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Preface

“ Nous sommes donc conduit à nous proposer le problème suivant:
Étudier les équations canoniques

dxi

dt
=
∂F

∂yi
,
dyi
dt

= − ∂F
∂xi

en supposant que la function F peut se développer suivant les
puissances d’un paramètre très petit μ de la manière suivante:

F = F0 + μF1 + μ2F2 + . . . ,

en supposant de plus que F0 ne dépend que des x et est indépendent
des y; et que F1, F2, . . . sont des fonctions périodiques de période
2π par rapport aux y. ”

This is all of the contents of §13 in the first volume of the celebrated treatise
Les méthodes nouvelles de la mécanique céleste of Poincaré, published in 1892.

In more usual notations and words, the problem is to investigate the dy-
namics of a canonical system of differential equations with Hamiltonian

(1) H(p, q, ε) = H0(p) + εH1(p, q) + ε2H2(p, q) + . . . ,

where p ≡ (p1, . . . , pn) ∈ G ⊂ Rn are action variables in the open set G,
q ≡ (q1, . . . , qn) ∈ Tn are angle variables, and ε is a small parameter.

The lectures by Giancarlo Benettin, Jacques Henrard and Sergej Kuksin
published in the present book address some of the many questions that are
hidden behind the simple sentence above.

1. A Classical Problem

It is well known that the investigations of Poincaré were motivated by a clas-
sical problem: the stability of the Solar System. The three volumes of the
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Méthodes Nouvelles had been preceded by the memoir Sur le problème des
trois corps et les équations de la dynamique; mémoire couronné du prix de
S. M. le Roi Oscar II le 21 janvier 1889.

It may be interesting to recall the subject of the investigation, as stated
in the announcement of the competition for King Oscar’s prize:

“ A system being given of a number whatever of particles attracting
one another mutually according to Newton’s law, it is proposed,
on the assumption that there never takes place an impact of two
particles to expand the coordinates of each particle in a series pro-
ceeding according to some known functions of time and converging
uniformly for any space of time. ”

In the announcement it is also mentioned that the question was suggested
by a claim made by Lejeune–Dirichlet in a letter to a friend that he had
been able to demonstrate the stability of the solar system by integrating the
differential equations of Mechanics. However, Dirichlet died shortly after, and
no reference to his method was actually found in his notes.

As a matter of fact, in his memoir and in the Méthodes Nouvelles Poincaré
seems to end up with different conclusions. Just to mention a few results of his
work, let me recall the theorem on generic non–existence of first integrals, the
recurrence theorem, the divergence of classical perturbation series as a typical
fact, the discovery of asymptotic solutions and the existence of homoclinic
points.

Needless to say, the work of Poincaré represents the starting point of most
of the research on dynamical systems in the XX–th century. It has also been
said that the memoir on the problem of three bodies is “the first textbook
in the qualitative theory of dynamical systems”, perhaps forgetting that the
qualitative study of dynamics had been undertaken by Poincaré in a Mémoire
sur les courbes définies par une équation différentielle, published in 1882.

2. KAM Theory

Let me recall a few known facts about the system (1). For ε = 0 the Hamilto-
nian possesses n first integrals p1, . . . , pn that are independent, and the orbits
lie on invariant tori carrying periodic or quasi–periodic motions with frequen-
cies ω1(p), . . . , ωn(p), where ωj(p) = ∂H0

∂pj
. This is the unperturbed dynamics.

For ε �= 0 this plain behaviour is destroyed, and the problem is to understand
how the dynamics actually changes.

The classical methods of perturbation theory, as started by Lagrange and
Laplace, may be resumed by saying that one tries to prove that for ε �= 0
the system (1) is still integrable. However, this program encountered major
difficulties due to the appearance in the expansions of the so called secular
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terms, generated by resonances among the frequencies. Thus the problem
become that of writing solutions valid for all times, possibly expanded in
power series of the parameter ε. By the way, the role played by resonances is
indeed at the basis of the non–integrability in classical sense of the perturbed
system, as stated by Poincaré.

A relevant step in removing secular terms was made by Lindstedt in 1882.
The underlying idea of Lindstedt’s method is to look for a single solution
which is characterized by fixed frequencies, λ1, . . . , λn say, and which is close
to the unperturbed torus with the same frequencies. This allowed him to
produce series expansions free from secular terms, but he did not solve the
problem of the presence of small denominators, i.e., denominators of the form
〈k, λ〉 where 0 �= k ∈ Zn. Even assuming that these quantities do not vanish
(i.e., excluding resonances) they may become arbitrarily small, thus making
the convergence of the series questionable.

In tome II, chap. XIII, § 148–149 of the Méthodes Nouvelles Poincaré
devoted several pages to the discussion of the convergence of the series of
Lindstedt. However, the arguments of Poincaré did not allow him to reach a
definite conclusion:

“ . . . les séries ne pourraient–elles pas, par example, converger quand
. . . le rapport n1/n2 soit incommensurable, et que son carré soit au
contraire commensurable (ou quand le rapport n1/n2 est assujetti
à une autre condition analogue à celle que je viens d’ énoncer un
peu au hasard)?

Les raisonnements de ce chapitre ne me permettent pas
d’ affirmer que ce fait ne se présentera pas. Tout ce qu’ il m’est
permis de dire, c’est qu’ il est fort invraisemblable. ”

Here, n1, n2 are the frequencies, that we have denoted by λ1, λ2.
The problem of the convergence was settled in an indirect way 60 years

later by Kolmogorov, when he announced his celebrated theorem. In brief, if
the perturbation is small enough, then most (in measure theoretic sense) of
the unperturbed solutions survive, being only slightly deformed. The surviving
invariant tori are characterized by some strong non–resonance conditions, that
in Kolmogorov’s note was identified with the so called diophantine condition,
namely

∣∣〈k, λ〉∣∣ ≥ γ|k|−τ for some γ > 0, τ > n − 1 and for all non–zero
k ∈ Zn. This includes the case of the frequencies chosen “un peu au hasard”
by Poincaré. It is often said that Kolmogorov announced his theorem without
publishing the proof; as a matter of fact, his short communication contains a
sketch of the proof where all critical elements are clearly pointed out. Detailed
proofs were published later by Moser (1962) and Arnold (1963); the theorem
become thus known as KAM theorem.

The argument of Kolmogorov constitutes only an indirect proof of the
convergence of the series of Lindstedt; this has been pointed out by Moser in
1967. For, the proof invented by Kolmogorov is based on an infinite sequence of
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canonical transformations that give the Hamiltonian the appropriate normal
form

H(p, q) = 〈λ, p〉+R(p, q) ,

where R(p, q) is at least quadratic in the action variables p. Such a Hamil-
tonian possesses the invariant torus p = 0 carrying quasi–periodic motions
with frequencies λ. This implies that the series of Lindstedt must converge,
since they give precisely the form of the solution lying on the invariant torus.
However, Moser failed to obtain a direct proof based, e.g., on Cauchy’s clas-
sical method of majorants applied to Lindstedt’s expansions in powers of ε.
As discovered by Eliasson, this is due to the presence in Lindstedt’s classical
series of terms that grow too fast, due precisely to the small denominators,
but are cancelled out by internal compensations (this was written in a report
of 1988, but was published only in 1996). Explicit constructive algorithms tak-
ing compensations into account have been recently produced by Gallavotti,
Chierchia, Falcolini, Gentile and Mastropietro.

In recent years, the perturbation methods for Hamiltonian systems, and in
particular the KAM theory, has been extended to the case of PDE’s equations.
The lectures of Kuksin included in this volume constitute a plain and complete
presentation of these recent theories.

3. Adiabatic Invariants

The theory of adiabatic invariants is related to the study of the dynamics of
systems with slowly varying parameters. That is, the Hamiltonian H(q, p ;λ)
depends on a parameter λ = εt, with ε small. The typical simple example
is a pendulum the length of which is subjected to a very slow change – e.g.,
a periodic change with a period much longer than the proper period of the
pendulum. The main concern is the search for quantities that remain close
to constants during the evolution of the system, at least for reasonably long
time intervals. This is a classical problem that has received much attention at
the beginning of the the XX–th century, when the quantities to be considered
were identified with the actions of the system.

The usefulness of the action variables has been particularly emphasized
in the book of Max Born The Mechanics of the Atom, published in 1927. In
that book the use of action variables in quantum theory is widely discussed.
However, it should be remarked that most of the book is actually devoted to
Hamiltonian dynamics and perturbation methods. In this connection it may
be interesting to quote the first few sentences of the preface to the german
edition of the book:

“ The title “Atomic Mechanics” given to these lectures . . . was chosen
to correspond to the designation “Celestial Mechanics”. As the
latter term covers that branch of theoretical astronomy which deals
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with with the calculation of the orbits of celestial bodies according
to mechanical laws, so the phrase “Atomic Mechanics” is chosen
to signify that the facts of atomic physics are to be treated here
with special reference to the underlying mechanical principles; an
attempt is made, in other words, at a deductive treatment of atomic
theory. ”

The theory of adiabatic invariants is discussed in this volume in the lectures
of J. Henrard. The discussion includes in particular some recent developments
that deal not just with the slow evolution of the actions, but also with the
changes induced on them when the orbit crosses some critical regions. Making
reference to the model of the pendulum, a typical case is the crossing of the
separatrix. Among the interesting phenomena investigated with this method
one will find, e.g., the capture of the orbit in a resonant regions and the
sweeping of resonances in the Solar System.

4. Long–Time Stability and Nekhoroshev’s Theory

Although the theorem of Kolmogorov has been often indicated as the solu-
tion of the problem of stability of the Solar System, during the last 50 years
it became more and more evident that it is not so. An immediate remark
is that the theorem assures the persistence of a set of invariant tori with
relative measure tending to one when the perturbation parameter ε goes to
zero, but the complement of the invariant tori is open and dense, thus mak-
ing the actual application of the theorem to a physical system doubtful, due
to the indeterminacy of the initial conditions. Only the case of a system of
two degrees of freedom can be dealt with this way, since the invariant tori
create separated gaps on the invariant surface of constant energy. Moreover,
the threshold for the applicability of the theorem, i.e., the actual value of ε
below which the theorem applies, could be unrealistic, unless one considers
very localized situations. Although there are no general definite proofs in this
sense, many numerical calculations made independently by, e.g., A. Milani,
J. Wisdom and J. Laskar, show that at least the motion of the minor planets
looks far from being a quasi–periodic one.

Thus, the problem of stability requires further investigation. In this re-
spect, a way out may be found by proving that some relevant quantities,
e.g., the actions of the system, remain close to their initial value for a long
time; this could lead to a sort of “effective stability” that may be enough for
physical application. In more precise terms, one could look for an estimate∣∣p(t) − p(0)

∣∣ = O(εa) for all times |t| < T (ε), were a is some number in the
interval (0, 1) (e.g., a = 1/2 or a = 1/n), and T (ε) is a “large” time, in some
sense to be made precise.

The request above may be meaningful if we take into consideration some
characteristics of the dynamical system that is (more or less accurately) de-
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scribed by our equations. In this case the quest for a “large” time should be
interpreted as large with respect to some characteristic time of the physical
system, or comparable with the lifetime of it. For instance, for the nowadays
accelerators a characteristic time is the period of revolution of a particle of
the beam and the typical lifetime of the beam during an experiment may
be a few days, which may correspond to some 1010 revolutions; for the solar
system the lifetime is the estimated age of the universe, which corresponds
to some 1010 revolutions of Jupiter; for a galaxy, we should consider that the
stars may perform a few hundred revolutions during a time as long as the age
of the universe, which means that a galaxy does not really need to be much
stable in order to exist.

From a mathematical viewpoint the word “large” is more difficult to ex-
plain, since there is no typical lifetime associated to a differential equation.
Hence, in order to give the word “stability” a meaning in the sense above it
is essential to consider the dependence of the time T on ε. In this respect the
continuity with respect to initial data does not help too much. For instance,
if we consider the trivial example of the equilibrium point of the differential
equation ẋ = x one will immediately see that if x(0) = x0 > 0 is the initial
point, then we have x(t) > 2x0 for t > T = ln 2 no matter how small is x0;
hence T may hardly be considered to be “large”, since it remains constant
as x0 decreases to 0. Conversely, if for a particular system we could prove,
e.g., that T (ε) = O(1/ε) then our result would perhaps be meaningful; this is
indeed the typical goal of the theory of adiabatic invariants.

Stronger forms of stability may be found by proving, e.g., that T (ε) ∼
1/εr for some r > 1; this is indeed the theory of complete stability due to
Birkhoff. As a matter of fact, the methods of perturbation theory allow us
to prove more: in the inequality above one may actually choose r depending
on ε, and increasing when ε → 0. In this case one obtains the so called
exponential stability, stating that T (ε) ∼ exp(1/εb) for some b. Such a strong
result was first stated by Moser (1955) and Littlewood (1959) in particular
cases. A complete theory in this direction was developed by Nekhoroshev, and
published in 1978.

The lectures of Benettin in this volume deal with the application of the
theory of Nekhoroshev to some interesting physical systems, including the col-
lision of molecules, the classical problem of the rigid body and the triangular
Lagrangian equilibria of the problem of three bodies.
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1 Introduction

The purpose of these lectures is to discuss some physical applications of Hamil-
tonian perturbation theory. Just to enter the subject, let us consider the usual
situation of a nearly-integrable Hamiltonian system,

H(I, ϕ) = h(I) + εf(I, ϕ) , I = (I1, . . . , In) ∈ B ⊂ R
n

ϕ = (ϕ1, . . . , ϕn) ∈ T
n , (1.1)

B being a ball in R
n. As we shall see, such a framework is often poor and not

really adequate for some important physical applications, nevertheless it is a
natural starting point. For ε = 0 the phase space is decomposed into invariant
tori

{
I
}
× Tn, see figure 1, on which the flow is linear:

I(t) = Io , ϕ(t) = ϕo + ω(Io)t ,

with ω = ∂h
∂I . For ε �= 0 one is instead confronted with the nontrivial equations

İ = −ε ∂f
∂ϕ

(I, ϕ) , ϕ̇ = ω(I) + ε
∂f

∂I
(I, ϕ) . (1.2)

Different stategies can be used in front of such equations, all of them sharing
the elementary idea of “averaging out” in some way the term ∂f

∂ϕ , to show that,
in convenient assumptions, the evolution of the actions (if any) is very slow.
In perturbation theory, “slow” means in general that ‖I(t) − I(0)‖ remains
small, for small ε, at least for t ∼ 1/ε (that is: the evolution is slower than the
trivial a priori estimate following (1.2)). Throughout these lectures, however,
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2 Giancarlo Benettin

“slow” will have the stronger meaning of “exponentially slow”, namely (with
reference to any norm in R

n)

‖I(t)− I(0)‖ < I (ε/ε∗)b for |t| < T e(ε∗/ε)a

, (1.3)

T , I, a, b, ε∗ being positive constants. It is worthwhile to mention that stabil-
ity results for times long, though not infinite, are very welcome in physics:
indeed every physical observation or experiment, and in fact every physical
model (like a frictionless model of the Solar System) are sensible only on an
appropriate time scale, which is possibly long but is hardly infinite.2 Results
of perpetual stability are certainly more appealing, but the price to be paid
— like ignoring a dense open set in the phase space, as in KAM theory — can
be too high, in view of a clear physical interpretation.

Fig. 1. Quasi periodic motion on invariant tori.

Poincaré, at the beginning of his Mèthodes Nouvelles de la Méchanique Céleste
[Po1], stressed with emphasis the importance of systems of the form (1.1),
using for them the strong expression “Problème général de la dynamique”. As
a matter of fact, systems of the form (1.1), or natural generalizations of them,
are met throughout physics, from Molecular Physics to Celestial Mechanics.
Our choice of applications — certainly non exhausting — will be the following:
2 Littlewood in ’59 produced a stability result for long times, t ∼ exp(log ε)2, in

connection with the triangular Lagrangian points, and his comment was: “this is
not eternity, but is a considerable slice of it” [Li].
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• Boltzmann’s problem of the specific heats of gases: namely understanding
why some degrees of freedom, like the fast internal vibration of diatomic
molecules, are essentially decoupled (“frozen”, in the later language of
quantum mechanics), and do not appreciably contribute to the specific
heats.

• The fast-rotations of the rigid body (equivalently, a rigid body in a weak
force field, that is a perturbation of the Euler–Poinsot case). The aim
is to understand the conditions for long-time stability of motions, with
attention, on the opposite side, to the possible presence of chaotic motions.
Some attention is deserved to “gyroscopic phenomena”, namely to the
properties of motions close to the (unperturbed) stationary rotations.

• The stability of elliptic equilibria, with special emphasis on the “triangular
Lagrangian equilibria” L4 and L5 in the (spatial) circular restricted three
body problem.

There would be other interesting applications of perturbation theory, in differ-
ent fields: for example problems of magnetic confinement, the numerous stabil-
ity problems in asteroid belts or in planetary rings, the stability of bounches
of particles in accelerators, the problem of the physical realization of ideal
constraints. We shall not enter them, nor we shall consider any of the recent
extensions to systems with infinitely many degres of freedom (localization of
excitations in nonlinear systems; stability of solutions of nonlinear wave equa-
tions; selected problems from classical electrodynamics...), which would be
very interesting, but go definitely bejond our purposes.

Fig. 2. An elementary one–dimensional model of a diatomic gas.

As already remarked, physical systems, including those we shall deal with,
typically do not fit the too simple form (1.1), and require a generalization: for
example

H(I, ϕ, p, q) = h(I) + εf(I, ϕ, p, q) , (1.4)

or also
H(I, ϕ, p, q) = h(I) +H(p, q) + εf(I, ϕ, p, q) , (1.5)

the new variables (q, p) belonging to R2m (or to an open subset of it, or to a
manifold). In problems of molecular dynamics, for the specific heats, the new
degrees of freedom represent typically the centers of mass of the molecules (see
figure 2), and the Hamiltonian fits the form (1.5). Instead in the rigid body
dynamics, as well as in many problems in Celestial Mechanics, p, q are still
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action–angle variables, but the actions do not enter the unperturbed Hamil-
tonian, and this makes a relevant difference. The unperturbed Hamiltonian,
if it does not depend on all actions, is said to be properly degenerate, and the
absent actions are themselves called degenerate. For the Kepler problem, the
degenerate actions represent the eccentricity and the inclination of the orbit;
for the Euler-Poinsot rigid body they determine the orientation in space of the
angular momentum. The perturbed Hamiltonian, for such systems, fits (1.4).
Understanding the behavior of degenerate variables is physically important,
but in general is not easy, and requires assumptions on the perturbation.3 Such
an investigation is among the most interesting ones in perturbation theory.

As a final introductory remark, let us comment the distinction, proposed
in the title of these lectures, between “exponential estimates” and “Nekhoro-
shev theorem”.4 As we shall see, some perturbative problems concern systems
with essentially constant frequencies. These include isochronous systems, but
also some anisochronous systems for which the frequencies stay nevertheless
almost constants during the motion, as is the case of molecular collisions.
Such systems require only an analytic study: in the very essence, it is enough
to construct a single normal form, with an exponentially small remainder, to
prove the desired result. We shall address these problems with the generic
expression “exponential estimates”. We shall instead deserve the more spe-
cific expression “Nekhoroshev theorem”, or theory, for problems which are
effectively anisochronous, and require in an essential way, to be overcome,
suitable geometric assumptions, like convexity or “steepness” of the unper-
turbed Hamiltonian h (and occasionally assumptions on the perturbation,
too). The geometrical aspects are in a sense the heart of Nekhoroshev theo-
rem, and certainly constitute its major novelty. As we shall see, geometry will
play an absolutely essential role both in the study of the rigid body and in
the case of the Lagrangian equilibria.

These lectures are organized as follows: Section 2 is devoted to exponential
estimates, and includes, after a general introduction to standard perturbative
methods, some applications to molecular dynamics. It also includes an ac-
count of an approximation proposed by Jeans and by Landau and Teller,
which looks alternative to standard methods, and seems to work excellently
in connection with molecular collisions. Section 3 is fully devoted to the Jeans–
Landau–Teller approximation, which is revisited within a mathematically well
posed perturbative scheme. Section 4 contains an application of exponential
estimates to Statistical Mechanics, namely to the Boltzmann question about
the possible existence of long equilibrium times in classical gases. Section 5
contains a general introduction to Nekhoroshev theorem. Section 6 is devoted
3 This is clear if one considers, in (1.4), a perturbation depending only on (p, q):

these variables, for suitable f , can do anything on a time scale 1/ε.
4 Such a distinction is not common in the literature, where the expression “Nekhoro-

shev theorem” is often ued as a synonymous of stability results for exponentially
long times.



Physical Applications of Nekhoroshev Theorem 5

to the applications of Nekhoroshev theory to Euler–Poinsot perturbed rigid
body, while Section 7 is devoted to the application of the theory to elliptic
equilibria, in particular to the stability of the so–called Lagrangian equilibrium
points L4, L5 in the (spatial) circular restricted three body problem.

The style of the lectures will be occasionally informal; the aim is to provide
a general overview, with emphasis when possible on the connections between
different applications, but with no possibility of entering details. Proofs will
be absent, or occasionally reduced to a sketch when useful to explain the
most relevant ideas. (As is well known to researchers active in perturbation
theory, complete proofs are long, and necessarily include annoying parts, so for
them we forcely demand to the literature.) Besides rigorous results, we shall
also produce heuristic results, as well as numerical results; understanding a
physical system requires in fact, very often, the cooperation of all of these
investigation tools.

Most results reported in these lectures, and all the ideas underlying them,
are fruit on one hand of many years of intense collaboration with Luigi Gal-
gani, Antonio Giorgilli and Giovanni Gallavotti, from whom I learned, in the
essence, all I know; on the other hand, they are fruit of the intense collab-
oration, in the last ten years, with my colleagues Francesco Fassò and more
recently Massimiliano Guzzo. I wish to express to all of them my gratitude. I
also wish to thank the director of CIME, Arrigo Cellina, and the director of
the school, Antonio Giorgilli, for their proposal to give these lectures. I finally
thank Massimiliano Guzzo for having reviewed the manuscript.

2 Exponential Estimates

We start here with a general result concerning exponential estimates in exactly
isochronous systems. Then we pass to applications to molecular dynamics, for
systems with either one or two independent frequencies.

Fig. 3. The complex extended domains of the action–angle variables.

A. Isochronous Systems

Let us consider a system of the form (1.1), with linear and thus isochronous h:

H(I, ϕ) = ω · I + εf(I, ϕ) . (2.1)
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Given an “extension vector” 
 = (
I , 
ϕ), with positive entries, we define the
extended domains (see figure 3)

Δ�(I) =
{
I ′ ∈ Cn : |I ′j − Ij | < 
I , j = 1, . . . , n

}
B� =

⋃
I∈BΔ�(I)

S� =
{
ϕ ∈ Cn : | Imϕj | < 
ϕ, j = 1, . . . , n

}
D� = B� × S� .

(2.2)
Given two extension vectors 
 and 
′, inequalities of the form 
′ ≤ 
 are
intended to hold separately on both entries. All functions we shall deal with,
will be real analytic (that is analytic and real for real variables) in D�′ , for
some 
′ ≤ 
. Concerning norms, we make here the most elementary and
common choices,5 and denote∥∥u∥∥∞

�′ = sup
(I,ϕ)∈D�′

|u(I, ϕ)| ,
∥∥v∥∥∞ = max

1≤j≤n
|vj | , |ν| =

∑
j
|νj | ,

respectively for u : D�′ → C, for v ∈ Cn and for ν ∈ Zn. By 〈 . 〉ϕ we shall
denote averaging on the angles.

A simple statement introducing exponential estimates for the isochronous
system (2.1) is the following:

Proposition 1. Consider Hamiltonian (2.1), and assume that:

(a) f is analytic and bounded in D�;
(b) ω satisfies the “Diophantine condition”

|ν · ω| > γ

|ν|n ∀ν ∈ Z
n , ν �= 0 , (2.3)

for some positive constant γ;
(c) ε is small, precisely

ε < ε∗ =
C
∥∥f∥∥∞

�

γ
I
nϕ
,

for suitable C > 0.

Then there exists a real analytic canonical transformation (I, ϕ) = C(I ′, ϕ′),
C : D 1

2�
→ D�, which is small with ε:

∥∥I ′ − I∥∥∞ < c1 ε 
I , ∥∥ϕ′ − ϕ∥∥∞ < c2 ε 
ϕ
(with suitable c1, c2 > 0), and gives the new Hamiltonian H ′ := H ◦ C the
normal form
5 Obtaining good results requires in general the use of more sophisticated norms.

But final results can always be expressed (with worse constants) in terms of these
norms.
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H ′(I ′, ϕ′) = ω · I ′ + εg(I ′, ε) + ε e−(ε∗/ε)a R(I ′, ϕ′, ε) , (2.4)

with a = 1/(n+ 1) and

g = 〈f〉ϕ +O(ε) ,
∥∥g∥∥∞1

2 �
≤ 2

∥∥f∥∥∞
�
,

∥∥R∥∥∞1
2�
≤
∥∥f∥∥∞.

Such a statement (with some differences in the constants) can be found
for example in [Ga1,BGa,GG,F1]; see also [B]. The optimal value 1/(n + 1)
of the exponent a, which is the most crucial constant, comes from [F1]. The
interest of the proposition is that the new actions I ′ are “exponentially slow”,∥∥İ∥∥∞ ∼ εe−(ε∗/ε)a

,

and consequently up to the large time |t| ∼ e(ε∗/ε)a

, also recalling
∥∥I ′−I∥∥∞ ∼

ε, it is∥∥I ′(t)− I ′(0)
∥∥∞ < (const) ε ,

∥∥I(t)− I(0)
∥∥∞ < (const) ε . (2.5)

The behavior of I and I ′, as resulting from the proposition, is illustrated in
figure 4.

Fig. 4. A possible behavior of I and I ′ as functions of time, according to Proposition
1; T ∼ e(ε∗/ε)a

Remark: As is well known (and easy to prove), Diophantine frequencies are
abundant in measure: in any given ball, the set of frequencies which do not
satisfy (2.3) has relative measure bounded by (const)

√
γ. Non Diophantine

frequencies, however, form a dense open set.
Sketch of the proof. The proof of proposition 1 includes lots of details, but
the scheme is simple; we outline it here both to introduce a few useful ideas
and to provide some help to enter the not always easy literature. Proceding
recursively, one performs a sequence of r ≥ 1 elementary canonical transforma-
tions C1, . . . , Cr, with Cs : D(1− s

2r )� → D(1− s−1
2r )�, posing then C = Cr ◦ · · ·◦C1.

The progressive reduction of the analyticity domain is necessary to perform,
at each step, Cauchy estimates of derivatives of functions, as well as to prove
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convergence of series. After s steps one deals with a Hamiltonian Hs in normal
form up to the order s ≤ r − 1, namely

Hs(I, ϕ) = h(I) + εgs(I, ε) + εs+1fs(I, ϕ, ε) , (2.6)

and operates in such a way to push the remainder fs one order further, that
is to get Hs+1 = Hs ◦ Cs+1 of the same form (2.6), but with s+ 1 in place of
s. To this end, the perturbation fs is split into its average 〈fs〉, which does
not depend on the angles and can be progressively accumulated into g, and
its zero-average part fs − 〈fs〉; the latter is then “killed” (at the lowest order
s + 1) by a suitable choice of Cs+1. No matter how one decides to perform
canonical transformations — the so-called Lie method is here recommended,
but the traditional method of generating functions with inversion also works
— one is confronted with the Hamilton–Jacobi equation, in the form

ω · ∂χ
∂ϕ

= fs − 〈fs〉 , (2.7)

the unknown χ representing either the generating function or the the generator
of the Lie series (the auxiliary Hamiltonian entering the Lie method). Let us
recall that in the Lie method canonical transformations are defined as the
time–one map of a convenient auxiliary Hamiltonian flow, the new variables
being the initial data. In the problem at hand, to pass from order s to order
s+1, we use an auxiliary Hamiltonian εsχ, and so, denoting its flow by Φt

εsχ,
the new Hamiltonian Hs+1 = Hs ◦ Φ1

εsχ is

Hs+1 = h+ εgs + εs+1fs + εs+1{χ, h}+O(εs+2) ;

developing the Poisson bracket, and recalling that ∂χ
∂ϕ has zero average, (2.7)

follows.
Equation (2.7) is solved by Fourier series,

χ(I, ϕ) =
∑

ν∈Zn\{0}

f̂s,ν(I) eiν·ϕ

iν · ω ,

where f̂s,ν(I) are the Fourier coefficients of fs; assumption (b) is used to
dominate the “small divisors” ν ·ω, and it turns out that the series converges
and is conveniently estimated in the reduced strip S(1− s

2r )�.
This procedure works if ε is sufficiently small, and it turns out that at each

step the remainder reduces by a factor ελ, with

λ =
c
∥∥f∥∥∞

�
rn+1

γ
I
nϕ
,

c being some constant. (One must be rather clever to get here the optimal
power rn+1, and not a worse higher power. Complicated tricks must be intro-
duced, see [F1].) The size of the last remainder fr is then, roughly,
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εr+1λr ∼ ε (εrn+1)r
∥∥f∥∥∞

�
.

Quite clearly, raising r at fixed ε would produce a tremendous divergence.6

But clearly, it is enough to choose r dependent on ε, in such a way that (for
example) ελ � e−1,

r ∼ ε−1/(n+1) ,

to produce an exponentially small remainder as in the statement of Propo-
sition 1. It can be seen [GG] that this is nearly the optimal choice of r as a
function of ε, so as to minimize, for each ε, the final remainder. The situation
resembles nonconvergent expansions of functions in asymptotic series. The
“elementary” idea of taking r to be a function of ε, growing to infinity when
ε goes to zero, is the heart of exponential estimates and of the analytic part
of Nekhoroshev theorem.
Remark: As we have seen, one proceeds as if the gain per step were a reduction
of the perturbation by a factor ε (see (2.6)). This is indeed the prescription,
but the actual gain at each step is practically much less, just a factor e−1.
The point is that, due to the presence of small divisors, and to the necessity
of making at each step Cauchy estimates with reduction of the analyticity
domain, the norm of fr grows very rapidly with r. The essence of the proof
is to show that ‖fr‖ grows “only” as rr/a, with some positive a (as large as
possible, to improve the result). Such an apparently terrible growth gives rise
to the desired exponential estimates, the final remainder decreasing as e−1/εa

.

Fig. 5. Elementary molecular collisions

B. One Frequency Systems: Preliminary Results

For n = 1 the above proposition becomes trivial — systems with one degree
of freedom are integrable — but it is not if we introduce additional degrees
of freedom, and pass from Hamiltonians of the form (1.1) to Hamiltonians
of the form (1.5). The model we shall consider here represents the collision
of a molecule with a fixed smooth wall in one dimension, or equivalently the
6 By the way: the condition in ε which allows performing up to r elementary canon-

ical transformations, has the form ελ < 1: that is, raising r, before than leading
to a divergence, would be not allowed.
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collinear collision of a point particle with a diatomic molecule, see figure 5; a
simple possible form for the Hamiltonian is the following:

H(π, ξ, p, q) = 1
2 (π2 + ω2ξ2) + 1

2p
2 + V (q − 1

2ξ) , (2.8)

where q ∈ R
+ and p ∈ R are position and momentum of the center of mass of

the molecule, while ξ is an internal coordinate (the excess length with respect
to the rest length of the molecule) and π is the corresponding momentum.
The potential V is required to have the form outlined in the figure, namely
to decay to zero (in an integrable way, see later) for q → ∞ and, in order to
represent a wall, to diverge at q = 0. For given finite energy and large ω, ξ is
small, namely is O(ω−1); to exploit this fact it is convenient to write

V (q − 1
2ξ) = V (q) + ω−1V(q, ξ) ,

with V(q, ξ) bounded for finite energy and large ω. Passing to the action-angle
variables (I, ϕ) of the oscillator, defined by

π =
√

2Iω cosϕ , ξ = ω−1
√

2Iω sinϕ ,

the Hamiltonian (for which we mantain the notation H) takes finally the form

H(I, ϕ, p, q) = ω I +H(p, q) + ω−1f(I, ϕ, p, q) , (2.9)

with
H = 1

2p
2 + V (q) .

The physical quantity to be looked at, for each motion, is the energy exchange
between the two degrees of freedom due to the collision, namely

ΔE = ω · (I(+∞)− I(−∞)) ; (2.10)

this is indeed the main quantity which is responsible of the approach to ther-
mal equilibrium in physical gases.

The natural domain of H is a real set D = I × T× B, where I and B are
defined by conditions on the energy of the form

E0 < ω I < 2E0 , H(p, q) < E1 . (2.11)

Given now a four-entries extension vector 
 = (ω−1
I , 
ϕ, 
p, 
q), the complex
extended domain D� is defined in obvious analogy with (2.2). Due to the decay
of the coupling term f at infinity, it is convenient to introduce, in addition to
the uniform norm

∥∥f∥∥∞
�

, the q–dependent “local norm”

F(q) = sup
(I,ϕ,p,q̃)∈D�

|q̃−q|<�q

f(I, ϕ, p, q̃) .

The next proposition is a revisitation of a result contained in [Nei1], explicitly
stated and proved in [BGG1,BGG2]; the improvement in [F1] is also taken
into account.
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Proposition 2. Assume that:

i. H is analytic and bounded in D�;
ii. F(q), as defined above, dacays to zero in an integrable way for |q| → ∞;
iii. ω is large, say ω > ω∗ with suitable ω∗.

Then there exists a canonical transformation (I, ϕ, p, q) = C(I ′, ϕ′, p′, q′), C :
D 1

2�
→ D�, small with ω−1 and reducing to the identity at infinity:

|I ′ − I| < ω−2F(q)
I , |α′ − α| < ω−1F(q)
α for α = ϕ, p, q ,

which gives the new Hamiltonian H ′ = H ◦ C the normal form

H ′(I ′, ϕ′, p′, q′) = ω I ′ +H(p′, q′) + ω−1g(I ′, p′, q′, ω)
+ ω−1e−ω/ω∗ R(I ′, ϕ′, p′, q′) ,

(2.12)

with g = 〈f〉ϕ, and g, R bounded by

|g(I ′, ϕ′, p′, q′)| , |R(I ′, ϕ′, p′, q′)| < (const)F(q) .

The consequence of this proposition onΔE is immediate: consider any real
motion (I(t), ϕ(t), p(t), q(t)), −∞ < t < ∞, representing a bounching of the
molecule on the wall, so that q(t) → ∞ for t → ±∞. Let (2.11) be satisfied
initially, that is asymptotically at t → −∞. Then ∂R

∂ϕ (I(t), ϕ(t), p(t), q(t)) is
dominated by (const)F(q(t)), which vanishes at infinity, and thanks to the
fact that asymptotically C is the identity, it is

|ΔE| = |ω · (I(∞) − I(−∞))| = |ω · (I ′(∞)− I ′(−∞))|

= e−ω/ω∗
∣∣∣ ∫∞

−∞
∂R
∂ϕ′ (I ′(t), ϕ′(t), p′(t), q′(t)) d t

∣∣∣
< (const) e−ω/ω∗

∣∣∣ ∫∞
−∞F(q(t)) d t

∣∣∣ < (const) e−ω/ω∗ .

(2.13)

The behavior of I and I ′ is illustrated in figure 6. In the very essence: due to
the local character of the interaction, exploited through the use of the local
norm F , “slow evolution” of the action acquires, in such a scattering problem,
a specially strong meaning, namely the change in the action is exponentially
small after an infinite time interval. As is remarkable, the canonical transfor-
mation and the oscillation of the energy are large, namely of order O(ω−1),
during the collision, and only at the end of it they become exponentially small.

C. Boltzmann’s Problem of the Specific Heats of Gases

The above result is relevant, in particular, for a quite foundamental question
raised by Boltzmann at the and of 19th century, and reconsidered by Jeans a
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Fig. 6. I and I ′ as functions of t, in molecular collisions

few years later, concerning the classical values of the specific heats of gases.
One should recall that at Boltzmann’s time the molecular theory of gases was
far from being universally accepted. In some relevant questions the theory was
indubitably succesful: in particular, via the equipartition principle, it provided
the well known mechanical interpretation of the temperature as kinetic energy
per degree of freedom, and led to the celebrated link CV = f

2 R (R denoting
the usual constant of gases) between the constant-volume specific heat, which
charachterizes the thermodynamics of an ideal gas, and the number f of de-
grees of freedom of each molecule, thought of as a small mechanical device;
more precisely, f is the number of quadratic terms entering the expression of
the energy of a molecule.

Fig. 7. Vibrating molecules, CV = 7
2
R, and rigid ones, CV = 5

2
R

The situation, however, was still partially contradictory: on the one hand,
the above formula explained in a quite elementary way why the specific heats
of gases generally occur in discrete values, and why gases of different nature,
whenever their molecules have the same mechanical structure, also exhibit the
same specific heat. On the other hand, some questions remained obscure: in
particular, in order to recover the experimental value CV = 5

2R of diatomic
gases, it was necessary to ignore the two energy contributions (kinetic plus
potential) of the internal vibrational degree of freedom, and treat diatomic
molecules as rigid ones; see figure 7. In addition, in some cases the specific
heats of gases were known to depend on the temperature, more or less as in
figure 8, as if f was increasing with the temperature: and this is apparently
meaningless.
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Fig. 8. The specific heat CV as function of the diatomic gas.

As is well known, these phenomena were later explained by means of quan-
tum mechanics: they were called “freezing” of the high–frequency degrees of
freedom, and interpreted as a genuine quantum effect. As is less known Boltz-
mann, already in 1895 before Plank’s work, was able to imagine a completely
classical mechanism to explain, at least qualitatively, the freezing phenomenon
[Bo1,Bo2]. The idea is quite elementary: take a diatomic gas in equilibrium,
and give it energy, for example by compressing it. In principle, in agreement
with the equipartition theorem, energy goes eventually uniformly distributed
among all degrees of freedom (with a double contribution, kinetic and po-
tential, for the vibrational ones), so one should count f = 7. However —
according to Boltzmann — in ordinary conditions the time scale one should
wait in order for the vibrational degrees of freedom to be effectively involved
in the energy sharing, might be so large, compared to the experimental times,
that in any experiment such degrees of freedom would appear, to any practical
extent, to be completely frozen. Correspondingly, one should take for f the
“effective value” f = 5, in agreement with experiments. In the very words of
Boltzmann [Bo1]:

“But how can the molecules of a gas behave as rigid bodies? Are they not

composed of smaller atoms? Probably they are; but the vis viva of their

internal vibration is transformed into progressive and rotatory motion so

slowly, that when a gas is brought to a lower temperature the molecules

may retain for days, or even for years, the higher vis viva of their internal

vibration corresponding to the original temperature.”

Only at higher temperatures the frequency of the molecules slowers (as in a
pendulum, when the amplitude grows), and moreover the translational time
scale, which provides the time unit in the problem, shortens: the fast degrees
of freedom are no more fast nor frozen, and the experimental value f = 7 is
recovered.

A few years later, namely immediately after Plank’s work, Jeans [J1,J2,J3],
surprisingly unaware of Boltzmann’s suggestion, reconsidered the question,
and studied heuristically both the collision of a diatomic molecule with an
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unstructured atom, to understand the anomalous specific heats, and the re-
lated problem of the lack of the “ultraviolet catastrophe” in the blackbody
radiation.7 Jeans’ purpose is to show that, in both cases, Plank’s quantization
was unnecessary.8 Let us restrict ourselves to the former problem, forgetting
the too complicated question of the blackbody radiation. The heuristic con-
clusion, or perhaps the convinciment reached by Jeans, is the following: if ϕo

denotes the asymptotic phase of the oscillator,

ϕo = lim
t→−∞

ϕ(t)− ωt , (2.14)

then the average 〈ΔE〉ϕo of ΔE on ϕo follows an exponential law of the form

〈ΔE〉ϕo ∼ e−τω , (2.15)

where τ is a convenient constant, not well defined but of the order of the
collision time. According to (2.15), for large ω — large “elasticity”, in Jeans’
own words — equilibrium times could get enormously long:

“In other words, the ‘elasticity’ could easily make the difference between

dissipation of energy in a fraction of a second and dissipation in billions of

years.”

(dissipation means here transfer of energy to the internal degrees of freedom).

D. The Jeans-Landau-Teller (JLT) Approximation
for a Single Frequency

Further contributions to the problem of the energy exchanges with fast degrees
of freedom in classical systems, came from Rutgers [Ru] and Landau and Teller
[LT], around 1936.9 Quite surprisingly, these authors are unaware of both
7 As is known, in conflict with experience and with the common sense, CV for the

blackbody was theoretically predicted to be infinite, with a diverging contribu-
tion of the high frequencies, simply because of the infinite number of degrees of
freedom.

8 Later on, however, Jeans reconsidered his point of view. Chapter XVI of his book
on gas theory [J3], where he better explains his point of view, is still present in
the 1916 second edition, but not in the 1920 third edition.

9 The very fundamental problem of quantization is obviously no more in discussion
in 1936, but other problems, like the possible dependence of the velocity of sound
on the frequency, were leading to the same question. In the very essence: the
velocity of sound depends on CV , and so if the effective CV depends on the time
scale of the experiment, then the velocity of the low and of the high frequency
sound waves (time scales of 10−1 and 10−4 sec respectively) could be different,
with a possibly observable dispersion. By the way: most of the consideration
contained in [LT], concerning the dispersion of sound, are nearly identical to
those reported by Jeans in the first two editions of his book [J3].
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Boltzmann and Jeans ideas. It is worthwhile to reconsider here [LT], although
in a somehow revisited form (see also [Ra]). The approximation scheme of
[LT] follows rather closely the ideas by Jeans, so we shall refer to it as to the
Jeans-Landau-Teller (JLT) approximation.

