID, Product Type, Operation Sequence, Current Operation,
Job Due Date, Arrival Time, Basic Price, penalty

2. Parameters: Priority, Emergency

Process Settings:

1. Attributes: Processing Time, Charge (Cost)

Workstation Setting:

1. Attributes: ID, Capability
2. Parameters: Queue (Change with Time)

In a physical system with RFID, the entity attributes will be carried in tags and en-
coded in EPC. Figure 7 shows a picture description of the EPC. The attributes of
processes and workstations will be stored in the corresponding PCs.

Fig. 7. A picture description of the EPC

An RFID-Based Distributed Control System 1047

4.2 Simulation Results and Analysis

The following performance metrics are used in our system. The total profit is the ul-
timate goal of the manufacturers. The average delay of different products reflects the
manufacturing efficiency. The average waiting time in queue of all finished products
reflects the utilization of different resources. We made comparison on the metrics
with the commonly used manufacturing system for the present in below output per-
formance measures.

Figure 8 shows the comparison of total profit between three systems with different
queue manage mechanism, namely EDD, FIFO and Agent-based price mechanism.
We made five replications in order to counteract the input randomicity. As shown in
Figure 8, in the first two replications, the three systems perform similarly and our
agent-based collaborative control does not significantly outperform the other two.
That is because at the beginning stage, the queues of resources have not grown to the
extent of releasing the power of agent-based collaborative control. As the simulation
goes, the queue length is increasing and the advantage of our agent-based control sys-
tem is becoming obvious.

Figure 9 shows the average delay of the completion time in terms of different
products. Agent-based control system has the smallest delay, that is, the best perform-
ance in all four types of products. Lateness leads to penalty, while earliness does not
bring any profit. A small delay means a great manufacturing efficiency.

Total profit

0

100

200

300

400

500

1 2 3 4 5 Average
Replications

P
ro

fi
t

(T
ho

u
sa

n
d

 $
)

EDD

FIFO

Agent

Fig. 8. Total profit of each replication and the average

Figure 10 shows the average waiting time in the queue under different queue man-
agement mechanism. The greatly imbalanced distribution of products to resources in-
curs a huge waiting time in some queues and little in the others. The distribution with
intelligent collaborative decision will greatly balance the strong bias, thus, increasing
the utilization of resources.

5 Conclusion and Future Work

The dynamic changes of global markets pushed the advent of strategy of mass cus-
tomization. The fallible monitoring of the production processes and the lack of

M.R. Liu et al. 1048

flexibility and responsiveness of centralized control makes it no longer suited for the
increasing complexity and speed in the manufacturing industry. “While RFID makes
possible the interlink of object and data and creates an information flow between the
individual processing workstations, the pressure can be taken off the centralize con-
trol system.” [5]. In this paper, we have presented an agent-based decentralized col-
laborative control system with RFID integration. The market-like model and the auc-
tion-based bidding process used in our system mimic the resource competing and
decision making procedure as in a real world market environment, hence, cope with
dynamically changing demands.

Average Delay

0

20

40

60

80

1 2 3 4 Average

Product Type

D
el

ay
 (

D
ay

s)

EDD

FIFO

Agent

Fig. 9. Average delay in terms of entity type

Average Waiting Time in Queue

0

5

10

15

20

25

30

35

40

45

50

EDD FIFO Agent

Mechanism

A
ve

ra
g
e

W
ai

tin
g
 T

im
e

(d
ay

s)

Queue 1

Queue 2

Queue 3

Fig. 10. Average waiting time in queue for different queue management mechanism

References

1. Babayan, Astghik and He, David, Solving the n-job 3-stage Flexible Flowshop Scheduling
Problem Using an Agent-based Approach INT. J. PROD. RES., 2004, VOL. 42, NO. 4,
777–799

An RFID-Based Distributed Control System 1049

2. Baker, A.D. and Merchant, M. E., 1993, Automatic factories how will they be controlled?
IEEM Potentials, 12:15–20

3. Chen, Y. Y. , Fu, L. C. and Chen, Y. C., 1998, Multi-agent Based Dynamic Scheduling for
a Flexible Assembly System. Proceedings of the 1998 IEEE International Conference on
Robotics & Automation.

