

Lecture Notes in Computer Science 3363
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Thomas Eiter Leonid Libkin (Eds.)

Database Theory –
ICDT 2005

10th International Conference
Edinburgh, UK, January 5-7, 2005
Proceedings

13

Volume Editors

Thomas Eiter
Technische Universität Wien
Institut für Informationssysteme
Favoritenstr. 9-11, 1040 Wien, Österreich
E-mail: eiter@kr.tuwien.ac.at

Leonid Libkin
University of Toronto
Department of Computer Science
6, King’s College Road, Pratt Building
Toronto, Ontario M5S 3H5, Canada
E-mail: libkin@cs.toronto.edu

Library of Congress Control Number: Applied for

CR Subject Classification (1998): H.2, F.1.3, F.4.1, I.2.1, H.4, F.2, H.3

ISSN 0302-9743
ISBN 3-540-24288-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11366843 06/3142 5 4 3 2 1 0

Preface

This volume collects the papers presented at the 10th International Conference
on Database Theory, ICDT 2005, held during January 5–7, 2005, in Edinburgh,
UK.

ICDT (http://alpha.luc.ac.be/~lucp1080/icdt/) has now a long tradi-
tion of international conferences, providing a biennial scientific forum for the
communication of high-quality and innovative research results on theoretical as-
pects of all forms of database systems and database technology. The conference
usually takes place in Europe, and has been held in Rome (1986), Bruges (1988),
Paris (1990), Berlin (1992), Prague (1995), Delphi (1997), Jerusalem (1999),
London (2001), and Siena (2003) so far. ICDT has merged with the Sympo-
sium on Mathematical Fundamentals of Database Systems (MFDBS), initiated
in Dresden in 1987, and continued in Visegrad in 1989 and Rostock in 1991.

ICDT had a two-stage submission process. First, 103 abstracts were submit-
ted, which were followed a week later by 84 paper submissions. From these 84
submissions, the ICDT Program Committee selected 24 papers for presentation
at the conference. Most of these papers were “extended abstracts” and prelimi-
nary reports on work in progress. It is anticipated that most of these papers will
appear in a more polished form in scientific journals.

The proceedings also contain three invited papers by David Maier, Michael
Schwartzbach, and Moshe Vardi. The Best Newcomer Award, for the best sub-
mission written solely by authors who had never published in earlier ICDT pro-
ceedings, was given by the program committee to Albert Atserias for his paper
“Conjunctive Query Evaluation by Search Tree Revisited.”

We would like to thank a number of people who made ICDT 2005 a success-
ful event. First of all, the authors who submitted papers, the members of the
program committee for their efforts in reviewing and selecting the papers, the
external referees for their help, and, importantly, Andrei Voronkov for supplying
his marvelous PC Expert conference submission management system. A great
thanks is owed to Peter Buneman and his organizing committee for hosting the
conference, and to Marcelo Arenas and Wenfei Fan for running the conference
website. Last but not least, we are very grateful to the sponsors, the United
Kingdom National e-Science Centre and the Digital Curation Centre, for their
support.

January 2005 Thomas Eiter
Leonid Libkin

Organization

ICDT 2005 was organized by the the School of Informatics, University of Edin-
burgh and the UK National e-Science Centre.

Organizing Committee

Peter Buneman (University of Edinburgh, UK, chair)
Marcelo Arenas (University of Toronto, Canada, publicity)
Lee Callaghan (UK National e-Science Centre, UK)
Yrsa Roca Fannberg (University of Edinburgh, UK)
Wenfei Fan (Bell Laboratories, USA, publicity)
Dyane Goodchild (University of Edinburgh, UK)
Gill Maddy (UK National e-Science Centre, UK)

Program Co-chairs

Thomas Eiter (Vienna University of Technology, Austria)
Leonid Libkin (University of Toronto, Canada)

Program Committee

Lars Arge (Duke University, USA)
Catriel Beeri (Hebrew University of Jerusalem, Israel)
Michael Benedikt (Bell Laboratories, USA)
Leopoldo Bertossi (Carleton University, Canada)
Nicole Bidoit (Université Paris Sud, France)
Giuseppe De Giacomo (Università di Roma “La Sapienza”, Italy)
Wenfei Fan (Bell Laboratories, USA)
Nicola Leone (Università della Calabria, Italy)
Jerzy Marcinkowski (Wroclaw University, Poland)
Yossi Matias (Tel Aviv University, Israel)
Gultekin Özsoyoglu (Case Western Reserve University, USA)
Rajeev Rastogi (Bell Laboratories, USA)
Ken Ross (Columbia University, USA)
Thomas Schwentick (Marburg University, Germany)
Kyuseok Shim (Seoul National University, South Korea)
Eljas Soisalon-Soininen (Helsinki University, Finland)
Bernhard Thalheim (Kiel University, Germany)
Jan Van den Bussche (Limburg University, Belgium)
Victor Vianu (University of California at San Diego, USA)
Andrei Voronkov (Manchester University, UK)
Peter Widmayer (ETH Zürich, Switzerland)

VIII Organization

External Referees

Pankaj Agarwal
Suleyman Fatih Akgul
Marcelo Arenas
Denilson Barbosa
Pablo Barceló
Roy Bartsch
Monica Caniupan
Aleksander Binemann-Zdanowicz
Philip L. Bohannon
Vladimir Braverman
Loreto Bravo
Francesco Buccafurri
Ali Cakmak
Toon Calders
Andrea Cali
Diego Calvanese
Stefano Ceri
Jan Chomicki
Jaehyok Chong
Meir Cohen
Anuj Dawar
Alin Deutsch
Gunar Fiedler
Floris Geerts
Georg Gottlob
Gianluigi Greco
Michael Greenwald
Nadav Grosshaug
Sariel Har-Peled
Jayant Haritsa
Giovambattista Ianni
Mohammed Khazal Jaber
Chulyun Kim
Mustafa Kirac
Hans-Joachim Klein
Christoph Koch
Domenico Lembo
Maurizio Lenzerini
Lipyeow Lim
Jan Lindström
Maarten Marx
Yariv Matia

Vincent Millist
Tova Milo
Alan Nash
Apostol Natsev
Kobbi Nissim
Matthieu Objois
Kenneth Oksanen
Luigi Palopoli
Yannis Papakonstantinou
Hyoungmin Park
Gerald Pfeifer
Kerttu Pollari-Malmi
Nattakarn Ratprasartporn
Riccardo Rosati
Riku Saikkonen
Peter Sanders
Ulrike Sattler
Vladimir Sazonov
Francesco Scarcello
Klaus-Dieter Schewe
Peggy Schmidt
Luc Segoufin
Gabby Shainer
Kyoung Shin
Dan Suciu
Injae Sung
Wieslaw Szwast
Murat Tasan
Lidia Tendera
Giorgio Terracina
Jukka Teuhola
David Toman
Hans Tompits
Tomasz Truderung
Jerzy Tyszkiewicz
Daniel Urieli
Jan Vahrenhold
Piotr Wieczorek
Wanhong Xu
Ke Yi
Hai Yu

Table of Contents

Invited Papers

Model Checking for Database Theoreticians
Moshe Y. Vardi . 1

The Design Space of Type Checkers for XML Transformation Languages
Anders Møller, Michael I. Schwartzbach . 17

Semantics of Data Streams and Operators
David Maier, Jin Li, Peter Tucker, Kristin Tufte,
Vassilis Papadimos . 37

Regular Papers

Conjunctive Query Evaluation by Search Tree Revisited
Albert Atserias . 53

Which XML Schemas Admit 1-Pass Preorder Typing?
Wim Martens, Frank Neven, Thomas Schwentick 68

The Pipelined Set Cover Problem
Kamesh Munagala, Shivnath Babu, Rajeev Motwani,
Jennifer Widom . 83

Session: Query Languages and Types

Well-Definedness and Semantic Type Checking in the Nested Relational
Calculus and XQuery

Jan Van den Bussche, Dirk Van Gucht, Stijn Vansummeren 99

First Order Paths in Ordered Trees
Maarten Marx . 114

An Abstract Framework for Generating Maximal Answers to Queries
Sara Cohen, Yehoshua Sagiv . 129

Session: Multi-dimensional Data Processing

Optimal Distributed Declustering Using Replication
Keith B. Frikken . 144

X Table of Contents

When Is Nearest Neighbors Indexable?
Uri Shaft, Raghu Ramakrishnan . 158

Nonmaterialized Motion Information in Transport Networks
Hu Cao, Ouri Wolfson . 173

Session: Algorithmic Aspects

Algorithms for the Database Layout Problem
Gagan Aggarwal, Tomás Feder, Rajeev Motwani, Rina Panigrahy,
An Zhu . 189

Approximately Dominating Representatives
Vladlen Koltun, Christos H. Papadimitriou . 204

On Horn Axiomatizations for Sequential Data
José L. Balcázar, Gemma Casas-Garriga . 215

Session: Privacy and Security

Privacy in Database Publishing
Alin Deutsch, Yannis Papakonstantinou . 230

Anonymizing Tables
Gagan Aggarwal, Tomás Feder, Krishnaram Kenthapadi,
Rajeev Motwani, Rina Panigrahy, Dilys Thomas, An Zhu 246

Authorization Views and Conditional Query Containment
Zheng Zhang, Alberto O. Mendelzon . 259

Session: Logic and Databases

PTIME Queries Revisited
Alan Nash, Jeff Remmel, Victor Vianu . 274

Asymptotic Conditional Probabilities for Conjunctive Queries
Nilesh Dalvi, Gerome Miklau, Dan Suciu . 289

Magic Sets and Their Application to Data Integration
Wolfgang Faber, Gianluigi Greco, Nicola Leone . 306

Table of Contents XI

Session: Query Rewriting

View-Based Query Processing: On the Relationship Between Rewriting,
Answering and Losslessness

Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini,
Moshe Y. Vardi . 321

First-Order Query Rewriting for Inconsistent Databases
Ariel D. Fuxman, Renée J. Miller . 337

Rewriting Queries Using Views with Access Patterns Under Integrity
Constraints

Alin Deutsch, Bertram Ludäscher, Alan Nash . 352

Session: Query Processing, and Data Streams

Optimal Workload-Based Weighted Wavelet Synopses
Yossi Matias, Daniel Urieli . 368

Selecting and Using Views to Compute Aggregate Queries
Foto Afrati, Rada Chirkova . 383

Efficient Computation of Frequent and Top-k Elements in Data Streams
Ahmed Metwally, Divyakant Agrawal, Amr El Abbadi 398

Author Index . 413

Model Checking for Database Theoreticians

Moshe Y. Vardi �

Rice University
Houston, TX, USA

vardi@cs.rice.edu
http://www.cs.rice/edu/∼vardi

Abstract. Algorithmic verification is one of the most successful applications of
automated reasoning in computer science. In algorithmic verification one uses
algorithmic techniques to establish the correctness of the system under verification
with respect to a given property. Model checking is an algorithmic-verification
technique that is based on a small number of key ideas, tying together graph theory,
automata theory, and logic. In this self-contained talk I will describe how this "holy
trinity" gave rise to algorithmic-verification tools, and discuss its applicability to
database verification.

1 Introduction

The recent growth in computer power and connectivity has changed the face of science
and engineering, and is changing the way business is being conducted. This revolu-
tion is driven by the unrelenting advances in semiconductor manufacturing technology.
Nevertheless, the U.S. semiconductor community faces a serious challenge: chip design-
ers are finding it increasingly difficult to keep up with the advances in semiconductor
manufacturing. As a result, they are unable to exploit the enormous capacity that this
technology provides. The International Technology Roadmap for Semiconductors sug-
gests that the semiconductor industry will require productivity gains greater than the
historical 20% per-year to keep up with the increasing complexity of semiconductor
designs. This is referred to as the “design productivity crisis”. As designs grow more
complex, it becomes easier to introduce flaws into the design. Thus, designers use var-
ious validation techniques to verify the correctness of the design. Unfortunately, these
techniques themselves grow more expensive and difficult with design complexity. As the
validation process has begun to consume more than half the project design resources,
the semiconductor industry has begun to refer to this problem as the “validation crisis”.

Formal verification is a process in which mathematical techniques are used to guar-
antee the correctness of a design with respect to some specified behavior. Algorithmic
formal-verification tools, based on model-checking technology [17, 51, 64, 70], have en-
joyed a substantial and growing use over the last few years, showing an ability to discover

� Supported in part by NSF grants CCR-9988322, CCR-0124077, CCR-0311326, IIS-9908435,
IIS-9978135, EIA-0086264, and ANI-0216467, by BSF grant 9800096, by Texas ATP grant
003604-0058-2003, and by a grant from the Intel Corporation.

T. Eiter and L. Libkin (Eds.): ICDT 2005, LNCS 3363, pp. 1–16, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 M.Y. Vardi

subtle flaws that result from extremely improbable events [18]. While until recently these
tools were viewed as of academic interest only, they are now routinely used in industrial
applications, resulting in decreased time to market and increased product integrity [48].
It is fair to say that algorithmic verification is one of the most successful applications of
automated reasoning in computer science [19].

The main thrust of database theory has traditional focused on data models, queries,
and database design, cf. [52, 8, 2]. The dynamic aspects of databases, cf. [58, 57, 73],
received somewhat less attention by database theoreticians [59].Almost no attention was
given to the verification perspective. This has started to change over the last few years,
driven to a large extent by the confluence of data and the Web [1]. Recent database-theory
papers that address the verification perspective include [3, 36, 65, 21].

Our goal in this paper is to offer a basic introduction to the theory of algorithmic
verification. A second purpose is to expose the reader to the automata-theoretic approach
to algorithmic verification. The automata-theoretic approach uses the theory of automata
as a unifying paradigm for system specification, verification, and synthesis [76, 25, 47,
71, 46]. Automata enables the separation of the logical and the algorithmic aspects of
reasoning about systems, yielding clean and asymptotically optimal algorithms. The
automata-theoretic framework for reasoning about finite-state systems has proven to
be very versatile. Automata are the key to techniques such as on-the-fly verification
[28], and they are useful also for modular verification [41], partial-order verification
[29, 75], verification of real-time and hybrid systems [33, 22], and verification of open
systems [5, 42]. Many decision and synthesis problems have automata-based solutions
and no other solution for them is known [24, 63, 44]. Automata-based methods have
been implemented in industrial automated-verification tools (c.f., COSPAN [31] and
SPIN [34]). While the application of automata theory to database theory goes back to
the 1980s, cf. [66], it is only recently that they have become a popular tool [55, 56].

The outline of the paper is as follows. We first describe in Section 2 the automata-
theoretic approach to the verification of finite-state systems with respect to linear-time
properties. This uses Büchi automata as the basic working tool. We then describe in Sec-
tion 3 the automata-theoretic approach to the verification of context-free systems with
respect to (branching-time) μ-calculus properties. This uses alternating two-way tree
automata as the basic working tool. In Section 4 we discuss the application of these tech-
niques to the verification of database systems.We conclude with a discussion in Section 5.

2 Finite-State Systems

The first step in formal verification is to come up with a formal specification of the system
under verification, consisting of a description of the desired behavior. One of the more
widely used specification languages for systems is temporal logic [62]. Two possible
views regarding the nature of time induce two types of temporal logics [49]. In linear
temporal logics, time is treated as if each moment in time has a unique possible future.
Thus, linear temporal logic formulas are interpreted over linear sequences and we regard
them as describing a behavior of a single computation of a system. In branching temporal
logics, each moment in time may split into various possible futures. Accordingly, the
structures over which branching temporal logic formulas are interpreted can be viewed

Model Checking for Database Theoreticians 3

as infinite computation trees, each describing the behavior of the possible computations
of a nondeterministic program. We focus on linear time in this section, and on branching
time in the next section. For a discussion of linear vs. branching time, see [69].)

In the linear temporal logic LTL, formulas are constructed from a setProp of atomic
propositions using the usual Boolean connectives as well as the unary temporal connec-
tive X (“next”), F (“eventually”), G (“always”), and the binary temporal connective
U (“until”). For example, the LTL formula G(request → F grant), which refers to the
atomic propositions request and grant, is true in a computation precisely when every
state in the computation in which request holds is followed by some state in the future
in which grant holds. The LTL formula G(request → (request U grant)) is true in a
computation precisely if, whenever request holds in a state of the computation, it holds
until a state in which grant holds is reached.

LTL is interpreted over computations, which can be viewed as infinite sequences of
truth assignments to the atomic propositions; i.e., a computation is a function π : IN →
2Prop that assigns truth values to the elements of Prop at each time instant (natural
number). For a computation π and a point i ∈ IN , the notation π, i |= ϕ indicates that
a formula ϕ holds at the point i of the computation π. For example, π, i |= Xϕ iff
π, i + 1 |= ϕ, and and π, i |= ϕUψ iff for some j ≥ i, we have π, j |= ψ and for all k,
i ≤ k < j, we have π, k |= ϕ. We say that π satisfies a formula ϕ, denoted π |= ϕ, iff
π, 0 |= ϕ. The connectives F and G can be defined in terms of the connective U : Fϕ is
defined as true Uϕ, and Gϕ is defined as ¬F¬ϕ.

Systems can be described in a variety of formal description formalisms. Regardless
of the formalism used, a system can be abstractly viewed as a labeled transition graph,
i.e., as a structure of the form M = (W,W0, R, L), where W is the set of states that the
system can be in,W0 ⊆W is the set of initial states of the system,R ⊆W 2 is a transition
relation that indicates the allowable state transitions of the system (we typically assume
that T is total; that is, every state has at least one R-successor), and L : W → 2Prop

assigns truth values to the atomic propositions in each state of the system. A labeled
transition graph is essentially a Kripke structure, the standard model for modal logic
[35]. Our focus in this section is on finite labeled transition graphs; that is, W is required
to be finite. A path in M that starts at u is a possible infinite behavior of the system
starting at u, i.e., it is an infinite sequence u0, u1 . . . of states in W such that u0 = u,
and ui R ui+1 for all i ≥ 0.The sequence L(u0), L(u1) . . . is a computation of M that
starts at u. It is the sequence of truth assignments visited by the path, The language of
M , denoted L(M) consists of all computations of M that start at a state in W0. Note
thatL(M) can be viewed as a language of infinite words over the alphabet 2Prop.L(M)
can be viewed as an abstract description of a system, describing all possible “traces”.
We say that M satisfies an LTL formula ϕ if all computations in L(M) satisfy ϕ, that is,
if L(M) ⊆ models(ϕ). When M satisfies ϕ we also say that M is a model of ϕ, which
explain why the technique is known as model checking [18].

One of the major approaches to algorithmic verification is the automata-theoretic
approach. The key idea underlying the automata-theoretic approach is that, given an
LTL formula ϕ, it is possible to construct a finite-state automaton Aϕ on infinite words
that accepts precisely all computations that satisfy ϕ. The type of finite automata on
infinite words we consider is the one defined by Büchi [10]. A Büchi automaton is a

4 M.Y. Vardi

tupleA = (Σ,S, S0, ρ, F), whereΣ is a finite alphabet,S is a finite set of states,S0 ⊆ S
is a set of initial states, ρ : S × Σ → 2S is a nondeterministic transition function, and
F ⊆ S is a set of accepting states. A run of A over an infinite word w = a1a2 · · ·, is a
sequence s0s1 · · ·, where s0 ∈ S0 and si ∈ ρ(si−1, ai) for all i ≥ 1. A run s0, s1, . . .
is accepting if there is some accepting state that repeats infinitely often, i.e., for some
s ∈ F there are infinitely many i’s such that si = s. The infinite word w is accepted
by A if there is an accepting run of A over w. The language of infinite words accepted
by A is denoted L(A). The following fact establishes the correspondence between LTL
and Büchi automata [71] (for a tutorial introduction for this correspondence, see [67]):

Theorem 1. Given an LTL formulaϕ, one can build a Büchi automatonAϕ = (Σ,S, S0,
ρ, , F), where Σ = 2Prop and |S| ≤ 2O(|ϕ|), such that L(Aϕ) is exactly the set of com-
putations satisfying the formula ϕ.

A detailed proof of Theorem 1 is out of the scope of this paper. The intuition is that
a state of the automaton Aϕ is simply a set of subformulas of ϕ. The automaton that
reads a computation π in state P checks that π satisfies all formulas in P . Initial states
of Aϕ contain ϕ, The transition relation of Aϕ checks the correctness of the temporal
connectives. For example, if the current state contains Xψ then the next state contains
ψ. Dealing with the U connective is a bit more complicated. If the current state contains
θUψ, then either the current state contains also ψ or the next state contains θUψ. This
enables the “fulfillment” of θUψ to be postponed forever, which is prevented by the
acceptance condition of Aϕ.

The correspondence provided by Theorem 1 enables a reduction of the verification
problem to an automata-theoretic problem as follows [70]. Suppose that we are given a
finite labeled transition graph M and an LTL formula ϕ. We check whether L(M) ⊆
models(ϕ) as follows: (1) construct the automaton A¬ϕ that corresponds to the negation
of the formula ϕ, (2) take the cross product of the transition graph M and the automaton
A¬ϕ to obtain an automatonAM,ϕ, such thatL(AM,ϕ) = L(M)∩L(A¬ϕ), and (3) check
whether the language L(AM,ϕ) is nonempty, i.e., whether AM,ϕ accepts some input.

Theorem 2. Let M be a finite labeled transition graph and ϕ be an LTL formula. Then
M satisfies ϕ iff L(AM,ϕ) = ∅.

The emptiness test of Büchi automata can be done efficiently [26, 71].

Proposition 1. Checking for a given Büchi automaton A whether L(A) = ∅ can be
done in time that is linear in the size of A.

Proof. LetA = (Σ,S, S0, ρ, F) be the given automaton. LetGA = (S,E) be a directed
graph, where E = {〈s, t〉 : t ∈ ρ(s, a) for some a ∈ Σ}. It is easy to see that L(A) is
nonempty iff there are states s ∈ S0 and t ∈ F such that t is connected, or equal, to s
in GA, and t is connected to itself in GA. Thus, A is nonempty if GA has a reachable
nontrivial strongly connected component that intersects F non-trivially.

(In fact, the nonemptiness problem for Büchi automata is NLOGSPACE-complete [71].)
If L(AM,ϕ) is empty, then the design is correct. Otherwise, the design is incor-

rect and the word accepted by L(AM,ϕ) is an incorrect computation. Model-checking

Model Checking for Database Theoreticians 5

tools use efficient algorithms for checking emptiness of Büchi automata [20] to check
emptiness of L(AM,ϕ). In case of nonemptiness, the incorrect computation is presented
to the user as a finite trace, possibly followed by a cycle. Thus, once the automaton
A¬ϕ is constructed, the verification task is reduced to automata-theoretic problems,
namely, intersecting automata and testing emptiness of automata, which have highly
efficient solutions [67]. Furthermore, using data structures that enable compact repre-
sentation of very large state space makes it possible to verify designs of significant
complexity [11].

The linear-time framework is not limited to using LTL as a specification language.
ForSpec is a recent extension of LTL, designed to address the need of the semicon-
ductor industry [7]. There are those who prefer to use automata on infinite words as a
specification formalism [71]; in fact, this is the approach of COSPAN [47]. In this ap-
proach, we are given a design represented as a finite transition graph M and a property
represented by a Büchi (or a related variant) automaton P . The design is correct if all
computations in L(M) are accepted by P , i.e., L(M) ⊆ L(P). This approach is called
the language-containment approach. To verify M with respect to P , we: (1) construct
the automaton P c that complements P , (2) take the product of the transition graph M
and the automaton P c to obtain an automaton AM,P , and (3) check that the automaton
AM,P is nonempty. As before, the design is correct iff AM,P is empty. Thus, the veri-
fication task is again reduced to automata-theoretic problems, namely intersecting and
complementing automata and testing emptiness of automata. As complementing Büchi
automata is harder than complementing automata on finite words, cf. [45], tools that
work directly with automata require the user to provide the complementary automa-
ton P c [47, 34]. For an automata-theoretic approach to branching-time model checking
of finite-state systems, see [46]. In the next section we describe an automata-theoretic
approach to branching-time model of context-free systems.

3 Context-Free Systems

An important research topic in algorithmic verification during the 1990s has been the
application of model checking to infinite-state systems. Notable successes in this area
has been the application of model checking to real-time and hybrid systems, cf. [32, 50].
Another active thrust of research is the application of model checking to infinite-state
sequential systems. These are systems in which a state carries a finite, but unbounded,
amount of information, e.g., a pushdown store. The origin of this thrust is the important
result that the monadic second-order theory of context-free graphs is decidable [53].
As the complexity involved in that decidability result is non-elementary, researchers
sought decidability results of elementary complexity. This started with development
of an exponential-time algorithm for model-checking formulas in the alternation-free
μ-calculus with respect to context-free graphs [13]. The μ-calculus is modal logic aug-
mented with least and greatest fixpoint operators [38]. It is an expressive logic, which
subsumes LTL. (The alternation-free μ-calculus, in which alternation of least and great-
est fixpoint operators is not allow, does not subsume LTL [40].) Researchers then went
on to extend this result to the full μ-calculus, on one hand, and to more general graphs
on the other hand. See [12] for a survey and [15, 61] for some recent extensions. In this

6 M.Y. Vardi

section we describe an automata-theoretic framework for reasoning about context-free
systems [43].

It is not obvious that the automata-theoretic approach is applicable for effective
reasoning about infinite-state systems. The reason, essentially, lies in the fact that the
automata-theoretic techniques involve constructions in which the state space of the sys-
tem directly influences the state space of the automaton (e.g., when we take the product
of a specification automaton with the graph that models the system). On the other hand,
the automata we know to handle algorithmically, e.g., test emptiness, have finitely many
states. The key insight, which enables us to overcome this difficulty, and which is im-
plicit in all previous decidability results in the area of infinite-state sequential systems,
is that in spite of the somewhat misleading terminology (e.g., “context-free graphs”),
the classes of infinite-state graphs for which decidability is known can be described by
finite-state automata. This is explained by the fact the the states of the graphs that model
these systems can be viewed as nodes in an infinite tree and transitions between states
can be expressed by finite-state automata. As a result, automata-theoretic techniques can
be used to reason about such systems. In particular, we show that the analysis of such
systems can be reduced to the emptiness problem for alternating two-way tree automata,
which is known to be decidable in exponential time [68].

3.1 Labeled Rewrite Systems

Here we extend the notion of transition graph to allow infinitely many states. We are
interested, however, in infinite systems with finitary representations. A rewrite system is
a tripleR = 〈V,R, x0〉, where V is a finite alphabet, R is a finite set of rewrite rules, to
be defined below, and x0 ∈ V ∗ is an initial word. In a context-free rewrite system, each
rewrite rule is a pair 〈A, x〉 ∈ V × V ∗. The rewrite system R together with a labeling
L : V ∗ → 2Prop induces the labeled transition graph GR = (V ∗, {x0}, ρR, L), where
〈x, y〉 ∈ ρR if there is a rewrite rule in R whose application on x results in y. Formally,
if R is a context-free rewrite system, then ρR(A · y, x · y) if 〈A, x〉 ∈ R. A labeled
transition graph that is induced by a context-free rewrite system is called a context-free
graph. Such graphs model the call graphs of systems with recursive procedures [4]. (To
fully model call graphs of such systems one needs to consider pushdown graphs, which
slightly generalize context-free graphs [14, 72]. We restrict attention here to context-free
graphs for simplicity sake.) We define the size |R| of R as the space required in order
to encode the rewrite rules in R. Thus, in the case of a context-free rewrite system,
|R| =

∑
〈A,x〉∈R |x|.

The rewrite rules provide us with a finite representation of a transition relation over
an infinite state space. We also need to represent the labeling L is a finitary manner. We
consider here regular state properties, where each property p ∈ Prop is associated with
a NFA Up over V , describing the set of states (words in V ∗) in which p holds. Thus,
L(w) = {p : w ∈ L(Up)}. We say that L is a regular labeling. The size |L| of the
regular labeling L is

∑
p∈Prop |Up|.

3.2 Alternating Two-Way Automata

Given a finite set Υ of directions, an Υ -tree is a set T ⊆ Υ ∗ such that if υ ·x ∈ T , where
υ ∈ Υ and x ∈ Υ ∗, then also x ∈ T . The elements of T are called nodes, and the empty

Model Checking for Database Theoreticians 7

word ε is the root of T . For every υ ∈ Υ and x ∈ T , the node x is the parent of υ · x.
Each node x �= ε of T has a direction in Υ . The direction of the root is the symbol ⊥
(we assume that ⊥ �∈ Υ). The direction of a node υ · x is υ. We denote by dir(x) the
direction of node x. An Υ -tree T is a full infinite tree if T = Υ ∗. A path π of a tree T
is a set π ⊆ T such that ε ∈ π and for every x ∈ π there exists a unique υ ∈ Υ such
that υ · x ∈ π. Note that our definitions here reverse the standard definitions (e.g., when
Υ = {0, 1}, the successors of the node 0 are 00 and 10 (rather than 00 and 01)1.

Given two finite sets Υ and Σ, a Σ-labeled Υ -tree is a pair 〈T, V 〉 where T is an
Υ -tree and V : T → Σ maps each node of T to a letter in Σ. When Υ and Σ are
not important or clear from the context, we call 〈T, V 〉 a labeled tree. We say that an
((Υ ∪ {⊥}) × Σ)-labeled Υ -tree 〈T, V 〉 is Υ -exhaustive if for every node x ∈ T , we
have V (x) ∈ {dir(x)} ×Σ.

Alternating automata on infinite trees generalize nondeterministic tree automata and
were first introduced in [54]. Here we describe alternating two-way tree automata. For
a finite set X , let B+(X) be the set of positive Boolean formulas over X (i.e., boolean
formulas built from elements in X using ∧ and ∨), where we also allow the formulas
true and false, and, as usual, ∧ has precedence over ∨. For a set Y ⊆ X and a formula
θ ∈ B+(X), we say that Y satisfies θ iff assigning true to elements in Y and assigning
false to elements in X \ Y makes θ true. For a set Υ of directions, the extension of Υ
is the set ext(Υ) = Υ ∪ {ε, ↑} (we assume that Υ ∩ {ε, ↑} = ∅). We view an element
(c, q) ∈ ext(Υ)×Q as an instruction to move in direction c into state q. An alternating
two-way automaton over Σ-labeled Υ -trees is a tuple A = 〈Σ,Q, q0, δ, F 〉, where Σ
is the input alphabet, Q is a finite set of states, δ : Q × Σ → B+(ext(Υ) × Q) is the
transition function, q0 ∈ Q is an initial state, and F specifies the acceptance condition.

A run of an alternating automaton A over a labeled tree 〈Υ ∗, V 〉 is a labeled tree
〈Tr, r〉 in which every node is labeled by an element of Υ ∗ ×Q. A node in Tr, labeled
by (x, q), describes a copy of the automaton that is in the state q and reads the node x
of Υ ∗. Note that many nodes of Tr can correspond to the same node of Υ ∗; there is no
one-to-one correspondence between the nodes of the run and the nodes of the tree. The
labels of a node and its successors have to satisfy the transition function. Formally, a run
〈Tr, r〉 is a Σr-labeled Γ -tree, for some set Γ of directions, where Σr = Υ ∗ × Q and
〈Tr, r〉 satisfies the following:

1. ε ∈ Tr and r(ε) = (ε, q0).
2. Consider y ∈ Tr with r(y) = (x, q) and δ(q, V (x)) = θ. Then there is a (possibly

empty) set S ⊆ ext(Υ)×Q, such that S satisfies θ, and for all 〈c, q′〉 ∈ S, there is
γ ∈ Γ such that γ · y ∈ Tr and the following hold:

– If c ∈ Υ , then r(γ · y) = (c · x, q′).
– If c = ε, then r(γ · y) = (x, q′).
– If c =↑, then x = υ · z, for some υ ∈ Υ and z ∈ Υ ∗, and r(γ · y) = (z, q′).

Thus, ε-transitions leave the automaton on the same node of the input tree, and ↑-
transitions take it up to the parent node. Note that the automaton cannot go up the root
of the input tree, as whenever c =↑, we require that x �= ε.

1 As will get clearer in the sequel, the reason for that is that rewrite rules refer to the prefix of
words.

8 M.Y. Vardi

A run 〈Tr, r〉 is accepting if all its infinite paths satisfy the acceptance condition. We
consider here parity acceptance conditions [25]. A parity condition over a state set Q
is a finite sequence F = {F1, F2, . . . , Fm} of subsets of Q, where F1 ⊆ F2 ⊆ . . . ⊆
Fm = Q. The number m of sets is called the index of A. Given a run 〈Tr, r〉 and an
infinite path π ⊆ Tr, let inf (π) ⊆ Q be such that q ∈ inf (π) if and only if there are
infinitely many y ∈ π for which r(y) ∈ Υ ∗ × {q}. That is, inf (π) contains exactly all
the states that appear infinitely often in π. A path π satisfies the condition F if there is
an even i for which inf (π) ∩ Fi �= ∅ and inf (π) ∩ Fi−1 = ∅. An automaton accepts a
labeled tree if and only if there exists a run that accepts it. We denote by L(A) the set
of all Σ-labeled trees that A accepts. The automaton A is nonempty iff L(A) �= ∅.

Theorem 3. Given an alternating two-way parity tree automaton A with n states and
index k, we can check the nonemptiness of A in time exponential in nk [68].

3.3 Alternating Graph Automata

In the previous subsection we described alternating automata on trees. It is technically
convenient to adapt this definition to automata on graphs. We need to deal with the diffi-
culty that the success of a node in a graph do not have a well-defined direction. Let next =
{ε,�,�}. An alternating automaton on labeled graphs (graph automaton, for short) [37,
22, 74] is a tuple S = (Σ,Q, q0, δ, F), where Q, q0, and F are as in alternating two-way
automata, and δ : Q×Σ → B+(next×Q) is the transition function. Intuitively, when S
is in state q and it reads a node s ofG, fulfilling an atom 〈�, q′〉 (or �q′, for short) requires
S to send a copy in state q′ to some successor of s. Similarly, fulfilling an atom �q′ re-
quires S to send copies in state q′ to all successors of s. Finally, fulfilling an atom 〈ε, q′〉
requires S to send a copy in state q′ to s itself. Thus, graph automata cannot distinguish
between the various successors of a node and treat them in an existential or universal way.

Like runs of alternating two-way automata, a run of a graph automaton S over a
labeling G with nodes W , initial node s0, and labeling L is a labeled tree in which every
node is labeled by an element ofW×Q. A node labeled by (s, q), describes a copy of the
automaton that is in the state q of S and reads the node s of G. Formally, a run starting
at a node s0 is a Σr-labeled Γ -tree 〈Tr, r〉, where Γ is an arbitrary set of directions,
Σr = W ×Q, and 〈Tr, r〉 satisfies the following:

1. ε ∈ Tr and r(ε) = (s0, q0).
2. Consider y ∈ Tr with r(y) = (s, q) and δ(q, L(s)) = θ. Then there is a (possibly

empty) set S ⊆ next × Q, such that S satisfies θ, and for all 〈c, q′〉 ∈ S, the
following hold:

– If c = ε, then there is γ ∈ Γ such that γ · y ∈ Tr and r(γ · y) = (s, q′).
– If c = �, then for every successor s′ of s, there is γ ∈ Γ such that γ · y ∈ Tr

and r(γ · y) = (s′, q′).
– If c = �, then there is an successor s′ of s and γ ∈ Γ such that γ · y ∈ Tr and
r(γ · y) = (s′, q′).

A run 〈Tr, r〉 is accepting if all its infinite paths satisfy the acceptance condition. The
graph G is accepted by S if there is an accepting run on it. We denote by L(S) the set
of all graphs that S accepts. We denote by Sq = (Σ,Q, δ, q, F) the automaton S with
q as its initial state.

Model Checking for Database Theoreticians 9

We use graph automata as our specification language. We say that a labeled transition
graph G satisfies a graph automaton S, denoted G |= S, if S accepts G. It is known
[37, 22, 74] that graph automata are as expressive as μ-calculus. In particular, we have
the following.

Theorem 4. Given a μ-calculus formula ψ, of length n and alternation depth k, we
can construct a graph parity automaton Sψ such that L(Sψ) is exactly the set of graphs
satisfying ψ. The automaton Sψ has n states and index k.

In particular, an LTL formulaψ of length n can be translated into an equivalent graph
automaton with 2O(n) states and index 2 [71].

3.4 Model Checking of Context-Free Graphs

In this section we present an automata-theoretic approach to model-checking of context-
free transition systems. Consider a labeled transition graph G = (V ∗, {v0}, ρR, L),
induced by a rewrite system R = 〈V,R, x0〉 and a regular labeling L. Since the state
space of G is the full V -tree, we can think of each transition 〈z, z′〉 ∈ ρR as a “jump”
from the node z of the V -tree to the node z′. Thus, ifR is a context-free rewrite system
and we are at node A ·y of the V -tree, a transition takes us to nodes x ·y, for 〈A, x〉 ∈ R.
Technically, this means that we first move up to the parent y of A · y, and then move
down along x. Such a navigation through the V -tree can be easily performed by two-way
automata.

Theorem 5. Given a context-free rewrite system R = 〈V,R, v0〉, regular labeling L,
and a graph automaton S = 〈2Prop, Q, δ, q0, F 〉, we can construct an alternating two-
way parity automaton A over (V ∪ {⊥})-labeled V -trees such that L(A) is not empty
iff GR satisfies S. The automaton A has O(|Q| · (|R| + |L|) · |V |) states, and has the
same index as S.

Proof. The automaton A checks that the input tree is V -exhaustive (that is, each node
is labeled by its direction). As such,A can learn from labels it reads the state in V ∗ that
each node corresponds to. The transition function ofA then consults the rewrite rules in
R in order to transform an atom in next ×Q to a chain of transitions that spread copies
of A to the corresponding nodes of the full V -tree.

Before we defineAwe need also to deal with the difficulty that the graph automaton
S expects input symbols in 2Prop, but the labelingL defines the label implicitly:L(x) =
{p : x ∈ L(Up)}. Thus, whenAwants to simulateS in a nodex, it guess a setP ⊆ Prop
and then checks that L(x) = P . For each proposition p ∈ Prop, we have an NFA Up.
We can assume with out loss of generality that the state spaces of different NFAs are
disjoint. Thus, we can assume that there is an NFA U = 〈V,N,N0, ρ,H〉,where for
every p ∈ Prop there is some state np ∈ N such that L(Up) = L(Unp). To check that
L(x) = P ,A has to simulate U . We simulate U by means of a two-way alternating tree
automata. Since we need to check that p ∈ L(x) for p ∈ P and p �∈ L(x) for p �∈ P , we
each state n ∈ N we need two states n+ and n−. Let N± =

⋃
n∈N{n+, n−}.

10 M.Y. Vardi

We define A = (V ∪ {⊥}, Q′, η, q′
0, F

′) as follows:

– Q′ = Q × tails(R) × (V ∪ {⊥,#}) ∪ N±, where tails(R) ⊆ V ∗ is the set of
all suffixes of words x ∈ V ∗ for which there is A ∈ V such that 〈A, x〉 ∈ R.
Intuitively, when A visits a node x ∈ V ∗ in state 〈q, y, A〉, it checks that GR with
initial state y · x is accepted by Sq. In particular, when y = ε, then GR with initial
state x (the node currently being visited) needs to be accepted by Sq. In addition,
if A �= #, then A also checks that dir(x) = A. States of the form 〈q, ε, A〉 are
called action states. From these states A consults δ and R in order to impose new
requirements on the exhaustive V -tree. States of the form 〈q, y, A〉, for y ∈ V +, are
called navigation states. From these states A only navigates downwards y to reach
new action states. On its way,A also checks the V -exhaustiveness of the input tree.
The states in N± are used to simulate U . Positive copies of N are used to simulate
U positively, while negative copies of N are used to simulate U negatively.

– In order to define η : Q′ × (V ∪ {⊥}) → B+(ext(V) × Q′), we first define the
function applyR : next×Q×(V ∪{⊥}) → B+(ext(V)×Q′). Intuitively, applyR

transforms atoms participating in δ, together with a letterA ∈ V ∪{⊥}, which stands
for the direction of the current node, to a formula that describes the requirements
on GR when the rewrite rules in R are applied to words of the form A · V ∗. For
c ∈ next , q ∈ Q, and A ∈ V ∪ {⊥}, we define

applyR(c, q, A) =

⎡
⎣ 〈ε, (q, ε, A)〉 If c = ε.∧

〈A,y〉∈R〈↑, (q, y,#)〉 If c = �.∨
〈A,y〉∈R〈↑, (q, y,#)〉 If c = �.

(We take empty conjunctions as true, and take empty disjunctions as false.)
In order to understand the function applyR, consider the case c = �. When

S reads the state A · x of the input graph, fulfilling the atom �q requires S to
send copies in state q to all the successors of A · x. The automaton A then sends
to the node x copies that check whether all the states y · x, with ρR(A · x, y · x),
are accepted by S with initial state q. Now, for a formula θ ∈ B+(next × Q), the
formula applyR(θ,A) ∈ B+(ext(V)×Q′) is obtained from θ by replacing an atom
〈c, q〉 by the atom applyR(c, q, A).

We can now define η for all A ∈ V ∪ {⊥} as follows.

• η(〈q, ε, A〉, A) = η(〈q, ε,#〉, A) =

∨
P⊆Prop

⎛
⎝∧

p∈P

〈ε, n+
p 〉 ∧

∧
p�∈P

〈ε, n−
p 〉 ∧ applyR(δ(q, P), A)

⎞
⎠ .

• η(〈q,B · y,A〉, A) = η(〈q,B · y,#〉, A) = (B, 〈q, y, B〉).
• η(n+, A) =

∨
m∈ρ(n,A)〈↑,m+〉 and η(n−, A) =

∧
m∈ρ(n,A)〈↑, n−〉. Also,

η(n+,⊥) = true if n ∈ H , η(n+,⊥) = false if n �∈ H , η(n−,⊥) = false if
n ∈ H , and η(n−,⊥) = true if n �∈ H .

Thus, in action states, A reads the direction of the current node and applies the
rewrite rules ofR in order to impose new requirements according to δ. In navigation

Model Checking for Database Theoreticians 11

states, A needs to go downwards B · y and check that the nodes it comes across on
its way are labeled by their direction. For that,A proceeds only with the direction of
the current node (maintained as the third element of the state), and sends to direction
B a state whose third element is B. Note that since we reach states with # only with
upward transitions,A visits these states only when it reads nodes x that have already
been read by a copy ofA that does check whether x is labeled by its direction. When
A is in a state of N±, it simulate U , going up the tree.

– q′
0 = 〈q0, x0,⊥〉. Thus, in its initial state A checks that GR with initial state x0 is

accepted by S with initial state q0. It also checks that the root of the input tree is
labeled with ⊥.

– F ′ is obtained fromF by replacing each setFi by the setFi×tails(R)×(V ∪{#}).

Theorem 6. The model-checking problem for a context-free systemR = 〈V,R, v0〉with
regular labeling L and a graph automaton S = 〈2Prop, Q, δ, q0, F 〉, can be solved in
time exponential in nk, where n = |Q| · (|R|+ |L|) · |V | and k is the index of S.

Together with Theorem 4, we can conclude with an EXPTIME bound also for the
model-checking problem of μ-calculus formulas matching the lower bound in [72].
What about LTL specifications? Recall that that there is an exponential blow-up in
going from LTL formulas to graph automata. Thus, Theorem 6 yields a doubly exponen-
tial model-checking algorithm. It is known, however, that model checking context-free
graphs with respect to LTL specifications can be done in exponential time [9, 27]. An
automata-theoretic approach to model checking LTL properties of context-free systems
in described in [39].

4 Model Checking for Databases

An examination of the framework presented in the previous two sections reveals two
important features. First, it assume that states can be modeled propositionally. Second,
it assume that that the desired behavior can be specified in linear or branching temporal
logic. Though these assumption might be applicable in some settings, cf. [36], neither
of these assumptions seems appropriate for database systems in general. For example, a
basic desirable properties of database transactions in serializability [58, 57, 73], which
cannot be specified in standard temporal logic [60]. For an algorithmic treatment of
serializability verification, see [6].

More fundamentally, one would expect the state of a database system to be modeled
relationally rather than propositionally. That is, if we want a labeled transition graphM =
(W,W0, R, L) to model a database system, then the labeling L should assign to each
statew a relational structureL(w). Such structures would correspond to relational Kripke
structures, which serves as models for for first-order modal logic [35].Verification of such
models was explored in [3, 65, 21]. The parameters studied in this paper are, for example,
how the set W0 of initial states is defined, how the transition relation R is defined,
and what specification language is used. In general, of course, the verification problem
is undecidable, but under various restrictions the problem is decidable. An obvious
example of such a restriction is restricting the cardinality of the relational structures in

12 M.Y. Vardi

the range of the labeling L. Under such a cardinality restriction, as there are only finitely
many such relational structures, relational transition graphs are in essence propositional
transition graphs.

A more interesting restriction is to limit the specification language to ∀LTL, the uni-
versal closure of LTL. In this logic, formulas are constructed from a atomic formulas
(including equality), using Boolean as well as temporal connectives. Sentences are ob-
tained by quantifying universally over all variables in a formula. For example, the LTL
formula (∀x)G(request(x) → F grant(x)), is true in a computation precisely when
every state in the computation in which request(x) holds is followed by some state in
the future in which grant(x) holds. The logic ∃LTL is the dual of ∀LTL, where variables
are quantified existentially. One of the major result in [65] is that under appropriate re-
strictions on W0 and R, model checking ∀LTL properties of relational transition graphs
is decidable. Underlying this result is the observation that validity of ∀LTL sentences,
or, dually, satisfiability of ∃LTL sentences is decidable. This is shown in [65] via a re-
duction to the existential fragment of transitive-closure logic [23]. An easier way to see
that satisfiability of ∃LTL sentences is decidable is to observe that the reduction to Büchi
automata still applies (see also [16]). Again, the intuition is that a state of the automaton
Aϕ is simply a set of subformulas of ϕ. The automaton that reads a computation π in
state P checks that π satisfies all formulas in P . Initial states of Aϕ contain ϕ, The
transition relation of Aϕ checks the correctness of the temporal connectives.

5 Concluding Remarks

Database technology is emerging as one of the key technologies in the global informa-
tion infrastructure. While 15 years ago databases were used mostly for business data
processing, databases today are used in a vast array of applications, such as computer-
aided design, decision support systems, e-commerce, expert systems, geographical in-
formation systems, multimedia, and the like. Database systems use highly complex
transaction management systems [30]. This complexity is expected to grow with the
coming confluence of database systems and web services [36]. While no one disputes
the importance of gaining confidence in the correctness of such systems, research on
database verification is nascent. We hope that this paper would serve to stimulate interest
in this important area.

References

1. S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: from Relations to Semistructured
Data and XML. Morgan Kaufmann, San Mateo, CA, 2000.

2. S. Abiteboul, R. Hull, and V. Vianu. Foundations of databases. Addison-Wesley, 1995.
3. S. Abiteboul, V. Vianu, B.S. Fordham, and Y. Yesha. Relational transducers for electronic

commerce. J. Comput. Syst. Sci., 61(2):236–269, 2000.
4. R. Alur, K. Etessami, and M. Yannakakis. Analysis of recursive state machines. In Proc.

13th Int’l Conf. on Computer Aided Verification, volume 2102 of Lecture Notes in Computer
Science, pages 207–220. Springer-Verlag, 2001.

Model Checking for Database Theoreticians 13

5. R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal logic. In Proc. 38th
IEEE Symp. on Foundations of Computer Science, pages 100–109, Florida, October 1997.

6. R. Alur, K.L. McMillan, and D. Peled. Model-checking of correctness conditions for concur-
rent objects. Information and Computation, 160(1-2):167–188, 2000.

7. R. Armoni, L. Fix, A. Flaisher, R. Gerth, B. Ginsburg, T. Kanza, A. Landver, S. Mador-Haim,
E. Singerman, A. Tiemeyer, M.Y. Vardi, and Y. Zbar. The ForSpec temporal logic: A new
temporal property-specification logic. In Proc. 8th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, volume 2280 of Lecture Notes in
Computer Science, pages 296–211, Grenoble, France, April 2002. Springer-Verlag.

8. P. Atzeni and V. De Antonellis. Relational Database Theory. Benjamin/Cummings, 1993.
9. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata: Appli-

cation to model-checking. In Proc. 8th Conference on Concurrency Theory, volume 1243 of
Lecture Notes in Computer Science, pages 135–150, Warsaw, July 1997. Springer-Verlag.

10. J.R. Büchi. On a decision method in restricted second order arithmetic. In Proc. Internat.
Congr. Logic, Method. and Philos. Sci. 1960, pages 1–12, Stanford, 1962. Stanford University
Press.

11. J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic model check-
ing: 1020 states and beyond. Information and Computation, 98(2):142–170, June 1992.

12. O. Burkart, D. Caucal, F. Moller, and B. Steffen. Verification over infinite states. In J. Bergstra,
A. Ponse, and S.A. Smolka, editors, Handbook of Process Algebra, pages 545–623. Elsevier,
2001.

13. O. Burkart and B. Steffen. Model checking for context-free processes. In Proc. 3rd Conference
on Concurrency Theory, volume 630 of Lecture Notes in Computer Science, pages 123–137.
Springer-Verlag, 1992.

14. O. Burkart and B. Steffen. Composition, decomposition and model checking of pushdown
processes. Nordic J. Comut., 2:89–125, 1995.

15. T. Cachat. Higher order pushdown automata, the caucal hierarchy of graphs and parity games.
In Proc. 30th International Colloqium on Automata, Languages, and Programming, volume
2719 of Lecture Notes in Computer Science, pages 556–569, Eindhoven, The Netherlands,
June 2003. Springer-Verlag.

16. J. Chomicki and D. Niwinski. On the feasibility of checking temporal integrity constraints.
J. Comput. Syst. Sci., 51(3):523–535, 1995.

17. E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM Transactions on Programming Languages
and Systems, 8(2):244–263, January 1986.

18. E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
19. E.M. Clarke and J.M. Wing. Formal methods: State of the art and future directions. ACM

Computing Surveys, 28:626–643, 1996.
20. C. Courcoubetis, M.Y. Vardi, P. Wolper, and M.Yannakakis. Memory efficient algorithms for

the verification of temporal properties. Formal Methods in System Design, 1:275–288, 1992.
21. A. Deutsch, L. Sui, and V. Vianu. Specification and verification of data-driven web services.

In Proc. 23rd ACM Symp. on Principles of Database Systems, pages 71–82, 2004.
22. M. Dickhfer and T. Wilke. Timed alternating tree automata: the automata-theoretic solution

to the TCTL model checking problem. In Automata, Languages and Programming, volume
1644 of Lecture Notes in Computer Science, pages 281–290, Prague, Czech Republic, 1999.
Springer-Verlag, Berlin.

23. H.D. Ebbinghaus and J. Flum. Finite Model Theory. Perspectives in Mathematical Logic.
Springer-Verlag, 1995.

24. E.A. Emerson and C. Jutla. The complexity of tree automata and logics of programs. In
Proc. 29th IEEE Symp. on Foundations of Computer Science, pages 328–337, White Plains,
October 1988.

14 M.Y. Vardi

25. E.A. Emerson and C. Jutla. Tree automata, μ-calculus and determinacy. In Proc. 32nd IEEE
Symp. on Foundations of Computer Science, pages 368–377, San Juan, October 1991.

26. E.A. Emerson and C.-L. Lei. Temporal model checking under generalized fairness constraints.
In Proc. 18th Hawaii International Conference on System Sciences, North Holywood, 1985.
Western Periodicals Company.

27. A. Finkel, B.Willems, and P.Wolper. A direct symbolic approach to model checking pushdown
automata. In F. Moller, editor, Proc. 2nd International Workshop on Verification of Infinite
States Systems, 1997.

28. R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simple on-the-fly automatic verification of
linear temporal logic. In P. Dembiski and M. Sredniawa, editors, Protocol Specification,
Testing, and Verification, pages 3–18. Chapman & Hall, August 1995.

29. P. Godefroid and P. Wolper. A partial approach to model checking. Information and Compu-
tation, 110(2):305–326, May 1994.

30. J. Gray andA. Reuter. Transaction Processing: Concepts and Techniques. Morgan Kaufmann,
1993.

31. R.H. Hardin, Z. Har’el, and R.P. Kurshan. COSPAN. In Computer Aided Verification, Proc.
8th International Conference, volume 1102 of Lecture Notes in Computer Science, pages
423–427. Springer-Verlag, 1996.

32. T.A. Henzinger, P.-H Ho, and H. Wong-Toi. A user guide to hytech. In Tools and algorithms
for the construction and analysis of systems, volume 1019 of Lecture Notes in Computer
Science, pages 41–71. Springer-Verlag, 1995.

33. T.A. Henzinger, O. Kupferman, and M.Y. Vardi. A space-efficient on-the-fly algorithm for
real-time model checking. In Proc. 7th Conference on Concurrency Theory, volume 1119 of
Lecture Notes in Computer Science, pages 514–529, Pisa, August 1996. Springer-Verlag.

34. G.J. Holzmann. The model checker SPIN. IEEE Trans. on Software Engineering, 23(5):279–
295, May 1997. Special issue on Formal Methods in Software Practice.

35. G.E. Hughes and M.J. Cresswell. A New Introduction to Modal Logic. Routledge, London,
1996.

36. R. Hull, M. Benedikt, V. Christophides, and J. Su. E-services: a look behind the curtain. In
Proc. 22rd ACM Symp. on Principles of Database Systems, pages 1–14, 2003.

37. D. Janin and I. Walukiewicz. Automata for the modal μ-calculus and related results. In Proc.
20th International Symp. on Mathematical Foundations of Computer Science, Lecture Notes
in Computer Science, pages 552–562. Springer-Verlag, 1995.

38. D. Kozen. Results on the propositional μ-calculus. Theoretical Computer Science, 27:333–
354, 1983.

39. O. Kupferman, N. Piterman, and M.Y. Vardi. Model checking linear properties of prefix-
recognizable systems. In Proc. 14th International Conference on Computer AidedVerification,
volume 2404 of Lecture Notes in Computer Science, pages 371–385. Springer-Verlag, 2002.

40. O. Kupferman and M.Y. Vardi. Freedom, weakness, and determinism: from linear-time to
branching-time. In Proc. 13th IEEE Symp. on Logic in Computer Science, pages 81–92, June
1998.

41. O. Kupferman and M.Y. Vardi. Modular model checking. In Proc. Compositionality Work-
shop, volume 1536 of Lecture Notes in Computer Science, pages 381–401. Springer-Verlag,
1998.

42. O. Kupferman and M.Y. Vardi. Robust satisfaction. In Proc. 10th Conference on Concurrency
Theory, volume 1664 of Lecture Notes in Computer Science, pages 383–398. Springer-Verlag,
August 1999.

43. O. Kupferman and M.Y. Vardi. An automata-theoretic approach to reasoning about infinite-
state systems. In Proc. 12th International Conference on Computer AidedVerification, volume
1855 of Lecture Notes in Computer Science, pages 36–52. Springer-Verlag, 2000.

Model Checking for Database Theoreticians 15

44. O. Kupferman and M.Y. Vardi. Synthesis with incomplete informatio. In Advances in Tem-
poral Logic, pages 109–127. Kluwer Academic Publishers, January 2000.

45. O. Kupferman and M.Y. Vardi. Weak alternating automata are not that weak. ACM Trans. on
Computational Logic, 2001(2):408–429, July 2001.

46. O. Kupferman, M.Y. Vardi, and P. Wolper. An automata-theoretic approach to branching-time
model checking. Journal of the ACM, 47(2):312–360, March 2000.

47. R.P. Kurshan. Computer Aided Verification of Coordinating Processes. Princeton Univ. Press,
1994.

48. R.P. Kurshan. Formal verification in a commercial setting. In Proc. Conf. on Design Automa-
tion (DAC‘97), volume 34, pages 258–262, 1997.

49. L. Lamport. Sometimes is sometimes “not never” - on the temporal logic of programs. In
Proc. 7th ACM Symp. on Principles of Programming Languages, pages 174–185, January
1980.

50. K. G. Larsen, P. Petterson, and W. Yi. UPPAAL: Status & developments. In Computer Aided
Verification, Proc. 9th International Conference, volume 1254 of Lecture Notes in Computer
Science, pages 456–459. Springer-Verlag, 1997.

51. O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy their
linear specification. In Proc. 12th ACM Symp. on Principles of Programming Languages,
pages 97–107, New Orleans, January 1985.

52. D. Maier. The Theory of Relational Databases. Computer Science Press, Rockville, Md.,
1983.

53. D.E. Muller and P.E. Schupp. The theory of ends, pushdown automata, and second-order
logic. Theoretical Computer Science, 37:51–75, 1985.

54. D.E. Muller and P.E. Schupp. Alternating automata on infinite trees. Theoretical Computer
Science, 54:267–276, 1987.

55. F. Neven. Automata, logic, and XML. In 16th International Workshop on Computer Science
Logic, volume 2471 of Lecture Notes in Computer Science, pages 2–26, Edinburgh, Scotland,
September 2002. Springer-Verlag.

56. F. Neven. Automata theory for xml researchers. SIGMOD Record, 31(3):39–46, 2002.
57. N. Goodman P.A. Bernstein, V. Hadzilacos. Concurrency Control and Recovery in Database

Systems. Addison-Wesley, 1987.
58. C. Papadimitiou. Theory of Database Concurrency Control. Computer Science Pr., 1986.
59. C.H. Papadimitriou. Database metatheory: Asking the big queries. In Proc. 14th ACM Symp.

on Principles of Database Systems, pages 1–10, 1995.
60. D. Peled, S. Katz, and A. Pnueli. Specifying and proving serializability in temporal logic. In

Proc. 6th IEEE Symp. on Logic in Computer Science, pages 232–244, 1991.
61. N. Piterman and M. Vardi. Micro-macro stack systems: A new frontier of decidability for

sequential systems. In 18th IEEE Symposium on Logic in Computer Science, pages 381–390,
Ottawa, Canada, June 2003. IEEE, IEEE press.

62. A. Pnueli. The temporal logic of programs. In Proc. 18th IEEE Symp. on Foundation of
Computer Science, pages 46–57, 1977.

63. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc. 16th ACM Symp.
on Principles of Programming Languages, pages 179–190, Austin, January 1989.

64. J.P. Queille and J. Sifakis. Specification and verification of concurrent systems in Cesar. In
Proc. 5th International Symp. on Programming, volume 137 of Lecture Notes in Computer
Science, pages 337–351. Springer-Verlag, 1981.

65. M. Spielmann. Verification of relational transducers for electronic commerce. J. Comput.
Syst. Sci., 66:40–65, 2003.

66. M.Y.Vardi. Automata theory for database theoreticians. In Proc. 8th ACM Symp. on Principles
of Database Systems, pages 83–92, 1989.

16 M.Y. Vardi

67. M.Y. Vardi. An automata-theoretic approach to linear temporal logic. In F. Moller and
G. Birtwistle, editors, Logics for Concurrency: Structure versus Automata, volume 1043 of
Lecture Notes in Computer Science, pages 238–266. Springer-Verlag, Berlin, 1996.

68. M.Y. Vardi. Reasoning about the past with two-way automata. In Proc. 25th International
Coll. on Automata, Languages, and Programming, volume 1443 of Lecture Notes in Computer
Science, pages 628–641. Springer-Verlag, Berlin, July 1998.

69. M.Y. Vardi. Branching vs. linear time: Final showdown. In Proc. Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), volume 2031 of Lecture Notes in Computer
Science, pages 1–22. Springer-Verlag, 2001.

70. M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verification.
In Proc. 1st Symp. on Logic in Computer Science, pages 332–344, Cambridge, June 1986.

71. M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information and Compu-
tation, 115(1):1–37, November 1994.

72. I. Walukiewicz. Pushdown processes: games and model checking. In Proc. 8th International
Conference on Computer Aided Verification, volume 1102 of Lecture Notes in Computer
Science, pages 62–74. Springer-Verlag, 1996.

73. G. Weikum and G. Vossen. Transactional Information Systems: Theory, Algorithms, and the
Practice of Concurrency Control. Morgan Kaufmann, 2001.

74. T. Wilke. CTL+ is exponentially more succinct than CTL. In C. Pandu Ragan, V. Raman, and
R. Ramanujam, editors, Proc. 19th conference on Foundations of Software Technology and
Theoretical Computer Science, volume 1738 of Lecture Notes in Computer Science, pages
110–121. Springer-Verlag, 1999.

75. B. Willems and P. Wolper. Partial-order methods for model checking: From linear time to
branching time. In Proc. 11th Symp. on Logic in Computer Science, pages 294–303, New
Brunswick, July 1996.

76. P. Wolper, M.Y. Vardi, and A.P. Sistla. Reasoning about infinite computation paths. In Proc.
24th IEEE Symp. on Foundations of Computer Science, pages 185–194, Tucson, 1983.

The Design Space of Type Checkers for
XML Transformation Languages

Anders Møller� and Michael I. Schwartzbach

BRICS��, University of Aarhus
{amoeller, mis}@brics.dk

Abstract. We survey work on statically type checking XML transfor-
mations, covering a wide range of notations and ambitions. The concept
of type may vary from idealizations of DTD to full-blown XML Schema
or even more expressive formalisms. The notion of transformation may
vary from clean and simple transductions to domain-specific languages
or integration of XML in general-purpose programming languages. Type
annotations can be either explicit or implicit, and type checking ranges
from exact decidability to pragmatic approximations.

We characterize and evaluate existing tools in this design space, in-
cluding a recent result of the authors providing practical type checking of
full unannotated XSLT 1.0 stylesheets given general DTDs that describe
the input and output languages.

1 Introduction

XML is an established format for structured data, where each document is es-
sentially an ordered labeled tree [8]. An XML language is a subset of such trees,
typically described by formalisms known collectively as schemas. Given a schema
S, we use L(S) to denote the set of XML trees that it describes. Several different
schema formalisms have been proposed: the original DTD mechanism that is part
of the XML specification [8], more expressive schemas such as XML Schema [39],
RELAX NG [13], or DSD2 [33], and various tree automata formalisms [21, 14].

Many different languages have been devised for specifying transformations
of XML data, covering a wide range of programming paradigms. Several such
languages have type systems that aim to statically catch runtime errors that
may occur during transformations, but not all consider the overall problem of
type checking the global effect: given a transformation T , an input schema Sin
and an output schema Sout , decide at compile time if

∀X ∈ L(Sin) : T (X) ∈ L(Sout)

The input and output language may of course be the same. Notice that schemas
here act as types in the programming language. Also, we use the notion of type
checking in a general sense that also covers techniques based on dataflow analysis.

� Supported by the Carlsberg Foundation contract number ANS-1507/20.
�� Basic Research in Computer Science (www.brics.dk), funded by the Danish National

Research Foundation.

T. Eiter and L. Libkin (Eds.): ICDT 2005, LNCS 3363, pp. 17–36, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

18 A. Møller and M.I. Schwartzbach

In this paper we describe the design space of XML transformation languages
and their type checkers, and survey a representative collection of examples:
XDuce [21], Xact [27], XJ [17], XOBE [24], JDOM [23], JAXB [37], HaXml [42],
Cω [31, 4], tree transducers [32, 30], and XQuery [5]. Furthermore, we present a
preliminary report on a novel point in the design space: a flow-based type checker
for the full XSLT 1.0 language [34].

XML transformations are motivated by different usage scenarios: queries on
XML databases generate results that are again XML data; XML documents are
presented in XHTML or XSL-FO versions; translations are performed between
different dialects of XML languages; and views or summaries of XML publica-
tions are automatically extracted. A major contributing factor to the success of
XML is the ability to unify such diverse tasks in a single framework. While the
various languages we survey certainly have different sweet spots, it is reasonable
to expect that they should each support most of the above scenarios.

2 Aspects of XML Transformation Languages

Languages for programming XML transformations may be characterized in many
different ways. A major distinction, which is actually relevant for any kind of
application domain, is between domain-specific languages (DSLs) and general
purpose languages (GPLs) [41].

A GPL is an ordinary programming language, like Java or C++. One ap-
proach for obtaining integration of XML is using a library that allows con-
struction and deconstruction of XML values and provides support for parsing
and unparsing. Another approach is data binding, which represents XML data
through native types of the programming language, often guided by schemas and
manually specified mappings. Since XML documents are ordinary data values in
the language, there is no special syntax or analysis of XML manipulations.

A DSL is a specially designed language that supports domain-specific values
and operations. A DSL may be either stand-alone or embedded.

A stand-alone DSL is designed and implemented from scratch with its own
tailor-made compiler or interpreter. This allows the highest degree of exploita-
tion of domain-specific knowledge for both syntax, analysis, and implementation.
Stand-alone DSLs have two obvious downsides: First, it is expensive to imple-
ment a language from scratch (though there is much active research in lowering
the cost) and it is difficult to provide as complete an infrastructure as, say, the
Java language libraries. Second, potential users have a steep learning curve, even
though DSLs are often designed to resemble other known languages. For XML
transformations, a stand-alone DSL will have some kind of XML trees as native
values.

An embedded DSL is based on a GPL with a framework for XML pro-
gramming. The domain-specific parts consist of specialized syntax and analysis.
The domain-specific syntax, typically for XML constants and navigation in XML
data, may be provided through a preprocessor that desugars the DSL syntax into
GPL syntax. At runtime, the DSL operations are then handled by a GPL library.

The Design Space of Type Checkers for XML Transformation Languages 19

The domain-specific program analysis may be performed at the DSL source code
level, on the desugared code, or it may exploit a GPL analysis. Compared to
a stand-alone DSL, having the foundation of a GPL makes it easier to interact
with other systems, for example, communicate on the Web or access data bases
through the use of preexisting libraries. It also makes it simpler to integrate
non-XML computations into the XML processing, for example, complex string
manipulations or construction of XML data from non-XML data or vice versa.

The distinction between these categories can be blurry: a GPL may be ex-
tended with XML-like features to allow better data binding, or a DSL for XML
processing may be extended to become a GPL. We shall call these approaches
XML-centric GPLs.

Another distinguishing aspect of an XML transformation language is its ex-
pressiveness. All GPLs are clearly Turing complete, but some embedded DSLs
are designed to express only a limited class of transformations. The benefit of a
restricted language is twofold: First, if only certain transformations are required,
then a specialized syntax makes their programming easier. Second, a restricted
language may be subjected to more precise analysis.

It is important to distinguish between two different kinds of Turing com-
pleteness: the ability to perform arbitrary computations on representations of
XML trees vs. the ability to perform arbitrary computations on some encoding
of the integers. Some stand-alone DSLs are only Turing complete in the latter
sense. Also, an embedded DSL may be Turing incomplete in the XML sense,
even though the underlying GPL is Turing complete in the traditional sense.
A common example is a language where element names and attribute names
cannot be generally computed but only chosen among constants that appear in
the program. However, such a restriction might not be a limitation in practice
since schemas written in existing schema languages can only define fixed sets of
such names anyway.

A well-known aspect of any language is its paradigm. For the purpose of
this paper, we shall merely distinguish roughly between imperative languages,
which have explicit mutable state, and declarative languages, which are without
side-effects and often have implicit control flow. The most widely used GPLs are
imperative, but most stand-alone DSLs are declarative.

The languages we consider apply an abundance of different models of XML
data. Some treat XML as mutable tree structures, whereas others view them
as being immutable. Of course, this aspect is closely related to the language
paradigm. Mutability is natural in an imperative language; however, immutabil-
ity has many advantages, in particular with respect to type checking, and can be
beneficial even in languages where data is generally mutable. In approaches that
involve data binding for GPLs, XML data is represented using the underlying
data model, in object-oriented languages by mapping schema types into classes
and XML data into objects.

These different models may involve varying mechanisms for constructing
XML data and for navigating through or deconstructing the data. One approach
is to perform direct tree manipulation where construction and navigation is on

20 A. Møller and M.I. Schwartzbach

the level of individual XML tree nodes, perhaps with a term language for con-
structing tree fragments from constants and dynamically evaluated expressions.
Deconstruction and navigation might also be based on pattern matching or on
XPath expressions. Another variant is to model XML data as templates, which
are tree structures with gaps that can be substituted with other values.

Finally, the quality of the implementation of a language may obviously
vary. We will distinguish between three levels: First, an industrial strength im-
plementation scales to real-life applications and has a robust infrastructure of
support and documentation. Second, a prototype is provided by a research group,
has been shown to work on moderately sized examples, and is only sporadically
supported. Finally, theoryware is an implementation whose feasibility has been
established in a research paper but for which little practical experience exists.
Note that many prominent software tools have taken the full trip from theory-
ware over prototype to industrial strength.

3 Aspects of XML Type Checking

Independently of the above aspects, the type checking capabilities of an XML
transformation language may be characterized.

First of all, an XML transformation language may of course be entirely
unchecked, which means that all errors will be observed during runtime. For the
other languages, we will distinguish between internal and external type checking.

Internal type checks aim at eliminating runtime errors during execution. For a
GPL framework, this property is mainly inherited from the underlying language,
and XML operations throwing their own kinds of exceptions are generally beyond
the scope of the type system. For an embedded DSL, the type system of the
underlying language will perform its own checks, while a separate analysis may
perform additional checks of XML operations. One example of this is to verify
that when the program navigates to, say, a given attribute of an element, then
such an attribute is guaranteed to exist according to the schema. For a stand-
alone DSL, a domain-specific type checker is often integrated into the compiler.

External type checks aim at validating the overall behavior of the XML trans-
formation: that an XML tree belonging to the language of an input schema is
always transformed into an XML tree belonging to the language of an output
schema. For a GPL framework, this will require a global program analysis of
the underlying language. This is often also true for an embedded DSL, but the
restrictions imposed by the domain-specific syntax may make this task consid-
erably simpler. For a stand-alone DSL, the external type check may also require
a program analysis, but often it will be possible to express external type checks
in terms of internal type checks if the schemas can be mapped to the domain-
specific types.

The types of the XML data must be specified in some type formalism. A
simple choice is DTD or the closely related formalism of local tree grammars [35].
A more ambitious choice is to use general regular (unranked) tree languages,
corresponding to bottom-up tree automata [36]. Another approach is to use the

The Design Space of Type Checkers for XML Transformation Languages 21

full XML Schema language or other advanced schema languages used in real-
life development projects. Finally, for GPL frameworks and embedded DSLs,
the types will be characterized as native if they are effectively those of the
underlying language. Approaches that rely on schema languages such as DTD
or XML Schema most often tacitly ignore uniqueness and reference constraints
(that is, ID/IDREF in DTD and key/keyref/unique in XML Schema), since
these aspects of validity seem exceedingly hard to capture by type systems or
dataflow analysis, and also usually are regarded as secondary features compared
to the structural aspects of schemas.

Some type checkers use type annotations, which are part of the language
syntax and explicitly state the expected or required types of variables and expres-
sions. Annotations may be mandatory, meaning that certain language constructs
must be given explicit types. Some languages require annotation of every XML
variable, whereas others have a more light use of annotations, for example at
input and output only. Heavy use of type annotations has both pros and cons.
Type annotations may make the task of the type checker easier since less in-
ference is needed. Also, one may argue that explicit types make the code more
comprehensible since its intention is made more clear. On the other hand, the
types being involved in XML processing can be quite complicated and writing
explicit types might be viewed as an annoying extra burden on the programmer.
Also, explicit types may incur a rigid type checker where type correctness must
be obeyed at every program point. The consequences might be that XML trees
can only be built strictly bottom-up, and that sequences of updates that grad-
ually convert data from one type to another are not possible to type check. We
discuss these issues further in the next section.

For Turing complete languages, type checking is an undecidable problem. For
internal type checks, the decision problem is to determine the absence of certain
runtime errors. For external type checks, the decision problem is to determine
if the input language is transformed into the output language. Thus, type sys-
tems must approximate the answers to these problems. We will characterize the
precision of both the internal and the external type checking capabilities ac-
cording to the levels of guarantees being provided: The typical solution is to
devise a static type checking algorithm that conservatively (that is, soundly but
not completely) decides if the desired properties hold. Thus, any type checker
will unfairly reject some programs, which is a common experience of most pro-
grammers. Another solution is to apply a pragmatic type checker which attempts
to catch as many errors as possible, but which may generate both false positives
and false negatives (in other words, it is neither sound nor complete). Note that
even conservative internal type checkers usually ignore certain kinds of runtime
errors, the classical examples being division by zero and null pointer derefer-
ences. Also, approaches belonging to the pragmatic category can be sound if
certain unchecked assumptions are adhered to. Of course, for non-Turing com-
plete languages, it might also be feasible to guarantee exact answers.

The theoretical complexity of the type checking algorithm is also a relevant
aspect. However, the asymptotic complexity of an algorithm is not always a

22 A. Møller and M.I. Schwartzbach

true measure of its experienced running time (for example, ML type inference is
exponential but runs smoothly in practice). A related aspect is the modularity
of the type checking. A highly modular approach is more likely to scale to large
programs. Some algorithms analyze each operation individually; if each operation
type checks, then the entire program type checks. Others involve whole-program
type inference or dataflow analysis using fixed-point iteration. Naturally, this
aspect depends on the use of type annotations described above: high modularity
is correlated with heavy use of annotations.

Finally, as for the transformation implementation, we will characterize the
type checking implementation; for some languages, the transformation im-
plementation is much more developed than the type checker. The availability
of implementations is also interesting, where we distinguish between open source,
free binary distributions, commercial products, and implementations that seem
unavailable.

4 Points in the Design Space

The above discussions allow us to provide a succinct profile of a given XML
transformation language and its type checker. For each language, we look into
the following aspects (however, some are not applicable to all examples):

Language Type: Is the language a GPL library, a data-binding framework, a
stand-alone DSL, an embedded DSL, or an XML-centric GPL? In case of a
stand-alone DSL, is it imperative or declarative? Is it Turing complete?

Model for XML Data: Is XML data mutable or immutable? How is XML
data constructed and deconstructed?

Type Formalism: Which formalism is used as types?
Annotations: How much does the approach depend on explicit types in the

programs?
Precision: Is the type system exact, conservative, or pragmatic? Which guar-

antees are given when a program type checks? This aspect is relevant for
both internal and external type checks. For conservative systems, is the pre-
cision acceptable in practice or are too many semantically correct programs
rejected by the type checker?

Complexity: What is the theoretical complexity of the type checking process
(if known)? Of course, this aspect must be evaluated together with the mod-
ularity aspect. Also, observed behavior in practice may appear very different.

Modularity: What is the granularity of the type checking? This ranges from
individual operations to whole-program analyses.

Implementation Quality and Availability: What is the quality of imple-
mentations of the transformation language and of the type checker? Is their
source code available?

Additionally, we will try to relate each language with the most closely related
ones to investigate the similarities and essential differences.

The Design Space of Type Checkers for XML Transformation Languages 23

4.1 XDuce

XDuce was the first programming language with type checking of XML opera-
tions using schemas as types [21]. It is a simplistic language that has provided
the foundation for later languages, in particular Xtatic and CDuce, which we
briefly mention below, and has also influenced the design of XQuery (see Sec-
tion 4.10) and the popular schema language RELAX NG [13].

Language Type: XDuce is a declarative stand-alone DSL. It can also be char-
acterized as a first-order pure functional language. Its intention has been to
investigate type-safe integration of XML into programming languages, not
to be a full fledged programming language. The original description of the
language did not include attributes, but this has been amended in a later
version [19]. It is Turing complete, with the exception that it cannot compute
element names and attribute names dynamically.

Model for XML Data: Since the language is pure, XML data is obviously
treated as immutable trees. Construction of values is expressed as tree terms.
Navigation and deconstruction is based on a mechanism of regular expression
pattern matching [20] – a combination of regular expressions and ML-style
pattern matching that is closely connected with the type system.

Type Formalism: The type system of XDuce is based on the notion of regular
expression types, which corresponds to the class of regular tree languages.
The most essential part of the type system is the subtyping relation, which
is defined by inclusion of the values represented by the types (this is also
called structural subtyping).

Annotations: XDuce requires explicit type annotations for both function argu-
ments and return values; however it provides local type inference for pattern
matching operations, which means that many pattern variables do not need
annotations.

Precision: The type checker of XDuce is conservative: a program that passes
type checking is guaranteed to transform valid input into valid output. Re-
garding internal checking, various properties of pattern matching operations
are checked: exhaustiveness (that at least one clause always matches), ir-
redundancy (every clause can match some value), and unambiguity (that
unique bindings are always obtained). Since the type formalism is decidable
there exist programs that are semantically correct but where appropriate
type annotations are not expressible, but such problematic programs have
not been described in the XDuce papers.

Complexity: Since subtyping is based on automata language inclusion, the
complexity of type checking—including the local type inference and the
checks of pattern matching operations—is exponential time complete. Nev-
ertheless, the algorithm being used appears efficient in practice [22].

Modularity: Since no global type inference or fixed-point iteration is involved,
the approach is highly modular.

Implementation Quality and Availability: An open source prototype is
available. This implementation focuses on type checking and analysis of pat-
terns, not on runtime efficiency.

24 A. Møller and M.I. Schwartzbach

A key to the success of XDuce is the clean mathematical foundation of reg-
ular expression types. However, a number of issues remain. First, the current
design does not handle unordered content models although these are common in
real-life schemas. Second, the regular expression pattern matching mechanism
can in some situations be too low-level, for example, for navigating deep down
XML tree structures, processing data iteratively, or performing almost-identity
transformations. Ongoing work aims to provide higher-level pattern matching
primitives [18]. Third, devising an efficient runtime model for the language is
challenging; for example, pattern matching may involve exponential time or
space algorithms [29].

Other issues are being addressed in descendants of XDuce: Xtatic [15] aims
to integrate the main ideas from XDuce into C� (and can hence be catego-
rized as an embedded DSL). As a part of making the technologies available in a
mainstream language, efficient runtime representation of the XML data is also
considered [16]. The CDuce language [3] goes another direction by extending
XDuce towards being an XML-centric functional GPL by adding features, such
as higher-order functions and variations of pattern matching primitives. Addi-
tionally, parametric polymorphism is being considered.

4.2 XACT

Xact [27, 26] has roots in the language JWIG, which is a Java-based language
for development of interactive Web services [10, 7]. JWIG contains a template-
based mechanism for dynamic construction of HTML/XHTML pages and in-
cludes a static program analysis that checks for validity of the pages; in Xact
this mechanism has been generalized to full XML transformations.

Language type: Xact is an embedded DSL, with Java as host language. As
XDuce, it is Turing complete but cannot compute element names and at-
tribute names dynamically.

Model for XML data: This language uses a variant of immutable trees called
templates, which are XML tree fragments with named gaps appearing in
element contents or attributes. Values can be filled into these gaps in any
order and at any time, and conversely, subtrees can be replaced by gaps
in order to remove or replace data. Constant templates are written in an
XML syntax. The main operations are the following: plug constructs a new
value by inserting XML templates or strings into the gaps of the given name;
select takes an XPath expression as argument and returns an array of the
selected subtrees; gapify also takes an XPath expression as argument but
in contrast to select it replaces the addressed subtrees by gaps of a given
name; setAttribute inserts or replaces attributes selected using XPath;
and setContent similarly replaces element content. In addition, there are
methods for importing and exporting XML values to other formats, such as
strings, streams, or JDOM documents. Note that a major difference to the
XDuce family of languages is that Xact relies on XPath for navigation in
XML trees.

The Design Space of Type Checkers for XML Transformation Languages 25

Type formalism: The static guarantees in Xact are obtained through the
use of a dataflow analysis that exploits a formalism called summary graphs,
which approximatively tracks the operations on templates in the program.
DTD is used for input and output types; however, the analyzer does permit
the stronger schema language DSD2 [33] for the output types. The asym-
metry arises since the input type must be translated into a summary graph,
while the final check of the output type uses a separate algorithm that tests
inclusion of summary graphs into DSD2 schemas. It is theoretically possible
to map also a DSD2 schema into a summary graph accepting the same lan-
guage (ignoring as usual uniqueness and pointer constraints), but this has
not been implemented yet.

Annotations: Being based on dataflow analysis, the annotation overhead is
much lighter than in most other techniques. Types, that is, references to
DTDs, are specified only at input and at designated analysis points (typically
at output).

Precision: The analysis is conservative, that is, a program that passes the
analysis cannot produce invalid XML at runtime. The analyzer also per-
forms some internal checks: that plug operations never fail (by attempting
to plug templates into attribute gaps), and that XPath expressions used in
the other XML operations can potentially select nonempty node sets. The
main practical limitations of the analysis precision are caused by the facts
that the current implementation employs a monovariant and path-insensitive
analysis and that all field variables are treated flow insensitively (to ensure
soundness).

Complexity: The analysis has polynomial complexity.
Modularity: The approach has poor modularity since it performs fixed-point

iteration over the entire program. Nevertheless, it appears reasonably effi-
cient in practice [27].

Implementation quality and availability: An open source prototype is
available. The analyzer handles the full Java language. The runtime repre-
sentation has been crafted to obtain good performance despite operating on
immutable structures. [26]

Although less mathematically elegant, the template-based mechanism in Xact
can be more flexible to program with than the XDuce model. First, using the
plug operation, templates with gaps can be passed around as first-class values.
Gaps may be filled in any order and computed templates can be reused; in the
XDuce family of languages, trees must be constructed bottom-up. Second, the use
of XPath appears powerful for addressing deeply into XML trees; several other
languages have chosen XPath for the same purpose, as described in the following
sections. Third, the gapify operation makes it easy to make almost-identity trans-
formations without explicitly reconstructing everything that does not change.

Despite the differences between the XDuce and Xact approaches, there is
a connection between the underlying formalisms used in the type checkers: as
shown in [9], the notions of summary graphs and regular expression types are
closely related.

26 A. Møller and M.I. Schwartzbach

Current work on the Xact project aims to obtain a closer integration with
the new generics and iteration features that have been introduced in Java 5.0.

4.3 XJ

The development of the XJ [17] language aims at integrating XML processing
closely into Java using XML Schema as type formalism.

Language type: XJ is an embedded DSL using Java as host language.
Model for XML data: XML data is represented as mutable trees. Construc-

tion of XML data is performed at the level of individual nodes. It is dy-
namically checked that every node has at most one parent. Subtrees are ad-
dressed using XPath. Updating attribute values or character data is likewise
expressed using XPath, whereas insertion and deletion of subtrees involving
elements are expressed with special insert and delete operations.

Type formalism: Types are regular expressions over XML Schema declara-
tions of elements, attributes, and simple types. Thus, the type system has
two levels: regular expression operators and XML Schema constructions.
Subtyping on the schema level is defined by the use of type derivations (ex-
tensions and restrictions) and substitution groups in the schemas: if A is
derived from B or is in the substitution group of B, then A is defined to be
a subtype of B. In other words, this is a nominal style of subtyping. Subtyp-
ing on the regular expression level is defined as regular language inclusion
on top of the schema subtyping. Coercions are made between certain XML
types and normal Java types, for example between int of XML Schema and
int of Java, or between Kleene star and java.lang.List.

Annotations: All XML variable declarations must be annotated with types.
Precision: The type checker is in the pragmatic category because updates

require runtime checks due to potential aliasing. Also, not all features in
XML Schema are accounted for by the type system, an example being facet
constraints. Updates involving XPath expressions that evaluate to multiple
nodes result in runtime errors.

Complexity: Since subtyping relies on inclusion between regular expressions,
complexity is exponential in the size of the regular expressions being used.

Modularity: Due to the heavy use of annotations, each operation can be
checked separately, which leads to a high degree of modularity.

Implementation quality and availability: A prototype implementing parts
of the system has been made (in particular, type checking of updates of
complex types is not implemented). This prototype has not been available
to us.

The authors of [17] acknowledge the fact that the type checker of XJ can
be too rigid. Since the values of a variable at all times must adhere to its type
and this type is fixed at the variable declaration, it is impossible to type check a
sequence of operations that temporarily invalidate the data. A plausible exam-
ple is constructing an element and inserting a number of mandatory attributes
through a sequence of updates.

The Design Space of Type Checkers for XML Transformation Languages 27

A problem with the nominal style of subtyping is that a given XML value
is tied too closely with its schema type. Imagine a transformation (inspired by
the addrbook example from [21]), which creates a telephone book document
from an address book document by extracting the entries that have telephone
numbers. That is, the output language is a subset of the input language, the only
difference being that telephone elements are mandatory in the content model
of person elements in the output. Since the nominal type system treats the two
versions of person elements as unrelated, an XJ transformation must explicitly
reconstruct all person elements instead of merely removing those without a
telephone element.

4.4 XOBE

The XOBE language [24] has been developed with similar goals as XJ and has
many similarities in the language design; however, the type checking approach
appears closer to that of XDuce.

Language type: XOBE is an embedded DSL using Java as host language.
Model for XML data: XML data is represented as mutable trees. (It is not

explicitly stated in the available papers on XOBE that the XML trees are
mutable, however an example program in [24] strongly suggests that this
is the case.) Construction of XML trees is written in an XML-like notation
with embedded expressions (unlike XJ). Subtrees are addressed using XPath
expressions.

Type formalism: The underlying type formalism is regular hedge expressions,
which corresponds to the class of regular tree languages that, for instance,
XDuce also relies on. From the programmer’s point of view, XML Schema
can be used as type formalism, but features of XML Schema that go beyond
regularity are naturally not handled by the type checker. It is not clear how
the type derivation and substitution group features of XML Schema are
handled, but it might be along the lines suggested in [35].

Annotations: XOBE requires explicit type annotations on every XML variable
declaration.

Precision: The main ingredient of the type checker is checking subtype rela-
tionship for assignment statements. Since mutable updates are possible and
the potential aliases that then may arise are apparently ignored (unlike in
the XJ approach which relies on runtime checks), the XOBE type checker is
unsound and hence belongs in the pragmatic category. However, if assuming
that problematic aliases do not arise, type checking is conservative. When
XML Schema is used as type formalism, certain kinds of constraints that are
expressible in XML Schema, such as number of occurrences and restricted
string types, are handled by runtime checks.

Complexity: The complexity of checking subtype relationship is exponential.
Modularity: As with XJ, the modularity of type checking is high.
Implementation quality and availability: A binary-code prototype is avail-

able (but, at the time of writing, with minimal documentation).

28 A. Møller and M.I. Schwartzbach

As in XJ, integrating XML into a GPL using mutable trees as data model and
XPath for addressing subtrees is a tempting and elegant approach. However, two
crucial problems remain: it appears infeasible to ensure soundness of the type
checker when aliasing and updates can be mixed, and the type checker can be
too rigid as noted above.

4.5 JDOM

As as baseline, we include JDOM [23] – a popular approach that does not perform
any type checking for validity of the generated XML data but only ensures well-
formedness. In return, it is simple, offers maximal flexibility and performance,
and is widely used. JDOM is developed as a Java-specific alternative to the
language independent DOM [1].

Language type: JDOM is a GPL library (for Java).
Model for XML data: XML data is represented as mutable trees (in partic-

ular, nodes must have unique parents). The library contains a plethora of
operations for performing low-level tree navigation and manipulation and
for importing and exporting to other formats. Additionally, there is built-in
support for evaluating XPath location path expressions.

Type formalism: Well-formedness comes for free with the tree representation,
but JDOM contains no type system (in addition to what Java already has).

Implementation quality and availability: JDOM has an open source in-
dustrial strength implementation.

Compared to the other approaches mentioned in this paper, DOM and JDOM
are generally regarded as low-level frameworks. They are often used as founda-
tions for implementing more advanced approaches.

4.6 JAXB

Relative to DOM/JDOM, Sun’s JAXB framework [37] and numerous related
projects [6] can be viewed as the next step in integrating XML into GPL pro-
gramming languages.

Language type: JAXB is a data binding framework for Java.
Model for XML data: Schemas written in the XML Schema language are

converted to Java classes that mimic the schema structure. XML data is
represented as objects of these classes. Conversion between textual XML
representation and objects is performed by marshall and unmarshall op-
erations. The mapping from schemas to classes can be customized either via
annotations in the schema or in separate binding files.

Type formalism: JAXB relies on the native Java type system. Note that, in
contrast to JDOM, this representation is able to obtain static guarantees of
certain aspects of validity because the binding reflects many properties of
the schemas. Full XML Schema validation is left as a runtime feature.

Annotations: No special annotations are needed in the Java code.

The Design Space of Type Checkers for XML Transformation Languages 29

Precision: The approach is pragmatic due to the significant impedance mis-
match between XML schema languages and the type system of Java. Using
a customized binding, this mismatch can be alleviated, though. Neverthe-
less, there is no automatic translation from DTD, XML Schema, or the more
idealized schema languages that provides precise bindings.

Implementation quality and availability: JAXB has several (even open
source) industrial strength implementations.
Data binding frameworks are a commonly used alternative to the DOM/JDOM

approach. Still, they constitute a pragmatic approach that cannot provide the
static guarantees of conservative frameworks.

4.7 HaXml

If the host language has a more advanced type system, then data binding may be
more precise. An example of that is the HaXml [42] system, which uses Haskell as
host language. HaXml additionally contains a generic library like JDOM, which
we will not consider here.
Language type: HaXml is a data binding framework for Haskell.
Model for XML data: DTDs are converted into algebraic types using a fixed

strategy.
Type formalism: HaXml uses the native Haskell types.
Annotations: Type annotations are optional.
Precision: The Haskell type checker is conservative and generally acknowledged

to have good precision. For the XML binding, however, the lack of subtyping
of algebraic types rejects many natural programs. On the other hand, the
presence of polymorphism allows a different class of useful programs to be
type checked.

Complexity: The type checker of Haskell is exponential.
Modularity: Modularity is excellent, since Haskell supports separate

compilation.
Implementation quality and availability: The Haskell compiler has indus-

trial strength implementations.
In [38] different binding algorithms for Haskell are discussed, enabling more

flexible programming styles while trading off full DTD validity.

4.8 Cω

The Cω language (formerly known as Xen) is an extension of C� that aims at
unifying data models for objects, XML, and also databases [4, 31]. This goes a
step beyond data binding.
Language type: Cω is an XML-centric GPL based on the C� language.
Model for XML data: The mutable data values of C� are extended to include

immutable structural sequences, unions, and products on top of objects and
simple values. XML trees are then encoded as such values. XML templates
may be used as syntactic sugar for the corresponding constructor invocations.
A notion of generalized member access emulates simple XPath expressions
for navigation and deconstruction.

30 A. Møller and M.I. Schwartzbach

Type formalism: The Cω type system similarly supports structural sequence,
union, and product types. There is no support for external types, but the
basic features of DTD or XML Schema may be encoded in the type system.

Annotations: Cω requires ubiquitous type annotations, as does C�.
Precision: The Cω type checker appears somewhat restrictive, since the notion

of subtyping is not semantically complete: two types whose values are in a
subset relation are not necessarily in a subtype relation. This means that
many programs will be unfairly rejected by the type checker. For example,
an addrbook with mandatory telephone elements cannot be assigned to a
variable expecting an addrbook with optional telephone elements.

Complexity: The complexity is not stated (but appears to be polynomial given
the simple notion of subtyping).

Modularity: The type system is highly modular as that of the underlying C�

language.
Implementation quality and availability: The language is available in a

prototype implementation.

Cω solves a more ambitious problem than merely type checked XML trans-
formations, and many of its interesting features arise from the merger of different
data models.

4.9 Tree Transducers

XML has a mathematical idealization as ordered labeled trees and schemas may
be modeled as regular tree languages. Corresponding to this view, XML trans-
formations may be seen as some notion of tree transducers. Two representative
examples are tl transformers [30] and k-pebble transducers [32].

Language type: Tree transducers are declarative stand-alone DSLs. Actually,
they are generally presented simply as 5-tuples with alphabets and transition
functions. The languages are not Turing complete but still capture many
central aspects of other transformation languages.

Model for XML data: XML data is immutable. Attributes must be encoded
as special nodes, and attribute values and character data are ignored. Con-
struction is performed node by node. Navigation and pattern matching is in
the k-pebble approach performed by tree walking and in the tl approach by
evaluating formulas in monadic second-order logic.

Type formalism: Types are general regular tree languages.
Annotations: Only the input and output types are specified.
Precision: These classes of tree transducers are particularly interesting, since

their type checking problems are decidable. The k-pebble transducers may be
viewed as low-level machines, while tl transformers provide a more succinct
declarative syntax.

Complexity: The type checking algorithms are hyperexponential.
Modularity: Tree transducers are closed under composition, which provides a

simple form of modular type checking.

The Design Space of Type Checkers for XML Transformation Languages 31

Implementation quality and availability: The type checking algorithms
have not been implemented and are thus pure theoryware. However, non-
elementary algorithms on tree automata have previously been seen to be
feasible in practice [28].

This work fits into a classical scenario where practical language design and
theoretical underpinnings inspire each other. Type checking algorithms for Tur-
ing complete languages will become ever more precise and formalisms with decid-
able type checking will become ever more expressive, but the two will of course
never meet.

4.10 XQuery

XQuery is the W3C recommendation for programming transformations of data-
centric XML [5] (currently with the status of working draft). As XML trees
may been seen to generalize relational databases tables, the XQuery language is
designed to generalize the SQL query language.

Language type: XQuery is a Turing complete declarative stand-alone lan-
guage. Like XDuce, it is also a first-order pure functional language.

Model for XML data: XML data is treated as immutable trees. Future ex-
tensions plan to generalize also the update mechanisms of SQL, but the query
language itself continues to operate on immutable data. Nodes of trees also
have a physical identity, which means that fragments may be either identical
or merely equal as labeled trees. A term language is used for constructing
values, and XPath is used for deconstruction and pattern matching.

Type formalism: The input and output types are XML Schema instances.
Internally, types are tree languages with data values, corresponding to single-
type tree grammars. Input/output types are mapped approximately into
internal types, and the subtyping is structural (unlike XJ). Most of XML
Schema fits into this framework [35].

Annotations: Variables, parameters, and function results have type annota-
tions that by default denote a type containing all values.

Precision: The internal type checker is conservative and based on type rules.
Some XQuery constructions are difficult to describe, and the designers ac-
knowledge that some type rules may need to be sharpened in later ver-
sions [14]. While XQuery unlike most other transformation languages handle
computed element and attribute names, it should be noted that the corre-
sponding type rule must pessimistically assume that any kind of result could
arise. The external type checker is strictly speaking pragmatic. The unsound-
ness arises because XML Schema is only mapped approximately into internal
types. To achieve a conservative external type checker, the mapping of the
input language should produce an upper approximation and the mapping
of the output language a lower approximation. The current mapping appar-
ently meets neither criterion. The practical precision of the type checking
algorithm is as yet unknown.

Complexity: The type checking algorithm is exponential.

32 A. Møller and M.I. Schwartzbach

Modularity: The type checker is in a sense modular, since functions may be
type checked separately against their type annotations. However, since the
type system lacks analogies of principal type schemes, a single most general
choice of type annotations does not exist.

Implementation quality and availability: XQuery is available in several
prototype implementations, both commercial and open source. Only a single
prototype supports type checking. Industrial strength implementations are
being undertaken by several companies.

XQuery will undoubtedly fulfill its goal as an industrial XML standard. In
that light, its strong theoretical foundation is a welcome novelty.

4.11 Type Checking XSLT

XSLT 1.0 is the current W3C recommendation for programming transformations
of document-centric XML [12]. There is no associated type checker, but in a
recent project we have applied the summary graph technology from Xact to
create a flow-based external type checker [34]. This tool has been designed to
handle a real-life situation, thus the full XSLT 1.0 language is supported.

Language type: XSLT is a declarative stand-alone DSL. It is Turing com-
plete [25], but only in the encoded sense. Even though computed element
and attribute names are allowed, there are several XML transformations
that cannot be expressed, primarily because XSLT transformations cannot
be composed. For example, a transformation that sorts a list of items and
alternatingly colors them red and blue cannot be programmed in XSLT.

Model for XML data: XML data is treated as immutable trees. Templates
are used as a term language (in a declarative fashion, unlike the template
mechanism in Xact). Navigation is performed using XPath.

Type formalism: XSLT 1.0 is itself untyped, but our tool uses summary graphs
for internal types. External types are DTDs. The output type may in fact
be a DSD2 schema, as in Xact.

Annotations: Our tool works on ordinary XSLT stylesheets, thus only the
input and output type must be specified.

Precision: The analysis is conservative. At present, no internal type checks are
performed, but we obtain the required information to catch XPath naviga-
tion errors and detect dead code. The external type checker has been tested
on a dozen scenarios with XSLT files ranging from 35 to 1,353 lines and
DTDs ranging from 8 to 2,278 lines. Most of these examples originate from
real-life projects and were culled from the Web. In a total of 3,665 lines of
XSLT, the type checker reported 87 errors. Of those, 54 were identified as real
problems in the stylesheets, covering a a mixture of misplaced, undefined,
or missing elements and attributes, unexpected empty contents, and wrong
namespaces. Most are easily found and corrected, but a few seem to indicate
serious problems. The 33 false errors fall in two categories. A total of 30
are due to insufficient analysis of string values, which causes problems when
attribute values are restricted to NMTOKEN in the output schema. A variation

The Design Space of Type Checkers for XML Transformation Languages 33

of the string analysis presented in [11] may remedy this. The remaining 3
false errors are caused by approximations we introduce and would require so-
phisticated refinements to avoid. Another important measure of the achieved
precision is that the generic identity transformation always type checks.

Complexity: The algorithm is polynomial and appears reasonably efficient in
practice. The largest example with 1,353 lines of XSLT, 104 lines of input
DTD, and 2,278 lines of output DSD2 schema (for XHTML) ran in 80 sec-
onds on a typical PC (constructing a summary graph with more than 26,000
nodes).

Modularity: The type checker is based on whole-program analysis and thus is
not modular.

Implementation quality and availability: XSLT 1.0 has of course many in-
dustrial strength implementations. The type checker is implemented as a
prototype, which we are currently developing further.

The analysis has several phases. First, we desugar the full XSLT syntax into
a smaller core language using only the instructions apply-templates, choose,
copy-of, attribute, element, and value-of. The transformation has the prop-
erty that the type check of the original stylesheet may soundly be performed on
the reduced version instead.

Second, we perform a control flow analysis finding for each apply-templates
instruction the possible target template rules. This reduces to checking that two
XPath expressions are compatible relative to a DTD, which is challenging to solve
with the required precision. We use a combination of two heuristic algorithms,
partly inspired by a statistical analysis of 200,000 lines of real-life XSLT code
written by hundreds of different authors.

Third, a summary graph that soundly represents the possible output docu-
ments is constructed based on the control flow graph and the input DTD. The
main challenge here is to provide sufficiently precise representations of content
sequences in the output language.

Finally, the resulting summary graph is compared to the output schema using
the algorithm presented in [10].

There have been other approaches to type checking XSLT stylesheets [40, 2],
but our tool is the first working implementation for the full language.

5 Conclusion

Many different programming systems have been proposed for writing transfor-
mations of XML data. We have identified a number of aspects by which these
systems and their type checking capabilities can be compared. The approaches
range from integration of XML into existing languages to development of lan-
guage extensions or entirely new languages. Some aim for soundness where others
are more pragmatic. Additionally, we have presented a brief overview of a novel
approach for type checking XSLT 1.0 stylesheets and have shown how this fits
into the design space of XML type checkers. An extensive description of this
approach is currently in preparation [34].

34 A. Møller and M.I. Schwartzbach

The variety of approaches indicates that the general problem of integrat-
ing XML into programming languages with static guarantees of validity has no
canonical solution. Nevertheless, some general observations can be made:
– A fundamental issue seems to be that real-life schema languages are too far

from traditional type systems in programming languages.
– The choice of using an immutable representation is common, even in imper-

ative languages. (We have seen the problems that arise with mutability and
aliasing).

– It is common to rely on type annotations on all variable declarations. This
improves modularity of type checking but is an extra burden on the pro-
grammer.

– Many type checkers appear restrictive in the sense that they significantly
limit the flexibility of the underlying language. One example is type systems
that are not structural; another is rigidity that enforces a programming style
where XML trees are constructed purely bottom-up.

– Irrespectively of the type checker, it is important that the language is flexible
in supporting common XML transformation scenarios. For example, variants
of template mechanisms can be convenient for writing larger fragments of
XML data. Also, XPath is widely used for addressing into XML data.

– In many proposals, runtime efficiency is an issue that has not been addressed
yet. Also, handling huge amounts of XML data seems problematic for most
systems.

– A claim made in many papers is that high theoretical complexity does not
appear to be a problem in practice. Nevertheless, it is unclear how well
most of the proposed type checking techniques work on real, large scale
programming projects.
Overall, the general problem is challenging and far from being definitively

solved, and we look forward to seeing the next 700 XML transformation lan-
guages and type checking techniques.

Acknowledgments

We thank Claus Brabrand and Christian Kirkegaard for useful comments and
inspiring discussions.

References

1. Vidur Apparao et al. Document Object Model (DOM) level 1 specification, October
1998. W3C Recommendation. http://www.w3.org/TR/REC-DOM-Level-1/.

2. Philippe Audebaud and Kristoffer Rose. Stylesheet validation. Technical Report
RR2000-37, ENS-Lyon, November 2000.

3. Veronique Benzaken, Giuseppe Castagna, and Alain Frisch. CDuce: An XML-
centric general-purpose language. In Proc. 8th ACM International Conference on
Functional Programming, ICFP ’03, August 2003.

4. Gavin Bierman, Erik Meijer, and Wolfram Schulte. The essence
of data access in Cω. Technical report, Microsoft Research, 2004.
http://research.microsoft.com/Comega/.

The Design Space of Type Checkers for XML Transformation Languages 35

5. Scott Boag et al. XQuery 1.0: An XML query language, November 2003. W3C
Working Draft. http://www.w3.org/TR/xquery/.

6. Ronald Bourret. XML data binding resources, September 2004.
http://www.rpbourret.com/xml/XMLDataBinding.htm.

7. Claus Brabrand, Anders Møller, and Michael I. Schwartzbach. The <bigwig>
project. ACM Transactions on Internet Technology, 2(2):79–114, 2002.

8. Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and Franois Yergeau.
Extensible Markup Language (XML) 1.0 (third edition), February 2004. W3C
Recommendation. http://www.w3.org/TR/REC-xml.

9. Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach. Static anal-
ysis for dynamic XML. Technical Report RS-02-24, BRICS, May 2002. Presented
at Programming Language Technologies for XML, PLAN-X ’02.

10. Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach. Extending
Java for high-level Web service construction. ACM Transactions on Programming
Languages and Systems, 25(6):814–875, November 2003.

11. Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach. Precise
analysis of string expressions. In Proc. 10th International Static Analysis Sympo-
sium, SAS ’03, volume 2694 of LNCS, pages 1–18. Springer-Verlag, June 2003.

12. James Clark. XSL transformations (XSLT), November 1999. W3C Recommenda-
tion. http://www.w3.org/TR/xslt.

13. James Clark and Makoto Murata. RELAX NG specification, December 2001.
OASIS. http://www.oasis-open.org/committees/relax-ng/.

14. Denise Draper et al. XQuery 1.0 and XPath 2.0 formal semantics, November 2002.
W3C Working Draft. http://www.w3.org/TR/query-semantics/.

15. Vladimir Gapayev and Benjamin C. Pierce. Regular object types. In Proc. 17th
European Conference on Object-Oriented Programming, ECOOP’03, volume 2743
of LNCS. Springer-Verlag, July 2003.

16. Vladimir Gapeyev, Michael Y. Levin, Benjamin C. Pierce, and Alan Schmitt. XML
goes native: Run-time representations for Xtatic, 2004.

17. Matthew Harren, Mukund Raghavachari, Oded Shmueli, Michael Burke, Vivek
Sarkar, and Rajesh Bordawekar. XJ: Integration of XML processing into Java.
Technical Report RC23007, IBM Research, 2003.

18. Haruo Hosoya. Regular expression filters for XML, January 2004. Presented at
Programming Language Technologies for XML, PLAN-X ’04.

19. Haruo Hosoya and Makoto Murata. Validation and boolean operations for
attribute-element constraints, October 2002. Presented at Programming Language
Technologies for XML, PLAN-X ’02.

20. Haruo Hosoya and Benjamin C. Pierce. Regular expression pattern matching for
XML. Journal of Functional Programming, 13(4), 2002.

21. Haruo Hosoya and Benjamin C. Pierce. XDuce: A statically typed XML processing
language. ACM Transactions on Internet Technology, 3(2), 2003.

22. Haruo Hosoya, Jerome Vouillon, and Benjamin C. Pierce. Regular expression types
for XML. ACM Trans. on Programming Languages and Systems, 2004. To appear.

23. Jason Hunter and Brett McLaughlin. JDOM, 2004. http://jdom.org/.
24. Martin Kempa and Volker Linnemann. On XML objects, October 2002. Presented

at Programming Language Technologies for XML, PLAN-X ’02.
25. Stephan Kepser. A proof of the Turing-completeness of XSLT and XQuery. Tech-

nical report, SFB 441, University of Tübingen, 2002.
26. Christian Kirkegaard, Aske Simon Christensen, and Anders Møller. A runtime

system for XML transformations in Java. In Proc. Second International XML
Database Symposium, XSym ’04, LNCS 3186. Springer-Verlag,2004.

36 A. Møller and M.I. Schwartzbach

27. Christian Kirkegaard, Anders Møller, and Michael I. Schwartzbach. Static analysis
of XML transformations in Java. IEEE Trans. on Software Engineering, 30(3):181–
192, March 2004.

28. Nils Klarlund, Anders Møller, and Michael I. Schwartzbach. MONA implementa-
tion secrets. International Journal of Foundations of Computer Science, 13(4):571–
586, 2002. World Scientific Publishing Company.

29. Michael Y. Levin. Compiling regular patterns. In Proc. 8th ACM SIGPLAN
International Conference on Functional Programming, ICFP ’03, August 2003.

30. Sebastian Maneth, Alexandru Berlea, Thomas Perst, and Helmut Seidl. XML type
checking with macro tree transducers. Tech. Rep. TUM-I0407, TU Munich, 2004.

31. Erik Meijer, Wolfram Schulte, and Gavin Bierman. Programming with rectan-
gles, triangles, and circles. In Proc. XML Conference and Exposition, XML ’03,
December 2003.

32. Tova Milo, Dan Suciu, and Victor Vianu. Typechecking for XML transformers.
Journal of Computer and System Sciences, 66, February 2002. Special Issue on
PODS ’00, Elsevier.

33. Anders Møller. Document Structure Description 2.0, December 2002. BRICS,
Department of Computer Science, University of Aarhus, Notes Series NS-02-7.
Available from http://www.brics.dk/DSD/.

34. Anders Møller, Mads Østerby Olesen, and Michael I. Schwartzbach. Static valida-
tion of XSL Transformations, 2004. In preparation.

35. Makoto Murata, Dongwon Lee, and Murali Mani. Taxonomy of XML schema
languages using formal language theory. In Proc. Extreme Markup Languages,
August 2001.

36. Frank Neven. Automata, logic, and XML. In Proc. 16th International Workshop
on Computer Science Logic, CSL ’02, September 2002.

37. Sun Microsystems. JAXB, 2004. http://java.sun.com/xml/jaxb/.
38. Peter Thiemann. A typed representation for HTML and XML documents in

Haskell. Journal of Functional Programming, 12(5):435–468, 2002.
39. Henry S. Thompson, David Beech, Murray Maloney, and Noah Mendel-

sohn. XML Schema part 1: Structures, May 2001. W3C Recommendation.
http://www.w3.org/TR/xmlschema-1/.

40. Akihiko Tozawa. Towards static type checking for XSLT. In Proc. ACM Symposium
on Document Engineering, DocEng ’01, November 2001.

41. Arie van Deursen, Paul Klint, and Joost Visser. Domain-specific languages: An
annotated bibliography. ACM SIGPLAN Notices, 35(6):26–36, June 2000.

42. Malcolm Wallace and Colin Runciman. Haskell and XML: Generic combinators
or type-based translation? In Proc. 4th ACM SIGPLAN International Conference
on Functional Programming, ICFP ’99, September 1999.

Semantics of Data Streams and Operators

David Maier1, Jin Li1, Peter Tucker2, Kristin Tufte1, and Vassilis Papadimos1

1 Portland State University, Computer Science Department, Portland, OR, 97207
{maier, jinli, tufte, vpapad}@cs.pdx.edu

2 Whitworth College, Spokane, WA 99251
ptucker@whitworth.edu

Abstract. What does a data stream mean? Much of the extensive work
on query operators and query processing for data streams has proceeded
without the benefit of an answer to this question. While such impreci-
sion may be tolerable when dealing with simple cases, such as flat data,
guaranteed physical order and element-wise operations, it can lead to
ambiguities when dealing with nested data, disordered streams and win-
dowed operators. We propose reconstitution functions to make the de-
notation and representation of data streams more precise, and use these
functions to investigate the connection between monotonicity and non-
blocking behavior of stream operators. We also touch on a reconstitution
function for XML data. Other aspects of data stream semantics we con-
sider are the use of punctuation to delineate finite subsets of a stream,
adequacy of descriptions of stream disorder, and the formal specification
of windowed operators.

1 Introduction

Data streams arise in many application domains, such as sensor processing, net-
work monitoring and financial analysis. Streams from different domains could
mean quite diverse things: a discrete signal, an event log, a combination of time
series. Most work on algorithms and architectures for data stream management,
however, never defines what a stream means. Thus it is hard to judge whether
the definition of a particular stream operator is sensible. The default seems to
be that a stream operator should behave like the pipelined version of a rela-
tional operator, but that may be inappropriate if the stream denotes something
other than an unbounded relation, or if the representation the stream uses is
different from the usual serialization of a finite table. When new operators are
introduced, such as windowed versions of group-by and join, the situation be-
comes even fuzzier, especially if the semantics of the operator depends on the
physical presentation order of items in the data stream.

In this paper, we propose reconstitution functions as a means to make precise
the denotation and representation of a data stream. A reconstitution function is
applied incrementally to prefixes of a stream to give successive approximations
of its denotation. While generally we do not expect to actually apply a recon-
stitution function to a stream, it is useful in specifying the correct behavior of

T. Eiter and L. Libkin (Eds.): ICDT 2005, LNCS 3363, pp. 37–52, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

38 D. Maier et al.

a stream analogue of an existing operator over the denotation domain. Recon-
stitution functions also prove useful in examining the subtle interplay between
monotonicity and non-blocking behavior in stream operators.

We also consider additional semantics that may be available about the content
or physical presentation of data streams, and discuss stream punctuation as one
means to make such additional information available to stream operators and
queries. One aspect we cover at more length is disorder in data streams. We
explore some of the existing proposals for describing the expected disorder in a
data stream. From our own investigations of disorder, we point out two areas
in which disorder descriptions could be enhanced, namely non-uniform disorder,
and statistical distributions of item displacement.

Our final topic is the semantics of windowed operators: operators that ma-
nipulate a data stream by decomposing it into a sequence of finite subsets and
processing each subset in turn. Many such operators are defined in operational
terms, which can make them sensitive to the physical presentation order of a
stream. We propose a formal semantics for window definition that appears able
to capture the underlying semantics of almost all window operators proposed
to date. That semantics is independent of the physical order of a stream, and
hence can describe the expected behavior of a window operator in the presence of
disorder, and also leads to operator implementations with no internal buffering.

2 Stream Denotation and Representation

As we pointed out in the introduction, the proper interpretation of a stream
might vary from application to application, but papers on data streams do not
always make clear what interpretation they use. Even where the interpretation
is provided, it can be somewhat confusing. For example, Law et al. [LWZ04]
view data streams as “bags of append-only ordered tuples,” or, alternatively,
as “unbounded append-only bags of elements” when there is an explicit times-
tamp associated with each tuple. Such definitions conflate the kind of structure
a stream denotes (an unbounded sequence?) with a particular representation
(tuples with timestamps) with the function for recovering one from another (ap-
pend). There are several questions left unanswered here. Are the timestamps
considered part of the content of stream items — and thus, for example, avail-
able in selection conditions — or do they simply serve to define an order on the
stream? Is the order total, or can two tuples have the same timestamp? Might
the bag of tuples be viewed as a set by ignoring duplicates? The answers to
such questions are important in evaluating whether or not a proposed stream
operator is reasonable.

We think it important to distinguish the denotation of a stream from the par-
ticular representation of the denotation that the stream uses. The denotation is
an abstract interpretation of what the stream means as a mathematical struc-
ture in some domain, whereas the representation is a particular encoding being
used for elements of that domain. For example, a stream might be viewed as
denoting a sequence of (finite) relation states over a common schema R : [r1(R),

Semantics of Data Streams and Operators 39

r2(R), r3(R), . . .]. Let us assume for concreteness that the individual relations
are unordered sets. There are many ways a stream could represent such a relation
sequence:
(a) as the concatenation of serializations of the ri (similar to the Rstream func-

tion of CQL [AW04R]);
(b) as a list of tuple-index pairs, where 〈t, j〉 indicates t ∈ rj ;
(c) as a serialization of r1, followed by a series of “delta” tuples that indicate

updates to make to obtain r2, r3, etc.;
(d) as a “replacement sequence,” where some attribute A is treated as a key,

and arriving tuple t replaces any existing tuple with the same t(A)-value to
form a new relation state;

(e) as a “broadcast disk” format [AA95], where the state of a single ri might be
repeated multiple times;

(f) as an “overlapped window” encoding, in which each subsequence of 50 tuples
represents a relation state in the sequence.

Clearly there are many other possible representations and variants for the
relation-sequence denotation. Properly reflecting the behavior of an operation
from the denotation domain in a stream operator requires consideration of
the representation being used. Consider, for example, component-wise selection.
That is, the desired outcome is [σC(r1), σC(r2), σC(r3), . . .] for some selection
condition C. For representations (a) – (e), one can apply the condition C individ-
ually to the items in an input stream S to get an output stream that represents
the result. (There may be issues with representation (a) if σC selects away all
tuples in some ri, depending on how successive serializations are delimited.)
However, applying C itemwise to a stream using representation (f) will not give
the correct result, unless the output stream adopts a different representation.

As another example, consider a stream of sensor readings from, say, a tem-
perature probe. We might view such a stream as denoting a discrete signal with
a regular sampling rate (which in turn approximates a continuous physical mea-
surement in the environment). A temperature stream might represent such a
signal in several different ways:
(a) as a sequence of readings, one for each sampling point;
(b) as a sequence of changes in temperature from the previous sampling point;
(c) as a sequence of reading-timestamp pairs, with a pair included only if the

reading differs from the previous reading included.

Representation (c) might be desirable for logistical considerations, such as
power conservation, but it may require care in implementing certain operations.
For example, if the average of two signals is the desired output, one needs to
deal with the situation where there are long pauses in one stream because the
temperature has not changed.

We also note that a single data stream might be viewed more than one way.
That is, it can be construed with different denotations by interpreting it using
different representations. Consider a stream of stock-trade items of the form
<ticker, time, shares, price>. We can consider this stream as denoting a
relation sequence, using the replacement-sequence representation (a) above with

40 D. Maier et al.

ticker as the key. Each item in the stream produces a new relation state in
the sequence. An alternative view is that the trade stream denotes a relation
sequence of recent trades, using representation (f) above. A third interpretation
is that the stream denotes a collection of time series of prices, one for each
different stock. Each item in the stream extends one of these time series. Observe
that conversions between these different denotation values might be a no-op on
the stream itself — just a change in the representation used to interpret it.

3 Reconstitution Functions

The notions of denotation and representation are useful for thinking about the
semantics of a given stream, but are not necessarily precise enough yet for use
in proofs of operator correctness or query equivalence. As a practical matter,
the denotations we have used as examples are potentially infinite structures
giving meaning to a whole stream, whereas there is a general desire to treat
streams incrementally. We thus propose reconstitution functions as a mechanism
for expressing and reasoning about stream semantics and representations. One
can view a reconstitution function as constructing successive approximations to
the denotation of a stream from successive finite prefixes of that stream. Consider
streams with items of type T, and let D be the desired domain of interpretation.
A reconstitution function reconst for type stream(T) will map each prefix P
(of type sequence(T)) of a stream into D: reconst(P) = d ∈ D. We give some
example reconstitution functions below.

The Insert Reconstitution Function: If the domain of interpretation is
bag(T), then a reconstitution function ins that starts with an empty bag and
inserts each successive stream item is appropriate:

ins([]) = ∅
ins(P : i) = insert(i, ins(P)).

Here we use [] for the empty sequence, and P : i to denote sequence P extended
by item i.

The Insert-Unique Reconstitution Function: If the intended domain of
interpretation for a stream is set(T), then we can define a reconstitution function
insu that checks for duplicates:

insu([]) = ∅
insu(P : i) = if i �∈ insu(P) then insert(i, insu(P)) else insu(P).

The Insert-Replace Reconstitution Function: Here we assume that each
item in the stream has a component A that is treated as a key, and define a
reconstitution function insr that guarantees only the most recent item with a
given key is included:

insr([]) = ∅
insr(P : i) = insert(i, {j | j ∈ insr(P) ∧ j.A �= i.A}).

Semantics of Data Streams and Operators 41

The Insert-Replace-Collect Reconstitution Function: The insr reconsti-
tution function yields the final state resulting from applying all the items in the
stream. If the desired domain of interpretation is sequences of states (that is,
type sequence(set(T))), similar to the relation-sequence example of Section 2,
we can use the insrc reconstitution function to collect successive states:

insrc([]) = []
insrc(P : i) = insrc(P) : insr(P : i).

Remarks:

1. All the examples of reconstitution functions above are incremental : Each
can be cast in the form reconst(P : i) = g(reconst(P), i) for some function
g. We do not require this property for a reconstitution function, but it may
prove to have useful consequences. However, there are situations where a
non-incremental reconstitution function is called for. For example, for some
of the representations for relation sequences in Section 2, it might be that
reconst(P) only returns that part of the relation sequence for which it can
construct complete relation states.

2. Note that if reconst returns a sequence, reconst(P) need not be a prefix of
reconst(P : i), even though P is a prefix of P : i. For example reconst might
sort according to some component A: reconst(P) = sortA(P).

3. The element type T of the stream need not be the element type in the do-
main of interpretation (though in the examples above they are the same).
For example, Hammad et al. [HG04] have some stream items with “nega-
tive” flags that cancel previous normal items in the stream. Presumably, the
reconstitution of such a stream would not contain any negative items.

4. If reconst(P) = d, we will sometimes write const(d) = P . We caution that
this notation is informal, however. There may in fact be more than one P
where reconst(P) = d, or no such P at all. That is, there can be values in the
domain of interpretation D that are not the reconstitution of any stream.

5. The condition for a stream operator sop being the on-line analogue of an
operation dop over the domain D is given by the commutative diagram in
Figure 1. We note that the reconstitution function need not be constant
throughout a query.

6. We see from the examples above that presentation order of items in a stream
is sometimes significant for a reconstitution function (insr and insrc) and
sometimes not (ins and insu). The question arises whether applications
where stream order is not important show up in practice much. We think the
more common case is that order does convey part of the semantics of a data
stream, but that the other case does arise. Consider, for example, a stream
of URLs arising from a web crawl. While some aspects of the crawl process,
or posting times of pages, might influence the order of URLs in the stream,
most applications will treat it as an unordered collection. There are also
cases where there are some global aspects of order in a stream, but locally
order is not significant. For example, consider the stream of network packets

42 D. Maier et al.

sop
P1P 2

dd1 2
dop

reconstreconst

Fig. 1. A stream operator as an on-line analogue of a domain operator

passing through a router. The denotation might be a collection of sessions
under various protocols, where each session is a sequence of messages. How-
ever, the packets for a given message might not be in order, because of taking
different routes or being retransmitted.

4 Monotonicity, Reconstitution and Non-blocking
Operators

We are using reconstitution functions to study the connection between mono-
tonicity of a domain operation and the existence of a non-blocking stream ana-
logue, particularly for hierarchically structured data such as XML. Several pa-
pers [ST97, LWZ04] have singled out monotone relational operators (such as se-
lect, join, dupelim), as they are easy to carry over to stream counterparts. This
connection relies on the common reconstitution functions for relational data,
typically ins or insu. For a monotone relational operator rop, r1 ⊆ r2 =⇒
rop(r1) ⊆ rop(r2). If const(rop(r1)) = U1 (that is, ins(U1) = rop(r1)), then we
can find a sequence U2 such that const(rop(r2)) = U1 : U2. That is, the repre-
sentation for rop(r1) is a prefix of the representation for rop(r2). Thus a stream
analogue sop for rop can emit const(rop(ins(P))) in response to prefix P of a
stream, and know that const(rop(ins(P : i))) will extend that response.

We note, however, that the definition of monotone depends on the definition
of containment. The appropriate definition is fairly clear for relations (tuple
subset), but there are alternatives when considering hierarchical data such as
nested relations and XML. Consider the relational operation nestB , which nests
B-values of a relation based on equality of values on the remaining attributes.
Consider relation r containing the first three tuples of Figure 2(a) (in bold type).
Then nestB(r) = v, where nested relation v is given in Figure 2(b). Let r+ be the
relation in Figure 2(a) with the fourth tuple included. Then nestB(r+) = w, for
w in Figure 2(c). The question is now whether nestB is monotone. Specifically,
is v ⊆ w?

Semantics of Data Streams and Operators 43

r(A B)
1 c
2 e
1 d
2 f

v(A {B})
1 {c, d}
2 {e}

w(A {B})
1 {c, d}
2 {e, f}

(a) (b) (c)

Fig. 2. Monotonicity of nesting

The answer depends on the definition of containment for nested relations.
There are at least two possibilities:
1. Containment is simply tuple subset, in which case v �⊂ w, since 〈2, {e}〉 is

not in w. Hence nestB is not monotone.
2. Containment is subsumption. Thus v ⊆ w, because every tuple in v is sub-

sumed by some tuple in w. In particular, 〈2, {e}〉 is subsumed by 〈2, {e, f}〉,
and nestB is monotone.
Suppose we choose the second definition, where nest is monotone. Can we

derive a non-blocking stream version of that operation? Doing so requires an
appropriate choice of reconstitution function. Let us call the proposed stream
operator snest, and consider how we want it to behave. We want snest(P) to
be a prefix of snest(P : i), and, of course, reconst(snest(P : i)) should subsume
reconst(snest(P)). If upon receiving 〈2, f〉, snest emits 〈2, {f}〉, then the simple
ins reconstitution function will not give the desired relationships. However, if
the reconstitution function performs a deep union [BDT99] with the cumulative
result and combines 〈2, {f}〉 with 〈2, {e}〉 to form 〈2, {e, f}〉, we will satisfy
the conditions. Alternatively, snest could maintain state and emit 〈2, {e, f}〉
upon receiving 〈2, f〉. In that case, we need a “subsume-replace” reconstitution
function that overwrites 〈2, {e}〉 with 〈2, {e, f}〉.

A particular case of interest to us is streams of XML. If a stream of XML ele-
ments simply denotes a sequence of independent documents, then not much new
mechanism is needed beyond what is used for flat data items in a stream. On the
other hand, we may want to view an XML stream as a series of fragments that
constitute a single XML document. We have been working on a deep-union-like
operator for XML we call merge [TM01]. The merge operator is logically perform-
ing a lattice-join of two XML documents in a subsumption lattice. One use we
have for merge is a reconstitution-like structural aggregation operator called ac-
cumulate. The accumulate operator successively merges in XML fragments with
a base document, called an accumulator, and makes the accumulator available to
further query-processing steps. For example, in Figure 3(a) we have an accumu-
lator for auction data that is grouping bids under their appropriate items. (This
example is based on the XMark benchmark [XM03].) Figure 3(b) shows a new bid
coming in as an XML element, and Figure 3(c) is the result of merging that ele-
ment into the accumulator. The behavior of the merge operator is modulated by
a merge template, which in essence indicates which lattice we are using to define
the lattice-join. In the example of Figure 3, the merge template would indicate,

44 D. Maier et al.

item

bidder:
 Joe

amt:
$1500

bid

auction

id:501

item

desc:
 1971
 Martin
 Guitar

id:433 desc:
 Trek 5900
 Superlight
 Road Bike

item

bid

bidder:
 Sue

amt:
$1550

id:501

auction

(a) (b)

item

bidder:
 Joe

amt:
$1500

bid

auction

id:501

amt:
$1550

bid

item

desc:
 1971
 Martin
 Guitar

id:433 desc:
 Trek 5900
 Superlight
 Road Bike

bidder:
 Sue

(c)

Fig. 3. Illustration of the merge operator showing (a) initial accumulator, (b) a frag-
ment to be merged, and (c) the resulting accumulator

for instance, that the merge process should combine corresponding <item> ele-
ments, but create new <bid>, <bidder>, and <amt> elements, as opposed, say,
to creating a new element in the accumulator for each <item> element added.

5 Additional Stream Semantics

There may be information known about a stream in addition to its denotation
and representation, related to its content or presentation order, that is useful for
query processing. Some examples on content are whether or not the stream con-
tains duplicates, and if some subset of attributes forms a key (that is, there are
no duplicate values over these attributes). Another example, for a stream with a
relation-sequence denotation, is whether there is a constant bound on the size of
the relation states. For instance, if the stream contains position reports on a fleet
of vehicles, and each relation state consists of the most recent report on each
vehicle, then the size of any state is at most the number of vehicles n. Such infor-
mation can be useful in determining whether a query has bounded state require-
ments or not [BB02]. Information on the physical presentation of streams is useful
as well, such as if the stream is ordered on a particular attribute, or whether there
is limited skew among the arrival times of items on different streams [BU04].

Semantics of Data Streams and Operators 45

Our own work in this area has dealt with the case where a stream can be
viewed as a mixture of finite sub-streams, and where the ends of sub-streams
can be determined. The sub-streams may occur naturally, for example, all the
bids for a single auction, or be externally imposed, such as all sensor readings in
a ten-minute interval. The knowledge about when a sub-stream ends might be
supplied by the stream source, or arise from measurements of network delay, or
be deduced from application semantics, such as knowing that each vehicle reports
its position at least every 20 seconds. Where we have such knowledge, we can
explicitly augment the stream with it, via punctuations [TM03]. A punctuation
is a pattern p inserted into the data stream with the meaning that no data item
i matching p will occur further on in the stream. For example, a punctuation
〈{site3, site5}, 1663, ∗, [6:30p, 6:45p], ∗〉 in the bid stream for an auction server
signals that all bids from Sites 3 and 5 for auction item 1663 made during the
15-minute period starting at 6:30p have been seen. Punctuations can be used to
improve stream operators in at least two ways. First, punctuations can unblock
blocking operators. For example, a group-by operator computing the maximum
bid for each auction item over each 1-hour period could emit answers after seeing
a collection of punctuations similar to the one above. Second, punctuations may
allow a stateful operator to safely discard parts of its state. For example, a
dupelim operator receiving the punctuation above could purge all data items
from its state that match that punctuation.

While we have been working with punctuation-aware operators for several
years now, there are still many questions and extensions to investigate. We have
a good understanding of how single operators can exploit punctuation. However,
we are less far along in understanding when particular punctuation helps a given
query, or, a more challenging problem, starting from a query, determining what
punctuation, if any, would benefit the query [TMS03].

Currently our punctuation marks the end of a sub-stream. We believe there
may also be advantages to “forward-looking” punctuation that describes data
that will appear further on in a stream. We are also starting to investigate
the notion of a deterministic stream: a stream in which for any possible data
item i, one is guaranteed to eventually see either i or a punctuation matching i.
Another variation we are considering is where a bound is known on the amount of
unpunctuated data (items at a given instant with no corresponding punctuation
received). Reasoning with such information could lead to bounds on the amount
of state a query needs. Finally, our current implementation of punctuation is
for flat data, though the underlying query engine handles general XML [NDM].
Punctuation for XML data is still an open area.

6 Disorder in Streams

Disorder in data streams can arise from many sources, such as stream items
being routed by different paths in a network, or combining streams that are out
of synch. A stream may have multiple natural orders, such as start time and end
time of a network flow, and cannot be sorted on both simultaneously. There are

46 D. Maier et al.

also algorithms for stream operators that produce disordered output, such as
windowed multi-join [HF03]. In order to deal with disorder in stream query pro-
cessing, it is useful to have some description of the expected or maximum disorder
in a stream. There have been several proposals in this regard. Some describe dis-
order operationally, that is, in terms of what kind of operation will restore order.
An example is the order specifications of Aurora [AC03], which say how much
buffer space is needed to sort the stream (or partitioned sub-streams of it) on a
particular attribute. Other disorder descriptions express the maximal displace-
ment of any item from its correct position. The displacement is usually measured
from a “high-water mark,” and expressed either as a number of items or as a dif-
ference in the ordering attribute. For example, consider the stream of bid items
in Figure 4, where we are considering order on bid time (the fourth column). We
see that item i4 is out of order. It is displaced by 2 items from its correct posi-
tion (between items i1 and i2) and by 3 seconds based on the value of the time
attribute. Examples of this maximum-displacement approach to describing disor-
der include slack in the early versions of the Aurora system [C02] and the banded-
increasing property of the Gigascope project [CJ02]. The k-ordering [BU04] and
out-of-order generation [SW04] constraints of the STREAM project are similar.

i1 〈site3, 1663, b420, 3:15:32, $11.50〉
i2 〈site2, 7287, b812, 3:15:35, $8.00〉
i3 〈site5, 1663, b173, 3:15:36, $12.50〉
i4 〈site1, 1601, b662, 3:15:33, $65.00〉
i5 〈site3, 1663, b420, 3:15:38, $13.00〉

. . .

Fig. 4. A disordered auction stream

While such disorder descriptions are useful, our own investigations have
shown that they are somewhat limited in their expressive power. First, they
assume that the disorder bound is constant across the stream. Figure 5 shows
netflow records from a router in the Abilene Network Observatory [Abi], ordered
by the sequence in which they were emitted, and showing the start time of each
netflow. (A netflow record summarizes packet traffic between two 〈IP,port〉-
pairs.) We have termed such a stream block sorted, and it is clear no items are
displaced across block boundaries.

A second issue is that existing descriptions focus on the maximum disorder,
rather than the average displacement or a distribution of displacements. Consider
Figure 6, which shows the observation time of the 8th packet in a network flow,
ordered by the start time of each flow, for a network trace gathered by the
PMA project [PMA]. While one packet is significantly displaced (perhaps a re-
transmission), the rest occur in a close band of their desired position. We refer
to such a sequence as band disordered. It would be useful to have some statistical
characterization of such disorder, so, for example, one could estimate how the
accuracy of a query is affected by a given cutoff on late items.

Semantics of Data Streams and Operators 47

Fig. 5. Block-sorted disorder

Fig. 6. Band disorder

We note that any disorder descriptions of these kinds can be used to gen-
erate punctuations in a data stream, marking the end of particular subsets of
data. For example, if a stream is known to be bound by a slack of 20 seconds,
a punctuate operator can insert a punctuation of the form 〈∗, ∗, ∗, t− 20s, ∗〉

48 D. Maier et al.

when it sees an item with bid time t. (However, it likely would not insert a
punctuation based on every item, but less frequently, based on the needs of the
query.)

7 Windowed Operators

Another area where semantics of streams is still a bit fuzzy is windowed op-
erators. One way to modify a blocking or stateful operator to work with data
streams is to change it from considering the totality of a stream to instead op-
erating over a series of finite subsets of the stream. (There are other ways to
modify such an operator. For example, a blocking aggregate such as sum can be
converted to report a “running sum” after each input item.) The most studied
windowed operators are group-by (aggregation) [AW04, C04, SH98, AC03] and
join [HF03, KNF03, HAK03, GO03].

Windowed operators predate their current use in data streams. A WINDOW
construct over stored data appears in SQL 1999 [SQL99]. In fact, the CQL
formulation for windows draws from the SQL counterpart [ABW03]. There has
been a considerable range of proposals on how to define windowed operators,
based, for example, on whether one end or both of the window moves (and in
which direction), the size of the window (its range), how much and how often
it moves (its slide), and where it is located relative to the current point in the
stream (its offset). The range, slide and offset can be denominated in terms of
a number of items, or a quantity or duration of some attribute. In the case that
the window range is expressed by a number of items, and the operator partitions
the stream (such as a group-by aggregation), there are variants where the range
is applied to the whole stream or separately to each partition. The windowing
attribute can be a sequence number, an internally assigned arrival timestamp,
or a value supplied by the stream source.

We see some semantic problems, however. Most approaches to windows are
described in terms of the physical presentation of the stream, rather than its
denotation, often on an operator-by-operator basis [AC03]. Such operational
definitions can lead to problems when the stream appears out of order with
respect to the windowing attribute. We have been developing a formal approach
to window specifications that is independent of physical stream order [LMP04].
In our approach, the various window extents that arise as a window slides over a
stream are each given an explicit window identifier (window id), and an extent
function defines the stream items that are associated with each window id. Our
approach assumes that windows are always defined against an explicit attribute
W , though in practice W might be a sequence number or timestamp supplied
by the stream management system.

For illustration, consider window specifications having the form [RANGE r,
SLIDE u], where r and u are quantities compatible with the domain of W . For
example, if the domain of W is time, then a possible specification is [RANGE
30s, SLIDE 10s], which defines window extents of length 30 seconds, spaced
every 10 seconds.

Semantics of Data Streams and Operators 49

The functions that define window extents are expressed in terms of the collec-
tion I of items in input stream S. The window function gives the set of window
ids for a particular specification. In our illustration,

windows(I, r, u) = {0, 1, 2, . . . }.

Here the set of window ids does not depend in the stream contents, nor
the range and slide parameters, but it may for other window types. The ex-
tent function determines the items associated with each window extent. In our
illustration, for w ∈ windows,

extent(I, w, r, u) = {i ∈ I | w · u ≤ i.W ≤ w · u + r}.

(This definition is slightly simplified; in general, it must account for the boundary
conditions at stream startup.)

We have found this approach quite expressive, being able to capture many
flavors of windows mentioned in the literature: landmark, tumbling, slide-by-
tuple, partitioned, etc. Moreover, it has led to a class of algorithms for windowed
aggregates that often outperform approaches based on intra-operator buffering.
Our approach requires an inverse, wids, for the extent function, giving the set
of window ids of window extents that a given item appears in. In our running
illustration,

wids(I, i, r, u) = {w | �i.W/u� − 1 < w ≤ �(i.W + r)/u� − 1}.

(Again, this definition is simplified.) Our approach uses a bucket operator to
extend each stream item with its associated window ids. The resulting output
can then be fed to a group-by operator that treats the window id as just another
grouping attribute. We rely on punctuation (also supplied by bucket) to keep
the aggregation unblocked.