Consider again the Hamiltonian

H(I, ϕ, p, q) = ω I +H(p, q) + εf(I, ϕ, p, q) , (2.16)

which coincides with (2.9), but for the fact that ω−1 in front of the pertur-
bation f is here replaced by the small parameter ε. As we shall see, it is very
useful to treat ω and ε as independent parameters, recalling only at the end
ε = ω−1. Consider a motion (I(t), ϕ(t), p(t), q(t)), with asymptotic data for
t→ −∞

I(t)→ Io , ϕ(t)− ωt→ ϕo , p(t) → −po , q(t) + pot→ qo = 0 . (2.17)

Taking qo = 0 is not restrictive: it corresponds to fix the time origin, and gives
meaning to ϕo. One has obviously

ΔE = ωΔI = ω ε
∫ ∞

−∞

∂f

∂ϕ
(I(t), ϕ(t), p(t), q(t)) d t . (2.18)

The idea is that for small ε the motion is somehow close to the unperturbed
motion

I0(t) = Io , ϕ0(t) = ϕo + ωt , p0(t) , q0(t) , (2.19)

where (p0(t), q0(t)) is a solution of the (integrable) Hamiltonian problem H,
with asymptotic data as in (2.17). Replacing (2.19) into (2.18) gives a kind of
“first order” approximation

ΔE � ωΔI = ω ε
∫ ∞

−∞

∂f

∂ϕ
(Io, ϕo + ωt, p0(t), q0(t)) d t .

In some special cases the integral can be explicitly computed. But quite gen-
erally, see [BCS] for details, if p0(t), q0(t) are analytic, as functions of the
complex time t, in a strip | Im t| < τ (this of course requires H to be ana-
lytic), then it is

ΔE = E0 +
∑
ν>0

Eν cos(νϕo + αν) , (2.20)

with exponentially small Eν , namely

Eν = εEν e
−ντω for ν �= 0 , E0 = 0 . (2.21)

The coefficients Eν in principle depend on ω, but in a way much weaker
than exponential, and are practically treated as constants (the precise depen-
dence of Eν on ω is related to the nature of the singularities of p0(t), q0(t)).
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Since E0 is the average, that is the most important quantity in the physical
problem, the second of (2.21) is not satisfactory, and some inspection to higher
order contributions is mandatory; the result turns out to be,10 see Section 2,

E0 = O
(
ε2 e−2τω

)
. (2.22)

The JLT approximation is in agreement with the Proposition 2 above,
but the result sounds much better: it has the form of an equality, though ap-
proximate, rather than a less useful inequality; the exponential law appears
already at first order, rather than at the end of a complicated procedure; the
crucial coefficient τ in the exponent has a clear definition, and is connected in
a simple way to the unperturbed problem, while the constant ω∗ entering the
proposition is more obscure (ω∗, precisely as ε∗ in Proposition 1, expresses
the divergence rate of the best perturbative series one is able to produce). As
is also remarkable and new, the JLT approximation provides different expo-
nential laws for the different Fourier components of ΔE. The most important
components are E0, namely the average, and E1, which provides the domi-
nant contribution to the fluctuations. For large ω, however, fluctuations are
relatively large, that is E1 � E0; this will be important, see section 4 below.
Finally, it is worthwhile to mention that the JLT approximation naturally
extends to other systems, for example a system with a rotator in place of the
oscillator [BCS],

H(I, ϕ, p, q) = 1
2I

2 +H(p, q) + εf(I, ϕ, p, q) ; (2.23)

the results for ΔE are practically identical to (2.20,2.21,2.22).

In front of such an appealing result, a natural question arises: is the heuris-
tic procedure meaningful, and in some sense reliable? Before discussing theo-
retically the approximation, and try to make it rigorous in suitable assump-
tions, let us compare the results with accurate numerical computations. As a
matter of fact, see [BGi,BF1,BChF1], the use of symplectic integration algo-
rithms in scattering problems allows to compute reliably very small energy
exchanges, as is necessary to test the exponential laws (2.21) and (2.22) on a
sufficiently wide range.11

10 On this point, both [LT] and its revisitation [Ra] are somehow weak: due to the
fact that Cartesian coordinates are used instead of the action–angle ones, some
second order terms spuriously enter the first order calculation, and are taken as
the result. This is surprising, since these terms are positive definite, as if the
oscillator could continuously gain energy. A better procedure [BCG] shows that
all second order terms are indeed O(ε2e−2τω), but their coefficients can have any
sign.

11 We cannot enter here the delicate problem of the accuracy of symplectic inte-
grators, and demand for this point to the literature, in particular to [BGi,BF1].
But it is worthwhile to recall here that the main tool to understand the behavior
of symplectic integration algorithms, in particular for scattering problems, comes
precisely from perturbation theory, and is a question of exponential estimates.
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Fig. 9. The Fourier components Eν of ΔE, ν = 1, 0, 2, 3, 4 (top to bottom), as
functions of ω, for model (2.16). Quadruple precision (33 decimal digits).

Figure 9 reports Eν as function of ω for ν = 0, 1, 2, 3. The figure refers to
the Hamiltonian (2.8), with V (x) = (const) e−x2

/x. The lines in semilog scale
represent the exponential laws; the computed values λν of the slopes agree
with the theoretical values λν = ντ for ν �= 0, λ0 = 2τ , within approximately
1%; τ is also computed numerically, with great accuracy, in an independent
way. It is worthwhile to observe that the measured energy exchanges range
over more than 30 orders of magnitude, and that it is possible to separate, for
example, E3 from E1 even when the former is much less than the latter (see
[BCS,BF1] for a discussion on this point). Even better results were obtained
for the rotator, that is for the system (2.23), which turns out to be easier
to be handled numerically. Multiprecision arithmetics allows increasing the
accuracy; the result, for ΔE ranging over about 100 orders of magnitudes, is
in figure 10,12 and the computed slopes turn out to agree with the theoretical
prediction within approximately 0.1%.

E. The JLT Approximation for Two Independent Frequencies

The case of two or more identical frequencies, entering the problem of the
collision of two or more identical molecules, easily reports to the case of a
12 Such a computation goes far beyond Physics, and was made only to test the

reliability of symplectic integrators. Aa is alse remarkable, for large ω the ratio
between E1 and E3 is tremendously large — it exceeds 1060 — and nevertheless
E3 is computed reliably, see [BF1].
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Fig. 10. The Fourier components Eν of ΔE, ν = 1, 0, 2, 3 (top to bottom), as
functions of ω, for model (2.23). Multiprecision (110 decimal digits).

single frequency; we shall discuss this point in Section 4, when we shall need
it. Here instead we consider the extension of the JLT approximation to the
delicate case of more than one independent frequencies. To be definite, we
shall refer to a specific model, namely

H(I, ϕ) =
n∑

j=1

I2j
2

+ f(t) g(ϕ) , I ∈ R
n , ϕ ∈ T

n , (2.24)

with the special choice

f(t) =
e−t2

t2 + τ2
, g(ϕ) = G

∑
ν∈Z2

e−�|ν| eiν·ϕ . (2.25)

This is a problem of adiabatic invariance, actually the simplest problem with
more than one frequency to which the JLT approximation applies. The rele-
vant features of the model are: (i) f has an analyticity strip of finite size τ , and
decays (in an integrable way) to zero for |t| → ∞; (ii) g is also analytic in a
strip of finite size 
, and has a full Fourier series with nonvanishing coefficients.
The fast decay ∼ e−t2 of the interaction is useful for numerical computations,
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but has no other motivation; the very regular decay of the Fourier components
of g simplifies the analysis. System (2.25) should be regarded as a simplified
model for the collision of two rotating molecules.

The JLT approximation for this model is straightforward, namely, denoting
as before by Io, ϕo the asymptotic data, it reads

ΔIj = −
∫ ∞

−∞
f(t)

∂g

∂ϕj
(ϕo + Iot) d t .

The integration, for f, g as in (2.24), is also easy, and one finds

ΔIj =
∑

ν∈Zn

Iν e
iν·ϕ , (2.26)

with
Iν = c ν e−τ |ν·Io|−�|ν| , c = πτ−1eτ

2
. (2.27)

What is not easy instead is the analysis of such result, namely understanding
which terms are small or large in (2.26). It must be stressed that in absence
of such analysis, the result is essentially formal and nearly empty. We are able
to proceed only in the simple case n = 2, Io = λΩ, for fixed Ω ∈ R2 and large
λ ∈ R

+, so that the expression for I takes the form

Iν = c ν e−λτ |ν·Ω|−�|ν| . (2.28)

Similar expressions can be found in [Ga2,S,DGJS] (in connection with the
splitting of separatrices, a problem which turns out to be strongly related), and
in [BCG,BCaF]. Still, for a generic Ω ∈ R2, the analysis is too difficult, and
the situation gets clear only under additional assumptions on Ω, of arithmetic
character. Following [BCaF], we consider here the special case Ω = (1,

√
2),

and proceed heuristically (for a rigorous treatement of a similar situation,
focused on the asymptotic behavior of the series for large λ, see [DGJS]).

A little reflection shows that, for large λ, the coefficients Iν entering the
sum (2.26) have very different size. The largest ones are those for which ν ·Ω
is small, that is the corresponding ν = (ν1, ν2) are such that −ν1/ν2 is a good
rational approximation of

√
2. The theory of continued fraction provides then

the following sequence13 of ν’s:

(1,−1) , (3,−2) , (7,−5) , (17,−12) , (41,−29) , . . .

For each ν in such a “resonant sequence”, it is convenient to report log ‖Iν‖
(euclidean norm) versus λ in logarithmic scale; this gives for each ν a straight
line

log ‖Iν‖ = −ανλ− βν ,

13 The rule, for Ω = (1,
√

2), is that the sequence starts with (1,−1) and (ν1,−ν2)
is followed by (ν1 + 2ν2,−ν1 − ν2).
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Fig. 11. The amplitudes ‖Iν‖ vs. λ, for ν in the resonant sequence, according to
the JLT approximation.

with
αν = |ν ·Ω| , βν = 
|ν|+ log ‖ν‖+ log c .

Note that, proceding in the sequence, αν lowers, while βν increases, so the lines
are as in figure 11 (the terms Iν , with ν out of the sequence, would produce
much lower lines, and correspondingly negligible contributions). Quite clearly,
even inside the sequence, the different terms have very different size, and
practically, for each λ, just one of them dominates, with the only exception
of narrow crossover regions around the intersection of the lines, where two
nearby terms are comparable. The conclusion is that, if we forget crossover
and denote by ν(λ) the ν giving for each λ the dominant contribution, then
the quantity of physical interest

ΔmaxI = max
ϕo∈T2

‖ΔI‖

follows the elementary law

ΔmaxI � ‖Iν(λ)‖ . (2.29)

This is practically a brocken line. Such a behavior is illustrated in figure 12,
where ΔmaxI, computed numerically on the basis of (2.26), is plotted versus
λ in semilog scale, for τ = 
 = 1.

In front of such an uncommon behavior, a numerical check of the theo-
retical results, to test the reliability of the approximation, looks mandatory.
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Fig. 12. A numerical plot of ΔmaxI. The curve resembles a brocken line, thoug it
is not.

The best test is computing numerically ΔmaxI, as function of λ, from the
dynamics, and compare the numerical outcome with the theoretical brocken
line. The result is shown in figure 13, for two different choices of the parameter
τ and 
 = 1; the crosses represent the numerical data, while the solid line is

Fig. 13. Plot of maxϕo ‖ΔI‖. The crosses are the numerical results, while the line is
the theoretical expectation according JLT. Left: τ = 1, 	 = 1; right: τ = 0.5, 	 = 1.
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the theoretical expectation. The agreement looks pretty good. Let us stress
that all constants in (2.26) and (2.27) are determined, with no free parameters
to be adjusted. For a more quantitative test, one can compare the measured
values of the constants αν and βν , obtained by a least square fit of the exper-
imental data, with the theoretical expressions above; another quantity which
can be tested is the ratio γν = ΔI2/ΔI1, which, according to (2.28), should be
ν2/ν1 when Iν dominates. The results of the test are reported in the Table,
for different values of the constants τ and 
, and for different dominant ν; α,
β and γ are there the theoretical values, while α′, β′ and γ′ are the corre-
sponding computed values. The agreement between theoretical and computed
quantities looks excellent, in some cases (for γ) even impressive.

Also in this case of two frequencies, one can compare the outcome of
the JLT approximation with rigorous inequalities obtained within traditional
perturbation theory. What it is easily proved rigorously is a proposition like
the following:

Proposition 3. Let H be as in (2.24), with f , g as in (2.25). Consider a
motion with I(−∞) = λΩ, and Ω ∈ R2 such that, for some γ > 0,

|ν ·Ω| > γ|ν| . (2.30)

Then there exists λ∗ > 0 such that, if λ > λ∗, it is

‖I(+∞)− I(−∞)‖ < (const)λ−1e−( λ
λ∗ )1/2

. (2.31)

The Table

τ 	 ν α α′ β β′ γ γ′

1.0 1.0 (7,-5) 0.0711 0.0709 7.70 7.76 1.400000 1.400003
(17,-12) 0.02942 0.02943 23.82 23.83 1.416666 1.416666

0.5 1.0 (7,-5) 0.03554 0.03551 7.76 7.78 1.40000 1.40001
(17,-12) 0.01472 0.01473 23.87 23.88 1.4166666 1.4166666

1.0 0.5 (17,-12) 0.02944 0.02945 9.320 9.325 1.416666 1.416666
(41,-29) 0.0122 0.0124 28.9 28.4 1.4193793 1.4193793

1.0 0.25 (17,-12) 0.0294 0.0296 2.07 2.10 1.4166 1.4165
(41,-29) 0.0122 0.0122 11.4 11.1 1.4137931 1.4137931

The strong Diophantine condition (2.30) is satisfied by a zero measure un-
countable set14 in R2, including Ω = (1,

√
2). Such a restriction allows to get

(λ/λ∗)a with a = 1
2 in (2.31).

14 To have a positive measure set in the space of frequencies, the denominator at
the r.h.s. of (2.30) needs to be |ν|n−1+ϑ, ϑ > 0, n being the number of frequencies
(n = 2 in the problem at hand). The optimal exponent of λ in the exponential
law is then a = 1/(n + ϑ).



Physical Applications of Nekhoroshev Theorem 23

The inequality (2.31) can be compared with the asymptotic behavior, for
large λ, of (2.24). The latter is studied rigorously in [DGJS], and heuristically
in [S,BCaF]; the result is

‖ΔI‖ � A e
τ2


τ

√
λ

λ0
(1 +O(

√
λ)) e−

√
λ/λ0 , λ−1

0 = (2 +
√

2)
τ ,

with A =
√

3(
√

2−1)π/2. Quite clearly, the JLT approximation is compatible
with rigorous perturbation theory. But clearly, there is no comparison in the
accuracy and power of results.

The next Sections 3 and 4 are fully devoted to further considerations on
the JLT approximation.

3 A Rigorous Version of the JLT Approximation
in a Model

A. Lindstedt Series Versus Von Zeipel Series

It is practically impossible, using the standard procedure of classical pertur-
bation theory outlined in Section 2-A, to go beyond results in the form of
upper bounds like (2.5) or (2.13), for the obvious reason that the higher order
terms in g and in the remainder R, in the normal forms (2.4) or (2.12), are
hardly known exactly, and only their norms are easily controlled. To produce
“exact estimates”, that is narrow two-sided inequalities, it is mandatory to
avoid chains of canonical transformations, and look directly at the behavior
of the solutions, specifically of I(t). This however is difficult: as is clear for ex-
ample from figure 6 (for definiteness, we refer here to molecular collisions) İ is
“large”, namely is O(ε) or O(ω−1), and a final exponential estimate, with no
accumulation of deviations, requires taking into consideration compensations
among deviations.

As a matter of fact, a branch of perturbation theory based on series ex-
pansions of the solution in the original variables, without canonical transfor-
mations, does exits, and is known in the literature as “Lindstet method”, or
method of Lindstet series. It is among the oldest branches of perturbation the-
ory, but it was soon abandoned in favor of the “von Zeipel method”, namely
the method based on canonical transformations and normal forms, because
the series developments appared to conduce quite rapidly to huge amounts of
terms, rather difficult to handle, and to apparently unavoidable divergences.

Nowadays, after the work of Eliasson [E] who showed how to overcome
these difficulties, Lindsted series had a kind of revival, and are presently used
both in KAM theory and in the related problem of the “splitting of separa-
trices” in forced pendula or similar systems. A rigorous analysis of the JLT
approximation by means of Lindstet series was produced in [BCG]; as a matter
of fact, the example there treated seems to be the simplest possible application
of the Lindsted method. In this section we shall explain such result.
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The Hamiltonian studied in [BCG] is

H(I, ϕ, p, q) = ωI +H(p, q) + εg(ϕ)V (q) , H(p, q) =
p2

2m
+ U(q) ,

with
I ∈ R , ϕ ∈ T

1 , (p, q) ∈ R
2 .

Thanks to the fact that the perturbation is independent of I, so that the
motion of ϕ is, trivially,

ϕ(t) = ϕo + ωt , (3.1)

such a model does not really represent the behavior of a diatomic molecule
in an external potential, rather the behavior of a point mass, with a super-
imposed periodic force F = −εg(ϕo +ωt)V ′(q). However, as shown in [BCG],
the generalization to a generic perturbation V (I, ϕ, p, q) is possible, and even
easy, as well as the generalization to the case (I, ϕ) ∈ Rn × Tn. But the lan-
guage and the notation get complicated, while no new ideas are added, so
we prefer to treat here only the simplest case. Concerning the choice of the
potentials U and V , we shall make here, as in [BCG], the easy choice

U(q) = V (q) = U0 e
−q/d , (3.2)

which allows explicit computations. The constants U0, d and m will be taken
respectively as units of energy, length and mass, and so put equal to one from
now on.

The quantity of interest, we recall, is

ΔE = ωI(t)
∣∣∣∞
t=−∞

= −H(p(t), q(t))
∣∣∣∞
t=−∞

as function of the asymptotic data of the trajectory at t = −∞.

B. The Energy–Time Variables

First of all, it is convenient to introduce for the translational degree of free-
dom new canonical variables in place of (p, q), precisely the energy–time vari-
ables (η, ξ); these are the analog, for unbounded motions, of the more familiar
action–angle variables. To this purpose, consider any solution

p0(η, t) , q0(η, t)

of the Hamilton equations for H, such that asymptotically the translational
energy is η, i.e. p(−∞) = −

√
2η. Solutions with the same η are identical up

to the choice of the time origin; the one symmetric in time turns out to be

p0(η, t) =
√

2η tanh
√
η

2
t , q0(η, t) = log

(cosh
√
η/2 t)2

η
. (3.3)
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We interpret these expressions as a change of variables, namely we pass from
(p, q) to the new variables (η, ξ) by the (canonical) substitution

p = p0(η, ξ) , q = q0(η, ξ) .

It is obviously H(p0(η, ξ), q0(η, ξ)) = η, while correspondingly the new Hamil-
tonian K(I, ϕ, η, ξ) = H(I, ϕ, p0(η, ξ), q0(η, ξ)) takes the form

K(I, ϕ, η, ξ) = ωI + η + εg(ϕ)f(η, ξ) ,

with
f(η, ξ) =

η

(cosh
√
η/2 ξ)2

. (3.4)

An inspection to (3.3) shows that the domain of analyticity of the transfor-
mation, and thus of f , is for any η > 0

| Im ξ| < τ(η) = π/
√

2η (3.5)

(the singularities nearest to the real axis are second order poles in ξ = ±iτ).
The energy exchange ΔE reads, in these new notations,

ΔE = −Δη = −η(+∞) + η(−∞) .

Using (3.1), the Hamilton equations associated toK practically reduce to only
one pair of time–dependent equations for η and ξ, namely

η̇ = εg(ϕo + ωt)fη(η, ξ) , ξ̇ = εg(ϕo + ωt)fξ(η, ξ) , (3.6)

with
fη = −∂f

∂ξ
, fξ =

∂f

∂η
. (3.7)

Such form of fη, fξ reflects the Hamiltonian character of the problem. This,
however, plays no role in the construction of Linstedt series, which are nat-
urally more general, and is useful only occasionally, to show that a huge set
of individually large terms, entering Δη, exactly vanish. So, for the only sake
to be clear, we shall proceed with generic fη, fξ, and recall (3.7) only when
necessary. The functions fη, fξ will be characterized by their analyticity prop-
erties, and for the fact that they vanish, in an integrable way, for ξ → ∞, so
as to represent a collision.

C. The Result

Consider a motion η(t), ξ(t) such that, asymptotically for t→ −∞,

η(t) → ηo , ξ(t)− t→ 0 ,

and expand it in power series of ε around the unperturbed motion η0(t) = ηo,
ξ0(t) = t:
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η(t) = ηo +
∞∑

h=1

εhηh(t) , ξ(t) = t+
∞∑

h=1

εhξh(t) . (3.8)

The series (in such a collisional problem) turn out to be convergent, for small
ε, uniformly in t. Denote by ηh,ν , ξh,ν , ν ∈ Z, the Fourier components, with
respect to ϕ0, respectively of ηh(+∞) and ξh(+∞). In these notations it is
then

ΔE = −
∑
ν∈Z

Ẽν e
iνϕo

, Ẽν =
∞∑

h=1

εhηh,ν . (3.9)

By replacing (3.8) into the equations of motions (3.6), one finds a hierarchy
of equations for ηh, ξh, complicated to write but conceptually easy. The first
order is straightforward: one just uses inside fη and fξ, in the equations of
motion (3.6), the unperturbed motion η(t) = ηo, ξ(t) = t, thus getting, for
example for η,

η̇1 = fη(ηo, t)g(ϕo + ωt) , η1(t) =
∫ t

−∞
fη(ηo, t′)g(ϕo + ωt′) dt′ . (3.10)

This is precisely the JLT approximation, rewritten in the (η, ξ) variables. Ac-
tually if

g(ϕ) =
∑
ν∈Z

gν e
iνϕ ,

then one immediately deduces

η1(+∞) =
∑
ν∈Z

η1,ν e
iνϕo

, η1,ν = gν
∫ ∞

−∞
fη(ηo, t)eiνωt dt .

For ν �= 0, by simply recalling that fη is analytic, as function of ξ, as far as
(3.5) is satisfied, one then gets

η1,ν ∼ gν e−τ |ν|ω .

Such an exponential law is useless for ν = 0: but thanks to the Hamiltonian
character of the problem, i.e. to the first of (3.7), it turns out that η1,0 exactly
vanishes:

η1,0 = −g0
∫ ∞

−∞

∂f

∂t
dt = −g0V (q(t))

∣∣∣∞
t=−∞

= 0 . (3.11)

For f as in (3.4), the integral for the dominant term η1,1 can be explicitly
computed, namely

η1,1 = 4πig1
ω2

eτω − e−τω
,

and so

ΔE = 8πg1
ε ω2

eτω − e−τω
sinϕo + · · · .
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Similar expressions are found for ξ1; the average ξ1,0, however, in general does
not vanish.

Let us now proceed beyond the first order. The complete hierarchy of
equations reads, for α either η or ξ:

αh(t) =
∫ t

−∞
Fα,h(t′) dt′ , (3.12)

with
Fα,1(t) = g(ϕo + ωt)fα(ηo, t) , (3.13)

and for h > 1:

Fα,h(t)=g(ϕo + ωt)
h−1∑
m=1

m∑
j=0

fm,j
α (ηo, t)

∑
k1,...,km≥1
|k|=h−1

ξk1 (t)· · ·ξkj (t)ηkj+1 (t)· · ·ηkm(t),

(3.14)
where |k| =

∑
i ki, while fm,j

α is the coefficient entering the Taylor expansion
of fα,

fm,j
α =

1
j!(m− j)!

∂mfα
∂ξj∂ηm−j

.

The procedure to be followed is now this:

(a) Proving convergence of all expansions, uniformly in t, for sufficiently
small ε.

(b) Working out conditions such that the lowest order term η1,ν , for ν �= 0,
dominates the series (3.9) for Ẽν . This requires, in particular, that at any
order h in ε the coefficients ηh,ν have at least a factor e−|ν|τω in front.

(c) Proving that for ν = 0 the Hamiltonian symmetry leads to a cancellation,
which generalizes (3.11): among terms contributing to Ẽ0, only those with
in front a factor e−2τω (or smaller) survive, while individually larger terms
exactly sum to zero.

The assumptions which are needed are the following: concerning g, it is sup-
posed to be analytic and bounded in a strip | Imϕ| < 
, for some positive 
;
without loss of generality, we can assume that g is bounded by 1 in the strip,
so that

|gν | ≤ e−�|ν| . (3.15)

Concerning fη, fξ, the technical assumption that turns out to be useful, and is
satisfied by f as in (3.4), is that the coefficients fm,j

α are analytic, as functions
of ξ, in a strip | Im ξ| < τ(η), and in any smaller strip | Im ξ| < (1 − δ)τ(η),
δ > 0, they are bounded by an expression of the form

|fm,j
α (η, s+ iσ)| ≤ Cmδ−m−m0w(s) (3.16)
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with some C > 0, m0 > 0 and∫ ∞

−∞
w(s) d s = A <∞ . (3.17)

A little reflections shows that these hypotheses are indeed natural in this
problem, and just make quantitative two elementary facts: (i) For given η,
the unperturbed motion q(t) is analytic for | Im t| < τ(η), with τ as in (3.5);
Cauchy estimates then easily lead to (3.16). (ii) Along any unperturbed mo-
tion, the coupling term V (q(t)) vanishes in an integrable way for t → ±∞.
For the potentials (3.2), one computes m0 = 3.

Proposition 1. In the above assumptions, denoting

B = 8CA , m1 = m0 + 1 ,

the following holds:

i. For |ε| < B−1 the series (3.8) converge, namely it is

|ηh(t)| , |ξh(t)| ≤ ABh−1 .

ii. The Fourier components ηh,ν and ξh,ν , respectively of ηh(+∞) and
ξh(+∞), satisfy the δ–corrected exponential estimates

|ηh,ν | |ξh,ν | ≤ ABh−1δ−hm1+1 e−|ν|τ(1−δ)ω−�|ν| , (3.18)

for any δ ∈ (0, 1).
iii. In the Hamiltonian case, the average ηh,0 satisfies the special exponential

estimate
|ηh,0| ≤ ABh−1δ−hm1+1 e−2τ(1−δ)ω . (3.19)

Comments:

1. The presence of the correction (1 − δ) at the exponents in the estimates
(3.18) shows that points (b), (c) of the above program are fulfilled only if
ε is specially small, namely

ε < (const)ω−m1 ; (3.20)

indeed, in order for the correction to disappear, in such a way that the first
order (which is exactly computed and has no correction) dominates, one
must take δ ∼ ω−1, but then (3.20) is necessary to ensure convergence.

2. If instead, as in the physical problem of molecular collisions, one has only
ε = ω−1, then only upper estimates to the energy exchange can be worked
out. Such upper estimates are quite interesting, and full in agreement with
numerical computations: in particular, taking δ = ε1/(2m1) = ω−1/(2m1),
for ω > B2 one gets
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|Ẽν | < (const) e−|ν|ωτ(1−ω−1/(2n))−�ν ;

for large ω, this expression gives precisely the observed exponential laws,
with the correct slopes. Such a result, even if non “exact” (it is not two–
sided) is nevertheless much better than the results which can be obtained
by the method of canonical transformation.

Fig. 14. The expansion of ηh in elementary trees.

D. Sketch of the Proof

The hierarchy of equations (3.12–3.14) has the form, for α either η or ξ,

αh(t) =
∑

m,j,k

∫ t

−∞
Kα

m,j(t
′) ξk1(t

′) · · · ξkj (t
′)ηkj+1 (t

′) · · · ηkm(t′) d t′ ,

where the range of the indices in the sum is as in (3.14), and the integration
kernel is

Km,j
α (t) = g(ϕo + ωt)fm,j

α (ηo, t)

(the dependence of Km,j
α on ϕo, ηo is left implicit). To each term of such

a huge sum it is natural to associate an “elementary tree”, see figure 14,
with a “root” labelled by α and t, and m ≥ 1 branches labelled ξk1 , . . . , ηkm .
The diagram (with labels) completely identifies the term, in the following
way: the number of branches gives m; the number of ξ–type branches gives
j; k1, . . . , km identify the integrand, and specify in particular that the tree
represents a contribution to αh(t), h = |k|−1. The circle stays for integration
on time, with kernel Km,j

α . To avoid overcounting, the rule is that ξ–type
branches stay above η-type branches.

From elementary trees one constructs “trees”, by recursively expanding
all branches ξk1(t) . . . , ηkm(t) in elementary trees, in all possible ways; the
expansion ends when all the end–branches represent either η1 or ξ1, whose
explicit expressions are in (3.10). Simple examples of trees are in figure 15.
Elementary rules provide a one to one correspondence between trees and con-
tributions to αh(t). Indeed, α and t are explicitly reported on the root; h
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Fig. 15. The trees contributing to η2 and η3.

is precisely the number of vertices of the tree (also equal to the number of
branches, including the root); each internal vertex represents an integration
over a variable tv, v = 0, . . . , h− 1, with integration kernel Km,j

α (tv), where α
is the label of the outcoming (the left) branch and m, j are as in elementary
trees; each end vertex v, coherently with (3.10), also represents an integration
on time, with kernel

K0,0
α (tv) = g(ϕo + ωtv)fα(ηo, tv) .

So, each tree with h vertices is a multiple integral in t0, . . . , th−1, the integra-
tion domain reflecting the partial ordering of the tree: (i) t′v ≤ tv if v′ follows
v in the tree,15 and (ii) t0 ≤ t, if v = 0 denotes the root vertex. From now on,
however, we shall restrict the attention to the asymptotic values αh(+∞), so
condition (ii) is ineffective and t0 extends from −∞ to ∞. For example, the
first two trees for η3(∞) in figure 15 corrispond respectively to∫ ∞

−∞
d t0

∫ t0

−∞
d t1

∫ t0

−∞
d t2f

2,1
η (ηo, t0)fξ(η

o, t1)fη(ηo, t2)g(ϕo + ωt0)g(ϕo + ωt1)g(ϕo + ωt2)

and to∫ ∞

−∞
d t0

∫ t0

−∞
d t1

∫ t1

−∞
d t2 f2,1

η (ηo, t0)fξ(η
o, t1)fξ(η

o, t2)g(ϕo + ωt0)g(ϕo + ωt1)g(ϕo + ωt2).

Let Θ denote the set of all topologically distinguishable tree–like diagrams; a
tree as above, contributing to αh(+∞), is completely identified by a diagram
ϑ ∈ Θ, and by the set of labels α = (α0, . . . , αh−1) “decorating” its root
and its branches, with α0 = α and α1, . . . , αh−1 arbitrary, but for the fact
that among the branches issuing from the same vertex, ξ–type ones must stay
above η–type ones. One can then write

αh(+∞) =
∑
ϑ∈Θ

∑
α:α0=α

V (ϑ, α) ,

where the “value” V (ϑ, α) of the tree is given by
15 In any tree, the vertices constitute in the obvious way a partially ordered set.
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V (ϑ, α) =
∫
T (ϑ)

∏
v∈ϑ

Kmv ,jv
αv

(ηo, tv) d t0 · · · d th−1 ,

the integration domain being

T (ϑ) =
{
t = (t0, . . . , th−1) ∈ R

h : t′v ≤ tv if v′ follows v
}
.

The value V (ϑ, α) is easily Fourier–analyzed: namely

V (ϑ, α) =
∑
ν∈Z

eiνϕo ∑
n∈Zh

ν

V (ϑ, α, n) ,

with Z
h
ν = {n ∈ Z

h :
∑

v nv = ν} and

V (ϑ, α, n) =
(∏

v∈ϑ

gnv

)∫
T (ϑ)

[ ∏
v∈ϑ

fmv,jv
αv

(ηo, tv)
]
eiωn·t d t0 · · · d th−1 .

(3.21)
Correspondingly, it is

αh,ν =
∑

ϑ∈Θh

∑
α:α0=α

∑
n∈Zh

ν

V (ϑ, α, n) .

The proof of points (i) and (ii), using (3.15)–(3.17), follows rather easily. In
the very essence, point (i) comes from a simple combinatorial counting of
diagrams. Point (ii) follows from simultaneously raising all the integration
paths to Im tv = ±(1 − δ)τ , with sign equal to the sign of ν; this produces
indeed the claimed exponential factor, with the (1−δ) correction (for the way
the integrals are nested, the imaginary part of all integration variables must
be the same).

What is not trivial instead is point (iii), that is the cancellation mechanism
leading at any order h to the special exponential estimate for the average ηh,0.
Some manipulation and further decomposition of trees is necessary, for which
we are forced to demand to [BCG]. As a result, one finds that among trees
which contribute to ηh,0, some have the desired factor e−2τ(1−δ)ω (or smaller)
in front, some other do not and are large. But these, in the Hamiltonian case,
exactly sum to zero. More precisely, they partition into classes according to a
curious rule: two trees are in the same class iff one is obtained from the other by
“moving the root” from the root vertex v0 to any other vertex v (this changes
the ordering of the tree), and moreover, along the uniquely determined path
from v0 to v, any label η is replaced by the conjugated one ξ, and conversely.
Thanks to the Hamiltonian symmetry (3.7), it turns out that the sum of the
values of all trees in the same class exactly vanishes; this indeed generalizes
(3.11) to higher orders. See figure 16 for an elementary example of a class
with zero sum; to better recognize the movement of the root, the vertices
are numbered. Unfortunately, here we cannot be more precise. A complete
description of the compensation mechanism is found in [BCG].
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Fig. 16. Illustrating the compensation mechanism: a class of individually large trees,
obtained one from the other by “moving of the root”, exactly sum to zero.

4 An Application of the JLT Approximation

A. The Problem

In Section 2 we introduced the JLT approximation, and observed that it is in
beautiful agreement with numerical results. In Section 3 we then proved on
an example that the approximation is correct (in reasonable assumptions) as
an upper bound to the energy exchange, while with extra assumptions it even
becomes “exact”. Here we shall use the JLT approximation as the basic tool
to investigate the Boltzmann–Jeans problem of the time scale for equilibrium
in an elementary model of a classical diatomic gas.

The model we have in mind represents a one–dimensional gas of many
identical molecules, see figure 2. Molecular collisions produce large energy
exchanges among the translational degrees of freedom and, separately, among
the vibrational ones (equality of the frequencies is important here). Instead,
as we know, for large ω the energy exchange between the translational degrees
of freedom and the vibrational ones, in each collision, is difficult. In such a
situation, it looks reasonable to assume that at any given moment, the two
populations of degrees of freedom are separately in thermal equilibrium, with
possibly different temperatures Ttr and Tvib, and ask for the law of approach
to thermal equilibrium. To answer the question, we proceed as follows:

(i) We assume that the dominant contribution to the energy exchanges be-
tween translational and vibrational degrees of freedom comes from well
separated two–molecules collisions (for a discussion about many molecules
collisions, see [BHS]). As the Hamiltonian for the two–molecules collision,
in the frame of the center of mass, we take

H(p, r, π1, π2, ξ1, ξ2) =
p2

4
+U(r)+

1
2
(π2

1 +π2
2)+

ω2

2
(ξ21 +ξ22)+V (r, ξ1, ξ2) ;

(4.1)
the separation between U and V is established by requiring V (r, 0, 0) = 0.
Both U and V are assumed to be smooth (in fact analytic) functions, and
to vanish for r → ∞, so as to describe a collision; as is natural, U(r) will
be assumed to diverge for r → 0.
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(ii) We use the JLT approximation, trivially adapted to the above Hamiltonian
(4.1), to determine the energy exchange ΔE between translational degrees
of freedom and vibrational ones in a single binary collision, as a function
of the asymptotic data of velocity and phase of the colliding molecules;

(iii)We then combine together the mechanical model and the statistical as-
sumptions, and deduce a law of the approach to equilibrium in the gas, of
the form

d
d t

(Tvib − Ttr) = −(Tvib − Ttr)F (ω, Ttr) , (4.2)

where F is a positive function which depends on the choice of the potentials
entering the Hamiltonian of the two–molecules collision. In very reasonable
assumptions, F turns out to decrease with ω as a stretched exponential;
in particular, if U(r) behaves, for small r, as r−s, it is

F (ω) ∼ e−aωα

, where α =
2

3 + 2/s
. (4.3)

Such a study, reported in [BHS], follows rather closely the study reported in
[OH,OHBFM] on a closely related problem, namely the approach to equilib-
rium in a strongly magnetized pure electron plasma. In place of the internal
vibration of molecules one has, in the plasma, the Larmor rotation of the
electrons around the magnetic field lines, see figure 17. The essence of the
problem, and its mathematical structure, are indeed quite similar.

Fig. 17. A model of a pure electron plasma. The fast Larmor rotation plays the
same role as the molecular vibrations.

B. Revisiting the JLT Approximation

We show here how the JLT approximation adapts to the problem at hand
of the two–molecules collision. To this purpose we introduce the action–angle
variables of the two oscillators,

πi =
√

2Iiω cosϕi , ξi = ω−1
√

2Iiω sinϕi , i = 1, 2 , (4.4)

which give the Hamiltonian the form

Ĥ(r, p, I1, I2, ϕ1, ϕ2) = ω(I1 + I2) +H(r, p) + V̂ (r, I1, I2, ϕ1, ϕ2) . (4.5)
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Because of the exact resonance, it is convenient to introduce the further canon-
ical change of variables (I1, I2, ϕ1, ϕ2) �→ (J, Γ, ψ, γ) defined by

J = I1 + I2 , Γ = I2 , ψ = ϕ1 , γ = ϕ2 − ϕ1 .

Notice that the angles now appear as one fast angle, ψ, and one slow angle,
γ. The coupling term now becomes of order ω−1

√
ωJ , and for given vibra-

tional energy (given temperature) and large ω, it is as small as ω−1. The final
Hamiltonian is thus of the form

K(r, p, J, Γ, ψ, γ) = ωJ +H(r, p) + ω−1
√
ωJ f(r, J, Γ, ψ, γ) , (4.6)

with

H(r, p) =
p2

4
+ U(r) .

Consider now any solution p0(t), r0(t) of the Hamilton equations for H, such
that asymptotically it is p(t) → po, r(t)− pot→ 0, and denote by τ the width
of its analyticity strip as function of the complex time. Following closely the
prescription of Section 2, it is easy to apply to such an Hamiltonian the JLT
approximation scheme, and compute the energy exchange ΔE = ωΔJ just by
integration along the unperturbed motion

p = p0(t) , r = r0(t) , J = Jo , Γ = Γ o , ψ = ψo + ωt , γ = γo .

Taking into account only the dominant terms, that is the first Fourier com-
ponent and the average, as a result of the approximation one finds

ΔE � E0 + E1 cos(ψo + α) ,

where E1 is exactly known, namely

E1 = A
√
ωJo e−ωτ , A =

∣∣∣ ∫ ∞

−∞
f1(r0(t+ iτ), Jo, Γ o, γo)eiωt d t

∣∣∣ , (4.7)

f1(r, J, Γ, γ) denoting the first coefficient of the Fourier series of F in the phase
ψ, while E0 (which is a second order quantity) is known only approximately,

E0 = O(e−2ωτ )� E1 .

The coefficient A is not exactly constant, but it depends on ω and on the
asymptotic data in a very smooth way; later on, it will be treated as a constant.

Accurate numerical cheks [BHS] show that, as is not surprising, the JLT
approximation works very well in this problem, too.

C. The Statistical Part of the Problem

Following the prescription of point (iii) above, we assume now that the asymp-
totic data of the colliding molecules at t = −∞ are distributed according to
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the Boltzmann rule, and on the basis of this statistical assumption we compute
the average energy exchange per unit time and per molecule. It is convenient
to eliminate the variable r, by introducing a Poincaré section r = r∗, with
r∗ so large that the interaction f is negligible. The number dn of pairs of
molecules which cross the section r = r∗ (with ṙ < 0) in time dt is given by

dn = nμC e−βtrEtr(p)−βvibEvib(J) |p| d p d J dΓ dψ d γ d t ,

where
βtr = 1/(kBTtr) , βvib = 1/(kBTvib) ,

Etr(p) =
p2

4
, Evib(J) = ωJ ,

while n is the total number of molecules and μ is the density. The domain D
of the different variables is

p ∈ (−∞, 0) , J ∈ (0,∞) , Γ ∈ (−J, J) , ψ, γ ∈ (0, 2π) .

The quantity we are interested in, is the average energy exchange per unit
time and per molecule,

〈 ˙Evib〉=Cμ

∫
D
ΔE(p, J, Γ, ψ, γ) e−βtrEtr(p)−βvibEvib(J)|p| d p d J dΓ d ψ d γ , (4.8)

and this might disorient: indeed the very detailed expression of E1 produced
by the JLT approximation is apparently useless, since the term
E1 cos(ψ + α) is trivially averaged out by the integration over ψ, while the
average E0 is known only approximately.

Fortunately, the two terms are not independent: due to very elementary
properties of the dynamics, namely the preservation of the phase space volume
and the time–reversal, it is, exactly,

〈 ˙Evib〉 =
1
2
〈ΔE

(
1− e−(βvib−βtr)ΔE

)
〉 , (4.9)

and for small ΔE

〈 ˙Evib〉 �
1
2

(βvib − βtr)〈(ΔE)2〉 . (4.10)

The proof of (4.9) is straightforward: denote by x = (p, J, Γ, ψ, γ) the asymp-
totic state before collision, and by x′ = (p′, J ′, Γ ′, ψ′, γ′) the state after col-
lision (that is, again at r = r∗), time–reversed. The Jacobian of the map
Ψ : x �→ x′ is |p|/|p′|, and of course ΔE(x′) = −ΔE(x). We can then proceed
as follows: first we change the dummy integration variable x in (4.8) by x′,
then we go back to x by the substitution x′ = Ψ(x). The result is

〈 ˙Evib〉 = Cμ

∫
D

(−ΔE) e−βtr(Etr−ΔE)−βvib(Evib+ΔE) |p|d p dJ dΓ
d

d t
ψ d γ ,

and so, summing with (4.9), (4.10) follows.
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The above expression (4.10) for 〈 ˙Evib〉 is nice: in particular, it shows that
it is enough to assume that the average E0 of ΔE is much smaller than the
fluctuation E1, to deduce that

〈 ˙Evib〉 =
1
4
(βvib − βtr)〈E2

1 〉 .