4. Darbha, S. and Agraval, D. P., 1998, Optimal scheduling algorithm for distributed-
memory machines. IEEE Transactions on Parallel and Distributed Systems, 9(1).

5. Finkenzeller Klaus RFID-Handbook, 2nd edition (April 2003) “Fundamentals and Appli-
cations in Contactless Smart Cards and Identification" Wiley & Sons LTD ISBN: 0-470-
84402-7

6. Kotha, S., 1996, Mass-customization: a strategy for knowledge creation and organizational
learning. Int. J. of Technology Management, 11(7-8): 846–858

7. Maley, J. G. 1988, Managing the Flow of Intelligent Parts, Robotics and Computer Inte-
grated Manufacturing, 4(3/4):525–530.

8. Nwana Hyacinth S. Software Agents: An Overview Knowledge Engineering Review, Vol.
11, No 3, pp.1–40, Sept 1996. © Cambridge University Press, 1996

9. Parunak, H. V. D. 1987, Manufacturing Experience with the Contract Net, Distributed Ar-
tificial Intelligence, Michael M. Huhns (eds), Pitman, London, pp. 285–310.

10. Shaw, M. J. 1988, Dynamic Scheduling in Cellular Manufacturing Systems: a framework
for networked decision making, Journal of Manufacturing Systems, 7(2):83–94.

11. Smith, R. G. and Davis, R.., 1981, Framework for co-operation in distributed problem
solving, IEEE Transaction on System, Man and Cybernetics, SMC-11(1):61–70.

12. Tseng, M. M. , Lei, M. , Su, C., 1997, A Collaborative Control System for Mass Customi-
zation Manufacturing. Annals of the CIRP, Vol. 46 (1).

13. Kelton, W. David, Sadowski, Randall P., Sadowski; Deborah A. Simulation with Area; pg 7
14. Zhou, Z. D. , Wang, H. H. , Chen, Y. P. , Ai, W. , Ong, S. K. , Fuh, J. Y. H. and Nee, A.

Y. C., 2003, A Multi-Agent-Based Agile Scheduling Model for a Virtual Manufacturing
Environment. International Journal of Advanced Manufacturing Technology, 21:980–984.

15. Zipkin Paul, MIT Sloan Management Review; Spring 2001; 42, 3; ABI/INFORM Global
pg. 81

Event Chain Clocks for Performance Debugging
in Parallel and Distributed Systems�

Hongliang Yu, Jian Liu, Weimin Zheng, and Meiming Shen

Department of Computer Science and Technology,
Tsinghua University, Beijing, 100084, China

{hlyu, liujian98, zwm-dcs, smm-dcs}@tsinghua.edu.cn

Abstract. In this paper, the Event Chain Clock synchronization algo-
rithm is presented. This algorithm can maintain a global physical clock
that reflects both the partial order and the elapsed time of all events oc-
curred. This algorithm, which repeats some basic operations, has good
astringency, and is suitable for parallel program performance debugging.

1 Introduction

Distributed computing is the simultaneous use of multiple computer resources
to solve a computational problem. Distributed computing can be implemented
in parallel and distributed systems. Performance is always the thing we should
mention in distributed computing, it can suffer from load balance, communica-
tion overhead, and synchronization loss, etc.

A distributed system may consist of a group of servers or workstations that
communicate with each other by sending and receiving messages. There doesn’t
exists a global clock in these systems. Many tools, such as fault-tolerant tools
and debugging tools[1], require that synchronized clocks[2] be available to have
approximately the same view of time. So, we can order distributed events and
accurately measure the duration time of two events.