There are still several issues we are investigating with our window semantics.
One is to classify window specifications in terms of properties of their wids
functions. In the example above, wids is “context-free” in the sense that it can be
applied by bucket to each stream item in isolation. Other window specifications,
such as slide-by-tuple with a time-interval range require bucket to be stateful. A
second area of investigation is the interaction of windowing with reconstitution.
Suppose wind is a reconstitution function that interprets a stream as a sequence
of window extents using an interval-based range and slide, and that we are
interested in applying operations window-by-window to such a sequence (the
usual situation). In some cases, the appropriate stream analogue is easy to come
by. For example, with selection, we have

σ(wind(P)) = wind(σ(P)).

If we consider a window based on tuple count, in contrast, the equality no
longer holds. Other operators are more challenging. With duplicate elimination

dupelim(wind(P)) �= wind(dupelim(P))

50 D. Maier et al.

even with an interval-based window. In fact, as far as we can determine, there
is no function g such that

dupelim(wind(P)) = wind(g(P)).

The result of dupelim(wind(P)) must be a stream with a different reconsti-
tution function, perhaps one with positive and negative tuples, or using explicit
window ids.

8 Conclusions

We hope we have taken at least a small step towards answering the question
What do data streams mean? There are still many gaps and rough edges here.
While we think reconstitution functions are a useful device for capturing data-
stream semantics, it is not yet tested whether they can deal with the range of
data streams seen in practice, or are helpful in proving properties of stream
operators. Reconstitution functions help clarify for us the requirements for a
non-blocking stream version of a monotone domain operator, and suggest ap-
proaches for reconstitution of streams of XML fragments. However, we would
like to find ways to encode more general updates in an XML stream, such as
deletions. Playing with punctuations has been fun, but the problems are getting
harder, such as proving space bounds on stream queries. Having more expressive
descriptions for stream disorder is just the starting point. The real challenge is to
use them to manage tradeoffs between query latency, accuracy and space usage.
Finally, the alert reader will have noted we have not yet integrated reconstitution
functions with our semantics for windows. So do something about it.

Acknowledgements

This work was supported by NSF grant IIS 0086002. We thank Ted Johnson for
his insights on sources of disorder, and the Abilene Observatory for access to
network monitoring data.

References

[AC03] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, M.
Stonebraker, N. Tatbul, S. Zdonik. Aurora: a new model and architecture
for data stream management. VLDB Journal (12)2: 120-139, August 2003.

[Abi] The Abilene Observatory. http://abilene.internet2.edu/observatory.
[AA95] S. Acharya, R. Alonso, M. Franklin, and S. Zdonik. Broadcast Disks: Data

Management for Asymmetric Communication Environments. In Proceed-
ings of ACM SIGMOD International Conference on Management of Data
(SIGMOD 95). San Jose, CA, June 1995.

[ABW03] A. Arasu, S. Babu and J. Widom. The CQL Continuous Query Language:
Semantic Foundations and Query Execution Stanford University Technical
Report, Oct. 2003

Semantics of Data Streams and Operators 51

[AW04] A. Arasu, J. Widom. Resource Sharing in Continuous Sliding-Window Ag-
gregates. In Proceedings of the 30th International Conference on Very Large
Databases (VLDB 2004), Toronto, Canada, September 2004.

[AW04R] A. Arasu, J. Widom. A Denotational Semantics for Continuous Queries over
Streams and Relations. SIGMOD Record 33(3), September 2004.

[BB02] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and
Issues in Data Stream Systems. In Proceedings of the 21st ACM Symposim
on Principles of Database Systems (PODS 2002), Madison, Wisconsin, June
2002

[BU04] S. Babu, U. Srivastava, and J. Widom. Exploiting k-Constraints to Reduce
Memory Overhead in Continuous Queries over Data Streams. ACM Trans-
actions on Database Systems, 29(3):545-580, September 2004.

[BDT99] P. Buneman, A. Deutsch, and W.C. Tan. A Deterministic Model for
Semistructured Data. In Proceedings of the Workshop on Query Process-
ing for Semistructured Data and Non-Standard Data Formats, Jerusalem,
Israel, January 1999.

[C02] Carney, D., et al. Monitoring Streams - A New Class of Data Management
Applications. In Proceedings of the 28th International Conference on Very
Large Databases (VLDB 2002), Hong Kong, China, August 2002.

[C04] Cormode, G., et al. Holistic UDAFs at streaming speeds. In Proceedings of
the 2004 ACM SIGMOD International Conference on the Management of
Data (SIGMOD 2004), Paris, France, June 2004.

[CJ02] C. Cranor, T. Johnson, O. Spatscheck. How to Query Network Traffic Data
Using Data Streams, unpublished manuscript, 2002.

[GO03] L. Golab, M. Tamer Özsu. Processing Sliding Window Multi-Joins in Con-
tinuous Queries over Data Streams. In Proceedings of the 29th Interna-
tional Conference on Very Large Databases (VLDB 2003), Berlin, Germany,
September 2003.

[SQL99] P. Gulutzan and T. Pelzer. SQL-99 Complete, Really. CMP Books, 1999.
ISBN: 0-87930-568-1

[HG04] M. Hammad, T. Ghanem, W. Aref, A. Elmagarmid and M. Mokbel. Effi-
cient Pipelined Execution of Sliding-Window Queries Over Data Streams.
Purdue University Department of Computer Sciences Technical Report CSD
TR#03-035, June 2004.

[HF03] M. Hammad, M. Franklin, W. Aref, and A. Elmagarmid. Scheduling for
shared window joins over data streams. In Proceedings of the 29th Interna-
tional Conference on Very Large Databases (VLDB 2003), Berlin, Germany,
September 2003.

[HAK03] M. Hammad, W. Aref, and A. Elmagarmid. Stream Window Join: Tracking
Moving Objects in Sensor-Network Databases. In Proceedings of the 15th
International Conference on Scientific and Statistical Database Management
(SSDBM 2003) Cambridge, MA, July 2003.

[KNF03] J. Kang, J. Naughton and J. Viglas. Evaluating Window Joins over Un-
bounded Streams. In Proceedings of the 19th International Conference on
Data Engineering (ICDE 2003), Bangalore, India, March 2003.

[LWZ04] Y. Law, H. Wang, C. Zaniolo. Query Languages and Data Models for
Database Sequences and Data Streams. In Proceedings of the 30th Interna-
tional Conference on Very Large Databases (VLDB 2004), Toronto, Canada,
September 2004.

52 D. Maier et al.

[LMP04] J. Li, D. Maier, V. Papadimos, P. A. Tucker and K. Tufte. Evaluating Win-
dow Aggregate Queries over Streams. OGI Technical Report, available from
http://www.cse.ogi.edu/~jinli/papers/WinAggrQ.pdf, May 2004.

[NDM] J. Naughton, D. DeWitt, D. Maier. et al. The Niagara Internet Query Sys-
tem. http://www.cs.wisc.edu/niagara.

[PMA] Passive Measurement and Analysis project. San Diego Supercomputer Cen-
ter. http://pma.nlanr.net/PMA.

[ST97] J. Shanmugasundaram, K. Tufte, D. DeWitt, J. Naughton, D. Maier, Arch-
tecting a Network Query Engine for Producing Partial Results. Lecture
Notes in Computer Science, Vol. 1997/2001 The World Wide Web and
Databases; Third International Workshop WebDB 2000, Dallas TX, May
2000, Selected Papers, Springer-Verlag Publishers 2001.

[SW04] U. Srivastava and J. Widom. Flexible Time Management in Data Stream
Systems. In Proceedings of the 2004 ACM Symposium on Principles of
Database Systems (PODS 2004), Paris, France, June 2004.

[SH98] M. Sullivan and A. Heybey. Tribeca: A system for managing large databases
of network traffic. In Proceedings of the USENIX Annul Technical Confer-
ence, New Orleans, Louisiana, June 1998.

[TM03] P. A. Tucker, D. Maier, T. Sheard and L. Fegaras. Exploiting Punctuation
Semantics in Continuous Data Streams. Transactions on Knowledge and
Data Engineering, 15(3):555-568, May, 2003

[TMS03] P. A. Tucker, D. Maier and T. Sheard. Applying Punctuation Schemes to
Queries over Continuous Data Streams. IEEE Data Engineering Bulletin,
26(1):33-40, March, 2003

[TM01] K. Tufte and D. Maier. Aggregation and Accumulation of XML Data. IEEE
Data Engineering Bulletin 24(2):34-39, June 2001.

[XM03] XMark Benchmark. http://www.xml-benchmark.org/

Conjunctive Query Evaluation by Search Tree
Revisited

Albert Atserias�

Universitat Politècnica de Catalunya, Barcelona, Spain
atserias@lsi.upc.es

Abstract. The most natural and perhaps most frequently used method
for testing membership of an individual tuple into a conjunctive query is
based on search trees. We investigate the question of evaluating conjunc-
tive queries with a time-bound guarantee that is measured as a function
of the size of the minimal search tree. We provide an algorithm that,
given a database D, a conjunctive query Q, and a tuple t, tests whether
Q(t) holds in D in time bounded by (sn)O(log k)(sn)O(log log n), where n is
the size of the domain of the database, k is the number of bound variables
of the conjunctive query, and s is the size of the optimal search tree. In
many cases of interest, this bound is significantly smaller than the nO(k)

bound provided by the naive search-tree method. Moreover, our algo-
rithm has the advantage of guaranteeing the bound for any given con-
junctive query. In particular, it guarantees the bound for queries that
admit an equivalent form that is much easier to evaluate, even when
finding such a form is an NP-hard task. Concrete examples include the
conjunctive queries that can be non-trivially folded into a conjunctive
query of bounded size or bounded treewidth. All our results translate
to the context of constraint-satisfaction problems via the well-publicized
correspondence between both frameworks.

1 Introduction and Summary of Results

The foundational work of Chandra and Merlin [CM77] identified the class of con-
junctive queries in relational database systems as an important and fundamental
class of queries that are repeatedly “asked in practice”. These are the queries of
first-order logic that are built from atomic formulas by means of conjunctions and
existential quantification only. Thus, the generic conjunctive query takes the form

(∃x1) · · · (∃xk)(R1 ∧ . . . ∧Rq)

where R1, . . . , Rq are atomic formulas built from the relations of the database
with the variables x1, . . . , xk. Alternatively, it is known that the class of con-
junctive queries coincides with the class of queries of the relational algebra that
use selection, projection, and join only. Conjunctive queries may also have free

� Partially supported by CICYT TIC2001-1577-C03-02.

T. Eiter and L. Libkin (Eds.): ICDT 2005, LNCS 3363, pp. 53–67, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

54 A. Atserias

variables, but for the sake of simplicity we will focus on Boolean conjunctive
queries in this introduction.

Evaluating conjunctive queries is such a common task that it is no surprise
that a huge amount of work has focused on its algorithmic and complexity-
theoretic aspects. The most obvious algorithm is perhaps the one that exhaus-
tively checks for the existence of an assignment of values to the variables in such
a way that all relations in the body of the query (the quantifier-free part) are
satisfied. Obviously, if the domain of the database has cardinality n, this algo-
rithm takes time roughly nk, which is exponential in the number of variables of
the query. But, can we do better?

Unfortunately, unless P = NP, we cannot expect an algorithm that is polyno-
mial in both n and k since the problem is NP-complete. This was already noticed
by Chandra and Merlin [CM77]. To make things worse, more recent work on the
parameterized complexity of query languages by Papadimitriou and Yannakakis
[PY99] indicates that the situation might be even more dramatic. Namely, we
cannot even expect an algorithm that, while arbitrarily complex in k, remains
polynomial in n. Thus, we cannot expect an algorithm of complexity 22k

n2, say,
unless certain widely believed assumptions in complexity theory are violated.
These theoretical results indicate that the algorithmic problem is just too hard
to be addressed in its wider generality.

Luckily, the situation in real database applications is not as catastrophic.
Conjunctive queries that are asked in practice usually have some structure that
makes them more tractable. The paradigmatical example is the class of acyclic
conjunctive queries identified by Yannakakis [Yan81]. These are the conjunctive
queries whose underlying hypergraph is acyclic, that is, the hypergraph that has
the variables of the query as vertices, and the tuples of the variables appearing
in the atomic formulas as hyperedges, is acyclic. Yannakakis showed that such
queries could be evaluated in polynomial time by an efficient dynamic program-
ming technique. The exact complexity of acyclic conjunctive queries was later
studied in [GLS98], and generalized in several other directions [CR97, KV00].
The most interesting generalization is perhaps the one based on treewidth, to
which we will get back later.

1.1 Search Trees and Backtracking Algorithms

Let us return now to the most obvious algorithm that checks for all possible
assignments of values to the variables. Clearly, this algorithm can be modestly
improved by a backtracking algorithm that considers the variables one-at-a-time
and backtracks whenever the current partial assignment forces the body of the
query to be either false because some atomic formula is falsified, or true because
all atomic formulas are satisfied. Such a search-based pruning algorithm can be
remarkably fast in certain cases, especially if a good heuristic is used for choosing
the next splitting variable. As a matter of fact, backtracking is probably the
most frequently used method for solving constraint satisfaction problems, which
is essentially the same problem as conjunctive query evaluation as noticed by
Kolaitis and Vardi [KV00], and is well-known by now.

Conjunctive Query Evaluation by Search Tree Revisited 55

This leads immediately to the concept of search tree which is a key concept in
our paper. A search tree is an n-ary tree that is produced by such a backtracking
procedure for an arbitrary choice of variables at each branch. Here, n is the
cardinality of the domain of the database. Notice that search trees provide an
enumeration of all possible solutions for the bound variables of the query since we
backtrack even when the body of the query is satisfied. This permits us capturing
the notion of optimal search-space through the concept of minimal search tree.
Intuitively, the size of the minimal search tree for a given instance provides an
ideal benchmark against which all search-based algorithms should be compared.
For example, a backtracking algorithm that spends time O(nk) on an instance
admitting a search tree of size O(kn) should be considered inefficient: it spends
much more time than what is, in principle, necessary. Clearly, we would prefer
an algorithm whose running time is bounded by a modest function of the size of
the minimal search tree. The ideal case would be an algorithm that is polynomial
in that quantity.

The idea of comparing the efficiency of an algorithm with the size of the
minimal search tree originates in the field of propositional proof complexity, and,
as far as we know, was not considered before in the fields of database theory and
constraint-satisfaction problems. In proof complexity, the efficiency of a proof-
search algorithm on a given propositional tautology is compared with respect
to the size of its minimal proof in the proof system. A proof system admitting
a proof-search algorithm that runs polynomially in the minimal proof is called
automatizable [BPR00]. The connection shows up when the proof system under
consideration is tree resolution and the instance is an unsatisfiable propositional
formula F in conjunctive normal form. In that case, a minimal proof becomes
a minimal search tree for the constraint-satisfaction instance given by F , by
simply turning it upside down (see also [BKPS02]).

1.2 Results of This Paper

The main contribution of this paper is the observation that the concepts and
techniques that were developed for automatizability of tree resolution carry over,
to some extent, to the more general case of conjunctive query evaluation and
constraint-satisfaction problems. By adapting an algorithm that was developed
for tree resolution, we exhibit an algorithm for conjunctive query evaluation
whose complexity is bounded by a non-trivial function of the size of the minimal
search tree.

More concretely, we provide an algorithm that, given a database A of car-
dinality n, a tuple a of A, and a conjunctive query Q with k bound variables,
determines whether the Boolean conjunctive query Q(a) holds in A in time that
is polynomial in (sn)log k(sn)log log n, where s is the size of the minimal search tree
for testing whether Q(a) holds in A. While we do not achieve the desired poly-
nomial bound on s, we note that the running time of our algorithm is remarkably
good, compared to the obvious nk bound, when the minimal search tree is small.

Then we go on to analyze our algorithm. We first consider the class of con-
junctive queries whose underlying graph is a tree, or is similar to a tree in the

56 A. Atserias

sense of having small treewidth. We note that if Q(a) has treewidth w and
does not hold on A, then the size of the minimal search tree is bounded by
n(w+1) log k. Surprisingly perhaps, the hypothesis that Q(a) does not hold on A
seems essential for our proof. Nonetheless, this does not prevent us from showing
that our algorithm works correctly for any query of bounded treewidth in time
nO((log k)2)nlog log n. Indeed, if the algorithm does not stop within the prescribed
time bound, then we know that Q(a) holds in A, although the algorithm gives
no clue why.

It follows from this discussion that for queries of known treewidth w, our al-
gorithm can be used for deciding whether Q(a) holds in A within a time-bound
that is far better than the worst case nk, when k is large. Obviously, our bound
is also far worse than the O(|Q|nw) bound of the known ad-hoc algorithms for
evaluating queries of treewidth w [GLS98, KV00]. It is quite interesting, nonethe-
less, that our algorithm achieves a non-trivial bound in that case despite it is
not specialized for that purpose. As a matter of fact, our algorithm does not
even compute a tree-decomposition of the query!

Another remarkable consequence is the following. In their seminal paper
[CM77], Chandra and Merlin showed that for every conjunctive query there
is a minimal equivalent query, unique up to isomorphism, that can be obtained
from the original one by identifying variables and deleting atomic formulas (see
Theorem 12 and the discussion preceding it in [CM77]). In turn, Chandra and
Merlin showed that finding such a minimal equivalent query is NP-hard. More
recently, Dalmau, Kolaitis, and Vardi [DKV02] noticed that the problem remains
NP-hard even when the minimal equivalent query is of constant size (and in par-
ticular has bounded treewidth). Thus, on the one hand, queries whose minimal
equivalent query has bounded size admit search trees of size nO(1) on databases
on which they fail. The reason for this is that the minimal equivalent query is
a subquery, so a search tree for the minimal query is also a search tree for the
query itself, when the query evaluates to false. On the other hand, there is no
efficient way of finding such a minimal equivalent query since the problem is
NP-hard. Hence, it is perhaps surprising that, on those instances, our algorithm
achieves complexity nO(log k) without ever worrying about minimal equivalent
queries at all.

Finally, we also provide some lower bounds on the size the minimal search
trees for certain conjunctive queries of interest. First, it is relatively easy to show
that the minimal search trees for the conjunctive query expressing the existence
of a k-clique on graphs of size n may require nk−3 nodes. Second, it requires a
slightly more contrived argument showing that the minimal search trees for the
conjunctive query expressing the existence of a path of length k on graphs of
size n may require nlog k−3 nodes. This result shows that the n(w+1) log k upper
bound for queries of treewidth w is essentially optimal. This is because the path-
of-length-k query has treewidth 1. Quite remarkably, our algorithm behaves in
time polynomial in n(log k)2 on such queries, which is nearly optimal with respect
to search-tree size.

Conjunctive Query Evaluation by Search Tree Revisited 57

2 Preliminaries and Definitions

Databases, structures, and conjunctive queries We view databases as finite struc-
tures over finite relational vocabularies with constants. A relational vocabulary
with constants σ is a set of relation symbols, each of a specified positive arity,
and a set of constant symbols. A σ-structure, or database, consists of a domain
A, a relation RA ⊆ Ar for each relation symbol R in σ of arity r, and an in-
dividual cA ∈ A for each constant symbol c in σ. Structures are denoted by
A = (A,RA

1 , . . . , RA
t , cA1 , . . . , c

A
d), where R1, . . . , Rt are the relation symbols of

σ, and c1, . . . , cd are the constant symbols of σ.
Atomic formulas are formulas of the form R(x1, . . . , xr) where R is a rela-

tion symbol of arity r, and x1, . . . , xr are first-order variables or constants. A
conjunctive query is a formula of the form (∃z1) . . . (∃zk)ψ, where z1, . . . , zk are
first-order variables, and ψ is a conjunction of atomic formulas. The quantifier-
free part ψ is called the body. The variables z1, . . . , zl are called bound variables.
The rest of variables of ψ are called free variables. The total size of a conjunctive
query is the number of atomic formulas in ψ. Let Q be an atomic formula with
free variables x1, . . . , xl. If A is a σ-structure and a = (a1, . . . , al) is a tuple of
A, we write A |= Q(a) if viewing xi as a constant interpreted by ai satisfies Q
in A in the standard sense of first-order logic.

Treewidth. Let G = (V,E) be a finite graph. A tree-decomposition of G is a
pair ({Xi : i ∈ I}, T = (I, F)) with {Xi : i ∈ I} a family of subsets of V , one for
each node of T , and T is a tree such that:

1.
⋃

i∈I Xi = V
2. for all edges (v, w) ∈ E, there exists an i ∈ I with {v, w} ⊆ Xi

3. for all i, j, k ∈ I: if j is on the path from i to k in T , then Xi ∩Xk ⊆ Xj .

The width of a tree-decomposition is maxi∈I |Xi| − 1. The treewidth of G is
the minimum width over all possible tree-decompositions of G.

The treewidth of a σ-structure A is the treewidth of its Gaifman graph, that
is, the graph whose set of vertices is A, and whose edges relate each pair of
vertices that appear together in some tuple of the relations of A. The Gaifman
graph of a conjunctive query Q is the graph whose set of vertices is the set of
variables of Q, and whose edges relate every pair of variables that appear together
in an atomic formula (note that constants are ignored here). The treewidth of a
conjunctive query is the treewidth of its Gaifman graph.

Search Trees. Let A be a finite σ-structure with universe A = {a1, . . . , an}. Let
f : V → A be a partial mapping of the first-order variables to the universe A of
A. Extend f to the constant symbols of σ in the natural way. Let R(x1, . . . , xk)
be an atomic formula. If xi ∈ Dom(f) for every i ∈ {1, . . . , k}, we say that f
decides R. If f decides R and (f(x1), . . . , f(xk)) ∈ RA, we say that f satis-
fies R. If f decides R and (f(x1), . . . , f(xk)) �∈ RA, we say that f falsifies R.
Let ψ(x1, . . . , xk) be a conjunction of atomic formulas. We say that f satisfies ψ
if it satisfies every atomic formula in ψ. We say that f falsifies ψ if it falsifies some

58 A. Atserias

atomic formula in ψ. In those cases we say that f decides ψ. Otherwise, we say
that f does not decide ψ.

A search tree for ψ(x1, . . . , xk) in A is a labeled rooted tree (T,L) whose
nodes are labeled by partial assignments f : V → A, and for which the following
conditions are satisfied:
1. If v is the root of T , then L(v) is the empty partial assignment ∅.
2. If v is an internal node of T , then L(v) does not decide ψ.
3. If v is a leaf of T , then L(v) decides ψ.
4. If v is an internal node of T and L(v) = f , then there exists an x �∈ Dom(f)

such that v has exactly n successors v1, . . . , vn such that L(vj) = f∪{(x, aj)}
for every j ∈ {1, . . . , n}.
The variable x that is guaranteed to exist in clause 4 will be denoted by x(v).

We say that x(v) is the splitting variable at node v. Notice that there may be
several search trees for a given conjunction of atomic formulas and a given finite
structure. A search tree for ψ in A is minimal if every other search tree for ψ
in A is at least as large in size. For a finite σ-structure A, a tuple a of A, and
a conjunctive query Q, a search tree for testing whether A |= Q(a) is a search
tree for the body of Q(a).

3 Booleanization and Algorithm

The purpose of this section is to develop the algorithm that achieves the promised
performance. Let us start by announcing the result:

Theorem 1. Let σ be a relational vocabulary of maximum arity r and cardinal-
ity t. There exists a deterministic algorithm that, given a finite σ-structure A
of cardinality n, a conjunctive query Q with k bound variables and total size q,
and a tuple a from A, determines whether A |= Q(a) in time polynomial in q,
t, nr, k, and (sn)log k(sn)log log n, where s is the size of a smallest search tree for
testing whether A |= Q(a).

The proof of this theorem requires some preparation. The first thing we do
is a Booleanization of the problem that will simplify the design and the analysis
of the algorithm. Let A = {a1, . . . , an} be the universe of A. Each element of
the universe ai ∈ A can be encoded by a string of logn bits. In turn, by using
this encoding, each relation on A of arity r can be identified with a relation on
the Boolean domain {0, 1} of arity r log n in the most obvious way. For a finite
σ-structure A, let A(n) denote its Booleanization; that is, the universe of A(n)

is {0, 1}, and each relation of A of arity r is encoded in the obvious way into
a relation of A(n) of arity r log n. For an r-tuple a, let a(n) be the r log n-tuple
encoding a over {0, 1}.

The Booleanization can also be carried out over a conjunctive query. If Q
is a conjunctive query with k bound variables, its Booleanization Q(n) is the
conjunctive query with k log n bound variables that results from using logn new
variables for each original variable in Q, and replacing the atomic formulas by
their Booleanization. The following Lemma is obvious.

Conjunctive Query Evaluation by Search Tree Revisited 59

Lemma 1. Let A be a finite σ-structure of cardinality n, let a be a tuple of
A, and let Q be a conjunctive query. Then A |= Q(a) if and only if A(n) |=
Q(n)(a(n)). Moreover, if there exists a search tree for testing whether A |= Q(a)
of size s, then there exists a search tree for testing whether A(n) |= Q(n)(a(n))
of size 2sn.

Proof : Take the search tree for A |= Q(a) and replace each internal node by a
complete binary tree of height logn. This blows up the tree by a factor of at
most 2n. ��

The Booleanization allows us focus on the Boolean case, which is nothing
else but a generalized satisfiability problem. Now we can apply the techniques
that were developed for propositional logic and tree resolution [BP96, BKPS02].

Let A be a Boolean σ-structure, that is, a σ-structure with Boolean domain
A = {0, 1}. Let a be a tuple of A, and let Q be a conjunctive query. The
algorithm takes a partial assignment f : V → A as parameter and performs
as follows: First, the algorithm checks whether f decides the body of Q(a),
in which case it returns the leaf-tree that consists of a single node labeled by
f . Otherwise, for every variable x �∈ Dom(f) and every value a ∈ {0, 1}, the
algorithm calls recursively itself on input f ∪ {(x, a)}. These recursive calls are
run in parallel, either by executing one step from each in parallel rounds, or by
applying a doubling technique that executes 2i steps of each call, sequentially,
for increasing values of i. As soon as one of the recursive calls terminates, say, the
one with input f ∪{(x, a)}, the rest of calls are aborted except for f ∪{(x, 1−a)}
which is run to completion. Let Ta and T1−a be the search trees returned by the
only two recursive calls that are run to completion. The output is the search tree
(f, T0, T1); that is, the search tree whose root is labeled by f , whose left subtree
is T0, and whose right subtree is T1.

Lemma 2. Let σ be a relational vocabulary of maximum arity r and cardinality
t. Let A be a Boolean σ-structure, let a be a tuple of A, and let Q be a con-
junctive query with k bound variables and total size q. The algorithm, when run
with parameter f = ∅, returns a search tree testing whether A |= Q(a). More-
over, if there exists such a search tree of size s, then the algorithm runs in time
polynomial in q, t, 2r, k and slog k.

Proof : The correctness of the algorithm is easily proved by induction on k. For
the running time we proceed as follows. Let ψ be the body of Q. Let T (i, s) be
the minimum upper bound to the running time of the algorithm for every f such
that |Dom(f)| ≥ k − i and the smallest search tree for ψ[a, f] has size at most
s. When i = 0, the running time of the algorithm is bounded by some value c
that depends on σ and Q only. More precisely, we can take c to be linear in qt2r.
Consider now the case i > 0. Consider a smallest search tree of size at most s.
If s ≤ 1, the running time is again bounded by c, since necessarily, ∅ decides
ψ[a, f]. If s ≥ 2, one of its two subtrees has size at most s/2. It follows that at
least one of the 2i recursive calls terminates after at most T (i − 1, s/2) steps.
Each parallel round takes di steps to execute for some constant d. The other

60 A. Atserias

recursive call that is left will take at most T (i − 1, s) steps to complete. All in
all, the running time of the algorithm is bounded by

T (i, s) ≤ c + diT (i− 1, s/2) + T (i− 1, s),

if i ≥ 1 and s ≥ 2, and T (i, s) ≤ c if either i = 0 or s ≤ 1. For solving this
recurrence we expand the last term repeatedly, until we reach T (0, s) ≤ c, and
obtain

T (i, s) ≤ c(i + 1) + d

i∑
j=1

jT (j − 1, s/2).

Now we use the fact that T (j, s/2) ≤ T (j + 1, s/2) which follows directly from
the definition of T , and obtain

T (i, s) ≤ c(i + 1) + di2T (i, s/2).

Solving this recurrence of a single variable s is now a routine task. The solution
satisfying equality is

c

[
(i + 1)

(di2)log s+1 − 1
di2 − 1

+ (di2)log s

]
.

Noting that (di2)log s = s2 log i+log d and recalling that c is linear in qt2r, we see
that the running time T (k, s) is bounded by a polynomial in q, t, 2r, k and slog k.
��

With this Lemma in hand we are ready to prove Theorem 1.

Proof of Theorem 1: It suffices to Booleanize σ, A, Q and a, and run the algo-
rithm that we just described for the Boolean case. By Lemma 1, if A |= Q(a) has
a search tree of size s, then A(n) |= Q(n)(a(n)) has a search tree of size 2sn. On
the other hand, the number of bound variables of Q(n) becomes k log n, and the
maximum arity of the Booleanization of σ becomes r log n. The result follows by
plugging these values into the bounds of Lemma 2. ��

Let us note that, the way we described it, the algorithm does not produce a
search tree for A |= Q(a). This is because it is not necessarily possible to convert
a search tree for A(n) |= Q(n)(a(n)), which is what the algorithm gives, into a
search tree for A |= Q(a), while preserving the bounds. Let us note, however,
that a search tree for A(n) |= Q(n)(a(n)) gives all the essential information. We
do not know whether it is possible to have an algorithm with similar performance
that avoids the Booleanization and produces a search tree for A |= Q(a).

4 Search Trees for Queries of Bounded Treewidth

The aim of this section is to investigate the size of search trees for conjunctive
queries whose underlying graph is a tree or is similar to a tree in the sense of
having small treewidth. The key to the argument is that graphs of treewidth w
have separators of size w + 1.

Conjunctive Query Evaluation by Search Tree Revisited 61

Definition 1. A p-separator of a graph G = (V,E) is a set U ⊆ V such that
each connected component of G− U contains at most p vertices.

The following fact is known about the relationship between treewidth and
separator size (see [Bod98, Theorem 19]).

Lemma 3. Let G be a graph of cardinality n. If the treewidth of G is at most
w, then G has a 1

2 (n− w)-separator of size at most w + 1.

We use this fact in the proof of the following Theorem. The proof of this
result makes use of an idea that Moshe Vardi shared with the author.

Theorem 2. Let σ be a relational vocabulary of maximum arity r and cardinal-
ity t. Let A be a finite σ-structure of cardinality n, let a be a tuple of A, and let
Q be a conjunctive query with k bound variables. If Q(a) has treewidth at most
w and A �|= Q(a), then there exists a search tree for testing whether A |= Q(a)
of size n(w+1) log k.

Proof : We proceed by induction on k. If k = 0 then the claim is obvious because
the search tree has size 1 (we convey here that log 0 = 0). Consider the case
k > 0. Assume that Q(a) has treewidth at most w and A �|= Q(a). Let G
be the Gaifman graph of Q(a). Since G has treewidth at most w, it has a
1
2 (k − w)-separator S = {z1, . . . , zl} of size at most w + 1. Let Q′(z1, . . . , zl) be
the conjunctive query that results from Q(a) when the variables in S are left
free. Since S is a 1

2 (k−w)-separator of G, we may assume that Q′(z1, . . . , zl) is
the conjunction of several conjunctive queries Q′

1(z1, . . . , zl), . . . , Q′
d(z1, . . . , zl)

with at most 1
2 (k − w) bound variables each. Since A �|= Q(a), we have A �|=

Q′(f(z1), . . . , f(zl)) for every partial assignment f for which Dom(f) = S. In
turn, necessarily A �|= Q′

i(f(z1), . . . , f(zl)) for some i ∈ {1, . . . , d}. Let i(f) ∈
{1, . . . , d} be such that A �|= Q′

i(f)(f(z1), . . . , f(zl)). Notice that the number of
bound variables of Q′

i(f) is less than 1
2k < k. We apply the induction hypothesis

and obtain a search tree for testing whether A |= Q′
i(f)(f(z1), . . . , f(zl)) of size

n(w+1) log(k/2). The search tree for A |= Q(a) can now be built by first querying
the l ≤ w+1 variables in the separator S, in sequence, and then, for each partial
assignment f at the leaves of this partial search tree, plugging in the search tree
for testing whether A |= Q′

i(f)(f(z1), . . . , f(zl)) that is given by the induction
hypothesis. The size of the resulting tree is bounded by

nw+1 · n(w+1) log(k/2) ≤ n(w+1) log k

as was to be shown. ��

In Section 5 we will show that the bound provided by Theorem 2 is essentially
optimal even when the underlying graph of the query is a very simple tree. It is
important to notice the extra hypothesis A �|= Q(a) in Theorem 2. As a matter
of fact, we do not know whether the hypothesis is necessary. In other words,
we do not know if conjunctive queries of bounded treewidth always have search
trees of size nO(log k).

62 A. Atserias

There is one important consequence of Theorem 2 that is worth noticing.
Fix a relational vocabulary σ of maximum arity r and cardinality t. Suppose
we run the algorithm of Section 3 on a σ-structure A of cardinality n and a
query Q(a) with k bound variables, total size q, and treewidth at most w. Let
s = n(w+1) log k. By Theorem 1 and Theorem 2, we know that if A �|= Q(a), then
the algorithm finishes in a number of steps that is a fixed polynomial of q, t,
nr, k, and (sn)log k(sn)log log n, and reports so. Consequently, if the algorithm
does not succeed in finishing within that number of steps, we can conclude that
A |= Q(a), although we get no clue why.

It follows from this discussion that for queries of known treewidth, our al-
gorithm can be used for deciding whether A |= Q(a) within a time-bound that
is far better than the worst case nk, when k is large. Obviously, our bound
is also far worse than the O(qnw) bound of the known ad-hoc algorithms for
evaluating queries of bounded treewidth [GLS98, KV00]. As discussed in the in-
troduction, this is interesting because our algorithm is not special purpose for
bounded treewidth queries.

5 Bounds on Search-Tree Size

In this section we prove lower bounds for the minimal search trees for particular
queries of interest. The first lower bound is relatively easy, but we include the
proof as a warm-up for the second, which is more difficult. The second lower
bound shows that the n(w+1) log k bound for queries of treewidth w in Theorem 2
is essentially optimal.

5.1 Lower Bound for the General Case

Consider the vocabulary of graphs σ = {E}, where E is a binary relation symbol.
For k ≥ 2, let CLIQUEk be the conjunctive query expressing the existence of a
k-clique. More specifically, CLIQUEk is the following conjunctive query:

(∃x1) · · · (∃xk)

⎛
⎝∧

i �=j

E(xi, xj)

⎞
⎠ .

We aim for a family of graphs Hn for which the size of the minimal search
trees for testing whether Hn |= CLIQUEk is nearly as large as it can be.

The graph Hn that we need is the complete (k − 1)-partite graph with all
color-classes of cardinality n. More precisely, the set of vertices of Hn is

Vn = {(i, u) : 1 ≤ i ≤ k − 1, 1 ≤ u ≤ n},

and the set of edges of Hn is

En = {((i, u), (j, v)) : 1 ≤ i, j ≤ k − 1, 1 ≤ u, v ≤ n, i �= j}.

Each set of vertices of the form {(i, u) : 1 ≤ u ≤ n} is called a color-class.
Clearly, Hn does not contain any k-clique, so the query CLIQUEk does not

Conjunctive Query Evaluation by Search Tree Revisited 63

hold on Hn. Note that Hn has kn vertices in total, and CLIQUEk has k bound
variables. Hence, the obvious upper bound for any search tree is (kn)k. We see
next that when n is much bigger than k, then this is essentially the best one can
do. The proof is quite simple but we give it as it will serve as a warm-up for a
more difficult proof in the next section.

Theorem 3. Every search tree for testing whether Hn |= CLIQUEk has at least
nk−3 nodes.

Proof : The idea of the proof is to describe an adversary argument that, given
a purported search tree of size less than nk−3, finds a leaf that is labeled by
a partial assignment that does not decide the body of CLIQUEk. Since this
contradicts the definition of search tree, no such search tree can exist.

Suppose that (T,L) is a search tree testing whether Hn |= CLIQUEk. We
construct a path q0, q1, . . . through T , starting at the root, with the following
properties:

1. L(qj) does not decide the body of CLIQUEk.
2. The subtree rooted at qj has size less than nk−3−j .

The idea behind the construction is to set x(qj) to a node of a different color-
class; for example, we hope to set x(qj) to a node in color-class j + 1. Let q0
be the root of T . Suppose next that q0, . . . , qj have already been defined, and
that qj is not a leaf. We claim that among the n vertices in color-class j + 1,
there must exist at least one, say (j + 1, u), for which the subtree rooted of qj

labeled by L(qj) ∪ {(x(qj), (j + 1, u))} has size less than nk−3−j−1. Indeed this
is the case since otherwise the size of the subtree rooted at qj would be at least
n · nk−3−j−1 = nk−3−j which contradicts the inductive construction. Let qj+1
be any of these successors.

Notice that after a certain number of steps m no larger than k − 3, we will
reach a leaf qm because the size of the subtree will become less than 2. It remains
to be seen that our construction guarantees that the label L(qm) of this leaf does
not decide the body of CLIQUEk. However, this is clear from the construction
because the partial assignment that is built assigns each variable to a different
color-class. Therefore, L(qm) does not falsify any atomic formula, and it cannot
satisfy all either because its domain is not all {x1, . . . , xk}. Hence, L(qm) does
not decide the body of CLIQUEk as was to be shown. ��

5.2 Lower Bound for the Bounded Treewidth Case

Consider the vocabulary of directed graphs σ = {E}, where E is a binary relation
symbol. For k ≥ 2, let PATHk(x, y) be the conjunctive query expressing the
existence of a path of length k from x to y. More specifically, PATHk(x, y) is the
following conjunctive query:

(∃x1) · · · (∃xk−1)(E(x, x1) ∧ E(x1, x2) ∧ . . . ∧ E(xk−2, xk−1) ∧ E(xk−1, y)).

It is trivially seen that the treewidth of PATHk(x, y) is one because the
underlying Gaifman graph is a path, and hence a tree. We aim for a family of

64 A. Atserias

directed graphs Gn, with two distinguished nodes s and t, for which the size of
the minimal search trees for testing whether Gn |= PATHk(s, t) nearly matches
the upper bound provided by Theorem 2. Moreover, we will choose our graphs
so that the hypothesis Gn �|= PATHk(s, t) in that theorem is satisfied.

The construction of the directed graphs Gn is as follows. The set of vertices
of Gn is

Vn = {(i, u) : 1 ≤ i ≤ k − 1, 1 ≤ u ≤ n} ∪ {s, t}.
The vertices of the type (i, u) need to be thought as arranged into k−1 levels

of n vertices each. We call them middle vertices. The source vertex s is at level
0 and the target vertex t is at level k. Each middle vertex (i, u) at level i is
connected precisely to the vertices at level i+ 1 whose second components have
the same parity as u. The source s is connected precisely to the vertices at level
1 whose second component is even, and the target t is connected precisely to the
vertices at level k − 1 whose second component is odd. More formally, the arcs
of Gn are

En = {((i, u), (i + 1, v)) : 1 ≤ i ≤ k − 2, 1 ≤ u, v ≤ n, u ≡ v (mod 2)} ∪
{(s, (1, u)) : 1 ≤ u ≤ n, u ≡ 0 (mod 2)} ∪
{((k − 1, u), t) : 1 ≤ u ≤ n, u ≡ 1 (mod 2)}.

It is readily seen from the definition, that there is no path of length k from s
to t in Gn. In other words, Gn �|= PATHk(s, t). This is because the only middle
vertices reachable from s are those whose second component is even, and the
only middle vertices that reach t are those whose second component is odd.

Theorem 4. For n ≥ k/2 ≥ 2, every search tree for testing whether Gn |=
PATHk(s, t) has at least nlog k−3 nodes.

Proof : As in Theorem 3, the idea of the proof is again to describe an adversary
argument. For simplicity we assume that n is an even number; the general case is
similar. Suppose that (T,L) is a search tree testing whether Gn |= PATHk(s, t).
Before we start the argument we need some terminology. Every internal node q
of T has an associated level l(q) in {1, . . . , k−1} defined as follows. Let x(q) = xi;
that is, xi is the splitting variable at node q. Then we define l(q) = i.

We construct a path q0, q1, . . . through T , starting at the root, with the
following properties:

1. L(qj) does not decide the body of PATHk(s, t).
2. The subtree rooted at qj has size less than 2jnlog k−3−j .

Each internal qj will also have an associated parity pj ∈ {0, 1} that will be
defined on the fly. Let q0 be the root of T . The parity p0 is defined 0 if 2l(q0) < k
and 1 otherwise. Intuitively, p0 is 0 if level l(q0) is closer to level 0 than to level
k. Suppose next that q0, . . . , qj and p0, . . . , pj have already been defined, and
that qj is not a leaf. First we define the parity pj+1 as follows. Intuitively, pj+1
will be defined in such a way that the minimum distance, in terms of number
of levels, between any two elements of different parity in the sequence is at

Conjunctive Query Evaluation by Search Tree Revisited 65

most halved. More formally, consider the level l(qj) = i of qj and the level i′ in
{l(q0), . . . , l(qj−1), 0, k} that minimizes |i′ − i| (break ties arbitrarily). If i′ = 0,
let pj+1 = 0. If i′ = k, let pj+1 = 1. Otherwise, let j′ be such that i′ = l(qj′), and
let pj+1 = pj′ . Next we define qj+1. We claim that among the n/2 middle vertices
at level i whose second component is congruent to pj+1 mod 2, there must exist
at least one, say (i, u), for which the subtree rooted at the successor of qj labeled
by L(qj)∪ {(x(qj), (i, u))} has size less than 2j+1nlog k−3−j−1. Indeed this is the
case because otherwise the size of the subtree rooted at qj would be at least

n

2
· 2j+1nlog k−3−j−1 = 2jnlog k−3−j

which contradicts the inductive construction. Let qj+1 be any of these successors.
Notice that after a certain number of steps m no larger than log k−2, we will

reach a leaf qm because the size of the subtree will become less than 2. It remains
to be seen that our construction guarantees that the label L(qm) of this leaf does
not decide the body of PATHk(s, t). Consider the sequence q0, . . . , qm. To every
internal qj in the path there corresponds a vertex of Gn, namely, the image of the
variable x(qj) under L(qj+1). Let v0, . . . , vm−1 be the corresponding sequence of
vertices in Gn. Note that, by construction, each vj is a middle vertex of the form
(l(qj), u) and the parity pj coincides with the parity of its second component u.
Let us define vm = s, vm+1 = t, pm = 0, and pm+1 = 1. We claim that any two
vertices in {v0, . . . , vm+1} that belong to consecutive levels are connected by an
arc. In order to see this, it suffices to note that the shortest distance between any
pair of elements of different parity in the sequence is at least k/2 when j = 0,
and is at most halved when going from j to j + 1. Therefore, by j = log k − 2,
the shortest distance between any pair of elements of different parity is at least
2. Hence, any two consecutive vertices have the same parity, so are connected by
an arc. Hence, L(qm) does not falsify any atomic formula, and it cannot satisfy
all either because its domain is not all {x1, . . . , xk−1}. Hence, L(qm) does not
decide the body of PATHk(s, t) as was to be shown. ��

6 Conclusions

We have proposed a new way of measuring the complexity of algorithms for con-
junctive query evaluation, or equivalently, for constraint-satisfaction problems.
The concept of minimal search tree tries to capture the notion of optimal search
space for search-based pruning algorithms. As discussed in the introduction,
measuring the complexity of the algorithm as a function of the minimal search
tree is an idea that originates in propositional proof complexity. By adapting an
automatization algorithm for tree resolution that was developed in that context,
we were able to provide an algorithm that achieves a remarkable theoretical per-
formance. What remains to be seen is whether the idea can lead to practical
algorithms with reasonable behavior.

Our work also suggests several technical open problems. First, our algorithm
provides a search tree for the Booleanization, but as we discussed, it is not

66 A. Atserias

clear that such a search tree can be converted to a search tree for the original
conjunctive query. It would be nice to investigate this further. Second, proving
the bounds on search-tree size for bounded treewidth queries seemed to require
the hypothesis A �|= Q(a). We do not know whether it is really needed.

Open Problem. Find bounds on the maximum search-tree size of conjunctive
queries of bounded treewidth on structures on which they hold. More concretely:
Do conjunctive queries with k variables and bounded treewidth have search trees
of size nO(log k) on structures of cardinality n on which they hold? If not, repeat
for bounded pathwidth.

Another interesting direction to follow, that looks related to this work, is
to establish the precise relationship between the CSP refutations developed in
[AKV04] and the refutations provided by the search trees when A �|= Q(a). It
seems that the techniques that were developed for proof complexity should be
useful here. Ideally, it would be nice to move back and forth and apply techniques
from one area to the other.

Acknowledgments. I am grateful to José L. Balcázar and Roberto Nieuwenhuis
for fruitful discussions, and also to a referee for comments. I am also grateful to
Moshe Vardi for providing useful pointers and for the discussion of ideas related
to Theorem 2.

References

[AKV04] A. Atserias, Ph. G. Kolaitis, and M. Vardi. Constraint propagation as a
proof system. To appear in proceedings of CP 2004, 2004.

[BKPS02] P. Beame, R. Karp, T. Pitassi, and M. Saks. The efficiency of resolution and
Davis-Putnam procedures. SIAM Journal of Computing, pages 1048–1075,
2002.

[Bod98] H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth.
Theoretical Computer Science, 209:1–45, 1998.

[BP96] P. Beame and T. Pitassi. Simplified and improved resolution lower bounds.
In 37th Annual IEEE Symposium on Foundations of Computer Science,
pages 274–282, 1996.

[BPR00] M. L. Bonet, T. Pitassi, and R. Raz. On interpolation and automatization
for Frege systems. SIAM Journal of Computing, 29(6):1939–1967, 2000. A
preliminary version appeared in FOCS’97.

[CM77] A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive
queries in relational databases. In 9th Annual ACM Symposium on the
Theory of Computing, pages 77–90, 1977.

[CR97] C. Chekuri and A. Rajaraman. Conjunctive query containment revisited. In
6th International Conference on Database Theory, volume 1997 of Lecture
Notes in Computer Science, pages 56–70, 1997.

[DKV02] V. Dalmau, Ph. G. Kolaitis, and M. Y. Vardi. Constraint satisfaction,
bounded treewidth, and finite variable logics. In 8th International Confer-
ence on Principles and Practice of Constraint Programming (CP), volume
2470 of Lecture Notes in Computer Science, pages 310–326. Springer, 2002.

Conjunctive Query Evaluation by Search Tree Revisited 67

[GLS98] G. Gottlob, N. Leone, and F. Scarcello. The complexity of acyclic conjunc-
tive queries. In 39th Annual IEEE Symposium on Foundations of Computer
Science, pages 706–715, 1998.

[KV00] Ph. G. Kolaitis and M. Y. Vardi. Conjunctive-query containment and con-
straint satisfaction. Journal of Computer and System Sciences, 61(2):302–
332, 2000.

[PY99] C. H. Papadimitriou and M. Yannakakis. On the complexity of database
queries. Journal of Computer and System Sciences, 58(3):407–427, 1999.

[Yan81] M. Yannakakis. Algorithms for acyclic database schemes. In 7th Interna-
tional Conference on Very Large Data Bases, pages 82–94, 1981.

Which XML Schemas Admit 1-Pass Preorder
Typing?

Wim Martens1, Frank Neven1, and Thomas Schwentick2

1 Limburgs Universitair Centrum
Universitaire Campus

B-3590 Diepenbeek, Belgium
{wim.martens, frank.neven}@luc.ac.be

2 Philipps Universität Marburg
Fachbereich 12, Mathematik und Informatik

tick@informatik.uni-marburg.de

Abstract. It is shown that the class of regular tree languages admitting
one-pass preorder typing is exactly the class defined by restrained com-
petition tree grammars introduced by Murata et al. [14]. In a streaming
context, the former is the largest class of XSDs where every element in a
document can be typed when its opening tag is met. The main technical
machinery consists of semantical characterizations of restrained compe-
tition grammars and their subclasses. In particular, they can be char-
acterized in terms of the context of nodes, closure properties, allowed
patterns and guarded DTDs. It is further shown that deciding whether a
schema is restrained competition is tractable. Deciding whether a schema
is equivalent to a restrained competition tree grammar, or one of its sub-
classes, is much more difficult: it is complete for exptime. We show that
our semantical characterizations allow for easy optimization and mini-
mization algorithms. Finally, we relate the notion of one-pass preorder
typing to the existing XML Schema standard.

1 Introduction

XML (eXtensible Markup Language) constitutes the basic format for data ex-
change on the Web [4]. For many applications, it is important to constrain the
structure of documents by providing a schema specified in a schema language.
The most common schemas are Document Type Definitions (DTDs). A DTD is
basically a set of rules of the form a → r, where a is a tag name and r is a
regular expression. A document is valid with respect to a DTD if each element
labeled with a has a sequence of children whose tags match r. We view an XML
document as a tree in the way indicated by Figure 1.

Unfortunately, DTDs are limited in various ways. A particular limitation is
that the type of an element can only depend on its tag but not on its context.
As an example, in Figure 1 it is not possible to assign different types to discount
DVDs and non-discount DVDs while retaining the same tag.

XML Schema Definitions (XSDs) is the standard proposed by the World Wide
Web consortium (W3C) to answer the shortcomings of DTDs [5]. In database

T. Eiter and L. Libkin (Eds.): ICDT 2005, LNCS 3363, pp. 68–82, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Which XML Schemas Admit 1-Pass Preorder Typing? 69

theory, the latter are modeled by extended context-free grammars, the former
by unranked regular tree languages [2]. Such regular tree languages can be repre-
sented by specialized DTDs (SDTDs) [16] allowing to assign types ai to elements
with tags a (cf. Definition 2). The rules are of the form ai → r where r is a reg-
ular expression over types, i.e., the rules constrain, for each element type, the
sequence of types of sub-elements. In our example, regular DVDs could get the
type dvd1, discount DVDs the type dvd2 (cf. Section 2.2). A tree is then valid
w.r.t. an SDTD if there is an assignment of types matching the rules of the
grammar. The enlarged flexibility of SDTDs requires an additional algorithmic
task: besides simply checking validity it will often be necessary to compute a
matching assignment. We refer to this as typing.

The goal of the present paper is to identify the largest class of SDTDs which
can be typed in a streaming fashion. In other words, when processing an XML
document as a stream of opening and closing tags, the type of each element
should be uniquely determined when the opening tag is met. We will refer to this
as 1-pass preorder typing. The latter can be an important first step in processing
streaming XML data. On top of this information, e.g., subscription queries can
be defined (e.g., inform me if there are new discounted dvds) and their evaluation
can be optimized.

Note that a document is valid w.r.t. an SDTD if all elements can be correctly
typed. Hence, 1-pass preorder typing implies 1-pass (preorder) validation, but
not vice versa. Indeed, consider the SDTD consisting of the rules a0 → b1 + b2,
b1 → c and b2 → d, defining the finite tree language {a(b(c)), a(b(d))}. This
language can easily be validated via an algorithm making a preorder traversal
through the input tree, but does not admit preorder typing: the type of the
b-element cannot be determined without looking at its child.

Murata, Lee and Mani [14] proposed1 two restrictions of SDTDs, single-
type and restrained competition, which guarantee 1-pass preorder typing. An
SDTD is single-type if for each rule ai → r and each tag b at most one type
bj occurs in r. It is restrained competition if there is no rule ai → r for which
there exist strings wbju and wbkv in L(r) with j �= k. Clearly, both restrictions
assure 1-pass preorder typing. However, from the definition of these restrictions
it is not immediately clear whether they are the weakest possible to ensure 1-
pass preorder typing. More importantly, a precise semantical characterization
providing insight in fundamental properties of these classes remained open.

Contributions. It turns out that an SDTD admits 1-pass preorder typing if
and only if its trimmed version (i.e., without useless symbols) is restrained com-
petition. So, a regular tree language admits 1-pass preorder typing if and only
if it can be described by a restrained competition SDTD. Therefore, restrained
competition SDTDs might be a good basis for an XML schema language ex-

1 Actually, they defined these classes in the slightly different framework of regular tree
grammars. We use SDTDs here to simplify proofs. Nevertheless, w.r.t. defining tree
languages, the two formalisms are equally expressive and one can be translated into
the other efficiently in a straightforward manner.

70 W. Martens, F. Neven, and T. Schwentick

tending XSDs without losing the ability of efficient parsing. Interestingly, for
this purpose no further restriction to one-unambiguous regular expressions [3] is
necessary. We discuss this further in Section 7.

Starting from this, we study the classes of tree languages which can be de-
scribed by restrained-competition SDTDs and single-type SDTDs, respectively.
The next contribution is a set of semantical characterizations of these classes.
The main parameter in these characterizations is the dependency of the type of
a node on the context of the node in the document. In particular, we prove that
a regular tree language can be defined by (1) a single-type SDTD if and only if
the type of each node only depends on the sequence of tags on the path from
the root to the node; and, (2) a restrained competition SDTD if and only if the
type of each node only depends on the tags of the nodes on the path from the
root to the node and their left siblings. The other characterizations are in terms
of closure properties, allowed patterns and guarded DTDs.

Next, we turn to algorithmic issues. Two algorithmic problems immediately
arise from the above. Given an SDTD d, (1) is d a DTD, single-type SDTD
or restrained competition SDTD, and (2) is there a DTD, single-type SDTD or
restrained competition SDTD d’ describing the same tree language as d? The
first question is trivial for DTDs and single-type SDTDs. We prove that it is in
nlogspace for restrained competition SDTDs. The second question turns out to
be much harder: in all three cases it is complete for exptime. Furthermore, the
algorithm is constructive. That is, if d is in fact in the desired class, an equivalent
DTD, single-type SDTD or restrained competition SDTD d′ is constructed.

Our semantical characterizations lead to easy optimization and minimiza-
tion algorithms. Whereas the inclusion problem is exptime-complete for general
SDTDs (even with one-unambiguous regular expressions [13]) it follows from our
characterizations that these problems are in pspace for restrained competition
SDTDs and even in ptime if it is additionally required that the regular expres-
sions are one-unambiguous. We show that, in contrast to general SDTDs (cf. Sec-
tion 5.2), for every tree language definable by restrained competition grammars,
there exists a unique minimal restrained competition grammar that describes it.
Moreover, this minimal grammar can be computed in polynomial time.

We conclude with an observation on post-order typing. Although in general,
arbitrary SDTDs do not admit 1-pass preorder typing, we show that for each
regular tree language there is an SDTD which allows 1-pass postorder typing,
i.e., a parsing algorithm that determines a type of an element when it reaches
its closing tag. That every SDTD allows 1-pass validation was already observed
by Segoufin and Vianu [18].

Related Work. Brüggemann-Klein, Murata, and Wood study unranked regular
tree languages as a formal model for XML schema languages [2]. In particular,
they prove that the latter model is equivalent to the morphic image of tree-
local tree languages. Papakonstantinou and Vianu [16] formalize the latter as
the more manageable specialized DTDs which are used in this paper. Murata et
al. [14] provided a taxonomy of XML schema languages in terms of restrictions on
grammars which are equivalent to specialized DTDs. In particular, they propose

Which XML Schemas Admit 1-Pass Preorder Typing? 71

Fig. 1. An example of an XML document and its tree representation

to formalize DTDs, XML Schema, and Relax NG [24] as local, single-type, and
arbitrary regular tree grammars, respectively. They also introduce the notion of
restrained competition and show that these are 1-pass preorder typeable but do
not discuss optimality or give any semantical characterizations.

The organization of the paper is as follows. In Section 2 we define the var-
ious classes of SDTDs and the properties by which we characterize them. The
actual characterizations are given in Section 3. In Section 4 the complexity of
the basic decision problems is addressed. In Section 5, we discuss optimization
and minimization algorithms. Section 6 shows that every regular tree language
allows 1-pass postorder typing. We discuss our results in Section 7.

2 Definitions

2.1 Trees and Tree Languages

For our purposes, an XML document is basically a sequence of opening and
closing tags, properly nested. As usual, we identify XML documents with their
corresponding trees. The domain Dom(t) of a tree t is the set of its nodes,
represented in a fixed way by sequences of numbers. The empty sequence ε
represents the root. The n children of a node u are named u1, . . . , un in the
order given by the document. Nodes carry labels from alphabet Σ of tags. We
denote the label of v in t by labt(v). The set of all unranked Σ-trees is denoted
by TΣ . A tree language is a set of trees. For a gentle introduction into trees, tree
languages and tree automata we refer to [15].

2.2 XML Schema Languages

Definition 1. A DTD is a pair (d, sd) where d is a function that maps Σ-
symbols to regular expressions and sd ∈ Σ is the start symbol. We usually
simply denote (d, sd) by d. A tree t is valid w.r.t. d (or satisfies d) if its root is
labeled by sd and, for every node with label a, the sequence a1 · · · an of labels
of its children is in L(d(a)). By L(d) we denote the set of trees that satisfy d.

A simple example of a DTD defining the inventory of a store is the following:

store → dvd dvd∗ dvd→ title price(discount + ε)

72 W. Martens, F. Neven, and T. Schwentick

Definition 2 ([16, 17]). A specialized DTD (SDTD) is a 4-tuple d = (Σ,Σ′,
(d, sd), μ), where Σ′ is an alphabet of types, (d, sd) is a DTD over Σ′ and μ is a
mapping from Σ′ to Σ. A tree t is valid w.r.t. d (or satisfies d) if t = μ(t′) for
some t′ ∈ L(d) (where μ is extended to trees). Again, we denote the set of trees
defined by d, by L(d). We denote by (d, ai) the specialized DTD d, where we
replace the DTD (d, sd) by (d, ai).

The class of tree languages defined by SDTDs corresponds precisely to the
regular (unranked) tree languages [2]. For ease of exposition, we always take
Σ′ = {ai | 1 ≤ i ≤ ka, a ∈ Σ, i ∈ N} for some ka ∈ N and set μ(ai) = a. We refer
to the label ai of a node (or sometimes also to i) in t′ as its state or type. We say
that an SDTD d is trimmed if d has no unreachable rules and that there exists
no ai ∈ Σ′ for which L((d, ai)) = ∅. Note that L((d, ai)) contains trees over
alphabet Σ′, whereas L((d, ai)) contains Σ-trees. In the remainder of the paper,
we assume that all SDTDs are trimmed. We note that trimming an SDTD is
ptime-complete. A simple example of an SDTD is the following:

store → (dvd1 + dvd2)∗dvd2(dvd1 + dvd2)∗

dvd1 → title price dvd2 → title price discount

Here, dvd1 defines ordinary DVDs while dvd2 defines DVDs on sale. The rule
for store specifies that there should be at least one DVD on discount.

Murata et al. [14] argue that the expressiveness of SDTDs corresponds to
the XML schema language Relax NG, while the single-type SDTDs defined next
correspond to XML Schema.

Definition 3. A single-type SDTD (SDTDst) is an SDTD (Σ,Σ′, d, μ) in which
in no regular expression d(a) two types bi and bj with i �= j occur.

The above defined SDTD is not single type as both dvd1 and dvd2 occur in
the rule for store. An example of a single-type SDTD is given next:

store → regulars discounts
regulars→ (dvd1)∗ discounts→ dvd2 (dvd2)∗

dvd1 → title price dvd2 → title price discount

Although there are still two element definitions dvd1 and dvd2, they can only
occur in a different context. The next class was defined in [14] because it still
allows 1-pass preorder typing.

Definition 4. A regular expression r restrains competition if there are no strings
waiv and wajv′ in L(r) with i �= j. An SDTD is restrained competition (SDTDrc)
iff all regular expressions occurring in rules restrain competition.

An example of a restrained competition SDTD that is not single-type is given
next:

store → (dvd1)∗ discounts (dvd2)∗

discounts→ ε dvd1 → title price dvd2 → title price discount

The classes of tree languages defined by the grammars introduced above are
included as follows: DTD � SDTDst � SDTDrc � SDTD [14].

Which XML Schemas Admit 1-Pass Preorder Typing? 73

v

t

(a)

v

t

(b)

t1

t′1

v1

t2

t′2

v2

t1

t′2

v1

∈ T ∈ T ⇒ ∈ T

(c)

Fig. 2. Illustration of notions introduced in Section 2.3. Figures 2(a) and 2(b) illustrate
the ancestor-string (anc-str) and ancestor-sibling string (anc-sib-str) of v. Figure 2(c)
illustrates the notion of ancestor-sibling-guarded subtree exchange

2.3 Ancestor- and Ancestor-Sibling-Patterns

Finally, we define the notions that will be used in our semantical characteriza-
tions. Let t be a tree and v be a node. By ch-strt(v) we denote the string formed
by the children of v, i.e., labt(v1) · · · labt(vn) if v has n children. Usually we omit
the superscript t. By anc-strt(v) we denote the string formed by the labels on
the path from the root to v, i.e., labt(ε)labt(i1)labt(i1i2) · · · labt(i1i2 · · · ik) where
v = i1i2 · · · ik. By l-sib-strt(v) we denote the string formed by the labels of the
left siblings of v, i.e., labt(u1) · · · labt(uk) where v = uk. By anc-sib-strt(v) we
denote the string l-sib-strt(ε)#l-sib-strt(i1)# · · ·#l-sib-strt(i1i2 · · · ik) formed by
concatenating the left-sibling strings of all ancestors starting from the root. We
assume that # �∈ Σ. Note that the final symbol of anc-strt(v) and anc-sib-strt(v)
is always the label of v.

Definition 5. We say that a specialized SDTD d = (Σ,Σ′, d, μ) has ancestor-
based types if there is a (partial) function f : (Σ ∪ {#})∗ → Σ′ such that, for
each tree t ∈ L(d) the following holds: (1) there is a unique tree t′ ∈ L(d) with
μ(t′) = t; and (2) for each node v ∈ Dom(t), the label of v in t′ is f(anc-strt(v)).
We say d has ancestor-sibling based types if the same holds with anc-strt(v)
replaced by anc-sib-strt(v).

By t1[u ← t2] we denote the tree obtained from a tree t1 by replacing the
subtree rooted at u ∈ Dom(t1) by t2. By subtreet(u) we denote the subtree of t
rooted at u.

Definition 6. We say that a tree language T is closed under ancestor-guarded
subtree exchange if the following holds. Whenever for two trees t1, t2 ∈ T with
nodes u1 ∈ Dom(t1) and u2 ∈ Dom(t2) it holds that anc-strt1(u1) = anc-strt2(u2)
implies t1[u1 ← subtreet2(u2)] ∈ T . We call it closed under ancestor-sibling-
guarded subtree exchange if the same property holds with anc-sib-strt1(u1) =
anc-sib-strt2(u2) as precondition of the implication. Figure 2 illustrates the just
defined notions.

Definition 7. An ancestor-guarded DTD d is a pair (d, sd) where sd ∈ Σ is the
start symbol as in a DTD. But in contrast to a DTD, d is a finite set of triples
(r, a, s), where a ∈ Σ and r and s are regular expressions. If there are triples

74 W. Martens, F. Neven, and T. Schwentick

(r, a, s) and (r′, a, s′) in d then L(r) and L(r′) are disjoint. A tree t satisfies d
if for every node v ∈ Dom(t) the following holds. If anc-str(v) matches r and
lab(v) = a there must be a triple (r, a, s) in d and ch-str(v) must match s.

An ancestor-sibling-guarded DTD is defined in the same way with the differ-
ence that r has to be matched by anc-sib-str(v).

Definition 8. Let Panc(t) = {anc-str(v)#ch-str(v) | v ∈ t} and Panc-sib(t) =
{anc-sib-str(v)#ch-str(v) | v ∈ t}. Let T be a set of trees. We say that T can be
characterized by ancestor-based patterns, if there is a regular string language L
such that, for every tree t, we have that t ∈ T if and only if Panc(t) ⊆ L. We say
T can be characterized by ancestor-sibling-based patterns if the same holds with
Panc(t) replaced by Panc-sib(t).

3 Semantic Characterizations of Single-Type and
Restrained Competition SDTDs

In this section, we first show that an SDTD is restrained competition if and only
if it allows for 1-pass preorder typing. Afterwards, as an intermediate step, we
characterize the regular tree languages definable by single-type SDTDs. Finally,
we characterize the class of tree languages which can be described by restrained
competition SDTDs.

3.1 Schemas with 1-Pass Preorder Typing

It follows from Theorem 12 that in restrained competition SDTDs the type of
a node only depends on its ancestor-sibling string. However, in an SDTD which
admits 1-pass preorder typing the type of a node might depend on all parts of
the tree which occur before the node. We formalize this notion via SDTDs with
preceding based types. Nevertheless, it will turn out that these two notions are
identical.

For a tree t and a node v we denote by precedingt(v) the tree resulting from
t by removing everything below v, all right siblings of v’s ancestors and of v,
and their respective subtrees (cf. Figure 3). We define the term preceding-based
types in analogy to Definition 5 with precedingt(v) in place of anc-strt(v).

Expressed in a different way, the type of an element only depends on the
prefix of the XML document ending with its opening tag.

Theorem 9. A trimmed SDTD d has preceding based types if and only if it is
restrained competition.

Proof sketch. The “if”-part of the statement is obvious. We sketch the “only
if”. Actually, it is easy to show that every trimmed SDTD d with ancestor-
sibling based types is restrained competition. Otherwise, a counterexample could
be constructed in a straightforward manner (cf. Theorem 12). It can also be

Which XML Schemas Admit 1-Pass Preorder Typing? 75

v

t

v

t

v

t

Fig. 3. From left to right: a tree t, precedingt(v) and preceding-subtreet(v)

shown by contraposition that each SDTD with preceding based types already
has ancestor-sibling based types. ��

Hence, we immediately obtain the following:

Corollary 10. Restrained competition SDTDs are exactly those SDTDs which
admit 1-pass preorder typing.

3.2 Ancestor Based Schemas

In this subsection, we characterize single-type SDTDs in terms of the ancestor
axis. In the following theorem we assume that all the trees in language T have
the same root label.

Theorem 11. For a regular tree language T the following are equivalent:

(a) T is definable by a single-type SDTD;
(b) T is definable by an SDTD with ancestor-based types;
(c) T is closed under ancestor-guarded subtree exchange;
(d) T can be characterized by ancestor-based patterns; and,
(e) T is definable by an ancestor-guarded DTD.

Proof. We show the following sequence of implications. (a) ⇒ (e) ⇒ (d) ⇒ (b)
⇒ (c) ⇒ (a). We only give the necessary constructions.

(a) ⇒ (e): Let T be defined by a single-type SDTD d = (Σ,Σ′, (d, sd), μ)
with ⊥ �∈ Σ′. Let A be a DFA over Σ with state set Q = Σ′ ∪ {⊥} and let
δ(ai, b) equal the unique bj occurring in d(ai) if such a symbol exists, otherwise
⊥. Note that the single-type property ensures that A is deterministic.

Let d′ = (d′, sd) be the guarded DTD with all triples (ra,i, a, μ(d(ai))), where
ra,i is a regular expression describing the set {w | δ∗(sd, w) = ai} of strings
which bring A into state ai. Of course, the languages L(ra,1), . . . , L(ra,ka

) are
all disjoint where {a1, . . . , aka} are the symbols mapped to a by μ.

(e) ⇒ (d): Let T be defined by the ancestor-guarded DTD d = (d, sd). Then
T can be characterized by the set L = {ua#v | ua ∈ L(r), v ∈ L(s), (r, a, s) ∈ d}.

(d) ⇒ (b): Let T be characterized by ancestor-based patterns using the lan-
guage L. Let A = (Σ,Q, δ, s, F) be a DFA for L. Let d = (Σ,Σ′, d, μ) be
defined as follows. Σ′ is the set of all pairs (a, q), where a ∈ Σ and q ∈ Q. We
let d((a, q)) be a regular expression describing all strings (b1, q1) · · · (bn, qn), for
which A accepts #b1 · · · bn when started from state q and qi = δ(q, bi), for every
i ≤ n.

76 W. Martens, F. Neven, and T. Schwentick

(b) ⇒ (c): Let T be defined by a SDTD d = (Σ,Σ′, d, μ) with ancestor-based
types. Let t1, t2 be in T and let u1 and u2 be nodes in t1 and t2, respectively,
with anc-strt1(u1) = anc-strt2(u2). Let t′1 and t′2 be the unique trees in L(d)
with μ(t′1) = t1 and μ(t′2) = t2. As the labels of u1 in t′1 and the label of u2 in
t′2 are determined by anc-strt1(u1) = anc-strt2(u2), they are the same. Hence,
by replacing the subtree rooted at u1 in t′1 with the subtree rooted at u2 in t′2
we get a tree t′ ∈ L(d). Therefore, μ(t′) = t1[u1 ← subtreet2(u2)] is in T , as
required.

(c) ⇒ (a): The idea of the proof is as follows. In a sense, we close a given
SDTD d for T with respect to the single-type property. Assume, e.g., that the
regular expression d(ai) contains two different types bj and bk. Then, we replace
all occurrences of bj and bk by a new type b{j,k} obtaining a single-type expression
with respect to b. Of course, we now need a new rule with b{j,k} on the left-hand
side. This rule should capture the union of d(bj) and d(bk). By applying this
step inductively, we arrive at an SDTD d1 which is single-type but uses types
of the form bS , for S ⊆ {1, . . . , kb} where {1, . . . , kb} are the types of b in Σ′. In
a second step we prove that L(d1) = T unless T fails to fulfill (c).

Let T be a tree language defined by an SDTD d = (Σ,Σ′, d, μ). Let the
alphabet Σ′

1 consist of all symbols aS , where S ⊆ {1, . . . , ka}. We extend this
notation to sets C ⊆ Σ′ in a natural way. We write aC for the type aS with
S = {i | ai ∈ C}. For example, for C = {a1, a2, b1, b3}, aC is the type a{1,2}. For
a regular expression r over Σ′ and C ⊆ Σ′ let rC denote the expression which
is obtained from r by replacing every symbol ai by aC .

We define the SDTD d1 = (Σ,Σ′
1, d1, μ1) as follows. For each symbol aS ,

μ1(aS) = a, and d1(aS) =
⋃

i∈S d(ai)C(aS), where C(aS) is the set of all bj in⋃
i∈S d(ai). For instance, for S = {1, 2}, d(a1) = a1b1(a2 + b1) and d(a2) = (a3 +

b3)a1, d1(aS) equals the expression (a{1,2,3}b{1,3}(a{1,2,3} + b{1,3}))+ ((a{1,2,3} +
b{1,3})a{1,2,3}).

Note that in d1(aS), for each symbol b ∈ Σ, there is at most one symbol of
the form bS′

, hence d1 is a single-type SDTD. It can be shown that, if L(d) �=
L(d1), the language T is not closed under ancestor-guarded subtree exchange.
By contraposition we get that (c) implies (a). ��

It should be noted that an analogous characterization can be easily obtained
for DTDs by replacing ancestor by parent. The equivalence between (c) and (a)
is then already obtained in [16].

3.3 Ancestor-Sibling Based Schemas

Finally, we consider restrained competition SDTDs and show that their tree
languages can be characterized in terms of the ancestor and left-sibling axis. We
again assume that all the trees in language T have the same root label.

Theorem 12. For a regular tree language T the following are equivalent:

(a) T is definable by a restrained competition SDTD;
(b) T is definable by an SDTD with ancestor-sibling-based types;

Which XML Schemas Admit 1-Pass Preorder Typing? 77

(c) T is closed under ancestor-sibling-guarded subtree exchange;
(d) T can be characterized by ancestor-sibling-based patterns; and
(e) T is definable by an ancestor-sibling-guarded DTD.

Proof. Again we show (a) ⇒ (e) ⇒ (d) ⇒ (b) ⇒ (c) ⇒ (a).
(e) ⇒ (d), (d) ⇒ (b), (b) ⇒ (c): These proofs are almost word for word the
same as for Theorem 11. Only ancestor has to be replaced by ancestor-sibling.

(c) ⇒ (a): The proof is similar as but a bit more involved than the corre-
sponding proof in Theorem 11. Let T be a tree language defined by a SDTD
d = (Σ,Σ′, d, μ).

Let, for each state ai of d, Aa,i = (Qa,i, Σ
′, δa,i, sa,i, Fa,i) be an NFA for

L(d(ai)). W.l.o.g. we assume that the sets Qa,i are pairwise disjoint and that for
every state in each Aa,i a final state is reachable.

Let Σ′
1 be defined as in the proof of Theorem 11. We define, for each aS ∈ Σ′

1
a DFA Aa,S = (Qa,S , Σ

′
1, δa,S , sa,S , Fa,S) as follows.

– Qa,S = {q⊥} ∪
⋃

i∈S 2Qa,i ;
– sa,S =

⋃
i∈S{sa,i};

– Fa,S = {B ∈ Qa,S | B ∩ Fa,i �= ∅, i ∈ S};
– In order to define δa,S , let B ∈ Qa,S and b ∈ Σ. We set S′ := {j | δa,i(p, bj) �=
∅, i ∈ S, j ≤ kb, p ∈ B} and δa,S(B, bS′

) :=
⋃

i,p,j δi(p, bj), where the latter
union is over all i ∈ S, p ∈ B and j ≤ kb. For all other sets S′′, we set
δa,S(B, bS′′

) := q⊥.

Intuitively, Aa,S can be seen as obtained in two steps from d. First, we take
the product of the power set automata of the Aa,i, i ∈ S. Then, for each symbol
b, for each state of this intermediate automaton, all outgoing edges with label
of the form bj are combined into one transition which ends in the (component
wise) union of the all possible target states. The transition is labeled by b to the
union of all outgoing b-labels.

We now define the SDTD d1 = (Σ,Σ′
1, d1, μ1), where, for each a and S,

d1(aS) is a regular expression corresponding to Aa,S .
Note that each d1(aS) has restrained competition. Indeed, as Aa,S is deter-

ministic, for each string w, Aa,S enters a unique state. Furthermore, for each
b ∈ Σ there is only one outgoing transition of the form bS′

that can lead to
acceptance.

(a)⇒ (e): Let T be defined by a restrained competition DTD d= (Σ,Σ′, d, μ).
For each symbol ai in Σ′, let Aa,i = (Qa,i, Σ

′, δa,i, sa,i, Fa,i) be a DFA for d(ai).
We can modify Aa,i such that it has exactly one state q⊥ from which no ac-
cepting state is reachable and such that it has no unreachable states (possibly
besides q⊥). From the restrained competition property it immediately follows
that in Aa,i, for each state q, if δ(q, bj) = q1, δ(q, bk) = q2, q1 �= q2 and j �= k
then q1 or q2 must be q⊥. We require that the sets Qa,i are pairwise disjoint.

From these DFAs over the extended alphabet Σ′ we construct a DFA A =
(QA, Σ, sA, δA, FA) as follows. The set QA consists of all pairs (q, b), where q ∈
Qa,i, for some ai, and b ∈ Σ′ ∪ {#}. Intuitively, q is the current state of an
automaton Aa,i and b is the last extended symbol or type that has been identified.

78 W. Martens, F. Neven, and T. Schwentick

The initial state sA of A is (sa,i,#) for the initial symbol ai of d. The transition
function δA is defined as follows. For each q ∈ Qa,i, c ∈ Σ′ and b ∈ Σ we let
δA((q, c), b) = (δa,i(q, bj), bj), for the unique j with δa,i(q, bj) �= q⊥, if such a j
exists. Otherwise, δA((q, c), b) = (q⊥,#). Furthermore, we let δA((q, bj),#) =
(sb,j ,#). We set FA = {q | q ∈ Fa,i}.

Now we are ready to define the ancestor-sibling guarded DTD d′. It consists
of all triples (r, a, s), for which there is a state (q, ai) of A, such that r describes
the set of strings w with δ∗

A(sA, w) = (q, ai) and s is μ(d(ai)). ��

4 Complexity of Basic Decision Problems

As the definition of a DTD and single-type SDTD is syntactical in nature, it
can be immediately verified by an inspection of the rules whether an SDTD is
in fact a DTD or a single-type SDTD.

Theorem 13. It is decidable in nlogspace for an SDTD d whether it is re-
strained competition.

We study the complexity of determining whether a tree language, given by
an SDTD, can be defined by a DTD, a single-type or a restrained competition
SDTD, respectively.

Theorem 14. Each of deciding whether an SDTD has an equivalent DTD,
single-type SDTD or restrained competition SDTD is exptime-complete.

Proof sketch. In all three cases, the lower bound is obtained by a reduction from
the universality problem for non-deterministic tree automata [19].

The exponential time upper bounds for the single-type and restrained com-
petition cases can be obtained by performing the constructions in the proofs (c)
⇒ (a) in Theorems 11 and 12. Both the construction of the SDTD and checking
equivalence with the original one can be done in exponential time. For DTDs a
similar construction is in polynomial time but the equivalence check still needs
exponential time. ��

5 Applications of the Semantical Characterizations

5.1 Inclusion and Equivalence of Schemas

Decision problems like testing for inclusion or equivalence of schema languages
often occur in schema optimization or as basic building blocks of algorithms
for typechecking or type inference [8, 11, 12, 16, 22]. In general these problems
are pspace and exptime-complete for DTDs and SDTDs, respectively [21, 19].
The XML specification, however, restricts regular expressions in DTDs to be
deterministic [4] (sometimes also called 1-unambiguous [3]).

Theorem 15. Given two restrained competition SDTDs d1 and d2, deciding
whether (a) L(d1) ⊆ L(d2), and whether (b) L(d1) = L(d2) is pspace-complete
in general, and ptime-complete if d1 and d2 use deterministic regular expres-
sions.

Which XML Schemas Admit 1-Pass Preorder Typing? 79

This result strongly contrasts with our results in [13], where we show that even
for very simple non-deterministic regular expressions these decision problems are
intractable, and with the case of arbitrary SDTDs with deterministic regular
expressions, for which inclusion and equivalence test are exptime-complete.

5.2 Minimization of SDTDs

In strong contrast to ranked trees, there are unranked regular tree languages
for which there is no unique minimal deterministic bottom-up tree automaton.
Moreover, minimization can not be obtained by the standard translation to
the ranked case. Using the characterizations of Section 3, we obtain that when
content models are represented by DFAs rather than by regular expressions,
every restrained competition SDTD can be minimized in polynomial time and
this minimal SDTD is unique up to isomorphism.

Theorem 16. Every restrained competition (single-type) SDTD can be mini-
mized in ptime. This minimal SDTD is unique up to isomorphism.

6 Subtree Based Schemas

From what was presented so far an obvious question arises. What happens if
we soften the requirement that the type of an element has to be determined
when its opening tag is visited? What if instead it has to be computed when the
closing tag is seen? It turns out that every regular tree language has a SDTD
which allows such 1-pass postorder typing. Furthermore, the SDTDs used for this
purpose can be defined as straightforward extensions of restrained competition
SDTDs.

Definition 17. An SDTD d = (Σ,Σ′, d, μ) is extended restrained competition
iff for every regular expression r occurring in a rule the following holds: whenever
there are two strings waiv and wajv′ in L(r) with i �= j, then L((d, ai)) ∩
L((d, aj)) is empty.

For a tree t and a node v we denote by preceding-subtreet(v) the tree resulting
from t by removing all right siblings of v and its ancestors together with the
respective subtrees (cf. Figure 3).

Definition 18. We say that a specialized SDTD d = (Σ,Σ′, d, μ) has preceding-
subtree based types if there is a (partial) function f : TΣ × Dom → Σ′ such
that, for each tree t ∈ L(d) the following holds: (1) there is a unique tree
t′ ∈ L(d) with μ(t′) = t, and (2) for each node v ∈ Dom(t), the label of v in t′

is f(preceding-subtreet(v), v).

Stated in terms of XML documents, the type of an element depends on the
prefix of the document which ends with the closing tag of the element. The
following result shows that all regular tree languages admit 1-pass postorder
typing. We assume that all the trees in language T have the same root label.

80 W. Martens, F. Neven, and T. Schwentick

Theorem 19. For a tree language T the following are equivalent:

(a) T is definable by an extended restrained competition SDTD;
(b) T is definable by an SDTD with preceding-subtree-based types;
(c) T is regular.

Proof sketch. The directions (a) ⇒ (c) and (b) ⇒ (c) are trivial. The proof of
the opposite directions uses the fact that regular languages can be validated by
deterministic bottom-up automata. ��

In the SDTD used in the proof the type of each element actually only depends
on its subtree. This should be compared with the previous characterizations
where the type depended on the upper context. These issues are further discussed
in Section 7.

Note that not every SDTD is extended restrained competition. The SDTD
d defined by r → (a1 + a2), a1 → b + c + ε, and a2 → c + d + ε is not extended
restrained competition, as {ε, c} ⊆ L((d, a1)) ∩ L((d, a2)).

We conclude by noting that extended restrained competition is a tractable
notion.

Theorem 20. It is decidable in ptime for an SDTD d whether it is extended
restrained competition.

7 Conclusion

The results of this paper show that its initial question has a simple answer.
The regular tree languages which admit 1-pass preorder typing are exactly those
which can be described by a restrained competition SDTD.

From the proof of Theorem 12 (c) ⇒ (a) it further follows that for each such
language a very simple and efficient typing algorithm exists. It is basically a
deterministic pushdown automaton with a stack the height of which is bounded
by the depth of the document. For each opening tag it pushes one symbol, for
each closing tag it pops one. Hence, it only needs a constant number of steps per
input symbol. In particular, it works in linear time in the size of the document.
It should be noted that such automata have been studied in [18] and [9] in the
context of streaming XML documents. The subclass of the context-free languages
accepted by such automata has recently been studied in [1].

Further, the paper shows that restrained competition SDTDs can be effi-
ciently recognized (in nlogspace but also in quadratic time) and that from an
SDTD without the restrained competition property an equivalent one with the
property can effectively (though not efficiently, in general) be constructed if it
exists at all.

The 1-pass preorder typing constraint can be seen as a generalization of the
determinism constraint on content models of DTDs (Appendix E in [4]) to XSDs.
In the case of DTDs, the meaning of a tag is determined by the position in the
matching regular expression. The determinism constraint then specifies that this
meaning should be computed independent of the tags occurring to the right of

Which XML Schemas Admit 1-Pass Preorder Typing? 81

the current tag. Similarly, in the context of XML Schema, the meaning of a tag
corresponds to its type and should be computed independent of the remainder
of the nodes.

Brüggemann-Klein and Wood gave a clean formalization for the concept of
determinism needed for DTDs in terms of 1-unambiguous regular expressions [3].
Intuitively, a regular expression is 1-unambiguous if, when processing the input
from left to right, it is always determined which symbol in the expression matches
the next input symbol. Just as Brüggemann-Klein and Wood contributed to the
formal underpinnings of DTDs, our characterization contributes to the founda-
tion of XML Schema by providing a complete notion for 1-pass preorder typeable
schemas.

How do these results relate to existing standards? The XML Schema specifi-
cation requires XSDs to be single-type (end of Section 4.5 in [6] and the Element
Declarations Consistent constraint in Section 3.8.6 in [7]) and regular expressions
(after dropping the superscripts describing the types) to be deterministic or 1-
unambiguous [3] (cf. Section 3.8.6 of [7], Unique Particle Attribution). Although
such schemas are always restrained competition, it is easy to prove that they
do not capture the complete class of 1-pass preorder typeable schemas. Indeed,
from a 1-ambiguous regular language a restrained competition expression can be
easily constructed by giving to each symbol the same superscript. The results in
the present paper, therefore, indicate that replacing the Element Declarations
Consistent and Unique Particle Attribution constraints by the single requirement
that regular expressions are restrained competition allows for a larger expressive
power without (essential) loss in efficiency. Indeed, for both classes, validation
and typing is possible in linear time, allowed schemas can still be recognized in
quadratic time and an allowed schema can be constructed in exponential time,
if one exists [3]. The latter would also eliminate the heavily debated restriction
to 1-unambiguous regular expressions (cf., e.g., pg 98 of [23] and [10, 20]).

On the negative side, both 1-unambiguous expressions and restrained compe-
tition expressions lack a comprehensive syntactical counterpart. Whether such
an equivalent syntactical restriction exists remains open. It would also be inter-
esting to find syntactic restrictions which imply an efficient construction of an
equivalent restrained competition SDTD.

We already mentioned that Murata, Lee, and Mani showed that DTD �⊆
SDTDst �⊆ SDTDrc �⊆ SDTD. They exhibited concrete tree languages that are
in one class but not in the other. Our semantical characterizations provide a
toolbox to show inexpressibility for arbitrary tree languages. For instance, using
the closure of restrained-competition SDTDs under ancestor-guarded subtree
exchange, it is immediate that SDTDrc cannot define the set of all Boolean
tree-shaped circuits evaluating to true.

Acknowledgments

We thank Geert Jan Bex, Christoph Koch, Nicole Schweikardt, Luc Segoufin
and Stijn Vansummeren for helpful discussions.

82 W. Martens, F. Neven, and T. Schwentick

References

1. R. Alur and P. Madhusudan. Visibly pushdown languages. In STOC 2004, pages
202-211, 2004.

2. A. Brüggemann-Klein, M. Murata, and D. Wood. Regular tree and regular hedge
languages over unranked alphabets: Version 1, april 3, 2001. Technical Report
HKUST-TCSC-2001-0, The Hongkong University of Science and Technology, 2001.

3. A. Brüggemann-Klein and D. Wood. One-unambiguous regular languages. Infor-
mation and Computation, 142(2):182–206, 1998.

4. World Wide Web Consortium. Extensible Markup Language (XML).
http://www.w3.org/XML.

5. World Wide Web Consortium. XML Schema. http://www.w3.org/XML/Schema.
6. World Wide Web Consortium. XML Schema Part 0: Primer.

http://www.w3.org/TR/xmlschema-0/.
7. World Wide Web Consortium. XML Schema Part 1: Structures.

http://www.w3.org/TR/xmlschema-1/.
8. H. Hosoya and B. C. Pierce. XDuce: A statically typed XML processing language.

ACM Transactions on Internet Technology (TOIT), 3(2):117–148, 2003.
9. C. Koch and S. Scherzinger. Attribute grammars for scalable query processing on

XML streams. In DBPL, pages 233–256, 2003.
10. M. Mani. Keeping chess alive - Do we need 1-unambiguous content models? In

Extreme Markup Languages, Montreal, Canada, 2001.
11. W. Martens and F. Neven. Typechecking top-down uniform unranked tree trans-

ducers. In ICDT 2003, pages 64–78, 2003.
12. W. Martens and F. Neven. Frontiers of tractability for typechecking simple XML

transformations. In PODS 2004, pages 23–34, 2004.
13. W. Martens, F. Neven, and T. Schwentick. Complexity of decision problems for

simple regular expressions. In MFCS 2004, pages 889–900, 2004.
14. M. Murata, D. Lee, and M. Mani. Taxonomy of XML schema languages using

formal language theory. In Extreme Markup Languages, Montreal, Canada, 2001.
15. F. Neven. Automata, logic, and XML. In CSL 2002, pages 2–26. Springer, 2002.
16. Y. Papakonstantinou and V. Vianu. DTD inference for views of XML data. In

PODS 2000, pages 35–46. ACM Press, 2000.
17. Y. Papakonstantinou and V. Vianu. Incremental validation of XML documents.

In ICDT 2003, pages 47–63. Springer, 2003.
18. L. Segoufin and V. Vianu. Validating streaming XML documents. In PODS 2002,

pages 53–64. ACM Press, 2002.
19. H. Seidl. Deciding equivalence of finite tree automata. SIAM Journal on Comput-

ing, 19(3):424–437, 1990.
20. C. M. Sperberg-McQueen. XML Schema 1.0: A language for document grammars.

In XML 2003 - Conference Proceedings, 2003.
21. L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time:

Preliminary report. In STOC 1973, pages 1–9, 1973.
22. D. Suciu. Typechecking for semistructured data. In DBPL 2001, 2001.
23. E. van der Vlist. XML Schema. O’Reilly, 2002.
24. E. van der Vlist. Relax NG. O’Reilly, 2003.

The Pipelined Set Cover Problem

Kamesh Munagala1,�, Shivnath Babu2,��, Rajeev Motwani2,� � �,
and Jennifer Widom2,†

1 Computer Science Department, Duke University
kamesh@cs.duke.edu

2 Computer Science Department, Stanford University
{shivnath, rajeev, widom}@cs.stanford.edu

Abstract. A classical problem in query optimization is to find the op-
timal ordering of a set of possibly correlated selections. We provide an
abstraction of this problem as a generalization of set cover called pipelined
set cover, where the sets are applied sequentially to the elements to be
covered and the elements covered at each stage are discarded. We show
that several natural heuristics for this NP-hard problem, such as the
greedy set-cover heuristic and a local-search heuristic, can be analyzed
using a linear-programming framework. These heuristics lead to efficient
algorithms for pipelined set cover that can be applied to order possibly
correlated selections in conventional database systems as well as data-
stream processing systems. We use our linear-programming framework to
show that the greedy and local-search algorithms are 4-approximations
for pipelined set cover. We extend our analysis to minimize the lp-norm
of the costs paid by the sets, where p ≥ 2 is an integer, to examine the
improvement in performance when the total cost has increasing contri-
bution from initial sets in the pipeline. Finally, we consider the online
version of pipelined set cover and present a competitive algorithm with
a logarithmic performance guarantee. Our analysis framework may be
applicable to other problems in query optimization where it is important
to account for correlations.

1 Motivation

A common operation in database query processing is to find the subset of records
in a relation that satisfy a given set of selection conditions. To execute this
operation efficiently, a query processor prefers to determine the optimal order in
which to evaluate the individual selection conditions, so we call this operation
pipelined filters [2, 4, 12, 18]. Optimality in pipelined filters is usually with respect
to minimizing the total processing time [4, 12].

� Part of this work was done while the author was at Stanford University supported
by NIH 1HFZ465.

�� Supported by NSF under grants IIS-0118173 and IIS-9817799.
� � � Supported in part by NSF Grants IIS-0118173 and EIA-0137761, NSF ITR Award

Number 0331640, and grants from Microsoft and Veritas.
† Supported by NSF under grants IIS-0118173 and IIS-9817799.

T. Eiter and L. Libkin (Eds.): ICDT 2005, LNCS 3363, pp. 83–98, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

84 K. Munagala et al.

For example, consider a relation packets, where each record contains the
header and an initial part of the payload of network packets logged by a network
router. Suppose a query needs to compute the subset of packets where each
record r in the result satisfies the following three conditions:

1. p1: destPort = 80, where destPort is the destination port field of r.
2. p2: domain(destAddr) = “yahoo.com”, where destAddr is the destination

address field of r, and domain is a function that returns the Internet domain
name of an address passed as input.

3. p3: The payload of r contains the regular expression “ˆ[ˆ\\n]∗HTTP/1.∗” [9].

A query processor might use three selection operators on packets, denoted
Op1 , Op2 , and Op3 , to evaluate these three conditions respectively. In this case
the query processor might choose to apply Op1 first on each record in packets
so that Op2 and Op3 need only process records that are selected by Op1 . Since
both Op2 and Op3 involve complex functions, applying either of them before Op1

could increase the total processing time by orders of magnitude. Further, the
query processor may choose to process Op2 before Op3 , since packets selected by
Op1 are also likely to be selected by Op3 . As this example shows, it is important
to choose a good, if not the optimal, order for applying the selection operators
on the records of the input relation. Also note that both the expected fraction of
records selected (the selectivity) and the record-processing time of each selection
operator must be taken into account.

Suppose the selection conditions are independent; that is, the selectivity s
of any operator O among the records that O processes is independent of the
operators that appear before O in the order. Under this assumption, computing
the order that minimizes total processing time is easy: We simply order the
operators in nonincreasing ratio of 1 − s and the record-processing time. Most
previous work on the selection-ordering problem and on related problems make
the independence assumption and use this ordering technique [4, 12, 18, 23].

The independence assumption reduces the complexity of finding the optimal
order, but it is often violated in practice [6, 25]. It can be shown that when the
independence assumption does not hold, the total processing time can be O(n)
times worse than optimal when n operators are ordered in nonincreasing ratio
of 1− s and the record-processing time. Without the independence assumption,
the problem is NP-hard. Previous work [17, 22, 23] on ordering of dependent
(correlated) operators either uses exhaustive search—which requires selectivity
estimates for an exponentially large number of operator subsequences—or pro-
poses simple heuristics with no provable performance guarantees for the solution
obtained. As databases are being extended to manage complex data types such
as multimedia and XML, the use of expensive selection conditions are becom-
ing frequent, making the problem of ordering dependent selections even more
important [4, 12]. The pipelined filters problem also captures restricted types of
relational joins and combinations of joins and selections; see [2].

Pipelined filters can be formulated as a generalization of the classical set cover
problem [13, 15]: The relation represents the elements to be covered, and each
selection operator is a set which drops (or covers) a certain number of records

The Pipelined Set Cover Problem 85

(or elements). The sets are applied sequentially to the elements to be covered,
with each set removing the elements that it covers from further processing; the
cost of applying a set depends linearly on the number of elements that are still
not covered when the set is applied. The solution desired is an ordering of the
sets that minimizes the total cost of applying the sets sequentially. We call this
problem pipelined set cover, the key difference with classical set cover being
the cost function. The mapping from pipelined filters to pipelined set cover is
straightforward: the operators map to the sets, and the operator ordering, or
pipeline, maps to the ordering of the sets.

2 Our Contribution

Pipelined set cover has been considered previously in a non-database context by
Feige et al. [11] and by Cohen and Kaplan [7]. They show that the uniform cost
version of this problem is MAX-SNP hard and develop a greedy 4-approximation
algorithm for the uniform cost version. In addition to showing the application
of pipelined set cover to classical optimization problems in database and data-
stream processing, we extend previous work significantly in this paper, as follows.

2.1 Approximation Algorithms for Pipelined Set Cover

We provide two approximation algorithms for pipelined set cover, one based on
the greedy heuristic for classical set cover and another based on an intuitive
local-search heuristic. (In separate work we have implemented both algorithms
efficiently in a data-stream processing system [2].) Using a different and more
general analysis technique from previous work, we show that both these algo-
rithms are 4-approximations, even when the linear cost function depends on the
set. This relatively new analysis technique is based on formulating the worst-
case performance of the algorithms as linear programs. (This technique was first
used by Jain, Mahdian, and Saberi to analyze the performance of a dual-fitting
algorithm for facility location [14].) This technique has several advantages. In
addition to bounding the approximation ratio, the linear program can be used
to analyze running time, e.g., the rate of convergence of the local search heuris-
tic. The linear program gives new insights about the approximation algorithms,
with strong implications for query optimization: The bound on approximation
depends on the number of sets (operators) n; for n ≤ 20, this bound ≤ 2.35. Fur-
thermore, this technique can be used to analyze other algorithms for pipelined
set cover, including a simple move-to-front algorithm which can be implemented
very efficiently.

We can view our problem as minimizing the l1-norm of the vector of the
number of elements processed (or the cost paid) by each set. The classical set
cover problem can be viewed as minimizing the l0-norm1—it gives a cost to

1 Of course, technically speaking, there is no such norm. However, we can adopt
the view that the set cover objective function is minimizing a Hamming measure,
which is sometimes treated as a substitute for the l0-norm [8].

86 K. Munagala et al.

any set that is independent of the number of elements it processes, so long as
that set processes at least one element. For set cover, the performance of the
greedy algorithm is logarithmic [13, 15, 24], and this approximation factor is op-
timal [10], assuming P �= NP. The approximation ratio improves to 4 for our
l1-norm formulation, where the cost of each set is weighted by the number of
elements it processes. A natural question to ask is what happens to the approx-
imation ratio when the goal is to minimize the lp-norm of the costs paid by the
sets, for integers p ≥ 2. As p increases, this formulation gives increasing weight
to sets at the start of the pipeline that process more elements. The intuition is
that the performance of the greedy algorithm should improve with increasing
p, and it should reach the optimal solution when we are minimizing the l∞-
norm. Since the objective function is nonlinear, linear programming techniques
fail to apply. We develop a Lagrangian-relaxation analysis technique for p ≥ 2
to show that the approximation ratio of the greedy algorithm is 9

1
p when the

processing costs are uniform (independent of the set), and that local search is a
4

1
p -approximation when the processing costs are nonuniform. The improvement

in performance of greedy confirms the intuition that as we skew the total cost in
favor of the initial sets chosen, greedy’s performance should improve for uniform
processing costs.

2.2 Online Pipelined Set Cover

Our original motivation for defining and analyzing pipelined set cover came from
our work on processing pipelined filters in a data-stream query processor [2]. A
stream, as opposed to a relation, is a continuous unbounded flow of records arriv-
ing at a stream-processing system [1]. Example streams include network packets,
stock tickers, and sensor observations. Pipelined filters are common in stream
processing, e.g., packets may be a stream in our example query introduced at
the beginning of this section. Another common example of pipelined filters in
stream processing is a join of a stream S with a set of relations R1, R2, . . . , Rk:
For each record s arriving in S, we need to find R

′
i ⊆ Ri, 1 ≤ i ≤ k, such

that each record ri ∈ R
′
i satisfies ri.A = s.A where A is a field that is common

among S,R1, R2, . . . , Rk. (We have defined a restricted version of the problem
for succinctness [2].) The join output for s is the set of concatenated records
s ·r1 ·r2 · · · rk for each combination of r1 ∈ R

′
1, r2 ∈ R

′
2, . . . , rk ∈ R

′
k. If any of

the R
′
i’s are empty, then s produces no join output and we say that s is dropped.

For processing the join efficiently, we must order R1, R2, . . . , Rk for computing
R

′
1, R

′
2, . . . , R

′
k such that records in S that get dropped eventually consume min-

imal processing time. Note that the processing required for records that are not
dropped is independent of the ordering.

Pipelined filters over data streams motivate the online version of pipelined
set cover. In online pipelined set cover, some number of elements arrive at each
time step. Our online algorithm has to choose an ordering of the sets in advance
at every time step, and process the incoming elements according to this ordering.
The performance of our online algorithm is compared against the performance
of the best possible offline algorithm that does not change its ordering for the

The Pipelined Set Cover Problem 87

entire course of the request sequence. For online pipelined set cover, we present an
O(logn) competitive algorithm for the uniform cost case, where n is the number
of sets. This algorithm can be extended to an O(logn + log cmax

cmin
) competitive

algorithm for the nonuniform cost case, where cmax is the largest per-element
processing cost among all sets, and cmin is the smallest such cost.

2.3 Implementation

In a companion paper [2], we describe our implementation of some of the approx-
imation algorithms for pipelined set cover proposed in this paper for optimizing
pipelined filters in a Data Stream Management System [20]. We propose and
evaluate techniques to compute selectivity estimates of operator subsequences
needed by our approximation algorithms with minimal overhead, as part of query
processing itself. While previous work [22, 23] on provably good algorithms for
dependent pipelined filters required selectivity estimates for an exponentially
large number of operator subsequences, our algorithms require only O(n2) esti-
mates. (In a conventional database setting, a sample of records from the input
relation can be used to estimate these selectivities with low overhead [3, 19].)
Furthermore, because data and arrival characteristics of streams can change
over time, in [2] we introduce adaptive versions of the algorithms that modify
orderings as statistics change, converging on the static solution when statistics
do not change. The need to adapt forces us to optimize the pipeline continu-
ously, which motivates the low-overhead heuristics we consider such as greedy
and local search.

2.4 Organization

The rest of the paper is organized as follows:

– Section 3 presents the formal problem statement. In Section 4, we introduce
and use our linear-programming framework to analyze the greedy set cover
algorithm applied to pipelined set cover.

– We move on to local search heuristics in Section 5, showing that our analysis
technique carries over to this case, leading to bounds not only on the approx-
imation ratio, but also on the rate of convergence. In the full version [21] we
describe simpler implementations of the local search algorithm using limited
amount of state, and analyze the resulting performance degradation.

– In Section 6, we present a Lagrangian-relaxation method for analyzing the
performance of the greedy and local search algorithms when we optimize
the lp-norm of the cost paid by the sets. The detailed analysis of the local
search heuristic, showing that it is a 4

1
p -approximation, is relegated to the

full version [21].
– We finally present the online algorithm and its analysis in Section 7.

We omit a separate section on related work because of space constraints.
However, related work is referenced appropriately in all sections in the paper.

88 K. Munagala et al.

3 Preliminaries

We are given a set cover instance with n elements denoted U = {e1, e2, . . . , en},
and a collection of sets A = {S1, S2, . . . , Sk}. Set Si has a processing cost per
unit element of ci. Let π(A) denote the set of all possible orderings (permuta-
tions) of the sets S1, S2, . . . , Sk. The goal is to choose an ordering of the sets,
(Sp1 , Sp2 , . . . , Spk

) ∈ π(A) , so as to minimize the pipelined cost:
k∑

i=1

cpi
|U − ∪i−1

j=1Spj
|

This cost reflects the cost of a sequence of selection operations in a relational
schema, and the goal is to find the optimal such sequence of operations. If the
ci’s are equal, we call the instance uniform. Note that in this formulation, each
element can have a weight associated with it, so that the size of a set is simply
the sum of the weights of the elements. We call this problem the Pipelined Set
Cover problem. Feige et al [11] show that this problem does not admit to better
than a 4 approximation unless P = NP .

4 Greedy Algorithm

We now analyze the greedy set cover algorithm for this problem. At step i,
let n denote the total number (weight) of uncovered elements. Let nj be the
number (respectively weight) of uncovered elements that get covered by set j.
We choose the set that minimizes the cost ratio cjn

nj
. The uniform cost version

of this algorithm was analyzed in [11] and in [7]. We provide a different analysis
that handles nonuniform costs which are important in databases since different
operators in a pipeline can have different costs.

We can formulate the worst-case performance of greedy as a linear program.
Consider any optimal solution whose sets are pipelined {O1, O2, . . . , Ok}. Sup-
pose we scale down the problem size by scaling down the weights of the elements
so that the pipelined cost of the optimal solution is 1. Without loss of generality,
assume that the sets in the optimal solution are disjoint, else Oi denotes the
residual part of the set after the application of O1, . . . , Oi−1. We denote |Oi| by
ai, and the processing cost of Oi by coi. The cost of the optimal solution is:

OPT =
k∑

i=1

(
ai ·

i∑
s=1

cos

)

Let us denote the sets chosen by greedy as {G1, G2, . . . , Gk}. Again, assume
without loss of generality that they are disjoint, else Gi denotes the residual
part of the set after application of G1, . . . , Gi−1. Let bij = |Oi ∩ Gj |, so that
ai =

∑k
j=1 bij . Let the processing cost of Gj be cgj . The cost of greedy is:

GREEDY =
k∑

j=1

(
j∑

r=1

cgr ·
k∑

s=1

bsj

)

The Pipelined Set Cover Problem 89

Since greedy maximizes the weight of uncovered elements at each time, we
have for every stage j of greedy and every set Oi of OPT, the cost ratio of the
residual part of Oi after j − 1 stages of greedy must be at least the cost ratio of
Gj . This gives us: ∑k

s=1 bsj

cgj
≥
∑k

r=j bir

coi

We can now formulate the worst possible approximation ratio that greedy
can achieve as the following linear program:

maximize
k∑

j=1

(
j∑

r=1

cgr ·
k∑

s=1

bsj

)
, subject to:

∑k
i=1(
∑i

s=1 cos ·
∑k

r=1 bir) ≤ 1
cgj ·
∑k

r=j bir ≤ coi ·
∑k

s=1 bsj ∀i, j
bij ≥ 0 ∀i, j

For all the processing costs being uniform, we can compute the precise worst-
case ratios. For k = 20, the worst-case ratio is 2.35. For k = 100, this climbs to
2.61, and for k = 200, this is around 2.80.

The upper bound on this approximation ratio for any possible value of the
processing costs would be an upper bound on the worst-case performance of the
greedy algorithm. For this purpose, we take the dual of this linear program:

minimize γ, subject to:

γ
∑i

s=1 cos +
∑j

r=1 αircgr ≥
∑k

s=1 αsjcos +
∑j

r=1 cgr ∀i, j
αij ≥ 0 ∀i, j

By linear programming duality, for any choice of the processing costs, the
objective function value for any feasible solution for the dual problem would
be an upper bound on the optimal solution to the primal problem for those
processing costs. The maximum of this value over all possible choices of the
processing costs would therefore be a bound on the worst-case approximation
ratio for the greedy algorithm.

Fix a choice of the processing costs. We show that there is a feasible solution
to the dual with γ = 4. Let Pi =

∑i
s=1 cos and Qj =

∑j
r=1 cgr. We set αij = 2

if Pi ≤ Qj

2 and 0 otherwise. For any i, j, if Pi ≤ Qj

2 , then
∑j

r=1 αircgr ≥ 2(Qj −
2Pi) = 2Qj−4Pi. This implies 4

∑i
s=1 cos +

∑j
r=1 αir ≥ 4Pi +2Qj−4Pi = 2Qj .

In the other case, if Pi >
Qj

2 , then
∑j

r=1 αircgr = 0, implying 4
∑i

s=1 cos +∑j
s=1 αis = 4Pi ≥ 2Qj . We also have for all j,

∑k
s=1 αsjcos ≤ 2Qj

2 = Qj ,
implying

∑j
r=1 cgr +

∑k
s=1 αsjcos ≤ 2Qj . We have for all i, j:

4
i∑

s=1

cos +
j∑

r=1

αircgr ≥
k∑

s=1

αsjcos +
j∑

r=1

cgr

90 K. Munagala et al.

Our choice of αij forms a feasible solution for the dual with an objective
value of γ = 4 for every choice of values for the processing costs. Therefore, the
greedy algorithm always has an approximation ratio of at most 4.

Theorem 1. The greedy algorithm is a 4-approximation to the pipelined set
cover problem.

4.1 Approximate Greedy Algorithm

At every step, suppose the greedy algorithm does not pick the best set, but any
set that covers a fraction σ ≤ 1 times as many elements covered by the best
possible set (for the case with uniform processing costs). We can express the
worst case of this algorithm as a similar linear program, and derive an approxi-
mation ratio of 4

σ . The argument generalizes naturally to the case with arbitrary
processing costs and yields the same approximation ratio. The parameter σ was
useful in our implementation [2] to avoid pipeline thrashing: we do not want to
change the current ordering unless we detect a set (operator) that covers a sig-
nificant fraction more of the elements at some earlier stage in the pipeline than
the current set (operator) at that position.

5 Local Search

We will now analyze the following local search heuristic: We start with an arbi-
trary complete pipeline. We insert a set into the pipeline (in other words, move
it up the pipeline) if it improves the cost of the solution. We repeat till no insert
operation improves the cost of the solution. As before, we denote the residual
part of the ith set in the optimal solution by Oi, and the residual part of the jth

set in the current solution by Lj .
Let the processing cost of set Oi be coi and the cost of set Lj be clj . Let

Qj =
∑j

r=1 clr and Pi =
∑i

s=1 cos. Define Q0 = 0.
We will show that local search is a (4 + ε)-approximation. As before, we can

formulate the problem as a linear program. The constraint to enforce is that
inserting Oi at position j does not help the current solution:

k∑
r=1

(
Qr

k∑
s=1

bsr

)
≤

j−1∑
r=1

(
Qr

k∑
s=1

bsr

)
+

k∑
r=j

⎛
⎜⎝(coi + Qj−1)bir + (coi + Qr)

k∑
s=1
s �=i

bsr

⎞
⎟⎠

This simplifies to:
k∑

r=j

(Qr −Qj−1)bir ≤ coi

k∑
r=j

k∑
s=1

bsr

We can now write the linear program as:

maximize
k∑

j=1

(
Qj

k∑
i=1

bij

)

The Pipelined Set Cover Problem 91

subject to:

∑k
r=j(Qr −Qj−1)bir ≤ coi

∑k
r=j

∑k
s=1 bsr ∀i, j∑k

i=1(Pi

∑k
j=1 bij) ≤ 1

bij ≥ 0 ∀i, j

We now take the dual of this program:

minimize γ

subject to:

γPi +
∑j

r=1(Qj −Qr−1)αir ≥ Qj +
∑j

r=1
∑k

s=1 αsrcos ∀i, j
αij , γ ≥ 0 ∀i, j

For every i, let z(i) denote the first value j such that Qj ≥ 2Pi. We set
αiz(i) = 2. For every other j, we set αij = 0. Therefore,

∑j
r=1(Qj −Qr−1)αir ≥

2(Qj − 2Pi) for all j. In addition,
∑j

r=1
∑k

s=1 αsrcos ≤ Qj for all j. Therefore,
γ = 4 is feasible for the dual.

5.1 Convergence Analysis

We now examine the number of iterations required by local search. Suppose the
current solution is an M -approximation to the optimal solution. We will compute
the smallest amount by which the approximation factor improves with the best
possible local move. This can be formulated as the following linear program (note
that M is not a variable):

minimize A

subject to:

∑k
r=j(Qr −Qj−1)bir ≤ A + coi

∑k
r=j

∑k
s=1 bsr ∀i, j∑k

j=1(
∑k

j=1 Qj

∑k
i=1 bij) ≥M∑k

i=1(Pi

∑k
j=1 bij) ≤ 1

bij ≥ 0 ∀i, j

We take the dual as before, and set αiz(i) = 1
k . This yields a dual value of

M−4
2k . Therefore, the reduction in approximation ratio is M−4

2k .
Fix any ε > 0. Suppose we stop when we achieve an approximation ratio of

(4 + ε). It is easy to start with a solution of cost at most nk · OPT . Therefore,
the number of iterations is at most 2k log nk

ε . We have therefore shown:

Theorem 2. The local search heuristic produces a (4 + ε)-approximation in
O(k log nk

ε) operations.

We provide simpler implementations of the local search algorithm using lim-
ited amount of state, and show the degradation in performance in the full version.

92 K. Munagala et al.

6 Extensions to Higher lp Norms

Consider the problem of finding a pipeline St1 , St2 , . . . , Stk
which minimizes the

lp-norm (p ≥ 1):

(
k∑

i=1

(cti
|U − ∪i−1

j=1Stj
|)p

) 1
p

We will analyze the greedy and local search algorithms for this cost function.
Note that the greedy algorithm gives a O(logn)-approximation for classical set
cover which be viewed as seeking to minimize an l0-norm (see Footnote 1), as the
cost of a set is independent of the number of elements it processes, as long as it is
nonzero. When p = 1, the cost of a set is weighted by the number of elements it
processes (so that initial sets in the ordering are more important), and this ratio
goes down to 4. Clearly, the greedy algorithm could have an approximation ratio
as bad as cmax

cmin
for the l∞-norm, as the cost of the first set chosen dominates.

We will consider the uniform case where ci = 1 for all i, and show that for
integers p ≥ 2 the approximation ratio for the greedy algorithm is at most 9

1
p ,

using a Lagrangian-relaxation analysis. This proves the intuitive claim that the
performance of the greedy algorithm improves as we skew the objective function
more and more in favor of the initial sets in the ordering. The analysis can be
tightened by a better choice of constants; our only goal here is to show that the
performance ratio improves dramatically with increasing p. We leave the problem
of computing the approximation ratio for arbitrary monotone cost functions as
an interesting open problem.

We will analyze the local search heuristic in the full version and show that
it is a 4

1
p -approximation minimizing the lp-norm for the nonuniform case when

p ≥ 1 is an integer.
Consider the objective function of the form

∑k
i=1 |U − ∪

i−1
j=1Stj

|p. For this
case, the worst-case performance of greedy can be formulated as a nonlinear
program:

maximize
k∑

j=1

⎛
⎝ k∑

i=1

k∑
r=j

bir

⎞
⎠

p

subject to: ∑k
i=1(
∑k

s=i

∑k
r=1 bsr)p = 1∑k

r=j bir ≤
∑k

s=1 bsj ∀i, j
bij ≥ 0 ∀i, j

We now write the Lagrangian relaxation of this formulation, using nonnega-
tive αij and γ:

k∑
j=1

⎛
⎝ k∑

i=1

k∑
r=j

bir

⎞
⎠

p

+ γ

(
1−

k∑
i=1

(
k∑

s=i

k∑
r=1

bsr

)p)
+
∑
i,j

αij

⎛
⎝ k∑

s=1

bsj −
k∑

r=j

bir

⎞
⎠

The Pipelined Set Cover Problem 93

Given any setting of the bij , we will find a setting for the αij and γ so that the
Lagrangian is at most 9. We will use a simple method for setting the variables –
we will ensure that the coefficients for all the bij variables in the Lagrangian are
negative or zero. If this were true for γ = 9, we would be able to easily establish
a 9-approximation. Let Lij =

∑k
r=j+1

∑k
s=i bsr. We set αij = 3pLp−1

ij if i ≤ j
3 ,

and 0 otherwise.
We will now compute the coefficient of a general term of the form bp1

i1j1
bp2
i2j2

. . .
bpt

itjt
, where p1+p2+. . .+pt = p. Let i = min(i1, i2, . . . , it) and j = min(j1, j2, . . . ,

jt). Let bimi
and bmjj be the relevant terms. The relevant nonzero terms are

present in the following sum; note that there are more terms, but these would
make the sum only smaller.

k∑
j=1

⎛
⎝ k∑

i=1

k∑
r=j

bir

⎞
⎠

p

− γ

(
k∑

i=1

(
k∑

s=i

k∑
r=1

bsr

)p)
−

j∑
r=1

αirbimi
+

k∑
s=1

αsjbmjj

Let H = p!
p1!p2!···pt!

. The coefficient from the first two terms in the summation
is H(j − 9i). Let n(j) denote the sum of the exponents of the terms in the
product bp1

i1j1
bp2
i2j2

. . . bpt

itjt
of the form bsj . The coefficient of the product depends

on whether nj = 1 or not. Let n(i) ≥ 1 denote the total power of terms in the
product of the form bir. We consider four cases:

Case 1: If n(j) = 1 and i ≤ j/3, the coefficient is: −3H × n(i)×max(j − 3i−
1, 0) + 3H × j

3 ≤ H(9i− 2j + 3) ≤ H(9i− j), as j ≥ 3 in this case.
Case 2: If n(j) = 1 and i > j/3, the coefficient is: 3H× j

3 ≤ H(3i) ≤ H(9i−j).
Case 3: If n(j) > 1 and i ≤ j/3, the coefficient is: −3H × n(i)×max(j − 3i−

1, 0) ≤ H(9i + 3− 3j) ≤ H(9i− j) since j ≥ 3 for this case.
Case 4: If n(j) > 1 and i > j/3, the coefficient is 0 ≤ H(9i− j).

Therefore, in all cases, the net coefficient of bp1
i1j1

bp2
i2j2

. . . bpt

itjt
is negative or

zero, showing that the primal problem has objective value at most 9. We have
therefore proved the following theorem:

Theorem 3. The greedy algorithm is a 9
1
p -approximation for minimizing the

lp-norm (for integer p ≥ 1) of the costs in the uniform cost model.

7 Online Problem

We now consider the pipelined set cover problem in the online setting which arises
in data-stream processing [1]. At each time step, the algorithm is presented with
a collection of elements. The algorithm has to choose an ordering of the sets
without knowledge of these newly-arriving elements, and use this ordering to
process the elements. The goal is to be competitive against the best possible
algorithm that does not change its ordering for the entire request sequence.

We will begin by assuming that the incoming elements are chosen from a do-
main containing a relatively small number of distinct elements {e1, e2, . . . , ed}.

94 K. Munagala et al.

This assumption will be dropped in Section 7.3. Each element ei ∈ {e1, e2, . . . , ed}
is dropped by zero or more sets, not dropped by the others, and this behavior
does not change over time. In the rest of this section, we will use the phrase
“count of elements till time t” to refer to the vector {se1 , se2 , . . . , sed

} where sei

is the number of times the element ei has arrived till t time steps. “Count of
elements at time t” is defined similarly.

We give an O(logn) competitive algorithm for the uniform cost version of
online pipelined set cover, where n is the number of sets. Our algorithm uses a
technique introduced by Kalai and Vempala in [16]. (Our algorithm and proof ex-
tend to the case with arbitrary processing costs; we omit the discussion because
of space constraints.) The basic idea behind this technique is the observation
that if we knew the counts of the elements at time t in advance, then using the
optimal solution for the counts till time t to process the elements at time t, for
all t, gives the optimal solution for the online case. Since we do not know the
counts at time t in advance, we use the counts till time t − 1. To prevent the
adversary from being malicious, we add a large random value to these counts.
The first argument is that adding randomness does not affect the cost of the
solution too much, provided the randomness is “small”. The second argument
is that for any choice of the counts at time t, the expected cost of the solution
we pick will be good, since the distribution of the counts till t− 1 with random-
ness and till time t with randomness are almost identical, if the randomness is
sufficiently “large”. The analysis framework from [16] can be used to find the
optimal amount of randomness to add. The only catch is that for approximation
algorithms, this analysis works only for algorithms that provide a lower bound
on the cost of the optimal solution, and provide approximation guarantees on
the cost of processing every element against the fractional cost of processing the
same element. (The reason for this condition can be found in [16].) The greedy
and local search algorithms from Sections 4 and 5 respectively, do not provide
per element guarantees, so they cannot be used here.

As a first step, we need a technique to lower bound the optimal solution for
a certain set of counts. We do this by writing a linear program. Suppose the
count for element e is se. We have a variable xij which is set to 1 if set Si is
placed in position j. We also have a variable yej which is 1 if element e passes
through j stages of the pipeline. We have the following integer programming
constraints: ∑

j xij = 1 ∀ Si∑
i xij = 1 ∀ j
yej ≥ 1−

∑
j′≤j

∑
e∈Si

xij′ ∀ e, j

xij , yej ∈ {0, 1} ∀ Si, j, e

The optimal solution minimizes the objective function:

Objective Function =
∑
e,j

seyej

The Pipelined Set Cover Problem 95

7.1 Offline Solution

We first present an offline randomized rounding algorithm for the problem, and
then show how to convert it to an online algorithm. We solve the linear relaxation
of the integer program described above. For each position j, we pick 2 log n sets
independently at random, the probability of picking set Si at each trial being
equal to xij . We repeat this for every j. If a set gets picked more than once,
we place it at the earliest position at which it got picked. Note that we pick
2 logn sets for each position, which implies the solution is “stretched” by the
same factor. We therefore pay a cost of 2 log n per element (instead of unit cost)
for each position j.

Lemma 1. For any element e, let zej denote the indicator variable showing
element e “survived” until position j. If yej < 0.25, then:

Pr[zej = 1] ≤ 1
n1.5

Proof. An element survives if none of the sets containing it are picked at that or
the previous positions. We divide the picking of the sets into 3 logn independent
trials, in each of which we pick one set per position. Consider element e and
position j. For one of the trials, the probability that no set containing it was
picked is at most (1− 1−yej

j)j ≤ exp(yej−1). If this experiment is repeated 2 logn
times, the probability that no set was picked is at most exp(−2(1− yej) logn) ≤

1
n1.5 assuming yej < 0.25.

It is easy to bound the cost of the solution now. In expectation, if yej > 0.25,
we pay a cost of 2 log n for that stage with probability 1. Otherwise, we pay a
cost of 2 log n with probability 1

n1.5 . Since an element can pass through at most
n sets, the contribution to the expected cost from the second set of terms is
negligible. Therefore, we have a O(logn) approximation algorithm. Note that
the guarantee holds for the processing cost of every element versus its fractional
processing cost.

7.2 Online Solution

We convert this offline algorithm to an online algorithm exactly as in [16]. Let set

denote the count for element e given the input at time t. Let pet denote a number
chosen uniformly at random in [0,

√
t

δ], where δ is a function of the input [16].
Set Set :=

∑t−1
t′=0 set′ + pet. Note that we do not know set, and therefore can

only compute the sum till time t − 1. We find the solution using Set as the
counts in the above integer program, and use this solution at time t. Using the
same proof idea as in [16], it is easy to show that since this algorithm provides
a O(logn) approximation to the fractional cost of every element, it converges to
within O(logn) of optimal fixed offline solution with an additive error of O(

√
T)

at time T . In other words, in the limit as T → ∞, the cost of this algorithm
converges to within O(logn) of the cost of the optimal offline solution.

96 K. Munagala et al.

7.3 Incomplete Information Model

So far we assumed that the incoming elements are chosen from a small domain
so that we can keep track of the counts of the arrived elements. We now drop
this assumption and show that our algorithm from above can be used unchanged
in this case except now we use sampling-based estimates instead of the actual
counts of the elements. We sample the incoming elements with probability 1

n2 .
For each element e in the sample, we pass e through all n sets to categorize e
such that elements that are dropped by exactly the same sets belong to a specific
category. This sampling process gives us an estimate of the counts of elements till
time t. We use this estimate to find the optimal online solution for the remaining
elements using the algorithm described previously. The sampled elements, which
are processed by all the sets, usually add little extra overhead to the overall cost;
see [2]. Furthermore, by Chernoff bounds, if T � n, the estimates of the large
counts converge to the true values, and therefore, the error due to sampling is
negligible. Details are omitted for lack of space.

8 Conclusions and Future Work

We identified the relevance of pipelined set cover to query optimization and pre-
sented efficient approximation algorithms for this NP-Hard problem. We also
considered the online version of pipelined set cover and presented a competi-
tive algorithm with a logarithmic performance guarantee. An interesting open
problem is to incorporate precedence constraints on the sets that are required to
handle non-commutative operators. Natural extensions of the algorithms men-
tioned in this paper do not yield constant factor approximations to this variant.
While we focused on a single pipeline, an interesting avenue for future work is
to consider approximation algorithms for optimizing a set of pipelines, which,
e.g., is applicable in a publish-subscribe setting [5]. If the pipelines are optimized
independently in such a setting, e.g., using the greedy algorithm from Section 4,
then the resulting overall plan may be far from optimal because it misses op-
portunities for sharing computation using operator sequences that are common
among the pipelines.

Acknowledgments

We would like to thank Pankaj Agarwal, Arvind Arasu, Arpita Ghosh, Chandra
Nair, Serge Plotkin, and Jun Yang for helpful discussions.

References

1. B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues in
data stream systems. In Proc. of the 2002 ACM Symp. on Principles of Database
Systems, pages 1–16, June 2002.

The Pipelined Set Cover Problem 97

2. S. Babu, R. Motwani, K. Munagala, I. Nishizawa, and J. Widom. Adaptive ordering
of pipelined stream filters. In Proc. of the 2004 ACM SIGMOD Intl. Conf. on
Management of Data, 2004.

3. S. Chaudhuri, R. Motwani, and V. Narasayya. Random sampling for histogram
construction: How much is enough? In Proc. of the 1998 ACM SIGMOD Intl.
Conf. on Management of Data, pages 436–447, June 1998.

4. S. Chaudhuri and K. Shim. Optimization of queries with user-defined predicates.
ACM Transactions on Database Systems, 24(2):177–228, 1999.

5. J. Chen, D. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A scalable continuous
query system for internet databases. In Proc. of the 2000 ACM SIGMOD Intl.
Conf. on Management of Data, pages 379–390, May 2000.

6. S. Christodoulakis. Implications of certain assumptions in database performance
evaluation. ACM Transactions on Database Systems, 9(2):163–186, 1984.

7. E. Cohen, A. Fiat, and H. Kaplan. Efficient sequences of trials. In Proc. of the
2003 Annual ACM-SIAM Symp. on Discrete Algorithms, 2003.

8. G. Cormode, M. Datar, P. Indyk, and S. Muthukrishnan. Comparing data streams
using hamming norms (how to zero in). In Proc. of the 2002 Intl. Conf. on Very
Large Data Bases, pages 335–345, August 2002.

9. C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk. Gigascope: A stream
database for network applications. In Proc. of the 2003 ACM SIGMOD Intl. Conf.
on Management of Data, pages 647–651, June 2003.

10. U. Feige. A threshold of ln n for approximating set cover. Journal of the ACM,
45:634–652, 1998.

11. U. Feige, L. Lovász, and P. Tetali. Approximating min-sum set cover. Algorithmica,
2004.

12. J. Hellerstein. Optimization techniques for queries with expensive methods. ACM
Transactions on Database Systems, 23(2):113–157, 1998.

13. D. Hochbaum, editor. Approximation Algorithms for NP-Hard Problems. PWS
Publishing Company, Boston, MA, 1997.

14. K. Jain, M. Mahdian, and A. Saberi. A new greedy approach for facility location
problems. In Proc. of the 2002 Annual ACM Symp. on Theory of Computing, May
2002.

15. D. Johnson. Approximation algorithms for combinatorial problems. Journal of
Computer and System Sciences, 9:256–278, 1974.

16. A. Kalai and S. Vempala. Efficient algorithms for the online decision problem. In
Proc. of 16th Conf. on Computational Learning Theory, 2003.

17. A. Kemper, G. Moerkotte, and M. Steinbrunn. Optimizing boolean expressions in
object-bases. In Proc. of the 1992 Intl. Conf. on Very Large Data Bases, pages
79–90, August 1992.

18. R. Krishnamurthy, H. Boral, and C. Zaniolo. Optimization of nonrecursive queries.
In Proc. of the 1986 Intl. Conf. on Very Large Data Bases, pages 128–137, August
1986.

19. Y. Ling and W. Sun. An evaluation of sampling-based size estimation methods for
selections in database systems. In Proc. of the 1995 Intl. Conf. on Data Engineer-
ing, pages 532–539, March 1995.

20. R. Motwani, J. Widom, and et al. Query processing, resource management, and
approximation in a data stream management system. In Proc. of the 2003 Conf.
on Innovative Data Systems Research, pages 245–256, January 2003.

21. K. Munagala, S. Babu, R. Motwani, and J. Widom. The pipelined set cover prob-
lem. Stanford University Database Group Technical Report 2003-65, 2003.

98 K. Munagala et al.

22. L. Reinwald and R. Soland. Conversion of limited-entry decision tables to optimal
computer programs I: Minimum average processing time. Journal of the ACM,
13(3):339–358, 1966.

23. K. Ross. Conjunctive selection conditions in main memory. In Proc. of the 2002
ACM Symp. on Principles of Database Systems, June 2002.

24. A. Srinivasan. Improved approximations of packing and covering problems. In
Proc. of the 1995 Annual ACM Symp. on Theory of Computing, pages 268–276,
June 1995.

25. M. Stillger, G. Lohman, V. Markl, and M. Kandil. LEO - DB2’s LEarning Op-
timizer. In Proc. of the 2001 Intl. Conf. on Very Large Data Bases, pages 9–28,
September 2001.

Well-Definedness and Semantic Type-Checking
in the Nested Relational Calculus and XQuery

Extended Abstract

Jan Van den Bussche1, Dirk Van Gucht2,�, and Stijn Vansummeren1,��

1 Limburgs Universitair Centrum, Diepenbeek, Belgium
{jan.vandenbussche, stijn.vansummeren}@luc.ac.be

2 Indiana University, Bloomington, Indiana, USA
vgucht@cs.indiana.edu

Abstract. Two natural decision problems regarding the XML query
language XQuery are well-definedness and semantic type-checking. We
study these problems in the setting of a relational fragment of XQuery.
We show that well-definedness and semantic type-checking are unde-
cidable, even in the positive-existential case. Nevertheless, for a “pure”
variant of XQuery, in which no identification is made between an item
and the singleton containing that item, the problems become decidable.
We also consider the analogous problems in the setting of the nested
relational calculus.

1 Introduction

Much attention has been paid recently to XQuery, the XML query language cur-
rently under development by the World Wide Web Consortium [5, 9]. Unlike in
traditional query languages, expressions in XQuery can have an undefined mean-
ing (i.e., these expressions produce a run-time error). As an example, consider
the following variation on one of the XQuery use cases [7]:

<bib> {
for $b in $bib/book
where $b/publisher = "Springer-Verlag"
return element{$b/author}{$b/title}
} </bib>

This expression should create for each book published by Springer-Verlag a
node whose name equals the author of the book, and whose child is the title of
the book. If there is a book with more than one author node however, then the
result of this expression is undefined because the first argument to the element
constructor must be a singleton list.

This leads us to the natural question whether we can solve the well-definedness
problem for XQuery: given an expression and an input type, check whether the

� Supported by NSF Grant IIS-0082407.
�� Research Assistant of the Fund for Scientific Research - Flanders (Belgium).

T. Eiter and L. Libkin (Eds.): ICDT 2005, LNCS 3363, pp. 99–113, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

100 J. Van den Bussche, D. Van Gucht, and S. Vansummeren

semantics of the expression is defined for all inputs adhering to the input type.
This problem is undecidable for any computationally complete programming
language, and hence also for XQuery. Following good programming language
practice, XQuery therefore is equipped with a static type system (based on XML
Schema [4, 18]) which ensures “type safety” in the sense that every expression
which passes the type system’s tests is guaranteed to be well-defined. Due to the
undecidability of the well-definedness problem, such type systems are necessarily
incomplete, i.e., there are expressions which are well-defined, but not well-typed.

Can we find fragments of XQuery for which the well-definedness problem
is decidable? In this paper we will study Relational XQuery (RX), a set-based
fragment of XQuery where we omit recursive functions, only allow the child
axis, take a value-based point of view (i.e., we ignore node identity), and use
a type system similar to that of the nested relational or complex object data
model [1, 6, 19]. We regard RX as the “first-order database fragment” of XQuery.

Even for RX, the well-definedness problem is still undecidable, due to two fea-
tures which allow us to simulate the relational algebra: quantified expressions and
type switches. Surprisingly, however, well-definedness remains undecidable for RX
without these features, which we call positive-existential RX or PERX for short.

The core difficulty here is due to the fact that in the XQuery data model
an item is identified with the singleton containing that item [11]. In a set-based
model this identification becomes difficult to analyze, since {i, j} is a singleton
if and only if i = j. Since, as shown in the example above, there are expressions
which are undefined on non-singleton inputs, this implies that in order to solve
the well-definedness problem, one also needs to solve the equivalence problem.
Indeed, we will see that the equivalence problem for PERX is undecidable.

Nevertheless, for a “pure” variant of PERX, in which no identification is
made between an item and the singleton containing that item, well-definedness
becomes decidable. We actually prove this result not for pure PERX itself, but
for PENRC: the positive-existential fragment of the nested relational calculus
[6, 19], which is well-known from the complex object data model, and whose
well-definedness problem is interesting in its own right.

All our results hold not only for well-definedness, but also for semantic type-
checking : given an expression, an input type and an output type, check whether
the expression always returns outputs adhering to the output type on inputs
adhering to the input type.

In the main body of the paper we will work in a set-based data model.
Considering that the real XML data model is list-based, at the end of the paper
we will discuss how and if our results transfer to a list-based or bag-based setting.

Related Work. The semantic type-checking problem has already been studied ex-
tensively in XML-related query languages [2, 3, 13, 14, 15, 17]. In particular, our
setting closely resembles that of Alon et al. [2, 3] who, like us, study the problem
in the presence of data values. In particular they have shown that (un)decidability
depends on the expressiveness of both the query language and the type system.
While the query language of Alon et al. can simulate PERX, our results do not fol-
low immediately from theirs, since their type system is incompatible with ours [16].

Well-Definedness and Semantic Type-Checking 101

2 Relational XQuery

In what follows we will need to define various query languages. In some defini-
tions it will help to talk abstractly about a query language. To this end, we define
a query language Q as a tuple (V, T,E, �.�) where V is a set of values; T is a set of
types; E is a set of expressions; and �.� is the interpretation function giving a se-
mantics to types and expressions. The set V is also referred to as the data model.

We assume to be given an infinite set X = {x, y, . . . } of variables. Every
expression e has associated with it a finite set FV (e) ⊆ X of free variables.
An environment on e is a function σ : FV (e) → V which associates to each
x ∈ FV (e) a value σ(x) ∈ V . A type assignment on e is a function Γ : FV (e) → T
which associates to each x ∈ FV (e) a type Γ (x) ∈ T . If ρ is an environment (or
a type assignment), and v is a value (respectively a type), then we write x : v, ρ
for the environment (respectively type assignment) ρ′ with domain dom(ρ)∪{x}
such that ρ′(x) = v and ρ′(y) = ρ(y) for y �= x. Intuitively, environments describe
the input to expressions, and type assignments describe their type.

Every type τ is associated with a set �τ� of values. An environment σ is
compatible with a type assignment Γ , denoted by σ ∈ Γ , if they have the same
domain and σ(x) ∈ �Γ (x)� for all x. Every expression e has associated with it
a (possibly partial) computable function �e� which associates environments on
FV (e) to values in V . We call �e� the semantics of e.

In order not to burden our notation we will identify types and expressions
with their respective interpretations, and write for example e(σ) for �e�(σ).

2.1 Relational XQuery Data Model

In this section we define a set-based fragment of the XQuery data model [11]
called the Relational XQuery (RX) data model. We take a value-based point of
view (i.e., we ignore node identity), focus on data values, element nodes and
data nodes (known as text nodes in XQuery), and abstract away from the other
features in the XQuery data model such as attributes.

We assume to be given a recursively enumerable set A = {a, b, . . . } of atoms.
An item is an atom or a node. A node is either an element node 〈a : N〉 or a data
node 〈a〉, where a ∈ A and N is a finite set of nodes (N is called the content of
the element node). An RX-value, finally, is any finite set of items. Note that, as
in the XQuery data model, atoms can only occur at the “top level” of a value.
Inside element nodes they must be encapsulated in a data node.

An RX-type τ is a term generated by the following grammar:

τ ::= coll(ι) | single(ι)
ι ::= atom | ν | ι ∪ ι

ν ::= data | elem(γ) | ν ∪ ν

γ ::= coll(ν) | single(ν)

Here, τ ranges over types, ι ranges over item types, ν ranges over node types,
and γ ranges over node content types. An RX-type denotes a set of RX-values:

102 J. Van den Bussche, D. Van Gucht, and S. Vansummeren

– data denotes the set of all data nodes,
– elem(γ) denotes the set of all element nodes 〈a : N〉 for which N is in the

denotation of γ,
– atom denotes the set A of all atoms,
– ι1 ∪ ι2 denotes the union of the denotations of ι1 and ι2,
– coll(ι) denotes the set of all finite sets over the denotation of ι, and
– single(ι) denotes the set of all singletons over the denotation of ι.

Note that every γ is also a τ , and hence the denotation of terms produced
by γ is subsumed in the definition above.