So, since E1 ∼ e−τω, 〈 ˙Evib〉 is necessarily of order e−2τω. Using the expres-
sion (4.7) of E1, the integration in J, Γ, ψ, γ is straightforward. As a result,
also using the obvious relations

d
d t
Tvib =

2
kB
〈 ˙Evib〉 ,

d
d t
Ttr =

1
kB
〈Ėtr〉 = − 1

kB
〈 ˙Evib〉 ,

one finds (4.2), with

F (ω, Ttr) =
(const)
Ttr

∫ ∞

0

eβtrEtr e−2τ(Etr)ω dEtr . (4.11)

Further details can be found in [BHS].
Some remarkable features of (4.2)–(4.11) are the following:

◦ It does describe an approach to equilibrium, with d
d t (Tvib − Ttr) propor-

tional to the difference Ttr − Tvib.
◦ The expression is complete and explicit but for a multiplicative constant, if

one is able to determine the coefficient τ(Etr). This is a zero–order quantity
depending only on the properties of the unperturbed motion r0(t), and for
not too complicated potentials, it can be at least roughly estimated.

The characteristic time to reach equilibrium

T (Ttr, ω) ∼
1

F (Ttr, ω)

is certainly a rapidly increasing function of ω, as expected by Jeans, but is
not a pure exponential of ω (By reading [J1,J2,J3] one gets the impression
that on this point the intuition of Jeans failed). For instance, if for small r

U(r) ∼ 1
rs
, s ≥ 1 ,

then a rough estimate based on dimensional considerations gives for large ω

τ ∼ E−(s+2)/(2s)
tr , T ∼ expω

2
3+2/s . (4.12)

This less than exponential dependence on ω arises through the statistical
averaging, namely to the fact that now we are not working at fixed energy,
rather at fixed translational temperature. The point is that, because of the
factor e−τω in the function to be integrated, with τ decreasing for increasing
translational energy, the most significant contributions to energy equipartition
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come from collisions involving molecules with large translational energy. But
according to the Boltzmann distribution, there are very few collisions with
large Etr. The compromise between these two scaling laws results in the above
functional dependence on ω. Such a mechanism is also illustrated in the next
paragraph, devoted to a numerical check of the exponential law (4.12).

Fig. 18. Illustrating the numerical computation of 〈 ˙Evib〉. Curves (a)–(c) repre-
sent respectively W (Etr), the Boltzmann factor e−βtrEtr , and their product (semi-log
scale), vs. βtrEtr. Data: βtr = 4, βvib = 0.6, ω = 40.

D. A Numerical Check

The law to be checked can be written in the form

〈 ˙Evib〉 = C
∫ ∞

0

W (Etr) e−βtrEtr dEtr , (4.13)

with
W (Etr) =

∫
D

ΔE e−βvibEvib d J dΓ dψ d γ ;

D denotes here the domain of J, Γ, ψ, γ. The idea is to compute numerically
〈 ˙Evib〉, for fixed βtr, βvib and ω, by regularly scanning the Etr axis, and to
compute the integral for W (Etr), for each Etr, by a “Monte–Carlo” method
(averaging over many initial data extracted randomly, with the correct proba-
bility distribution). For numerical details, see [BHS]. As for the Hamiltonian,
a simple choice, convenient for numerical integration, is H of the form (4.1),
with

U(r) + V (r, ξ1, ξ2) =
e−�2



, 
 = r − ξ1 + ξ2

2
.
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The result of such a computation is reported in figure 18. Curve (a) is the
computed value of W as function of Etr (in units β−1

tr , and in semi–log scale).
The line (b) represents the Boltzmann factor e−βtrEtr . Curve (c) is the product
W (Etr)e−βtrEtr , and according to (4.13), the integral of this last curve gives
〈 ˙Evib〉. The figure refers to βtr = 4, βvib = 0.6, and ω = 40. Curve (c), if
represented in a linear vertical scale, gets the shape of a well defined peak,
around the maximum at βtrEtr � 14; this peak is represented in figure 19, left
curve (left vertical scale). If one increases ω, the peak moves to the right and
its value decreases: for example, for ω = 160, the peak is around βtrEtr � 26,
see the right curve of figure 19 (right vertical scale). As shown by the scales,
the equal height of the peaks is a graphic artifact; their height, and area,
are indeed very different. It is perhaps worthwhile to remark that, already
for ω = 40, practically all contributions to the energy exchanges come from
very few collisions with large Etr (the Boltzmann factor of such collisions is
e−14 < 10−6). For ω = 160, the situation is even more dramatic (Boltzmann
factor e−26 < 10−11).

Fig. 19. The curve (c) of the previous figure 3, with vertical linear scale. Same
temperatures. Left (and left scale): ω = 40; right (and right scale): ω = 160.

By varying ω at fixed temperatures, one expects to obtain the stretched
exponential (4.3), the coefficient a depending on βtr but not on βvib. The
result is represented in figure 20, where 〈 ˙Evib〉 is reported vs. ω2/5 (logarithmic
vertical scale), for fixed βtr = 4 and three different values of βvib. The straight
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lines are consistent with the exponential law (4.3), for s = 1; the nearly perfect
parallelism of the lines indicates that the coefficient a is indeed independent
of βvib, as theoretically expected. The proportionality of the r.h.s. of (4.3) to
Tvib−Tt is also confirmed, though for large temperature differences a deviation
from linearity is observed.

Fig. 20. The stretched exponential law (4.3), for s = 1; βtr = 4 and βvib = 0.2, 0.6,
1 (top to bottom).

In conclusion, the mechanism governing the approach to equilibrium, in
our classical gas of diatomic molecules, seems to be essentially understood.
The original intuitions by Boltzmann and Jeans get qualitatively confirmed:
long equilibrium times, for large ω, do occur. The central point is equation
(4.9), a quite robust one because based on very elementary facts of microscopic
dynamics, which in turn, with the only assumptions that the energy exchanges
are small and the average is much smaller than the fluctuations, produces
(4.11). The same mechanism, as already remarked, governs the approach to
equilibrium in an electron plasma; for such a problem the theoretical results
are also confirmed by real experiments.

5 The Essentials of Nekhoroshev Theorem

A. The Statement

Nekhoroshev theorem, in its standard and original formulation [Nek1,Nek2],
concerns Hamiltonian systems of the form (1.1), with suitable non isochronous
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h. The aim, as reminded in the Introduction, is to prove that, under suitable
hypotheses, exponential estimates of the form (1.3) hold. Hypotheses obvi-
ously include, as in the isochronous case discussed in Section 3, analyticity of
H and smallness of ε. The arithmetic assumption on ω instead becomes mean-
ingless, and must be replaced by some other assumption on h, of geometric
nature.

The simplest assumption on h under which the theorem can be proven,
moreover with the best results for the exponents a and b entering (1.3), is
quasi–convexity. A function h : B → R is said to be quasi convex in B, if for
any I ∈ B, denoting by h′ = ω the n–tuple of the first derivatives and by h′′

the matrix of the second derivatives, the equations

h′(I) · ξ = 0 , h′′(I)ξ · ξ = 0 (5.1)

admit only the trivial solution ξ = 0. A possible statement of Nekhoroshev
theorem (qualitative, i.e. not specifying constants), is the following:

Proposition 2 (Nekhoroshev Theorem). Consider the Hamiltonian

H(I, ϕ) = h(I) + εf(I, ϕ) , (I, ϕ) ∈ B × T
n , (5.2)

and assume that

i. H is analytic in a complex neighborhood D� of the real domain D = B×Tn;
ii. h is quasi–convex.

Then there exist constants I, T , a, b, ε∗ such that, if ε < ε∗, then any motion
with initial data in D satisfies the exponential estimates

‖I(t)− I(0)‖ < I (ε/ε∗)b for |t| < T e(ε∗/ε)a

. (5.3)

Possible values of a and b are a = b = 1/(2n), as well as a = 1/(4n), b = 1/4.

The best values of the exponents a and b come from [Lo1,LN,Pö]. The necessity
of some geometric assumption on h, stronger than pure anisochronicity (i.e.
deth′′ �= 0, as in KAM theorem), is evident by the elementary counterexample

H(I1, I2, ϕ1, ϕ2) =
I21
2
− I

2
2

2
+ ε sin(ϕ1 + ϕ2) , (5.4)

for which one immediately checks that the “fast” motion

I1(t) = I2(t) = Io + ε t , ϕ1(t) = −ϕ2(t) = ϕo + Iot+
1
2
εt2 , (5.5)

incompatible with (5.3), does exist. An easy way to assure quasi–convexity is
to assume that h is a convex function (i.e., h′′ is positive); a typical model
example with convex h, frequently used in the literature to illustrate Nekhoro-
shev theorem, is a set of rotators coupled by positional forces,

H(I, ϕ) =
n∑

j=1

p2j
2

+ εf(ϕ) . (5.6)
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B. Sketch of the Proof

We shall not produce a complete proof of Nekhoroshev theorem, which is not
really difficult, but is somehow long and complicated. We shall limit ourselves
to a sketch of the proof, with the purpose to to illustrate the most relevant
ideas: which are the main difficulties to be solved in the anisochronous case,
and why a geometric assumption, like quasi–convexity, naturally enters the
theorem. The reader is suggested to follow the different steps, having in mind
the above model example (5.6).

Let us consider Hamiltonian (5.2), and try to make the first perturbative
step, to eliminate “as far as possible” the dependence of the perturbation on
the angles ϕ at order ε. Using (for example) the Lie method, we introduce an
“auxiliary Hamiltonian” εχ, and define the canonical transformation as the
time–one map Φ1

εχ, where Φt
F denotes, as is common, the flow of the Hamil-

tonian F . The new Hamiltonian H(1)(I ′, ϕ′) = H(Φ1
εχ(I ′, ϕ′)) is immediately

found to have the form

H(1) = h+ ε({χ, h}+ f) + ε2f (1)(I, ϕ, ε) ,

with
f (1) =

1
2
{χ, {χ, h}}+ {χ, f}+O(ε) . (5.7)

So, to accomplish our purpose we should determine the unknown function χ,
in such a way that {χ, h} + f is “as independent as possible” of the angles.
Getting a complete independence of ϕ is (for generic f) impossible: since
{χ, h} = ω · ∂h

∂ϕ , so that 〈{χ, h}〉 = 0, the equation for χ is

ω(I) · ∂χ
∂ϕ

(I, ϕ) = f(I, ϕ)− 〈f〉(I) (5.8)

(the unessential primes have been dropped). Projecting on Fourier compo-
nents, it then follows, for each ν ∈ Zn \

{
0
}

and any I ∈ B,

i(ν · ω(I))χ̂ν(I) = f̂ν(I) , χ̂ν(I) =
ˆfν(I)

iν · ω(I) . (5.9)

But this is (generically) impossible, since for anisochronous h some denomi-
nators vanish on a dense subset of B.16

16 Exercise: show that, if deth′′ �= 0, then the set

B(r) =
{
I ∈ B | ∃ ν(1), . . . , ν(r) ∈ Z

n : ν(s) · ω(I) = 0, s = 1, . . . , r
}

for 1 ≤ r ≤ n − 1 is dense in B. The difficulty we are facing is the one raised by
Poincaré in his well known theorem on the generic non existence of integrals of
motion in nearly integrable anisochronous Hamiltonian systems [Po1].
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The way out of this difficulty proceeds as follows:

(a) The “ultraviolet cut–off”. It is not necessary to take care of all Fourier
components. Having in mind that, eventually, the remainder must be exponen-
tially small, it is possible to introduce an ε–dependent cut-off N , and separate
from f an “ultraviolet” part, i.e. to introduce the decomposition

f = f≤N + f>N , f>N =
∑

ν∈Zn:|ν|>N

f̂ν(I)eiν·ϕ .

Thanks to the analyticity of f , the size of the single Fourier components fν
decreases exponentially with |ν|, and correspondingly the ultraviolet part f>N

decreases exponentially with the cut-offN : ‖f>N‖ < Ce−cN , C, c > 0.17 Quite
clearly, it is enough to take N ∼ ε−a, in order for f>N to be exponentially
small, and to give a small contribution to the drift of the actions, as required
by (5.3). Having introduced the cut-off, we are left with a finite number of
resonances ν · ω(I) to take care.

Fig. 21. Tre resonant zones in the frequency space and in the action space, for
n = 2.

(b) The “geometry of resonances”. Let Λ be any r–dimensional sublattice
of Zn, r = 1, . . . , n, which admits a basis ν(1), . . . , ν(r) with |ν(s)| < N for any
s. The resonant manifold MΛ is defined, as is natural, by

MΛ =
{
I ∈ B : ν · ω(I) = 0 ∀ν ∈ Λ

}
;

r is called the multiplicity of the resonance, and is the codimension18 of MΛ.
For any ε, one must take care of a finite set of resonant manifolds, which form a
web in B (a finite one, though finer and finer as ε decreases). The solution (5.9)
is appropriate far from resonances, but it has no meaning on the differentMΛ,
17 Exercise: prove this inequality, also computing C, c, assuming that f is analytic

in a strip | Imϕj | ≤ 	ϕ. As norm of f , use either the sup–norm or the “Fourier
norm”, i.e. the sum of the sup–norms of the Fourier components.

18 From quasi–convexity it follows that the determinant of h′′ restricted to the plane
orthogonal to ω is different from zero; in turn, this implies that the r equations
defining MΛ are independent.
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where some denominators exactly vanish, nor it is sensible in neighborhoods
of such manifolds of size, at least, O(

√
ε): indeed, the remainder f (1) in (5.7),

due to the derivative with respect to the actions which is present in the Poisson
bracket, contains the squares of the small denominators ν · ω(I), and if any
of them is O(

√
ε), then the new perturbation ε2f (1) is just of order ε, and

nothing is gained.19 Formally, for each lattice Λ one defines20 a resonant region
RΛ, as the subset of B such that

|ω(I) · ν(s)| < δr , s = 1, . . . , r (5.10)

for at least one basis ν(1), . . . , ν(r) of Λ. The constants δr must be such that

δ1 < δ2 < . . . < δn , (5.11)

and a convenient choice turns out to be

δr ∼ εbr ,
1
2
> b1 > . . . > br > 0 . (5.12)

Finally, one defines the resonant zones ZΛ by posing ZΛ = RΛ for Λ = Zn,
and then recursively, for dimΛ = r = n− 1, . . . , 1,

ZΛ = RΛ \
⋃

Λ′:dim Λ′=r+1

RΛ′ .

The nonresonant domain

Z0 = B \
⋃

Λ′:dim Λ′=1

RΛ′

is also defined. Figure 21 represents the resonant manifolds (the lines) and
the resonant zones (the corridors around them), in the simple case n = 2;
zones and domains coincide, in this elementary example, if a neighborhood of
the origin is excluded. A symbolic picture of the higher dimensional case is
provided by figure 22, which shows the intersection of two resonant manifolds
MΛ and MΛ′ in MΛ⊕Λ′ , and the resonant zones ZΛ, ZΛ′ and ZΛ⊕Λ′ around
them; according to (5.11), (5.12), ZΛ⊕Λ′ is larger than ZΛ and ZΛ′ . (The figure
is realistic for n = 3, if it is regarded as a section of the action space B, for
example a section by a surface of constant h where the motion is approximately
confined.) The four dashed corners in the figure belong both to Z0 and to
ZΛ⊕Λ′ (only zones of nearby multiplicity are by definition disjoint).

19 Even more: the canonical transformation is not small with ε, and might be not
even defined. Exercise: compute exactly f (1) for the Hamiltonian (5.6), for f(ϕ)
with a finite Fourier development.

20 We are following here the original definitions by Nekhoroshev, though the names
are not identical. Pöscel introduced some improvements in the geometrical con-
struction, which however are not necessary for our purposes.
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Fig. 22. Resonant manifolds and resonant zones, for n > 2.

In the nonresonant zone, the small divisors are controlled by δ1, and the ϕ–
dependence of the perturbation can be “killed” at first order. Correspondingly,
the new Hamiltonian can be given the first–order normal form21

H(1)(I, ϕ) = h(I) + εg(I) + ε2f (1)(I, ϕ) .

Inside a resonant zone ZΛ, instead, the harmonics ν ∈ Λ cannot be killed, and
the best normal form one can produce is the resonant normal form adapted
to Λ,

H
(1)
Λ (I, ϕ) = h(I) + εgΛ(I, ϕ) + ε2f (1)(I, ϕ) ,

gΛ having Fourier components only in Λ:

g(I, ϕ) =
∑
ν∈Λ

ĝν(I)eiν·ϕ (5.13)

(ĝν = f̂ν , at this first step). Notice that this includes, as special case, the non
resonant zone, for which it is Λ =

{
0
}
.

(c) The “plane of fast drift”. Now, let us imagine that we are very skilled,
namely are able to proceed perturbatively far beyond the first step, and pro-
duce in each ZΛ a normal form with an exponentially small remainder:

HΛ(I, ϕ) = h(I) + εgΛ(I, ϕ) +O(e−1/εa

) , (5.14)

with gΛ as in (5.13). This is not at all trivial, but it does not contain additional
difficulties with respect to the isochronous case. We shall assume that such
21 The smallness of δr(ε), and other technical facts (reduction of domains by quan-

tities small with ε, to estimate derivatives and Poisson brackets), imply that the
new perturbation is not of order ε2 but larger. These are technical facts, that un-
fortunately we cannot discuss here. The only important point is the perturbation
reduces.
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analytic work can be done, to focus the attention on the geometric aspects of
the proof.22 By the way, the number N0 of perturbative steps to be performed,
which gives the optimal result, is proportional to the cut–off N .

Fig. 23. The movement of the actions is flattened on the plane of fast drift ΠΛ.

The normal form is used for motions with initial datum in ZΛ. One immedi-
ately recognizes that, as far as (5.14) can be used, that is as far as, during the
motions, new rresonances are not acquired, the motion of the actions is almost
flattened on the hyperplane ΠΛ(Io) ∈ B generated by Λ, passing through Io;
see figure 23. Indeed, the Hamilton equations for the actions are

İ = ε
∑
ν∈Λ

Iν(I, ϕ) ν +O(e−1/εa

) , Iν = −igν(I)eiν·ϕ ,

so that İ is almost parallel to Λ, and dist (I(t), ΠΛ(Io)) stays small for an
exponentially large time.
(d) Using quasi–convexity. Quasi–convexity implies two basic facts:

i. The plane of fast drift ΠΛ and the resonant manifold MΛ intersect
transversally. Indeed, a loss of transversality would require that some vec-
tor ξ =

∑
j cjν

(j) ∈ ΠΛ is tangent to MΛ, and so orthogonal to all vectors
h′′ν(s), s = 1, . . . r, which are orthogonal to MΛ. In particular, it should
be h′′ξ · ξ = 0 , and simultaneously ω · ξ = 0, but this is in conflict with
quasi–convexity. Due to the complementary dimensions, the intersection
is a point I∗.

22 In the 1977 reference paper by Nekhoroshev [Nek2], a paper long more than 50
pages, the “analytic lemmma” concerning the possibility of producing the normal
forms (5.14), is just stated and not proved, while all of the attention is devoted
to the geometric part of the proof.
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ii. The unperturbed Hamiltonian h, restricted to ΠΛ, has an extremum in
I∗. Indeed, for ξ parallel to Λ, it is

h(I∗ + ξ) = h(I∗) + ω(I∗) · ξ +
1
2
h′′(I∗)ξ · ξ +O(‖ξ‖3) ;

the linear term vanishes, and the quadratic one has definite sign.

Fig. 24. Illustrating the role of quasi–convexity of h for the confinement of actions
in ΠΛ: (a) in the quasi–convex case, actions are trapped inside an elliptic structure;
(b) in the hyperbolic case, the asymptots provide possible escape directions.

This situation is represented in figure 24, left: around I∗, the surfaces of
constant h form an elliptic structure onΠΛ. But since the energyH = h+O(ε)
is conserved, h oscillates, during the motion, at most of quantities of order
ε. Correspondingly I(t) (for I(0) ∈ ZΛ, and as long as the normal form (5.8)
can be used) must approximately follow the level lines of h; the quantity
‖I(t)−I∗‖ then oscillates at most of

√
ε, and ‖I(t)−Io‖ is bounded, essentially,

by the diameter of ΠΛ ∩ ZΛ, which according to (5.12) is small with ε. Let
us remark that this elementary mechanism of confinement, based on energy
conservation, fails if, in place of the elliptic structure, there is an hyperbolic
structure in ΠΛ around I∗, as in figure 24, right: quite clearly, the asymptots
constitute possible direction of escape compatible with energy conservation.
Escape along the asymptots is precisely what happens in the counterexample
(5.4), see (5.5).
(e) Non overlapping of resonances. As a final step, we must solve a consis-
tency problem. Indeed, in step (c) we used in an essential way the resonant
normal form. This however is possible only if, during the motion (up time
∼ e1/εa

) new resonances, within the same δr used to construct the normal
form, are not introduced: that is, if no other resonant region of the same
multiplicity is entered. Here it gets clear why resonant regions of larger mul-
tiplicity are required to have larger diameter. Indeed, should all constants
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Fig. 25. Illustrating the question of non–overlapping of resonances.

δr be taken equal, the situation could be the dangerous one depicted in fig-
ure 25, left: I(t), moving along ΠΛ(Io), enters RΛ′ ; a new small denominator
|ω(I) · ν′| < δr enters the game, and the use of the normal form (5.8) is no
longer allowed. The way out is to take the resonant region and thus the zone
ZΛ⊕Λ′ sufficiently larger than ZΛ and ZΛ′ : as suggested by figure 25, right,
if the sizes of the resonant regions are appropriately scaled, the dangerous
situation disappears.
(f) Comments. Let us summarize: the phase space is covered by different res-
onant zones, and in each zone, thanks to analytic and arithmetic work, an
adapted normal form is produced. The normal form provides (approximate)
confinement of the actions onto the plane of constant drift ΠΛ(Io). Quasi–
convexity, via the simple mechanism of energy conservation, provides confine-
ment inside ΠΛ(Io). A well designed geometry of resonances keeps different
resonant zones (of the same multiplicity) sufficiently well separated, so as to
assure that the above procedure is consistent.

It is worthwhile to remark that the use of energy conservation is not the
only way to prove confinement of the actions inside the plane of constant drift.
An alternative idea, as good as energy conservation in the quasi–convex case,
but more general, is the so called trapping mechanism, introduced by Nekhoro-
shev in his 1977 paper. The idea, in principle, is simple: if the geometry of
resonances is designed as above, then the (possible) exit from a resonant zone
is such that resonances are lost, but never gained (see again figure 25, right).
In other words: the multiplicity of the resonance, in the course of time, can
only decrease. In the worst case, I(t) looses one after the other all resonances,
and arrives in the nonresonant zone, where it stops.23 We shall come back on
this mechanism in Section 7, when we shall deal with a system for which the
quasi–convexity assumption is not satisfied.

General references on Nekhoroshev theorem include: (i) The original pa-
pers by Nekhoroshev [Nek1,Nek2]; the exponents, in the convex case, are
a, b ∼ 1/n2 . (ii) Paper [BGG3], dedicated to the convex case (similar ex-
ponents). (iii) papers [Ga1,BGa], where the idea of energy conservation was

23 This one–way behavior might seem in conflict with the reversibility of Hamilto-
nian dynamics. A little reflection shows it is not.
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first fully exploited; possible exponents include a = 1/8, b ∼ 1/n2. (iv) papers
[Lo1,LN], very interesting both for the result, namely a = b = 1/(2n) (a much
longer time scale), and for a revolutionary technique.24 (v) paper [Pö1], where
the geometry of resonances was improved; the result is a = b = 1/(2n), as well
as a = 1/2, b = 1/(4n). Other papers concern applications and extensions to
special systems, including systems with infinitely many degrees of freedom.

C. Pathologies in Physical Systems

According to the purpose outlined in the Introduction, we shall now focus
the attention to physical applications of Nekhoroshev theorem. Applications,
however, are far from trivial, since most interesting systems to which one
would like to apply the theorem, do not fit the assumptions. Two pathologies
typically occur:

i. The integrable system is properly degenerate, namely the numberm of con-
stants of motion exceeds the number n of degrees of freedom. Well known
examples are the Euler–Poinsot rigid body (the rigid body with a fixed
point, in absence of external torques), for which n = 3 and m = 4, and the
Kepler system, for which n = 3 and m = 5. The result of degeneracy is
that the number of actions effectively entering the unperturbed Hamilto-
nian h is n0 = 2n−m < n, and quasi–convexity (as well as steepness, see
later) is violated. Using the notation I, ϕ for the actions effectively present
in the unperturbed Hamiltonian and their conjugated angles, and p, q for
the remaining variables, the perturbed Hamiltonian has the form

H(I, ϕ, p, q) = h(I) + εf(I, ϕ, p, q) .

For such a system, using the standard techniques of perturbation theory,
it is not difficult to produce resonant or nonresonant normal forms, up to
an exponentially small ϕ–dependent remainder, say

HΛ(I, ϕ, p, q) = h(I) + εgΛ(I, ϕ, p, q) +O(e−1/εa

)
gΛ(I, ϕ, p, q) =

∑
ν∈Λ ĝν(I, p, q)eiν·ϕ ,

so as to keep control of I1, . . . , In0 (in case of convex h). But this is a
poor result, for two reasons: first of all, the p, q variables are typically very
interesting (for the rigid body, they determine the spatial orientation of the
angular momentum; for the Kepler problem, they include the eccentricity
and inclination of the Keplerian ellipsis). Moreover, these variables could
approach a singularity in a short time: the normal form gets then useless,
and long time stability of the actions cannot be deduced.

24 The geometric part, in particular, is highly semplified, since only resonances of
multiplicity n − 1 are considered. A quick easier proof, unfortunately strictly
limited to the convex case.
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ii. The action–angle coordinates get singular somewhere in the phase space,
often in correspondence to the most interesting motions. Examples in-
clude the proper rotations of the rigid body around a symmetry axis, the
circular orbits of the Kepler problem, and a set of harmonic oscillators
whenever any of them is at rest. From a geometric point of view, singular
motions are motions on singular lower dimensional leaves of the foliation
into invariant tori: an n–dimensional torus (n0–dimensional, for degener-
ate systems) shrinks to a lower dimensional one, and correspondingly an
angle gets undefined (the angle giving the orientation of the pericenter,
for the Keplerian ellipses; the angle giving the precession of the symmetry
axis of the body around the direction of the angular momentum, for the
rigid body; the phase of the oscillator at rest, in the last example). The
question to be solved (more technical, but not completely technical) is how
to proceed perturbatively without using the action–angle variables.

Both difficulties are present in the examples that we are going to study in the
remaining part of these lectures.

6 The Perturbed Euler–Poinsot Rigid Body

The Euler–Poinsot rigid body is a rigid body with a fixed point, in absence of
external torques. We shall restrict ourselves to the symmetric case, i.e. when
two inertia moments are equal, though most results could be adapted to the
triaxial case. Before entering the perturbative study, we must shortly review
from a geometric point of view the behaviour of the unperturbed system.

A. The Unperturbed System

Let (ex, ey, ez) be a basis fixed in the space, and (e1, e2, e3) be a proper basis
of the body, with inertia moments A1 = A2 �= A3. The phase space of the
system is the cotangent boundle M = T ∗SO(3), which however is trivial
and can be identified with SO(3) × R3. A point of M is identified by a pair
(R,M), where R ∈ SO(3) is the matrix such that Rex = e1 and so on,
while M = (Mx,My,Mz) ∈ R3 is the angular momentum in the space.25

Alternatively, one can use m = (m1,m2,m3) = R−1M (the so–called body
representation of the angular momentum) in place of M ; the pair (R,m) also
provides a good parametrization of T ∗

RSO(3).
The Euler–Poinsot rigid body has four independent integrals of motion. A

possible choice is given by
25 The triviality of T ∗SO(3) precisely expresses the fact that the angular momentum

M exists, as vector in R
3, regardless of the configuration R of the body. In a similar

way, the triviality of the tangent bundle TSO(3) expresses geometrically the well
known existence of the angular velocity as a vector of R

3.
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K , ‖M‖ , Mz , Mz′ ,

where K is the kinetic energy

K =
m2

1

2A1
+
m2

2

2A2
+
m2

3

2A3
,

and z′ is any direction non parallel to z. In the symmetric case it is

K =
1

2A1
(M2 + ηm2

3) , η =
A1

A3
− 1 ,

so that m3 is also an integral of motion, which can be used with some advan-
tage in place of K.

Both (‖M‖,m3,Mz) and (‖M‖,m3,Mz′) are triples of independent in-
tegrals of motion in involution, so the Liouville–Arnold theorem applies in
two independent ways, giving rise to two independent foliations of the phase
space in tori T3. Such foliations, however, are not intrinsic, as is obvious since
reference is made to arbitrary chosen z axes, and so they are not useful to
understand the structure of the phase space. In particular, each foliation gets
singular when e3 gets parallel to the z axis at hand, as is obvious since m3

and Mz loose independence; but the singularity is spurious: due to the arbi-
trarity of the z axis, there cannot be anything special in the phase space when
e3 = ±ez.

Fig. 26. Illustrating the movement of the Euler–Poinsot rigid body. Poinsot cones
roll without sliding, as in gear.

To understand the real structure of the phase space of the Euler–Poinsot
rigid body, it is convenient to recall the classical Poinsot description (though
the description is more general, we refer here to the symmetric rigid body; see,
for details, any standard book on theoretical mechanics). This is essentially as
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follows: (i) The angular momentum M , due to the absence of torques, stays
constant. (ii) Denoting by Ω ∈ R

3 the angular velocity of the body (Ω is
related to the angular momentum by Ωi = mi/Ai), the three vectors e3, M
and Ω are coplanar, and the angles between them stay constant. (iii) During
the motion, the vector Ω traces two circular cones, in the body around e3 and
in the space around M , and the cones roll without sliding, as in a gear, with
constant velocity; see figure 26.

A good choice of action–angle coordinates, adapted to describe in a simple
way the Euler–Poinsot motion, is the following (see figure 27). Let G = ‖M‖;
assume that the spatial frame is such that n1 := M × ez �= 0, and denote
J = Mz, j = angle from ex to n1 in the exey plane. G, J, j clearly determine
M . To specify the configuration of the body, let L = m3 (L determines the
angle between e3 and the already fixed vector M); assume that n2 := M ×
e3 �= 0 (warning: proper rotations around e3 are here excluded), and let g =
angle from n1 to n2 in the plane orthogonal to M ; L and g determine e3.
The configuration is then completely determined by a last coordinate, which
establishes the orientation of the body around e3, and a convenient choice
turns out to be the angle l from n2 to e1 in the plane e1e2.

From the very construction, it turns out that G,L, J, g, l, j are coordinates
in the domain M′, depending on the spatial frame, such that M × ez �= 0,
M × e3 �= 0. It can be proven that

Proposition 3 (Andoyer–Deprit): G,L, J, g, l, j are canonical coordi-
nates on M′, with canonical 2–form dG ∧ d g + dL ∧ d l + d J ∧ d j.

Fig. 27. The action-angle coordinates G, L, J, g, l, j for the symmetric rigid body.

The Hamiltonian, that is the kinetic energy, in these coordinates depends only
on G and L, and is easily found to be

h(G,L) =
1

2A1
(G2 + ηL2) ; (6.1)
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correspondingly, G,L, J, j stay constant, while g, l advance uniformly with
angular velocity

ω(G,L) =
1
A1

(G, ηL) .

This is in complete agreement with the Poinsot description; note that g and
l are angles on the Poinsot cones (compare with figure 26).

The singularity of the construction for M × ez = 0, that is for J = ±G,
is an inessential chart singularity. As is evident, two charts of action angle
coordinates

G , L , J (i) , g(i) , l , j(i) , i = 1, 2 ,

relative to two different spatial frames with different z axis, are sufficient to
cover

M0 :=
{
(R,M) ∈M : M × e3 �= 0

}
.

It is worthwhile to observe that G,L, l are intrinsic (they do not depend on
the frame), and for this reason the chart index has been omitted. The other
coordinates are instead chart dependent, and their transition functions are of
the special form (look at the figure)

g(2) =g(1) + g12

(J(1)

G
, j(1)

)
, J(2) =J12

(J(1)

G
, j(1)

)
, j(2) =j12

(J(1)

G
, j(1)

)
.

(6.2)

As is remarkable, g(1) and g(2) differ only by the origin. This is relevant in
the perturbative developments for two reasons: first, the set obtained by fixing
G,L, J (i), j(i), namely the four integrals of motion, is a torus T2 independent
of the chart; moreover, given any function F : M0 → R, its average on g(i)

is well defined, independently of the chart. Averaging on the “fast angles” g
and l, which is the basic tool of perturbation theory, is a chart independent
geometric operation.

The geometric structure of the phase space now clearly emerges. First of
all we can identify an action space A, namely the sector

A =
{
(G,L) ∈ R

2 : G ≥ 0 , |L| ≤ G
}
,

whose border L = ±G corresponds to the border of M0 (the proper rotations
around e3). To each point of A such that G > 0, a spere S2 is attached, where
μ :=M/‖M‖ runs; J (i)/G, j(i) are local coordinates on the spere, determining
respectively the latitude and the longitude of μ (singularities on the polar axis
are clearly unavoidable). Finally, for each (G,L) in the interior A0 of A and
each μ ∈ S2, we have a two dimensional torus T2, and g(i), l are coordinates
on it.

For (L,G) on the border of A, if G > 0, μ still runs on S2, but one of the
Poinsot cones degenerates in a line, so the two dimensional torus is replaced
by a circle. Finally for G = L = 0 we have a manifold SO(3), and each point
of it is an equilibrium.
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Formally, see [BF2] for details, one can introduce inM0 a double fibration:
a first fibration has four dimensional basis B0 = A0×S2, and two dimensional
fiber T2; a second fibration has instead two dimensional basis A0, and four
dimensional fiber, namely the level set on which the kinetic energy and the
modulus of the angular momentum are constant; the fibre has in turn the
structure of a fiber bundle, with basis S2 and fibre T2 (this is not the product
S2 × T2 only because the origin of g(i) depends on the point on S2 in a
chart dependent way). A pictorial, but rather realistic, representation of M0

is produced in figure 28 (after [F2,BF2]). The picture continues on the border
L = ±G �= 0, with the only difference that the petals of the daisy26 are thiner,
namely T1 in place of T2.

Fig. 28. A pictoric illustration of the double fibration of T ∗SO(3): the action space
A; in each point of A a spere S2, where μ = m/‖m‖ stays; in each point of the spere
a torus T

2.

With reference to the figure, the unperturbed motion, with Hamiltonian
(6.1), is described as follows: the stem of the daisy stays fixed on the ground
(‖M‖,m3 stay constant); the motion takes place on a single petal (μ stays
constant), and is linear quasi periodic with frequency ω (g(i), l advance uni-
formly).
Remark: The double fibration is typical of all properly degenerate systems, see
[F3]. The description provided by the Liouville–Arnold theorem, with a single
fibration, for such systems is instead rough and misleading (though correct,
since the assumptions of the theorem are satisfied). For the rigid body, apply-
ing the Liouville–Arnold theorem, with reference to (‖M‖,m3,Mz) as to the
set of the independent integrals of motion in involution, means excluding from
consideration the poles of the sphere (Mz and m3 there loose independence).
The sphere is thus replaced by a cylinder, say (−G,G)×T1, and the interval

26 Un uncommon spherically symmetric daisy.
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(−G,G) is attached to A to form a three dimensional basis, while T1 is at-
tached to T

2 to form T
3. This is a legitime but not sensible operation, which

introduces spurious singularities in the foliation in correspondence of the ar-
bitrarily chosen poles of the sphere. (By the way: dynamically, it is impossible
to stay consistently out of the poles, since nothing special is there.)

As a final comment on the unperturbed problem, it is worthwhile to notice
that h, as defined in (6.1), is always a quasi–convex function in A, though for
negative η it might appear similar to the counterexample (5.5). Indeed, an
elementary computation shows that quasi–convexity of h is lost for (G,L) :
L = ±G/√−η, but since η > − 1

2 , these points do not belong to A.

B. Results for Non Gyroscopic Motions

Now we enter the perturbed problem, namely the rigid body in a small po-
sitional potential. Positional means that the potential depends only on the
configuration R ∈ SO(3) of the body; correspondingly, the representative of
the potential in each coordinate system is a homogeneous function of degree
zero of the actions. From now on, it will be important to distinguish between
functions defined intrinsically on the manifold, and their representatives in
local coordinates. Local representatives will have an upper index (i), just as
local coordinates; intrinsic functions will not. However, functions like the ki-
netic energy h, which depend only on global coordinates, and therefore have
the same form in the different charts, with innocent abuse of the conven-
tion will have no index, and will be confused with the corresponding function
M0 → R. So, we have an intrinsic Hamilton function H = h+ εf : M0 → R,
which is represented locally by

H(i)(G,L, J (i), g(i), l, j(i))=h(G,L)+εf (i)(G,L, J (i), g(i), l, j(i)), i = 1, 2.
(6.3)

It is worthwhile to remark that (due to the homogeneity property of f) the
system has an elementary scaling property: indeed the change of variables

G = α G̃ , L = α L̃ , J(i) = α J̃ (i)

(the angles being unchanged), canonically conjugates H(i) to

H̃(i)(G̃, L̃, J̃ (i), g(i), l, j(i)) = h(G̃, L̃) + α−2εf (i)(G̃, L̃, J̃ (i), g(i), l, j(i)) ;

this shows that it is equivalent to consider a rigid body in a small potential,
that is a potential proportional to a small parameter ε, and a fast rigid body
with initial actions Go, Lo, Jo multiplied by 1/

√
ε, in an ε–independent po-

tential. In these lectures (at variance with [BF2,BFG1], and for homogeneity
with the other applications) we shall deal with initial actions of order one,
and potential proportional to ε.

In each chart it is not difficult to work perturbatively, along the lines
outlined in Section 5, to eliminate “as far as possible” the dependence of the



Physical Applications of Nekhoroshev Theorem 55

Hamiltonian on the angles g and l, that is producing suitable (resonant or
nonresonant) normal forms.

The procedure, exactly as in the standard Nekhoroshev theorem, is the
following:

i. To stay far from the singularity at L = ±G, one restricts the attention to

Aδ =
{
(G,L) ∈ A : |G− L| > δ

√
ε
}
,

and correspondingly to Mδ =
{
(R,M) ∈ T ∗SO(3) : (G,L) ∈ Aδ

}
(at the

end, it will be necessary to show, for consistency, that the point (G(t), L(t))
does not escape Aδ, if initially (Go, Lo) ∈ Aδ0 for some δ0 > δ).

ii. One introduces a cut–off N , and it turns out that a good choice is N =
c ε−1/4, with suitable c. The same N is chosen for both charts.

iii. For all ν ∈ Z2, 0 < |ν| ≤ N , one introduces resonant manifolds lines
Mν ∈ Aδ, defined by ν · ω(G,L) = 0, and resonant zones Zν ; a convenient
choice for the zones is

Zν =
{
(G,L) ∈ Aδ : |ν · ω(G,L)| < G/(2N |ν|)

}
.

If a neighborhood of the origin G = 0 is excluded, and is ε is sufficiently
small, different resonant zones are easily seen to be disjoint (zones coincide
here with regions). So, the “geography of resonances” in this problem is
very simple: points of Aδ are either nonresonant or resonant only once,
and no overlapping occurs. We shall denote by Zν (including ν = 0) the
subset of Mδ : (G,L) ∈ Zν . As is relevant, The resonant lines and zones
are the same in both charts, and so Zν is well defined as a subset of Mδ.

iv. Out of the resonant zones, one performs a numberN0 ∼ ε−1/4 perturbative
steps, thus producing a nonresonant normal form

H
(i)
0 = h(G,L) + εu(i)0 (G,L, J (i), j(i)) +O(e−1/ε1/4

) , (6.4)

with
u

(i)
0 = 〈f (i)〉+O(ε) ;

〈 . 〉 denotes averaging on g(i) and l. Inside Zν one instead produces the
resonant normal form

H(i)
ν = h(G,L) + εu(i)ν (G,L, J (i), j(i), ν1g

(i) + ν2l) +O(e−1/ε1/4
) (6.5)

(pay attention on the dependence of u(i)ν on the combination ν · ϕ, ϕ =
(g, l)). The same N0 is chosen for both charts . As a result, the construction
is such that the normal forms H(i)

ν , i = 1, 2, are the local representatives
of a function Hν defined intrinsically in Zν . It is not obvious that such
a chart independent construction is possible. The essential point is that,
at each perturbative step, the terms accumulating into u(i) are defined by
means of averaging operations on g(i) and l; as already remarked, though
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g(i) does depend on the chart, averaging on g(i) is a chart independent op-
eration. More precisely, it turns out that the averages 〈f (i)〉(G,L, J (i), j(i)),
i = 1, 2, are the local representatives of a function 〈f〉 : M0 → R, and
similarly u(i)0 (G,L, J (i), j(i)), u(i)ν (G,L, J (i), j(i), ν1g

(i) + ν2l) are local rep-
resentatives of functions u0, uν : M0 → R.

It is very important to have a chart independent construction. Indeed, due to
the proper degeneracy of the system, it is not possible to work consistently
inside a single chart, since for a generic potential there is no way to exclude
that (J (i), j(i)) approaches a chart singularity (M parallel to ez), and cor-
respondingly the system escapes the domain in which the normal forms are
defined.27

The results of such a work is summarized in the following proposition,
where for simplicity of notation Gt, Lt, . . . stay for G(t), L(t), . . . The state-
ment is not as detailed as it could be; for a more detailed statement, see
[BF2].