Physical clock is the actual time of a processor or computer. When a process
needs to record the timestamp of an event, physical clock can be used. But in
distributed systems, there is no global unique physical clock. Every node has its
own local physical clock. So, logical clock[3][4] was developed.

Logical clock doesn’t indicate the real time ticks. It is just a number which
reflects the order of corresponding events[5][6]. Events in a distributed system
use this number as their timestamps. Events can be ordered by these timestamps
correctly. Other clock synchronization algorithms[7][8] were also developed for
various clock usage.

In this paper, we present a clock synchronization algorithm. This algorithm
can maintain a global physical clock that reflects both the partial order and the

� Supported by the National High-Tech Research and Development Plan of China
under Grant No.2002AA1Z2103 and Grant No.2003AA104021.

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 1050–1054, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Event Chain Clocks for Performance Debugging 1051

elapsed time of all events occurred. This algorithm, which repeats some basic op-
erations, has good astringency, and is suitable for parallel program performance
debugging.

2 Event Chain Clocks

There is no global unique physical clock in distributed systems. But it is quite
possible to find a physical clock which have some characteristics of a global
unique physical clock. As we know, in parallel debugging, we always care about
the elapsed time in some events. So, if we could judge both the event durations
and the event orders according to this clock, things will be going well.

Definition 1. Event Chain Clock is a simulated physical clock which reflect the
partial order relations among events correctly.

As a physical clock, Event Chain Clock reflect both the execution time length
of an event, and the partial order relations of all events, it is very useful for
parallel program performance debugging.

3 Clock Synchronization Algorithm

3.1 Definitions

Considering a message passing event, there should be one message sending event
a from process i and one message receiving event b from process j (assume
i �= j). We define function ti to represent the local clock of process i. There is
some drift between the global time T and the local time ti, we can express it as:
ti(e) = τi + αiT (e) where τi is the initial drift between T and ti , and αi is the
drift rate between T and ti.

For most modern hardware clocks the rate αi should be a number that is
very closer to 1. Furthermore, in parallel debugging, we only care about the
clock ticks of a period of time, but the execution time of a process is always not
long enough, so, the effect of αi in that small period is always small enough, we
will ignore it and assume αi is equal to 1. Then, the time delay in this message
passing should be counted as below:

dij = tj(b)− ti(a) = (τj − τi) + (T (b)− T (a))

If dij > 0, this message passing event will have the same partial order with
the clocks, that is: a→ b ⇔ ti(a) < ti(b). If this is true for all events, we get the
Event Chain Clock.

Definition 2. Mij is the set composed of all message passing events between
process numbered i and j. We assume: mdij = min(tj(b) − ti(a), (a, b ∈ Mij)).
We calculate mdij for each two different processes in the system, and get a matrix
noted as D : D[i, j] = mdij. We define D as the minimum transmit-delay matrix.

1052 H. Yu et al.

Furthermore, if the system contains n processes, D will be a n×n dimension
matrix, the diagonal of D can be counted as a large natural number. Obviously,
if we can find a minimum transmit-delay matrix with each element larger than
zero, we can get the Event Chain Clock.

Supposing that we want to speed the local clock of process k with δ(that is:
tk = tk + δ), we will have a new minimum transmit-delay matrix D

′
:

D
′
(i, k) = D(i, k) + δ;

D
′
(k, i) = D(k, i)− δ;

i ∈ [1, n]; n is the process number in the system

That’s the basic adjustment operation which will be used below, we must
know δ for adjustment.