An RX-kind κ is a term generated by the following grammar:

κ ::= atom | data | elem | κ ∪ κ

An RX-kind denotes a set of items, which can be the set of all atoms, the set of
all data nodes, the set of all element nodes, or the union of the denotations of
two kinds.

Discussion. The type system we have defined above is quite simple. Types
merely indicate the many-or-one cardinality of a value, and the kinds of items
that can appear in it. Only values of a fixed maximal nesting height can be
described in our type system. This is justified because the expressions in the
XQuery fragment RX we will work with in this paper can look only a fixed
number of nesting levels down anyway. Also, it is a public secret that most
XML documents in practice have nesting heights at most five or six, and that
unbounded-depth nesting is not needed for many XML data processing tasks.

The presence of the single type constructor is justified by the fact that an
item i is identified with the singleton set {i} in the XQuery data model [11].
Consequently, an XQuery expression in which the input is always expected to
be a string actually receives singleton strings as inputs. Its input type would
therefore be single(atom) in our setting.

Our types also do not specify anything about the names of element nodes,
but this is an omission for the sake of simplicity; we could have added node types
of the form elema(γ), with a the atom that must be the name of the element
node, without sacrificing any of the results we present in this paper.

2.2 Relational XQuery Syntax and Semantics

A Relational XQuery expression is an expression generated by the following
grammar:

e ::= x

| text {e} | elem {e}{e} | data(e) | name(e) | children(e)
| () | e, e | for x : κ in e return e

| if e eq e then e else e | if e = ∅ then e else e | if e ∈ τ then e else e

Here, e ranges over RX-expressions, x ranges over variables, τ ranges over
RX-types and κ ranges over RX-kinds. The free variables of e are defined in the
usual way, and will be denoted by FV (e).

Well-Definedness and Semantic Type-Checking 103

The semantics of RX is parameterized by two “oracle” functions:

– content , which maps element nodes to atoms; and
– concat , which maps finite sets of atoms to atoms.

We further define the following (partial) functions on values:

– data(v) = {a | a ∈ v} ∪ {a | 〈a〉 ∈ v} ∪ {content(〈a : N〉) | 〈a : N〉 ∈ v},
– name(v), which is {a} if v is a singleton element node {〈a : N〉}; concat(v)

if v is empty; and undefined otherwise.
– children(v), which is undefined if there is some atom in v, and otherwise

returns ⋃
{N | 〈a : N〉 ∈ v}.

– construct(v, w) which is undefined if data(v) is not a singleton atom {a}; and
returns 〈a : N〉 otherwise, where N is obtained from w by replacing every
atom in w by a corresponding data node:

N = {〈a〉 | a ∈ w} ∪ {i | i ∈ w, i is a node}.
Let e be an RX-expression and let σ be an RX-environment on e.1 The

semantics e(σ) of e under σ can now be inductively defined as follows:

x(σ) = σ(x)
text {e}(σ) = {〈concat(data(e(σ)))〉}

elem {e1}{e2}(σ) = {construct(e1(σ), e2(σ))}
data(e)(σ) = data(e(σ))

name(e)(σ) = name(e(σ))
children(e)(σ) = children(e(σ))

()(σ) = ∅
e1, e2(σ) = e1(σ) ∪ e2(σ)

for x : κ in e1 return e2 =
⋃
{e2(x : {i}, σ) | i ∈ e1(σ) ∩ κ}

(if e1 eq e2 then e3 else e4)(σ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

e3(σ) if data(e1(σ)) = data(e2(σ)) = {a},
with a an atom

e4(σ) if data(e1(σ)) = {a},
data(e2(σ)) = {b},
with a and b atoms, a �= b

(if e1 = ∅ then e2 else e3)(σ) =

{
e2(σ) if e1(σ) = ∅
e3(σ) otherwise

(if e1 ∈ τ then e2 else e3)(σ) =

{
e2(σ) if e1(σ) ∈ τ

e3(σ) otherwise

1 Recall from the beginning of this section that σ assigns an RX-value to each free
variable of e.

104 J. Van den Bussche, D. Van Gucht, and S. Vansummeren

Note that e(σ) is not necessarily defined: this models the situations in which
XQuery expression evaluation produces a run-time error. Specifically, e(σ) can
become undefined for the following reasons:

– e = elem {e1}{e2}, and data(e1(σ)) is not a singleton atom. (This can only
happen if e1(σ) is not a singleton.)

– e = name(e′), and e′(σ) is not the empty set, or not a singleton element
node.

– e = children(e′), and e′(σ) contains an atom.
– e = if e1 eq e2 then e3 else e4, and data(e1(σ)) is not a singleton atom, or

data(e2(σ)) is not a singleton atom. (This can only happen if e1(σ) respec-
tively e2(σ) is not a singleton.)

Relation to XQuery. The RX query language corresponds to a set-based version
of XQuery [5, 9] where we have omitted recursive functions, literals, arithmetic
expressions, generalized and order comparisons, and only allow the children axis.
We have replaced XQuery quantified expressions by the emptiness test (which
is equivalent in expressive power), and have moved kind tests from XQuery step
expressions to the “for” expression. As an example, the XQuery step expression
$x/child :: text() can be expressed in RX as

for z : data in children(x) return z.

The “oracle” functions concat and content model features which are present
in XQuery, but which are clumsy to take into account in our data model. For ex-
ample name applied to the empty sequence returns the empty string in XQuery.
Furthermore, applying data to a singleton element node in XQuery returns the
“string content” of the node. This is (roughly speaking) a concatenation of all
atoms (converted to strings) encountered in a depth-first left-to-right traversal
of the node’s content.

3 Well-Definedness and Semantic Type-Checking

As we have noted in Section 2.2, the semantics e(σ) of RX-expression e under
environment σ can be undefined. This leads us to the following definition.

Definition 1. The well-definedness problem for a query language Q consist of
checking, given a Q-expression e and a Q-type assignment Γ on e: whether e(σ)
is defined for every σ ∈ Γ . In this case we say that e is well-defined under Γ .

A problem which is related to well-definedness is the semantic type-checking
problem:

Definition 2. The semantic type-checking problem for a query language Q con-
sist of checking, given a Q-expression e, a Q-type assignment Γ on e such that
e is well-defined under Γ , and a Q-type τ : whether e(σ) ∈ τ for every σ ∈ Γ . In
this case we say that τ is an output type for e under Γ .

Well-Definedness and Semantic Type-Checking 105

4 Undecidability Results

We will show that well-definedness for RX is undecidable, even for a quite re-
stricted fragment. Our results do not depend on the particular interpretation
given to the oracle functions concat and content .

Let us begin by defining RX− as the fragment of RX where

– we disallow data node construction expressions of the form text {e};
– we disallow data extraction expressions of the form data(e); and
– we disallow kind tests, or equivalently, we only allow the use of the single

“universal” kind atom∪data∪ elem.

An RX−-expression e is positive existential if it does not contain emptiness
tests of the form if e1 = ∅ then e2 else e3, or type switches of the form if e1 ∈
τ then e2 else e3. We denote the language of all positive-existential RX− expres-
sions by PERX−, and we will mention specific features added back to PERX−

in square brackets. Thus, PERX−[empty] includes emptiness tests, and type
switches are included in PERX−[type].

Proposition 1. Type switches can be used to simulate emptiness tests, i.e.
PERX−[empty] is a semantic subset of PERX−[type].

Indeed, if e1 = ∅ then e2 else e3 can be expressed as follows:

if (for x in e1 return elem {a}{()}) ∈ coll(data) then e2 else e3

The following proposition is not surprising, and parallels earlier results on
semistructured query languages such as StruQL [10]:

Proposition 2. PERX−[empty] can simulate the relational algebra. Concretely,
for every relational algebra expression φ over database schema S, there exists a
PERX−[empty]-expression eφ and a type assignment ΓS, such that

– eφ is well-defined under ΓS, and,
– eφ evaluated on an encoding of database D equals an encoding of φ(D).

Consequently, satisfiability (i.e., nonempty output on at least one input) is
undecidable for PERX−[empty] (and thus for RX−), because it is undecidable
for the relational algebra. Since the expression

for x in e return elem {()}{()}

is well-defined if, and only if, e is unsatisfiable, we obtain:

Corollary 1. Well-definedness for PERX−[empty] (and thus RX) is undecid-
able.

What is perhaps more surprising is that without emptiness test, we remain
undecidable:

106 J. Van den Bussche, D. Van Gucht, and S. Vansummeren

Theorem 1. Well-definedness for PERX− is undecidable.

Proof (Crux). The proof goes by reduction from the implication problem for
functional and inclusion dependencies, which is known to be undecidable [1, 8].

Let Σ be a set of functional and inclusion dependencies, and let ρ be an
inclusion dependency. We show in the full version of this paper that we can
construct two expressions e1 and e2, a type assignment Γ and a node content
type γ, such that

– e1 and e2 are well-defined under Γ ,
– γ is an output type for e1 and e2 under Γ , and,
– e1(σ) = e2(σ) for every σ ∈ Γ if, and only if, ρ is implied by Σ.

Consequently, the expression name(elem {a}{e1}, elem {a}{e2}) is well-defined
under Γ if, and only if, ρ is implied by Σ. ��

As a corollary to the proof, we note:

Corollary 2. Equivalence of PERX− expressions is undecidable.

We further derive:

Corollary 3. Semantic type-checking for PERX− is undecidable.

Indeed, referring to the above proof sketch of Theorem 1, e1 and e2 are equivalent
if, and only if, (elem {a}{e1}, elem {a}{e2}) has output type single(elem(γ)).

We remark that to establish undecidability of well-definedness we do not need
singleton types. For undecidability of semantic type-checking, we do.

5 Pure RX

In the XQuery data model, an item i is identified with the singleton {i} [11].
With this identification, it is indeed natural to let, e.g., name(e) be undefined
when e(σ) is a set with more than one element. As we have seen in the previous
Section, it is exactly this behavior that causes well-definedness to be undecidable.

So let us define a version of RX, called pure RX, which does not explicitly
identify an item i with {i}. We will show in Section 6 that well-definedness
and semantic type-checking for the positive-existential fragment of pure RX is
decidable.

A pure RX-value is an item or a set of items. A pure RX-type τ is a term
generated by the following grammar:

τ ::= coll(ι) | ι | τ ∪ τ

ι ::= atom | ν | ι ∪ ι

ν ::= data | elem(ν1 ∪ · · · ∪ νk)

Here, τ ranges over types, ι ranges over item types, ν ranges over node types,
and k ≥ 0.

Well-Definedness and Semantic Type-Checking 107

A pure RX-type denotes a set of pure RX-values:

– data denotes the set of all data nodes,
– elem(ν1 ∪ · · · ∪ νk) denotes the set of all element nodes 〈a : N〉 for which N

is a finite set over the union of the denotations of ν1, . . . , νk.
– atom denotes the set A of all atoms,
– τ1 ∪ τ2 denotes the union of the denotations of τ1 and τ2, and,
– coll(ι) denotes the set of all finite sets over the denotation of ι.

Note that since every ι is also a τ , the denotation of ι1 ∪ ι2 is subsumed by
the definition above.

The syntax of pure RX is obtained from the syntax of RX by adding a
singleton constructor expression (e), and by replacing RX-types in type switch
expressions by pure RX types.

In order to give the semantics of pure RX, we define the following (partial)
functions on pure RX-values.

– data ′(v) = {a | a ∈ v} ∪ {a | 〈a〉 ∈ v}
– name ′(v), which is a if v is an element node 〈a : N〉, and is undefined oth-

erwise.
– children ′(v), which is undefined if there is some atom in v, and otherwise

returns ⋃
{N | 〈a : N〉 ∈ v}.

– construct ′(v, w) which is undefined if v is not an atom, and returns 〈v : N〉
otherwise where N is obtained from w by replacing every atom in w by a
corresponding data node:

N = {〈a〉 | a ∈ w} ∪ {i | i ∈ w, i is a node}
The semantics of pure RX is then defined as follows:

x(σ) = σ(x)
text {e}(σ) = 〈a〉 if e(σ) = a

elem {e1}{e2}(σ) = construct′(e1(σ), e2(σ))
data(e)(σ) = data ′(e(σ))

name(e)(σ) = name ′(e(σ))
children(e)(σ) = children ′(e(σ))

()(σ) = ∅
(e)(σ) = {e(σ)} if e(σ) is an item

e1, e2(σ) = e1(σ) ∪ e2(σ)

for x : κ in e1 return e2 =
⋃
{e2(x : i, σ) | i ∈ e1(σ) ∩ κ}

(if e1 eq e2 then e3 else e4)(σ) =

{
e3(σ) if e1(σ), e2(σ) ∈ A and e1(σ) = e2(σ)
e4(σ) if e1(σ), e2(σ) ∈ A and e1(σ) �= e2(σ)

(if e1 = ∅ then e2 else e3)(σ) =

{
e2(σ) if e1(σ) = ∅
e3(σ) otherwise

108 J. Van den Bussche, D. Van Gucht, and S. Vansummeren

(if e1 ∈ τ then e2 else e3)(σ) =

{
e2(σ) if e1(σ) ∈ τ

e3(σ) otherwise

Note that again e(σ) is not necessarily defined. Specifically, e(σ) can become
undefined for the following reasons:

– e = text {e′}, and e′(σ) is not an atom,
– e = elem {e1}{e2}, and e1(σ) is not an atom,
– e = name(e′), and e′(σ) is not an element node,
– e = children(e′), and e′(σ) contains an atom,
– e = (e′), and e′(σ) is not an item,
– e = e1, e2, and e1(σ) is not a set or e2(σ) is not a set,
– e = for x : κ in e1 return e2, and e1(σ) is not a set or e2(x : i, σ) is not a set

for some i ∈ e1(σ) ∩ κ, or,
– e = if e1 eq e2 then e3 else e4, and e1(σ) or e2(σ) is not an atom.

Pure PERX

Well-definedness and semantic type-checking for the entire pure RX remains un-
decidable due to the presence of the emptiness test and type switch expressions.
Let us define pure PERX as the fragment of pure RX in which these expressions
are disallowed.

6 Decidability Results

In this section we will show that well-definedness and semantic type-checking for
pure PERX are decidable. In fact, we will solve the corresponding problems for
the nested relational calculus (NRC): the well-known standard query language
for nested relations and complex objects. Indeed, this language remains funda-
mental and its study remains interesting in its own right. As we will see, pure
PERX can be simulated by the positive-existential fragment of NRC (extended
with kind-tests).

6.1 Nested Relational Calculus

An NRC-value is either an atom, a pair of NRC-values, or a finite set of NRC-
values. Note that we allow sets to be heterogeneous. If v = (v1, v2), then we
write π1(v) for v1 and π2(v) for v2.

An NRC-type τ is a term generated by the following grammar:

τ ::= ∅ | atom | τ × τ | τ ∪ τ | coll(τ)

An NRC-type denotes a set of NRC-values:

– ∅ denotes the empty set,
– atom denotes the set A of all atoms,
– τ1 × τ2 denotes the cartesian product of the denotations of τ1 and τ2,

Well-Definedness and Semantic Type-Checking 109

– τ1 ∪ τ2 denotes the union of the denotations of τ1 and τ2, and,
– coll(τ) denotes the set of all finite sets over the denotation of τ .

An NRC-kind κ is a term generated by the following grammar:

κ ::= atom | coll | κ× κ | κ ∪ κ

An NRC-kind denotes a set of NRC-values, which can be the set of all atoms,
the set of all finite sets of values, the cartesian product of the denotation of two
kinds, or the union of the denotation of two kinds.

The positive existential nested relational calculus (PENRC) is the set of all
expressions generated by the following grammar:

e ::= x

| (e, e) | π1(e) | π2(e)

| ∅ | {e} | e ∪ e |
⋃

e | {e | x ∈ e}
| e = e ? e : e

Here e ranges over expressions, and x ranges over variables. The PENRC
with kind tests, denoted by PENRC[kind] is the PENRC extended with one
additional expression:

e ::= · · · | e ∈ κ ? e : e

Here, κ ranges over NRC kinds. The free variables of e are defined in the
usual way, and will be denoted by FV (e).

If e is a PENRC[kind]-expression and σ is an NRC-environment on e, then
the semantics e(σ) of e under σ is inductively defined as follows:

x(σ) = σ(x)
(e1, e2)(σ) = (e1(σ), e2(σ))
π1(e)(σ) = π1(e(σ))
π2(e)(σ) = π2(e(σ))

∅(σ) = ∅
{e}(σ) = {e(σ)}

(e1 ∪ e2)(σ) = e1(σ) ∪ e2(σ)

(
⋃

e)(σ) =
⋃

e(σ)

{e2 | x ∈ e1}(σ) = {e2(x : v, σ) | v ∈ e1(σ)}

(e1 = e2 ? e3 : e4)(σ) =

{
e3(σ) if e1(σ), e2(σ) ∈ A and e1(σ) = e2(σ)
e4(σ) if e1(σ), e2(σ) ∈ A and e1(σ) �= e2(σ)

(e1 ∈ κ ? e2 : e3)(σ) =

{
e2(σ) if e1(σ) ∈ κ

e3(σ) otherwise

110 J. Van den Bussche, D. Van Gucht, and S. Vansummeren

Note that e(σ) can be undefined. For example π1(x)(σ) is undefined when
σ(x) is not a pair, and (x∪ y)(σ) is undefined when σ(x) is not a set. Hence, we
can also study the well-definedness problem for PENRC[kind].

It is easy to see that well-definedness for full NRC: PENRC extended with an
emptiness test, is undecidable. Indeed, it is well known that NRC can simulate
the relational algebra [6].

6.2 Simulating RX in NRC

Formally, a simulation of a query language Q in a query language Q′ is a function
enc : VQ → VQ′ such that

– for every type τ ∈ TQ there exists a type τ ′ ∈ TQ′ such that v ∈ τ if and
only if enc(v) ∈ τ ′, and

– for every expression e ∈ EQ there exists an expression e′ ∈ EQ′ such that
1. e(σ) is defined if and only if e′(enc(σ)) is defined, and
2. if e(σ) is defined, then enc(e(σ)) = e′(enc(σ)).

A simulation is effective if τ ′ can be computed from τ and e′ can be computed
from e.

Lemma 1. Pure PERX can be effectively simulated in PENRC[kind].

Proof (Crux). Consider the encoding function enc for which

enc(a) = a enc(〈a〉) = ((a, a), ∅)
enc(〈a : N〉) = (a, enc(N)) enc(v) = {enc(i) | i ∈ v}

Then enc is an effective simulation. It is easy to find τ ′ by induction on τ .
Furthermore, e′ can be constructed by induction on e. To illustrate this, let us
write e1 ∈ κ → e2 for e1 ∈ κ ? e2 : π1(∅). Intuitively, this expression will be
used to verify that the input to e′ is an encoding of a legal input to e. Otherwise,
we become undefined.

We can now for example simulate text {e} by e′ ∈ atom → ((e′, e′), ∅). We
can simulate elem {e1}{e2} by

e′
1 ∈ atom→ (e′

1, {x ∈ atom ? ((x, x), ∅) : x | x ∈ e′
2}).

And we can simulate children(e) by
⋃
{π2(x) | x ∈ e′}. ��

Corollary 4. If the well-definedness or semantic type-checking problem is de-
cidable for PENRC[kind], then it is also decidable for pure PERX.

6.3 Well-Definedness for PENRC[kind]

Consider the following expression:

e = {{z = y ? π1(z) : y | y ∈ x}) | x ∈ R},

and let the environment σ be defined by

Well-Definedness and Semantic Type-Checking 111

σ(R) = {{a, b}, {c}, {a, b, d}}} σ(z) = d.

Since there is a set in σ(R) which contains σ(z), we will need to evaluate
π1(σ(z)) at some point, which is undefined. Hence, e(σ) is undefined. Note that
we do not need all elements in σ(R) to reach the state where e(σ) becomes
undefined. Indeed, e is also undefined on the small environment σ′ where σ′(R) =
{{d}} and σ′(z) = d.

We generalize this observation in the following general property. Here, we
say that an environment σ is in the set Ek if every set occurring in σ(x) has
cardinality at most k for every x ∈ dom(σ).

Lemma 2 (Small Model Property for Undefinedness). Let e be a positive
existential NRC[kind] expression, let Γ be a type assignment on e, and let σ be
an environment compatible with Γ such that e(σ) is undefined. There exists a
natural number l which can be computed from e alone, and an environment
σ′ ∈ El compatible with Γ , such that e(σ′) is also undefined.

We obtain:

Corollary 5. The well-definedness problem for PENRC[kind] is decidable.

Indeed, up to isomorphism (and expressions cannot distinguish isomorphic in-
puts) there are only a finite number of different input environments in El com-
patible with Γ . So we can test them all to see if there is a counterexample to
well-definedness.

Also for semantic type-checking we have:

Lemma 3 (Small Model Property for Semantic Type-Checking). Let e
be a PENRC[kind] expression, let Γ be a type assignment on e such that e is well-
defined under Γ , and let τ be a type. Let σ be an environment compatible with
Γ such that e(σ) �∈ τ . There exists a natural number l which can be computed
from e and τ alone, and an environment σ′ ∈ El compatible with Γ , such that
also e(σ′) �∈ τ .

Corollary 6. Semantic type-checking for PENRC[kind] is decidable.

6.4 Equivalence and Satisfiability

The above decidability results are quite sharp, because equivalence of PENRC
expressions is undecidable. This can be proven in a similar way as Theorem 1.
Of course, containment is then also undecidable. Levy and Suciu [12] have
shown that a “deep” form of containment (known as simulation) is decidable
for PENRC.

Another important problem is satisfiability. For example, the XQuery type
system generates a type error whenever it can deduce that an expression which
is not the empty set expression itself always returns the empty set. As noted
in Section 4, satisfiability is undecidable for PERX−[empty]. For pure PERX,
and PENRC[kind], however, satisfiability can be solved using the small model

112 J. Van den Bussche, D. Van Gucht, and S. Vansummeren

property for semantic type-checking. Indeed, a PENRC[kind] expression e is
unsatisfiable under Γ if, and only if, coll(∅) is an output type for e under Γ . We
point out that, at least for PENRC without union and kind-tests, decidability
of satisfiability already follows from the work of Levy and Suciu cited above.

7 Lists and Bags

In this paper we have focused our attention on a set-based abstraction of XQuery.
The actual data model of XQuery is list-based however, and hence it is natural
to ask how our results transfer to such a setting.

Let us denote by RXlist the list-based version of RX, which can be obtained
from RX as follows. The list-based RX data model is obtained by replacing
“set” in the definition of the RX data model by “list”. The list-based semantics
of an expression is obtained from the set-based semantics by replacing every set
operator by the corresponding list operator (i.e., empty set becomes empty list,
union becomes concatenation, and so on). We can similarly define the bag-based
version of RX, which we will denote by RXbag.

We can still simulate the relational algebra in the list- and bag-based ver-
sions of PERX−[empty] and PERX−[type]. Hence, well-definedness and semantic
type-checking for these languages is undecidable. It is an open problem however
whether well-definedness and semantic type-checking in the list- and bag-based
versions of PERX− remains undecidable. Indeed, our undecidability proof de-
pends heavily on the fact that set union is idempotent, which is not the case for
list concatenation and bag union.

We can also consider a list-based and bag-based version of PENRC[kind],
to which our decidability results transfer. Hence, well-definedness and semantic
type-checking are decidable for pure PERXlist and pure PERXbag.

References

1. Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations Of Databases.
Addison-Wesley, 1995.

2. Noga Alon, Tova Milo, Frank Neven, Dan Suciu, and Victor Vianu. Typechecking
XML views of relational databases. ACM Transactions on Computational Logic,
4(3):315–354, 2003.

3. Noga Alon, Tova Milo, Frank Neven, Dan Suciu, and Victor Vianu. XML with
data values: typechecking revisited. Journal of Computer and System Sciences,
66(4):688–727, 2003.

4. Paul V. Biron and Ashok Malhotra. XML Schema Part 2: Datatypes. W3C Rec-
ommendation, May 2001.

5. Scott Boag, Don Chamberlin, Mary F. Fernández, Daniela Florescu, Jonathan
Robie, and Jérôme Siméon. XQuery 1.0: An XML Query Language. W3C Working
Draft, November 2003.

6. Peter Buneman, Shamim A. Naqvi, Val Tannen, and Limsoon Wong. Principles
of programming with complex objects and collection types. Theoretical Computer
Science, 149(1):3–48, 1995.

Well-Definedness and Semantic Type-Checking 113

7. Don Chamberlin, Peter Fankhauser, Daniela Florescu, Massimo Marchiori, and
Jonathan Robie. XML Query Use Cases. W3C Working Draft, November 2003.

8. Ashok K. Chandra and Moshe Y. Vardi. The implication problem for func-
tional and inclusion dependencies is undecidable. SIAM Journal on Computing,
14(3):671–677, 1985.

9. Denise Draper, Peter Fankhauser, Mary F. Fernández, Ashok Malhotra, Kristoffer
Rose, Michael Rys, Jérôme Siméon, and Philip Wadler. XQuery 1.0 and XPath
2.0 Formal Semantics. W3C Working Draft, February 2004.

10. Mary F. Fernández, Daniela Florescu, Alon Levy, and Dan Suciu. Declarative
specification of Web sites with Strudel. The VLDB Journal, 9:38–55, 2000.

11. Mary F. Fernández, Ashok Malhotra, Jonathan Marsh, Marton Nagy, and Norman
Walsh. XQuery 1.0 and XPath 2.0 Data Model. W3C Working Draft, November
2003.

12. Alon Y. Levy and Dan Suciu. Deciding containment for queries with complex ob-
jects (extended abstract). In Proceedings of the Sixteenth ACM SIGACT-SIGMOD-
SIGART symposium on Principles of Database Systems, pages 20–31. ACM Press,
1997.

13. Wim Martens and Frank Neven. Typechecking top-down uniform unranked tree
transducers. In Database Theory - ICDT 2003, volume 2572 of Lecture Notes in
Computer Science, pages 64–78. Springer-Verlag, 2003.

14. Wim Martens and Frank Neven. Frontiers of tractability for typechecking simple
xml transformations. In Proceedings of the Twenty-third ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, pages 23–34. ACM Press,
2004.

15. Tova Milo, Dan Suciu, and Victor Vianu. Typechecking for XML transformers. In
Proceedings of the Nineteenth ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, pages 11–22. ACM Press, 2000.

16. Frank Neven. Personal communication, May 2004.
17. Dan Suciu. Typechecking for semistructured data. In Database Programming

Languages, 8th International Workshop, DBPL 2001, Revised Papers, volume 2397
of Lecture Notes in Computer Science, pages 1–20. Springer-Verlag, 2001.

18. Henry S. Thompson, David Beech, Murray Maloney, and Noah Mendelsohn. XML
Schema Part 1: Structures. W3C Recommendation, May 2001.

19. Limsoon Wong. Querying nested collections. PhD thesis, University of Pennsylva-
nia, 1994.

First Order Paths in Ordered Trees

Maarten Marx

Informatics Institute University of Amsterdam

Abstract. We give two sufficient conditions on XPath like languages
for having first order expressivity, meaning that every first order defin-
able set of paths in an ordered node-labeled tree is definable in that
XPath language. They are phrased in terms of expansions of naviga-
tional (sometimes called “Core”) XPath. Adding either complementa-
tion, or the more elegant conditional paths is sufficient. A conditional
path is an axis relation of the form (one step axis::n[F])+, denoting
the transitive closure of the relation expressed by one step axis::n[F].
As neither is expressible in navigational XPath we also give character-
izations in terms of first order logic of the answer sets and the sets of
paths navigational XPath can define. The first in terms of a suitable two
variable fragment, the second in terms of unions of conjunctive queries.

1 Introduction

[11] showed how a simple addition to Core XPath led to expressive completeness:
every first order definable set of nodes in an XML tree is definable as the answer
set of an expression //[fexpr] in which the filter expression is generated by the
following grammar:

step ::= self | child | parent | right | left
locpath ::= step::ntst[fexpr] | (step::ntst[fexpr])+

fexpr ::= locpath | not fexpr | fexpr and fexpr.

Here ntst is a node test consisting of a tag name or the wild card ∗. The steps
correspond to the four basic steps in an ordered tree. The semantics is as with
standard Core XPath [5], with (·)+ interpreted as the transitive closure.

Although the choice of the syntax can be motivated by its close relation to
temporal logic with since and until, it may still seem rather ad hoc. Moreover
the result is really about the expressive power of filter expressions, rather than
about location paths. In this paper we present additional evidence for the great
expressive power of the construction (step::ntst[fexpr])+, and obtain an expressive
completeness result for location paths. Extensive motivation for such a result can
be found in [1].

In the above definition it was not needed to close the location path expressions
under composition (the ′/′) and union (the ′|′). This is because we dealt with
filter expressions only. When defining paths in a tree they are obviously needed.
So in the following, assume that the language is closed under these two operations
as well. We show that

T. Eiter and L. Libkin (Eds.): ICDT 2005, LNCS 3363, pp. 114–128, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

First Order Paths in Ordered Trees 115

1. any extension of Core XPath which is closed under complementation can
define every first order definable set of paths;

2. the above defined language (called Conditional XPath) is closed under com-
plementation, whence first order complete for expressing paths.

The first result states a sufficient condition for an XPath dialect having full
first order expressivity. The second states that very little is needed to achieve it:
allow unions and compositions of path expressions, and allow transitive closure of
the simplest location path step::ntst[fexpr]. The first result is a corollary of a more
general result which states that the class of ordered trees has the three variable
property: every first order formula in at most three free variables is equivalent
(on this class) to a first order formula in at most three free and bound (possibly
reused) variables.

These results are about expansions of Core XPath. This language was defined
by Gottlob, Koch and Pichler [5] as the logical core of XPath 1.0. Core XPath is
strictly weaker than Conditional XPath, so the question remains which fragment
of first order logic is picked out by Core XPath. It turns out that this is a very
natural one indeed:

1. The answer sets definable in Core XPath are exactly those definable with
first order formulas φ(x) which use only two (free and bound) variables
in a signature with predicates corresponding to the child, descendant and
following sibling relations.

2. The paths definable in Core XPath are exactly those which can be defined
by unions of conjunctive queries consisting of the child, descendant and fol-
lowing sibling relations and unary first order formulas as in item 1.

3. Core XPath is closed under intersection but not under complementation.

We thus give a precise characterization of both Core and Conditional XPath,
both in terms of defining answer sets and sets of paths. For general related work,
we refer to [11] and to the conclusions. Specific relations are given in the running
text.

The paper is organized as follows. Section 2 introduces the needed defini-
tions. Section 3 contains all results and some of the more easy proofs. Sec-
tion 4 is devoted to the proof of the most important result: closure of Con-
ditional XPath under complementation. We motivate our work in the conclu-
sion. To give complete proofs of the results presented here takes at least an-
other 15 pages, which we don’t have. This work has a number of interesting
connections with temporal logic. These connections, together with further re-
lated work and fairly complete proofs are in the full version of the paper,
which is available from the author. For related work, see also [11, 13]. We note
that the expressive completeness result for Conditional XPath’s answer sets
(shown in [11]) follows from the result presented here, but not conversely. The
results about Core XPath have been presented at the Twente workshop on
Database Management [13]. They are included here in order to give a complete
picture.

116 M. Marx

2 Navigational XPath

We use an XPath syntax which is better suited for mathematical manipulation
and easier to read when formulas tend to get large. (And they will. . .) The
relation with the official W3C syntax should be clear.

XPath languages are two sorted languages, defined by mutual recursion.
There are formulas denoting sets of nodes (called node wffs), and formulas de-
noting a binary relation between nodes (called path wffs). An XPath step is one
of the following four atomic relation symbols

step ::= child | parent | right | left.

We define Core XPath and Conditional XPath. They differ only in the oper-
ations allowed on path wffs. Let some set of (propositional) variables be fixed.
They are denoted by pi. We do not put any restriction on the number of variables
in our language. The node wffs are generated by

node wff ::= pi | | 〈〈path wff〉〉 | ¬node wff | node wff ∧ node wff.

Here denotes the predicate which always evaluates to true. The path wffs
of Core XPath are generated by

path wff ::= step | step+ |?node wff | path wff/path wff | path wff ∪ path wff.

The path wffs of Conditional XPath differ only in that we allow
(step/?node wff)+ instead of just step+. We call this construction a conditional
path and the language derives its name from it. The main purpose of conditional
paths is to define an until like relation. For instance, the relation between a node
n and it’s descendant n′ at which A holds, and for which at all nodes strictly in
between n and n′ B holds is defined by

(child/?B)∗/child/?A.

Here and elsewhere we use R∗ as an abbreviation of R+ ∪ ? , denoting
the transitive reflexive closure of R. We use variables R,S, T for path wffs and
A,B,C for node wffs. The differences with the standard XPath syntax are small.
Our node wffs correspond to XPath’s filter expressions. Our formulas ?node wff
(called tests) mean the same as XPath’s self:: ∗ [node wff]. We abolished the two
different tests on nodes in XPath, and capture node tests as follows:

axis::A[F] ≡ axis:: ∗ [self::A ∧ F] ≡ axis/?(A ∧ F).

To make the language context-free, we use 〈〈path wff〉〉 inside node wffs in-
stead of just path wff. For axis one of step, step+, (step/?A)+, we often write
axis?node wff instead of axis/?node wff. Just as in XPath, we consider these ex-
pressions as the basic expressions of the language. The relation between the
just defined language and XPath 1.0 is exemplified in Table 1 in which some
expressions in our notation are given also as equivalent XPath expressions.

First Order Paths in Ordered Trees 117

Table 1. Equivalent XPath 1.0 and Core XPath expressions

child :: pi child/?pi

child :: pi[descendant :: ∗] child/?pi/?〈〈child+〉〉 or child/?(pi ∧ 〈〈child+〉〉)
/descendant :: pi ?¬〈〈parent〉〉/child+/?pi

child :: ∗ child
self :: pi[child] ?(pi ∧ 〈〈child〉〉)
preceding :: pi parent∗/left+/child∗/?pi.

The semantics of XPath expressions is given with respect to node labeled sib-
ling ordered trees1 (trees for short). Each node in the tree is labeled with a set of
primitive symbols from some alphabet. Sibling ordered trees come with two bi-
nary relations, the child relation, denoted by R↓, and the immediate right sibling
relation, denoted by R→. Together with their inverses R↑ and R← they are used
to interpret the axis relations. We denote such trees as first order structures
(N, R↓, R→, Pi)i∈ω.

Remark 1. Unlike in most of the literature on XPath we do not restrict the class
of structures to trees corresponding to XML documents. So our trees can be
infinitely deep, infinitely branching and may contain multiple atomic labels at
each node. All our results apply to document trees as well. This is because our
theorems are of the following form: for every first order formula φ, there is an
XPath expression α such that on all trees, the denotations of φ and α coincide.

Remark 2. Although we borrowed the name Core XPath from [5], our language
is slightly more expressive, due to the availability of the left and right axis
relations. Arguably, these must be available in an XPath dialect which calls
itself navigational.

Given a tree M and an expression R, the denotation or meaning of R in M
is written as [[R]]M. As promised, path wffs denote sets of pairs, and node wffs
sets of nodes. Table 2 contains the definition of [[·]]M. The equivalence with the
W3C syntax and semantics (cf., e.g., [5, 18]) should be clear.

Let us spell out the semantics of the conditional axis relation, as it does not
occur in standard navigational XPath. The path wff (child?A)+ denotes all pairs
(n, n′) for which there exists a finite sequence of nodes n = n1 . . .nk = n′ (k > 1)
such that for all i, ni+1 is a child of ni and A is true at all nj (j > 1). As an
example of its expressive power, consider the next frontier node relation which
holds between leaves which are consecutive in document order. Let us use the
following abbreviations:

leaf = ¬〈〈child〉〉, first = ¬〈〈left〉〉, last = ¬〈〈right〉〉.

1 A sibling ordered tree is a structure isomorphic to (N, R↓, R→) where N is a set of
finite sequences of natural numbers closed under taking initial segments, and for any
sequence s, if s ·k ∈ N , then either k = 0 or s ·k−1 ∈ N . For n, n′ ∈ N , nR↓n′ holds
iff n′ = n · k for k a natural number; nR→n′ holds iff n = s · k and n′ = s · k + 1.

118 M. Marx

Table 2. The semantics of Core and Conditional XPath

[[pi]]M = {n | M |= Pi(n)}
[[�]]M = {n | n ∈ M}

[[〈〈R〉〉]]M = {n | ∃n′, (n, n′) ∈ [[R]]M}
[[¬A]]M = {n | n
∈ [[A]]M}

[[A ∧ B]]M = [[A]]M ∩ [[B]]M .

[[child]]M = R↓
[[parent]]M = [[child]]−1

M

[[right]]M = R→
[[left]]M = [[right]]−1

M

[[R+]]M = [[R]]+M (= [[R]]M ∪ ([[R]]M ◦ [[R]]M) ∪ ([[R]]M ◦ [[R]]M ◦ [[R]]M) ∪ . . .)
[[?A]]M = {(n, n) | n ∈ [[A]]M}

[[R/S]]M = [[R]]M ◦ [[S]]M
[[R ∪ S]]M = [[R]]M ∪ [[S]]M .

Then the next frontier node relation is definable as the path wff

?leaf/[?¬last ∪ (?last/parent)+]/right/(child?first)∗/?leaf. (1)

Here (?last/parent)+ abbreviates ?last/(parent?last)∗/parent. We finish with
a useful result. For R a path wff, define the converse of R, denoted by R−1 with
meaning [[R−1]]M = {(n′, n) | (n, n′) ∈ [[R]]M}.

Proposition 1. The path wffs of both Core and Conditional XPath are closed
under taking converses.

3 First Order Characterizations of XPath

This section contains all our results: first order characterizations of both the
node wffs and the path wffs of Core and Conditional XPath, as well as sufficient
conditions for first order expressivity.

Let FOtree denote the first-order language over the signature with binary
predicates {R⇓, R⇒} and countably many unary predicates Pi. FOtree is inter-
preted on ordered trees in the obvious way: R⇓ is interpreted by the transitive
closure of the child relation, and R⇒ is interpreted by the transitive closure
of the right sibling relation. Note that both one step relations are first order
definable from R⇓ and R⇒.

3.1 Sets of Nodes

The answer set of an XPath path expression R consists of the range of R, or
the nodes which are reachable from some node by R [5, 3]. The main result of
[11] stated that every first order definable set of nodes is definable as the answer
set of some Conditional XPath path expression. Here we give a characterization

First Order Paths in Ordered Trees 119

of Core XPath’s expressions as the two variable fragment2 of first order logic
in an expanded signature. In FOtree we can define the one step axis relations
from the transitive relations using three variables3. With two variables this is
not possible, hence we should expand the signature with relations R↓ and R→
corresponding to the child and to the right sibling axis, respectively. Let FOtree

2
denote the restriction of FOtree in this expanded signature to the two variable
fragment.

Theorem 1. [13] (1) The answer sets of Core XPath path expressions are ex-
actly the sets definable in FOtree

2 .
(2) FOtree

2 formulas in one free variable and Core XPath’s node wffs are equally
expressive.

The hard direction follows more or less directly from the argument used to show
a similar statement for linear orders —characterizing temporal logic with only
unary temporal connectives— by Etessami, Vardi and Wilke [4]. The proof shows
that a similar statement holds for the version of Core XPath of Gottlob, Koch
and Pichler [5] which does not have the right and left sibling axis but just their
transitive closures. That language can define each set definable in FOtree

2 without
the right sibling relation.

Proof. Because the path wffs of Core XPath are closed under taking inverses,
for every path wff R there exists a node wff A such that the answer set of R
equals the denotation of A in every model. Thus we need only work with the
node wffs and only prove the second equivalence in the theorem. By the standard
translation well known from modal logic each node wff translates into a one free
variable FOtree

2 formula (cf., [17] which takes care to use only two variables).
The translation is just the definition from Table 2 written in first order logic.
This takes care of the easy direction.

For the other direction, let φ(x) be a first order formula. We want a node wff
A such that for every tree M, {n |M |= φ(n)} = [[A]]M. The proof is a copy of the
one for linear temporal logic in [4] (Theorem 1). The only real change needed is
in the set of order types: they are given in the left hand side of Table 3, together
with the needed translations (A′ denotes the translation of A).

Remark 3. The answer sets of the path wffs of both Core and Conditional XPath
have a first order characterization. An interesting question is how the sizes of
the first order formulas and their corresponding equivalent XPath node wffs
compare. For conditional XPath, the blow up is non elementary and this is
unavoidable [11]. For Core XPath, it is much better. The blow up is “only” single
exponential, which is also unavoidable [4]. The difference can be explained as

2 With the two variable fragment we mean the set of formulas in which at most two
variables may occur. Variables might be reused. Thus ∃y∃z(xR⇓y ∧ yR⇓z ∧ P (z)) is
not in the two variable fragment, but it is equivalent to ∃y(xR⇓y∧∃x(yR⇓x∧P (x)))
which is equivalent to the node wff 〈〈child+/child+/?P 〉〉.

3 For instance, xchildy is defined as xR⇓y ∧ ¬∃z(xR⇓z ∧ zR⇓y).

120 M. Marx

Table 3. Order types and their translations

τ(x, y) ∃y(τ(x, y) ∧ A(y))
x = y A′

x R↓ y 〈〈child?A′〉〉
y R↓ x 〈〈parent?A′〉〉
x R→ y 〈〈right?A′〉〉
y R→ x 〈〈left?A′〉〉

x R⇒ y ∧ ¬x R→ y 〈〈right/right+?A′〉〉
y R⇒ x ∧ ¬y R→ x 〈〈left/left+?A′〉〉
x R⇓ y ∧ ¬x R↓ y 〈〈child/child+?A′〉〉
y R⇓ x ∧ ¬y R↓ x 〈〈parent/parent+?A′.〉〉

follows. For Core XPath, we translate first order formulas in at most two variables
into Core XPath wffs, which are again (equivalent to) first order formulas in at
most two variables. For Conditional XPath, every first order formula (in one free
variable) translates to a Conditional XPath node wff, which is (equivalent to) a
first order formula in at most three variables.

3.2 Sets of Paths

In the previous section we characterized the node sets that can be defined in
XPath. (Defined either by means of a node wff, or equivalently as the answer set
of a path wff). We next characterize path sets. It is known that on finite linear
orders not every first order definable set can be defined using just two variables,
even in the signature expanded with the child relation. Whence there are sets
of nodes which are not definable in Core XPath, by the previous theorem. The
following example goes back to Kamp [10]: the set of all nodes x such that

∃y(x descendant y ∧ A(y) ∧ ∀z((x descendant z ∧ z descendant y) → B(z))). (2)

Note that this set is expressible in Conditional XPath. By the node wff

〈〈(child?B)∗/child?A〉〉.

It is also expressible in Core XPath expanded with a complementation oper-
ator (·) on path wffs. The semantics of complementation is the standard boolean
one: [[R]]M = {(n, n′) | (n, n′) �∈ [[R]]M}. Note that this operation is defined on
path wffs, so it has nothing to do with the boolean negation ¬ which is only
defined on node wffs. The set defined by (2) is also defined by the node wff

〈〈child+?A ∩ child+/?¬B/child+〉〉,

where ∩ is defined as usual from union and complementation.

Definition 1. We say that an XPath language L is first order complete for path
sets if for every FOtree formula φ(x, y) there exists an L expression R such that
for all trees M, {(n, n′) | M |= φ(n, n′)} = [[R]]M.

First Order Paths in Ordered Trees 121

Theorem 2. 1. Any expansion of Core XPath which is closed under comple-
mentation is first order complete for path sets.

2. Conditional XPath is closed under complementation, whence first order com-
plete for path sets.

The proof of the second part will be sketched in the next section. The first
part of the theorem is a corollary of a more general result:

Theorem 3. Let C be the class of sibling ordered trees. Then, on C, every
FOtree formula in at most 3 free variables is equivalent to a FOtree formula in
the same signature which uses at most 3 free and bound variables.

This theorem can be shown using Ehrenfeucht–Fräıssé pebble games from [9].
The first part of Theorem 2 can now be derived as follows.

Proof. Let L be an expansion as in the Theorem. Then L can express every
binary relation expressible in Tarski’s relation algebras. Tarski’s relation algebras
are algebras of the form (A,∪, (·), ◦, (·)−1, ε) with A a set of binary relations, and
the operators have the standard set theoretic meaning. As the atoms of Core
XPath are closed under −1, the language is closed under it. ε is definable as ? .
The formalism of Tarski’s relation algebras is equally expressive as FO2

3, first
order logic in a signature with at most binary relations symbols in which every
formula contains at most three free and bound (possibly reused) variables and
at most two free variables [16]. The desired result now follows from Theorem 3.

Remark 4. It is tempting to think that the three variable property for ordered
trees is derivable from results about trees and CTL like languages, perhaps in
case of finite trees. This is partly due to inconsistent terminology, partly because
all notions are closely related. [8] give a clear picture of these notions and their
relations and especially the relations that do not exist. In particular they show
that the three variable property is strictly stronger than the property which says
that every sentence is equivalent to a sentence in just three variables (called H-
dimension). Also, the fact that there is an finite number of “one dimensional
temporal connectives” with which we can express every first order formula φ(x)
is independent from the three (in fact k) variable property. Such a set was
established implicitly in [11]. That result does indeed imply that every FOtree

formula in one free variable is equivalent to a Conditional XPath node wff,
whence to an FOtree formula in at most three variables. Unfortunately, from
this we cannot derive the same thing for formulas in two free variables.

We finish the section with a characterization of Core XPath’s path wffs. For
positive Core XPath (without negation but with disjunction of node wffs), such a
characterization is provided in [1] and in [6]. It is exactly positive existential first
order logic (of course in the signature expanded with the child and right-sibling
relation).4 The node wffs of Core XPath with negation have been characterized in
Theorem 1. We can combine these results using a relaxation of positive existential
first order logic, reminiscent of the Carin language [7].

4 [1] does not consider the horizontal axis relations, but their proof is easily adjusted.

122 M. Marx

Definition 2. A first order Core XPath query is a formula of the form

Q(x, y) :−
∨
i

∧
(Ri

1 ∧ . . . ∧Ri
n ∧Ai

1 ∧ . . . ∧Ai
m), (3)

in which the Ai
j are FOtree

2 formulas in one free variable, and the Ri
j are atomic

formulas in the signature {R⇓, R⇒, R↓, R→,=}

An example is

Q(x, y) : −z R⇓ x, z R⇒ z′, z′ R⇓ y, P1(z),∀x(y R↓ x → P2(x)),

which is equivalent to the XPath expression

parent+?P1/right+/child+?¬〈〈child?¬P2〉〉.

So these are like unions of usual conjunctive queries, except that properties
may contain negations.

Theorem 4. [13] Every first order Core XPath query is equivalent to a Core
XPath path wff and conversely.

4 Closure Under Complementation

In this section we prove Theorem 2. Recall that in order to prove Theorem 2,
we must find, given an arbitrary Conditional XPath path wff R, a Conditional
XPath path wff R′ which is equivalent to the complement of R. The proof is
divided into a number of lemmas. The proof itself is not very difficult, but
consists of a great number of small steps. The dependencies between the different
lemmas are given in Figure 1.

Theorem 2

��
��

��
��

��
��

��
��

��

�����������

Lemma 2

�����������
Lemma 4

�����������

Lemma 1 Lemma 6

�����������

�����������
Lemma 5

Lemma 3 Lemma 9

����������� Lemma 8

Lemma 7

Fig. 1. Dependencies within the proof of Theorem 2

First Order Paths in Ordered Trees 123

Table 4. Separating (right?A1)+?B1/(left?A2)+?B2

case equivalent path wff

a right+ b (right?A1)+?(A2 ∧ B2 ∧ E)
a = b ?(A2 ∧ B2 ∧ E)
b right+ a ?(A2 ∧ E)/(left?A2)+?B2.

In the first lemma, R is brought into a shape which is easier to handle.
We need a bit of terminology. An atom is a path wff of the form step?A, or
(step?B)+?A. A test is a path wff of the form ?A. A basic composition is a test
followed by a sequence of atoms separated by /’s. We call an atom down if it is
of the form down?A, or (down?B)+?A. Analogously, we define atoms being up,
right , and left . A path wff has form T if it is a test. It has form D,U,R,L if it
is a basic composition of down, up, right or left atoms, respectively. We say that
a basic composition is separated if it has one of the following forms:

D, U, U∗/R/D∗, U∗/L/D∗. (4)

Here we use U∗/R/D∗ as an abbreviation for the forms U/R, R, R/D, U/R/
D, and similarly for U∗/L/D∗.

The syntactic notion of separated composition has a semantic counterpart.
On every tree, every wff of the form D is a subrelation of child+ (or descendant
in XPath terminology). Similarly, wffs of the form U , U∗/R/D∗ and U∗/L/D∗

are subrelations of parent+ (ancestor), parent∗/right+/child∗ (following) and
parent∗/left+/child∗ (preceding), respectively.

Lemma 1. Every path wff is equivalent to a union of tests and separated basic
compositions.

The proof of the lemma consists of an case analysis of all compositions of two
atoms. A representative example is

(right?A1)+?B1 / (left?A2)+?B2.

Suppose, for nodes a, b in some tree, a (right?A1)+?B1/(left?A2)+?B2 b holds.
Then there is a node c such that a (right?A1)+?B1 c and c (left?A2)+?B2 b. It
follows that a right+ c and b right+ c. There are three cases, depending on the
relation between a and b. The corresponding path wffs are given in Table 4 for
each case with E an abbreviation of the node wff

〈〈(right?(A1 ∧A2))+/right?(B1 ∧A1)〉〉.

Thus the equivalent wff is a union of a T , an L and an R wff.
Lemma 1 is very helpful. It provides for a quick proof of two results which

are useful later on.

Lemma 2. Conditional XPath path wffs are closed under intersection.

124 M. Marx

Lemma 3. Let Q(x, y) be a conjunctive query consisting of down atoms and
a test x?Ax. Q(x, y) is such that it implies x child+ y and for all existentially
quantified variables z, x child+ z and z child+ y. Then there exists an equivalent
Conditional XPath path wff which is a union of basic compositions of form D.
The same result holds for up, left and right atoms.

Lemmas 1 and 2 reduce the task of proving Theorem 2 to showing

Lemma 4. The complement of each separated basic composition is definable as
a Conditional XPath path wff.

The proof of Lemma 4 consists of an easy and a hard part, separated in
Lemma 5 and 6, which are shown below.

Proof of Theorem 2.2. Let R be a path wff. Then by Lemma 1 R ≡
⋃

i Ri,
with the Ri tests and separated basic compositions. Whence R ≡

⋂
i Ri. By

Lemma 2, the path wffs are closed under intersection. The complement of a test
?A is equivalent to ?¬A ∪ not equal with the latter abbreviating

child+ ∪ parent+ ∪ parent∗/left+/child∗ ∪ parent∗/right+/child∗.

By Lemma 4 each complement of a separated basic composition is equivalent
to a path wff. Hence the theorem. qed

We rewrote the path wffs into separated basic compositions because it helps
to reduce the reasoning to “lines” or “strings”. For example, consider a path wff
of the form U . Now if in a tree aU b holds, we can break into two cases:

– a is not below b;
– a is below b, but not a U b.

The first case is easy to express (using the partition again). The second is
harder but, as U is a composition of up atoms, we only need to reason about the
elements in between a and b. That is, we need to reason about a line segment. But
not all separated path wffs are of this simple form, consisting of one direction.
The next lemma however states that complements of these can be defined using
complements of the uni-directed forms.

Lemma 5. The complement of each separated basic composition is definable
from path wffs and formulas of the form

(child+ ∩D), (parent+ ∩ U), (right+ ∩R), and (left+ ∩ L). (5)

As an example, consider a path wff of the form U/R. The other forms are
handled using the same argument. Then

U/R ≡ (parent+/right+ ∩ U/R) ∪ (parent+/right+ ∩ U/R). (6)

Since |= U/R ⊆ parent+/right+, the first disjunct is equivalent to
parent+/right+, which is equivalent to

child∗ ∪ parent∗/left+/child∗ ∪ parent+ ∪ right+/child∗ ∪ parent+/right+/child+. (7)

First Order Paths in Ordered Trees 125

For the second disjunct, we use the following equation:

parent+/right+ ∩ U/R ≡ (parent+ ∩ U)/right+ ∪ parent+/(right+ ∩R). (8)

The left to right direction is a validity for all relations. The other direction
is not, but it holds because the models are trees.

All the preparation has been done, we can start the real work. We just have
to define the relations in (5) as Conditional XPath path wffs.

Lemma 6. Each relation in (5) is definable as a Conditional XPath path wff.

We will define these relations as conjunctive queries of the form specified in
Lemma 3. This is sufficient by that Lemma. We use the fact (Proposition 1)
that Conditional XPath is closed under conversion (denoted by R−1) to reduce
the number of cases to two. Consider parent+ ∩ U . Then

parent+ ∩ U ≡ ((parent+ ∩ U)−1)−1 ≡ ((parent+)−1 ∩ U−1)−1 ≡
⋂

(child+ ∩ D)−1.

The last equivalence holds because the converse of a composition of form
U is a union of compositions of form D. We can similarly relate the L and R
forms. By Proposition 1 path wffs are closed under (·)−1, thus it is sufficient to
show the lemma for child+∩D and right+∩R. The argument is identical in both
cases. For concreteness, we consider the case for down compositions.

Let R be of the form child+ ∩ D. All our arguments are semantical, thus
assume xRy holds, for x, y nodes in an arbitrary model.

To reduce the number of cases, we use a notion well known from temporal
logic. For A,B node wffs, define the path wff until(A, B) with the semantics

x until(A,B) y ⇐⇒ xR⇓y ∧A(y) ∧ ∀z(x R⇓ z R⇓ y → B(z)).

Please note that until(A,B) is a path wff, whence denotes a set of pairs, unlike
its use in temporal logic. Temporal logic is a one-sorted formalism, containing
only node wffs. The until formula from temporal logic, denoting a set of points
is of course expressed in our formalism as 〈〈until(A, B)〉〉.

Both down atoms are expressible as an until formula: child?A ≡ until(A,¬)
and (child?B)+?A ≡ until(A ∧B, B). Thus it is sufficient to show how to define
child+ ∩ ?C/R, for R a composition of until formulas, and C an arbitrary test.
We call such formulas until wffs. In order to increase readability we use < and ≤
instead of child+ and child∗, respectively. We define complementation by a case
distinction. The first case is when there is only one atom:

< ∩ ?C/until(A,B) ≡ ?¬C/< ∪ ?C/</?¬A ∪ ?C/</?¬B/</?A. (9)

For the case with more atoms we make a further case distinction. Let R =
S/until(A,B), where S is a composition of until wffs. Then

< ∩R ≡ (S/< ∩ < ∩ R) ∪ (S/< ∩ < ∩ R). (10)

126 M. Marx

If x
R

��

R

��
a

range(R)
y b then also x

R

��
a y .

Fig. 2. Lemma 7 in a picture

As |= S/< ⊆ S/until(A,B), the first disjunct is simply equivalent to < ∩S/<.
Lemma 9 shows how to define such expressions.

Now we explain how to define S/< ∩ < ∩ R, the second disjunct in (10).
Suppose x and y stand in this relation. Then x < y and there is a z such that
xSz and z < y. Let z′ be the last between x and y such that xSz′. Then we must
enforce z′until(A,B)y, which we can by (9). But that is enough, because suppose
to the contrary that there is a z such that xSz and zuntil(A, B)y and z < z′ < y.
From the last two conjuncts we obtain that z′until(A, B)y, a contradiction. So
if we can express that

(x, z) is the largest subinterval in (x, y) which is in S, (11)

we have defined the second disjunct.
To summarize, for R = S/until(A,B), the expression <∩R is equivalent to the

union of < ∩ S/< and a formula expressing ∃z((11)∧ z (<∩ until(A, B)) y). (9)
defines <∩until(A,B) as a path wff. Lemmas 8 and 9 define (11) and < ∩ S/<,
respectively.

The statement (11) is a first order formula in three free variables. As we need
it quite a lot, we make an abbreviation. For S an until wff, define max(S, x, z, y)
as the ternary relation x < z < y ∧ xSz ∧ ¬∃w(z < w < y ∧ xSw). In defining
both S/< and the max predicate we use a crucial lemma. For R a path wff, let
range(R) be the node wff which is true at a point x iff there exists a point y
such that yRx holds. These node wffs are definable in Conditional XPath, using
conversion: range(R) ≡ 〈〈R−1〉〉.

Lemma 7. Let R be an until wff. For all points x, y, a, b, such that x < a ≤ y ≤
b, if xRa and xRb and range(R)y, then also xRy. See Figure 2.

The proof is by induction on the number of /’s in R.

Lemma 8. For R an until wff, max(R, x, z, y) is definable as a Conditional
XPath path wff.

Lemma 9. For R an until wff, < ∩ R/< is definable as a Conditional XPath
path wff.

For both lemmas, the definitions are given inductively on the number of /’s
in R. Lemma 7 is used in the inductive case.

First Order Paths in Ordered Trees 127

5 Conclusion

The results make us conclude that both Core and Conditional XPath are very
natural languages for talking about ordered trees. Their simplicity and visual
attractiveness make them suitable candidates for a user-friendly alternative to
first order logic. The expressive completeness result for paths is very important,
as arguably the relations in Conditional XPath are still “drawable”. With draw-
able we mean that one can make an intuitive picture which exactly captures the
meaning of the query. Composition and union are obviously drawable, whereas
intersection and negation are not. The conditional step (step?A)+ is also draw-
able using ellipsis. Of course one should not draw the filter expressions, but just
indicate them with formulas attached to nodes in the drawings.

In this context it is interesting to note a repetition in history. The natural
class of models in computational linguistics is the class of finite ordered trees. In
the beginning of the field of model theoretic syntax Monadic Second Order Logic
was invariably used to reason about these structures [15]. Later, formalisms based
on modal logic were proposed as alternatives. Arguments for the alternatives
were both based on computational complexity (which is lower both for model
checking and theorem proving) and on “naturalness” of expressing properties
(in this case of grammars). In fact, both Core and Conditional XPath have
their roots in the nineties: [2] and [14] define isomorphic variants of the filter
expressions of Core and Conditional XPath, respectively.

From a theoretical point of view, Conditional XPath is not harder than Core
XPath: the query evaluation problem is still solvable in time O(|Q| · |D|), with
|Q|, |D|, the sizes of the query and the data, respectively [12].

Its easy syntax, visual attractiveness, and low complexity combined with
its expressive completeness make Conditional XPath an excellent candidate for
succeeding XPath 1.0.

Acknowledgments

Maarten Marx was supported by the Netherlands Organization for Scientific Re-
search (NWO), under project number 612.000.106. Thanks are due to Loredana
Afanasiev, David Gabelaia, Evan Goris, Jan Hidders, Sanjay Modgil, Maarten
de Rijke, Thomas Schwentick, Yde Venema and Petrucio Viana.

References

1. M. Benedikt, W. Fan, and G. Kuper. Structural properties of XPath fragments.
In Proceedings. ICDT 2003, 2003.

2. P. Blackburn, W. Meyer-Viol, and M. de Rijke. A proof system for finite trees. In
H. Kleine Büning, editor, Computer Science Logic, volume 1092 of LNCS, pages
86–105. Springer, 1996.

3. World-Wide Web Consortium. XML path language (XPath): Version 1.0.
http://www.w3.org/TR/xpath.html.

128 M. Marx

4. K. Etessami, M. Vardi, and Th. Wilke. First-order logic with two variables and
unary temporal logic. In Proc. LICS’97, pages 228–235, 1997.

5. G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms for processing XPath
queries. In VLDB’02, 2002.

6. G. Gottlob, C. Koch, and K. Schulz. Conjunctive queries over trees. In Proceedings
of PODS, pages 189–200, 2004.

7. A. Halevy and M. Rousset. Combining horn rules and description logics in CARIN.
Artificial Intelligence, 104:165–209, 1998.

8. I. Hodkinson and A Simon. The k-variable property is stronger than H-dimension
k. Journal of Philosophical Logic, 26:81–101, 1997.

9. N. Immerman and D. Kozen. Definability with bounded number of bound variables.
In Proceedings of the Symposium of Logic in Computer Science, pages 236–244,
Washington, 1987. Computer Society Press.

10. J.A.W. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, University
of California, Los Angeles, 1968.

11. M. Marx. Conditional XPath, the first order complete XPath dialect. In Proceed-
ings of PODS’04, pages 13–22, 2004.

12. M. Marx. XPath with conditional axis relations. In Proceedings of EDBT’04,
volume 2992 of LNCS, pages 477–494, 2004.

13. M. Marx and M. de Rijke. Semantic characterizations of XPath. In TDM’04 work-
shop on XML Databases and Information Retrieval., Twente, The Netherlands,
June 21, 2004.

14. A. Palm. Propositional tense logic for trees. In Sixth Meeting on Mathematics of
Language. University of Central Florida, Orlando, Florida, 1999.

15. J. Rogers. A Descriptive Approach to Language Theoretic Complexity. CSLI Press,
1998.

16. A. Tarski and S. Givant. A Formalization of Set Theory without Variables, vol-
ume 41. AMS Colloquium publications, Providence, Rhode Island, 1987.

17. M. Vardi. Why is modal logic so robustly decidable? In DIMACS Series in Dis-
crete Mathematics and Theoretical Computer Science 31, pages 149–184. American
Math. Society, 1997.

18. P. Wadler. Two semantics for XPath. Technical report, Bell Labs, 2000.

An Abstract Framework for Generating
Maximal Answers to Queries�

Sara Cohen1 and Yehoshua Sagiv2

1 Faculty of Industrial Engineering and Management,
Technion—Israel Institute of Technology,

Technion City, Haifa 32000, Israel
sarac@ie.technion.ac.il

2 The Selim and Rachel Benin School of Engineering and Computer Science,
The Hebrew University of Jerusalem,

Jerusalem 91904, Israel
sagiv@cs.huji.ac.il

Abstract. A framework for modeling query semantics as graph proper-
ties is presented. In this framework, a single definition of a query auto-
matically gives rise to several semantics for evaluating that query under
varying degrees of incomplete information. For example, defining natural
joins automatically gives rise to full disjunctions. Two of the proposed se-
mantics have incremental-polynomial-time query-evaluation algorithms
for all types of queries that can be defined in this framework. Thus, the
proposed framework generalizes previous definitions of semantics for in-
complete information and improves previous complexity results for query
evaluation.

1 Introduction

Incomplete data has always been perceived as a source of difficulty, due to the
need to develop special semantics and query-evaluation algorithms. Over the
years, different approaches for dealing with incomplete data have been devel-
oped. Some approaches deal with null values in the database itself and inves-
tigate the problem of computing answers that are true in all possible worlds,
e.g., [11, 13]. Other approaches deal with null values that arise during query eval-
uation (e.g., when a tuple from one relation cannot be joined with any tuple from
another relation) and investigate the problem of computing partial or maximal,
rather than complete answers. The outerjoin is an early example of an operator
for computing partial answers to join queries. [4] proposed full disjunctions as
a clear semantics for maximal answers to join queries. [14] characterized when
full disjunctions can be computed by outerjoins. [8] proposed several semantics
for maximal answers to queries over semistructured data and investigated the
complexity of query evaluation. For two of the semantics of [8], maximal answers
can be computed in polynomial time in the size of the input and the output,

� This work was supported by the Israel Science Foundation (Grant 96/01).

T. Eiter and L. Libkin (Eds.): ICDT 2005, LNCS 3363, pp. 129–143, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

130 S. Cohen and Y. Sagiv

and the same is true for full disjunctions, which were shown to be a special case
of one of those two semantics [10]. But the goal of finding appropriate semantics
for maximal answers and developing query-evaluation algorithms seemed to be
dependent on the specific query language at hand. For example, [2] gave a se-
mantics and a query-evaluation algorithm for maximal answers to queries that
generate relations from XML documents.

In this paper, we develop an abstract framework that automatically gives
rise to several semantics that allow varying degrees of incomplete data in maxi-
mal answers to queries. In particular, we identify two semantics for which query
evaluation is in incremental polynomial time (a complexity measure introduced
by [7]). One of these two semantics admits all maximal answers that are struc-
turally consistent with the given query. The second semantics requires, in addi-
tion, that maximal answers satisfy all the query conditions involving variables
that are assigned non-null values. Our results essentially mean that one formu-
lation of a query suffices for an efficient evaluation of that query under different
circumstances of incomplete data. We show that earlier work [4, 8, 9, 15, 2] can
be cast in our framework and the result is twofold. First, earlier work can be ex-
tended to more general types of queries. Second, we improve earlier complexity
results for query evaluation and also give new complexity results.

2 Graphs and Graph Properties

In our abstract framework, we model queries, databases and answers as graphs.
Semantics are modeled as graph properties. Hence, this section is devoted to
defining graphs, graph properties and the maximal P-subgraphs problem.

Graphs. A graph G = (V,E, r) consists of (1) a finite set of vertices V , (2) a
set of edges E ⊆ V × V and (3) a root r such that r ∈ V ∪ {⊥}. We say that
G is rooted if (1) r �= ⊥ and (2) every vertex in G is reachable via a directed
path from r. We say that G is connected if its underlying undirected graph is
connected. Observe that every rooted graph is connected. However, a connected
graph need not be rooted.

A graph G′ is an induced subgraph of a graph G, written G′ # G, if (1) G′ is
derived from G by deleting some of the vertices of G (and the edges incident on
these vertices) and (2) G′ has the same root as G, if the root of G is among the
vertices of G′, and has ⊥ as its root otherwise. We write G′ � G if G′ # G and
G′ is not equal to G.

Graph Properties. A graph property P is a possibly infinite set of graphs.
For example, “is a clique” is a graph property that contains all graphs that are
cliques. In this paper, we only consider properties P such that verifying whether
a graph G is in P can be done in polynomial time.

We consider several types of graph properties. A graph property P is hered-
itary if P is closed with respect to induced subgraphs, i.e., whenever G ∈ P,
every induced subgraph of G is also in P. A graph property P is connected hered-
itary if (1) all the graphs in P are connected and (2) P is closed with respect to

An Abstract Framework for Generating Maximal Answers to Queries 131

connected induced subgraphs. Finally, P is rooted hereditary if (1) all the graphs
in P are rooted and (2) P is closed with respect to rooted induced subgraphs.

Many graph properties are hereditary [5], e.g., “is a clique” and “is a forest.”
Note that “is a clique” is also connected hereditary. However, “is a clique” is
not rooted hereditary, since it contains graphs that do not have roots. Some
properties are connected hereditary, but not hereditary or rooted hereditary,
such as “is a tree,” which contains a graph G if the underlying undirected graph
of G is a tree. Note that G is not necessarily rooted. Hence, “is a tree” is not
rooted hereditary. The property “is a rooted clique” is rooted hereditary.

The Maximal P-Subgraphs Problem. Let G be a graph and P be a prop-
erty. (The graph G is not necessarily in P.) We say that G′ is a P-subgraph of
G if G′ # G and G′ ∈ P. The set of P-subgraphs of a graph G is denoted P(G).

We say that G′ is a maximal P-subgraph of G if G′ is a P-subgraph of G
and there is no P-subgraph G′′ of G, such that G′ � G′′. We use PMax(G) to
denote the set of maximal P-subgraphs of G. The maximal P-subgraphs problem
is: Given a graph G, find the set PMax(G).

3 Abstract Framework

The results in this paper are not dependent on a specific query language, type
of a database, or semantics. Hence, we present an abstract framework that can
be used to model many different queries, databases and semantics. Throughout
this paper, we will discuss well-known types of queries, databases and semantics
and show how they relate to our framework. In order to avoid confusion, we will
use the terms query graph, data graph and graph semantics to refer to a query,
database and semantics, respectively, in our framework.

Data Graphs and Query Graphs. A data graph is a tuple D = (V,E, r, lV , lE),
such that (1) (V,E, r) is a graph, (2) lV is a vertex-labeling function that asso-
ciates each vertex in V with a label and (3) lE is an edge-labeling function that
associates each edge in E with a label. The vertices of a data graph D are also
called data items and are denoted with the letter d.

Query graphs have constraints defined on their vertices and their edges. A
vertex constraint is a mapping cv that associates every pair (d, D), such that d is
a vertex in the data graph D, with the value true or false. An edge constraint
is a mapping ce that associates every triple (d, d′, D), such that d and d′ are
vertices in the data graph D, with the value true or false.1 Our complexity
results hold only for vertex constraints and edge constraints that can be decided
in polynomial time.

Intuitively, a vertex constraint resembles a selection condition, since it is
applied to a single data item. An edge constraint resembles a join condition, since
it is applied to a pair of data items. However, our vertex and edge constraints
are much more expressive than standard selection and join conditions, since they

1 The data graph D does not necessarily contain the edge (d, d′).

132 S. Cohen and Y. Sagiv

can take the entire D into consideration. For example, a vertex constraint can
associate a pair (d, D) with true if the label of d is greater than the average
value of all the labels of vertices in D.

Queries may also constrain the structure of their answers. A structural con-
straint, denoted s, is simply one of the letters c, r or n, where: c indicates that
answers should be connected, r indicates that answers should be rooted and n
imposes no constraint on the structure of query answers.

A query graph is a tuple Q = (V,E, r, CV , CE , s), such that (1) (V,E, r) is a
graph, (2) CV is a vertex-constraint function that associates each vertex v in V
with a vertex constraint cv, (3) CE is an edge-constraint function that associates
each edge e in E with an edge constraint ce and (4) s is a structural constraint.
The vertices of a query graph Q are also called variables and are denoted with
the letter q.

There may be different ways to model various types of databases and queries
as data graphs and query graphs, respectively. We present some examples.

Example 1 (Data Graphs). Consider an XML document X. The document X
can be modeled as a rooted data graph DX in a straightforward manner, by
defining DX as the graph that reflects the nesting structure of X.

There are many potentially interesting ways to model a relational database R
as a data graph DR. One option is to define DR = (V,E, r, lV , lE) where (1) V
contains a vertex dt for each tuple t in a relation R ∈ R, (2) E = ∅, (3) the root
r is ⊥, and (4) lV (dt) = (N, t) where N is the name of the relation containing
the tuple t, for each vertex dt ∈ V . Note that we do not have to define lE , since
E is empty.

For example, consider the relational database R1 in Figure 1. The graph DR1

also appears in the same figure. In DR1 , we use L, M and E as a shorthand for
Location, Manages and Employee, respectively. ��

Example 2 (Query Graphs). Even queries that lack an inherent graph structure
can be modeled as graphs. For example, consider the relational-algebra join-
query R1 �� · · · �� Rn, where Ri (1 ≤ i ≤ n) is a relation. This may be modeled
as a query graph Q = (V,E, r, CV , CE , s) in the following manner:

– V contains a vertex qi for each relation Ri,
– there is an edge (qi, qj) in E if the relations Ri and Rj share some common

attributes,
– the root r is ⊥,
– CV maps each vertex qi to the vertex constraint that assigns true to (dt, D)

if the tuple t belongs to the relation Ri, and false otherwise,
– CE maps each edge (q, q′) to the edge constraint that assigns true to

(dt, dt′ , D) if the tuples t and t′ are join consistent, and false otherwise,
– s = c.

The query graph Q1 for Employee �� Location �� Manages appears in Figure 1.
The edges in Q1 are undirected, since (qi, qj) ∈ E if and only if (qj , qi) ∈ E. ��

An Abstract Framework for Generating Maximal Answers to Queries 133

Location

Company Addr

Abc Corp. NY
Def Corp. CA
Ghi Corp. NY

Employee

EName Dept Company

John Sales Abc Corp.
Jim HR Abc Corp.
Sam Sales Def Corp.

Manages

MName Dept Company

Jill Sales Abc Corp.
Janet Sales Ghi Corp.

(E,(John, Sales, Abc. Corp))

(E,(Jim, HR, Abc. Corp))

(E,(Sam, Sales, Def. Corp))

l1

m1

e1

l2

l3

e3

e2

m2

DR1

(M,(Jill, Sales, Abc. Corp))

(M,(Janet, Sales, Ghi. Corp))

(L,(Def. Corp, CA))

(L,(Abc. Corp, NY))

(L,(Ghi. Corp, NY))

Belongs
To: E

Belongs
To: M

q1 q3

q2

Belongs
To: L

Q1

E.Company =
L.Company

M.Company =
L.Company

E.Company =
M.Company and
E.Dept = M.Dept

Fig. 1. The relational database R1, the data graph DR1 and the query graph Q1

Assignment Graphs and Partial Assignments. Recall that the vertices
in a data graph D are data items and the vertices in a query graph Q are
variables. Informally, an answer for Q over D is a set of pairs of the form (qi, dj),
indicating that the variable qi is assigned the data item dj . We formalize this
idea by introducing assignments graphs that are graphs containing all possible
assignments of variables to data items, such that the assignments are consistent
with the vertex constraints and the edge constraints of the query graph.

Formally, consider a query graph Q = (VQ, EQ, rQ, CV , CE , s) and a data
graph D = (VD, ED, rD, lV , lE). The assignment graph for Q and D, denoted
Q⊗D, is defined as (V,E, r), where

– V is the set of pairs (q, d) ⊆ VQ×VD such that the result of applying CV (q)
to (d, D) is true,

– there is an edge
(
(q, d), (q′, d′)

)
∈ E if there is an edge (q, q′) ∈ EQ and the

result of applying CE(q, q′) to (d, d′, D) is true,2 and
– the vertex r is defined as (rQ, rD) if (rQ, rD) ∈ V and as ⊥, otherwise.

Let Q be a query graph and let D be a data graph. A partial assignment A
for Q over D is an induced subgraph of Q⊗D such that A does not contain two
vertices (q, d) and (q′, d′), where q = q′ and d �= d′. Intuitively, this restriction
states that a variable in Q is assigned at most one data item in D.3

Several special types of partial assignments are of interest. Let A be a partial
assignment for Q over D. We say that A is vertex complete if for each vertex q

2 Actually, we should write CE((q, q′)). For clarity, we omit the extra parenthesis here
and throughout this paper.

3 Our partial assignments resemble the assignment graphs of [10]. However, their edges
are defined in a somewhat different fashion.

134 S. Cohen and Y. Sagiv

(q2,l1)

(q3,,m2)

(q1,e1)

(q2,l2)

(q2,l3)

(q1,e2)

(q1,e3)

(q3,,m1)

Full Disjunction

Company Addr Dept EName MName

Abc Corp. NY Sales John Jill
Abc Corp. NY HR Jim ⊥
Def Corp. CA Sales Sam ⊥
Ghi Corp. NY Sales ⊥ Janet

Fig. 2. The assignment graph Q1 ⊗DR1 and the full disjunction of the relations in R1

in Q, there is a d in D such that (q, d) is in A. We say that A is edge complete if
for every pair of vertices (q, d) and (q′, d′) in A, if there is an edge (q, q′) in Q,
then there is an edge

(
(q, d), (q′, d′)

)
in A. Finally, A is structurally consistent

with Q if A satisfies the structural constraint of Q.
The following example demonstrates different types of partial assignments.

Example 3 (The assignment graph Q1⊗DR1). Consider the query graph Q1 and
data graph DR1 , which appear in Figure 1. The assignment graph Q1 ⊗ DR1

appears in Figure 2. Consider the partial assignments A1, A2, A3 and A4 defined
as the induced subgraphs of Q1 ⊗DR1 that contain the sets of vertices S1, S2,
S3 and S4, respectively:

S1 = {(q1, e1), (q2, l1), (q3,m1)} S3 = {(q1, e2), (q2, l1)}
S2 = {(q1, e2), (q2, l1), (q3,m1)} S4 = {(q1, e2), (q3, m1)}

Note that A1 is vertex complete and edge complete, and A2 is vertex complete,
but is not edge complete (since there is no edge

(
(q1, e2), (q3, m1)

)
in A2). The

partial assignment A3 is edge complete, but is not vertex complete. Finally, A4
is neither vertex complete nor edge complete. Note that A1, A2 and A3 are
strucurally consistent with Q1. The partial assignment A4 is not strucurally
consistent with Q1, since A4 is not connected. ��

Graph Semantics. We give a formal account of a graph semantics. Our frame-
work is defined so as to capture varied methods for dealing with incomplete
information. When complete information is unavailable, it may not be possible
to completely satisfy a query graph over a data graph. Hence, we will consider
graph semantics that allow answers that maximally satisfy a query.

A graph semantics S is a parameterized graph property, i.e., for each query
graph Q and data graph D, S[Q, D] is a graph property, with the following
restriction: If A ∈ S[Q, D], then A # Q ⊗D is a partial assignment for Q over
D. Note that S[Q, D] does not necessarily contain all partial assignments for Q
over D. If A ∈ S[Q, D], then we say that A is a partial answer for Q over D under
the graph semantics S. The set of maximal answers for Q over D under a graph
semantics S is SMax[Q, D], i.e., the set of maximal graphs in S[Q, D]. Observe
that using our formulation, the problem of computing all maximal answers for
Q over D under a graph semantics S is simply a special case of the maximal
P-subgraphs problem, defined in Section 2.

An Abstract Framework for Generating Maximal Answers to Queries 135

A graph semantics can contain any set of partial assignments. We present
several natural graph semantics. We show later on that common semantics are
often special cases of these graph semantics. Let Q be a query graph and let D
be a data graph. We define the graph semantics Sves, Svs, Ses and Ss as follows:

– Sves[Q, D] contains all partial assignments in Q⊗D that are vertex complete,
edge complete and structurally consistent with Q.

– Svs[Q, D] contains all partial assignments in Q⊗D that are vertex complete
and structurally consistent with Q.

– Ses[Q, D] contains all partial assignments in Q ⊗D that are edge complete
and structurally consistent with Q.

– Ss[Q, D] contains all partial assignments in Q ⊗ D that are structurally
consistent with Q.
Common methods for query evaluation easily lend themselves to the for-

malisms presented above, as demonstrated in the following examples.

Example 4 (Joins). Let Q be a query graph that represents a join query R1 ��
· · · �� Rn, as defined in Example 2, and let D be a data graph that represents a
relational database R, as defined in Example 1. It is not difficult to show that
there is a one-to-one correspondence between the graphs in SMax

ves [Q, D] and the
tuples resulting from applying R1 �� · · · �� Rn to R.

Intuitively, if A ∈ SMax
ves [Q, D], then A is a partial assignment of variables

(that range over the relations appearing in the query) to tuples in the relations.
The definition of the vertex conditions of Q ensures that variables are assigned
tuples in the relations that they represent. The edge conditions of Q, along with
the fact that Sves only contains partial assignments that are edge complete,
ensures that every pair of tuples in the assignment is join consistent. Finally,
the fact that Sves only contains vertex complete assignments ensures that A
corresponds to the join of all relations mentioned in the query.

As an example, observe that the only partial assignment in SMax
ves [Q1, DR1]

is the graph A1 (from Example 3). This graph corresponds to the only tuple in
the natural join of Location, Employee and Manages. ��

Example 5 (Full Disjunctions). When dealing with incomplete information, the
join operator is often replaced with the full-disjunction operator. The full-
disjunction operator is a natural extension of the outerjoin operator to an
arbitrary number of relations. Full disjunctions were introduced by [4]. The com-
plexity of evaluating a full disjunction of relations was studied in [14, 10].

Two relations are connected if they share a common attribute. A set of re-
lations R1, . . . , Rn is connected if it forms a connected graph (when creating a
vertex for each Ri and placing an edge between Ri and Rj if they are connected).
The full disjunction [14] of R1, . . . , Rn, is the set of tuples t over the attributes
of R1, . . . , Rn, such that

1. t is the join of some collection of join-consistent tuples from a connected
subset of the relations R1, . . . , Rn, padded with null values, and

2. There is no additional relation among the Ri’s with a tuple that is join
consistent with t.

136 S. Cohen and Y. Sagiv

We use FD(R1, . . . , Rn) to denote the query that computes the full disjunc-
tion of a given set of relations R1, . . . , Rn.

Consider, for example, the relational database R1 in Figure 1. The full dis-
junction of the relations in R1 appears in Figure 2. Note that the result contains
null values (denoted ⊥) where no information is available. For example, in the
second tuple of the result, there is a null value in the MName column, since
there is no tuple, in the relation Manages, that contains information about the
manager of the HR department in Abc Corp.

We now show how full disjunctions can be expressed in our framework. A
relational database is represented as a data graph DR, as described in Example 1.
A query FD(R1, . . . , Rn) is represented as a query graph Q in the same manner
that a join query is represented (see Example 2). Hence, the query graph Q1 in
Figure 1 also represents the query FD(Employee, Location, Manages).

It is not difficult to show that there is a one-to-one correspondence between
graphs in SMax

es [Q, DR] and tuples in the result of FD(R1, . . . , Rn). In particu-
lar, note that partial assignments in Ses[Q, DR] are connected (because of the
strucural constraint in Q), and hence, they represent sets of connected tuples.
For example the second tuple of the full disjunction in Figure 2 corresponds to
the induced subgraph A3 (from Example 3) that contains the vertices (q1, e2)
and (q2, l1). Note that A3 is a maximal Ses-subgraph in the assignment graph
Q1 ⊗DR1 , i.e., A3 ∈ SMax

es [Q1, DR1]. ��

4 Complexity Classes

We have shown that the problem of computing maximal answers, for a query
graph Q, a data graph D and a graph semantics S, is a special case of the more
general maximal P-subgraphs problem. Hence, it is of importance to analyze the
complexity of the maximal P-subgraphs problem, since it will immediately shed
light on our query-evaluation problem.

The maximal P-subgraphs problem cannot be solved in polynomial time, in
the general case. This follows from the fact that sometimes the size of PMax(G)
is exponential in the size of G. Hence, exponential time may be needed just to
print the output. This phenomenon is quite similar to the problem that arises
when analyzing query-evaluation time. It is well-known that for many types of
queries the number of tuples in the result may be exponential in the size of the
input (i.e., the query and database). Hence, input-output complexity is of interest
when analyzing query evaluation [17].

Under input-output complexity, the complexity of a problem is analyzed as
a function of its input and output. We say that a problem is in the complexity
class PIO if it can be solved in polynomial time under input-output complexity.
For most classes of queries, query evaluation is not in PIO. For example, the
evaluation of a join of relations cannot usually be performed in polynomial time
under input-output complexity, since it is NP-complete to determine whether the
result of a join is nonempty [12]. Much effort has been put into finding classes of
queries for which evaluation is in PIO. For such classes of queries, query evalu-

An Abstract Framework for Generating Maximal Answers to Queries 137

ation can be considered “inherently easy,” since evaluation is only polynomially
longer than reading the input and printing the output. For example, for the class
of acyclic joins [17] and for the class of queries with bounded variable size [16],
query evaluation is in PIO. Recently, it has also been shown that evaluating a
full disjunction is in PIO [10].

Another complexity class that is of interest when dealing with problems that
may have large output (e.g., query evaluation and the maximal P-subgraphs
problem) is incremental polynomial time [7], or PINC for short. Formally, a
problem is in PINC if k output items of the problem can be returned in polyno-
mial time in the input and k, for all k.4 Observe that PTIME ⊆ PINC ⊆ PIO.
The class PINC is of interest when the user is interested in optimizing query-
evaluation time for retrieval of the first k tuples, as opposed to optimizing for
overall time. (Many commercial database systems allow the user to specify the
option of optimizing the retrieval of the first k tuples.) This is particularly useful
when the user reads the answers as they are delivered, or is only interested in
looking at a small portion of the total answer. If query evaluation is in PIO,
but not in PINC, the user may have to wait exponential time until the entire
output is created, before viewing a single tuple. Interestingly, the algorithm for
acyclic joins in [17] is in PINC, although this is not explicitly stated in that
paper.

5 Efficiently Evaluating a Query

In this section, we present some known results about the complexity of the
maximal P-subgraphs problem. These results are used in order to analyze the
complexity of query evaluation for the natural semantics presented in Section 3.

5.1 Complexity of the Maximal P-Subgraphs Problem

Let P be a graph property. Suppose that we want to show that the maximal
P-subgraphs problem is in PIO. To do this, we must devise an algorithm that,
when given any graph G, produces PMax(G), in polynomial time in the input
(i.e., G) and the output (i.e., PMax(G)). For many properties P, it is difficult to
find such an algorithm, since an arbitrary graph G must be dealt with. A naive
algorithm will create the set of graphs P(G), and then remove the graphs that
are not maximal. However, this is clearly too expensive to be desirable. Our task
of finding an appropriate algorithm is even more difficult if we actually want to
show that the maximal P-subgraphs problem is in PINC. Hence, we focus on a
version of the maximal P-subgraphs problem that is restricted in its input. It is
often easier to show that this version is in PIO or in PINC.

Let G be a graph and P be a property. We use G− v to denote the induced
graph of G that contains all vertices other than v. We say that G almost satisfies
P if there is a vertex v in G, such that G − v ∈ P. The restricted maximal P-

4 Note that no ordering is imposed on the output, and hence, these are arbitrary items.

138 S. Cohen and Y. Sagiv

subgraphs problem is: Given a graph G that almost satisfies P, find all maximal
P-subgraphs of G.

The following result appears in [3] and presents a sufficient condition for the
maximal P-subgraphs problem to be in PINC.

Theorem 1. Let P be a hereditary, rooted-hereditary or connected-hereditary
graph property. If the restricted maximal P-subgraphs problem is in PTIME,
then the maximal P-subgraphs problem is in PINC.

Note that even if the restricted maximal P-subgraphs problem is in PTIME,
the maximal P-subgraphs problem may not be in PTIME. For example, consider
the property Pclique, which contains all graphs that are cliques. There may be an
exponential number of maximal Pclique-subgraphs for a given graph. However, if
G almost satisfies Pclique, then there are at most two maximal Pclique-subgraphs
for G. Hence, the restricted maximal Pclique-subgraphs problem is in PTIME,
but the maximal Pclique-subgraph is only in PINC, and not in PTIME.

5.2 Special Cases of the Maximal P-Subgraphs Problem

Our graph semantics are parameterized graph properties, where the parame-
ters are the query and the database. Thus, Theorem 1 (which deals with graph
properties that are not parameterized) does not immediately yield results on the
complexity of query evaluation. However, it is straightforward to generalize this
theorem to parameterized properties. In this subsection, we analyze the com-
plexity of query evaluation for the natural graph semantics defined in Section 3.

Semantics that allow only vertex-complete answers are often of high computa-
tional complexity. For the special case of SMax

vs [Q, D], where Q has the structural
constraint n, the problem of generating all maximal answers is in PINC. For all
other cases, query evaluation for Sves and Svs is not in PINC or in PIO, unless
P=NP.

Theorem 2. The problem of determining nonemptyness of SMax
ves [Q, D] is NP-

complete. The problem of determining nonemptyness of SMax
vs [Q, D] is is NP-

complete when the structural constraint of Q is either r or c.

Query evaluation for Ses or Ss can be performed efficiently. The proof for
Theorem 3 follows from (1) a generalization of Theorem 1 for parameterized
graph properties and (2) a proof that the restricted maximal P-subgraphs prob-
lem (for an appropriately defined property P) is in PTIME. We omit the details
of the proof due to lack of space. Note that in the following theorem, the input
consists of Q and D.

Theorem 3. Let S be either Ses or Ss. Let Q be a query graph and let D be a
data graph. The problem of generating SMax[Q, D] is in PINC.

There is a special case in which query evaluation for Sves is efficient. This
follows directly from Theorem 3.

An Abstract Framework for Generating Maximal Answers to Queries 139

Corollary 1. Let Q be a query graph and let D be a data graph. If all partial
assignments in SMax

es [Q, D] are vertex complete, then the problem of computing
SMax

ves [Q, D] is in PINC.

A similar result holds for SMax
vs if all partial assignments in SMax

s are vertex
complete. A special case of Corollary 1 is the known fact that evaluation of
acyclic joins is in PINC [17].

6 Generating Maximal Answers

In this section, we consider several semantics that have been proposed in order
to deal with incomplete information. We briefly discuss how these semantics can
be modeled in our abstract framework, and give the complexity results that are
implied by these modelings.

6.1 Relational Databases: Full Disjunctions

Recall full-disjunction queries, introduced in Example 5. The problem of evalu-
ating the full disjunction of γ-acyclic relations was shown to be in PIO [14]. In
the general case, computing full disjunctions was also shown to be in PIO [10].
The algorithm in [10] cannot be used to show that the problem of evaluating a
full disjunction is in PINC. However, this follows from Theorem 3 and from the
fact that full disjunctions can be expressed using the graph semantics Ses.5

Corollary 2. Let R1, . . . , Rn be relations. The problem of computing the full
disjunction of R1, . . . , Rn, i.e., of evaluating FD(R1, . . . , Rn), is in PINC.

The following was observed by [10]. First, full disjunctions can be general-
ized by allowing constraints other than equality between attributes. Second, this
generalization remains in PIO. Using our framework, it is easy to see that such
extensions remain in PINC. All that is required is to associate the edges of a
query with edge constraints that are different from equality of attributes. In ad-
dition, it is possible to allow more general vertex constraints. Query evaluation
remains in PINC, as long as the vertex and edge constraints chosen are verifiable
in PTIME. These types of extensions of full-disjunction queries are of importance
when querying heterogeneous data sources, where (1) query variables may take
values from several different relations and (2) it may be unlikely that string
equality will hold between different values that denote the same entity (e.g.,
different character strings may actually denote the same address).

6.2 XML Databases

The hierarchical structure of an XML document is naturally modeled as a rooted
data graph. Such data graphs are often trees, but may also contain cycles because

5 Note that subsumption of tuples in our framework is defined in terms of object
identities. For full disjunctions, tuple subsumption was defined in terms of values.
These two notions of subsumption coincide for our modeling of full disjunctions.

140 S. Cohen and Y. Sagiv

of ID/IDREFs or XLinks. Queries against XML are often defined as graphs, and
thus, lend themselves naturally to our framework. We consider several different
methods that have been presented in the past, for evaluating queries flexibly
against XML, and show how they can be modeled in our framework.

Weak Semantics and Or-Semantics. In [8], databases and queries are mod-
eled as rooted, directed graphs with labeled edges. We write vlu to denote the
fact that there is an edge from v to u labeled with l.

We quote from [8] two different semantics for evaluating their queries over
a database. Let μ be a partial assignment of the vertices in a query Q to the
vertices of a database D. The assignment μ satisfies the edge vlu in Q if (1) μ
is defined on v and u, and (2) there is an edge from μ(v) to μ(u) in D that is
labeled with l. Satisfaction of an edge is extended to satisfaction of a path π in
the natural way, i.e., μ satisfies π if it satisfies every edge in π.

A partial assignment μ is an or-matching if

– μ assigns the root of the query to the root of the database;
– for every vertex q, such that μ(q) is defined, there is a path π from the root

of the query to q, such that μ satisfies π.

The or-matching μ is also a weak matching if whenever μ is defined for q
and q′ and the query contains an edge qlq′, then μ satisfies qlq′.

The problems of computing all maximal weak matchings and of computing
all maximal or-matchings, for a given query and database, were shown to be
in PIO [8, 10]. It is not difficult to show that these problems are in PINC, by
modeling their queries and databases in our framework. Weak semantics can be
modeled using Ses and or-semantics can be modeled using Ss. Hence, Corollary 3
follows from Theorem 3. Actually, the queries of [8] can be extended without
affecting the PINC complexity by allowing more general vertex constraints and
edge constraints. For example, edge constraints can require the existence of a
path between two vertices, instead of requiring the existence of an edge.

Corollary 3. Given a query and a database, the problems of generating all max-
imal or-matchings and all maximal weak matchings are in PINC.

Tree Pattern Relaxations. [15, 1, 6] consider the problem of answering re-
laxed versions of a given query, against a given database. Their queries and
databases are trees (and not general graphs). The main focus of their work is on
(1) defining a metric for measuring how exactly an answer satisfies a query and
(2) presenting efficient algorithms that find the best k results, according to their
metrics. Although the algorithms were shown to work well experimentally, no
theoretical bounds on the runtime of the algorithms were presented. We discuss
how relaxed queries from [15] can be modeled in our framework. Relaxed queries
from [1, 6] can be modeled similarly.

In [15], XML documents are rooted trees whose vertices have types. Queries
are called tree patterns and are a special type of rooted trees (1) whose vertices
have types and (2) whose edges are either pc-edges (parent-child edges) or ad-
edges (ancestor-descendent edges). An exact answer for a tree pattern T with

An Abstract Framework for Generating Maximal Answers to Queries 141

respect to a database is a rooted subtree of the database that satisfies all the
constraints implied by the tree pattern. Formally, this requires that (1) each
pc-edge in T is mapped to an edge in the database, (2) each ad-edge in T is
mapped to a directed path in the database, and (3) each vertex q in T is mapped
to a vertex d in the database, such that the type of d is a subtype of that of q.

A relaxation of a tree pattern T is the result of one or more of the following
actions: (1) replace a pc-edge in T with an ad-edge, (2) remove a leaf vertex
from T , (3) make a node a child of its grandparent instead of its parent, (4)
replace the type t of a vertex in T with a supertype of t. An approximate answer
for T is an exact answer to any relaxation of T . We can model tree patterns
in our framework by defining query graphs that correspond to tree patterns,
appropriately, and by using the semantics SMax

es . Corollary 4 follows.

Corollary 4. Let T be a tree pattern and let D be a database. The problem of
finding all maximal approximate answers for T with respect to D is in PINC.

Interconnections. In [2], databases are labeled, directed, rooted trees. A sim-
ple method was presented for determining whether two vertices in a database
are interconnected, i.e., meaningfully related. The interconnection graph I for a
database is a graph that has the same vertices as in the database, and an edge be-
tween interconnected vertices. A query consists of a series of XPath expressions
π1, . . . , πn. Two semantics for query evaluation were considered.

Consider a query π1, . . . , πn and a database with an interconnection graph I.
A partial assignment μ from π1, . . . , πn to vertices in the database is a reachably-
interconnected matching (resp., completely-interconnected matching) if (1) μ
maps each path πi to a vertex that satisfies πi and (2) the induced subgraph of
I that contains the vertices in the image of μ is connected (resp., a clique).

It was shown [2] that the following problems are in PIO: finding all max-
imal reachably-interconnected matchings and finding all maximal completely-
interconnected matchings. Using our framework, we can show that these prob-
lems are in PINC, by (1) using an appropriate modeling of queries and databases,
and (2) choosing Ses (resp., Ss) to model completely-interconnected matchings
(resp., reachably-interconnected matchings). As before, the queries from [2] can
be extended by allowing more general constraints while retaining their PINC
complexity.

Corollary 5. Given a database and query, the problems of finding all maxi-
mal completely-interconnected matchings and of finding all maximal reachably-
interconnected matchings are in PINC.

Flexible Semantics. [9] considered the problem of answering a query in a flex-
ible fashion, by allowing permutations of the vertices in a query. Formally, their
databases and queries are rooted, labeled, directed graphs. Flexible semantics
were presented for query evaluation. A complete assignment μ from the vertices
in a query to the vertices in a database is a flexible matching if for every edge
qlq′ in the query, (1) μ(q′) has an incoming edge with the label l and (2) there
is either a directed path from μ(q) to μ(q′) or vice-versa.

142 S. Cohen and Y. Sagiv

Flexible matchings can be modeled in our framework by defining query graphs
appropriately and by using the semantics Sves. Although [9] did not consider par-
tial flexible matchings, these can easily be allowed by using the graph semantics
Ses (to derive a combination of flexible and weak matchings) or by using Ss
(to derive a combination of flexible and or-matchings). In both cases, query
evaluation is in PINC.

Corollary 6. The problems of generating all maximal flexible or-matchings and
all maximal flexible weak matchings, for a database and a query, are in PINC.

7 Conclusion

The main contributions of this paper are as follows. First, an abstract framework
for modeling queries, databases and semantics was presented. In our framework,
semantics are modeled as graph properties. Hence, results for the maximal P-
subgraphs problem can be used in order to analyze the problem of efficient query
evaluation. Second, we presented the natural semantics Ses and Ss that can be
used for any type of query. These graph semantics can be efficiently evaluated.
Third, we showed that previously studied semantics coincide with Ses and Ss.
This allowed us to improve upon previously known complexity results for query
evaluation (i.e., PINC complexity instead of PIO). Fourth, using our modeling
techniques, it is easy to extend existing semantics for inexact (e.g., maximal, ap-
proximate, interconnected or flexible) answers by incorporating more general ver-
tex and edge constraints, without affecting the complexity of query evaluation.

An interesting problem for future research is that of efficiently returning query
answers in ranking order, for some ranking scheme. Note that the complexity
class PINC is of interest in this context, while PIO is not of interest, since PIO
algorithms may wait until all answers are generated before returning a single
answer. Using Theorem 2, it is easy to show that the problem of returning
results in size order in not in PINC, even for the semantics Ses and Ss. It is of
importance to discover other ranking schemes that can be efficiently computed
and to find special efficient cases of ranking by size.

References

1. S. Amer-Yahia, L.V.S. Lakshmanan, and S. Pandit. FleXPath: flexible structure
and full-text querying for xml. In Proc. 2004 ACM SIGMOD International Con-
ference on Management of Data, 2004.

2. S. Cohen, Y. Kanza, and Y. Sagiv. Generating relations from XML documents. In
Proc 9th International Conference on Database Theory, 2003.

3. S. Cohen and Y. Sagiv. Generating all maximal solutions for hereditary, connected-
hereditary and rooted-hereditary graph properties, 2004. Corr ID: cs.DS/0410039.

4. C. Galindo-Legaria. Outerjoins as disjunctions. In Proc. 1994 ACM SIGMOD
International Conference on Management of Data, 1994.

5. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman, San Francisco, 1979.

An Abstract Framework for Generating Maximal Answers to Queries 143

6. S. Guha, H.V. Jagadish, N. Koudas, D. Srivastava, and T. Yu. Approximate xml
joins. In Proc. 2002 ACM SIGMOD International Conference on Management of
Data, 2002.

7. D.S. Johnson, C.H. Papadimitriou, and M. Yannakakis. On generating all maximal
independent sets. Information Processing Letters, 27(3):119–123, 1988.

8. Y. Kanza, W. Nutt, and Y. Sagiv. Queries with incomplete answers over semistruc-
tured data. In Proc. 18th Symposium on Principles of Database Systems, 1999.

9. Y. Kanza and Y. Sagiv. Flexible queries over semistructured data. In Proc. 20th
Symposium on Principles of Database Systems, 2001.

10. Y. Kanza and Y. Sagiv. Computing full disjunctions. In Proc. 22nd Symposium
on Principles of Database Systems, 2003.

11. L. Libkin. A semantics-based approach to design of query languages for partial
information. In Semantics in Databases, 1995.

12. D. Maier, Y. Sagiv, and M. Yannakakis. On the complexity of testing implications
of functional and join dependencies. J. ACM, 28(4):680–695, 1981.

13. A.O. Mendelzon and G.A. Mihaila. Querying partially sound and complete data
sources. In Proc. 20th Symposium on Principles of Database Systems, 2001.

14. A. Rajaraman and J.D. Ullman. Integrating information by outerjoins and full
disjunctions. In Proc. 15th Symposium on Principles of Database Systems, 1996.

15. D. Srivastava S. Amer-Yahia, S. Cho. Tree pattern relaxation. In Proc. 8th Inter-
national Conference on Extending Database Technology, 2002.

16. M.Y. Vardi. On the complexity of bounded-variable queries. In Proc. 14th Sym-
posium on Principles of Database Systems, 1995.

17. M. Yannakakis. Algorithms for acyclic database schemas. In Proc. 7th International
Conference on Very Large Data Bases, 1981.

Optimal Distributed Declustering Using
Replication

Keith B. Frikken

CERIAS and Department of Computer Sciences, Purdue University,
Recitation Building, 656 Oval Drive, West Lafayette IN 47907

Telephone: (765)-496-6767
kbf@cs.purdue.edu

Abstract. A common technique for improving performance for database
query retrieval is to decluster the database among multiple disks so that
retrievals can be parallelized. In this paper we focus on answering range
queries over a multidimensional database, where each of its dimensions
are divided uniformly to obtain tiles which are placed on different disks;
there has been a significant amount of research for determining how to
place the records on disks to minimize the retrieval time. Recently, the
idea of using replication (i.e., placing records on more than one disk) to
improve performance has been introduced. When using replication there
are two goals: i) to minimize the retrieval time and ii) to minimize the
scheduling overhead it takes to determine which disk obtains a specific
record when processing a query. The previously known replicated declus-
tering schemes with low retrieval times are randomized; and one of the
primary advantages of randomized schemes is that they balance the load
evenly among the disks for large queries with high probability. In this pa-
per we introduce a new class of replicated placement schemes called the
shift schemes that are: i) deterministic, ii) have retrieval performance
that is comparable to the randomized schemes, iii) have a strictly op-
timal retrieval time for all large queries, and iv) have a more efficient
query scheduling algorithm than those for the randomized placements.
Furthermore, we display experimental results that suggest that the shift
schemes have stronger average performance (in terms of retrieval times)
than the randomized schemes.

1 Introduction

A typical bottleneck for answering queries in a database is I/O; to reduce the
effect of this bottleneck, data can be declustered onto multiple disks to facilitate
parallel retrieval. In a multi-dimensional database, such as a GIS or a spatio-
temporal database, the dimensions can be tiled uniformly to form a grid. When
answering a range query in such a grid, only the tiles that contain part of the
query need to be retrieved. In such an environment, the goal of a placement
scheme is to place the tiles onto disks in such a way that the average range
query is answered as efficiently as possible (i.e., minimizing the number of par-
allel rounds of retrieval). A placement scheme is optimal for a query if at most

T. Eiter and L. Libkin (Eds.): ICDT 2005, LNCS 3363, pp. 144–157, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Optimal Distributed Declustering Using Replication 145

� (# of tiles)/(# of disks) � tiles are retrieved from any single disk. However,
it was shown in [2] that even in two dimensions this cannot be done for all
range queries in a grid except in a few limited circumstances. There is a large
amount of work that attempts to be “close” to optimal (a subset of which is
[2, 5, 6, 7, 8, 11, 12, 13, 15, 17, 18, 19, 20, 21]). If the database is treated like a grid
and the disks as colors, then this can be stated as a grid coloring problem. For
the rest of the paper we use “record” and “tile” synonymously, and likewise use
“declustering” and “coloring” interchangeably.

To improve performance further, the usage of replication (i.e. placing each tile
on multiple disks) [4, 9, 10, 12, 18, 19, 21] has been introduced. When replication
is used, each tile in a query can be retrieved from multiple places, which al-
lows greater flexibility when answering the query. When using replication there
are two questions: i) which disk to retrieve each tile from and ii) how to use
replication to improve performance. A general replicated scheduling algorithm
exists that requires O(rm2) computation where m is the number of disks and r
is the level of replication. The previously known replicated declustering schemes
with low retrieval time are randomized and have a large query scheduling time.
In this paper we introduce a new class of replicated placement schemes called
the shift schemes that are: i) deterministic, ii) have comparable retrieval perfor-
mance to randomized schemes, iii) have a strictly optimal retrieval time for all
large queries (this is the first class of schemes that guarantees this property that
the author is aware of), and iv) have an efficient query scheduling algorithm.

The outline of this paper is as follows: Section 2 discusses previous work in
distributed database declustering, in Section 3 the shift schemes are introduced
(for a level of replication of 2), a proof of their optimality bound is given, and a
scheduling algorithm is presented. Section 4 contains generalizations of the shift
schemes to levels of replication larger than two and discuss the performance of
the schemes with disk failures. Section 5 contains experimental data showing the
performance of the shift schemes, and Section 6 concludes the paper.

2 Related Work

Given a multi-dimensional database with each dimension divided uniformly to
form tiles which are placed on different disks, the retrieval of records during query
processing can be parallelized. As is usual in this area, we assume that retrieving
a tile from a database requires a constant fixed amount of time regardless of the
tile and that query borders are on tile boundaries. The query retrieval time in
such a system is the time that it takes to retrieve the maximum number of tiles
in the query that are stored on the same disk. The problem of placing the records
so that the response times for range queries is minimized has been well studied;
this section presents a survey of this work.

Given a database declustered onto k disks and a range query Qm containing
m tiles, let the retrievals from each disk be represented by R0, . . . , Rk−1. Let
rt(Qm) represent the retrieval time for Qm (this is maxk−1

i=0 Ri). A query Qm

is said to be retrieved optimally if rt(Qm) = �m
k �. A coloring is said to be

146 K.B. Frikken

strictly optimal if all queries can be retrieved optimally. It was shown in [2] that
strictly optimal colorings are impossible except in a few limited circumstances.
To quantify how far a scheme is from optimal, let the additive error of a query
Qm be the value (rt(Qm) − �m

k �). The additive error of the coloring scheme
is the maximum additive error over all range queries. In this paper we define
another similar metric, the surplus of a query Qm. The surplus for a query Qm

is defined by
∑k−1

i=0 max{Ri − �m
k �, 0}; note that the surplus is the sum of the

additive error of all disks. Similar to the additive error, the surplus of a coloring
is the maximum value of the surplus over all queries. Several schemes have been
developed to minimize the additive error including: Disk Modulo (DM) [11],
Fieldwise eXclusive (FX) or [15], the cyclic schemes (including RPHM, GFIB,
and EXH) [17], GRS [7], a technique developed by Atallah and Prabhakar [5],
several techniques based on discrepancy theory [8, 20] (for an introduction to
discrepancy theory see [16]), and many other schemes.

We now review a class of schemes called the Latin Hypercube Disk Modulo
(LHDM) schemes [13]. An LHDM scheme is a coloring scheme that is defined
in the following manner: Given a Latin Hypercube with each dimension of size
k with a lookup function L(x1, . . . , xd) that returns the color in the range [0, k)
at tile x1, . . . , xd. Recall that a Latin Hypercube has one instance of each color
in any k tiles in a single dimension. The coloring function C for an LHDM
scheme is C(x1, . . . , xd) = L(x1 mod k, . . . , xd mod k). Many coloring schemes
are instances of the LHDM scheme, including: Disk Modulo(DM), Fieldwise
exclusive-or (FX) for powers of 2, the cyclic schemes, GRS, and many other
schemes. The LHDM schemes have a nice property, which is that a query with
dimension lengths n1, . . . , nd has the same additive error as a sub-query with
dimension lengths (n1 mod k), . . . , (nd mod k); this is because any k consecu-
tive tiles in any dimension have exactly one instance of each color. This result
also holds for the surplus, and a natural consequence is that the additive error
(surplus) for any LHDM scheme is bounded.

It was shown in [20] that the additive error for k colors in two dimensions
is Ω(log k), and that in d(≥ 3) dimensions it is Ω(log

d−1
2 k). In two dimensions,

schemes have been developed (Atallah and Prabhakar’s scheme, GRS, and
schemes based in discrepancy theory [5, 20]) that have a provable upper bound of
O(log k) on additive error. For higher dimensions d(≥ 3), two schemes are given
in [8] with additive error O(log(d−1) k), which are the schemes with the lowest
proven asymptotic bound on additive error for higher dimensions. A recent trend
has been to use replication [4, 9, 10, 12, 18, 19, 21] to improve performance. When
using replication there are two questions that arise: i) given a query on a set of tiles
which disk should retrieve each tile and ii) how to use replication to improve per-
formance. It was shown in [10] that any replicated scheme for a query Qm can be
scheduled in O(rm2) time where r is the level of replication. The first schemes in
this are were for general queries (i.e., not only for range queries). One of the first
attempts at replication was the chained declustering [14], this scheme defined a
primary and backup disk. And if a record has a primary disk of i, then the backup
disk was (i+ 1 mod k), and thus this scheme formed a chain. It was shown in [3],

Optimal Distributed Declustering Using Replication 147

that the there is an algorithm that can test if a query can be answered with at
most K tiles per disk in linear time. However, the strongest mechanisms (to date)
place the disks on two random disks, this is called Random Duplicate Allocation
(RDA). In [18, 19] it was proven that if tiles are stored on two random disks then
the probability of requiring more than (�m

k � +1) retrievals from a single disk for a
random query Qm approaches 0 as the number of disks gets large. Recently, it was
shown in [1] that if m ≥ ck log k for large enough c that the query can be sched-
uled in strictly optimal time with high probability, and an algorithm that runs in
timeΔkO(1) that computes an optimal scheduling algorithm with high probability
(where Δ is the imbalance of a non-replicated randomized scheme).

The above work does not take into account the previous work on non-replicated
coloring schemes. Recently, there has been an attempt to merge the two tech-
niques. In [21] replication was used to achieve optimal solutions for up to 15
disks. A strictly optimal scheme, called Complete Coloring (CC), for any num-
ber of disks by storing all tiles on all disks was introduced in [12, 21]. Recently
[4, 9], there has been an effort to develop schemes that have small additive error,
but that also have an efficient retrieval algorithm. We outline three such schemes:

1. A grouping scheme where the disks are placed into groups of size r (r is
the level of replication) and the grid is colored with groups. The scheduling
algorithm for this case has computation complexity O(m) [4, 9] using only
one-pass over the records.

2. Using a base scheme that is a strong non-replicated scheme and then placing
each tile on r − 1 random disks. The scheduling algorithm for this coloring
is O(m + k2ε2), where ε is the additive error of the base scheme [9].

3. This is the same as the previous scheme except that the scheduling algorithm
is greedy and is done in O(m) time [9].

3 Our Contribution

The primary contribution of this paper is a new type of replicated scheme called
the shift schemes, which are a combination of a generalized version of chained
declustering and non-replicated coloring schemes. The strongest schemes in the
past have been randomized, and these schemes have the nice property that as
a query gets large, the probability that the scheme performs well is high. The
shift schemes are deterministic schemes with this property; specifically, we show
that any query with at least k(k−1)ε tiles can be scheduled in a strictly optimal
fashion (for a level of replication of 2). Surprisingly, this bound also holds if a
single disk fails. While this bound is not as strong as the bound for RDA, we
give experimental results that show that the shift schemes perform better than
RDA and GRS with RDA. Also, this bound also holds if there is a disk failure.
Furthermore, the shift schemes can be scheduled in O(m+k log ε) (which is faster
than the randomized algorithms, note that while a greedy GRS-RDA algorithm
requires only O(m) time our scheme performs substantially better at balancing
the schemes load); it is worth noting that many shift schemes in two dimensions,
will be scheduled in O(m + k log log k) time.

148 K.B. Frikken

4 Shift Coloring Schemes

In this section we introduce the shift schemes for declustering. In this section
we introduce the shift schemes for a level of replication equaling two; we discuss
extending the shift schemes to higher levels of replication in Section 5. We define
the scheme in Section 4.1, we then prove that an upper bound for the largest
query that cannot be retrieved optimally in Section 4.2, in Section 4.3 we discuss
an efficient scheduling algorithm, and then in Section 4.4 we improve the bound
on the maximum non-optimal query.

4.1 Definition of the Shift Schemes

We now introduce the class of replicated coloring schemes with level of repli-
cation two, called the shift schemes. Instead of being a specific method, this
is a general technique for extending a non-replicated coloring scheme into a
“strong” replicated coloring scheme. The first color for this scheme is defined
by any non-replicated coloring scheme (which we call the base scheme); we let
f : [0,∞)d → [0, k − 1) represent this function (d is the dimension of the grid
and k is the number of disks). The second color is determined by a shift value s,
where gcd(s, k) = 1, and the second color of a tile T is (f(T) + s mod k) (note
that when s = 1 this is the chained declustering). We now give an example of
a shift scheme for a 5 by 5 grid in Figure 1 with its base scheme being RPHM
with 5 colors (i.e., f(x, y) = x + 2y mod 5 and the coordinate (0, 0) is the top
left corner) with a shift value of 3.

0,3 1,4 2,0 3,1 4,2
2,0 3,1 4,2 0,3 1,4
4,2 0,3 1,4 2,0 3,1
1,4 2,0 3,1 4,2 0,3
3,1 4,2 0,3 1,4 2,0

Fig. 1. Example Shift Scheme

The intuition behind the shift schemes is that when there is a surplus for
the query we would like to be able to shift tiles from the disk with surplus to
disks with a shortage of tiles for the query. By choosing a shift value that is
relatively prime to the number of disks it is possible to create a chain between
any two disks. Thus if there are enough tiles at each disk to create enough such
chains to balance all surplus values then the query can be answered optimally.
Furthermore, the shift schemes have two interesting properties:

– For large queries, the shift schemes are strictly optimal (assuming that the
base scheme has a bounded additive error). More specifically, if given a base
scheme for k colors that has a maximum additive error ε, then any query
with more than k(k− 1)(2ε+ 1) tiles will be strictly optimal. This is proven
in Section 4.2. After defining the scheduling algorithm for the shift schemes

Optimal Distributed Declustering Using Replication 149

it is possible to refine the bound on the maximum non-optimal query to
k(k − 1)(ε). We present this analysis in Section 4.4.

– It is possible to schedule a query with m records in O(m + k log ε) time
(which is substantially better than the general retrieval algorithm that is
O(m2)), where ε is the additive error of the base scheme for the query. This
is discussed in Section 4.3.

4.2 Performance of Shift Schemes

The primary result in this section is Theorem 1, which states that any query in a
d-dimensional grid colored with shift scheme for k colors with m ≥ k(k−1)(2ε+1)
tiles (where ε is the maximum additive error of the base scheme used) can be
scheduled in an optimal fashion.

Before we prove this theorem we need to define a block. Given a query Q in
a database declustered over k disks using a shift scheme, a block is any k tiles
where the base scheme retrieves exactly one tile from each disks. Note that the
tiles of a block do not need to be located near each other. Also, the number of
non-overlapping blocks in a query is min{R0, . . . , Rk−1}, where Ri is the number
of tiles retrieved from disk i in the base scheme.

Lemma 1. Given a block for a shift scheme and any two disks i, j ∈ [0, k) :
i �= j there is a schedule for the block such that the retrieval times for each disk
(denoted by R0, . . . , Rk−1) are:

Rq =

⎧⎨
⎩

0 : q = i
2 : q = j
1 : otherwise

Proof: The shift scheme defines a permutation on the disks; this permutation is
0, s, 2s, . . . , (k−1)s, where s is the shift value. Since gcd(s, k) = 1, this is a cyclic
permutation (i.e., it is a chain). For this proof we assume s = 1, but this proof
easily extends to any s. To obtain the desired schedule we use the second color
(defined by the shift value) for tiles with initial disks i, i+1, . . . , j− 1 where the
math is modulo k, and use the initial color for all other tiles. Since i �= j, the
number of tiles retrieved from disk i will be 0, the number of tiles retrieved from
disk j will be 2, and all other disks will retrieve one tile. ��
Example: Suppose we are given a block in Figure 1; the colors of the block would
be (0,3),(1,4),(2,0),(3,1), and (4,2). The cyclic permutation defined by the shift
is 0,3,1,4,2. Suppose we need to shift a value from disk 4 to disk 3. Using the
technique of the previous proof we shift values from tiles with base disks 4, 2,
and 0. Thus the scheduling for this block would be (bold entries are the disks
that retrieve the tiles): (0,3),(1,4),(2,0),(3,1), and (4,2). Notice that two tiles
are retrieved from disk 3, no tiles are retrieved from disk 4, and a single tile is
retrieved from the other disks.

Corollary 1. Given a query Q in a grid declustered with a shift scheme, where
the base scheme has retrieval times for Q from each disk as R0, R1, . . . , Rk−1

150 K.B. Frikken

and has a surplus of s, then if min{R0, R1, . . . , Rk−1} ≥ s, there is a schedule
for the shift scheme that is strictly optimal.

Proof: Since min{R0, R1, . . . , Rk−1} ≥ s, there is at least s non-overlapping
blocks in the query. Thus by Lemma 1, each of these blocks can fix a unit of
surplus; therefore the surplus can be shifted to disks with a shortage. ��

Example: Suppose we have a database declustered over five disks using a shift
scheme with shift value s = 1. Furthermore, suppose there is a query with re-
trieval times for the base scheme as (1,2,3,2,2). Clearly, a locally optimal scheme
for this solution would have retrieval time 2, and thus the surplus is 1, which is
larger than the minimum number of tiles from each disk. Thus, by the previous
Corollary there is an optimal schedule for the shift scheme. To balance the load
a tile needs to be shifted from disk 2 to disk 0, which can be done by shifting a
tile (i.e., by retrieving from the second disk) from disk 2, 3, and 4. The new re-
trieval times would be (1+1,2,3-1,2+1-1,2+1-1) or equivalently (2,2,2,2,2). This
situation is depicted in the following figure.

0,1 1,2 1,2 2,3 2,3
2,3 3,4 3,4 4,0 4,0

0 1 1 2 2
3 3 4 4 0

Fig. 2. Example above, before and after scheduling

Theorem 1. Any query Qm with at least k(k− 1)(2ε+ 1) tiles on a grid with k
colors that is declustered using a shift scheme where the base scheme has maxi-
mum additive error ε can be answered in a strictly optimal fashion.

Proof: Since the maximum additive error is ε, the maximum number of tiles re-
trieved from a single disk (in the base coloring) is �m

k �+ε. Thus the surplus must
be bounded by (k − 1)ε. Let R0, R1, . . . , Rk−1 be the number of tiles retrieved
from each disk in the base scheme, then:
min{R0, R1, . . . , Rk−1}
≥ m− (k − 1)(�m

k �+ ε)
≥ m− (k − 1)(m

k + 1 + ε)
= m

k − (k − 1)− (k − 1)ε
≥ (k − 1)(2ε + 1)− (k − 1)− (k − 1)ε (since m ≥ k(k − 1)(2ε + 1))
= (k − 1)ε.

Thus the min{R0, R1, . . . , Rk−1} is larger than the surplus and by Corollary 1,
this query has an optimal retrieval schedule. ��

This bound is not as strong as the bounds for randomized colorings, but there
are many reasons to believe that this bound is not tight, including:
1. While it is theoretically possible that given a coloring scheme with an addi-

tive error of ε that the surplus is (k − 1)ε it is much smaller in practice.
2. In many cases a single block could fix more than one surplus value.
3. The number of blocks in a query is likely to be larger than its lower bound

that is established above.

Optimal Distributed Declustering Using Replication 151

4.3 Scheduling of the Shift Schemes

In this section we present an algorithm for scheduling queries for the shift
schemes. The algorithm given in [10] can be used to schedule the queries with
m tiles in O(m2) time. However, in this section we present an algorithm which
schedules query retrieval in O(m + k log ε) time, where ε is the additive error
of the base scheme. Note that if the base scheme is GRS, Atallah and Prab-
hakar’s scheme (for powers of 2), or the schemes based on the Corput set, then
in 2 dimensions ε = O(log k), and thus the scheduling algorithm runs in time
O(m+ k log log k). Furthermore, if the scheme in [20] us used for d(≥ 3) dimen-
sions (where the additive error for k colors is O(logd−1 k)) the retrieval time
would be O(m + kd log log k).

It requires O(m) time to build an array of how many tiles are retrieved by
each disk if the base scheme is used. The algorithm in [3] can be used to test if
specific retrieval schedule time is possible in O(k) time. And since the minimum
retrieval time is in the ranges from �m

k � to max{R0, . . . , Rk−1}, and this range
is of size equal to the additive error of the base scheme (call it ε). Thus a binary
search can be used to find the optimal schedule in time O(m+ k log ε). We now
give an overview of the scheme presented by [3]. Essentially the algorithm starts
at a disk and shifts the minimum number of tiles to the subsequent that will
make the current disk no larger than the desired threshold. It then processes the
subsequent disk, and continues till it reaches the first disk again. If at any time
a disk attempts to shift more tiles than it has, then the algorithm returns false.
Upon reaching the first disk, it is known that all other disks are optimal (the
first one may not be) and so the algorithm proceeds for a second loop.

4.4 A Refined Analysis of the Maximum Non-optimal Area

The algorithm defined in the previous section, gives insight into a more refined
analysis of the maximum non-optimal query. The only time that there is not
an optimal retrieval schedule is if the number of tiles shifted to a disk plus the
number of tiles that the disk retrieves from the base scheme exceed the optimal
retrieval time (i.e., �m

k �). Suppose that m ≥ k(k− 1)ε (ε is the additive error of
the base scheme), then �m

k � ≥ (k−1)ε. Thus, the optimal retrieval time is larger
than any possible value being shifted into a disk. Thus for any disk with at least
�m

k � tiles is balanceable. Suppose that a disk has �m
k � − c tiles (where c > 0).

In this case the disk can absorb up to c surplus values, and thus this disk would
also be balanceable. Therefore, the surplus is balanceable. Thus if there are at
least k(k − 1)ε tiles in the query, then there is an optimal retrieval.

We now outline some consequences of the above result:

1. If the base scheme is GRS [7] or the scheme proposed by Atallah and
Prabhakar [5], then any maximum query without an optimal schedule is
O(k2 log k) for two dimensions.

2. If the base scheme is the scheme proposed by Chen et. al [8], then for d(≥
3) dimensional grids the maximum query without an optimal schedule is
O(k2 logd−1 k).

152 K.B. Frikken

3. If the scheme is GRS for two dimensions, then for k ≤ 94 any query with at
least 2k(k − 1) tiles can be answered optimally, and for k ≤ 550 any query
with at least 4k(k − 1) tiles can be answered optimally. This is a natural
consequence of the fact the GRS has a maximum additive error of 2 for
k ≤ 94 and of 4 for k ≤ 550 [7].

5 Generalizing the Shift Schemes

In this section we look at several generalizations of the shift schemes including: i)
a generalized way of defining the schemes (Section 5.1), ii) extending the schemes
to higher levels of replication (Section 5.2), and iii) analyzing what happens when
a disks fail (Section 5.3).

5.1 Permutations

For simplicity the shift schemes were described using an shift value to form a
chain between any two sets of disks. A more general way of defining the schemes
is to define such a chain with an arbitrary permutation of the disks. In such a
situation, when the first color of a tile is x, then the second color is x’s successor
in the permutation (with wrap-around of course). This is clearly a generalization
of the shift schemes; also, the properties of the shift schemes carry over to these
permutation schemes.

5.2 Higher Levels of Replication

The shift schemes can easily be extended to higher levels of replication. When the
level of replication is 2, we use a non-replicated coloring scheme (call it f) and
a permutation of the colors (as discussed in Section 5.1). The colors for a tile T
were f(T) and f(T)’s successor in the permutation. The natural generalization
to a level of replication r is to assign the first color to be f(T) and that the
remaining colors be f(T)’s r− 1 successors in the permutation. This scheme has
several interesting properties (the details will be in the full version of the paper):

1. Queries can be scheduled in time O(m+rk log ε). This is done with a similar
algorithm to the one outlined in Section 4.3.

2. A block can fix r − 1 surplus values, and thus if each disk retrieves at least
� (k−1)ε

r−1 � tiles for a specific query, then that query can be answered in strictly
optimal fashion.

5.3 Survivability

Another use of replication is to have resilience against disk failures; clearly if
the shift schemes with level of replication r is used then the system can still
answer all queries is r− 1 disks fail. Furthermore, as long as r consecutive disks
in the permutation do not fail then all queries can be answered; where as in
the randomized case if r disk fail then with high probability there will be a tile
that cannot be retrieved. However, we would like to know something about the

Optimal Distributed Declustering Using Replication 153

performance of the scheduling algorithm as well as the retrieval times. The only
other work in this area was in [9]. We make several claims below for the case
where r = 2 and the number of failed disks is 1.

1. The queries can be scheduled in time O(m + k log ε) using a simple modifi-
cation to the scheduling algorithm.

2. Any query with at least (k)(k − 1)(ε) tiles will be strictly optimal (this is
proven below). Somewhat surprisingly this is same as the bound without
disk failures. This does not imply that the schemes behave the same when a
disk fails, because: i) when a disk fails the optimal retrieval time is greater
(it is � m

k−1� instead of �m
k �), and ii) the bound may not be tight for either

case.

Theorem 2. If given a query Qm where m > k(k − 1)(ε), then there is an
optimal schedule for Qm even if a single disk fails.

Proof: First we claim that if m ≥ (k)(k − 1)(ε), then � m
k−1� ≥ �

m
k � + ε. Thus

after the disk fails, if you ignore the tiles on the failed disk, all other disks will
retrieve at most � m

k−1� tiles. However, to retrieve the tiles from the failed disk
these must be shifted to its backup disk, which could cause a surplus of tiles at
this disk. The rest of the proof continues similarly to the analysis in Section 4.4.
��

6 Experiments

In this section we outline the results of two experiments:

– Experiment #1: How do you choose a strong shift value?
– Experiment #2: How well do the shift schemes perform in two and three

dimensions compared to randomized schemes?

Like [9], we use the GRS scheme as our base scheme. Our comparison metric
is the average deviation above the optimal retrieval time. To be more precise,
our metric is given a set of queries Q we compute

∑
Qm∈Q rt(Qm)−� m

k �
|Q| . Clearly, a

scheme with a lower average would have stronger average performance. Further-
more, one expects that randomized placements would be strongest on average as
the law of large numbers would work in their favor. The average is computed by
uniformly selecting a large number of queries with side length chosen uniformly
from some range. We perform experiments for two dimensions for 32, 64, and
128 disks as well as for three dimensions for 32 disks.

6.1 Experiment #1

For 32 disks there are 16 possible shift values; these are all odd values in the
range [0,31]. Figure 3 shows the average deviation for specific ranges of query
sizes, note that the best two entries per range are highlighted (or more if ties

154 K.B. Frikken

exist). The diagram has a few interesting properties: i) the average deviation
is similar for shift value s and 32 − s and ii) it appears as 7 and 25 are the
strongest shift values for a GRS shift scheme with 32 colors. Further exper-
imentation showed that these shift values were the strongest in similar tests
for three dimensions. We now attempt to give intuition to these numbers. It
is better to have a shift value that makes the second disk be “far away” in
the grid from the base color; this is because values that are far away are un-
likely to both be in surplus. As expected shifts of 7 and 25 lead to a sec-
ond value that is far away from the base value. Similar experiments showed
that strong shift values for 64 and 128 disks in two dimensions are 19 and 99
respectively.

s [1,11] [2,12] [3,13] [4,14] [5,15] [6,16] [7,17] [8,18] [9,19] [10,20]
1 0.1198 0.1264 0.1398 0.1314 0.1021 0.1162 0.093 0.0656 0.0473 0.031
3 0.0409 0.0385 0.0382 0.0391 0.0177 0.0111 0.0104 0.0025 0.0 0.0
5 0.0334 0.0314 0.0316 0.0284 0.0085 0.0084 0.0083 0.0023 0.0 0.0
7 0.0249 0.0234 0.0226 0.0231 0.0058 0.0014 0.0004 0.0002 0.0 0.0
9 0.044 0.044 0.0466 0.0363 0.0194 0.017 0.0155 0.0096 0.0 0.0
11 0.0775 0.0687 0.0683 0.0609 0.0323 0.0332 0.0155 0.0081 0.0026 0.0014
13 0.0854 0.0777 0.0809 0.0644 0.0258 0.0258 0.0135 0.0051 0.0028 0.0005
15 0.0571 0.0484 0.0517 0.0365 0.0201 0.0072 0.0042 0.0002 0.0 0.0
17 0.0587 0.0483 0.0523 0.0367 0.0203 0.0073 0.0042 0.0001 0.0 0.0
19 0.0868 0.0768 0.081 0.0638 0.026 0.0256 0.0134 0.0051 0.0027 0.0004
21 0.0777 0.0688 0.0675 0.0603 0.0316 0.0339 0.0157 0.0074 0.0026 0.0015
23 0.0444 0.0442 0.0465 0.0367 0.0196 0.0176 0.0151 0.0102 0.0 0.0
25 0.0252 0.0236 0.0221 0.0236 0.0058 0.0012 0.0006 0.0002 0.0 0.0
27 0.033 0.0312 0.0323 0.0288 0.0085 0.0086 0.0080 0.0024 0.0 0.0
29 0.0409 0.0386 0.0381 0.0391 0.0176 0.0111 0.0105 0.0026 0.0 0.0
31 0.1208 0.1247 0.141 0.1317 0.1025 0.1147 0.0929 0.0648 0.0467 0.0319

Fig. 3. Performance of various shift values for different query ranges

6.2 Experiment #2

In this section we compare various schemes with a level of replication two. More
specifically we looked at the RDA scheme (where each tile is on two random
unique disks), the GRS-RDA scheme (where the first color is the GRS scheme)
and the second is random value, and the shift schemes with shift values 7, 19, and
99 for 32, 64, 128 disks respectively. Our comparison was based on looking at 1000
queries that were generated uniformly with side lengths chosen from [x, x+ 10].
Clearly, a scheme with a lower average deviation from optimal (i.e. number of
records/number of disks) would be desired. We performed the comparisons for
two dimensions (for 32, 64, and 128 disks) and three dimensions (for 32 disks)
(see Figure 4). Clearly, the results show that the shift schemes perform better
in this situation than the randomized schemes.

Optimal Distributed Declustering Using Replication 155

Fig. 4. Experimental Results: 4a) Average Deviation from Optimal (for 2-D), 32 disks,
4b) Average Deviation from Optimal (for 3-D), 32 disks, 4c) Average Deviation from
Optimal (for 2-D), 64 disks, and 4d) Average Deviation from Optimal (for 2-D), 128
disks

7 Conclusions

In this paper a class of replicated schemes was introduced called the shift schemes.
These schemes have several interesting properties including: i) they are deter-
ministic, ii) any query with at least k(k−1)ε tiles can be retrieved in an optimal
fashion, iii) queries can be scheduled in time O(m + k log ε), and iv) if a sin-
gle disk fails, then any query with at least k(k − 1)ε tiles can be retrieved
in an optimal fashion. Previously known replicated schemes use randomiza-
tion and require more expensive query scheduling algorithms. We show that
the shift schemes have stronger performance than the randomized schemes in
many cases when the level of replication is two; we show this even for the case
where the metric is average performance, which one might intuitively expect to
be the randomized placements strongest case. Future directions for this work
include:

1. A better analysis of the maximum non-optimal retrievable query.
2. A more detailed analysis of the survivability of the shift schemes.
3. A more detailed analysis of techniques for choosing strong shift values.

156 K.B. Frikken

Acknowledgments. The authors would like to thank Mikhail Atallah for many
useful discussions as well as the anonymous reviewers for their useful comments
and suggestions on this paper.

References

1. C. R. A. Czumaj and C. Scheideler. Perfectly Balanced Allocation. In 7th Interna-
tional Workshop on Randomization and Approximation Techniques in Computer
Science (RANDOM’03), pages 240–251, 2003.

2. K. Abdel-Ghaffar and A. E. Abbadi. Optimal Allocation of Two-dimensional Data.
In International Conference on Database Theory, pages 409–418, 1997.

3. J. Aerts, J. Korst, and S. Egner. Random Duplicate Storage for Load Balancing
in Multimedia Servers. Information Processing Letters, 76(1–2):51–59, 2000.

4. M. Atallah and K. Frikken. Replicated Parallel I/O without Additional Schedul-
ing Costs. In Proceedings of 14th Intl. Conf. on Database and Expert Systems
Application (DEXA 2003, LNCS 2736), pages 223–232.

5. M. J. Atallah and S. Prabhakar. (Almost) Optimal Parallel Block Access to Range
Queries. In Proceedings of the nineteenth ACM SIGMOD-SIGACT-SIGART sym-
posium on Principles of database systems, pages 205–215. ACM Press, 2000.

6. R. Bhatia, R. Sinha, and C.-M. Chen. Hierarchical Declustering Schemes for Range
Queries. In In 7th Int’l Conf. on Extending Database Technology, 2000.

7. R. Bhatia, R. K. Sinha, and C.-M. Chen. Declustering using Golden Ratio Se-
quences. In ICDE, pages 271–280, 2000.

8. C.-M. Chen and C. T. Cheng. From Discrepancy to Declustering: Near-optimal
Multidimensional Declustering Strategies for Range Queries. In Proceedings of
the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems, pages 29–38. ACM Press, 2002.

9. C.-M. Chen and C. T. Cheng. Replication and Retrieval Strategies of Multidimen-
sional Data on Parallel Disks. In Proceedings of the twelfth international conference
on Information and knowledge management, pages 32–39. ACM Press, 2003.

10. L. T. Chen and D. Rotem. Optimal Response Time Retrieval of Replicated Data
(extended abstract). In Proceedings of the thirteenth ACM SIGACT-SIGMOD-
SIGART symposium on Principles of database systems, pages 36–44. ACM Press,
1994.

11. H. Du and J. Sobolewski. Disk Allocation for Cartesian Product Files on Multiple
Disk Systems. ACM Transactions on Database System, pages 82–101, 1982.

12. K. Frikken, M. Atallah, S. Prabhakar, and R. Safavi-Naini. Optimal Parallel I/O for
Range Queries through Replication. In Proceedings of 13th Intl. Conf. on Database
and Expert Systems Application (DEXA 2002, LNCS 2453), pages 669–678.

13. B. Himatsingka, J. Srivastava, J.-Z. Li, and D. Rotem. Latin Hypercubes: A Class
of Multidimensional Declustering Techniques, 1994.

14. H.-I. Hsiao and D. DeWitt. A new Availability Strategy for Multiprocessor
Database Machines. In Proceedings of Data Engineering, pages 456–465, 1990.

15. M. H. Kim and S. Pramanik. Optimal File Distribution for Partial Match Re-
trieval. In Proceedings of the 1988 ACM SIGMOD international conference on
Management of data, pages 173–182. ACM Press, 1988.

16. J. Matousek. Geometric discrepancy, an illustrated guide. Springer-Verlag, 1999.
17. S. Prabhakar, K. Abdel-Ghaffar, D. Agrawal, and A. E. Abbadi. Cyclic Allocation

of Two-Dimensional Data. In 14th International Conference on Data Engineering,
pages 94–101, 1998.

Optimal Distributed Declustering Using Replication 157

18. P. Sanders. Reconciling Simplicity and Realism in Parallel Disk Models. In Proceed-
ings of the twelfth annual ACM-SIAM symposium on Discrete algorithms, pages
67–76. ACM Press, 2001.

19. P. Sanders, S. Egner, and J. Korst. Fast Concurrent Access to Parallel Disks. In
Proceedings of the eleventh annual ACM-SIAM symposium on Discrete algorithms,
pages 849–858. ACM Press, 2000.

20. R. K. Sinha, R. Bhatia, and C.-M. Chen. Asymptotically Optimal Declustering
Schemes for Range Queries. Lecture Notes in Computer Science, 1973:144–??, 2001.