Proposition 4: Consider H = h+ εf , with h as in (6.1) and f positional
and analytic in T ∗SO(3), and let H(i) as in (6.3), i = 1, 2, be the representa-
tives of H in the local coordinates (G,L, J (i), g(i), l, j). Fix any δ > 0.

There exist c, ε∗ > 0 such that, if ε < ε∗, then up to

|t| ≤ (const) e(ε∗/ε)1/4
(6.6)

i) any initial datum in M2δ does not escape Mδ;
ii) G,L stay almost constant, while g(i), l preceed almost regularly:

|Gt −G0|, |Lt − L0| ≤ (const)
√
ε

|ġ(i)t −G0/A1|, |l̇t − ηL0/A1| ≤ (const)
√
ε ;

iii) if the initial datum is nonresonant up to the cut-off N = c(ε∗/ε)1/4, then
the average 〈f〉 stays also almost constant,

|〈f〉(Rt,Mt)− 〈f〉(R0,M0)| < (const) ε1/4 .

The meaning of point ii) is immediate: for small perturbation (equivalently:
for given perturbation and large initial angular velocity, with ‖ω(0)‖ ∼ 1/

√
ε),

and up to a long time, the body performs an approximate Euler–Poinsot pre-
cession around the instant direction of the angular momentum M , which in
27 This is evident if, for example, the external potential is a small gravity, in a

direction e0 forming with ez an angle α �= 0. As is well known, in such a case
M precedes regularly around e0, with speed O(ε), so if initially M also forms an
angle α with e0, it will reach a singularity in a time of order ε−1.
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turn moves slowly in space, with speed O(ε). In particular, the angle between
e3 and M stays almost constant. Point iii), concerning only nonresonant mo-
tions, tells in addition that in each chart 〈f (i)〉(G,L, J (i), j(i)) stays constant
up quantities of order ε1/2. From point i) it then follows that for any G0, L0

the function f̂ (i)
G0,L0

, defined by

f̂
(i)
G0,L0

(J (i), j(i)) = 〈f (i)〉(G0, L0, J
(i), j(i)),

also stays almost constant. But f̂ (i)
G0,L0

, i = 1, 2, are representatives of a
function f̂G0,L0 on the sphere ‖M‖ = G0, and generically the level sets
f̂G0,L0 = (const) are regular lines on such a sphere; they are precisely the
level lines of the averaged potential. The consequence is that the tip of the
angular momentum M stays near such lines for long times. See figure 29, left,
where the trace of μ = M/‖M‖ on the unit sphere is represented. Such a
result generalizes, in a sense, the familiar case of the rigid body in a small
gravitational field: the only difference is that the lines of constant gravitational
potential, namely the horizontal circles, are replaced by other equipotential
lines, namely the level lines of the potential, averaged on the fast motion on the
Poinsot cones (moreover, the motion is regular only up to small deviations).
The regularity of the motion ofM , in the nonresonant case, appears obvious if
one looks at the normal form (6.4), and neglects the small remainder. Indeed,
in this approximation the behavior of J (i), j(i) is determined, in each chart,
by the Hamiltonian u(i)(G,L, J (i), j(i)), in which G, L are parameters. The
system has only one degree of freedom, and the motion is necessarily regular;
moreover, u(i) is close to 〈f (i)〉.

Fig. 29. Different motions of μ = M/‖M‖ on S2: almost regular motion close
to a level curve of the averaged potential energy (left); chaotic motion filling a two
dimensional portion of S2 (right). In both cases e3 preceeds almost regularly about M .

Nothing can be said, instead, concerning the motion ofM in space, in case
of resonant initial data. In fact, if one looks at the resonant normal form (6.5),
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it is clear that there is, at least, a chance that the motion ofM is chaotic, and
invades a two dimensional region of the sphere which does not shrink to a line
for ε→ 0, see figure 29, right. This is clearly suggested, in the approximation
in which the small remainder in (6.5) is neglected. Indeed in such a case
(see [BF2] for details), due to the presence of the “slow angle” ν1g(i) + ν2l
inside u(i)ν , the problem remains essentially a two degrees of freedom one, and
two degrees of freedom Hamiltonians are known to admit chaotic motions.
A relevant improvement to the above proposition [Gu] tells however that,
for a mechanism that is too complicated to be explained here, such chaotic
motions are possible only for low order resonances, more precisely up to a
cut-off N ′ = O(log ε−1).

A numerical study of a possible normal form Hamiltonian in the reso-
nance ν = (0, 1), that is L = 0, is produced in [BF2]. The Hamiltonian there
considered is

H̃ =
G2

2A1
+
ηL2

2A1
+ εf̃ ,

with η,A1 = 1 and

f̃ =
J

G
sin l − 1

2

(
1− J

2

G2
sin2 j

)
;

G is here a parameter, practically set equal to one.28 Chaotic motions are
shown to exist, also for quite small ε (up to 2.5× 10−5), in a neighborhood of
the exact resonance, namely for L �

√
ε; in particular, for such motionsM/G

invades a relevant portion of the unit sphere.
Observing such chaotic motions in the real three dimensional problem of

the rigid body with a fixed point, is a not easy task, both because of the
presence of quite different time scales for the different variables and for the
accuracy needed, and for some technical reasons29 which we cannot enter here.
Recent numerical calculations, however, suggest that chaotic motions in low
resonances, with M/G invading a two dimensional portion of the unit sphere,
do exist [BChF2].

C. Results for Gyroscopic Motions

The above proposition does not concern directly gyroscopic motions, that is
motions near to proper rotations around the symmetry axis e3. Point (i) of
the proposition implies idirectly that motions with initial datum δ–close to
the proper rotation, namely in
28 In [BF2] the language is different, namely ε is set to one and G is large. But as

already remarked, there is complete equivalence, with ε = G−2.
29 Accurate computations require a symplectic integration scheme, which however

needs to be implemented on a manifold, and not only inside single charts, see
[BChF1].
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Mδ = M\Mδ ,

cannot escape M2δ for the long time scale (6.6). That is: gyroscopic motions
remain gyroscopic for long time. But this is a poor result, since it does not
tell anything on the motion of the angular momentum M in space, though it
states that e3 in any case closely follows M .

To understand the behavior of M , and prove the equivalent of points (ii)
and (iii) for gyroscopic motions, one must learn to work perturbatively around
singularities of the action–angle variables, or in geometric words, around sin-
gularities of the foliation of the phase space into invariant tori. As already
remarked, this is a rather general problem in perturbation theory. We are
here confronted with it in connection with the gyroscopic motions of the rigid
body, but we shall be confronted with it in the next sections too, dealing with
the problem of the stability of the Lagrangian equilibrium points L4, L5 in
the circular restricted three body problem.

For the rigid body, the perturbative construction goes through the follow-
ing steps:

i. One introduces new canonical action - angle variables
(Γ,Λ, γ(i), λ) “adapted to the singlularity”, namely

Γ = G , Λ = G− L , γ(i) = g(i) + l , λ = −l ,

(J (i), j(i)) remaining unchanged. The singularity L = G (for symmetry,
we can restrict the attention only to it) corresponds now to Λ = 0, and
one easily sees that only the pair (Λ, λ) is there singular, while (Γ, γ(i))
is regular; in particular (look at figure 27), the angle γ(i) becomes equal,
on the singularity, to the angle of proper rotation, usually called ψ, of
the familiar Euler coordinates (in the same limit, j(i) gets equal to the
precession ϕ of e3 about ez).

ii. The polar–like coordinates Λ, λ are replaced by Cartesian–like coordinates
x, y, via

x =
√

2Λ cosλ , y =
√

2Λ sinλ ,

and it turns out [NL] (see also [BFG1]) that (Γ, γ(i), x, y, J (i), j(i)), i = 1, 2,
provide an analytic atlas in the “North emisphere”

M+ =
{
(R,M) ∈ T ∗SO(3) : m3 > 0

}
(the chart singularity moved to the equator). It turns out that

x =
√

2m2√
Γ − Λ

, y =
√

2m1√
Γ − Λ

.

The Hamiltonian, in each chart, gets the form

K(i)(Γ, γ(i), x, y, J (i), j(i)) = k(Γ,Λ(x, y)) + εΦ(i)(Γ, γ(i), x, y, J (i), j(i)) ,
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with Λ(x, y) = 1
2 (x2 + y2) and

k(Γ,Λ) =
1

2A3
[Γ 2 + βΛ2 − 2βΓΛ] ,

with
β = 1− A3

A1
, −1 < β < 1 . (6.7)

The domain of K(i) is such that

G > 0 , 0 ≤ Λ(x, y) < G , |J (i)| < G , g(i), j(i) ∈ T
2 .

It should be stressed that Λ here is not a coordinate, but a (nonsingular)
function of x and y. A further change of coordinates, widely used after
Birkhoff in connection with perturbation theory in Cartesian coordinates,
turns out to be useful, namely the passage to the complex canonical coor-
dinates

w =
y − ix
i
√

2
, z =

y + ix√
2

;

out of the singularity it is

w =
√
Λe−iλ , z =

√
Λeiλ , Λ = −iwz .

With little abuse of notation, though we changed variables from x, y to
w, z, we do not change the names of functions.

iii. Resonant and nonresonant normal forms are constructed. The construction
of normal forms in Cartesian coordinates is a well established procedure
in the isochronous case (in our notations, for k linear in Λ). In the non
isochronous case, however, some care must be paid, due to the presence
of non constant small denominators, which alter in an essential way the
Birkhoff construction. The procedure to be followed, see [SM] and [BGF], is
conceptually simple: in the very essence, the idea is to use coordinates w, z,
but to proceed perturbatively — with Fourier developments, ultraviolet
cut-off and so on — as if Λ, λ were coordinates.

To this purpose, one first introduces the frequency

ω(Γ,Λ) =
1
A3

(Γ − βΛ,−β(Γ − Λ)) ,

which is well defined on the singularity, too, where

ω → ω0 =
Γ

A3
(1,−β) .

As is remarkable, gyroscopic motions are resonant or nonresonant (for a
given cut-off) depending only on β, that is on the geometry of the body,
and on ε. The two components of ω0 are easily interpreted as the frequency



Physical Applications of Nekhoroshev Theorem 61

of the rotation about e3, and of the small oscillations of e3 around M in
the Euler–Poinsot motion. For the perturbation, as well as for any analytic
function F : M→ R, F (i)(Γ, g(i), w, z, J(i), j(i)), one defines the “Fourier
series”,

F (i) =
∑
ν∈Z2

F̂ (i)
ν (Γ,Λ, J (i), j(i))E(i)

ν (g(i), w, z) ,

(Λ stays now for the product iwz), with F̂ (i) analytic, and

E(i)
ν =

{
eiν1γ(i)

wν2 for ν2 < 0
eiν1γ(i)

zν2 for ν2 ≥ 0.

As is quite important, the above development in Fourier series is intrin-
sic: namely, although F̂ (i)

ν and E(i)
ν are only local, the product F̂ (i)

ν E
(i)
ν is

nevertheless the representative of an intrinsic “Fourier component”, and
a Fourier series is well defined on the manifold (see [BFG1] for details).
Once the Fourier series is defined, it is sensible to introduce the ultravi-
olet cut-off N , and the resonant and nonresonant zones, as in the case
of nonresonant motions. However, having in mind to work only in a small
neighborhoodMδ of the proper rotation, of size ε1/2, it is enough to intro-
duce just a single zone, either resonant or nonresonant depending on ω0,
and work consistently inside it. So, for gyroscopic motions, being resonant
or nonresonant does not depend on the initial datum, but on β, that is on
the geometry of the body.
The nonresonant normal form, for example, looks in each chart

K
(i)
0 = k(Γ,Λ(x, y)) + εu(i)0 (Γ,Λ(x, y), J (i), j(i)) +O(e−1/ε1/4

) ,

with u(i)0 close to the average 〈Φ(i)〉; all of these functions are local repre-
sentatives of functions on the manifold.

As a matter of fact, following this road one proves a proposition that, essen-
tially, extend to the gyroscopic motions the results of Proposition 4.

Proposition 5: Let H = h+ εf be as in Proposition 4, with f analytic in
a neighborhood of the proper rotations, too. There exist δ, c, ε∗ > 0 such that,
if ε < ε∗, then up to

|t| ≤ (const) e(ε∗/ε)1/4
(6.8)

i) any initial datum in Mδ does not escape M2δ;
ii) Γ,Λ stay almost constant, and γ(i) advances almost regularly:

|Γt − Γ0|, |Λt − Λ0| ≤ (const)
√
ε , |γ̇(i)t − βΓ0/A3| ≤ (const)

√
ε ;

iii) if β is nonresonant up to the cut-off N = c(ε∗/ε)1/4, then the average 〈f〉
stays also almost constant,

|〈f〉(Rt,Mt)− 〈f〉(R0,M0)| < (const) ε1/4 .
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The interpretation is the same as for Proposition 4; in particular, in the reso-
nant case, chaotic motions of M are not excluded, for no matter how small ε.
The improvement of [Gu], however, applies here too, namely chaotic motions
possibly exist only in low resonances, up to a cut-off N ′ = O(log ε−1).

Whether such chaotic motions effectively exist or not where theoreticaly
allowed, is a delicate question. Numerical computations seem to indicate that
gyroscopic motions, at variance with non gyroscopic ones, are more regular
than expected, and chaotic motions occur, possibly, only in very few reso-
nances of low order. Work is in progress to further improve Proposition 5,
and prove that this is indeed the situation.

7 The Stability
of the Lagrangian Equilibrium Points L4 − L5

As the last physical application of Nekhoroshev theory we shall consider the
problem the stability of the Lagrangian equilibrium points L4 – L5, in the
so–called spatial circular restricted three body problem.

Fig. 30. The Sun and Jupiter in the corotating system; the Lagrangian equilibrium
points L1, . . . , L4; an asteroid near L4.

A. The Problem

Let us consider two masses m1 = (1 − μ)M and m2 = μM , say the Sun
and Jupiter, interacting via a Kepler potential, in circular motion around
the common center of mass, at distance, respectively, μR and (1− μ)R from
it. It is convenient to introduce dimensionless quantities, such that M =
1, R = 1, Ω ≡ 2π/T = 1, T being the common period of rotation (the
gravitational constant entering Kepler potential is then also one), and to pass
to the corotating frame, namely the frame with origin in the center of mass,
plane xy coinciding with the plane of the motion, x axis passing through
m2 (see figure 30). Consider now a third object of negligible mass, say an
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asteroid, subject to the gravitational attraction of the two primary bodies,
but too small to influence them (the restricted problem). It is not difficult
to recognize that in such a rotating frame there are exactly five equilibrium
positions for the asteroid, where the gravitational forces and the centrifugal
force exactly balance. Three equilibrium points, commonly denoted L1, L2,
L3, are collinear to m1 and m2, that is stay on the x axis (their existence
is very obvious). The two remaining positions, denoted L4, L5, are instead
located on the opposite sides of the x axis, in such a way to form with m1

and m2 two equilateral triangles (see the figure), that is

L4,5 = (1
2 − μ,±

√
3

2 , 0) .

Recognizing the existence of L4 and L5 is less immediate, but still is not diffi-
cult (elementary geometry is sufficient); L4, L5 are also called the “triangular”
Lagrangian equilibrium points.30

The Hamiltonian of the asteroid in the rotating frame is easily seen to be

H(px, py, . . . , z) =
1
2
(p2x + p2y + p2z)− xpy + ypx + V (x, y, z) ,

with
V (x, y, z) = − 1− μ


−(x, y, z)
− μ


+(x, y, z)
,


±(x, y, z) denoting the distance of the asteroid from the Sun (−) and from
Jupiter (+).

By expanding H0 around L1, L2, or L3, and looking at the second order
terms, one recognizes that such equilibrium points are linearly unstable, and
thus unstable. The question of stability is instead definitely nontrivial for L4

and L5. Let us move the origin to L4; denoting by (Q,P ) the new coordinates
and momenta, the Hamiltonian takes the form

H ′ =
P 2

2
−Q1P2 +Q2P1 + V ′(Q) ,

with

V ′(Q) = − 1−μ
�′
−(Q) −

μ
�′
+(Q) − linear part


′±(Q) = (Q2 ±Q1 +
√

3Q2 + 1)1/2 .

A little computation shows that the quadratic part of this Hamiltonian is

H2 =
1
2
P 2 + P1Q2 − P2Q1 +

1
8
Q2

1 −
5
8
Q2

2 +
1
2
Q2

3 −
3
√

3
4

(1− 2μ)Q1Q2 .

30 It is worthwhile to mention that in the more general elliptic problem (Jupiter and
the Sun proceeding non uniformly on elliptic orbits) the triangular Lagrangian
equilibria are replaced by elliptic orbits L4(t), L5(t) such that, at any t, Jupiter,
the Sun and the asteroid form an equilateral triangle. The existence of such
solutions was also discovered by Lagrange.
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By diagonalizing H2 one finds six eigenvalues ±iωj, j = 1, 2, 3, with

ω1 =

√
1 +

√
Δ(μ)

2
, ω2 = −

√
1−

√
Δ(μ)

2
, ω3 = 1 ,

Δ(μ) = 1−27μ+27μ2. Correspondingly the diagonalized Hamiltonian, in the
normal coordinates denoted (p, q), assumes the form

H ′′(p, q) = h2(p, q) + f (3)(p, q) , (7.1)

with

h2(p, q) =
1
2

3∑
j=1

ωj(p2j + q2j ) ,

while f (3) is a series starting with terms cubic in p, q. The three frequencies
are all real, and correspondingly the equilibrium point is elliptic, if Δ(μ) > 0,
that is if

μ < μR =
1
2

(
1−

√
23
27

)
� 0.038520 ;

μR is called the Routh limit. Both the value μSJ relative to the Sun–Jupiter
system and the value μEM relative to the Earth–Moon system are far below
μR, namely

μSJ � 0.000953 , μEM � 0.01215 .

Due to the presence of one negative frequency, the Lagrangian equilibrium
points L4, L5, though elliptic, are not necessarily stable, and the question
of their stability — a couple of centuries after Lagrange’s work — is still
open. This is probably the oldest “elementary” unsolved problem of Celestial
Mechanics, perhaps of Mechanics. For the planar case (motion of the asteroid
in the xy plane), the problem was positively solved during the sixties and the
early seventies, within KAM theory; low dimensionality is essential, in order
for the two–dimensional KAM tori provide a topological obstruction inside the
three dimensional energy surface, and diffusion is forbidden. For the spatial
problem, instead, the question is still open.

In recent years, some work has been done to discuss the problem of the
stability of L4, L5 within Nekhoroshev theory, with the aim to prove that
the equilibrium, though possibly not perpetually stable, is nevertheless stable
for long times, namely times growing exponentially with the distance ε of
the initial datum from the equilibrium point. Before entering the question,
however, we must make a step back, and discuss more in general the problem
of the application of Nekhoroshev methods to elliptic equilibria.

B. Nekhoroshev–Like Results for Elliptic Equiliria

Consider an analytic Hamiltonian system in a neighborhood of an equilibrium
point,
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H(p, q) = h2(I(p, q)) + f (3)(p, q) , (p, q) ∈ R
2n , (7.2)

where

h2(I) = ω · I , Ij(p, q) =
p2j + q2j

2
,

and f (3) is a series in p, q, starting with terms of order 3. Nekhoroshev con-
jectured, already in his 1977 paper, that exponential stability extends to such
systems too, essentially as KAM results do. The conjectured result is thus
that, if the initial datum is sufficiently close to the origin, say if

ε := ‖I(p0, q0)‖1/2 ≤ ε∗

with suitable ε∗, then it is

‖I(pt, qt)‖1/2 < (const) εb for |t| ≤ (const) e(ε∗/ε)a

, (7.3)

with some a, b > 0. The analogy with KAM theorem suggests the following
possible procedure:

i. Exclude a finite number of resonances, more precisely assume that ν ·ω �= 0
for |ν| ≤ s with some s ≥ 4. Then for small ε, by means of s elementary
“Birkhoff steps”, it is possible to put the system in “Birkhoff normal form”
up to the order s, namely

H(s)(p, q) = h(s)(I(p, q)) + f (s+1)(p, q) , (7.4)

where f (s+1) is a series in p, q starting at order s+ 1, and

h(s)(I) = h2(I) +
[s/2]∑
k=2

h2k(I) , (7.5)

[ . ] denoting the integer part; h2k is a homogeneous polynomial of degree
k in I1, . . . , In, and correspondingly h2k ◦ I is a polynomial of degree 2k
in p, q.

ii. Assume that h(s) satisfies some convenient geometric assumption, like con-
vexity of h(s) as function of I, and try to apply Nekhoroshev theory toH(s),
using h(s) as the integrable part.

While point (i) is easy and well established, point (ii) is far from trivial, since
the action-angles variables are singular whenever an action vanishes. With
reference to the figure 31, left, stability of actions is proven in the bulk, but
not near the hyperplanes Ij(p, q) = 0, in particular not in a neighborhood of
the origin. An improvement was produced in [Lo2]: the size of the excluded
region there shrinks to zero at the equilibrium point, see figure 31, right, but
still the stability region does not contain any open neighborhood of this point.
Let us stress that, while in KAM theory the aim is “only” to work in a subset
of the phase space of large measure, and so excluding a neighborhood of the
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Fig. 31. In a layer around coordinate planes Ij = 0, j = 1, . . . , n, the ordinary proof
of Nekhoroshev theorem fails (left). The improvement in [Lo2] reduces the layers to
wedge–shaped regions (right).

coordinate plains is fairly acceptable, instead in Nekhoroshev theory working
in an open set around the equilibrium point is mandatory.

As a matter of fact, the literature concerning long time stability for elliptic
equilibria took soon a different direction, namely it abandoned the original
Nekhoroshev suggestion, and studied elliptic equilibria as perturbations of
isochronous systems, using h2 as the unperturbed Hamiltonian. As for the
case of the linear systems that we studied in Section 2, this approach needs a
strong arithmetic assumption on the frequencies, namely that ω satisfies the
Diophantine condition (2.3). For isochronous systems, thanks to the fact that
ω and thus the small denominators ν · ω are constant, it is rather natural to
work perturbatively in the Cartesian variables p, q (essentially as Birkhoff did
at a formal level), so the difficulty connected with the lack of analyticity of the
action angle variables in this approach disappears. The result is an exponential
estimate like (7.3) [Gi1]. Applications to the Lagrangian equilibria L4, L5 were
also soon produced; see [GDFGS] and, for later improvements, [GS,Gi2] and
references there quoted. Such results belong, in our language (Section 1), to
the realm of “exponential estimates”, rather than of Nekhoroshev theorem.

On the one hand, such an approach is simple and powerful, and leads
to nice results of “practical stability” in connection, for example, with the
triangular Lagrangian equilibria corresponding to the Sun-Jupiter masses.31

31 In such a case, of course, it is not known whether ω is Diophantine, and thus if an
arbitrarily large number of perturbative steps, leading to exponential estimates,
can be performed. But ω is known sufficiently well as to exclude all resonances up
to, say, |ν| = 30; this allows to make 30 (computer assisted) perturbative steps,
and to obtain stability times larger than the Universe lifetime, with a basin of
stability sufficient to contain some of the asteroids which are known to gravitate
around L4, L5. Perturbation theory, due to the finite precision knowledge of ω,
is finite order, so in a sense it is improper to speak of exponential estimates. But
clearly, the approach is successful, and “practical stability” is acheived, just be-
cause there is, behind, the general result of exponential estimates for Diophantine
frequencies.
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On the other hand the approach is weak, if one wishes to know about the
stability of elliptic equilibria for open sets of frequencies, and in particular for
the Lagrangian equilibria L4, L5 for generic values of μ ∈ (0, μR). Indeed, as
we remarked in Section 2A, if we take any ball in Rn, Diophantine frequencies
are there abundant in measure: but such abundancy does not trivially tranfer
to submanifolds of Rn, in particular not to the curve ω(μ) ∈ R3, parametrized
by μ, entering the Hamiltonian of L4, L5; Diophantine frequencies could be
there quite exceptional.

Only recently, in [FGB,Ni1,GFB] (see also [Pö2]), the original Nekhoro-
shev conjecture was taken again into consideration, and long time stability
of elliptic equilibria was proved for open sets of frequencies. In [FGB,GFB]
the proof makes use of the standard geometric construction of Nekhoroshev
theorem; as a matter of fact, the difficulty related to the use of Cartesian vari-
ables in a non isochronous system is identical to the one solved in connection
with gyroscopic rotations, and the method there developed turns out to work
in the general problem of elliptic equilibria, too. [Ni1,Pö2] instead follow the
alternative method of proof introduced in [Lo1]. The common statement, up
to minor differences, is the following.

Proposition 6: Let H be as in (7.2), analytic in a ball ‖I(p, q)‖1/2 < R
for some R > 0, and assume that ω does not satisfy any resonance relation up
to |ν| = s, with s ≥ 4. Further assume that h4, as defined in (7.5), provides
quasi–convexity. There exist positive constants ε∗, T , B, a, b such that if
ε < ε∗, where ε = ‖I(p(0), q(0))‖1/2, then up to

|t| ≤ T e(ε∗/ε)a

(7.6)

it is
‖I(p(t), q(t))‖1/2 < B(ε/ε∗)b . (7.7)

In [FGB] it is a = b = 1/n, as well as a = 1/(2n), b = 1/2; in [GFB,Ni1] it is
instead b = 1, a = (s− 3)/(4n).

The weakness of Proposition 6, in view of its application to the triangular
Lagrangian equilibria, is the assumption of quasi–convexity: as we shall see,
such an assumption is never satisfied by the Hamiltonian of L4, L5. Neverthe-
less, as we shall discuss in the next paragraphs, the method of proof used in
[FGB,GFB] allows to weaken in an essential way the convexity assumption,
so as to suitably extend the result of stability to the Lagrangian equilibria,
too.

C. Nekhoroshev Stability of L4 and L5 – Part I

The construction of the normal form for the Hamiltonian of L4, L5, and the
analysis of its geometric properties, are conceptually simple but technically
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complicated operations, which require some computer assistence; the analysis
reported below was performed with the aid of Mathematica.

First of all, to construct the normal form of order s = 4, one must exclude
all resonances of ω(μ) up to order 4. In principle there are four of them, namely
ν = (0, 2, 1), (1, 2, 0), (0, 3, 1), (1, 3, 0), for μ in the interval (0, μR): but the
first and the third resonance turn out to be not present among the Fourier
components of the perturbation, so practically, to construct the normal form
of order 4, only two values of μ must be excluded, namely

μ(1,2,0) � 0.0242939 , μ(1,3,0) � 0.0135160 .

Let us write h4(I) = 1
2A(μ)I ·I, and let B(μ) denote the restriction of A(μ)

to the plane Π(μ) orthogonal to ω(μ). Computer assisted analysis shows in-
stead that the two eigenvalues of B(μ) have opposite sign, for any μ ∈ (0, μR),
so h(4) = h2 + h4 never satisfies the quasi–convexity assumption entering the
above Proposition 6.

Fig. 32. Illustrating the notion of directional quasi–convexity.

The question, fortunately, is more subtle. The lack of quasi convexity shows
that the level curves of h(4), in the plane Π(μ), have the hyperbolic structure
of figure 24, right, and we know that the asymptots, in such a situation,
provide potential escape directions. But the actions, in the problem at hand
(as well as for any elliptic equilibrium) are necessarily nonnegative: so, in
order for escape along an asymptot to be possible, the asymptot itself must
point in the first octant, that is it must have all components of the same sign,
see figure 32, right. If instead the asymptot points towards the walls of the
first octant, see figure 32, left, then motions along it, if any, are bounded. In
particular, if a pair of Cartesian coordinates (pj(t), qj(t)) goes through the
origin at some t∗, so that I(t) reaches the coordinate plane Ij = 0 at t∗,
later on I(t) is necessarily “bounced back”; see figure 33. Formally, one can
introduce — for this as well as for any problem of elliptic equilibria, in any
dimension — the notion of directional quasi–convexity [BFG2], and say that
a function h(4) = h2 +h4, with h2(I) = ω · I and h4(I) = 1

2AI · I, I = 1, . . . , n
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Fig. 33. Oscillator No. 1 passes through the origin. Correspondingly I(t) touches
the coordinate plane I1 = 0, and is bounched back.

is directionally quasi–convex, if h2 and h4 never vanish simultaneously for
I1, . . . , In ≥ 0, I �= 0. As shown in [BFG2], one of the proofs of Proposition
6, namely the one in [FGB] allows to replace the quasi–convexity assumption
by the weaker assumption of directional quasi convexity, with the same result,
namely the estimates (7.6) and (7.7), with either a = b = 1/n or a = 1/(2n),
b = 1/2.

The obvious question then poses, whether the assumption of directional
quasi–convexity is satisfied by the Hamiltonian of L4, L5 for μ ∈ (0, μR). To
answere, one must look at the sign of the components of the eigenvectors of the
matrix B(μ) introduced above. A careful numerical analysis, see [BFG2] for
details, shows that, for both eigenvectors, the three components have different
sign, and correspondingly the system is directional quasi–convex, for all values
of μ in the interval (0, μR), except in an interval (μ1, μ2),

μ1 � 0.0109137 , μ2 � 0.0163768 ;

see figure 34, dashed interval. Out of this interval, that is for either μ < μ1 or
μ > μ2, L4 and L5 are proven to be Nekhoroshev stable.

EM

0

4

(0,3,1)

Fig. 34. The μ axis, between 0 and μR. The hypothesis of directional quasi–convexity
is satisfied only on the solid line. The different exceptional values of μ, where for
different reasons Nekhoroshev stability is not proved, are reported. The value μEM

of the Earth–Moon system is also reported.

To investigate the long time stability of the equilibrium inside the interval
(μ1, μ2), the elementary method of confinement illustrated in Section 5, based
on quasi–convexity and conservation of energy, is not sufficient, and one must
resort to the not easy notion of steepness. The next paragraph is devoted to
a short illustration of this not much known property.
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D. About Steepness

Steepness is a somehow technical notion, whose definition requires care. Con-
sider any integrable Hamiltonian h(I), I ∈ B ⊂ Rn.
Definition: Let Π be any linear subspace of R

n; h is said to be Π–steep in the
point I ∈ B, with steepness constants α,m, δ > 0, if for any u ∈ Π , ‖u‖ ≤ δ,
it is

sup
0≤η≤1

‖ωΠ(I + ηu)‖ ≥ m‖u‖α ,

where ωΠ denotes the orthogonal projection of ω on Π .
In the essence: ωΠ may vanish in I (this happens if I is on a resonance, and

Π is its plane of fast drift), but then, moving far from I inside Π , ωΠ grows
at least as a power of the distance from I. Steepness is now readly defined:
Definition: The Hamiltonian h is said to be steep in B, with steepness con-
stants αj ,mj, δj , j = 1, . . . , n − 1, if it is Π–steep in any point I ∈ B, for
any subspace Π of R

n of dimension r between 1 and n − 1, with steepness
constants αr,mr, δr.

In Nekhoroshev theorem (Proposition 2) the assumption of quasi–convexity
can be replaced by the weaker assumption of steepness. The exponential es-
timates, however, worsen, and in particular the exponents a and b entering
(5.3) get smaller. It turns out that a, b depend only on α1, . . . , αn−1, so these
are the most important steepness constants to which pay attention. Smaller
values of α1, . . . , αn provide better (i.e. larger) exponents a, b. A very recent
result [Ni2] improving [Nek1,Nek2], valid for steep h with nonsingular Hessian,
is a = b = 1/(2nΠjαj).

The following statements are easy to prove, an provide useful exercises
to get familiar with the notion of steepness; we there use the compact
notations h′u =

∑
i

∂h
∂Ii
ui = ω · u, h′′uu =

∑
ij

∂2h
∂Ii∂Ij

uiuj , h′′′uuu =∑
ijk

∂3h
∂Ii∂Ij∂Ik

uiujuk.

i. Let h be quasi–convex, i.e. assume that for any I ∈ B

h′(I)u = 0 , h′′(I)uu = 0 =⇒ u = 0 ,

for any I ∈ B. Then h is steep, with α1 = . . . = αn = 1 (the best possible
values).

ii. The Hamiltonian h = 1
2 (I21 − I2)2 + I23 is steep on all lines, but not on the

planes I3 = (const). Conversely, h = I21 − I22 + I3 is steep on all planes,
but not on the lines parallel to (1,±1, 0).

iii. The Hamiltonian
h =

1
2
(I21 − I22 ) +

1
3
I31 + I3

is steep, with α1 = 2, α2 = 1.
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iv. Let the 3-jet of h be non degenerate, i.e. assume that everywhere in B

h′(I)u = 0 , h′′(I)uu = 0 , h′′′(I)uuu = 0 =⇒ u = 0 .

Then h is steeep, and for n = 3 it is α1 = 2, α2 = 1.
Non degeneracy of the 3–jet of h is a natural generalization of quasi–
convexity. The generalization, however, is not trivial (the proof is easy
only for n = 3), and moreover it does not procede further, namely the non
degeneracy of the 4–jet does not imply steepness. A counterexample is

h =
1
2
(I21 − I2)2 +

n∑
j=3

I2j .

For such a system, in fact, it is not difficult to find a perturbation, for
example f = cosϕ1 + 2I1 cosϕ2, such that h + εf admits unbounded
motions with speed ε.
Remark: For steep but non quasi–convex Hamiltonians, the energy con-
servation does not provide confinement of the actions. Indeed:

v. The Hamiltonian
h =

1
2
(I21 − I22 + I23 ) +

1
3
I31

is steep, with α1 = 2, α2 = 1, but in the planeΠ through Io = (0, 0, Io3 ), or-
thogonal to ω(Io) = (0, 0, Io3 ), the level lines h = (const) are not bounded.

The only known mechanism of confinement, for Hamiltonians steep but not
quasi–convex, is the Nekhoroshev “trapping”, mentioned in Section 3. Here we
can understand better the idea of trapping, which is technically complicated
but conceptualy simple: for any initial datum I(0) inside ZΛ (but far from
resonances other than in Λ, so as to avoid “overlapping”), the motion, we
know, takes place up to a negligible error on the plane of fast drift ΠΛ. But for
a steep system, any motion on ΠΛ cannot proceed far from the initial datum,
without a growth of ωΠΛ = ω · u/‖u‖, for some u ∈ Πλ. Since the resonant
vectors ν1, . . . , νr are a basis in ΠΛ, at least one of the small denominators
ω · νj necessarily grows, and correspondingly the point I(t) exits from ZΛ

towards a less resonant region, where a stronger normal form can be used.
The 3–jet non degeneracy provides a very useful sufficient condition for

steepness, easy to test in practice (testing directly steepness is harder). Such
a property was successfully used in [MG,GM], for a steep but non quasi–
convex Hamiltonian describing the motion of an asteroid in the main belt. As
we shall see in the next final paragraph, the same property turns out to be
useful to study the long time stability of the triangular Lagrangian equilibria,
in the interval (μ1, μ2) where directional quasi–convexity is absent.
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E. Nekhoroshev Stability of L4 and L5 – Part II

For the general case of an elliptic equilibrium with Hamiltonian (7.4), it is easy
to see that the condition of non degeneracy of the 3–jet of h(s) is satisfied iff
s ≥ 6 and

ω · I = 0 , h4(I) = 0 , h6(I) = 0 =⇒ I = 0 . (7.8)

As a matter of fact, by rearranging the proof of Proposition 6 contained in
[GFB], the assumption of quasi–convexity of h(s) can be weakened to the non
degeneracy of the 3-jet of h(s), though stability times worsen and the minimal
s gets larger. Precisely:

Proposition 7: Consider the Hamiltonian (7.4), with h(s) as in (7.5),
s ≥ 8. Assume that (7.8) is satisfied, and moreover that the restriction of
the quadratic form h4 to the plane orthogonal to ω is nonsingular. Then the
exponential estimates (7.6), (7.7) hold, with a = min( s−7

20 ,
s+1
36 ) and b = 1.

To apply such a proposition to L4 and L5, first of all one must check that
the normal form H(s) can be constructed (at least) up to the order s = 8.
To this purpose, for each j = 3, . . . , 8 one must exclude all values of μ, such
that ν · ω(μ) = 0 for some ν actually present in f (j+1)

j+1 ; these are indeed the
terms of the perturbation to be “killed” at step j − 2, to construct H(j+1).
Only values of μ in the interval (μ1, μ2) need to be considered. As a result,
see [BFG2] for details, it turns out that the eight-order normal form can be
constructed everywhere in (μ1, μ2), except for three points, namely the already
met μ(1,3,0), and the new points

μ(0,3,1) � 0.0148525 , μ(3,3,−2) � 0.0115649 .

As a second step, for all values of μ for which the normal form of order eight
can be constructed, it is necessary to check if the steepness assumption used
in Proposition 7 is satisfied. Accurate numerical computations, see [BFG2] for
details, show that the non singularity assumption on h(4) is always satisfied
in (μ1, μ2), while the non degeneracy of the 3-jet of h(6) fails to be satisfied
in just one point of the interval, namely

μ3 � 0.0147808 .

So Proposition 7 applies, and long time stability occurs, for all μ ∈ (μ1, μ2)
but the four exceptional values μ(0,3,1), μ(3,3,−2), μ(1,3,0) and μ3.

The overall conclusion is that the Lagrangian equilibrium points L4, L5

are Nekhoroshev stable for any μ in the interval (0, μR), with the exception
of five “bad” points, namely the four above inside (μ1, μ2), and μ(1,2,0). The
situation is summarized in figure 34.

Let us stress, however, that the stability properties of L4, L5 are not
expected to be uniform in (0, μR): on the contrary, the theoretical expectation
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is that the stability times worsen in the interval (μ1, μ2), where the assumption
of directional quasi–convexity is violated, and of course further worsen if the
exceptional points where the theory fails are approached. As is remarkable,
the value μEM relative to the Earth–Moon problem lies inside the interval
of weaker stability (μ1, μ2), and moreover, see figure 34, it is rather close
to μ(3,3,−2). As is known, no bodies have been ever observed to gravitate
around the triangular Lagrangian equilibria of the Earth–Moon system. Of
course, there can be several reasons for such an absence, like the (rather
strong) influence of the Sun [GJMS], or the ellipticity of the underlying two
body problem. The worse stability of the ideal circular three body problem,
however, could also contribute.

Whether the difference in the geometric properties of the system, namely
quasi–convexity or weaker steepness properties, does effectively result in ob-
servable differences of the stability properties, is a very general question, which
goes far beyond L4 and L5, or elliptic equilibria, and concerns the whole
Nekhoroshev theory. Nekhoroshev, in his 1977 paper, explicitly conjectured
that different steepness properties should lead to numerically observable dif-
ferences in the stability times. Such a study, as is known, is not easy, since
it based, in the essence, on the possibility of observing numerically, for small
perturbations, the Arnol’d diffusion — a quite difficult task, as is well known
— and of putting in evidence possible differences in its speed. It is hard to
say whether such an investigation can be effectively carried on. But certainly,
the Hamiltonian of L4, L5 provides, at least, a promising candidate for such a
study, since by just varying a natural parameter in the system, the steepness
properties change significantly, and occasionally also disappear.
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1 Integrable Systems

1.1 Hamilton-Jacobi Equation

We shall summarize in the section a few results of the theory of Hamiltonian
system.

Canonical Transformations

By definition a canonical transformation from the phase space of n variables
(q1, · · · , qn) and n momenta (p1, · · · , pn) to the phase space of n variables
(β1, · · · , βn) and n momenta (α1, · · · , αn) is a (possibly time dependent)
transformation such it transforms any Hamiltonian system into an Hamil-
tonian system; i.e. for any function H(q, p) there exists a function K(β, α)
such that the system of differential equations

q̇i =
∂H

∂pi
; ṗi = −∂H

∂qi
1 ≤ i ≤ n ,

is transformed into the system of differential equations,

β̇i =
∂H

∂αi
; α̇i = −∂H

∂βi
1 ≤ i ≤ n ,

A necessary and sufficient condition for a transformation to be canonical
is that its Jacobian matrix

M =
∂(β1, · · · , βn, α1, · · · , αn)
∂(q1, · · · , qn, p1, · · · , pn)

,

verify the condition
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M�M = μ� with � =
(

0n In
−In 0n

)
,

where 0n is the (n×n) null matrix, and In is the (n×n) identity matrix. When
a transformation is canonical there exists a remainder function R(β, α, t) such
that (

∂β/∂t
∂α/∂t

)
=
(
∂R/∂α
−∂R/∂β

)
.

The “new” Hamiltonian K is equal to μH ′ +R , where H ′ is the function
H expressed in the “new” variables (β, α). A canonical transformation for
which the multiplier μ is unity is a symplectic transformation.

A constructive method to generate symplectic transformation is the fol-
lowing:

For any twice differentiable function S(q, α) such that the Hessian (∂2S/∂q∂α)
is regular, the transformation from the phase space (q, p) to the phase space
(β, α) implicitely defined by

pi =
∂S

∂qi
; βi =

∂S

∂αi
1 ≤ i ≤ n ,

is a symplectic transformation.

Note that this is not the only way to construct symplectic transformations
and that not all symplectic transformations can be generated in this way.

Hamilton-Jacobi Equation

A function S(q, α) is a complete solution of the Hamilton-Jacoobi equation
corresponding to an Hamiltonian function H(q, p) if the functions (∂S/∂αi)
are independent and if there exists a function K(α) such that

H(q1, · · · , qn,
∂S

∂q1
, · · · , ∂S

∂qn
) = K(α1, · · · , αn) .

When we know a complete solution of Hamilton-Jacobi equation the Hamilto-
nian system derived fromH may be considered as solved. Indeed in the “new”
phase space (β, α) the system is trivial. We have

α̇i = − ∂K
∂βi

−→ αi = αi(0) ,
β̇i = ∂K

∂αi
= ni(α) −→ βi = nit+ βi(0) .