Definition 3. We define Hk as an operation on minimum transmit-delay ma-
trix D explained as below. We note D

′
= Hk(D), dik = D(i, k), d

′
ik = D

′
(i, k).

d
′
ik = dik + Xk;

d
′
ki = dki −Xk;

Xk =
{ |min(dik)|, min(dik) < 0

0 i �= k

Furthermore, we have some labels below:

H(D) = Hn(Hn−1((H2(H1(D)))), n is the process number in the system;
H(2)(D) = H(H(D));
H(p)(D) = H(H(p−1)(D));

H(p,q)(D) = Hq(Hq−1((H2(H
(p)
1 (D)))

We can see that H(p,q)(D) actually operates p× (n + q) times on matrix D.
Elements in H(p,q)(D) is noted as d

(p,q)
ik .

3.2 The Synchronization Algorithm

Our clock synchronization algorithm is shown as below:

1. Get the minimum transmit-delay matrix D
2. Calculate the matrix D

′
, where D

′
= H(D)

3. Repeat procedure 2 until all element in new matrix is not negative, still note
the new matrix as D.

4. Find a row k in D, where dkj > 0,∀j[1, n], and there exist a j, djk = 0
5. Let δ = min(dkj , j = 1, 2, . . . , n)/2, adjust the matrix D using δ:

dkj = dkj − δ, ∀j ∈ [1, n]
djk = djk + δ, ∀j ∈ [1, n]

Event Chain Clocks for Performance Debugging 1053

6. Repeat procedure 4 to 5, until all elements in the matrix is positive.
7. Adjust all local clocks according to the matrix D.

The whole synchronization is based on some simple operations. We have
proved the astringency of this algorithm, but we can not show it here for the
space limit.

3.3 Sample Result

To simple the problem, here we take a parallel program that has three processes
as the example of our clock synchronization algorithm.

Fig. 1. Space-Time Diagram before Adjustment

First, after executing the parallel program, we can easily obtain the corre-
sponding minimum transmit-delay matrix D. Technically, we add another row
of zero at the bottom of the matrix. And the corresponding space-time diagram
is showed in Figure 1.

N 6.508 6.804
3.926 N 6.853
1.559 -1.650 N
0 0 0

After doing the H(D) operation, we get a new matrix:

N 8.158 6.804
2.276 N 5.203
1.559 0.000 N
0 1.650 0

We can find that there is still one zero element in the Matrix (neglect-
ing the last row). So, do the second step of adjustment operation. Here δ =

1054 H. Yu et al.

min(6.804, 5.203)/2 = 2.602, add 2.602 to every element in the third row, and
decrease 2.602 from every element in the third column, then we get the final
matrix:

N 8.158 4.202
2.276 N 2.602
4.161 2.602 N
0 1.650 -2.602

The last row of this matrix tells us that the timestamps in process 0 maintain
unchanged; every timestamp in process 1 will be added by 1.650; and every
timestamp in process 2 will be decreased by 2.602.

4 Conclusions

We define a simulated physical clock named Event Chain Clock, which can reflect
the partial order relations between events, and is useful in parallel performance
debugging for parallel programs. It is a combination of traditional logical clocks
and physical clocks. To implement the Event Chain Clock, we find a clock syn-
chronization algorithm. It is based on some basic adjustment operations, and
has good constringency.

References

1. J. Chassin de Kergommeaux, B. de Oliveira Stein , ”Flexible performance visualiza-
tion of parallel and distributed applications”, Future Generation Computer Systems,
Volume: 19 Issue: 5, July 2003

2. Johannessen S., Time synchronization in a local area network, IEEE Control Sys-
tems Magazine, Vol. 24, Issue 2, Apr 2004, 62-69

3. Leslie Lamport. Time, clocks and the ordering of events in distributed systems.
Communications of the ACM, 21(7):558-565, 1978.

4. Laurence Duchien, Gerard Florin, Lionel Seinturier. Partial order relations in dis-
tributed object environments, ACM SIGOPS Operating Systems Review (October
2000), Volume 34, Issue 4

5. David J. Taylor and Michael H. Coffin, Integrating Real-Time and Partial-Order
Information in Event-Data Displays, CASCON’94

6. Hofmann R., Hilgers U., Theory and Tool for Estimating Global Time in Parallel
and Distributed Systems, Proceeding of the Sixth Euromicro Workshop on Parallel
and Distributed Processing PDP98, Los Alamitos: IEEE Computer Society, 1998;
173-179.