21. A. Tosun and H. Ferhatosmanoglu. Optimal Parallel I/O using Replication. Tech-
nical Report OSU-CISRC-11/01-TR26, 2001.

When Is Nearest Neighbors Indexable?

Uri Shaft1 and Raghu Ramakrishnan2

1 Oracle Corporation, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
uri.shaft@oracle.com

2 University of Wisconsin–Madison, 1210 W. Dayton St., Madison, WI 53706, USA

Abstract. In this paper, we consider whether traditional index struc-
tures are effective in processing unstable nearest neighbors workloads. It
is known that under broad conditions, nearest neighbors workloads be-
come unstable–distances between data points become indistinguishable
from each other. We complement this earlier result by showing that if
the workload for your application is unstable, you are not likely to be
able to index it efficiently using (almost all known) multidimensional
index structures. For a broad class of data distributions, we prove that
these index structures will do no better than a linear scan of the data as
dimensionality increases.

Our result has implications for how experiments should be designed
on index structures such as R-Trees, X-Trees and SR-Trees: Simply put,
experiments trying to establish that these index structures scale with
dimensionality should be designed to establish cross-over points, rather
than to show that the methods scale to an arbitrary number of dimen-
sions. In other words, experiments should seek to establish the dimension-
ality of the dataset at which the proposed index structure deteriorates
to linear scan, for each data distribution of interest; that linear scan will
eventually dominate is a given.

An important problem is to analytically characterize the rate at which
index structures degrade with increasing dimensionality, because the di-
mensionality of a real data set may well be in the range that a particular
method can handle. The results in this paper can be regarded as a step
towards solving this problem. Although we do not characterize the rate
at which a structure degrades, our techniques allow us to reason directly
about a broad class of index structures, rather than the geometry of the
nearest neighbors problem, in contrast to earlier work.

1 Introduction

Many published solutions to the nearest neighbors problem follow a common pat-
tern. First, a multidimensional index structure is presented. The index structure
specification consists of three parts:

Structural Specification. This specification describes the form of the index
structure. For example, an R-Tree is a hierarchical structure, each node is de-
scribed by a hyper-rectangle and all items in a node are contained in the node’s
hyper-rectangle.

T. Eiter and L. Libkin (Eds.): ICDT 2005, LNCS 3363, pp. 158–172, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

When Is Nearest Neighbors Indexable? 159

Construction Algorithm. This specification describes how to build the in-
dex structure given data points. This can be either a bulk-loading algorithm or
dynamic insertion and deletion.

Search Algorithm. This algorithm describes how to search for the nearest
neighbor given a query point.

Once the index structure has been described, the next step is to show that
its performance improves on prior art, in particular, that it is a significant im-
provement over doing a linear scan of all data points. In almost all cases it is
clear that the method scales with an increase in data size. The difficulty lies
in scaling with dimensionality. Experiments to show such scaling study a series
of workloads that differ in the number of dimensions. For example, a common
experiment is to choose a data size (say, 100,000 data points) and a data distribu-
tion (usually uniform). Then, the experimenter varies the number of dimensions
(typically from two dimensions to about twenty) and plots the performance on
a graph.

In this paper we present a mathematical analysis of such experiments. We
show that the performance of a multidimensional index structure will converge
with increasing dimensionality to the performance of a linear scan of the data,
under quite broad conditions. Our result is applicable for a wide range of data
distributions, and for almost all known multidimensional index structures. Fur-
thermore, we do not rely on the index construction algorithm or the search
algorithm, but only on the structural specification of the index. Thus, the result
is robust. For example, clever techniques for bulk-loading might mitigate the
problem, but linear scan will nonetheless dominate as dimensionality increases.

In related work, Beyer et al. [3] studied the geometry of the nearest neigh-
bors problem. For a wide range of data distributions, they showed that pairs of
data points become indistinguishable, in terms of the distance between them,
as dimensionality increases. They describe such data distributions as “unsta-
ble”. The result in this paper complements the Beyer et al. result by showing
that (most) multidimensional index structures are no better than linear scan for
unstable data distributions as dimensionality increases. While this is to be ex-
pected, perhaps, the number of papers that claim scalability of index structures
with increasing dimensionality suggests that this is a point worth establishing
rigorously. We hope there will be two practical consequences for experimental
studies of multidimensional index structures:

1. An emphasis on the rate at which methods deteriorate with increasing di-
mensions.

2. Characterization of data distributions for which a given method indeed scales
with dimensionality. Obviously, they would have to fall outside the class of
distributions for which our results apply.

We also hope that the insight provided into index structures by our result
will enable the design of new structures that deteriorate more slowly with di-
mensionality, for a wider class of data distributions than currently known struc-
tures.

160 U. Shaft and R. Ramakrishnan

The rest of the paper is structured as follows. Section 2 describes the main
result of the paper, the Nearest Neighbors Indexing Theorem. Section 3 contains
the proof of the theorem. Section 4 contains a short discussion about rate of
convergence. Section 5 contains a discussion about the importance of the result,
a short survey of related work, and a few directions for future work.

2 The Nearest Neighbors Indexing Theorem

In this section we present the nearest neighbors indexing theorem. Before we
present the theorem we need to introduce two important concepts:

Convex Description Index Structures. The theorem characterizes this class
of index structures.

Series of Workloads with Vanishing Variance. This is our formal descrip-
tion of workloads.

The theorem deals with the expected performance of a convex description
index structure when used for indexing a series of workloads with vanishing
variance. The theorem states that under such circumstances, the expected per-
formance of the index structure will converge to the performance of a linear scan
of the data. In other words, the average number of data points retrieved by the
indexing structure will converge to the total number of points in the data set,
as we advance in the series of workloads (e.g., increase dimensionality).

The rest of the section is structured as follows: Section 2.1 contains the defi-
nition of convex description index structures. Section 2.2 contains the definition
of series of workloads with vanishing variance. Section 2.3 contains the formal
definition of the theorem.

2.1 Convex Description Index Structures

Almost all known multidimensional index structures share a common structure:
Data points are collected into buckets (or pages) and we save on query process-
ing time by eliminating some buckets from consideration using some summary
information which is pre-computed for each bucket. For example, an R-Tree [6]
stores data points in leaf pages (the buckets). The summary information for
the bucket is the minimal bounding rectangle (MBR) of the data in the bucket.
In this description, we ignored the hierarchical structure of the R-Tree. Like-
wise, the following definition of a Convex Description Index Structure does not
use much more than the idea of buckets with summary information. It is there-
fore independent of the hierarchical organizations that differentiate several index
structures, and applies to a broad range of indexing techniques.

Definition 1. A Convex Description Index Structure has the following proper-
ties:
1. All data points are distributed to buckets. Some points may be in multiple

buckets (redundancy is permitted), and each point must be in at least one
bucket. Each bucket must contain at least two points.

When Is Nearest Neighbors Indexable? 161

2. Each bucket has an associated description which is a convex region of the
data space, called the boundary of the bucket. All data points in a bucket
must be in the associated convex region.

3. During query processing we fetch entire buckets and consider all data points
in them. We are not allowed to fetch only some data points from a bucket.

4. During query processing, the decision to fetch a bucket is done only based
on the boundary of the bucket. When query processing ends, the only buckets
that are not fetched are the buckets which we can prove to not contain any
query results.

Let us consider the R-Tree as an example of a convex description index
structure.

1. Data points are distributed to leaf pages (buckets). Each data point is in
exactly one bucket. It is usually the case that an R-Tree contains more than
one point in each leaf page. However, a dynamic R-Tree may have a leaf page
with one data point due to deletions. Our theoretical results can be easily
extended to include such structures, but due to lack of space we leave this to
the reader. Intuitively, having leaf pages with a single data point means that
the R-Tree is not optimal both in usage of space and in query performance
(i.e., we should be able to construct a better performing R-Tree for the same
data set without the leaf pages with single data points).

2. The boundary of each leaf page is an MBR, which is a convex region of space.
3. We fetch entire pages only, and process all items in a page once it is fetched.
4. Suppose that we process a nearest neighbors query Q and return a result

point X. Consider a bucket B (leaf page) of the R-Tree. If the distance of
Q and the MBR of B (i.e., d(Q,MBR(B))) is lower than the distance of
Q to its nearest neighbor X, then we must have fetched B during query
processing. Not fetching B under the circumstances means B could contain
a data point closer to Q than X; i.e., X may not be the nearest neighbor–an
invalid assumption since query processing ended.
Therefore, the only buckets we do not fetch satisfy d(Q,MBR(B)) ¿ d(Q,X).
In other words, we do not fetch a bucket only if we can prove it does not
contain a valid result.

What are other convex description index data structures? Obviously, all vari-
ants of R-Trees qualify, since the variants differ only in the construction algo-
rithms and not in any characteristic we used in our definition. These variants
include the R-+Tree [11], the R-*Tree [1] and the X-Tree [2]. Other examples
are variants of the KDB-Tree [10], the SS-Tree [14], the SR-Tree [8] and the
TV-Tree [9].

Examples of index structures that are not convex description index structures
are probabilistic structures (e.g., P-Sphere Trees [5] and multidimensional hash
indexing [4]) and the projection index structures (e.g., see [13]). It is easy to show
(using different arguments) that P-Sphere Trees do not scale with dimensionality
for workloads with vanishing variance (for any distance metric). P-Sphere Trees
are designed to work only when the spread is high.

162 U. Shaft and R. Ramakrishnan

2.2 Series of Workloads with Vanishing Variance

Scalability experiments are performed on a series of workloads W1,W2, ... We
usually construct the workloads such that only one parameter varies from one
workload to the next. In this paper we focus on varying the number of dimen-
sions. A single workload W consists of the following items:

S : A set of all possible data objects. In this paper we limit S to vectors in a
Euclidean metric space.

F : A distribution function over the space S. We use this probability distribution
to sample data points and query points from S.

n : The number of data points to sample for each experiment.
d : The distance function. In this paper we limit ourselves to the Euclidean

distance:

d(X,Y) ≡ ||X,Y || =

√√√√ m∑
i=1

|xi − yi|2

For example, the most commonly used series of workloads in the literature uses
uniform data. The universe of workload Wm (called Sm) is the unit cube in m
dimensions. The data and query distribution is the uniform distribution over Sm.
n is kept constant for all Wm (a typical number is 100,000). The distance function
is the Euclidean distance. A typical experiment will sample some of the workloads
in the series and repeat some performance experiments for each workload.

Before we get to vanishing variance we need to define the distance distribution
of a workload. Suppose W is a workload with universe S, data distribution F
and distance metric d. Let X and Y be two independent random variables with
the F distribution (in probability theory notation: X,Y ∼iid F). The distance
between the two points D = d(X,Y) is a random variable. The domain of D
is the non-negative real numbers. We call the probability distribution of D the
distance distribution of W .

Beyer et al. [3] identify an important class of series of workloads, which we
call series of workloads with vanishing variance (it is not named in [3]). They
show that a such a series of workloads exhibits “instability”–the spread between
distances diminishes and eventually all points have the same distance from each
other. We use the same property in our theorem.

Definition 2. A series of workloads W1,W2, ... with distance distributions D1,
D2, . . . has vanishing variance if there exists α > 0 such that

lim
m→∞ var

(
Dα

m

E [Dα
m]

)
= 0

In other words, we have vanishing variance if the magnitude of the variance
in the distance distribution becomes insignificant compared to the magnitude of
the mean distance.

Beyer et al. [3] show many examples of such a series of workloads. The most
common one is the uniform data experiment. It turns out that any distribution
that is applied independently to all dimensions exhibits vanishing variance. Beyer

When Is Nearest Neighbors Indexable? 163

et al. show other cases where the different dimensions have different distributions,
correlation, and even change with mean and variance. They show, using multiple
examples, that this data model is very robust. We will not repeat the discussion
presented in [3].

2.3 The Theorem

The nearest neighbors indexing theorem is about the performance of certain in-
dex structures when applied to certain workloads. Before we get to the actual
theorem we need to specify how we measure performance. Suppose W is a work-
load with universe S, data distribution F , and size n. The performance of an
index structure I over the workload W is a random variable designating the
number of data points retrieved by the search algorithm of I. We denote this
random variable by N . We are usually concerned with the average performance
of the search algorithm–the expected value of N , denoted by E [N].

Informally, we estimate E [N] by (conceptually) constructing the index repeat-
edly for different data sets (that follow the distribution F), evaluating a nearest
neighbors query using the index, and counting the number of data points retrieved.
More precisely, we can describe the distribution of N by describing how to sample
N using that distribution. To sample one value of N we sample n independent
data points using the distribution F (the points are x1, .., xn). Then, we create an
index I for the data set. Next, we sample one query point q using the data distri-
bution F . Finally, we run the search algorithm over I and count how many data
points were retrieved during query execution. The value of E [N] can be estimated
by repeating this process and taking the average of the sampled values.

An alternative algorithm for computing nearest neighbors is linear scan of
the data set. The number of points retrieved, i.e., its performance using our cost
metric, is a constant n (the number of data points).

Our measure of performance, which is the number of data points retrieved,
favors the index structure over a linear scan of the data:

1. We expect a linear scan of the data to consist of sequential I/O if the data
is not in memory. Thus, fetching the same number of points is likely to be
more efficient than the random reads incurred using an index structure. This
is not reflected in our cost metric.

2. We also expect disk pages to have maximal occupancy. It is often the case
that page occupancy is significantly lower than 100% for index structures,
leading to more page I/Os for the same number of data points retrieved.
This is not reflected in our cost metric.

3. We ignore extra costs associated with an index structure (e.g., the internal
nodes in an R-Tree).

These approximations are acceptable since our goal is to show that linear
scan dominates convex description index structures, even with a cost metric
that favors the latter.

Nearest Neighbors Indexing Theorem: Let W1,W2, .. be a series of work-
loads with vanishing variance and constant size n. Let I be a convex description

164 U. Shaft and R. Ramakrishnan

index structure and denote the performance of I over workload Wm as Nm. Then
limm→∞ E [Nm] = n.

3 Proof of the Nearest Neighbors Indexing Theorem

We prove the NN indexing theorem in two main steps. First, we define a new
type of random variable called spread and show that it converges to a constant.
Second, we show that the convergence of the spread implies the convergence of
the performance of the index structure to the performance of linear scan.

Definition 3. The spread C of a workload W is a random variable obtained by
the following process:

– We take a sample of n+ 1 independent points using the data distribution F .
The points are X1, .., Xn+1.

– We define the minimum and maximum of distances between all pairs of dis-
tinct points as:

DMIN = min {d(Xi, Xj) |1 ≤ i �= j ≤ n + 1}

DMAX = max {d(Xi, Xj) |1 ≤ i �= j ≤ n + 1}
– The spread is: C = DMAX/DMIN.

In other words, the spread is the ratio between the maximum and minimum
of all distances of distinct pairs of points among the sample of n+ 1 points. We
choose n + 1 points since an experiment contains n data points and one query
point. When the spread is the constant 1 (C = 1), all distances in that workload
are the same. Our first step is to show that the series of spreads created by a
series of workloads with vanishing variance converges to the constant 1. This
step is almost identical to the instability theorem (and its proof) described by
Beyer et al. [3]. The second step in our proof of the NN indexing theorem uses
the convergence of spreads to prove that the performance of the index structure
converges to linear scan.

3.1 Step 1 of Proof

Our first step is to show that the series of spreads created by a series of workloads
with vanishing variance converges to the constant 1.

Lemma 1. Let W1,W2, .. be a series of workloads with vanishing variance and
constant size n. Let C1, C2, .. be the spreads associated with W1,W2, ... respec-
tively. Then Cm →p 1.

The notation Cm →p 1 is a standard probability theory notation, specifying
that the series C1, C2, .. converges in probability to the constant 1. The conver-
gence in probability is defined as

∀ε > 0 lim
m→∞P [1− ε ≤ Cm ≤ 1 + ε] = 1

When Is Nearest Neighbors Indexable? 165

Since the minimal value for Cm is 1 we can restate this equation as

∀ε > 0 lim
m→∞P [Cm ≤ 1 + ε] = 1

Outline of proof: We start with a series of workloads with vanishing variance
and need to get to the convergence of a series of spreads. The vanishing variance
property deals with convergence of a transformed version of the distance distribu-
tion. A spread is defined as a ratio of maximal distance distribution over minimal
distance distribution. To get from one to the other we use the following steps:

1. Prove that vanishing variance implies convergence of a transformed distance
distribution. The transformed version is Vm = Dα

m/E [Dα
m].

2. Next we get rid of the power of α from Vm, so we can deal with the actual
distance distribution. We show that V 1/α

m converges as well.
3. To get to convergence of spread we show first that a vector of k instances

of V 1/α
m also converges to a constant. Then we show that the minimum and

maximum of the vector converges as well.
4. Finally, we show that the ratio of maximum over minimum (from the pre-

vious step) converges. By taking that ratio we conveniently get rid of the
constants we carried all along–the division of the distance distribution by
E [Dα

m]. After getting rid of these constants, the ratio of maximum over
minimum is exactly the spread we were looking for.

Proof.
Step 1. Let D1, D2, ... be the distance distributions of W1,W2, ... Using the
vanishing variance property we find α > 0 such that

lim
m→∞ var

(
Dα

m

E [Dα
m]

)
= 0

We denote Vm = Dα
m/E [Dα

m].
The expected value of Vm is 1 because it is a random variable (Dm) divided

by its expected value. For any ε > 0 we can calculate the variance of Vm as

var (Vm) = E
[
(Vm −E [Vm])2

]
= E
[
(Vm − 1)2

]
≤

≤ 0 · P [|Vm − 1| ≤ ε] + ε2 · P [|Vm − 1| > ε] = ε2 · P [|Vm − 1| > ε]

We can insert the limit argument and get:

0 = lim
m→∞ var (Vm) ≤ lim

m→∞ ε2 · P [|Vm − 1| > ε]

Since ε is a constant for all m we have: limm→∞ P [|Vm − 1| > ε] = 0. This
is the definition of convergence in probability so Vm →p 1.
Step 2. The function f(x) = x(1/α) is continuous, so we can use it to transform
Vm and still have convergence in probability (Slutsky’s theorem). Therefore,
V

(1/α)
m →p 1(1/α) = 1.

Step 3. For each workload Wm we create a vector of distances of size n(n+1)/2
elements in the following way:

166 U. Shaft and R. Ramakrishnan

– Take Xm,1, .., Xm,n+1 independent random variables following the data dis-
tribution of Wm.

– Create vector Dm =< Dm,1, .., Dm,k > (where k = n(n+1)/2) by taking the
distances between all possible distinct pairs of points d(Xm,i, Xm,j) where
i �= j.

Note, in the rest of the proof, whenever we apply a scalar function to a vector
we mean that the result is a vector and the function is applied to each of the
elements. In other words,

f(< A1, .., Ak >) =< f(A1), .., f(Ak) >

Let μm = E [Dα
m]1/α. The vector Dm/μm has k elements, each element is a

random variable with the same distribution as V (1/α)
m . Therefore Dm/μm →p<

1, .., 1 >.
Since the maximum (and minimum) of a vector are continuous functions, we

can apply Slutsky’s theorem again and get

max {Dm/μm} →p 1 and min {Dm/μm} →p 1

Step 4. Using Slutsky’s theorem yet again we can divide two random variables
and still have the convergence in probability property. Therefore,

max {Dm/μm}
min {Dm/μm}

=
max {Dm}
min {Dm}

→p 1

However, max {Dm} is the maximum of all distances between n+1 indepen-
dent points of Wm ,and min {Dm} is the minimum of these distances. Therefore
their ratio is the spread Cm of Wm.

Therefore, Cm →p 1. ��

3.2 Step 2 of Proof

The second step in our proof of the NN indexing theorem uses the convergence
of spreads to prove that the performance of the index structure converges to
linear scan.

Lemma 2. Let W1,W2, .. be a series of workloads with constant size n, asso-
ciated spreads C1, C2, .. and Cm →p 1. Let I be a convex description index
structure and denote the performance of I over workload Wm as Nm. Then
limm→∞ E [Nm] = n.

Proof.
Step 1. For this step we ignore the fact that we are dealing with random vari-
ables and convergence in probability. We will only look at a single instance of
a workload–actual data points, an actual query, an actual index structure and
absolutely no random variables. Our goal is to show that if the spread of the
actual instance is very low, then the performance of the index structure is the

When Is Nearest Neighbors Indexable? 167

same as the performance of linear scan. It so happens that we can show this for
spreads that are below

√
5/4.

So, suppose we have an instance of n data points x1, .., xn and a query point
q = xn+1. Suppose the spread of the instance is below our threshold of

√
5/4.

Note that the spread we use is the ratio of maximal distance over minimal
distance, where the maximum and minimum is taken over all distances between
distinct pairs of points from the set {x1, .., xn+1} (i.e., we include the query point
as part of the set). We also have a convex description index I. We will show that
the distance of the query point q to any bucket B of the index is less than the
distance of the query point to its nearest neighbor. This means that all index
buckets are retrieved during query execution and therefore the performance of
the index is exactly n.

Let B be any bucket of the index structure, containing two distinct data
points xi and xj . (Obviously, xi and xj are not the query point xn+1.) Since the
boundary of B is convex it contains the midpoint between the two data points
xi and xj . We denote this midpoint by y = (xi + xj)/2. The distance of q to
the boundary of B is at most d(q, y) (the distance of a point and a region is the
minimum of all distances between the point and the points that belong to that
region). Therefore, it is enough to show that d(q, y) is lower than the distance of q
to its nearest neighbor. The situation we just described is illustrated in Figure 1.

q

xjyxi

convex region of B

Fig. 1. Illustration of midpoint y for Lemma 2, Step 1

Let cmin be the minimal distance between all distinct pairs of points from
the set {x1, .., xn+1}. Similarly, the maximal distance is cmax. By definition, the
spread c is cmax/cmin. Let cnn be the distance of q to its nearest neighbor. Ob-
viously, cmin ≤ cnn. We will show that d(q, y) < cmin and that will prove that
d(q, y) < cnn.

168 U. Shaft and R. Ramakrishnan

Consider the triangle created by the points xi, xj and q (see Figure 1). The
distance d(q, y) can be maximized by maximizing the distances d(q, xi) and
d(q, xj) and by minimizing the distance d(xi, xj). Since these three distances are
between cmin and cmax, we can maximize the value of d(q, y) by setting d(q, xi) =
d(q, xj) = cmax and d(xi, xj) = cmin. We can calculate the distance d(q, y) (un-
der this scenario) using Pythagoras’ theorem: d(q, y)2 = c2max −

(1
2cmin

)2.
We also know that the spread is less than

√
5/4 so cmax <

√
5/4cmin. There-

fore,

d(q, y)2 = c2max −
(cmin

2

)2
<

(√
5
4
cmin

)2

−
(cmin

2

)2
= c2min

Therefore we showed that d(q, y) < cmin ≤ cnn, so the bucket B is fetched
during query execution. Since this holds for all buckets of the index, the perfor-
mance of the index is exactly n (i.e., we fetch all buckets and therefore fetch all
data points).

Step 2. We now know, for instances of workloads, how a very low value of spread
causes the performance of an index structure to be the same as the performance
of linear scan. We need to use that result to get the more general result about
the convergence of the expected performance of the index structures to the per-
formance of linear scan (i.e., now we deal with the probability theory aspect of
the lemma).

We know that Cm →p 1 (a condition of the lemma). This means that the
probability of the event Cm <

√
5/4 converges to 1 as m increases (by definition

of convergence in probability). In mathematical notation:

lim
m→∞P

[
Cm <

√
5/4
]

= 1

The event Cm <
√

5/4 implies that the performance of the index structure
is exactly n. In other words, it implies the event Nm = n. (That is exactly what
Step 1 proved.) Therefore, P [Nm = n] ≥ P

[
Cm <

√
5/4
]
. Since a probability

cannot exceed the value 1, we have: limm→∞ P [Nm = n] = 1.
By definition of expectation we get:

E [Nm] =
n∑

i=0

i · P [Nm = i] ≥ n · P [Nm = n]

Since limm→∞ P [Nm = n] = 1 we also have,

lim
m→∞ E [Nm] ≥ lim

m→∞ {n · P [Nm = n]} = n · 1 = n

Since the upper bound on any Nm is n we have limm→∞ E [Nm] = n.
Therefore, the performance of the index structure converges to the perfor-

mance of a linear scan of the data set. ��

Lemma 1 and Lemma 2 together constitute a complete proof of the nearest
neighbors indexing theorem.

When Is Nearest Neighbors Indexable? 169

4 Rate of Convergence

The indexability theorem deals with convergence of the performance of an index
structure to the performance of linear scan. A stronger result would tell us at
what rate this convergence occurs. In this section, we explore the possibility of
this stronger result.

First, we need to clarify the term rate of convergence. The simplest enhance-
ment of our result is to be able to determine at what point in a series of workloads
the performance of the index structure crosses an arbitrary threshold that we
consider acceptable. For example, if we know that the index buckets are fetched
using random I/O then a performance of n/10 (i.e., fetching 10% of the data
point) will not compete with the sequential I/O of linear scan.

Let us define the problem in mathematical terms. Suppose we are given the
conditions of the indexability theorem: a series of workloads W1,W2, ... with
vanishing variance and a convex description index structures. Suppose we are also
given an acceptable threshold for index performance t (where 0 < t < n). Can
we determine the first dimensionality value m such that the average performance
of the index over Wm is greater than the threshold t?

The answer to the above problem is “no”. We cannot find the first m because
we have no information about the beginning of the series of workloads. All we
know about the series is that some property (variance of a transformed distance
distribution) converges in the limit. We can modify the beginning of the series
(first m workloads, for any m we choose) to be whatever we want and the
theorem’s condition (vanishing variance) will not change. The problem is that
our model deals with convergence in the limit and not with what happens at the
beginning of the series.

We might have better results if we knew all the details of the vanishing
variance property for a specific series. We need to know which α > 0 is used to
satisfy the vanishing variance property and for each m we should know the exact
value of var (Dα

m/E [Dα
m]). All we knew before is that there exists some α > 0

such that limm→∞ var (Dα
m/E [Dα

m]) = 0.
Based on this knowledge we should be able to find some bounds for the

spreads C1, C2, .. of the workloads, and find a spread Cm with a median less
than

√
5/4. This, in turn, will tell us that at least half the times we try a query

for Wm we will end up fetching all data points.
Unfortunately, these approximations are very crude and will not tell us any-

thing practical. For example, take the typical series of workloads using uniform
data distribution (the first example in Section 2.2). Assume the number of points
is 10, 000. Using simulation, we estimated the first dimensionality (i.e., first m)
with a median spread of less than

√
5/4 at about four thousand. This means

that a convex description index structure (e.g., an R-Tree) will fetch all data
points at least for 50% of the queries if the number of dimensions is 4000. Some
experimentation clearly showed that an R-Tree already starts to exhibit such
performance at about forty dimensions (using a very low fanout of 10 points per
data page).

170 U. Shaft and R. Ramakrishnan

Our approximation was two orders of magnitude off the mark, even when
we started with knowledge about spread and not just about vanishing variance.
Clearly, our model of an index structure and workloads is not sufficient for an
analysis of rate of convergence. An open problem is how this framework can be
strengthened (or an alternative developed) to enable such an analysis.

5 Discussion

5.1 Conclusion

In this paper we presented a mathematical analysis of the most common index
scalability experiments performed for solving the nearest neighbors problem. The
nearest neighbors indexing theorem shows that almost all known multidimen-
sional index structures do not scale with dimensionality when used for a broad
range of workloads. The failure to scale with dimensionality is inherent in the
type of data sets used and in the use of convex descriptions for index “buckets”
(leaf pages, in typical tree-structured indexes).

Our main conclusion is that the research community should no longer test in-
dex structures on uniform distributions, or more generally the types of workloads
that exhibit vanishing variance. Beyer et al. [3] argued that these data sets are
“meaningless” (i.e., have little practical value for real applications) and therefore
should not be considered for indexing. We enhance this argument by showing that
these data sets are not indexable by almost all index structures we know about.

5.2 Related Work

Our result is the next logical step after the Instability Theorem (Beyer et al.
[3]). In fact, Lemma 1 is a modified version of the Instability Theorem. The main
contribution of this paper is Lemma 2–applying the convergence of spreads to
explain the performance of index structures–and its consequence, the Nearest
Neighbors indexing theorem.

Hellerstein, Koutsoupias and Papadimitriou created a “framework for mea-
suring the efficiency of an indexing scheme for a workload” (see [7]). They define
a workload to consist of a set of objects (called data) and a set of subsets of
the data (called queries). Each query is characterized only by the set of valid
answers for the query (i.e., the query is indistinguishable from its result set).
Hellerstein et al. use this basic definition in an analysis of various workloads
while considering two main factors: “storage redundancy (how many times each
item in the data set is stored) and access overhead (how many times more blocks
then necessary does a query retrieve)”. They ignore one major aspect of query
complexity–the cost of gathering enough evidence to prove that the result of
a query is the correct result. By ignoring this aspect of the solution, they get
low bounds on the complexity of queries. Their justification for this approach
is: “First, we are mostly interested in lower bounds, and therefore are free to
disregard aspects of the complexity ... Second, these aspects do not seem to be
the source of design difficulties or of complexity ...”.

When Is Nearest Neighbors Indexable? 171

Unfortunately, the most important aspect of the complexity of nearest neigh-
bors queries is the cost of gathering evidence to prove that a specific data point
is the nearest neighbor. For a data set of size n there are at most n different
queries, if we do not distinguish between the query and its result set (each query
result is one point). However, sometimes the most efficient way to prove that we
have the correct nearest neighbors is to measure the distance to all other data
points. Therefore, the framework suggested by Hellerstein et al. is not suitable
for the nearest neighbors problem.

5.3 Future Work

Interesting avenues for further work include: (1) identifying meaningful types
of data sets (e.g., clustered data sets) and specialized problem scenarios (e.g.,
almost exact-match problems) for which high-dimensional indexing remains fea-
sible, (2) techniques to determine if a real workload falls into one of the cases that
we can index effectively, and (3) results about rates of convergence of indexing
methods with increasing dimensionality.

The nearest neighbors indexing theorem does not tell us anything about the
rate at which the performance of index structures converges to the performance
of linear scan. It would be interesting to find at what dimensionality an index
structure is supposed to fail. Unfortunately, the conditions of the theorem are too
broad to describe a rate of convergence. Also, the argument used in the proof does
not allow us to reason about the rate of convergence. For example, suppose we
use the uniform data set with an R-Tree, and choose a size of 100,000 data points.
The R-Tree will fail at about 15 dimensions, while the data sets will reach the
average spread used by the theorem (

√
5/2) at more than a thousand dimensions.

There is clearly much to be done to learn about the rate of convergence.
Another limitation of our result is the use of the Euclidean distance metric.

The Euclidean distance is by far the most commonly used metric, but a good
line of inquiry would be to find indexing theorems for other metrics. Robert R.
Meyer suggested to us a variant of the theorem that shows that using rectangles
for convex descriptions (e.g., an R-Tree) will fail to scale with dimensionality
when using the L1 metric. We do not have a corresponding result for the L∞
metric. We suspect that rectangle shapes might work for such a metric even
with vanishing variance (i.e., performance may not converge to the performance
of linear scan).

References

1. Beckmann, N., Kriegel H.-P., Schneider, R. and Seeger, B.: The R*-Tree: An Effi-
cient and Robust Access Method for Points and Rectangles. Proc. SIGMOD (1992)
322–331

2. Berchtold, S., Keim, D. A. and Kriegel H.-P.: The x-tree : An Index Structure for
High-Dimensional Data. Proc. VLDB (1996) 28-39

3. Beyer, K., Goldstein, J., Ramakrishnan, R. and Shaft, U.: When Is Nearest Neigh-
bors Meaningful? Proc. ICDT (1999)

172 U. Shaft and R. Ramakrishnan

4. Gionis, A., Indyk, P. and Motwani, R.: Similarity search in high dimensions via
hashing. Proc. VLDB (1999) 518-529

5. Goldstein, J.: mproved Query Processing and Data Representation Techniques.
Ph.D. Thesis, Univ. of Wisconsin-Madison (1999)

6. Guttman, A.” R-Trees: A Dynamic Index Structure for Spatial Searching. Proc.
SIGMOD (1984) 47-57

7. Hellerstein, J. M., Koutsoupias, E. and Papadimitriou, C. H.: On the analysis of
indexing schemes. Proc. PODS (1997) 249–256

8. Katayama, N.,and Satoh, S.: The SR-tree: An Index Structure for High-
Dimensional Nearest Neighbor Queries. Proc. SIGMOD (1997) 369-380

9. Lin K.-I., Jagadish, H. V. and Faloutsos, C.: The TV-Tree – An Index Structure
for High-Dimensional Data. VLDB J.: Special Issue on Spatial Database Systems
3/4 (1994) 517–542

10. Robinson, J. T.: The K-D-B Tree: A Search Structure for Large Multi-dimensional
Dynamic Indexes. Proc. SIGMOD (1981) 10–18

11. Sellis, T. K., Roussopoulos, N. and Faloutsos, C.: The R+-Tree: A Dynamic Index
for Multi-Dimensional Objects. Proc. VLDB (1987) 507-518

12. Shaft, U.: Database Support for Queries by Image Content. Ph.D. Thesis, Univ.
of Wisconsin-Madison (2002)

13. Smith, J. R.: Query vector projection access method. In Storage and Retrieval for
Image and Video Databases VII (1998) 511–522

14. White, D. A. and Jain R. C.: Similarity Indexing with the SS-tree. Proc. ICDE
(1996) 516–523

Nonmaterialized Motion Information in
Transport Networks

Hu Cao and Ouri Wolfson

Department of Computer Science,
University of Illinois at Chicago,

851 S. Morgan Street, Chicago, IL, 60607, USA
{hcao2, wolfson}@cs.uic.edu

Abstract. The traditional way of representing motion in 3D space-time
uses a trajectory, i.e. a sequence of (x,y,t) points. Such a trajectory may
be produced by periodic sampling of a Global Positioning System (GPS)
receiver. The are two problems with this representation of motion. First,
imprecision due to errors (e.g. GPS receivers often produce off-the-road
locations), and second, space complexity due to a large number of sam-
plings. We examine an alternative representation, called a nonmaterial-
ized trajectory, which addresses both problems by taking advantage of
the a priori knowledge that the motion occurs on a transport network.

1 Introduction

Location management, i.e. the management of transient location information,
is an enabling technology for location based service applications. It is also a
fundamental component of other technologies such as fly-through visualization
(the visualized terrain changes continuously with the location of the user), con-
text awareness (location of the user determines the content, format, or timing
of information delivered), augmented reality (location of both the viewer and
the viewed object determines the type of information delivered to viewer), and
cellular communication.

Usually, locations of a moving object are obtained by sensors and are given
as a set of spatio-temporal points of the form (x, y, t). Such a point indicates
that a moving object m (represented as a 2-dimensional point) was at geographic
location with coordinates (x, y) at time t. These spatio-temporal points may be
generated, for example, by a GPS receiver on board m. We will call such point
a GPS point, although it may be generated by other means (e.g. PCS network
triangulation, RFID).

The first problem arising in location management is that GPS receivers are
imprecise, and thus this raw data is noisy and error prone. Indeed, a data point
of a typical GPS receiver has an error that ranges from several feet to tens of
meters. In most cases, the motion occurs on a road network, and thus the error
of a GPS point can be corrected by “snapping” the point onto the road network.
This correction is very important for many natural queries such as “retrieve the

T. Eiter and L. Libkin (Eds.): ICDT 2005, LNCS 3363, pp. 173–188, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

174 H. Cao and O. Wolfson

(a) Example 1 (b) Example 2 (c) Example 3

Fig. 1. Figure 1(a) and Figure 1(b) illustrate the problem with naive snapping; Figure
1(c) illustrates space saving of nonmaterialized trajectory

number of vehicles that traveled on the highway between exits 48 and 52 of I80
in the last hour”. Such a query is impossible to answer precisely if the locations
of moving objects are off-the-road, since vehicles traveling on parallel roads may
seem to have traveled on the highway, and vice versa. Similarly, the query “What
is the route taken by Bill today” requires translation of motion from raw GPS
data into a higher level of abstraction.

One may be tempted to propose a simple solution to the error-correction
problem, namely snap each GPS point to the closest road segment. However
this is a simplistic solution that may produce incorrect results. For example,
consider Figure 1(a) that illustrates a road network, and several GPS points.
Clearly the vehicle traveled on road segment A, and thus GPS point a needs to
be snapped to A, although B is the closest road segment to a. Another example is
shown in Figure 1(b). Clearly the vehicle traveled on road A, but this is deduced
only by examining the whole sequence of GPS points, and snapping GPS points
a, b onto the closest road segment will produce an incorrect result.

As a first result of this paper, we propose an efficient algorithm that, given
a trajectory T of a moving object1, a road network, and a GPS receiver error
bound ε, determines whether there exists another trajectory T ′, called the road-
snapped trajectory, such that: (i) T ′ is on the road network, and (ii) the distance
between T and T ′ is not higher than ε; and if so it finds T ′. In other words, we
find for a trajectory T , a possible route in the road-network that was followed
by the moving object.

The second problem addressed in this paper is data volume. In principle,
a GPS receiver can generate a new (x, y, t) point every second, and the num-
ber of moving objects may be hundreds of millions to billions. The problem
is compounded by the fact that one is interested in historical spatio-temporal
information for data mining.

Now consider that usually computation of the location at any point in time
is enabled by linear interpolation between consecutive trajectory vertices[7, 14].
Then the road-snapped trajectory may have more points than the original tra-
jectory, since it contains the snapped vertices of T , as well as the vertices of the

1 The trajectory of a moving object is a polygonal line in 3D that represents a piece-
wise linear function from time to location in two-dimensional space; the GPS points
are the vertices of the polygonal line. Thus the trajectory models a trip.

Nonmaterialized Motion Information in Transport Networks 175

route. For example, if the two consecutive GPS points a and b of Figure 1c are
snapped onto the depicted road, the trajectory between a′ and b′ will consist of
six vertices rather than two.

Thus one can immediately recognize the storage-space problem that location
based services applications will face, as well as the computation burden for pro-
cessing such large amount of information. Additionally, in online tracking where
the spatio-temporal points are transmitted from a moving object to a server,
this storage problem translates into a bandwidth and power problem.

Our nonmaterialized trajectory concept addresses this problem by separat-
ing the motion description into two components, namely the spatial component
represented by the road network (i.e. the map) that is common to all the tra-
jectories, and the temporal component that is specific to each trajectory. So, for
example, assuming constant speed motion, the nonmaterialized trajectory rep-
resenting the motion of Figure 1(c) consists of the street A and two time-points,
the time at a′ and the time at b′ (rather than six points used by the materialized
representation). Together with the coordinates of street A given by the map,
this nonmaterialized trajectory can provide the location of the moving object at
any point in time. And actually, the nonmaterialized trajectory has even fewer
points because it is a bounded error approximation of the original trajectory.
So, for example, assume that c′ precedes a′, and consider the nonmaterialized
trajectory T ′: “on street A, at time point tc at location c′ and at time point tb
at location b′”. If the distance of T ′ from the original trajectory is not higher
than ε, then a′ can be eliminated from the nonmaterialized trajectory. Thus the
nonmaterialized representation is an abstraction that is concise because it en-
capsulates two mechanisms, namely: separation of the temporal component from
the spatial one, and bounded error approximation. Obviously, the map will also
need to be kept. However, the same map is shared among many trajectories.

The concept of a nonmaterialized trajectory can be demonstrated by the
following analogy. When giving driving directions, one could indicate: starting
from (x1, y1) drive in a straight line to (x2, y2), from there drive in a straight line
to (x3, y3), etc. This would be analogous to a regular, i.e. materialized trajectory
given as a function from time to space. Nobody uses this form of directions.
Instead, directions are given as: drive on Halsted Street, make a left of Canal
street, then make a right on Division street. This is equivalent to the concept
of a nonmaterialized trajectory that gives the time → space function implicitly;
using the map, the function can be made explicit.

As a second result of this paper, we provide an efficient algorithm that con-
structs a nonmaterialized trajectory T ′′ for a given road-snapped trajectory T ′

and an error bound ε, such that the distance between the original trajectory T
and T ′′ is at most ε; furthermore, the size of T ′′ is minimum among all non-
materialized trajectories that can be constructed based on T ′. Why not find a
minimum-size nonmaterialized trajectory that is at distance ε from the original
trajectory T? We conjecture that this problem is NP-complete.

Then we analyze the errors to spatio-temporal queries introduced by the
approximation, and we show that these errors are bounded. In other words,

176 H. Cao and O. Wolfson

the nonmaterialized trajectory T ′′ (which is also a road-snapped trajectory) is
an approximation of the original trajectory T . What is the “distance” in the
answers of a given spatio-temporal query posed to T and T ′′? We show in this
paper that this distance is bounded for all natural spatio-temporal queries. One
may be tempted to discount these results, on the ground that it is intuitively
clear that if the error of the approximation is bounded (i.e. the distance between
T and T ′′ is bounded), then the error of the answer to each query is also bounded.
However, we show that this is not necessarily the case. Specifically, we show that
for every ε and δ there exists a trajectory T with a road-snapped trajectory T ′

such that the Euclidean distance between T and T ′ is at most ε, but the distance
between the answers to the query “where is the moving object at time 2pm” on
T and T ′ is higher than δ. Similarly, the error to other natural spatio-temporal
queries is unbounded in a sense made precise in this paper. The reason the our
snapping algorithm produces error-bounded approximations is that it does not
use the Euclidean distance, but another, called time uniform distance.

Trajectory snapping is supposed to correct location sensing errors, so one
may wonder why we are concerned about queries on the original trajectory T .
The answer is that one may never be sure what the actual motion function was,
and so we want to limit the damage in case the snapping is to an incorrect route.

In summary, the main results of this paper are as follows. First, we
provide an efficient algorithm that, given a trajectory T , a road network, and
an error bound ε, determines whether there exists an ε-distant road-snapped
trajectory; and if so it finds it. Second, we provide an algorithm that, for a
road-snapped trajectory T ′ and an original trajectory T and a bound ε, finds
a nonmaterialized trajectory T ′′ that is at distance at most ε from T , and has
minimum size among all nonmaterialized trajectories derived from T ′. Third,
we defined the notion of error boundness for spatio-temporal queries, and we
show that the time uniform distance used by our snapping algorithm is error-
bounded with respect to the spatio-temporal query types: where is a moving
object at a given time, range query, nearest neighbor, and join. We also show
that the Euclidean distance is not error bounded w.r.t. these query types.

The rest of the paper is organized as follows. In section 2 we introduce the
model. In sections 3, 4, and 5 we devise the first, second and third results dis-
cussed in the previous paragraph, respectively. In section 6 we compare our work
to relevant literature, and in section 7 we conclude the paper.

2 The Model

Representing the (location,time) information of the moving object as a trajectory
is a typical approach (c.f. [7, 14]). Point locations are represented as longitude-
latitude (x, y)-coordinates. We do not discuss moving objects with a third al-
titude dimension, although our results can be extended to this case. Time is a
real number t. Thus every (location,time) of a moving point object is given as a
3-dimensional (x, y, t) point. We do not discuss moving objects with an extent
such as weather phenomena.

Nonmaterialized Motion Information in Transport Networks 177

Definition 1. A trajectory T is a piece-wise linear function from the time in-
terval [t1, tn] to (X,Y) space. It is represented by the vertices of the function
polygonal-line T1 = (x1, y1, t1), T2 = (x2, y2, t2), ..., Tn = (xn, yn, tn), such that
for all i ∈ {1, . . . , n − 1}, ti < ti+1. For a given trajectory T , its projection on
the (X,Y) plane is called the route of T , denoted as R(T). The location of T at
time t is the value of the function at t.

A trajectory (or a materialized trajectory) defines the location of a moving
object in the (X,Y) plane as a function of time t. The vertices of the trajectory
are the known locations (e.g. the GPS points), and the trajectory function is
obtained by straight-forward linear interpolation between these locations. An
illustration of trajectory and its route is shown in Figure 2(a). Observe that
this representation cannot model nonlinear motion such as acceleration, but can
approximate it with arbitrary precision given enough trajectory vertices.

Time

X

Trajectory

RouteY

(a) A trajectory and
its 2D route.

(b) The distance be-
tween T1 and T2 is 7.

(c) Euclidean distance
E3 and time uniform
distance Eu.

Fig. 2. Distance between trajectories and distance functions

Next, for the purpose of trajectory snapping, we define a map. A map, or a
road network, is a directed graph; the nodes are labeled by (X,Y) coordinates
and represent junctions2 and the arcs represent straight-line road segments be-
tween junctions. Each arc has a length, which is the Euclidean distance between
its two endpoints. The arcs of the map are partitioned into streets, where each
street is a path in the map, the streets are disjoint (i.e. we assume that 42nd-
st-going-east and 42nd-st-going-west are different streets), and every arc of the
map belongs to some street. We assume without loss of generality that each
street is acyclic.

Every point location on the map (node or point on an arc) can be also be
defined in the linear reference system, i.e. the distance from the beginning of a
street. Thus a point-location on the map can be defined in the Cartesian system
as an (x, y) location, or in the linear reference system as (street, distance).

2 A junction is not necessarily intersection of two streets, but maybe the vertex of a
polyline representing the geometry of the road.

178 H. Cao and O. Wolfson

Our objective is to construct a trajectory on the map that is an ε-
approximation of the original trajectory, i.e. at ε distance from the original
trajectory. For this purpose we need to define the distance between two trajec-
tories. The Hausdorff distance[2] between trajectories is defined as follows. Let
M be the distance between a 3D point and the 3D straight line between two con-
secutive trajectory vertices. Examples of two possible M ’s, the Euclidean and
the time uniform, are given at the end of this section. The distance dM (p, T)
between a 3D point p and a trajectory T is the minimum (among all straight
line segments of T) M -distance between p and a line segment of T . The Haus-
dorff M -distance from a trajectory T to another trajectory T ′ is defined as
D̃M (T, T ′) = maxp∈T d(p, T ′), i.e. the Hausdorff distance from T to T ′ is the
maximum distance from a point of T , to T ′. The symmetric Hausdorff distance
between T and T ′ (or, for short, the Hausdorff distance between two trajectories)
is defined as DM (T, T ′) = max(D̃M (T, T ′), D̃M (T ′, T)); i.e. it is the maximum
of the distances from T to T ′ and from T ′ to T (see Figure 2(b)).

Definition 2. Given a trajectory T , a road network N , a tolerance ε > 0, and
a distance M between a 3D point and a 3D line, the εM -road-snapped trajectory
T ′ is a trajectory whose route is a path in the graph N , and DM (T, T ′) ≤ ε.

In the above definition the tolerance ε is the sum of two maximum errors.
One is the error of the location sensing device such as a GPS receiver, and the
second is the error of the map. The ε-road-snapped trajectory is a possible actual
trajectory of the moving object.

Now we take the inner distance function M to be the three dimensional
time uniform distance Eu defined as follows. For a point p = (x0, y0, t0) on one
trajectory and a line segment l on the other, Eu(p, l) =

√
(x0 − xc)2 + (y0 − yc)2,

where pc = (xc, yc, t0) is the unique point on l which has the same Time value as
p (see Figure 2(c)); if such a point does not exist, then the time uniform distance
between p and l is infinity.

Observe that the time uniform distance is different than the Euclidean dis-
tance between p and l (see Figure 2(c)). Intuitively, the time uniform distance
between a trajectory point p and a trajectory line l is the distance between p
and the point on l that has the same time as p. Whereas the Euclidean distance
between p and l is the minimum distance between p and a point on l.

In section 5 we will discuss the Euclidean distance function, but until then
we will always assume that M is the time uniform distance and will omit M .

3 Road-Snapped Trajectory Construction

Assume that we are given a trajectory T , a map M , and a tolerance ε. In this
section we devise an efficient algorithm that determines whether or not there
exists an ε-road-snapped trajectory T ′. If so, it finds it. The algorithm constructs
a Snapping Configuration Graph (SCG), finds a certain path in SCG, and then
extracts T ′ from this path.

Nonmaterialized Motion Information in Transport Networks 179

The SCG construction uses the following definition. Given two polygonal
lines in the (X,Y) coordinate system, the ε-neighborhood of a vertex p in one
polygonal line is the set of 2D points on the other polygonal line that are at
distance at most ε from p. The concept is illustrated in figure 4(b).

The snapping configuration graph is constructed as follows. For the trajec-
tory T given as a sequence of vertices T1, . . . , Ti, . . . , Tn, and a map with arcs
(l1, . . . , lm), the nodes of SCG are of two types: (1) (Ti, lj) for each trajectory
vertex Ti and arc lj for which the Euclidean distance between the 2D projection
of Ti and lj is at most ε. Intuitively, this indicates that Ti can be snapped onto
lj . And (2) (lj ,

−−−−→
TiTi+1), when the distance between the front end-point of lj and

the (X,Y) projection of −−−−→TiTi+1 is at most ε. Intuitively, this means that in the
road-snapped trajectory, some point between Ti and Ti+1 can be snapped onto
the front endpoint of lj .

The arcs of SCG indicate the possible pairwise sequences of individual nodes
to construct a road-snapped trajectory. The arcs of SCG are of four types:

• (1) (Ti, lj) → (Ti+1, lj), if the ε-neighborhood of the 2D projection of Ti+1 on
directed line segment lj is not totally behind (in lj) the ε-neighborhood of the
2D projection of Ti on lj . Intuitively, this arc indicates that if Ti is snapped onto
lj , then Ti+1 can be snapped onto lj as well. Observe that this can be done only
if “not totally behind” restriction is satisfied. In other words, there must be a
point p of lj that is in the neighborhood of Ti+1; and p appears on lj before
another point q of lj that is in the neighborhood of Ti.
• (2) (Ti, lj) → (lj ,

−−−−→
TiTi+1). Intuitively, this arc means that if one vertex of

the road-snapped trajectory is Ti snapped onto lj ; then the next vertex of the
road-snapped trajectory can be the point of the trajectory between Ti and Ti+1
that is snapped onto the front endpoint of lj . In this case, Ti+1 is snapped onto
another line segment of the map.
• (3) (lj ,

−−−−→
TiTi+1) → (Ti+1, lj′), where lj′ is one of the adjacent arcs that follows

lj in the map. Intuitively, this arc means that if one vertex of the road-snapped
trajectory is some point of the trajectory between Ti and Ti+1 that is snapped
onto the front endpoint of lj ; then the next vertex of the road-snapped tra-
jectory can be Ti+1 that is snapped onto an arc of the map that is adjacent
to lj .
• (4) (lj ,

−−−−→
TiTi+1) → (lj′ ,

−−−−→
TiTi+1), where lj′ is one of the adjacent arcs that follows

lj in the map, and the ε-neighborhood of the front end-point of l′j on the 2D
projection −−−−→TiTi+1 is not totally behind that of lj . Intuitively, this arc means
that if one vertex of the road-snapped trajectory is some point of the trajectory
between Ti and Ti+1 that is snapped onto the front endpoint of lj ; then the
following vertex can be be another point between Ti and Ti+1 that is snapped
onto the front endpoint of l′j .

Intuitively, the four types of arcs represent four cases for adjacent vertices of
the road-snapped trajectory TT, T l, lT, ll; where T represents a vertex derived
from the trajectory and l represents a vertex derived from the map.

180 H. Cao and O. Wolfson

Theorem 1. Given a trajectory T = T1, . . . , Tn, a map M , and a tolerance ε,
there exists an acyclic path π in SCG starting at a node (T1, l) and ending at a
node (Tn, l

′) if and only if there exists an ε-road-snapped trajectory T ′.

The above theorem provides the necessary and sufficient condition for the
existence of an ε-road-snapped trajectory, and its proof3 is constructive, i.e. it
finds the trajectory. It is easy to see that the time complexity of the algorithm
is O(nm2) for a trajectory with n vertices and a map with m arcs at distance
ε from T . Observe that the complexity does not depend on the total number of
arcs in the map, only on the ones that are at distance ε from the trajectory.

Assume now that there exists a trajectory T ′ whose route is on the map M ,
such that T ′ is at distance at most ε from T . A route R of such a trajectory is
called a feasible route of T . Given the path π (see Theorem 1), its feasible route
is: the set of arcs that appear in π, either in the first component of a node, or in
the second. By construction of SCG, this is a path in the map. This procedure
of constructing a SCG and finding a feasible route is illustrated in example 1.

Example 1. Consider the map M and the trajectory T shown in Figure 3(a).
The map is drawn as a directed graph with 17 directed arcs l1, . . . , l17. The
trajectory consists of six trajectory vertices from T0 to T5, shown as the dashed
polygonal line in Figure 3(a). The arrowed lines indicate that the corresponding
vertex has an ε-neighborhood in the line segment to which it points.

(a) The road network and
trajectory.

(b) The snapping configuration graph.

Fig. 3. Example of snapping configuration graph

Figure 3(b) depicts the snapping configuration graph generated from the map
and the trajectory in Figure 3(a). There are 15 nodes in the SCG. The labels of
the SCG arcs indicate the arc types. The connected nodes are colored white and
the isolated ones are in gray. Especially observe that (T3, l13) → (T4, l13) is not
a valid arc since the ε-neighborhood of the 2D projection of T4 on l13 is behind
that of T3. The nodes that pertain to the start trajectory vertex and the end
trajectory vertex are illustrated by double circles. According to Theorem 1, a

3 The proof and the proofs of other theorems are omitted, due to space constraint.

Nonmaterialized Motion Information in Transport Networks 181

road-snapped trajectory of T exists since there is a path π from (T0, l6) to (T5, l8)
and it is the only one in the SCG. Thus, we can extract a road-snapped trajectory
T ′ with eight vertices T ′

0, T
′
1, T

′
2, . . . , T

′
7 which correspond nodes (T0, l6) to (T5, l8)

on π respectively. The feasible route R of T ′ is (l6, l9, l8). ��

4 Nonmaterialized Trajectory Construction

In this section we devise an algorithm that, given a path π in SCG, constructs a
nonmaterialized ε-road-snapped trajectory T ′′ of minimum size. The route R of
T ′′ is the feasible route of π and T ′′ has minimum size among all nonmaterialized
trajectories on R.

We start with the definition of a nonmaterialized trajectory. Intuitively, a
nonmaterialized trajectory describes the motion in the linear reference system.
For example, started at 0.2 mile-post of Broadway-north (the mile-post simply
indicates location from the beginning of the street) at 2pm and drove to the
3.2 mile-post, then turned on 42nd street-west at 2.2 mile-post at 2:10pm, etc.
Formally, a nonmaterialized trajectory is defined as follows.

Definition 3. (Trajectory, Nonmaterialized) Consider a map M consisting
of a set of streets P . A nonmaterialized trajectory T is a function from time to
map locations represented as a sequence of tuples (〈p1, l1, t1〉, . . . , 〈pm, lm, tm〉),
where each pi is a street in P , li is a real number that indicates T ’s location at
time ti in pi’s linear reference coordinate. The location of T at any time-point
between ti and ti+1 is the linear interpolation between (li, ti) and (li+1, ti+1)
along pi. The nonmaterialized trajectory T must be consistent with the transport
network N , in the following sense. For every two adjacent tuples (pi, li, ti) and
(pi+1, li+1, ti+1) of T , if their streets are different, then pi must intersect pi+1 at
the distance li+1 from the beginning of pi+1.

This concept is illustrated in example 2.

Example 2. What is the nonmaterialized view of trajectory T ′ in Example 1?
Assume that we have constructed a road-snapped trajectory T ′ from the path π
and the route R = (l6, l9, l8). Further assume that R is on two streets S1 and S2,
where l6 is on S1 from the 3.2 mile-post to 3.6 mile-post, l9 is on S2 from the 0.3
mile-post to the 1 mile-post, and l8 is on S2 from the 1 mile-post to the 1.4 mile-
post. The first vertex T ′

0 of T ′ is on l6 at the 0.1 mile-post from the intersection
of l2 and l6 at 1:00pm. The second vertex T ′

1 is on l6 at the 0.2 mile-post from
the intersection of l2 and l6 at 1:01pm. The third vertex T ′

2 is on l6 at the 0.3
mile-post from the intersection of l2 and l6 at 1:03pm. The fourth vertex T ′

3 is
at the intersection of l6 and l9 at 1:06pm. The fifth vertex T ′

4 is the snapping
of T3 on l9 at the 0.2 mile-post from the intersection of l6 and l9 at 1:09pm.
The sixth vertex T ′

5 is the snapping of T4 on l9 at the 0.5 mile point from the
intersection of l6 and l9 at 1:11pm . The seventh vertex T ′

6 is at the intersection
of l9 and l8 at 1:14pm. The last vertex T ′

7 is on l8 at the 0.2 mile-post from
intersection of l9 and l8 at 1:16pm . Then, the nonmaterialized representation

182 H. Cao and O. Wolfson

of T ′ is the sequence (S1, 3.3, 1:00pm), (S1, 3.4, 1:01pm), (S1, 3.5, 1:03pm),
(S2, 0.3, 1:06pm), (S2, 0.5, 1:09pm), (S2, 0.8, 1:11pm),(S2, 1, 1:14pm),(S2, 1.2,
1:16pm). Note that the size of this representation is eight, longer than the size of
the original trajectory, because, as mentioned in the introduction, it represents
both the vertices of trajectory and the road network. ��

A nonmaterialized trajectory can easily be transformed to the equivalent
materialized representation, in linear time, by traversing, in sequence, the tuples
of the nonmaterialized representation, and for each one, interpolating the arrival
time at every vertex of the route. Similarly, one can transform in linear time a
road-snapped materialized trajectory T into a nonmaterialized one by creating
a nonmaterialized tuple for each vertex of T .

The nonmaterialized trajectory is created based on the feasible route R and
the SCG path π found in the previous section. The number of tuples in the
nonmaterialized trajectory is minimum for the path π.

The Nonmaterialized Trajectory Construction (NTC) algorithm starts with a
feasible route R and a trajectory T and constructs the nonmaterialized trajectory
for each street S of R, i.e it works one street at a time, starting from the first to
the last. If the same street appears on the feasible route more than once, then
the procedure is repeated for each occurrence of the street on R. For ease of
exposition assume that the feasible path consists of a single street S.

(a) ε-neighborhood
bars

(b) (x, y) space (c) Nonmaterialized
trajectory

Fig. 4. Nonmaterialized trajectory construction in the linear reference/time space

The NTC algorithm constructs the minimum size nonmaterialized trajectory
in the (m, t) two-dimensional space. It uses the following result.

Theorem 2. If there exists an acyclic path π in SCG starting at a node (T1, l)
and ending at a node (Tn, l

′), then each vertex Ti of the trajectory T appears in
π as the first component of a node, at most once.

The procedure is as follows. In the (m, t) space the t axis is the time linear
reference built based on trajectory T , and the m axis is the street linear reference.
So if the trajectory starts at 2pm and ends at 3pm the t axis has these endpoints.
And if the feasible route starts at the 2.3 milepost of S and ends at the 40.5
mile-post, the m axis has 2.3 and 40.5 as the endpoints (see Fig. 4). Observe
that since each street is acyclic, each arc of the map appears in m at most once.

Nonmaterialized Motion Information in Transport Networks 183

NTC then constructs an m-(vertical) line segment for each vertex v of T , and a
t-(horizontal) line segment for each arc u represented in m (Fig. 4(a)).

The vertical line segment for v is constructed as follows. According to The-
orems 1 and 2 there is exactly one node (v, l) in the SCG path π, and l is
represented in m at most once. If l is represented in m, then consider the ε-
neighborhood on l of the projection of v on the (X,Y) space. Assume that this
neighborhood in the m coordinate is (m1,m2). Then we draw the vertical bar
(m1,m2) at the time corresponding to v on t (see Figure 4(a)).

The horizontal line segment for the arc u is constructed as follows. Since there
is a single street in the feasible path, in the SCG path π there is exactly one
node (u,−−−−→TiTi+1). Then, in the (X,Y) space, compute the ε-neighborhood of the
front-end point of u on the projection of −−−−→TiTi+1. Assume that this neighborhood
in the t coordinate is [t1,t2]. Then we draw the horizontal bar of length t2 − t1
at the linear reference point which is the front-end of u (Fig. 4(a)).

To construct the nonmaterialized trajectory, we proceed as follows. Let m =
f(t) be some piecewise linear monotonic function that stabs all the line segments
constructed by the above procedure. If the vertices of its polygonal line are
(t1,m1), (t2,m2), ...(tn,mn), then this sequence is a nonmaterialized trajectory
on the street S.

This NTC procedure is illustrated in example 3.

Example 3. Figure 5 illustrates the nonmaterialized trajectory construction pro-
cedure. It is applied to the road-snapped trajectory of Example 1. The trajectory
is of eight vertices corresponding to eight nodes in π, which are labeled by the
first components of the node in Figure 5. We combine the construction of non-
materialized trajectory on two streets S1 and S2 in one figure. We first construct
the time linear reference/street linear reference space (m, t). Next, the horizon-
tal/vertical line segment for each node in path π is computed, shown as the bars
in the figure. For each street that route R = (l6, l9, l8) travels, we find a minimal-
size (i.e. minimum number of vertices) polyline stabbing. We stab all the bars of
street S1(l6) using one straight line. Then, from the bars of the intersection of l6
and l9, we stab the rest of the bars on street S2 (l9 and l8) with a two piece poly-
line. Writing down the street name, the m and t value for each dot in the figure,
we get the nonmaterialized representation of trajectory T on map M . Note that
the size of the nonmaterialized trajectory is four and T has six vertices. In this
sense, the figure shows the data reduction aspect of our approach. ��

Fig. 5. Constructing the nonmaterialized trajectory

184 H. Cao and O. Wolfson

The question now is what ensures that a piece-wise linear function required by
the above theorem exists? The answer is given by Theorem 1. Namely, if the path
π exists there is a nonmaterialized trajectory, and therefore a stabbing. We are
interested in a stabbing that has a minimum number of straight line segments,
because this will ensure a minimum number of tuples in the nonmaterialized
trajectory for π. This can be done using the results of [9, 12]. It provides a
greedy algorithm for stabbing n line segments with a polygonal line of minimum
size in linear time.

Theorem 3. For every trajectory T , map M , and positive real number ε, a
nonmaterialized trajectory T ′′ created with the above algorithm satisfies: (1) The
route R(T ′′) is a path in the map. (2) The distance between the original trajec-
tory T and T ′′ at most ε. (3) It has minimum size among all nonmaterialized
trajectories on R(T ′′).

The total number of vertical and horizontal bars is O(n + m), each bar can
be constructed in constant time, and the piecewise linear stabbing m = f(t)
can be constructed in linear time, using the approach in [9]. Therefore, the time
complexity of the NTC algorithm is O(n + m). Thus, the time complexity of
finding the nonmaterialized trajectory is dominated by the previous step of the
algorithm (finding π), and is O(nm2).

5 Bounded Error of Spatio-Temporal Queries

Our proposed nonmaterialized trajectory T ′′ is a road-snapped trajectory at
distance ε from T . In this section we will analyze the relationship between a
trajectory and its road-snapped trajectory with respect to the error in answer-
ing spatio-temporal queries. We show that in general, although the distance
between a trajectory T and its road-snapped trajectory T ′ is bounded, the error
of spatio-temporal queries may be unbounded. In other words, distance between
the answer to a query on T and the same query on T ′ may be arbitrarily large.
Particularly, even if the Euclidean distance between T and T ′ is bounded, then
this undesirable phenomenon, namely unbounded query errors, may occur. We
also show that this undesirable behavior does not occur for the road-snapped
trajectories produced by the algorithm introduced in this paper. The reason is
that the algorithm uses the time uniform distance between T and T ′.

We consider the following basic spatio-temporal query types, whose semantics
for a trajectory T = (x1, y1, t1), (x2, y2, t2), ..., (xn, yn, tn), are as follows:

• where at(T , t) – returns the location of the trajectory T at time t.
• intersect(T, P, t1, t2) – is true if the location of T is inside the convex polygon
P sometime between t1 and t2. (This is also called a range query).

We first define the concept of query-error-boundedness for a distance-function
between trajectories. The concept is defined for a query type. Then we show that
the Euclidean distance is not query-error-bounded for the spatio-temporal query
types, but the time uniform distance is query-error-bounded for them.

Nonmaterialized Motion Information in Transport Networks 185

Now we explain the notion of query-error-boundedness. So far we restricted
the discussion to the time uniform distance between a trajectory T and its ε-
road-snapped trajectory T ′ (see def. 2). Here we relax this restriction. Let q(T)
denote the answer of some spatio-temporal query q with respect to a trajectory
T . Similarly, let q(T ′) denote the answer of the same query q when posed to
an εD-road-snapped trajectory T ′ of T . We say that the distance function D is
query-error-bounded for q when there exists a bound δ on the distance between
the two answers. More precisely, if we let dist(q(T),q(T’)) denote the distance
between the two answers, query-error-boundedness of D means that for every ε
there exists a δ such that for every trajectory T , dist(q(T),q(T’)) ≤ δ.

We formalize this notion for each of the query types, as follows. A distance
function D is error-bounded with respect to query-type q if for every tolerance
ε, there exists a positive number δ, called the answer error bound, such that for
every trajectory T and a εD-road-snapped trajectory T ′ of T (the rest of the
definition depends on the query-type as follows):

• where at – For every t for which both T and T ′ are defined, let (x, y) =
where at(T, t) and let (x′, y′) = where at(T ′, t). The distance between (x, y)
and (x′, y′) is bounded by δ, namely

√
(x′ − x)2 + (y′ − y)2 ≤ δ.

• intersect – For any polygon P , if intersect(T ′, P, t1, t2) is true, then there
exists a time t ∈ [t1, t2] such that the expected location of the original trajec-
tory T at time t is no further than δ from P ∪ interior of P . Conversely, if
intersect(T ′, P, t1, t2) is false, then for every t ∈ [t1, t2], the expected location of
the original trajectory T at time t is either outside P , or, if inside, it is within
δ of a side of P (i.e. it does not penetrate P by more than δ). Intuitively, this
means that if the εD-road-snapped trajectory T ′ intersects P , then T is not fur-
ther than δ from P ; and if T ′ does not intersect P , then T does not intersect P ,
or intersects it “very little”. Thus, the user, knowing that the query addresses
road-snapped trajectories, may decide to adjust the polygon P accordingly.

The following subsumption relationship holds among query types.

Theorem 4. Any distance function D is error-bounded w.r.t. the where at query
type if and only if it is error-bounded for the intersect query type.

Interestingly, the Euclidean distance is not error-bounded w.r.t. where at
query type. While the time uniform distance is error-bounded.

Theorem 5. The 3D Euclidean distance is not error-bounded w.r.t the where at
query type.

Theorem 6. The time uniform distance is error-bounded w.r.t. the where at
query type. Furthermore, for any tolerance ε, the answer-error-bound of the
where at query-type is ε.

Together with Theorem 4, the above result implies that the time uniform
distance is also error-bounded w.r.t. the intersect type. It can also be shown
that for the distance Eu, for any tolerance ε, the answer-error-bound of the
intersect query type is equal to ε.

186 H. Cao and O. Wolfson

6 Related Work

Recently, modeling, management, and query processing of network confined
movement has received significant attention[8, 14]. However, the required error-
correction to make the work applicable has been ignored. Our study provides the
necessary preprocessing step. Some papers adopted the similar idea of separat-
ing spatial and temporal components of trajectories [8]. However, their objective
was to improve the performance of indexing, whereas our objective here is to
correct errors, provide a higher level of motion abstraction, and reduce size.

Trajectory snapping is also studied for car navigation under the title map
matching [11, 16]. Most of those works take a heuristic approach to snapping,
and their main purpose is to determine in real time the current block the driver
is on. In order to do so they only consider the last GPS point, or the last few
GPS points. Therefore, when considering the snapped blocks one may obtain a
route that is not connected. However, since the purpose is simply to determine
the current location of a user in real-time, this drawback is not important for
their purpose. The two-page paper [17] provides a heuristic for map matching. To
the best of our knowledge, our road-snapped trajectory construction algorithm
is the first complete map matching algorithm, which determinates whether a
road-snapped trajectory exists for the given error bound.

Similar to map matching, researchers are also studying the matching prob-
lems between different spatial datasets[5], and the problem of robotic mapping[15].
However, the objectives of these papers are different than ours, and their tech-
niques are probably not directly applicable here.

Nonmaterialized trajectory representation of motion is related to data reduc-
tion, a very popular topic in the database research. When it comes to generating
the answers to the queries, there are two approaches: 1. The data is decompressed
before answering a query [6]; and 2. The compressed data is used to answer the
query, and the answer contains some error [4, 10]. Our approach is lossy, i.e we
do not recover the original trajectories after snapping. Recently wavelets have
become a popular paradigm for data reduction which provides fast and “reason-
ably approximate” answer to queries [4]. The original data is reduced to compact
sets of coefficients (wavelet synopses) which are used to answer the queries. The
main difference with our approach which provides deterministic error-bounds to
queries, is that these works either do not ensure a bound on the error of query
answers, or ensure an asymptotic/probabilistic bounds on the error. A similar
observation holds for the works which use histograms or sampling to compress
the data and provide a reasonably accurate answer to the queries (see [1]).

Finally, let us mention some previous work on data reduction by strong line-
simplification ([3][13]). These work did not address road-snapping or nonmate-
rialized trajectories, thus the line simplified trajectories may still be off the road
network. However, [3] did consider soundness of queries. The concept of error-
boundedness in this paper is a generalization of soundness to the case where the
vertices of the approximate trajectory are not necessarily a subset of those of
the original trajectory (in contrast to line simplification which imposes such a

Nonmaterialized Motion Information in Transport Networks 187

restriction). [13] also used the time uniform distance and studied the error and
the compression ratio experimentally.

7 Conclusions

With the proliferation of location based services and mobile devices including
sensors, computers, and GPS receivers, the importance of motion information
will increase tremendously. In this paper we addressed the problem of producing
a higher level of abstraction for motion data, based on constraints provided by
road networks. We introduced an algorithm for “adjusting” a given trajectory T
to fit the road network; the adjustment is called a road-snapped trajectory, T ′′,
and it has several properties. First, it is within a distance ε (the location-sensor
error) from T . Second, it is on the road network. Third, it is nonmaterialized,
i.e. it provides the temporal information separately from the spatial information
common to all the trajectories. Fourth, it is minimized in a local sense, i.e. for
a given materialized snapped trajectory. Fifth, it is error bounded with respect
to the spatio-temporal queries: where is a moving object at a given time, range
query, nearest neighbor, and join. In other words, the answers to any such query
posed on T and T ′ are close. We have shown that this property is not trivial
even though T and T ′ are ε-close; i.e. the property holds for the time uniform
distance metric, but not for the Euclidean metric. The time-complexity of the
algorithm is O(nm2), for a trajectory with n vertices and a map with m straight
line segments at distance ε from T .

References

1. Special issue on data reduction techniques. IEEE Data Engineering, 20(4), 1998.
2. H. Alt and L. J. Guibas. Discrete geometric shapes: Matching, interpolation, and

approximation A survey. Technical Report B 96-11, Institut für Informatik, Freie
Universität Berlin, 1996.

3. H. Cao, O. Wolfson, and G. Trajcevski. Spatiotemporal data reduction with de-
terministic error bounds. In DIALM-POMC’03, pages 33–42, 2003.

4. K. Chakrabarti, M. Garofalakis, R. Rastogi, and K. Shim. Approximate query
processing using wavelets. In VLDB 2000, Septermber 2000.

5. C. Chen, S. Thakkar, C. Knoblock, and C. Shahabi. Automatically annotating and
integrating spatial datasets. In SSTD’03, 2003.

6. Z. Chen, J. Gehrke, and F. Korn. Query optimization in compressed database
systems. In ACM SIGMOD 2001, pages 271–282. ACM Press, 2001.

7. L. Florizzi, R. H. Guting, E. Nardelli, and M. Schneider. A data model and data
structures for moving objects databases. Technical Report 260-10, Fern-Universität
Hagen, 1999.

8. E. Frentzos. Indexing objects moving on fixed networks. In Proc. 8th Int’l Sym-
posium on Spatial and Temporal Databases, SSTD’03, 2003.

9. S. K. Ghosh. Computing the visibility polygon from a convex set and related
problem. Journal of Algorithms, 12:75–95, 1991.

10. P. B. Gibbons, Y. Matias, and V. Poosala. Fast incremental maintenance of ap-
proximate histograms. In VLDB, 1997.

188 H. Cao and O. Wolfson

11. J. S. Greenfeld. Matching gps observations to locations on a digital map. In The
81th Annual Meeting of the Transportation Research Board, Washington D.C, 2002.

12. L. J. Guibas, J. E. Hershberger, J. S. B. Mitchell, and J. xS. Snoeyink. Approxi-
mating polygons and subdivisions with minimum link paths. In ISAAC’ 91, 1991.

13. N. Meratnia and R. A. de By. Spatiotemporal compression techniques for moving
point objects. In EDBT, pages 765–782, 2004.

14. D. Pfoser and C. S. Jensen. Indexing of network constrained moving objects. In
ACM GIS, pages 25–32. ACM Press, 2003.

15. S. Thrun. Robotic mapping: a survey. In Exploring artificial intelligence in the
new millennium, pages 1–35. Morgan Kaufmann Publishers Inc., 2003.

16. C. E. White, D. Bernstein, and A. L. Kornhauser. Some map matching algorithms
for personal navigation assistants. Transportation Research Part C, 8:91–108, 2000.

17. H. Yin and O. Wolfson. A weight-based map matching method in moving objects
databases. In SSTDM, 2004.

Algorithms for the Database Layout Problem

Gagan Aggarwal�, Tomás Feder��, Rajeev Motwani� � �, Rina Panigrahy,
and An Zhu†

Computer Science Department, Stanford University, Stanford, CA 94305
{gagan, rajeev, rinap, anzhu}@cs.stanford.edu,

tomas@theory.stanford.edu

Abstract. We present a formal analysis of the database layout problem,
i.e., the problem of determining how database objects such as tables and
indexes are assigned to disk drives. Optimizing this layout has a direct
impact on the I/O performance of the entire system. The traditional ap-
proach of striping each object across all available disk drives is aimed
at optimizing I/O parallelism; however, it is suboptimal when queries
co-access two or more database objects, e.g., during a merge join of two
tables, due to the increase in random disk seeks. We adopt an existing
model, which takes into account both the benefit of I/O parallelism and
the overhead due to random disk accesses, in the context of a query
workload which includes co-access of database objects. The resulting op-
timization problem is intractable in general and we employ techniques
from approximation algorithms to present provable performance guar-
antees. We show that while optimally exploiting I/O parallelism alone
suggests uniformly striping data objects (even for heterogeneous files and
disks), optimizing random disk access alone would assign each data ob-
ject to a single disk drive. This confirms the intuition that the two effects
are in tension with each other. We provide approximation algorithms in
an attempt to optimize the trade-off between the two effects. We show
that our algorithm achieves the best possible approximation ratio.

1 Introduction

As relational databases keep growing in size, good overall performance for queries
and updates necessitates the optimization of I/O performance on secondary stor-
age. A significant aspect of I/O performance is database layout, i.e., how database
objects such as tables, indexes, materialized views, etc, are assigned to the avail-
able disk drives.

� Supported in part by a Stanford Graduate Fellowship, NSF Grants EIA-0137761
and ITR-0331640 and a grant from SNRC.

�� 268 Waverley St., Palo Alto, CA 94301.
� � � Supported in part by NSF Grant IIS-0118173 and EIA-0137761, an Okawa Foun-

dation Research Grant, and grants from Microsoft and Veritas.
† Supported in part by a GRPW fellowship from Bell Labs, Lucent Technologies,

and NSF Grant EIA-0137761.

T. Eiter and L. Libkin (Eds.): ICDT 2005, LNCS 3363, pp. 189–203, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

190 G. Aggarwal et al.

The traditional approach has been to spread out each database object uni-
formly over all available disk drives, called full striping, in order to obtain I/O
parallelism. Full striping minimizes the transfer time of a database object to main
memory. Thus, as long as only one object is accessed at a time, this solution can
be shown to be optimal with respect to I/O performance. However, when dealing
with a query workload which involves co-access of of two or more database ob-
jects, e.g., a merge join of two tables, there is a distinct possibility that uniform
striping could lead to substantially suboptimal performance. The main reason is
that if the concurrently-accessed (co-accessed) objects are co-located on a disk
drive, then the seek time encountered switching access between these two ob-
jects begins to dominate the I/O cost instead. As a result, there is a trade-off
between the benefit due to I/O parallelism and the overhead due to random I/O
accesses. For queries co-accessing multiple objects, I/O performance might be
improved by choosing a database layout which differs from full striping. For in-
stance, consider the following example given in [1]. Consider queries Q3 and Q10
of the TPC-H benchmark. The execution plan of both these queries accesses the
tables lineitem and orders together and performs a Merge Join. The execution
time of these queries were measured over the following two database layouts over
a system of 8 disks: (1) Full striping: each table was spread uniformly across all
8 disks. (2) lineitem was spread uniformly on 5 disks, and orders was spread
uniformly across the other 3 disks. Both Q3 and Q10 executed about 40% faster
on the database layout (2) as compared to (1). The main reason is that contrary
to layout (1), layout (2) avoided a large number of random I/O accesses.

In our study of the database layout problem, we adopt the framework and
cost model proposed by Agrawal, Chaudhuri, Das, and Narasayya [1], which
combines the effects of both I/O parallelism and random disk access. Using
their framework, we model the problem as follows. All database objects are re-
ferred to as files, each with a size ri specified in terms of number of disk blocks.
In addition, we are given a set of (heterogeneous) disk drives. The goal is to de-
termine a layout of files on disks (specifying what fraction of each file is assigned
to each disk), while minimizing the total I/O access time. Naturally, the optimal
layout depends on the characteristics of the workload handled by the system. We
assume that the workload is given as part of the input. From the query plans,
we can extract the frequencies of accessing individual files as well as co-accessed
files. For the sake of brevity, we focus our exposition on the case of two-object
queries, i.e., queries co-accessing exactly two files. Note that single-object queries
are trivially handled by viewing queries accessing a single file i as co-accessing
files i and x, where x is an imaginary file of size zero. In general, if a query co-
accesses more than two files, we can replace the query with a set of two-object
queries [1]; the details are omitted for the purpose of this extended abstract.

For a query q that co-accesses files i and i′, the total I/O access time is divided
into two parts: the transfer time and the seek time. Transfer time measures the
time it takes to sequentially access file blocks on a disk. Let rij be the number
of blocks of file i assigned to disk j. Then, the transfer time of query q in disk
j is given by αj(rij + ri′j), where 1/αj is the transfer rate per disk block for

Algorithms for the Database Layout Problem 191

disk j. Seek time measures the extra time it takes to re-position the disk head
due to random accesses between files i and i′. Let Tj be the average time taken
to re-position the disk head, and let B be the average number of blocks read
before the system switches from reading one file to the other. We define the
seek rate βj of disk j to be 2Tj/B. Then the seek time for disk j for query q
is given by βj min{rij , ri′j}. We justify it as follows: without loss of generality,
let rij ≤ ri′j ; then, the number of times the disk head switches to file i from
file i′ on disk j is bounded by rij/B, and the number of times it switches to file
i′ from file i on disk j is also bounded by the same number. So the total seek
time is Tj · 2rij/N = βjrij . Finally, the total I/O access time of query q is the
maximum I/O access time of query q over all disks.

Formally, the problem is defined as follows.

Definition 1. [Database Layout Problem]

Input: Files F = {1, 2, . . . , n}, with file i having size ri. A set of disks D =
{1, 2, . . . ,m}, where each disk j has transfer rate 1/αi, seek rate βj, and load
capacity Lj. A query workload consisting of a set of queries Q = {q = (i, i′) :
i, i′ ∈ F}, with each query q = (i, i′) having frequency weight φ(i, i′).

Objective: Determine a feasible (defined below) assignment of files to disks so
as to minimize the overall query access time (defined below). Let rij denote
the number of blocks of file i assigned to disk j. An assignment is said to
be feasible if

∑
j∈Drij = ri for all files i and

∑
i∈F rij ≤ Lj for all disks j.

The overall query access time is
∑

q∈Q P (q), where the access time for query
q = (i, i′) is P (q) = φ(i, i′) ·maxj∈D[αj · (rij + ri′j) + βj ·min{rij , ri′j}].

We present a formal analysis of this optimization problem. Our main con-
tribution is to establish almost tight theoretical bounds in terms of approxi-
mation ratio for the above problem. Define γ = maxj∈D

βj

αj
. We show that the

above problem is NP-hard to approximate within a factor of ργ, for some con-
stant 0 < ρ < 1. On a positive note, we present an (1 + γ/2)-approximation
polynomial-time algorithm for the general objective function. By the preceding
negative result, our approximation algorithm is optimal up to small constant
factors. In establishing the positive (1 + γ/2)-approximation result, we relate
our problem to the problem of minimizing the transfer time only. We show that,
when seek time is ignored, a natural weighted variant of full striping gives the
optimal solution, provided disk capacities are not a constraint. In order to take
disk capacities into account, we formulate the problem as a linear program to
find the optimal solution in polynomial time. To establish the negative result,
we relate our problem to the problem of minimizing the seek time only. We
show that, when the transfer time is ignored, there exists an optimal solution
that assigns each file to a single disk, i.e., no files are split across disks. This
observation helps us relate the problem to a well-studied NP-complete problem,
allowing us to infer its intractability. We also consider single-object queries, i.e.,
queries which do not involve co-access of files. For a workload consisting of only
such queries, we give a simple and fast greedy algorithm, and show that it al-

192 G. Aggarwal et al.

ways finds the optimal assignment of files to disks. This algorithm is much faster
compared to the straightforward linear programming method.

The rest of this paper is organized as follows. Section 2 presents algorithms
for single-object queries. Section 3 investigates the structure of database layout
while minimizing only the transfer time, providing an optimal algorithm for this
objective function. Section 4 investigates the structure of database layout while
minimizing only the seek time. Section 5 deals with the problem of minimizing
the combination of transfer and seek times. Finally, we conclude in Section 6
with an overview of some related work in this area.

2 A Fast Greedy Algorithm for Single Object Queries

In this section, we present an efficient algorithm to find the optimal assignment
for single-object queries. Since each query consists of only one file, there is no
random access cost, i.e., we have to consider only the transfer time for each file,
and P (q) reduces to maxj∈D{rijαj} for a query q accessing file i. Also, let φi

denote the access frequency for file i.
If the disks are homogeneous, then it is clear that striping each file uniformly

across all disks is an optimal solution. Instead, we analyze the general case where
the disks are heterogeneous, and the files can be of different sizes. Notice that
we could write a linear program (LP) to solve any single-object query instance,
but here we present an optimal greedy algorithm, which is simpler and faster
than the LP approach.

The greedy algorithm is as follows. Consider the files one by one, in decreasing
order of their frequency φi. For file i, we first attempt to split file i across all
m disks so the transfer time of file i is uniform across all disks. If such an
assignment does not violate the capacity constraint for any disk, then assign file
i accordingly and remove it from our consideration. We then proceed with the
next file in order. Otherwise, let L′

j denote the currently available capacity of disk
j and let κ = minj {L′

jαj}. Then we partially assign file i by setting rij = κ
αj

for each disk j. Clearly, the assigned portion of file i has uniform transfer time
across all available disks, and no disk capacity is violated. In addition, there is
at least one disk, whose load capacity is completely saturated after the partially
assignment of i. The saturated disks are removed from further consideration,
while the remainder of file i is considered at the next iteration. Notice that in
each iteration, we either assign a file completely, or saturate the capacity of at
least one of the disks. This implies that the algorithm terminates after at most
n + m such iterations. The pseudo-code of the greedy algorithm is presented in
the Appendix.

We now show that the greedy algorithm produces an optimal assignment. We
first prove the following lemma about the greedy algorithm.

Lemma 1. After any iteration, let U be the current set of unsaturated disks.
Then for each file i, rijαj is a constant over all disks j ∈ U . Further, rijαj ≥
rij′αj′ for any two disks j ∈ U and j′ �∈ U .

Algorithms for the Database Layout Problem 193

Proof. In the greedy algorithm, we always (partially) assign a file i to disks
so that rijαj is the same for all unsaturated disks. Moreover, once a disk gets
saturated, no more files are assigned to it. This implies that for any file i, rijαj

for the saturated disks is no more than that for the unsaturated disks. ��

Let Cj denote the current load on disk j, i.e., the sum of all file sizes assigned
to disk j. The above lemma gives us the following corollary.

Corollary 1. After any iteration, let U be the set of unsaturated disks. Cjαj is
a constant over all disks j ∈ U . Further, Cjαj ≥ Cj′αj′ for any two disk j ∈ U
and j′ �∈ U .

Next, we prove the optimality of the greedy solution.

Theorem 1. Let S be the assignment defined by the rij’s produced by the greedy
algorithm. Let S ′ be any other assignment. Let Z be the total transfer time
incurred by S and let Z ′ be the total transfer time incurred by S ′. Then Z ≤ Z ′.

Proof. Given an instance I, let φ = mini {φi}. First consider the assignment
S. For each file i, let zi denote its transfer time weighted by its frequency, i.e.,
zi = φi · maxj{αjrij}. Let zi = zA

i + zB
i , where zA

i = (φi − φ) · maxj{αjrij}
and zB

i = φ · maxj{αjrij}. Further, let the total transfer time over all files
be Z = ZA + ZB , where ZA =

∑
iz

A
i and ZB =

∑
iz

B
i . Now consider any

other assignment S ′. Let r′
ij be the file assignments corresponding to S ′. Define

z′
i = z′A

i + z′B
i in terms of the r′

ij , and Z ′ = Z ′A + Z ′B as above.
We will show that Z ≤ Z ′ for all instances by induction on the number of

files n. The hypothesis states that Z ≤ Z ′ for all instances with k files. The
base case with k = 0 is clearly true. For the induction hypothesis, we assume
that Z ≤ Z ′ for k = m. Consider an instance I with m + 1 files. Assume that
the files are numbered in decreasing order of frequency φi. Notice that ZA for
instance I represents the total transfer time incurred by the greedy algorithm
on an instance I1 consisting of files 1 through m in the original instance I, with
file i having frequency φi − φ. This is because each file’s frequency is reduced
uniformly by φ, so the relative order of the files remains unchanged. The greedy
algorithm would consider these m files in the same order as in instance I, and give
exactly the same assignment of these m files to disks. Similarly, Z ′A represents
the total transfer time on instance I1 under assignment S ′. By the inductive
hypothesis, we know that ZA ≤ Z ′A. Now we concentrate on ZB . Consider
an instance I2, consisting of all m + 1 files in I, each with frequency φ. If we
resolve ties such that the files are considered in the same order as for I, then
ZB corresponds to the total transfer time incurred by the greedy algorithm on
instance I2. Similarly, Z ′B corresponds to the total transfer time on the instance
I2 under assignment S ′.

Let l be the last disk that received some file assignment according to the
greedy algorithm running on instance I2. By Lemma 1, we have that for any file
i and disk j, rijαj ≤ rilαl, implying maxj{rijαj} = rilαl. Since the current load
on disk l is Cl =

∑
iril, we have that the overall transfer time ZB = φαlCl. By

194 G. Aggarwal et al.

Corollary 1, in assignment S, every disk j is either saturated, or has a current
load Cj , such that Cjαj = Clαl. Now consider the assignment S ′ that incurs
Z ′B on instance I2. Let C ′

j denote the final load on disk j in S ′. Then there
exists a disk d, such that C ′

d ≥ Cd for some disk d which is unsaturated in S.
This is because C ′

d < Cd for all unsaturated disks would imply that the total
amount assigned by S ′ is less than the total amount assigned by S. Thus, Z ′B ≥
φαdC

′
d ≥ φαdCd = φαlCl = ZB . Therefore Z ′ = Z ′A + Z ′B ≥ ZA + ZB = Z.

This completes the induction. ��

This completes our discussion of single-object queries. In the rest of the paper,
we will concentrate on the general model in which each query co-accesses two
objects.

3 Algorithms for Minimizing Transfer Time

In this section, we develop algorithms that minimize the total transfer time only,
while ignoring the seek time, for a workload consisting of queries that co-access
two files. We show that the optimal assignment will spread files uniformly across
all disks, if the disks have large enough storage capacity. We also present an
algorithm to solve the more general case where disks have limited capacities.
The following definitions will be used throughout the rest of the paper.

Definition 2. Let fij denote the fraction of file i assigned to disk j: fij =
rij/ri. Let T (q) and S(q) denote the maximum transfer and seek time, re-
spectively, for query q = (i, i′): T (q) = maxj∈D{rijαj + ri′jαj} and S(q) =
maxj∈D(min{rij , ri′j} · βj).

By definition, φ(i, i′) ·max{T (q), S(q)} ≤ P (q) ≤ φ(i, i′)(T (q)+S(q)), where
P (q) is the total disk access time for query q. In this section, minimizing the
transfer time corresponds to minimizing the term

∑
q=(i,i′) φ(i, i′)T (q). We use

superscripts to distinguish between different assignments, for instance, SA(q)
denotes the seek time of query q in assignment A. When the context is clear,
the superscripts are omitted.

Theorem 2. If disks have unlimited storage capacity, then each file should be
split such that the transfer time is uniform across all disks, i.e., for each file i,
rijαj is the same for any disk j.

Proof. For each file i, let κi = ri · (
∑

j
1

αj
)−1 and rij = κi

αj
. We first show that

for a query q = (i, i′), T (q) ≥ κi + κi′ in any assignment. The two files have a
combined size of ri + ri′ . Since we are only concerned with transfer time, it is
equivalent to spreading a single file f of size rf = ri + ri′ across disks. The best
way is to set κf = rf · (

∑
j

1
αj

)−1 and rfj = κf

αj
. This implies that κf = κi + κi′ ,

hence T (q) = κf ≥ κi + κi′ . The uniform assignment achieves this lower bound
for each query, which implies its optimality. ��

Algorithms for the Database Layout Problem 195

The above theorem applies as along as the disk capacities are large enough,
i.e., Lj ≥

∑
irij , ∀j. If some of the disks have smaller capacities, we can use

linear programming to solve the instance optimally. Besides the variables rij , we
introduce a new variable xii′ , representing the transfer time T (q) for each query
q = (i, i′).

min :
∑

q=(i,i′)∈Q

φ(i, i′)xii′

subject to : xii′ ≥ (rij + ri′j)αj , ∀ q = (i, i′) ∈ Q, j ∈ D

Lj ≥
∑
i∈F

rij , ∀ j ∈ D

ri =
∑
j∈D

rij , ∀ i ∈ F

rij ≥ 0, ∀ i ∈ F, j ∈ D

Clearly, the values rij obtained after solving the LP will be an optimal as-
signment of files to disks.

4 Algorithms for Minimizing Seek Time

Next we consider the problem of minimizing only the seek time, i.e., the term∑
q=(i,i′) φ(i, i′)S(q). Our goal is to establish the fact that the problem of min-

imizing the total seek time is equivalent to the Minimum Edge Deletion k-
Partition problem, which is well studied. As shown at the end of this section,
minimizing the total seek time for homogeneous disks is very hard to approxi-
mate, which implies that the general case of heterogeneous disks is at least as
hard to approximate. The hardness result from this section will aid us in deriving
a hardness result for the case of minimizing the combined access time.

Definition 3. [Minimum Edge Deletion k-Partition Problem]

Input: A graph G = (V,E), with weighted edges.
Objective: Find a coloring of vertices with k colors C : V → {k} that min-

imizes the total weight of monochromatic edges (an edge is monochromatic
iff its end points have the same color in C).

In the next theorem, we show that if we insist that each file must be com-
pletely assigned to only one disk, then the problem of minimizing seek time
is equivalent to the Minimum Edge Deletion k-Partition (MEDP-k) prob-
lem. We define the Integral Seek Time (IST) problem as the one that forbids
splitting files.

Theorem 3. The Minimum Edge Deletion m-Partition problem is equiv-
alent to the Integral Seek Time problem, where each file must be assigned
completely to only one of the m homogeneous disks.

196 G. Aggarwal et al.

Proof. First, we reduce the IST problem with m homogeneous disks to the
MEDP-m problem. Given files F , disks D and a query workload Q with query
frequency φ(i, i′)’s, we create a graph G = (V,E), where V = F and E = Q.
And the weight of the edge e = (i, i′), w(e), is set to φ(i, i′) min{ri, ri′}. Given
a solution S to this created instance of the MEDP-m problem, we produce an
assignment A for the IST problem as follows: a file i is assigned to disk j if and
only if it was assigned color j in the MEDP-m solution. It is clear that the total
weight of monochromatic edges in S is exactly the total seek time incurred by
assignment A.

We now reduce the MEDP-m problem to the IST problem. Given G = (V,E)
and w(e), we create an instance, where F = V , |D| = m, Q = E, and φ(i, i′) =
w(e) for each edge e = (i, i′). Each file i has unit size, and each of the m disks has
seek rate 1. Given any assignment A of the created instance, we then produce
a solution S to the MEDP-m problem as follows: vertex i is assigned color j if
and only if it was assigned to disk j in A. Clearly, the total seek time in A is
the same as the total weight of monochromatic edges in S. ��

However, in general an optimal assignment to the original problem of mini-
mizing the total seek time need not be integral, i.e., a file could be split across
multiple disks. We distinguish between these two types of assignment: integral
and fractional.

Definition 4. An integral assignment of files to disks is the one that assigns
each file completely to one of the disks. A fractional assignment allows a file to
be split across multiple disks.

We aim to show that for every fractional assignment, one can find an integral
assignment with equal or less total seek time. This will imply that the problem
of minimizing the total seek time is equivalent to the IST problem. But we first
show a weaker statement.

Lemma 2. For any assignment A with total seek time CA, there exists an in-
tegral assignment A′ with total seek time CA′ , where CA′ ≤ 2CA.

Proof. Recall that fij denotes the fraction of file i assigned to disk j in A. Thus,∑
jfij = 1 for all i. We create the integral assignment A′ via a randomized algo-

rithm. In A′, we assign file i to disk j with probability fij . Next, we bound the
total seek time incurred in A′. Consider any query q = (i, i′). In A, the seek time
incurred in co-accessing files i and i′ is SA(q) = maxj{min{rifijβj , ri′fi′jβj}}.
Let g = maxj{min{fijβj , fi′jβj}}, then SA(q) ≥ g · min{ri, ri′}. In the as-
signment A′, if files i and i′ are assigned to different disks, then there is no
seek time incurred in co-accessing files i and i′. If files i and i′ are assigned to
the same disk j, then the seek time becomes βj · min{ri, ri′}. The probability
of both the files i and i′ being assigned to disks j is fij · fi′j . Observe that
fij · fi′j · βj ≤ g · (fij + fi′j). This implies the expected total seek time for A′ is
given by

Algorithms for the Database Layout Problem 197

SA′
(q) = min{ri, ri′} ·

∑
j

fij · fi′j · βj

≤ min{ri, ri′} ·
∑

j

g · (fij + fi′j)

= min{ri, ri′} · g · (
∑

j

fij +
∑

j

fi′j)

= 2g ·min{ri, ri′}
≤ 2SA(q)

Since CA =
∑

q=(i,i′)∈Q φ(i, i′)SA(q) and CA′ =
∑

q=(i,i′)∈Q φ(i, i′)SA′
(q),

we conclude that CA′ ≤ 2CA. We just showed that the expected seek time for
the integral solutions returned by the randomized algorithm is no more than
2CA. This implies the existence of an integral assignment with seek time no
more than 2CA. ��

We note that the factor 2 is tight for this randomized rounding procedure.
Consider the following fractional assignment for two unit size files and two iden-
tical disks with seek rate 1: r11 = r22 = ε and r12 = r21 = 1− ε. Thus the seek
time SA for the query q = (1, 2) is ε. After randomized rounding of this frac-
tional assignment, the two files collide with probability 2ε(1−ε), for an expected
seek time SA′

of 2ε(1− ε). The ratio of SA to SA′
approaches 2 as ε→ 0.

Next, we will show that there exists an integral assignment which is as good
as the optimal fractional assignment. We first prove a weaker property for which
we need to introduce the following notation.

Definition 5. Define cij = rijβj, the potential seek time of file i on disk j.
For each file i, define cmin

i = minj{cij : cij �= 0} and cmax
i = maxj{cij}. Let

U (for unequally split) denote the set of files i such that cmax
i �= cmin

i . Define
λ = mini∈U{cmin

i }. Let V = {z1, z2, . . . , zk} ⊆ U denote the set of files such
that cmin

i = λ, for i ∈ V . For an assignment A, define the stretch of A as
R(A) = maxzi∈V {cmax

zi
− cmin

zi
}.

Lemma 3. There exists an optimal fractional solution, such that each file is
split uniformly in terms of potential seek time across a subset of disks, i.e., for
each file i there exists a constant ci, such that cij ∈ {0, ci} for all disks j.

Proof. We prove this by contradiction. Suppose every optimal fractional assign-
ment violates this property. Let A be the optimal fractional assignment with
the minimum stretch R(A). In A, we count the total frequency Φ of queries of
the form q = (zi, �) with zi ∈ V, � ∈ U , and SA(q) = cmin

zi
= λ, or of the form

q = (zi, �) with zi ∈ V, � �∈ U , SA(q) = λ, and cmin
� = cmax

� > λ. Since queries
are unordered pairs of files, in the case of a query of the form q = (zi, zi′) with
zi, zi′ ∈ V , we only increment Φ once if SA(q) = λ. For each zi ∈ V , we also
count the total frequencies Ψi of queries of the form q = (zi, �) with � �∈ V
and SA(q) = cmax

zi
, or of the form q = (zi, �) with � ∈ V , SA(q) = cmax

zi
, and

cmax
� > cmax

zi
. In addition, for each query of the form q = (zi, zi′), we keep a

198 G. Aggarwal et al.

counter Ψii′ , which is set to Ψii′ = φ(i, i′) if SA(q) = cmax
zi

= cmax
z′

i
, and is set to

0 otherwise.
Notice that for any query q = (i, i′), we have SA(q) ≤ cmax

i and SA(q) ≤ cmax
i′ .

Another useful property is that for any query q = (i, i′), if we increase rij by
ε/βj for all j with cij = SA(q), then the new seek time for q is no more than
SA(q) + ε. Consider the following two possible modifications to assignment A:

1. Increase the value λ = cmin
zi

by a small amount ε > 0 (as determined
later). We achieve this by increasing the value rzij by ε/βj on disks j with
czij = cmin

zi
, for each zi ∈ V . To balance out the assignment for files in V , we

decrease czij by an appropriate amount εi > 0, on disks j with czij = cmax
zi

,
for each zi ∈ V . The εi’s are chosen as described below, and this in turn de-
termines the value of ε. Let the assignment obtained after this modification
be A′. If a query q was contributing to Φ, i.e., q = (zi, �) with SA(q) = λ,
then SA′

(q) ≤ λ + ε.
Claim 1: There exist εi’s and ε small enough such that if the query q = (zi, �)
contributed to Ψi in assignment A, then SA′

(q) ≤ cmax
zi

− εi.
We argue this as follows. As long as cmax

zi
− εi is the maximum potential seek

time for file zi in A′, SA′
(q) ≤ cmax

zi
− εi. To ensure this, an εi should be

no more than the difference between the maximum and second maximum
potential seek time of file zi in A. This upper bound on εi determines a maxi-
mum allowed value for ε. For each file zi ∈ V , we determine the upper bound
Υi imposed by file zi on ε. By setting ε ≤ Υ = mini{Υi} and then picking
the εi’s based on this choice, we also ensure that for the query q = (zi, zi′)
with SA(q) = cmax

zi
= cmax

zi′ , SA′
(q) ≤ cmax

zi
−max{εi, εi′}.

Claim 2: There exists an ε small enough such that in addition to the con-
ditions mentioned in claim 1, the seek time of all other1 queries does not
increase.
We argue this as follows. For a query q = (zi, �) with SA(q) < λ, since we
didn’t change the assignment of any file with potential seek time less than
λ on any disk, SA′

(q) ≤ SA(q). For a query q = (zi, �) with SA(q) = λ
and not counted towards Φ, we know that � �∈ U and cmin

� = cmax
� = λ,

implying that SA′
(q) ≤ λ. For a query q = (zi, �) with SA(q) > λ, we just

need to make sure that ε ≤ SA(q) − λ. Thus, the overall upper bound on
the value for ε is min{Υ,minq:SA(q)>λ SA(q) − λ}. By choosing such an ε
and then choosing the εi’s appropriately, the total seek time for A′ com-
pared to that of A is increased by at most εΦ, and decreased by at least∑

1≤i≤k εiΨi +
∑

q=(i,i′)∈Q max{εi, εi′}Ψii′ .
2. Decrease the value λ = cmin

zi
by the same amount ε determined in the first

modification. We do this by decreasing the value rzij by ε/βj on disks j
with czij = cmin

zi
, for each zi ∈ V . Correspondingly, we increase czij by the

appropriate amount εi, on those disks j with c{zi}j = cmax
zi

, for each zi ∈ V .
Let A′′ be the assignment obtained after this modification.

1 Queries that are not counted towards Φ, Ψi, or Ψi,i′ . A query q = (zi, z
′
i) is counted

towards Ψi,i′ only if Ψi,i′ = φ(i, i′).

Algorithms for the Database Layout Problem 199

Claim: If a query q contributed towards Φ, i.e., q = (zi, �) with SA(q) = λ,
then SA′′

(q) = λ− ε.
We prove this claim by considering three situations. If � �∈ U , then by

definition, cmax
� = cmin

� > λ. The fact that SA(q) = λ implies that � resides
only on those disks j where cA

zij
∈ {0, λ}. We know that for these disks j,

cA′
zij
∈ {0, λ − ε}, and hence the claim holds. Else if � ∈ U but � �∈ V , then

cmin
� > λ. In this case, the claim holds by a reasoning similar to the one

above. Otherwise, � = zi′ ∈ V . In this case, SA(q) = λ implies that in A,
there is no disk j for which both czij and czi′ j exceed λ, and again the claim
holds with a similar reasoning.

Next, notice that if q = (zi, �) was counted towards Ψi in A, then
SA′′

(q) ≤ cmax
zi

+ εi. And if Ψii′ = φ(i, i′), then SA′′
(q) = cmax

zi
+ min{εi, εi′}.

Regardless of the above choice of ε, this modification does not increase the
seek time of any other queries which do not contribute towards Φ, Ψi, or Ψi,i′ ,
since only the cmax

zi
’s are increased. Thus the total seek time is decreased by

at least εΦ, and increased by at most
∑

1≤i≤k εiΨi +
∑

i �=i′ min{εi, εi′}Ψii′ .

If the first modification does not increase the total seek time, then we have
found an optimal assignment A′ with a smaller stretch value than A, contra-
dicting the choice of A. Otherwise, the second assignment A′′ must have smaller
total seek time compared to A, since min{εi, εi′} ≤ max{εi, εi′}. In this case, we
have found an assignment with a smaller total seek time than A, contradicting
the optimality of A. ��

Using the previous lemma, we now show the following.

Theorem 4. There exists an integral assignment that is optimal, i.e., no worse
than any fractional assignment.

Proof. We prove this by contradiction. Suppose every optimal assignment splits
at least one file. Among all optimal fractional assignments that spread the files
uniformly in terms of potential seek time (by the previous lemma, there exists at
least one such assignment), let A be the assignment which minimizes the number
of split files. Let ci be the uniform potential seek time for file i. Consider the
file z with the largest ci among all the split files i. For convenience, reorder the
disks so that czj = cz for 1 ≤ j ≤ k, where k ∈ N. Let Φj denote the total
frequency of queries of the form q = (z, �) with c�j > cz, for disks 1 through
k. Note that SA(q) = cz for these queries. Since z is the file with the largest
cz among all split files, c�j > cz implies that � must be completely assigned
to disk j. Thus, queries that contribute to different Φj ’s are disjoint, implying
that the total seek time for these queries is

∑
1≤j≤k Φjcz =

∑
1≤j≤k Φjβjrzj .

We modify A by completely assigning z to disk y with the smallest Φjβj , for
1 ≤ j ≤ k. Let A′ be the assignment obtained after the modification. Under this
assignment, the total seek time for the queries that contributed towards Φj ’s is
Φyβyrz = Φyβy

∑
1≤j≤k rzj ≤

∑
1≤j≤k Φjβjrzj . For any other query q = (z, �)

with c�j ≤ cz, the seek costs do not increase in A′. This is because if c�y = c�,
then the seek cost remains c� as before; otherwise it becomes zero. Thus, overall

200 G. Aggarwal et al.

A′ has no more total seek time than the optimal assignment A, with one less
split file z, contradicting the choice of A. ��

The preceding theorem proves the existence of an integral optimal assign-
ment. Our next theorem gives a polynomial time algorithm converting any frac-
tional assignment to an integral one with equal or less total seek time, improving
Lemma 2.

Theorem 5. There exists a polynomial time algorithm, which for any given
fractional assignment A, finds an integral assignment A′ with equal or less total
seek time.

Proof. We utilize the proof of Lemma 3. At each step, we either perform Modi-
fication 1 or Modification 2, whichever doesn’t increase the total seek time. The
first modification requires us to pick an appropriate ε. For this, the two sufficient
conditions are:
1. We need to ensure that for each file zi, cmax

zi
− εi is still the maximum

potential seek time for file zi in A′. For this, each εi should be no more
than the difference between the maximum and second maximum potential
seek time of file zi in A. This determines an upper bound Υi on the value
of ε. Enumerating over all such zi’s, set ε1 = mini Υi. Note that choosing
ε = ε1 decreases the maximum potential seek time of at least one file zi

to its second maximum potential seek time in A, thus reducing the total
number of different potential seek costs for file zi by at least 1.

2. We need to ensure that λ+ ε does not exceed SA(q), for every query q with
SA(q) > λ. For this, we can pick ε ≤ ε2 = minq:SA(q)>λ S

A(q)−λ. Note that
choosing ε = ε2 also decreases the number of different potential seek costs
for some file by 1.

We set ε = min{ε1, ε2}, and each execution of the first modification reduces
the number of different potential seek costs for some file by one.

If the second modification is chosen instead, then reducing λ by ε does not
increase the total seek time. In this case, by an argument similar to the one
in Lemma 3, reducing cmin

zi
from λ all the way down to 0 instead2 would not

increase the total seek time either. This variant of the second modification also
reduces the number of different potential seek costs for some file by one.

We have a total of n files, each file having at most m different potential seek
costs in A. This implies that at most nm modifications are needed to produce a
solution with uniform potential seek costs for all files.

Next we utilize Theorem 4 to reassign each split file to a unique disk. We need
at most n such reassignments, since each reassignment decreases the number of
split files by one. Overall, the total number of operations is polynomial. ��

The above theorem indicates that the problem of minimizing the total seek
time is equivalent to the IST problem. Together with Theorem 3, we establish
the following equivalence relation.

2 We set cA′
zij to 0 for all zi’s and j such that cA

zij = cmin
zi

= λ.

Algorithms for the Database Layout Problem 201

Corollary 2. The problem of minimizing the total seek time with m homo-
geneous disks is equivalent to the Minimum Edge Deletion m-Partition
problem.

The next two theorems are direct implication of the previous corollary, using
results from the MEDP-k problem.

Theorem 6. For every fixed ε > 0 and every 2 − ε < α ≤ 2, it is NP-hard to
approximate the total seek time within a factor of O(n2−ε), over instances with
n files, |Q| = Θ(nα) queries, and m ≥ 3 disks.

Proof. This follows immediately from the result of Kann, Khanna, Lagergren,
and Panconesi [6], which states that it is NP-hard to approximate the MEDP-k
problem within a factor of O(n2−ε), with n vertices, Θ(nα) edges and k ≥ 3. ��

Theorem 7. With two disks, one can approximate the total seek time within a
factor of O(logn), where n is the number of files. For the problem with three
disks, one can approximate the total seek time within a factor of εn2, for any
constant ε > 0.

Proof. The result for two disks follows immediately by the approximation result
for MEDP-2 in a paper by Garg, Vazirani, and Yannakakis [5]. The result for
three disks follows immediately from Lemma 9 of the paper by Kann, Khanna,
Lagergren, and Panconesi [6]. ��

5 Combining Transfer and Seek Time

In this section, we consider the problem of minimizing the combined trans-
fer and seek time, a.k.a., the Data Layout (DL) problem. Recall that γ =
maxj∈D{ βj

αj
}.

Theorem 8. The optimal assignment A, which minimizes only the total trans-
fer time, is a (1 + γ/2)-approximation to the problem of minimizing the total
combined transfer and seek time.

Proof. For any query q = (i, i′), recall that T (q) = maxj{rijαj + ri′jαj} and
S(q) = maxj{min{rijβj , ri′jβj}}. Note that min{rijβj , ri′jβj} ≤ (rij + ri′j)/2 ·
βj ≤ γ/2(rijαj +ri′jαj). We thus conclude that S(q) ≤ γ/2 ·T (q) for any assign-
ment. Comparing A with any other assignment B, we see that

∑
q∈Q TA(q) ≤∑

q∈Q TB(q), by the optimality of A in terms of transfer time. Also
∑

q∈Q SA(q)
≤ γ/2

∑
q∈Q TA(q) ≤ γ/2

∑
q∈Q TB(q). Since

∑
q∈Q PA(q) ≤ φ(i, i′)(

∑
q∈Q

TA(q)+
∑

q∈Q SA(q)), we get that
∑

q∈Q PA(q) ≤ φ(i, i′)(1+γ/2)
∑

q∈Q TB(q) ≤
(1 + γ/2)

∑
q∈Q PB(q). ��

Theorem 9. It is NP-hard to approximate the Database Layout problem
within a factor of ρ · γ, for some constant 0 < ρ < 1.

202 G. Aggarwal et al.

Proof. We use a hardness result for a special case of the MEDP-k problem shown
in [9], which states that for the class of graphs with unit-weight edges, it is NP-
hard to decide whether the number of the monochromatic edges is 0 or at least
ρ|E|, for some constant 0 < ρ < 1. We reduce this case of the MEDP-k problem
to the DL problem as following. Similar to Theorem 3, given a graph G = (V,E),
we introduce a DL instance with |V | unit-size files, k homogeneous disks, and
|E| queries with φ(i, i′) = w(e) = 1, for every edge e = (i, i′). And for each
disk j, we set αj = 1 and βj = γ. If there exists a coloring of G for which
the number of the monochromatic edges is 0, then there exists a corresponding
assignment A of files to disks, such that S(q) = 0 for all queries q. Notice that
for this assignment A, T (q) ≤ max{ri, ri′} = 1 for every query q = (i, i′). Thus,
the overall access time of A is no more than |E|. On the other hand, if for any
coloring of G, the number of the monochromatic edges is at least ρ|E|, then by
Theorem 3, the total seek time for any assignment is at least γρ|E|. Thus, it is
NP-hard to decide whether the total access time of the derived DL instance is
at most |E|, or at least γρ|E|. The ratio of these two values implies the hardness
result. ��

6 Related Work

To the best of our knowledge, there is no earlier theoretic work providing a
formal analysis of models that take into consideration the cost of co-accessing
data objects in determining a database layout. Our results indicate that no
algorithm can achieve an approximation ratio better than ργ on all instances,
unless P = NP . However, this does not exclude the search for heuristics that
perform well in practice. Indeed, our work was motivated by that of Agrawal,
Chaudhuri, Das, and Narasayya [1], who studied some greedy heuristics and
showed that empirically, they out-perform full striping. To this extent, our formal
analysis complements the earlier work. On the other hand, our work indicates
that striping files produce solutions that are close to the theoretical lower bound.

There has been a significant amount of work in the area of storage admin-
istration and management. Since workload and query plans change over time,
dynamic load balancing has been the focus of numerous earlier papers [2, 3, 4,
7, 8, 10, 11]. Due to space constraints, we refer the reader to [1] for a detailed
survey of this line of work.

References

1. S. Agrawal, S. Chaudhuri, A. Das, and V. Narasayya. Automating Layout of
Relational Databases. In Proceedings of 19th International Conference on Data
Engineering, 2003, pp. 607–618.

2. The AutoAdmin Project. research.microsoft.com/dmx/AutoAdmin.
3. G. Copeland, W. Alexander, E. Boughter, and T. Keller. Data Placement in Bubba.

In Proceedings of SIGMOD Conference, 1988, pp. 99–108.

Algorithms for the Database Layout Problem 203

4. H. Dewan, M. Hernandez, K. Mok, and S. Stolfo. Predictive Dynamic Load Bal-
ancing of Parallel Hash-Joins Over Heterogeneous Processors in the Presence of
Data Skew. In Proceedings of PDIS, 1994, pp. 40–49.

5. N. Garg,V.V. Vazirani, and M. Yannakakis. Multiway cuts in directed and node
weighted graphs. In Proceedings of 21st International Colloquium on Automata,
Languages and Programming, 1994, pp. 487–498.

6. V. Kann, S. Khanna, J. Lagergren, and A. Panconesi. On the Hardness of Ap-
proximating Max k-Cut and its dual. Chicago Journal of Theoretical Computer
Science, 1997.

7. M. Lee, M. Kitsuregawa, B. Ooi, K. Tan, and A. Mondal. Towards Self-Tuning Data
Placement in Parallel Database Systems. In Proceedings of SIGMOD Conference,
2000, pp. 225–236.

8. L. Lee, P. Scheuermann, and R. Vingralek. File Assignment in Parallel I/O Systems
with Minimum Variance and Service Time. IEEE Transactions on Computers,
1998.

9. E. Petrank. The Hardness Of Approximation: Gap Location. In Israel Symposium
on Theory of Computing Systems, 1993, pp. 275–284.

10. P. Scheuermann, G. Weikum, and P. Zabback. Data Partitioning and Load Bal-
ancing in Parallel Disk Systems. The VLDB Journal, 7(1998): 48–66.

11. R. Vingralek, Y. Breitbart, and G. Weikum. SNOWBALL: Scalable Storage on
Networks of Workstations with Balanced Load. Distributed and Parallel Databases,
6(1998): 117-158.

Appendix: Pseudo-Code for the Greedy Algorithm

Algorithm 1 Greedy
1: Sort files in decreasing order of their frequency φi.
2: Let Rj = Lj for each disk j. {Rj denotes the available storage on disk j.}
3: Initialize each rij to be 0.
4: while There are files left unassigned do
5: Consider the first file i in the list
6: Set θi = ri(

∑
j 1/αj)−1.

7: Set qij = θi/αj . {So
∑

j qij = ri and qijαj = θi for all j.}
8: if ∀ j, qij ≤ Rj then {In this case, file i is completely assigned.}
9: rij = rij + qij

10: Update Rj = Rj − qij , ∀ j
11: Delete file i from the list.
12: else {In this case, there exists a disk with Rj = 0, i.e., saturated.}
13: Find λ = minj

Rj

qij

14: Set qij = λqij

15: rij = rij + qij

16: Update Rj = Rj − qij , ∀ j. {Note one of the disks must be saturated.}
17: Update ri = ri −

∑
j qij . {File i will be considered again in the next step.}

18: Remove any saturated disks from consideration.
19: end if
20: end while

Approximately Dominating Representatives�

Vladlen Koltun and Christos H. Papadimitriou

Computer Science Division, University of California, Berkeley, CA 94720-1776, USA
{vladlen, christos}@cs.berkeley.edu

Abstract. We propose and investigate from the algorithmic standpoint a
novel form of fuzzy query called approximately dominating representatives
or ADRs. The ADRs of a multidimensional point set consist of a few points
guaranteed to contain an approximate optimumof anymonotoneLipschitz
continuous combining function of the dimensions. ADRs can be computed
by appropriately post-processing Pareto, or “skyline,” queries [14, 1]. We
show that the problem of minimizing the number of points returned, for
a user-specified desired approximation, can be solved in polynomial time
in two dimensions; for three and more it is NP-hard but has a polynomial-
time logarithmic approximation. Finally, we present a polynomial-time,
constant factor approximation algorithm for three dimensions.

1 Introduction

In recent years there has been much interest in “fuzzy” queries in databases [5],
in which a user seeks an object that is not maximal with respect to one criterion,
but is “good” in several respects simultaneously. In a multimedia database, for
example, we may want to find a document in the corpus that best matches spec-
ifications of color (such as “orange”) and shape (perhaps “round”). In querying
a restaurant database we may seek an establishment that is near our current lo-
cation, of high quality, inexpensive, etc. MapQuest may want to return to a user
a path that minimizes some combination of distance, delay, number of turns,
tolls, fuel consumption, etc. Notice that, in the above examples, we assume that
we know the precise valuations of the objects (documents, restaurants, paths) in
various dimensions (shape score, color score, restaurant quality, tolls, etc.); the
fuzzy part is that we do not know the exact objective that we wish to optimize—
presumably some function combining all these criteria.

There has been much work within database research both in defining and im-
plementing such queries. Among the approaches taken and subproblems attacked
are these:

– Exploring principled, axiomatic ways that lead to the proper definition of
the combining function (see, e.g., [5, 7, 8]). The main difficulty here (the
interesting and elegant results in these papers notwithstanding) is that the
combining function depends in crucial and complex ways on the application

� Work on this paper was supported by an NSF ITR grant and a France-Berkeley
Foundation grant.

T. Eiter and L. Libkin (Eds.): ICDT 2005, LNCS 3363, pp. 204–214, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Approximately Dominating Representatives 205

and the intent of the query, and there are no universal rules to guide us here
(except for some common-sense properties such as monotonicity).

– Assuming that we know a combining function, solving the algorithmic prob-
lem of retrieving the k best items with respect to this function [6]. The
algorithms here are analyzed either in terms of an assumed distribution of
the criteria values, or in a peculiar worst-case sense applicable to middleware
algorithms. The k best goal is a reflection of the fact that, deep down, we
are not sure about the combining function, and so we want enough results
to cover as many possibilities as feasible.

– A more elaborate version of the latter method requests feedback from the
user (such as singling out one of the k results as the “best,” in a manner
similar to Google’s “more like this”), and uses this feedback to modify in a
heuristic way the combining function and retrieve new, presumably subjec-
tively better, results [4].

– A more radical and principled approach is to be completely agnostic about
the combining function, and retrieve all objects that could be best under
some monotonic combining function. This leads us directly to multi-objective
optimization [12, 13] and to Pareto sets, most often known in the database
literature as “skyline queries”. These return any object that is not domi-
nated (in all criteria) by some other object; it can be shown (see Proposition
1) that these are precisely the objects that could be best under some mono-
tonic combining function. (If we know that the combining function is linear,
then we have a convex, smaller variant of the skyline query, see Proposition
2.) There are algorithms that compute these sets as quickly as it can be
hoped (see, e.g., [1]). The downside here is that the skyline set of a large
multidimensional point set can be (and is typically) huge: The skyline set of
a random n-point subset of [0, 1]d contains Θ(logd−1 n) in expectation [2].
Hence, skyline queries will typically flood the user with a large portion of
the whole database.

In this paper we introduce approximately dominating representatives, or
ADRs, a refinement of the skyline queries that remedies the output volume
problem at a small (and controlled) loss of accuracy. For any ε ≥ 0 specified by
the user, an ε-ADR query will return a set of objects {a1, . . . , ak} that has the
following property: For any other object a in the database, there is an i ≤ k such
that the vector ai · (1 + ε) (i.e., ai boosted by ε in all dimensions) dominates a
in all dimensions.

The ADR concept was inspired by the work in [12] (see also [13] for a
database-related application) on approximate multi-objective optimization, and
our basic results are variants of results there. However, [12] focused on combina-
torial optimization problems, where instead of a database of objects we have an
implicitly represented exponential set of feasible solutions (say, all spanning trees
of n nodes), evaluated by multiple cost functions. [12] did not consider the prob-
lem of minimizing the size of the set of ADRs, the focus of our technical results.

There are several variants of ADRs that could be advantageous under some
conditions and could be offered as options in an implementation: Additive ap-

206 V. Koltun and C.H. Papadimitriou

proximation instead of proportional; different approximations specifications for
different criteria; the convex version alluded to in Proposition 2; and combina-
tions of the above. In this paper we focus on the basic ADR (proportionate, uni-
form approximation of the whole skyline); our results can be extended painlessly
to the other variants. The only exception is that, in a couple of our proofs we
use the additive variant because it is simpler to explain (and is equivalent if one
considers the logarithm of each criterion).

The skyline of a database (that is, the ε-ADR with ε = 0) is unique. For
ε > 0, on the other hand, there may be many ADRs, varying significantly in
size. However, an ADR can be considerably smaller than the exact skyline: We
show that an ε-ADR has size O((1/ε log M

m)d)—independent of n—where we
assume that we have d criteria-dimensions, and that the values of each criterion
are between m and M (Proposition 4). This is a worst-case estimate: Among
the many ADRs of a database some will typically be much smaller, and our
algorithms strive to find the smallest possible ADR for the given database and
ε. For example, if the database has a “knee” or “sweet point” — that is, a point
that approximately dominates all others — our ADR algorithms will find it and
the query will return only this point. We show that an ADR is guaranteed to
contain a close approximation of the optimum object under the (unknown) true
combining function, as long as this function is monotonic and satisfies a Lipschitz
continuity condition (Proposition 5).

Thus, the main problem that we attack in this paper is the following: Given
a set of n points in d dimensions and ε > 0, find the smallest possible ε-ADR.
We show that the problem can be solved in linear time in two dimensions by a
greedy algorithm (Theorem 1), and is NP-hard in higher dimensions (Theorem
2). However, it can be approximated within a factor of lnn by a trivial reduction
to the set cover problem. It is an open problem whether better approximation
algorithms are possible; we conjecture that lnn is a lower bound for this problem
(it is for the general set cover problem, see [10]).

We assume in general that we have computed the skyline query of the set,
and our task is to post-process it to determine the smallest possible ADR (in
the 2-dimensional case, our algorithm can be made optimal in the sense of [6],
by running directly on the database).

Finally, we show that in three dimensions constant factor approximation is
possible. The proof of this result extends to the present domain certain sophisti-
cated results on coverings of two-dimensional geometric objects. A very sophis-
ticated adaptation of those techniques is required, since the present situation
is three-dimensional. The complexity of both the technique and the adapta-
tion result in a huge approximation factor (currently about 200. . .). The point
of our result is then that alternatives to the greedy algorithm exist in three
dimensions (even though the current state of the art can prove only very con-
servative bounds for them), and thus the lnn lower bound conjectured above
for unbounded dimension does not hold in three dimensions. Unfortunately, we
know of no techniques that can establish an inapproximability results for lower
approximation factors.

Approximately Dominating Representatives 207

A final note: Very recently we became aware of independent work by Vas-
silvitskii and Yannakakis [15] which, even though on a different if related topic,
reaches conclusions remarkably parallel to ours. They focus on multi-objective
optimization problems, as opposed to static multi-dimensional skyline queries.
Their goal is to obtain approximate Pareto curves with as few points as possible
for the given ε. They approximate the optimum number of points within a factor
of 3 in two dimensions; in three dimensions they show that no such approxima-
tion is possible, but they are able to obtain one if the ε is tripled or so. And in
higher dimensions they show that even this is impossible.

2 Preliminaries

We assume that the database has been reduced to the values of n objects with
respect to d criteria. Thus, a database A is a finite subset of [m,M]d, with
|A| = n, where 0 < m < M are assumed to be fixed. We say that a ∈ A
dominates a′ ∈ A, written a & a′, if for all coordinates i = 1, . . . , d we have
ai ≥ a′

i.
We further assume that all criteria are to be maximized. (Otherwise, a re-

versal of axis would do the trick.) The skyline (or Pareto set) of A is the set
sky[A] = {a ∈ A : for all a′ ∈ A \ {a}, a′ �& a}.

We are not certain that the following justification of the skyline has been
brought to the attention of the database community. Call a function f : 'd (→ '
monotonic if a & a′ implies f(a) ≥ f(a′).

Proposition 1. A point a ∈ A is in sky[A] if and only if there is a monotonic
function f such that a = arg maxa′∈A f(a′).

Thus, sky[A] contains all possible optima of all possible monotonic combin-
ing functions. If we further know that f is linear, that is, of the form f(a) = a · c
for some nonnegative vector c, then the possibilities are restricted in an in-
teresting way: Define the convex skyline of A to be c-sky[A] = {a ∈ A :∑

a′∈A\{a} λa′a′ �& a, for any λa′ ≥ 0, for all a′ ∈ A}. The convex skyline omits
certain points that are covered by convex combinations of others.

Proposition 2. A point a ∈ A is in c-sky[A] if and only if there is a linear
function f such that a = arg maxa′∈A f(a′).

sky[A] is typically quite large:

Proposition 3 ([2]). If A consists of n points drawn uniformly at random from
[m,M]d, the expected size of sky[A] is Θ(logd−1 n).

Fix a database A and ε ≥ 0. A set of ε-approximate dominating representa-
tives, or an ε-ADR, is a subset D of A that has the following property: For every
a ∈ A there is a d ∈ D such that (1 + ε) · d & a. An ADR can be significantly
smaller than sky[A]:

Proposition 4. There is always an ε-ADR of size O((1
ε log M

m)d).

208 V. Koltun and C.H. Papadimitriou

Proof Sketch. Subdivide [m,M]d into axis-parallel orthogonal domains as fol-
lows. Consider the set of values

V =
{
m(1 + ε)j

∣∣∣∣ 0 ≤ j ≤
⌈
log1+ε

M

m

⌉}
.

V is a geometric progression with step 1 + ε, minimal value m, maximal value
above M and cardinality |V | = O(1

ε log M
m). The j-th value of V is denoted by

Vj . For any set of indices 1 ≤ ji ≤ |V |−1, for 1 ≤ i ≤ d, consider the axis-parallel
orthogonal domain{

a ∈ [m,M]d
∣∣∣∣ ∀1 ≤ i ≤ d . Vji ≤ ai ≤ Vji+1

}
.

The number of such domains is O((1
ε log M

m)d). We can create an ADR by picking
one object in each undominated non-empty domain.

Call a function f : 'd (→ ' log-Lipschitz continuous with constant C if
f((1+ε) ·a) ≤ (1+Cε) ·f(a). Most common combining functions (such as linear
combinations, max, etc.) are log-Lipschitz continuous with constant one. The
following generalization of Proposition 1 is a justification of ε-ADR:

Proposition 5. Any ε-ADR contains a point whose value is within a factor of
(1+Cε) of the optimal, for any monotone combining function that is log-Lipschitz
continuous with constant C.

Proof Sketch. Let a ∈ A be the optimum. There is an a′ in the ADR that satisfies
(1 + ε)a′ & a, and thus (1 + Cε)f(a′) ≥ f((1 + ε)a′) ≥ f(a).

Finally, we point out a straightforward connection of ADRs with the set
cover problem. For each a ∈ A define Sa = {a′ ∈ A : (1+ ε) · a & a′}. It is easy
to see that, if D is an ε-ADR, then

⋃
a∈D Sa = A. Hence, finding a good ε-ADR

is tantamount to finding a small set cover. In fact, since all points in A are
dominated by sky[A], it suffices to consider the intersections of Sa with sky[A].
This latter observation often yields faster algorithms, since we can pre-process
A to compute sky[A] [1] and select from this our ε-ADR.

3 Two Dimensions

Assume that the points are sorted in decreasing first coordinate. We introduce a
greedy algorithm that, for a given ε, works as follows: Consider the point a with
the highest a1, and let B[a] be the set of all points b such that a ∈ Sb.

Lemma 1. There is a b∗ ∈ B[a] such that Sb∗ =
⋃

b∈B[a] Sb.

Proof Sketch. Take b∗ to be the point with a1/(1 + ε) ≤ b∗
1 ≤ a1 with highest b∗

2;
it is easy to check that Sb∗ is a superset of all Sb’s that contain a.

Approximately Dominating Representatives 209

This leads to the following greedy algorithm:

Input: Point set A ⊆ [m,M]2, ε > 0
Output: Set of points D ⊆ A, the smallest ε-ADR of A
set b∗ = (M, 0) and D = ∅;
while there is a point a in A with a1 ≤ b∗

1 such that (1+ε)·b∗ �& a
do:
select a to be the point with the highest a1 among those;
find the point b∗ with a1/(1 + ε) ≤ b∗

1 ≤ a1 with highest b∗
2;

add b∗ to D;

Theorem 1. The greedy algorithm computes in linear time the ε-ADR with the
fewest points.

Proof Sketch. It does compute an ε-ADR, because each chosen point b∗ covers all
points in A with first coordinate between the current a1 (included) on the high
end and the next a1 (excluded) on the low side. Since a starts with the point with
largest a1 and in the end b∗ dominates all points with first coordinate less than
or equal to the current b∗

1, the collection D covers all of A. Optimality follows
from Lemma 1, since b∗ is always chosen to be the point whose Sb∗ contains all
other Sb’s that cover the rightmost uncovered point in A.

For efficiency, we can run this algorithm on the precomputed set sky[A],
instead of A. Furthermore, it is not hard to see that a variant of this algorithm,
alternating between the two coordinates, can be run directly on the set A and
be optimized to stop at the earliest possible instant at which the ε-ADR has
been found and validated, thus not examining large parts of A. This algorithm
is optimal in the middleware sense of [6].

4 NP-Hardness

We show the following:

Theorem 2. It is an NP-hard problem, given a point set A ⊆ [m,M]3 and an
ε > 0, to find the ε-ADR with the fewest points.

Proof Sketch. For simplicity we shall consider the ε-ADR under the additive
definition of approximate dominance; the multiplicative result follows trivially
(either by imitating the proof or by considering the coordinates as logarithms).

The reduction is from 3SAT. We are given a Boolean formula with n clauses
with 2 or 3 literals each. Set δ = 1/4n and ε = δ/n. We shall create a set A of
points, all lying just below the plane x+y+z = 1, such that the optimal ε-ADR
of A reveals whether the formula is satisfiable.

The proof requires a number of gadgets. The flip-flop consists of the following
points: a = (−δ, 0, 0), b = (0,−δ, 0), t = (−2ε,−ε,−ε) and f = (−ε,−2ε,−ε).
The basic property of the flip-flop is this: Sf = {f, t, a}, St = {f, t, b}, and Sa, Sb

are singletons. Thus a good cover will contain exactly one of St (which will mean

210 V. Koltun and C.H. Papadimitriou

a literal will be true) and Sf (false). Such flip-flops can be combined in tandem
with the b point of one coinciding with the a point of the next to form paths that
will propagate the values of the literals. There are six variants of the flip-flop,
by permuting dimensions, and six more in which b is instead (0,−δ/2,−δ/2).
(These variants are needed for “bending” the paths.)

The clause gadget has points c1 = (−δ/2,−δ/2, 0), c2 = (0,−δ/2,−δ/2),
c3 = (−δ/2, 0,−d/2) plus other points d1 = (−ε,−ε,−2ε), d2 = (−2ε,−ε,−ε),
d3 = (−ε,−2ε,−ε), and the non-singleton approximately dominated sets are now
Sd1 = {d1, d2, d3, c2, c3}, Sd2 = {d1, d2, d3, c1, c3}, Sd3 = {d1, d2, d3, c1, c2}. Thus
if the three ci points of a clause gadget coincide with the “true” endpoints of three
literal chains, there is a way to cover all six points with one representative iff the
truth assignment suggested by the choices in the literal chains satisfies the clause.

To complete the construction, we embed the set of clauses on the x+y+z = 1
plane as follows: We choose a point for every variable, a point for every clause,
and a curve connecting each variable with each clause where it appears (we
assume that each variable has one positive and two negative appearances). The
curves are such that they are well-separated by at least δ, except of course for
their endpoints and their crossovers. Then we have a flip-flop at every variable
point (if the coordinates of the variable point are (x, y, z) then we add this vector
to the coordinates of the points a, b, t, f of the gadget), repeat for the clauses,
and we replace each curve with flip-flops in tandem.

Which brings us to the last gadget, the crossover. It consists of four points,
a = (−δ/2,−δ/2, 0), b = (−δ/2, 0,−δ/2), c = (−ε/2,−ε/3,−2δ + ε), d =
(0,−δ/2,−δ/2), plus the points tt = (−2ε,−ε,−ε), tf = (−3ε/2,−ε,−2ε),
ff = (−ε,−3/2ε,−2ε), ft = (−ε,−2ε,−ε). The coverage of these points is
Stt = {tt, ft, ff, tf, a, b}, Stf = {tt, ft, ff, tf, b, c}, Sff = {tt, ft, ff, tf, c, d},
Sft = {tt, ft, ff, tf, d, a}, and thus represents a valid crossover between flip-
flops (a, c) and (b, d). Placing this gadget where flip-flop paths cross completes
the construction.

Let g be the total number of gadgets used in this construction. It is easy to
see that the resulting set of points A has an ε-ADR with g points in it (that is,
there is a way to choose a point from each gadget so that all of A is covered) iff
the original formula was satisfiable.

It is open whether the problem is MAXSNP-hard, that is, hard to approxi-
mate arbitrarily close. We conjecture that it is.

5 Approximation

As partial consolation for Theorem 2 we have:

Proposition 6. There is a polynomial-time algorithm that approximates ADRs
in any dimension within a factor of lnn of the optimum.

Proof Sketch. By a reduction to the set cover problem, which is known to have
this property. Recall the sets Sa = {a′ ∈ A : (1+ ε) ·a & a′}, one for each a ∈ A.
It is easy then to see that ADRs are precisely covers of A by these sets.

Approximately Dominating Representatives 211

Three Dimensions

Moreover, when d = 3, a constant approximation ratio is possible:

Proposition 7. There is a polynomial-time algorithm that approximates ADRs
in three dimensions within a constant factor of the optimum.

This is established using an adaptation of the set cover approximation al-
gorithm of [3] that produces superior approximation factors in some geometric
settings. The algorithm of [3] is actually an approximation scheme for the hit-
ting set problem, which is dual to set cover. To describe the algorithm we
first need to introduce some definitions.

A negative octant O−(a) (resp., positive octant O+(a)) of a point a ∈ '3 is the
closed set {a′ ∈ '3|a & a′} (resp., {a′ ∈ '3|a′ & a}) of all points dominated by
(resp., dominating) a. In more generality, the dominated region D−(T) of a set
T ⊂ '3 is the set {a′ ∈ '3|a & a′, a ∈ T}. Clearly, D−(T) =

⋃
a∈T O−(a). Define

the dominating region D+(T) =
⋃

a∈T O+(a) symmetrically. Let S = sky[A] and
let Sε be the ε-boosted set {a ·(1+ε)|a ∈ S}. By definition, D−(S)∩D+(S) = S.
Denote the boundary of a closed set R ⊂ '3 by ∂R.