Of course, except in exceptional case the problem of finding a complete
solution of Hamilton-Jacobi equation is at least as difficult as the problem of
solving the original system of ordinary differential equations. A few of these
“exceptional” cases are reviewed in the next section.
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1.2 Integrables Systems

Traditionnaly one calls integrable an Hamiltonian system the solution of which
can be reduced to quadrature. Other authors prefer to consider integrable an
Hamiltonian system which can be transformed (by a symplectic transforma-
tion) into one depending only on the momenta. None of these definitions is
really satisfactory as the only way of knowing whether a system can be re-
duced to quadrature or transformed in a special form is to effectively reduce or
transform it. Hence one generally put forward methods for reducing (or trans-
forming) some classes of systems and in some sense consider as integrable
those systems which fall in one of the classes. Three main classes are usually
considered:

Liouville Theorem

Consider an Hamiltonian system H(q1, · · · , qn, p1, · · · , pn), of n degrees of
freedom, for which are known n independant first integrals (Fi(q, p), 1 ≤ i ≤ n)
in involution (i.e. such that (Fi;Fj) = 0, where (.; .) is the Poisson bracket).

Locally, it is always possible to solve for the momenta the set of equations
(Fi(q, p) = αi)

pi = Pi(q1, · · · , qn, α1, · · · , αn) (1 ≤ i ≤ n) . (1)

If need be one can exchange some momenta for some variables by sym-
plectic transformations of the type (q′k = pk, p′k = −qk).

The n functions pi−Pi(q, α) are also in involution (this is called the Jacobi
lemma, see for instance Hagihara, 1970). Indeed from the identities

Fi(q, P (q, α)) = αi , 1 ≤ i ≤ n ,

we deduce, by differentiation with respect to the qk

∂Fi

∂qk
= −

n∑
m=1

∂Fi

∂pm

∂Pm

∂qk
=

n∑
m=1

∂Fi

∂pm

∂(pm − Pm)
∂qk

.

We have also (trivially) the identities

∂Fi

∂pk
=

n∑
m=1

∂Fi

∂pm

∂(pm − Pm)
∂pk

.

and thus
n∑

k=1

∂Fi

∂qk

∂Fj

∂pk
=

n∑
k=1

n∑
m=1

∂Fi

∂pm

∂(pm − Pm)
∂pk

n∑
�=1

∂Fj

∂p�

∂(p� − P�)
∂pk

=
n∑

m=1

∂Fi

∂pm

n∑
�=1

∂Fj

∂p�

n∑
k=1

∂(pm − Pm)
∂pk

∂(p� − P�)
∂pk

,
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The Poisson brackets (Fi, Fj) are equal to

(Fi;Fj) =
n∑

m=1

∂Fi

∂pm

n∑
�=1

∂Fj

∂p�
(pm − Pm; p� − P�) .

As we have assumed that the Jacobian matrix (∂Fi/∂pm) is regular, the
(Fi;Fj) cannot vanish unless the (pm − Pm; p� − P�) vanish as well.

From this we conclude that for all m and �

(pm − Pm; p� − P�) = (pm; p�) + (Pm;P�) + (pm;P�) + (Pm; p�)

=
∂P�

∂qm
− ∂Pm

∂q�
= 0 .

The vector field (Pm) is thus a gradient and there is a function S(q, α) such
that

pm =
∂S

∂qm
(q1, · · · , qn, α1, · · · , αn) . (2)

This function is a complete solution of the Hamilton-Jacobi equation and
generates a symplectic transformation from (q, p) to (β, α). The transformed
Hamiltonian K(β, α) is a function of the α alone as α̇i = (∂K/∂βi) = 0. The
system is trivial in the new coordinates, the α are constant and the β are
linear functions of the time.

In the most interesting case where the n-dimensional invariant manifolds
{Fi = αi, 1 ≤ i ≤ n} are compact and connected, they are n-tori and the vari-
ables β or linear combinations of them are angular variables (see for instance
Dubrovin et al., 1985). Hence the general solution of the system amount to
the definition of angles-actions canonical variables. We shall come back later
on this notion.

Liouville theorem is probably the most general theorem about integrable
systems and it gives us nice pieces of information about the geometry of the
solutions, but it is not very constructive. The two other classes of integrable
systems we are about to describe are less general but we can (in principle)
recognize right away if a particular Hamiltonian belongs to them.

Stäckel Systems

The first class of integrable Hamiltonian systems we shall consider has been
described in (Stäckel, 1905) and has received his name, although, as usual,
there might be some precursors. It is described in most advanced textbooks
and we give here briefly a somewhat generalized version of it.

Consider an Hamiltonian system H(q1, · · · , qn, p1, · · · , pn) of the form

H =
n∑

i=1

ai(q1, · · · , qn)Hi(qi, pi) , (3)
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where the Hi depends only upon a single degree of freedom and the functions
ai are such that there exist functions bi(qi, α1, · · · , αn) with

n∑
i=1

ai(q1, · · · , qn)bi(qi, α1, · · · , αn) = K(α1, · · · , αn) , (4)

and such that the Jacobian (∂bi/∂αj)is regular.
Such an Hamiltonian system is integrable by separation of variables. In-

deed the Hamilton-Jacobi equation

n∑
i=1

ai(q)Hi

(
qi,
∂S

∂qi

)
= K(α1, · · · , αn) =

n∑
i=1

ai(q)bi(qi, α1, · · · , αn) .

can also be written
n∑

i=1

ai(q)
[
Hi(qi,

∂S

∂qi
)− bi(qi, α1, · · · , αn)

]
= 0 ,

a complete solution of which can be obtained by separation of variables

S(q, α) =
n∑

i=1

Si(qi, α1, · · · , αn) , (5)

with Si solution of

Hi(qi,
∂Si

∂qi
) = bi(qi, α1, · · · , αn) . (6)

Russian Dolls Systems

The second class of integrable Hamiltonian systems we shall consider is not
as widely known. We have seen it described in (Landau and Lifchitz, 1960)
and in (Arnold, 1985) and the name we give to it is not a reflection on the
nationality of these authors but on the way the Hamiltonian function presents
itself.

Let us consider an Hamiltonian function H = Hn where the function Hn

is obtained from the recursive formula

H0 = 0 ; Hi = Hi(qi, pi, Hi−1) , 1 ≤ i ≤ n . (7)

A complete solution of the Hamilton-Jacobi equation can also be obtained
also by separation of variables

S(q, α) =
n∑

i=1

Si(qi, αi, · · · , αn) , (8)

with Si solution of
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Hi

(
qi,
∂Si

∂qi
,Ki−1(αi−1, · · · , αn)

)
= Ki(αi, · · · , αn) . (9)

where the Ki are, at this stage, arbitrary and can be taken for instance as
Ki = αi. It is only when we shall introduce the concepts of action-angle
variables (in the next section) that a pertinent choice can be made.

The intersection of the two classes of integrable systems is not empty (we
shall see later on that, for instance, the Hamiltonian of the two-body problem
is in this intersection) but none of them contains the other.

1.3 Action-Angle Variables

We want to discuss here a practical method of defining angle-action variables
for Russian dolls systems. We shall consider specifically one and two degrees
of freedom systems. The generalization to n degrees of freedom is not difficult.
The usefulness of such a formalism appears only when these simple systems
are viewed as first approximations of more complicated systems. Then the
canonical formalism prepares them for the application of a perturbation the-
ory.

A typical case is the case where the external parameters of the system
change slowly with the time. A first approximation is obtained by freezing
the parameters and perturbation theory shows that the action of the frozen
system is the “adiabatic invariant”. We shall discuss thist in the next chapter.

Angle-action variables cannot be defined smoothly accross saddle-connec-
tions of one-degree of freedom systems. But transition accross such saddle
connections (such as for instance transition of a pendulum with slowly varying
length - from circulation to libration) are very significant features. We shall
consider this in chapter 3.

One-Degree of Freedom

Let us consider a one-degree of freedom dynamical system described by the
Hamiltonian function

H(q, p) (10)

which we assume to be an analytical function of the variable q and its con-
jugate momentum p , defined for (q, p) belonging to an open domain D of a
two-dimensional manifold. The value of the Hamiltonian function (10) being
constant along the solution curves of the dynamical system, these solutions
curves lie along the level curves of the Hamiltonian function. The simplest
case is when the level curves are closed and do not contain critical points
(points such that the gradient ∇H of the Hamiltonian function is zero). The
solutions are then periodic in the time.

We shall assume that, in the domain D , only this simplest case occurs.
By this assumption we exclude, from the domain D , the saddle connections
where one level curve of the Hamiltonian function contains one or more critical
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points and orbits asymptotic to these critical points. We shall comment on
the saddle connections in chapter 3. We exclude also the cases where the level
curves and the orbits extend to infinity. These orbits are usually not very
interesting candidates for a perturbation theory.

In summary, we assume that D is

1. an open, bounded invariant set,
2. does not contain critical points.

The extension to a domain containing a single stable equilibrium point is
not difficult but necessitates some special discussions that we prefer to avoid
here.

In such a domain D , the general solution of the dynamical system de-
scribed by the Hamiltonian (10) can be written

q = Q(t, h)
p = P (t, h) (11)

where the functions P,Q are periodic in the time t of period T (h) . The
parameter h is the value of the Hamiltonian function. In writing the general
solution (11) we have assumed that an initial point (corresponding to t = 0 )
has been chosen on each solution curve by taking q0 = Q(0, h) and p0 =
P (0, h) on a curve defined by an analytical function

F (q0, p0) = 0 . (12)

This curve should of course intercept transversaly all the solutions in the
domain D .

Our aim, in this section, is to write the general solution (11) under the
form of a canonical transformation:

q = Q�(ψ, J)
p = P �(ψ, J) (13)

from an angular variable ψ (increasing by 2π along each closed solution curve)
and an action J , its conjugate momentum, which will obviously take the role
of h in labelling each solution curve. This will be done by defining ψ and J
as functions of t and h .

An obvious choice is to define ψ as a normalized time

ψ =
2π
T (h)

t (14)

and to find the function h(J) which makes

Q�(ψ, J) = Q(
T (h(J))

2π
ψ, h(J))

P �(ψ, J) = P (
T (h(J))

2π
ψ, h(J))
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a canonical transformation. We have to check

(Q�;P �) =
∂Q�

∂ψ

∂P �

∂J
− ∂Q

�

∂J

∂P �

∂ψ

=
T

2π
∂h

∂J

{
∂Q

∂t

∂P

∂h
− ∂Q
∂h

∂P

∂t

}
= 1 (15)

When we substitute to ∂Q
∂t and ∂P

∂t the right-hand members of the Hamil-
tonian differential equations, the condition (15) becomes

(Q�;P �) =
T

2π
∂h

∂J

{
∂H

∂p

∂P

∂h
+
∂H

∂q

∂Q

∂h

}
= 1 . (16)

But from the identity

H(Q(t, h), P (t, h)) = h (17)

it is easy to conclude that the expression in brackets in (16) is equal to one
and thus that the unknown function h(J) is defined implicitely as the solution
of

∂J

∂h
=
T (h)
2π
. (18)

Equation (18) is also of course a definition of the action variable J . This
definition can be written under a form from which its geometrical meaning is
made more apparent.

The following identity is not difficult to check

∂

∂J

{
∂Q�

∂ψ
P � − ∂P

�

∂ψ
Q�

}
= 2(Q�;P �) +

∂

∂ψ

{
∂Q�

∂J
P � − ∂P

�

∂J
Q�

}
.

By integrating both members with respect to ψ , we find:

∂

∂J

∫ 2π

0

{
∂Q�

∂ψ
P � − ∂P

�

∂ψ
Q�

}
dψ = 4π +

[
∂Q�

∂J
P � − ∂P

�

∂J
Q�

]2π

0

. (19)

The last term in (19) disappears as the functions P �, Q� are 2π-periodic in
ψ . Hence we find that, up to an arbitrary additive constant, the action J is
equal to:

J =
1
4π

∫ 2π

0

{
∂Q�

∂ψ
P � − ∂P

�

∂ψ
Q�

}
dψ (20)

or equivalently to

J =
1
4π

∫ T

0

{
∂Q

∂t
P − ∂P

∂t
Q

}
dt

or
J =

1
4π

∮
pdq − qdp (21)
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where the path integral (21) is taken along the closed solution curve.
The last expression makes it obvious that 2πJ can be usually defined

geometrically as the area enclosed by the solution curve. We say usually be-
cause in some instances, the closed solution curve does not enclose a finite
area (for instance when the closed solution curve goes around a cylinder). In
these cases, the expression (21) is still well-defined and related to an area, but
should receive another geometrical interpretation. Notice also that the area
we are talking about is an oriented area. The direction of motion along the
solution curve defines the sign of J .

In most textbooks the canonical transformation to action-angle variables
is not defined in the same way but rather by means of the mixed generat-
ing function and the Hamiltonian-Jacobi equation. This other definition is
equivalent and indeed may seem simpler. We did not follow the traditional
presentation because the implicit character of the mixed generating function
hides most of the topological difficulties of the problem. Let us sketch anyway
this usual presentation.

Let us assume that the canonical transformation (13) is defined implicitely
by the mixed generating function S(q, J):

p =
∂S

∂Q
, ψ =

∂S

∂J
(22)

and let us assume that it is such that the Hamiltonian function H(q, p) is
transformed into a function K(J) of J alone. The corresponding Hamilton-
Jacobi equation is:

H(q,
∂S

∂q
) = K(J) (23)

and its solution is given by

S(q, J) =
∫ q

q0

P(q′,K(J)) dq′ (24)

where the function P(q, h) is defined implicitely by the identity

H(q,P(q, h)) = h .

Notice that the implicit function P may not be unique and that the integral
defining S is actually a path-integral. For instance in the case of the pendulum

H =
1
2
p2 − b cos q

there is an ambiguity in the definition of the function P

P = ±
√

2h+ 2b cos q

which must be solved in connection with the definition of the path integral
(24). P is positive when q is increasing and P is negative when q is decreasing
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along the solution. Such difficulties do not arise with the explicit definition
we have chosen. Setting aside those difficulties, we observe that from the
definition of the canonical transformation:

ψ =
∂S

∂J
=
∂K

∂J

∫ q

q0

∂P
∂h
dq ,

if we assume that q0 does not depend upon h. If we cannot, or do not wish, to
make this assumption, the computation becomes much more involved.

If we want the variable ψ to be an angular variable, increasing by 2π after
a complete circuit along the periodic orbit, we should have

2π =
∂K

∂J

∂

∂h

∮
P(q, h) dq

and thus, up to an additive constant,

J(h) =
1
2π

∮
P(q, h) dq

which is equivalent to (21).

Two Degree of Freedom Separable Systems

A n-degree of freedom separable system is in some sense a juxtaposition of
n one-degree of freedom systems, with minimal interaction between them. It
would then seems enough to develop the one-dimensional case as we just did.
Nevertheless there are a few particular points worth mentionning. Let us then
investigate with more details the case of a two-degree of freedom system. The
extension to n-degree of freedom is straightforward although the notations
may become clumsy.

Let us consider a Russian doll system with two degrees of freedom

H(q1, p1, L(q2, p2)) . (25)

The differential equations corresponding to the second degree of freedom

q̇2 =
∂H

∂L

∂L

∂p2
, ṗ2 = −∂H

∂L

∂L

∂q2

can be viewed as a one-degree of freedom system

dq2
dτ

=
∂L

∂p2
,
dp2
dτ

= − ∂L
∂q2

(26)

in the “pseudo-time”

τ =
∫ t

0

(
∂H

∂L
) dt . (27)
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Notice that the “pseudo-time” τ does depend upon the first degree of freedom,
but except for this, the system (26) is separated from this first degree of
freedom.

If we assume that the solutions of (26) are periodic in τ of period T2(L)
in a domain of the phase space (q2, p2) , we can introduce in this domain
action-angle variables

ϕ2 = 2π
T2
τ

J2 =
∮
p2dq2 − q2dp2

(28)

as we have done in the previous section. The transformation from (ϕ2, J2) to
(q2, p2) given by

q2 = Q�
2(ϕ2, J2)

p2 = P �
2 (ϕ2, J2)

(29)

is a one-degree of freedom canonical transformation, which completed by the
identity transformation for the first degree of freedom, transforms the Hamil-
tonian (25) into

M(q1, p1, J2) (30)

where J2 is a constant. If we consider the Hamiltonian (30) as a one-degree of
freedom Hamiltonian in (q1, p1) depending upon a parameter J2 , and if the
solutions of the system described by (30) are periodic of period T1(M) in a
domain of the phase space (q1, p1) , it is natural to introduce the action-angle
variables

ψ1 = 2π
T1
t

J1 =
∮
p1dq1 − q1dp1

(31)

by means of the one-degree of freedom canonical transformation, depending
upon the parameter J2:

q1 = Q�
1(ψ1, J1, J2)

p1 = P �
1 (ψ1, J1, J2)

(32)

The question is now: can we make out of the two one-degree of freedom
canonical transformations (29) and (32), one two-degree of freedom canonical
transformation ?

To answer this question, we shall need, as we shall see, to distinguish in
the scaled “pseudo-time” ϕ2 a mean value, which will be used as the angular
variable ψ2 of the action-angle pair, and a periodic correction 
(ψ1, J1, J2)
which will take into account the periodic variations of the “pseudo-time” with
the motion of the first degree of freedom.

Let us first juxtapose the transformations (29) and (32) but, while doing
so, let us give us some freedom by allowing us the possibility of correcting the
definition of the angle variable ψ2 in terms of ϕ2 . We shall see later on that
this correction is the one we just mentioned.

q1 = Q�
1(ψ1, J1, J2)

p1 = P �
1 (ψ1, J2, J2)

q2 = Q�
2(ψ2 + 
, J2)

p3 = P �
2 (ψ2 + 
, J2)

(33)
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The “correction” 
 is assumed to be a yet unknown function of (ψ1, J1, J2) .
It is a matter of a little algebra to verify that the Poisson bracket conditions

of canonicity:

(Q�
i ;P

�
j ) = δij , (Q�

i ;Q
�
j ) = (P �

i ;P �
j ) = 0

amounts to the following partial differential equations for the unknown func-
tion 
:

∂


∂ψ1
=
∂Q�

1

∂J2

∂P �
1

∂ψ1
− ∂Q

�
1

∂ψ1

∂P �
1

∂J2

∂


∂J1
=
∂Q�

1

∂J2

∂P �
1

∂J1
− ∂Q

�
1

∂J1

∂P �
1

∂J2

(34)

The Froebenius condition of integrability of this set of partial differential
equations reduce after some algebra to the condition

∂

∂J2

[
∂Q�

1

∂ψ1

∂P �
1

∂J1
− ∂Q

�
1

∂J1

∂P �
1

∂ψ1

]
= 0

which is obviously verified in view of the fact that the transformation (32) is a
one-degree of freedom canonical transformation. Hence the partial differential
equations (34) can be integrated and yield


 =
∫ ψ1

0

[
∂Q�

1

∂J2

∂P �
1

∂ψ1
− ∂Q

�
1

∂ψ1

∂P �
1

∂J2

]
dψ1 +

∫ J1

G(J1, J2) dJ1 (35)

where the function G(J1, J2) is defined as

G(J1, J2) =
[
∂Q�

1

∂J2

∂P �
1

∂J1
− ∂Q

�
1

∂J1

∂P �
1

∂J2

]
ψ1=0

.

We have mentioned that the correction 
(ψ1, J1, J2) which we have just
evaluated, can be viewed as a description of the relationship between the
“pseudo-time” τ (see (27)) and the time t . Indeed we find easily that

dϕ2

dt
=

2π
T2

dτ

dt
=
dM

dJ2
.

On the other hand, the time derivative of the angular variable ψ2 is given by

dψ2

dt
=
∂K

∂J2

where K is the Hamiltonian function expressed in the action variables

K(J1, J2) =M(Q�
1(ψ1, J1, J2), P �

1 (ψ1, J1, J2), J2) . (36)

Differentiating the identity (36) with respect to J2 we find
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d


dt
=
dϕ2

dt
− dψ2

dt
= −∂M

∂q1

∂Q�
1

∂J2
− ∂M
∂p1

∂P �
1

∂J2

which, by using the differential equations in q1 and p1 becomes

d


dt
=
∂Q�

1

∂J2

∂P �
1

∂t
− ∂Q

�
1

∂t

∂P �
1

∂J2
. (37)

Considering the linear relationship between the time and ψ1 , (37) reproduces
the time derivative of (35). The second integral in (35) which gives the value
of 
 at ψ1 = 0 , represents a “canonical synchronization” of the two time
variables ϕ2 and ψ2 .

From the fact that 
(ψ1, J1, J2) is, up to a scale factor, the difference
between the “pseudo-time” variable ϕ2 and the uniform time variable ψ2 , we
can hope that actually ψ2 reproduces the mean value of the “pseudo-time”
and 
 the periodic corrections. This is indeed the case. To check it we recall
that J1 is defined as

J1 =
1
4π

∫ 2π

0

{
P �

1

∂Q�
1

∂ψ1
−Q�

1

∂P �
1

∂ψ1

}
dψ1 .

Differentiating the identity with respect to J2 gives, after an integration by
part,

0 = 
(2π, J1, J2)− 
(0, J1, J2)−
1
2

[
P �

1

∂Q�
1

∂J2
−Q�

1

∂P �
1

∂J2

]2π

0

.

Due to the periodicity of Q�
1, P

�
1 with respect to ψ1 the last term disappears

and we conclude that 
 is indeed 2π-periodic with respect to ψ1 .

2 Classical Adiabatic Theory

The Adiabatic Invariant

Let us consider an Hamiltonian function which depends upon a parameter λ

H(q, p, λ) (38)

and let us consider that this parameter λ varies slowly with the time. By this
we mean not only that dλ/dt is small but that higher order derivatives of λ
are smaller yet, i.e. that there exists a small quantity ε such that

1
n!

∣∣∣∣dnλdtn
∣∣∣∣ ≤ εn . (39)

Our results will be valid for ε “sufficiently small”, i.e. they will be asymptotic
results. To simplify the notation we shall assume actually that
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λ = εt . (40)

This can be done without loss of generality. The assumption (39) or (40) may
seem to be strong but it is essential. It is not always quoted in full and is
sometime hidden in the naive picture (pleasantly recalled by Arnold, 1978)
that the “devil” pulling the strings (i.e. making λ a function of the time) is not
only slow but ignores what the dynamical system does. Well, actually, he may
know it but condition (39) makes him powerless to adjust to the dynamical
system.

For a small to moderate length of time, the trajectory of the dynamical
system described by (38) will not differ much from the trajectory of the “frozen
system”H(q, p, λ0) where λ has been “frozen” to its constant initial value λ0 =
λ(0) . Later on, for a small interval of time around the value t� , the trajectories
will again be close to the trajectories of the system H(q, p, λ�) frozen at a
different value λ� = λ(t�) . For a small interval of time around any given time
t� , we can approximate the trajectory by its “guiding trajectory” which is
defined as the trajectory of the system frozen at this given time, with initial
condition (q(t�), p(t�)) . The problem addressed by the adiabatic invariant
theory is to describe the evolution with time of the guiding trajectory: How
do we find at time t� , the guiding trajectory of the trajectory starting at
q0, p0 at time t = 0 .

To address this question we shall make use of course of the angle-action
variables introduced in the previous chapter. But the transformation to angle-
action variable now depends upon the parameter λ and thus upon the time

q = Q�(ψ, J, λ)
p = P �(ψ, J, λ) (41)

We extend the phase space to (λ, q, Λ, p) , where λ is a scaled time variable
and Λ its conjugate momentum, and replace the time dependent Hamilto-
nian function H(q, p, εt) by a two-degree of freedom autonomous Hamiltonian
H(q, p, λ) + εΛ .

The one-degree of freedom canonical transformation (41) is extended to a
two-degree of freedom canonical transformation by

λ� = λ′

Λ = Λ′ +R(ψ, J, λ′) (42)

where the remainder function R is given by the time derivative of the mixed
generating function (24)

R = −∂S
∂λ

or, if we want to avoid using this mixed generating function, by the expression

R =
∫ ψ

0

(
∂Q�

∂ψ

∂P �

∂λ
− ∂Q

�

∂λ

∂P �

∂ψ

)
dψ +

∫ J (∂q0
∂J

∂p0
∂J

− ∂q0
∂J

∂p0
∂J

)
dJ

(43)
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which can be deduced from the symplectic condition. In any case we do not
need here to know the exact form of the remainder function R except for the
fact that it is a periodic function of ψ .

The new Hamiltonian of the dynamical system is now

K ′ = K(J, λ′) + ε {Λ′ +R(ψ, J, λ′)} (44)

and it is a straightforward application of the classical perturbation theory to
generate a canonical transformation close to the identity

(ψ, λ′, J, Λ′) −→ (øψ, λ′, øJ, øΛ′) (45)

such that the new Hamiltonian function

øK = K(øJ, λ′) + ε {øΛ′ + øR(øJ, λ′, ε)}+ εn+1 Kr(øψ, øJ, λ′, ε) (46)

does not depend upon the angular variable ψ up to terms of order εn for a
given integer n .

To see this we just have to check that the vector space F of analytical
function of (ψ, J, λ) , periodic of period 2π in ψ is the direct sum of the vector
space F1 of analytical function of (ψ, J, λ) with zero mean value in ψ and of
F2 the set of analytical function of (J, λ) . Furthermore, F1 belongs to the
image of F by the operator

(K; ·) = −
(
∂K

∂J

)
∂

∂ψ

if ∂K
∂J is different from zero. Notice that the function ∂K

∂J = 2π
T will enter the

denominator at each step of the averaging procedure and thus that we have
to make sure that it is bounded away from zero uniformly in ε in order to
insure that the unaveraged remainder εnKr can be made as small as needed
for small values of ε . Hence the domain D(λ) on which we have defined the
angle-action variables and now the averaged angle-action variables (øψ, øJ)
should not contain a saddle connection in its closure.

The differential equation for the averaged action øJ is∣∣∣∣døJdt
∣∣∣∣ = εn+1

∣∣∣∣∂Kr

∂ψ

∣∣∣∣ = C1ε
n+1 (47)

where C1 is the supremum of |∂Kr

∂ψ | in the domain D(λ) .
It can be used in a straightforward manner to evaluate the time-variation

of øJ :
|øJ(t)− øJ(0)| ≤ C1ε

n+1t (48)

as long as the trajectory remains in the domain øD(λ) , where øD(λ) is
the image of D(λ) by the averaging transformation. It can be reduced to
0 ≤ ψ ≤ 2π and øJmin(λ) ≤ øJ ≤ øJmax(λ) . Of course the constant C1 in
(47) depends upon the order n and may get very large for large n .
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As we can monitor the variation of øJ by (48) itself, the estimate (48)
is valid as long as one of the limit øJmin(λ) or øJmax(λ) does not approach
øJ(0) or as long as |t| ≤ ε−n . Hence the estimate is valid for a very long
time ( |t| ≤ ε−n ) unless the trajectory is forced out of the domain D(J) of
definition of the action-angle variable by approaching, for instance, a saddle-
connection.

The averaged action øJ is not immediately accessible, and its geometrical
meaning is somewhat blurred by the averaging procedure defining it. The non-
averaged action J which differs from øJ by terms of the order of ε verify a
weaker but perhaps more useful inequality:

|J(t)− J(0)| ≤ C2ε , for |t| ≤ ε−n (49)

unless of course the trajectory is forced out of the domain D(λ) before this
time. This is why the action is called an adiabatic invariant and how it an-
swers the question we raised at the beginning of this section: At time t� the
guiding trajectory of the trajectory starting at q0, p0 at time t = 0 is this
guiding trajectory which admits the same action (labelled by the same value
J ) than the starting guiding trajectory.

The non-averaged momentum J , the classical action-variable, can be ex-
pressed as a function of the averaged variable (ψ̄, J̄) by means of the pertur-
bation series. It leads to

J = J̄ + εJn(ψ̄, J̄, λ, ε) (50)

where Jn is an analytical function periodic of period 2π in ψ̄. The first order
contribution of Jn is easy to compute and will be useful later on. We have

J = J̄ − ε
(
∂K

∂J

)−1

{R(ψ̄, J̄ , λ)− < R(ψ̄, J̄ , λ) >}+O(ε2) , (51)

where < · > stands for the averaged value over ψ̄. Inverting (51) we obtain:

J̄ = J + ε
(
∂K

∂J

)−1

{R(ψ, J, λ)− < R(ψ, J, λ) >}+O(ε2) . (52)

Applications

The Modulated Harmonic Oscillator

As a first example let us consider the modulated harmonic oscillator, the
Hamiltonian of which is

H(q, p) =
1
2
(
p2 + ω(λ)q2

)
, (53)
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with λ = εt. The general solution is

q =

√
2h
ω

sin(ωt) ,

p =
√

2h cos(ωt .

We have choosen the line of initial conditions as q = 0. The period is 2π/ω
for all orbits. From formula (18) or from formula (21) we find

J =
h

ω
. (54)

Indeed one of the first mention of the principle of adiabatic invariance is a
remark made by Einstein at one of the Solvay conference that changing slowly
the frequency of the oscillator will keep the action constant but change the
energy accordingly. This was an important remark in view of the fact that
in his mind the oscillator was a simplified model of an atom submitted to a
varying magnetic field. The action should be quantified and thus could not
“change slowly”.

The Two Body Problem

The central force problem to which the two body problem can be reduced, is
described in spherical coordinates by the Hamiltonian,

H(q, p) =
1

2m

[
p2r +

1
r2

(
p2ϑ +

p2ϕ
cos2 ϑ

)]
+
m

r
, (55)

This Hamiltonian is both a Stäckel Hamiltonian and a “Russian doll” Hamilto-
nian. It is thus integrable and it is well known that, in terms of the traditional
elliptic elements, the actions are

L =
√
ma , G =

√
ma(1− e2) , H =

√
ma(1− e2) cos I , (56)

where a is the semi major axis, e the eccentricity, and I the inclination of the
orbit.

Let us consider a slow variation of the mass m of the attracting center. As
the actions are kept constant, it is an immediate conclusion that the shape of
the orbit (given by the parameters e and I) stays constant but that the size
of the orbit (the semi-major axis) varies as the inverse of the mass.

The Pendulum

Various physical problems of interest can be modelized by a pendulum with
slowly varying parameters.
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The most obvious one is, of course, the pendulum itself with variable length
λ(t):

H =
1
2
I2 − b(t) cosϕ with b = gL3 . (57)

Notice that we should not use the usual normalization y = pϕ/L2 which, from
the Hamiltonian

H ′ =
1
2
p2ϕ / L

2 − gL cosϕ

leads to the Hamiltonian

H ′′ =
1
2
y2 − g

L
cosϕ .

Indeed, when λ is a function of time, the usual normalization is no longer
canonical. Instead, we have used a change of time scale τ = t/λ2.

More generally, many resonance problems with variable restoring torque
can be modelized by (57).

On top of the (slow) variation of the restoring torque b(t) of the pendulum,
one can take into account a (small) outside torque (−ċ) by considering the
differential equation

ϕ̈ = −b sinϕ− ċ . (58)

Defining the momentum I = ϕ̇+ c , one is led to the Hamiltonian function

H =
1
2
(I − c)2 − b cosϕ . (59)

In plasma physics, one considers particles moving in a wave field with
slowly varying amplitude and phase velocity leading to the equation (see, for
instance, Caryet al., 1986)

ϕ̈ = −b(t) sin(ϕ− d(t)) .

The equation for the angular variables ψ = ϕ− d is similar to (58) with ċ
replaced by d̈. Hence we are led to (59) with c replaced by ḋ.

Menyuk (1985) prefers to consider a two modes system

H =
1
2
I2 − α cos(ϕ− εt)− β cos(ϕ+ εt)

which can be put under the form (59) if we take{
b sind = (α− β) sin εt ,
b cosd = (α+ β) cos εt . (60)



The Adiabatic Invariant Theory and Applications 95

The equation for the synchroneous motor:

ϕ̈ = −b0 sinϕ+ aϕ̇ (61)

with a small dissipative term (aϕ̇) has been studied by Andronov et al. (1966)
and Urabe (1954, 1955). Burns (1978) applied their results to the rotation of
Mercury. This problem can also be modelized by the Hamiltonian (57). If we
define the “momentum” I by

I = ϕ̇e−at , (62)

and the new time variable τ by:

aτ = eat , (63)

we are led to the differential equations:

dϕ

dτ
= I ,

dI

dτ
= −e−2atb0 sinϕ = −(aτ)−2b0 sinϕ , (64)

which corresponds to the Hamiltonian (55) with b = b0e−2at = (aτ)−2b0.

It may seem strange that a dissipative problem like (61) is mapped onto
an Hamiltonian problem like (55). This apparent paradox is explained when
one considers that (62) is time dependent and thus that a conservation of area
in the phase space (ϕ, I) corresponds to an exponential decrease in area in
the phase space (ϕ, ϕ̇).

From this brief review, it is obvious that the slowly varying pendulum can
modelize a large variety of interesting phenomena which all can be described
by the Hamiltonian function (59). We shall slightly modify its expression to
have h = 0 on the stable equilibrium and study the Hamiltonian function:

h =
1
2
(I − c)2 + 2b sin2 ϕ

2
(65)

where b and c are slow functions of the time.

The action-angle variables (ψ, J) of the frozen system (65) are well-known.
They are related to the variable (ϕ, I) by means of

In case of libration In case of circulation

α = h/2b < 1 β−1 = h/2b > 1

sin ϕ/2 =
√

α sin � sin ϕ/2 = sin ϑ

S = 4
√

b{(α − 1)F(�, α) + E(�, α)} + cϕ S = 4
√

b/βE(ϑ, β)· sgn (I − c) + cϕ

ψ = F(�, α)π/2K(α) ψ = F(ϑ, β)(π/K(β))· sgn (I − c)

J = 8
√

b{(α − 1)K(α) + E(α)}/π J = 4
π

√
b/βE(β) + c sgn (I − c)

∂J/∂h = 2
√

bK(α)/π ∂J/∂h =
√

β/bK(β)/π
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The functions F(�, α) , E(�, α) , · · · are the usual elliptic integrals (see
Abramowitz and Stegun, 1965, for the notations) and Z(�, α) which appears
later is the Jacobi’s zeta function.

What is a little less known, although it can be found under various forms,
more or less explicit in Best (1968), Timofeev (1978), Menyuk (1985), are
the formulae for the slowly varying pendulum. One finds that the remainder
function of the canonical transformation going from (ϕ, I) to (ψ, J) is
in case of Libration:

εR = ċϕ+
2ḃ√
b
Z(�, α) ,

in case of Circulation:

εR =
ċ

K(β)
{2K(β)ϑ− πF(ϑ, β)} +

2ḃ
b

√
b/βZ(ϑ, β) .

In both cases, the mean value of the remainder function vanishes

< R >=
1
2π

∫ 2π

0

R dψ = 0 .

From this, it is easy to compute the first order correction to the adiabatic
invariant. From (I.72), we obtain
in case of Libration:

J̄ = J +
2
π
K(α){2ḃ

b
Z(�, α) +

ċ√
b
ϕ}+O(

ε2 log2(α− 1)
α− 1

) ,

in case of Circulation:

J̄ = J +
1
π
K(β)

{
2ḃ
b

Z(ϑ, β) + 2ċϑ
√
β/b

}
− ċF(ϑ, β)

√
β/b

+ O(
ε2 log2(β − 1)
β − 1

) .

The Magnetic Bottle

If the adiabatic invariance received prominence because of its role in the early
formulation of quantum mechanics, its importance in classical mechanics be-
came first of significance for applications in connection with the magnetic
momentum of gyration of a charged particle in a strong magnetic field. This
was shown to be an invariant by Alfven (1950) in his investigation of cosmical
rays. Very soon afterwards, its usefulness in the theoretical design of devices
for controlling hot plasmas (Stellarators, Tokamaks, Mirror Machines, · · · )
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was recognized (see, for instance, Kruskal, 1952; see also Freidberg, 1982 for
a recent review).

We shall try in this section to suggest why the adiabatic invariance is
so important in this context, without, of course, giving a full account of its
technical applications. This would require by itself a complete review paper
which we are not competent to write.

The motion of a particule of mass m and electric charge e in an electro-
magnetic field is controled by the Hamiltonian function:

H =
1

2m
||p− e

c
A(x)||2 + eϕ(x) (66)

where ϕ and A are respectively the electric potential and the magnetic vector
potential of the field:

E = −grad ϕ ,
B = rot A .

The vector x is the position vector of the particle and the vector p its mo-
mentum related to its velocity V by

p = mV +
e

c
A . (67)

Let us assume that the vector-potential and the magnetic field are given
by

A = B0(1 + b(x3))x1e2 , (68)
B = B0(1 + b)e3 −B0b

′x1e1 , (69)

where (x1, x2, x3) are the cartesian coordinates of x in an orthonormal basis
(e1, e2, e3) and b′ is the first derivative of b with respect to x3.

This magnetic field describes a two-dimensional “magnetic bottle” (with
two throats). The magnetic field is an almost constant field in the direction
of e3 but slightly (if b′ is small) modulated. The magnetic lines are given by

x1 =
x1(0)

1 + b(x3)
, x2 = x2(0) (70)

and their shape is illustrated in Figure 24 for b = β2x23.

It would have been more realistic to consider a magnetic field with cylin-
drical symmetry described for instance by:

A =
B0

2
(1 + b)[x1e2 − x2e1] ,

B = B0(1 + b)e3 −
B0b

′

2
[x1e1 + x2e2]
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or a toroidal stellarator (Kovrizhnykh, 1984) but the geometry we have
adopted will simplify the calculations without changing essentially the analy-
sis.

*

e3

e1

Fig. 1. The magnetic lines in the plane (e1, e3). The motion of the particle is
approximately a circle centered at the gyrocenter c. The gyrocenter itself moves
slowly along the magnetic line bouncing back and forth in the “bottle”.

Assuming at first no electric field, the Hamiltonian reads

H =
1

2m
{p21 + p23 + [p2 −

eB0

c
(1 + b)x1]2} . (71)

We introduce now the “guiding center” coordinates by means of the fol-
lowing canonical transformation

x1 = 1
1+bYc + 1

(1+b)1/2 yg p1 = eB0
c (1 + b)1/2Yg

x2 = yc + 1
(1+b)1/2Yg p2 = eB0

c Yc

x3 = y3 p3 = eB0
c {Y3 + b′

2(1+b)Ygyg + b′
(1+b)3/2YcYg} .

(72)

The quantities (Yg, Yc, Y3) are the momenta respectively conjugated to
the variables (yg, yc, y3) . Geometrically speaking, (Yc/(1 + b), yc, y3) are the
coordinates of a point: the guiding center (or gyrocenter). Remark that the
curves along which Yc and yc are constant are precisely the magnetic lines
defined in (70). On the other hand, the quantities (yg, Yg) can be viewed as
the coordinates (scaled by a factor (1 + b)1/2 ) of the moving particle in a
frame centered at the guiding center.

This geometrical interpretation of the canonical transformation (72) may
seem peculiar in the fact that both the variables (yg, yc) and their momenta



The Adiabatic Invariant Theory and Applications 99

(Yg, Yc) are interpreted in terms of position (respectively of the guiding center
and of the particle). This is not that unusual; after all, the possibility of
treating variables and momenta on the same foot is one of the advantages of
Hamiltonian mechanics.

The new Hamiltonian function of the problem is:

K =
c

eB0
H =

eB0

2mc
{(1 + b)[y2g + Y 2

g ]

+ [Y3 +
b′Yg

(1 + b)3/2
(Yc +

1
2
(1 + b)1/2yg)]2} . (73)

Let us choose the unit of time such that the gyrofrequency is unity:

eB0

mc
= 1

and the unit of length such that the gyroradius (the norm of the vector (yg, Yg)
) is of the order of unity. We assume that this unit of length is such that the
scale on which the magnetic field changes significantly is large (say of the
order of 1/ε2 ). With this assumption in mind, we introduce a scaling of the
third dimension together with polar coordinates for the gyro-coordinates

yg =
√

2G sin g , Yg =
√

2G cos g ,
yc = y , Yc = Y , (74)
y3 = 1

εz , Y3 = εZ ,

which brings the Hamiltonian (73) under the form

K = (1 + c)G+
ε2

2
[Z +

εc′

(1 + c)3/2
(Y +

1
2

√
2G(1 + c) sin g)

√
2G cos g]2 (75)

where c is a scaled version of the function b

b(y3) = c(ε2y3) = c(εz) . (76)

The function 1 + c(·) and its derivatives are assumed to be of the order of
unity in the domain of interest.

If we “freeze” the third coordinate by considering the function c as a
constant, the Hamiltonian function (75) is actually a one-degree of freedom
Hamiltonian expressed in its action-angle variables (g,G).

What makes the problem somewhat different from the other problems we
have investigated in the previous section is that the (hopefully slow) depen-
dence upon the time is not direct but the result of its (slow) dependence upon
a second-degree of freedom (z, Z). To investigate the motion of this second
degree of freedom, we need some knowledge about the motion of the first one.
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Hence the problem deviates from the narrow frame we have considered
up to now and should be considered in the general frame of perturbation
theory. In this case it is not difficult to show that we can define a canonical
transformation from (g,G, z, Z) to (ḡ, Ḡ, z̄, Z̄) such that, in the new (averaged)
variables, the transformed Hamiltonian K̄ depends upon ḡ only through terms
of the order of εN+1:

K̄ = (1 + c)Ḡ+
ε2

2
Z̄2 +

ε4

2
c′

2
Ḡ

(1 + c)3
[Ȳ 2 +

Ḡ

8
(1 + c)] + ′(ε6) . (77)

A first approximation of K̄ , the one which is explicitly written in (77) is, of
course, the averaged value of K with respect to g.