7. F. Cristian. Integrating External and Internal Clock Synchronization, Real-Time
Systems, Volume 12, Number 2, 123-171 (1997)

8. Ted Herman, Phase Clocks for Transient Fault Repair, IEEE Transactions on Par-
allel and Distributed Systems, Vol. 11, No. 10, Oct 2000, 1048-1057

Author Index

Ahn, Seongjin 725
Akon, Mohammad Mursalin 985
Ali, Rizwan 1017
Arenaz, Manuel 4
Au, Puion 59

Bacigalupo, David 635
Bagarinao, E. 290
Bai, Yingcai 835
Baker, Mark 604
Beaumont, A.J. 85
Bernard, Thibault 146
Berten, Vandy 367
Bui, Alain 146

Cai, Wentong 274, 625
Cao, Jiannong 75, 340, 568
Cao, Xiaolin 757
Cao, Zhenfu 715
Cecchet, Emmanuel 115
Celebioglu, Onur 1017
Chadalavada, Kalyana 1017
Chan, Alvin T.S. 529
Chan, Edward 169
Chan, Keith C.C. 568
Chang, Chih-Hung 1007
Chang, Ruay-Shiung 584
Chang, Zhi-ming 735, 1024
Che, Yonggang 91
Chen, Chi-Hsiu 268
Chen, Ching-Wen 1007
Chen, Daoxu 75
Chen, Guihai 357
Chen, Hansheng 835
Chen, Hao 330
Chen, Huaping 489
Chen, Huo-wang 433
Chen, Jianer 698
Chen, Kefei 705
Chen, Mingyu 777
Chen, Ningjing 451
Chen, Po-Hung 584
Chen, Wei 825
Chen, Xiaolin 75

Chen, Xin 489
Chen, Yingwen 534
Chen, Yu 947
Chen, YueQuan 357
Chen, Yung-Chiao 804
Cheng, Shudong 544
Cheng, Yun 975
Cheung, L. 136
Chiu, Yung-Chang 965
Chou, C.-F. 136
Chou, Jue-Sam 858
Chuang, Siu-Nam 529
Chung, Jinwook 725
Ciciani, Bruno 903

Dai, Han 75
Deng, Dafu 330
De Rose, César 392
Dillon, Tharam S. 410, 783
Ding, Jianguo 835
Doallo, Ramón 4
Dongarra, Jack 1
Donghua, Liu 484
Dou, Wenhua 178

Fan, Jianping 777
Francis, Lau 280
Feng, Boqin 888
Feng, Yuhong 274
Ferreto, Tiago 392
Flauzac, Olivier 146
Fu, Haohuan 59
Fu, Jung-Sheng 105
Fu, Yingjie 59

Gan, Phui-Si 1007
Gao, Bo 352
Gao, Qing 156
Ge, He 484
Ge, Jinming 666
Goh, Jen Ye 54
Golubchik, L. 136
Gong, Zhenghu 463
Goossens, Joël 367

1056 Author Index

Goscinski, Andrzej M. 648
Goswami, Dhrubajyoti 126, 985
Guidec, Frédéric 44
Guo, Minyi 893
Guo, XiaoFeng 357

Haddad, Ibrahim 217
Hagihara, Kenichi 245
Han, Bo 519
Han, Song 169
Harwood, Aaron 233
He, Jing 746
He, Ligang 635
He, Yanxiang 825, 875
Hickernell, Fred J. 257
Hommel, Günter 64
Horiguchi, Susumu 893
Hsiao, Hung-Chang 604
Hsieh, Jenwei 1017
Hsu, Ching-Hsien 268
Huang, Joshua Zhexue 499
Huang, Min 866
Huang, Tao 451
Huang, Weili 314