For a set X and a set R ⊆ 2X of subsets of X, the pair (X,R) is said to be
a set system. Given a set system (X,R) and a parameter r, a subset N ⊆ X
is said to be a 1/r-net for (X,R) [9] if N ∩ X ′ �= ∅ for all X ′ ∈ R such that
|X ′| ≥ |X|/r. In other words, a 1/r-net hits all sets of R whose size is at least
|X|/r.

Theorem 3 ([3]). Suppose (X,R) admits a 1/r-net of size at most cr for a
constant c, and such a 1/r-net can be computed in time polynomial in |X|. Then
a hitting set for (X,R) of size 4c · OPT can be computed in polynomial time,
where OPT is the size of the smallest hitting set for (X,R).

Below we establish that the set system (Sε,O+) admits a 1/r-net of size
O(r), where O+ is the set of all positive octants of the points of S: O+ =
{O+(a), a ∈ S}. Theorem 3 then implies that a hitting set for (Sε,O+) can
be approximated within a constant factor in polynomial time. Due to the du-
ality of hitting set and set cover, this yields a polynomial-time constant-
approximation scheme for set cover on the system (S,O−), where O− is the
set {O−(a), a ∈ Sε}. This doubles as an approximation scheme for ADRs in
three dimensions, and implies Proposition 7.

It remains to derive a polynomial-time algorithm for computing 1/r-nets of
size O(r) for (Sε,O+). It is clearly sufficient to solve this task when O+ is the
set {O+(a), a ∈ '3}. We accomplish this by adapting the 1/r-net construction
scheme of Matoušek et al. [11]. Unfortunately, the size of the 1/r-nets constructed
using this scheme is close to 100r. Improving the constant of proportionality in
the construction is an interesting open problem.

Matoušek et al. [11] show how to construct a 1/r-net of size O(r) for a set
system (X,F), such that X is a set of points in the plane and F is a family
of pseudo-disks. A family F of compact sets in the plane is called a family of
pseudo-disks if any three points x, y, z ∈ '2 define a unique set f ∈ F , such

212 V. Koltun and C.H. Papadimitriou

that x, y, z ∈ ∂f . For instance, homothetic copies of a convex set are a family
of pseudo-disks. Matoušek et al. [11] additionally require that the pseudo-disks
are convex and smooth. To describe their construction further we need to define
the F -Delauney graph of X. Two points x, y ∈ X are F -Delauney neighbors if
there exists a set f ∈ F , such that x, y are on the boundary of f and no point of
X is contained in the interior of F . The geometric graph whose vertices are the
points of X, such that F -Delauney neighbors are connected by straight edges,
is the F -Delauney graph of X. When the pseudo-disks are convex and smooth,
as assumed in [11], the F -Delauney graph is a triangulation.

The construction of [11] proceeds by considering a maximal collection
S1, . . . , Sk of sets of F , such that |X ∩ Si| = n/6r and (X ∩ Si)

⋂
(X ∩ Sj) = ∅

for i, j ≤ k, i �= j. (Special attention is given to the convex hull of X, but we do
not expound on that in our brief overview.) Points of X contained in Si are said
to have color i. Now consider the F -Delauney graph of X and let its triangular
face be called bi-colored if exactly two of its vertices are of the same color. Let
an edge of the graph be called bi-colored if its vertices have distinct colors. Let
a maximal connected chain of bi-colored triangles sharing bi-colored edges be
called a corridor. Split all corridors into subcorridors of length at most)n/6r*
and let C denote the collection of these subcorridors. Every subcorridor of C
is bounded by two bi-colored edges and two (potentially empty) chains of uni-
colored edges. Let the (not necessarily distinct) end-points of these bi-colored
edges be called the corners of the subcorridor. Let N denote the set of corners
of the subcorridors of C. Matoušek et al. [11] prove that N has size O(r) and is
a 1/r-net for (X,F). (Actually, they modify the above construction slightly to
simplify the proof, but this is not essential here.)

We now show how to adapt the above construction to our setting. Consider a
point o ∈ '3, such that o is dominated by all points in S. Consider a horizontal
plane Π that lies above all points of Sε. Let Γ denote the surface ∂D+(Sε).
For a set c ⊆ Γ , define its projection c∗ to be

⋃
p∈c lo,p ∩ Π, where lo,p is the

line spanned by o and p. Let S∗ be the projection of Sε. Let C be the family of
curves {O+(a) ∩ Γ, a ∈ '3} on Γ . Let F be the set of projections of the curves
of C. It is easy to see that the set system (Sε,O+) described above is equivalent
to the set system (S∗, F), so it is sufficient to construct a 1/r-net for the latter.

Consider the collection of bounded facets of Γ , projected onto Π. This region
is called the active region of Π. It is easy to see that F is a family of pseudo-
disks within the active region. We want to apply the construction of [11] in the
context of the set system (S∗, F). However, the pseudo-disks under consideration
are neither smooth nor convex, and the notions of “convex hull”, “halfplane” and
“Delauney graph”, which are all essential in the construction and its analysis,
have to be redefined in this context. We briefly sketch these adaptations below,
defining the notions of F -hull, F -halfplane and F -Delauney graph.

Define the F -hull of the point set S∗ to be the boundary of the active region.
Given a point a ∈ '3, consider moving this point in the negative x1- (resp.,
x2-, x3-) direction. In the limit, the octant O+(a) becomes a quadrant Q. The
projection of Q∩Γ is said to be an F -halfplane. It is easy to verify that any two

Approximately Dominating Representatives 213

points a, b ∈ Π in general position span exactly two F -halfplanes. Consider now
two points a∗, b∗ ∈ S∗ that are projections of a, b ∈ Sε, respectively. We say that
a∗ and b∗ are F -Delauney neighbors if there exists an octant O+(x), for x ∈ '3,
such that a, b ∈ ∂O+(x) and no other point of Sε is contained in the interior of
O+(x). Fix any such octant, if one exists, and consider the line segments (a, x)
and (b, x). Projecting these segments onto Π yields a two-segment polygonal
path that connects a∗ and b∗. We let this path be the F -Delauney edge of a∗

and b∗. It is easy to verify that no two F -Delauney edges cross and thus the
F -Delauney graph is planar.

With the above definitions we retrace the construction of [11] in the plane Π
on the set system (S∗, F). A technical adaptation of the analysis in [11] shows
that the construction correctly produces a 1/r-net for (S∗, F) of size O(r) in
polynomial time. We can now plug this into Theorem 3 and finally complete the
proof of Proposition 7.

6 Discussion and Open Problems

Can the lower bound for the set cover problem in [10] be extended to the high-
dimensional ADR problem?

On the positive side, is there a better approximation ratio for 3-dimensional
ADRs? We suspect that the answer is positive. Does the technique extend to
more dimensions? The technique employed is very dimension-specific, and key
insights in higher-dimensional computational geometry would be required for
such progress. Are there limits to approximation of ADRs? We suspect that
a more careful reduction would produce a minuscule such limit; larger lower
bounds would probably require specialized PCPs (of which, by the way, none is
known to us for geometric problems). In fact, we conjecture that a lnn lower
bound is possible if the dimension is unbounded (by reversing the reduction to
set cover).

This work also suggests some interesting experiments: How do our algorithms
(exact and approximate ones) behave in practice? And are the results of ADR
queries satisfactory to users in typical situations?

References

1. Wolf-Tilo Balke, Ulrich Güntzer, Jason Xin Zheng “Efficient Distributed Skylining
for Web Information Systems,” EDBT 2004, Heraklion, Crete, Greece, to appear
in 2004.

2. J. L. Bentley, H. T. Kung, M. Schkolnick, C. D. Thompson “On the average number
of maxima in a set of vectors and applications,” JACM 25, pp. 536–543, 1978.

3. Hervé Brönnimann, Michael T. Goodrich “Almost Optimal Set Covers in Finite
VC-Dimension,” DCG 14:4, pp. 463–479, 1995.

4. Kaushik Chakrabarti, Kriengkrai Porkaew, Sharad Mehrotra “Refining Top-k Se-
lection Queries based on User Feedback,” VLDB 2000.

5. Ronald Fagin “Fuzzy Queries in Multimedia Database Systems,” PODS 1998,
pp. 1–10 (invited).

214 V. Koltun and C.H. Papadimitriou

6. Ronald Fagin, Amnon Lotem, Moni Naor “Optimal Aggregation Algorithms for
Middleware,” PODS 2001.

7. Ronald Fagin “Combining Fuzzy Information from Multiple Systems,” JCSS 58:1,
pp. 83–99, 1999.

8. Ronald Fagin, Edward L. Wimmers “A formula for incorporating weights into
scoring rules,” TCS 239:2, pp. 309-338, 2000.

9. D. Haussler, Emo Welzl “Epsilon-nets and simplex range queries” DCG 2, pp. 127–
151, 1987.

10. Carsten Lund, Mihalis Yannakakis “On the Hardness of Approximating Minimiza-
tion Problems,” JACM, 41:5, pp. 960-981, 1994.

11. J. Matoušek, R. Seidel, Emo Welzl “How to net a lot with little: small ε-nets for
disks and halfspaces” SoCG 1990, pp. 16–22.

12. Christos H. Papadimitriou, Mihalis Yannakakis “On the Approximability of Trade-
offs and Optimal Access of Web Sources,” FOCS 2000, pp. 86–92.

13. Christos H. Papadimitriou, Mihalis Yannakakis “Multiobjective Query Optimiza-
tion,” PODS 2001.

14. Kian-Lee Tan, Pin-Kwang Eng, Beng Chin Ooi “Efficient Progressive Skyline Com-
putation,” VLDB 2001, pp. 301–310.

15. Sergei Vassilvitskii, Mihalis Yannakakis “Efficiently Computing Succinct Trade-Off
Curves,” ICALP 2004, pp. 1201-1213.

On Horn Axiomatizations for Sequential Data�

José L. Balcázar and Gemma Casas-Garriga

Departament de Llenguatges i Sistemes Informàtics,
Universitat Politècnica de Catalunya

{balqui, gcasas}@lsi.upc.es

Abstract. We propose a notion of deterministic association rules for
ordered data. We prove that our proposed rules can be formally justified
by a purely logical characterization, namely, a natural notion of em-
pirical Horn approximation for ordered data which involves background
Horn conditions; these ensure the consistency of the propositional theory
obtained with the ordered context. The main proof resorts to a concept
lattice model in the framework of Formal Concept Analysis, but adapted
to ordered contexts. We also discuss a general method to mine these rules
that can be easily incorporated into any algorithm for mining closed se-
quences, of which there are already some in the literature.

1 Introduction

According to a large number of sources, the field of Data Mining attempts at
finding methods to extract from large masses of existing data, that was not
gathered for that purpose, new, sound knowledge that allows to take actions
with specific purposes. One natural way to interpret the last condition is to look
for causal relationships, where the presence of some fact suggests that other facts
follow from them. This is one of the reasons of the success of the association rules
framework: in the presence of a community that tends to buy, say, sodas together
with the less expensive spirits, a number of natural ideas to try to influence the
behavior of the buyers and profit from the pattern easily come up.

However, association is not causality, even though it is frequently interpreted
in that way (most of the times implicitly). As a token, one of the criticisms of the
lift measure for the strength of association rules is its symmetry, which makes
it impossible to “orient the rules”, that is, disguise the association as causality.
Along the same lines, criticisms of various sorts have been put forward for many
other measures of the strength of implication such as confidence or correlation.
The single case that would be beyond any such criticism is where the implication
always holds. These cases have been named deterministic association rules, and
are particularly interesting in domains coming from observations of scientific
data, where underlying natural laws are actually causing the associations to
appear in all cases [10].

An obvious criticism is that a single counterexample suffices to invalidate a
deterministic association rule, and it could be due to data manipulation errors.

� This work is supported in part by MCYT TIC 2002-04019-C03-01 (MOISES).

T. Eiter and L. Libkin (Eds.): ICDT 2005, LNCS 3363, pp. 215–229, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

216 J.L. Balcázar and G. Casas-Garriga

However, this is not really an objection to the notion of deterministic association
rules but simply a consideration that data cleaning techniques are necessary in
any practical application of this notion; we come back to this point later on.

On the other hand, the central advantage of deterministic association rules
is that they do not require to select, with little or no formal guidance, one single
measure of strength of implication. Since they are pure standard implications,
they can be studied in purely logical terms.

In fact, standard binary databases (as termed in data mining texts, even
though they are rather just relations) of n attributes can be naturally viewed as
sets of models (0/1 assignments to n propositional variables). Thus, from this
perspective, association rules can be seen as propositional logic formulas captur-
ing information contained in a set of models. Practically effective approaches to
find such logical formulas have been proposed in the field of Knowledge Compi-
lation ([3, 11]): among them, a prominent basic process is to “compile” the list
of satisfying models, into a tractable set of Horn clauses ([8, 11]). Of course, it
might happen that no Horn axiomatization exists for the given set of models; but
then, a Horn approximation (the minimal Horn upper bound of the given theory,
sometimes called the empirical Horn approximation) can always be computed.

In [2], the following is proved: if deterministic association rules are computed
from data according to the published lattice-theoretic methods [9, 10, 14], the
rules obtained axiomatize exactly the minimal Horn upper bound of the propo-
sitional theory given by the data. These lattice-theoretic methods are actually
described in terms of concept lattices [7]; this framework allows also for the study
of general association rules (see [15] and the references there) and functional de-
pendencies (see e.g. [6]). Concept lattices are given by closed subsets of attributes
and closed subsets of tuples, where all the tuples in a concept share the attributes
of the same concept, and viceversa. The notion of closure can be defined in a
number of equivalent ways.

However, mining closed sets of binary attributes is but the simplest closure-
based data mining problem; our goal here is to extend these results into the case
of ordered transactions [1]. In these applications, each input tuple no longer is a
set of attributes, but rather a sequence of them. Standard examples, instead of
typical market-basket data, are of a more structured sort, such as the sequence of
actions on a single bank account. Recent work in [13] and [12] provides algorith-
mic solutions to discover closed sequential patterns, so that there exists indeed
a notion of closure-based analysis for these sequences; but, so far, no notion of
deterministic association rules for them. Our goal is to formulate a theory of
associations for this ordered context, in such a way that

– it advances in the theory underlying the state of the art algorithms for
closure-based analysis of sequences,

– it corresponds closely to the lattice-theoretic approach employed for the com-
putation of deterministic association rules in the unordered case, and

– it allows for a precise logical characterization, similar in spirit to [2].

Our starting point is the model in [4], which formalizes a concept lattice
of closed sets of sequences by means of a new Galois connection. Here, we con-

On Horn Axiomatizations for Sequential Data 217

tribute with the proposal of notions of deterministic association rules for ordered
contexts, and we validate formally the proposal by exhibiting a logical character-
ization of the deterministic association rules with order that parallels the existing
one for unordered contexts. We also discuss the integration of the computation
of these rules with existing algorithms to mine closed sequences.

2 Preliminaries

Let I = {i1, . . . , in} be a finite set of items. These will be our atomic objects.
Itemsets are subsets Ii ⊆ I. Since actually n is unbounded, we could alternatively
have an infinite set of items from which, at every moment, only the finitely many
ones appearing in a given dataset are relevant.

Sequences are ordered lists of itemsets. The set of all the possible sequences
will be noted by S. Here we are following the same framework for modeling se-
quences or temporal data tuples as in [1] or [13], whose closed sequential patterns
(that will be later introduced) were formally characterized in our previous work
[4], and which we seek in this paper to complement with adequate notions of
association rules. Thus, our data consists of a database of ordered transactions
that we model as a set of sequences, D = {s1, s2, . . . sn}. Our notation for the
component itemsets of a given sequence will be s = 〈(I1)(I2) . . . (In)〉, meaning
that itemset Ii occurs before itemset Ij for i < j.

An alternative view of our data, borrowed from Formal Concept Analysis, is
in the form of an ordered context; objects of the context are sequences, attributes
of the context are items, and the database becomes a ternary relation, subset
of O × I × IN, in which each tuple 〈o, i, t〉 indicates that item i appears in the
t-th element of the object o. A simple example of the described data and the
associated context can be found in figure 1, where each object oi of the formal
context represents the corresponding input sequence (or ordered transaction) si.
The context for a set of data D is relevant to this work to see objects oi ∈ O
and input sequences si ∈ D as equivalent.

Seq id Sequence
s1 〈(A)(B)(C)(D)〉
s2 〈(B)(C)(D)(A)〉
s3 〈(B)(C)(A)(D)〉

(a) Collection of
data D

A B C D
o1 1 2 3 4
o2 4 1 2 3
o3 3 1 2 4

(b) Con-
text K

Fig. 1. Example of ordered data D and its context K

Sequence s = 〈(I1) . . . (In)〉 is a subsequence of sequence s′ = 〈(I ′
1) . . . (I

′
m)〉

if there exist integers j1 < j2 · · · < jn such that I1 ⊆ I ′
j1
, . . . , In ⊆ I ′

jn
. We note

this case by s ⊆ s′. For example, the sequence 〈(A)(D)〉 is a subsequence of the
first and third sequences in figure 1.

218 J.L. Balcázar and G. Casas-Garriga

The intersection of a set of sequences s1, . . . , sn ∈ S is the set of maximal
subsequences contained in all the si. Note that the intersection of a set of se-
quences, or even the intersection of two sequences, is not necessarily a single
sequence. For example, the intersection of the two sequences s = 〈(AD)(C)(B)〉
and s′ = 〈(A)(B)(C)〉 is the set of sequences {〈(A)(C)〉, 〈(A)(B)〉}: both are
contained in s and s′, and among those having this property they are maximal;
all other common subsequences are not maximal since they can be extended to
one of these. The maximality condition discards redundant information since the
presence of, e.g., 〈(A)(B)〉 in the intersection already informs of the presence of
each of the itemsets (A) and (B).

We partially order also sets of sequences, as follows: S + S′ if and only if
∀s ∈ S ∃s′ ∈ S′ s ⊆ s′.

2.1 Propositional Horn Logic

Assume a standard propositional logic language with propositional variables,
noted by {vi}. The number of variables is finite, and we note by V the set of
all variables; but again, we could alternatively use an infinite set of variables
provided that the propositional issues corresponding to a fixed dataset only
involve finitely many of them (this is in fact the case of our application). A
literal is either a propositional variable, called a positive literal, or its negation,
called a negative literal. A clause is a disjunction of literals and can be seen
simply as the set of the literals it contains. A clause is Horn if and only if
it contains at most one positive literal. Horn clauses with a positive literal are
called definite, and can be written as H → v where H is a conjunction of positive
literals that were negative in the clause, whereas v is the single positive literal
in the clause. Horn clauses without positive literals are called nondefinite, and
can be written similarly as H → �, where � expresses unsatisfiability. A Horn
formula is a conjunction of Horn clauses.

A model is a complete truth assignment, i.e. a mapping from the variables
to {0, 1}. We note by m(v) the value that the model m assigns to the variable
v. The intersection of two models is the bitwise conjunction, returning another
model. A model satisfies a formula if the formula evaluates to true in the model.
The set of all models will be noted by M.

A theory is a set of models. A theory is Horn if there is a Horn formula
which axiomatizes it, in the sense that it is satisfied exactly by the models in the
theory. When a theory contains another we say that the first is an upper bound
for the second; for instance, by removing clauses from a Horn formula we get a
larger or equal Horn theory. The following is known (see e.g. [8]):

Theorem 1. Given a propositional theory T , there is exactly one minimal Horn
theory containing it. Semantically, it contains all the models that are intersec-
tions of models of T . Syntactically, it can be described by the conjunction of all
Horn clauses satisfied by all models from T .

The theory obtained in this way is called sometimes the empirical Horn ap-
proximation of the original theory. Clearly, then, a theory T is Horn if and only

On Horn Axiomatizations for Sequential Data 219

if it is actually closed under intersection, so that it coincides with its empirical
Horn approximation. These concepts are a cornerstone of the area of research
known as Knowledge Compilation [3].

2.2 Closures and Galois Connections

The framework introduced previously allows us to cast our reasoning in terms of
closure operators. A closure operator Γ on a lattice, such as the one formed by the
subsets of any fixed universe, is one that satisfies the three basic closure axioms:
monotonicity, extensivity and idempotency. It follows from these properties that
the intersection of closed sets is a closed set.

In the main case of interest for data mining, the universe will be our set of
items I. Then, closure operators give rise to closed sets of items, generators, and
deterministic association rules. Closed sets are those sets of items that coincide
with their closure, that is, Γ (Z) = Z where Z ⊆ I. When Γ (G) = Z for a set G
and G is minimal for that resulting Z, we say that G is a generator of Z. One way
for constructing closure operators is by composition of two derivation operators
forming a Galois connection [7]. Implications of the form G → Z where G is a
generator of Z, turn out to be the particular case of association rules where no
support condition is imposed but confidence is 1 (or 100%) [10], [9]. Such rules
in this unordered context are sometimes called deterministic association rules.

It turns out that it is possible to exactly characterize this set of deterministic
association rules in terms of propositional logic: we can associate a propositional
variable to each item; then transactions become models, and each association
rule becomes a conjunction of Horn clauses with the same left hand side. Then:

Theorem 2. [2] Given a set of transactions, the conjunction of all the deter-
ministic association rules defines exactly the empirical Horn approximation of
the theory formed by the given tuples.

So, the theorem determines that the empirical Horn approximation of the
unordered data can be computed through the Formal Concept Analysis method
of constructing deterministic association rules, that is, constructing the closed
sets of attributes and identifying minimal generators for each closed set.

In this paper we want to find a notion of deterministic association rules for
the more complex case of sequential data (ordered context), and of course we
would like to support our proposal by proving a similar characterization.

3 Deterministic Association Rules in Ordered Contexts

Of course, the first task is to make available a closure operator that fits ordered
data and specifies sensible results on practical cases. The most relevant existing
contributions on mining closed sequential patterns are given by the algorithms
CloSpan [13] or BIDE [12]. The extracted closed patterns by those algorithms are
said to be stable in terms of support, which means that the closed patterns are
maximal sequences in the set of objects where they are contained. For instance,

220 J.L. Balcázar and G. Casas-Garriga

taking data from figure 1, we see that sequence 〈(B)(D)〉 is not a closed pattern
since it can be extended to 〈(B)(C)(D)〉 in all the objects where it is contained.
However, 〈(B)(C)(D)〉 or 〈(A)(D)〉 are closed (so, stable). We want to make
sure that our theoretical notions fit appropriately these approaches. In fact, we
do have already the closure operator set in place, through the Galois connection
from [4], described below. There, two operators are defined in a formal context
corresponding to sequences, and it is proved that they indeed enjoy the properties
of a Galois connection so that their composition provides a closure operator.

Note that this task is nontrivial because it departs from the case of unordered
transactions in the very definition of intersection. Whereas the intersection of
two itemsets is another itemset, the intersection of two sequences (whether with
or without the maximality condition we have imposed in the definition of inter-
section) does not in general result in a single sequence. So, the formal concept
framework developed in [4] works with sets of sequences. Again, another diffi-
culty arises, since ordering sets of sequences just by set inclusion does not give
a Galois connection; using instead the ordering S + S′ we have defined above
does work, provided that the corresponding operators are defined adequately:

– For a set O ⊆ O of objects, φ(O) = {s ∈ S| s maximal contained in o, ∀o ∈
O}. This φ(O) is the set of maximal sequences common to all O, i.e.,φ(O)
represents the intersection of the input sequences equivalent to O.

– For a set S ⊆ S of sequences, ψ(S) = {o ∈ O| s contained in o, ∀s ∈ S}.
This ψ(S) is the set of objects containing all the sequences in S.

As mentioned, these two maps form a Galois connection (proved in [4]), and
so, we can get the corresponding closure operator from their composition. We
will call Δ = φ ·ψ the closure operator on sets of sequences; thus, by definition, a
set of sequences S is closed if and only if Δ(S) = S. Similarly to any other Galois
connection, we can also consider the dual operator Δ−1 that operates on sets of
objects (although this dual operator is irrelevant for our present contribution).

It is proved that this operator Δ can characterize the closed sequences of
CloSpan or BIDE as those sequences s that belong to the closure of {s}. Indeed,
the instrumental property that connects the closure operator with the CloSpan
sequences is the following:

Proposition 1. [4] All sequences in a closed set are maximal in it w.r.t. ⊆.

Then it follows that s ∈ Δ({s}) if and only if s belongs to some closed set, and
therefore the result of a mining task for closed sets under our Galois connection
is the same as the result of the CloSpan or BIDE algorithm.

As described in the preliminaries (and exemplified by figure 1), given the
data sequences S on items I we can construct the relation R which contains the
same information as the individual components of each input sequence; thus,
from R we obtain the collection of all formal concepts each corresponding to
a closed set of sequences, and partially ordered by +. As in any other Galois
connections (see [7]), it gives immediately a lattice B(S, I, R) of formal concepts.
For example, for the data in example 1(a), we depict graphically in figure 2 the
corresponding lattice of closed sets of sequences. Together with each node S in

On Horn Axiomatizations for Sequential Data 221

{<(A)(B)(C)(D)>} {<(B)(C)(A)(D)>} {<(B)(C)(D)(A)>}

{<(B)(C)(D)> , <(A)(D)>}

{<(B)(C)(D)>, <(A)>}

{<(B)(C)(D)> , <(B)(C)(A)>}

 1,2,3

1 3 2

2,31,3

D

Fig. 2. Example of a concept lattice B(S, I, R)

the lattice, we have added as a label the list of object identifiers where S is
maximally contained (thus, as happens in general in Galois connections, these
lists form a dual view of the same lattice that, in our case, is ordered by set-
theoretic inclusion downwards). We also can see in the figure that, for each input
sequence si ∈ D, the set {si} is a closed set; this always happens in general, also.

The set of sequences contained in all the input sequences will be called the
bottom or infimum of the lattice; in most cases it will happen to be a trivial,
somewhat artificial, element containing only the empty sequence. Similarly, we
can also add an artificial set of sequences not contained in any input sequence,
so that it forms the top of the concept lattice. In the example showed in figure 2,
an artificial top not belonging to any object is added to the lattice and we note
it by the set of input sequences D (i.e. we assume that D � {si} for all si ∈ D).
This artificial top is not actually necessary in the model, and it was not originally
presented in [4]; however, we add it to the lattice just to the effect of our later
arguments. We say that a closed set of sequences S′ is an immediate predecessor
of another closed set of sequences S if S′ + S and no closed set S′′ exists in the
lattice with S′ + S′′ + S. For example, in figure 2 {〈(B)(C)(D)〉, 〈(A)〉} is an im-
mediate predecessor of two closed sets of sequences: {〈(B)(C)(D)〉, 〈(B)(C)(A)〉}
and {〈(B)(C)(D)〉, 〈(A)(D)〉}. Notice that the Galois connection presented in
this section may be extended to other kind of structured data such as graphs or
trees; we are currently working towards this formalization.

3.1 Generators of the Closed Set of Sequences

We say that a set of sequences G is a generator of S if we have that Δ(G) = S.
We say that a generator G is minimal if there is no other G′ s.t. G′ + G and
G �= G′, such that Δ(G′) = S. We will only consider minimal generators. These
will be graphically added to the concept lattice model by dashed lines, as showed
in figure 3. Minimal generators of the top of the lattice are not considered here,
but, for the sake of illustration, it is easily seen that {〈(C)(B)〉} is among them.

We can define a family of deterministic association rules for sequences.

222 J.L. Balcázar and G. Casas-Garriga

{<(A)(B)(C)(D)>} {<(B)(C)(A)(D)>} {<(B)(C)(D)(A)>}

{<(B)(C)(D)> , <(A)(D)>}

{<(B)(C)(D)>, <(A)>}

{<(B)(C)(D)> , <(B)(C)(A)>}

 1,2,3

1 3 2

2,31,3

{<(D)>}

{<(C)>}

{<(B)>}

{<(A)>}

{<(C)(A)>}

{<(B)(A)>}

{<(D)(A)>}{<(A)(B)>}

{<(C)(A)>,<(A)(D)>}{<(B)(A)>,<(A)(D)>}

{<(A)(D)>}

D

{<(A)(C)>}

Fig. 3. Concept lattice B(S, I, R) with minimal generators

Definition 1. A deterministic association rule with order is a pair (G,S), usu-
ally denoted G → S, where G,S ⊆ S and G + S s.t. Δ(G) = S. We say that
such a rule holds for a given set of sequences S′ ⊆ S if either G � S′ or S + S′.

The following lemmas characterize exactly the relation between the genera-
tors and their associated closed set of sequences, and will be useful to prove our
main result characterizing deterministic association rules in ordered contexts by
means of Horn logic.

Lemma 1. Let Δ(G) = S; then G + S and, for all closed sets of sequences S′

s.t. S′ + S and S′ �= S, we have that G � S′.

Proof. That G + Δ(G) follows from the fact that Δ is a closure operator.
We prove the following contrapositive of the rest: for closed sets S and S′, if
Δ(G) = S and G + S′ + S then S′ = S. Indeed, by monotonicity of Δ, Δ(G) +
Δ(S′) + Δ(S) and, being S and S′ closed, this translates into S + S′ + S.
Using here the fact that all sequences in all closed sets are maximal in them, it
follows that S = S′. ��

Actually, this is just a rephrasing of the well-known fact that closure operators
assign to each set the minimal closed set that is above it; in the standard case
(unordered data) the comparison is by set inclusion, but here the peculiarity is
that the comparison is according to G + S.

Lemma 2. Let G + S where S is a closed set of sequences, and assume that,
for all closed S′, if S′ + S and S′ �= S then G � S′; then G contains at least
one minimal generator of S.

Proof. Consider all subsets of G for which the same property indicated for G
still holds. Since they are a finite family, at least one of them is minimal in

On Horn Axiomatizations for Sequential Data 223

the family (according to +). Let Gmin be this minimal subset of G that fufills
the property (or, any of them if there are several): Gmin + G + S, and for all
closed S′ + S s.t. S′ �= S, we have Gmin � S′. Then, the minimal closed set of
sequences containing Gmin is S, and so, Δ(Gmin) = S, being Gmin one minimal
generator contained in G. ��

Due to the construction of the closure operator Δ, we can argue now that all
the rules of our proposed form that can be derived from an input set of sequences
D do hold for each of those input sequences; we could say that our implications
with order have confidence 1 in our ordered data. Indeed, since {si} is closed
for each individual input sequence si of our database D, we can consider any
generator G and obtain, by monotonicity of Δ, si ∈ D ∧ G + {si} ⇒ Δ(G) +
{si}; that is, the implication G→ Δ(G) holds for {si}.

4 Empirical Horn Approximation for Ordered Contexts

This section comes back to the propositional logic framework and Horn theories
and introduces background knowledge to define the empirical Horn approxima-
tion for ordered contexts. To motivate our choices, let us briefly discuss a feature
of the analysis in [2].

Indeed, the first step there, is to see each unordered transaction as a proposi-
tional model, and this is easy to obtain since actually it suffices to see the items
as propositional variables. We can see this conceptual renaming as an isomor-
phism, or, even further, by using as propositional variables the very set of items,
the translation is a mere identity function.

But this is no longer the case in our ordered contexts. Taking as propositional
variables simply the items would not provide a sufficiently structured translation
of our data sequences into propositional models. Thus, our next goal is to pro-
pose a more specific mapping that considers the ordered context. The resulting
empirical Horn approximation of the ordered data will allow us to characterize
the association rules defined in the previous section.

By way of example, consider figure 1, where the first object consists explicitly
of the sequence 〈(A)(B)(C)(D)〉; however, it also contains implicitly all the sub-
sequences s′ ⊆ 〈(A)(B)(C)(D)〉. Thus, each input sequence can be also seen as a
tuple of all those subsequences contained in it. Now we assign one propositional
variable to each subsequence of each input sequence; and restrict the family of
possible models by this background knowledge, thus discarding all models that
would pretend to include a given sequence s but simultaneously discard some
subsequence of s.

More precisely, let m be a model: we impose on it the constraints that if
m(x) = 1 for a propositional variable x, then m(y) = 1 for all those variables
y such that y represents a subsequence of the sequence represented by x. For
instance, if a propositional variable x corresponds to the sequence 〈(A)(B)(C)〉,
then a model m assigning 1 to x should also assign 1 to the variable representing
〈(A)(B)〉, and similarly with other subsequences.

224 J.L. Balcázar and G. Casas-Garriga

We define more specifically the interpretation of variables as sequences by an
injective function ξ : S → V. For our convenience, we notationally extend this
function with ξ−1(�) = D, where � is the unsatisfiable boolean constant, and
D is the notation for the set of sequences not belonging to any input sequence.
Now, each input sequence s in the data corresponds to a model ms: the one
that sets to true exactly the variables ξ(s′) where s′ ⊆ s; and we can find
the empirical Horn approximation of the corresponding theory. It is important
that the constraints we have imposed to the models, that when s′ ⊆ s then
ξ(s) → ξ(s′), are indeed Horn clauses, which we call background Horn conditions,
and hold on all input models, so that they are imposed automatically unto the
whole Horn approximation: the conjunction of all Horn clauses satisfied by all the
models corresponding to input sequences. We call this conjunction the empirical
Horn approximation for ordered data, and any model there can be mapped back
into a set of sequences that is closed downwards under the subsequence relation.

4.1 Characterization

We are ready to present now the equivalence between the association rules ex-
tracted by the closure-based method presented in section 3, and the empirical
Horn approximation for ordered data.

Theorem 3. Given a set of input sequences S, the conjunction of all the de-
terministic association rules with order constructed as in section 3.1, seen as
propositional formulas, and together with the background Horn conditions, ax-
iomatizes exactly the empirical Horn approximation of the theory containing the
set of models M = {ms|s ∈ D} ⊆M.

Proof. We prove separately both directions for this theorem: 1/ that the de-
terministic association rules (that is, their corresponding propositional impli-
cations) are implied by the empirical Horn approximation; and 2/ that all the
clauses in the empirical Horn approximation are implied by the conjunction of
the (propositional implications corresponding to) deterministic association rules.
⇒/ Consider a deterministic association rule G → S s.t. Δ(G) = S. By

distribuitivity, we can rewrite the rule as a conjunction of different implications
G→ si where S = {s1, . . . , sm} ∈ 2S . As explained after lemma 1, all the input
sequences having as subsequences all the elements of G must have also si, so that
the translation of G→ si is a Horn clause that is true for all the given models in
M and, by the theorems in the previous section, it belongs to the empirical Horn
approximation. Likewise, the background Horn conditions are also satisfied by
all models and thus hold in the empirical Horn approximation.

⇐/ Let F → v be an arbitrary Horn clause where F is a set of variables,
and v is a single variable. Assume this clause to be true for all the given models
M = {ms|s ∈ D} that correspond to the input sequences; note that these follow
the constraints mentioned above: if m ∈ M , and m(x) = 1 for a propositional
variable x, then m(y) = 1 for all those variables y such that ξ−1(y) ⊆ ξ−1(x). In
order to show that F → v is a consequence of the rules found from the concept

On Horn Axiomatizations for Sequential Data 225

lattice for S, we will find an association rule that, upon translation, and in the
presence of the background Horn conditions, logically implies our Horn clause.

Looking at F as a set of variables, we can consider the set of corresponding
sequences S′ = {ξ−1(v)|v ∈ F}; let S′′ = Δ(S′) be its closure. By previous
lemmas 1 and 2, we know that S′ will contain at least one minimal generator of
S′′, that is, G ⊆ S′ s.t. Δ(G) = S′′. Therefore, the rule G → S′′ will be one of
the rules constructed by the FCA method.

On the other hand, we have assumed that the clause F → v holds for all the
models M . By definition, it means that S′ → ξ−1(v) also holds in all the input
sequences, in the sense that whenever S′ + {s} for an input sequence s, also
ξ−1(v) ⊆ s; and this implies that {ξ−1(v)} + Δ(S′) = S′′: so, for some sequence
s ∈ S′′ we have that ξ−1(v) ⊆ s or, equivalently, the Horn clause ξ(s) → v
belongs to the background Horn conditions.

Finally, we have found that G → s is one of the rules composing G → S,
which is one of the association rules coming from the closure system. Since
G ⊆ S′, the variables corresponding to sequences from G are all in F , and thus
the clause F ′ → ξ(s) with F ′ ⊆ F corresponds to one of the association rules. By
subsumption, and one resolution step with ξ(s) → v, we see that F → v follows
indeed from the association rules plus the background Horn conditions. ��

Note that this proof works also well when the Horn clause is nondefinite,
that is, when considering F → �. In this case no model from M satisfies all the
variables in F , so, S′ � {si} for all si ∈ D; indeed we have that Δ(S′) = D (top
of the lattice not included in any input sequence).

Our characterization brings meaning to the deterministic association rules
extracted by the lattice method of ordered data. We have seen that they exactly
correspond to the empirical Horn approximation under the necessary background
Horn conditions. Next step is then to discuss the algorithmic consequences of
calculating these implication rules with order, and to propose specific algorithms.

5 Computing Rules in Ordered Contexts

As mentioned before and proved in [4], the closure operator Δ characterizes
the closed patterns of CloSpan [13] (which are closed in the sense of not being
extendable in support, thus stable) as those that belong to a closed set. This
fact makes CloSpan a good candidate algorithm to construct the concepts of
our lattice model. Recently, a more efficient algorithm, BIDE [12], has been
presented; according to the authors, it outperforms CloSpan being more than an
order of magnitude faster; however, the output patterns mined by CloSpan or
BIDE are exactly the same. To the best of our knowledge, these two algorithms
are the only contributions to the mining of closed sequences up to now. The
output of either can be used to construct the concepts of our model, just by
appropriately organizing them.

However, computing the deterministic association rules in the ordered data
(equivalently, the empirical Horn approximation for the ordered context) we seem
to need as well all the minimal generators, in order to output all rules G → S

226 J.L. Balcázar and G. Casas-Garriga

where S is closed and G is a minimal generator of S. Thus, an important next
step to add to any current algorithm for closed sequences is then the calculation
of minimal generators for each closed set. We want to compute these minimal
generators by means of a general method, so that it can be plugged into any un-
derlying algorithm of mining closed sequential patterns such as either CloSpan
or BIDE. In this way, after computing the closed sets of sequences, the chosen
algorithm can directly calculate the minimal generators as well, without incur-
ring in inconvenient overheads for intersecting sequences of the database. In this
section we show how to compute minimal generators of a closed set of sequences
S as a sort of transversal of appropriately defined differences between S and all
proper closed predecessors in the lattice.

The difficulty of this proposal will rely on the formalization of both steps: 1/
what it is exactly the difference between two sets of sequences, and 2/ how to
properly define the appropriate variant of transversal. The motivation to look
for such an approach is that it can be seen that the concept lattice we have
obtained is isomorphic to a standard concept lattice for which such a method of
computing rules does already exist [10]; note however that it is not immediate
to carry over the isomorphism into the generators, so that we prefer to develop
our method fully within the closure operator on sets of sequences.

For comparison purposes, we quote here a result that we found in [10] and
that we would like to export here, whereby the minimal generators of a closed
set in the unordered context obtained by a closure operator Γ are characterized
(the original statement differs from ours but their equivalence is readily seen.)

Theorem 4. Let Z be a closed set of items Z = Γ (Z); the minimal generators
of Z are found as the minimal transversal hypergraph of the hypergraph of the
differences Z − Z ′ where Z ′ are the proper closed subsets of Z in the unordered
lattice.

The transversal hypergraph consists of sets that intersect each and every
of the given differences (called faces in [10], a term that comes from related
matroid-theoretic facts). Also, it is not difficult to see that it suffices to state
that the generator intersects the differences with Z−Z ′ for the closed immediate
subsets of Z. For instance, let Z = {a, b, c} be a closed set of items, whose
immediate closed predecessors in the lattice are Z ′

1 = {a, b} and Z ′
2 = {a, c};

then, the minimal generators of Z can be found by transversing the hypergraph
of differences H = {Z − Z ′

1, Z − Z ′
2}, that is, H = {{c}, {b}}. The minimal

transversal of H is {c, b}, and so it is the minimal generator of Z.
We would like to have a similar result as theorem 4 for the minimal generators

of the closed sets of sequences.

5.1 Computing Minimal Generators for Closed Set of Sequences

We preserve here the term faces for our appropriate formalization of the differ-
ences between one closed set and its proper closed predecessors (according to +);
for closed S, each face of S is S−S′, where S′ + S is a proper closed predecessor
of S, and the difference is defined as

On Horn Axiomatizations for Sequential Data 227

S − S′ = {s|{s} + S but {s} �+ S′}

The main property now is:

Lemma 3. Let S be a closed set of sequences and G + S; then Δ(G) = S if
and only if G intersects all the faces of S.

Here by G intersecting a face S−S′ we understand set-theoretic intersection,
that is, there must exist a common sequence in both. This corresponds to our
notion of transversal for ordered data.

Proof. Assume first that G does not intersect the face S − S′, for some S′ + S;
thus, no s ∈ G fulfills the condition in the definition of the face. Since G + S, for
all such s, {s} + S as well, and this implies {s} + S′, or actually G + S′. Now,
by monotonicity of Δ, from G + S′ + S and the fact that sequences in closed
sets are maximal we obtain S = S′ just as in 1; and S′ is not a proper predecessor
so that S − S′ is not a face. Conversely, assume that G indeed intersects all the
faces; from G + S and monotonicity again we have Δ(G) + S. Equality will
follow as we need, if we prove that Δ(G) is not a proper predecessor. Indeed, by
lemma 1, G + Δ(G), so for all s ∈ G, {s} + Δ(G), which negates the condition
in the definition of S −Δ(G). Thus it can’t happen that any s is both in G and
in S −Δ(G), and this last difference cannot be a face because G intersects all
of them. This implies that Δ(G) is not a proper predecessor. ��

Again, we only need to consider immediate predecessors: if G intersects the
faces corresponding to immediate predecessors, it must also intersect the other
faces, which are larger. Additionally, we may be only interested in minimal gen-
erators (according to +) since non-minimal generators only yield redundant as-
sociation rules. It is not difficult to see that this can be enforced by using only
those subsequences of sequences in S that are minimal in their respective face
for the construction of the generators as in lemma 3.

For a more graphical example of our method, let S = {〈(B)(C)(A)(D)〉} be
a closed set of sequences, as showed in the lattice of figure 2; the proper pre-
decessors of S are the closed set of sequences S′

1 = {〈(B)(C)(D)〉, 〈(A)(D)〉},
and S′

2 = {〈(B)(C)(D)〉, 〈(B)(C)(A)〉}. The minimal new subsequences in S not
contained in S′

1 are F1 = {〈(B)(A)〉, 〈(C)(A)〉}, and the minimal new subse-
quences in S not contained in S′

2 are F2 = {〈(A)(D)〉}. Now, to find the mini-
mal generators of S we must minimally transverse these differences, which are
indeed the two faces of S, obtaining two generators: G1 = {〈(A)(D)〉, 〈(B)(A)〉}
and G2 = {〈(A)(D)〉, 〈(C)(A)〉}, which are exactly the minimal generators of S
(see figure 3).

6 Conclusions

We have proposed a notion of deterministic association rules in ordered data,
building on the fact that such rules for unordered data can be formally justified
as implications in a propositional logic framework; our extension provides a

228 J.L. Balcázar and G. Casas-Garriga

way of mining facts where a set of subsequences implies another subsequence
in the data, and proves that the mined rules can be formally justified as well
by a purely logical characterization. We do that using the concept lattice model
provided by the Galois connection and associated closure operator proposed in
[4]: by means of minimal generators that imply a closed set of sequences of
the concept lattice. Indeed, these deterministic association rules characterize
exactly the natural notion of empirical Horn approximation for ordered data,
which involves specifying a number of background Horn conditions that ensure
consistency of the theory with the ordered context.

We have discussed as well the algorithmic consequences of deriving such im-
plications with order. Since any current algorithm for mining closed sequences
can be used for constructing the closed concepts of our lattice model, we just
need to incorporate here the derivation of minimal generators. We consider the
characterization of generators as transversals of faces, known in the unordered
case, and we prove a parallel result in our ordered case. This provides a method
that can be easily incorporated in any algorithm that constructs our closed sets
in the appropriate order, such as the algorithms existing in fact for closed se-
quences, so that generators and association rules can be indeed inferred from
just the system of closed sets. We are currently developing implementations of
our methods to investigate their behavior in practice.

Other extensions of the basic itemset-based characterization are worth more
research. A relevant property of the rules studied here is the need of absolute
confidence; this can be inappropriate in two different ways. First, one may wish
to take into account the possibility of small errors, such as miskeying, that
make inapplicable a deterministic association rule; it is possible to adapt the
case of itemsets to this consideration [15], which we consider a data cleaning
problem rather than a data mining or relational problem. A second, inherently
different case is the more usual application of association rules where more re-
laxed confidences are used. For this case, there is a large number of propos-
als of how to measure the strength of the implication; a survey and compar-
ison, with appropriate references, is given in [5]. To our knowledge, there is
no principled way to select one of them and know what one is actually do-
ing through this choice; specific data mining software may allow only some
of them, as a consequence mainly of research schools of their designers. In
fact, most measures allow for examples of counterintuitive or misleading
results.

We believe that it is possible to modify the definitions of Horn approxima-
tions so as to take into account the various forms of strength of implication, or
at least some of them; so that, at the time of selecting one measure of strength
of implication, we know more information about the specific bias we are intro-
ducing in the analysis, and maybe check the pertinence of such a bias against
domain information that could be available to the data miner. This difficult
but important extension of our work, which also will allow for consideration of
sequential or more generally structured contexts, is to be pursued in the near
future by the authors.

On Horn Axiomatizations for Sequential Data 229

References
1. R. Agrawal and R. Srikant. Mining sequential patterns. In Eleventh International

Conference on Data Engineering, pp. 3–14. IEEE Computer Society Press, 1995.
2. J.L. Balcázar and J. Baixeries. Discrete deterministic datamining as knowledge

compilation. In Workshop on Discrete Mathematics and Data Mining, in SIAM
Int. Conf., 2003.

3. M. Cadoli. Knowledge compilation and approximation: Terminology, questions,
references. In AI/MATH-96, 4th. Int. Symposium on Artificial Intelligence and
Mathematics, 1996.

4. G. Casas-Garriga. Towards a formal framework for mining general patterns from
structured data. In Workshop Multi-relational Datamining, in KDD Int. Conf,
2003.

5. G. Casas-Garriga. Statistical strategies to remove all the uniteresting association
rules. In Proc. 16th European Conf. on Artificial Intelligence, pp. 430–435, 2004.

6. A. Day. The lattice theory of functional dependencies and normal decompositions.
Int. Journal of Algebra and Computation, 2(4):409–431, 1992.

7. B. Ganter and R. Wille. Formal Concept Analysis. Mathematical Foundations.
Springer, 1998.

8. H. Kautz, M. Kearns, and B. Selman. Horn approximations of empirical data.
Artificial Intelligence, 74(1):129–145, 1995.

9. N. Pasquier, Y. Bastide, R. Taouil L., and Lakhal. Closed set based discovery of
small covers for association rules. In Proc. 15th Int. Conf. on Advanced Databases,
pp. 361–381, 1999.

10. J.L. Pfaltz and C.M. Taylor. Scientific knowledge discovery through iterative trans-
formations of concept lattices. In Workshop on Discrete Mathematics and Data
Mining, in SIAM Int. Conf., pp. 65–74, 2002.

11. B. Selman and H. Kautz. Knowledge compilation and theory approximation. Jour-
nal of the ACM, 43(2):193–224, 1996.

12. J. Wang and J. Han. BIDE: Efficient mining of frequent closed sequences. In Proc.
19th Int. Conference on Data Engineering, pp. 79–90, 2003.

13. X. Yan, J. Han, and R. Afshar. Clospan: Mining closed sequential patterns in large
datasets. In Proc. Int. Conference SIAM Data Mining, 2003.

14. M. Zaki. Generating non-redundant association rules. In Proc. 6th Int. Conference
on Knowledge Discovery and Data Mining, pp. 34–43, 2000.

15. M. Zaki and M. Ogihara. Theoretical foundations of association rules. In Workshop
on Research Issues in Data Mining and Knowledge Discovery, in SIGMOD-DMKD
Int. Conf., 1998.

Privacy in Database Publishing

Alin Deutsch� and Yannis Papakonstantinou��

Department of Computer Science and Engineering,
University of California, San Diego
{deutsch, yannis}@cs.ucsd.edu

Abstract. We formulate and study a privacy guarantee to data owners,
who share information with clients by publishing views of a proprietary
database. The owner identifies the sensitive proprietary data using a
secret query against the proprietary database. Given an extra view, the
privacy guarantee ensures that potential attackers will not learn any
information about the secret that could not already be obtained from the
existing views. We define “learning” as the modification of the attacker’s
a-priori probability distribution on the set of possible secrets. We assume
arbitrary a-priori distributions (including distributions that correlate the
existence of particular tuples) and solve the problem when secret and
views are expressed as unions of conjunctive queries with non-equalities,
under integrity constraints. We consider guarantees (a) for given view
extents (b) for given domain of the secret and (c) independent of the
domain and extents.

1 Introduction

Database publishing systems export a set of views of a proprietary database.
Clients can access proprietary data only by formulating queries against the views.
Data owners are subject to two conflicting requirements when designing a pub-
lishing system. On one hand, they need to publish appropriate views of the
proprietary data to support the various types of interactions with the clients.
On the other hand they must protect sensitive proprietary data. The purpose of
this work is to provide a privacy guarantee as well as algorithms for checking it.

The Publishing Setting. We consider the following setting, which corresponds
to the Global-As-View data integration scenario [12, 18]. We are given a propri-
etary relational database of schema PR, a set of constraints Δ formulated in
terms of PR and a set of relational views V̄ over PR. The public schema PU is
the collection of all view names. The data owner identifies the sensitive propri-
etary data using a secret query S against PR. Note that no client can ask such
a query, as the system only accepts queries against PU . Instead, the attacking
client (from now on referred to as attacker or client) can try to formulate a series

� Supported by NSF/CAREER 0347968.
�� Supported by NSF/ITR 0313384.

T. Eiter and L. Libkin (Eds.): ICDT 2005, LNCS 3363, pp. 230–245, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Privacy in Database Publishing 231

of legal queries against PU (which the system is bound to answer) and combine
their results locally to obtain information on the secret answer to S, where the
notion of “obtaining information” on the secret will be refined shortly. The data
owner wants to defend against such attacks.

A Relativized Privacy Guarantee. We formulate and study a guarantee per-
taining to the effect of adding new views in addition to the ones that are already
posted. More specifically, we assume that the owner considers the publishing of
a new view N . While the owner accepts the partial disclosure of the secret by
the views V̄ , he is willing to add N only if it does not disclose any additional
information. We view “disclosure” in its strongest, information-theoretic sense:
we model the attacker’s a priori beliefs about the secret by an assignment of
probabilities to the possible secrets and guarantee that, regardless of the a priori
beliefs/probabilities of the attacker, knowledge of the extent of view N does not
lead to a revision of the a priori beliefs/probabilities, even if the attacker has
unbounded computational resources. We first illustrate the key intuitions behind
the proposed guarantee with examples.

Example 1 shows that in the common case when the owner cannot make
assumptions on what the attacker already knows, the guarantee has to be quan-
tified over all a-priori probability assignments to secrets assumed by the attacker

Example 1. Consider the proprietary relational schema

PR = {RS(reviewer, subcom) SP (subcom, paper) RP (reviewer, paper)}

where RS associates reviewers with the program subcommittee they belong to,
SP associates each paper to the subcommittee it was assigned to, and RP as-
sociates reviewers with the papers they reviewed.

The database satisfies the set of constraints Δ = {C1, C2, C3}:

C1 : RP [reviewer] ⊆ RS[reviewer]
C2 : RP [paper] ⊆ SP [paper]
C3 : ∀r∀p RP (r, p) → ∃c RS(r, c) ∧ SP (c, p)

where C1 states that there are no paper reviewers besides those listed in sub-
committees and C2 states that every reviewed paper belongs to a subcommittee,
and C3 states that papers submitted to subcommittee c can only be reviewed
by reviewers associated to c.

RS reviewer subcom

r1 c1

r2 c1

r3 c2

r4 c2

SP subcom paper

c1 p1

c1 p2

c2 p3

c2 p4

RP reviewer paper

r1 p1

r2 p2

r3 p3

r4 p4

Fig. 1. Instance I for Example 1

232 A. Deutsch and Y. Papakonstantinou

The example instance I appears in Figure 1. Let the public data be described
by the schema PU = {VR, VS} where the views VR, VS expose respectively the
set of reviewers and subcommittees:

VR(r) ← RS(r, s) VS(s) ← RS(r, s)

with extents {r1, r2, r3, r4} and {c1, c2} respectively, when evaluated on I. We
investigate the privacy breaches associated with posting the additional views

VRS(r, s) ← RS(r, s) VSP (s, p) ← SP (s, p).

Of course we want to prevent outsiders from obtaining information about who
reviewed a given paper, i.e., from changing their a-priori belief on the likelihood
of each fact of the form “a given reviewer reviewed p1”. Let’s say we want to
hide who reviewed paper p1.1 This can be stated precisely as the following secret
query against the proprietary schema:

S(r) ← RP (r, p1).

In the absence of knowledge besides VR and VS , any subset of VR’s extent
could have reviewed paper p1. The set of possible secrets therefore contains
among others the candidates s1 = {r1, r3} s2 = {r1, r2}, s3 = {r1, r2, r4}, etc.

Let’s assume that the attacker’s domain knowledge (e.g., his assumptions on
who is likely to bid and who has declared conflict-of-interest) prompts him to
assign a non-zero probability prob1 to s1. If the owner now publishes the extent of
VRS , the attacker realizes (using constraint C3) that p1 must have been reviewed
by somebody who serves on committee c1, unlike r3. The attacker thus adjusts
prob1 and prob3 to 0, distributing their value among the probabilities of the
remaining possible secrets (such as s2). In other words, the remaining possible
secrets are more likely after seeing the extent of the new views. This adjustment
is due to learning something about the secret, namely that it cannot contain r3
or r4.

Notice that if the attacker had known this fact from outside sources, he would
have set prob1 to 0 to begin with and hence not learned anything new from
the additional view extents. However, if the owner cannot predict the attacker’s
prior knowledge, he must follow the conservative approach that the views breach
privacy if they can be used to revise some a priori belief of the attacker. ��

The following example illustrates the point that privacy breaches depend on
the proprietary database instance.

Example 2. In Example 1, the publishing of views VRS and VSP was breaching
privacy on instance I. In contrast, consider an instance I ′ obtained from I by

1 Note that in practice we would allow the owner to specify the secret as a parame-
terized query, i.e., have in the place of p1 a parameter that stands for “any paper
id”. In the interest of simplifying the notation we assume that the secret involves a
particular constant p1. The generalization is straightforward.

Privacy in Database Publishing 233

replacing all subcommittees with the same value c0. Then publishing VRS and
VSP does not change the probability distribution on possible secrets since all
values in the extent of VR remain candidates for reviewers of paper p1. In this
case the privacy guarantee holds and the new views can be published. ��

Finally, note that integrity constraints can significantly boost the attacker’s
chances of defeating the privacy guarantee and must therefore be taken into
account by the owner. We have seen in Example 1 how integrity constraint C3
could be used by the attacker to revise his a priori probabilities for the secrets.
Note that if the attacker did not know C1, C2, C3 to hold, the set of possible
secrets would not change after publishing the extra views. For instance, it does
not matter what subcommittee a paper is assigned to if outside reviewers can
also review it. Example 3 shows a scenario in which integrity constraints that
specify cardinality constraints lead to much more dramatic privacy breaches,
exposing the secret fully. Our results take into account such constraints.

Example 3. Let I ′′ be an instance that coincides with I on the extents of SP
and RS and in which RP states that papers p1 and p2 are reviewed by both
r1 and r2 and that papers p3, p4 are reviewed by both r3 and r4. Before seeing
VRS , VSP the attacker considers any subset of reviewers as plausible, leading to
15 possible secrets to pick from. If the attacker now sees the extents of VRS

and VSP corresponding to I ′′, he must conclude that only subsets of {r1, r2}
are plausible secrets, leading to 3 possibilities: {r1}, {r2}, {r1, r2}. Now assume
that the attacker has the additional knowledge that each paper has exactly two
reviewers. We express this prior knowledge in the form of integrity constraints
stating that each paper has at most two (C4) and at least two reviewers (C5).

C4 : ∀p∀r1∀r2∀r RP (r1, p) ∧ RP (r2, p) ∧ RP (r, p) → r = r1 ∨ r = r2

C5 : ∀p∀c SP (c, p) → ∃r1∃r2 RP (r1, p) ∧ RP (r2, p) ∧ r1
= r2

C4 and C5 further prune the set of possible secrets to only {r1, r2}, the proba-
bility of which is necessarily 1. In other words the secret is fully exposed! ��

Contributions. We formulate a novel privacy guarantee that ensures that, given
existing views V̄ and integrity constraints Δ, a new view N can be safely pub-
lished. The guarantee does not assume any particular attack method; instead
it checks that regardless of the attacker’s a priori belief about the secret and
computational resources, posting the extent of N can not lead to a revision of
the attacker’s belief. The owner specifies the secret by a query S over the pro-
prietary database instance I. In that case we say that N is safe for S on I,
denoted safeΔ

V̄ (N,S, I). We formulate two versions of the safety guarantee. The
first, GsafeΔ

V̄ (N,S, I), assumes that the attacker has domain knowledge about
the possible worlds which witness (generate) the secret. Then we formulate a
less strict guarantee, EsafeΔ

V̄ (N,S, I), which applies when the attacker’s domain
knowledge pertains to the likelihood of secrets, and he has no opinion which
distinguishes among the possible worlds witnessing the same secret.

We solve the problem of deciding both guarantees when S,N and all views in
V̄ are defined by unions of conjunctive queries with non-equalities (UCQ�=) and

234 A. Deutsch and Y. Papakonstantinou

the constraints in Δ are equivalent to containment statements between UCQ �=

queries. These constraints extend classical embedded dependencies [2] with dis-
junction and non-equality, and they can express the standard key and foreign key
constraints, but also cardinality constraints and beyond. All constraints in our
motivating examples belong to this class. We consider three levels of strength-
ening for each guarantee.

1. We show that EsafeΔ
V̄ (N,S, I) is decidable in PSPACE in the size of the

instance I and that GsafeΔ
V̄ (N,S, I) is ΠP

2 -complete in the size of I.
2. We prove that for a fixed domain D we can check in PSPACE in the size

of D that EsafeΔ
V̄ (N,S, I) holds for all instances I over D. The analogous

problem for Gsafe is ΠP
2 -complete in the size of D.

3. For both kinds of safety, we show undecidability of checking safety on all
instances I (regardless of their domain).

Our techniques shed additional light on the relationship between privacy
and information integration. In particular, in the process of establishing our
undecidability results, we expose an interesting connection with a problem from
information integration, namely lossless answering of queries using views [4].

2 Two Formal Privacy Guarantees

Possible Worlds and Plausible Secrets. Let I be a proprietary database
instance satisfying Δ. Denote with E the corresponding PU-instance, which
associates to each table V ∈ V̄ the extent V (I) (in short V̄ (I) = E). Given
E, there is a set of PR-instances w over an infinite domain, that satisfy the
constraints Δ (denoted w |= Δ) and on which the views yield E (V̄ (w) = E).
These instances are known as possible worlds in the literature (see [11] and
references therein). Denote their set with

WorldsΔ
V̄ (E) = {w | w |= Δ ∧ V̄ (w) = E}.

Clearly, I ∈ WorldsΔ
V̄ (E). We call a secret s plausible given E if it occurs in

a possible world, i.e., there exists w ∈WorldsΔ
V̄ (E) such that S(w) = s. Observe

that S(I) is trivially plausible.

Attacker’s Knowledge of Secret Assuming Zero Views. We model the
attacker’s general domain knowledge as a probability distribution P : S → [0, 1]
defined over the set of outcomes S [17] that consists of all possible instances of
the secret which are witnessed by some world that satisfies Δ. As usual, given
an event, i.e., a set of outcomes S ⊆ S, we denote by P(S) the probability
Σs∈SP(s) of the event [17].

Note that we make no assumptions on P, thus allowing for distributions
that correlate particular tuples. For example, the distribution may model the
knowledge that “reviewers r1 and r2 have the same research background and are
likely to review the same papers” or that “a paper is very likely to have exactly

Privacy in Database Publishing 235

three reviews and it is impossible that it has less than two or more than four”.
This modeling is in contrast to the one used in [15], which assumes independent
probability of individual tuples appearing in the secret.

Induced Probability Distributions over Private Database. The attacker’s
knowledge of the secret, i.e., the distribution P, induces possible compatible
probability distributions P′ : W → [0, 1] over the set W of instances of the
private database which satisfy Δ. Clearly, WorldsΔ

V̄ (E) ⊆ W. Note that the at-
tacker is often unaware of the details of those distributions since they may also
involve data that are tangential or irrelevant to the secret, i.e., data that the
attacker is unaware of or is not interested in. For example, though the attacker
of Example 1 only cares about paper p1 and its potential reviewers, the induced
probability distribution assigns probabilities to the full set of data pertaining to
the conference. Our work considers two assumptions for deducing the compat-
ible probability distributions over the private database instance and produces
corresponding results:

1. General: The distribution P induces the set Pg that consists of all distri-
butions Pg that are defined on W and have the property

∀s ∈ S : Σw∈W,S(w)=sPg(w) = P(s) (1)

We will see that according to the general assumption, maintaining privacy
requires that no possible world w that witnesses a secret instance s (i.e.,
S(w) = s) can be eliminated by the extra view. A less strict requirement,
which is compatible with the fact that the attacker may not have an opinion
on the non-secret data, is provided by the next assumption.

2. Equiprobable Witnesses: The distribution P induces the unique distri-
bution Pe, called equiprobable witness, that is defined on W and has the
property

∀s ∈ S, w ∈ W : S(w) = s⇒ Pe(w) =
P(s)

|{w′ | w′ ∈ W, S(w′) = s}|

i.e., all witnesses w of a secret s have equal probability. Obviously Pe ∈ Pg.

Belief Based on a-priori Set of Views. With a slight abuse of notation, in
the context of a distribution Pg : W → [0, 1] a secret instance s ∈ S will also
stand for the event {w | w ∈ W, S(w) = s} and E will also stand for the event
WorldsΔ

V̄ (E). Then the conditional probability Pg(s|E) denotes the probability
of s being the secret once the view extents E have been observed, but before
seeing the extent of the additional view N that the owner considers whether to
publish or not. We will call Pg(s|E) the attacker’s a priori belief, and according
to the conditional probability definition [17] we have

Pg(s|E) =

∑
w∈WorldsΔ

V̄
(E),S(w)=s Pg(w)∑

w∈WorldsΔ
V̄

(E) Pg(w)
(2)

236 A. Deutsch and Y. Papakonstantinou

Since Pe ∈ Pg, Equation (2) holds also for Pe. Notice that (2) associates
probability 0 to implausible secrets. Also, the more possible worlds witness a
certain secret candidate s, the higher its probability. In particular, if all possible
worlds yield the same secret s then Pg(s|E) = 1.

A-Posteriori Belief. Now consider a new view N and let E′ be the PU ∪{N}-
instance which extends E by associating to N the extent N(I). E′ is what the
attacker would observe after the additional publishing of view N . As above, we
denote with WorldsΔ

V̄ ,N (E′) the set of possible worlds of E′ and the conditional
probability Pg(s|E′) = Pg(s|WorldsΔ

V̄ ,N (E′)) models the probability of each
secret instance once the instance of N is also observed.

The Privacy Guarantees. We propose two privacy guarantees that correspond
to the general and the equiprobable witness assumptions. Both guarantees ensure
that N can be safely published by checking that, regardless of the attacker’s
domain knowledge, the a priori and a posteriori beliefs coincide.

Definition 1 (Instance-Dependent View Safety Under Equiprobable
Witnesses). We say that view N is safe under equiprobable witnesses for the
secret query S on PR-instance I given views V̄ and constraints Δ iff
for each probability distribution P on the candidate secrets and for each s we
have

Pe(s|E) = Pe(s|E′)

where E = V̄ (I) and E′ = (V̄ , N)(I). We denote this property as EsafeΔ
V̄ (N,S, I).

Definition 2 (Instance-Dependent View Safety Under General Induced
Probabilities). We say that view N is safe under general induced probabilities
for the secret query S on PR-instance I given views V̄ and constraints Δ iff
for each probability distribution P on the candidate secrets, for each s, and for
each Pg ∈ Pg we have

Pg(s|E) = Pg(s|E′)

where E = V̄ (I) and E′ = (V̄ , N)(I). We denote this property as GsafeΔ
V̄ (N,S, I).

Safety over Classes of Instances. As shown in Example 2, the satisfaction of
the privacy guarantee depends on the proprietary database I. The owner is thus
faced with the following dilemma. Checking the guarantee on a given instance
I avoids being overly conservative and rejecting the publishing of many extra
views because they breach privacy on another instance I ′. On the other hand, this
means re-checking the privacy guarantee upon each update to I. Alternatively,
we consider the following two levels of strengthening the safety guarantees from
Definitions 1 and 2 to take into account classes of instances.

EsafeΔ
V̄ (N, S, D) := ∀I ∈ Inst(D) : EsafeΔ

V̄ (N, S, I) (3)

EsafeΔ
V̄ (N, S) := ∀I : EsafeΔ

V̄ (N, S, I) (4)

GsafeΔ
V̄ (N, S, D) := ∀I ∈ Inst(D) : GsafeΔ

V̄ (N, S, I) (5)

GsafeΔ
V̄ (N, S) := ∀I : GsafeΔ

V̄ (N, S, I) (6)

Privacy in Database Publishing 237

(3) and (5) extend safety to a (finite) set Inst(D) of PR-instances over some
given, finite domain D (useful when modeling dictionary attacks), while (4) and
(6) extend safety to all PR-instances.

Dictionary Attacks. It is often appropriate to assume that the attacker already
knows the domain of the secret and hence is able to launch dictionary attacks, i.e.,
attacks that consist of potentially large numbers of queries that involve constants
that have not been retrieved from the database; instead the attacker already
knows those constants from his “dictionary knowledge”. A typical example is an
insurance database, in which we may want to assume that the list of potential
patients and the list of diseases are publicly known (from the employee lists of
the participating companies and a medical encyclopedia) but the data owner
wants to hide the association between patients and diseases. When dictionary
attacks are of concern, we model the dictionary knowledge of the attacker by
including among the published views dictionary views which publish projections
of the secret on those attributes whose domain is considered to be known to the
attacker. Notice that in our running example dictionary views arise naturally
and need not be added: VR is already one.

3 Preliminaries: Queries and Constraints

Queries. A term is a variable or constant. By x̄ we denote a finite sequence of
terms x1, . . . , xk. The language of conjunctive queries with non-equalities (CQ�=)
consists of expressions of the form Q(z̄) ← #1(x̄1), . . . , #n(x̄n) where each #i(x̄i) in
the rule body is a literal, i.e., an atom R(x̄), an equality xi = xj or an inequality
xi �= xj . Given Q ∈ CQ �=, we define head(Q) and body(Q) to give the parts to the
left and to the right of the arrow, respectively. A union of conjunctive queries
with non-equalities (UCQ�=) is an expression of the form Q =

∨n
i=1 Qi where

Qi ∈ CQ �= for each 1 ≤ i ≤ n. We have Q(D) =
⋃

i Qi(D), where Q(D) denotes
the result of query Q on database D. All queries and views in the motivating
examples belong to UCQ �=.

Constraints. For a given query language L, we consider the corresponding
constraint language

IC(L) := {∀x̄(U → V) : U, V ∈ L}

where x̄ is the set of free variables in both U and V . These kinds of constraints
express the containment of the queries U in V and are known as embedded
dependencies when L = CQ (conjunctive queries). Given a set of constraints
Σ ⊆ IC(CQ), there is a well known procedure for extending a query Q ∈ CQ
to another query Q′ by an iterative procedure known as the chase. However,
the constraints in Example 1 belong to the more expressive language IC(UCQ�=)
(see also the cardinality constraints in Example 3). In [8, 5], we extended the
chase to Q ∈ UCQ �= and Σ ⊆ IC(UCQ �=). The extension is repeated in the
full version of this paper [6]. We only give an example here, which illustrates

238 A. Deutsch and Y. Papakonstantinou

that the chase produces unions of conjunctive queries with non-equalities (or,
equivalently, queries whose body is in disjunctive normal form).

Example 4. Consider the query body T (x, y) and the constraint

σ := ∀x∀yT (x, y) → (∃z R(x, z)) ∨ (x �= y).

2 A chase step of T (x, y) with σ yields the following query body in disjunctive
normal form: T (x, y) ∧R(x, z) ∨ T (x, y) ∧ x �= y. ��

It is well-known that checking termination of the chase is undecidable even
for the constraint language IC(CQ). In the full paper [6], we repeat a suffi-
cient condition for termination introduced in [8], namely the property of a set
of constraints having stratified witnesses. This condition is the most general ter-
mination condition we are aware of, and it is efficiently checkable (in PTIME in
the size of the constraint set). Essentially, it ensures that only a finite number of
new variables (such as z in Example 4) can be introduced into the chase result,
which therefore must be finite.

Theorem 1 ([8]). IfΔ ⊆ IC(UCQ �=) has stratified witnesses, then the chase with
Δ of any Q ∈ UCQ �= terminates. It yields a result

∨n
i=1 Qi where each Qi ∈ CQ �=

has size polynomial in the size of Q and n is exponential in the size of Q.

In this paper, we assume that all queries belong to UCQ �= and that
all constraints belong to IC(UCQ �=).

4 General Induced Probability

Privacy on Given Instance or Domain. The main difficulty we need to over-
come when checking GsafeΔ

V̄ (N,S, I) is the fact that the guarantee is universally
quantified over infinitely many probability distributions P on the secrets and
over infinitely many induced probability distributions Pg on the possible worlds.
The following result solves this problem partially, showing that we can ignore
probability distributions altogether, reducing the problem to comparing possible
worlds only. Recall that E′ is E extended with the new materialized view N .

Lemma 1. GsafeΔ
V̄ (N,S, I) holds if and only if WorldsΔ

V̄ (E) = WorldsΔ
V̄ ,N (E′).

What is left to do is to compute the sets of possible worlds, WorldsΔ
V̄ (E) and

WorldsΔ
V̄ ,N (E′). The problem here is that these sets have potentially infinite

cardinality. In the remainder of this section, we solve this problem as follows.
First, we show that the infinite set of possible worlds is finitely representable by a
set of templates, denoted TWorldsΔ

V̄ (E). Then we show how do adapt Lemma 1 to
compare only TWorldsΔ

V̄ (E) and TWorldsΔ
V̄ ,N (E′) (Theorem 3 below). Finally,

we show how to compute TWorldsΔ
V̄ (E).

2 σ belongs to IC(UCQ 	=) as it can be restated as the containment of Q1(x, y) ←
T (x, y) in Q2(x, y) ← T (x, y) ∧ R(x, z) ∨ T (x, y) ∧ x
= y.

Privacy in Database Publishing 239

Possible World Templates. It was shown in [11] that for conjunctive query
views and in the absence of constraints, the infinite set of possible worlds is
finitely representable by a set of templates. We extend this result to UCQ �=

views and in the presence of constraints. Let D be a set of constants and V a set
of variables. A database over D associates to each relation in its schema a set of
tuples of constants from D. A database template over D and V associates to each
relation a set of tuples of constants and variables from D∪V [11]. The notion of
evaluating a UCQ�= query over a database template extends in the obvious way.
Given the views V̄ of extent E, a possible world template is a database template
T such that V̄ (T) = E.

Example 5. Consider a proprietary database of schema R(A,B,C) and domain
D. Also consider the view V (A,C) ← R(A,B,C) of extent E = {(a1, c1), (a2, c2)}.
Then T1 = {R(a1, x1, c1), R(a2, x2, c2)} and T2 = {R(a1, x3, c1), R(a2, x3, c2)}
are possible world templates since V (T1) = V (T2) = E. WorldsV (E) is repre-
sented by {T1, T2} in the following sense: for any possible world W ∈WorldsV (E),
there is an injective homomorphic embedding from T into W . In particular,
if we instantiate x1, x2, x3 with constants from D in all possible ways (but
never x1 and x2 with the same constant, as T2 takes care of that case), we
are sure to obtain only possible worlds (infinitely many if D is infinite). No-
tice that in general we need more than one template to represent the pos-
sible worlds. If in the above example we also exported the view V ′(B) ←
R(A,B,C) of extent {b1, b2} then the possible worlds would be given by the
templates T1 = {R(a1, b1, c1), R(a1, b2, c2)}, T2 = {R(a1, b2, c1), R(a1, b1, c2)},
T3 = {R(a1, b1, c1), R(a1, b1, c2)}, T4 ={R(a1, b2, c1), R(a1, b2, c2)}, which hap-
pen to be full-fledged databases as they mention no variables.

Definition 3 (Reduced Universal Set of Possible World Templates).
We say that a set T of possible world templates is universal for a view extent E
if for any possible world W of E, there is an injective homomorphic embedding
h from some T ∈ T into W , i.e. the images under h of distinct variables from
T are distinct. T is reduced if (i) for each T1, T2 ∈ T with T1 �= T2 there is no
injective homomorphic embedding from T1 into T2 and (ii) for each T ∈ T there
is no injective homomorphism from T into a proper subset of T ’s tuples.

Given the integrity constraints Δ and the published views V̄ of extent E,
there may be several universal sets of possible world templates, but only a single
reduced one:

Theorem 2. The reduced universal set of possible world templates is unique up
to isomorphism. We denote this set with TWorldsΔ

V̄ (E).

It turns out that instead of comparing sets of possible worlds, we can compare
their reduced universal sets of templates:

Theorem 3. GsafeΔ
V̄ (N,S, I) holds iff TWorldsΔ

V̄ (E) =TWorldsΔ
V̄ ,N (E′).

240 A. Deutsch and Y. Papakonstantinou

We next provide an algorithm for finding TWorldsΔ
V̄ (E). The algorithm is

based on capturing the view definitions with a set of constraints ΣV and chas-
ing the extent E with ΣV as well as the integrity constraints in Δ. All these
constraints belong to IC(UCQ�=) and are described below.

Let V̄ = V1, . . . , Vn. We define ΣV as the following set of constraints:

ΣV := {∀x̄iȳi(body(Vi) → head(Vi)) | 1 ≤ i ≤ n}
∪{∀x̄i(head(Vi) → ∃ȳibody(Vi)) | 1 ≤ i ≤ n}

where x̄i are the variables in head(Vi), and where ȳi are the variables in body(Vi)
which do not appear in head(Vi).

For a given extent E of the views, we introduce the following set of constraints
ΣE . Let E associate to view Vi the set of tuples {t1, . . . , tni}. Then define

ΣE := {∀t Vi(t) →
∨ni

j=1 t = tj | 1 ≤ i ≤ n}

which states that for each i, the only tuples in Vi are the ones given by E.
Finally, define the following axiom about equality: σ �= := ∀x∀y true→ x=y∨

x�=y. Also, let the canonical tableau of E be the conjunction of all facts in E:

CanT (E) :=
∧n

i=1

∧ni
j=1 Vi(tj).

Function PWT below returns the desired set of possible world templates.

function PWT(E; V̄ ; Δ)
(1) Compute Σ := Δ ∪ ΣV ∪ ΣE ∪ {σ	=}.
(2) Let

∨m
l=1 Tl be the result of chasing CanT (E) with Σ.

(3) For each l, compute T ′
l := Tl|PR (that is, keep only the PR literals).

(4) Set T1 := {T ′
l |1 ≤ l ≤ m}.

(5) Let T2 be the reduced T1, obtained by dropping each T from T1

for which there is another T ′ ∈ T1 and a homomorphic embedding
from T ′ into T .

(6) Return T2.

Since function PWT is based on chasing, it is not a priori clear that it
even terminates. Theorem 4 guarantees termination of PWT and implies the
finiteness and computability of TWorldsΔ

V̄ (E).

Theorem 4. If Δ has stratified witnesses then:

1. Function PWT is guaranteed to terminate for any V̄ and E.
2. The result of PWT is a template set of cardinality at most exponential in

the size of E. Each template has size polynomial in the size of E.
3. PWT(E; V̄ ;Δ) = TWorldsΔ

V̄ (E).

Theorems 3 and 4 immediately suggest a decision procedure for
GsafeΔ

V̄ (N,S, I):

Corollary 1. If Δ has stratified witnesses, then GsafeΔ
V̄ (N,S, I) holds if and

only if PWT(V̄ ;Δ;E) = PWT(V̄ , N ;Δ;E′).

Privacy in Database Publishing 241

Notice that, by Theorem 4 (2), the naive algorithm which eagerly computes the
results of PWT requires exponential space in the size of I. However, checking
that PWT(V̄ ;Δ;E) �= PWT(V̄ , N ;Δ;E′) is clearly in Σp

2 : guess a template
T ∈ PWT(V̄ ;Δ;E) and then ask an NP oracle whether T ∈ PWT(V̄ ;Δ;E′).
Hence GsafeΔ

V̄ (N,S, I) is in ΠP
2 , which turns out to be asymptotically optimal:

Theorem 5. If Δ has stratified witnesses then

1. GsafeΔ
V̄ (N,S, I) is ΠP

2 -complete in the size of I.
2. GsafeΔ

V̄ (N,S,D) is ΠP
2 -complete in the size of D.

Unrestricted Privacy. We next show that the strongest level of Gsafe , namely
GsafeΔ

V̄ (N,S) := ∀I GsafeΔ
V̄ (N,S, I) is undecidable. Towards achieving this

result, we expose an interesting connection with a problem that has recently
received considerable attention in the area of information integration, namely
lossless query answering using views.

Lossless Query Answering. Given a set of views V̄ and a query Q (both
formulated against the same schema) in data integration we are interested in
answering Q using only the extents E of the views. Typical algorithms proposed
in the literature (e.g. [9]) find the certain answers to Q, defined as certQ(E) :=⋂

w∈Worlds
V̄

(E) Q(w). Notice that regardless of which possible world I from
Worlds V̄ (E) actually generated the view extents E, we have certQ(E) ⊆ Q(I).
[4] asks whether for each I and corresponding E, we can retrieve the exact an-
swer to Q(I) from E, i.e. ∀I E = V̄ (I) → certQ(E) = Q(I). If so we say that
the views V̄ can be used to losslessly answer Q, denoted V̄ |= Q. [4] identi-
fies the decidable cases for regular path queries and views over semistructured
data. In contrast, in the relational model [7] shows that even in the absence of
constraints, if Q and V̄ belong to UCQ, the problem is undecidable.

It turns out that the problem V̄ |= Q reduces to Gsafe ∅̄
V (Q, id) where id is

the identity secret query which returns the entire database. This implies:

Theorem 6. GsafeΔ
V̄ (N,S) is undecidable, even under no constraints (Δ = ∅).

In some scenarios the GsafeΔ
V̄ (N,S, I) guarantee may turn out to be too

strong. By Lemma 1, it requires the set of possible worlds not to change, which
in turn means that N(I) can be obtained solely from V̄ (I). Depending on I, only
few and non-interesting N ’s could pass this test. In the next section we relax this
guarantee assuming that attackers treat witnesses for a secret as equiprobable.

5 Equiprobable Witnesses

Privacy on Given Instance or Domain. As was the case for the Gsafe
guarantee, the main difficulty to overcome when checking EsafeΔ

V̄ (N,S, I) is
the universal quantification over infinitely many probability distributions P on
the candidates for secrets. Again we solve this problem by showing that we
can ignore probability distributions entirely. This time however we reduce the

242 A. Deutsch and Y. Papakonstantinou

problem to counting possible worlds and plausible secrets. Denote the multiplicity
of secret s when E is published as the number of possible worlds on which the
secret query evaluates to s: multE(s) = |{w | w ∈ WorldsΔ

V̄ (E), S(w) = s}| and
multE′(s) = |{w′ | w′ ∈ WorldsΔ

V̄ ,N (E′), S(w′) = s}|. Notice that s is plausible
for E if and only if multE(s) > 0.

Lemma 2. EsafeΔ
V̄ (N,S, I) holds if and only if

1. each plausible secret for E stays plausible for E′, and
2. all pairs s1, s2 of secrets that are plausible for E satisfy multE(s1)

multE(s2)
= multE′ (s1)

multE′ (s2)
.

What is left to do is to compute the multiplicities of secrets, which requires
computing the sets of possible worlds, WorldsΔ

V̄ (E) and WorldsΔ
V̄ ,N (E′). We

again use the finite representations of these sets TWorldsΔ
V̄ (E), respectively

TWorldsΔ
V̄ ,N (E′) and we show next (Theorem 7) that the privacy guarantee

reduces to running the test of Lemma 2 on these template sets. We first intro-
duce a notation for the multiplicity of templates witnessing s: TmultE(s) = |{t ∈
TWorldsΔ

V̄ (E) | S(t)=s}| and TmultE′(s) = |{t′ ∈ TWorldsΔ
V̄ ,N (E′) | S(t′)=s}|.

Theorem 7. 1. Assume that the set of views V̄ contains dictionary views for
each projection of the secret query S. Then every candidate secret s is plau-
sible for E if and only if there exists T ∈ TWorldsΔ

V̄ (E) with S(T)=s.
2. EsafeΔ

V̄ (N,S, I) holds if and only if for every pair of plausible secrets s1, s2

we have TmultE(s1)
TmultE(s2)

=TmultE′ (s1)
TmultE′ (s2)

.

Putting together Theorem 7 and Theorem 4, we obtain that algorithm ESAFE
below is a decision procedure for EsafeΔ

V̄ (N,S, I).

algorithm ESAFE (V̄ , Δ, N, S, I)
(1) Compute E := V̄ (I) and E′ := (V̄ , N)(I).
(2) Compute TWorldsΔ

V̄ (E) := PWT(V̄ ; Δ; E), and
TWorldsΔ

V̄ ,N (E′) := PWT(V̄ , N ; Δ; E′).
(3) Compute SecretsΔ

V̄ (E) := {S(w) | w ∈ TWorldsΔ
V̄ (E)}.

(4) For each s1, s2 ∈ SecretsΔ
V̄ (E) do

if TmultE(s1)
TmultE(s2)
= TmultE′ (s1)

TmultE′ (s2) then return false.
(5) Return true.

Notice that, as presented, algorithm ESAFE needs exponential space in the
size of I. Indeed, the two calls of function PWT yield results of size exponential
in the size of E and E′ (therefore exponential in the size of I). This presentation
was chosen for the sake of simplicity. It turns out that we can do better.

Theorem 8. If Δ has stratified witnesses then

1. EsafeΔ
V̄ (N,S, I) is decidable in PSPACE in the size of I.

2. EsafeΔ
V̄ (N,S,D) is decidable in PSPACE in the size of D.

Privacy in Database Publishing 243

The proof is based on the key idea that we do not need to first list the entire
result of PWT, instead enumerating the possible world templates on demand.
The technique extends straightforwardly to deciding EsafeΔ

V̄ (N,S,D): enumerate
in PSPACE in the size of D all instances I ∈ Inst(D) and check EsafeΔ

V̄ (N,S, I)
using algorithm ESAFE.

We do not have a matching lower bound for these results. Indeed, we conjec-
ture that the exact complexity lies in the counting complexity class C=P [19]
which is included in PSPACE.

Unrestricted Privacy. Using a reduction from the problem of lossless query
answering, we show that EsafeΔ

V̄ (N,S) := ∀I EsafeΔ
V̄ (N,S, I) is undecidable:

Theorem 9. EsafeΔ
V̄ (N,S) is undecidable even under no constraints (Δ = ∅).

6 Discussion

The key insight on which our framework for privacy diagnostics is based is the
fact that the modeling of the attacker’s knowledge should start from possible
worlds or at least plausible secrets. The individual tuples in the secret are cor-
related by appearing together in possible worlds.

For a comparison of the two proposed flavors of privacy guarantees, assume
that E has 200 possible worlds, on which the secret query evaluates to s1 for
100 worlds and to s2 for the remaining worlds. If after publishing E′, only 100
worlds remain, of which none witnesses s1, both guarantees will fail. The same
happens if 101 world remain, of which 1 witnesses s1 and the rest s2. However, if
a posteriori we are left with 100 secrets of which half witness s1 and half witness
s2, Gsafe fails while Esafe holds. We leave it to the data owner to decide which
guarantee is more appropriate for a specific application.

Notice that our framework can easily model and defend against collusion by
multiple attackers. Suppose that access control mechanisms allow attacker a1 to
see a set of views V̄1 and attacker a2 to access V̄2. Then defending against their
collusion requires checking safeΔ

V̄1,V̄2
(E).

Also observe that since integrity constraints have the same effect as addi-
tional views, namely of ruling out possible worlds, the publishing of integrity
constraints can also lead to privacy breaches. The publisher can employ the
same framework to decide whether the publication of a constraint is safe.

In light of the high complexity bounds we obtained in terms of data complex-
ity, our future work will focus on finding special cases for the view and secret
definitions which yield tractability. We are also looking into further relaxations
of the privacy guarantees.

7 Related Work

Prior work on privacy in databases has focused on implementing access control,
i.e. allowing clients to see only those published views which they are authorized

244 A. Deutsch and Y. Papakonstantinou

to. The techniques are based on cryptographically encoding the data (see [13, 14]
and references within). Other techniques involve the authentication of users via
credentials, as in the TrustBuilder project (see [20] for a comprehensive list of
publications). Our work is orthogonal to work on access control, as it helps data
owners design the views such that attackers cannot breach privacy using only
authorized accesses.

[1] introduces c-tables, a compact formalism for finitely representing large
(and potentially infinite) sets of possible worlds, and shows Πp

2 -complete data
complexity for checking that the sets of possible worlds represented by two c-
tables are the same. c-tables are not sufficiently expressive to model the set of
possible worlds given by a view instance. [11] introduces database templates to
this end and shows how to compute them using the chase, but does not address
the comparison of the sets of possible worlds. Our approach for finding possible
world templates coincides with the one in [11] when there are no constraints on
the private database and the views are conjunctive queries.

[10] solves the problem of limiting privacy breaches in a scenario in which
the aggregation of a set of private client data items is computed at the server.
A privacy breach is essentially defined as a significant difference between the
a posteriori and the a priori probability distributions. [10] provides not only a
diagnostic tool, it also scrambles the data to improve privacy. The model assumes
independence among the private values at the clients. Thus, the techniques do
not apply directly to our scenario, where the secret tuples are not independent
of each other (indeed they are correlated via the possible worlds in which they
appear). On the other hand, we do not handle aggregation, which is at the center
of the model in [10]. [3] takes aggregation into account and shows that exposing
the result of counting queries allows the retrieval of an isomorphic copy of the
structure of the database.

[16] takes a dual approach to ours. While we use queries to specify what can-
not be disclosed, [16] uses conjunctive query views to specify what may be seen
by outsiders. In this setting, conjunctive client queries asked against the propri-
etary database are answered only if they have a rewriting using the allowable
views.

[15] is the closest work in spirit to ours. It pioneers the idea of specifying
the secret as a conjunctive query and checking that the new view does not leak
information about the secret by modifying the a priori probabilities of possible
secrets. The most significant difference stems from the fact that [15] assumes
that the tuples in the secret answer are independent events. This fails to defend
against attackers who take into account correlations between tuples. This re-
striction is used to derive decidability even for the unrestricted guarantee. [15]
lists as open the problem of deciding the guarantee when the independence as-
sumption on secret tuples is lifted. This is the problem we address in this work.
Not surprisingly, this problem is harder: the unrestricted guarantee becomes un-
decidable. Furthermore, we needed to refine the privacy guarantee in order to
model whether the attacker knows or does not know anything about the wit-
nesses of the secrets. Other differences are the fact that the guarantee is checked

Privacy in Database Publishing 245

in [15] only for restricted integrity constraints (functional dependencies) and
a-priori views (only boolean views). Also, [15] does not address the case when
the instance is given, focusing on given domain and unrestricted guarantee only.
Extending the results to the instance-based guarantee when no finite domain is
given would require generating the set of possible world templates.

References

1. S. Abiteboul, P. Kanellakis, and G. Grahne. On the representation and querying
of sets of possible worlds. Theoretical Computer Science, 78:159–187, 1991.

2. Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.
Addison-Wesley, 1995.

3. Michal Bielecki and Jan Van den Bussche. Database interrogation using conjunc-
tive queries. In ICDT, pages 259–269, 2003.

4. Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi.
Lossless regular views. In Symposium on Principles of Database Systems (PODS
2002), pages 247–258, 2002.

5. Alin Deutsch and Val Tannen. XML Queries and Constraints, Containment and
Reformulation. To appear in J. Theoretical Computer Science (TCS), 2005.

6. Alin Deutsch and Yannis Papakonstantinou. Privacy in Database Publishing. Tech-
nical report, Department of Computer Science and Engineering, UCSD, 2004. Ex-
tended version of this paper, available from http://www.db.ucsd.edu.

7. A. Deutsch, L. Sui, and V. Vianu. Queryies determined by views. Manuscript
available from http://www.db.ucsd.edu/people/alin/papers/QdV.ps, 2004.

8. Alin Deutsch and Val Tannen. Reformulation of xml queries and constraints. In
ICDT, 2003.

9. Oliver M. Duschka, Michael R. Genesereth, and Alon Y. Levy. Recursive query
plans for data integration. Journal of Logic Programming, 43(1):49–73, 2000.

10. A. Evfimievski, J. Gehrke, and R. Srikant. Limiting privacy breaches in privacy
preserving data mining. In PODS, 2003.

11. Gösta Grahne and Alberto O. Mendelzon. Tableau techniques for querying infor-
mation sources through global schemas. In ICDT, 1999.

12. Alon Halevy. Logic-based techniques in data integration. In Logic Based Artificial
Intelligence, 2000.

13. G. Miklau and D. Suciu. Cryptographically enforced conditional access for xml.
In WebDB, 2002.

14. Gerome Miklau and Dan Suciu. Controlling access to published data using cryp-
tography. In VLDB, 2003.

15. Gerome Miklau and Dan Suciu. A formal analysis of information disclosure in data
exchange. In SIGMOD Conf., 2004.

16. Shariq Rizvi, Alberto O. Mendelzon, S. Sudarshan, and Prasan Roy. Extending
query rewriting techniques for fine-grained access control. In SIGMOD Conf., 2004.

17. Murray R Spiegel, John J. Schiller, and R. Alu Srinivasan. Schaum’s Outline of
Probability and Statistics. MCGraw-Hill, 2000.

18. Jeffrey D. Ullman. Information integration using logical views. In Proceedings of
the Sixth International Conference on Database Theory, 1997.

19. K. Wagner. The complexity of combinatorial problems with succinct input repre-
sentation. Acta Informatica, 23:325–356, 1986.

20. Winslett et. al. The TrustBuilder Project. Publications Available from
http://drl.cs.uiuc.edu/security/pubs.html.

Anonymizing Tables

Gagan Aggarwal, Tomás Feder, Krishnaram Kenthapadi, Rajeev Motwani,
Rina Panigrahy, Dilys Thomas, and An Zhu

Stanford University�

Abstract. We consider the problem of releasing tables from a rela-
tional database containing personal records, while ensuring individual
privacy and maintaining data integrity to the extent possible. One of
the techniques proposed in the literature is k-anonymization. A release
is considered k-anonymous if the information for each person contained
in the release cannot be distinguished from at least k − 1 other per-
sons whose information also appears in the release. In the k-Anonymity
problem the objective is to minimally suppress cells in the table so as
to ensure that the released version is k-anonymous. We show that the
k-Anonymity problem is NP-hard even when the attribute values are
ternary. On the positive side, we provide an O(k)-approximation algo-
rithm for the problem. This improves upon the previous best-known
O(k log k)-approximation. We also give improved positive results for the
interesting cases with specific values of k — in particular, we give a 1.5-
approximation algorithm for the special case of 2-Anonymity, and a
2-approximation algorithm for 3-Anonymity.

1 Introduction

The information age has witnessed a tremendous growth in the amount of per-
sonal data that can be collected and analyzed. This has led to an increasing
use of data mining tools with the basic goal of inferring trends in order to
predict the future. However, the protection of personal data against privacy
intrusions has restricted the direct usage of data containing personal informa-
tion [Eur98, Tim97]. In many scenarios, access to large amounts of personal
data is essential in order for accurate inferences to be drawn. For example,
hospitals might wish to collaborate with each other in order to catch the out-
break of epidemics in their early stages. This requires them to allow outside
access to medical records of their patients, potentially violating the doctor-
patient privilege. In such cases, the remedy is to provide data in a manner
that enables one to draw inferences without violating the privacy of individual
records.

Different approaches to address this problem have emerged recently. One
approach is to use perturbation techniques in order to hide the exact values of

� Supported in part by NSF Grants IIS-0118173, EIA-0137761, and ITR-0331640, and
grants from Microsoft, SNRC, and Veritas.

T. Eiter and L. Libkin (Eds.): ICDT 2005, LNCS 3363, pp. 246–258, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Anonymizing Tables 247

the data [AS00, AA01, DN03, DN04, EGS03, AST03]. However, this may not be
suitable if one wants to make inferences with 100% confidence. If the function to
be evaluated is known in advance, we can use techniques from secure multi-party
computation [LP00, AMP04, FNP04]. However interactive data-mining tasks are
inherently ad-hoc and the queries are not known ahead of time.

Another approach is to suppress or generalize some of the sensitive data
values. We consider the k-anonymity model which was proposed by Samarati and
Sweeney [Swe02, SS98]. Suppose we have a table with n tuples and m attributes.
Let k > 1 be an integer. We wish to release a modified version of this table,
where we can suppress the values of certain cells in the table. The objective is to
minimize the number of cells suppressed while ensuring that for each tuple in the
modified table, there are at least k−1 other tuples in the modified table identical to
it. For example, consider the following table which is part of a medical database,
with the identifying attributes such as name and social security number removed.

Age Race Gender Zip Code Diseases
47 White Male 94305 Common Cold
35 White Female 94045 Flu
27 Black Female 92010 Flu
27 White Female 92010 Hypertension

By joining with public databases (such as a voter list), non-identifying at-
tributes such as Age, Race, Gender and Zip Code in the above table can together
be used to identify individuals. In fact, Sweeney [Swe00] observed that for 87%
of the population in the United States, the combination of Date of Birth, Gen-
der and Zip Code corresponded to a unique person. Hence, simply removing the
identifying (or key) attributes from a database is not enough. Instead we would
like to suppress some of these entries so that any (Age, Race, Gender, Zip Code)
tuple corresponds to at least k individuals. Note that we do not suppress any
entry in the column for “Diseases”. Joining this anonymized table with public
databases can, if at all, only identify an individual’s disease to be one among k
diseases. For instance, when k = 2, we could obtain the following anonymized
table.

Age Race Gender Zip Code Diseases
* White * * Common Cold
* White * * Flu
27 * Female 92010 Flu
27 * Female 92010 Hypertension

We study the k-Anonymity problem: finding the optimal (in terms of min-
imizing the number of cells suppressed) k-anonymized table for any given ta-
ble instance. We show that this problem is NP-hard even for the special case
of ternary attribute values. This significantly strengthens the NP-hardness re-
sult in [MW04], which required the domain of attribute values to be larger

248 G. Aggarwal et al.

than the number of tuples in the table. On the positive side, we give an O(k)-
approximation algorithm for this problem (for arbitrary alphabet size) using a
graph representation. This improves upon the previous best-known approxima-
tion guarantee of O(k log k) [MW04]. We also show that it is not possible to
achieve an approximation factor better than O(k) using the graph representa-
tion approach. In addition, for binary alphabets, we give a 1.5-approximation
algorithm for k = 2 and a 2-approximation algorithm for k = 3.

The rest of the paper is organized as follows. In Section 2, we specify our
model and formally state the problem of k-Anonymity. We establish the NP-
hardness of k-Anonymity in Section 3. We then provide a 1.5 approximation
algorithm for the 2-Anonymity problem for binary alphabet in Section 4,
and follow this up with a brief sketch of the 2-approximation algorithm for
3-Anonymity (for binary alphabet) in Section 5. In Section 6, we present an
O(k)-approximation algorithm for the k-Anonymity problem. In the Appendix,
we present the details of the 2-approximation algorithm for 3-Anonymity.

2 Model and Main Results

Consider a database with n rows and m columns in which each entry comes from
a finite alphabet Σ. For example, in a medical database, the rows represent
individuals and the columns correspond to the different attributes. We would
like to suppress some of the entries so that each row becomes identical to at
least k − 1 other rows. A suppressed entry is denoted by the symbol ∗. Since
suppression results in the release of less information and hence less utility, we
would like to suppress as few entries as possible.

We can view the database as consisting of n m-dimensional vectors: x1, . . . ,
xn ∈ Σm. A k-anonymous suppression function t maps each xi to x̃i by replacing
some components of xi by ∗, so that every x̃i is identical to at least k − 1 other
x̃j ’s. This results in a partition of the n row vectors into clusters of size at least
k each. The cost of the suppression, c(t) is the total number of ∗’s in all the x̃i’s.

k-Anonymity: Given x1, x2, . . . , xn ∈ Σm, and an anonymity parame-
ter k, obtain a k-anonymous suppression function t so that c(t) is min-
imized.

Clearly the decision version of k-Anonymity is in NP, since we can verify
in polynomial time if the solution is k-anonymous and the suppression cost less
than a given value. We show that k-Anonymity is NP-hard even when the
alphabet size |Σ| = 3. This improves upon the NP-hardness result of [MW04]
which required an alphabet size of n. On the positive side, we provide an O(k)-
approximation algorithm for arbitrary k and arbitrary alphabet size. For a binary
alphabet, we also provide 1.5-approximation for k = 2 and 2-approximation for
k = 3.

Anonymizing Tables 249

3 NP-Hardness of k-Anonymity

Theorem 1. k-Anonymity is NP-hard for a ternary alphabet (Σ = {0, 1, 2}).

Proof Sketch: We show the NP-hardness of k-anonymity by reducing a specific
instance of the problem from a known NP-hard graph problem. More specifically
we show the hardness of k-anonymity for k = 3, by reduction from Edge Par-
tition Into Triangles [Kan94]: Given a graph G = (V,E) with |E| = 3m for
some integer m, can the edges of G be partitioned into m edge-disjoint triangles?

Given an instance of the above problem, we create a database as follows.
W.l.o.g., we assume that G is simple. The rows correspond to the 3m edges and
the columns to the n vertices of G. The row corresponding to edge (a, b), rab,
has 1’s in the positions corresponding to a and b and 0’s everywhere else. We
first show that the cost of the optimal 3-Anonymity solution is at most 9m
if and only if E can be partitioned into a collection of m disjoint triangles and
4-stars1.

Suppose such a partition of edges is given. Consider any triangle (with a, b, c
as the vertices). By suppressing the positions a, b and c in the rows rab, rbc

and rca, we get a cluster with three ∗’s in each modified row. Similarly, con-
sider a 4-star with vertices a, b, c, d, where d is the center vertex. By suppress-
ing the positions a, b and c in the rows rad, rbd and rcd, we get a cluster with
three ∗’s in each modified row. Thus we obtain a solution to 3-Anonymity of
cost 9m.

On the other hand, suppose that there is a 3-Anonymity solution of cost
at most 9m. Since G is simple, any three rows are distinct and differ in at least
3 positions. Hence there should be at least three ∗’s in each modified row, so
that the cost of the solution is at least 9m. Thus the solution cost is exactly
9m and each modified row has exactly three ∗’s. Since any cluster of size > 3
will have at least four ∗’s in each modified row, it follows that each cluster has
exactly three rows. There are exactly two possibilities: the corresponding edges
form a triangle or a 4-star. Each modified row in a triangle has three ∗’s and
zeros elsewhere while each modified row in a 4-star has three ∗’s, single 1 and
zeros elsewhere. This corresponds to a partition of the graph edges into triangles
or 4-stars, instead of only triangles.

Since we want a reduction from Edge Partition Into Triangles, we
“force” the 4-stars to pay more ∗’s by increasing the number of columns cre-
ated in our k-Anonymity instance. Let t = 1 + �log2(3m)�. Consider an ar-
bitrary ordering of E and express the rank of an edge e = (a, b), in this or-
dering, in binary notation as b1b2 . . . bt. Every row in the database now has t
blocks, each of which has n columns. In the row corresponding to edge e, each
block has zeros in all positions except a and b. Depending on the values in
positions a and b, a block can be in two configurations: conf0 has 1 in posi-
tion a and 2 in position b while conf1 has 2 in position a and 1 in position
b. The ith block in this row has configuration confbi

. (For example, consider a

1 By 4-star, we mean a tree on four vertices with a vertex of degree 3.

250 G. Aggarwal et al.

complete graph on four vertices: {v1, v2, v3, v4}. Suppose edge (v1, v2) has rank
5 = (0101)2. The corresponding row would have 4 blocks of 4 columns each:
1200− 2100− 1200− 2100.)

We will now show that the cost of the optimal 3-Anonymity solution is at
most 9mt if and only if E can be partitioned into m disjoint triangles.

As earlier, every triangle in such a partition corresponds to a cluster with 3t
∗’s in each modified row. Thus we get a 3-Anonymity solution of cost 9mt.

For the converse, suppose that we are given a 3-Anonymity solution of cost
at most 9mt. Again, any three rows differ in at least 3t positions so that the
cost of any solution is at least 9mt. Hence the solution cost is exactly 9mt and
each modified row has exactly 3t ∗’s. Each cluster has exactly three rows. The
corresponding edges should form a triangle: As any two of these edges differ in
the configuration of at least one block, there would have been more than 3t ∗’s
per row if they formed a 4-star instead. Thus we get a partition of E into disjoint
triangles.

By reduction from Edge Partition Into r-Cliques [Kan94], we can ex-
tend the above proof for k =

(
r
2

)
, for r ≥ 3. By replicating the graph in the

above reduction, we can further extend the proof for k = α
(
r
2

)
for any integer α

and r ≥ 3. ��

4 Algorithm for 2-Anonymity

For a binary alphabet, we provide a polynomial time 1.5-approximation algo-
rithm for 2-Anonymity, using a polynomial time algorithm for obtaining a min-
imum weight [1, 2]-factor of a graph. A [1, 2]-factor of an edge-weighted graph
G is defined to be a spanning (i.e., containing all the vertices) subgraph F of
G such that each vertex in F has degree 1 or 2. The weight of F is the sum of
the weights of edges in F . Cornuejols [Cor88] showed that a minimum weight
[1, 2]-factor of a graph can be computed in polynomial time.

Given an instance of the 2-Anonymity problem, we create an edge-weighted
complete graph G = (V,E) as follows. The vertex set V contains a vertex cor-
responding to each vector in the 2-Anonymity problem. The weight of an edge
(a, b) is the Hamming distance between the vectors represented by a and b (i.e.,
the number of positions at which they differ). First we obtain a minimum weight
[1, 2]-factor F of G. By optimality, F is a vertex-disjoint collection of edges and
pairs of adjacent edges (If a [1, 2]-factor has a component which is either a cycle
or a path of length ≥ 3, we can obtain a lesser weight [1, 2]-factor by remov-
ing edge(s).). We treat each component of F as a cluster, i.e., retain the bits
on which all the vectors in the cluster agree and replace all other bits by ∗’s.
Clearly this results in a 2-anonymized database.

Theorem 2. The number of stars introduced by the above algorithm is at most
1.5 times the number of stars in an optimal 2-Anonymity solution.

Proof Sketch: Let ALG and OPT denote the costs of the above solution and
optimal 2-Anonymity solution respectively. Let OFAC denote the weight of

Anonymizing Tables 251

an optimal [1, 2]-factor. The optimal 2-Anonymity solution can be assumed to
consist only of disjoint clusters of size 2 or 3 (as bigger clusters can be broken
into such clusters without increasing the cost). We derive a [1, 2]-factor from this
solution as follows. Include the edge between the two vertices in each 2-cluster.
For 3-clusters, include the two edges of lesser weights amongst the three edges.
Denote the weight of this [1, 2]-factor by FAC.

Consider three m-bit vectors x1, x2 and x3 with pairwise Hamming distances
α, β and γ as in Fig. 1. W.l.o.g, let γ ≥ α, β. Let xmed denote the “median” vector
whose ith bit is the majority of the ith bits of x1, x2 and x3 and let p, q and r
be the Hamming distances to xmed from the three vectors. Let xs be the “star”
vector obtained by minimal suppression of x1, x2 and x3, i.e., it has the common
bits where the three vectors agree and ∗’s elsewhere. Observe that α = q + r,
β = r + p and γ = p + q. The other relevant distances are shown in the figure.

xs

xmed

r

q

p
β

p + q + r

α

γ

p + q + r

x1

p + q + r

x2 x3

Fig. 1. Three vectors and their corresponding “median” and “star” vectors

Lemma 1. ALG ≤ 3 ·OFAC

Proof Sketch: For a 2-cluster, we have to suppress all the bits at which the
two vectors differ so that the total number of ∗’s is twice the Hamming distance
(which is the edge weight). For a 3-cluster, say the one in the figure, the number
of ∗’s is (p+ q + r) for each vector, so that the total is 3(p+ q + r) = 3

2 (α+ β +
γ) ≤ 3(α + β) (using triangle inequality). The optimal [1, 2]-factor would have
contained two (lesser weight) edges, incurring a cost of (α + β) for this cluster.
Considering all the clusters formed by the optimal [1, 2]-factor algorithm, we get
ALG ≤ 3 ·OFAC. ��

Lemma 2. FAC ≤ OPT/2

Proof Sketch: For a 2-cluster, cost incurred in FAC = 1
2 (cost incurred in

OPT). For a 3-cluster (in the figure), cost incurred in FAC = α + β ≤ 2
3 (α +

β + γ) = 4
3 (p + q + r), where the inequality follows using γ ≥ α, β. Since the

cost incurred in OPT is 3(p + q + r), cost incurred in FAC < 1
2 (cost incurred

in OPT). By considering all the clusters, we get FAC ≤ OPT/2. ��

252 G. Aggarwal et al.

Since OFAC ≤ FAC, it follows from the above lemmas that ALG ≤
3
2OPT . ��

For an arbitrary alphabet size, xmed is no longer defined. However as before
it can be shown that OPT ≥ (α+β+γ) ≥ 3

2 (α+β), proving FAC ≤ 2
3OPT . As

ALG ≤ 3 ·OFAC holds as before, we get ALG ≤ 2 ·OPT . Thus the algorithm
achieves a factor 2 approximation for arbitrary alphabet size.

5 Algorithm for 3-Anonymity

We now present a 2-approximation algorithm for 3-Anonymity with a binary
alphabet. The idea is similar to the algorithm for 2-Anonymity. We construct
the graph G corresponding to the 3-Anonymity instance as in the previous
algorithm. A 2-factor of a graph is a spanning subgraph with each vertex having
degree 2 (in other words, a collection of vertex-disjoint cycles spanning all the
vertices). We run the polynomial time algorithm to find a minimum-weight 2-
factor F of the graph G [Cor88]. We first show that the cost of this 2-factor, say
OFAC, is at most 2/3 times the cost of the optimal 3-Anonymity solution,
say OPT . Then, we show how to transform this 2-factor F into a 3-Anonymity
solution of cost at most 3 ·OFAC, giving us a factor-2 approximation algorithm
for 3-Anonymity. The details can be found in the appendix.

6 Algorithm for General k-Anonymity

In this section, we address the problem of k-Anonymity for general k and arbi-
trary alphabet size, and give an O(k)-approximation algorithm for the problem.
Given an instance of the k-Anonymity problem, we create an edge-weighted
complete graph G = (V,E). The vertex set V contains a vertex corresponding to
each vector in the k-Anonymity problem. The weight, w(e) of an edge e = (a, b)
is the number of attributes along which the vectors represented by a and b differ.

As mentioned in the introduction, with this representation, we lose some
information about the structure of the problem, and cannot achieve a better
than O(k) approximation factor for the k-anonymity problem. We show this by
giving two instances whose k-anonymity cost differs by a factor of O(k), but the
corresponding graphs for both the instances are identical. Let l = 2k−2. For the
first instance, take k vectors with kl-dimensions each. The bit positions (i−1)l+1
to il are referred to as the i-th block of a vector. The i-th vector has ones in the
i-th block and zeros everywhere else. The k-anonymity cost for this instance is
k2l. For the second instance, take k vectors with 4l = 2k dimensions each. The
i-th vector breaks up its 2k dimensions into 2i equal-sized blocks and has ones in
the odd blocks and zeros in the even blocks. This instance incurs a k-anonymity
cost of 4kl. Note that the graph corresponding to both the instances is a k-clique
with all the pairwise distances being 2l = 2k−1.

Next, we describe our O(k)-approximation algorithm for the k-anonymity
problem.

Anonymizing Tables 253

For any given k-Anonymity solution, define the charge of a vertex to be
the number of ∗’s introduced into the vector it represents. Let OPT denote the
cost of an optimal k-Anonymity solution, i.e., OPT is the sum of charges of all
vertices in an optimal k-Anonymity solution.

Let F = {T1, T2, . . . , Tr}, a forest in which each tree Ti has at least k ver-
tices, be a subgraph of G. This forest describes a feasible partition for the k-
Anonymity problem. In the k-Anonymity solution as per this partition, the
charge of each vertex is at most the cost of the tree, W (Ti) = Σe∈E(Ti)w(e). This
is because any attribute along which a pair of vertices differs appears on the path
between the two vertices. Thus, the k-anonymity cost of such a partition is at
most Σi|V (Ti)|W (Ti). We will refer to this as the k-anonymity cost of the forest.
Note that the cost of a forest is simply the sum of the costs of its trees. The ratio
of the k-anonymity cost to the simple cost of a forest is at most the number of
vertices in the largest tree in the forest. Thus, if we can find a forest with the
size of the largest component at most L and cost at most OPT, then we have
an L-approximation algorithm. Next, we present an algorithm that finds such a
forest with L ≤ 3k − 3. Actually, the forest that we obtain has dummy vertices
that act as Steiner points, but this does not affect the result.

The algorithm has the following overall structure, which is explained in more
detail in the next two subsections.

Outline:

1. Create a forest G with cost at most OPT. The number of vertices in each
tree is at least k.

2. Compute a decomposition of this forest (we are allowed to delete edges) such
that each component has between k and 3k− 3 vertices. The decomposition
is done in a way that does not increase the sum of the costs of the edges.

6.1 Algorithm for Producing a Forest with Components of Size
Atleast k

The key observation is that since each partition in a k-Anonymity solution
groups a vertex with at least k − 1 other vertices, the charge of a vertex is
at least equal to its distance to its (k − 1)st nearest neighbor. The idea is to
construct a directed forest such that each vertex has at most one outgoing edge
and (−→u, v) is an edge only if v is one of the k − 1 nearest neighbors of u.

Algorithm Forest
Invariant:
– The chosen edges do not create any cycle.
– The out-degree of each vertex is at most one.

1. Start with an empty edge set so that each vertex is in its own connected
component.

2. Repeat until all components are of size at least k:
Pick any component T having size smaller than k. Let u be a vertex in T
without any outgoing edges. Since there are at most k− 2 other vertices

254 G. Aggarwal et al.

in T , one of the k − 1 nearest neighbors of u, say v, must lie outside
T . We add the edge (−→u, v) to the forest. Observe that this step does not
violate any of the invariants.

Lemma 3. The forest produced by algorithm Forest has minimum tree size at
least k and has cost at most OPT.

Proof Sketch: It is evident from the algorithm description that each component
of the forest it produces has at least k vertices.

Let the cost of an edge (−→u, v) be paid by vertex u. Note that each vertex u
pays for at most one edge to one of its k− 1 nearest neighbors. As noted earlier,
this is less than the charge of this vertex in any k-Anonymity solution. Thus,
the sum of costs of all edges in the forest is less than the total charge of all
vertices in an optimal solution. ��

6.2 Algorithm to Decompose Large Components into Smaller Ones

We next show how to break any component with size greater than 3k − 3 into
two components each of size at least k. Let the size of the component we are
breaking be s > 3k − 3.

Algorithm Decompose-Component

1. Pick any vertex as the candidate vertex.
2. Root the tree at the candidate vertex u. Let U be the set of subtrees rooted

at the children of u. Let the size of the largest subtree of U be φ. If φ ≤ s−k,
then we do the following partition and terminate.

If φ ≥ k, then partition the tree into the largest subtree and the rest.
Clearly, the size of both components is at least k. Otherwise, all subtrees
have size at most k−1. In this case, keep adding subtrees to a partition till
the first time its size becomes at least k. Clearly, at this point, its size is at
most 2k−2. Put the remaining subtrees andu (at least k vertices in all) into
the other partition. In order to keep the first partition connected, a dummy
vertex corresponding to u is placed in the first partition which acts only as
a Steiner point and does not contribute to the size of the component.

3. Otherwise, pick the root of the largest subtree as the new candidate vertex
and go to Step 2.

Lemma 4. The above algorithm terminates.

Proof Sketch: We will show that the size of the largest component φ (in Step
2) decreases in each iteration. Consider moving from candidate vertex u in one
iteration to candidate vertex v in the next iteration. Since the algorithm did not
terminate with u, if we root the tree at v, then the size of the subtree rooted at
u is less than s − (s − k) = k. When we consider the largest subtree under v,
either it is rooted at u, in which case, it is smaller than k < s − k. Otherwise,
the new largest subtree is a subtree of the previous largest subtree. ��

Anonymizing Tables 255

Theorem 3. There is a (3k−3)-approximation algorithm for the k-Anonymity
problem.
Proof Sketch: First, use Algorithm Forest to create a forest with cost at
most OPT and minimum tree size at least k. Then repeatedly apply Algorithm
Decompose-Component to any component that has size larger than 3k − 3.
Note that both these algorithms terminate in polynomial time. ��

This factor can be improved to max(2k − 1, 3k − 5) by appropriately choos-
ing the partition for u in Step 2 of Algorithm Decompose-Component. This
reduces to 3k − 5 for k ≥ 4.

We can easily extend the above algorithm and analysis to the version of the
problem where we allow an entire row to be deleted from the published database,
instead of forcing it to pair with at least k − 1 other rows. The cost of deleting
an entire row is modelled as changing all the entries of that row to stars, while
the objective remains to minimize the number of stars.

7 Conclusion and Further Research Directions

We showed that the k-Anonymity problem is NP-hard, even when the attribute
values are ternary. Then we gave an O(k)-approximation algorithm for the gen-
eral k-Anonymity problem with arbitrary alphabet size, improving upon the
previous best known O(k log k)-approximation. For binary alphabets, we achieve
an approximation factor of 1.5 for k = 2 and a factor of 2 for k = 3. We also show
that for k-Anonymity, it is not possible to achieve an approximation factor bet-
ter than k/4 by using the graph representation. It would also be interesting to
see a hardness of approximation result for k-Anonymity without assuming the
graph representation.

Releasing a database after k-anonymization prevents definitive record link-
ages with publicly available databases [Swe02]. In particular, for each record in
the public database, at least k records in the k-anonymized database could corre-
spond to it, which hides each individual in a crowd of k other people. The privacy
parameter k must be chosen according to the application in order to ensure the
required level of privacy. One source of concern about the k-anonymization model
is that for a given record in the public database, all the k records corresponding
to it in the anonymized database might have the same value of the sensitive at-
tribute(s) (“Diseases” in our examples), thus revealing the sensitive attribute(s)
conclusively. To address this issue, we could add a constraint that specifies that
for each cluster in the k-anonymized database, the sensitive attribute(s) should
take at least r distinct values. This would be an interesting direction for future
research.

Another interesting direction of research is to extend the basic k-Anonymity
model to deal with changes in the database. A hospital may want to periodically
release an anonymized version of its patient database. However, releasing several
anonymized versions of a database might leak enough information to enable
record linkages for some of the records. It would be useful to extend the k-
Anonymity framework to handle inserts, deletes and updates to a database.

256 G. Aggarwal et al.

References

[AA01] D. Agrawal and C. Aggarwal. On the design and quantification of privacy
preserving datamining algorithms. In Proc. of the ACM Symp. on Principles
of Database Systems, 2001.

[AMP04] G. Aggarwal, N. Mishra, and B. Pinkas. Privacy preserving computation of
the k-th ranked element. In EUROCRYPT, 2004.

[AS00] R. Agrawal and R. Srikant. Privacy-preserving data mining. In Proc. of the
ACM SIGMOD Intl. Conf. on Management of Data, pages 439–450, May
2000.

[AST03] R. Agrawal, R. Srikant, and D. Thomas. Privacy preserving aggregates.
Technical report, Stanford University, 2003.

[Cor88] G. P. Cornuejols. General factors of graphs. In Journal of Combinatorial
Theory B 45, pages 185–198, 1988.

[DN03] I. Dinur and K. Nissim. Revealing information while preserving privacy. In
Proc. of the ACM Symp. on Principles of Database Systems, pages 202–210,
2003.

[DN04] C. Dwork and K. Nissim. Privacy-preserving datamining on vertically par-
titioned databases. In CRYPTO, 2004.

[EGS03] A. Evfimievski, J. Gehrke, and R. Srikant. Limiting privacy breaches in
privacy preserving data mining. In Proc. of the ACM Symp. on Principles
of Database Systems, June 2003.

[Eur98] European Union. Directive on Privacy Protection, October 1998.
[FNP04] M. Freedman, K. Nissim, and B. Pinkas. Efficient private matching and set

intersection. In EUROCRYPT, 2004.
[Kan94] V. Kann. Maximum bounded H-matching is MAX SNP-complete. In Infor-

mation Processing Letters, 49, pages 309–318, 1994.
[LP00] Y. Lindell and B. Pinkas. Privacy preserving data mining. In CRYPTO,

pages 36–54, 2000.
[MW04] A. Meyerson and R. Williams. On the complexity of optimal k-anonymity.

In Proc. of the ACM Symp. on Principles of Database Systems, June 2004.
[SS98] P. Samarati and L. Sweeney. Generalizing data to provide anonymity when

disclosing information (abstract). In Proc. of the ACM Symp. on Principles
of Database Systems, page 188, 1998.

[Swe00] L. Sweeney. Uniqueness of simple demographics in the U.S. population.
In LIDAP-WP4. Carnegie Mellon University, Laboratory for International
Data Privacy, Pittsburgh, PA, 2000.

[Swe02] L. Sweeney. k-Anonymity: A model for protecting privacy. In International
Journal on Uncertainty Fuzziness Knowledge-based Systems, June 2002.

[Tim97] Time. The Death of Privacy, August 1997.

A Detailed Algorithm for 3-Anonymity

Lemma 5. The cost of the optimal 2-factor, OFAC on graph G corresponding
to the vectors in the 3-Anonymity instance is at most 2/3 times the cost of the
optimal 3-Anonymity solution, OPT .

Proof Sketch: Note that the optimal 3-Anonymity solution will cluster 3, 4
or 5 vertices together (any larger groups can be broken up into smaller groups

Anonymizing Tables 257

of size at least 3, without increasing the cost of the solution). Given an optimal
solution to the 3-Anonymity problem, we construct a 2-factor solution as fol-
lows. For every cluster of the 3-Anonymity solution, pick the minimum-weight
cycle involving the vertices of the cluster. Next, we analyze the cost FAC of
this 2-factor. Define the charge of a vertex to be the number of ∗’s in the vec-
tor corresponding to this vertex in the 3-Anonymity solution. We consider the
following three cases:

(a) If a cluster i is of size 3, the 2-factor contains a triangle on the corresponding
vertices. Let a, b and c be the lengths of the edges of the triangle. Using an
argument similar to Lemma 1, we get that (a+b+c) is twice the charge of each
vertex in this cluster. Thus, OPT pays a total cost of OPTi = 3(a+ b+ c)/2
while FAC pays FACi = a + b + c = 2

3OPTi

(b) If a cluster i is of size 4, the 2-factor corresponds to the cheapest 4-cycle
on the 4 vertices. Let τ be the sum of the weights of all the

(4
2

)
= 6 edges

on these four vertices. Then, by considering all 4-cycles and choosing the
minimum weight 4-cycle, we ensure that the cost paid by FAC for these
vertices FACi ≤ 4

6τ . Also, the charge of any of these 4 vertices is at least
half the cost of any triangle on (three of) these four vertices (again by using
the argument of Lemma 1). Averaging over all triangles, we get that cost
paid by OPT, OPTi ≥ 4. 12 .

3
6 .τ = τ . Thus, FACi ≤ 2

3OPTi.
(c) If a cluster i is of size 5, let τ be the sum of weights of all

(5
2

)
= 10 edges

on these five vertices. Then, FAC pays FACi ≤ 5
10τ . Also, the charge of

any of these vertices is at least half the cost of any triangle on (three of)
these vertices. Averaging over all triangles, we get that cost paid by OPT
for cluster i, OPTi ≥ 5. 12 .

3
10 .τ = 3

4τ . Thus, FACi ≤ 2
3OPTi.

Thus, adding up over all clusters, we get FAC ≤ 2
3OPT . Thus, OFAC ≤

2
3OPT .

��
Lemma 6. Given a 2-factor F with cost FAC, we can get a solution for 3-
Anonymity of cost SOL ≤ 3 · FAC.

Proof Sketch: To get a solution for 3-Anonymity, we make every cycle in F
with size 3, 4 or 5 into a cluster. For each larger cycle C, if |C| = 3x for x an
integer, then we break it up into x clusters, each containing 3 adjacent vertices of
C, such that the total cost of edges of the cycle within the clusters is minimized.
Similarly, if C = 3x + 1, x an integer, we break it into x clusters, x − 1 of size
3, and one of size 4. If C = 3x + 2, x an integer, then we break it up into x− 2
clusters of size 3, and two clusters of size 4.

Let len(C) denote the length of a cycle C in the 2-factor. Then depending on
the size of the cycle C, we can show that the 3-Anonymity solution SOL pays
as follows:

(a) For a triangle, SOL pays 3 · 1
2 · len(C) ≤ 3 · len(C).

(b) For a 4-cycle, SOL pays at most 4 · 1
2 · len(C) ≤ 3 · len(C).

(c) For a 5-cycle, SOL pays at most 5 · 1
2 · len(C) ≤ 3 · len(C).

258 G. Aggarwal et al.

This is so (for the above cases) because the number of attributes along which
the vertices differ is at most len(C)/2.

(d) For a 3x-cycle, x > 1, SOL pays at most 3 · 2x
3x · len(C) ≤ 3 · len(C).

(e) For a (3x+1)-cycle, x > 1, SOL pays at most 2(x−1)·3+3·4
3x+1 ·len(C) ≤ 3·len(C).

(f) For a (3x+2)-cycle, x > 1, SOL pays at most 2(x−2)·3+6·4
3x+2 ·len(C) ≤ 3·len(C).

(Equality can hold in this case, when x = 2.)

Thus, adding over all clusters, SOL pays no more than 3 times the total cost of
all cycles, i.e., 3 · FAC. ��

Combining the above lemmas, we obtain a factor-2 approximation for 3-
Anonymity.

Authorization Views and Conditional Query
Containment

Zheng Zhang and Alberto O. Mendelzon

University of Toronto,
Department of Computer Science

{zhzhang, mendel}@cs.toronto.edu

Abstract. A recent proposal for database access control consists of
defining “authorization views” that specify the accessible data, and declar-
ing a query valid if it can be completely rewritten using the views. Unlike
traditional work in query rewriting using views, the rewritten query needs
to be equivalent to the original query only over the set of database states
that agree with a given set of materializations for the authorization views.
With this motivation, we study conditional query containment, i.e. , con-
tainment over states that agree on a set of materialized views. We give
an algorithm to test conditional containment of conjunctive queries with
respect to a set of materialized conjunctive views. We show the problem
is Πp

2 -complete. Based on the algorithm, we give a test for a query to be
conditionally authorized given a set of materialized authorization views.

1 Introduction

Access control is an integral part of databases and information systems. Tradi-
tionally, access control has been achieved by presenting users with a set of views
that their queries must operate on. An alternative approach achieves “autho-
rization transparency” [13, 14, 15, 16] by using views in a different way. A set
of “authorization views” specifies what information a user is allowed to access.
The user writes the query in terms of the base relations, and the system tests
the query for validity by determining whether it can be completely rewritten
using the authorization views. For flexibility, views can be parameterized with
information specific to a session, such as the user-id, location, date, time, etc.,
which are instantiated before access control is performed.

Example 1. Consider a database with the following relations: Employees(eid,
name, rank), Projects(pid, name, headid), EP(eid, pid), Progress(eid, pid,
prgs). The EP relation associates employees with projects, while a tuple in
Progress represents a progress report by an employee on a project that the
employee is working on. We use this schema as a running example here and in
Section 4. The following authorization view V1 states the policy that an employee
can see the progress of his or her colleagues in the projects that the employee is
working on.

V1(eid, pid, prgs) ← Progress(eid, pid, prgs), EP ($userid, pid).

T. Eiter and L. Libkin (Eds.): ICDT 2005, LNCS 3363, pp. 259–273, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

260 Z. Zhang and A.O. Mendelzon

For simplicity, we assume that a user’s id is the same as his or her employee-
id. The parameter $user-id is instantiated to the actual user-id before access
control is performed. The set of authorization view definitions resulting from
instantiating all the parameters that occur in them is called the instantiated
authorization views. These define exactly what information is accessible to the
user in the current session.

Now suppose employee ‘88’ wants to see the progress in all the projects that
he or she is associated with, using the following query q.

q(eid, pid, prgs) ← Progress(eid, pid, prgs), EP (88, pid).

The instantiated authorization view V1 is as follows.

V1(eid, pid, prgs) ← Progress(eid, pid, prgs), EP (88, pid).

The following query q′ is an equivalent rewriting of q in terms of the instan-
tiated view V1, showing that q is authorized.

q′(eid, pid, prgs) ← V1(eid, pid, prgs).

Now suppose the same employee wants to see who are the employees who
have reported progress in both projects ‘XP1’ and ‘XP2’, using the following
query q.

q(eid) ← Progress(eid,XP1 , prgs1), P rogress(eid,XP2 , prgs2).

Since it is the same employee, the instantiated authorization view remains
the same. It is easy to see that there is no rewriting q′ of q in terms of V1
such that q′ is equivalent to q over all database states; hence, the query will be
rejected. But this is unnecessarily harsh. Intuitively, if EP says that employee
‘88’ is working on projects ‘XP1’ and ‘XP2’, then q should be authorized. The
problem is that the requirement that there be a rewriting q′ that is equivalent to
q over all database states is too strong. For example, the following q′ is equivalent
to the last query q, not over all database states, but only over those states where
employee ‘88’ is working on projects ‘XP1’ and ‘XP2’.

q′(eid) ← V1(eid,XP1 , prgs1), V1(eid,XP2 , prgs2).

In sum, we adopt the definition of [14]: a query q is conditionally valid with
respect to a set of views V and a set of materializations of these views MV if
there is a rewriting q′ of q using the views V such that, for all database states
where the values of the views V agree with MV , q agrees with q′.

Note that unconditional authorization (i.e. , with equivalence required over
all database states) reduces to the well-known problem of whether a query can
be rewritten using views [10, 11]. Just as query containment plays a crucial
role in the theory of rewriting queries using views, the problem of conditional
query containment with respect to a set of view materializations must be solved
in order to solve the problem of conditional authorization. We study condi-
tional containment of conjunctive queries with respect to a set of materialized

Authorization Views and Conditional Query Containment 261

conjunctive views. We show that this problem is Πp
2 -complete and use it to give

a test for conditional query authorization.
The rest of the paper is organized as follows. Section 2 is the preliminar-

ies. Section 3 presents the test for conditional containment between conjunc-
tive queries. Section 4 presents our solution to conditional query authorization.
Section 5 describes related work, and Section 6 concludes the paper and gives
directions for future work.

2 Preliminaries

We consider the usual class of conjunctive queries, CQ. The conjunctive queries
with arithmetic comparisons (CQAC) extend the conjunctive queries CQ by
allowing subgoals with built-in predicates of the form xjθxk, where xj and xk

are either variables or constants and θ is �=,=, <, or ≤. Every variable occurring
in an equality or inequality must also occur in a regular subgoal. The predicates
used in the regular subgoals are called EDB (extensional database) predicates.
In particular, denote by CQ�= the subclass of CQAC with only disequations (�=).

The normalization of a query q in CQAC creates a new query nq from q in two
steps: first replace each occurrence of a shared variable x in the regular subgoals,
except the first occurrence, by a new distinct variable xi and add x = xi to nq;
then replace each constant c by a new distinct variable t, and add t = c to nq.

Given an instance d, a valuation ρ from a query CQ into d is a total function ρ
from the variables of Q to the domain of constants from d such that ρ(Xi) ∈ d(pi)
for each regular subgoal pi(Xi) of Q. The answer to a query Q on instance d is
denoted by Q(d) and defined as follows.

Q(d) = {ρ(X) | ρ is a valuation for Q into d, q(X) is the head predicate of Q}.
A query Q is satisfiable if there exists a database instance d such that Q(d) is
nonempty. Unlike the CQ’s, which are always satisfiable, a query in CQAC is
unsatisfiable when its equality and inequality subgoals are unsatisfiable.

For any two queries Q1 and Q2, Q1 is said to be unconditionally contained
in Q2, denoted by Q1 ⊆ Q2, if for all database instances d, Q1(d) ⊆ Q2(d).
Many algorithms exist to test containment of CQ’s and their extensions under
set semantics [2, 4, 8, 17]. Among them, the concept of containment mapping is
widely used. A containment mapping from query Q2 to query Q1 is a function
from the variables and constants of Q2 to those of Q1 that is the identity on
constants and that induces a mapping from the subgoals of Q2 to those of Q1.

Theorem 1. [4] For any two CQ’s Q1 and Q2, Q1 ⊆ Q2 if and only if there
exists a containment mapping ρ from Q2 to Q1 such that ρ maps the head of Q2
to the head of Q1.

This theorem remains true when Q1 contains built-in predicates [10]. We say
a query Qr is a complete rewriting of Q using V if Qr is written using only the
views in V and is equivalent to Q. The paper just cited also gives an algorithm
to determine whether a query Q has a complete rewriting in a set of views V .

262 Z. Zhang and A.O. Mendelzon

3 Conditional Query Containment

This section presents our solution to the conditional query containment problem.
We assume a fixed set of view definitions V = {v1, . . . vn}. For each view vi, we
are given an instance of it called mvi. The set of all materialized view instances
is called MV . The set of database instances D = {d | vj(d) = mvj , 1 ≤ j ≤ n}
is called the set of valid instances for V and MV . Note that it is possible for the
set of materializations to be inconsistent, i.e. , the set D can be empty. Although
our methods work in this case also, we do not treat it explicitly in this paper for
lack of space.

The default variable set is {x, y, z, . . .} while {X,Y, Z, . . .} are tuples of vari-
ables and constants. We only consider queries and views in CQ (i.e. , no arith-
metic comparisons) in the following sections, unless otherwise noted.

Definition 1. For any two queries Q1 and Q2, Q1 is said to be conditionally
contained in Q2 w.r.t. V and MV , denoted by Q1 ⊆V,MV Q2, if for every d in
D, Q1(d) ⊆ Q2(d). Q1 is said to be conditionally equivalent to Q2 w.r.t. V and
MV , denoted by Q1 ≡V,MV Q2, if Q1 ⊆V,MV Q2 and Q2 ⊆V,MV Q1.

Definition 2. A query Q is conditionally empty w.r.t. V and MV if Q(d) is
empty for every d in D.

3.1 A Necessary Condition

Given two CQ’s Q1 and Q2 such that Q1 ⊆ Q2, by Theorem 1, the set of EDB
predicates appearing in Q2 must be contained in the set of those appearing in
Q1. This, however, may not be the case for conditional containment.

Example 2. Given a view v(x) ← r2(x) and two queries Q1 : q1() ← r1(x), r2(x),
Q2 : q2() ← r2(x), r3(x). If mv is empty, Q1 and Q2 are conditionally empty.
Hence, Q1 ≡v,mv Q2 even though their sets of EDB predicates do not contain
each other.

If mv is nonempty, query results depend on r1 and r3, respectively. The
materialized view does not have r1 and r3 in its body, so there is no conditional
containment relationship between the two queries.

Theorem 2. If Q1 ⊆V,MV Q2, then either Q1 is conditionally empty w.r.t. V
and MV , or the set of EDB predicates of Q2 is contained in the set of EDB
predicates appearing either in Q1 or in the definition of some view whose mate-
rialization is nonempty.

Thus, we know that if Q1 is not conditionally empty, and the set of EDB
predicates of Q2 is not contained in the set of EDB predicates appearing in
Q1 or in the definition of one or more nonempty materialized views, then we
can conclude Q1 �⊆V,MV Q2. We will discuss testing conditional emptiness in
Section 3.5. From now on, we assume that the condition of the Theorem holds.

Authorization Views and Conditional Query Containment 263

Our plan for testing conditional containment is as follows. First, for any
conjunctive query Q we shall construct a query Q′ that has the property that
Q′ agrees with Q on the valid instances and is empty on the invalid ones. Given
two CQ’s Q1 and Q2, it will follow that Q1 ⊆V,MV Q2 if and only if Q′

1 ⊆ Q2.
That is, we have transformed the problem of conditional containment to one
of standard, unconditional containment. Unfortunately, we are not done yet,
because Q′

1 is not a conjunctive query, or even a union of queries in CQAC ; it is
a nonrecursive Datalog program with negation. The second step therefore is to
transform Q′

1 into a query Q′′
1 that is a union of queries in CQAC and still has

the property that Q1 ⊆V,MV Q2 if and only if Q′′
1 ⊆ Q2.

3.2 Construction of Q′

For each view vi and materialization mvi, such that mvi is not empty, we create
a set of subgoals Pi that we will add to the body of Q. Abusing notation slightly,
we say that Pi is true on instance d when there is a valuation that embeds Pi

in d. Intuitively, Pi is true on instance d if and only if every tuple in mvi is in
vi(d). Suppose that view vi is given by

vi(x1, x2, . . . , xsi
) ← rs(. . . , x1, . . .), . . . , rt(. . . , x2, . . .), . . .

and its nonempty materialization mvi consists of tuples: t1 = (x1
1, x

1
2, . . . , x

1
si

), . . .,
tKi

= (xKi
1 , xKi

2 , . . . , xKi
si

) where si ≥ 0 is the size of the head predicate of vi and
Ki ≥ 1 is the cardinality of mvi. For (1 ≤ j ≤ Ki), let

cij
= {rs(. . . , x1, . . .), . . . , rt(. . . , x2, . . .), . . . , x1 = xj

1, x2 = xj
2, . . . , xsi

= xj
si
}.