We can now consider Ḡ as a constant. (It is an adiabatic invariant, its
time derivative being of the order of εN+1) and analyse (77) as a one-degree
of freedom Hamiltonian in (z̄, Z̄). Let us restrict ourselves to a simple case
where the function c is given by

c(x) =
d

2
x2 . (78)

Then the leading terms of (77) reproduce the harmonic oscillator

K̄ =
ε2

2
[Z̄2 + (d2Ḡ)z̄2] + 0(ε4) , (79)

the frequency of which is a function of Ḡ , the (averaged) orbital magnetic
momentum of the particle.

Hence, at least in a first approximation, the guiding center of the particle
(coordinates: Y/(1 + b), y, z/ε) bounces back and forth along a magnetic line
( Y and y constant) between two “mirror points”: z = ±zM with

zM =
Z̄(0)
d

1√
G
. (80)

Confinement of the plasma inside the magnetic bottle depends crucially
upon the fact that zM does not increase beyond a given bound on a very long
time scale. Two things may happen: Z̄(0) may change due, for instance, to
collisions between particles inside the plasma or Ḡ may change due also to
collisions or to a default in the adiabatic invariance.

As we have just recalled, the invariance of Ḡ is only asymptotic. In the
framework of the model just discussed for the magnetic bottle, Chirikov (1979)
estimates the changes in Ḡ over a bounce period as proportional to

ΔḠ ∼ 1
ε

exp{− 2
3ε
} , (81)

a quantity exponentially small with ε.
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On the other hand, the model just discussed is, of course, only approx-
imative. Fluctuations in the magnetic field or electric field may complicate
the topology of the “frozen system” corresponding to (75) with c = constant.
We have found this system to be just the harmonic oscillator with (g,G) as
action variables. But fluctuations in the fields may introduce a separatrix in
the phase space of the “frozen” system. The adiabatic invariance of the av-
eraged Ḡ may then be in default at each crossing of the separatrix. We shall
investigate this case later when we have described the tools to deal with it.

3 Neo-adiabatic Theory

3.1 Introduction

By virtue of his own success, the classical adiabatic invariant theory is often led
to a trap. Indeed it is able to describe slow but finite deformation of the guiding
trajectory (trajectory of the frozen system to which the real trajectory stays
close). But simple dynamical systems such as the pendulum possess saddle
connections and during its deformation the guiding trajectory may very well
bump on a critical curve where the theory is no longer valid.

As far as we know, Timofeev (1978) was the first to give a precise (and
correct) estimate of the change of the adiabatic invariant in the particular
case of a pendulum, the restoring torque of which varies linearly with time.
Such a result could be gathered also from the estimates of Yoder (1973-1979)
but Yoder was interested in capture probability and not so much in change in
the adiabatic invariant.

More recently a very throughout analysis of “separatix crossing” led Cary
et al. (1986) (see also Escande, 1985) and independently Neishtadt (1986) to
very general estimates of the change in the invariant and of its distribution
with respect to the initial phase. The basic ideas for such an analysis can also
be found in Hannay (1986).

Estimates of the change in the invariant are not only useful in order to
follow precisely the guiding trajectory but mostly because of the fact that
it can produce chaotic motion (Menyuk, 1985). Changes in the invariant are
very sensitive to the initial phase and so is the “final” (after transition) phase.
If the system is forced to go periodically through a transition this is bound to
produce the very unstable and unpredictable kind of motion known as “chaotic
motion”. From the distribution of the changes, estimates of the “diffusion
time” or the Lyapunov characteristic number of the motion could be derived.

Celestial Mechanicians were not so worried about changes in the invariant
or chaotic motion but rather about probability of capture. Indeed in most
instances and specifically in the case of the pendulum, when the guiding tra-
jectory comes close to the critical curve (let us say coming from positive
rotation), it can end up in two possible states, either libration or negative
circulation. If the pendulum is a model of a resonance, this means a capture
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(or a non-capture) into resonance and Celestial Mechanics has many of these
resonances (either Orbit-Orbit or Spin-Orbit) to explain.

As a matter of fact this problem of “capture into resonance” was investi-
gated even before its connection with the adiabatic invariant was perceived
(Goldreich, 1965, 1966). Formulae based upon a pendulum model were pro-
posed for the probability of capture in the Spin-Orbit case (Goldreich and
Peale, 1966) and the Orbit-Orbit case (Yoder, 1973-1979). Yoder and inde-
pendently Neishtadt (1975) were apparently the first to make the connection
between this problem and the adiabatic invariant theory. Henrard (1982) pro-
posed a formula to compute the probability of capture for general Hamiltonian
systems (with one degree of freedom and slowly varying).

This formula (see 126) is simple and almost intuitive. It is interesting to
notice that it was stated without proof for the nonlinear oscillator by Dobrott
and Green (1971) under the name of “Kruskal Theorem”. A similar formula
applies for a class of dissipative systems and is stated by Arnold (1964).

3.2 Neighborhood of an Homoclinic Orbit

We assume that the one-degree of freedom dynamical system described by the
Hamiltonian function

H(x, λ) = h (82)

possesses in its domain D of definition one and only one non-degenerate un-
stable equilibrium x�(λ) , limit point of two homoclinic trajectories Γ1(λ) and
Γ2(λ).

The global topology of the two homoclinic curves Γ1(λ) and Γ2(λ) may be
of various types as shown in Figure 2.

All these dynamical systems are equivalent on an open neighborhood of
the critical curve and we shall use the bow-tie model which is easier to draw
to illustrate our analysis.

Notice that the angle-action variables introduced in the first chapter can-
not be defined on the full domain D as it contains a critical curve on which
they are singular.

But we can define three subdomains on which they are well-defined. The
domain D1 (resp. D2 ) is the open set of D touching Γ1 (resp. Γ2 ) and D3 is
the open set ofD touching both curves (see Figure 3). Most of our analysis will
be devoted to the estimation of limits when the periodic trajectories defined
in one of these domains approach its boundary Γ1 , Γ2 or Γ3 = Γ1 ∪ Γ2.

In order to simplify the subsequent analysis, and without loss of generality,
we shall make three assumptions.

First, and this is trivial, we shall assume that h = 0 corresponds to the
critical curve formed by x�(λ), Γ1(λ) and Γ2(λ). This can always be achieved
by subtracting H(x�(λ), λ) from the Hamiltonian. In the same spirit, we shall
assume that the value of h is positive in the domain D3 and negative in D1

and D2. This can always be achieved by changing, if need be, the sign of one of
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The crescent in the plane The bow-tie in the plane

The pendulum on the cylinder The "colombo top" on the sphere

Fig. 2. Different types of global topology of the Homoclinic orbits.

Fig. 3. The three subdomains defined by the homoclinic orbits Γ1 and Γ2 .

the canonical coordinates q or p in order to change the sign of the Hamiltonian
function.

Let us remark that this assumption imposes the direction of the time arrow
on the orbits (Figure 3 has been drawn accordingly) and subsequently the sign
of the action-variables Ji ( 1 ≤ i ≤ 3 ) in each domain Di. The sign will be
positive if the orbits are travelled clockwise and negative if they are travelled
counter-clockwise.



104 Jacques Henrard

We shall assume also that x�(λ) ≡ 0 and that the time scale ω(λ) defined
in (85) is actually independent of λ and equal to its value ω(τ) for a fixed
τ (the pseudo-crossing time) to be defined later. These two conditions can
be achieved at the price of slight modifications of the parametrization of the
system and does not affect the generality of the analysis.

As mentioned earlier, an important part of our analysis will consist in
defining and estimating quantities (actually functions of the parameter λ )
which describe the dynamical system in a small neighborhood of the homo-
clinic orbit. At the lowest order, these quantities are the critical values of the
action-variables (defined below), the time scale at the unstable equilibrium
ω(λ) (defined in (85)), the “steepness” parameters h�

i (defined in (95)) and
the “out-of-symmetry” parameters gi (defined in (98)) introduced by Cary et
al. (1986).

Let us start by defining the critical values of the action-variables J�
i (λ)

(1 ≤ i ≤ 3) as the limits of the action-variable in the domain Di when the
periodic curves tend towards the homoclinic curves. They are

J�
i (λ) =

1
4π

∮
Γi

p dq − q dp , 1 ≤ i ≤ 2 .

J�
3 (λ) = J�

1 (λ) + J�
2 (λ) ,

The integrals are of course finite as they are the area (divided by 2π ) of
the domain Di ( 1 ≤ i ≤ 2 ):

J�
i (λ) =

1
4π

∮
Γi

p dq − q dp , 1 ≤ i ≤ 2 . (83)

3.3 Close to the Equilibrium

It is well-known that, in the vicinity of an equilibrium, one can “normalize”
an Hamiltonian system (Birkhoff, 1927). This normalization is in general only
asymptotic but the formal power series can be shown in some cases to be
convergent (e.g. Siegel and Moser, 1971) and thus the normalization to be
analytical. This is the case for a one-degree of freedom system such as the one
we are analysing.

Hence there exists a disk of radius δ around the unstable equilibrium x = 0
of the system (82) in which is defined an analytical canonical transformation
from the phase space x = (q, p) to the phase space z = (z1, z2):

x = XN (z, λ) (84)

which transforms the Hamiltonian function H(x, λ) into the normalized
Hamiltonian
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h = HN (Z, λ) = ω(λ)Z +O(Z2) (85)

where Z is the product of the two coordinates

Z = z1z2 . (86)

The function ω(λ) is one of the eigen-values (the other one is −ω(λ) ) of the
matrix of the linearized system. It is bounded away from zero as we have
assumed that the equilibrium x = 0 is non-degenerate and it can always be
chosen as positive, if need be by exchanging z1 and z2. Furthermore, as we
have mentioned in the previous section, it can be made independent of λ by
a change of the time variable.

We shall also consider the inverse of the function (85):

z1z2 = Z(h, λ) =
h

ω
+O(h2) . (87)

In the plane (z1, z2) the trajectories are given by the branches of the hy-
perbola z1 · z2 = Z(h, λ) as shown in Figure 4. In the domain D3 the two
branches belong to the same trajectory while in the domain D1 and D2 the
two branches belong to different orbits (one in D1 and the other one in D2).

Fig. 4. Trajectories in normalized coordinates (z1, z2) showing the apices (◦) and
the anti-apex (×).

In each of the three open domainsDi , we can define angle-action variables
(ψi, Ji). For this we have to choose a curve of “initial conditions” (see (I.9)).
We shall choose z1 = z2 =

√
Z for D3 and z1 = −z2 = ±

√
|Z| for D1 and

D2. This initial point along a trajectory will be called its “apex”. The return
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point z1 = z2 = −
√
Z along a trajectory in D3 will be called the “anti-apex”.

Apex and anti-apex are called “vertex” by Cary et al. (1986).
The normalizing transformation (84) is not uniquely defined although the

normalized Hamiltonian (85) is uniquely defined. This makes the definition of
the apices coordinate-dependent. We shall come back on this later.

The transformation from the normalizing coordinates (z1, z2) to the angle-
action variables (ψi, Ji) of each domain Di are easy to define. The generating
functions S′(z1, Ji, λ) is (see (24)):

S′i(z1, Ji, λ) =
∫ z1

±
√

|Zi|

Zi

z1
dz1 +

1
2
Zi = ±1

2
Zi log

z21e

|Zi|
(88)

where Zi is a yet unknown function of Ji and λ. Its definition depends upon
the global properties of the trajectory and it cannot be determined by the
analysis of this section which is purely local being confined to the disk of ra-
dius δ around the origin. We shall determine this function or rather its inverse
Ji = Ji(Z, λ) in the next section.

Note that a “±” sign is inserted in (88) and in what follows, to indicate that
the sign of the function should be ajusted (in an obvious way) in accordance
with the quadrangle of the plane (z1, z2) to which the domain Di belongs.

When we consider that λ = εt , the normalizing transformation (84) and
the transformation to action-angle variables are time-dependent. The remain-
der function to be added to HN in order to produce the “new Hamiltonian” of
the dynamical system is the sum of the remainder function of the normalizing
transformation RN (z, λ) and the remainder function of the transformation to
action-angle variables, R′

i(ψi, Ji, λ).
The equilibrium x = 0 being sent on z = 0 , the normalizing transforma-

tion has no independent term and the remainder function RN has no linear
term

RN (z, λ) = O(||z||2) . (89)

On the other hand, we have for the second remainder function:

R′
i(ψi, Ji, λ) =

∂S′

∂λ
= ±1

2

(
∂Zi

∂λ

)
log
z21
|Zi|

=
(
∂Zi

∂λ

)(
∂Zi

∂Ji

)−1

ψi .

Summing the two contributions and defining the function Ji = Ji(Z, λ) as
the inverse of the yet unknown function mentioned earlier, we have

Ri(ψi, Ji, λ) = −
(
∂Ji

∂λ

)
ψi +RN (z, λ) . (90)
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3.4 Along the Homoclinic Orbit

In this section we shall evaluate the unknown functions Ji(Z, λ) we just men-
tioned and the first order correction to the adiabatic invariant expressed by
(94) or (96). These evaluations will make it necessary to introduce the steep-
ness parameters h�

i (see (95)) and the out-of-symmetry parameters gi (see
(98) mentioned earlier.

Let us remember that 2πJi is the area enclosed by the closed curve
H(x, λ) = h = HN (Z, λ). It can be evaluated as the difference between the
area 2πJ�

i (λ) enclosed by the critical curve and an area that can be divided
into two parts A1 and A2 as shown in Figure 5 (which is drawn for the domain
D2 ).

Fig. 5. Evaluation of the area enclosed by the curve P .

The area A1 is equal to

A1 =
∫ δ

|Z/δ|

|Z|
z1
dz1 + δ

(
|Z|
δ

)
= |Z| log

δ2e

|Z| . (91)

The area A2 is an analytical function of h (and thus of Z ) vanishing
with h (and thus with Z ). Collecting those results and remembering the sign
convention we made at the beginning of the section, we obtain

Ji(Z, λ) = J�
i (λ) +

Z

2π
log
Φi(Z, λ)
|Z| ( 1 ≤ i ≤ 2 ) (92)
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where the functions Φi(Z, λ) = δ2e exp(A2/|Z|) are analytical functions. These
two functions are invariants of the dynamical system and, together with the
function Z(h, λ) , they characterize it completely. These are the functions we
introduced in the previous section. The functional dependences of Ji with
respect to h:

Ji(h, λ) = Ji(Z(h, λ), λ) (1 ≤ i ≤ 2) (93)

will also be most useful. Their approximations close to the homoclinic orbits
are given by

Ji(h, λ) = J�
i (λ) +

h

2πω
log
eh�

i

|h| +O(h2 log |h−1|) , (94)

The parameters

h�
i (λ) =

ω(λ)
e
Φi(0, λ) ( 1 ≤ i ≤ 2 ) (95)

are the “steepness parameters” mentionned earlier. They measure the rates
at which Ji approach J�

i when h goes to zero. As such they will enter in many
of our estimates.

Formula (92) is valid for the two domains D1 and D2. In order to evaluate
the area enclosed by a trajectory in the domain D3 , we have to add twice the
area A1 plus the two areas of the type A2 corresponding to each lobe along
Γ1 and Γ2. We find

J3(Z, λ) = J�
3 (λ) +

Z

π
log
Φ3(Z, λ)
|Z|

with

Φ3(Z, λ) = [Φ1(Z, λ) Φ2(Z, λ)]1/2 , J�
3 (λ) = J�

1 (λ) + J�
2 (λ) .

Hence J3 is approximated by

J3(h, λ) = J�
3 (λ) +

h

πω
log
eh�

3

|h| +O(h2 log |h−1|) , (96)

with
h�

3(λ) = [h�
1 h

�
2]

1/2 . (97)

We turn now to the evaluation of the first order corrections to the adiabatic
invariants for small (but not too small) values of h. From (52), we have

J̄i = Ji + ε (
∂Ji

∂h
) {R(ψi, Ji, λ)− < R(ψi, Ji, λ) >}+O(ε2h−1 log2 |h−1|) .

In estimating the error term, we made use of (52) but also of (94) in order to
estimate the derivatives of h with respect to Ji.
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We shall evaluate the adiabatic invariant J̄i at the apex ( ψi = 0 ). From
(90) we have that

Ri(0, Ji, λ) = RN (±
√
|Z|,±

√
|Z|) = O(|Z|) = O(h) .

It remains to evaluate the mean value of the remainder functions. After
some computation (see (Henrard 1993) for details) we find

< Ri > =
(
∂Ji

∂h

)−1 {
−gi(λ) +O(h log |h−1|)

}
1 ≤ i ≤ 2 ,

< R3 > =
(
∂J3
∂h

)−1 {
−g3(λ) + πΔ12 +O(h log |h−1|)

}
,

with
Δ12 =

∂J1
∂λ

∂J2
∂h

− ∂J2
∂λ

∂J1
∂h

and
g3(λ) = g1(λ) + g2(λ) . (98)

The functions gi(λ) , which are important because they measure the first
order corrections to the adiabatic invariants (see below), vanish when the
functions Ri ( 1 ≤ i ≤ 2 ) are odd in ψ. This is the case when the dynamical
system possesses the right type of symmetry and when the apices are chosen
accordingly. This is why we have called these functions the “out-of-symmetry”
parameters. Most of the simple dynamical systems have the right type of
symmetry and the corresponding functions gi(λ) vanish. For more general
systems, the functions can be evaluated numerically, for instance, by means
of the numerical integration of the variational equations.

Gathering these results, we find that the adiabatic invariants in each of
the three domains Di are given by

J̄i = Ji + εgi +O(εh log |h−1|, ε2h−1 log2 |h−1|) 1 ≤ i ≤ 2 , (99)
J̄3 = J3 + ε{g3 − πΔ12}+O(εh log |h−1|, ε2h−1 log2 |h−1|) (100)

where the Ji ( 1 ≤ i ≤ 2 ) are evaluated at the apices.

3.5 Traverse from Apex to Apex

We shall now be concerned with solutions of the non-autonomous system
described by the Hamiltonian function:

H(x, εt) = h(t) . (101)

As we have seen in Section 3.3, this system is equivalent in a disk of radius
δ around the origin, to the system described by

H ′(z, εt) = HN (Z, εt) + ε RN (z1, z2, εt) (102)

in the normalizing coordinates (z1, z2).
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We shall be concerned more specifically with a “traverse” from apex to
apex (or from apex to anti-apex) close to one of the homoclinic orbits Γi.

Let us assume that at time t0 , a trajectory of (101) is at an apex (or
anti-apex) with h = h0, λ = λ0 , z21 = z22 = ζ20 = |Z(h0, λ0)| , and that
the following apex (or anti-apex) corresponds to t = t1 , h = h1 , λ = λ1 ,
z21 = z22 = ζ21 = |Z(h1, λ1)|.

We plan to evaluate the difference in “energy” and in time between those
two consecutive apices:

Δh = h1 − h0 , Δλ = λ1 − λ0 = ε ΔT = ε (t1 − t0) . (103)

In order to obtain these estimates, we compare the solution of the non-
autonomous system (101) (or (102)) which passes through an apex at time
λj/ε with the energy hj :

x(t, hj , λj) or z(t, hj , λj) (1 ≤ j ≤ 2 ) . (104)

with the solution of the autonomous system described by
H(x, λj) or HN (Z, λj) which we denote

x�(t, hj , λj) or z�(t, hj , λj) = (ζj exp{Ωjt} , ζj exp{−Ωjt}) (105)

where Ωj = Ω(ζ2j , λj) , the function Ω being the derivative ∂HN/∂Z.
The comparison is quite delicate if one wishes to reach very small values

of h0 (of the order of exp{−1/ε} ) which implies very long periods of time (of
the order of 1/ε ).

The main step (developed in detail in Henrard 1993) is to compare, in
the disk of radius δ around the origin, the solution z(t, hj, λj) of the non-
autonomous system with the solution

u� = (ζj exp{μj(t)}, ζj exp{−μj(t)}) , μj =
∫ t

tj

Ω(ζ2j , εt) dt , (106)

of the intermediary system described by HN (Z, εt).
We find the estimate

||z − u�|| ≤ c6ε for c7 exp{− 1
c1ε
} ≤ hj ≤ c5 (107)

where c1, c5, c6, c7 are constants independent of ε.
It is for the comparison of u� and z� that the assumption we have made

that ω is independent of λ is useful. Indeed this assumption makes the esti-
mate, in the disk of radius δ around the origin:

|μj −Ωjt| ≤ c8εhj log |h−1
j | (108)
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sharper than the corresponding estimate (|μj −Ωjt| ≤ c8ε log |h−1
j |) to which

one would be led if ω , the leading term in Ω , were indeed a function of time.
The estimate (108) leads to a total estimate

||z − z�|| ≤ c9ε (109)

in the disk of radius δ around the unstable equilibrium.
The value of ΔT , the time spent from apex (h0, λ0) to the next one

(h1, λ1) is then estimated as follows. Let

ΔT = T ε
0 + T ε

1 + T ε
δ (110)

where T ε
0 (h0, λ0) and T ε

1 (h1, λ1) are the values of the time spent in the disk
of radius δ in the neighborhood of the two apices and T ε

δ the value of the
time spent outside this disk. The superscript ε is there to recall that we are
considering the non-autonomous system with λ = εt.

From lengthty computations (see Henrard 1993), we get an estimate for
ΔT as a mean value of the periods of two trajectories of the autonomous
system, the initial conditions of which correspond to the value of h and λ at
the apices

ΔT =
1
2
{T (h0, λ0) + T (h1, λ1)}+O(ε log h−1

m )

= π{(∂J
∂h

(h0, λ0) + (
∂J

∂h
)(h1, λ1)}+O(ε log h−1

m ) , (111)

where hm is the minimum value of h0 and h1. We now proceed by estimating
Δh:

Δh = h1 − h0 = ε
∫ t1

t0

∂H

∂λ
(x, εt) dt . (112)

The integral can be split into two parts: One starting from t0 on an interval
of T (h0, λ0)/2 and the other one on an interval T (h1, λ1)/2 ending at t1. Each
of these integrals is then compared with the corresponding integrals with
x�(t, hi, λi) substituted to x and λi substituted to εt . We obtain eventually
(see (Henrard, 1993) for details)

Δh = ε
∫ T (hj ,λj)

0

∂H

∂λ
(x�

j , λj) dt+O(ε2 log h−1
m ) . (113)

where the subscript j may be taken indifferently as 0 or 1.
It remains to compute the integral in the right-hand member of (113).
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From (43) we compute:

R(2π)−R(0) =
(
∂K

∂J

)−1 ∫ 2π

0

[
∂H

∂p

∂P ∗

∂λ
+
∂H

∂q

∂Q∗

∂λ

]
dψ

=
(
∂K

∂J

)−1 ∫ 2π

0

[
d

dλ
H(Q∗, P ∗, λ)− ∂H

∂λ

]
dψ

=
(
∂K

∂J

)−1 ∫ 2π

0

[
∂K

∂λ
− ∂H
∂λ

]
dψ ,

because H(Q∗, P ∗, λ) = K(J, λ). As the remainder function is periodic, the
above integral is zero. We conclude that∫ ∞

0

∂H

∂λ
(x∗j , λj) dt =

(
∂K

∂J

)−1 ∫ 2π

0

∂K

∂λ
dψ = 2π

(
∂K

∂J

)−1
∂K

∂λ
.

Eventually we obtain

Δh = −2πε
(
∂J

∂λ

)
(hj , λj) +O(ε2 log |h−1

m |) . (114)

The last equality is obtained by differentiating K(J(h, λ), λ) = h with respect
to λ.

The approximations (111) and (114) define mappings from (h0, λ0) to
(h1, λ1) , from apex to apex in each of the domains Di. These mappings
reproduce (approximately) the behaviour of the non-autonomous dynamical
system in the vicinity of the homoclinic orbit. They are Poincaré’s mappings
with the apices defining the surfaces of section.

In what follows we shall use only an approximation of this mapping which
is easier to handle. It is obtained by substituting the approximations (94) for
the functions Ji

Δλi =
ε

2ω

{
log
h�

i

|h0|
+ log

h�
i

|h1|

}
+O(ε2 log |h−1

m |, εhM log h−1
M ) ;

Δhi = −2πε
(
∂J�

i

∂λ

)
+O(ε2 log |h−1

m |, εhM log h−1
M ) . (115)

The subscripts (i) in Δhi , Δλi have been inserted to recall that the
mapping is different in each of the domains Di. The functions ω(λ) , h�

i (λ)
and J�

i (λ) are evaluated at λ = λ0. We recall also that hm (resp. hM ) stands
for the minimum (resp. maximum) of the absolute values of h0 and h1.

Formulae (115) are not meaningful if ε log |h−1
m | is not small. We thus make

the assumption
hm ≥ εη >> exp{−ε−1} . (116)
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Later, we shall be led to the choice

η =
1
ε

exp{−ε−1/3} (117)

in order to minimize the error terms on the final results.

3.6 Probability of Capture

We are now in a position where we can analyse the transition from one domain
to another one. We shall investigate in this section the basic question: where
does the trajectory go when, from inside the domain Di (which is shrinking),
it is pushed towards the critical curve ? Does it stay indefinitely close to the
critical curve ? Does it end up eventually well inside one of the other domains
Dj where the adiabatic invariant can again inform us about its ultimate fate,
and which one of the other domains ?

We shall show that, except for a set of initial conditions, the measure of
which is exponentially small with ε , the trajectory does end up in one of the
other two domains after a time such that the parameter λ has not changed
significantly.

In some cases we shall be able to say which one of the other domains is
visited. In other cases, it depends very sensitively upon the initial conditions.
So sensitively that the accuracy on the initial conditions needed to decide
which one it is, is not physically meaningful and, as a consequence, we shall
resort to a probabilistic argument.

Let us first investigate the case where the trajectory is initially in domain
D3 and approaches the critical curve close enough so that the formula (115)
becomes meaningful. As we are approaching the critical curve and not going
away from it, Δh3 , the increment of h (see (59)), is negative and, at each
turn, from apex to apex, the value of h decreases by an amount proportional
to ε (we assume of course that the ∂J�

i /∂λ are bounded away from zero).
Eventually, h takes on a value h0 such that

0 < h0 ≤ −Δh3 . (118)

This is the last time the trajectory goes through the apex in domain D3.
We shall call it the main apex. As we use the approximation (115), we have
to exclude from our consideration, initial conditions such that h0 comes closer
to one of its limiting values ( 0 and −Δh3 ) than εη (see 116).

This is part of the set of initial conditions we were mentioning earlier and
for which our analysis fails. The corresponding trajectories could stay for a
very long time, possibly forever, close to the “unstable equilibrium”. Note
that the “unstable equilibrium” is an equilibrium of the “frozen” system with
λ constant. In the system we are analysing, with λ = εt, the equilibrium may
be replaced by a very complicated invariant set.
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Let us assume now that the two domains Di ( 1 ≤ i ≤ 2 ) increase
in size. It means that Δh1 and Δh2 (see (115)) are also negative and that
Δh3 = Δh1 + Δh2 is larger in absolute value than either of them. If h0
happens to be in the interval

εη ≤ h0 ≤ −Δh1 − εη , (119)

the first traverse along Γ1 after that will bring the trajectory inside the domain
D1 with a negative value of h. From there-on, the trajectory will loose energy
at the rate of Δh1 for each turn in D1 and will end up well inside this domain.

On the other hand, if h0 is in the interval

−Δh1 + εη < h0 < −Δh3 − εη , (120)

the trajectory will arrive at the anti-apex in domain D3 with a value of the
energy equal to h′0 = h0 +Δh1 , with

εη < h′0 < −Δh2 − εη . (121)

The traverse along Γ2 after this will bring the trajectory inside D2 and
from there-on it will go deeper and deeper in D2.

If we do not know the exact value of h0 but assume that the distribu-
tion of possible values is uniform on the interval of definition (118) (we shall
come back on this assumption later), the probability of the trajectory ending
up in Di is proportional to the length of the interval (119) or (121). As a
consequence, we have

Pi =
Δhi

Δh3
=
∂J�

i

∂λ
/
∂J�

3

∂λ
+O(ε log(εη)−1) (122)

where Pi is the probability of the trajectory ending up in domain Di. With
the assumption (118), the error term is ε2/3.

If, on the other hand, the two domains Di ( 1 ≤ i ≤ 2 ) do not increase
in size but only one of them does, say D1 , the trajectory will certainly end
up in that domain. Indeed only Δh1 is negative and the trajectory can only
leave D3 along Γ1 and enters then D1. Once it has entered it, it will remain
in it, decreasing its energy by Δh1 at each traverse.

Let us investigate now the case where the trajectory is initially in one of
the two domains Di ( 1 ≤ i ≤ 2 ). Let us choose D2 to simplify the notations.

The value ofΔh2 is then positive (as we are approaching the critical curve)
and we shall eventually enter the domain D3 (except possibly for an exponen-
tially small set of initial conditions). At the first apex in Domain D3, which
we shall call the main apex, the energy is h0 with

εη < h0 < Δh2 − εη (123)

as we have crossed h = 0 in the last traverse along Γ2 just before this apex.
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Again we have to consider two cases according to the sign of Δh1. If it is
positive, the energy will increase at each successive traverse and the trajectory
will end up in D3.

If Δh1 is negative and if h0 happens to fall in the interval

εη ≤ h0 ≤ −Δh1 − εη , (124)

the trajectory will enter the domain D1 on its first traverse along Γ1 and will
remain there loosing energy at each successive traverse in D1.

If h0 does not belong to the interval (124), it means that it belongs to

−Δh1 + εη ≤ h0 ≤ Δh2 − εη (125)

and that −Δh1 < Δh2 or that Δh3 = Δh2 +Δh1 > 0. Hence the trajectory
does not enter D1 on its first traverse along Γ1 and increases its energy by
Δh3 on the total trip from apex to apex. This will be true for the successive
trips from apex to apex until formula (115) is no longer valid and we are deep
enough in domain D3.

Again if we do not know the exact value of h0 but assign a uniform dis-
tribution of probability on its value in the domain of definition (123), the
probability Pi of the trajectory ending up in Di (i = 1 or 3) is proportional
to the length of the intervals (124) or (125):

P1 = −∂J
�
1

∂λ
/
∂J�

2

∂λ
+O(ε log(εη)−1) ,

P3 =
∂J�

3

∂λ
/
∂J�

2

∂λ
+O(ε log(εη)−1) .

The various cases we have analysed may be summarized in a unique for-
mula. We may consider a jump from domain Di to domain Dj (1 ≤ i, j ≤ 3)
if the trajectories are leaving Di , i.e.

leaving Di : sgn(hi) ·
(
∂J�

i

∂λ

)
> 0 .

In that case, the probability of the jump from Di to Dj is given by:

Pr(i, j) = −sgn(hihj)
∂J�

j

∂λ
/
∂J�

i

∂λ
+O(ε log(εη)−1) , (126)

where sgn(hi) is the sign of h in the domain Di. Written in this way, Formulae
(71) and (72) are independent of the assumption on the sign of h made in
Section 3.2.

Of course, formula (126) should be understood with the following conven-
tion. If the right-hand member is negative, the probability is actually zero and
if the right-hand member is larger than one, the probability is actually one.
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We shall call the function Pr(i, j) the probability function. It is equal to the
probability of transition when its value lies between zero and one.

We ought to come back now on the assumption that h0 , the value of the
Hamiltonian at the main apex, is a random variable uniformly distributed on
its interval of definition (see (118) or (123)).

When the probabilistic argument is introduced simply by our lack of knowl-
edge about the precise initial conditions (or for that matter the precise mod-
elization of the dynamical system) of a unique “test particle” as it happens
in most problems of capture into resonance in Celestial Mechanics, then the
assumption is as good as another one. On the other hand, if we are thinking
in terms of distribution of many test particles in a dynamical system as it is
natural in problems involving charged particles in a plasma, then it becomes
important to relate the distribution on the values of h0 (at the main apex)
with the distribution of initial conditions far from the transition. Neishtadt
(1975) found that it is a simple consequence of Liouville’s Theorem.

We shall paraphrase Neishtadt’s argument by using Poincaré-Cartan In-
tegral Invariant.

Let us take two small sets of points Pi ( 1 ≤ i ≤ 2 ) in the extended phase
space (q, p, t). We take them at the main apex, centered respectively around
a value h0(i) of h0:

Pi : (q, p, t) such that

⎧⎨⎩
z1 = z2(apex) ,
h0 ∈ [h0(i)− δh, h0(i) + δh] ,
t ∈ [t0 − δt, t0 + δt]} .

(127)

The values of the Integral Invariant for these sets of points are then∫ ∫
Pi

dq dp− dH dt = −
∫ ∫

Pi

dH dt = −4δh · δt . (128)

Let us define Qi ( 1 ≤ i ≤ 2 ) as the sets of points in phase space translated
from Pi along the trajectories back to a time t = τ when they are far away
from the transition. As the integrals in (74) remain invariant, we have∫ ∫

Qi

dq dp− dH dt =
∫ ∫

Qi

dq dp = −4δh · δt .

The areas of the two sets of initial conditions Qi are then equal. Hence
if the distribution of test particles in the phase-space far from transition is
uniform, so is the distribution of values of h0 for test particles crossing the
apex per unit of time.

We have assumed in the argument above a uniform distribution of test
particles in the full phase-space far from transition because it is the simplest
assumption. Actually the set of points Qi can be shown to be very narrow
strips along the guiding trajectories far from transition (see Escande, 1985),
and thus it is enough to assume that the distribution of test particles is uniform
in ψ.



The Adiabatic Invariant Theory and Applications 117

3.7 Change in the Invariant

The results of Section 3.5 concerning the changes in h and λ in one traverse
must be combined to obtain the total changes in h and λ (and from there in
the adiabatic invariant) for a trajectory leaving one domain Di ( 1 ≤ i ≤ 3 )
and entering another one Dj ( 1 ≤ j �= i ≤ 3 ).

Let us start a trajectory at an apex AN corresponding to N complete
traverses (apex to apex) along the curve Γi in the domain Di before reaching
the main apex A0 (the one just before the “crossing” of the separatrix). The
value of h and λ at each apex Ak ( 0 ≤ k ≤ N ) in between will be denoted
hk and λk.

At each apex Ak , the value of the adiabatic invariant is given by J̄i(hk, λk)
where the function J̄i(hk, λk) can be deduced recursively from (59).

Far from the critical curve, the value of J̄i should remain constant from
apex to apex but, close to the critical curve, it is no longer true and it is
precisely these differences that we wish to evaluate.

Fig. 6. First half of the trajectory from AN to A0.

From (59), we know that from apex to apex, the difference Δh = hk+1−hk

remains more or less constant. But this is not the case for the difference
Δλ = λk+1 − λk which depends sensitively upon the value of hk.

It is thus the successive values of λk and their dependence upon the “fi-
nal” state (h0, λ0) at the main apex that will be the key to the variation of
the adiabatic invariant. Put otherwise the rate of change of h per traverse
remains constant but the time spent in a traverse is very sensitive to initial
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conditions. From this it follows that the guiding trajectory (the trajectory
of the autonomous system defined by Ji(h, λ) ) and the true trajectory lose
synchronization when we approach the critival curve as the true trajectory
may spend a variable amount of time close to the unstable equilibrium.

It is this default of synchronization that we can evaluate by comparing the
“true time of transit”:

Λi = λ0 − λN (129)

with the “pseudo time of transit”:

Λ�
i = τi − λN (130)

where τi is the value of λ where transition from Di to Dj would take place if
the adiabatic invariant were conserved. The “pseudo crossing time” τi is thus
defined by

J�
i (τi) = J̄i(λN , hN ) . (131)

The loss of synchronization is the difference Λi−Λ�
i and it can be evaluated

(see Henrard 1993) as a function of the value h0 of the Hamiltonian at the
main apex and of the pseudo crossing time τi. Of course, the same is true for
the second half of the trajectory, between the “main apex” A0 and the apex
(or anti-apex) BM , where again we are far enough from the critical curve for
the action Jj to be considered as constant. A detailed analysis shows that the
error is minimized if we take

N =M ∼ log(εη)−1 ∼ ε−1/3 . (132)

Because hN ∼ NΔh ∼ Nε ∼ ε2/3 , we are, for this value of hN , deep
enough in the domain D2 for the adiabatic invariant to be preserved.

The loss of synchronization between the real trajectory and the guiding
trajectory is instrumental in computing the change in the adiabatic invariant
during a transition. Indeed, from the definition of the pseudo crossing time,
we have, for a transition from domain Di to domain Dj (1 ≤ i �= j ≤ 3)

ΔJ̄ = J̄j(hM , λM )− J̄i(hN , λN )
= J�

j (τj)− J�
i (τi)

= J�
j (τi)− J�

i (τi) + (
∂J�

j

∂λ
)(τj − τi) +O(ε4/3 log2 ε−1) . (133)

The first difference in the right-hand member of (133) is simply the jump
resulting from the definition of the action variable as an area. It would exist
even if the action J were a perfect invariant during transition. The third term
involves the loss of synchronization on both sides of the crossing of the critical
curve. The error term comes from the neglected terms of the order of (τi−τj)2.
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From the evaluation of the loss of synchronization in the domains Di and
Dj , we find

ΔJ̄ = Δ1(i, j) +Δ2(i, j) +O(ε4/3 log2 ε−1) ,

Δ1(i, j) = J�
j − J�

i + ε
(
∂J�

j

∂λ

){(
∂J�

j

∂λ

)−1

gj −
(
∂J�

i

∂λ

)−1

gi

}
(134)

Δ2(i, j) =
ε

ω

(
∂J�

j

∂λ

)
Gij(z) .

The first terms Δ1 depends only upon the pseudo-crossing-time τi and not
upon the value of h0 at the main apex. Due to its symmetry, its contribution
to the change in the adiabatic invariant is not cumulative but cancels out
when we consider periodic jumps back and forth between the two domains.

It can be shown also that while the quantities gi and gj do depend upon
the choice of the particular normalizing transformation used in defining the
apices (see section 3.4), the combination of them which appears in (135) is
actually independent of this choice.

The second termΔ2 contains the meaningful part of the adiabatic invariant
change. The analytical expression of the function Gij depends upon whether
one of the domains involved in the jump is the “double” domain D3 or not.
We have

Gk3 = G3k =
1
2
(1− 2z)(1− 2α) log ε−1

+
1
2
(1− 2z)

[
log
h�

kε

bk
− 2α log

h�
3ε

b3

]
+ log

{
Γ (α− αz)Γ (1− αz)Γ (z)

(2π)3/2

}
(135)

where
α =

bk
b3
≥ 0 , η ≤ z =

bk − h0
bk

≤ min(1, α−1)− η ,

and when neither (i) nor (j) is equal to 3:

Gij = z(1 + α) log ε−1

+ z
[
log
h�

i ε

bi
+ α log

h�
jε

bj

]
+ log

{
Γ (1− z)Γ (1− αz)

2πz
√
α

}
(136)

where
α =

bi
bj
≥ 0 , η ≤ z =

h0
bi
≤ min(1, α−1)− η .
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Notice that, in (136), the function Gij is symmetric. It is invariant for the
permutation (α, z) → (α−1, αz) resulting from the exchange of the indices (i)
and (j).

Formulae (135),(135) and (136) summarize the effect of the separatrix
crossing upon the value of the adiabatic invariant. They are equivalent to
the formulae obtained by Cary et al. (1986) except for the error terms. We
have displayed them somewhat differently in order to isolate in Δ2 the terms
depending upon the value of h0 at the principal apex.

Also, in displaying the functions Gij ( 1 ≤ i �= j ≤ 3 ), we have isolated on
the first lines the leading terms in log ε−1. The other terms are of the order of
unity except for a very small range of values of z near the limit of definition
where they can reach at most the order of ε−1/3.

As we have seen in Section 3.6, the value of h0 at the main apex can be
considered as a random variable the distribution of which is uniform on its
interval of definition. Hence Δ2 is also a random variable, the distribution of
which is characterized mainly by its mean value and its second moment:

< Δ2 >=
1
zmax

∫ zmax

0

Δ2 dz , σ
2(Δ2) =

1
zmax

∫ zmax

0

[Δ2− < Δ2 >]2 dz .

For the same reasons of symmetry than in the case of Δ1 , the mean value
of Δ2 does not contribute to changes in the adiabatic invariant that can be
cumulative. Here again, if a test particle jumps from domain Di to domain
Dj , and then back to Di , the contributions of the mean value of Δ2 for each
jump cancel each other.

The real key to the diffusive change in the adiabatic invariant is then the
second moment which can be called the diffusion parameter. If we consider
only the leading term ( in log ε−1) in its expression, we find

σij(Δ2) =
bj

max{bi, bj}

∣∣∣∣∂J�
1

∂λ
− ∂J

�
2

∂λ

∣∣∣∣ ε log ε−1

2ω
√

3
(137)

for a jump from domain Di to domain Dj . We recall that the quantities bm
are given by bm = 2πε |(∂J�

m/∂λ)|
The leading term (137) in the diffusion parameter disappears in a special

but important case, the symmetric case when

∂J�
1

∂λ
=
∂J�

2

∂λ
. (138)

In that case, there can be no transition between domains D1 and D2. Ac-
cording to the sign of h3(∂J�

3 /∂λ) , we can have a transition from both D1 and
D2 to D3 or a transition from D3 to either D1 or D2 with equal probability.

In order to compute the diffusion parameter in the symmetric case, we
ought to go back to the complete formula (135). Fortunately, this formula can
be much simplified as we have α = 1

2 . We find:
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σij(Δ2) =
∣∣∣∣∂J�

j

∂λ

∣∣∣∣ [1 +
1
π2

log2 h
�
i h

�
j

h�
3h

�
3

]1/2
πε

2ω
√

3
. (139)

When the geometric symmetry (138) is accompanied by a time symmetry
such that

h�
1 = h�

2 (140)

(which implies that h�
3 = h�

1 = h�
2 ), the second term of the square root in

(101) disappears and we obtain:

σij(Δ2) =
∣∣∣∣∂J�

j

∂λ

∣∣∣∣ πε2ω
√

3
. (141)

This last formula is the one given by Timofeev (1978) in the case of the
pendulum with varying amplitude and by Cary et al. (1986) in the general
symmetric case.