Ino, Fumihiko 245
Inoguchi, Yasushi 578

Jansson, Carl Gustaf 509
Jarvis, Stephen A. 635
Jayaputera, James 49
Jeong, Hong 263
Jeong, Young-Sik 382
Jia, Weijia 519
Jia, Yan 845
Jiang, Xiaohong 893
Jiang, Xuxian 937
Jiang, Yan-huang 735, 1024
Jin, Beihong 451
Jin, Hai 330
Johnson, David B. 3
Jonsson, Martin 509

Kaneko, Keiichi 556
Karunasekera, Shanika 233
Kilander, Fredrik 509
Kim, Hyuncheol 725
Kim, Jihong 952
Kim, Jongkyung 725
Kim, Shin-Dug 952

King, Chung-Ta 604
Knoke, Michael 64
Kobayashi, Hiroaki 16
Kochhar, Garima 1017
Koh, Kern 952
Krämer, Bernd 835
Kriesell, Matthias 914
Kühling, Felix 64
Kuo, Sy-Yen 804
Kwon, Ohyoung 469
Kwong, Kin Wah 319

Lai, Andy S.Y. 85
Lam, Kam-Yiu 188
Lau, Francis C.M. 280, 688
Le, Vinh Trong 893
Leangsuksun, Chokchai 217
Lee, Bu-Sung 625
Lee, Jang-Soo 952
Lee, Sungyoung 677
Lee, Ting-Ying 858
Li, Chunjiang 594
Li, Haiyan 28
Li, Hon F. 126, 985
Li, Huaizhong 656
Li, Juan 446
Li, Li 28
Li, Minglu 474, 499
Li, Mingshu 446
Li, Shanping 156
Li, Shiqun 705
Li, Wei 509
Li, Wenjie 550
Li, Wenlong 947
Li, Xiangxue 705
Li, Xiaomei 91
Li, Xiaoming 615
Lian, Chiu Kuo 268
Liang, BiYu 188
Liang, Tyng-Yeu 965
Liao, Xiaofei 330
Libby, Richard 217
Lin, Chen 314
Lin, Chu-Hsing 858
Lin, Haibo 947
Lin, Jenn-Wei 815
Lin, Wilfred W.K. 783
Lin, Yih-Fang 997
Liu, Bin 550
Liu, Cong 866

Author Index 1057

Liu, Hui 340, 474
Liu, Hung-Yu 815
Liu, Jian 1050
Liu, Kwong-Ip 257
Liu, Michael R. 1039
Liu, Min 730
Liu, Tong 217
Liu, Yudan 217
Lou, Wei 223
Lu, Jianzhuang 975
Lu, Xicheng 399
Lu, Yonggang 746
Luo, Han 421
Luo, Jun 568
Luo, Junzhou 372
Luo, Zongwei 499

Ma, Fanyuan 544
Ma, Huiye 352
Ma, Teng 372
Matsui, Manabu 245
Matsuo, K. 290
Mo, Zeyao 757

Nakai, T. 290
Nejdl, Wolfgang 914
Ngo, Son Hong 893
Nguyen, Ngoc Chi 677
Ni, Linoel M. 2, 1039
Northfleet, Caio 392
Nudd, Graham R. 635

Pan, Yi 340
Pang, Henry C.W. 188
Park, Hyoungwoo 469
Park, Kumrye 469
Park, Sungchan 263
Park, Sungyong 469
Peng, Gang 156
Pontelli, Enrico 746
Premaratne, Malin 233

Qu, Changtao 914
Qu, Xiang-li 1024
Quaglia, Francesco 903

Radhakrishnan, Ramesh 1017
Rajagopalan, Ramesh 1017
Romano, Paolo 903
Rough, Justin 798