Rename the variables in each cij
so that they are disjoint from every other cij

and also disjoint from those in Q. Let Pi =
⋃Ki

j=1 cij
.

Lemma 1. There is a valuation from Pi into d if and only if mvi ⊆ vi(d).

In addition to the Pi’s, we define a set of negated subgoals called Ni’s, one
for each view vi. Each Ni is the negation of a subgoal ci(), where ci is a new
intensional predicate. Intuitively, ci() will be true (nonempty) on instance d if
and only if vi(d) contains some tuple not in mvi; so that Ni will be true on
instance d if and only if vi(d) ⊆ mvi. The rule that defines ci is the following.

ci() ← rs(. . . , x1, . . .), . . . , rt(. . . , x2, . . .), . . . ,
Ki∧

k=1

¬(x1 = xk
1 , x2 = xk

2 , . . . , xsi
= xk

si
). (∗)

Note that the rule for ci is expressed for convenience with a negated conjunction
of subgoals in the body; this is a shorthand for the union ci of all the rules whose
body contains one disequation from each of the negated subgoals.

Lemma 2. Ni is true on instance d if and only if vi(d) ⊆ mvi.

264 Z. Zhang and A.O. Mendelzon

Now we can rewrite Q as a nonrecursive Datalog program by adding all the
Pi and Ni subgoals to its body, and attaching the rules that define the ci’s.

Q′ : q(X) ← p1(X1), p2(X2), . . . , pn(Xn), P1, . . . , Pm,

N1, . . . , Nm, Nm+1, . . . , Nm′ .

ci() ← rs(. . . , x1, . . .), . . . , rt(. . . , x2, . . .), . . . ,
Ki∧

k=1

¬(x1 = xk
1 , x2 = xk

2 , . . . , xsi
= xk

si
).

where m′ is the number of views and m is the number of views with nonempty
materializations. Q′ has the following properties.

Lemma 3. Q′(d) = Q(d) for all valid database instances d, and Q′(d′) = ∅ for
all invalid database instances d′.

Example 3. Consider three views v1() ← r(x) with mv1 containing just the one
tuple () (i.e. , true), v2(x) ← s(x) with mv2 containing just the tuple (e), and
v3(x) ← t(x) with empty materialization, as well as a CQ Q : q(x) ← r(x). The
Datalog program is

Q′ : q(x) ← r(x), r(x1), s(e),¬c2,¬c3.
c2() ← s(x), x �= e.

c3() ← t(x).

Proposition 1. Given two CQ’s Q1 and Q2 as well as a set of conjunctive
views V with materializations MV , Q′

1 ⊆ Q2 if and only if Q1 ⊆V,MV Q2.

Proof. (only if) Suppose Q′
1 ⊆ Q2. Let d be a valid database instance. Then

Q′
1(d) = Q1(d) by Lemma 3. Therefore, Q1(d) ⊆ Q2(d).
(if) Suppose Q1 ⊆V,MV Q2. Let d be any database instance. If d is valid,

from Q1(d) ⊆ Q2(d), it follows that Q′
1(d) ⊆ Q2(d). If d is not valid, Q′

1(d) = ∅,
so Q′

1(d) ⊆ Q2(d). Therefore, Q′
1 ⊆ Q2. ��

3.3 Construction of Q′′

With the above proposition, we are on our way to transform the conditional
containment problem into an unconditional problem. We would like to elimi-
nate the ci’s and replace the corresponding Ni’s to create a CQ or one of its
extensions. Consider a ci whose mvi is nonempty. Query (*) is equivalent to a
union ci of queries cik in CQ�= which share the same regular subgoals. Given a
database instance e, Ni = true for e means there is no valuation over the regular
subgoals of ci into e such that (x1, x2, . . . , xsi

) is mapped to a tuple not in mvi.
We will relax this restriction by replacing Ni with N ′

i , where N ′
i = true for e

means that, if d is any sub-instance obtained by some valuation ρ of the regular

Authorization Views and Conditional Query Containment 265

subgoals in Q′ over e, then there is no valuation over the regular subgoals of ci

into d such that (x1, x2, . . . , xsi
) is mapped to a tuple not in mvi. To obtain N ′

i ,
we first normalize each query cik in ci (see Section 2) and obtain a rule whose
body has three parts: the regular subgoals nc+ik, a set of equalities Eqik, and a
set of negations Neq ik in cik. Since cik’s share the regular subgoals, nc+ik’s are
the same, denoted by nc+i . So are Eqik’s, denoted by Eqi. Clearly,

⋃
k Neq ik is

equivalent to the disequations in ci,

Neq i =
Ki∧

k=1

¬(x1 = xk
1 , x2 = xk

2 , . . . , xsi
= xk

si
).

Consider all the containment mappings {mpi1,mpi2, . . . ,mpig} from nc+i to
Q′. Since we are assuming thatmvi is nonempty,

⋃
k Neq ik is nonempty. LetN ′

i be:

g∧
j=1

¬mpij(Eq i) ∨ ¬mpij(
⋃
k

Neq ik).

Notice all subgoals in mpij(nc+i) exist in Q′, hence they are redundant and
omitted here. Furthermore,

⋃
k Neq ik is just Neq i, hence ¬mpij(

⋃
k Neq ik) can be

simplified to ¬mpij(Neq i) which is equivalent to its positive form, saympij(Peq i),

Ki∨
l=1

(mpij(x1) = xl
1,mpij(x2) = xl

2, . . . ,mpij(xsi
) = xl

si
).

Example 4. Given a view v(x) ← r1(x, y, y) with mv containing only the tuple
(1) and a query Q : q(x, y) ← r1(x, y, z), r2(z), the Datalog program Q′ is

Q′ : q(x, y) ← r1(x, y, z), r2(z), r1(1, y1, y1),¬c1,
c1() ← r1(x2, y2, y2), x2 �= 1.

The normalization of c1 is nc1 ← r1(x2, y2, y3), y2 = y3, x2 �= 1. There are
two containment mappings from nc+1 to Q′:

{mp11 : r1(x2, y2, y3) → r1(x, y, z), mp12 : r1(x2, y2, y3) → r1(1, y1, y1)}.

So ¬mp11(y2 = y3) is (y �= z), mp11(x2 = 1) is (x = 1) and ¬mp12(y2 = y3) is
(y1 �= y1), mp12(x2 = 1) is (1 = 1). Thus, (y �= z ∨ x = 1) ∧ (y1 �= y1 ∨ 1 = 1)
can replace the ¬c1 in Q′. Thus, Q′′ is a union of queries in CQ�=.

Q′′ : q(x, y) ← r1(x, y, z), r2(z), r1(1, y1, y1), y �= z.

q(1, y) ← r1(1, y, z), r2(z), r1(1, y1, y1).

We would also like to replace Ni’s with empty mvi in a similar fashion. Since
in this case there is no Pi in Q′, we cannot guarantee that every subgoal in
nc+i can be mapped to a regular subgoal in Q′. Consider all the containment

266 Z. Zhang and A.O. Mendelzon

mappings {mpi1,mpi2, . . . ,mpig} from nc+i to Q′, where if a subgoal p(X) in
nc+i cannot be mapped to a subgoal in Q′ (i.e. , the EDB predicate p does not
appear in Q′), then p(X) is mapped to itself. We define N ′

i in this case as:
g∧

j=1

¬mpij(nc+i) ∨ ¬mpij(Eqi).

If every EDB predicate in vi appears in Q or in some view with a nonempty
materialization, then for a containment mapping mpij , all subgoals in mpij(nc+i)
are in Q′, and if Eqi is nonempty, we can replace Ni by

∧g
j=1 ¬mpij(Eqi). If Eqi

is empty, we can conclude that Q is conditionally empty with respect to V and
MV (See Section 3.5). For all other cases, we simply delete Ni from Q′.

In sum, we rewrite Q′ into the following:

Q′′ : q(X) ← p1(X1), . . . , pn(Xn), P1, . . . , Pm,∧
k,j

¬mpkj(Eqk),
∧
i,j

¬mpij(Eqi) ∨mpij(Peq i)

where each Pi and
∧

j ¬mpij(Eqi)∨mpij(Peq i) represent a view vi with nonempty
materialization, and each

∧
j ¬mpkj(Eqk) represents a view vk whose EDB pred-

icates appear in Q or in the views with nonempty materializations, and whose
mvk is empty. Q′′ is equivalent to a union of queries in CQ�=. Let the view
definitions be fixed. The number of queries in the union is exponential in the
sizes of the query and the view materializations. Notice that Example 3 covers
all possible cases in the construction of Q′; Example 4 shows how to replace Ni

when mvi is nonempty in the construction of Q′′. Before we show more examples
to cover different cases when mvi is empty in the construction of Q′′, we state
that Q′′ has the following properties.

Lemma 4. Given a CQ Q and a set of conjunctive views V with materializa-
tions MV , let ρ be a valuation of Q′′ on any input database instance. Then the
set {ρ(p(X)) | p(X) is a regular subgoal of Q′′} is a valid database instance.

Lemma 5. Given a CQ Q and a set of conjunctive views V with materializa-
tions MV , Q(d) = Q′(d) = Q′′(d) for all valid database instances d.

Lemma 6. Given a CQ Q and a set of conjunctive views V with materializa-
tions MV , Q′(d) ⊆ Q′′(d) for all database instances d.

Theorem 3. Let Q1 and Q2 be two CQ’s, V be a set of conjunctive views with
materializations MV . Q′′

1 ⊆ Q2 if and only if Q1 ⊆V,MV Q2.

Example 5. Given two queries Q1 : q1(x) ← r(x), s(y); Q2 : q2(x) ← r(x)
and a view v() ← r(x), s(x) with no tuple. The set of EDB predicates of Q2 is
contained in the set of Q1’s EDB predicates. All EDB predicates in v appear in
Q1. Therefore, Q′′

1 : q1(x) ← r(x), s(y), x �= y. Clearly, Q′′
1 is unconditionally

contained in Q2, which implies Q1 ⊆V,MV Q2. If the view is v() ← r(x) with
no tuple, then its Eq is empty and all EDB predicates in v appear in Q1. Thus,
Q1 is conditionally empty with respect to V and MV .

Authorization Views and Conditional Query Containment 267

Example 6. Given two queries Q1 : q1(x) ← s(x), t(x); Q2 : q2(x) ← s(x) and
a view v() ← r(x) with no tuple. View v has no effect over the containment
relationship between Q1 and Q2. Q′′

1 : q1(x) ← s(x), t(x) is unconditionally
contained in Q2. Thus, Q1 ⊆V,MV Q2.

Example 7. Given two queries Q1 : q1(x) ← s(x), t(x); Q2 : q2(x) ← s(x) and
a view v() ← r(x), t(x) with no tuple. The EDB predicate r does not appear
in Q1 and Q2. Q′′

1 is Q1. For any valuation ρ of Q′′
1 , the valuation of the regular

subgoals in Q′′
1 is a valid database instance since the empty r makes mv empty.

Q′′
1 ⊆ Q2 implies Q1 ⊆V,MV Q2.

The construction of Q′′, and Theorem 3, can in fact be generalized to the
case when Q1 and Q2 are unions of queries in CQ�=. First, consider the case
when Q is in CQ�=. Then Q′ and Q′′ are constructed as before, i.e. , we leave the
disequations of Q untouched. Notice a valuation of Q′′ satisfies all the equality
and inequality subgoals in Q.

When Q is a union of queries in CQ�=, let q be one of them in the union.
We can create q′ and q′′ as above. Then Q′′ is a union of such q′′’s. In par-
ticular, consider Q′′ for some CQ Q. Q′′ is a union of queries in CQ�=. Since
the views and their materializations are unchanged, the Pi’s in (Q′′)′ are the
same as the Pi’s in Q′. So are Ni’s in (Q′′)′ and Q′. Since Q′′ contains Pi’s
of Q′ as its subgoals, adding another set of Pi’s does not change the seman-
tics of Q′′. Thus, the Pi’s in (Q′′)′ can be deleted. Next, we would like to re-
place the Ni’s in (Q′′)′ to create (Q′′)′′. Since Q′ shares the regular subgoals
with Q′′, which has the same regular subgoals of (Q′′)′ (after deleting the ex-
tra Pi’s), the containment mappings from nc+i ’s to Q′ are the same as those
from nc+i ’s to (Q′′)′. Thus, the replacement of Ni’s in Q′ is the same as the one
for (Q′′)′ (Notice all the equations and disequations only depend on the view
definitions and materializations, which are not changed). Hence (Q′′)′′ is Q′′.
We conclude that the Q′′ construction can be generalized to unions of queries
in CQ�=.

Theorem 4. Let Q1 and Q2 be two unions of queries in CQ�=, V be a set
of conjunctive views with materializations MV . Then Q′′

1 ⊆ Q2 if and only if
Q1 ⊆V,MV Q2.

3.4 Complexity of Conditional Query Containment

For standard containment, complexity is given as a function of query size. How-
ever, for conditional containment, the sizes of the queries, the view definitions,
and the view materializations are all important factors on the problem’s com-
plexity. In our analysis, we chose to assume that the view definitions change
much more slowly than the underlying database instance and the user queries,
so the view definitions are fixed and we measured the combined complexity as a
function of query size and materialization size.

Let Q1 and Q2 be two CQ’s, V be a set of conjunctive views with materi-
alizations MV . As described in the previous sections, we can construct a query

268 Z. Zhang and A.O. Mendelzon

Q′′
1 , a union of queries in CQ�=, such that Q′′

1 ⊆ Q2 if and only if Q1 ⊆V,MV Q2.
This idea provides the following upper bound on the complexity of conditional
query containment.

Theorem 5. Let Q1 and Q2 be two CQ’s, V be a set of conjunctive views with
materializations MV . Determining whether Q1 ⊆V,MV Q2 is in Πp

2 .

Proof (Sketch). By Theorem 3, Q′′
1 ⊆ Q2 if and only if Q1 ⊆V,MV Q2. Thus, if for

all queries q in the union Q′′
1 , there exists a containment mapping from Q2 to q

such that the head of Q2 is mapped to the head of q, then Q1 ⊆V,MV Q2. Let gi be
the number of containment mappings from nc+i to Q′

1. Since the sizes of views are
constants, gi is polynomial in the sizes of Q1 and the view materializations. The
number of equality and inequality subgoals in q is the sum of all gi’s. Therefore,
the size of q is polynomial in the sizes of Q1 and the view materializations. The
size of a containment mapping from Q2 to q is polynomial in the sizes of the
queries and the view materializations. Thus, the complexity is Πp

2 . ��

Theorem 6. Let Q1 and Q2 be two CQ’s, V be a set of conjunctive views with
materializations MV . Determining whether Q1 ⊆V,MV Q2 is Πp

2 -hard.

Proof (Sketch). To reduce from the ∀∃-CNF problem to our problem, we use
a similar construction to the one in [12]. Our construction is slightly modified
from the one in the paper just cited, because we assume the queries and the
materializations can vary and the view definitions are fixed while Millstein et al.
assumed the queries and the view definitions can vary. ��

The above two theorems show that the problem is Πp
2 -complete when the

queries and the materializations can vary. In comparison, the certain answer
containment problem of [12] is Πp

2 -complete when the queries and the view
definitions can vary. In terms of unconditional query containment where the
input consists of just the two queries, determining the containment between two
CQ�=’s is also Πp

2 -complete [18]. In contrast, unconditional CQ containment is
NP -complete [4] in terms of the sizes of the input queries.

3.5 Testing Conditional Emptiness

So far we have assumed Q1 and Q2 are not conditionally empty queries and the
set of EDB predicates of Q2 is contained in the set of EDB predicates appearing
either in Q1 or in the definition of some view whose materialization is nonempty.
Thus, we need to determine whether a query Q is conditionally empty with
respect to a set of conjunctive views V with materializations MV . We first
create Q′′ from Q as before. From Lemma 4, we get the following result.

Proposition 2. A CQ Q is conditionally empty w.r.t. a set of conjunctive views
V with materializations MV if and only if Q′′ is unsatisfiable.

Authorization Views and Conditional Query Containment 269

Example 8. Given v1(x) ← r2(x) with one tuple (2) and v2(x) ← r4(x) with
one tuple (4); two queries Q1 : q1(x) ← r1(x), r2(x), r4(x) and Q2 : q2(x) ←
r2(x), r3(x), r4(x). Note that the set of EDB predicates of Q2 is not contained
in the set of the EDB predicates appearing in Q1 or the views with nonempty
materializations, and similarly for Q1. By Theorem 2, if the two queries are
nonempty with respect to V and MV , then there is no conditional containment
relationship between the two queries. To check if the queries are conditionally
empty, we construct Q′′

1 and Q′′
2 :

Q′′
1 : q1(x) ← r1(x), r2(x), r4(x), r2(2), r4(4), x = 2, x = 4.

Clearly, Q′′
1 is not satisfiable. Similarly, Q′′

2 is unsatisfiable:

Q′′
2 : q2(x) ← r2(x), r3(x), r4(x), r2(2), r4(4), x = 2, x = 4.

Therefore, we conclude the two queries are conditionally empty.

Theorem 7. Given a CQ Q and a set of conjunctive views V with material-
izations MV , checking whether Q is conditionally empty w.r.t. V and MV is
coNP -complete.

Proof. Checking whether Q is conditionally empty with respect to V and MV
is equivalent to checking whether Q′′ is unsatisfiable. Satisfiability of Q′′ can be
checked in time polynomial in the sizes of V and MV by guessing a valuation for
one of the disjuncts in Q′′ and checking it is satisfied by that valuation. Therefore,
the problem of checking whether Q is conditionally empty with respect to V and
MV is in coNP .

The coNP -hardness is obtained by adapting the following result of Abiteboul
and Duschka [1]. Let V be a set of conjunctive views with materializations MV ,
checking whether there exists a database instance d such that MV = V (d) is
NP -hard. We assume that MV is not empty, since when MV is empty, there is
trivially an instance I (the empty instance) such that V (I) = MV . We reduce
the complement of this problem to our problem.

Since MV is nonempty, there exists some nonempty mvi. Let r(X) be a
subgoal in vi. Define a CQ Q : q() ← r(X). If for all database instances d,
MV �= V (d), then Q′′ is unsatisfiable. Otherwise, by Lemma 4, there exists a d
such that MV = V (d). Therefore, by Proposition 2, Q is conditionally empty
with respect to V and MV .

If Q is conditionally empty with respect to V and MV , there does not exist
a database instance d such that MV = V (d). Otherwise, since mvi is nonempty,
Q(d) is nonempty for the valid database instance d.

Thus, checking conditionally emptiness is also coNP -hard. ��

4 Conditional Authorization

In the Introduction, we discussed parameterized authorization views. Given a
user query, our approach always first instantiates the parameterized views using

270 Z. Zhang and A.O. Mendelzon

the parameter values associated with the user and the session, before we deter-
mine whether a query should be conditionally authorized. Thus, we can assume
in this section that the views have already been instantiated. First, we define
conditional authorization.

Definition 3. A query Q is conditionally authorized w.r.t. authorization views
V with materializations MV , if there is a query Qr that is written using only
the views in V , and that is conditionally equivalent to Q.

We have shown how to construct Q′′ for a CQ Q. We know Q is condi-
tionally empty if and only if Q′′ is unsatisfiable. If Q is conditionally empty,
there are many complete rewritings of Q′′ using views V . Therefore, Q should
be authorized.

When Q is not conditionally empty, we have shown that Q(d) = Q′′(d) for all
valid database instances d. Therefore, if there is a complete rewriting of Q′′ using
V , the query Q is conditionally authorized. We would like to show that if there
is no complete rewriting of Q′′ using V , then Q is not conditionally authorized.
Suppose Q′′ does not have a complete rewriting and Q is still conditionally
authorized. Then there exists a query Q1 that is conditionally equivalent to Q
and that can be rewritten using only the views in V . Let us abuse notation and
call Q1 also the query obtained by expanding the view subgoals in this rewriting.

Lemma 7. 1. Every EDB predicate of Q′′ occurs in Q1 or in the definition of
some view with nonempty materialization.

2. Every EDB predicate of Q′′
1 occurs in Q′′ or in the definition of some view

with nonempty materialization.

Since Q(d) = Q′′(d) for all valid database instances d, Q1 ≡V,MV Q′′. Thus,
by the above lemma and Theorem 4, Q1 ⊆V,MV Q′′ implies Q′′

1 ⊆ Q′′. On the
other hand, we know Q′′

1 ≡V,MV Q1 ≡V,MV Q ≡V,MV Q′′. Since (Q′′)′′ is still
Q′′, Q′′ ⊆V,MV Q′′

1 implies Q′′ ⊆ Q′′
1 . Then, we have Q′′ ≡ Q′′

1 . However, we know
Q′′

1 is completely rewritable in V , yet Q′′ does not have a complete rewriting
using V , which is a contradiction.

Theorem 8. Let Q be a CQ and V be a set of conjunctive views with materi-
alizations MV . Q is conditionally authorized if and only if there is a complete
rewriting of Q′′ using V .

Similar to the discussion of Theorem 3, the above theorem also applies when
Q is a union of queries in CQ�=. Since the query contains inequalities while the
views are conjunctive, the algorithm in [10] can be used here to check whether
Q′′ has a complete rewriting in V .

In the paper just cited, the algorithm depends on a bound for the number
of view literals that need to appear in a complete rewriting. The same bound
applies for conditional complete rewritings.

Corollary 1. Let Q be a CQ with n subgoals, and V be a set of conjunctive
views with materializations MV . If there is a query Qr that is written using
only the views in V , and that is conditionally equivalent to Q, then it has such
a rewriting with at most n subgoals.

Authorization Views and Conditional Query Containment 271

Example 9 (Example 1 continued). Recall the query q is

q(eid) ← Progress(eid,XP1 , prgs1), P rogress(eid,XP2 , prgs2),

and the instantiated authorization view is

V1(eid, pid, prgs) ← Progress(eid, pid, prgs), EP (88, pid).

We consider the following four cases of the materialization of the instantiated
authorization view.

1. MV1 is not empty, and in the current database state, employee ‘88’ is working
on projects ‘XP1’ and ‘XP2’, and some other employee has reported progress
for both projects. Let MV1 be { (99,XP1 , P1), (99,XP2 , P2) }.

q′′(99) ← Progress(99,XP1 , P1), P rogress(99,XP2 , P2),
P rogress(99,XP1 , P1), EP (88,XP1),
P rogress(99,XP2 , P2), EP (88,XP2).

Thus, the complete rewriting is q′′(99) ← V1(99,XP1 , P1), V1(99,XP2 , P2).
Therefore, we authorize this query q.

2. MV1 is not empty, and in the current database state, employee ‘88’ is not
working on both projects, say only on project ‘XP2’, and some other em-
ployee has reported progress for ‘XP2’. Let MV1 be {(99,XP2, P2)}.

q′′(eid) ← Progress(eid,XP1 , prgs1), P rogress(99,XP2 , P2),
P rogress(99,XP2 , P2), EP (88,XP2).

There is no containment mapping from the body of V1 to the body of q′′ such
that Progress(eid,XP1 , prgs1) is the image of Progress(eid, pid, prgs), since
that requires EP (88,XP1) to occur in q′′. There is no complete rewriting
of q′′ using V1. Therefore, we reject the query q. In fact, the materialization
can contain other information, such as employee ‘88’ works on project ‘XP3’
and there is a report for ‘XP3’ from some employee. As long as the material-
ization does not contain (99,XP1, P1), the above analysis applies. Similarly,
when employee ‘88’ does not work on any of the two projects and MV1 is
not empty, the query should be rejected.

3. MV1 is empty, but there is one more authorization view that allows any
user to know who is working on which project: V2(eid, pid) ← EP (eid, pid).
Suppose the materialization of V2 is (88,XP1), (88,XP2).

q′′(eid) ← Progress(eid,XP1 , prgs1), P rogress(eid,XP2 , prgs2),
EP (88,XP1), EP (88,XP2),XP1 �= XP1 ,XP2 �= XP2 .

This is a conditionally empty query, hence, we accept it.
4. MV1 is empty. From the information of other materialized authorization

views, employee ‘88’ cannot infer that he or she is associated with projects

272 Z. Zhang and A.O. Mendelzon

‘XP1’ and ‘XP2’. There are no containment mappings to show EP (88,XP1)
and EP (88,XP2) exist in all valid database states. Suppose there are no
other authorization views. Then we have

q′′(eid) ← Progress(eid,XP1, prgs1), P rogress(eid,XP2, prgs2).

There is no complete rewriting of q′′ using V1 since there is no containment
mapping from the view to q′′. Therefore, we reject the query q.

5 Related Work

Chaudhuri et al. [5] considered the problem of optimizing queries in the presence
of materialized views. They gave an incomplete set of query rewriting rules that
generate conditionally equivalent queries under bag semantics. Rizvi et al. [14]
gave an incomplete set of inference rules for conditional authorization of SQL
queries using bag semantics.

Millstein et al. introduced the notion of certain answer containment with
respect to a set of global views in a Data Integration System [12]. Our setting can
be viewed as a Data Integration System with base relations as the global schema
and authorization views as the local sources, using Local-As-View semantics [9].
However, our notion of conditional containment is different from Millstein et
al.’s, which is based on the set of certain answers of one query being contained
in the set of certain answers of the other one.

Instead of defining authorized queries in terms of rewritings, we could use
Calvanese et al.’s notion of lossless query [3] and say a query is authorized if it
is lossless with respect to the views V and their materializations MV , that is,
for any two valid instances d and e with respect to V and MV , Q(d) = Q(e).
Existence of rewritings is a special case of this. Losslessness has been studied for
regular path queries and materialized regular views in [3].

An alternative approach to solve the problem of conditional query contain-
ment could be to reduce it to the problem of deciding containment under a set
of embedded or disjunctive dependencies, which is decidable under disjunctive
chase [7]. Similarly, conditional query authorization could be solved as rewriting
a query using views in the presence of embedded or disjunctive dependencies [6].

6 Conclusions and Future Work

We studied the problem of conditional query authorization. We showed that con-
ditional query containment plays a crucial role in it and proposed an algorithm
to test conditional containment for unions of queries in CQ�=. Then, we solved
the problem of conditional authorization for a conjunctive query with respect to
a set of conjunctive authorization views with materializations.

Given the high complexity of the conditional containment and authoriza-
tion problems, we need to study heuristics or tractable classes of queries and
views. For applying our results to the SQL setting, we would also like to solve
conditional query authorization under bag semantics.

Authorization Views and Conditional Query Containment 273

Acknowledgements

We thank the Natural Sciences and Engineering Research Council of Canada
and the Institute for Robotics and Intelligent Systems for their support, and the
anonymous reviewers for their careful comments.

References

1. S. Abiteboul and O. Duschka. Complexity of answering queries using materialized
views. In Proc. ACM PODS, pages 254–263, 1998.

2. A. Aho, Y. Sagiv, and J. D. Ullman. Equivalence of relational expressions. SIAM
Journal of Computing, (8)2:218–246, 1979.

3. D. Calvanese, D. G. Giuseppe, M. Lenzerini, and M. Y. Vardi. Lossless regular
views. In Proc. ACM PODS, pages 247–258, 2002.

4. A. K. Chandra and P. M. Merlin. Optimal implementations of conjunctive queries
in relational databases. In Proc. STOC, pages 77–90, 1977.

5. S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and K. Shim. Optimizing queries
with materialized views. In Proc. ICDE, pages 190–200, 1995.

6. A. Deutsch and V. Tannen. Reformulation of xml queries and constraints. In Proc.
ICDT, pages 225–241, 2003.

7. G. Grahne and A. Mendelzon. Tableau techniques for querying information sources
through global schema. In Proc. ICDT, pages 332–347, 1999.

8. A. Klug. On conjunctive queries containing inequalities. Journal of the Association
for Computing Machinery, 35(1):146–160, 1998.

9. M. Lenzerini. Data integration: a theoretical perspective. In Proc. ACM PODS,
pages 233–246, 2002.

10. A. Levy, A. Mendelzon, Y. Sagiv, and D. Srivastava. Answering queries using
views. In Proc. ACM PODS, pages 95–104, 1995.

11. A. Levy, A. Rajaraman, and J. J. Ordille. Querying heterogeneous information
sources using source descriptions. In Proc. VLDB, pages 251–262, 1996.

12. T. Millstein, A. Levy, and M. Friedman. Query containment for data integration
systems. Journal of Computer and System Sciences, pages 67–75, 2002.

13. A. Motro. An access authorization model for relational databases based on alge-
braic manipulation of view definitions. In Proc. ICDE, pages 339–347, 1989.

14. S. Rizvi, A. Mendelzon, S. Sudarshan, and P. Roy. Extending query rewriting
techniques for fine-grained access control. In Proc. ACM SIGMOD, pages 551–
562, 2004.

15. A. Rosenthal and E. Sciore. View security as the basis for data warehouse security.
In Intl. Workshop on Design and Management of Data Warehouses, 2000.

16. A. Rosenthal, E. Sciore, and V. Doshi. Security administration for federations,
warehouses, and other derived data. In IFIP WG11.3 Conf. on Database Security,
1999.

17. Y. Sagiv and M. Yannakakis. Equivalence among relational expressions with the
union and difference operations. Journal of the ACM, 27(4):633–655, 1980.

18. Ron van der Meyden. The complexity of querying indefinite data about linearly
ordered domains (extended version). In Proc. ACM PODS, pages 331–345, 1992.

PTIME Queries Revisited

Alan Nash1, Jeff Remmel2, and Victor Vianu3

1 Mathematics and CSE Departments,
2 Mathematics Department,

3 CSE Department,
UC San Diego, La Jolla, CA 92093, USA

Abstract. The existence of a language expressing precisely the PTIME
queries on arbitrary structures remains the central open problem in the
theory of database query languages. As it turns out, two variants of
this question have been formulated. Surprisingly, despite the importance
of the problem, the relationship between these variants has not been
systematically explored. A first contribution of the present paper is to
revisit the basic definitions and clarify the connection between these two
variants. We then investigate two relaxations to the original problem
that appear as tempting alternatives in the absence of a language for the
PTIME queries. The first consists in trying to express the PTIME queries
using a richer language that can also express queries beyond PTIME, but
for which there exists a query processor evaluating all PTIME queries
in PTIME. The second approach, studied by many researchers, is to
focus on PTIME properties on restricted sets of graphs. Our results are
mostly negative, and point out limitations to both approaches. Finally,
we turn to a natural class of languages that we call finitely generated,
whose syntax is obtained by applying a fixed set of constructors to a
given set of building blocks. We identify a broad class of such languages
that cannot express all the PTIME queries.

1 Introduction

The existence of a language expressing precisely the PTIME queries on arbitrary
structures remains the most tantalizing open problem in the theory of database
query languages. This question was first raised by Chandra and Harel [3] and
later reformulated by Gurevich [9] who also stated the conjecture (now widely
accepted) that no such language exists.

To reason about the existence of a language for the PTIME queries, one has
to first come up with a very broad definition of query language (or logic), then
define what it means for a logic to express the PTIME queries. It turns out
that two such definitions have been proposed. To our knowledge, despite the
importance of the problem, the relationship between these variants has not been
systematically explored. We show that these two variants are different and may
conceivably have distinct answers.

It is generally accepted that a query language specifies queries using expres-
sions consisting of strings of symbols over some alphabet. We call these the

T. Eiter and L. Libkin (Eds.): ICDT 2005, LNCS 3363, pp. 274–288, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

PTIME Queries Revisited 275

programs of the language. A first requirement is that a language should have ef-
fective syntax, meaning that its syntactically correct programs can be effectively
enumerated. The semantics of a language L associates to each program in L a
particular query. For simplicity, and since arbitrary structures can be efficiently
represented as graphs [9], we focus in this paper on queries that are properties of
graphs. Thus, we consider languages whose semantics associates to each program
in the language a property of graphs. We say that L expresses the set of PTIME
properties of graphs, denoted by PG, if the set of graph properties associated to
programs in L by its semantics is precisely PG.

It is clear that simply having a language L expressing PG is not satisfactory.
At a minimum, we would like to be able to effectively and uniformly evaluate
the programs in L. In other words, we would like to have a Turing machine E
that, given as input a program p in L and a graph G, decides whether G sat-
isfies the property defined by p. We call E an evaluator for L. Intuitively, an
evaluator corresponds to a query processor for L. If such an evaluator exists,
we call the language L computable. Since we are targeting the PTIME proper-
ties, we would further like E to uniformly evaluate every fixed program p in L
in polynomial-time with respect to G. If such E exists, we call L P-bounded.
The first formulation of the problem of the existence of a language for PTIME,
by Chandra and Harel [3], asks whether there exists a P-bounded language ex-
pressing the PTIME queries. Most other definitions (e.g. [9, 5]) further require
that an explicit polynomial bound for the number of steps of each program in
L as evaluated by the evaluator be effectively computable. In this case, we call
L effectively P-bounded. The above notions extend naturally to properties of
graphs: we call a set of PTIME properties of graphs computable, P-bounded, or
effectively P-bounded iff there exists such a language expressing it.

Our first set of results shows that these two notions are distinct. In terms of
languages, we show that:

(i) there exists a computable language for PG that is not P-bounded and
(ii) if PG is P-bounded, then there exists a P-bounded language for PG that is

not effectively P-bounded.

We also show that (i) and (ii) above hold for any computable subset of PG

that includes all finite properties.
It is legitimate to wonder whether P-bounded languages that are not effec-

tively P-bounded are mere curiosities that can be avoided: given a P-bounded
language, is it always possible to find an effectively P-bounded language for the
same set of properties? We answer this question (and the corresponding one for
computable vs. P-bounded) in the negative by showing the following:

(iii) there exist sets of PTIME graph properties that are computable, but not
P-bounded and

(iv) there exist sets of PTIME graph properties that are P-bounded, but not
effectively P-bounded.

In the special case of PG, it remains open whether the existence of a P-
bounded language for PG implies the existence of an effectively P-bounded one.

276 A. Nash, J. Remmel, and V. Vianu

In the absence of a language for the PTIME properties, various relaxations
to the problem appear to offer tempting alternatives. We examine two natural
approaches. The first consists in trying to capture PG using a richer language
allowing to express properties that likely lie beyond PTIME. Suppose we have
a language L that expresses all of PG, and possibly more. For example, such
a language is Existential Second-Order logic (∃SO), that is known to express
the NP properties [6]. Assuming that P �= NP, some of the formulas in ∃SO
express polynomial-time properties, while others do not. Furthermore, under
the same assumption, it is easily shown, using Trakhtenbrot’s theorem, that it
is undecidable whether a given formula expresses a PTIME property. However,
it is conceivable that ∃SO has an evaluator E that happens to evaluate every
polynomial-time property in polynomial time. This would mean that a user could
not only express all polynomial-time properties using ∃SO, but such properties
could actually be evaluated uniformly in polynomial time. Short of an actual
language for PG, this would seem like a good alternative. Unfortunately, this
solution is not a real alternative to a language for PG. Indeed, we show that, if
∃SO (or any language that can express all of PG) has an evaluator that computes
all PG properties in polynomial time, then there exists a P-bounded language
expressing exactly PG. Thus, the alternative formulation is no easier than the
original problem of finding a language for PG.

The second alternative to finding a language for PG is to focus on interesting
subsets of graphs rather than all graphs. For example, a beautiful result by
Grohe shows that the PTIME properties of planar graphs can be expressed by
a P-bounded language, specifically FO+LFP augmented with counting [8]. Such
results raise the hope that the PTIME properties on larger and larger subsets of
graphs can be captured and perhaps that, once a certain threshold is overcome,
this might be extended to any set of PTIME properties. However, we prove a
result that suggests there is no such threshold. It states that, for every PTIME-
recognizable class G of graphs with infinite complement there exists a set of
PTIME properties of graphs that includes all the PTIME properties of graphs
in G and for which there is a computable, yet not P-bounded language. We
also show an analogous result for effectively P-bounded languages. Of course,
this does not invalidate the program of finding increasingly large sets of graphs
whose PTIME properties have an (effectively) P-bounded language.

The notion of language used above is extremely general and may allow for
very artificial constructs, not acceptable in real query languages. Given the dif-
ficulty in settling the question of the existence of a language for the PTIME
queries in this general setting, it is tempting to wonder if additional criteria of
naturalness may render the problem easier. Motivated by this, we consider here
finitely generated languages (FGLs). These capture a wide array of languages
in which queries are defined from finitely many “building blocks” using a fixed
finite set of constructors. The classical example of an FGL is FO (the construc-
tors implement ∃,∀,∨,∧, and ¬). However, our notion of FGL is much more
powerful, since it allows for the individual building blocks and constructors to
perform arbitrary PTIME computations. In fact, building blocks are formalized

PTIME Queries Revisited 277

as polynomial-time properties, and constructors as polynomial-time Turing ma-
chines with oracle calls to other constructors or building blocks. The restricted
structure of FGLs immediately removes some of the issues discussed above: all
FGLs are effectively P-bounded. One might naturally wonder if the additional
structure of FGLs allows to prove that there is no such language expressing ex-
actly the PTIME properties of arbitrary graphs. This question remains open.
However, we exhibit a broad class of FGLs, called Set FGLs (SFGLs), for which
this can be proven. Informally, SFGLs are FGLs restricted in the way the con-
structors and building blocks in a program exchange information. Calls to or-
acles are made on hereditarily finite sets. The information exchanged does not
break automorphisms of the input and is subject to restrictions on size and
depth of nesting. Hereditarily finite sets can easily represent complex values
used in many concrete database query languages [1]. SFGLs capture a natural
programming paradigm, shared by many languages. One way to view SFGL’s
is as a generalization of FO with finitely many polynomially-computable Lind-
ström quantifiers (see [5]). It is known that fixpoint logics with finitely many
polynomially-computable Lindström quantifiers cannot express PG (see [4, 5]).

The paper is organized as follows. In Section 2 we formalize the notions of
language, evaluator, and (effectively) P-bounded language and property. Section
3 presents our results comparing these notions. In Section 4 we discuss the two
alternatives to obtaining a language for the PTIME properties: considering richer
languages, and focusing on restricted sets of graphs. Finally, Section 5 presents
the results on SFGLs.

2 Preliminaries

In this section we review some of the basic concepts related to query languages
and their complexity, and introduce notation used throughout the paper.

We assume familiarity with Turing machines. We also assume a fixed effective
enumeration of all Turing machines and denote by Me the e-th Turing machine.
We also assume knowledge of usual query languages such as first-order logic
(FO), and FO extended with a least fixpoint operator, denoted FO+LFP (e.g.,
see [1, 5]). For a positive integer k, FOk denotes the FO sentences using at most
k variables, and similarly for (FO+LFP)k.

Properties and Their Complexity. For simplicity, we focus here on PTIME prop-
erties rather than output-producing queries. A relational signature is a finite
set of relation symbols together with associated arities. A finite structure over
a given signature consists of a finite domain D and interpretations of the rela-
tion symbols in the signature as finite relations of appropriate arities over D.
A property of structures over some signature is a set of finite structures over
that signature, closed under isomorphism. We denote properties by Q,R, S...
and sets of properties by Q,R,S.... Since structures over an arbitrary signature
can be efficiently encoded as graphs (e.g., see [9, 5]), we will only consider in the
sequel the relational signature consisting of a single binary relation representing
the edges of a directed graph whose nodes are the elements of the domain. We

278 A. Nash, J. Remmel, and V. Vianu

denote this signature by γ, and the set of all finite graphs (finite structures over
γ) by G.

The complexity of a property is defined using classical complexity classes. To
do this, we need to talk about the resources used by a Turing Machine “imple-
menting” an algorithm for checking that a structure has the desired property.
Since Turing Machines do not take structures as inputs, we need to use instead
encodings of structures as strings. We use the following simple encoding for struc-
tures over signature γ. Suppose the structure represents a graph G whose set of
nodes is D of size n. Let λ be a one-to-one mapping from D onto {1, . . . , n}, and
let χG : {1, . . . , n}2 → {0, 1} be the characteristic function of the set of edges
in G via λ (so χG(λ(u), λ(v)) = 1 iff (u,v) is an edge). The encoding of G is a
string over alphabet {0, 1} consisting of all χG(i, j) listed in lexicographic order
of the pairs (i, j). This encoding clearly depends on the labeling λ and is de-
noted by encλ(G). The length of encλ(G) is denoted by |encλ(G)|, and note that
|encλ(G)| = n2, where n is the number of nodes in the graph. As a shorthand,
we also denote |encλ(G)| by |G|.

Let Q be a property of graphs. We say that a Turing machine M decides Q
iff for every graph G and labeling λ of its nodes, M halts on input encλ(G) and
accepts iff G has property Q. Note that there is no requirement on inputs that
are not correct encodings of graphs. Also observe that, since Q is closed under
isomorphism, acceptance by M must be independent of the particular labeling
λ. That is, for all labellings λ1, λ2, M accepts encλ1(G) iff M accepts encλ2(G).

We can now relate properties and complexity. We say that a property Q of
graphs is a PTIME property iff there exists a Turing machine M deciding the
property, and k ∈ N, such that M halts on input encλ(G) in at most |encλ(G)|k
steps. We denote the set of PTIME properties of graphs by PG.

Languages and Evaluators. To reason about the existence of a language for the
PTIME properties, we need a very broad definition of query language (or logic).
It is generally accepted that a query language specifies queries using expressions
consisting of strings of symbols over some alphabet, which we call its programs.
Moreover, the language should have effective syntax, meaning that its syntac-
tically correct programs can be effectively enumerated. As a useful side effect,
this allows us to ignore the specific syntax of a language, and simply refer to its
programs by their index in the enumeration (1st program, 2nd program, etc).
Since we will only be interested in data complexity and not query complexity,
the cost of the translation between an index and the corresponding program is
irrelevant. Thus, we can simply assume that the programs of the language are
the indexes themselves, consisting of all strings in {0, 1}∗. Whenever needed, we
interpret such strings as positive natural numbers as follows: the string w corre-
sponds to the natural number whose binary representation is 1w (this eliminates
the problem of leading zeros and renders the mapping bijective). We denote the
set of all such strings in {0, 1}∗ by E .

Given that the syntax of languages consists of the expressions in E and can
be assumed fixed, we can define a language by the semantics associated to the
expressions in E . Thus, a language L for graph properties is a mapping associ-

PTIME Queries Revisited 279

ating to each expression e ∈ E a property L(e) of graphs. We write [L] for the
set of properties defined by L. Of course, two different languages may express
the same set of properties.

Observe that the semantics of a language is an abstract mapping, independent
of any notion of computability or complexity. To capture the latter, we consider
the notion of evaluator of a language. Intuitively, an evaluator corresponds to
a query processor: it takes as input a program in the language together with a
graph, and evaluates the program on the graph. More formally, an evaluator for
a language L is a Turing machine E that takes as input a program e and the
encoding of a graph G and evaluates e on G. To make this more precise, let us
first fix a PTIME-computable pairing function 〈−,−〉 for N, that is, a bijection
〈−,−〉 : N2 → N such that both 〈−,−〉 and π1, π2 satisfying π1(〈x, y〉) = x
and π2(〈x, y〉) = y are PTIME computable (e.g., such a pairing function is
provided in [10]). The tape alphabet of E is {0, 1} and e and G are encoded as
the binary representation of the integer 〈e, encλ(G)〉 for some labeling λ of the
nodes of G. On any input of the form 〈e, encλ(G)〉, E halts and outputs 1 if G
has property L(e) and 0 otherwise. Note that a given language can have many
different evaluators.

Languages and Complexity. What does it mean to have a language for the
PTIME properties? We consider several notions that relate languages to prop-
erties of a given complexity, most of which have been proposed before. One of
the contributions of the paper is to clarify the relationship between the different
notions in a systematic way.

Consider a language L, defining a set of properties [L]. A first attempt at
relating L to the polynomial-time properties is to look at the connection between
[L] and PG. We say that L expresses PG iff [L] =PG. However, it is clear that this
alone is not satisfactory. At a minimum, we would like to be able to effectively
evaluate the queries in L. In other words, we would like to have, at the very
least, an evaluator for L. If such is the case, we call the language L computable.
We would also like to actually evaluate the queries of L in polynomial time.
This is formalized as follows. We say that L has a P-bounded evaluator if it has
some evaluator E that, for every fixed program e, runs in polynomial time on
input 〈e, encλ(G)〉. The fact that we fix e means that our definition captures
data rather than query complexity. Of course, a language that has a P-bounded
evaluator only expresses polynomial-time properties.

Next, suppose we are given a P-bounded evaluator E for a language. The
evaluator runs in polynomial time, but we do not necessarily know ahead of
time the bounding polynomial. However, for many specific languages, such as
FO+LFP, we are able to infer an explicit polynomial bound from the syntax.
This is a nice property to have. We call an evaluator E effectively P-bounded
if there exists a computable total mapping B : E → N that produces, for every
program e, a number k such that E runs in time |G|k on input 〈e, encλ(G)〉.

We say that a language is (effectively) P-bounded if it has an (effectively)
P-bounded evaluator. Similarly, a set of properties P is (effectively) P-bounded
if there exists some (effectively) P-bounded language defining P.

280 A. Nash, J. Remmel, and V. Vianu

In considering the existence of a language L for the polynomial-time proper-
ties, two alternative requirements for such a language have been proposed. (1)
requires L to express precisely PG, and have a P-bounded evaluator [3]. (2) addi-
tionally requires L to have an effectively P-bounded evaluator [9, 5]. That is, (1)
requires PG to be P-bounded and (2) requires PG to be effectively P-bounded.

3 Computable, P-Bounded, and Effectively P-Bounded
Languages

What is the connection between the notions of computable, P-bounded, and
effectively P-bounded language? We consider this question next. As we shall
see, these notions are generally distinct. This says that there are different flavors
of the question of the existence of a language for PTIME and that the answers
may be distinct for different flavors.

Obviously, every effectively P-bounded language is P-bounded and every
P-bounded language is computable. Consider now the converse inclusions. Of
course, a computable language L may express properties that are not in PG, in
which case it cannot be P-bounded. However, suppose L expresses only proper-
ties in PG. Is it the case that L must also be P-bounded? We next show this is
not the case. In fact, we exhibit a computable language expressing precisely the
properties in PG, that has no P-bounded evaluator.

Before we state the result, note that it is easy to find a computable language
for PG. We recall such a language, defined in slightly different form by Andreas
Blass and Yuri Gurevich [9], that we denote LY . The syntax of LY consists of all
FO+LFP sentences ϕ over signature γ ∪{≤}. Recall that an FO+LFP sentence
ϕ over this signature is order-invariant on a graph H iff its value on H and an
ordering ≤ of the nodes of H is independent of the choice of ≤. Furthermore, ϕ
is order invariant iff it is order invariant on all graphs. The semantics of LY is
defined next. Although we are considering sentences ϕ using ≤ in addition to γ,
we define LY (ϕ) as a property of graphs alone, as follows. Let ϕ be a sentence
and G a graph. If ϕ (viewed as a usual FO+LFP sentence) is order-invariant for
all graphs H of size at most that of G, then G has property LY (ϕ) iff ϕ evaluated
as an FO+LFP sentence on G with some arbitrarily chosen ordering ≤ is true.
Otherwise, G does not have property LY (ϕ). Note that, if ϕ is order invariant
on all graphs, then LY (ϕ) defines the same property as ϕ, so is a property in
PG. If ϕ is not order invariant, then LY (ϕ) contains only finitely many graphs,
so it is again in PG. Finally, since order-invariant FO+LFP sentences express all
PG properties [11, 12], it follows that LY expresses precisely the PG properties.
Clearly, LY has an evaluator, so it is a computable language for PG. That is,

Remark 1. PG is computable.

Remark 2. Note that the language LY is coNP-bounded. One might naturally
wonder if it can be proven that LY has no P-bounded evaluator. Clearly, such
a result must be conditional upon assumptions such as P �= NP. However, we
are not aware of any proof that LY has no P-bounded evaluator even under

PTIME Queries Revisited 281

such complexity-theoretic assumptions. Thus, LY remains, for the time being, a
candidate language for PG.

As an intriguing aside, we mention a connection to another problem that
appears to be similarly open:

(†) Input: A non-deterministic Turing machine M and a string 1n.
Question: Does M accept ε (the empty string) in at most n steps?

It can be shown that LY is P-bounded iff there exists some algorithm solving
(†) in TIME(nf(M)) for some arbitrary function f . In other words, the problem
can be solved by a (uniform) algorithm that is polynomial in n for fixed M (note
that the non-uniform version of the problem is trivial: for each fixed M there
exists an algorithm that is polynomial in n and solves (†)). Interestingly, the
(non)-existence of such an algorithm for (†) appears to be open, and does not
immediately follow from usual complexity-theoretic assumptions.

Theorem 1. Every computable set of properties P that includes all finite prop-
erties has a computable language L which is not P-bounded.

Proof. Since P is computable, it has a computable language LC ; we use LC to
build L. The semantics of L is defined as follows. We view the expressions in E as
natural numbers. Let L(2n+ 1) = LC(n). Next, let L(2n) be defined as follows.
Let G be a graph and Ḡ the complete graph with the same nodes as G. Run
the n-th Turing machine Mn on input 〈2n, encλ(Ḡ)〉 for some arbitrary λ (note
that the encoding of Ḡ is independent of λ). If Mn does not stop in 2|Ḡ| steps,
then G �∈ L(2n). If |Ḡ| is the smallest size for which Mn stops in 2|Ḡ| steps, then
G ∈ L(2n) iff Mn rejects Ḡ. If |Ḡ| is not the smallest such size, then G �∈ L(2n).
Note that L(2n) contains only finitely many graphs, so is in PG.

Next, suppose L has a P-bounded evaluator E, and suppose E is Me. Since
E is P-bounded, Me runs in polynomial time with respect to |Ḡ| on every input
of the form 〈f, encλ(G)〉 for fixed f . In particular, Me runs in polynomial time
with respect to |Ḡ| on input 〈2e, encλ(Ḡ)〉. It follows that there exists some Ḡ
such that Me stops in at most 2|Ḡ| steps. By definition of L(2e), the smallest
such Ḡ has property L(2e) iff Me rejects. This contradicts the assumption that
E is an evaluator for L.

Since PG is computable,

Corollary 1. PG has a computable language that is not P-bounded.

We next consider the connection between the notions of P-bounded language
and effectively P-bounded language.

Theorem 2. Every P-bounded set of properties P that includes all finite prop-
erties has a P-bounded language L which is not effectively P-bounded.

Proof. Let K be some P-bounded language defining P. We define a language L
as follows. First, L(2n+ 1) = K(n). This ensures that L expresses all properties
expressed by K. Next, we define L(2n) as follows. Suppose n = 〈e, b〉. Intuitively,
we define L(2n) so that Me cannot be an evaluator for L with bounding function

282 A. Nash, J. Remmel, and V. Vianu

Mb. To this end, let G be a graph. To determine if G ∈ L(2n), proceed as follows.
First, run Mb on input 2n for |G| steps. If Mb does not halt in ≤ |G| steps, then
G �∈ L(2n). Otherwise, suppose that |G| = t2. Then if Mb(2n) halts in ≤ (t−1)2

steps, then G �∈ L(2n). Finally, if Mb(2n) halts in s steps where (t−1)2 < s ≤ t2,
then let k be the output of Mb(2n). Next, run Me on input 〈2n, encλ(Ḡ)〉 for
|G|k steps. If Me halts, then G ∈ L(2n) iff Me rejects. Otherwise, G �∈ L(2n).
Note that L(2n) is a finite property, so it is already expressed by K. Clearly, L
expresses precisely P and is P-bounded.

Now suppose L is effectively P-bounded. Then L has an evaluator E with
bounding function B. Let E = Me and B = Mb. Let n = 〈e, b〉 and consider
L(2n). Since Mb halts on input 2n, there exists a graph G such that Mb halts
on 2n in at most |G| steps. Consider the smallest such G. Let k = Mb(2n).
Since Mb computes the bounding function for Me, it follows that Me stops on
input 〈2n, encλ(Ḡ)〉 in at most |G|k steps. However, by the definition of L(2n),
G ∈ L(2n) iff Me rejects on input 〈2n, encλ(Ḡ)〉. This contradicts the assumption
that Me is an evaluator for L.

Example 1. Consider the fixpoint queries defined by the FO+LFP sentences.
The language FO+LFP is effectively P-bounded, and the properties it defines
includes all finite properties. By Theorem 2, there exists some other language
defining the fixpoint queries, that is P-bounded but not effectively P-bounded.

Corollary 2. If PG is P-bounded,1 then it has a P-bounded language that is not
effectively P-bounded.

Remark 3. Theorem 2 states the existence of P-bounded languages that are not
effectively P-bounded, for all P-bounded sets of properties that include the fi-
nite ones. A natural question is whether there are P-bounded sets of properties
that do not have any effectively P-bounded language. The answer is affirma-
tive: Theorem 5 in the next section shows the existence of many such classes of
properties.

Clearly, it would be of interest to know if the existence of a P-bounded
language expressing PG implies the existence of an effectively P-bounded one.
This remains open.

4 PTIME from Above and from Below

In the absence of a language expressing precisely the polynomial-time queries,
various relaxations to the problem of capturing PG can be useful. We describe
here two natural approaches. The first consists in trying to capture the PTIME
queries using a richer language allowing to express queries possibly not in PTIME,
but that has an evaluator that evaluates every PTIME query in PTIME. The sec-
ond approach, studied by many researchers, is to focus on PTIME

1 Recall that it is not known whether PG is P-bounded.

PTIME Queries Revisited 283

properties on restricted sets of graphs. Our results are mostly negative and point
out limitations to both approaches.

4.1 P-Faithful Evaluators

Suppose we have a language L that expresses all of PG and possibly more. For
example, such a language is Existential Second-Order logic (∃SO), that is known
to express the NP properties [6]. Assuming that P �= NP, some of the formulas
in ∃SO express polynomial-time properties, while others do not. Furthermore,
under the same assumption, it is easily shown using Trakhtenbrot’s theorem that
it is undecidable whether a given formula expresses a PTIME property. However,
it is conceivable that ∃SO has an evaluator E that happens to evaluate every
polynomial-time property in polynomial time. This means that a user can not
only express all polynomial-time properties using ∃SO, but such properties can
actually be evaluated in polynomial time. Short of an actual language for PG,
this would seem like a tempting alternative.

Unfortunately, this solution is not a real alternative to a language for PG.
Indeed, we show that, if ∃SO (or any language that can express all of PG) has an
evaluator that computes all PG properties in polynomial time, then there exists
a P-bounded language expressing exactly PG. Thus, the alternative formulation
is no easier than the original problem of finding a language for PG.

We first formalize the above notions.

Definition 1. Let L be a language expressing all properties in PG. An evaluator
E for L is P-faithful iff E(〈e, encλ(G)〉) runs in polynomial time with respect to
G for every fixed e such that L(e) ∈ PG. Furthermore, E is effectively P-faithful
iff there exists a computable mapping B : E → N that produces, for every e for
which L(e) ∈ PG, a number k such that E(〈e, encλ(G)〉) runs in time |G|k.
We can now show the following.

Theorem 3. If there is an (effectively) P-faithful language L for PG, then there
is an (effectively) P-bounded language K for PG.

Proof. The syntax of K consists of pairs (e, ϕ) where e ∈ E is interpreted with
the semantics of L and ϕ is in LY (recall LY , the computable language expressing
PG, from Section 3). Suppose L has a P-faithful evaluator EL, and let EY be an
evaluator for LY . Let us define an evaluator EK for K as follows. EK on input
(e, ϕ) and G does the following. First, start computing EL(e,H) and EY (ϕ,H)
on all graphs H smaller than G for |G| steps. If in this number of steps EL(e,H)
and EY (ϕ,H) both halt for some H and one accepts while the other rejects, then
reject G (so G does not have property K(e, ϕ)). Otherwise, run EL on input
(e,G) and accept iff EL accepts. Note that, if L(e) and LY (ϕ) define different
properties, then K(e, ϕ) is finite (and is evaluated in polynomial time by the
evaluator EK). Otherwise, K is evaluated on input (e, ϕ) and G in polynomial
time with respect to G, using the evaluator EL applied to e and G, which takes
polynomial time with respect to G because L(e) is in PG and EL is P-faithful.
An analogous argument shows that if EL is effectively P-faithful then K is an
effectively P-bounded language for PG.

284 A. Nash, J. Remmel, and V. Vianu

4.2 PTIME Properties with No (Effectively) P-Bounded Language

A productive alternative approach to the problem of finding a language for
the PTIME queries has been to focus on interesting subsets of graphs rather
than all graphs. We briefly mention two results that provide some insight into
this approach. The results, proven by diagonalization, show that every “well-
behaved” class of graphs can be extended to a class of graphs whose PTIME
properties do not have an (effectively) P-bounded language (we omit the details).

Theorem 4. For every PTIME-recognizable set of graphs G0 with infinite com-
plement there exists a computable set of graph properties H ⊂PG that is not
P-bounded and includes all PTIME properties of G0.

Theorem 5. For every PTIME-recognizable set of graphs G0 with infinite com-
plement such that its set of PTIME properties is P-bounded, there exists a P-
bounded set of graph properties H ⊂PG that is not effectively P-bounded and
includes all PTIME properties of G0.

5 Finitely Generated Languages

In this section we turn to finitely generated languages (FGLs). These capture a
wide array of languages in which queries are defined from finitely many “building
blocks” using a finite set of constructors. The classical example of an FGL is FO.
However, our notion of FGLs is much more powerful.

Since we will be focusing on languages expressing PTIME queries, we require
each of the building blocks and each constructor to be computable in polynomial
time. We formalize this as follows. The syntax of an FGL L is given by all terms
that can be built by using a finite set C of constant symbols and a finite set F of
function symbols with associated finite arities. The semantics of L is as follows:

– to each c ∈ C we associate a property Kc (a “building block”) defined by a
polynomial-time Turing machine Mc and

– to each f ∈ F of arity k, we associate a polynomial-time Turing machine
Mf (a “constructor”) with access to k oracles.

The evaluator E for L is defined recursively as follows:

– If t ∈ C, then E on input 〈t, encλ(G)〉 runs Mt on input encλ(G).
– If t = f(t1, . . . , tk) then E on input 〈t, encλ(G)〉 runs Mf on input encλ(G)

with oracles E(t1,−), . . . , E(tk,−).

Clearly, FGLs can be viewed as languages according to our general definition,
since there exists an effectively computable bijection between the terms providing
the syntax of FGLs and the set of strings E used for arbitrary languages. The
following is immediate from the definition of FGLs.

Remark 4. Every FGL is effectively P-bounded.

PTIME Queries Revisited 285

One might naturally wonder if the additional structure of FGLs allows to
prove that there is no such language expressing exactly the PTIME properties of
graphs. This question remains open, even for ordered structures. To gain some
intuition into the difficulties involved in settling this question, let us consider
FGLs on ordered structures. Let FO+LFPr consist of FO+LFP sentences using
second-order variables (inductively defined relations) of arity at most r. We can
show the following using an extension of the standard simulation of PTIME
Turing machines on ordered structures by FO+LFP:

Lemma 1. On ordered structures:

(i) Each FGL is included 2 in FO+LFPr for some r.
(ii) For every r, FO+LFPr is included in some FGL.

It is known that on ordered structures, (a) if FO+LFPr = PTIME for some
r then PTIME �= PSPACE, and (b) if FO+LFPr �= PTIME for some r > 1 then
LOGSPACE �= PTIME [5, 7]. This together with Lemma 1 implies the following:

Theorem 6. (i) If there exists an FGL expressing PTIME on ordered struc-
tures then PTIME �= PSPACE.

(ii) If no FGL expresses PTIME on ordered structures then LOGSPACE �=
PTIME.

Theorem 6 shows that settling the question of whether an FGL can express
PTIME on ordered structures would resolve long-standing open problems in
complexity theory. The question remains open for arbitrary structures. This leads
us to consider a restriction of FGLs for which this question can be settled. We
introduce set FGLs (SFGLs), which are FGLs that operate on hereditarily finite
sets under some restrictions. Before we do this, we introduce some terminology
related to sets.

Sets. Given x and y, the pairing of x and y is {x, y} and the union of x and y
is x∪ y. For any finite set A, the set of hereditarily finite sets over A, HF(A), is
the smallest set containing all elements in A (atoms), the empty set, and closed
under the operations of pairing and binary union. Consider x ∈ HF(A). The
transitive closure of x, tc(x), is the smallest set y satisfying x ⊆ y and ∀u, v(u ∈
v ∈ y → u ∈ y). We write ||x|| for |tc(x)|. We set atoms(x) := tc(x) ∩ A and say
that x is atomless if atoms(x) = ∅. We can think of x as a directed acyclic graph
with |tc(x)|+1 nodes. Given an order of the atoms A, we can encode x as a string
of length ||x||2. The rank of an atom is 0, the rank of the empty set is 0, and the
rank of any other set x, rank(x), is max(1 + rank(y) : y ∈ x). We encode the
ordered pair 〈x, y〉 in the standard way as {{x}, {x, y}} and we encode tuples
inductively by 〈x, y, z〉 = 〈〈x, y〉, z〉. As an aside, note that hereditarily finite
sets can represent the complex values common in databases, obtained by nested
application of set and tuple constructors (e.g., see [1]).

2 Inclusion refers to the sets of properties expressed by each language.

286 A. Nash, J. Remmel, and V. Vianu

Every permutation σ of A induces an automorphism of HF(A) (which we also
call σ) in the obvious way. We say that S ⊆ A A-supports x if every permutation
σ of A which fixes S pointwise fixes x. We set suppA(x) := S where S ⊆ A is
the smallest set S which A-supports x if there is such S satisfying |S| < |A|/2.
Otherwise, we set suppA(x) := A. It is not obvious, but suppA(x) is well-defined.
We set supp(x) := suppatoms(x)(x). Notice that supp(x) ⊆ suppA(x)∩ atoms(x).

We say that x, y ∈ HF(A) are isomorphic, x ∼= y, if there is a bijection
σ : atoms(x) → atoms(y) such that σ(x) = y.

A set FGL (SFGL) is an FGL for which all inputs are (encodings of) sets
x ∈ HF(atoms(x)) and for which there is a number m and a function g such that
for each term t = f(t1, . . . , tk), every input set q to an oracle call made by the
constructor Mf in the evaluation of t on input x satisfies:

1. atoms(q) ⊆ atoms(x)
2. ||q|| ∈ O(atoms(x)m), and
3. rank(q) ≤ g(t, rank(x)).

In addition, for each oracle ti, the set Qi
t(x) consisting of all input sets q to

calls to ti made by Mf in the evaluation of t on input x is independent of the
encoding of x (so is well defined). This requirement implies that Qi

t(x) is fixed
by all automorphisms of x, a fact that is critical to the proof of Lemma 2 below.
Finally, we require closure under isomorphism. That is, if x ∼= y, then for all
terms t, x |= t iff y |= t.3

SFGLs are powerful enough to simulate FO with finitely many Lindström
quantifiers Q [4, 5]. We briefly outline the simulation on a structure A. We need

– one constant cR for every relation symbol of A,
– function symbols f¬ of arity 2 and f∨, f∧ of arity 3,
– one function symbol fQ of arity 2 for every Lindström quantifier Q,
– a constant c∅ corresponding to ∅, and
– function symbols fp and fu of arity 2 corresponding to pairing and union.

The term tφ providing the simulation mimics the structure of φ ∈FO(Q): each
logical operator corresponds to a constructor, which makes calls to its oracles on
inputs Aā consisting of A extended with a tuple ā providing a valuation for a
subset z̄ of the variables. There is one subtlety: the constructors calling oracles
corresponding to sub-formulas must decide what components of ā to pass to
each sub-formula, which is determined by its free variables. This information
is specified by an additional oracle defined by a term using c∅, fp, and fu and
accepting precisely one atomless set that encodes the needed information. We
write tv̄ for the term that accepts precisely the set representing v̄. We define:

– If φ is an atomic formula Rx̄, then tφ := cR.
– If φ(z̄) is α(x̄) ∧ β(ȳ), then tφ := f∧(tα, tβ , t〈x̄,ȳ〉) (similarly for ∨ and ¬).
– If φ(z̄) is Qx̄α(x̄z̄), then tφ := tfQ

(tα, t〈x̄〉).

3 We write x |= t if t accepts x.

PTIME Queries Revisited 287

To illustrate, consider the simulation of a conjunction α(x̄)∧ β(ȳ). On input
Aā, Mf∧ first queries its last oracle on atomless sets in their canonical order
until some set s is accepted. If s does not encode appropriate tuples of variables,
the constructor rejects. Otherwise, Mf∧ uses x̄ and z̄ to obtain from ā the tuples
on which to issue queries to tα and tβ : Notice that in the simulation of FO(Q),
requirements (2) and (3) in the definition of SFGL are satisfied: constructors
call oracles on inputs of the form Aā where ā is a tuple of variables whose rank
increases by at most a constant at each call. Thus, (2) and (3) can be viewed as
generalizing this mode of computation.

Theorem 7. There is no SFGL that expresses all PTIME properties of graphs.

Proof. (outline) By Proposition 1 below, there is some b so that we can de-
cide x |= t in time O(||x||b) for x satisfying x = atoms(x) (i.e. a “naked”
set). In this case we can set r = 1 and s = 0 and we have ||x|| = |atoms(x)|.
The result follows by a straightforward adaptation of the Time Hierarchy theo-
rem [10].

Proposition 1. If every building block of an SFGL runs in time O(ntc) and
every constructor runs in time in time O(ntf) and has arity at most k, then for
every term t, for every fixed r, s,m and for every x satisfying

|supp(x)| ≤ s, ||x|| ∈ O(|atoms(x)|m), and rank(x) ≤ r,

we can decide x |= t in time O(|atoms(x)|b), where b := m ·max(tc, tf , 4).

Proof. (outline) Assume we have tc, tf , k, r, s and m satisfying the hypotheses.
We show by induction on term depth d that the statement holds for each x
satisfying the hypotheses. This is clear for d = 0; for the inductive step we use
the following simulation to evaluate term t = f(t1, . . . , tj). We compute as Mf

does on input x, except for each query q to oracle i we first look for q′ isomorphic
to q within an internal table Ti (initially empty). If such q′ is found, we do not
issue the query and instead use the answer we obtained for q′. Otherwise, we
issue the query and add q and the result of the query to the table Ti. We can
divide the running time of this simulation into three parts: time spent in (1) the
body of Mf , (2) table lookup, (3) queries. We set nx = ||x||, ax = |atoms(x)|,
rx = rank(x), sx = |supp(x)|, sq := s + b, and rq := g(t, r).

1. The time spent in the body of Mf is O(ntf
x) ⊆ O(amtf

x) ⊆ O(ab
x).

2. To do the table lookup for a query q, we first compute its support, which we
can do in time O(a2

xn
2
x). To check for isomorphism against q′ in the table,

we try all possible bijections σ : supp(q) → supp(q′). By Lemma 2 below
we know that |supp(q)| ≤ sq for large enough x, so this adds a factor of sq!.
Finally, also by Lemma 2 below we know that the number of isomorphism
classes of q depends only on rq and sq. Since ||x|| ∈ O(|atoms(x)|m), we can
do the table lookup in time O(a2+2m

x) ⊆ O(ab
x).

288 A. Nash, J. Remmel, and V. Vianu

3. We know from above that the total number of queries we need to make de-
pends on k, rq, and sq, but not on nx. We can show that |atoms(q)| ≤ sq

or |atoms(q)| ≥ ax − sq. If the former holds, ||q|| is bounded by a con-
stant depending only on rq and sq If the latter holds we have O(am

x) =
O(|atoms(q)|m). Either way, ||q|| ∈ O(|atoms(q)|m) so we can apply the in-
duction hypothesis using rq and sq in place of r and s. Therefore, we can
answer all queries in time O(|atoms(q)|b) ⊆ O(ab

x).

Lemma 2. If every constructor runs in time O(nb/m
x), then for fixed s and large

enough x satisfying 1, 2, and 3 of Proposition 1 every query q ∈ Qt
x must satisfy

|suppA(q)| ≤ s+ b where A = atoms(x) and therefore also |supp(q)| ≤ s+ b. The
number of isomorphism classes in Qt

x depends only on g(t, r) and s + b.

Lemma 2 is an extension of Theorem 24 in [2]. The (difficult!) proof is omitted.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of databases. Addison Wesley,
1995.

2. A. Blass, Y. Gurevich, and S. Shelah. Choiceless polynomial time. Annals of Pure
and Applied Logic, 100:141–187, 1999.

3. A. Chandra and D. Harel. Structure and complexity of relational queries. J. Com-
put. Syst. Sci., 25(1):99–128, 1982.

4. A. Dawar and L. Hella. The expressive power of finitely many generalized quanti-
fiers. Inf. Comput., 123(2):172–184, 1995.

5. H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, 2nd edition, 1999.
6. R. Fagin. Generalized first-order spectra and polynomial-time recognizable sets.

In R. Karp, editor, Complexity of Computation, pages 43–73. SIAM-AMS Proceed-
ings, 1974.

7. M. Grohe. The structure of fixed-point logics. PhD thesis, Albert-Ludwigs Univer-
sität Freiburg, 1994.

8. M. Grohe. Fixed-point logics on planar graphs. In Proc. Symp. on Logic in Com-
puter Science, 1998.

9. Y. Gurevich. Logic and the challenge of computer science. In E. Borger, editor,
Trends in Theoretical Computer Science, pages 1–57. Computer Science Press,
1988.

10. J. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and
Computation. Reading, MA: Addison Wesley, 1979.

11. N. Immerman. Relational queries computable in polynomial time. Information
and Control, 68:86–104, 1986.

12. M. Y. Vardi. The complexity of relational query languages. In Proc. ACM SIGACT
Symp. on the Theory of Computing, pages 137–146, 1982.

Asymptotic Conditional Probabilities for
Conjunctive Queries

Nilesh Dalvi, Gerome Miklau, and Dan Suciu

University of Washington

Abstract. We study the asymptotic probabilities of conjunctive queries
on random graphs. We consider a probabilistic model where the expected
graph size remains constant independent of the number of vertices. While
it has been known that a convergence law holds for conjunctive queries
under this model, we focus on the calculation of conditional probabili-
ties. This has direct applications to database problems like query-view
security, i.e. evaluating the probability of a sensitive query given the
knowledge of a set of published views. We prove that a convergence law
holds for conditional probabilities of conjunctive queries and we give a
procedure for calculating the conditional probabilities.

1 Introduction

Two seemingly unrelated applications call for a renewed study of probabilistic
properties of logical formulas. One is the study of information about a sensitive
query which is disclosed by a public view [10]. The other is a study of queries
with uncertain predicates [1]. Both have been studied using a certain proba-
bilistic model, which, as we show here has some limitations. In this paper we
propose a new probabilistic model of databases, considered before for random
graphs [12, 9] but not for databases, and study properties of conjunctive queries
under this new model. This model provides a characterization of information
disclosure between a query and view, with query answerability at one end of the
spectrum, and logical independence (or perfect security) at the other.

Motivation 1: Information Disclosure. We start by illustrating the limi-
tation of the probabilistic model in [10]. The owner of a database I wishes to
publish a view V (I) over the database, and would like to determine whether
certain sensitive information is disclosed by the view. The sensitive data is ex-
pressed in terms of a query, called the sensitive query, Q(I). The query-view
security problem requires one to check whether the view V does not leak any se-
cret information about the query. In [10] this problem is modeled by comparing
the a priori knowledge an adversary possesses about Q(I), with the knowledge
about Q(I) given V (I). The adversary’s knowledge is described as the proba-
bility of Q(I) attaining a certain value, when I is chosen randomly. If both the
view and the sensitive query are boolean, the a priori probability is P(Q), while
the a posteriori probability is the conditional probability P(Q | V). When the

T. Eiter and L. Libkin (Eds.): ICDT 2005, LNCS 3363, pp. 289–305, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

290 N. Dalvi, G. Miklau, and D. Suciu

two values are identical, then the query is said to be perfectly secure w.r.t. the
view. The work in [10] is focused on deciding, for conjunctive queries Q and V ,
when perfect security holds. Notice that the definition is for one fixed domain
and probability distribution, although the results in [10] show that it is largely
independent of both.

The problem is that perfect security is often too restrictive for practical
purposes, rejecting as insecure query-view pairs that are probably acceptable in
practice. This is illustrated in the following example:

Example 1. Suppose we have a sensitive database Employee(name, department,
email), and suppose we would like to publish a view V consisting of all de-
partments but hiding all employee names. Limiting our discussion to boolean
queries and views, suppose we want to publish that one of the departments
is called Amateur Astronomy, but would like to hide the fact that one of the
employees is John Smith. Then Q and V would be defined as follows:

V ← Employee(−, “Amateur Astronomy”,−)
Q← Employee(“John Smith”,−,−)

Here Q is not perfectly secure w.r.t. to the view V . For a quick justification,
consider the case where the domains for name, department, and email each con-
sist of a single value (say js@mystartup.com for email). Then there are only two
database instances, ∅ and {(“John Smith”, “Amateur Astronomy”, “js@mystart-
up.com”)}, and assume each has probability 0.5, hence P(Q) = 0.5. By contrast,
P(Q | V) = 1. In fact, it can be shown that for every domain and probability dis-
tribution1 P we have P(Q | V) > P(Q), and therefore the query is not perfectly
secure w.r.t. the view. However, the difference between the two probabilities is
tiny for large domains, and for practical purposes the information disclosure
should be considered negligible. In practice, users are usually willing to publish
the set of department’s, even if the employee name’s are sensitive. Thus, the
notion of perfect security is a higher standard than what is currently used in
practice.

Capturing practical security, as opposed to perfect security, was left open
in [10].

Motivation 2: Query Answering in the Presence of Uncertainties. For
integrating large numbers of data sources the Local As View (LAV) approach
has been proposed [7]. A global data instance I is specified indirectly, through
a number of view definitions V (I), one corresponding to each local data source.
Only the materialized views v = V (I) are known, but not the instance I, and
any instance J is considered possible as long as2 v = V (J). A tuple t is a certain
answer to a query Q(I) if t ∈ Q(J) for every possible instance J .

1 We require P to be
= 0 everywhere.
2 Or v ⊆ V (J) for the Open World Assumption.

Asymptotic Conditional Probabilities for Conjunctive Queries 291

When integrating and querying unfamiliar data sources however, one of-
ten needs to deal with uncertainties. Uncertain facts in databases have been
addressed for example in [5], where they have been modeled as probabilistic
databases. A probabilistic database is a probability distribution P(I) over all
instances I. There are several ways in which one can derive such a probability
distribution. In one application, for example, predicates in a user query are in-
terpreted as uncertain, and the degree to which a tuple in the database matches
the predicate is transformed into a probability [1].

We propose to use probabilistic databases for query answering using views,
thus allowing uncertainties to be handled during data integration. We still have
local sources described as views, and are given the materialized views only. But
now we have a probability distribution P(J) on all possible database instances
J , and the probability of a tuple t is the sum of P(J) over all J ’s for which
t ∈ Q(J). All certain tuples will have probability 1, but other tuples may have
probability close to 1, and should be considered as probable answers.

Example 2. Continuing Example 1, suppose the company publishes two views,
one with all (name, department) pairs in the database, and the other with all
(department, email) pairs. Suppose we receive an email from js@mystartup.com,
and would like to use these two views to find out the name of the person who
sent out that email. As before, we restrict the discussion to boolean views and
queries, and model the problem with the two boolean views below, and a boolean
query (asking whether “John Smith” is the sender):

V ′ ← Employees(“John Smith”, “Amateur Astronomy”,−)
V ′′ ← Employees(−, “Amateur Astronomy”, “js@mystartup.com”)
Q← Employees(“John Smith”,−, “js@mystartup.com”)

In order for Q to be a certain answer we need to have the logical implication
V ′V ′′ → Q, which does not hold in this example. That is, Q is not a certain
answer given V . We argue, however, that a system should report “John Smith”
as a possible answer to the query. To see why, assume for the moment that there
are, on average, 5 employees per department. Then “John Smith” is an answer
with probability 20%. Clearly, in some applications it is critical to return it as
an answer. Assume now that we know nothing about the database, except that
V ′ and V ′′ are true, and that the Employees table has a number of records
which is much smaller than the size of the domains for the three attributes.
Then, if the domain size is very large, the probability of “John Smith” being an
answer approaches 1. Indeed, if we populate a fixed (say 100) number of tuples
in Employee with random values from a huge domain, the probability that two
tuples have the same department value is close to 0. Hence, the probability that
the two tuples satisfying V ′ and V ′′ are in fact the same tuple approaches 1, and
“John Smith” is an answer with a probability close to 1.

This surprising example justifies our quest for an investigation of the asymp-
totic conditional probability of queries.

292 N. Dalvi, G. Miklau, and D. Suciu

Contributions. In this paper we show that a certain new probability model
provides a reasonable definition for both practical security and probable answers.
In this model individual tuples have a uniform probability of occurring in the
database, but the probability of each tuple t is now such that the expected size
of the relation instance R is a given constant S (different constants may be used
for different relation names). As the domain size n grows to ∞, the expected
database size remains constant. Hence, in the case of directed graphs (i.e. a
single, binary relation R), the probability that two given nodes are connected
by an edge is S/n2. Denoting by μn[Q] the probability that a boolean query Q
is true on a domain of size n, our goal is to compute μn[Q | V] as n→∞.

For Information Disclosure we will propose, as a definition of practical secu-
rity, the condition limn μn[Q | V] = 0. This is justified as follows. The adversary
faces a large domain. For example, if he is trying to guess whether “John Smith”
is an employee, then he has only a tiny probability of success: 1/n where n is the
size of the domain. On the other hand, the size of the database is much smaller,
and the adversary often knows a good approximation. This definition relaxes the
previous definition of perfect security for sensitive queries Q (see Sec. 3).

For Query Answering we will propose, as a definition of probable answer,
the condition limn μn[Q | V] = 1. Again, this relaxes the definition of certain
answers (see Sec. 3).

The key technical contribution in this paper is to show that limn μn[Q | V]
for conjunctive queries Q and V always exists and to provide an algorithm for
computing it. The key technical lemma is to show that, for each conjunctive
query Q there exists two number c, d s.t. μn[Q] = c/nd +O(1/nd+1). Moreover,
both d and c can be computed algorithmically. Since μn[Q | V] = μn[QV]/μn[V],
the main result follows easily.

Our main result leads to the following classification for query Q and view V ,
describing a spectrum of information disclosure and answerability.

Perfect Query-View Security μn[Q | V] = μn[Q] for all n large enough.
Here V provides no information about Q. This is the condition studied in
[10].

Practical Query-View Security limn→∞ μn[Q | V] = 0. This implies that
the difference of probabilities is zero in the limit (since limn μn[Q] = 0 for
all practical purposes). For finite n, V may in fact contain some information
for answering Q, but it is considered negligible under our model.

Practical Disclosure 0 < limn→∞ μn[Q | V] < 1. Disclosure is non-negligible
in this case. Our main result allows us to compute this quantity in terms of
expected database size S.

Probable Query Answer limn→∞ μn[Q | V] = 1. For any n, the answer to Q
is not determined by V . However as n→∞, Q is almost surely true.

Certain Query Answer μn[Q | V] = 1 for all n. Here V determines the an-
swer to Q. That is, true is a certain answer to boolean query Q, given V .

Related Work. When restricted to graphs, our random database model is an
instance of the random graphs introduced by Erdös and Rényi [2]. A random

Asymptotic Conditional Probabilities for Conjunctive Queries 293

graph on n is a graph on n vertices where each edge is chosen randomly and
independently with probability p(n). The study of convergence laws on random
graphs was initiated independently by Fagin [3] and Glebskĭi et al. [6]. They
consider random graphs with p(n) a constant and proved a 0-1 law for statements
of first order logic, i.e. the asymptotic probabilities always converge to either 0
or 1. These results hold for a pure relational vocabulary, without constants or
function symbols.

The work was later extended to a class of edge probabilities of the form
p(n) = βn−α, where α, β ≥ 0. The results of Shelah and Spencer [12] and Lynch
[9] show that a convergence law holds for all α ≥ 1 and for all irrational α
between 0 and 1, although the limit need not be 0 or 1. For the case of one
binary predicate our random databases correspond to the case α = 2 and β = S
(the expected size).

The problem of evaluating asymptotic conditional probabilities has received
relatively less attention. Fagin [3] shows that conditional probabilities do not
always converge for first order probabilities. Liogon’kĭi [8] proves that even the
problem of determining if conditional probabilities converge is undecidable for
first order logic, but is decidable when restricted to only unary predicates.

Paper Organization. In Sec. 2 we review probability distributions for data-
bases. In Sec. 3 we introduce the probabilistic model analyzed here. Sec. 4 con-
tains the main theorems, with proofs deferred to the Appendix. We illustrate
our main results on several examples in Sec. 5. We conclude in Sec. 6.

2 Basic Definitions and Background

We fix a vocabulary of relation names R1, R2, . . . Rm. The number of attributes
in relation Ri is its arity, denoted A(Ri). For a finite domain D, a tuple for Ri

is an element of DA(Ri), and we denote Tup the disjoint union of DA(Ri), for
i = 1, . . . ,m. A database instance I over D is any subset of Tup, and inst(D)
denotes the set of all database instances over D.

The probability distributions over database instances that we consider are
always derived by choosing tuples independently. Each tuple t ∈ Tup is assigned
a probability P[t] that it will occur in the database instance. This induces the
following probability distribution on instances I ∈ inst(D):

P[I] =
∏
t∈I

P[t] ·
∏
t/∈I

(1−P[t]) (1)

The problem considered in this paper concerns the probability of a query.
Our discussion will be restricted to conjunctive queries, possibly with the in-
equality operators �=. Thus, a query is a conjunction of predicates, where each
predicate is either a relational predicate R(t1, . . . , tk), called a subgoal, or an
inequality predicate x �= t; here x is a variable, while t, t1, . . . , tk are either vari-
ables or constants. We use letters from the end of the alphabet for variables, e.g.
x, y, z, u, v, and from the beginning of the alphabet for constants, e.g. a, b, c.

294 N. Dalvi, G. Miklau, and D. Suciu

Our results are presented only for boolean queries. They also apply to non-
boolean queries under the Open World Assumption (OWA), using the simple
transformation illustrated for the query below:

q(x, y) ← R(x, a, z), S(z, y)

Here q is non-boolean. Suppose its answer includes the tuples (a, b) and (c, b).
This is expressed as q(a, b)∧ q(c, b), which becomes the following boolean query:

Q← R(a, a, z1), S(z1, b), R(c, a, z2), S(z2, b)

Statements about q and the fact that its answers include (a, b) and (c, b) are thus
rephrased into statements about the boolean query Q. In the rest of this paper
we will consider only boolean queries, unless otherwise stated.

Given a boolean query Q and a probability distribution over database in-
stances, the following expression represents the probability that Q is true on a
randomly chosen database instance I:

P[Q] =
∑

{I∈inst(D)|Q(I)=true}
P[I] (2)

3 Probabilistic Model

We now introduce our new twist to the probabilistic model, in which we let the
domain size tend to ∞ while keeping the expected size of each relation instance
fixed. Let Dn denote a domain of size n.

For each relation Ri in the vocabulary, fix a number Si representing the
expected size of Ri. We then define a specific probability distribution, denoted
μn (instead of P), having the following properties:

1. For each relation Ri, each tuple (element of (Dn)A(Ri)) belongs to Ri inde-
pendently and with equal probability.

2. For each relation Ri, the expected size of Ri is Si, independent of n.

It follows that, for every tuple t of Ri, μn[t] = Si/n
A(Ri).

Given a boolean query Q, its probability, μn[Q] given by the formula (2), is
the probability that Q is true on an instance I randomly chosen from inst(Dn).
Similarly, define μn[Q1 | Q2] to be the conditional probability that a database
chosen randomly from inst(Dn) satisfies Q1, given that it satisfies Q2. It is
equal to μn[Q1Q2]/μn[Q2]. We are concerned with the following two asymptotic
probabilities:

Definition 1. For conjunctive query Q, the asymptotic probability of Q is
μ[Q] = limn→∞ μn[Q], if the limit exists.

For conjunctive queries Q1, Q2, the conditional asymptotic probability
is μ[Q1 | Q2] = limn→∞ μn[Q1 | Q2], if the limit exists.

Asymptotic Conditional Probabilities for Conjunctive Queries 295

It is known[12] that μ[Q] exists for every pure relational FO formula Q (and,
hence, for any conjunctive query without constants), and that it is not necessarily
0 or 1 (hence this model does not have a 0/1-law). To see the latter, consider
the vocabulary of a single binary relation R, and the query Q ← R(x, y). The
query checks R �= ∅. For each n > 0, μn[t] = S/n2 for any tuple t, and μn[Q] =
1− (1− S/n2)n2

. Hence, μ[Q] = 1− e−S .
Queries like the above are not interesting in database applications. More

generally, call a subgoal of Q1 trivial if it has no constants, and all its variables are
distinct and do not occur in any other subgoals of Q1 (they may occur however
in inequality predicates). Trivial subgoals can be eliminated from a query Q1, by
splitting it into into a query Q without trivial subgoals, and several statements
of the form R �= ∅. For example, if Q1 ← R(x, y), T (u, a, b) (where R(x, y) is a
trivial subgoal), then μn[Q1] = μn[R �= ∅]μn[Q] where Q ← T (u, a, b), and we
have computed μn[R �= ∅] above. For that reason we will assume throughout the
paper that queries do not have trivial subgoals. It follows from our main results
that in that case μ[Q] = 0; conversely, μ[Q] > 0 only if Q is a conjunction of
queries of the form “Ri is non-empty”.

Finally, we can define:

Definition 2. Let Q and V be two boolean conjunctive queries.

1. Q is practically secure w.r.t. V if μ[Q | V] = 0.
2. Q is a probable answer given V if μ[Q | V] = 1.

This definition relaxes previous definitions from the literature. Indeed, if Q
has no trivial subgoals then μ[Q] = 0; hence, if it is perfectly secure w.r.t V (i.e.
μn[Q | V] = μn[Q] for all n) then it is practically secure w.r.t V (μ[Q | V] = 0).
Similarly, if Q is a certain answer given V (μn[Q | V] = 1 for all n) then it is a
probable answer (μ[Q | V] = 1).

4 Main Results

Throughout this section we consider conjunctive queries with inequality predi-
cates �=, and without trivial subgoals.

4.1 Main Result: Part I

Half of our main result is captured by the following theorem:

Theorem 1. For every conjunctive query Q, there exists two numbers c, d such
that:

μn(Q) = c(1/n)d + O((1/n)d+1)

where d is an integer, d ≥ 1. We denote c and d by cQ = coeff(Q) and dQ =
exp(Q) respectively.

It follows that μ[Q] = 0. The number exp(Q) depends only on the query Q,
while coeff(Q) depends both on the query Q and on S1, . . . , Sm, the expected

296 N. Dalvi, G. Miklau, and D. Suciu

cardinalities of the database relations. The second half of our main result shows
how to compute exp(Q) and coeff(Q): we postpone it until we introduce the
necessary notations.

Theorem 1 also implies the existence of the conditional asymptotic probability
of formulas Q1 and Q2:

Corollary 1. For any two boolean conjunctive queries Q1, Q2 the conditional
asymptotic probability, μ(Q1|Q2), always exists and is as follows:

μ(Q1|Q2) =

{
0 exp(Q1Q2) < exp(Q2)
coeff(Q1Q2)/coeff(Q2) exp(Q1Q2) = exp(Q2)

We next show how to compute coeff(Q) and exp(Q).

4.2 Intuition

Here we illustrate the main intuition behind Theorem 1 and also motivate the
notations needed to express exp(Q) and coeff(Q). We use a relational schema
consisting of two tables, R and T , with arities 2 and 3 respectively, and expected
sizes S1 and S2. Thus, given a domain Dn = {a1, . . . , an}, the probability of a
tuple R(ai, aj) is p1 = S1/n

2 and the probability of a tuple T (ai, aj , ak) is
p2 = S2/n

3. We consider the following three queries:

Q1 ← R(a, x)
Q2 ← R(a, x), T (x, y, b), R(y, c)
Q3 ← T (a, b, x), T (a, y, c)

Here a, b, c are constants and we will assume that they occur in the domain Dn

(hence n ≥ 3). For each query Q, our goal is to express its probability as μn[Q] =
c/nd + O(1/nd+1), focusing on computing cQ = exp(Q) and dQ = coeff(Q).

Let’s start with Q1. There are n possible ways to substitute it’s variable x with
constants in the domain Dn, and, for each substitution {ai/x}, the probability
of the tuple (a, ai) is p1 = S1/n

2, hence:

μn[Q1] ≈ n× p1 = n× S1

n2 =
S1

n
(3)

suggesting dQ = 1, cQ = S1. Of course, this is not a rigorous calculation, since
we have approximated the probability of R(a, a1) ∨ . . . ∨R(a, an) with the sum
of their probabilities. A rigorous calculation confirms the values for cQ and dQ:

μn[Q1] = 1− (1− p1)n = np1 +
n(n− 1)

2
p2
1 + . . . =

S1

n
+ O(

1
n2)

Consider now Q2. Using the same informal reasoning, there are n2 possible
substitutions for the variables x, y, and for each substitution {ai/x, aj/y}, the

Asymptotic Conditional Probabilities for Conjunctive Queries 297

probability that all three tuples R(a, ai), T (ai, aj , b), and R(aj , c) appear in the
database is S1/n

2 · S2/n
3 · S1/n

2. Thus:

μn[Q2] ≈ n2 × S1S2S1

n2+3+2 =
S2

1S2

n5 (4)

which suggests dQ = 5 and cQ = S2
1S2. A rigorous, but much more complex

calculation (which is omitted) confirms that μn[Q2] = S2
1S2/n

5 + O(1/n6).
Formulas (3) and (4) suggest the following definition:

Definition 3. Let Q be a conjunctive query, and let goals(Q) denote the set of
its subgoals. We define several parameters, for each subgoal g ∈ goals(Q) and for
the entire query Q. For a subgoal g, we assume g is a predicate on the relation
Ri, i.e. g = Ri(t1, . . . , tk). Recall that Si is the expected cardinality of Ri.

A(g) = A(Ri) the “arity” of subgoal g
C(g) = Si the “coefficient” of subgoal g
V (Q) = the number of distinct variables in Q

A(Q) =
∑
{A(g) | g ∈ goals(Q)}

D(Q) = A(Q)− V (Q) the “exponent” of Q

C(Q) =
∏
{C(g) | g ∈ goals(Q)} the “coefficient” of Q

For our running example we have:

D(Q1) = 2− 1 = 1 C(Q1) = S1
D(Q2) = (2 + 3 + 2)− 2 = 5 C(Q2) = S1S2S1 = S2

1S2
D(Q3) = (3 + 3)− 2 = 4 C(Q3) = S2

2

Generalized to any query Q, our informal argument says that there are
nV (Q) substitutions of its variable, each leading to an event with probability
C(Q)/nA(Q); thus μn[Q] ≈ C(Q)/nD(Q). This suggests exp(Q) = D(Q) and
coeff(Q) = C(Q). However, this is not true on Q3, i.e. μn[Q3] �= S2

2/n
4+O(1/n5),

because the two subgoals in Q3 unify to T (a, b, c), hence μn[Q3] ≥ μn[T (a, b, c)] =
S2/n

3. We will show that μn[Q3] = S2/n
3 +O(1/n4). The example Q3 suggests

that we need to consider unifications between subgoals in the query. We do that
next.

4.3 Unifications

We assume here a conjunctive query Q with �= predicates. From Q, we gener-
ate a set of queries Q0 by unifying some of the subgoals. Each Q0 is obtained
by (1) applying some substitution to Q, (2) dropping all �= predicates and (3)
eliminating duplicate subgoals. While generate this set, we do not consider two
Q0 which are isomorphic. The steps are formally defined below.

298 N. Dalvi, G. Miklau, and D. Suciu

Substitutions. A substitution, η, is a mapping from variables to variables and
constants. Importantly, we restrict substitutions to use only constants already
in Q, thus, formally η : V ar(Q) → V ar(Q) ∪ Const(Q). A substitution may
not be defined on Q, if it violates some of the �= predicates. We denote Q |= η
if the substitution is defined on Q, and in that case η(Q) denotes the result of
applying η to the subgoals of Q (we drop the �= predicates). For example, if
Q ← R(a, x), R(x, y), R(y, z), x �= y then the substitution η = {b/x, y/y, y/z}
is defined on Q and by applying it we obtain the query Q0 = η(Q), Q0 ←
R(a, b), R(b, y), R(y, y). By contrast, the substitution η′ = {x/x, x/y, z/z} is not
defined on Q.

Each substitution η defines a partition P on goals(Q), such that two sub-
goals g, g′ are in the same equivalence class if η(g) = η(g′). We call η a uni-
fier for the partition P . Notice that η(Q) has exactly |P | subgoals, i.e. one for
each equivalence class in P . For a trivial illustration, consider the query Q ←
R(a, x, b), R(x, y, v), R(z, z, w) and the substitution η = {z/x, z/y, b/v, b/w}.
Then η(Q) ← R(a, z, b), R(z, z, b), and η defines the partition P = { {R(a, x, b)},
{R(x, y, v), R(z, z, w)}}, since the last two subgoals are mapped to the same sub-
goal by η.

A substitution η0 is called the most general unifier for a partition P if for
any other unifier η for P there exists a substitution θ s.t. η = θ ◦ η0. In this
case we call η(Q) a most general unifying query of Q. Continuing our example,
η is not a most general unifier for Q: the mgu is given by η0 = {z/x, z/y, w/v},
which results in η0(Q) ← R(a, z, b), R(z, z, w). Indeed, η is obtained as θ ◦ η0,
for θ = {b/w}.
Dropping �=. All the �= predicates are dropped from the unifying query Q0 =
η(Q). However, the �= predicates in Q are not ignored: they determine which
substitutions we may apply to obtain all unifying queries.

Eliminate Duplicate Subgoals. Since goals(Q0) is a set, this is an obvious
operation. Considering again Q ← R(a, x, b), R(x, y, v), R(z, z, w) and the sub-
stitution η = {z/x, z/y, b/v, b/w}, if we apply mechanically η to Q we obtain
Q0 ← R(a, z, b), R(z, z, b), R(z, z, b). The subgoal R(z, z, b) is a duplicate, how-
ever, and should be eliminated, i.e. Q0 ← R(a, z, b), R(z, z, b). While this sounds
evident, we insist on it because the functions D(−) and C(−) return different
(and wrong) results if we fail to eliminate duplicates.

Drop Isomorphic Queries. When generating all unifying queries Q0, we do
not include two queries that are identical up to variable renaming.

We now formally define the set of unifying queries.

Definition 4. Let Q be a conjunctive query. Define:

UQ(Q) = the set of all unifying queries Q0 of Q, Q0 = η(Q)
MGUQ(Q) = {Q0 | Q0 ∈ UQ(Q) and Q0 is a most general unifying query}

Note that any two distinct queries Q0, Q
′
0 ∈ UQ(Q) are not isomorphic.

Asymptotic Conditional Probabilities for Conjunctive Queries 299

4.4 Main Result: Part II

The second half of our main result, complementing Theorem 1 is:

Theorem 2. Let Q be a conjunctive query possibly with �= predicates, and with-
out trivial subgoals. Then the exponent exp(Q) and the coefficient coeff(Q) in
Theorem 1 are given by:

exp(Q) = min{D(Q0) | Q0 ∈ UQ(Q)} (5)

coeff(Q) =
∑
{C(Q0) | Q0 ∈ UQ(Q), D(Q0) = exp(Q)} (6)

Thus, to compute exp(Q) we have to iterate over all unifying queries Q0
and take the minimum value of D(Q0). To compute coeff(Q) we have to iterate
over all unifying queries Q0 that achieve the minimum D(Q0). While this is an
exponential time algorithm, as the next section shows, this cannot be avoided.
Before illustrating the theorem, we prove that in both formulas (5) and (6) it
suffices to iterate over MGUQ(Q) rather than UQ(Q). The algorithm becomes
much more efficient, but remains exponential in the worst case. The correctness
follows easily from the following:

Lemma 1. Let Q0 ∈ UQ(Q)−MGUQ(Q). Then there exists Q1 ∈MGUQ(Q)
s.t. D(Q1) < D(Q0).

Proof. Let Q0 = η(Q), and let η define a partition P with k sets. Let η1 be
the most general unifier for the same partition, and denote Q1 = η1(Q); Q1 ∈
MGUQ(Q). There exists θ s.t. Q0 = θ(Q1). Both Q0 and Q1 have exactly
k distinct subgoals, hence A(Q0) = A(Q1). Moreover, θ is not an isomorphism
(since Q0 �∈MGUQ(Q)), hence it either maps at least one variable to a constant,
or it maps two distinct variables to the same variable. In both cases V (Q0) <
V (Q1), hence D(Q0) = A(Q0)− V (Q0) > D(Q1) = A(Q1)− V (Q1).

In all examples below we will compute exp(Q) and coeff(Q) by using MGUQ(Q)
instead of UQ(Q) in Theorem 2. The proof, however, will be for UQ(Q).

We now illustrate Theorem 2 on several examples. For our three queries
above, we have MGUQ(Q1) = {Q1}, MGUQ(Q2) = {Q2}, and MGUQ(Q3) =
{Q3, Q

′
3} where Q′

3 ← T (a, b, c). This confirms the values for exp(Qi), coeff(Qi)
we have found above for i = 1, 2. For Q3, we have D(Q′

3) = 3 < D(Q3) = 4,
hence exp(Q3) = 3 and coeff(Q3) = C(Q′

3) = S2.
For a slightly more complex example, consider the following two queries:

Q4 ← R(a, x), R(y, b)
Q5 ← R(a, x), R(y, b), x �= b

Here MGUQ(Q4) = {Q4, Q
′
4}, where Q′

4 ← R(a, b). We have D(Q4) = D(Q′
4) =

2 = exp(Q4), hence coeff(Q4) = C(Q4)+C(Q′
4) = S2

1 +S1, according to Equation
(6). By contrast, MGUQ(Q5) = {Q4}, since Q′

4 is not a unifying query for Q5.
It follows:

μn[Q4] =
S2

1 + S1

n2 + O(
1
n3) μn[Q5] =

S2
1

n2 + O(
1
n3)

300 N. Dalvi, G. Miklau, and D. Suciu

4.5 Complexity of Evaluating coeff and exp

Theorem 3. Given a conjunctive query Q expected sizes of the relations, and a
number k, deciding exp(Q) ≤ k is NP-hard and evaluating coeff(Q) is #P -hard
in the size of the query.

The proof is omitted. Although evaluating these parameters is hard in the
general case, there are several cases where its very efficient. An example is a
query where no two sub-goals can be unified. For instance, a query with no
relation occuring multiple times, or same relation always occuring with different
constants.

5 Applications

We illustrate here our main results with five examples, corresponding to the
five classes of query-view pairs described in Sec. 1. Recall that μ[Q | V] =
limn→∞ μn[Q | V]

Perfect Query-View Security. This class is defined by μn[Q | V] = μn[Q] for
all n large enough. An example is:

V ← R(a, x); Q← R(b, x)

We showed[10] that P(Q | V) = P(Q) for all domains D and tuple-independent
probability distributions P. The view leaks absolutely nothing about the query.

Practical Query-View Security. This class is defined by μ[Q | V] = 0. Con-
sider the following example:

V ← R(a, y); Q← R(x, b)

We have exp(V) = 2−1 = 1, and exp(QV) = 2 (see query Q4 in Sec. 4.4). Hence
μ[Q | V] = 0. Example 1 in Sec. 1 is a variation. There:

V ← R(x, b, z); Q← R(a, y′, z′)

and we have exp(V) = 3 − 2 = 1, and exp(QV) = 2, since UQ(QV) = { {
R(x, b, z), R(a, y′, z′) }, {R(a, b, z)} }. Again, μ[Q | V] = 0. In both cases,
although V leaks a tiny amount of information about Q, it is safe to publish V
while keeping Q secret as long as the domain D is very large.

Practical Disclosure. This class is defined by 0 < μ[Q | V] < 1. For an
illustration, consider

V ← R(a, y), R(x, b); Q← R(a, b)

We have exp(V) = 2, coeff(V) = S + S2 (see query Q4 in Sec. 4.3). For
QV we note that MGUQ(QV) = {{ R(a, y),R(x, b),R(a, b)}, {R(a, b),R(x, b)},

Asymptotic Conditional Probabilities for Conjunctive Queries 301

{R(a, b),R(a, y)}, {R(a, b)}}, and that the minimum D(−) is attained only by
the last query, R(a, b). Hence exp(QV) = 2, coeff(QV) = S. It follows that
μ[QV] = 1/(1 +S). Depending on the application, this may be considered to be
an important leakage. For example, if the database has S = 1000 tuples, then
an attacker has a chance of 0.1% of guessing the answer to Q.

This is an important example in practice. Suppose R(name, phone) represents
names and phone numbers, and the owner wants to publish all names, then
separately all phone numbers, and wonders if the association between names
and phone numbers remains secret. Clearly, it does not, since an attacker can
pick a random name and phone number and associate them with about 1/S
chance of success. Unless S is huge, this is an important leakage.

Probable Query Answering. Recall that this class is defined by μn[Q | V] =
1. We illustrate this with an abstraction of Example 2 in Sec. 1:

V ← R(a, b, z), R(x, b, c); Q← R(a, y, c)

Here MGUQ(V) = {{R(a, b, z), R(x, b, c)}, {R(a, b, c)}} and the minimum
D(−) is attained only by R(a, b, c), hence exp(V) = 3 and coeff(V) = S. In a sim-
ilar way, MGUQ(QV) = {{R(a, b, z),R(x, b, c),R(a, y, c)}, {R(a, b, c),R(a, b, z)},
{R(a, b, c), R(a, y, c)}, {R(a, b, c), R(x, b, c)}, {R(a, b, c)}}, and the minimum
D(−) is also attained only by the last query, hence exp(QV) = 3, coeff(QV) = S.
It follows that μ[Q | V] = 1.

This may also be important in practice. Although V does not logically im-
ply Q, one may argue that for practical purposes if we know that V is true
then we also know Q. For example, suppose we integrate two data sources
R1(name, phone) and R2(phone, email), by describing them as projections of
a global relation R(name, phone, email). Suppose a user wants to find the email
address of “John Smith”, and that R1 contains (“John Smith”, 1234) and R2
contains (1234, js@com). The tuple (“John Smith”, js@com) is not a certain
answer, however it is a very probable answer, and should normally be returned
to the user.

Certain Answers. Recall that this class is defined by μn[Q | V] = 1 for all n.
An example is:

V ← R(a, x, x); Q← R(a, y, z)

6 Conclusion

Our results show that for conjunctive queries, asymptotic conditional probabil-
ities always exist, and can be evaluated algorithmically. Our results also hold
when constants are allowed in the logic, which is required when queries need to
refer to specific objects, and when converting non-boolean queries to boolean
queries. We have shown that this model has interesting applications both to
information disclosure and query answering.

302 N. Dalvi, G. Miklau, and D. Suciu

References

1. N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic databases. In
Conference on Very Large Data Bases, 2004.

2. P. Erdös and A. Rényi. On the evolution of random graphs. Magyar Tud. Akad.
Mat. Kut. Int. Kozl., 5:17–61, 1960.

3. R. Fagin. Probabilities on finite models. Journal of Symbolic Logic, 41(1):50–58,
1976.

4. C. Fortuin, P. Kasteleyn, and J. Ginibre. Correlation inequalities on some partially
ordered sets. Comm.in Math. Physics, 22:89–103, 1971.

5. N. Fuhr and T. Rlleke. A probabilistic relational algebra for the integration of
information retrieval and database systems. ACM Transactions on Information
Sysytems, 15(1):32–66, 1997.

6. Y. V. Glebskĭi, D. I. Kogan, M. I. Liogon’kĭi, and V. A. Talanov. Range and
degree of realizability of formulas in the restricted predicate calculus. Kibernetika,
2:17–28, 1969. [Engl. Transl. Cybernetics, vol. 5, 142–154 (1972)].

7. A. Halevy. Answering queries using views: A survey. VLDB Journal, 10(4):270–
294, 2001.

8. M. I. Liogon’kĭi. On the conditional satisfyability ratio of logical formulas. Math-
ematical Notes of the Academy of the USSR, 6:856–861, 1969.

9. J. F. Lynch. Probabilities of sentences about very sparse random graphs. Random
Struct. Algorithms, 3(1):33–54, 1992.

10. G. Miklau and D. Suciu. A formal analysis of information disclosure in data
exchange. In ACM SIGMOD International Conference on Management of Data,
pages 563–574, June 2004.

11. C. E. Shannon. Communication theory of secrecy systems. In Bell System Technical
Journal, 1949.

12. J. Spencer and S. Shelah. Zero-one laws for sparse random graphs. J. Amer. Math.
Soc., pages 97–115, 1988.

A Appendix

We prove here Theorems 1 and 2.
An event is a set of tuples, e ⊆ Tup, and we denote μn[e] the probability

that all tuples are in a randomly chosen database instance. Since all tuples are
independent events, we have μn[e] =

∏
t∈e μn[t]. If e1, . . . , em are events then

e1∨ . . .∨em denotes the event that at least one of them happens, i.e. a randomly
chosen database instance contains all tuples in ei, for some i = 1, . . . ,m. The
proof of theorems 1 and 2 relies on the following inequalities, representing a
lower bound and an upper bound for μn[e1 ∨ . . . ∨ em], and which are standard
in probability theory:∑

i=1,m

μn[ei]−
∑

1≤i<j≤m

μn[eiej] ≤ μn[e1 ∨ . . . ∨ em] ≤
∑

i=1,m

μn[ei] (7)

The event eiej represents the fact that all tuples in ei and ej are chosen; it is
equivalent to the event ei ∪ ej .

Given a conjunctive query Q0, denote Q�=
0 the query obtained by adding all

possible �= predicates, between any two distinct variables in Q0, and between

Asymptotic Conditional Probabilities for Conjunctive Queries 303

any variable and constant in Q. For example, if Q0 ← R(a, x), R(x, y) then
Q�=

0 ← R(a, x), R(x, y), x �= y, x �= a, y �= a. The proof of the main result consists
proving the following two equalities, then applying Eq.(7) to each of them.

Q ≡
∨
{Q�=

0 | Q0 ∈ UQ(Q)} (8)

Q�=
0 ≡
∨
{θ(Q�=

0) | Q�=
0 |= θ} (9)

In Eq.(9) the substitution θ ranges over all substitutions of the variables in Q0
with constants3 in Dn. This equation is the standard semantics of conjunctive
queries, and we will not illustrate or discuss it further. Instead, we focus on
Eq.(8). We first illustrate it on Q ← R(a, x), R(x, y). This query has five uni-
fiers, UQ(Q) = {Q,Q1, Q2, Q3, Q4}:

Q1 ← R(a, a), R(a, y), Q2 ← R(a, x), R(x, a),
Q3 ← R(a, z), R(z, z), Q4 ← R(a, a)

We have seen Q�=; similarly Q�=
1 ← R(a, a), R(a, y), y �= a, etc. Eq.(8) says:

Q ≡ Q�= ∨Q�=
1 ∨Q�=

2 ∨Q�=
3 ∨Q�=

4

Now we prove (8). The containment in one direction is easy: Q0 ⊆ Q for
Q0 ∈ UQ(Q) follows from the standard homomorphism theorem (since Q0 =
η(Q)), and Q�=

0 ⊆ Q0 is also immediate. For the other direction, consider one
database instance I where Q is true, and let θ be the substitution that makes
Q true. We will find some Q0 ∈ UQ(Q), s.t. Q�=

0 is also true in I. Let const(Q)
be all constants in Q, and C = {c1, . . . , cm} be all constants in θ(Q) that are
not in const(Q). Let z1, . . . , zm be m fresh variables, one for each constant in
C. Define the following substitution η on Q’s variables. If θ(x) ∈ const(Q), then
η(x) = θ(x); otherwise, if θ(x) = ci, i = 1, . . . ,m, then η(x) = zi. Let Q0 = η(Q).
By definition UQ(Q) contains some isomorphic copy of Q0, so assume w.l.o.g.
Q0 ∈ UQ(Q). The valuation θ0 defined by θ0(zi) = ci, i = 1,m is defined on
Q�=

0 , and θ0(Q0) = θ(Q), proving that Q�=
0 is true on the instance I.

We now sketch the proof of Theorems 1 and 2, by proving an upper bound
and a lower bound for μn[Q].

Upper Bound. We apply the upper bound in (7) twice: first to Eq.(8), then,
for each unifying query Q0 ∈ UQ(Q), to Eq.(9). We obtain:

μn[Q] ≤
∑

Q0∈UQ(Q)

∑
θ:Q�=

0 |=θ

μn[θ(Q�=
0)]

For each substitution θ that is defined on Q�=
0 we have μn[θ(Q�=

0)] = C(Q0)/nA(Q0)

(see Definition 3 for notations). This is because θ(Q�=
0) is a set of tuples having

3 Unlike our definition in Sec. 4.3, here we do allow the substitution θ to use constants
that do not appear in the query.

304 N. Dalvi, G. Miklau, and D. Suciu

one distinct tuple for each subgoal in Q0: the �= predicates prevent θ from map-
ping two subgoals to the same tuple. Moreover, there are nV (Q0)−O(nV (Q0)−1)
substitutions θ that are defined on Q�=

0 . Hence, for each unifier Q0, the inner sum
above is C(Q0)/nD(Q0) − O(1/nD(Q0)+1). When summing up over all unifiers,
the dominant terms are those with the lowest D(Q0), hence we have proven the
following upper bound (see Theorem 2 for exp(Q) and coeff(Q)):

μn[Q] ≤ coeff(Q)
nexp(Q) + O(

1
nexp(Q)+1)

Lower Bound. This is harder, because we have to prove that the second or-
der terms in the lower bound of Eq.(7) are negligible: more precisely we show
that the total contribution of these terms is O(1/nexp(Q)+1). We first apply the
lower bound to Eq.(8). The second order terms are here expressions of the form
μn[Q�=

0 Q
�=
1], where Q0, Q1 ∈ UQ(Q). Here Q�=

0 Q
�=
1 represents the conjunction of

the two boolean queries, and is obtained by first renaming all variables in Q0
and Q1 to make them disjoint, and then taking the union of all predicates in the
two queries, both subgoals and �= predicates. The number of such expressions
depends only on Q, not on n, so it suffices to show that each such expression is
O(1/nexp(Q)+1). This follows from the following lemma, and our already proven
upper bound:

Lemma 2. Let Q0 and Q1 be two non-isomorphic conjunctive queries, without
�= predicates. Then exp(Q�=

0 Q
�=
1) ≥ min(D(Q0), D(Q1)) + 1.

Indeed, for Q0, Q1 ∈ UQ(Q) the upper bound we have already shown gives
us μn[Q�=

0 Q
�=
1] = O(1/nexp(Q�=

0 Q�=
1)), and the lemma implies that exp(Q�=

0 Q
�=
1) ≥

exp(Q) + 1. We now prove the lemma. Assume the contrary, that exp(Q�=
0 Q

�=
1) ≤

D(Q0) and exp(Q�=
0 Q

�=
1) ≤ D(Q1). The first assumption implies that there ex-

ists a unifier Q′
0 = η(Q�=

0 Q
�=
1) s.t. D(Q′

0) ≤ D(Q0). Since goals(η(Q�=
0)) ⊆

goals(η(Q�=
0 Q

�=
1)) we have D(η(Q�=

0)) ≥ D(η(Q�=
0 Q

�=
1)); with the equality holding

only if goals(η(Q�=
0)) = goals(η(Q�=

0 Q
�=
1)), because there are no trivial subgoals

in η(Q�=
0 Q

�=
1). (One can verify that if Q has no trivial subgoals, then η(Q) has

no trivial subgoals either.) Moreover, η maps all subgoals of Q�=
0 to distinct sub-

goals, because of the �= predicates, hence D(Q0) ≥ D(η(Q�=
0)), and equality holds

only if η is an isomorphism. We have thus shown that D(Q0) ≥ D(η(Q�=
0 Q

�=
1)) ≥

exp(Q�=
0 Q

�=
1) and, given our first assumption, all three numbers are equal. This

implies that η(Q�=
0 Q

�=
1) is an isomorphic copy of Q0, which means that η is an

injective function from Q1 to (an isomorphic copy of) Q0. Similarly, using the
second assumption we prove the existence of an injective function from Q0 to
Q1, implying that Q0 and Q1 are isomorphic, and contradicting the lemma’s
assumption.

We have shown so far
∑

Q0∈UQ(Q) μn[Q�=
0] − O(1/nexpQ+1) ≤ μn[Q]. Given

the upper bound, it suffices to consider in the sum only unifiers Q0 for which
D(Q0) = exp(Q): the others result in lower order terms. We apply now Eq.(9) to
Q�=

0 , and then the lower bound in (7). The higher order terms are now of the form

Asymptotic Conditional Probabilities for Conjunctive Queries 305

μn[θ(Q�=
0)θ′(Q�=

0)], and we will show that their combined effect is O(1/nexp(Q)+1).
The number of such terms is now dependent on n. Denote e = θ(Q�=

0) and
e′ = θ′(Q�=

0). Both e and e′ are sets of tuples, and they have both the same
number of tuples, namely equal to the number of subgoals in Q0, because both θ
and θ′ are injective (due to the �= predicates). We examine their overlap. Consider
two tuples t ∈ e and t′ ∈ e′ s.t. t = t′. They cannot come from two distinct
subgoals in Q0, because in that case those two subgoals were unifiable, and, after
unifying them, one obtains Q1 ∈ UQ(Q) s.t. D(Q1) < D(Q0), contradicting the
fact that D(Q0) = exp(Q). So t and t′ correspond to the same subgoal in Q0.
Consider all subgoals in Q0 that are mapped to the same tuples by θ and θ′.
Define a new boolean query Q1 consisting of precisely these subgoals; hence
goals(Q1) ⊂ goals(Q0) (we cannot have equality because θ �= θ′). The intuition
here is that, when Q1 has few subgoals (or, e.g., is empty), then μn[ee′] is very
small, since e and e′ are largely independent; when Q1 has many subgoals, then
we use the fact that there cannot be too many pairs of valuations θ, θ′ that agree
on all subgoals in Q1. For these we need the following inequalities, which are
easily checked. (1) μn[θ(Q�=

0)θ′(Q�=
0)] = O(1/n2A(Q0)−A(Q1)), and (2) the number

of pairs of substitutions θ, θ′ which agree precisely on the subgoals in Q1 is
O(n2(V (Q0)−V (Q1))). Now we can add the second order terms and obtain:

∑
Q0(�=)|=θ,θ′

μn[θ(Q�=
0)θ′(Q�=

0)] =
∑

Q1:goals(Q1)⊂goals(Q0)

O(
n2(V (Q0)−V (Q1))

1/n2A(Q0)−A(Q1)
)

=
∑

Q1:goals(Q1)⊂goals(Q0)

O(
1

n2D(Q0)−D(Q1)
)

≤ O(1/nD(Q0)+1)

For the last inequality we have used the fact that D(Q1) < D(Q0), since
goals(Q1) ⊂ goals(Q0) and Q0 has no trivial subgoals.

Magic Sets and Their Application to Data Integration�

Wolfgang Faber��, Gianluigi Greco, and Nicola Leone

Mathematics Department, University of Calabria, 87030 Rende, Italy
{faber, ggreco, leone}@mat.unical.it

Abstract. We propose a generalization of the well-known Magic Sets technique
to Datalog¬ programs with (possibly unstratified) negation under stable model
semantics. Our technique produces a new program whose evaluation is generally
more efficient (due to a smaller instantiation), while preserving soundness under
cautious reasoning. Importantly, if the original program is consistent, then full
query-equivalence is guaranteed for both brave and cautious reasoning, which
turn out to be sound and complete.

In order to formally prove the correctness of our Magic Sets transformation,
we introduce a novel notion of modularity for Datalog¬ under the stable model
semantics, which is relevant per se. We prove that a module can be evaluated
independently from the rest of the program, while preserving soundness under
cautious reasoning. For consistent programs, both soundness and completeness
are guaranteed for brave reasoning and cautious reasoning as well.

Our Magic Sets optimization constitutes an effective method for enhancing
the performance of data-integration systems in which query-answering is carried
out by means of cautious reasoning over Datalog¬ programs. In fact, preliminary
results of experiments in the EU project INFOMIX, show that Magic Sets are
fundamental for the scalability of the system.

1 Introduction

Datalog¬ programs are function-free logic programs where negation may occur in the
bodies of rules [1]. Datalog¬ with stable model semantics [2, 3] 1 is a very expres-
sive query language in a precise mathematical sense: under brave (cautious) reasoning
Datalog¬ allows to express every query that is decidable in the complexity class NP
(co-NP) [4]. In the 90s, Datalog¬ was not considered very much in the database com-
munity, mainly because of the high complexity of its evaluation (NP or co-NP depending
on the reasoning modality [5, 6, 7]). However, the emerging of important database appli-
cations strictly requiring the co-NP expressiveness of Datalog¬ (see below and Sect. 5),
along with the availability of a couple of effective Datalog¬ systems, like DLV [8] and
Smodels [9], has renewed the interest in this language.

� This work was supported by the European Commission under projects IST-2002-33570 IN-
FOMIX, and IST-2001-37004 WASP.

�� Funded by an APART grant of the Austrian Academy of Sciences.
1 Unless explicitly specified, Datalog¬ will always denote Datalog with negation under stable

model semantics in this paper.

T. Eiter and L. Libkin (Eds.): ICDT 2005, LNCS 3363, pp. 306–320, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Magic Sets and Their Application to Data Integration 307

Our motivation to study optimization techniques for Datalog¬, comes from the data-
integration area that we are investigating within the EU project “INFOMIX: Boosting
Information Integration”. INFOMIX is a powerful data-integration system, which is
able to deal with both inconsistent and incomplete information. Following many recent
proposals (see, e.g., [10, 11, 12, 13, 14, 15]), query answering in the INFOMIX data-
integration system is reduced to cautious reasoning on Datalog¬ programs under stable
model semantics. This reduction is possible since query answering in data-integration
systems is co-NP-complete (in our setting and also in many other data-integration frame-
works [15, 13]) like cautious reasoning on (unstratified) Datalog¬ programs under the
stable model semantics [5, 6, 7].

Dealing with a co-NP-complete problem can appear unfeasible, or even crazy in
a database setting where input may be very large. However, our present results show
that suitable optimization techniques can “localize” the computation and limit the in-
efficient (co-NP) computation to a very small fragment of the input, obtaining fast
query-answering, even in a powerful data-integration framework. The main contribution
of the paper is the following.

� We define the new notions of independent set and module for Datalog¬, allowing
us to identify program fragments which can be evaluated “independently”, disre-
garding the rest of the program. The new notion of module is crucial for proving
the correctness of our magic set method. It is strictly related to the splitting sets of
[16], and to the modules of [17]; but we demonstrate that our notion has stronger
semantic properties, which are useful for the computation.

� We design an extension of the Magic Set algorithm for general Datalog¬ programs
(MS¬ algorithm for short). We show that different to stratified Datalog¬, where
bindings are propagated only head-to-body in a rule, unstratified negation requires
bindings to be propagated also body-to-head in general, in order to guarantee query
equivalence. Such a body-to-head propagation, which has been carefully incorpo-
rated in ourMS¬ method, allows us to properly deal with those rules (called dangerous
rules) which may be the source of semantic problems. And, in fact, we prove that the
rewriting generated by MS¬ is query equivalent to the input program P (under both
brave and cautious semantics), provided that P is consistent. Even if the program
is inconsistent soundness under cautious semantics and completeness under brave
semantics are guaranteed by our transformation.

� We show that our method can be profitably exploited for query optimization in
powerful data integration systems, where also incompleteness and inconsistency of
data is dealt with; and we apply MS¬ in the EU project INFOMIX. Specifically, we
show that our Magic Set technique can be employed for the optimization of the logic
programs specifying the database repairs 2 [10, 11, 12, 13, 14, 15] (the queries on the
data-integration system are eventually evaluated on these programs). MS¬ always
ensures the full query equivalence of the optimized program w.r.t. the original one,
since such programs are guaranteed to be consistent (a database repair always exists).
Preliminary results of experiments, that we carried out on a real application scenario,

2 Note that no previous magic-set technique is applicable, since these programs are unstratified
and are to be evaluated under stable models semantics.

308 W. Faber, G. Greco, and N. Leone

confirmed the viability and the effectiveness of our approach: the application of the
Magic Set method allows us to “localize” the computation, and to obtain fast query-
answering, even in a powerful data-integration framework.

2 Preliminaries and Notations

2.1 Datalog¬ Queries

An atom p(t1, . . . , tk) is composed of a predicate symbol p of arity k and terms
t1, . . . , tk, which can either be constants or variables. A (Datalog¬ rule) r is of
the form h:- b1, . . . , bm,not bm+1, . . . ,not bn., where h, b1, · · · , bn are atoms and
0 ≤ m ≤ n.H(r) = h is the head of r, while B(r) = B+(r) ∪ B−(r) is the body
of r, where B+(r) = {b1, . . . , bm} is the positive and B−(r) = {bm+1, . . . , bn} the
negative body of r. Finally, let Atoms(r) = {H(r)} ∪B(r) denote the set of atoms in
r, and Atoms(P) = {Atoms(r) | r ∈ P} for a program P.

A rule r with H(r) = p(t1, . . . , tk) is a defining rule for predicate p. If for a rule r,
B(r) = ∅ holds, the rule is a fact. If all defining rules of a predicate p are facts, then p is
an EDB predicate, otherwise it is an IDB predicate. A rule r is positive if B−(r) = ∅.
Throughout this paper, we assume that rules are safe, that is, each variable of a rule r
appears in B+(r) [1].

A datalog program with negation (Datalog¬ program for short) P is a finite set of
rules. A queryQ is simply an atom. We call an atom, rule, program, or query ground, if
they do not contain variables. Given a program P, we denote by Ground(P) the set of
all the rules obtained by applying to each rule r ∈ P all possible substitutions from the
variables in r to the set of all the constants in P.

Let the base BP of P be the set of ground atoms constructible from predicates and
constants inP. A set of atoms I ⊆ BP is an interpretation forP. Given an interpretation
I and set of rules T , let the restriction of I to T be defined as I/T = I ∩Atoms(T). In
a similar way, let the restriction of a set S of interpretations to T be defined as S/T =
{I/T | I ∈ S}, and let the restriction of a rule r to T (R/T) be defined by dropping
all body literals which are not in Atoms(T). Given a positive rule r ∈ Ground(P),
an interpretation I satisfies r if B(r) ⊆ I implies H(r) ∈ I . An interpretation I is a
model of a Datalog program P if I satisfies all rules in Ground(P). The stable model
of a Datalog program P is the unique subset-minimal model MM(P).

Given a Datalog¬ programP and an interpretation I , the Gelfond-Lifschitz transform
PI is defined as {H(r):-B+(r) | r ∈ Ground(P) : I ∩ B−(r) = ∅}. The set of
stable models of a Datalog¬ program P, denoted by SM(P), is the set of interpretations
I , such that I = MM(PI). P is consistent if SM(P) �= ∅, otherwise inconsistent.

Let a be a ground atom and a program P, then a is cautious consequence of P,
denoted by P |=c a, if ∀M ∈ SM(P) : a ∈ M; a is a brave consequence of P, denoted
by P |=b a, if ∃M ∈ SM(P) : a ∈ M. Given a query Q = b, Ansc(Q,P) denotes the
set of substitutions ϑ, such that P |=c bϑ; Ansb(Q,P) denotes the set of substitutions
ϑ, such that P |=b bϑ.

Let P be a Datalog¬ program and let F be a set of facts. Then, we denote by
PF the program PF = P ∪ F . Let P and P ′ be Datalog¬ programs and Q be a
query. Then, P is brave-sound w.r.t. P ′ and Q, denoted P⊆b

QP ′, if Ansb(Q,PF) ⊆

Magic Sets and Their Application to Data Integration 309

Ansb(Q,P ′
F) is guaranteed for all set of facts F ; P is cautious-sound w.r.t. P ′ and

Q, denoted P⊆c
QP ′, if Ansc(Q,PF) ⊆ Ansc(Q,P ′

F) for all F . P is brave-complete
(resp., cautious-complete) w.r.t. P ′ and Q, if P⊇b

QP ′ (resp., P⊇c
QP ′). Finally, P and

P ′ are brave-equivalent (resp., cautious-equivalent) w.r.t.Q, denoted byP≡b
QP ′ (resp.

P≡c
QP ′), if P⊆b

QP ′ and P⊇b
QP ′ (resp., P⊆c

QP ′ and P⊇c
QP ′).

With every programP, we associate a marked directed graphDGP = (N,E), called
the predicate dependency graph of P, where (i) each predicate of P is a node in N , and
(ii) there is an arc (a, b) in E directed from node a to node b if there is a rule r ∈ P
such that two predicates b and a of literals appear in H(r) and B(r), respectively. Such
an arc is marked if a appears in B−(r). An odd cycle in DGP is a cycle comprising an
odd number of marked arcs. One can also define the atom dependency graph DGA

P of a
ground program P, by considering atoms rather than predicates.

3 Modularity Results

The backbone of optimizations techniques like Magic Sets is to (automatically) identify a
part of the (ground) program, which can be used instead of the entire program to single out
the query program (the part which is sufficient to answer the query). In the negation-free
or stratified setting it is sufficient to examine reachability in the head-to-body direction.
Negation under the stable semantics also gives rise to (partial) inconsistency, which
may be triggered by activating an inconsistent part of the program in the body-to-head
direction. To this end we will first present a way to identify possibly inconsistent parts
of a program. Note that in this section we deal with ground programs.

Definition 1. Let P be a program (resp., ground program), and d be an predicate (resp.,
atom) of P. Then, we say that d is dangerous if either (i)d occurs in an odd cycle of
DGP (resp.,DGA

P), or (ii) d occurs in the body of a rule with a dangerous head predicate
(resp., atom). A rule r is dangerous, if it contains a dangerous predicate (resp., atom) in
the head. �

In principle, one can differentiate between conditional and unconditional sources of
inconsistencies. In the approach we present here, we are concerned with the first type. In
particular, that “isolated” inconsistencies are not covered, though one could easily come
up with a modified definition to account also for these. Intuitively, an independent atom
set of a ground program P is a set S of atoms whose semantics is not affected (apart
from unconditional inconsistencies) by the remaining atoms of P, and can therefore be
evaluated by disregarding the other atoms. Independent atom sets induce a corresponding
module of P.

Definition 2. An independent atom set of a programP is a setS ⊆ BP such that for each
atom a ∈ S the following holds: (1) if a = H(r) for a rule r ∈ P then Atoms(r) ⊆ S,
and (2) if a appears in the body of a dangerous rule r ∈ P then Atoms(r) ⊆ S. A subset
T of a program P is a module if T = {r | H(r) ∈ S} for some independent set S. �

Example 1. Consider the following program P1:

z :- y, not z. y :- q. p:-not q. q :-not p. a:- p,not b. b:- p,not a.

310 W. Faber, G. Greco, and N. Leone

Independent sets for P1 are {p, q, y, z}, ∅ and {p, q, y, z, a, b}, of which the first is
the only non-trivial one. The corresponding module T of P1 is

z :- y, not z. y :- q. p:-not q. q :-notp. ��
We next state the relationships between stable models of a program and its modules.

Theorem 1. LetT be a module of a programP, then (i) SM(P)/T ⊆ SM(T). Moreover,
if P is consistent, then (ii) SM(T) = SM(P)/T.

Proof. (i) If P is inconsistent, then the statement trivially holds as SM(P)/T = ∅. So
in the following we will assume that P is consistent.

We show that if any interpretation I is a stable model of P, then I/T is also a stable
model of T : Recall that T ⊆ P and note that all rules contain only atoms of Atoms(T),
by item 1 of Definition 2. Next, observe that T I/T = PI/T , hence T I/T ⊆ PI , and
therefore since I is a model of PI , it is also a model of T I/T . I/T can be shown to be
the minimal model of T I/T by observing that if a model J ⊂ I of T I/T would exist,
one could construct IJ = J ∪ {H(r) | r ∈ (PI − T I) ∧ B(r) ⊆ (I − I/T) ∪ J} (J
extended with the part of I which is not from T , which still follows from J). Clearly,
IJ ⊂ I is then a model of PI , contradicting the assumption that I ∈ SM(P).
(ii, Sketch) Since (i) holds also for consistent programs, what remains to show is
SM(T) ⊆ SM(P)/T for consistent P. We show that for any stable model I of T , a
stable model J exists such that J/T = I . It has been shown that any odd-cycle-free
Datalog¬ program is consistent [18]. Now observe that the only odd cycles in P − T
are independent of T by item 2 of Definition 2. Since P is assumed to be consistent,
such odd cycles can be deactivated by the presence of some atoms of P − T , which, by
Definition 2, are completely independent of T , such that a set of appropriate atoms K
of P − T exists such that K ∪ I = J . �

Corollary 1. Let T be a module of a consistent program P. Then, each stable model of
P can be obtained by enlarging a stable model of T .

From Thm. 1, we can obtain similar results for query answering:

Theorem 2. Given a ground atom q belonging to a module T of P, then (1) (T |=c

q) ⇒ (P |=c q), and (2) (T |=b q) ⇐ (P |=b q). Moreover, if P is consistent, then
(1) (T |=c q) ⇔ (P |=c q), and (2) (T |=b q) ⇔ (P |=b q).

Proof. If SM(P) = ∅ then P |=c q for any q ∈ Atoms(T), while P |=b q for no
q ∈ Atoms(T). Therefore in this case, the implications are trivially satisfied. So from
now on, consider SM(P) �= ∅. In this case, the set of cautious consequences is

⋂
SM(P)

and the set of brave consequences is
⋃

SM(P) in any case. Using Thm. 1 we can obtain
the following:

1. We have to show that if q is in all stable models of T , then it is also in all stable models
of P. Clearly, we have (

⋂
SM(T)) ⊆ (

⋂
SM(P)/T) and therefore the result follows.

2. We have to show that if q is in some stable models of P, then it is also in some
stable model of T . Symmetrically, (

⋃
SM(P)/T) ⊆ (

⋃
SM(T)) and therefore the

result follows.

The equivalence result then follows directly from Thm. 1, since in this case both
(
⋂

SM(T)) = (
⋂

SM(P)/T) and (
⋃

SM(P)/T) ⊆ (
⋃

SM(T)) hold. �

Magic Sets and Their Application to Data Integration 311

4 Magic Set Method for Datalog¬ Programs

In this section we present the Magic Set algorithm for general non-ground Datalog¬

programs (MS¬ algorithm for short). After recalling the Magic Set algorithm for positive
Datalog queries, we discuss the key issues arising when dealing with Datalog¬ programs
with unstratified negation.We then present the resultingMS¬ method, and finally we show
some query equivalence results.

4.1 Datalog Programs

We will illustrate how the Magic-Set method simulates the top-down evaluation of a
query by considering the program consisting of the rules path(X, Y):- edge(X, Y). and
path(X, Y):- edge(X, Z), path(Z, Y). together with query path(1, 5)?.

Adornment Step: The key idea is to materialize, by suitable adornments, binding infor-
mation for IDB predicates which would be propagated during a top-down computation.
These are strings of the letters b and f , denoting bound or free for each argument of an
IDB predicate. First, adornments are created for query predicates. The adorned version
of the query above is pathbb(1, 5).

The query adornments are then used to propagate their information into the body of
the rules defining it, simulating a top-down evaluation. Obviously various strategies can
be pursued concerning the order of processing the body atoms and the propagation of
bindings. These are referred to as Sideways Information Passing Strategies (SIPS), cf.
[19]. Any SIPS must guarantee an iterative processing of all body atoms in r. Let q be an
atom that has not yet been processed, and v be the set of already considered atoms, then
a SIPS specifies a propagation v→χ q, where χ is the set of the variables bound by v,
passing their values to q. In this paper we consider the SIPS which propagates binding
only through EDB atoms; IDB atoms receive the bindings, but do not bound any further
variable.

In the first rule of the example (path(X, Y):- edge(X, Y).) a binding is only
passed to the EDB predicate edge (which is not adorned), yielding the adorned rule
pathbb(X, Y):- edge(X, Y). In the second rule, pathbb(X, Y) passes its binding in-
formation to edge(X, Z) by pathbb(X, Y) →{X} edge(X, Z). edge(X, Z) itself is not
adorned, but it gives a binding to Z. Then, we consider path(Z, Y), for which we
obtain the propagation pathbb(X, Y), edge(X, Z) →{Y,Z} path(Z, Y). This causes
the generation of the adorned atom pathbb(Z, Y), and the resulting adorned rule is
pathbb(X, Y):- edge(X, Z), pathbb(Z, Y).

In general, adorning a rule may generate new adorned predicates. This step is
repeated until all adorned predicates have been processed, yielding the adorned
program, in our example it consists of the rules pathbb(X, Y):- edge(X, Y). and
pathbb(X, Y):- edge(X, Z), pathbb(Z, Y).

Generation Step: The adorned program is used to generate magic rules, which simulate
the top-down evaluation scheme. Let the magic version magic(pα) for an adorned atom
pα be defined as magic pα in which all arguments labelled f in α are eliminated.

Then, for each adorned atom p in the body of an adorned rule ra, a magic rule
rm is generated such that (i) the head of rm consists of magic(p), and (ii) the body
of rm consists of the magic version of the head atom of ra, followed by all of the

312 W. Faber, G. Greco, and N. Leone

predicates of ra which can propagate the binding on p. In our example we generate
magic pathbb(Z, Y):- magic pathbb(X, Y), edge(X, Z).

Modification Step: The adorned rules are subsequently modified by including magic
atoms generated in Step 2 in the rule bodies. The resulting rules are called mod-
ified rules. For each adorned rule the head of which is h, we extend its rule
body by inserting magic(h) and by stripping off the adornments of the other
predicates3. In our example, path(X, Y):- magic pathbb(X, Y), edge(X, Y). and
path(X, Y):- magic pathbb(X, Y), edge(X, Z), path(Z, Y). are generated.

