

Lecture Notes in Computer Science 3328
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Kamal Lodaya Meena Mahajan (Eds.)

FSTTCS 2004:
Foundations of
Software Technology
and Theoretical
Computer Science

24th International Conference
Chennai, India, December 16-18, 2004
Proceedings

13

Volume Editors

Kamal Lodaya
Meena Mahajan
Institute of Mathematical Sciences
CIT Campus, Taramani, Chennai 600 113, India
E-mail: {kamal, meena}@imsc.res.in

Library of Congress Control Number: 2004116533

CR Subject Classification (1998): F.3, D.3, F.4, F.2, F.1, G.2

ISSN 0302-9743
ISBN 3-540-24058-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2004
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11365822 06/3142 5 4 3 2 1 0

Professor Rani Siromoney

Rani Siromoney is one of the foremost theoretical computer scientists in India
and a leading authority on Formal Languages and Automata Theory. Over a
period spanning four decades, she has made tremendous technical contributions
to the field through her research. She has also inspired generations of students in
Chennai with her teaching and has been responsible for building up a community
of dedicated teachers and researchers in this part of India to carry forward her
vision.

Prof. Siromoney has served on the Editorial Board of the journals Theoretical
Computer Science and International Journal of Foundations of Computer Sci-
ence and has headed several international collaborative research projects. She
also served on the Programme Committee for the first 10 editions of FSTTCS.

She is currently Professor Emeritus at Madras Christian College, the illustri-
ous institution where she has spent most of her professional life. She continues
to play an active role in research and teaching as an Adjunct Professor at the
Chennai Mathematical Institute.

Preface

The international conference on the Foundations of Software Technology and
Theoretical Computer Science (FSTTCS) is the longest-running conference on
computer science in India, and is organized under the aegis of the Indian Asso-
ciation for Research in Computing Science, IARCS. Since its inception in 1981,
the conference (held annually in the month of December) has helped in nurtur-
ing and creating an environment for the exchange of ideas amongst the research
community in the country, by attracting top scientists around the world to the
conference. This volume contains the proceedings of the 24th FSTTCS confer-
ence held in December 2004.

A strong point of the FSTTCS programmes has been excellent invited talks
by eminent computer scientists of international renown. Continuing this tra-
dition, this FSTTCS featured invited talks by Javier Esparza, Piotr Indyk,
Pavel A. Pevzner, John C. Reynolds, and Denis Thérien. We thank our invited
speakers for readily agreeing to come to FSTTCS, and for providing write-ups
for the proceedings.

It is our pleasure that IARCS chose to honor Prof. Rani Siromoney at this
conference, on the occasion of her 75th birthday. The influence she has wielded
(and the impact she has exerted) in Indian theoretical computer science is
tremendous, and the tribute is fitting and richly deserved. We thank R.K. Shya-
masundar for chairing the special session in her honor, and Kamala Krithivasan
and K.G. Subramanian for speaking at the session.

The 24th FSTTCS conference attracted 176 submissions with authors from
35 countries. We thank the authors for their interest in the conference.

The Programme Committee (PC) decided that 21 submissions were out of
scope. The authors were immediately informed that they could submit their work
elsewhere. The remaining papers went through a rigorous refereeing process; 526
referee reports were produced, some by the 24 PC members themselves. The bulk
of the reports were from 328 other referees from 23 countries.

A conference stands or falls on its refereeing. On behalf of the PC, we express
our immense appreciation for the time and effort spent by the referees in assessing
submissions and writing (often meticulous) reports.

Referees do not always agree on the merits of a paper. During August it was
the job of the PC to arrive at a consensus and select papers for the conference.
We thank our PC colleagues for their quality time and effort.

And of course our thanks go to the 85 authors (hailing from 12 countries) of
the 38 contributed submissions that form most of this volume. We also thank
them for ensuring that at least one author came to the conference to present the
paper.

We thank Springer for agreeing to publish these proceedings in their presti-
gious Lecture Notes in Computer Science series, and for their professional man-
agement of the publication.

VIII Preface

Satellite workshops/tutorials have by now become a standard feature at the
FSTTCS conferences. This year, the conference had two satellite workshops: a
Workshop on Algorithms for Dynamic Data, organized by Pankaj Agarwal and
S. Muthukrishnan, and a Workshop on Logics for Dynamic Data, organized by
Uday Reddy. We thank the workshop coordinators for putting together these
very interesting workshops, and the workshop speakers for agreeing to give talks
at the workshops.

We thank the Institute of Mathematical Sciences for readily agreeing to
provide partial financial support for the conference. We are a rather small insti-
tution, but the administration here worked very hard to ensure that the orga-
nization was smooth. Our colleagues in the theoretical computer science group,
along with colleagues at the Chennai Mathematical Institute, put in a lot of
effort in coordinating all the work. Our graduate students cheerfully volunteered
for any jobs which needed to be done, and did them well. We thank them all.

FSTTCS uses its own conference software, developed initially by V Vinay and
modified in successive years. This year Jaikumar Radhakrishnan programmed
the web-based submission, and the IMSc system administrators, G. Subramo-
niam and Raveendra Reddy, handled the installation. We thank them for being
always at hand for help, and taking care of one request after another.

The silver jubilee conference in December 2005 will be held, for the first time
in FSTTCS’s history, in the city of Kolkata. We look forward to seeing you there!

December 2004 Kamal Lodaya and Meena Mahajan

Organization

The 24th FSTTCS Conference and associated workshops were held at the Insti-
tute of Mathematical Sciences, Chennai, India during December 13–18, 2004.