3.8 Applications

The Magnetic Bottle

As we mentionned in the second chapter, the model discussed there is, of
course, only approximative. Fluctuations in the magnetic field or electric field
may complicate the topology of the “frozen system” (corresponding to (75)
with c = 0) by introduce a separatrix in the phase space. The adiabatic in-
variance of the averaged Ḡ may then be in default at each crossing of the
separatrix.

This effect has been investigated for instance by Dobrott and Greene
(1971) in the case of the stellator in which a weak but short periodic
poloidal magnetic field is superimposed on top of the main toroidal field
(see also Kovrizhnykh, 1984) or by Aamodt (1971-1972) who considers short-
wavelength fluctuations in the electric field due to collective modes in the
plasma itself.

We shall discuss briefly this last application. Let us assume that superim-
posed on the magnetic field (69), there is a short-wavelength electric field in
the direction perpendicular to the magnetic field and slightly modulated in
the direction of the magnetic field:

ϕ =
m

e
F (ε2x3) cos(kx1) . (142)

We introduce the “guiding center” coordinates as in (50) and a scaling of
the third dimension:

y3 =
1
ε
z , Y3 = εZ (143)
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to obtain

K =
1
2
(1 + c)(Y 2

g + y2g) + F (εz) cos[
kYc

1 + c
+

kyg
(1 + c)1/2

] +O(ε2) . (144)

As it can be seen in Figure 7, the motion (yg, Yg) can be severely distorted
by the electric field corresponding to ϕ. This does not preclude the application
of the adiabatic invariant theory and the definition of “mirror points”. Simply,
the adiabatic invariant is no longer the (averaged) magnetic momentum Ḡ but
a more complicated function and the mirror points are no longer given by (80).

YgYg

ygyg

c = o
c = 1

Fig. 7. Motion of the particle around its gyrocenter for the Hamiltonian (63) with
F = 2 , k = 1 , Yc = 0 and two particular values of c.

Of course the mirror points may be much different for a trapped orbit
(inside the loops in Figure 7 than for un untrapped one (outside the loops).
Also, we have to consider that the periodic jumps from one domain of the
phase space of (yg, Yg) to another one generate a slow diffusion in the adiabatic
invariant which may be much more important than the one estimated by
Chirikov (see 81).

Resonance Sweeping in the Solar System

The orbital and spin parameters of many natural satellites in the Solar Sys-
tem have been significantly affected by tidal dissipation and passage through
resonances. It is possible to understand the slow dynamical evolution of these
parameters in terms of a few “simple models” and the use of the adiabatic
invariant. Of course these simplified models do not always give an accurate
quantitative answer to the problems at hand: too many physical parameters
are poorly known and the mathematical approximations are sometime very
crude. But they can at least be used in order to define likely scenarii of evo-
lution (or dismiss impossible or improbable scenarii) which can then, if need
be, improved either by refining the analytical model or by using numerical
simulations (which are often quite costly, since we are dealing with very slow
evolutions).

Let us take as an example the passage through a second order resonance
of the planar planetary restricted three-body problem. The three bodies may
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be (Sun + Jupiter + Asteroid) or (Saturn + Mimas + particle in the ring) or
(Uranus + Miranda + Umbriel).

The Hamiltonian of the restricted problem can be written:

H = − (1− μ)2
L2

− μ
{

1
|r− r′| −

r|r′

r′3

}
, (145)

where (1 − μ) and μ are the reduced masses of the primary and the sec-
ondary, L =

√
(1− μ)a the first action variable of the two-body problem, a

the semi-major axis of the test particle, r and r′ the position vector of the test
particle and of the secondary with respect to the primary. We are considering
here that the Hamiltonian fonction is expressed implicitely in terms of the
usual Delaunay’s modified elements where the quantities L, P are momenta
conjugated to the angular variables λ, p, with

λ = mean longitude of particle , L =
√

(1− μ)a
p = −longitude of its pericenter , P = L

(
1−

√
1− e2

) (146)

where e is the eccentricity of the particle. The Hamiltonian is also a function of
the time through its dependence upon the longitude of the secondary λ′ = n′t.
In case of a 3/1 internal resonance between the unperturbed mean motion of
the particle (n =

√
(1− μ)a3) we have

3n′ − n ≈ 0 . (147)

and it is usefull to introduce the Poincaré’s resonance variables

σ = (3λ′ − λ+ 2p)/2 , S = P ,
ν = −(3λ′ − λ+ 2p′)/2 , N = 2L+ P − 2

√
(1− μ)a∗ , (148)

where a∗ is the “exact resonance” value: a∗ = a′[(1−μ)/9]1/3. After averaging
the Hamiltonian over the fast remaining angular variable λ′, the Hamiltonian,
expanded in powers of

√
S ≈ e and e′ reads

H = A(N − S)2 +BS + CS cos 2σ +De′2 cos 2ν

+ e′
√
S[E cos(σ + ν) + F cos(σ − ν)]

+ · · · . (149)

The coefficient A is of the order of unity, the coefficients C,D,E, F of the
order of μ (i.e ≈ 10−3 in the Sun-Jupiter problem and ≈ 10−5 in the Planet-
Satellite problems. The coefficient B is also of the order of μ in the Sun-Jupiter
problem, but in the Planet-Satellite problems it should be corrected in order
to take into account the oblateness of the planet by a term of the order of
the dynamical oblateness J2 which is of the order of 10−3 when the planet is
Uranus and 5 times larger when the planet is Saturn.

When B is not much larger than the trigonometric terms the unperturbed
frequencies of these terms are “small” for the same values of the momenta
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(i.e. when N − S is small), and we have a problem of overlapping resonances
which is not easy to handle. In this case, in order to simplify the analysis, we
shall assume that the eccentricity of the secondary vanishes (e′ = 0), so that
only the first trigonometric term subsists and the momentum N becomes a
constant.

The level curves of this one-degree of freedom system

H = A(N − S)2 +BS + CS cos 2σ . (150)

are shown in figure (8) for typical values of the parameter N

Fig. 8. Level curves of the one degree of freedom Hamiltonian for three typical
values of the parameter N . The two “crescent” regions correspond to the resonance
(the resonant angle σ librates), the inner region correspond to orbits with a semi-
major axis larger than the resonant value and the outer region to orbits with a
semi-major axis smaller than the resonant value.

In order to vizualize more easily this three-dimensional problem (N, s, σ),
we introduce a kind of “surface of section”, a (a, e) diagram, by indexing each
orbit by the value of the semi-major axie and of the eccentricity corresponding
to its intersection with the half-line σ = π. The orbits in the top crescent are
indexed by two points in the diagram; the orbits in the lower crescent are not
indexed, but this is not a problem because the orbit with (σ(t), ν(t)) and the
orbit with (σ(t) + π, ν(t) + π) correspond to the same orbit in the physical
space. There is a one-to-one correspondence between non-resonant orbits and
the points in the (a, e) diagram. (see figure 9)

Let us plot in the (a, e) diagram the curves of constant value of the adia-
batic invariant, the action of the one degree of freedom Hamiltonian (150) (see
figure 10). They are instrumental in describing the evolution of the system
when the “parameter” N varies slowly.

The parameter N may vary from several causes according to the problem
at hand: small dissipative forces like drag by a primordial gazeous nebula,
migration of planets due to the ejection of asteroids in the Oort cloud, the
effect of the tides raised on the planet by a satellite. Let us give a woed
of explanation concerning the latter. A planet is not a rigid body and each
satellite brings on a bulge on the planet. If the planet were perfectly elastic this
bulge would be oriented exactly along the line planet-satellite. But a physical
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Fig. 9. Mapping between the orbits of the Hamiltonian and the (a, e) diagram.
Inside the “critical curve” (corresponding to the doubly-asymptotic orbits), in the
resonance zone, each orbit is mapped on two points more or less symmetric with
respect to the vertical central line.

e
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1

1

2
2

3
3
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67
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7 7

Fig. 10. The curves of constant value of the adiabatic invariant

body like a planet is usually not perfectly elastic and the bulge shows a little
delay with respect to the passage of the satellite. This produce a tiny non-
symmetric force accelerating the satellite (when the period of rotation of the
planet is smaller than the orbital period of the satellite), or decelerating it
(when the reverse is true). This tranfer energy (and angular momentum) from
the rotation of the planet to the orbital motion of the satellite. The effect is
proportionnal to the sixth power of the inverse of the distance planet-satellite
and proportionnal to the mass of the satellite. Let us assume for the sake of
simplicity that the effect is mainly felt by the larger satellite (the secondary
of the restricted problem). Then the value of a′ changes slowly with the time
and thus the value of a∗ and of N. We are in the right conditions to apply the
adiabatic invariant theory.

In the case where N decreases slowly, these curves are travelled from right
to left. When the representative point reach the critical curve, we have to
consider whether the orbit will be captured by the resonance or “jump” over it.
In this case, according to formula (126) it will be a jump and the representative
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3/ 14/ 1

a

e 2/ 1

3/ 1

4/ 1

Fig. 11. Secondary resonances inside the primary resonance from (Malhotra, 1994).
Location in the (A, e) diagram and a surface of section for a particular value of the
energy.

a

e

Fig. 12. Schematic scenario for the temporary capture of Miranda by the 3:1 com-
plex of resonance with Umbriel. After a capture in the “strongest” primary resonance
(the 2σ one), a secondary resonance brought it back to the border of the resonance
and let it escape. the shaded area corresponds to chaotic motions.

point will resume its march on the left of the V -shaped resonance zone on the
curve with the same label (with a higher eccentricity). This is a possible
mechanism for exciting the eccentricity of small bodies.

In the case where N increases slowly, the curves are travelled from left
to right. Comming from an orbit with semi-major axis smaller than the res-
onance value, the test particle sees this critical value approaching it. When
the representative point in the (a, e) diagram reaches the critical curve, we
have to read from formula (126) the probability of capture into resonance.
This time there is indeed a non-zero probability of capture; the smaller the
eccentricity, the higher the probability. The exact scaling of the probability
function (Probability versus eccentricity) depends on the parameters of the
problem, mainly on the value of the mass ratio μ. After capture of the orbit,
we see that the semi-major axis remains more or less constant but that it is
the eccentricity which increases. Physically the secondary transfer energy and
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angular momentum to the test particle by a mechanism similar to the one we
have sketched for the tidal effect. The pericenter and apocenter of the test
particle are slightly displaced leading to an asymmetry which is the cause of
the transfer.

We have considered up to now the problem where the coefficient B is not
much larger than the mass ratio μ. When it is much larger (for instance if the
primary is Saturn), the problem is actually simpler. Indeed the unperturbed
frequency (i.e. the frequency computed for μ = 0) of the possible resonant
angles (2σ, 2ν, σ + ν) are well separated so that we can consider that when
one is close to zero, the others are not and can thus be “averaged out”. Hence
instead of one resonance, we have to investigate three of them; but each of
them can be analyzed separately and described by the Hamiltonian (149)
where only one trigonometric term (either the one in 2σ or in 2ν or in σ +
ν is kept. The corresponding problem is again “one-degree-of-freedom” and
actually very similar to (150). We shall not pursue further this case.

An interesting borderline case is the case where B is larger than μ but
not that much larger (this is the case when the primary is Uranus). In that
case the resonances are disjoint for small eccentricities but interfere with each
other for larger values and provoke secondary resonances inside the primary
resonances (see figure 11).

If the representative point is captured in a primary resonance and evolve
inside it by increasing its eccentricity, it will encounter secondary resonances
and may be captured by one of them. This can lead it back to the border
of the primary resonance which at this higher value of the eccentricity is
rather chaotic. The representative point may then escape to the right side of
the complex of resonances. This seems to have been the fate of Miranda and
Umbriel a pair of satellites of Uranus which are not just outside the complex
of resonance with an unusual high value of the eccentricity for Miranda (see
Figure 12).

4 Crossing of a Chaotic Layer

4.1 Introduction

In many applications the one-degree of freedom model we have used is actually
an approximation of a system with more degrees of freedom, obtained for
instance by averaging over other frequencies. In this case one must expect
that the separatrix of the model is actually, in the real problem, a stochastic
layer. One may wonder if, in this case, the above mentioned estimate for the
probability of capture is still valid.

One could object to the application of the above mentioned theory to
such a case. It is possible that as soon as the chaotic layer is large enough
that it cannot be crossed in a few revolutions of the guiding trajectory, the
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mechanism of capture is qualitatively different and thus the predictions of the
above mentioned theory have no relevance.

In this chapter, following (Henrard and Henrard, 1991 and Henrard and
Morbidelli, 1992) we shall give indications that the situation is not as de-
sesperate as that. Roughly speaking we shall show that there are reasons to
believe that in the presence of a stochastic layer the probability of capture in
the growing domains (see the previous chapter) is still proportional to their
growing rates (see equation 172). The main difference will be that the “cap-
ture” will no longer be instantaneous but will happen on a time scale inversely
proportional to the area of the stochastic layer (see equation 171). As a re-
sult the change in the adiabatic invariant upon crossing the chaotic layer will
have a random component of the order of the area of the stochastic layer (see
equation 173).

4.2 The Frozen System

Let us consider the one-and-a-half degree-of-freedom Hamiltonian system de-
pending upon a real parameter λ and defined by the Hamiltonian function:

H(q, p, t;λ) , (151)

T-periodic in the time t and defined on V ×T 1×I, where V is an oriented man-
ifold parametrized by the canonical variables (q, p) and I is an open interval
of the real line.

The Poincaré section of the system will be taken at t ≡ 0 (modulo T ) and
the Poincaré map is the return map on the Poincaré section: (q(0), p(0)) −→
(q(T ), p(T )). The Poincaré map is area-preserving. Indeed if C2 is the image
of a closed curve C1, we have by considering the Poincaré linear integral
invariant [1]: ∫

C1

p dq =
∫

C2

p dq . (152)

We shall assume that the dynamical system defined by the Poincaré map
is a typical representative of a “close to integrable” and “close to a resonance”
system. By this we mean the following. The Poincaré section shows a finite
number of simply connected domains Di where the Poincaré map seems to be
regular and one connected and bounded domain DS where the Poincaré map
seems to be ergodic.

Generically we can expect that the Hamiltonian system we started with
is not integrable and that if some invariant tori are present, they do not form
open domains of regular behaviour. But typically (see for instance Hénon and
Heile, 1964]), when the system is not too far away from an integrable one but
close to a resonance, we can expect to see in the Poincaré section macroscopic
regions which are almost completely filled by regular closed curves (trace of
invariant tori upon the Poincaré section) and a macroscopic region (around
the stable and unstable manifolds of the unstable periodic orbit generated by
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the resonance) which looks completely chaotic. We know of course that generi-
cally the “regular” regions contain almost everywhere thin layers of stochastic
behaviour and that the stochastic region contains an infinite number of small
“island”. The point is that the layers and the islands can be very small and
that we can hope to reach meaningful approximate answers about the system
by ignoring them.

In each regular domain Di of the Poincaré section we define the action of
a regular closed curve C as the signed area:

A(C) =
∫

C

p dq , (153)

where the sign of A(C) (the direction of the path integral) is chosen in such
a way that A(C) increases when the curve C approaches the boundary of the
regular domain Di.

With such a definition we can characterize the regular domains Di by their
maximum action:

Ai(λ) =
∫

Γi

p dq , (154)

where Γi is the boundary of the regular domainDi with the stochastic domain
DS . The sign of Ai(λ) is taken accordingly to the sign of the action in the
domain.

We shall assume in what follows that for λ ∈ I the number of regular
regions is constant and furthermore that each of them grows (dAi/dλ > 0)
or becomes smaller (dAi/dλ < 0) monotonically with λ. Let us call S+ the
set of indices (i) such that dAi/dλ > 0 and S− the set of indices such that
dAi/dλ < 0 . We shall denote by A+(λ) (resp. A−(λ)) the sum of the actions
of the growing (resp. decreasing) regular domains:

A+(λ) =
∑
i∈S+

Ai(λ) A−(λ) =
∑

i∈S−
Ai(λ) . (155)

4.3 The Slowly Varying System

We shall now assume that the parameter λ of the Hamiltonian function (151)
is slowly changing with the time:

λ = εt . (156)

The Poincaré section and the Poincaré map are defined as previously. The
Poincaré map is still area-preserving, but of course the dynamical system
defined by the Poincaré map will be different although we may expect that
it will not be very much different for time intervals small compared to ε−1.
Our goal is of course to get information about the dynamical system for time
intervals of the order of ε−1.
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First let us show that in the regular domains the action as defined in (153)
is adiabatically invariant. By this we mean that the changes in the action is
of the order of ε for time intervals of the order of ε−1.

Indeed the image of a regular curve of Di remains adiabatically close to
a regular curve of Di as long as this image remains in Di. To show this
let us remark that, in a regular domain, we can define approximate angle-
action variables (ψ, J) such that for a fixed value of the parametrer λ, the
Hamiltonian (151) is transformed into

H = K(J ;λ) + ηP (ψ, J, t;λ) , (157)

where the “small parameter” η measures the non-integrability of the system
in the regular domain. We assume that it can be made as small as ε2.

If we consider now that λ = εt, the Hamiltonian of the system is no longer
given by (157) but by:

H ′ = K(J ; εt) + εR(ψ, J, t; εt) + ηP (ψ, J, t; εt) , (158)

where R is the remainder function of the time dependant canonical transfor-
mation defining the action-angle variables.

A further averaging transformation brings the Hamiltonian (158) under
the form:

H ′ = K(J̄; εt) + εR̄(J̄ ; εt) + ηP̄ (ψ̄, J̄ , t; εt) + ε2R(ψ̄, J̄ , t; εt) , (159)

which shows that the averaged action J̄ is an adiabatic invariant:

dJ̄

dt
= O(ε2) . (160)

The action J itself, which differs from J̄ by periodic terms of the order of ε is
also an adiabatic invariant.

Now if we consider at time t0 a closed regular curve C1 corresponding to a
given value of J , its image by an iterate of the return map will form a closed
curve C2. All the points on C2 will correspond within ε to the same value of
J because J is an adiabatic invariant. Thus C2 is again a regular curve of the
frozen system and: ∫

C1

p dq =
∫

C2

p dq . (161)

Hence the action as defined in (153) is adiabatically conserved.

4.4 Transition Between Domains

We wish to estimate statistically when and how a trajectory makes a transition
from one domain (regular or stochastic) of the frozen system to another one.
We shall consider that the Poincaré section is covered by particles with a
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density 
(q, p, n) where n is the number of the return map. The density 
 is
assumed to depend only upon the action in the regular domains and not on
the phase and to have a constant value 
S(n) in the stochastic domain.

Particles starting with an action A in one of the regular domain Di remain
in this regular domain, with the same action, as long as A < Ai(εt) . But if
i ∈ S− (i.e. if the domain Di is one which is decreasing in area), the domain
Di will loose particles to the stochastic domain at a rate of:

−
i
dAi

dλ
ε , (162)

where 
i is the density of particles at the boundary of the domain Di.
Indeed the particles contained between the regular curves of actionAi(ε(n+

1)T ) and Ai(εnT ) at time t = nT cannot remain in the regular domain at
t = (n+ 1)T .

On the other hand, the number of particles leaving the stochastic domain
DS and entering the regular domain Dj (with j ∈ S+ ) at each iteration is


S(n)
dAj

dλ
ε , (163)

where 
S is the density of the stochastic domain at time t = nT . Indeed
the particles contained between the regular curves of action Aj(εnT ) and
Aj(ε(n + 1)T ) at time t = (n + 1)T cannot come from elsewhere than the
stochastic domain. Their density (which is preserved because the map is area-
preserving) was at time t = n equal to the density of the stochastic domain.

The above estimates are based upon the assumption that in the time εT
a particle cannot jump directly from one regular domain to another one. It is
assumed further that for most particles it takes many iterates of the Poincaré
map to cross the stochastic domain. By “many” iterates we mean a number
large enough that the mixing character of the stochastic domain has the time
to uniformize the density of particles inside DS . It is difficult to translate
quantitatively this assumption because we do not have a quantitative estimate
of the mixing character ofDS . But certainly this assumption will be violated if
the exchange of area between regular domains in one iteration of the mapping
is of the order of the area of the stochastic domain. Hence we assume that:

dA+

dλ
εT � AS ,

dA−

dλ
εT � AS . (164)

Now let us follow the fate of a set of particles entering at time t = t0 the
stochastic domain coming from one of the domain Di which is loosing area.
Let us designate by k(t) the fraction of this set of particles which have left
the stochastic domain at time t > t0. If t − t0 is large enough, the particles
remaining in the stochastic domain are spread uniformely and we can estimate
the number of them which are leaving the stochastic domain between t and
t+ T , by using (163):
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k(t+ T )− k(t) =
1− k(t)
AS

dA+

dλ
εT . (165)

Indeed (1 − k(t))/AS(t) is the fractional density of the set of particles
we are considering and εTdA+/dλ measures the area lost by the stochastic
domain to the growing domains.

Converting (165) into a differential equation:

1
1− k

dk

dt
=

ε

AS(t)
dA+

dλ
, (166)

and integrating, we find:

k(t) = 1− exp(−F+(t)) , (167)

with

F+(t) = ε
∫ t

t0

1
AS(t)

dA+

dλ
dt . (168)

The fraction ki(t) of this set of particles which have entered the regular
domain Di (i ∈ S+) at time t is given by:

ki(t) = ε
∫ t

t0

1− k(t)
AS(t)

dAi

dλ
dt . (169)

In the application described in the following sections we have that AS(t) =
AS is a constant and so are the quantities:

B =
dA+

dλ
C = −dA

−

dλ
Bi =

dAi

dλ
(i ∈ S+) . (170)

In this case formulae (167) and (169) are easy to evaluate and we obtain:

k(t) = 1− exp
[
−εB(t− t0)
AS(t0)

]
, (171)

ki(t) =
Bi

B
k(t) . (172)

We conclude that the probability for one particle to enter a particular
domain Di is proportional to the growing rate Bi of this domain.

From (171) we can evaluate the distribution of the values of the action of
the particle in the regular domain they have jumped into. The probability of
reaching the domain Di with a value of the action larger than Ai(0) +ΔA is
equal to:

Pr(Ai ≥ Ai(0) +ΔA) = exp
[
− B
Bi

ΔA

AS

]
. (173)

In the limit AS → 0, these formulae agree with the formulae obtained by
considering a separatrix crossing and not a chaotic layer crossing. In that case,
as we recalled in the introduction, we have:

ki = Bi/B , Ai = Ai(0) . (174)
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4.5 The “MSySM”

As a test of the ideas developed in the previous sections we shall consider
as “frozen system” the Modulated Symmetric Standard Map (in short the
MSySM). Let us first describe the Symmetric Standard Map (in short the
SySM):

(SySM)
{
I(n+1) = I(n) −K sin

[
ϕ(n) + I(n)/2

]
,

ϕ(n+1) = ϕ(n) +
[
I(n+1) + I(n)

]
/2 ,

(175)

which can be interpreted as the application of a first order symplectic inte-
grator, with a time step ε, to the integration of the pendulum. The parameter
K = bε2 is a scaled value of the restoring force b of the pendulum and I = pε)
is a scaled value of the momentum p.

We have shown in (Henrard and Morbidelli, 1992) how one can construct
a formal power series which is a formal invariant for the sequence of points
generated by the Symmetric Standard Map and we have shown how to com-
pute it. Applying this technique we found that the action of the perturbed
pendulum can be approximated by:

Jlib =
8
√
K

π

{
μ1IE(α) − (μ1 + μ2)(1− α)IK(α)

}
, (176)

Jcirc =
8
√
αK

π

{
μ1IE(β) + μ2(1− β)IK(β)

}
, (177)

where IK and IE are the usual elliptic function (see for instance Abramowicz
and Stagun, 1968). The parameter α = β−1 is equal to (H + b)/2b and is
equal to zero at the central stable equilibrium and one on the separatrix. The
coefficient μ1 and μ2 are given as truncated series in ε by:

μ1 = 1 +
K

72
[1− 2α] (178)

− K2

5 400

[
79
16

+ 11α(1− α)
]

+
K3

7 938

[
3 593
2 560

− 1 205 α
256

+
19 α2

10
(3− 2α)

]
− K4

17 010

[
1 208 087
1 228 800

− 1 553 α
9 600

− 9 461 α2

3 200
+

1 871 α3

600
(2− α)

]
+
K5

22 869

[
181 980 143
294 912 000

− 676 926 221 α
442 368 000

− 13 699 639 α2

6 912 000

−17 166 013 α3

3 456 000
+

2 953 α4

2 700
(5− 2α)

]
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μ2 =
αK

36
+

11αK2

10 800
[1− 2α] (179)

+
αK3

7 938

[
565
256

− 19 α
5

(1− α)
]

+
αK4

17 010

[
89

4 800
− 1 277 α

800
+

1 871 α2

1 200
(3 − 2α)

]
+
αK5

76 230

[
2 344 901
1 638 400

− 3 226 493 α
1 036 800

+
3 595 391 α2

345 600
− 2 953 α3

405
(2 − α)

]
In order to obtain a model with a rather large and clean “stochastic layer”,

we have imposed a slow modulation to the SySM by making K a function of
the index n,

Kn = αΔ2

[
1 + β cos

(
π(2n− 1)
N

)]
. (180)

This is the (normalized) second order symplectic integrator with time-step
Δ (we shall reserve the symbol ε for a better use) for the modulated pendulum
described by the two degrees of freedom Hamiltonian,

H =
1
2
p2 + Λ+ α

[
1 + β cos

2πλ
N

]
cos q , (181)

where λ is the time in disguise and Λ is its associated momentum. We call
“modulated symmetric standard map” the N step map from t = λ = 0 to
t = λ = N , i.e. the symplectic approximate integration of the pendulum over
the full period of the modulation.

For trajectories which do not cross the slowly moving separatrix of the
pendulum, the action J (see equations 176 and 177) is a second order (with
respect to 2π/N) adiabatic invariant (see for instance Arnold, 1963). Indeed
the first order correction is proportional to (∂H/∂λ) which in this case van-
ishes at the time the mapping is evaluated (i.e. when λ = 0 mod 2π).

On the other hand, the trajectories which are forced to cross the slowly
moving separatrix are engulfed in a large and “clean” chaotic layer (see figure
13). As shown by Elskens and Escande (1991), it is “clean” (i.e. has sharp
boundaries and contains only very thin islands) because the “slowly pulsating
separatrix sweep homoclinic tangles where islands must be small”. The extend
of the chaotic layer can be easily approximated analytically. It corresponds
(up to terms of order 2π/N) to the interval of values of the action which are
assumed by the separatrix during its pulsation.

Inside the chaotic layer, the dynamics can be described (at least in a first
approximation) as a diffusive process (Bruwhiler and Cary, 1989) on the action
J together with a fast “phase mixing” on the angle variable (let us call it Ψ)
conjugated to it. The diffusion coefficient of the Fokker-Planck equation for
the density P (J , t) of particles inside the chaotic layer
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Fig. 13. The chaotic layer of the modulated symmetric standard map (MSySM)
for Δ = 0.02, N = 50, α = 1 and β = 0.5. Notice the thin elongated “islands” and
the sharpness of the boundaries

∂P

∂t
− ∂

∂J

[
D(J )

∂P

∂J

]
= 0 , (182)

is the averaged mean square spreading of the adiabatic invariant; the average
being performed over the initial phase Ψ and over many iteration of the map

A first order approximation of this diffusion coefficient can be evaluated
by neglecting the correlations between iterations of the map (i.e. by taking
the average over one period only of the modulation of the pendulum)

D0(J0) =
1
N

∮
(J � − J0)2 dΨ0 , (183)

where (J0, Ψ0) are initial conditions and J � is the value of the action after
one period of the modulation.

Following Bruwhiler and Cary (1989), this integral can be evaluated ana-
lytically (neglecting the correlations between the two consecutive separatrix
crossings involved in the full period of modulation) as

D0(J ) ≈ 2(4π)2

3N3

(J 2 − J 2
min)(J 2

max − J 2)
J 4

. (184)

The function (184) is shown in figure 14 for a typical value ofN . Also shown
on the same diagrams are direct numerical evaluations of (183). As pointed
out by Bruhwiler and Cary we see that, although (184) gives a correct idea of
the order of magnitude (∼ 1/N3) of the diffusion coefficient, it is not a very
good approximation of it because of the neglect of the correlations and also
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Fig. 14. The diffusion coefficient for N = 3000. The curve is given by equation 184
and the crosses by direct numerical evaluation of the integral 183.

presumably because the asymptotic approximation on which (184) is based
does not take into account the presence of small islands in the chaotic sea.

The time scale associated with this diffusion coefficient, which is propor-
tional to the cube of N , should not be confused and is much larger than
the time scale associated with the Lyapunov characteristic exponent which is
proportional to N

4.6 Slow Crossing of the Stochastic Layer

In order to simulate a slow evolution of the modulated pendulum (see eq. 181),
let us make the coefficient α time-dependent, α = (1 + εt)2, and replace p by
p+ 3εt. In this way the “cat-eye” of the pendulum is opening up and moving
downward. The regular region above the cat-eye and the regular region inside
it are growing at about the same rate while the region below it is shrinking.

A rough estimate based upon a pure pendulum approximation gives
8ε/π

√
1/2 and ε(3−4/π

√
3/2) as the growth rates of the libration and of the

positive circulation regular domains, predicting a 55% probability of capture
by the libration region for particles uniformly distributed in the stochastic
layer.

We conducted several numerical experiments with various values of the
deformation parameter ε while keeping N (the modulation parameter) fixed
to 50. The results are summarized in figure 15a which reports the ratio of the
number of particles captured by the libration region (n3) to the total number
of particles captured (n2 + n3) after a time equal to 0.45/ε for ε = 10−3 and
0.225/ε for the other cases. We start with 1.000 particles uniformly distributed
in the chaotic layer.
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Fig. 15. (a): Probability of capture into the libration regular domain for different
values of the evolution parameter ε and of the time step (Δ) of the symplectic
integrator. (b) and (c): time evolution of this probability in two cases. The abscissa
is the ratio of the area gained by the libration domain over its initial area; it is
approximately proportional to the time.

We show also in figure 15b and 15c the evolution with time of this ratio.
For very small values of the evolution parameter (ε = 10−6), this probability
remains more or less constant with a value (65%) somewhat larger than the
55% estimation. This is due to the roughness of our estimate of the growth
rates and of not much concern. On the other hand, for larger values (ε = 10−3)
of the evolution parameter, the computed probability shows a systematic in-
crease with time, up to almost 90%.

Figure 16 gives the explanation for this unexpected behavior. We plot
there the distribution of particles inside the chaotic layer at four instant of
the simulation. For the small value of the evolution rate ε (figure 7a) the
distribution remains uniform, but for the larger value of ε (figure 7b) the
distribution shows a systematic evolution. Particles keep a constant density
along the inside boundary of the chaotic layer (the one next to the libration
domain, on the left of the diagrams) and desert the outside boundary (the one
next to the circulation domain, on the right of the diagrams). This reflects a
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Fig. 16. Distribution of the particles inside the chaotic layer at four moment of the
evolution (for Δ = 2π/50). The particles inside the chaotic layer, i.e. in the changing
J -interval [Jmin(t),Jmax(t)], are distributed into 50 bins according to the value of
the action J . Figure (a) shows the evolution of the distribution for a small value
of the evolution parameter ε = 10−6. the distribution remains uniform. Figure (b)
shows the evolution for a larger value of the parameter (ε = 10−3). The density of
particles remains more or less constant close to the inside boundary of the chaotic
layer (bin 1) but goes to zero close to the outside boundary (bin 50). Figure (c)
shows the theoretical distribution when the diffusion coefficient goes to zero.

lack of diffusion of the action; the boundaries of the chaotic layer move too
fast for the diffusion to be able to replenish the areas of phase space which
have been depleted. If there was no diffusion at all (i.e. if the action was kept
constant), we would see the evolution shown in figure 16c. Indeed the value
of J which marks the outer boundary of the chaotic layer, say Jmax(t), grows
with the time. Initially we do not have any particle with J larger than Jmax(0)
as the distribution we have considered has zero density outside the chaotic
layer. It means that later on, if J does not diffuse, the range [Jmax(0),Jmax(t)]
would be completely depleted as shown in figure 7c.

One could object that the Fokker-Planck equation (182) is characterized
by an infinite speed of propagation. In particular an initially uniform distri-
bution of particles which diffuse in an expanding box, will stay uniform if the
box expand linearly with time, regardless of the speed of expansion. However,
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one should not forget that the diffusion process we are dealing with here is a
discrete phenomenon with a basic time-scale given by the period of modula-
tion N of the pendulum (i.e. the inverse of the Lyapunov exponent). In our
case, the Fokker-Planck equation is valid only on time-scale much larger than
this period of modulation. From this consideration one can get a rough and
heuristic estimate of the maximum value of the evolution rate ε which allows
to keep an uniform density throughout the chaotic layer. After a time equal to
the modulation period the limit of the chaotic region Jmax(N) is changed by
a quantity ΔJ ≈ 8εN

√
α(1 + β/π which, in our case, amounts to 1.5 102ε.

On the other hand, during the same period, the density of an interval of width

δJ ≈ η(Jmax − Jmin)
√
DN/π , (185)

on the boundary will become uniform (with tolerance η) according to the
Fokker-Plank equation. If we impose ΔJ � δJ , we obtain (taking η = 10−1,
D = 10−4, (Jmax − Jmin) = 1.3)

ε� 3 10−5 . (186)

It does seems that the asymptotic estimate developed in the previous sec-
tion for the probability of capture in regular domains for particles coming
from the stochastic layer of a slowly evolving symplectic map is confirmed by
the numerical experiments on the modulated symmetric standard map. But
we see that the asymptotic limit is reached only for rate of evolution much
smaller than expected a priori. The reason for this is now identified. It is the
fact that the value of the action diffuses on a time scale (proportional to the
cube of the modulation coefficient N) much longer than the time scale of the
Lyapunov exponent (which is proportional to N).
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Notations

By Tn we denote the torus Tn = Rn/2πZn and write T1 = S1. By Rn
+ we

denote the open octant {x | xj > 0 ∀j} and by Z0 – the set of nonzero
integers. Abusing notations, we denote by x both the space-variable and an
element of an abstract Banach space X . For an invertible linear operator J
we denote J = −J−1 (so J = J).

1 Symplectic Hilbert Scales and Hamiltonian Equations

1.1 Hilbert Scales and Their Morphisms

Let X be a real Hilbert space with a scalar product 〈 · , · 〉 = 〈 · , · 〉X and a
Hilbert basis {ϕk | k ∈ Z̃}, where Z̃ is a countable subset of some Zn. Let us
take a positive sequence {ϑk | k ∈ Z̃} which goes to infinity with k. For any
s we define Xs as a Hilbert space with the Hilbert basis {ϕkϑ

−s
k | k ∈ Z̃}.

By ‖ · ‖s and 〈 · , · 〉s we denote the norm and the scalar product in Xs (in
particular,X0 = X and 〈 · , · 〉0 = 〈 · , · 〉). The totality {Xs} is called a Hilbert
scale, the basis {ϕk} — the basis of the scale and the scalar product 〈 · , · 〉
— the basic scalar product of the scale.

A Hilbert scale may be continuous or discrete, depending on whether s ∈ R

or s ∈ Z. The objects we define below and the theorems we discuss are valid
in both cases.

A Hilbert scale {Xs} possesses the following properties:
1) Xs is compactly embedded in Xr if s > r and is dense there;
2) the spacesXs andX−s are conjugated with respect to the scalar product

〈 · , · 〉. That is, for any u ∈ Xs ∩X0 we have

‖u‖s = sup{〈u, u′〉 | u′ ∈ X−s ∩X0, ‖u′‖−s = 1};

G. Benettin, J. Henrard, and S. Kuksin: LNM 1861, A. Giorgilli (Ed.), pp. 143–164, 2005.
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3) the norms ‖ · ‖s satisfy the interpolation inequality; linear operators in
the spaces Xs satisfy the interpolation theorem

Concerning these and other properties of the scales see [14] and [12].
For a scale {Xs} we denote by X−∞ and X∞ the linear spaces X−∞ =⋃
Xs and X∞ =

⋂
Xs.

Scales of Sobolev functions are the most important for this work:
Examples

1) Basic for us is the Sobolev scale of functions on an n-torus {Hs(Tn; R) =
Hs(Tn)}. A space Hs(Tn) is formed by all functions u : Tn → R such that

u =
∑
l∈Zn

ule
il·x, C � ul = u−l, ‖u‖2s =

∑
l

(1 + |l|)2s|ul|2 <∞. (1)

The basis {ϕk} is formed by properly normalised functions Re eil·x and
Im eil·x, l ∈ Zn.

2) The Sobolev scales {Hs(Tn; RN )} are formed by vector-valued maps
and are defined similarly.

3) The scale {Hs
0(Tn)} is formed by functions with zero mean-value, so

that in (1) l ∈ Zn \{0}. In this case in definition of the norm ‖ · ‖s we replace
the factor (1 + |l|)2s by |l|2s (thus defined norm is equivalent and is slightly
more convenient). ��

Given two scales {Xs}, {Ys} and a linear map L : X∞ → Y−∞, we denote
by ‖L‖s1,s2 ≤ ∞ its norm as a map Xs1 → Ys2 . We say that L defines a
morphism of order d of the two scales for s ∈ [s0, s1], s0 ≤ s1, 1 if ‖L‖s,s−d <
∞ for every s ∈ [s0, s1]. If in addition the inverse map L−1 exists and defines
a morphism of order −d of the scales {Ys} and {Xs} for s ∈ [s0 +d, s1 +d], we
say that L defines an isomorphism of order d for s ∈ [s0, s1]. If {Xs} = {Ys},
then an isomorphism is called an automorphism.

Example 1. Multiplication by a non-vanishing Cr-smooth function defines a
zero-order automorphism of the Sobolev scale {Hs(Tn)} for −r ≤ s ≤ r. ��

If L is a morphism of scales {Xs}, {Ys} of order d for s ∈ [s0, s1], then
adjoint maps L∗ form a morphism of the scales {Ys} and {Xs} of the same
order d for s ∈ [−s1 + d,−s0 + d]. It is called the adjoint morphism.

If L = L∗ (L = −L∗) on the space X∞, then the morphism L is called
symmetric (antisymmetric).

If L is a symmetric morphism of {Xs} of order d for s ∈ [s0, d− s0], where
s0 ≥ d/2, then the adjoint morphism L∗ is defined for s ∈ [s0, d − s0] and
coincide with L on X∞; hence, L∗ = L. We call L a selfadjoint morphism.
Anti-selfadjoint morphisms are defined similarly.

Example 2. The operator Δ defines a selfadjoint morphism of order 2 of the
Sobolev scale {Hs(Tn)} for −∞ < s < ∞. The operators ∂/∂xj , 1 ≤ j ≤ n,
define anti-selfadjoint morphisms of order one. The automorphism in Example
1.1 is selfadjoint. ��
1 or s ∈ (s0, s1), etc.
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Let {Ys}, {Ys} be two scales and Os ⊂ Xs, s ∈ [a, b], be a system of (open)
domains, compatible in the following sense:

Os1 ∩Os2 = Os2 if a ≤ s1 ≤ s2 ≤ b.

Let F : Oa → Y−∞ be a map such that for every s ∈ [a, b] its restriction to
Os defines an analytic (Ck-smooth) map F : Os → Ys−d. Then F is called an
analytic (Ck-smooth) morphism of order d for s ∈ [a, b].

Example 3. Let {Xs} be the Sobolev scale {Hs(S1)} and F (u, x) be a Cr-
smooth function. Then the map u(x) �→ F (u(x), x) defines a zero-order Cr-
smooth morphism of the scale {Xs} for s ∈ (1/2, r] (now Os = Xs). If the
function F is analytic in u, then the morphism is analytic. ��

Given a Ck-smooth function H : Xd ⊃ Od → R, k ≥ 1, we consider its
gradient map with respect to the basic scalar product 〈 · , · 〉:

∇H : Od → X−d, 〈∇H(u), v〉 = H∗(u)v ∀v ∈ Xd,

where H∗(u) stands for the linearization of the map H at a point u. The map
∇H is Ck−1-smooth.

If Od belongs to a system of compatible domains Os, a ≤ s ≤ b, and the
gradient map ∇H defines a Ck−1-smooth morphism of order dH for a ≤ s ≤ b,
we write that ord∇H = dH .

1.2 Symplectic Structures

For simplicity we restrict ourselves to constant-coefficient symplectic struc-
tures. For the general case see [12].

Let {Xs} be a Hilbert scale and J be its anti-selfadjoint automorphism of
order d for −∞ < s <∞. Then the operator

J = −J−1

defines an anti-selfadjoint automorphism of order −d. We define a two-form
α2 as

α2 = J dx ∧ dx,
where by definition

J dx ∧ dx [ξ, η] = 〈Jξ, η〉.
Clearly, J dx∧dx defines a continuous skew-symmetric bilinear form on Xr×
Xr if r ≥ −d/2. Therefore any space Xr, r ≥ −d/2, becomes a symplectic
(Hilbert) space and we shall write it as a pair (Xr, α2).

The pair ({Xs}, α2) is called a symplectic (Hilbert) scale. 2

2 In [8, 12] we consider symplectic Hilbert scales ({Xs}, α2) such that d ≥ 0, and
work with symplectic spaces (Xr, α2) with r ≥ 0. It was done since the relations
d ≥ 0 and r ≥ 0 hold for most examples and since this assumption simplifies
statements of some results, especially if the symplectic form is not constant-
coefficient.
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Let ({Xs}, α2 = J dx ∧ dx) and ({Ys}, β2 = Υ dy ∧ dy) be two symplectic
Hilbert scales and Os ⊂ Xs, a ≤ s ≤ b, be a system of compatible domains.
A C1-smooth morphism of order d1

F : Os → Ys−d1 , a ≤ s ≤ b,

is symplectic if F ∗β2 = α2. That is, if 〈ΥF∗(x)ξ, F∗(x)η〉Y ≡ 〈Jξ, η〉X , or

F ∗(x)ΥF∗(x) = J ∀x.