Processing of the Query: For each adorned atom gα of the query the magic seed
magic(gα). is asserted. In our example we generate magic pathbb(1, 5).

The complete rewritten program consists of the magic, modified, and query rules.
Given a Datalog program P, a queryQ, and the rewritten program P ′, it is well known
(see e.g. [1]) thatP andP ′ are equivalent w.r.t.Q, i.e.,P≡b

QP ′ andP≡c
QP ′ hold (since

brave and cautious semantics coincide for Datalog programs).

4.2 Binding Propagation in Datalog¬ Programs: Some Key Issues

As argued in Sect. 3, different to positive Datalog, in which bindings are propagated
only head-to-body in a rule, the problem with unstratified negation is that any rewriting
for Datalog¬ programs, has to propagate bindings also body-to-head in general, in order
to achieve query equivalence.

Example 2. Consider the program P2

z(X):- y(X),not z(X). y(X):- q(X,Y).

p(X,Y):- d(X,Y),not q(X,Y). q(X,Y):- d(X,Y),not p(X,Y).

a(X):- p(X,Y),not b(X). b(X):- p(X, Y),not a(X).

together with the query Q2 = p(a,X)?, and the set of facts F2 = {d(a, b)}. The
stable models of P2 are {p(a, b), a(a), d(a, b)} and {p(a, b), b(a), d(a, b)}, so we get
Ansc(Q2,P2,F2) = Ansb(Q2,P2,F2) = {{X/b}}. Note that q(a, b) cannot occur in
any stable model.
When applying the Magic Set technique,4 we obtain as adorned program:

pbf(X,Y):- d(X,Y),not qbb(X,Y). qbb(X,Y):- d(X,Y),not pbb(X,Y).

pbb(X,Y):- d(X,Y),not qbb(X,Y).

Then, the generation step produces the following magic program Magic(Q2,P2):

magic pbf(a). magic qbb(X,Y):- magic pbf(X),d(X,Y).

magic pbb(X,Y):- magic qbb(X,Y). magic qbb(X,Y):- magic pbb(X,Y).

Finally, the original rules are modified to Modified(Q2,P2):

p(X,Y):- magic pbf(X),d(X,Y),not q(X,Y). q(X,Y):- magic qbb(X,Y),d(X,Y),not p(X,Y).

p(X,Y):- magic pbb(X,Y),d(X,Y),not q(X,Y).

3 We do this only for facilitating the equivalence proofs, one can alternatively adorn the query.
4 We do not consider any special technique for negative literals. We adorn negative literals last,

since they receive bindings, but do not bind any further variables.

Magic Sets and Their Application to Data Integration 313

Input: A Datalog¬ program P, and a query Q = g(t).
Output: The optimized program MS¬(Q, P).
var S: stack of adorned predicates; modifiedRules ,magicRules: set of rules;
begin

1. modifiedRules:= ∅; magicRules:=BuildQuerySeeds(Q, S);
2. while S �= ∅ do
3. pα := S.pop();
4. for each rule r ∈ P with H(r) = p(tp) do
5. ra := Adorn(r,pα,S);
6. magicRules := magicRules

⋃
Generate(ra);

7. modifiedRules := modifiedRules
⋃ {Modify(ra)};

8. end for
9. for each dangerous rule d ∈ P of the form h(th) :− q1(t1), . . . , qm(tm) where qi = p do
10. let ds be the rule qi(ti) :− h(th), q1(t1), . . . , qi−1(t1), qi+1(t1), . . . , qm(tm);
11. let da:=Adorn(ds,pα,S);
12. magicRules := magicRules

⋃
Generate(da);

13. end for
14. end while
15. MS¬(Q, P):=magicRules ∪ modifiedRules;
16. return MS¬(Q, P);

end.

Fig. 1. Magic Set Algorithm

Together with the fact d(a, b), MS(P2) = Magic(Q2,P2)∪Modified(Q2,P2) admits
two stable models, say M1 and M2, such that M1/P2 = {p(a, b)} and M2/P2 =
{q(a, b)}. Therefore, Ansc(Q2,MS(P2,F2)) = ∅, and Ansb(Q2,MS(P2,F2)) =
{{X/b}}. Hence, MS(P2) is not cautious-complete w.r.t. P2. �

In general the application of the traditional Magic Set method on unstratified pro-
grams would guarantee cautious-soundness and brave-completeness, but it would not
ensure cautious-completeness and brave-soundness.

The reason for this semantic problem lies in the fact that the first rule of P2 acts as
a constraint imposing any atom of the form y(X) to be not entailed in any model. Then,
from the second rule we also conclude that we cannot derive any fact of the form q(X, Y).
It follows that the constraint “indirectly” influences the query on predicate p, since the
model M2 of the rewritten program such that M2/P2 = {q(a, b)} cannot be extended
to be a model for program P2.

In order to overcome this semantic problem, we next present a Magic Set rewriting
which deals correctly with dangerous rules. In the above example, our method recognizes
that the second rule is dangerous and propagates the binding coming from q (in the body)
to y (in the head).

4.3 MS¬ Algorithm

We next describe the peculiarities of our rewriting technique. We assume the existence
of four auxiliary functions: BuildQuerySeeds(Q, S) adorns the given query Q, creates
an appropriate fact, and pushes newly adorned predicates onto the stack S, which is a
variable parameter. Adorn(r,pα,S) adorns the rule r using pα and pushes new adorned
predicates onto S. Generate(ra) creates the magic rules for the adorned rule ra, and
Modify(ra) creates the modified rule for ra. These functions implement what was infor-
mally described in Sect. 4.1 for the Magic Set method. In particular, we assume that these
functions implement the basic Magic Set method, propagating bindings only through

314 W. Faber, G. Greco, and N. Leone

EDB predicates [22, 1] (as stated above, we do not consider any special technique for
negative literals, which are simply adorned last in the rule).

The algorithmMS¬, reported in Fig. 1, implements the Magic Set method for Datalog¬

programs. Its input is a Datalog¬ program P and a query Q. (Note that the algorithm
can be used for positive rules as a special case.) If the query contains some constants,
MS¬ outputs a (optimized) program MS¬(Q,P) consisting of a set of modified and magic
rules (denoted by modifiedRulesand magicRules , respectively). The algorithm gener-
ates modified and magic rules on a rule-by-rule basis. To this end, it exploits a stack S of
predicates for storing all the adorned predicates that are still to be used for propagating
the query binding (the Adorn function pushes on S each adorned predicates it generates,
which has not been previously rewritten). At each step, an element pα is removed from
S, and the rules defining p are processed one-at-a-time.

The main steps of the algorithm MS¬ are illustrated by means of the program P2 in
Example 2, and the query Q2 = p(a, X).

The computation starts in step 2 by initializing modifiedRules to the empty set. Then,
the function BuildQuerySeeds is used for storing in magicRules the magic seeds, and
pushing on the stack S the adorned predicates of Q. For instance, given the query Q2
and the program P2, BuildQuerySeeds creates magic pbf(a). and pushes pbf onto the
stack S.

The core of the technique (steps 2-13) is repeated until the stack S is empty, i.e., until
there is no further adorned predicate to be propagated. Specifically, an adorned predicate
pα is removed from the stack S in step 3, and its binding is propagated.

In the steps 4-8, the binding of pα is propagated in a traditional way, to each rule r
of P having an atom p(t) in the head. This propagation is as in the standard Magic Set
method for stratified Datalog¬ programs.

Example 3. Consider again Example 2. Taking the predicate pbf from the stack en-
tails the adornment of the rule p(X, Y):- d(X, Y),not q(X, Y).. This yields the rule
pbf(X, Y):- d(X, Y),not qbb(X, Y)., and the predicate qbb is eventually pushed on the
stack. Then, we can proceed (by using the standard algorithms) with the genera-
tion of one magic (magic qbb(X, Y):- magic pbf(X), d(X, Y).) and one modified rule
(p(X, Y):- magic pbf, d(X, Y),not q(X, Y).). �

Steps 9-13 performs the propagation of the binding through each dangerous rule
d in P of the form h(th):- p(tp), q1(t1), . . . , qm(tm)., having an atom p(tp) in the
body. These steps are, in fact, required for avoiding the semantic problems that we
have described in the previous section. In this case, in order to simulate the body-
to-head propagation, the rule d is first replaced by an “inverted” rule ds of the form
p(tp):- h(th), q1(t1), . . . , qm(tm)., which has been obtained by swapping the head
predicate with the body predicate propagating the binding. Then, the adornment can
be carried out as usual by means of the function Adorn. Since this “inverted” rule was
not part of the original program and its only purpose is generating binding information,
it will not give rise to a modified rule, but only to magic rules.

Example 4. When qbb is removed from the stack, it can be used for adorning the
body of the dangerous rule y(X):- q(X, Y). Hence, we obtain first the “inverted” rule

Magic Sets and Their Application to Data Integration 315

q(X, Y):- y(X). and adorn it, obtaining qbb(X, Y):- yb(X).which gives rise to one magic
rule: magic yb(X):- magic qbb(X, Y). �

Finally, after all the adorned predicates have been processed the algorithm outputs
the program MS¬(Q,P).

Example 5. The complete rewriting of program P2 w.r.t. queryQ2 (MS¬(Q2,P2)) con-
sists of the magic rules:

magic pbf(a). magic qbb(X,Y):- magic pbf(X),d(X,Y).

magic pbb(X,Y):- magic qbb(X,Y). magic yb(X):- magic qbb(X,Y).

magic qbf(X):- magic yb(X). magic zb(X):- magic yb(X).

magic zb(X):- magic yb(X),z(X). magic pbb(X,Y):- magic qbf(X),d(X,Y).

magic qbb(X,Y):- magic pbb(X,Y).

plus the rewritten rules:

p(X,Y):- magic pbf(X),d(X,Y),not q(X,Y). q(X,Y):- magic qbb(X,Y),d(X,Y),not p(X,Y).

y(X):- magic yb(X),q(X,Y). z(X):- magic zb(X),y(X),not z(X).

q(X,Y):- magic qbf(X),d(X,Y),not p(X,Y). p(X,Y):- magic pbb(X,Y),d(X,Y),not q(X,Y).

It is worth noting that the rewritten program does not contain rules for predi-
cates a and b, since they are not relevant for answering Q2. MS¬(Q2,P2) admits
only one stable model M , such that M/P2 = {p(a, b)}. Hence, Ansc(Q2,P2,F2) =
Ansb(Q2,P2,F2) = X/b.the original semantics is preserved. �

4.4 Query Equivalence Results

We conclude the presentation of the MS algorithm by formally proving its soundness.
The result is shown by establishing correspondences between a program P and its trans-
formed program MS¬(Q,P,) with respect to some query Q.

To show this result, we will employ the notion of simplification: Given a ground
program P and a subprogram U ⊆ P, which admits exactly one stable model S. Then
simplify(P, U) denotes the program {r/P−U | r ∈ (P − U) ∧ B+(r)/U ⊆ S ∧
B−(r)/U ∩ S = ∅}, which can be thought of as the partial evaluation w.r.t. S. This is
needed to get rid of the magic predicates, which are not present in the original program.

Lemma 1. Let P be a Datalog¬ program P, Q a query. Furthermore, we de-
note by magic(Q,P) the set of magic rules in MS¬(Q,P). Then it holds that
P ′′ = simplify(Ground(MS¬(Q,P)),magic(Q,P) ∪ EDB(P)) is a module of
P ′ = simplify(Ground(P), EDB(P)).

Proof (Sketch). Observe that P ′′ ⊆ P ′ holds. Assume that P ′′ is not a module of P ′.
Then at least one of the following condition holds: (1) ∃r′ ∈ P ′ − P ′′, r′′ ∈ P ′′ :
H(r′) = H(r′′) (2) ∃r′′ ∈ P ′′ : ∃b ∈ B(r′′) : ∃r′ ∈ P ′ − P ′′ : b = H(r′) (3)
∃r′′ ∈ P ′′ : ∃r′ ∈ P ′ − P ′′ : H(r′′) ∈ B(r′) and r′ is dangerous. One can show that
all of (1), (2), and (3) lead to contradictions, and hence the result follows.

(1) For all rules in P with head predicate h, in MS¬(Q,P) there exists a copy for
each adornment that was generated for h. So for any simplified ground instance r of

316 W. Faber, G. Greco, and N. Leone

such a rule with head atom h(c1, . . . , cn), either magic ha(c1, ..., cm) holds for at least
one adornment a of h, or it does not hold for any adornment of h. In the former case,
for each rule in P with h in its head, a corresponding rule with magic ha in its body
exists in MS¬(Q,P). If magic ha(c1, ..., cm) holds for no adornment a, no simplified
ground version of r is in P ′′. In total, for each ground atom h(c1, ..., cn) in P ′, either
all or none of its defining rules are in P ′′.

(2) Assume that r′′ (the head of which is h(c1, . . . , ch)) stems from a rule r′′
o ,

which was adorned by a, such that magic ha(c1, . . . , ch1) follows from the magic
rules. Each IDB body atom of r′′

o has received some adornment based on a, in
which bound arguments either directly share bound variables (w.r.t. a) with h, or
via some EDB atoms. For any body predicate b, this gives rise to a magic rule
rm : magic ba1(tb1):-magic ha(ta), B. where B contains in particular all EDB
atoms relevant for bound arguments of b. Concerning r′ it contains some b(d1, . . . , db)
of the body of r′′ in its head, and its originating rule r′

o is adorned by a1. So in MS¬(Q,P)
a rule r′

m : b(tb2):-magic ba1(tb3), B
′. occurs. Note that for all bound arguments

d1, . . . , dk of b(d1, . . . , db) w.r.t. a1, magic ba1(d1, . . . , dk) follows from the magic
rules because of rm. So whenever a simplified ground instance of r′

o with b(d1, . . . , db)
in the head exists, so does one of r′

m, which is hence in P ′′.
(3) Observe first that the set of instantiations of dangerous rules in P is a superset of

the set of dangerous rules inGround(P), which is in turn a superset the set of dangerous
rules in any simplification ofGround(P). So any dangerous rule inP ′ is also dangerous
inP. Therefore, the originating rule r′

o ∈ P of r′ must have been adorned and “inverted”,
adorning in the following also the head of r′

o. So the dangerous rule r′
o eventually also

gives rise to a modified rule in MS¬(Q,P). Then, by the same argument as in (2), a
magic rule obtained from the “inverted” rule must exist in MS¬(Q,P), such that one of
its instantiations matches the bound arguments of H(r′). So r′ is in P ′′ iff it is in P ′. �

Theorem 3. Let P be a Datalog¬ program, let Q be a query. Then, it holds that (1)
MS¬(〈Q,P〉)⊆c

QP and MS¬(〈Q,P〉)⊇b
QP, and (2) if SM(P) �= ∅, MS¬(〈Q,P〉)≡b

QP
and MS¬(〈Q,P〉)≡c

QP.

5 An Application to Data Integration

In this section we show an application of the Magic Set method for optimizing query
answering in data integration systems, and report on the experience we are doing in the
EU project INFOMIX on data integration. Let us first recall some basic notions.

A data integration system I is a triple 〈G,S,M〉, where G is the global (relational)
schema of the form G = 〈Ψ,Σ〉, S is the source (relational) schema of the form S =
〈Ψ ′, ∅〉, i.e., there are no integrity constraints on the sources, and M is the mapping
between G and S.

Example 6. Consider the data integration system I0 = 〈G0, S0, M0〉, a simpli-
fication of the Demo Scenario in the EU project INFOMIX described below. The
global schema G0 consists of the relations professor(IDP ,Pname,Phomepage),
student(IDS ,Sname,Saddress), exam data(IDP , IDS ,Exam,Mark). The associ-
ated constraints in Σ0 state that: (i) (key constraints) the keys of professor , student ,

Magic Sets and Their Application to Data Integration 317

and exam data are the attributes IDP , IDS , and (IDP , IDS ,Exam), respectively, (ii)
(exclusion dependency) a professor cannot be a student, and (iii) (inclusion dependen-
cies) the identifiers of professors and students in the relation exam data must be in
the relations professor and student , respectively. The source schema S0 comprises the
relations s1, s2, s3, and s4. Finally, the mappingM0 is defined by the datalog program
formed by professor(X,Y, Z):- s1(X,Y, Z)., professor(X,Y, Z):- s4(Z, Y,, X).,
student(X,Y, Z):- s2(Y,X,Z)., exam data(X,Y, Z,W):- s3(Y,X,Z,W). �

Given a database D for the source schema S, the user might issue a query q on
the global schema which is populated by retrieving the data from D according to the
mapping M. However, while carrying out such an integration, it often happens that
the retrieved (global) database, denoted by ret(I,D), is inconsistent w.r.t. Σ since data
stored in local and autonomous sources are not in general required to satisfy constraints
expressed on the global schema.

To remedy this problem, several approaches (see, e.g., [10, 11, 12, 13, 14, 15, 20])
defined the semantics of a data integration system I in terms of the repairs rep(I,D) of
the database ret(I,D). Intuitively, each repair R ∈ rep(I,D) is obtained by properly
adding and deleting facts from ret(I,D) in order to satisfy constraints in Σ, as long as
we “minimize” such additions and deletions.

These repairs depend on the interpretation of the mappings in M, which, in fact,
impose restrictions or preferences on the possibility of adding or removing facts from
ret(I,D) to repair constraint violations. In the INFOMIX project, we have considered
the loosely-sound semantics according to which mappings might retrieve only a subset
of the tuples needed for answering the query. Hence, we can add an unbounded number
of tuples to repair violations of inclusion dependencies; nonetheless, the semantics is
loose in the sense that, in order to repair keys and exclusion dependencies, we are also
allowed to delete a minimal set of tuples.

Given a data integration system I and a source database D, a query q for I is an
atom comprising a global relation in I. Then, the answer to q is defined as the set
ans(q, I,D) of all substitutions ϑ, such that, for each 1 ≤ i ≤ k, biϑ is true in each
repairR in rep(I,D).

In order to design effective systems for query answering in data integration settings,
the repair semantics has been formalized in the INFOMIX project (as well as in other
approaches) by using logic programs, i.e., by encoding the constraints Σ of G and the
mapping assertionsM into a logic program, Π(I,D), using unstratified negation, such
that the stable models of this program yield the repairs of the global database. The
correctness of the rewriting is shown by the following theorem.

Theorem 4 ([13]). Let I = 〈G,S,M〉 be a data integration system, D be a database
for S, and q be a query over G. Then, ans(q, I,D) coincides with Ansc(q,Π (I,D)).

An attractive feature of this approach is that logic programs serve as executable
logical specifications of repairs, and thus allow to state repair policies in a declarative
rather than a procedural manner. However, a drawback of this approach is that with
current implementations of stable model engines, such as DLV or Smodels, the evaluation
of queries over large data sets quickly becomes infeasible, which calls for suitable

318 W. Faber, G. Greco, and N. Leone

optimization methods that help in speeding up the evaluation of queries expressed as
logic programs [14].

To this aim, the binding propagation techniques proposed in this paper can be prof-
itably exploited to isolate the relevant part of a database by ”pushing down” the query
constants to the sources. Importantly, our optimization fully preserves the original se-
mantics of the data-integration query. Indeed, the loosely-sound semantics for data in-
tegration always guarantees the existence of a database repair no matter of the types of
constraints in Σ, provided that the schema is non-key-conflicting [21]. Consequently,
Π(I,D) is guaranteed to be consistent, and the correctness of the application of the
Magic Set technique follows immediately from Thm. 3.

Theorem 5. Let I = 〈G,S,M〉 be a data integration system, D be a database for S,
and q be a query over G. Then, ans(q, I,D) coincides with Ansc(q, MS¬(q,Π(I,D))).

In order to test the effectiveness of the Magic Set technique for query optimization
in data integration systems, we have carried out some experiments on the demonstration
scenario of the INFOMIX project, which refers to the information system of the Univer-
sity “La Sapienza” in Rome. The global schema consists of 14 global relations with 29
constraints, while the source schema includes 29 relations (in 3 legacy databases) and
12 web wrappers (generating relational data) for more than 24MB of data.

Once a query q on I is submitted, a number of wrappers are executed to retrieve the
data from the relevant sources for q, storing it in a Postgres database. Then, the Datalog¬

system DLV imports the Postgres data, and computes the answers for q w.r.t. Π (I,D).
We measured the execution times of DLV for Π (I,D) and its magic-set rewritten version
MS¬(q,Π(I,D)). Several experiments confirmed that on various practical queries, the
performance is greatly improved by Magic Sets (in some cases, the query evaluation
time passes from more than 20 minutes to a few seconds), while in the other cases we
have observed no or only a minor overheads.

We finally observe that similar arguments can be also used to prove that our magic
set technique can be profitably exploited in other approaches to data integration such as
[10, 11, 12, 14]. In fact, all these approaches reduce answering a user query, q, to cautious
reasoning over a logic program Π(I,D) which is guaranteed to be consistent.

Some of these approaches actually use disjunctive datalog programs, possibly with
unstratified negation. We point out that the algorithm of this paper can be coupled with
the method in [30], which is defined on positive disjunctive programs, obtaining a magic
set method for arbitrary disjunctive programs.

6 Related Work and Conclusions

The Magic-Set method [22, 19, 1, 23] is one of the best known techniques for the opti-
mization of Datalog queries. Many extensions and refinements of Magic-Sets have been
proposed, addressing e.g. query constraints [24], modular stratification and well-founded
semantics [25, 26], integration into cost-based query optimization [27]. The research on
enhancements to the Magic-Set method is still going on. For instance, in the last-year
ACM-PODS conference a magic-set technique for the class of soft-stratifiable programs
was presented [28], and in [29, 30] magic sets techniques for disjunctive programs were
proposed.

Magic Sets and Their Application to Data Integration 319

An extension of the Magic Set technique for positive Datalog programs with integrity
constraints has been presented in [31]. The proposed method is shown to be brave
complete and cautious sound. Comparing this method to our approach, we observe that:
(1) Our method is more general than the method in [31], since the latter deals only with
a strict subset of Datalog¬ (recall that an integrity constraint :-C. is just a shorthand
for p:-C,not p); while our method supports full Datalog¬, allowing for unstratified
negation. (2) Our method has much better semantic properties than [31]. Indeed, [31]
do not ensure query equivalence in any case; while we guarantee full query equivalence,
unless the input program is inconsistent (see Thm. 3). Such a query equivalence is in
fact very relevant for data integration applications (see the previous Section).

Our modularity results are strictly related to splitting sets, as defined in [16], or
equivalently to modules as defined in [17]. The main difference is that our notion of
modules and independent sets guarantee query equivalence for consistent programs,
which does not hold for these previous notions. In fact, in general, one can prove that
only the first two items of Thm. 2 hold for splitting-set modules.

A different kind of query optimization for data integration has been done in [32].
This approach does not exploit constants that appear in the query, but only inconsis-
tent (w.r.t. constraints of the global schema) portions of the retrieved database. In fact,
no systematic technique for query optimization in data integration systems exploiting
binding propagations has been proposed in the literature so far.

Concluding, we believe that our results are relevant to both theory and practice. On
the theory side, our modularity results provide a better understanding of the structural
properties of Datalog¬, complementing and advancing on previous works on modular-
ity properties of this language. Moreover, the MS¬ algorithm generalizes Magic Sets,
enlarging significantly their range of applicability to the full class of Datalog¬ programs
under the stable model semantics. Importantly, our work can be profitably exploited for
data-integration systems. Preliminary results of experiments show that the application
of our techniques allows us to solve very advanced data-integration tasks.

References

1. Ullman, J.D.: Principles of Database and Knowledge Base Systems. Computer Science Press
(1989)

2. Gelfond, M., Lifschitz, V.: The Stable Model Semantics for Logic Programming. In:
ICLP/SLP’88, Cambridge, Mass., MIT Press (1988) 1070–1080

3. Bidoit, N., Froidevaux, C.: Negation by Default and Unstratifiable Logic Programs. Theo-
retical Computer Science 78 (1991) 85–112

4. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and Expressive Power of Logic
Programming. ACM Computing Surveys 33 (2001) 374–425

5. Bidoit, N., Froidevaux, C.: General Logical Databases and Programs: Default Logic Seman-
tics and Stratification. Information and Computation 91 (1991) 15–54

6. Marek, V.W., Truszczyński, M.: Autoepistemic Logic. JACM 38 (1991) 588–619
7. Schlipf, J.: The Expressive Powers of Logic Programming Semantics. JCSS 51 (1995) 64–86

Abstract in Proc. PODS 90, pp. 196–204.
8. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV

System for Knowledge Representation and Reasoning. ACM TOCL (2004) To appear.
9. Niemelä, I., Simons, P., Syrjänen, T.: Smodels: A System for Answer Set Programming. In:

NMR’2000 (2000)

320 W. Faber, G. Greco, and N. Leone

10. Arenas, M., Bertossi, L.E., Chomicki, J.: Specifying and querying database repairs using
logic programs with exceptions. In: Proc. of FQAS 2000, Springer (2000) 27–41

11. Greco, G., Greco, S., Zumpano, E.: A logic programming approach to the integration, repairing
and querying of inconsistent databases. In: Proc. of ICLP’01, Springer (2001) 348–364

12. Barceló, P., Bertossi, L.: Repairing databases with annotated predicate logic. In: Proc. the
10th Int. Workshop on Non-Monotonic Reasoning (NMR 2002). (2002) 160–170

13. Calı̀, A., Lembo, D., Rosati, R.: Query rewriting and answering under constraints in data
integration systems. In: Proc. of IJCAI 2003. (2003) 16–21

14. Bravo, L., Bertossi, L.: Logic programming for consistently querying data integration systems.
In: Proc. of IJCAI 2003. (2003) 10–15

15. Chomicki, J., Marcinkowski, J.: Minimal-Change Integrity Maintenance Using Tuple Dele-
tions. Information and Computation (2004) to Appear.

16. Lifschitz, V., Turner, H.: Splitting a Logic Program. In Van Hentenryck, P., ed.: ICLP’94,
MIT Press (1994) 23–37

17. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM TODS 22 (1997) 364–418
18. Dung, P.M.: On the Relations between Stable and Well-Founded Semantics of Logic Pro-

grams. Theoretical Computer Science 105 (1992) 7–25
19. Beeri, C., Ramakrishnan, R.: On the power of magic. JLP 10 (1991) 255–259
20. Calı̀, A., Calvanese, D., De Giacomo, G., Lenzerini, M.: Data integration under integrity

constraints. Information Systems 29 (2004) 147–163
21. Calı̀, A., Lembo, D., Rosati, R.: On the decidability and complexity of query answering over

inconsistent and incomplete databases. In: PODS ’03. (2003) 260–271
22. Bancilhon, F., Maier, D., Sagiv, Y., Ullman, J.D.: Magic Sets and Other Strange Ways to

Implement Logic Programs. In: PODS’86. (1986) 1–16
23. Mumick, I.S., Finkelstein, S.J., Pirahesh, H., Ramakrishnan, R.: Magic is relevant. In:

SIGMOD Conference 1990. (1990) 247–258
24. Stuckey, P.J., Sudarshan, S.: Compiling query constraints. In: PODS’94, ACM Press (1994)

56–67
25. Ross, K.A.: Modular Stratification and Magic Sets for Datalog Programs with Negation.

JACM 41 (1994) 1216–1266
26. Kemp, D.B., Srivastava, D., Stuckey, P.J.: Bottom-up evaluation and query optimization of

well-founded models. Theoretical Computer Science 146 (1995) 145–184
27. Seshadri, P., Hellerstein, J.M., Pirahesh, H., Leung, T.Y.C., Ramakrishnan, R., Srivastava, D.,

Stuckey, P.J., Sudarshan, S.: Cost-based optimization for magic:Algebra and implementation.
In: SIGMOD Conference 1996, ACM Press (1996) 435–446

28. Behrend, A.: Soft stratification for magic set based query evaluation in deductive databases.
In: PODS 2003, ACM Press (2003) 102–110

29. Greco, S.: Binding Propagation Techniques for the Optimization of Bound Disjunctive
Queries. IEEE TKDE 15 (2003) 368–385

30. Cumbo, C., Faber, W., Greco, G.: Enhancing the magic-set method for disjunctive datalog
programs. In: Proc. of ICLP’04, Saint-Malo, France (2004) Forthcoming.

31. Greco, G., Greco, S., Trubitsyna, I., Zumpano, E.: Optimization of Bound Disjunctive Queries
with Constraints. TPLP (to appear (CoRR report cs.LO/0406013))

32. Eiter, T., Fink, M., Greco, G., Lembo, D.: : Efficient evaluation of logic programs for querying
data integration systems. In: Proc. of ICLP’03. (2003) 163–177

View-Based Query Processing:
On the Relationship Between Rewriting,

Answering and Losslessness�

Diego Calvanese1, Giuseppe De Giacomo2,
Maurizio Lenzerini2, and Moshe Y. Vardi3

1 Facoltà di Scienze e Tecnologie Informatiche
Libera Università di Bolzano/Bozen, Italy

calvanese@inf.unibz.it
2 Dipartimento di Informatica e Sistemistica “Antonio Ruberti”

Università di Roma “La Sapienza”, Italy
{degiacomo, lenzerini}@dis.uniroma1.it

3 Department of Computer Science
Rice University, Houston, U.S.A.

vardi@cs.rice.edu

Abstract. As a result of the extensive research in view-based query
processing, three notions have been identified as fundamental, namely
rewriting, answering, and losslessness. Answering amounts to computing
the tuples satisfying the query in all databases consistent with the views.
Rewriting consists in first reformulating the query in terms of the views
and then evaluating the rewriting over the view extensions. Losslessness
holds if we can answer the query by solely relying on the content of the
views. While the mutual relationship between these three notions is easy
to identify in the case of conjunctive queries, the terrain of notions gets
considerably more complicated going beyond such a query class. In this
paper, we revisit the notions of answering, rewriting, and losslessness and
clarify their relationship in the setting of semistructured databases, and
in particular for the basic query class in this setting, i.e., two-way regular
path queries. Our first result is a clean explanation of the relationship
between answering and rewriting, in which we characterize rewriting as a
“linear approximations” of query answering. We show that applying this
linear approximation to the constraint-satisfaction framework yields an
elegant automata-theoretic approach to query rewriting. As for lossless-
ness, we show that there are indeed two distinct interpretations for this

� This research has been partially supported by the EU funded Projects INFOMIX
(IST-2001-33570) and SEWASIE (IST-2001-34825), by MIUR - Fondo Speciale per lo
Sviluppo della Ricerca di Interesse Strategico - project “Società dell’Informazione”,
subproject SP1 “Reti Internet: Efficienza, Integrazione e Sicurezza”, by MIUR -
Fondo per gli Investimenti della Ricerca di Base (FIRB) - project “MAIS: Multichan-
nel Adaptive Information Systems”, by project HYPER, funded by IBM through a
Shared University Research (SUR) Award grant, by NSF grants CCR-9988322, CCR-
0124077, CCR-0311326, IIS-9908435, IIS-9978135, EIA-0086264, and ANI-0216467,
by US-Israel BSF grant 9800096, by Texas ATP grant 003604-0058-2003, and by a
grant from the Intel Corporation.

T. Eiter and L. Libkin (Eds.): ICDT 2005, LNCS 3363, pp. 321–336, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

322 D. Calvanese et al.

notion, namely with respect to answering, and with respect to rewriting.
We also show that the constraint-theoretic approach and the automata-
theoretic approach can be combined to give algorithmic characterization
of the various facets of losslessness. Finally, we deal with the problem of
coping with loss, by considering mechanisms aimed at explaining lossi-
ness to the user.

1 Introduction

View-based query processing is the problem of computing the answer to a query
based on a set of views [27, 31, 3]. This problem has recently received much atten-
tion in several application areas, such as mobile computing, query optimization,
data warehousing, and data integration. A large number of results have been
reported in the last years, and several methods have been proposed (see [25] for
a recent survey).

As a result of the extensive research in this area, there is proliferation of
notions whose relationship to each other is not clear. Fundamentally, there seems
to be two basic approaches to view-based query processing. The first approach,
originating with [27], is the query-rewriting approach, which is based on the idea
of first reformulating the query in terms of the views and then evaluating the
rewriting over the view extensions. The other approach, originating with [18],
is the query-answering approach, which takes a more direct route, trying to
compute the so-called certain tuples, i.e., the tuples satisfying the query in all
databases consistent with the views, on the basis of the view definitions and
the view extensions. The relationship between the two approaches has been
discussed (e.g., [8, 14]), but not completely clarified, and is often ignored, see for
example [27, 5, 21].

A related issue that has been studied in several papers is whether the infor-
mation content of the views is sufficient to answer completely a given query. We
say that a set of views is lossless with respect to a query, if, no matter what
the database is, we can answer the query by solely relying on the content of the
views. This concept has several applications, for example, in view selection [15],
where we have to measure the quality of the choice of the views to materialize
in the data warehouse, or in data integration, where we may be interested in
checking whether the relevant queries can be answered by accessing only a given
set of sources [28]. Several papers have addressed the issue of losslessness implic-
itly [27, 24, 28] or explicitly [11]. It should be noted, however, that losslessness
is relative to the manner in which view-based query processing is performed,
since the goal is lossless query processing. Thus, there ought to be two distinct
notions of losslessness, with respect to query rewriting or with respect to query
answering. Recent discussions of losslessness, such as [28, 11], do not reflect this
distinction.

One reason for the confusion is that much of the work in this area has focused
on using conjunctive queries for both target queries and view definitions, cf. [25].
This setting turns out to be extremely well behaved. In particular, query rewrit-
ing and query answering coincide, if we allow the target query to be written as

View-Based Query Processing 323

a union of conjunctive queries. Furthermore, losslessness with respect to query
rewriting and with respect to query answering also coincide, even if we require
rewriting by conjunctive queries (disallowing unions). These results, implicit or
explicit in [27], give the impression of a simple “terrain” of notions. Once, how-
ever, one goes even slightly beyond conjunctive queries or slightly modifies the
view model, the terrain of notions gets considerably more complicated, as has
already been observed in [3].

In this paper, we revisit the notions of query answering, query rewriting,
and losslessness and clarify their relationship in the setting of semistructured
databases, which capture data that do not fit into rigid, predefined schemas,
and are best described by graph-based data models [6, 1, 22, 2]. The prevalent
model for semistructured data is that of edge-labeled graphs, in which nodes
describe data elements and edges describe relationships or values. (Extensions
to node-labeled graphs or to node-edge-labeled graphs are straightforward.)

Methods for extracting information from semistructured data necessarily
incorporate special querying mechanisms that are not common in traditional
database systems. One such basic mechanism is that of regular-path queries
(RPQs), which retrieves all pairs of nodes in the graph connected by a path
conforming to a regular expression [7, 4]. We allow in our regular path queries
also the inverse operator. The inverse operator is essential for expressing navi-
gations in the database that traverse the edges both backward and forward [16].
We call such queries two-way regular path queries (2RPQs). Such path queries
are useful in real settings (see for example [6, 7, 29]), and are part of the core
of many query languages for semistructured data [4, 20, 17]. In our earlier work
we studied both query answering and query rewriting for 2RPQs [9]. For an
introductory survey on 2RPQs, see [13].

Our first result is a clean explanation of the relationship between query
rewriting and query answering. We view query answering as the more robust
notion among the two, since its definition is in terms of the information con-
tent of the view extensions. The certain tuples are the tuples whose presence in
the answer logically follows from the view extension. In contrast, query rewrit-
ing is motivated by the pragmatic need to access the view extensions using a
query language that is close, if not identical, to the language in which the target
query and the views were formulated. For example, [27] considered rewriting of
conjunctive queries by means of unions of conjunctive queries, [12] considered
rewriting of RPQs by means of RPQs, and [9] considered rewriting of 2RPQs
using 2RPQs.

The setup we use in this paper is that of sound views, in which view extension
need not reflect global data completely. Thus, all we require from a view Vi

defined in terms of a query Qi is that its extension Ei with respect to a global
database B is such that Ei ⊆ Qi(B). This setting corresponds to the long-
standing open-world approach for querying incomplete information [30]. In this
setting query answering can be characterized in terms of constraint satisfaction
(or, equivalently, the homomorphism problem [19]), with a constraint template
derived from the target query and view definition [14].

324 D. Calvanese et al.

It now turns out that rewriting 2RPQs by means of 2RPQs amounts for
seeking a “linear approximation” of query answering. That is, we retrieve a pair
(c, d) from the view extension only if its inclusion in the answer is logically
implied by a single path between c and d in the view extension. (For 2RPQs
two-way paths are considered, while for RPQs one-way paths are considered.)
We show that applying this linear approximation to the constraint-satisfaction
framework yields the elegant automata-theoretic approach to query rewriting
of [12], extended naturally to 2RPQs.

Once the relationship between query answering and query rewriting is clari-
fied, we show that there are indeed two distinct notions of losslessness. Lossless-
ness with respect to query rewriting is what has been called exactness in [12],
while losslessness with respect to query answering, which we view as the more
fundamental notion, is what has been studied in [11]. Since query rewriting is
an approximation of query answering, exactness is a stronger notion than loss-
lessness; exactness implies losslessness, but not vice versa. Exactness was taken
in [12] to be a measure of quality of query rewriting, but we now see that it con-
flates query rewriting with losslessness. A better way to measure the quality of
query rewriting is to measure its quality as an approximation. We say that query
rewriting is perfect if it is equivalent to query answering. Thus, exactness is the
conjunction of perfectness and losslessness (with respect to query answering). We
also show that the constraint-theoretic approach and the automata-theoretic ap-
proach can be combined to give algorithmic characterization of the three notions:
perfectness, losslessness, and exactness.

Finally, we consider lossiness, which we view as the central challenge of view-
based query processing, as lossiness is more likely to be the norm rather than the
exception. Once a schema designer has learned that a view decomposition is lossy
with respect to a certain query, how should this “loss” be dealt with? We believe
that database design tools should help users to “cope with loss”. In particular,
we believe that it would be useful to the user to understand what information is
lost by view-based query answering. We discuss a variety of mechanisms aimed
at explaining such lossiness to the user.

The paper is organized as follows. In Section 2 we recall the basic notions
related to view-based query processing, and in Section 3 we recall the relationship
between query answering and constraint satisfaction. In Section 4 we discuss the
relationship between answering and rewriting. In Section 5 we study losslessness
with respect to rewriting for 2RPQs and in Section 6 losslessness with respect to
answering. For the latter we introduce the notion of linear fragment of certain
answers. In Section 7 we discuss the relationship between exactness, perfectness,
losslessness, and lossiness and conclude the paper.

2 Preliminaries

Following the usual approach in semistructured data [2], we define a semistruc-
tured database as a finite directed graph whose edges are labeled by elements
from a given finite alphabet Σ. Each node represents an objects and an edge

View-Based Query Processing 325

from object x to object y labeled by r, denoted r(x, y), represents the fact that
relation r holds between x and y. Observe that a semistructured database can be
seen as a (finite) relational structure over the set Σ of binary relational symbols.
A relational structure (or simply structure) B over Σ is a pair (ΔB, ·B), where
ΔB is a finite domain and ·B is a function that assigns to each relation symbol
in r ∈ Σ a binary relation rB over ΔB, also denoted by r(B).

A query is a function from relational structures to relations, assigning to each
relational structure over a given alphabet a relation of a certain arity. In this
paper we deal mainly with binary queries. A regular-path query (RPQ) over Σ
is defined in terms of a regular language over Σ. The answer Q(B) to an RPQ
Q over a database B is the set of pairs of objects connected in B by a directed
path traversing a sequence of edges forming a word in the regular language L(Q)
defined by Q.

RPQs allow for navigating the edges of a semistructured databases only in
the forward direction. RPQs extended with the ability of navigating database
edges backward are called two-way regular-path queries (2RPQs) [9]. Formally,
we consider an alphabet Σ± = Σ ∪ {r− | r ∈ Σ} which includes a new symbol
r− for each relation symbol r in Σ. The symbol r− denotes the inverse of the
binary relation r. If p ∈ Σ±, then we use p− to mean the inverse of p, i.e., if p is
r, then p− is r−, and if p is r−, then p− is r. A 2RPQ over Σ is defined in terms
of a regular language over Σ±. The answer Q(B) to a 2RPQ Q over a database
B is the set of pairs of objects connected in B by a semipath that conforms to
the regular language L(Q). A semipath in B from x to y (labeled with p1 · · · pn)
is a sequence of the form (x0, p1, x1, . . . , xn−1, pn, xn), where n ≥ 0, x0 = x,
xn = y, and for each xi−1, pi, xi, we have that pi ∈ Σ±, and, if pi = r then
(xi−1, xi) ∈ r(B), and if pi = r− then (xi, xi−1) ∈ r(B). Intuitively, a semipath
(x0, p1, x1, . . . , xn−1, pn, xn) corresponds to a navigation of the database from
x0 to xn, following edges forward or backward, according to the sequence of
edge labels p1 · · · pn. Note that the objects in a semipath are not necessarily
distinct. A semipath is said to be simple if no object in it appears more than
once. A linear database with endpoints x and y is a database constituted by a
single simple semipath from x to y. We say that a semipath (x0, p1, . . . , pn, xn)
conforms to a 2RPQ Q if p1 · · · pn ∈ L(Q). Summing up, a pair (x, y) of objects
is in the answer Q(B) if and only if, by starting from x, it is possible to reach
y by navigating on B according to one of the words in L(Q). The notions above
can be extended to two-way path queries, which are defined similarly to 2RPQs,
but without requiring the language to be regular.

Consider now a semistructured database that is accessible only through a
collection of views expressed as 2RPQs, and suppose we need to answer a 2RPQ
over the database only on the basis of our knowledge on the views. Specifically,
the collection of views is represented by a finite set V of view symbols, each
denoting a binary relation. Each view symbol V ∈ V has an associated view
definition V Σ , which is a 2RPQ over Σ. A V-extension E is a relational structure
over V. We consider views to be sound [3, 23], i.e., we model a situation where
the extension of the views provides a subset of the results of applying the view

326 D. Calvanese et al.

definitions to the database. Formally, given a set V of views and a database B,
we use VΣ(B) to denote the V-extension E such that V (E) = V Σ(B), for each
V ∈ V. We say that a V-extension E is sound wrt a database B if E ⊆ VΣ(B).
In other words, for a view V ∈ V, all the tuples in V (E) must appear in V Σ(B),
but V Σ(B) may contain tuples not in V (E).

Given a set V of views, a V-extension E , and a query Q over Σ, the set of
certain answers (under sound views) to Q with respect to V and E is the set of
pairs (x, y) of objects such that (x, y) ∈ Q(B) for every database B wrt which E is
sound, i.e., E ⊆ VΣ(B). View-based query answering consists in deciding whether
a given pair of objects is a certain answer to Q with respect to V and E . Given
a set V of views and a query Q, we denote by certQ,V the query that, for every
V-extension E , returns the set of certain answers to Q with respect to V and E .

View-based query answering has also been tackled using an indirect approach,
called view-based query rewriting. According to such an approach, a query Q over
the database alphabet is processed by first reformulating Q into an expression
of a fixed query language over the view alphabet V (called rewriting), and then
evaluating the rewriting over the view extensions. Formally, let Q be a query
over the database alphabet, and let Qr be a query over the view alphabet V. We
say that Qr is a rewriting of Q under sound views V (or simply, with respect to
views V), if for every database B and for every V-extension E with E ⊆ VΣ(B),
we have that Qr(E) ⊆ Q(B). Since 2RPQs are monotone, by results in [14]
(Proposition 13 and 24), rewritings admit the following simpler characterization.
A 2RPQ Qr is a rewriting of a 2RPQ Q if, for every database B, we have that
Qr(VΣ(B)) ⊆ Q(B). We make use of this characterization in the following.

Obviously, in view-based query rewriting, we are not interested in arbitrary
rewritings, but we aim at computing rewritings that capture the original query
at best. Let C be a query class in which rewritings are expressed. A query Qr in
C is a C-maximal rewriting of Q under V if (i) it is a rewriting of Q under V, and
(ii) for each query Q′

r in C that is a rewriting of Q under V and for each database
B and each V-extension E with E ⊆ VΣ(B), we have that Q′

r(E) ⊆ Qr(E). Since
in this paper we are focusing on 2RPQs, we are interested in the case where also
rewritings are 2RPQs over the view alphabet V, i.e., rewritings are expressed in
the same language as queries over the database.

Throughout the paper, we will assume that RPQs are expressed as finite state
automata over an appropriate alphabet. Besides standard (one-way) determinis-
tic and non-deterministic finite state automata over words (1DFAs and 1NFAs,
respectively), we assume familiarity with two-way automata (2NFAs) [26].

3 Answering and Constraint Satisfaction

In this work we make use of the tight relationship between view-based query
answering for RPQs and 2RPQs and constraint satisfaction, which we recall here.

A constraint-satisfaction problem (CSP) is traditionally defined in terms of a
set of variables, a set of values, and a set of constraints, and asks whether there
is an assignment of the variables with the values that satisfies the constraints.

View-Based Query Processing 327

A characterization of CSP can be given in terms of homomorphisms between
relational structures [19]. Here we consider relational structures whose relations
are of arbitrary arity.

A homomorphism h : A→ B between two relational structures A and B over
the same alphabet is a mapping h : ΔA → ΔB such that, if (c1, . . . , cn) ∈ r(A),
then (h(c1), . . . , h(cn)) ∈ r(B), for every relation symbol r in the alphabet. Let A
and B be two classes of structures. The (uniform) constraint-satisfaction problem
CSP(A,B) is the following decision problem: given a structure A ∈ A and a
structure B ∈ B over the same alphabet, is there a homomorphism h : A→ B?
When B consists of a single structure B and A is the set of all structures over the
alphabet of B, we get the so-called non-uniform constraint-satisfaction problem,
denoted by CSP(B), where B is fixed and the input is just a structure A ∈ A.
As usual, we use CSP(B) also to denote the set of structures A such that there
is a homomorphism from A to B. From the very definition of CSP it follows
directly that every CSP(A,B) problem is in NP.

A tight relationship between non-uniform CSP and view-based query answer-
ing for RPQs and 2RPQs has been developed in [10, 14]. Such a relationship is
based on the notions of constraint template, associated to the query and view
definitions, and constraints instance, associated to the view extension. Formally,
given a 2RPQ Q and a set V of 2RPQ views, the constraint template CTQ,V of
Q with respect to V is the relational structure C defined as follows.

– The alphabet of C is V ∪{Ui, Uf}, where each view denotes a binary relation
symbol, and Ui and Uf are unary relation symbols.

– Let AQ = (Σ±, SQ, SQ
0 , &Q, FQ) be a 1NFA for Q, where Σ± is the alphabet,

SQ is the set of states, SQ
0 is the set of initial states, &Q is the transition

relation, and FQ is the set of final states. The structure C = (ΔC , ·C) is
given by:

• ΔC = 2SQ

;
• σ ∈ Ui(C) iff SQ

0 ⊆ σ;
• σ ∈ Uf (C) iff σ ∩ FQ = ∅;
• for a view V ∈ V, we have that (σ1, σ2) ∈ V C iff there exists a word
q1 · · · qk ∈ L(V Σ) and a sequence T0, . . . , Tk of subsets of SQ such that
the following hold:
1. T0 = σ1 and Tk = σ2,
2. if s ∈ Ti and (s, qi+1, t) ∈ &Q then t ∈ Ti+1, for 0 ≤ i < k, and
3. if s ∈ Ti and (s, q−

i , t) ∈ &Q then t ∈ Ti−1, for 0 < i ≤ k.

Intuitively, the constraint template represents for each view V how the states
of AQ (i.e., of the 1NFA for Q) change when we follow database edges accord-
ing to what specified by words in L(V Σ). Specifically, the last condition above
corresponds to saying that a pair of sets of states (σ1, σ2) is in V (C) if and only
if there is some word w in L(V Σ) such that the following holds: if we start from
a state in σ1 on the left edge of w and move back and forth on w according to
the transitions in AQ, then, if we end up at the left edge of w we can be only in
states in σ1, and if we end up at the right edge of w we can be only in states in

328 D. Calvanese et al.

σ2; similarly, if we start from a state in σ2 on the right edge of w. Moreover, the
sets of states in Ui(C) contain all initial states of AQ, while the sets of states in
Uf (C) do not contain any final state of AQ. This takes into account that we aim
at characterizing counterexamples to view-based query answering, and hence we
are interested in not getting to a final state of AQ, regardless of the initial state
from which we start and how we follow transitions.

Observe that, to check the existence of a word q1 · · · qk ∈ L(V Σ) and of a
sequence T0, . . . , Tk of subsets of S such that conditions 1–3 above are satisfied,
we can resort to a construction analogous to the one in [32]. Hence, such a check
can be done in polynomial space in the size of Q, and in fact in nondeterministic
logarithmic space in the size of V Σ .

Given a V-extension E and a pair of objects c, d, the constraint instance Ec,d

is the structure I = (ΔI , ·I) over the alphabet V ∪ {Ui, Uf} defined as follows:
– ΔI = ΔE ∪ {c, d};
– V (I) = V (E), for each V ∈ V;
– Ui(I) = {c}, and Uf (I) = {d}.

The following theorem provides the characterization of view-based query an-
swering in terms of CSP.

Theorem 1 ([14]). Let Q be a 2RPQ, V a set of 2RPQ views, E a V-extension,
and c, d a pair of objects. Then, (c, d) �∈ certQ,V(E) if and only if there is a
homomorphism from Ec,d to CTQ,V .

4 Relationship Between Rewriting and Answering

The relationship between answering and rewriting in view-based query process-
ing is not always well understood. As we said before, one reason for the confusion
is that much of the work in this area has focused on a setting based on conjunctive
queries, where answering and rewriting coincide. Indeed, if we allow the target
query to be written as a union of conjunctive queries (UCQs), then the UCQ-
maximal rewriting of the query computes exactly the certain answers. Things
get more complicated with RPQs and 2RPQs. Interestingly, we show next that
we can use the above characterization of view-based query answering in terms
of CSP, to characterize also query rewriting, thus providing a clean explanation
of the relationship between answering and rewriting.

A preliminary observation is that one can restrict the attention to linear
databases when looking for counterexamples to rewritings.

Lemma 1 ([9]). Let Q be a 2RPQ, V a set of 2RPQ views, and w a word over
V±. Then w is not a rewriting (note that w can be viewed as a 2RPQ) of Q
with respect to V if and only if there exists a linear database B with endpoints
c and d, and a view extension E with E ⊆ VΣ(B), such that (c, d) ∈ w(E) but
(c, d) �∈ Q(B).

Making use of this result, we are able to exploit the constraint template itself
as a 1NFA that recognizes the words that do not belong to a rewriting. However,

View-Based Query Processing 329

we have first to take care of the fact that only direct view symbols appear in
the constraint template, while a rewriting is a 1NFA over direct and inverse
view symbols. To do so, we extend the constraint template by adding to the
alphabet, for each symbol V ∈ V, also the inverse symbol V −. Then we define
(σ1, σ2) ∈ V −C if and only if (σ2, σ1) ∈ V C . We denote the resulting constraint
template with CT±

Q,V . Observe that the construction of CT±
Q,V from CTQ,V

takes into account the perfect symmetry that we have when moving along direct
and inverse database and view symbols.

Now, C = CT±
Q,V can be viewed directly as a 1NFA Anr over V±, by taking

the domain of C as the set of states of Anr , the extension of Ui and Uf in C
respectively as the set of initial and final states, and by deriving the transition
relation of Anr from the extension of the various v ∈ V± as follows: Anr has a
transition (σ1, v, σ2) if and only if (σ1, σ2) ∈ vC .

Let Arew be a 1NFA accepting the complement of Anr . Then the following
characterization of the 2RPQ-maximal rewriting holds.

Theorem 2. Let Q be a 2RPQ and V a set of 2RPQ views. Then Arew is the
2RPQ-maximal rewriting of Q with respect to V.

The above characterization provides a nice combination of the constraint
based [10] and automata theoretic [9] approaches to view-based query process-
ing for 2RPQs, and goes into the heart of view-based rewriting. A (language)
rewriting accepts a pair (c, d) if there is a path between c and d such that, if
we view this path as a linear view extension, then (c, d) is in the certain answer
with respect to this view extension. That means that there is no homomorphism
from this path into the constraint template. Indeed, for a path, the existence of
a homomorphism into the constraint template means that the path is accepted
by the template, viewed as an automaton. Naturally, the difference with view-
based query answering, is that we are not limited to linear view extensions only.
Suppose that Vi and Vj connect the same pair of objects in a view extension. In
rewriting we have to ignore this and allow the choice of distinct pairs of objects
for the two views in a counterexample database. Query answering instead takes
into account that the two pairs of objects are the same. Thus, query answering
is more precise than query rewriting. On the other hand, the simplification in-
troduced by query rewriting allows to have polynomial time evaluation in the
size of the data, while query answering is coNP-complete [8].

Finally, observe that the above construction provides also optimal upper
bounds for the problems of computing the 2RPQ-maximal rewriting and of
determining whether such a rewriting is nonempty [9]. Indeed, the constraint
template, and hence the 1NFA Anr can be constructed in EXPTIME and
is of exponential size [14]. Hence, its complement Arew , which provides the
2RPQ-maximal rewriting, is of double exponential size and can be constructed
in 2EXPTIME. On the other hand, if we only want to check its emptiness, we
can complement Anr on the fly, getting an EXPSPACE upper bound. All these
bounds are tight [12].

330 D. Calvanese et al.

5 Losslessness with Respect to Rewriting

We deal now with the problem of analyzing the loss of information in view-
based query processing, and of characterizing the quality of certain answers and
of rewritings. For this purpose, we make use of the following basic notions.

– To determine whether the information content of a set of views is sufficient to
answer completely a given query, we make use of the notion of losslessness [24,
11]. In [11], a set of views V is said to be lossless with respect to a query Q,
if for every database B we have that Q(B) = certQ,V(VΣ(B)).

– As for rewritings, equivalence of a rewriting to the original query, modulo
the view definitions, is called exactness (cf. [27, 12]). Formally, a rewriting
Qr in a certain query class C is an exact rewriting of Q with respect to views
V, if for every database B we have that Q(B) = Qr(VΣ(B)).

– Finally, to determine whether we lose answering power by resorting to rewrit-
ing, we can compare rewritings with the certain answers, with the aim of
checking whether the two are actually equivalent. A rewriting Qr in a cer-
tain query class C is a perfect rewriting of Q with respect to views V, if for
every database B and every view extension E with E ⊆ VΣ(B) we have that
certQ,V(E) = Qr(E).

The first notion aims at determining possible loss with respect to view-based
query answering, and will be discussed in the next section. The other two notions
deal with the loss of information in the case of rewritings, and are discussed
below.

In the case of conjunctive queries, the best rewriting of a conjunctive query
Q is a union of conjunctive queries. Therefore, checking exactness amounts to
verifying whether Q is contained in the UCQ-maximal rewriting. The latter is
a, possibly exponential, union of conjunctive queries, each of linear size. Since
a conjunctive query is contained in a union of conjunctive queries only if it is
contained in one of its disjuncts, it suffices to check whether there is a single
conjunctive query in the rewriting that is equivalent to Q, after substituting the
view definitions. This can be done in NP in the size of Q. As for perfectness,
we already observed that the maximal rewriting computes exactly the certain
answers. Therefore, the maximal rewriting is always perfect.

In the case of 2RPQs, things are more complicated. Exactness is studied
in [9], where it is shown that verifying the existence of an exact rewriting is
2EXPTIME-complete. On the other hand, perfectness is a new notion, and we
provide here a method for checking perfectness of the 2RPQ-maximal rewrit-
ing Arew of a query Q. Exploiting the fact that 2RPQs are monotone, by
results in [14], this amounts to check whether for all databases B we have
that certQ,V(VΣ(B)) ⊆ Arew (VΣ(B)). To do this check, we can in principle
directly use the technique in [14] based on view-based containment (see [14]
for definitions): the 2RPQ-maximal rewriting Arew is a 1NFA of double ex-
ponential size in Q, and checking whether for all databases B we have that
certQ,V(VΣ(B)) ⊆ Arew (VΣ(B)) amounts to checking whether Q is view-based
contained in Arew , which can be done in NEXPTIME in Q and Arew [14]. This

View-Based Query Processing 331

gives us a N3EXPTIME upper bound. However, we can do better, by making use
of the fact that we have obtained the 1NFA Arew for the rewriting by comple-
mentation, and thus by application of the subset construction. This allows us to
characterize non-membership in the answer set to Arew by homomorphism into
a structure C = (ΔC , ·C), called the rewriting constraint template CTRArew ,V of
Arew , defined as follows:

– The alphabet of C is V± ∪ {Ui, Uf}, where Ui and Uf denote unary relation
symbols.

– Let Anr = (V±, S, S0, &, F) be a 1NFA for the complement of the rewriting
(see Section 4). Then
• ΔC = 2S ;
• σ ∈ UC

i iff S0 ⊆ σ;
• σ ∈ UC

f iff σ ⊆ F ;
• (σ1, σ2) ∈ rC iff &(σ1, r) ⊆ σ2 and &(σ2, r

−) ⊆ σ1.

To characterize perfectness of the rewriting in terms of CSP, we need to
introduce proper constraint templates (see also [14]). Given the rewriting con-
straint template CTArew ,V , a proper constraint template CTα,β

Arew ,V is obtained by
eliminating from Ui all but one element α and from Uf all but one element β.

Lemma 2. Let Q be a 2RPQ and V be a set of 2RPQ views. Then the 2RPQ-
maximal rewriting of Q with respect to V is perfect if and only if for every proper
constraint template CTRα,β

Arew ,V of CTRArew ,V , there exists a homomorphism from
CTRArew ,Vα, β to CTQ,V .

The above characterization provides us with a tighter upper bound than the
one discussed above.

Theorem 3. Let Q be a 2RPQ and V be a set of 2RPQ views. Then checking
whether the 2RPQ-maximal rewriting of Q with respect to V is perfect can be
done in N2EXPTIME in the size of Q and in NEXPTIME in the size of VΣ.

We conjecture that such an upper bound is tight.

6 Losslessness with Respect to Answering

We now turn to verifying losslessness with respect to answering. We want to
verify whether a set of views V is lossless with respect to a query Q, i.e., verifying
whether certQ,V is equivalent to Q (cf. [11]).

In the case of conjunctive queries, we already observed that the maximal
rewriting computes exactly the certain answers. Therefore, losslessness with re-
spect to answering and losslessness with respect to rewriting coincide. The case
of RPQs and 2RPQs is much more involved. Losslessness with respect to answer-
ing for RPQs was studied in [11]. In the rest of this section we study losslessness
with respect to answering for 2RPQs.

The main step toward this goal is to characterize the linear fragment of certain
answers. Formally, the linear fragment of certain answers clinQ,V for a 2RPQ

332 D. Calvanese et al.

Q with respect to a set V of 2RPQ views is the maximal two-way path query1

Q′ over Σ such that, for every database B we have that Q′(B) ⊆ certQ,V(V(B)).
The following result shows that, in order to characterize the linear fragment of
certain answers it is sufficient to restrict the attention to linear databases, i.e.,
databases constituted by a single semipath.

Lemma 3. Let Q′ be two-way path query. Then, if there is a database B and a
pair of objects (c, d) in B such that (c, d) ∈ Q′(B) and (c, d) �∈ certQ,V(VΣ(B)),
then there is a linear database B� with endpoints c′ and d′ such that (c′, d′) ∈
Q′(B�) and (c′, d′) �∈ certQ,V(VΣ(B�)).

Hence, to construct the linear fragment of certain answers, we characterize the
set of linear databases of the form B = (x0, q1, x1, q2, . . . , qm, xm), for some m,
such that (x0, xm) �∈ certQ,V(V(B)). By Theorem 1, this holds if and only if there
is a homomorphism from the constraint instance V(B)x0,xm to the constraint
template CTQ,V . In other words, (x0, xm) �∈ certQ,V(V(B)) if and only if there
is a function #(·) (i.e., the homomorphism) that labels x0, . . . , xm with sets of
states of the 1NFA AQ = (Σ±, SQ, SQ

0 , &Q, FQ) for Q such that the following
conditions (which we call CT-conditions) hold:

– SQ
0 ⊆ #(x0);

– #(xm) ∩ FQ = ∅;
– for each pair of objects xj and xh in B and each view V in V, we have that, if

(xj , xh) ∈ V Σ(B) then there exists a word q1 · · · qk ∈ L(V Σ) and a sequence
T0, . . . , Tk of subsets of SQ such that the following hold:
1. T0 = #(xj) and Tk = #(xh),
2. if s ∈ Ti and (s, qi+1, t) ∈ &Q then t ∈ Ti+1, for 0 ≤ i < k, and
3. if s ∈ Ti and (s, q−

i , t) ∈ &Q then t ∈ Ti−1, for 0 < i ≤ k.

Thus, we are looking for words of the form #0, q1, . . . , qm, #m, where each #i is a
set of states of AQ, representing #(xi), and that satisfies the above conditions.
As shown by the following lemma, we can construct a 1NFA that accepts such
words, and then project away the #i transitions.

For a word w ∈ Σ±∗, we denote with Ba,b
w the linear database constituted by

a path from a to b spelled by w (with arbitrary intermediate nodes).

Lemma 4. Let Q be a 2RPQ and V be a set of 2RPQ views. Then we can
construct in double exponential time in Q and VΣ two 1NFAs Anlin and Alin

such that:

– Anlin accepts all words w ∈ Σ±∗ such that (a, b) �∈ certQ,V(V(Ba,b
w)).

– Alin accepts all words w ∈ Σ±∗ such that (a, b) ∈ certQ,V(V(Ba,b
w)).

Both 1NFAs Anlin and Alin have a number of states that is doubly exponential
in bothQ and VΣ . Obviously, the two automata accept complementary languages.
However, in the proof of the above lemma we show how to construct Alin directly,
instead of complementing Anlin , to avoid an additional exponential blowup.

1 Recall from Section 2 that two-way path queries are a generalization of 2RPQs in
which the language used to define a query is not required to be regular.

View-Based Query Processing 333

Theorem 4. Let Q be a 2RPQ and V be a set of 2RPQ views, and Anlin and
Alin the 1NFAs defined as above. Then Alin is the linear fragment clinQ,V of the
certain answers of Q with respect to V.

Corollary 1. The linear fragment of a 2RPQ with respect to a set of 2RPQ
views is a 2RPQ.

Now we can deal with checking losslessness with respect to answering. To
check whether a set V of 2RPQ views is lossless with respect to a 2RPQ query
Q, we have to check whether for all databases B, we have that Q(B) is con-
tained in the certain answers certQ,V(VΣ(B)). Since Q is itself a 2RPQ, and
hence a path query, it suffices to check whether Q is contained in the linear
fragment of the certain answers, i.e., whether for all databases B we have that
Q(B) ⊆ clinQ,V(B). By exploiting the characterization of the linear fragment
of the certain answers in terms of 1NFAs provided above, we get the following
upper bound, which is tight already for RPQs [11].

Theorem 5. Let Q be a 2RPQ and V be a set of 2RPQ views. Then checking
whether V is lossless with respect to Q can be done in EXPSPACE in the size of
Q and VΣ.

Observe that when we have that a set of views is lossless with respect to a
query, we have also, as a side effect, that the linear fragment of certain answers
is equivalent to the certain answers, since both are equivalent to the query. Now
it is natural to try to understand when the linear fragment of certain answers is
equivalent to the certain answers, independently of losslessness with respect to
answering. Indeed, in this case, since the certain answers are actually expressible
as a 2RPQ over the database, we directly get a characterization of the certain
answers in the same language used for expressing the query and thus in terms
that are understandable to the user.

Given a 2RPQ Q and a set of 2RPQ views V, checking whether the linear frag-
ment of certain answers is equivalent to the certain answers amounts to check-
ing whether for every database B we have that certQ,V(VΣ(B)) ⊆ clinQ,V(B).
Consider the 1NFA Alin , constructed above, recognizing the linear fragment
clinQ,V of the certain answers of Q. One can verify that the certain answers
certAlin ,V of Alin with respect to V are actually equivalent to Alin itself. Hence,
the above check amounts to verifying whether for all databases B, we have that
certQ,V(VΣ(B)) ⊆ certAlin ,V(VΣ(B)). This is a form of view-based containment,
and by [14] it can done in NEXPTIME in the size of Q and Alin . Considering
that Alin has a number of states that is doubly exponential in the size of Q and
VΣ , we get the following upper bound.

Theorem 6. Let Q be a 2RPQ and V be a set of 2RPQ views. Then checking
whether the certain answers certQ,V of Q with respect to V is equivalent to its
linear fragment can be done in N3EXPTIME in the size of Q and VΣ.

We conjecture that such an upper bound can be improved.

334 D. Calvanese et al.

7 Discussion

In this paper, we have revisited the notions of answering, rewriting and lossless-
ness in the context of view-based query processing in semistructured databases.
In particular the richness of RPQs and 2RPQs allows us to uncover several sub-
tle distinctions between the notions of rewriting and answering, and losslessness
with respect to them. Such distinctions are completely blurred when focusing on
conjunctive queries, due to the fact that rewriting and answering collapse.

Let Q be a 2RPQ, V a set of 2RPQ views, and let Rmax
Q,V denote the 2RPQ-

maximal rewriting of Q with respect to V. Then, by definition and by results
in [14] exploiting the fact that 2RPQs are monotone, we know that for every
database B, the following holds:

Rmax
Q,V (VΣ(B)) ⊆(1) clinQ,V(B) ⊆(2) certQ,V(VΣ(B)) ⊆(3) Q(B)

Notice that we start from a database B and are evaluating certQ,V and Rmax
Q,V

over a particular view extension, namely VΣ(B), instead of an arbitrary view
extension E that is sound with respect to B, i.e., such that E ⊆ VΣ(B). This is
due to the fact that our aim is to understand whether there is loss. It is clear
that when E is a strict subset of VΣ(B) then loss may occur, but this has nothing
to do with the “quality” of the views.

It is now of interest to consider the cases in which some or all of the above
inclusions are actually equalities, since these correspond to the notions studied
in this paper.

1. If Rmax
Q,V is exact, i.e., is equivalent to Q (modulo the view definitions), then all

three inclusions are actually equalities. Hence, not only we have losslessness
with respect to rewriting but we also have both that the views are lossless
with respect to answering and that Rmax

Q,V is perfect. Thus exactness of the
maximal rewriting is the strongest notion, combining both losslessness of the
views and perfectness of the rewriting.

2. If Rmax
Q,V is perfect, i.e., is equivalent to certQ,V , then inclusions (1) and (2)

are actually equalities. In this case, we also get that certQ,V has to coincide
with clinQ,V . By Corollary 1 we can conclude that the certain answers are
expressible as a 2RPQ over B.

3. If V is lossless with respect to Q, i.e., we have losslessness with respect to
answering, then inclusion (3) is actually an equality. Moreover, in this case,
since Q is itself a 2RPQ, and hence is linear, then certQ,V has also to be linear
and has to coincide with clinQ,V . Hence inclusion (2) is also an equality. In
this case we know that there is not loss of information related to the fact
that we are answering the query based on a set of views.

4. Finally, if V is lossy with respect to Q, i.e., we have lossiness with respect to
answering, we can check whether inclusion (2) is actually an equality, i.e.,
whether the certain answers are actually expressible as a 2RPQ over the
database. If this is the case, we directly get a characterization of the certain
answers in the same language used for expressing the query, namely 2RPQs
over the database, and thus in terms that are understandable to the user.

View-Based Query Processing 335

More generally, if V is lossy with respect to Q and inclusion (2) is a proper
inclusion, we would like to provide an explanation for the answers that are
actually returned or, equivalently, for the loss of information. Indeed, in this
case, we know that there will be at least one view extension such that, in order
to show that a tuple is not a certain answer, we need to resort to a non-linear
database. It remains to be investigated whether the techniques we provide for
doing the check allow one also to extract such a counterexample database to
exhibit to the user.

References

1. S. Abiteboul. Querying semi-structured data. In Proc. of the 6th Int. Conf. on
Database Theory (ICDT’97), pages 1–18, 1997.

2. S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: from Relations to
Semistructured Data and XML. Morgan Kaufmann, Los Altos, 2000.

3. S. Abiteboul and O. Duschka. Complexity of answering queries using materialized
views. In Proc. of the 17th ACM PODS Symp., pages 254–265, 1998.

4. S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. L. Wiener. The Lorel query
language for semistructured data. Int. J. on Digital Libraries, 1(1):68–88, 1997.

5. F. N. Afrati, C. Li, and P. Mitra. Answering queries using views with arithmetic
comparisons. In Proc. of the 21st ACM PODS Symp., pages 209–220, 2002.

6. P. Buneman. Semistructured data. In Proc. of the 16th ACM PODS Symp., pages
117–121, 1997.

7. P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu. A query language and
optimization technique for unstructured data. In Proc. of the ACM SIGMOD Int.
Conf. on Management of Data, pages 505–516, 1996.

8. D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi. Answering regular
path queries using views. In Proc. of the 16th IEEE Int. Conf. on Data Engineering
(ICDE 2000), pages 389–398, 2000.

9. D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi. Query processing
using views for regular path queries with inverse. In Proc. of the 19th ACM PODS
Symp., pages 58–66, 2000.

10. D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi. View-based query
processing and constraint satisfaction. In Proc. of the 15th IEEE Symp. on Logic
in Computer Science (LICS 2000), pages 361–371, 2000.

11. D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi. Lossless regular
views. In Proc. of the 21st ACM PODS Symp., pages 58–66, 2002.

12. D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi. Rewriting of reg-
ular expressions and regular path queries. J. of Computer and System Sciences,
64(3):443–465, 2002.

13. D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi. Reasoning on regular
path queries. SIGMOD Record, 32(4):83–92, 2003.

14. D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Y. Vardi. View-based query
containment. In Proc. of the 22nd ACM PODS Symp., pages 56–67, 2003.

15. R. Chirkova, A. Y. Halevy, and D. Suciu. A formal perspective on the view selection
problem. In Proc. of the 27th Int. Conf. on Very Large Data Bases (VLDB 2001),
pages 59–68, 2001.

16. J. Clark and S. DeRose. XML Path Language (XPath) version 1.0 – W3C rec-
ommendation 16 november 1999. Technical report, World Wide Web Consortium,
1999.

336 D. Calvanese et al.

17. A. Deutsch, M. F. Fernandez, D. Florescu, A. Levy, and D. Suciu. XML-QL: A
query language for XML. Submission to the World Wide Web Consortium, 1998.
Available at http://www.w3.org/TR/NOTE-xml-ql.

18. O. M. Duschka and M. R. Genesereth. Answering recursive queries using views.
In Proc. of the 16th ACM PODS Symp., pages 109–116, 1997.

19. T. Feder and M. Y. Vardi. The computational structure of monotone monadic
SNP and constraint satisfaction. SIAM J. on Computing, 28:57–104, 1999.

20. M. F. Fernandez, D. Florescu, J. Kang, A. Y. Levy, and D. Suciu. Catching the
boat with Strudel: Experiences with a web-site management system. In Proc. of
the ACM SIGMOD Int. Conf. on Management of Data, pages 414–425, 1998.

21. S. Flesca and S. Greco. Rewriting queries using views. IEEE Trans. on Knowledge
and Data Engineering, 13(6):980–995, 2001.

22. D. Florescu, A. Levy, and A. Mendelzon. Database techniques for the World-Wide
Web: A survey. SIGMOD Record, 27(3):59–74, 1998.

23. G. Grahne and A. O. Mendelzon. Tableau techniques for querying information
sources through global schemas. In Proc. of the 7th Int. Conf. on Database Theory
(ICDT’99), volume 1540 of LNCS, pages 332–347. Springer, 1999.

24. S. Grumbach and L. Tininini. On the content of materialized aggregate views. In
Proc. of the 19th ACM PODS Symp., pages 47–57, 2000.

25. A. Y. Halevy. Answering queries using views: A survey. Very Large Database J.,
10(4):270–294, 2001.

26. J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison Wesley, 1979.

27. A. Y. Levy, A. O. Mendelzon, Y. Sagiv, and D. Srivastava. Answering queries
using views. In Proc. of the 14th ACM PODS Symp., pages 95–104, 1995.

28. C. Li, M. Bawa, and J. D. Ullman. Minimizing view sets without losing query-
answering power. In Proc. of the 8th Int. Conf. on Database Theory (ICDT 2001),
pages 99–113, 2001.

29. T. Milo and D. Suciu. Index structures for path expressions. In Proc. of the 7th
Int. Conf. on Database Theory (ICDT’99), volume 1540 of LNCS, pages 277–295.
Springer, 1999.

30. R. Reiter. On closed world data bases. In H. Gallaire and J. Minker, editors, Logic
and Databases, pages 119–140. Plenum Publ. Co., 1978.

31. J. D. Ullman. Information integration using logical views. In Proc. of the 6th
Int. Conf. on Database Theory (ICDT’97), volume 1186 of LNCS, pages 19–40.
Springer, 1997.

32. M. Y. Vardi. A temporal fixpoint calculus. In Proc. of the 15th ACM POPL Symp.,
pages 250–259, 1988.

First-Order Query Rewriting for Inconsistent
Databases

Ariel D. Fuxman and Renée J. Miller

Department of Computer Science,
University of Toronto

{afuxman, miller}@cs.toronto.edu

Abstract. We consider the problem of retrieving consistent answers
over databases that might be inconsistent with respect to some given
integrity constraints. In particular, we concentrate on sets of constraints
that consist of key dependencies. Most of the existing work has focused
on identifying intractable cases of this problem. In contrast, in this paper
we give an algorithm that computes the consistent answers for a large
and practical class of conjunctive queries. Given a query q, the algorithm
returns a first-order query Q (called a query rewriting) such that for ev-
ery (potentially inconsistent) database I, the consistent answers for q
can be obtained by evaluating Q directly on I.

1 Introduction

Consistent query answering is the problem of retrieving “consistent” answers
over databases that might be inconsistent with respect to some given integrity
constraints. Applications that have motivated the study of this problem include
data integration and data exchange. In data integration, the goal is to provide
“a uniform interface to multiple autonomous data sources” [Hal01]. In data ex-
change, “data structured under one (source) schema must be restructured and
translated into an instance of a different (target) schema” [FKMP03]. In both
contexts, it is often the case that the source data does not satisfy the integrity
constraints of the global or target schema. The traditional approach to deal
with this situation involves “cleaning” the source instance in order to remove
data that violates the target constraints. However, data cleaning is supported
by semi-automatic tools at best, and it is necessarily a human-labor intensive
process. An alternative approach would be to exchange an inconsistent instance,
and employ the techniques of consistent query answering to resolve inconsisten-
cies at query time. Of course, this approach becomes viable only if efficient tools
for consistent query answering are available. In this paper, we present a number
of results that are a step in this direction.

In addition to these long-standing problems, the trend toward autonomous
computing is making the need to manage inconsistent data more acute. In au-
tonomous environments, we can no longer assume that data are married with a
single set of constraints that define their semantics. As constraints are used in an
increasing number of roles (from modelling the query capabilities of a system, to
defining mappings between independent sources), there is an increasing number

T. Eiter and L. Libkin (Eds.): ICDT 2005, LNCS 3363, pp. 337–351, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

338 A.D. Fuxman and R.J. Miller

of applications in which data must be used with a set of independently designed
constraints. In such applications, a static approach where consistency (with re-
spect to a fixed set of constraints) is enforced by cleaning the database may
not be appropriate. Rather, a dynamic approach in which data is not changed,
but consistency is taken into account at query time, permits the constraints to
evolve independently from the data.

The input to the consistent query answering problem is: a schema R, a set
Σ of integrity constraints, and a database instance I over R. The database I
might be inconsistent, in the sense that it might violate some of the constraints
of Σ. In this work, we draw upon the concept of repairs, defined by Arenas et al.
[ABC99], to give semantics to the problem. A repair I of I is an instance of R
such that I satisfies the integrity constraints of Σ, and I differs minimally from
I (where minimality is defined with respect to the symmetric difference between
I and I). Under this definition, repairs need not be unique. Intuitively, each
repair corresponds to one possible way of “cleaning” the inconsistent database.

The notion of repairs is used to give semantics to consistent query answering
in the following way. Given an instance I, a tuple t is said to be a consistent
answer for q on I if I |= q[t], for every repair I of I. This concept is similar to
that of certain answers used in the context of data integration [AD98], but for
consistent answers the set of possible worlds are the repairs of the inconsistent
database, rather than the legal instances of a global database.

In this work, we focus on sets of integrity constraints that consist of key
dependencies. The most commonly used constraints in database systems are
keys and foreign keys. Of these, keys pose a particular challenge since instances
that are inconsistent with respect to a set of key dependencies admit an expo-
nential number of repairs in the worst case. This potentially large number of
repairs leads to the question of whether it is possible to compute consistent an-
swers efficiently. The answer to this question is known to be negative in general
[CM04, CLR03a]. However, this does not necessarily preclude the existence of
classes of queries for which the problem is easier to compute. Hence, we consider
the following question: for what queries is the problem of computing consistent
answers in polynomial time (in data complexity)?

In general, given a query q, it does not suffice to evaluate q directly on a (pos-
sibly inconsistent) instance I in order to get the consistent answers. Therefore,
a related question is: does there exist some other query Q such that for every
instance I, the consistent answers for q can be obtained by just evaluating Q on
I? If Q is a first-order query, we say that q is first-order rewritable. Since first-
order queries can be written in SQL, if the query is first-order rewritable, then
its consistent answers can be retrieved (at query time) using existing commercial
database technology. Given the desirability of such an approach, we consider the
question of identifying classes of queries that are first-order rewritable.

Summary of Results. The main contribution of this paper is an algorithm that
produces a first-order query rewriting for the problem of computing consistent
answers. The algorithm, which is presented in Section 3, runs in polynomial time
in the size of the query. We prove the correctness of the algorithm for a large

First-Order Query Rewriting for Inconsistent Databases 339

class of conjunctive queries. The class is defined in terms of the join graph of the
query. The join graph is a directed graph such that: its vertices are the literals
of the query; and it has an arc for each join in the query that involves some
variable that is at the position of a non-key attribute. Our algorithm works for
conjunctive queries without repeated relation symbols (but with any number
of literals and variables) whose join graph is a forest. The class contains most
queries that usually arise in practice. For example, 20 out of 22 queries in TPC-H
[TPC03], the industry standard for decision support systems, are in this class.

In Section 4, we present a class of queries for which the conditions of appli-
cability of the algorithm (which can be verified in polynomial time in the size of
the query) are necessary and sufficient. That is, we show a class such that the
problem of computing the consistent answers is coNP-complete for every query
of the class whose join graph is not a forest. Notice that this type of result is
much stronger than the usual approach taken in the consistent query answering
literature, which consists of showing intractability of a class by exhibiting at
least one query for which the problem is intractable. As a corollary of our result,
we get a dichotomy for this class of queries: given a query q, either the problem
of computing the consistent answers for q is first-order rewritable (and thus it is
in PTIME), or it is a coNP-complete problem.

2 Formal Framework

A schema R is a finite collection of relation symbols, each of which has an
associated arity. A set of integrity constraints Σ consists of sentences in some
logical formalism over R. An instance I over R is a function that associates
to each relation symbol R of R a relation I(R). Given a tuple t occurring in
relation I(R), we denote by R(t) the association between t and R. An instance
I is consistent with respect to a set of integrity constraints Σ if I satisfies Σ in
the standard model-theoretic sense, that is I |= Σ.

We adopt a semantics for consistent query answering that was originally intro-
duced by Arenas et al. [ABC99], and relies upon the concept of repairs. A repair is
an instance that satisfies the integrity constraints, and which has a minimal dis-
tance to the inconsistent database. The distance between two database instances
I and I ′ is defined as their symmetric difference, i.e., Δ(I, I ′) = (I−I ′)∪(I ′−I).
The formal definition of repair is the following.

Definition 1 (Repair [ABC99]). Let I be an instance. We say that an in-
stance I is a repair of I with respect to Σ if: 1

– I |= Σ, and
– there is no instance I ′ such that I ′ |= Σ and Δ(I, I ′) ⊂ Δ(I, I) (i.e., Δ(I, I)

is minimal under set inclusion in the class of instances that satisfy Σ).

Example 1. Let R be a schema with one relation symbol R. Assume that R has
two attributes: E (Employee) and S (Salary), and that the only constraint in Σ

1 Whenever Σ is clear from the context, we will just say that I is a repair of I.

340 A.D. Fuxman and R.J. Miller

is that the attribute E is the key of R. Let I = {R(John, 1000), R(John, 2000),
R(Mary, 3000)}. We can see that I is inconsistent with respect to Σ. There
are two repairs: I1 = {(John, 1000), (Mary, 3000)} and I2 = {(John, 2000),
(Mary, 3000)}. We use the term “repair”, as opposed to “minimal repair”, be-
cause it is standard in the literature [ABC99]. However, notice that, by definition,
all repairs have a minimal distance to the inconsistent database. For example,
{(John, 2000)} and {(Mary, 3000)} are not repairs because their distance with
respect to I is not minimal under set inclusion. The minimality condition for
the repairs is crucial in the definition. Otherwise, the empty set would trivially
be a repair of every instance.

The semantics for query answering is given in terms of consistent answers
[ABC99], which we define next.

Definition 2 (Consistent Answer [ABC99]). Let R be a schema. Let Σ be
a set of integrity constraints. Let I be an instance over R (possibly inconsistent
with respect to Σ). Let q be a query over R. We say that a tuple t is a consistent
answer with respect to Σ if I |= q[t], for every repair I of I with respect to Σ.
We denote this as t ∈ consistentΣ(q, I).

Example 1 (continued). Let q1(e) = ∃s : R(e, s). The consistent answers for q1 on
I are the tuples (John) and (Mary). Let q2(e, s) = R(e, s). The only consistent
answer for q2 on I is (Mary, 3000). Notice that the tuples (John, 1000) and
(John, 2000) are not consistent answers. The reason is that neither of them are
present in both repairs. Intuitively, this reflects the fact that John’s salaries are
inconsistent data.

For convenience, we will use the following notation for the consistent answers
to Boolean queries.

Definition 3. Let R be a schema. Let Σ be a set of integrity constraints. Let I
be an instance over R. Let q be a Boolean query over R. We say that
consistentΣ(q, I) = true if for every repair I of I with respect to Σ, I |= q.
We say that consistentΣ(q, I) = false if there exists at least one repair I of
I with respect to Σ such that I �|= q.

Notice the asymmetry between the case for consistentΣ(q, I) = true and
consistentΣ(q, I) = false. While, for the former, every repair must satisfy
the query, for the latter it suffices to have just one (non-satisfying) repair.
This is not intrinsic to Boolean queries: by Definition 2, it is also the case that
t �∈ consistentΣ(q, I) if there exists at least one repair I such that I �|= q[t].

We will denote the problem of computing consistent answers as
CONSISTENT(q, Σ), and define it as follows.

Definition 4. Let R be a schema. Let q be a query over R. Let Σ be a set of
integrity constraints. The consistent query answering problem CONSISTENT(q, Σ)
is the following: given an instance I over R, and tuple t, is it the case that
t ∈ consistentΣ(q, I)?

First-Order Query Rewriting for Inconsistent Databases 341

We will design an algorithm that computes consistent answers directly from
the inconsistent database, without explicitly building the repairs. In fact, given
a query q, the algorithm will return a first-order query Q such that, for every
instance I, the consistent answers for q can be obtained by just evaluating Q on
I. We call Q a first-order query rewriting, and define it next.

Definition 5 (First-Order Query Rewriting). Let R be a schema. Let Σ be
a set of integrity constraints. Let q be a query over R. We say that the problem
CONSISTENT(q, Σ) is first-order rewritable if there is a first-order query Q such
that I |= Q[t] iff t ∈ consistentΣ(q, I), for every instance I over R. We also
say that Q is a first-order rewriting of the problem CONSISTENT(q, Σ). 2

Notice that if CONSISTENT(q, Σ) is first-order rewritable, then it is tractable.
This is because the data complexity of first-order logic is in PTIME (actually, in
AC0). Thus, it can be tested in polynomial time whether I |= Q[t]. Besides this,
an approach based on query rewriting is attractive because first-order queries can
be written in SQL. Therefore, if the query is first-order rewritable, the consistent
answers can be retrieved using existing database technology.

Throughout the paper, we will assume that the set Σ of integrity constraints
consists of at most one key dependency per relation of the schema. To facilitate
specifying the set of constraints each time that we give a query, we will underline
the positions in each literal that correspond to key attributes. Furthermore,
by convention, the key attributes will be given first. For example, the query
q = ∃x, y, z : R1(x, y) ∧ R2(y, z) indicates that literals R1 and R2 represent
binary relations whose first attribute is the key. We will use bold letters (e.g., x,
y) to denote vectors of variables or constants from a query or tuple. In addition,
when we give a tuple, we will underline the values that appear at the position
of key attributes. For instance, for a tuple R(c,d), we will say that c is a key
value, and d is a non-key value. Using this notation, the key constraints of Σ
that are relevant to the query are denoted directly in the query expression.

The results in this paper concern (classes of) conjunctive queries. We will
adopt the convention of using x to denote variables and constants that appear
at the position of key attributes, and y for variables and constants that appear at
the position of non-key attributes. Thus, conjunctive queries will be of the form:

q(w1, . . . , wm) = ∃z1, . . . , zl : R1(x1,y1), ..., Rn(xn,yn)

where w1, . . . , wm, z1, . . . , zl are all the variables that appear in the literals of
q. We will say that w1, . . . , wm are the free variables of q. Notice that even though
there are no equality symbols in q, their effect is achieved by having variables
that appear in q more than once. The queries may also contain constants, which
we will denote with bold letters from the beginning of the alphabet (e.g., a and
b). We will say that there is a join on a variable w if w appears in two literals
Ri(xi,yi) and Rj(xj ,yj) such that i �= j. If w occurs in yi and yj , we say that
there is a non-key join on w.

2 On occasion, we will simply say that q is first-order rewritable, and that Q is a
first-order rewriting of q.

342 A.D. Fuxman and R.J. Miller

Throughout the paper, we will focus on the class of conjunctive queries with-
out repeated relation symbols. A conjunctive query without repeated relation
symbols is a conjunctive query such that every relation symbol of the schema
appears in q at most once. Notice that, in spite of this restriction, the query can
still have any arbitrary number of literals and relation symbols, and there are
no constraints on the occurrence of variables in the query.

3 A Query Rewriting Algorithm

3.1 A Class of Tractable Queries

The problem of computing consistent answers for conjunctive queries over data-
bases that might violate a set of key constraints is known to be coNP-complete
in general [CM04, CLR03a]. This is the case even for queries with no repeated
relation symbols, which is the focus of this section. However, this does not neces-
sarily preclude the existence of classes of queries for which the problem is easier
to compute. In fact, in this section we characterize a large and practical class
of conjunctive queries for which the problem of computing consistent answers is
indeed tractable. Even more so, we show that all queries in this class are first-
order rewritable, and we give a polynomial-time algorithm that computes the
first-order rewriting.

Before presenting the tractable class, let us consider the following queries for
which the problem of computing consistent answers is coNP-complete, as will be
shown in Section 4.

– q1 = ∃x, x′, y : R1(x, y) ∧R2(x′, y)
– q2 = ∃x, y, z : R1(z, x, y) ∧R2(y, x)
– q3 = ∃x, y, z, w : R1(x, y) ∧R2(z, w) ∧R3(y, w)

The queries presented above are rare in practice. The first consists of a join
between non-key attributes; the second involves a cycle; and the third, a join
with part, but not the entire key of a relation. We use these queries to provide
insight into when a query is intractable. In particular, we will show in Section 4
a class of queries for which the presence of cycles and non-key joins are in fact
necessary conditions for intractability. Notice that such conditions are concerned
with the joins in the query where at least one non-key variable is involved. In
order to define such conditions precisely, we will state them in terms of what we
call the join graph of the query.

Definition 6 (Join Graph). Let q be a conjunctive query. The join graph G
of q is a directed graph such that:

– the vertices of G are the literals of q;
– there is an arc from Ri to Rj if i �= j and there is some variable w such that

w occurs at the position of a non-key attribute in Ri and w occurs in Rj;
– there is a self-loop at Ri (i.e., an arc from Ri to Ri) if there is some variable

w such that w occurs at the position of a non-key attribute of Ri, and w
occurs at least twice in Ri.

First-Order Query Rewriting for Inconsistent Databases 343

As we can see in Figure 1, the join graphs of q1 and q2 have a cycle. The
join graph of q3 does not have a cycle, but it is not a tree because the node for
relation R3 has two incoming arcs. Therefore, we will focus on queries whose
join graph is a tree (or a forest). For example, the join graph of the following
query is a tree. The graph is shown in Figure 1.

q4 = ∃x, y, z, w : R1(x, y) ∧R2(y, z) ∧R3(z, w) ∧R4(y,a)

R 1

R 2
R

R

 2

 3

y

x

y

w

R 2

y

y

q
 1

q q
 2 3

q
 4

R 1 R 1

R 1

R

R

R 2

 3

 4

y y

z

Fig. 1. Join graphs

An additional condition that we will impose on the query is that the joins
from non-key to key attributes involve the entire key of a relation. We will call
such joins full. For example, all the non-key to key joins of query q4 are full.
On the other hand, in the query q = ∃x, y, z, w : R1(x, y) ∧ R2(z, y, w) the join
between R1 and R2 is not full since it does not involve the entire key of R2.

Definition 7. Let q be a conjunctive query. Let Ri(xi,yi) and Rj(xj ,yj) be a
pair of literals of q. We say that there is a full non-key to key join from Ri to
Rj if every variable of xj appears in yi.

Considering queries with only full non-key to key joins, the class Ctree that
we define next consists of the queries whose join graph is a forest.

Definition 8. Let q be conjunctive query without repeated relation symbols. Let
G be the join graph of q. We say that q ∈ Ctree if G is a forest (i.e., every
connected component of G is a tree) and every non-key to key join of q is full.

A fundamental observation about Ctree is that it is a very common, practical
class of queries. Arguably, the most used form of joins are from a set of non-key
attributes of one relation (which may be a foreign key)3 to the key of another
relation (which may be a primary key). Furthermore, such joins typically in-
volve the entire primary key of the relation (and, hence, they are full joins in
our terms). Finally, cycles are rarely present in the queries used in practice.
Admittedly, the restriction not to have repeated relation symbols does rule out
some common queries (those in which the same relation appears twice in the
FROM clause of an SQL query). Still, many queries used in practice do not have

3 Notice that in this work we are not dealing with the problem of inconsistency with
respect to foreign keys, but with respect to key dependencies.

344 A.D. Fuxman and R.J. Miller

repeated relation symbols. As an empirical observation, we point out that 20 out
of 22 queries in the TPC-H standard [TPC03] are in class Ctree. 4

3.2 Algorithm

The following examples highlight some of the intuition underlying our query
rewriting algorithm.

Example 2. Let q = ∃x : R1(x,a). First of all, notice that q itself is not a query
rewriting of CONSISTENT(q, Σ). Consider the instance I1 = {R1(c1, a), R1(c1, b)}.
It is easy to see that I1 |= q. However, consistentΣ(q, I1) = false because the
repair I = {R1(c1, b)} is such that I �|= q. Now, consider I2 = {R1(c1, a), R1(c1, b),
R1(c2, a)}. It is easy to see that consistentΣ(q, I2) = true. This is because there
is a key value in R1 (c2 in this case) that appears with a as its non-key value,
and does not appear with any other constant a′ such that a′ �= a. This can be
checked with a formula Qconsist = ∀y′ : R1(x, y′) → y′ = a. In fact, we will
show that a query rewriting Q for q can be obtained as the conjunction of q and
Qconsist:

Q = ∃x : R1(x,a) ∧ ∀y′ : R1(x, y′) → y′ = a

Example 3. Let q = ∃x, y, z : R1(x, y) ∧ R2(y, z). As in the previous example,
q itself is not a query rewriting of CONSISTENT(q, Σ). For, consider the instance
I1 = {R1(c1, d1), R1(c1, d2), R2(d1, e1)}. It is easy to see that I1 |= q. However,
consistentΣ(q, I1) = false because the repair I = {R1(c1, d2), R2(d1, e1)} is
such that I �|= q. Now, consider I2 = {R1(c1, d1), R1(c1, d2), R2(d1, e1), R2(d2, e2)}.
It is easy to see that consistentΣ(q, I2) = true. This is because every non-key
value that appears together with c1 in some tuple (in this case, d1 and d2)
joins with a tuple of R2. This can be checked with a formula Qconsist = ∀y′ :
R1(x, y′) → ∃z′ : R2(y′, z′). We will soon show that a query rewriting Q for q
can be obtained as the conjunction of q and Qconsist, as follows:

Q = ∃x, y, z : R1(x, y) ∧R2(y, z) ∧ ∀y′ : (R1(x, y′) → ∃z′ : R2(y′, z′))

We now proceed to present RewriteConsistent, our query rewriting algo-
rithm. For convenience, it is split into three modules, which are shown in Figures
2, 3, and 4. Given a query q such that q ∈ Ctree, and a set of key constraints
Σ, RewriteConsistent(q, Σ) returns a first-order rewriting Q for the prob-
lem of obtaining the consistent answers for q with respect to Σ. The algorithm
RewriteConsistent is shown in Figure 2. The first-order rewriting Q that it re-
turns is obtained as the conjunction of the input query q, and a new query called
Qconsist. The query Qconsist is used to ensure that q is satisfied in every repair
(and, hence, consistentΣ(q, I) = true). It is important to notice that Qconsist

will be applied directly to the inconsistent database (i.e., we will never generate

4 This is considering the Select-Project-Join structure of the queries, not additional
features such as aggregation or arithmetical operators. The reason that two of the
queries are outside the class is just because they have repeated relation symbols.

First-Order Query Rewriting for Inconsistent Databases 345

the repairs). The query Qconsist is obtained by recursion on the tree structure
of each of the components of the join graph of q (recall that since q ∈ Ctree, the
join graph is a forest). The recursive algorithm is called RewriteTree, and is
shown in Figure 3.

In the query Qconsist, some of the variables of q are renamed. Let us illustrate
this with the query q = ∃x, y, z : R1(x, y) ∧ R2(y, z) from Example 3. In this
case, Qconsist = ∀y′ : R1(x, y′) → ∃z′ : R2(y′, z′). Notice that the variable y of q
is renamed to y′ in Qconsist. In order to keep track of the renaming during the
execution of the algorithm, we use a substitution δ for the variables of q.

The variables that will be renamed in Qconsist by the substitution δ are those
that are involved in some join from a non-key to a key position. Notice that
these are the joins that create arcs in the join graph. The renamed variables are
universally quantified in Qconsist. The intuition behind this is that the renamed
variable denotes a non-key position in a literal and, as we illustrated in Example
3, the query must be satisfied by all the non-key values of a given key.

In the algorithm RewriteConsistent, the substitution δ is initialized to be
just the identity on the variables that do not appear in non-key positions of any
literal. These are the variables in the set IdentityV ars of the algorithm. During
the recursive execution of RewriteTree(Ti, Σ, δ), the literal R(x,y) at the root
of Ti is selected, and the variables of y are renamed to newly-created variables
from a vector y∗. The substitution δ is used here to record such renamings.

At each step, RewriteTree produces a rewriting Qlocal for the literal R(x,y)
at the root of the tree. This rewriting is done independently of the rest of the
query, and produced by the algorithm RewriteLocal. We show this algorithm
in Figure 4. The query Qlocal deals with the constants that appear in y in the
same way as we illustrated in Example 2.

Notice that we have presented the algorithm only for Boolean queries, but
this is just for notational simplicity. In order to apply the algorithm to queries
with free variables, it suffices to treat the free variables as if they were constants
(using the algorithm RewriteLocal). For example, consider the query q(y) =
∃x : R1(x, y). Notice that the only difference with the query of Example 2 is
that the constant a is replaced by the free variable y. The query rewriting for q
is the following:

Q(y) = ∃x : R1(x, y) ∧ ∀y′ : R1(x, y′) → y′ = y

The next example illustrates the application of the algorithm.
Example 4. Let q be the query q4 introduced in Section 3.1.

q = ∃x, y, z, w : R1(x, y) ∧R2(y, z) ∧R3(z, w) ∧R4(y,a)

The join graph T of q is shown in Figure 1. In this case, T consists of one
connected component, which is a tree. Let T2 be the subtree of T that consists
of the nodes for literals R2 and R3. Let T3 be a tree that consists of exactly one
node, for literal R3. Let T4 be a tree that consists of exactly one node, for literal
R4. The first-order query rewriting Q of q is obtained by applying the algorithm
RewriteConsistent(q, Σ) as follows.

346 A.D. Fuxman and R.J. Miller

Algorithm RewriteConsistent(q, Σ)
Let G be the join graph of q
Let T1, . . . , Tm be the connected components of G
Let IdentityV ars = {x : there is a literal R(x, y) in q such that x occurs in x,

and for every literal R′(x′, y′) in q, x does not occur in y′}
Let δ be the identity substitution for the variables of IdentityV ars

for i := 1 to m do
Let Qi = RewriteTree(Ti, Σ, δ)

end for
Let Qconsist =

∧
i=1...m

Qi

Let Q = q ∧ Qconsist

return Q

Fig. 2. Query rewriting algorithm

Q = RewriteConsistent(q, Σ) = q ∧ Qconsist

Qconsist(x) = RewriteTree(T, Σ, 〈x/x〉) = ∀y′ : R1(x, y′) → (Q2 ∧ Q4)
Q2(y′) = RewriteTree(T2, Σ, 〈x/x, y/y′〉) = ∃z′ : R2(y′, z′) ∧ ∀z′ : R2(y′, z′) → Q3

Q3(z′) = RewriteTree(T3, Σ, 〈x/x, y/y′, z/z′〉) = ∃w′ : R3(z′, w′)
Q4(y′) = RewriteTree(T4, Σ, 〈x/x, y/y′〉) = ∃u′ : R4(y′, u′) ∧ ∀u′ : (R4(y′, u′) → u′=a)

3.3 Correctness Proof

For the correctness proof, we will refer to the query associated to a join graph.
The query qG for a join graph G is a conjunctive query such that the literals of
qG are the literals that appear in the nodes of G; all the variables of qG that
occur at a non-key position in a literal of qG are existentially quantified; and the
rest of the variables of qG are free. Notice that if a variable of qG is the cause of
the existence of an arc in the join graph G (e.g., variables y and z from Example
4), then the variable is existentially-quantified in qG.

Definition 9. Let G be a join graph. Let R1(x1,y1), . . . , Rn(xn,yn) be the liter-
als that appear in the nodes of G. Let W = {w : w is a variable that appears in
yj, for some j such that 1 ≤ j ≤ n}. Let w be the variables of W . Let z be the
variables of R1, . . . , Rn that are not in W . We say that qG is the query for G if
qG is of the following form:

qG(z) = ∃w : R1(x1,y1) ∧ . . . ∧Rn(xn,yn)

The correctness proof of RewriteTree is by induction on the size of the input
tree, and relies on the following lemma.

Lemma 1. Let T be a join graph such that T is a tree. Let qT be the query for
T , as in Definition 9. Let δ be a substitution for the free variables of qT . Let Q
be the first-order query returned by RewriteTree(T, Σ, δ).

Let I be an instance. Let νq be a valuation for the free variables of qT such
that I |= qT [νq]. Let νQ be a valuation for the free variables of Q such that

First-Order Query Rewriting for Inconsistent Databases 347

Algorithm RewriteTree(T, Σ, δ)
Let R(x, y) be the literal at the root node of T
Let x∗ = x[δ]
Let l be the arity of y
Let y∗ = y′

1, . . . , y
′
l, where y′

1, . . . , y
′
l are newly created variables

if T consists of exactly one node then
Let Qlocal = RewriteLocal(R, x∗, y, y∗, Σ, δ)
return Qlocal

end if
Let Tlocal be a tree that consists of exactly one node with literal R
Let Qlocal = RewriteTree(Tlocal, Σ, δ)
Let R1, . . . , Rm be the children of R in T
Let δ′ = δ∪{y/y′ : there exists p such that y and y′ are variables that occur at

position p in y and y∗, respectively}
for i := 1 to m do

Let Ti be the subtree of T rooted at Ri

Let Qi = RewriteTree(Ti, Σ, δ′)
end for
Let Qsubtrees =

∧
i=1...m

Qi

Let Q = Qlocal ∧ ∀y∗ : (R(x∗, y∗) → Qsubtrees)
return Q

Fig. 3. Recursive algorithm on the tree structure of the join graph

νQ(w) = νq(w) if δ(w) = w. Then, I |= Q[νQ] iff I |= qT [δ][νQ] for every repair
I of I.

From the previous lemma, we obtain the main result of the section proving
that the rewriting algorithm is correct for all queries in Ctree.

Theorem 1. Let R be a schema. Let Σ be a set of integrity constraints, consist-
ing of one key dependency per relation of R. Let q be a conjunctive query over
R such that q ∈ Ctree. Let t be a tuple. Let Q be the first-order query returned
by RewriteConsistent(q, Σ).

Then, for every instance I over R, I |= Q[t] iff t ∈ consistentΣ(q, I).

4 A Dichotomy Result

In the previous section, we presented a query rewriting algorithm which works
on queries with full joins whose join graph is a forest. Clearly, this is a sufficient
condition for a query to be first-order rewritable. In this section, we address the
following question: for which class of queries is it also a necessary condition? In
particular, we show a class of queries such that the problem of computing the
consistent answers is coNP-complete for every query of the class which does not
satisfy the conditions of our query rewriting algorithm. Notice that this estab-
lishes a dichotomy between first-order rewritability and coNP-completeness, and

348 A.D. Fuxman and R.J. Miller

Algorithm RewriteLocal(R, x∗, y, y∗, Σ, δ)
if there is at least one constant in y then

Let l be the arity of y
for i := 1 to l do

Let y′ be the variable that appears at position i of y∗

if there is a constant c at position i of y then
Let Ei be the equality y′ = c

end if
end for
EqualityPos = {i : there is a constant a position i in y}
Let Qconst =

∧
i∈EqualityPos

Ei

if δ is the identity substitution on all variables of x then
Let Qlocal = ∀y∗ : (R(x∗, y∗) → Qconst)

else
Let Qlocal = ∃y∗ : R(x∗, y∗) ∧ ∀y∗ : (R(x∗, y∗) → Qconst)

end if
end if
if there are no constants in y then

if δ is the identity substitution on all variables of x then
Let Qlocal be an empty string

else
Let Qlocal = ∃y∗ : R(x∗, y∗)

end if
end if
return Qlocal

Fig. 4. Query rewriting for given literal

is therefore much stronger than the complexity results present in the consistent
query answering literature [CM04, CLR03a]. In the literature, a class C is said
to be coNP-hard if there is at least one query q ∈ C such that CONSISTENT(q, Σ)
is a coNP-hard problem. Under such a definition, it suffices to exhibit just one
intractable query in order to conclude that the entire class is coNP-complete.
In contrast, in this section we will present a class of queries such that for every
query q in the class, CONSISTENT(q, Σ) is coNP-complete.

As a first step towards proving a dichotomy for the class of conjunctive
queries, we will focus on a subclass for which we can establish such a result.
We call this subclass C∗, and define it in Definition 10. In the definition, we give
three conditions that are meant to rule out of the class the only cases of the
dichotomy that we leave open. We illustrate the conditions as follows. Consider
the query q5 = ∃x, y : R1(x, y) ∧ R2(x, y). The join graph of this query is not a
forest; yet, it is not difficult to find a rewriting for it. What is particular about
q5 is the fact that its two literals have the same key. We rule out this case with
the first condition of Definition 10. Now, consider the query q6 = ∃x : R1(x, x).
Although it is easy to find a rewriting for this query, its join graph contains a
self-loop. We rule out the queries whose join graph is a self-loop with the second

First-Order Query Rewriting for Inconsistent Databases 349

condition of Definition 10. Finally, our query rewriting algorithm assumes that
queries have full non-key to key joins. For the moment, the case in which such
joins are partial, but the join graph is still a forest, remains open. Therefore, we
rule this case out of C∗ with the third condition of the definition.

Definition 10. We say that a conjunctive query q without repeated relation
symbols is in class C∗ if:
– for every literal R(x,y) of q, there is some variable x such that x occurs in

x, and x does not appear in any literal R′ of q such that R′ �= R, and
– the join graph of q has no self-loops.
– if the join graph of q is a forest, then every non-key to key join of q is full.

We will consider a class, called Chard, of all queries of C∗ whose join graph is
not a forest. We prove that the problem of computing the consistent answers for
every query of Chard is coNP-complete as follows. In Lemma 2, we prove that,
given a query q such that q ∈ Chard, the problem of obtaining the consistent an-
swers for q can be reduced from the problem of obtaining the consistent answers
for one of three particular query families. Queries q1, q2, and q3 shown in Figure
1 are in fact examples of these three query families. In Lemma 3, we prove that
the problem CONSISTENT(q, Σ) is coNP-complete for each such query.

Definition 11. We say that a query q is in class Chard if q ∈ C∗ and q �∈ Ctree.

Lemma 2. Let q be a query such that q ∈ Chard. Then, there is a polynomial-
time reduction from CONSISTENT(q′, Σ′) to CONSISTENT(q, Σ), where q′ is one of
the following queries:

–
∃w1, . . . , wm+1 : S1(wm+1, wm, w1) ∧ S2(w1, w2) ∧ S3(w2, w3) ∧ . . .

∧Sm(wm−1, wm)
– ∃x, x′, y : S1(x, y) ∧ S2(x′, y)
– ∃x, x′, w1, w2 : S1(x,w1) ∧ S2(x′, w2) ∧ S3(w1, w2)

Lemma 3. The problem CONSISTENT(q, Σ) is coNP-complete for the following
queries:

–
∃w1, . . . , wm+1 : S1(wm+1, wm, w1) ∧ S2(w1, w2) ∧ S3(w2, w3) ∧ . . .

∧Sm(wm−1, wm)
– ∃x, x′, y : S1(x, y) ∧ S2(x′, y)
– ∃x, x′, w1, w2 : S1(x,w1) ∧ S2(x′, w2) ∧ S3(w1, w2)

Theorem 2. Let q be a query such that q ∈ Chard. Then, CONSISTENT(q, Σ) is
coNP-complete in data complexity.

In general, by Ladner’s Theorem [Lad75], there are classes of coNP prob-
lems for which there is no dichotomy between P and coNP-complete prob-
lems. However, this is not the case for the class of queries that is the focus
of this section. In fact, as a corollary of Theorems 1 and 2, we get a dichotomy
between membership in P and coNP-completeness. Notice that, given a query
q such that q ∈ C∗, it can be decided in polynomial time on which side of

350 A.D. Fuxman and R.J. Miller

the dichotomy the query q falls. Under a complexity-theoretic assumption, we
also get a dichotomy between first-order rewritability and coNP-completeness.
An alternative approach, which we leave as future work, would be to avoid
complexity-theoretic assumptions, and appeal to games arguments in order to
prove first-order inexpressibility.

Corollary 1. Let q be a query such that q ∈ C∗. Then, CONSISTENT(q, Σ) is
either in P , or it is coNP-complete.

Corollary 2. Let q be a query such that q ∈ C∗. Assuming P �= coNP , the
problem CONSISTENT(q, Σ) is first-order rewritable iff q ∈ Ctree.

5 Related Work

The main difference between this work and others in the consistent query an-
swering literature is our focus on producing a first-order rewriting. Instead of
rewriting into first-order formulas, most work in the literature is based on rewrit-
ing into logic programs (e.g., [CLR03b] and [BB03]). Their focus is on obtaining
correct disjunctive logic programs for (usually large) classes of queries and con-
straints. However, given the high complexity of disjunctive logic programming,
none of these approaches focus on tractability issues.

There are two proposals in the consistent query answering literature that are
based on first-order query rewriting, but they apply to very restricted classes of
queries. Arenas et al. [ABC99] consider quantifier-free conjunctive queries (i.e.,
queries without existential quantifiers). Chomicki and Marcinkowski [CM04] pro-
pose a rewriting for simple conjunctive queries, which are queries where no
variables are shared between literals (and therefore, there are no joins). We
have presented a query rewriting for a much larger, and practical, class of
queries.

Chomicki and Marcinkowski [CM04] and Cal̀ı et al. [CLR03a] thoroughly
study the decidability and complexity of consistent query answering for several
classes of queries and integrity constraints. In order to show intractability of a
class, they take the usual approach of exhibiting one particular query of the class
for which the problem is intractable. To the best of our knowledge, ours is the
first dichotomy result in the area of consistent query answering.

The work on disjunctive databases [vdM98] is relevant in our context. In
particular, if Σ is a set of key dependencies, the set of all repairs of an incon-
sistent database can be represented as a disjunctive database D in such a way
that each repair corresponds to a minimal model of D. However, there are no
results in the literature for first-order query rewriting over disjunctive databases.
The only tractability results in this context have been given for OR-databases
[IvdMV95], which are a restricted type of disjunctive databases. However, in
general, given a database I possibly inconsistent with respect to a set of key
dependencies, there may be no OR-database D such that all the models of D
are repairs of I.

First-Order Query Rewriting for Inconsistent Databases 351

6 Conclusions and Future Work

We presented a query-rewriting algorithm for computing consistent answers. The
algorithm works on a large and practical class of conjunctive queries without re-
peated relation symbols. We are currently extending the algorithm in order to
take into account queries with repeated relation symbols. Our algorithm works on
queries with full joins whose join graph is a forest. We showed a class of queries C∗

in which this is in fact a necessary and sufficient condition for a query to be first-
order rewritable. For this class of queries, our algorithm covers all queries which
are first-order rewritable. We have mentioned that, outside the class C∗, there are
some queries whose join graph is not a forest, yet they are first-order rewritable.
We are working on an extension of the algorithm that considers such queries.

In this work, we assumed that the set Σ of constraints that might be vio-
lated consists of key dependencies. It would be interesting to consider foreign
key dependencies as well. In this way, we would be covering the most common
constraints that are supported by commercial database systems.

Acknowledgments. We would like to thank Leonid Libkin, Marcelo Arenas,
Pablo Barcelo, and Ken Pu for their comments and feedback.

References

[ABC99] M. Arenas, L. Bertossi, and J. Chomicki. Consistent query answers in
inconsistent databases. In PODS, pages 68–79, 1999.

[AD98] S. Abiteboul and O. M. Duschka. Complexity of answering queries using
materialized views. In PODS, pages 254–263, 1998.

[BB03] L. Bravo and L. Bertossi. Logic programs for consistently querying data
integration systems. In IJCAI, pages 10–15, 2003.

[CLR03a] A. Cal̀ı, D. Lembo, and R. Rosati. On the decidability and complexity of
query answering over inconsistent and incomplete databases. In PODS,
pages 260–271, 2003.

[CLR03b] A. Cal̀ı, D. Lembo, and R. Rosati. Query rewriting and answering under
constraints in data integration systems. In IJCAI, pages 16–21, 2003.

[CM04] J. Chomicki and J. Marcinkowski. Minimal-change integrity maintenance
using tuple deletions. To appear in Information and Computation, 2004.

[FKMP03] R. Fagin, P. Kolaitis, R. J. Miller, and L. Popa. Data exchange: Semantics
and query answering. In ICDT, pages 207–224, 2003.

[Hal01] A. Halevy. Answering queries using views: A survey. VLDB Journal,
10(4):270–294, 2001.

[IvdMV95] T. Imielinski, R. van der Meyden, and K. Vadaparty. Complexity tai-
lored design: A new design methodology for databases with incomplete
information. J. Computer and System Sciences, 51(3):405–432, 1995.

[Lad75] R. E. Ladner. On the structure of polynomial time reducibility. J. of the
ACM, 22(1):155–171, 1975.

[TPC03] Transaction Processing Performance Council: TPC. TPC Benchmark H
(Decision Support). Standard Specification Revision 2.1.0, 2003.

[vdM98] R. van der Meyden. Logical approaches to incomplete information: A
survey. In Logics for Databases and Inf. Systems, pages 307–356. Kluwer,
1998.

Rewriting Queries Using Views with Access
Patterns Under Integrity Constraints�

Alin Deutsch1, Bertram Ludäscher2, and Alan Nash3

University of California, San Diego
deutsch@cs.ucsd.edu, ludaesch@sdsc.edu, anash@math.ucsd.edu

Abstract. We study the problem of rewriting queries using views in the
presence of access patterns, integrity constraints, disjunction, and nega-
tion. We provide asymptotically optimal algorithms for finding minimal
containing and maximal contained rewritings and for deciding whether
an exact rewriting exists. We show that rewriting queries using views
in this case reduces (a) to rewriting queries with access patterns and
constraints without views and also (b) to rewriting queries using views
under constraints without access patterns. We show how to solve (a) di-
rectly and how to reduce (b) to rewriting queries under constraints only
(semantic optimization). These reductions provide two separate routes
to a unified solution for all three problems, based on an extension of the
relational chase theory to queries and constraints with disjunction and
negation. We also handle equality and arithmetic comparisons.

1 Introduction

We study the problem of rewriting a query Q in terms of a given set of views
V with limited access patterns P, under a set Σ of integrity constraints. More
precisely, we are interested in determining whether there exists a query plan
Q′, expressed in terms of the views V only, that is executable (i.e., observes P)
and equivalent to Q for all databases satisfying Σ. We say that Q is feasible if
such Q′ exists. For infeasible Q we seek the minimal containing and maximal
contained executable queries, which provide the “best possible” executable query
plans for approximating the answer to Q from above and below. Our results
unify and extend a number of previous results in data integration (see related
work). In particular, they apply to queries, views, and constraints over unions of
conjunctive queries with negation (UCQ¬), equality and arithmetic comparisons.

The following example shows the common case of a query that has no equiv-
alent executable rewriting (i.e., is not feasible) in the absence of constraints, but
that can yield such a rewriting when constraints are given.

Example 1. Consider the following set of relations with access patterns: confer-
ence C io(a, t), journal J io(a, t), magazine Moo(a, t), PC-magazine P ioo(a, t, p),

� Supported by NSF/CAREER 0347968, NSF/ITR 0225673 (GEON), NSF/ITR
0225674 (SEEK), DOE SciDAC DE-FC02-01ER25486 (SDM), NIH/NCRR 1R24
RR019701-01 Biomedical Informatics Research Network Coordinating Center
(BIRN-CC).

T. Eiter and L. Libkin (Eds.): ICDT 2005, LNCS 3363, pp. 352–367, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Rewriting Queries Using Views with Access Patterns 353

the set of listed publishers Li(p), repository Roo(a, t), ACM anthology Aiii(a, t, o),
and DBLP conference article Dooo(a, t, c). The relation symbols are annotated
with access patterns, indicating which arguments must be given as inputs (marked
‘i’) and which ones can be retrieved as outputs (marked ‘o’) when accessing the
relation. For example C io(a, t) means that an author a has to be given as input
before one can retrieve the titles t of a’s conference publications from C(a, t).

Let Q be the query which asks for pairs of authors and titles of conference
publications, journal publications, and magazines which are not PC-magazines:

Q(a, t) ← C(a, t) (1)
Q(a, t) ← J(a, t) (2)
Q(a, t) ←M(a, t),¬P (a, t, p), L(p) (3)

Q cannot be executed since no underlined literal is answerable: e.g., the access
patterns require a to be bound before invoking C(a, t) but no such binding is
available. Worse yet, Q is not even feasible, i.e., there is no executable query Q′

equivalent to Q. However, if the following set Σ of integrity constraints is given,
an executable Q′ can be found that is equivalent under Σ:

∀a∀t C(a, t) → ∃c D(a, t, c) (4)
∀a∀t J(a, t) → ∃p R(a, t) ∧ ¬P (a, t, p) ∧ L(p) ∨ ∃o∃c A(a, t, o), D(a, t, c)(5)
∀a∀t M(a, t) → ∃p ¬P (a, t, p), L(p) (6)

Constraint (4) states that every conference publication is a DBLP conference
publication; (5) states that every journal publication is available from a repos-
itory, comes from a listed publisher and is not a PC magazine, or is available
from the ACM anthology and from DBLP; and (6) states that magazine articles
are not PC-magazine articles. We are only interested in databases which satisfy
these constraints Σ. On those databases, Q is equivalent to QΣ , obtained by
“chasing” Q with Σ:

QΣ(a, t) ← C(a, t), D(a, t, c)
QΣ(a, t) ← J(a, t), R(a, t),¬P (a, t, p), L(p)

QΣ(a, t) ← J(a, t), A(a, t, o), D(a, t, c)

QΣ(a, t) ←M(a, t),¬P (a, t, p), L(p)

Again, unanswerable literals are underlined. The answerable part ans(QΣ) is
obtained (roughly) by removing unanswerable parts:

ans(QΣ)(a, t) ← C(a, t), D(a, t, c) (7)
ans(QΣ)(a, t) ← J(a, t), R(a, t) (8)
ans(QΣ)(a, t) ← J(a, t), D(a, t, c) (9)
ans(QΣ)(a, t) ←M(a, t) (10)

In general, the answerable part is not equivalent to Q: e.g., the subquery (10)
is not contained in (3) and thus ans(QΣ) might produce more answers than

354 A. Deutsch, B. Ludäscher, and A. Nash

Q. However the equivalence may still hold under Σ, i.e., for all databases sat-
isfying Σ. This can be checked (cf. Corollary 2) and is indeed the case here.
Then ans(QΣ) is the desired executable plan, equivalent to Q for all databases
satisfying the constraints Σ.

As we will show, if there is an equivalent query Q′ under Σ, our algorithm will
find it, and if no such Q′ exists, we can find the minimal containing and the max-
imal contained plans, providing least overestimate and greatest underestimate
queries for Q under Σ, respectively.

Example 2. This example illustrates that our techniques can also rewrite queries
in terms of views with access patterns. For example, the rules

V oo
1 (a, t) :− C(a, t), R(a, t)
V io

2 (a, t) :− C(a, t),¬R(a, t)

state that the view V1 has conference articles that are also in the repository R,
while V2 has those that are not in R. The access patterns indicate that at least a
must be given when accessing V2(a, t), while no inputs are required for accessing
V1. We will show that if we want to rewrite a query in terms of the views only,
this can be achieved by considering constraints and access patterns only. To this
end, we model views as constraints and also include “negation constraints” of
the form ∀a∀t (true→ (R(a, t)∨¬R(a, t))). Chasing the query Q(a, t) ← C(a, t)
with the latter yields

Q′(a, t) ← C(a, t), R(a, t)
Q′(a, t) ← C(a, t),¬R(a, t)

which then rewrites in terms of V1 and V2 to

Q′′(a, t) ← V1(a, t)
Q′′(a, t) ← V2(a, t).

Here, Q′′ is not executable (the access pattern for V2 requires a to be bound). Un-
der the constraint ∀a∀t (C(a, t) → R(a, t)), our algorithm can discard the unan-
swerable second rule, resulting in the executable rewriting Q′′′(a, t) ← V1(a, t).

Contributions. We solve the problem of rewriting queries using views with
limited access patterns under integrity constraints (denoted {Q,V,P, Σ}) and
prove that feasibility is NP-complete for queries, views, and constraints over1

UCQ and ΠP
2 -complete for UCQ¬. These results hold in those cases when the

chase terminates and its result is not too large (Theorem 10). A fairly general
sufficient condition for this (undecidable) behavior of the chase is given by The-
orem 8. We present an algorithm, ViewRewrite, which is guaranteed to find
an exact plan (if one exists) or at least the minimal containing plan (unique
if it exists) (Theorem 9). We also give an algorithm for finding the maximal
contained executable plan (Theorem 11).

1 A constraint over L is an implication ∀x̄(U → V) with U, V ∈ L (cf. Section 2).

Rewriting Queries Using Views with Access Patterns 355

One side effect of our results is a unified treatment for three flavors of rewrit-
ing problems which have been introduced and solved separately. We show that
{Q,V,P, Σ} reduces to {Q,P, Σ}, i.e., rewriting queries with access patterns
and constraints without views (Theorem 9) and also to {Q,V, Σ}, i.e. rewriting
queries under constraints using views without access patterns (Theorem 15).

We show how to solve {Q,P, Σ} and {Q,V, Σ} by reduction to rewriting
queries under constraints only (semantic optimization, denoted {Q,Σ}). These
reductions provide two separate routes {Q,V,P, Σ} � {Q,P, Σ} � {Q,Σ}
and {Q,V,P, Σ} � {Q,V, Σ} � {Q,Σ} to a unified solution for all three
problems, based on our extension of the relational chase theory to queries and
constraints with disjunction and negation. Specifically we show that a minimal
containing query in the {Q,P, Σ} case can be obtained by chasing Q with Σ
and computing the answerable part. Similarly, in the presence of views, we can
compute the minimal containing query by chasing with Σ and the constraints
corresponding to V and again computing the answerable part.

We also extend the above results to handle equality and arithmetic compar-
isons by modeling them with constraints (Section 7).

Related Work. There is a large body of related work that deals with one
or more of the following three aspects: (i) query rewriting under limited ac-
cess patterns, see [22, 20, 14, 9, 23, 16, 15, 19, 18] and references within; (ii) query
rewriting under integrity constraints (a.k.a. semantic query optimization), see for
instance [12, 5] and references within; and (iii) query rewriting and answering us-
ing views [6, 7, 11]. These all have important applications in data integration and
query optimization [13, 17, 10]. All of the above mentioned work on rewriting has
focused on either of two flavors: maximal contained or exact rewritings.

In this paper, we introduce algorithms which deal uniformly with all three
aspects of rewriting and find exact, maximal contained and minimal containing
rewritings.

In the category of maximal contained rewritings, the closest related results
are those of [7], which considers the most expressive queries and views, and of
[12], which handles the most expressive constraints. [7] shows how to obtain
a maximal contained rewriting for recursive Datalog queries using conjunctive
query views. [7] also considers access patterns on the views as well as very re-
stricted constraints (which can express the standard key but not all foreign key
constraints) and it shows how to construct a recursive plan which is guaranteed
to be maximal contained. As opposed to [7], we do not consider recursive queries
but we allow negation and disjunction in queries, views and constraints (our con-
straints express key, foreign key, join, multi-valued, and embedded dependencies
and beyond). Moreover, we provide decision procedures for the existence of an
exact plan and, in its absence, we show how to obtain not only the best contained
but also the best containing approximations. [12] finds the maximal contained
rewriting of CQ queries under more expressive constraints than [7] (embedded
dependencies), provided the predicate dependency graph is acyclic. However,
views, access patterns and negation (in either query or constraints) are not
handled.

356 A. Deutsch, B. Ludäscher, and A. Nash

With respect to finding exact rewritings, [5] shows how to treat views and
integrity constraints uniformly for UCQ queries. The present paper extends
these results to UCQ¬ queries, constraints, views with limited access patterns,
and maximal contained and minimal containing rewritings. [16, 15] shows NP-
completeness for deciding feasibility of UCQ queries over relations with limited
access patterns (i.e. no negation, no views and no constraints are considered).
Still in the absence of views and constraints, [19] shows that if negation is added
then deciding feasibility becomes ΠP

2 -complete; [18] further extends the notion
of feasibility to all first-order queries and characterizes the complexity of many
first-order query classes.

Outline. The preliminaries in Section 2 include earlier results on containment
and feasibility under access patterns. Section 3 presents our results on feasibility
and rewriting with access patterns under constraints. In Section 4 we generalize
these results to include views. In Section 5 we establish our results on maximal
contained executable queries. Section 6 provides an alternative method for de-
ciding feasibility: Instead of handling access patterns via the answerable part,
we show that they too can be reduced to constraints and the chase. Section 7
shows how other extensions such as equality and arithmetic comparisons can all
be treated uniformly via constraints.

2 Preliminaries

Queries. A term is a variable or constant. By x̄ we denote a finite sequence of
terms x1, . . . , xk. We use lowercase letters x, y, z, . . . for terms and uppercase let-
ters P,Q,R, . . . for relation symbols and queries. A datalog rule is an expression
of the form P (z̄) ← #1(x̄1), . . . , #n(x̄n) where each #i(x̄i) in the rule body is a
literal, i.e., a positive atom R(x̄) or a negative literal ¬R(x̄). Given a rule Q, we
define head(Q) and body(Q) to be the parts to the left and to the right of the
arrow, respectively. A datalog program is a finite set of datalog rules. We only
consider nonrecursive programs and we further require that all rules have the
same head. Therefore, head(P) is well-defined for the programs P we consider.

We represent queries by programs unless otherwise specified. If a query Q is
given by multiple rules Q1, . . . , Qn, we denote this by Q =

∨
i Qi and we have

Q(D) =
⋃

i Qi(D), where Q(D) denotes the result of query Q on database D.
Queries given by a single rule are conjunctive queries (CQ) if all literals are

positive and conjunctive queries with negation (CQ¬) otherwise. Queries given
by multiple rules are unions of conjunctive queries (UCQ) if all literals are
positive and conjunctive queries with negation (UCQ¬) otherwise.

A query Q ∈ CQ¬ is safe if every variable which appears in the rule (whether
in the head or in the body) appears positively in its body. A query Q =

∨
i Qi

with Q1, . . . , Qn ∈ CQ¬ is safe if every Qi is safe. In the definition of ans(Q)
below, we will need to consider two special kinds of queries. A query Q ∈ CQ¬

given by head(Q) ← ⊥ is unsatisfiable and is always safe (this is an extension of
the definition above). A query Q ∈ CQ¬ given by a rule with an empty body is
safe if there are no variables in the head (i.e., if the query is boolean).

Rewriting Queries Using Views with Access Patterns 357

Unless otherwise specified, all queries are UCQ¬ and safe. Further-
more, E, P , and Q always denote queries.

Containment. P is contained in Q (P # Q) if, for all databases D, P (D) ⊆
Q(D). P is equivalent to Q (P ≡ Q) if P # Q and Q # P . Given a set of
constraints Σ, P is Σ-contained in Q (P #Σ Q) if, for all D which satisfy Σ,
P (D) ⊆ Q(D). P is Σ-equivalent to Q (P ≡Σ Q) if P #Σ Q and Q #Σ P .

CONT(L) is the decision problem: for P,Q ∈ L determine whether P # Q
(L is a class of queries). CONTΣ(L) is the problem: for P,Q∈L decide whether
P #Σ Q.

Theorem 1. a) CONT(CQ) and CONT(UCQ) are NP-complete [2].
b) CONT(CQ¬) and CONT(UCQ¬) are ΠP

2 -complete [21].

Access Patterns. An access pattern for a k-ary relation R is an expression Rα

where α is word of length k over the alphabet {i, o}. ‘i’ denotes a required input
slot and ‘o’ denotes an output slot (no value required). Given access patterns
P, an annotation of Q assigns to each occurrence of a relation symbol a pattern
from P.

Definition 1 (Executable). Q is executable if it can be annotated so that
every variable of a rule appears first positively in an output slot in the body of
that rule.

Definition 2 (Feasible). Q is feasible if it is equivalent to an executable query
Q′. FEASIBLE(L) is the decision problem: for Q ∈ L, determine whether Q is
feasible.

For Q ∈ CQ¬, we say that a literal #(x̄) (not necessarily in Q) is Q-answerable
if there is an executable Q′ ∈ CQ¬ which is a conjunction of #(x̄) and literals
in Q. The answerable part of a query Q is another query ans(Q) defined below.
ans(Q) may be undefined for some queries Q, but when defined it is executable.

Definition 3 (Answerable Part). If Q ∈ CQ¬ is unsatisfiable we set the
body of ans(Q) to ⊥; otherwise we set the body of ans(Q) to the conjunction
of the Q-answerable literals in Q in the order specified by the algorithm in the
proof of Lemma 1. We set head(ans(Q)) := head(Q). However, if the resulting
query ans(Q) is unsafe, we say that ans(Q) is undefined. If Q =

∨
i Qi with

Q1, . . . , Qn ∈ CQ¬, we set ans(Q) :=
∨

i ans(Qi). In this case ans(Q) is defined
iff every ans(Qi) is defined.

Lemma 1. ans(Q) can be computed in quadratic time.

Proof. We consider the case when Q ∈ CQ¬; the case Q ∈ UCQ¬ is handled
the same way, one rule at a time. Give ans(Q) the same head as Q and build its
body one literal at a time as follows. Start with B, the set of bound variables,
empty. Find the first literal #(x̄) in Q not yet added to ans(Q) such that,

358 A. Deutsch, B. Ludäscher, and A. Nash

• #(x̄) is positive and there is some access pattern for it in P such that all
variables in x̄ which appear in input slots in #(x̄) are in B, or

• #(x̄) is negative and its variables are in B.

If there is no such literal, stop. Otherwise, add #(x̄) to ans(Q), set B := B ∪
{x̄}, and repeat. Clearly, this algorithm adds to the body of ans(Q) all the
Q-answerable literals in Q and no others.

The main results on testing feasibility for UCQ¬ queries are [19]: if defined,
ans(Q) is the minimal executable query containing Q (Theorem 2); checking
feasibility of UCQ¬ queries can be reduced to checking UCQ¬ query containment

(Corollary 1), and is in fact as hard as checking query containment of UCQ¬

queries (Theorem 3b). Checking feasibility of UCQ queries is NP-complete (The-
orem 3a) [20].

Theorem 2. If Q#E and E is executable then ans(Q) is defined and it holds
that Q# ans(Q)#E.

Corollary 1. Q is feasible iff ans(Q) is defined and ans(Q) # Q.

Theorem 3. a) FEASIBLE(UCQ) is NP-complete.
b) FEASIBLE(UCQ¬) is ΠP

2 -complete.

Chase. We consider constraints of the form IC(L) := { ∀x̄ (U→V) | U, V ∈ L}
where x̄ is the set of free variables in both U and V . Such constraints express the
containment of U in V and are known as embedded dependencies when L = CQ.

Unless otherwise specified, we assume all constraints are subsets of
IC(UCQ¬). Furthermore Σ always denotes a set of constraints.

Given a set of constraints Σ ⊆ IC(UCQ), there is a well known procedure
for extending a query Q ∈ UCQ to another query Q′ by an iterative procedure
known as the chase which depends on the order O of the constraints. That is, we
set Q′ := chase(Q,Σ,O) ∈ UCQ. In [3] we extend this procedure to Q ∈ UCQ¬

and Σ ⊆ IC(UCQ¬).
The chase does not always terminate (even in the case with no negation) and

its syntactic form depends on the order O. However if the chase terminates for
any two orders O1 and O2, then chase(Q,Σ,O1) ≡ chase(Q,Σ,O2).

Definition 4 (Negation Constraints). Στ
¬ ⊆ IC(UCQ¬) is the smallest set

of constraints which contains, for each k, each k-ary relation R in the schema τ
and some k-tuple x̄ of variables, the constraint ∀x̄ (true→ (R(x̄) ∨ ¬R(x̄))).

We allow unsafe sentences as constraints (we need them for Στ
¬); however if Q

is safe, then chase(Q,Σ,O) is also safe, even when Σ includes unsafe sentences.

Definition 5 (Chase Result QΣ). QΣ := chase(Q,Σ∪Στ
¬, O) for some order

on which the chase terminates (if there is such order).

Notice that QΣ is defined only up to equivalence. The following two results
extend previous results which do not handle negation.

Rewriting Queries Using Views with Access Patterns 359

Theorem 4 (Chase Completeness). If QΣ is defined, then QΣ # P iff
Q #Σ P.

Theorem 5. If Σ ⊆ IC(UCQ¬) and there is a polynomial p such that for all
Q, QΣ(=

∨
i Q

′
i) ∈ UCQ¬ and all i: |Q′

i| � p(|Q|), then CONTΣ(UCQ¬) is
ΠP

2 -complete.

We write QΣ,Σ′
for (QΣ)Σ′

which in general is not equivalent to QΣ∪Σ′
.

3 Integrity Constraints

We consider {Q,P, Σ}, i.e., the problem of answering a query Q in the presence
of access patterns P and integrity constraints Σ.

Definition 6 (Σ-Feasible). Q is Σ-feasible if it is Σ-equivalent to an exe-
cutable query Q′. FEASIBLEΣ(L) is the decision problem: for Q ∈ L, decide
whether Q is Σ-feasible.

The main results in this section are that, if defined, ans(QΣ) is the minimal exe-
cutable query Σ-containing Q (Theorem 6), that checking Σ-feasibility of UCQ¬

queries can be reduced to checking containment of UCQ¬ queries (Corollary 2),
and that in those cases where QΣ is well-defined (i.e., the chase terminates)
and not too large its complexity is the same as that of checking containment
of UCQ¬ queries (Theorem 7b). Corresponding results hold for CQ, CQ¬, and
UCQ (Theorem 7a). We outline the algorithms Rewrite and Feasible which
use the following functions:

• ans(Q), which given a query Q, produces the query ans(Q). A quadratic time
algorithm for this function is outlined in the proof of Lemma 1.

• chase(Q,Σ,O), which given a query Q, a set of constraints Σ, and an order
on the constraints O, produces the query chase(Q,Σ,O). An algorithm for
this function is outlined in [3]. No guarantees are given for the running time
or space of chase(Q,Σ,O); in fact, it may not even terminate.

• contained(P,Q), which given queries P and Q, returns true if P # Q, false
otherwise (its complexity is given in Theorem 1).

Note that algorithm Rewrite(Q,Σ) may return undefined or may not termi-
nate; similarly, Feasible(Q,Σ) may not terminate. Theorem 6 and Corollary 2
below show that algorithms Rewrite and Feasible are correct and complete,
in those cases in which the chase terminates regardless of the order O.

function Rewrite(Q,Σ)
(1) Compute Σ′ := Σ ∪Στ

¬ and pick some order O for Σ′;
(2) Q1 := chase(Q,Σ′, O);
(3) Q2 := ans(Q1);
(4) return Q2.

360 A. Deutsch, B. Ludäscher, and A. Nash

Here we give a simplified version of Feasible which gives an exponential time
algorithm. This algorithm can be parallelized to give a ΠP

2 algorithm when Q
and Σ satisfy the assumptions of Theorem 7b, as outlined in the proof of that
theorem.

function Feasible(Q,Σ)
(1-3) same as (1–3) of Rewrite(Q,Σ);
(4) if Q2 = undefined then return false;
(5) Q3 := chase(Q2, Σ′, O);
(6) return contained(Q3, Q).

Theorem 6. If Q #Σ E, E is executable, and QΣ is defined, then ans(QΣ) is
defined and Q #Σ ans(QΣ) # E.