Roussain, Hervé 44

Sarbazi-Azad, Hamid 1030
Sarmenta, L. 290
Scott, Stephen L. 217
Shan, Jiulong 489
Shen, Hong 578
Shen, Ji 519
Shen, Meiming 1050
Shi, Dian-xi 845
Shieh, Ce-Kuen 965
Shieh, Min-Shao 804

421Shu, Jiwu 200, 765
Singh, Ajit 788
Son, Sang H. 188
Spooner, Daniel P. 635
Su, Alvin Wen-Yu 965
Su, Jinshu 399
Sue, Chuan-Ching 804
Sun, Guangzhong 489
Sundararajan, Elankovan 233

Tajozzakerin, Hamid Reza 1030
Takizawa, Hiroyki 16
Tanaka, Y. 290
Tang, Feilong 499
Tang, Junjun 544
Tang, Zhizhong 947
Taniar, David 49, 54
Teng, Meng 845
Touriño, Juan 4
Tsang, Danny H.K. 319
Tseng, Mitchell M. 1039
Tsujita, Yuichi 34

Vo, Nhat Minh Dinh 677

Wang, Bing 200
Wang, Chen 387
Wang, Chien-Min 997
Wang, Chih-Min 584
Wang, Cho-Li 280, 499
Wang, Dongsheng 212
Wang, Guojun 568, 698
Wang, Huai-min 845
Wang, Ji 433
Wang, Jing-Xin 965
Wang, Lechun 463
Wang, Lin 126
Wang, Qing 446

,

1058 Author Index

Wang, Tan 788
Wang, Tianqi 280
Wang, Xingwei 866
Wang, Xuehui 178
Wang, Zhenghua 91
Wang, Zhiying 975
Wang, Ziqiang 888
Wei, Zunce 126
Wen, Mei 28
Wong, Adam K.L. 648
Wong, Allan K.Y. 410, 783
Wong, Peter Y.H. 529
Wu, Dan 975
Wu, Jan-Jan 997
Wu, Jie 223
Wu, Nan 28
Wu, Richard S.L. 410
Wu, Zhanchun 446

Xavier, Percival 625
Xiao, Bin 825
Xiao, Jitian 656
Xiao, Nong 594
Xiao, Xiaolin 698
Xiong, Naixue 875
Xu, Chao 926
Xu, Cheng-Zhong 382
Xu, Dengyuan 926
Xu, Dongyan 937
Xu, Jian 156
Xu, Jianliang 156
Xu, Ming 534
Xu, Shihao 835
Xue, Qingshui 715
Xue, Wei 765

Yan, Jiong 433
Yang, Bo 451
Yang, Laurence T. 91
Yang, Xue-jun 735, 1024
Yang, Xuejun 594

Yang, Yan 136, 875
Yang, Yuhang 352
Yang, Zhe 730
Ye, Xinfeng 303
Yim, Keun Soo 952
Yin, Gang 845
Yu, Chang Wu 268
Yu, Hongliang 1050
Yu, Kun-Ming 268
Yu, Shui 798
Yuen, Man-Ching 519
Yuzhong, Sun 484

Zeng, Huaxin 926
Zeng, QingKai 357
Zhang, Chao 330
Zhang, Chunyuan 28, 975
Zhang, Dalu 314, 730
Zhang, Jinyu 615
Zhang, Jun 835
Zhang, Lei 178
Zhang, Liang 544
Zhang, Longjun 705
Zhang, Q.L. 1039
Zhang, Wenbo 451
Zhang, Wenli 777
Zhang, Youhui 212
Zhang, Yuanyuan 578
Zhang, Zhijiao 534
Zheng, Jing 399
Zheng, Weimin 200, 212, 765, 1050
Zhiwei, Xu 484
Zhou, Bing Bing 387
Zhou, Jingyang 75
Zhou, Jipeng 688
Zhou, Wanlei 798
Zhu, Peidong 463
Zhu, Ye 372
Zimmermann, Armin 64
Zomaya, Albert Y. 387
Zou, Futai 544

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