A symplectic morphism F as above is called a symplectomorphism if it is a
diffeomorphism.

1.3 Hamiltonian Equations

To a C1-smooth function h on a domain Od ⊂ Xd, the symplectic form α2

as above corresponds the Hamiltonian vector field Vh, defined by the usual
relation (cf. [1, 5]):

α2[Vh(x), ξ] = −h∗(x)ξ ∀ξ.
That is, 〈JVh(x), ξ〉 ≡ −〈∇h(x), ξ〉 and

Vh(x) = J∇h(x).

The vector field Vh defines a continuous map Od → X−d−dJ . Usually we shall
assume that Vh is smoother than that and defines a smooth morphism of order
d1 ≤ 2d+ dJ for all s from some segment.

For any C1-smooth function h on Od × R we denote by Vh the non-
autonomous vector field Vh(x, t) = J∇xh(x, t), where ∇x is the gradient in
x, and consider the corresponding Hamiltonian equation (or Hamiltonian sys-
tem)

ẋ = J∇xh(x, t) = Vh(x, t). (2)

A partial differential equation (PDE), supplemented by some boundary
conditions, is called a Hamiltonian PDE if under a suitable choice of a sym-
plectic Hilbert scale ({Xs}, α2), a domain Od ⊂ Xd and a Hamiltonian h, it
can be written in the form (2). In this case the vector field Vh is unbounded,
ordVh = d1 > 0. That is,

Vh : Od × R → Xd−d1 .

Usually Od belongs to a system of compatible domains Os, s ≥ d0, and Vh

(as a function of x) defines an analytic morphism of order d1 for s ≥ d0.
A continuous curve x : [t0, t1]→ Od is called a solution of (2) in the space

Xd if it defines a C1-smooth map x : [t0, t1] → Xd−d1 and both parts of (2)
coincide as curves inXd−d1 . A solution x is called smooth if it defines a smooth
curve in each space Xs.
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If a solution x(t), t ≥ t0, of (2) such that x(t0) = x0 exists and is unique,
we write x(t1) = St1

t0x0, or x(t1) = St1−t0x0 if the equation is autonomous
(we do not assume that t1 ≥ t0). The operators St1

t0 and St are called flow-
maps of the equation. Often the flow-map operators have non-trivial domains
of definition, where a point x ∈ Xd belongs to a domain of definition of an
operator St1

t0 , if for every x′ ∈ Xd, sufficiently close to x, equation (2) has a
unique solution in Xd, defined for t ∈ [t0, t1] and equal x′ for t = t0.

Clearly, St1
t0 equals (St0

t1 )−1 on a joint domain of definition of the two
operators.

1.4 Quasilinear and Semilinear Equations

A nonlinear PDE is called strongly nonlinear if its nonlinear part contains
as many derivatives as the linear part. Strongly nonlinear Hamiltonian PDEs
may possess rather unpleasant properties. In particular, for some of them,
every non-zero solution develops a singularity in finite time, see an example
in Section 1.4 of [12].

If the nonlinear part contains less derivatives then the linear one, an equa-
tion is called quasilinear. A quasilinear equation can be written in the form
(2) with

h(x, t) = 1
2 〈Ax, x〉 + h0(x, t), (3)

where A is a linear operator which defines a selfadjoint morphism of the scale
(so ∇h(x, t) = Ax+∇h0(x, t)) and ord∇h0 < ordA.

The class of Hamiltonian PDEs contains many important equations of
mathematical physics, some of them are discussed below. The first difficulty
one comes across when studies this class is absence of a general theorem which
would guarantee that (locally in time) an equation has a unique solution. Such
a theorem exists for semilinear equations, where an equation (2) is called
semilinear if its Hamiltonian has the form (3) and ordJ∇h0 ≤ 0 (see [13] and
Section 1.4 of [12]).

Example 4 (equations of the Korteweg–de Vries type). Let us take for {Xs}
the scale of zero-mean-value Sobolev spaces Hs

0 (S1) as in Subsection 1.1
and choose J = ∂/∂x, so dJ = 1. For a Hamiltonian h we take h(u) =∫ 2π

0
(− 1

8u
′(x)2 + f(u)) dx with some analytic function f(u). Then ∇h(u) =

1
4u

′′ + f ′(u) and the equation takes the form

u̇(t, x) =
1
4
u′′′ +

∂

∂x
f ′(u). (4)

For f(u) = 1
4u

3 we get the classical Korteweg–de Vries (KdV) equation. The
map Vh defines an analytic morphism of order 3 of the scale {Xs}, for s > 1/2.
The equation has the form (2), (3), where ordJA = 3 and ordJ∇h0 = 1. It
is quasilinear, but not semilinear. ��
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Example 5 (nonlinear Schrödinger equations). Let Xs = Hs(Tn; C), s ∈ Z,
where these Sobolev spaces are treated as real Hilbert spaces, and the ba-
sic scalar product 〈 · , · 〉 is 〈u, v〉 = Re

∫
uv dx. For J we take the operator

Ju(x) = iu(x) and choose

h(u) =
∫

Tn

(
1
2
|∇u|2 + g(u, u)

)
dx,

where g(u, v) is an analytic function, real if v = u. Then 3 ∇h(u) = −Δu +
2 ∂

∂ug and (2) takes the form

u̇ = −iΔu+ 2i
∂

∂u
g(u, u). (5)

This is a semilinear Hamiltonian PDE.

2 Basic Theorems on Hamiltonian Systems

Basic theorems from the classical Hamiltonian formalism (see [1, 5]) remain
true for equations (2) in Hilbert scales, provided that the theorems are prop-
erly formulated. In this section we present three corresponding results. Their
proofs can be found in [8, 12].

Let ({Xs}, α2 = J dx ∧ dx) and ({Ys}, β2 = Υ dy ∧ dy) be two symplectic
scales and (for simplicity) ordJ = ordΥ = dJ ≥ 0. Let Φ : Q → O be a C1-
smooth symplectic map, where Q and O are domains in Yd and Xd, d ≥ 0. If
dJ > 0, we have to assume that

(H1) for any |s| ≤ d linearised maps Φ∗(y), y ∈ Q, define linear maps Ys → Xs

which continuously depend on y.

The first theorem states that symplectic maps transform Hamiltonian
equations to Hamiltonian:

Theorem 1. Let Φ : Q → O be a symplectic map as above (so (H1) holds if
dJ > 0). Let us assume that the vector field Vh of equation (2) defines a C1-
smooth map Vh : O×R → Xd−d1 of order d1 ≤ 2d and that this vector field is
tangent to the map Φ (i.e., for every y ∈ Q and every t the vector Vh(Φ(y), t)
belong to the range of the linearised map Φ∗(y)). Then Φ transforms solutions
of the Hamiltonian equation

ẏ = Υ∇yH(y, t), H = h ◦ Φ,

to solutions of (2)

3 To understand the factor 2, take g = |u|2 = uu.
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Corollary 1. If under the assumptions of Theorem 1 {Xs} = {Ys} and β2 =
Kα2 (i.e., Φ∗α2 = Kα2) for some K �= 0, then Φ transforms solutions of the
equation ẋ = K−1J∇h to solutions of (2). In particular, Φ preserves the class
of solutions for (2) if it preserves the symplectic form α2

For Hamiltonian PDEs (and for Hamiltonian equations (2)) Theorem 2.1
plays the same role as its classical finite-dimensional counterpart plays for
usual Hamiltonian equations: it is used to transform an equation to a normal
form, usually in the vicinity of an invariant set (e.g., of an equilibrium). Cf.
Section 7 of [12].

To apply Theorem 1 one needs regular ways to construct symplectic trans-
formations. For classical finite-dimensional systems symplectic transforma-
tions usually are obtained either via generating functions, or as Lie transfor-
mations (i.e., as flow-maps of additional Hamiltonians), see [1, 5]. For infinite
dimensional symplectic spaces generating functions play negligible role, while
Lie transformations remain an important tool. An easy but important corre-
sponding result is stated in the theorem below.

Let ({Xs}, α2) be a symplectic Hilbert scale as above and O be a domain
in Xd.

Theorem 2. Let f be a C1-smooth function on O × R such that the map
Vf : O × R → Xd is Lipschitz in (x, t) and C1-smooth in x. Let O1 be a
subdomain of O. Then the flow-maps Sτ

t : (O1, α2) → (O,α2) are symplecto-
morphisms (provided that they map O1 to O). If the map Vf is Ck-smooth or
analytic, then the flow-maps are Ck-smooth or analytic as well.

The assumption that the map Vf is Lipschitz can be replaced by the much
weaker assumption that for a solution x(t) of the equation ẋ = Vf (x), the
linearised equation ξ̇ = Vf∗(x(t))ξ is such that its flow maps are bounded
linear transformations of the space Xd. See [12].

Usually Theorem 2 is applied in the situation when |f | � 1, or |t−τ | � 1.
In these cases the flow-maps are closed to the identity and the corresponding
transformations of the space of C1-smooth functions on O, H �→ H ◦ Sτ

t ,
can be written as Lie series (cf. [4]). In particular, the following simple result
holds:

Theorem 3. Under the assumptions of Theorem 2, let H be a C1-smooth
function on O. Then

d

dτ
H(Sτ

t (x)) = {f,H}(Sτ
t (x)), x ∈ O1. (1)

In this theorem {f,H} denotes the Poisson bracket of the two functions:

{f,H}(x) = 〈J∇f(x),∇H(x)〉.

It is well defined since J∇f = Vf ∈ Xd by assumptions.



150 Sergei Kuksin

Theorem 2 and formula (1) make from symplectic flow-maps Sτ
t a tool

which suits well to prove KAM-theorems for Hamiltonian PDEs, see [8, 12, 6].
An immediate consequence of Theorem 3 is that for an autonomous Hamil-

tonian equation ẋ = J∇f(x) such that ordJ∇f = 0, a C1-smooth function
H is an integral of motion 4 if and only if {f,H} ≡ 0.

If d′ = ordJ∇f > 0 and O = Od belongs to a system of compatible
domains Os ⊂ Xs, s ∈ [d0, d], where d0 = d−d′, then H such that {f,H} ≡ 0
is an integrable of motion for the equation ẋ = J∇f(x), provided that

ordJ∇f = d′ and ord∇H = dH for s ∈ [d0, d],

where d′ + dH ≤ 2d. Indeed, since d0 − dH ≥ −d0, then H is a C1-smooth
function on Od0 . Since any solution x(t) is a C1-smooth curve in Od0 by the
definition of a solution, then

d

dt
H(x) = 〈∇H(x), ẋ〉 = 〈∇H(x), J∇f(x)〉 = {f,H}(x) = 0.

In particular, f is an integral of motion for the equation ẋ = J∇f(x) in Od

if we have ordJ = dJ and ord∇f = df for s = d and for s ∈ [d, d− df − dJ ],
where d ≥ df +dJ/2. That is, if the equation is being considered in sufficiently
smooth spaces.

Example 6. Let us consider a nonlinear Schrödinger equation (5) such that
g(u, u) = g0(|u|2), and take H(u) = ‖u‖20 = |u|2L2

. Now d′ := ordJ∇f = 2 for
s ∈ (n/2,∞), and ord∇H = 0. Elementary calculations show that {f,H} ≡ 0.
So L2-norm is an integral of motion for solutions of (5) in Xs if s > n/2 + 2.
(In fact this result holds true for solutions of much lower smoothness). ��

3 Lax-Integrable Equations

3.1 General Discussion

Let us take a Hamiltonian PDE and write it as a Hamiltonian equation in a
suitable symplectic Hilbert scale ({Zs}, α2 = J du ∧ du)

u̇ = J∇H(u). (1)

This equation is called Lax-integrable if there exists an additional Hilbert
scale {Xs} (real or complex), and finite order linear morphisms Lu and Au of
this scale which depend on the parameter u ∈ Z∞, such that a curve u(t) is
a smooth solution for (1) if and only if

d

dt
Lu(t) = [Au(t),Lu(t)]. (2)

4 That is, H(x(t)) is a time-independent quantity for any solution x(t)).
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The operators Au and Lu, treated as morphisms of the scale {Xs}, are as-
sumed to depend smoothly on u ∈ Zd where d is sufficiently large, so the
left-hand side of (2) is well defined (for details see [12]). The pair of operators
L, A is called the Lax pair.

In most known examples of Lax-integrable equations relation between the
scales {Zs} and {Xs} is the following: spaces Zs are formed by T -periodic
Sobolev vector-functions, while A and L are differential or integro-differential
operators with u-dependent coefficients, acting in a scale {Xs} of TL-periodic
Sobolev vector-functions. Here L is any fixed integer, so the scale {Xs} is not
uniquely defined.

Let u(t) be a smooth solution for (1). We set Lt = Lu(t) and At = Au(t).

Lemma 1. Let χ0 ∈ X∞ be a smooth eigenvector of L0, i.e., L0χ0 = λχ0.
Let us assume that the initial-value problem

χ̇ = Atχ, χ(0) = χ0, (3)

has a unique smooth solution χ(t). Then

Ltχ(t) = λχ(t) ∀t. (4)

Proof. Let us denote the left-hand side of (4) by ξ(t), the right-hand side —
by η(t) and calculate their derivatives. We have:

d

dt
ξ =

d

dt
Lχ = [A,L]χ+ LAχ = ALχ = Aξ

and
d

dt
η =

d

dt
λχ = λAχ = Aη.

Thus, both ξ(t) and η(t) solve the problem (3) with χ0 replaced by λχ0 and
coincide by the uniqueness assumption.

Due to this lemma, a set T formed by all smooth vectors u ∈ Z∞ such
that the operator Lu has a prescribed set of smooth eigenvalues (i.e., the
eigenvalues, corresponding to eigenvectors from the space X∞), is invariant
for the flow of equation (1). A remarkable fact is that for many Lax-integrable
Hamiltonian PDEs some sets T as above are finite dimensional symplectic
submanifolds T 2n of Z∞ and restriction of equation (1) to every T 2n is an
integrable Hamiltonian equation. Moreover, union of all these manifolds T 2n

is dense in every space Zs. Below we discuss this construction for some Lax-
integrable equations.
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3.2 Korteweg–de Vries Equation

The KdV equation

u̇ =
1
4
∂

∂x
(uxx + 3u2), u(t, x) ≡ u(t, x+ 2π),

∫ 2π

0

u dx ≡ 0, (KdV)

takes the form (1) in the symplectic Hilbert scale ({Zs}, α2 = J du ∧ du),
where Zs is the Sobolev space Hs

0(S1) and Ju = (∂/∂x)u, see Example 4.
Due to Lax himself, this equation is Lax-integrable and the corresponding
Lax pair is

Lu = − ∂
2

∂x2
− u, Au =

∂3

∂x3
+

3
2
u
∂

∂x
+

3
4
ux.

Taking for {Xs} the Sobolev scale of 4π-periodic functions and applying
Lemma 1 we obtain that smooth 4π-periodic spectrum of the operator Lu

is an integral of motion. It is well known that the spectrum of Lu is formed
by eigenvalues

λ0 < λ1 ≤ λ2 < λ3 ≤ λ4 < · · · ↗ ∞,
and that the corresponding eigenfunctions are smooth, provided that the po-
tential u is. Let us take any integer n-vector V,

V = (V1, . . . , Vn) ∈ N
n, V1 < · · · < Vn.

Denoting Δj = λ2j − λ2j−1 ≥ 0, j = 1, 2, . . . , we define the set T 2n
V as

T 2n
V = {u(x) | Δj �= 0 iff j ∈ {V1, . . . , Vn}}.

Clearly T 2n
V equals to the union

T 2n
V =

⋃
r∈R

n
+

T n
V(r),

where R
n
+ = {r | rj > 0 ∀j} and

T n
V(r) = {u(x) ∈ T 2n

V | Δj = rj ∀j}.

Since the 4π-periodic spectrum {λj} is an integral of motion for (KdV), then
the sets T n

V(r) are invariant for the KdV-flow. Due to the classical theory of
the Sturm–Liouville operator Lu, the set T 2n

V is a smooth submanifold of any
space Zs, foliated to the smooth n-tori T n

V(r). There exists an analytic map
Φ : {(r, z)} = Rn

+ × Tn → Zs such that T n
V(r) = Φ({r} × Tn). One of the

most remarkable results of the theory of KdV equation — the Its–Matveev
formula — explicitly represents the map Φ 5 in terms of theta-functions.
Moreover, the Its–Matveev map Φ analytically extends to the closed octant
5 more specially, a possible choice of this map.
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{r | rj ≥ 0 ∀j} and integrates (KdV) in the following sense: there is an
analytic function h = hn(r) such that for any r and any z0 ∈ T

n, the curve
u(t) = Φ(r, z0 + t∇h(r)) is a smooth solution for (KdV). We note that as a
function of t, this solution is a quasi-periodic curve. 6

3.3 Other Examples

Sine-Gordon. The Sine-Gordon equation on the circle

ü = uxx(t, x)− sinu(t, x), x ∈ S1 = R/2πZ, (SG)

is another example of a Lax-integrable PDE.
First the equation has to be written in a Hamiltonian form. The most

straightforward was to do this is to write (SG) as the system

u̇ = −v, v̇ = −uxx + sinu(t, x).

One immediately sees that this system is a semilinear Hamiltonian equation in
the symplectic scale ({Zs = Hs(S)×Hs(S)}, α2 = J dξ∧dξ), where ξ = (u, v)
and J(u, v) = (−v, u).

Now we derive another Hamiltonian form of (SG), more convenient for its
analysis. To do this we consider the shifted Sobolev scale {Zs = Hs+1(S1)×
Hs+1(S1)}, where the space Z0 is given the scalar product

〈ξ1, ξ2〉 =
∫

S1
(ξ′1x · ξ′2x + ξ1 · ξ2) dx,

and any space Zs – the product 〈ξ1, ξ2〉s = 〈Asξ1, ξ2〉. Here A is the operator
A = −∂2/∂x2 + 1. Obviously, A defines a selfadjoint automorphism of the
scale of order one. The operator J(u,w) = (−

√
Aw,

√
Av) defines an anti-

selfadjoint automorphism of the same order. We provide the scale with the
symplectic form β2 = J dξ ∧ dξ. We note that (SG) can be written as the
system

u̇ = −
√
Aw, ẇ =

√
A (u+A−1f ′(u(x))), (5)

where f(u) = − cosu − 1
2u

2, and that (5) is a semilinear Hamiltonian
equation in the symplectic scale as above with the Hamiltonian H(ξ) =
1
2 〈ξ, ξ〉+

∫
f(u(x)) dx, ξ = (u, v).

Let us denote by Zo
s (Ze

s ) subspaces of Zs formed by odd (even) vector
functions ξ(x). Then ({Zo

s}, β2) and ({Ze
s}, β2) are symplectic subscales of the

scale above. The space Zo
s and Ze

s (with s ≥ 0) are invariant for the flow of
equation (5). The restricted flows correspond to the SG equation under the
odd periodic and even periodic boundary conditions, respectively.
6 A continuous curve u : R → X is quasiperiodic if there exist n ∈ N, ϕ ∈ T

n,
ω ∈ R

n and a continuous map U : T
n → X such that u(t) = U(ϕ + tω).
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The SG equation is Lax-integrable under periodic, odd periodic and even
periodic boundary conditions. That is, equation (5) is Lax-integrable in the
all three symplectic scales defined above.

Zakharov–Shabat equation. Let us take the symplectic Hilbert scale (Xs =
Hs(S1,C), J du ∧ du) as in the example 5. Choosing the Hamiltonian

h±(u) =
∫

S1

(
1
2
|∇u|2 ± 1

4
|u|4
)
dx,

we get the Zakharov–Shabat equations:

u̇ = i(−uxx ± |u|2u).

The sign ‘−’ corresponds to the focusing equation and the sign ‘+’ — to the
defocusing one. Both these equations are Lax-integrable, see [15].

4 KAM for PDEs

Exact statements of abstract ‘KAM for PDEs’ theorems are rather long and
technical (nothing to say about their proofs!). In this section we restrict our-
selves to short discussion of the theorems and give some examples. For ex-
tended discussion see [9]. For proofs see [8, 12, 6].

4.1 Perturbations of Lax-Integrable Equation

The ‘KAM for PDEs’ theory implies that for ‘many’ Lax-integrable equa-
tions, most of time-quasiperiodic solutions that feel the invariant symplectic
submanifolds T 2n (see the end of Subsection 3.1) persist under small quasi-
linear Hamiltonian perturbations of the equation. Here ‘most’ means ‘most in
the sense of the Lebesgue measure’.

As an example, we consider the perturbed KdV equation

u̇ =
1
4
∂

∂x
(uxx + 3u2 + εf(u, x)),

u(t, x) ≡ u(t, x+ 2π),
∫
u dx ≡ 0,

(1)

where f is a smooth function, 2π-periodic in x and analytic in u. By K we
denote any compact set K ⊂ Rn

+ of a positive Lebesgue measure, and set

T 2n
K =

⋃
r∈K

T n
V(r).

This is a compact part of the finite-gap manifold T 2n
V , defined in Subsection

3.2. Below we present a KAM-theorem for equation (1). For its proof see
[7, 12, 6].



Lectures on Hamiltonian Methods in Nonlinear PDEs 155

Theorem 4. There exists a Borel subset Kε ⊂ K such that mes(K \Kε)→ 0
as ε→ 0, and for every r ∈ Kε equation (1) (treated as a Hamiltonian system
in a Sobolev space Hs

0(S1), s ≥ 1) has an invariant torus T n
ε (r) ⊂ Hs

0(S1)
which is ε�-close to T n

V(r). This torus is filled with smooth time-quasiperiodic
solutions of (1).

In the theorem the exponent 
 is any fixed number 
 ∈ (0, 1/3).
Similar result holds if f depends on t and is a quasiperiodic function of t,

see [12].
Proof of Theorem 4, given in [12], is obtained by applying an abstract

KAM-theorem. The same theorem applies to perturbations of many other
integrable equations (Sine-Gordon, Sinh-Gordon, focusing and defocusing
Zakharov–Shabat equations, etc.). See [12] concerning the perturbed Sine-
Gordon equation

ü− uxx + a sin bu+ εf(u, x) = 0 , a, b > 0 (2)

(for ε = 0 (2) is a scaled Sine-Gordon equation). At the same time the abstract
KAM-theorem cannot be used to study perturbations of some other Lax-
integrable equations, e.g., of the Kadomtsev–Petviashvili equation.

4.2 Perturbations of Linear Equations

The KAM-theory implies that solutions of a parameter-depending linear
Hamiltonian PDE persist under Hamiltonian perturbations for most values
of the parameter. This is a vast subject. See theorems, examples, discussions
and references in [8, 12, 9, 6].

4.3 Small Oscillation in Nonlinear PDEs

Let us consider the so-called ϕ4-equation

ü− uxx + u− u3 = 0.

One can find positive constants a and b such that u− u3 = a sin bu+O(|u|5).
Accordingly, small solutions of the ϕ4-equation can be treated as perturba-
tions of a scaled Sine-Gordon equation. That is, as small solutions for (2). So
they can be treated using the theory described in Subsection 4.1. Similarly,
small solutions for a nonlinear Schrödinger equation

u̇− i(uxx + f(|u|2)u) = 0,

where f(0) = 0, f ′(0) �= 0, can be interpreted as perturbations of solutions
for a Zakharov–Shabat equation and can be treated similarly.

For details see joint works of the author with A. Bobenko in Comment.
Math. Helv. 70:1 and with J. Pöschel in Annals of Math. 143:1 (for the ϕ4-
equation and the nonlinear Schrödinger equation, respectively).
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5 The Non-squeezing Phenomenon
and Symplectic Capacity

5.1 The Gromov Theorem

Let (R2n, β2) be the space R2n = {x1, x−1, . . . , x−n} with the Darboux sym-
plectic form β2 =

∑
dxj ∧ dx−j . By Br(x) = Br(x; R2n) and Cj

� = Cj
�(R2n),

1 ≤ j ≤ n, we denote the following balls and cylinders in R2n:

Br(x) = {y | |y − x| < r}, Cj
� = {y = (y1, . . . , y−n) | y2j + y2−j < 


2}.

The famous (non-) squeezing theorem by M. Gromov states that if
f : Br(x) → R2n is a symplectomorphism such that its range belongs to a
cylinder x1 +Cj

�, x1 ∈ R2n, then 
 ≥ r. For a proof, references and discussions
see [5].

5.2 Infinite-Dimensional Case

Let us consider a symplectic Hilbert scale ({Zs}, α2 = J du∧ du) with a basis
{ϕj | j ∈ Z0 = Z \ {0}}. We assume that this basis can be renormalised to a
basis {ϕ̃j | j ∈ Z0} (each ϕ̃j is proportional to ϕj) which is a Darboux basis
for the form α2 and a Hilbert basis of some space Zd. That is,

〈ϕ̃j , ϕ̃k〉d = δj,k, α2[ϕ̃j , ϕ̃−k] = sgn j δj,k ∀j, k. (1)

These relations imply that

α2[ξ, η] = 〈Jξ, η〉d, Jϕ̃j = sgn j ϕ̃−j ∀j. (2)

In particular, J = J .
Below we skip the tildes and re-denote the new basis back to {ϕj}.
In this scale we consider a semilinear Hamiltonian equation with the

Hamiltonian H(u) = 1
2 〈Au, u〉d + h(u, t). Due to (2) it can be written in

the following way:
u̇ = JAu + J∇dh(u, t), (3)

where ∇d signifies the gradient in u with respect to the scalar product of Zd.
If a Hamiltonian PDE is written in the form (3), then the symplectic space

(Zd, α2) is called the (Hilbert) Darboux phase space for this PDE. Below we
study properties of flow-maps of equation (3) in its Darboux phase space.

Let us assume that the operator A has the form

(H1) Au =
∑∞

j=1 λj(ujϕj + u−jϕ−j) ∀u =
∑
ujϕj ,

where λj ’s are some real numbers.

Then JAu =
∑∞

j=1 λj(u−jϕ−j−ujϕj), so the linear operators etJA are direct
sums of rotations in the planes Rϕj + Rϕ−j ⊂ Zd, j = 1, 2, . . . .

We also assume that the gradient map ∇dh is smoothing:
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(H2) there exists γ > 0 such that ord∇dh = −γ for s ∈ [d − γ, d + γ].
Moreover, the maps

∇dh : Zs × R → Zs+γ , s ∈ [d− γ, d+ γ],

are C1-smooth and bounded. 7

For any t and T we denote by OT
t any open subset of the domain of defini-

tion of ST
t in Zd, such that for each bounded setQ ⊂ OT

t the set
⋃

τ∈[t,T ] S
τ
t (Q)

is bounded in Zd.8

In the theorem below the balls Br and the cylinders Cj
�, j ≥ 1, are defined

in the same way as in Subsection 5.1.

Theorem 5. Let us assume that the assumptions (H1) and (H2) hold and
that a ball Br = Br(u0, Zd) belongs to OT

t together with some ε-neighbourhood,
ε > 0. Then the relation

ST
t (Br) ⊂ v0 + Cj

�(Zd) (4)

with some v0 ∈ Zd and j ≥ 1 implies that 
 ≥ r.

Proof. Without lost of generality we may assume that

v0 = 0, j = 1.

Arguing by contradiction we assume that in (4) 
 < r and choose any 
1 ∈
(
, r).

For n ≥ 1 we denote by E2n the subspace of Zd, spanned by the vectors
{ϕj , |j| ≤ n}, and provide it with the usual Darboux symplectic structure
(it is given by the form α2|E2n). By Πn we denote the orthogonal projection
Πn : Zd → E2n. We set

Hn = 1
2 〈Au, u〉d + h(Πn(u))

and denote by ST
(n)t flow-maps of the Hamiltonian vector filed VHn . Any map

ST
(n)t decomposes to the direct sum of a symplectomorphism of E2n and of a

linear symplectomorphism of Zd " E2n. So the theorem’s assertion with the
map ST

t replaced by ST
(n)t follows from the Gromov theorem, applied to the

symplectomorphism

E2n → E2n, x �→ ΠnS
T
(n)t(i(x) + u0),

where i stands for the embedding of E2n to Zd.
7 i.e., they send bounded sets to bounded.
8 this set should be treated as a ‘regular part of the domain of definition’.
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Lemma 2. Under the theorem’s assumptions the maps ST
(n)t are defined on

Br for n ≥ n′ with some sufficiently large n′, and there exists a sequence
εn −→

n→∞
0 such that

‖ST
t (u)− ST

(n)t(u)‖ ≤ εn (5)

for n ≥ n′ and for every u ∈ Br.

We leave a proof of this lemma as an exercise; alternatively see for the
proof [10].

Lemma 3. For any u ∈ Br we have

ST
t (u) = e(T−t)JAu+ S̃T

t (u),

where S̃T
t is a C1-smooth map in the scale {Zs} and ord S̃T

t = −γ for s ∈
[d− γ, d+ γ].

A proof is another exercise (cf. Lemma 1 in [10]).

Now we continue the proof of the theorem. Since its assertion holds for
any map ST

(n)t (n ≥ n′) and since the ball Br belongs to this map’s domain of
definition (see Lemma 2), then for each n ≥ n′ there exists a point un ∈ Br

such that ST
(n)t(un) /∈ C1

�1
(0). That is,

|Π1S
T
(n)t(un)| ≥ 
1. (6)

By the weak compactness of a Hilbert ball, we can find a weakly converging
subsequence

unj ⇀ u ∈ Br, (7)

so
unj → u strongly in Zd−γ .

Due to Lemma 3 this implies that S̃T
t (unj )→ S̃T

t (u) in Zd, and using (7) we
obtain the convergence:

ST
t (unj )⇀ S

T
t (u). (8)

Noting that |Π1S
T
t (un)| = |Π1S

T
(n)tun +Π1(ST

t − ST
(n)t)un| and using (6),

(5) we get:
|Π1S

T
t (un)| ≥ 
1 − εn, n ≥ n′. (9)

Since by (8) Π1S
T
t (unj ) → Π1S

T
t (u) in E2, then due to (9) we have

|Π1S
T
t (u)| ≥ 
1. This contradicts (4) because 
1 > 
. The obtained contra-

diction proves the theorem.
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5.3 Examples

Example 7. Let us consider the nonlinear wave equation

ü = Δu− f̃(u; t, x), (10)

where u = u(t, x), x ∈ Tn. The function f̃ is a polynomial in u of a degree D
such that its coefficients are smooth functions of t and x. We set f = f̃ − u,
denote by B the linear operator B =

√
1−Δ and write (10) as the system of

two equations:
u̇ = −Bv,
v̇ = Bu+B−1f(u; t, x).

(11)

Let us take for {Zs} the shifted Sobolev scale Zs = Hs+1/2(Tn; R2), where
〈ξ, η〉s =

∫
Tn B

2s+1ξ · η dx.
Taking for α2 the Darboux form α2 = J dξ ∧ dξ, where Jξ = (−v, u) for

ξ = (u, v), one sees that (11) is a Hamiltonian equation with the Hamiltonian

H(u, v) =
1
2
〈B(u, v), (u, v)〉0 +

∫
F (u; t, x) dx,

where F ′
u = f0. Choosing for {ψj | j ∈ N} a (properly enumerated) Hilbert

basis of the space H1/2(Tn), formed by functions Cs Re eis·x and Cs Im eis·x,
we set

ϕ̃j = (ψj , 0), ϕ̃−j = (0, ψj), j ∈ N.

The basis {ϕ̃j} satisfies (1), so Z0 = H1/2(Tn,R2) is the Darboux phase space
for the nonlinear wave equation, written in the form (11).

To apply Theorem 5 we have to check conditions (H1) and (H2). The first
one (with A = B) holds trivially since ϕ̃j ’s are eigenfunctions of the Laplacian.
The condition (H2) holds in the following three cases:

a) n = 1,
b) n = 2, D ≤ 4,
c) n = 3, D ≤ 2.
The case a) and the case b) with D ≤ 2 can be checked using elementary

tools, see [10]. Arguments in the case b) with 3 ≤ D ≤ 4 and in the case c)
are based on Strichartz-type inequalities, see [3].

In the cases a)–c), Theorem 5 applies to equation (10) in the form (11) and
shows that the flow maps cannot squeeze H1/2-balls to narrow cylinders. This
result can be interpreted as impossibility of ‘locally uniform’ energy transition
to high modes, see [10].

Example 8. For a nonlinear Schrödinger equation

u̇ = iΔu+ if ′u(|u|2)u, x ∈ T
n (12)

(cf. Example 4), the Darboux phase space is the L2-space L2(Tn; C). It is very
unlikely that the flow-maps of (12) satisfy in this space assumption (H2). So
we smooth out the Hamiltonian of (12) and replace it by
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Hξ =
1
2

∫
(|∇u|2 + f(|U |2)) dx, U = u ∗ ξ,

where u ∗ ξ is the convolution of u with a function ξ ∈ C∞(Tn,R). The
corresponding Hamiltonian equation is

u̇ = iΔu+ i(f ′(|U |2)U) ∗ ξ.

This smoothed equation satisfies (H1), (H2) and Theorem 5 applies to its
flow-maps.

5.4 Symplectic Capacity

Another way to prove Theorem 5 uses a new object — symplectic capacity —
which is interesting on its own.

Symplectic capacity in a Hilbert Darboux space (Zd, α2) as in Subsection
5.2 (below we abbreviate Zd to Z), is a map c which corresponds to any open
subset O ⊂ Z a number c(O) ∈ [0,∞] and satisfies the following properties:

1) translational invariance: c(O) = c(O + ξ) for any ξ ∈ Z;
2) monotonicity: if O1 ⊃ O2, then c(O1) ≥ c(O2);
3) 2-homogeneity: c(τO) = τ2c(O);
4) normalisation: for any ball Br = Br(x;Z) and any cylinder Cj

r = Cj
r (Z)

we have
c(Br) = c(Cj

r ) = πr2.

(We note that for x = 0 the cylinder contains the ball and is ‘much bigger’,
but both sets have the same capacity.)

5) Symplectic invariance: for any symplectomorphism Φ : Z → Z and any
domain O, c(Φ(O)) = c(O).

If (Z, α2) is a finite-dimensional Darboux space, then existence of a capac-
ity with properties 1)–5) is equivalent to the Gromov theorem. Indeed, if a
capacity exists, then the squeezing (4) with 
 < r is impossible due to 2), 4)
and 5). On the opposite, the quantity

c̃(O) = sup{πr2 | there exists a symplectomorphism which sends Br in O}

obviously satisfies 1)–3) and 5). Using the Gromov theorem we see that c̃
satisfies 4) as well.

If (Z, α2) is a Hilbert Darboux space, then the finite-dimensional sym-
plectic capacity, obtained in [5], can be used to construct a capacity c which
meets 1)–4). This capacity turns out to be invariant under symplectomor-
phisms, which are flow-maps ST

t as in Theorem 5, see [10]. This result also
implies Theorem 5.
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6 The Squeezing Phenomenon

Example 7 shows that flow-maps of the nonlinear wave equation (11) satisfy
the Gromov property. This means (more or less) that flow of generalised solu-
tions for a nonlinear wave equation cannot squeeze a ball to a narrow cylinder.
On the contrary, behaviour of the flow formed by classical solutions for the
nonlinear wave equation in sufficiently smooth Sobolev spaces exhibits ‘a lot
of squeezing’, at least if we put a small parameter δ in front of the Lapla-
cian. Corresponding results apply to a bigger class of equations. Below we
discuss them for nonlinear Schrödinger equations; concerning the nonlinear
wave equation (10) see the author’s paper in GAFA 5:4.

Let us consider the nonlinear Schrödinger equation:

u̇ = −iδΔu+ i|u|2pu, (1)

where δ > 0 and p ∈ N. To present results of this section it is more convenient
to consider the equation under the odd periodic boundary conditions:

u(t, x) = u(t, x1, . . . , xj + 2, . . . , xn)
= −u(t, x1, . . . ,−xj , . . . , xn), j = 1, . . . , n,

(2)

where n ≤ 3. Clearly, any function which satisfies (2) vanishes at the boundary
of the cube Kn of half-periods, Kn = {0 ≤ xj ≤ 1}. The problem (1),
(2) can be written in the Hamiltonian form (2) if for the symplectic Hilbert
scale ({Xs}, α2) one takes a scale formed by odd periodic complex Sobolev
functions, Xs = Hs

odd(R
n/2Zn; C), and α2 = i du ∧ du (cf. Example 5).

Due to a nontrivial result of J. Bourgain (which can be extracted from
[2]), flow-maps St for (1), (2) are well defined in the spaces Xs, s ≥ 1. In
particular, they are well defined in the space C∞ of smooth odd periodic
functions. Denoting by | · |m the Cm-norm, |u|m = sup|α|=m supx |∂α

x u(x)|,
we define below the set Am ⊂ C∞ which we call the essential part of the
smooth phase-space for the problem (1), (2) with respect to the Cm-norm, or
just the essential part of the phase-space:

Am = {u ∈ C∞ | u satisfies (2) and the condition (3)},

where
|u|0 ≤ Kmδ

μ|u|1/(2pmκ+1)
m , (3)

with a suitable Km = Km(κ) and μ = mκ/(2pmκ + 1). Here κ is any fixed
constant κ ∈ (0, 1/3).

Intersection of the set Am with the R-sphere in the Cm-norm (i.e., with the
set {|u|m = R}) has the C0-diameter ≤ 2Kmδ

μR1/(2pmκ+1). Asymptotically
(as δ → 0 or R → ∞) this is much smaller than the C0-diameter of the
sphere, which equals CmR. Thus, Am is an ‘asymptotically narrow’ subset of
the smooth phase space.

The theorem below states that for any m ≥ 2 the set Am is a recursion
subset for the dynamical system, and gives a control for the recursion time:
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Theorem 6. Let u(t) = u(t, · ) be a smooth solution for (1), (2) and |u(t0)|0 =
U . Then there exists T ≤ t0 + δ−1/3U−4p/3 such that u(T ) ∈ Am and
1
2U ≤ |u(T )|0 ≤ 3

2U .

Since L2-norm of a solution is an integral of motion (see Example 6) and
|u(t)|0 ≥ |u(t)|L2(Kn), then we obtain the following

Corollary 2. Let u(t) be a smooth solution for (1), (2) and |u(t)|L2(Kn) ≡W .
Then for any m ≥ 2 this solution cannot stay outside Am longer than the time
δ−1/3W−4p/3.

For the theorem’s proof we refer the reader to Appendix 3 in [11]. Here
we explain why ‘something like this result’ should be true. Presenting the
arguments it is more convenient to operate with the Sobolev norms ‖ · ‖m.
Let us denote ‖u(t0)‖0 = A. Arguing by contradiction, we assume that for all
t ∈ [t0, t1] = L, where t1 = t0 + δ−1/3U−4p/3, we have

Cδa‖u‖b
m < ‖u‖0. (4)

Since ‖u(t)‖0 ≡ A, then (4) and the interpolation inequality imply upper
bounds

‖u(t)‖l ≤ C(l, δ), 0 ≤ l ≤ m, t ∈ L . (5)

If this estimate with l = 3 implies that

δ‖Δu‖1 ≤ δc (6)

with some c > 0, then for t ∈ L equation (1) treated as a dynamical system
in H1

odd, is a perturbation of the trivial equation

u̇ = i|u|2pu. (7)

Elementary arguments show that H1-norm of solutions for (7) grow linearly
with time. This implies a lower estimate for ‖u(t1)‖1, where u(t) is the solution
for (1), (2) which we discuss. It turns out that one can choose a, b and A in
such a way that (6) holds and the lower estimate we obtained contradicts (5)
with l = 1. This contradiction shows that (4) cannot hold for all t ∈ L. In
other words, ‖u(τ)‖0 ≤ Cδa‖u(τ)‖b

m for some τ ∈ L. At this moment τ the
solution enters a domain, similar to the essential part Am. ��

Let us consider any trajectory u(t) for (1), (2) such that |u(t)|L2(Kn) ≡
W ∼ 1, and discuss the time-averages 〈|u|m〉 and 〈‖u‖2m〉1/2 of its Cm-norm
|u|m and its Sobolev norm ‖u‖m, where we set

〈|u|m〉 =
1
T

∫ T

0

|u|m dt, 〈‖u‖2m〉1/2 =
( 1
T

∫ T

0

‖u‖2 dt
)1/2

,

and the time T of averaging is specified below. While the trajectory stays in
Am, we have
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|u|m ≥ (WK−1
m δ

−μ)1/(1−2pμ).

One can show that this inequality implies that each visit to Am increases
the integral

∫
|u|m dt by a term bigger than δ to a negative degree. Since

these visits are sufficiently frequent by the Corollary, then we obtain a lower
estimate for the quantity 〈|u|m〉. Details can be found in the author’s paper
in CMPh 178, pp. 265–280. Here we present a better result which estimates
the time-averaged Sobolev norms. For a proof see Subsection 4.1 of [11].

Theorem 7. Let u(t) be a smooth solution for the equation (1), (2) such
that |u(t)|L2(Kn) ≥ 1. Then there exists a sequence km ↗ 1/3 and constants
Cm > 0, δm > 0 such that 〈‖u‖2m〉1/2 ≥ Cmδ

−2mkm , provided that m ≥ 4,
δ ≤ δm and T ≥ δ−1/3.

The results stated in Theorems 6, 7 remain true for equations (1) with
dissipation. I.e., for the equations with δ replaced by δν, where ν is a unit
complex number such that Re ν ≥ 0 and Im ν ≥ 0. 9 If Im ν > 0, then smooth
solutions for (1), (2) converge to zero in any Cm-norm. Since the essential
part Am clearly contains a sufficiently small Cm-neighbourhood of zero, then
eventually any smooth solution enter Am and stays there forever. Theorem
(1) states that the solution will visit the essential part much earlier, before its
norm decays.
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