Proof. Assume Q#ΣE and E executable; by Theorem 4, QΣ#E. Thus, by Theo-
rem 2, ans(QΣ) is defined andQΣ#ans(QΣ)#E. By Theorem 4,Q#Σans(QΣ)#E.

Corollary 2. The following are equivalent:

1. Q is Σ-feasible.
2. ans(QΣ) is defined and ans(QΣ) #Σ Q.
3. ans(QΣ)Σ is defined and ans(QΣ)Σ # Q.

Theorem 7. a) If Σ ⊆ IC(UCQ) and there is a polynomial p such that for all
Q, QΣ ∈ UCQ: |QΣ | � p(|Q|), then FEASIBLEΣ(UCQ) is NP-complete.

b) IfΣ ⊆ IC(UCQ¬)and there is apolynomialp such that for allQ,QΣ(=
∨

i Q
′
i) ∈

UCQ¬ and for all i: |Q′
i| � p(|Q|), then FEASIBLEΣ(UCQ¬) is ΠP

2 -complete.

The fact that QΣ is defined only up to equivalence is not a concern for our needs,
due to the following result.

Lemma 2.

a) If P # Q and ans(Q) is defined, then ans(P) is defined and ans(P) # ans(Q).
b) If P ≡ Q and ans(Q) is defined, then ans(P) is defined and ans(P) ≡ ans(Q).

Proof. (a) If ans(Q) is defined then it is executable and P # Q # ans(Q). By
Theorem 2, ans(P) is defined and ans(P) # ans(Q). (b) follows from (a).

In general it is undecidable whether the chase terminates. [5] introduces a suf-
ficient condition, checkable in P, for termination of the chase with IC(UCQ)
constraints. It is fairly wide and generalizes the notions of full and acyclic de-
pendencies [1]. The condition requires a set of constraints to have stratified wit-
nesses.2 We recall the definition in [3], where we extend the notion to sets of
IC(UCQ¬) constraints and also provide a proof of the following result.

Theorem 8. For any Q ∈ UCQ¬, any Σ ⊆ IC(UCQ¬) with stratified witnesses
(this is checkable in P) and any total order O on Σ, the chase terminates.
Moreover, QΣ satisfies the assumptions in Theorem 7.

2 The notion first arose in a conversation between the first author and Lucian Popa.
It was then independently used in [8] under the term weakly acyclic.

Rewriting Queries Using Views with Access Patterns 361

4 Views

We now consider the problem {Q,V,P, Σc}: given a queryQ, a set of views V given
as UCQ¬ queries V1, . . . , Vn with access patterns P on the view heads, and a set
of constraints Σc, we are interested in finding an executable Σc-rewriting of Q in
terms of V1, . . . , Vn. That is, we want a query E over V that is Σc-equivalent to Q.

We reduce this case to the case of integrity constraints alone covered in the
previous section as follows. Assume the views are over the schema τ . We can
express the views as “forward” and “backward” constraints

ΣV
f := {∀x̄iȳi (body(Vi) → head(Vi)) | Vi ∈ V, 1 � i � n}

ΣV
b := {∀x̄i (head(Vi) → ∃ȳibody(Vi)) | Vi ∈ V, 1 � i � n}

over the schema τ ∪ τV , where τV :=
⋃

i head(Vi) consists of all view heads; x̄i

are the variables in head(Vi), and ȳi are the variables in body(Vi) which do not
appear in head(Vi). Clearly, ΣV

f , Σ
V
b ⊆ IC(UCQ¬). Set Σ := Σc ∪ΣV

f ∪ΣV
b .

The main results in this section are that we can reduce {Q,V,P, Σc}, the
case of views with constraints, to {Q,P, Σ}, the case without views via Σ :=
Σc ∪ΣV

f ∪ΣV
b , where the views V are captured by the constraints ΣV

f and ΣV
b

above. In fact, it is enough to consider QΣc,ΣV
f instead of QΣ for computing

the answerable part (but for testing feasiblity we also need ΣV
b). If defined,

ans(QΣc,ΣV
f |τV) is the minimal executable query over V Σc-containing Q (The-

orem 9) where Q|τ is the query with the same head as Q and with body given
by the literals in Q which have relation symbols in schema τ . It follows that the
problem of whether there is a Σc-equivalent rewriting of a query Q over V can
be reduced to checking containment (Corollary 3). We also show that we can
stratify the chase and that we only need special conditions on Σc (but not on
ΣV

f or ΣV
b) to guarantee that QΣ is well-defined and suitably small (Theorem

10). We outline the algorithms ViewRewrite and ViewFeasible which use
the functions ans(Q), chase(Q,Σ,O), and contained(P,Q).

function ViewRewrite(Q,Σc,V)
(1) Compute Σc

′ := Σc ∪Στ
¬ and pick some order Oc for Σc

′;
(2) Compute ΣV

f
′ := ΣV

f ∪Στ
¬ and pick some order Of for ΣV

f
′;

(3) Q1 := chase(Q,Σc
′, Oc);

(4) Q2 := chase(Q1, ΣV
f , Of);

(5) Q3 := Q2|τV (that is, drop all τ literals);
(6) Q4 := ans(Q3);
(7) return Q4.

ViewRewrite(Q,Σc,V) may return undefined or may not terminate. Simi-
larly, ViewFeasible(Q,Σc,V) may not terminate. Theorem 9 and Corollary 3
show that these algorithms are correct and complete, provided the chase termi-
nates regardless of the order O. The simplified version of ViewFeasible below
results in an exponential time algorithm; however, it can be parallelized to give
a ΠP

2 algorithm when Q and Σ satisfy the assumptions of Theorem 10.

362 A. Deutsch, B. Ludäscher, and A. Nash

function ViewFeasible(Q,Σc,V)
(1–6) same as (1–6) of ViewRewrite(Q,Σc,V);
(7) if Q4 = undefined then return false;
(8) Compute ΣV

b
′ := ΣV

b ∪Στ
¬ and pick some order Ob for ΣV

b
′;

(9) Q5 := chase(Q4, ΣV
b

′
, Ob);

(10) Q6 := chase(Q5, Σc
′, Oc);

(11) Q7 := Q6|τ (that is, drop all τV literals);
(12) return contained(Q7, Q).

Theorem 9. If defined, ans(QΣc,ΣV
f |τV) is the minimal executable query over

V Σc-containing Q (otherwise there is no such executable query).

Corollary 3. There is an executable Σc-rewriting of Q over V iff ans(QΣc,ΣV
f |τV)

is defined and ans(QΣc,ΣV
f |τV)ΣV

b ,Σc |τ # Q.

Theorem 10. a) If Σ ⊆ IC(UCQ), V ⊆ UCQ and there is a polynomial p
such that for all Q,QΣc ∈ UCQ: |QΣc | � p(|Q|), then ViewFeasible is
NP-complete.

b) If Σ⊆IC(UCQ¬), V⊆UCQ¬ and there is a polynomial p such that for all Q,
QΣc(=

∨
i Q

′
i)∈UCQ¬ and all i: |Q′

i|�p(|Q|), then ViewFeasible is ΠP
2 -

complete.

These results follow from the corresponding results in the previous section and
the following considerations. Notice that Q′ is a Σc-rewriting of Q over V iff
Q′|τV = Q′ and Q′ ≡Σ Q (the first part simply says that Q′ is a query over V).
Since Σ includes the definitions of the views in V, the second part expresses the
desired equivalence under both Σc and the view definitions.

We know by Theorem 6 that ans(QΣ |τV) is the minimal executable query
over τV Σ-containing Q. Since ΣV

f and ΣV
b express the equivalence of the views

with their definitions over τ , this is the same as the minimal executable query
over V Σc-containing Q. It follows that there is an executable Σc-rewriting of Q
over V iff ans(QΣ |τV) #Σ Q iff ans(QΣ |τV)Σ # Q.

The effect of chasing twice with Σ can be roughly described as follows:

• In QΣ we introduce the view heads.
• In ans(QΣ |τV) we remove the original literals in Q and the view bodies.
• In ans(QΣ |τV)Σ we expand the view heads to again include their bodies.

At this point, we have a query over τ ∪ τV , but since Q is over τ , only the τ
part matters. Therefore ans(QΣ |τV)Σ # Q iff ans(QΣ |τV)Σ |τ # Q. Further-
more, ans(QΣ |τV)Σ |τ # Q iff ans(QΣc,ΣV

f |τV)ΣV
b ,Σc |τ # Q since QΣc,ΣV

f ,ΣV
b ≡

QΣc,ΣV
f . This is because ΣV

f only introduces atoms with relation symbols from
τV and these in turn can only “fire” constraints from ΣV

b which reintroduce bod-
ies that have already been matched (with new quantified variables). Such chase
steps never apply.

The chases with ΣV
f and ΣV

b can be done in a one step since new atoms
added by ΣV

f constraints have relation symbols in τV , whereas ΣV
f constraints

Rewriting Queries Using Views with Access Patterns 363

must match atoms with relation symbols in τ ; similarly for ΣV
b with the roles of

τ and τV reversed. Only chasing with Σc may result in an infinite chase or in Q
being too large.

Notice that, by Theorem 8, we can test in polynomial time whether Σc
meets sufficient (and fairly wide) conditions that satisfy the assumptions of
Theorem 10.

5 Maximal Contained Rewritings

Since exact rewritings of a query Q do not always exist, we want to approxi-
mate Q as best as possible. In Sections 3 and 4 we have shown how to obtain
the minimal containing rewritings, which are the best overestimates of Q. In
this section we consider maximal contained rewritings of Q, which are the best
underestimates of Q.

Given a schema τ , let Dτ be the unary recursive query given by rules of the
form Dτ (xj) ← Dτ (xi1), . . . , Dτ (xik

), R(x̄) for every relation R ∈ τ and every
access pattern Rα where xi1 , . . . , xik

are the input slots of Rα and j is an output
slot in Rα.

Definition 7 (Domain Extension). The domain extension of Q ∈ CQ¬ is
another query dext(Q) given by the rules with head Dτ (xj) mentioned above and
the rule

dext(Q)(x̄) ← Dτ (y1), . . . , Dτ (yk),body(Q)

where yi are the variables in body(Q).
For Q(=

∨
i Qi) ∈ UCQ¬, we define dext(Q) :=

∨
i dext(Qi).

Notice that Dτ and dext(Q) are recursive queries; in particular, here we deviate
from the convention in Section 2 that all the rules of a query have the same
head. Clearly, dext(Q) is executable.3 Dτ , dext(Q), and the following result are
given in [7] for CQ.

Theorem 11. If E # Q, E is executable, and E contains no constants, then
E # dext(Q) # Q.

We must disallow constants since they can be used to partially enumerate the
domain. If we allow constants and ‘=’, we can add rules of the form Dτ (x) ←
(x = c) for every constant c. Notice that nothing special needs to be done here
to handle negation since negative literals do not contribute towards enumerating
the domain.

Theorem 12. If E #Σ Q, E is executable, E contains no constants, and EΣ

is defined, then E #Σ dext(Q) # Q.

3 We have not defined “executable” for recursive queries, but the extension is straight-
forward.

364 A. Deutsch, B. Ludäscher, and A. Nash

Proof. If E is executable, then EΣ is also executable and satisfies EΣ # Q.
Therefore, EΣ # dext(Q) holds, which is equivalent to E #Σ dext(Q).

Now assume that as in Section 4 we have a query Q, a set of constraints Σc, and
a set of views V given by UCQ¬ queries V1, . . . , Vn with access patterns on the
heads of the views. We express the views as constraints ΣV

f and ΣV
b as in Section

4. We are interested in finding a maximal Σc-contained executable rewriting of
Q in terms of V1, . . . , Vn. That is, we want a query over V that is maximally
Σ-contained in Q.

Theorem 13. If E is a maximal Σc-contained rewriting of Q over V (regardless
of access patterns), then dext(E) is a maximal contained executable Σc-rewriting
of Q.

Proof. Assume E is as in premise and P is an executable query over V and
P #Σ Q. Then P #Σ E by the maximality of E. Since P is executable, by
Theorem 12, P #Σ dext(E).

[7] shows how to compute such a maximal Σc-contained rewriting of Q in the
absence of negation using a recursive plan. But it is easy to see that such recursive
plans can be transformed into a union of conjunctive queries: we simply take the
union of all minimal CQ queries over V which are Σc-contained in Q (the results
of [7] imply that this union is finite when the chase terminates). The extension
to handle negation is straightforward and we omit it in view of our results in the
next section.

6 Reducing Access Patterns to Constraints

In this section, we show that the problem {Q,P, Σ} of deciding feasibility in the
presence of access patterns reduces to the problem {Q,Σ} of deciding equivalence
in the presence of constraints only (Theorem 14). Furthermore, we reduce the
problem {Q,V,P, Σ} of finding rewritings using views with access patterns to
one of finding rewritings using views and constraints in the absence of access
patterns {Q,V, Σ} (Theorem 15). These results enable alternative proofs for
the complexity of answering queries in the presence of access patterns. They
also facilitate an alternative implementation of algorithms Rewrite, Feasible,
ViewRewrite etc. using a chase-based module for rewriting under constraints
such as the C&B implementation in [4].

The reduction is based on the observation that the domain enumeration pro-
gram Dτ from Section 5 is a view (albeit recursive) and can therefore be captured
with integrity constraints, as shown in Section 4. Call the set of resulting con-
straints ΣD; notice that ΣD ⊆ IC(UCQ¬).

Theorem 14. Q is Σ-feasible iff Q #ΣD∪Σ dext(Q).

Since dext(Q) # Q, we only need to check Q #ΣD
dext(Q) in Theorem 14. We

thus retrieve the complexity results for checking feasibility from the complex-
ity of checking containment. If Σ = ∅ we can show that (a) chase(Q,ΣD, O)

Rewriting Queries Using Views with Access Patterns 365

terminates for any order O on ΣD, (b) the chase result is unique regardless of
O (denote it QΣD), and (c) if we restrict QΣD to only those atoms R(x̄) for
which D(x̄) appears in QΣD , we obtain ans(Q). This and Theorem 15 below
enable an alternative implementation of algorithm ViewRewrite, which does
not compute ans(Q3) in step (6) but instead uses VD for V and Σ ∪ΣD for Σ.

We now reduce the rewriting problem {Q,V,P, Σ} to {Q,V, Σ}. First, define
Dτ as in Section 5, but using view symbols instead of relation symbols from τ .
Next captureDτ with constraintsΣD. For any V ∈V and access pattern V α, define
a new view V D(free(V)) :−body(V), D(xi1), . . . , D(xik

) where the xij
∈ free(V)

are the free variables of V which appear in input slots. Each V D is a view without
access patterns. Denoting VD := {V D | V ∈ V}, we have the following result.

Theorem 15. a) Q has an executable Σ-rewriting over V iff it has a Σ ∪ΣD-
rewriting over VD.

b) For each exact (minimal containing) Σ∪ΣD-rewriting of Q over VD, we can
derive in polynomial time an exact (minimal containing) Σ-rewriting of Q
over V.

7 Extensions

The key technique that allows us to treat negation, views, and access patterns
uniformly is modeling with constraints (recall Στ

¬, ΣV
f ∪ΣV

b , respectively ΣD).
This approach enables the straightforward implementation of our algorithms by
reusing an already existing chase module [4]. It turns out that we can extend
our solution to handling equality and arithmetic comparisons by capturing them
with constraints as well.

Handling Equality. Equality can be modeled as a binary relation E with access
patterns ‘io’ and ‘oi’ subject to the following constraints Στ

= ⊆ IC(CQ):

• ∀x true→ E(x, x),
• ∀x, y E(x, y) → E(y, x), and,
• for every R ∈ τ : ∀x̄, ȳ R(x̄) ∧ E(x1, y1) ∧ . . . ∧ E(xk, yk) → R(ȳ).

Handling Arithmetic Comparisons. The comparison ‘≤’, which gives
UCQAC¬, can be handled as a binary relation LE with access pattern ‘ii’ subject
to the following constraints Σ≤ ⊆ IC(CQ¬) which say that LE is an unbounded
dense total ordering:

• ∀x, y, z LE(x, y) ∧ LE(y, z) → LE(x, z),
• ∀x, y LE(x, y) ∧ LE(y, x) → E(x, y),
• ∀x, y ¬LE(x, y) → LE(y, x), and
• ∀x, y L(x, y) → ∃u, v, w (L(u, x) ∧ L(x, v) ∧ L(v, y) ∧ L(y, w)),

where L(x, y) stands for LE(x, y) ∧ ¬E(x, y).
Notice that the chase with the last axiom (the density axiom) is non-

terminating, yielding chains of < comparisons of arbitrary length. However, we

366 A. Deutsch, B. Ludäscher, and A. Nash

can show that if in each integrity constraint all variables that appear in a ≤
atom also appear in some relational atom other than a ≤ atom, then there is no
need to chase with the density axiom. In this case, all of our results extend to
unions of conjunctive queries with negation, equality and arithmetic comparisons
as well as the corresponding constraints. All we need to do is replace Σ with
Σ′ := Σ ∪Σ≤ ∪Στ

= and run algorithms Feasible, ViewRewrite, Rewrite,
ViewFeasible on Σ′.

Even if the restriction above does not hold, it can be shown that the chase
with the density axiom can be truncated so as to generate < chains of length
bounded by the number of variables in the original query. All we need to do is
run algorithms Feasible,ViewRewrite,Rewrite,ViewFeasible using the
truncating chase.

References

1. Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Ad-
dison Wesley, 1995.

2. A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive queries
in relational data bases. In ACM Symposium on Theory of Computing (STOC),
pages 77–90, 1977.

3. Alin Deutsch, Bertram Ludäscher, and Alan Nash. Rewriting queries using views
with access patterns under integrity constraints. Technical report, Department of
Computer Science and Engineering, UCSD, 2004. extended version of this paper:
http://www.db.ucsd.edu:8080/root/index.jsp?pageStr=publications.

4. Alin Deutsch and Val Tannen. Mars: A system for publishing xml from mixed and
redundant storage. In Intl. Conf. on Very Large Data Bases (VLDB), 2003.

5. Alin Deutsch and Val Tannen. Reformulation of xml queries and constraints. In
Intl. Conf. on Database Theory (ICDT), 2003.

6. Oliver M. Duschka and Michael R. Genesereth. Answering recursive queries using
views. In PODS, 1997.

7. Oliver M. Duschka, Michael R. Genesereth, and Alon Y. Levy. Recursive query
plans for data integration. Journal of Logic Programming, 43(1):49–73, 2000.

8. Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. Data
exchange: Semantics and query answering. In Intl. Conf. on Database Theory
(ICDT), 2003.

9. Daniela Florescu, Alon Y. Levy, Ioana Manolescu, and Dan Suciu. Query opti-
mization in the presence of limited access patterns. In SIGMOD, pages 311–322,
1999.

10. J. Grant and J. Minker. A logic-based approach to data integration. Theory and
Practice of Logic Programming, 2(3):323–368, 2002.

11. Alon Halevy. Answering queries using views: A survey. VLDB Journal, 10(4):270–
294, 2001.

12. Christoph Koch. Query rewriting with symmetric constraints. AI Communications,
17(2), 2004. to appear.

13. Alon Y. Levy. Logic-based techniques in data integration. In Jack Minker, editor,
Workshop on Logic-Based Artificial Intelligence, Washington, DC, 1999.

14. Alon Y. Levy, Anand Rajaraman, and Joann J. Ordille. Querying heterogeneous
information sources using source descriptions. In 22nd Intl. Conf. on Very Large
Data Bases (VLDB), pages 251–262, Bombay, India, 1996.

Rewriting Queries Using Views with Access Patterns 367

15. Chen Li. Computing complete answers to queries in the presence of limited access
patterns. Journal of VLDB, 12:211–227, 2003.

16. Chen Li and Edward Y. Chang. On answering queries in the presence of limited
access patterns. In Intl. Conference on Database Theory (ICDT), 2001.

17. Todd D. Millstein, Alon Y. Levy, and Marc Friedman. Query containment for data
integration systems. In PODS, pages 67–75, 2000.

18. Alan Nash and Bertram Ludäscher. Processing first-order queries under limited
access patterns. In PODS, Paris, France, 2004.

19. Alan Nash and Bertram Ludäscher. Processing unions of conjunctive queries with
negation under limited access patterns. In Intl. Conference on Extending Database
Technology (EDBT), Heraklion, Crete, Greece, 2004.

20. A. Rajaraman, Y. Sagiv, and J. D. Ullman. Answering queries using templates
with binding patterns. In PODS, pages 105–112, 1995.

21. Yehoshua Sagiv and Mihalis Yannakakis. Equivalences among relational expres-
sions with the union and difference operators. Journal of the ACM, 27(4):633–655,
1980.

22. Jeffrey Ullman. The complexity of ordering subgoals. In PODS, 1988.
23. Vasilis Vassalos and Yannis Papakonstantinou. Expressive capabilities descrip-

tion languages and query rewriting algorithms. Journal of Logic Programming,
43(1):75–122, 2000.

Optimal Workload-Based Weighted Wavelet
Synopses

Yossi Matias and Daniel Urieli

School of Computer Science
Tel-Aviv University

{matias, daniel1}@tau.ac.il

Abstract. In recent years wavelets were shown to be effective data syn-
opses. We are concerned with the problem of finding efficiently wavelet
synopses for massive data sets, in situations where information about
query workload is available. We present linear time, I/O optimal algo-
rithms for building optimal workload-based wavelet synopses for point
queries. The synopses are based on a novel construction of weighted
inner-products and use weighted wavelets that are adapted to those prod-
ucts. The synopses are optimal in the sense that the subset of retained
coefficients is the best possible for the bases in use with respect to either
the mean-squared absolute or relative errors. For the latter, this is the
first optimal wavelet synopsis even for the regular, non-workload-based
case. Experimental results demonstrate the advantage obtained by the
new optimal wavelet synopses, as well as the robustness of the synopses
to deviations in the actual query workload.

1 Introduction

In recent years there has been increasing attention to the development and study
of data synopses, as effective means for addressing performance issues in massive
data sets. Data synopses are concise representations of data sets, that are meant
to effectively support approximate queries to the represented data sets [10]. A
primary constraint of a data synopsis is its size. The effectiveness of a data
synopsis is measured by the accuracy of the answers it provides, as well as
by its response time and its construction time. Several different synopses were
introduced and studied, including random samples, sketches, and different types
of histograms. Recently, wavelet-based synopses were introduced and shown to
be a powerful tool for building effective data synopses for various applications,
including selectivity estimation for query optimization in DBMS, approximate
query processing in OLAP applications and more (see [17, 21, 22, 2, 6, 9, 8], and
references therein).

The general idea of wavelet-based approximations is to transform a given
data vector of size N into a representation with respect to a wavelet basis (this
is called a wavelet transform), and approximate it using only M / N wavelet
basis vectors, by retaining only M coefficients from the linear combination that
spans the data vector (coefficients thresholding). The linear combination that
uses only M coefficients (and assumes that all other coefficients are zero) defines

T. Eiter and L. Libkin (Eds.): ICDT 2005, LNCS 3363, pp. 368–382, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Optimal Workload-Based Weighted Wavelet Synopses 369

a new vector that approximates the original vector, using less space. This is
called M -term approximation, which defines a wavelet synopsis of size M .

Wavelet Synopses. Wavelets were traditionally used to compress some data sets
where the purpose is to reconstruct, in a later time, an approximation of the
whole data using the set of retained coefficients. The situation is a little different
when using wavelets for building synopses in database systems [17]: in this case
only portions of the data are reconstructed each time, in response to user queries,
rather than the whole data at once. As a result, portions of the data that are used
for answering frequent queries are reconstructed more frequently than portions
of the data that correspond to rare queries. Therefore, the approximation error
is measured over the multi-set of actual queries, rather than over the data itself.
For more wavelet synopses basics see [17].

Another aspect of the use of wavelets in database systems is that due to the
large data-sizes in databases (giga-, tera- and peta-bytes), the efficiency of build-
ing wavelet synopses is of primary importance. Disk I/Os should be minimized
as much as possible, and non-linear-time algorithms may be unacceptable.

Optimal Wavelet Synopses. The main advantage of transforming the data into
a representation with respect to a wavelet basis is that for data vectors con-
taining similar values, many wavelet coefficients tend to have very small values.
Thus, eliminating such small coefficients introduces only small errors when re-
constructing the original data, resulting in a very effective form of lossy data
compression.

Generally speaking, we can characterize a wavelet approximation by three
attributes: how the approximation error is measured, what wavelet basis is used
and how coefficient thresholding is done. Many bases were suggested and used in
traditional wavelets literature. Given a basis with respect to which the transform
is done, the selection of coefficients that are retained in the wavelet synopsis
may have significant impact on the approximation error. The goal is therefore
to select a subset of M coefficients that minimizes some approximation-error
measure. This subset is called an optimal wavelet synopsis, with respect to the
chosen error measure.

While there has been a considerable work on wavelet synopses and their ap-
plications [17, 21, 22, 2, 6, 14, 9, 8], so far there were only a few optimality results.
The first one is a linear-time Parseval-based algorithm, which was used in tra-
ditional wavelets literature (e.g [12]), where the error was measured over the
data. This algorithm minimizes the L2 norm of the error vector, and equiv-
alently it minimizes the mean-squared-absolute error over all possible point
queries [17]. No algorithm that minimizes the mean-squared-relative error over
all possible point queries was known. The second one, introduced recently [9],
is a polynomial-time (O(N2M logM)) algorithm that minimizes the max rela-
tive or max absolute error over all possible point queries. Another optimality
result is a polynomial time dynamic-programming algorithm that obtains an
optimal wavelet synopsis over multiple measures [6]. The synopsis is optimal
w.r.t. an error metric defined as weighted combination of L2 norms over the

370 Y. Matias and D. Urieli

multiple measures (this weighted combination has no relation with the notion of
weighted wavelets of this paper).

Workload-Based Wavelet Synopses. In recent years there is increased interest in
workload-based synopses – synopses that are adapted to a given query workload,
with the assumption that the workload represents (approximately) a probability
distribution from which future queries will be taken. Chaudhuri et al [4] argue
that identifying an appropriate precomputed sample that avoids large errors
on an arbitrary query is virtually impossible. To minimize the effects of this
problem, previous studies have proposed using the workload to guide the process
of selecting samples [1, 3, 7]. By picking a sample that is tuned to the given
workload, we can reduce the error over frequent (or otherwise “important”)
queries in the workload.

In [4], the authors formulate the problem of pre-computing a sample as an
optimization problem, whose goal is to pick a sample that minimizes the error
for the given workload.

Recently, workload-based wavelet synopses were proposed by Portman and
Matias [14, 19]. Using an adaptive-greedy algorithm, the query-workload infor-
mation was used during the thresholding process in order to build a wavelet
synopsis that reduces the error w.r.t. to the query workload. These workload-
based wavelet synopses demonstrate significant imporvement with respect to
prior synopses. They are, however, not optimal w.r.t. the query workload.

In this paper, we address the problem of finding efficiently optimal workload-
based wavelet synopses.

1.1 Contributions

We introduce efficient algorithms for finding optimal workload-based wavelet
synopses using weighted Haar (WH) wavelets, for workloads of point queries.
Our main contributions are:

– Linear-time, I/O optimal algorithms that find optimal Workload-based
Weighted Wavelet (WWW) synopses1:
• An optimal synopsis w.r.t. workload-based mean-squared absolute-error

(WB-MSE).
• An optimal synopsis w.r.t. workload-based mean-squared relative-error

(WB-MRE).
Equivalently, the algorithms minimize the expected squared, absolute or rel-
ative errors over a point query taken from a given distribution.

– The WB-MRE algorithm, used with uniform workload, is also the first algo-
rithm that minimizes the mean-squared-relative-error over the data values,
with respect to a wavelet basis.

– Both WWW synopses are also optimal with respect to enhanced wavelet
synopses, which allow changing the values of the synopses coefficients to
arbitrary values.

1 No relation whatsover to the world-wide-web.

Optimal Workload-Based Weighted Wavelet Synopses 371

– Experimental results show the advantage of our synopses with respect to
existing synopses.

– The synopses are robust to deviation from the pre-defined workload, as
demonstrated by our experiments.

The above results were obtained using the following novel techniques.

– We define the problem of finding optimal workload-based wavelet synopses
in terms of a weighted norm, a weighted-inner-product and a weighted-inner-
product-space. This enables linear time I/O optimal algorithms for building
optimal workload-based wavelet synopses.
The approach of using a weighted inner product can also be used to the
general case in which each data point is given different priority, representing
its significance. This generalization is used to obtain the optimal synopses
for max relative error, where the weight of each point is normalized by its
value. Using these weights, one can find a weighted-wavelet basis, and an
optimal weighted wavelet synopsis in linear time, with O(N/B) I/Os.

– We introduce the use of weighted wavelets for data synopses. Using weighted
wavelets [5, 11] enables finding optimal workload-based wavelet synopses ef-
ficiently. In contrast, it is not known how to obtain optimal workload-based
wavelet synopses with respect to the Haar basis efficiently. If we ignore the
efficiency of finding a synopsis, the Haar basis is as good as the weighted
Haar basis for approximation.

In the wavelets literature (e.g., [12]), wavelets are used to approximate a
given signal, which is treated as a vector in an inner-product space. Since an
inner-product defines an L2 norm, the approximation error is measured as the
L2 norm of the error vector, which is the difference between the approximated
vector and the approximating vector. Many wavelet bases were used for approx-
imation, as different bases are adequate for approximating different collections
of data vectors. By using an orthonormal wavelet basis, an optimal coefficient
thresholding can be achieved in linear time, based on Parseval’s formula. When
using non-orthogonal wavelet basis, or measuring the error using other norms
(e.g., L∞), it is not known whether an optimal coefficient thresholding can be
found efficiently, so usually non-optimal greedy algorithms are used in practice.

A weighted Haar (WH) basis is a generalization of the standard Haar basis,
which is typically used for wavelet synopses due to its simplicity. There are sev-
eral attributes by which a wavelet basis is characterized, which affects the qual-
ity of the approximations achieved using this basis (for full discussion, see [12]).
These attribute are: the set of nested spaces of increasing resolution which the
basis spans, the number of vanishing moments of the basis, and its compact
support (if exists). Both Haar basis and a WH basis span the same subsets of
nested spaces, have one vanishing moment, and a compact support of size 1.

Haar basis is orthonormal for uniform workload of point queries. Hence it
is optimal for the MSE error measure. The WH basis is orthonormal with
respect to the weighted inner-product defined by the problem of finding opti-
mal workload-based wavelet synopses. As a result, an optimal workload-based

372 Y. Matias and D. Urieli

synopses with respect to WH basis is achieved efficiently, based on Parseval’s
formula, while for the Haar basis no efficient optimal thresholding algorithm is
known, in cases other than uniform workload.

1.2 Paper Outline

The rest of the paper is organized as follows. In Sec. 2 we describe our basic ap-
proach, including the workload-based error metrics and optimal thresholding in
orthonormal bases. In Sec. 3 we define the problem of finding optimal workload-
based wavelet synopses in terms of weighted inner product, and solve it using an
orthonormal basis. In Sec. 4 we describe the optimal algorithm for minimizing
WB-MSE, which is based on the construction of Sec. 3. In Sec. 5 we extend the
algorithm to work for the WB-MRE, and in Sec. 6 we draw our conclusions. Due
to space limitations, some technical proofs and additional experiments can be
found in the full paper [16].

2 Basics

2.1 Workload-Based Error Metrics

Let D = (d0, ..., dN−1) be a sequence with N = 2j values. Denote the set of
point queries as Q = (q0, ..., qN−1), where qi is a query which its answer is di.
Let a workload W = (c0, ..., cN−1) be a vector of weights that represents the
probability distribution from which future point queries are to be generated. Let
(u0, ..., uN−1) be a basis of RN , than D =

∑N
i=0 αiui. We can represent D by a

vector of coefficients (α0, ..., αN−1).
Suppose we want to approximate D using a subset of the coefficients S ⊂

{α0, ..., αN−1} where |S| = M . Then, for any subset S we can define a weighted
norm WL2 with respect to S, that provides a measure for the errors expected for
queries drawn from the probability distribution represented by W , when using
S as a synopsis. S is then referred to as a workload-based wavelet synopsis.

Denote d̂i as an approximation of di using S. There are two standard ways
to measure the error over the i’th data value (equivalently, point query):
The absolute error : ea (i) = ea (qi) = |di − d̂i|; and the relative error : er (i) =
er (qi) = |di−d̂i|

max{|di|,s} , where s is a positive bound that prevents small values from
dominating the relative error.

While the standard (non-workload-based) approach is to reduce the L2 norm
of the vector of errors (e1, ..., eN) (where ei = ea (i) or ei = er (i)), here we
would generalize the L2 norm to reflect the query workload. Let W be a given
workload consisting of a vector of queries’ probabilities c1, ..., cN , where ci is the
probability that qi occurs; that is, 0 < ci ≤ 1, and

∑N−1
i=0 ci = 1. The weighted-L2

norm of the vector of (absolute or relative) errors e = (e1, ..., eN) is defined as:

WL2 (e) = ‖e‖w =

√√√√N−1∑
i=0

ci · e2i

Optimal Workload-Based Weighted Wavelet Synopses 373

where 0 < ci ≤ 1,
∑N−1

i=0 ci = 1. Thus, each data value di, or equivalently each
point query qi, is given some weight ci that represents its significance. Note that
WL2 norm is the square-root of the mean squared error for a point query that
is drawn from the given distribution. Thus, minimizing that norm of the error
is equivalent to minimizing the mean squared error of an answer to a query.

In general, the weights given to data values need not necessarily represent a
probability distribution of point queries, but any other significance measure. For
example, in Sec. 5 we use weights to solve the problem of minimizing the mean-
squared relative error measured over the data values (the non-workload-based
case).

Notice that it is a generalization of the MSE norm: by taking equal weights
for each query, meaning ci = 1

N for each i and ei = ea (i), we get the standard
MSE norm. We use the term workload-based error for the WL2 norm of the
vector of errors e. When ei are absolute (resp. relative) errors the workload-based
error would be called the WB-MSE (resp. WB-MRE).

2.2 Optimal Thresholding in Orthonormal Bases

The construction is based on Parseval’s formula, and a known theorem that
results from it (Thm. 1).

Parseval’s Formula. Let V be a vector space, where v ∈ V is a vector and
{u0, ..., uN−1} is an orthonormal basis of V . We can express v as v =

∑N−1
i=0 αiui.

Then

‖v‖2 =
N−1∑
i=0

α2
i (1)

An M -term approximation is achieved by representing v using a subset of
coefficients S ⊂ {α0, ..., αN−1} where |S| = M . The error vector is than e =∑

i/∈S αiui. By Parseval’s formula, ‖e‖2 =
∑

i/∈S α2
i . This proves the following

theorem.

Theorem 1 (Parseval-Based Optimal Thresholding). Let V be a vector
space, where v ∈ V is a vector and {u0, ..., uN−1} is an orthonormal basis of V .
We can represent v by {α0, ..., αN−1} where v =

∑N−1
i=0 αiui. Suppose we want to

approximate v using a subset S ⊂ {α0, ..., αN−1} where |S| = M / N . Picking
the M largest coefficients to S minimizes the L2 norm of the error vector, over
all possible subsets of M coefficients.

Given an inner-product, based on this theorem one can easily find an optimal
synopses by choosing the largest M coefficients.

2.3 Optimality over Enhanced Wavelet Synopses

Notice that in the previous section we limited ourselves to picking subsets of
coefficients with original values from the linear combination that spans v (as is
usually done). In case {u0, ..., uN−1} is a wavelet basis, these are the coefficients

374 Y. Matias and D. Urieli

that results from the wavelet transform. We next show that the optimal thresh-
olding according to Thm. 1 is optimal even according to an enhanced definition
of M -term approximation. We define enhanced wavelet synopses as wavelet syn-
opses that allow arbitrary values to the retained wavelet coefficients, rather than
the original values that resulted from the transform. The set of possible standard
synopses is a subset of the set of possible enhanced synopses, and therefore an
optimal synopsis according to the standard definition is not necessarily optimal
according to the enhanced definition.

Theorem 2. When using an orthonormal basis, choosing the largest M coeffi-
cients with original values is an optimal enhanced synopses.

Proof. The proof is based on the fact that the basis is orthonormal. It is enough
to show that given some synopsis of M coefficients with original values, any
change to the values of some subset of coefficients in the synopsis would only
make the approximation error larger:
Let u1, ..., uN be an orthonormal basis and let v = α1u1 + ... + αNuN be the
vector we would like to approximate by keeping only M wavelet coefficients.
Without loss of generality, suppose we choose the first M coefficients and have
the following approximation for v: ṽ =

∑M
i=1 αiui. According to Parseval’s for-

mula ‖e‖2 =
∑N

i=M+1 α
2
i since the basis is orthonormal. Now suppose we would

change the values of some subset of j retained coefficients to new values. Let
us see that due to the orthonormality of the basis it would only make the error
larger. Without loss of generality we would change the first j coefficients, mean-
ing, we would change α1, ..., αj to be α′

1, ..., α
′
j . In this case the approximation

would be ṽ′ =
∑j

i=1 α
′
iui +

∑M
i=j+1 αiui. The approximation error would be

v− ṽ′ =
∑j

i=1 (αi − α′
i)ui +

∑N
i=M+1 αiui. It is easy to see that the error of ap-

proximation would be: ‖e‖2 = 〈v− ṽ′, v− ṽ′〉 =
∑j

i=1 (αi − α′
i)

2 +
∑N

i=M+1 α
2
i >∑N

i=M+1 α
2
i .

3 The Workload-Based Inner Product

In this section, we define the problem of finding an optimal workload-based
synopses in terms of a weighted-inner-product space, and solve it relying on this
construction. Here we deal with the case where ei are the absolute errors (the
algorithm minimizes the WB-MSE). An extension to relative errors (WB-MRE)
is introduced in Sec. 5
Our development is as follows:

1. Transforming the data vector D into an equivalent representation as a func-
tion f in a space of piecewise constant functions over [0, 1). (Sec. 3.1)

2. Defining the workload-based inner product. (Sec. 3.2)
3. Using the inner product to define an L2 norm, showing that the newly defined

norm is equivalent to the weighted L2 norm (WL2). (Sec. 3.3)

Optimal Workload-Based Weighted Wavelet Synopses 375

4. Defining a weighted Haar basis which is orthonormal with respect to the new
inner product. (Sec. 3.4)

Based on Thm. 1 and Thm. 2 one can easily find an optimal workload-based
wavelet synopses with respect to a weighted Haar wavelet basis.

3.1 Transforming the Data Vector into a Piecewise Constant
Function

We assume that our approximated data vector D is of size N = 2j . As in [20],
we treat sequences (vectors) of 2j points as piecewise constant functions defined
on the half-open interval [0, 1). In order to do so, we will use the concept of a
vector space from linear algebra. A sequence of one point is just a function that
is constant over the entire interval [0, 1); we’ll let V0 be the space of all these
functions. A sequence of 2 points is a function that has two constant parts over
the intervals [0, 1

2) and [12 , 1). We’ll call the space containing all these functions
V1. If we continue in this manner, the space Vj will include all piecewise constant
functions on the interval [0, 1), with the interval divided equally into 2j different
sub-intervals. We can now think of every one-dimensional sequence D of 2j values
as being an element, or vector f , in Vj .

3.2 Defining a Workload-Based Inner Product

The first step is to choose an inner product defined on the vector space Vj . Since
we want to minimize a workload based error (and not the regular L2 error), we
started by defining a new workload based inner product. The new inner product
is a generalization of the standard inner product. It is a sum of N = 2j weighted
standard products; each of them is defined over an interval of size 1

N :

〈f, g〉 = N ·
(

N−1∑
i=0

ci

∫ i+1
N

i
N

f (x) g (x) dx

)
where 0 < ci ≤ 1,

N−1∑
i=0

ci = 1 (2)

Lemma 1. 〈f, g〉 is an inner product.

The proof of the lemma can be found in the full paper. As mentioned before,
a coefficient ci represents the probability (or a weight) for the i’th point query
(qi) to appear. Notice that the answer of which is the ith data value, which
is function value at the i’th interval. When all coefficients ci are equal to 1

N (a
uniform distribution of queries), we get the standard inner product, and therefore
this is a generalization of the standard inner product.

3.3 Defining a Norm Based on the Inner Product

Based on that inner product we define an inner-product-based (IPB) norm:

‖f‖IPB =
√
〈f, f〉 (3)

376 Y. Matias and D. Urieli

Lemma 2. The norm ‖f‖IPB measured over the vector of absolute errors is the
weighted L2 norm of this vector, i.e ‖e‖2IPB =

∑N−1
i=0 cie

2
i = ‖e‖2w.

The proof of the lemma can be found in the full paper. Notice that when all
coefficients are equal to 1

N we get the regular L2 norm, and therefore this is a
generalization of the regular L2 norm (MSE).
Our goal is to minimize the workload based error which is the WL2 norm of the
vector of errors.

3.4 Defining an Orthonormal Basis

At this stage we would like to use Thm. 1. The next step would thus be finding an
orthonormal (with respect to a workload based inner product) wavelet basis for
the space Vj . The basis is a Weighted Haar Basis. For each workload-based inner
product (defined by a given query workload) there is corresponding orthonormal
weighted Haar basis, and our algorithm finds this basis in linear time, given the
workload of point queries. We describe the bases here, and see how to find a basis
based on a given workload of point queries. We will later use this information in
the algorithmic part.

In order to build a weighted Haar basis, we take the Haar basis functions
and for the k’th basis function we multiply its positive (resp. negative) part by
some xk (resp. yk). We would like to choose such xk and yk so that we get
an orthonormal basis with respect to our inner product. Thus, instead of using
Haar basis functions (Fig. 1), we use functions of the kind illustrated in Fig. 2,
where xk and yk are not necessarily (and probably not) equal, so our basis looks
like the one in (Fig. 3). One needs to show how to choose xk and yk.

Let uk be some Haar basis function as described above. Let [ak0 , ak1) be
the interval over which the basis function is positive and let [ak1 , ak2) be the
interval over which the function is negative. Recall that ak0 , ak1 and ak2 are
both multiples of 1

N and therefore the interval precisely contains some number
of continuous intervals of the form [i

N , i+1
N] (also ak1 = ak0+ak2

2). Moreover, the
size of the interval over which the function is positive (resp. negative) is 1

2i for
some i < j (As we remember, N = 2j). Recall that for the i’th interval of size
1
N , meaning [i

N , i+1
N) there is a corresponding weight coefficient ci which is the

coefficient that is used in the inner product. Notice that each Haar basis func-

Fig. 1. An example for a Haar basis function

Optimal Workload-Based Weighted Wavelet Synopses 377

Fig. 2. An example for a Weighted Haar Basis function

Fig. 3. The weighted Haar Basis along with the workload coefficients

tion is positive (negative) over some number of (whole) such intervals. We can
therefore associate the sum of coefficients of the intervals “under” the positive
(negative) part of the function with the positive (negative) part of the function.
Let us denote the sum of weight coefficients (ci’s) corresponding to intervals that
are under the positive (resp. negative) as lk (resp. rk).

Lemma 3. Suppose for each Haar basis function vk we choose xk and yk such
that

xk =
√

rk

lkrk + l2k
yk =

√
lk

lkrk + r2
k

and multiply the positive (resp. negative) part of vk by xk (resp. yk); by doing that
we get an orthonormal set of N = 2j functions, meaning we get an orthonormal
basis.

The proof of the lemma can be found in the full paper. Again, notice that
had all the workload coefficients been equal (ci = 1

N) we would get the standard
Haar basis used to minimize the standard L2 norm.

As we have seen, this is an orthonormal basis to our function space. In order
to see that it is a wavelet basis, we can notice that for each k = 1, ..., j, the first
2k functions are an orthonormal set belonging to Vk (its dimension is 2k) and
which is therefore a basis of Vk.

378 Y. Matias and D. Urieli

4 The Algorithm for the WWW Transform

In this section we describe the algorithmic part. Given a workload of point
queries and a data vector to be approximated, we build workload-based wavelet
synopses of the data vector using a weighted Haar basis. The algorithm has two
parts:

1. Computing efficiently a Weighted Haar basis, given a workload of point
queries. (Sec. 4.1)

2. Computing efficiently the Weighted Haar Wavelet Transform with respect
to the chosen basis. (Sec. 4.2)

4.1 Computing Efficiently a Weighted Haar Basis

Note that at this point we already have a method to find an orthonormal basis
with respect to a given workload based inner product. Recall that in order to
know xk and yk for every basis function we need to know the corresponding lk
and rk. We are going to compute all those partial sums in linear time. Suppose
that the basis functions are arranged in an array like in a binary tree represen-
tation. The highest resolution functions are at indexes N

2 , ..., N − 1, which are
the lowest level of the tree. The next resolution level functions are at indexes
N
4 , ...,

N
2 − 1, and so on, until the constant basis function is in index 0. Notice

that for the lowest level (highest resolution) functions (indexes N
2 , ..., N − 1) we

already have their lk’s and rk’s. These are exactly the workload coefficients. It
can be easily seen in Fig. 3 for the lower four functions. Notice that after com-
puting the accumulated sums for the functions at resolution level i, we have all
the information to compute the higher level functions: let uk be a function at
resolution level i and u2k, u2k+1 be at level i+ 1, where their supports included
in uk’s support (uk is their ancestor in the binary tree of functions). We can use
the following formula for computing lk and rk:

lk = l2k + r2k rk = l2k+1 + r2k+1

See Fig. 3. Thus, we can compute in one pass only the lowest level, and build
the upper levels bottom-up (in a way somewhat similar to the Haar wavelet
transform). The algorithm consists of phases, where in each phase the functions
of a specific level are computed. At the end of a phase, we keep a temporary
array holding all the pairwise sums of all the lk’s and rk’s from that phase and
use them for computing the next phase functions. Clearly, the running time is
N
2 + N

4 + ...+ 1 = O (N). The number of I/Os is O (N/B) I/Os (where B is the
block size of the disk) – since the process is similar to the computation Haar
wavelet transform. Recall that given rk and lk, one can easily compute the k’th
basis function (its positive and negative parts) using the following formula:

xk =
√

rk

lkrk + l2k
yk =

√
lk

lkrk + r2
k

Optimal Workload-Based Weighted Wavelet Synopses 379

4.2 Computing a Weighted Haar Wavelet Transform

Given the basis we would like to efficiently perform the wavelet transform with
respect to that basis. Let us look at the case of N = 2 (Fig. 4). Suppose we
would like to represent the function in Fig. 5. It is easy to compute the following
result (denote αi as the coefficient of fi):

α0 =
yv0 + xv1

x + y
α1 =

v0 − v1

x + y

Fig. 4. An example for the Weighted Haar Transform

Fig. 5. A simple function with 2 values over [0, 1)

(by solving 2x2 matrix). Notice that the coefficients are weighted averages and
differences, since the transform generalizes the standard Haar transform (by
taking x = y =

√
2i we get the standard Haar transform). It’s easy to reconstruct

the original function from the coefficients:

v0 = α0 + xα1 v1 = α0 − yα1

This implies a straightforward method to compute the wavelet transform
(which is I/O efficient as well) according to the way we compute a regular wavelet
transform with respect to the Haar basis: we go over the data, and compute the
weighted differences which are the coefficients of the bottom level functions. We
keep the weighted averages, which can be represented solely by the rest of the
basis functions (the “lower resolution” functions - as in the regular Haar wavelet
transform), in another array. We repeat the process over the averages time and
time again until we have the overall average, which is added to our array as
the coefficient of the constant function (v0 (x) = const). While computing the
transform, in addition to reading the values of the signal, we need to read the
proper basis function that is relevant for the current stage (in order to use
the xk and yk of the function that is employed in the above formula). This is
easy to do, since all the functions are stored in an array F and the index of a

380 Y. Matias and D. Urieli

function is determined by the iteration number and is identical to the index of the
corresponding currently computed coefficient. A pseudo code of the algorithm
can be found in the full paper.

The steps of our algorithm are identical to the steps of the Haar algorithm,
with the addition of reading the data at F [i] (the xk and yk of the function)
during the i’th iteration. Therefore the I/O complexity of that phase remains
O (N/B) (B is the disk block size) with O (N) running time.

After obtaining the coefficient of the orthonormal basis we keep the largest M
coefficients, along with their corresponding M functions, and throw the small-
est coefficients. This can be done efficiently using an M-approximate quantile
algorithm [13]. Based on Thm. 1 we obtain an optimal synopsis.

5 Optimal Synopsis for Mean Relative Error

We show how to minimize the weighted L2 norm of the vector of relative errors,
weighted by the query workload, by using weighted wavelets. As a special case,
this minimizes the mean-squared-relative-error measured over the data values.

Recall that in order to minimize the weighted L2 norm of relative errors, we

need to minimize
∑N

i=1 ci

(
|di−d̂i|

max{di,s}
)2

. For simplicity, we show instead how to

minimize
∑N

i=1 ci

(
|di−d̂i|

di

)2
; the extension to the above is straightforward. Since

D = d1, ..., dN is part of the input of the algorithm, it is fixed throughout the
algorithm’s execution. We can thus divide each ci by d2

i and get a new vector of
weights: W =

(
c1
d2
1
, ..., cN

d2
N

)
. Relying on our previous results, and using the new

vector of weights we minimize
∑N

i=1
ci

d2
i

(
|di − d̂i|

)2
=
∑N

i=1 ci

(
|di−d̂i|

di

)2
, which

is the WL2 norm of relative errors. Notice that in the case bi = 1
N (the uniform

case) the algorithm minimizes the mean-relative-error over all data values. As
far as we know, this is the first algorithm that minimizes the mean-relative-error
over the data values.

6 Conclusions

In this paper we introduce the use of weighted wavelets for building optimal
workload-based wavelet synopses. We present two time-optimal and I/O-optimal
algorithms for workload-based wavelet synopses, which minimize the WB-MSE
and and the WB-MRE error measures, with respect to any given query workload.
The advantage of optimal workload-based wavelet synopses, as well as their
robustness, were demonstrated by experimentations (in the full paper).

Recently, and independently of our work, Muthukrishnan [18] presented an
optimal workload-based wavelet synopsis with respect to the standard Haar
basis. The algorithm for building the optimal synopsis is based on dynamic
programming and takes O(N2M/ logM) time. As noted above, standard Haar
basis is not orthonormal w.r.t. the workload-based error metric, and an optimal

Optimal Workload-Based Weighted Wavelet Synopses 381

synopsis w.r.t. this basis is not necessarily also an optimal enhanced wavelet
synopsis. Obtaining optimal enhanced wavelet synopses for the standard Haar
wavelets may be an interesting open problem. Also, as quadratic time is too
costly for massive data sets, it may be interesting to obtain a time efficient
algorithm for such synopses. As far as approximation error is concerned, although
in general optimal synopses w.r.t. the standard Haar and the weighted Haar
bases are incomparable, both bases have the same characteristics. It would be
interesting to compare the actual approximation errors of the two synopses for
various data sets. This may indeed be the subject of a future work.

In a recent related paper [15], we show how to find optimal wavelet synopses
for range-sum queries, using a framework similar to the one used in this paper.
We define the problem of finding an optimal synopsis for range-sum queries in
terms of a proper inner-product, and find an optimal synopsis, which minimizes
the MSE measured over all possible range-sum queries, in linear time, with
O(N/B) I/Os.

Acknowledgments. We thank Leon Portman for helpful discussions and for his
assistance in setting up the experiments on the τ -synopses system. We also thank
Prof. Nira Dyn for helpful discussions regarding the wavelets theory.

References

1. A. Aboulnaga and S. Chaudhuri. Self-tuning histograms: Building histograms
without looking at data. In Proceedings of the 1999 ACM SIGMOD International
Conference on Management of Data, pages 181–192, 1999.

2. K. Chakrabarti, M. Garofalakis, R. Rastogi, and K. Shim. Approximate query
processing using wavelets. In VLDB 2000, Proceedings of 26th International Con-
ference on Very Large Data Bases, 2000, pages 111–122.

3. S. Chaudhuri, G. Das, M. Datar, R. Motwani, , and V. R. Narasayya. Overcoming
limitations of sampling for aggregation queries. In ICDE, pages 534–542, 2001.

4. S. Chaudhuri, G. Das, and V. Narasayya. A robust, optimization-based approach
for approximate answering of aggregate queries. In Proceedings of the 2001 ACM
SIGMOD international conference on on Management of data, 2001.

5. R. R. Coifman, P. W. Jones, , and S. Semmes. Two elementary proofs of the l2
boundedness of cauchy integrals on lipschitz curves. J. Amer. Math. Soc., 2(3):553–
564, 1989.

6. A. Deligiannakis and N. Roussopoulos. Extended wavelets for multiple measures. In
Proceedings of the 2003 ACM SIGMOD International Conference on Management
of Data, pages 229–240.

7. V. Ganti, M.-L. Lee, and R. Ramakrishnan. Icicles: Self-tuning samples for ap-
proximate query answering. The VLDB Journal, pages 176–187, 2000.

8. M. Garofalakis and P. B. Gibbons. Wavelet synopses with error guarantees. In
Proceedings of the 2002 ACM SIGMOD International Conference on Management
of Data, 2002.

9. M. Garofalakis and A. Kumar. Deterministic wavelet thresholding for maximum-
error metrics. In Proceedings of the 2004 ACM SIGMOD international conference
on on Management of data, pages 166–176.

382 Y. Matias and D. Urieli

10. P. B. Gibbons and Y. Matias. Synopsis data structures for massive data sets.
In DIMACS: Series in Discrete Mathematics and Theoretical Computer Science:
Special Issue on External Memory Algorithms and Visualization, A, 1999.

11. M. Girardi and W. Sweldens. A new class of unbalanced Haar wavelets that form
an unconditional basis for Lp on general measure spaces. J. Fourier Anal. Appl.,
3(4), 1997.

12. S. Mallat. A Wavelet Tour of Signal Processing. Academic Press, 2nd edition,
1999.

13. G. S. Manku, S. R., and B. G. Lindsay. Approximate medians and other quantiles
in one pass and with limited memory. In Proceedings of the 1998 ACM SIGMOD
International Conference on Management of Data, pages 426–435, New York, 1998.

14. Y. Matias and L. Portman. Workload-based wavelet synopses. Technical report,
Department of Computer Science,Tel Aviv University, 2003.

15. Y. Matias and D. Urieli. Optimal wavelet synopses for range-sum queries. Technical
report, Department of Computer Science, Tel-Aviv University, 2004.

16. Y. Matias and D. Urieli. Optimal workload-based weighted wavelet synopses.
Technical report, Department of Computer Science, Tel-Aviv University, 2004.

17. Y. Matias, J. S. Vitter, and M. Wang. Wavelet-based histograms for selectivity
estimation. In Proceedings of the 1998 ACM SIGMOD International Conference
on Management of Data, pages 448–459, Seattle, WA, June 1998.

18. S. Muthukrishnan. Workload-optimal wavelet synopsis. Technical report, May
2004.

19. L. Portman. Workload-based wavelet synopses. M.sc. thesis, Tel Aviv University,
2003.

20. E. J. Stollnitz, T. D. Derose, and D. H. Salesin. Wavelets for Computer Graphics.
Morgan Kaufmann, 1996.

21. J. S. Vitter and M. Wang. Approximate computation of multidimensional aggre-
gates of sparse data using wavelets. In Proceedings of the 1999 ACM SIGMOD
International Conference on Management of Data, pages 193–204, Phildelphia,
June 1999.

22. J. S. Vitter, M. Wang, and B. Iyer. Data cube approximation and histograms via
wavelets. In Proceedings of Seventh International Conference on Information and
Knowledge Management, pages 96–104, Washington D.C., November 1998.

Selecting and Using Views
to Compute Aggregate Queries

(Extended Abstract)

Foto Afrati1 and Rada Chirkova2

1 Electrical and Computing Eng., National Technical University of Athens,
157 73 Athens, Greece

2 Computer Science Department, North Carolina State University,
Raleigh, NC 27695, USA��

Abstract. We consider a workload of aggregate queries and investigate
the problem of selecting views that (1) provide equivalent rewritings for
all queries, and (2) are optimal, in that the cost of evaluating the query
workload is minimized. We consider conjunctive views and rewritings,
with or without aggregation; in each rewriting, only one view contributes
to computing the aggregated query output. We look at query rewriting
using existing views and at view selection. In the query-rewriting prob-
lem, we give sufficient and necessary conditions for a rewriting to exist.
For view selection, we prove complexity results. Finally, we give algo-
rithms for obtaining rewritings and selecting views.

1 Introduction

The problem of using materialized views to answer queries is of interest in many
applications. Using materialized views to compute aggregate queries results in
potentially greater benefits than for purely conjunctive queries, as a view with ag-
gregation precomputes some of the grouping/aggregation on some of the query’s
subgoals. Because aggregate queries are often computed on large volumes of
stored data, in many applications it is beneficial to use previously cached results
as views to answer a new query [1, 2, 3].

We consider the problem of selecting views to minimize query-evaluation
costs, for aggregate queries and rewritings. In solving this problem, the first is-
sue we need to address is what types of query rewritings using views should be
considered. As it turns out, finding rewritings for aggregate queries introduces
additional complications when compared to finding rewritings for conjunctive
queries without aggregation. Thus, in this paper we address two problems: first,
how to answer aggregate queries using aggregate views by constructing equiva-
lent rewritings; second, how to optimally select aggregate views to materialize,
for use in those rewritings. In taking the first problem, we consider central rewrit-
ings, that is, rewritings that use at most one aggregate view. This is a natural

�� This author’s work on this material has been supported by the National Science
Foundation under Grant No. 0307072.

T. Eiter and L. Libkin (Eds.): ICDT 2005, LNCS 3363, pp. 383–397, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

384 F. Afrati and R. Chirkova

choice in many applications; for instance, in the star-schema framework the fact
table provides the aggregate view and the dimension tables provide the other
views in the rewritings [1, 4]. In the second problem, we base our view selection
on a cost model that has been used in various previous work for restricted types
of rewritings (see, e.g., [2, 5]). We now illustrate our approach with an example.

Example 1. Consider a database with three relations, relation P that stores
transactions and relations T and W that store information about store branches:
P(storeId, product, salePrice, profit, dayOfSale, monthOfSale, yearOfSale);
T(storeId, storeChain); W(storeId, storeCity). Suppose query Q1 gives maxi-
mal profit per store chain per product for the year 2004, and Q2 gives total sales
per product per year per city, for all stores. Here is a SQL definition of Q2:

SELECT product, yearOfSale, storeCity, sum(salePrice)
FROM P, W
WHERE P.storeId = W.storeId
GROUP BY product, yearOfSale, storeCity;

These two queries can be rewritten using a single multiaggregate view. In our
datalog rule notation the queries, the view and the rewritings can be written as:

q1(S, Y, max(T)) :- p(X, Y, Z, T, N, L, 2004), t(X, S).
q2(Y, M, U, sum(Z)) :- p(X, Y, Z, T, N, L, M), w(X, U).
v1(X, Y, M, sum(Z), max(T)) :- p(X, Y, Z, T, N, L, M).
q′
1(S, Y, max(K)) :- v1(X, Y, 2004, F, K), t(X, S).

q′
2(Y, M, U, sum(J)) :- v1(X, Y, M, J, K), w(X, U).

In each rewriting, multiaggregate view V1 is the only subgoal that contributes
to the computation of the aggregation; we call it central view. Note that V1 can
be used as a central view to rewrite both queries.

In this paper, we first establish how to obtain rewritings that use one central
view — we call them central rewritings. Then we study how to select a central
view given a query workload, such that the view can be used to rewrite as many
workload queries as possible, such as view V1 in the above example. We study
the complexity of the view-selection problem under a very general cost model.

Our formalism uses datalog to express aggregate queries, views, and rewrit-
ings, but note that it is only a convenience. It is easy and straightforward to
translate any SQL query with aggregation to a datalog query with aggregation;
the semantics also carry over trivially. Thus, all our results are about standard
SQL aggregate queries and can be extended to queries with HAVING.

In constructing rewritings, we use a uniform framework for aggregate func-
tions sum, count, max, and min. The framework is extensible to other aggregate
functions with general algebraic properties, such as duplicate insensitive or dis-
tributive [6, 7]. We show that conjunctive views can be used in rewritings, and
we explore when bag-set or bag semantics are needed. By obtaining both pos-
itive and negative results, we present a complete characterization of the cases
where “simple” rewritings can be obtained — that is, conjunctive rewritings
without aggregation. For the view-selection problem, we study the complexity

Selecting and Using Views to Compute Aggregate Queries 385

of the problem for our rewritings and rewritings in the literature. We present al-
gorithms for constructing rewritings and for selecting views to materialize. Both
algorithms are based on our results obtained on properties of rewritings.

The structure of this paper is as follows. Section 2 defines aggregate queries
and equivalence among aggregate queries. Section 3 presents our framework, in
particular the types of rewritings we consider and the cost model for view selec-
tion. In Section 4 we prove necessary and sufficient conditions for a type of rewrit-
ing to exist and provide negative results. In Section 5 we prove that the view-
selection problem is NP-complete for sum, count, and provide an exponential-
time lower bound on the complexity of view selection for max, min. In Section 6
we give algorithms for obtaining rewritings given a query and views and for
selecting central views given a query workload.

Related Work

Recent work [8, 9] has considered the problem of rewriting a query with ag-
gregation and arithmetic comparisons using multiple views with aggregation.
Complete algorithms are obtained for constructing rewritings that use multipli-
cation within an aggregate operator and use aggregate views in the body of the
rewritings. Our central rewritings have a simpler syntax and can be translated
into the rewriting templates of [8, 9] using straightforward transformations. The
major differences in our rewritings are that (1) we do not consider comparisons,
and (2) we use bag-valued views in our rewritings, while [8, 9] use count-views in
their rewritings. Difference (2) allows us to simplify the heads of our rewritings
and to avoid the multiplication needed in the heads of the rewritings of [8, 9]. In
addition, we show negative results and use them to argue that our algorithms
find a rewriting with a simple syntax whenever there exists one.

On view selection, considerable work has been done in efficiently selecting
views in the datacube context (e.g., [1, 2]), where the focus is on getting efficient
algorithms for selecting views to materialize for important special cases of the
problem; thus, rewritings using a single view subgoal were considered. In this
paper we focus on obtaining results on the complexity of the view-selection
problem for central rewritings. Complexity results for the view-selection problem
for conjunctive queries and views without aggregation were presented in [5]. To
the best of our knowledge, our approach is the first to address the problem of
view selection for aggregate queries considering rewritings with multiple view
subgoals and multiaggregate views.

The problems of rewriting queries using views and of view selection for aggre-
gate queries have been considered in the context of data warehousing and data
cubes [7, 10]. In most cases, the problem considered was to answer each query (or
part of a query) using a single view [1, 2, 3, 6, 11]. Other related work on aggre-
gate query rewriting includes [12], which considers rewriting aggregate queries
using multiple aggregate views over a single relation, and [13], which presents
fast algorithms for computing the cube operator. [14] considers the problem of
using aggregate views to compute queries in temporal databases. Work related
to query languages with aggregate capabilities includes [15, 16, 17, 18].

386 F. Afrati and R. Chirkova

Finally, it is known that the problem of query rewriting is closely related to
query containment and equivalence. Results on equivalence of aggregate queries
are presented in [8, 19], which establish that checking the equivalence of unions
of sum or count-queries is GI-hard and in PSPACE. (GI is the class of problems
that are many-one reducible to the graph isomorphism problem.) [8] shows
that checking equivalence of unions of max-queries is Πp

2 -complete, whereas
checking equivalence of unions of conjunctive queries without aggregation is
NP-complete.

2 Preliminaries

In this section we provide definitions and technical background for our frame-
work. Many of the definitions are taken from [8], which introduced aggregate
queries in a datalog syntax.

A relational database is a collection of stored relations. Each relation R is a
collection of tuples; each tuple is a list of values of the attributes in the relation
schema of R. The schemas of the relations in a database constitute its database
schema. A relation is viewed as either a set or a bag (a.k.a. multiset) of tuples.
A bag can be thought of as a set of elements (the core-set of the bag) with mul-
tiplicities attached to each element. In a set-valued database, all stored relations
are sets; in a bag-valued database, multiset stored relations are allowed.

A query is a mapping from databases to databases, usually specified by a
logical formula on the schema S of the input databases. Typically, the output
database (the query answer) is a database with a single relation. A conjunctive
query is definable by a positive existential first-order formula, with conjunctions
as its only Boolean connective. Conjunctive queries are usually written as rules
of this form: q(s̄) : − p1(s̄1), . . . , pk(s̄k), where q(s̄) is the head of the query,
and the conjunction p1(s̄1), . . . , pk(s̄k) is its body. In each subgoal (or atom)
pi(s̄i), predicate pi corresponds to a stored relation with schema in S, and every
argument is either a variable or a constant. The variables in s̄ are called head
(or distinguished) variables of q, and the variables in each s̄i are called body
variables of q. The body variables of q that are not its head variables are called
nondistinguished variables of q. We consider safe queries; a conjunctive query q
is safe if all its distinguished variables are also among its body variables.

We denote the body of a conjunctive query by A. An assignment γ for A is
a mapping of the variables appearing in A to constants, and of the constants
appearing in A to themselves. Assignments are naturally extended to tuples and
atoms; for instance, for a tuple of variables s̄ = (s1, . . . , sk) we let γs̄ denote the
tuple (γ(s1), . . . , γ(sk)). Satisfaction of atoms by an assignment w.r.t a database
is defined as follows: pi(γs̄) is satisfied if the tuple γs̄ is in the relation that
corresponds to the predicate of subgoal pi. This definition is naturally extended
to that of satisfaction of conjunctions of atoms.

Under set semantics, a conjunctive query q(s̄) ← A defines a new relation qD,
for a given set database D, as follows: qD := {γs̄ | γ satisfies A w.r.t. D}. Under
bag-set semantics [20], a conjunctive query q(s̄) ← A defines a new bag (multiset)

Selecting and Using Views to Compute Aggregate Queries 387

relation {{q}}D, for a given set database D, as follows: {{q}}D := {{γs̄ | γ satisfies
A w.r.t. D}}. We say that the query is computed under bag semantics [20] if
both the input database and the answer are bags. In this case, the collection of
satisfying assignments is viewed as a multiset. We say that a query is set-valued
if it is computed under set semantics, and is bag-valued otherwise.

We define query equivalence under each of the three types of semantics. Two
queries are set-equivalent (bag-set-equivalent, bag-equivalent, respectively) if they
produce the same set (bag, respectively) of answers on every database (every set
database for the first two cases, every bag database for the third case). When
we compute a query, we will say whether we compute it as a bag or as a set,
unless obvious from the context.

We assume that the data we want to aggregate are real numbers, R. If S is
a set, then M(S) denotes the set of finite multisets over S. A k-ary aggregate
function is a function α : M(Rk) → R that maps multisets of k-tuples of
real numbers to real numbers. An aggregate term is an expression built up using
variables and aggregate functions. Every aggregate term with k variables gives
rise to a k-ary aggregate function in a natural way.

We use α(y) as an abstract notation for a unary aggregate term, where y is
the variable in the term. The aggregate queries that we consider here have the
(unary or 0-ary) aggregate functions count, count(∗), sum, max, and min. Note
that count is over an argument whereas count(∗) is the only function that we
consider here that takes no argument. (There is a distinction in SQL semantics
between count and count(∗).) In the rest of the paper, we will not refer again to
the distinction between count and count(∗), as our results carry over.

An aggregate query [8, 19] is a conjunctive query augmented by an aggregate
term in its head. For a query with a k-ary aggregate function α, the syntax is:

q(s̄, α(ȳ)) ← A . (1)

Here, A is a conjunction of atoms, see definition of conjunctive query; α(ȳ) is
a k-ary aggregate term; s̄ are the grouping attributes of q; none of the variables
in ȳ appears among s̄. Finally, q is safe: all variables in s̄ and ȳ occur in A. In
this paper we consider aggregate queries with unary aggregate functions sum,
count, max, and min.

With each aggregate query q (Eq. 1) we associate its conjunctive core q̆ :1

q̆(s̄, ȳ) ← A . (2)

We define the semantics of an aggregate query as follows: Let D be a database
and q an aggregate query as in Equation 1. When q is applied on D it yields a
relation qD that is defined by the following three steps: First, we compute the core
q̆ on D as a bag B. We then form equivalence classes in B. Two tuples belong to
the same equivalence class if they agree on the values of the grouping arguments
of q. This is the grouping step. The third step is aggregation; it associates with

1 The core of a count(∗)-query has just the grouping arguments s̄ in the head.

388 F. Afrati and R. Chirkova

each equivalence class a value that is the aggregate function computed on a bag
which contains all values of the input argument(s) of the aggregated attribute(s)
in this class. For each class, it returns one tuple which contains the values of the
grouping arguments of q and the computed aggregated value.

An aggregate function α is duplicate-insensitive [6] if the result of α computed
over a bag of values is the same as the result of α computed over the core set of
the bag. Otherwise α is duplicate-sensitive. We say that an aggregate function α
is distributive [7] if there is a function γ such that α({{Xij}}) = γ({{α({{Xij}} | i =
1, . . . , I) | j = 1, . . . , J}}). All the functions we consider are distributive. In fact,
for all α, γ = α, except that for count, γ = sum.

Now we define equivalence between aggregate queries. In general, two ag-
gregate queries with different aggregate functions may be equivalent [8]. In this
paper we consider equivalence between queries with the same aggregate function
only; we define this case of equivalence using the notion of compatible queries.

Definition 1. (Compatible queries [19]) Two queries are compatible if the tuples
of arguments in their heads are identical.

Definition 2. (Equivalence of compatible aggregate queries [19]) For two com-
patible aggregate queries q(x̄, α(y)) ← B(s̄) and q′(x̄, α(y)) ← B′(s̄′), q ≡ q′ if
q(D) = q′(D) for every database D.

Equivalence of compatible aggregate queries is investigated in [8, 19] where
it is shown that: (1) Two conjunctive queries are bag-set equivalent iff they
are isomorphic after duplicate subgoals are removed; (2) equivalence of sum-
queries and count-queries can be reduced to bag-set equivalence of their cores;
(3) equivalence of max-queries can be reduced to set-equivalence of their cores.

3 Our Framework

In this section we present our framework, in particular the types of rewritings
we consider and the cost model for view selection.

3.1 Rewriting Templates for Aggregate Queries

Let V be a set of views (which are queries, conjunctive or aggregated2) defined
on a database schema S; let D be a database with schema S. Then by DV we
denote the database obtained by computing all the view relations in V on D.

Definition 3. (Equivalent rewriting) Let Q be a query defined on database sche-
ma S, and let V be a set of views defined on S; let R be a query defined using
the views in V. Then Q and R are equivalent, denoted Q ≡ R, if and only if for
any database D, Q(D) = R(DV).

2 We consider multiaggregate views, that is, views defined by queries with possibly
more than one aggregate term in the head.

Selecting and Using Views to Compute Aggregate Queries 389

We say that a view V is set-valued if V is computed and stored to be accessed
as a set, and that V is bag-valued if V is computed and stored to be accessed
as a bag. In rewritings, a bag-valued view V will be denoted by an adornment
as V b. The following example shows that equivalence of a rewriting to a query
depends on whether conjunctive views are set- or bag-valued.

Example 2. Consider a query Q and a view V which is the core of Q.

q(X, count(∗)) : − p(X,Y, Z).
v(X) : − p(X,Y, Z).
r(X, count(∗)) : − vb(X).

The rewriting R is equivalent to the query Q when the view V is bag-valued.
However, if the view V is set-valued, then there is no equivalence, as evidenced
by a database D = { p(1, 3, 4), p(1, 5, 6) }. On D, the answer to the query
Q has one tuple (1, 2). At the same time, the answer to the view V computed
as a set has one tuple (1), and therefore the answer to the rewriting R has one
tuple (1, 1).

3.2 Central Rewritings

Finding rewritings for aggregate queries introduces additional complications
when compared to finding rewritings for conjunctive queries without aggrega-
tion. Now a decision has to be made on the following: (1) What kinds of queries
are the views, and what kind of query is the rewriting; we consider conjunctive
views and rewritings with or without aggregation. (2) Whether the views are
computed under set, bag, or bag-set semantics; we consider this issue in detail
in Section 4. (3) Moreover, as a consequence of the choices we make, the ag-
gregate function in the head of the rewriting may or may not depend on some
aggregated attributes of the views. Our choice here is to depend only on one
aggregated attribute of a single view, which we call central view. The other
(conjunctive or aggregate) views in the rewriting are called noncentral views.

Aggregate queries (and views that are defined by aggregate queries) are
not symmetrical with respect to all their attributes. We call the aggregated
attribute(s) of a query (or view) its output argument(s). We do not consider
rewritings whose join conditions involve output arguments of aggregate views;
this is a natural choice taken by all similar work in the literature.

Thus we make the following assumptions on the rewritings we consider:

1. The argument of aggregation in the head of the rewriting comes from exactly
one (central) view in the body of the rewriting. We use the term central
aggregate operator to denote:
(a) in the case the central view is aggregated, the aggregate operator of the

central view that contributes to the aggregation in the head, or
(b) in the case the central view is conjunctive, the aggregate operator in the

head of the rewriting.
2. Aggregated outputs of noncentral views are not used in the head of the

rewriting.

390 F. Afrati and R. Chirkova

3. We do not consider rewritings whose join conditions involve output argu-
ments of any participating views.

We call such rewritings central rewritings. In all our results, we consider only
central rewritings.

We may now view the rewritings we consider as belonging to one of the
following three classes: CQ/CQA when the central view is purely conjunctive and
the rewriting has aggregation, CQA/CQ when the central view has aggregation
and the rewriting is purely conjunctive, and CQA/CQA when both the central
view and the rewriting have aggregation. It is easier to state our results for each
class separately. Our rewriting template R for all three rewritings is

r(x̄, α(y)) ← v0(x̄0, y), vb
1(x̄1, y1), . . . , vb

k(x̄k, yk) . (3)

where α is a nontrivial aggregate operator in cases CQ/CQA and CQA/CQA,
and is an identity in case CQA/CQ (i.e., the head is r(x̄, y)). In cases CQA/CQ
and CQA/CQA, the output argument y in the central view v0 is the result
of applying a (non-identity) aggregate function to one of the arguments in the
body of the view; in the case CQ/CQA, we assume a central view without
aggregation which covers all subgoals that contain the variable y. In Section 4
we give conditions under which noncentral views v1, . . . , vk can be computed
under set semantics (and, in particular, can be defined by aggregate queries).

3.3 Unfoldings of Rewritings

We now consider unfoldings of central rewritings; similarly to [8], we use unfold-
ings to reason about equivalence of queries and their rewritings. Unlike the case
of rewriting conjunctive queries without aggregation, where it is straightforward
how to define and use expansions [21], in presence of aggregation unfoldings may
present complications. As we show in Section 4, central rewritings are not always
equivalent to their unfoldings. Here we define unfoldings.

We are given a set of views v0, v
b
1 . . . , v

b
k defined as conjunctive queries, possi-

bly with aggregation, over the base predicates, and are given a query R over the
views, defined as in Equation 3. We refer to R as a“rewriting” even in the case
where we have not associated it with any particular query (whose rewriting is
to be obtained). The unfolding Ru of R is a join of all the subgoals of the views
in R, followed by some grouping and aggregation. If we denote by Bvi

the body
of a view vi, then an unfolding Ru of R is defined as follows:

ru(x̄, β(y)) ← Bv0 & Bv1 & . . . & Bvk
. (4)

where (1) β is the aggregate operator of the central view v0 of R, if v0 is aggre-
gated, or else is the aggregate operator in the head of R; (2) the variables in the
Bvi

’s (i ≥ 0) that are also contained in the x̄i are retained the same as in the
rewriting, whereas the other (nondistinguished) variables in the view definitions
are replaced by fresh variables that are not used in any other Bvj

with j �= i.
Moreover, y is the output argument of the central view v0; if v0 has aggregation,
then y is the unaggregated argument in the definition of v0. In the conjunctive
case, the unfolding is equivalent to the expansion [21] of the rewriting.

Selecting and Using Views to Compute Aggregate Queries 391

3.4 View Selection and Cost Model

Our goal is to design minimal-cost views, that is, views whose use in the rewriting
of a query results in the cheapest computation of the query. We assume that the
view relations have been precomputed and stored in the database. Thus, we
don’t assume any cost of computing the views. We assume that the size of a
database relation is the number of tuples in it, and that the cost of computing
a join is the sum of the sizes of the input relations and of the output relation
(this faithfully models the cost of, e.g., hash joins). For conjunctive queries, we
measure the cost of query evaluation as the sum of the costs of all the joins in the
evaluation [2, 5]. (We assume that all selections are pushed down as far as they
go, and consider only left-linear query trees for joins.) For aggregate queries, our
sum-cost model measures the cost of evaluating a query as the sum of the costs
of three steps in the evaluation: computation of the conjunctive core, grouping,
and aggregation. The total cost of evaluating a query workload is the sum of
the costs of evaluating all individual queries in the workload. (The sum can be
weighted using frequency values for individual workload queries.)

We assume that we must satisfy a bound (storage limit) on the sum of the
sizes of the relations for the views that will be selected to be materialized. Our
formulation of the view-selection problem is as follows.

Definition 4. (View-selection problem) Given a query workload Q, an oracle
O that gives view sizes,3 and a storage limit L (a positive integer), return a set
V of view definitions, such that:

(1) the views in V give an equivalent central rewriting of each query in Q,
(2) the view relations satisfy L on all databases defined by O, and
(3) the total cost of evaluating Q using V, for the size estimates given by the

oracle O, is minimum among all sets of views that satisfy (1) and (2).

4 Results on Equivalence of Unfoldings and Rewriting

In this section we present necessary and sufficient conditions for central rewrit-
ings to exist.4 More precisely, we present results that prove that the unfoldings
defined in Section 3 are equivalent to the rewritings (see Theorems 1–3). In fact,
these three theorems follow from the results in [8]; we need to state them in
order to emphasize that the conditions are not only sufficient but are neces-
sary as well. As a consequence, equivalence of a rewriting to a query is reduced
to equivalence between two aggregate queries, which has a solution [19]. Then
we present negative results (Propositions 1–2), which prove that the unfolding
technique cannot provide rewritings in the cases where the conditions of any
of Theorems 1–3 are not met. Results on the CQA/CQA case and proofs can
be found in [22]. Based on the results in this section, we present in Section 6

3 Instead of an oracle, we can be given a database D.
4 The extended version [22] of the paper has the proofs for the results in Sections 4–6.

392 F. Afrati and R. Chirkova

an algorithm for constucting equivalent central rewritings that are either CQ
(if possible) or CQA rewritings. The intuition is the same as for the algorithm
in [9], which can be tailored to create our candidate rewritings too. At the same
time, our algorithm is less complicated, as it treats only central rewritings and,
in addition, tries to provide CQ rewritings whenever possible.

4.1 Case CQ/CQA: Central View CQ and Rewriting CQA

In this section we consider central rewritings with aggregation (CQA) whose
central views do not have aggregation (CQ). We distinguish between two cases,
one where the aggregate operator may be duplicate sensitive and the second
where it is duplicate insensitive [6].

Theorem 1. Suppose that all views in a CQ/CQA rewriting R are bag-valued,
or that the aggregate operator in the head of R is max or min. Then R ≡ Ru.

If a rewriting R with aggregate function sum or count in the head has views
that are set-valued or have aggregation, it could be that R is not equivalent to
its unfolding Ru.

Example 3. We use three views:

w1(A,B) :- p(A,B).
w2(B,C) :- s(B,C,D), t(C,G).
w3(B,C, count(D)) :- s(B,C,D), t(C,G).

to construct the following three rewritings and their respective unfoldings:

r1(B,C, sum(A)) :- w1(A,B), w2(B,C).
ru
1 (B,C, sum(A)) :- p(A,B), s(B,C,D), t(C,G).
r2(B, count(C)) :- w2(B,C).
ru
2 (B, count(C)) :- s(B,C,D), t(C,G).
r3(B, count) :- w3(B,C,H).
ru
3 (B, count) :- s(B,C,D), t(C,G).

If the relation for the view W2 is computed as a set (W s
2), R1 and its unfolding

Ru
1 are not equivalent, and neither are R2 and Ru

2 , as evidenced by a database
D = { p(6, 1), p(7, 1), s(1, 2, 3), s(1, 2, 4), t(2, 5) }. Because R3 uses a view with
aggregation, R3 and Ru

3 are not equivalent (we use the same database D); at the
same time, if we rewrite R3 to use a bag-valued view W b

2 instead of W3, the new
rewriting will be equivalent to its unfolding, which is still Ru

3 .

This negative result shows that the results in Theorem 1 are tight:

Proposition 1. Let R be a CQ/CQA rewriting with central aggregation sum or
count. Suppose that R has either a view with (any nontrivial) aggregation, or a
set-valued view with at least one nondistinguished variable. Then the unfolding
Ru of R is not set-equivalent to R.

Selecting and Using Views to Compute Aggregate Queries 393

4.2 Case CQA/CQ: Central View CQA and Rewriting CQ

In this section we consider central rewritings without aggregation (CQ) whose
central views have aggregation (CQA). We first present a restriction on the
relationship between the grouping arguments in the head of rewritings of this
type and in the central view of the rewriting.

Lemma 1. For any CQA/CQ rewriting R, if R is equivalent to its unfolding
Ru, then the tuple of attributes in the head of R contains all grouping attributes
of R’s central view.

Intuitively, if the conditions of Lemma 1 are not satisfied, then on at least
one database the answer to the rewriting will have multiple tuples that agree
on all values of the grouping arguments. This effect is caused by the group-
ing arguments of the central view that do not go to the head of the rewrit-
ing. It is interesting to note that among the three central rewriting types, only
CQA/CQ has a connection between the attributes in the head of the rewrit-
ing and the attributes of the central view. (The other two rewriting types may
use in the head a proper subset of the grouping attributes of the view or none
at all.)

Theorem 2. Consider a CQA/CQ rewriting R. Suppose that (i) all noncentral
views of R have no aggregation, (ii) R does not have nondistinguished attributes
in its body (except possibly noncentral aggregated arguments in R’s central view
– in case of multiaggregate views), (iii) noncentral views do not have nondis-
tinguished attributes in their definitions, and (iv) all grouping attributes of the
central view appear in the head of R. Then R is equivalent to its unfolding Ru

on set-valued databases.

Although none of the conditions in Theorem 2 can be relaxed for sum or
count queries, see Proposition 2, they can be relaxed for max and min queries:

Theorem 3. Let R be a CQA/CQ rewriting with central aggregation max or
min. Suppose that all the grouping arguments of the central view of R appear in
the head of R. Then R is equivalent to its unfolding Ru on set-valued databases,
provided R is evaluated under set semantics.

Proposition 2. Consider a CQA/CQ query R with central aggregation sum or
count. Suppose at least one of the following holds: (1) A noncentral view in R
is defined by an aggregate query, with any aggregate function. (2) A noncen-
tral view in R is defined by a query with nondistinguished variables. (3) R has
nondistinguished variables, other than noncentral aggregation in the central view
of R. Then R is not equivalent to its unfolding Ru.

5 View Selection

In this section we discuss the view-selection problem for aggregate queries and
views, assuming central rewritings. In this setting, we prove that the view-

394 F. Afrati and R. Chirkova

selection problem is NP-complete for sum, count, and provide an exponential-
time lower bound on the complexity of view selection for max, min. In Section 6
we give an algorithm for selecting central aggregate views.

5.1 Decidability

Theorem 4. The view-selection problem under the storage limit is decidable for
finite workloads of conjunctive queries with aggregation and for conjunctive views
and rewritings, with or without aggregation, for the three central rewriting types
we consider.

The query workloads may contain queries both with and without aggregation.

5.2 NP-Completeness for Sum or Count Queries

In this section we present an NP-completeness result for the view-selection prob-
lem for workloads of sum or count queries. It follows from the proof that the
view-selection problem for conjunctive queries, views, and rewritings under bag
semantics is also NP-complete.

Theorem 5. The decision version of the view-selection problem under the stor-
age limit is NP-complete for finite workloads of conjunctive queries with sum
or count aggregation and for conjunctive views and rewritings, with or without
aggregation, for the three central rewriting types we consider.

5.3 Lower Bound for Max or Min Queries

We prove an exponential-time lower bound for view selection under a storage
limit for max and min queries.

Theorem 6. The view-selection problem under the storage limit has an expon-
ential-time lower bound for finite workloads of conjunctive queries with max
or min aggregation and for conjunctive views and rewritings, with or without
aggregation, for the three central rewriting types we consider.

Intuitively, the number of views that can be used in equivalent rewritings
of max and min queries is up to exponential in the number of subgoals of
the queries. This result does not hold for sum and count queries, for which
equivalence of queries and rewritings stems from the isomorphism of the bodies
(in datalog) of the queries and of the unfoldings of the rewritings.

6 Algorithms

In this section we give algorithms for obtaining rewritings given a query and
views and for selecting central views given a query workload. Using the results
in Section 4, we base our algorithms on the following observations.

Selecting and Using Views to Compute Aggregate Queries 395

Proposition 3. In a CQA/CQ rewriting, the set of all grouping attributes of
the central view is a subset of the set of all grouping attributes of the rewriting.
We call this central view grouping-complete.

In a CQA/CQA rewriting, the set of the grouping attributes of the rewriting
is a union of subsets of the grouping attributes in the central view and of the
non-aggregated attributes in noncentral views. We call this central view grouping-
incomplete.

Given an aggregate view V , we define its reduced-core view V r to be a view
whose body is the body of V and whose head is a new predicate name V r; the
arguments in the head of V r are all the grouping attributes of V . For a rewriting
R, its reduced-core rewriting Rr is a conjunctive rewriting whose head attributes
are R’s grouping attributes only and whose body uses only reduced-core views.
The reduced-core rewriting is a conjunctive query, and the following holds:

Proposition 4. Let R be an equivalent central rewriting of a query Q using
views V, and let the central view of R be CQA. Let Rr be a reduced-core rewriting
of R, and V ′ the reduced-core views of V. Then Rr is an equivalent rewriting of
the reduced-core query of Q using V ′.

6.1 Constructing Rewritings

In this section we give an algorithm that, given a query and a set of views,
constructs all equivalent rewritings of the query using the views. We reduce this
problem to the problem of obtaining rewritings for purely conjunctive queries.
Due to lack of space, we describe only the case for max queries and CQA/CQA or
CQA/CQ rewritings. The other cases are similar with the additional observation
that, in the duplicate-sensitive cases, we find rewritings for the purely conjunctive
queries whose unfolding is isomorphically mapped on the query.

In the following algorithm, Qr and V r are the reduced-core queries of a query
Q and of views, respectively. We use an algorithm in the literature [23] to find
all rewritings Qr using V r.

Procedure Find-R. Input: query Q, set of views V

Consider Qr ,V r.
Find all rewritings of Qr using V r.
For each rewriting Rr do:
Consider the expansion Rr−exp

For each containment mapping from Qr to Rr−exp do:
If there is a view in the rewriting such that its aggregated attribute is the image of
the aggregated attribute of the query, do:
Call this the central view.

If the central view is grouping-incomplete then construct CQA/CQA rewriting
If the central view is grouping-complete then construct CQA/CQ rewriting
end
end
end

396 F. Afrati and R. Chirkova

The following theorem is a consequence of Proposition 4.

Theorem 7. If there is a central rewriting of a query Q using views V, then
procedure Find-R will find it.

6.2 Selecting Views

We present an algorithm that selects multiaggregate views to be used as central
views, given a query workload. The algorithm selects all maximal multiaggregate
views; for a query workload, a view is maximal if there does not exist another
multiaggregate view with more aggregated arguments which can replace it in all
the rewritings in the workload. The algorithm is based on the following result.

Proposition 5. Let R be a central (CQ or CQA) rewriting of a query Q. Then
all the subgoals in Q which contain the aggregated attribute of Q are also subgoals
of the central view of R, and each grouping attribute of Q is a grouping attribute
of the central view of R or is in the head of one of the noncentral views in R.

Based on Proposition 5, we observe that there is a subset of subgoals of the
query which are also contained in the body of the definition of any central view
which rewrites this query. We refer to a view whose body is exactly this subset
of subgoals as a central minimal view for the query.

The algorithm considers each query Q in the workload and constructs a
pair of views (V Q

c , V Q
n) that essentially represent a central minimal view and

a collective noncentral view. We may think of the pair (V Q
c , V Q

n) as providing
a rewriting for Q with the minimum number of subgoals in the central view
V Q

c . We call (V Q
c , V Q

n) characteristic views of the query Q. For each query Q,
its characteristic views are found as follows: First we find the central minimal
view V Q

c for each pair (V Q
c , V Q

n) by selecting head arguments for the subset of
the query subgoals that can serve as the body of the definition of V Q

c based on
Proposition 5(1). Then based on Proposition 5(2), we find the view V Q

n .
In the next step, the algorithm finds multiaggregate views for the given query

workload, by considering all combinations of characteristic views for the work-
load queries and finding compatible pairs of characteristic views. Two pairs are
compatible if (1) the two central views can be combined in a single multiaggregate
view Vm, and (2) Vm can be used to rewrite both queries. Finally, the algorithm
finds a maximal set of characteristic central views from the characteristic pairs
based on compatibility of the pairs.

The correctness of the algorithm is based on the following result.

Proposition 6. 1. Each query has a bounded number of characteristic views.
2. In any central rewriting of a query Q, the views used in the rewriting can

also be used to produce central rewritings of characteristic views.
3. It is decidable to tell whether two pairs of characteristic views are compatible.

Theorem 8. Given a query workload Q, the algorithm finds all maximal mul-
tiaggregate views for Q.

Selecting and Using Views to Compute Aggregate Queries 397

References

1. Harinarayan, V., Rajaraman, A., Ullman, J. Implementing data cubes efficiently.
In: Proceedings of SIGMOD (1996) 205–216

2. Gupta, H., Harinarayan, V., Rajaraman, A., Ullman, J. Index selection for OLAP.
In: Proceedings of ICDE (1997) 208–219

3. Agrawal, S., Chaudhuri, S., Narasayya, V. Automated selection of materialized
views and indexes in SQL databases. In: Proceedings of VLDB (2000) 496–505

4. Ullman, J.D. Efficient implementation of data cubes via materialized views. In:
Proceedings of KDD (1996) 386–388

5. Chirkova, R., Halevy, A., Suciu, D. A formal perspective on the view selection
problem. VLDB Journal 11 (2002) 216–237

6. Gupta, A., Harinarayan, V., Quass, D. Aggregate-query processing in data ware-
housing environments. In: Proceedings of VLDB (1995) 358–369

7. Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M.
Data cube: A relational aggregation operator generalizing Group-by, Cross-Tab,
and Sub Totals. Data Mining and Knowledge Discovery. 1 (1997) 29–53

8. Cohen, S., Nutt, W., Serebrenik, A. Rewriting aggregate queries using views. In:
Proceedings of PODS (1999) 155–166

9. Cohen, S., Nutt, W., Serebrenik, A. Algorithms for rewriting aggregate queries
using views. In: Proceedings of ADBIS-DASFAA (2000) 65–78

10. Widom, J. Research problems in data warehousing. In: Proceedings of CIKM
(1995)

11. Srivastava, D., Dar, S., Jagadish, H., Levy, A. Answering queries with aggregation
using views. In: Proceedings of VLDB (1996) 318–329

12. Grumbach, S., Tininini, L. On the content of materialized aggregate views. Journal
of Computer and System Sciences 66 (2003) 133–168

13. Agarwal, S., Agrawal, R., Deshpande, P., Gupta, A., Naughton, J., Ramakrishnan,
R., Sarawagi, S. On the computation of multidimensional aggregates. In: Proceed-
ings of VLDB (1996) 506–521

14. Yang, J., Widom, J. Incremental computation and maintenance of temporal ag-
gregates. In: Proceedings of ICDE (2001) 51–62

15. Benedikt, M., Libkin, L. Aggregate operators in constraint query languages. Jour-
nal of Computer and System Sciences 64 (2002) 628–654

16. Ross, K., Srivastava, D., Stuckey, P., Sudarshan, S. Foundations of aggregation
constraints. Theoretical Computer Science 193 (1998) 149–179

17. Özsoyoglu, G., Özsoyoglu, Z., Matos, V. Extending relational algebra and relational
calculus with set-valued attributes and aggregate functions. ACM Transactions on
Database Systems (TODS) 12 (1987) 566–592

18. Lechtenbörger, J., Shu, H., Vossen, G. Aggregate queries over conditional tables.
Journal of Intelligent Information Systems 19 (2002) 343–362

19. Nutt, W., Sagiv, Y., Shurin, S. Deciding equivalences among aggregate queries. In:
Proceedings of PODS (1998) 214–223

20. Chaudhuri, S., Vardi, M. Optimization of real conjunctive queries. In: Proceedings
of PODS (1993) 59–70

21. Ullman, J.D. Information integration using logical views. In: Proceedings of ICDT
(1997)

22. Afrati, F., Chirkova, R. Selecting and using views to compute aggregate queries.
http://www4.ncsu.edu/∼rychirko/Papers/aggregAquv.pdf (2004)

23. Afrati, F., Li, C., Ullman, J. Generating efficient plans for queries using views. In:
Proceedings of SIGMOD (2001)

Efficient Computation of Frequent and Top-k
Elements in Data Streams�

Ahmed Metwally��, Divyakant Agrawal, and Amr El Abbadi

Department of Computer Science,
University of California, Santa Barbara

{metwally, agrawal, amr}@cs.ucsb.edu

Abstract. We propose an integrated approach for solving both prob-
lems of finding the most popular k elements, and finding frequent ele-
ments in a data stream. Our technique is efficient and exact if the alpha-
bet under consideration is small. In the more practical large alphabet
case, our solution is space efficient and reports both top-k and frequent
elements with tight guarantees on errors. For general data distributions,
our top-k algorithm can return a set of k′ elements, where k′ ≈ k, which
are guaranteed to be the top-k’ elements; and we use minimal space
for calculating frequent elements. For realistic Zipfian data, our space
requirement for the frequent elements problem decreases dramatically
with the parameter of the distribution; and for top-k queries, we ensure
that only the top-k elements, in the correct order, are reported. Our
experiments show significant space reductions with no loss in accuracy.

1 Introduction

Recently, online monitoring of data streams has emerged as an important data
management problem. This new key research topic has its foundations and ap-
plications in many domains, including databases, data mining, algorithms, net-
working, theory and statistics. However, new challenges have emerged. Due to
their vast sizes, some stream types should be mined fast before being deleted
forever. Generally, the alphabet is too large to keep exact information for all
elements. Conventional database, and mining techniques, though effective with
stored data, are deemed impractical in this setting.

This work was primarily motivated by the setting of Internet advertising com-
missioners, who represent the middle persons between Internet publishers, and
Internet advertisers. The file systems are bombarded continuously by streams of
various types: advertisement rendering, clicks, sales, and leads; and each type is
handled differently. For instance, before rendering an advertisement for a user,
the clicks stream summary structure should be queried to determine what ad-
vertisements would suit the user’s profile. If the user’s profile indicates that

� This work was supported in part by NSF under grants EIA 00-80134, NSF 02-09112,
and CNF 04-23336.

�� Part of this work was done while the first author was at ValueClick, Inc.

T. Eiter and L. Libkin (Eds.): ICDT 2005, LNCS 3363, pp. 398–412, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Efficient Computation of Frequent and Top-k Elements in Data Streams 399

(s)he is not a frequent “clicker”, then this user, most probably, will not click
any displayed advertisement. Thus, it can be more profitable to show Pay-Per-
Impression advertisements, which generate revenue on rendering them. On the
other hand, if the user’s profile was found to be one of the frequent profiles, then,
there is a good chance that this user will click some of the advertisements shown
and potentially generate a sale/lead transaction. In this case, Pay-Per-Click ad-
vertisements should be displayed. Choosing what advertisements to display en-
tails retrieving the top advertisement categories for this specific user profile.

From the above example we need to solve two problems. We would like to
know if the user’s profile is frequent in the click stream, and we need to identify
the top advertisements for this specific profile. The problems of finding frequent1

and top-k elements are closely related, yet, to the best of our knowledge, no in-
tegrated solution has been proposed. In this paper, we propose an integrated
approach for solving both problems of finding the top-k elements, and finding
frequent elements in a data stream. Our Space-Saving algorithm reports both
top-k and frequent elements with tight guarantees on errors. For general data
distributions, our algorithm answers top-k queries by returning a set of k′ ele-
ments, where k′ ≈ k, which are guaranteed to be the top-k’ elements; and we
use minimal space for calculating frequent elements. For realistic Zipfian data,
our space requirement for the frequent elements problem decreases dramatically
with the parameter of the distribution; and for top-k queries, we ensure that
only the top-k elements, in the correct order, are reported.

The rest of the paper is organized as follows. Section 2 highlights the related
work. In Section 3, we introduce our Space-Saving algorithm, and its associated
data structure, followed by a discussion of query processing in Section 4. We
comment on our experimental results in Section 5, and conclude in Section 6.

2 Background and Related Work

Formally, given an alphabet, A, a frequent element, ei, is an element whose
frequency, fi, in a stream S of a given size N , exceeds a user specified support
φN , where 0 ≤ φ ≤ 1; whereas the top-k elements are the k elements with highest
frequencies. Since the space requirements for exact solutions of these problems
are impractical, other relaxations of the original problems were proposes. The
FindCandidateTop(S, k, l) problem was proposed in [3] to ask for l elements
among which the top-k elements are concealed, with no guarantees on the rank of
the remaining (l−k) elements. The FindApproxTop(S, k, ε) [3] is a more practical
approximation for the top-k problem. The user asks for a list of k elements such
that every element, ei, in the list has fi > (1 − ε)fk, where ε is a user-defined
error, and f1 ≥ . . . ≥ f|A|, such that ek is the element with kth rank. The Hot
Items2 problem is a special case of the frequent elements problem, proposed in
[15], that asks for k elements, each of which has fi > N

k+1 . This extends the early

1 The term “Heavy Hitters” was also used in [4].
2 The term “Hot Items” was coined later in [5].

400 A. Metwally, D. Agrawal, and A. El Abbadi

work done in [2], and [8] for identifying a majority element. The most popular
variation of the frequent elements problem, ε-Deficient Frequent Elements [13],
asks for all the elements with fequency greater than (φ− ε)N .

Several algorithms [3], [5], [6], [7], [10], [11], [13] have been proposed to handle
the top-k, the frequent elements problems, and their variations. These techniques
can be classified into counter-based, and sketch-based techniques.

Counter-Based Techniques keep an individual counter for each element in the
monitored set, a subset of A. The counter of a monitored element, ei, is updated
when ei occurs in the stream. If there is no counter kept for the observed ID, it
is either disregarded, or some algorithm-dependent action is taken.

For solving the ε-Deficient Frequent Elements, algorithms Sticky Sampling,
and Lossy Counting were proposed in [13]. The algorithms cut the stream into
rounds. Though simple and intuitive, they suffer from zeroing too many counters
at rounds’ boundaries, and thus, they free space before it is really needed. In
addition, answering a frequent elements query entails scanning all counters.

Demaine et al. proposed the Frequent algorithm to solve the Hot Items prob-
lem in [6]. Their algorithm, a re-discovery of the algorithm in [15], outputs a list
of k elements with no guarantee on which elements, if any, have frequency more
than N

k+1 . The same algorithm was proposed independently by Karp et al. in [11].
Frequent extends the early work done in [2], and [8] for finding a majority item,
using only one counter. Frequent [6] keeps k counters to monitor k elements. If
a monitored element is observed, its counter is incremented, else all counters are
decremented. In case any counter reaches 0, it is assigned the next observed ele-
ment. When the algorithm terminates, the monitored elements are the candidate
frequent elements. [6] proposed a lightweight data structure that can decrement
all counters in O(1) operations. The sampling algorithm Probabilistic-InPlace
[6], which is similar to Sticky Sampling [13], solves FindCandidateTop(S, k, 2k).
When queried, the algorithm returns the upper half of the counters, in the hope
that they are the correct top-k. Again, the algorithm deletes half the counters
at rounds’ boundaries, which is Ω(|distinct values of the deleted counters|). In
general, counter-based techniques exhibit fast per-item processing.

Sketch-Based Techniques do not monitor a subset of elements, rather provide,
with less stringent guarantees, frequency estimation for all elements using bit-
maps of counters. Usually, each element is hashed into the space of counters
using a family of hash functions, and the hashed-to counters are updated for
every hit of this element. Those “representative” counters are then queried for
the element frequency with less accuracy, due to hashing collisions.

The CountSketch algorithm, proposed in [3], solves the FindApproxTop(S,
k, ε) problem, with success probability (1 − δ). Its bottleneck is estimating the
frequency of the element by finding the median of its representative counters.

The GroupTest algorithm, proposed in [5], answers queries about Hot Items,
with a constant probability of failure, δ. A novel algorithm, FindMajority, was
first devised to detect the majority element, assuming elements’ IDs to be
1 . . . |A|. Then GroupTest, a probabilistic generalization, was devised that em-

Efficient Computation of Frequent and Top-k Elements in Data Streams 401

ploys several independent copies of FindMajority. GroupTest is generally accu-
rate. However, its space complexity is large, and it offers no information about el-
ements’ frequencies or relative order. The Multistage filters approach proposed in
[7], which was also independently proposed in [10], is very similar to GroupTest.

Sketch-based techniques monitor all elements. However, a hit entails expen-
sive calculations. They do not offer guarantees about relative order or estimated
frequencies, and their space usage are not bounded by the size of the alphabet.

3 Summarizing the Data Stream

The main difficulty in devising an integrated solution is that queries of one type
cannot serve as a pre-processing step for the other type of queries. For instance,
the frequent elements receiving 1% or more of the total hits might constitute
the top-100 elements, some of them, or none. In order to use frequent elements
queries to pre-process the stream for a top-k query, several frequent elements
queries have to be issued to reach a lower bound on the frequency of the kth

element; and in order to use top-k queries to pre-process the stream for a fre-
quent elements query, several top-k queries have to be issued to reach an upper
bound on the number of frequent elements. To offer an integrated solution, we
generalized both problems to accurately estimate the number of hits for signif-
icant elements, and store these frequencies in an always-sorted structure. We,
then, devised a generalized algorithm for the generalized problem.

3.1 The Space-Saving Algorithm

In this section, we propose our counter-based Space-Saving algorithm and its
associated Stream-Summary data structure. The underlying idea is to maintain
partial information of interest; i.e., we monitor only m elements. If we observe
an element that is monitored, we just increment its counter. If we observe an
element, enew, that is not monitored, give it the benefit of doubt, and replace the
element that currently has the least hits, min, with enew. Assign countnew the
value min+1. For each element ei, we keep track of its maximum over-estimation,
εi, resulting from the initialization of its counter when it was inserted into the
list. That is, when starting to monitor ei, set εi to the counter value that was
evicted. The algorithm is sketched in Figure 1.

In general, the top elements among non-skewed data are of no great signifi-
cance. Hence, we concentrate on skewed datasets. The basic intuition is to make
use of the skewed property of the data, since we expect a minority of the ele-
ments, the more frequent ones, to get the majority of the hits. Frequent elements
will reside in the counters of bigger values, and will not be distorted by the in-
effective hits of the infrequent elements, and thus, will never be replaced out of
the monitored counters. Meanwhile, the numerous infrequent elements will be
striving to reside on the smaller counters, whose values will grow slower than
those of the larger counters.

In addition, if the skew remains, but the popular elements change overtime,
the algorithm adapts automatically. The elements that are growing more popular

402 A. Metwally, D. Agrawal, and A. El Abbadi

Algorithm: Space-Saving(m counters, stream S)
begin
for each element, ei, in S{

If ei is monitored,
increment counti;

else{
let emin be the element with least hits, min
replace emin with ei;
Assign counti the value min + 1;
Assign εi the value min;

}
}// end for

end;

Fig. 1. The Space-Saving Algorithm

will gradually be pushed to the top of the list as they receive more hits. If one
of the previously popular elements lost its popularity, it will receive less hits.
Thus, its relative position will decline, as other counters get incremented, until
it eventually gets dropped from the list.

Even if the data is not skewed, the errors in the counters will be inversely
proportional to the number of counters, as shown later. Keeping only a moderate
number of counters will guarantee very small errors. This is because the more
counters we keep, the less it is probable to replace elements, and thus, the smaller
the over-estimation errors in counters’ values.

To implement this algorithm, we need a data structure that cheaply incre-
ments counters without violating their order, and that ensures constant time
retrieval. We propose the Stream-Summary data structure for these purposes.

In a Stream-Summary, all elements with the same counter value are linked
together in a linked list. They all point to a parent bucket. The value of the
parent bucket is the same as the counters’ value of all of its elements. Every
bucket points to exactly one element among its child list, and buckets are kept
in a doubly linked list, sorted by their values. Initially, all counters are empty,
and are attached to a single parent bucket with value 0.

The elements can be stored in a hash table for constant amortized access cost,
or in an associative memory for constant worst case access cost. The Stream-
Summary can be sequentially traversed as a sorted list, since the buckets’ list
is sorted. In case it is feasible to keep counters for all elements in A, Stream-
Summary can be used to report both the most and the least significant elements.

The algorithm for counting elements’ hits using Stream-Summary is straight-
forward. When an element’s counter is updated, its bucket’s neighbor with the
larger value is checked. If it has a value equal to the new value of the element,
then the element is detached from its current list, and is inserted in the child
list of this neighbor. Otherwise, a new bucket with the correct value is cre-
ated, and is attached to the bucket list in the right place; and this element is

Efficient Computation of Frequent and Top-k Elements in Data Streams 403

attached to this new bucket. The old bucket is deleted if it points to an empty
child list. The worst case scenario costs 10 pointer assignments, and one heap
allocation.

Stream-Summary is motivated by the work done in [6]. However, to look up
a value of a counter using the data structure in [6], it takes O(m), while Stream-
Summary looks values up in Θ(1), for online queries about specific elements.

(a) Stream-
Summary,
S = X, Y

(b) Stream-
Summary,
S = X, Y, Y

(c) Stream-
Summary,
S = X, Y, Y, Z

Fig. 2. Space-Saving updates to a Stream-Summary data structure as elements are
observed

Example 1. Assuming m = 2, and A = {X,Y,Z}. The stream S = X,Y will
yield the Stream-Summary in Figure 2(a), after the two counters accommodate
the observed elements. When another Y arrives, a new bucket is created with
value 2, and Y gets attached to it, as shown in Figure 2(b). When Z arrives, the
element with the minimum counter, X, is replaced by Z. Z has εZ = 1, since
that was the count of X when evicted. The final Stream-Summary is shown in
Figure 2(c).

3.2 Properties of the Space-Saving Algorithm

To prove the space bounds in the following sections, we analyze some properties
of the Space-Saving algorithm, which will help us establish our space bounds.
For space limitations, all proofs of lemmas and theorems are omitted, and the
reader is referred to the full version [14].

Lemma 1. N =
∑

∀i|ei∈Stream−Summary
(counti)

A pivotal factor in our analysis is the value of min. min is highly dynamic
since it is dependent on the permutation of elements in S. We give an example for
this. If m = 2, and N = 4. S = X,Z, Y, Y yields min = 1, while S = X,Y, Y, Z
yields min = 2. Although it would be very useful to quantify min, we do not
want to involve the order in which hits were received in our analysis, because
predicating the analysis on all possible stream permutations will be intractable.
Thus, we establish an upper bound on min.

We assume that the number of distinct elements in S is greater than m. Thus,
all m counters are occupied. Otherwise, all counts are exact, and the problem is
trivial. Hence, from Lemma 1 we deduce the following.

404 A. Metwally, D. Agrawal, and A. El Abbadi

Lemma 2. Among all counters, the minimum counter value, min, is less than
or equal to)N

m*.

We are interested in min since it represents an upper bound on the over-
estimation in any counter in Stream-Summary. Moreover, any element ei, with
frequency fi > min, is guaranteed to be monitored, as shown next.

Theorem 1. An element ei with fi > min, must exist in the Stream-Summary.

The strength behind our simple algorithm is that we keep the information
until the space is absolutely needed, and we do not initialize counters in batches
like other counter-based algorithms. This is what allowed us to prove these
properties about the proposed algorithm. In the next section, we use these
properties to derive a bound on the space requirements for solving different
problems.

4 Processing Queries

In this section, we discuss query processing using the Stream-Summary data
structure. We also analyze the space requirements for both the general case,
where no data distribution is assumed, and the more interesting Zipfian case.

4.1 Frequent Elements

In order to answer queries about the frequent elements, we sequentially tra-
verse Stream-Summary as a sorted list until an element with frequency less than
the user support is reached. Thus, we report frequent elements in Θ(|frequent
elements|). If for each reported element ei, counti−εi > φN , then the algorithm
guarantees that all, and only the frequent elements are reported. This
guarantee is conveyed through the boolean parameter guaranteed. The number
of counters, m, should be specified by the user according to the data properties

Algorithm: QueryFrequent(m counters, support φ)
begin
Bool guaranteed = true;
Integer i = 1;
while (counti > φN){

output ei;
If ((counti − εi) < φN)

guaranteed = false;
i++;

}// end while
return(guaranteed)

end;

Fig. 3. Reporting Frequent Elements

Efficient Computation of Frequent and Top-k Elements in Data Streams 405

or the available memory on the server. The QueryFrequent algorithm is given in
Figure 3. Next, we determine the relationship between m and the user specified
error, ε.

The General Case. We will analyze the space requirements for the general
case of the data distribution.

Theorem 2. Assuming no specific data distribution, or user-supplied support,
to find all frequent elements with error ε, the Space-Saving algorithm uses a num-
ber of counters that is bounded by min(|A|, 1

ε). Any element, ei, with frequency
fi > εN is guaranteed to be in the Stream-Summary.

Zipf Distribution Analysis. Assuming Zipfian data [16], with parameter α,

fi = N
iαζ(α) , where ζ(α) =

|A|∑
i=1

1
iα converges to a small constant inversely pro-

portional to α, except for α ≤ 1. For instance, ζ(1) ≈ ln(1.78|A|). We assume
α ≥ 1, to ensure that the data is worth analyzing. As noted before, we do not
expect the popular elements to be of great importance if the data is uniform or
weakly skewed.

Theorem 3. Assuming Zipfian data with parameter α, to calculate the frequent
elements with error rate ε, the Space-Saving algorithm uses only min(|A|,

(1
ε

) 1
α)

counters. This is regardless of the stream permutation.

Comparison with Similar Work. The bound of Theorem 2 is tight. For in-
stance, this can happen if all the IDs in S are distinct. However, this bound is
much better than those guaranteed by the algorithms in [13]. The Sticky Sam-
pling algorithm has a space bound of 2

ε log(1
φδ), where φ is the user given support,

and δ is the failure probability. The Lossy Counting algorithm has a bound of
1
ε log(εN). Furthermore, our algorithm has better bounds than GroupTest [5],
whose bound is O(1

φ log(1
δφ) log(|A|)), which is less scalable than ours. For ex-

ample, for N = 106, |A| = 104, φ = 10−1, ε = 10−2, and δ = 10−1, we need only
100 counters, while Sticky Sampling needs 700 counters, Lossy Counting needs
1000 counters, and GroupTest needs C ∗ 930 counters, where C ≥ 1.

Frequent [6] has a similar bound in the general case. Using m counters, the el-
ements’ under-estimation error is bounded by N−1

m . Although this is close to the
theoretical under-estimation error bound, as proved in [1], there is no straightfor-
ward feasible extension of the algorithm to track the under-estimation error for
each counter. In addition, every observation of a non-monitored element increases
the errors for all the monitored elements, since their counters get decremented.
Therefore, elements of higher frequency are more error prone, and thus, it is still
difficult to guess the frequent elements, which is not the case for our algorithm.
Even more, the structure [6] is built and queried in a way that does not allow the
user to specify an error threshold, ε. Thus, the algorithm has only one param-
eter, the support φ, which increases the number of false positives dramatically,
as will be clear from the experimental results in Section 5.

406 A. Metwally, D. Agrawal, and A. El Abbadi

The number of counter used in GroupTest [5] depends on the failure prob-
ability, δ, as well as the support, φ. Thus, it does not suffer from the single-
threshold drawback of Frequent. However, it does not output frequencies at all,
and reveals nothing about the relative order of the elements. In addition, its
assumption that elememts’ IDs are 1 . . . |A| can only be enforced by building
an indexed lookup table that maps every ID to a unique number in the range
1 . . . |A|. Thus, practically, GroupTest needs O(|A|) space, which is infeasible in
most cases. Meanwhile, we only require the m IDs to fit in memory.

For the Zipfian case, we make no comparison to other works, since we are not
aware of a similar analysis. For the numerical example given above, if α = 2, we
would need 10 counters instead of 100, to guarantee the same error of 10−2.

4.2 Top-k Elements

For the top-k elements, the algorithm outputs the first k elements. We call the
results to have guaranteed top-k if by looking at the results only, we can tell
that the reported top-k elements are correct. The Space-Saving algorithm reports
a guaranteed top-k if ∀i≤k, counti − εi ≥ countk+1. That is, the guaranteed
number of hits for each reported element is greater than the over-estimated
number of hits for the element in position k + 1. All guaranteed top-i subsets,
for all i, can be reported in Θ(m), by iterating on all the counters 1 . . .m − 1.
At each iteration, i, the min∀j≤i

(countj − εj) is compared to counti+1. The first
i elements are guaranteed to be the top-i elements if this minimum is greater
than or equal to counti+1. The algorithm guarantees the top-m if in addition to
this condition, εm = 0.

Similarly, we call the top-k to have guaranteed order if ∀i≤k, counti−εi ≥
counti+1. That is, in addition to having guaranteed top-k, the order of elements
among the top-k elements are guaranteed to hold, if the guaranteed hits for
every element in the top-k are greater than the over-estimated hits of the next
element.

This is the first algorithm that can give guarantees about its output. For top-
k queries, even if we cannot guarantee the top-k, we output the top-k candidates,
and can extend our output to include guaranteed top-k’ elements, where k′ is
practically very close to k. For the case of Zipfian data, we guarantee that k′ = k,
as shown later in the section. The algorithm QueryTop-k is given in Figure 4.

The algorithm consists of two loops. The first loop outputs the top-k can-
didates. At each iteration the order of the elements reported so far is checked.
If the order is violated, order is set to false. At the end of the loop, the top-k
candidates are checked to be the guaranteed top-k, by checking that all of these
candidates have guaranteed hits that exceed the overestimated counter of the
k + 1 element. If this does not hold, the second loop is executed to search for
the next k′, where k′ is slightly greater than k, such that top-k’ are guaranteed.
Next, we look at the space requirements for solving this problem.

The General Case. We start by considering data which is not as skewed as
Zipf of parameter 1. We deal with skewed data later. We also look at the relaxed

Efficient Computation of Frequent and Top-k Elements in Data Streams 407

Algorithm: QueryTop-k(m counters, Integer k)
begin
Bool order = true;
Bool guaranteed = false;
Integer min-guar-freq = ∞;
for i = 1 . . . k{

output ei;
If ((counti − εi) < min-guar-freq)

min-guar-freq = (counti − εi);
If ((counti − εi) < counti+1)

order = false;
}// end for
If (countk+1 ≤ min-guar-freq){

guaranteed = true;
}else{

output ek+1;
for i = k + 2 . . . m{

output ei;
If ((counti−1 − εi−1) < min-guar-freq)

min-guar-freq = (counti−1 − εi−1);
If (counti ≤ min-guar-freq){

guaranteed = true;
break;

}
}

}
return(guaranteed, order)

end;

Fig. 4. Reporting Top-k

version of the problem defined in [3], which is finding a list of k elements, among
which every element ei has fi > (1− ε)fk.

Theorem 4. Regardless of the data distribution, to calculate the relaxed top-k
elements with error ε, the Space-Saving algorithm uses min(|A|, N

εfk
) counters.

Any element, ei, whose fi > (1− ε)fk is guaranteed to be monitored.

Zipf Distribution Analysis. To answer exact top-k queries, ε can be auto-
matically set less than fk − fk+1. Thus, we guarantee correctness, and order.

Theorem 5. Assuming the data is Zipfian with parameter α > 1, to calculate
the exact top-k, the Space-Saving algorithm uses min(|A|,O(

(
k
α

) 1
α k)) counters.

When α = 1, the space complexity is min(|A|,O(k2 log(|A|))). This is regardless
of the stream permutation. Also, the order among the top-k elements is preserved.

Comparison with Similar Work. These bounds are better than the bounds
guaranteed by the best known algorithm, CountSketch [3], for a good range of
practical values of the parameters |A|, ε, and k. CountSketch solves the relaxed
version of the problem, FindApproxTop(S, k, ε), with failure probability δ, using

408 A. Metwally, D. Agrawal, and A. El Abbadi

space of O(log(N
δ)(k + 1

(εfk)2

|A|∑
i=k+1

fi
2)), with a a large constant hidden in the

big-O notation, according to [3], and [5]. Our bound for the relaxed problem is
N
εfk

, with a 0-failure probability. For instance, for N = 106, |A| = 104, k = 100,
and ε = δ = 10−1, and a uniformly distributed data, we require 103 counters,
while CountSketch needs C ∗2.3∗107 counters, where C � 1, which is more than
the entire stream. In addition, our algorithm guarantees that any element, ei,
whose fi > (1− ε)fk does belong to the Stream-Summary, and does not simply
output a random k selection of these elements.

In case of a non-Zipf distribution, or a weakly skewed Zipf distribution with
α < 1, for all i ≥ k, we will assume that fi ≥ N

ζ(1) ∗
1
i . This assumption is justified.

Since we are assuming a non-skewed distribution, the top few elements have a less
significant share in S than in the case of Zipf(1), and less frequent elements will
have a higher share in S than they would have had if the distribution is Zipf(1).
Using this assumption, we rewrite our bound as O(k∗log(N)

ε); while the bound

in [3] can be rewritten as O(log(N
δ) ∗ (k + k2

ε2

(
1

k+1 −
1

|A|

)
)) ≈ O(k

ε2 log(N
δ)).

Even more, depending on the data distribution, our algorithm can guarantee
the reported top-k to be correct, with weak data skew; while CountSketch does
not offer any guarantees.

We can assume that field experts know whether the data is skewed enough
to be considered Zipf(1) or not. Even if this is not applicable, we can start by
analyzing a sample from the data, and then resizing the structure accordingly.

In the case of Zipf Distribution, the bound of [3] is O(k log(N
δ)). For α > 1,

our bound is O(
(

k
α

) 1
α k). Only when α = 1, the space complexity is O(k2 log(|A|)),

and thus, our bound is better for cases of skewed data, long streams/windows,
and has a 0-failure probability. In addition, we preserve the order of the top-k
elements. To show the difference in space requirements, we give an example. For
N = 106, |A| = 104, k = 10, α = 2, and δ = 10−1 our space requirements are
only 66 counters, while [3] needs C ∗ 230 counters, where C � 1.

5 Experimental Results

We conducted a set of experiments, using both real and synthetic data. For
space constraints, we summarize our synthetic data results here. The real data
experimental results agree with those presented here, and the reader is referred
to [14] for a full analysis on both the synthetic and real data experimental
results. We generated several synthetic Zipfian datasets with the zipf parameter,
α, varying from 0, which is uniform, to 3, which is highly skewed, on a fixed
interval of 1

2 . The size of each dataset, N , is 107 hits. This set of experiments
measure how the algorithms adapt to, and make use of data skew.

The algorithms were run on a PentiumIV 2.66 GHz, with 1.0 GB RAM. The
stream was input and processed by each algorithm, and then a query was issued,
and we recorded the recall, the number of correct elements found as a percentage

Efficient Computation of Frequent and Top-k Elements in Data Streams 409

(a) Run Time for Frequent Elements
(100,000 Hits) on Synthetic Data

47937
45172 43844 43734 43141

272502721825906261252801526500
24281

50031
49578

6704759375167453
103751228111906

0

10000

20000

30000

40000

50000

60000

0 0.5 1 1.5 2 2.5 3

Zipf Alpha

Ru
n

Ti
m

e/m
s

Space-Saving GroupTest Frequent

(b) Precision for Frequent Elements (100,000
Hits) on Synthetic Data

0 0

1111111 11111 1

0.833333

0.08890.05260.0707

0.2157

0.1053

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3

Zipf Alpha

Pr
ec

isi
on

Space-Saving GroupTest Frequent

(c) Recall for Frequent Elements (100,000
Hits) on Synthetic Data

1 1 1 1 1 1 11 1 1 1 1 1 11 1 1 1 1 1 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3

Zipf Alpha

Re
ca

ll

Space-Saving GroupTest Frequent

(d) Space Used for Frequent Elements
(100,000 Hits) on Synthetic Data

5636
16588

67756

38240

78460

58460

2796

168260168260168260168260168260168260 168260

1376013760
1376013760

137601376013760

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 0.5 1 1.5 2 2.5 3

Zipf Alpha

Sp
ac

e U
se

d/
By

te
s

Space-Saving GroupTest Frequent

Fig. 5. Performance Comparison for the Frequent Elements Problem Using Synthetic
Zipfian Data

of the number of actual correct elements; and the precision, the number of correct
elements found as a percentage of the entire output [5]. We also measured the
run time and space used by each algorithm, which indicates the capability to
deal with high-speed streams, and to reside on servers with limited memories.

For the frequent elements problem, we compared our results with those of
GroupTest [5], and Frequent [6]. For GroupTest, and Frequent, we used the C
code available on the web-site of the first author of [5]. Space-Saving, GroupTest,
and Frequent were queried for the frequent elements with support, φ, of 10−2.
We set ε, the error, to be one hundredth of φ, the required support; and δ, the
failing probability, to be 0.01. Although Frequent ran up to four times faster than
Space-Saving, as clear from Figure 5(a), its results were not competitive in terms
of precision. Since it is not possible to specify an ε parameter for the algorithm,
its precision was very low in all the runs. When the Zipf parameter was 0.0,
and 0.5, the algorithm reported 28, and 19 elements, respectively, and actually
there were no elements satisfying the support. For the rest of the experiments in
Figure 5(b), the precision achieved by Frequent ranged from 0.053 to 0.216. The
space used ranged from one fifth to five times the space of Space-Saving, as shown
in Figure 5(d). It is interesting to note that as the data became more skewed,
the space advantage of Space-Saving increased, while Frequent was not able to
exploit the data skew to reduce its space requirements. Compared to GroupTest,
from Figure 5(a), Space-Saving ran 1.5 to 2 times faster than GroupTest. The
precision of the proposed algorithm was always 1; while GroupTest precision
depended on α, with a precision of 0.83 when α = 1, as sketched in Figure 5(b).
The recalls of both algorithms were constant at 1, as clear from Figure 5(c). The

410 A. Metwally, D. Agrawal, and A. El Abbadi

(a) Run Time for Top-100 on Synthetic Data

1860453

848141
768547 757922 754813

23531 26391 27984 26125 25703 25422 25390

1339343

1931797

32250
297972898530078320783037527609

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

0 0.5 1 1.5 2 2.5 3

Zipf Alpha

Ru
n

Ti
m

e(
m

s)

Space-Saving CountSketch Probabilistic InPlace

(b) Precision for Top-100 on Synthetic Data

111111
1 11

0.1

0.92
0.98 0.99 0.99 11

0.020.020.0182

0.358423

0.133333

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3

Zipf Alpha

Pr
ec

isi
on

Space-Saving CountSketch Probabilistic InPlace

(c) Recall for Top-100 on Synthetic Data

1 1 1 1

0.1

0.98 0.99 0.99 1 1

0.91

1 1 11 11
0.92

1 1 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3

Zipf Alpha

Re
ca

ll

Space-Saving CountSketch Probabilistic InPlace

(d) Space Used for Top-100 on Synthetic
Data

406330 407070 407070 407070 407010 406570 403930

67756

16588 6916 3436

58460 78460

38240
10874 3254

6534
39418 62674

15470
20338

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

0 0.5 1 1.5 2 2.5 3

Zipf Alpha

Sp
ac

e U
se

d(
By

te
s)

Space-Saving CountSketch Probabilistic InPlace

Fig. 6. Performance Comparison for the Top-k Problem Using Synthetic Zipfian Data

advantage of Space-Saving is clear in Figure 5(d), which shows that Space-Saving
achieved a reduction in the space used by a factor ranging from 2 up to 60.

For the top-k problem, we implemented Probabilistic-InPlace [6], and CountS-
ketch [3]. For the CountSketch [3] algorithm, we implemented the median algo-
rithm by Hoare [9] with Median-of-three partition, which has a linear run time, in
the average case [12]. Instead of maintaining a heap as suggested in [3], we kept a
stream-summary of fixed length k. This guarantees constant time update for ele-
ments in the stream-summary, while the heap would entail O(log(k)) operations.
The difference in the space usage between the heap and the stream-summary of
size k is negligible, when compared to the space used by the CountSketch al-
gorithm. For the hidden constant of the CountSketch [3], we ran the algorithm
several times, and we estimated that a factor of 16 would enable CountSketch to
achieve results comparable to Space-Saving in terms of precision and recall. The
Space-Saving, CountSketch, and Probabilistic-InPlace algorithms were used to
identify the top-100 elements. For CountSketch, we set the probability of failure,
δ, to 0.01. Both the Space-Saving, and the Probabilistic-InPlace were allowed the
same number of counters; and thus, their run time and space usages were com-
parable, as clear from Figure 6(a), and Figure 6(d), respectively. The precision
of Probabilistic-InPlace increased from 0.02 to 0.36 as the skew increased; and
finally reached 1, when α ≥ 2.5, as indicated in Figure 6(b). On the contrary,
from Figure 6(c), the recall of Probabilistic-InPlace was very high throughout
the entire range of α. The precision and recall of Space-Saving were constant
at 1. From Figure 6(a), the time reductions of Space-Saving over CountSketch
ranged from a factor of 30, to 82. Although we used a hidden factor of 16, as
indicated earlier, CountSketch failed to attain a recall and precision of 1, for all
the experiments. CountSketch had a very low precision and recall for uniform

Efficient Computation of Frequent and Top-k Elements in Data Streams 411

data. From Figure 6(b), and Figure 6(c), the precision and recall of CountSketch
did not reach 1 except for α ≥ 2.5. The space reductions of Space-Saving ranged
from a factor of 5, to 117, as manifested in Figure 6(d). The performance gap
increased with the data skew.

6 Discussion

This paper has devised an integrated approach for solving an interesting family of
problems in data streams. The Stream-Summary data structure was proposed,
and utilized by the Space-Saving algorithm to guarantee strict error bounds
for approximate counts of elements, using very limited space. We showed that
the Space-Saving algorithm can handle both the frequent elements and top-k
problems because it efficiently estimates the elements’ frequencies. The memory
requirements were analyzed with special attention to the case of skewed data.
We validated the theoretical analysis by experimental evaluation.

This is the first algorithm, to the best of our knowledge, that guarantees
the order of the top-k elements. Even when it cannot guarantee the top-k, the
algorithm outputs guaranteed top-k’ elements, where k′ ≈ k.

In practice, if the alphabet is too large, like in the case of IP addresses, only a
subset of this alphabet is observed in the stream, and not all the 232 addresses.
Our space bounds are actually a function of the number of distinct elements
which have occurred in the stream. However, in our analysis, we have assumed
that the entire alphabet is observed in the stream, which is the worst case for our
algorithm. Yet, our space bounds are still better than those of other algorithms.

The main practical strengths of the Space-Saving algorithm is that it can use
whatever space is available on the server to estimate the elements’ frequencies,
and provide guarantees on its results whenever possible. Even when analysts
are not sure about the appropriate parameters, the algorithm can run in the
available memory, and the results can be analyzed for further adaptation. It is
interesting that running the algorithm on the available space ensures that more
important elements are less susceptible to noise. It can be easily shown that the
expected value of the over-estimation, εi, is proportional to the summation of
the length of the stream sections when ei was not monitored, which is inversely
proportional to fi.

References

1. P. Bose, E. Kranakis, P. Morin, and Y. Tang. Bounds for frequency estimation of
packet streams. In Proceedings of the 10th International Colloquium on Structural
Information and Communication Complexity, pages 33–42, 2003.

2. R. Boyer and J. Moore. A fast majority vote algorithm. Technical Report 1981-32,
Institute for Computing Science, University of Texas, Austin, February 1981.

3. M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items in data
streams. In Proceedings of the 29th International Colloquium on Automata, Lan-
guages and Programming, pages 693–703. Springer-Verlag, 2002.

412 A. Metwally, D. Agrawal, and A. El Abbadi

4. G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava. Finding hierarchical
heavy hitters in data streams. In Proceedings of the 29th International Conference
on Very Large Databases, pages 296–306, 2003.

5. G. Cormode and S. Muthukrishnan. Whats hot and whats not: Tracking most
frequent items dynamically. In Proceedings of the 22nd Symposium on Principles
of Databse Systems, pages 296–306, June 2003.

6. E. D. Demaine, A. Lopez-Ortiz, and J. I. Munro. Frequency estimation of internet
packet streams with limited space. In Proceedings of the 10th Annual European
Symposium on Algorithms, pages 348–360, 2002.

7. C. Estan and G. Varghese. New directions in traffic measurement and account-
ing: Focusing on the elephants, ignoring the mice. ACM Trans. Comput. Syst.,
21(3):270–313, 2003.

8. M. J. Fischer and S. L. Salzberg. Finding a majority among n votes: Solution to
problem 81-5. Journal of Algorithms, 3:376–379, 1982.

9. C. A. R. Hoare. Algorithm 65: Find. Communications of the ACM, 4(7):321–322,
1961.

10. C. Jin, W. Qian, C. Sha, J. X. Yu, and A. Zhou. Dynamically maintaining frequent
items over a data stream. In Proceedings of the twelfth international conference on
Information and knowledge management, pages 287–294. ACM Press, 2003.

11. R. Karp, S. Shenker, and C. Papadimitriou. A simple algorithm for finding frequent
elements in streams and bags. ACM Transactions on Database Systems, 28(1):51–
55, 2003.

12. P. Kirschenhofer, H. Prodinger, and C. Martinez. Analysis of Hoare’s FIND algo-
rithm with median-of-three partition. Random Structures Algorithms, 10(1-2):143–
156, 1997.

13. G. Manku and R. Motwani. Approximate frequency counts over data streams. In
Proceedings of the 28th International Conference on Very Large Data Bases, pages
346–357, 2002.

14. A. Metwally, D. Agrawal, and A. El Abbadi. Efficient computation of frequent and
top-k elements in data streams. Technical Report 2005-23, University of California,
Santa Barbara, September 2005.

15. J. Misra and D. Gries. Finding repeated elements. Science of Computer Program-
ming, 2:143–152, November 1982.

16. G.K. Zipf. Human Behavior and The Principle of Least Effort. Addison-Wesley,
1949.

Author Index

Afrati, Foto 383
Aggarwal, Gagan 189, 246
Agrawal, Divyakant 398
Atserias, Albert 53

Babu, Shivnath 83
Balcázar, José L. 215

Calvanese, Diego 321
Cao, Hu 173
Casas-Garriga, Gemma 215
Chirkova, Rada 383
Cohen, Sara 129

Dalvi, Nilesh 289
De Giacomo, Giuseppe 321
Deutsch, Alin 230, 352

El Abbadi, Amr 398

Faber, Wolfgang 306
Feder, Tomás 189, 246
Frikken, Keith B. 144
Fuxman, Ariel D. 337

Greco, Gianluigi 306

Kenthapadi, Krishnaram 246
Koltun, Vladlen 204

Lenzerini, Maurizio 321
Leone, Nicola 306
Li, Jin 37
Ludäscher, Bertram 352

Maier, David 37
Martens, Wim 68
Marx, Maarten 114
Matias, Yossi 368
Mendelzon, Alberto O. 259
Metwally, Ahmed 398

Miklau, Gerome 289
Miller, Renée J. 337
Motwani, Rajeev 83, 189, 246
Møller, Anders 17
Munagala, Kamesh 83

Nash, Alan 274, 352
Neven, Frank 68

Panigrahy, Rina 189, 246
Papadimitriou, Christos H. 204
Papadimos, Vassilis 37
Papakonstantinou, Yannis 230

Ramakrishnan, Raghu 158
Remmel, Jeff 274

Sagiv, Yehoshua 129
Schwartzbach, Michael I. 17
Schwentick, Thomas 68
Shaft, Uri 158
Suciu, Dan 289

Thomas, Dilys 246
Tucker, Peter 37
Tufte, Kristin 37

Urieli, Daniel 368

Van den Bussche, Jan 99
Van Gucht, Dirk 99
Vansummeren, Stijn 99
Vardi, Moshe Y. 1, 321
Vianu, Victor 274

Widom, Jennifer 83
Wolfson, Ouri 173

Zhang, Zheng 259
Zhu, An 189, 246

	Frontmatter
	Invited Papers
	Model Checking for Database Theoreticians
	The Design Space of Type Checkers for XML Transformation Languages
	Semantics of Data Streams and Operators

	Regular Papers
	Conjunctive Query Evaluation by Search Tree Revisited
	Which XML Schemas Admit 1-Pass Preorder Typing?
	The Pipelined Set Cover Problem

	Session: Query Languages and Types
	Well-Definedness and Semantic Type-Checking in the Nested Relational Calculus and XQuery
	First Order Paths in Ordered Trees
	An Abstract Framework for Generating Maximal Answers to Queries

	Session: Multi-dimensional Data Processing
	Optimal Distributed Declustering Using Replication
	When Is Nearest Neighbors Indexable?
	Nonmaterialized Motion Information in Transport Networks

	Session: Algorithmic Aspects
	Algorithms for the Database Layout Problem
	Approximately Dominating Representatives
	On Horn Axiomatizations for Sequential Data

	Session: Privacy and Security
	Privacy in Database Publishing
	Anonymizing Tables
	Authorization Views and Conditional Query Containment

	Session: Logic and Databases
	PTIME Queries Revisited
	Asymptotic Conditional Probabilities for Conjunctive Queries
	Magic Sets and Their Application to Data Integration

	Session: Query Rewriting
	View-Based Query Processing: On the Relationship Between Rewriting, Answering and Losslessness
	First-Order Query Rewriting for Inconsistent Databases
	Rewriting Queries Using Views with Access Patterns Under Integrity Constraints

	Session: Query Processing, and Data Streams
	Optimal Workload-Based Weighted Wavelet Synopses
	Selecting and Using Views to Compute Aggregate Queries
	Efficient Computation of Frequent and Top-k Elements in Data Streams

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