Programme Committee

S. Arun-Kumar (IIT Delhi)
Gérard Boudol (INRIA Sophia)
Gerth S. Brodal (Univ. Aarhus)
Harry Buhrman (CWI)
Chandra Chekuri (Bell Labs MH)
E. Allen Emerson (UT Austin)
Valentin Goranko (RAU)
Deepak Kapur (UNM)
Nils Klarlund (Bell Labs MH)
K. Narayan Kumar (CMI)
Kamal Lodaya (IMSc), Co-chair
Meena Mahajan (IMSc), Co-chair

S. Muthukrishnan (Rutgers)
S.P. Pal (IIT Kharagpur)
R. Ramanujam (IMSc)
Uday Reddy (Univ. Birmingham)
Ashok Sreenivas (TRDDC Pune)
Venkatesh Srinivasan (Univ. Victoria)
C.R. Subramanian (IMSc)
Amnon Ta-Shma (TAU)
K. Varadarajan (Univ. Iowa)
Sundar Vishwanathan (IIT Bombay)
Heribert Vollmer (Univ. Hannover)
Pascal Weil (LaBRI)

Referees

Scott Aaronson
Erika Ábrahám
Pieter Adriaans
Bharat Adsul
Manindra Agrawal
Natasha Alechina
Eric Allender
Rajeev Alur
Roberto Amadio
Andris Ambainis
B.B. Amberker
Nina Amla
Siva Anantharaman
Dana Angluin
Zena Ariola
Anish Arora
V. Arvind
Eugène Asarin
Christel Baier

Mohua Banerjee
Nikhil Bansal
Elad Barkan
Clark Barrett
Rana Barua
Surender Baswana
Peter Baumgartner
Eli Ben-Sasson
Albert Benveniste
Martin Berger
Dietmar Berwanger
Purandar Bhaduri
Bruno Blanchet
Bernard Boigelot
Richard Bornat
Ahmed Bouajjani
Patricia Bouyer
Julian Bradfield
Torben Brauner

Ido Bregman
Roberto Bruni
Tevfik Bultan
Michael Butler
Cristiano Calcagno
Gruia Calinescu
Alessandra Carbone
Olivier Carton
Didier Caucal
Ana Cavalcanti
Sagar Chaki
Supratik Chakraborty
Suresh Chandra
L. Sunil Chandran
Yannick Chevalier
Hana Chockler
Christian Choffrut
Benny Chor
Corina Cirstea

X Organization

Dave Clarke
Ken Clarkson
Loek Cleophas
Thomas Colcombet
Don Coppersmith
Véronique Cortier
Bruno Courcelle
Jean-Michel Couvreur
Silvia Crafa
Nadia Creignou
Deepak D’Souza
Wim van Dam
Dennis Dams
Sandip Das
Jyotirmoy Deshmukh
Tamal Dey
Martin Dietzfelbinger
Catalin Dima
A.A. Diwan
Irène Durand
Rogier van Eijk
John Ellis
Javier Esparza
Harald Fecher
David Fink
Riccardo Focardi
Lance Fortnow
Gudmund S. Frandsen
Stephen Freund
Carsten Fuhrmann
Anna Gal
Nicola Galesi
Didier Galmiche
Paul Gastin
Simon J. Gay
Konstantinos Georgatos
Sasthi Charan Ghosh
Subir Ghosh
Sukumar Ghosh
Jonathon Giffin
Christian Glaßer
Shantanu Godbole
Rodolfo Gomez
Partha P. Goswami
Mohamed G. Gouda

Alain Griffault
Martin Grohe
Philippe de Groote
Roberto Grossi
Sumit Gulwani
Gopal Gupta
Dan Gutfreund
Stefan Haar
Ramesh Hariharan
John Havlicek
Hugo Herbelin
Kouichi Hirata
Wiebe van der Hoek
Hardi Hungar
S. Iyer
Riko Jacob
Lalita Jategaonkar

Jagadeesan
David Janin
T.S. Jayram
Emmanuel Jeandel
Thierry Joly
Mathai Joseph
Marcin Jurdziński
Charanjit S. Jutla
Johannes Köbler
Ata Kaban
Valentine Kabanets
Fairouz Kamareddine
Michael Kaminski
Bruce Kapron
Sujatha Kashyap
Joost-Pieter Katoen
T. Kavitha
Sanjeev Khanna
Victor Khomenko
Astrid Kiehn
Gerwin Klein
Sven Kosub
Michal Koucky
Hugo Krawczyk
S.N. Krishna
Michael Krivelevich
Antońın Kučera
Vinay Kulkarni

Rajeev Kumar
Ravi Kumar
V.S. Anil Kumar
Orna Kupferman
Dietrich Kuske
Marcel Kyas
Jens Lagergren
Jim Laird
Laks V.S. Lakshmanan
Klaus-Jörn Lange
Martin Lange
Troy Lee
Boaz Leskes
Paul Blain Levy
Cedric Lhoussaine
Sachin Lodha
Satya Lokam
Zhang Louxin
Etienne Lozes
Olivier Ly
Anders Möller
P. Madhusudan
Anil Maheshwari
Rupak Majumdar
Oded Maler
P.K. Manivannan
Shawn Manley
Fabio Martinelli
Ralph Matthes
Guy McCusker
Dieter van Melkebeek
Bernd Meyer
John-Jules Meyer
Pascal Michel
Sushmita Mitra
Neeraj Mittal
Swarup Mohalik
Jonathan W. Moody
Matthew Morgenstern
Gabriel Moruz
David Mount
Madhavan Mukund
Andrzej Murawski
Neil V. Murray
Anca Muscholl

Organization XI

Wendy Myrvold
Mayur Naik
Kedar Namjoshi
Subhas Chandra Nandy
Giri Narasimhan
N.S. Narayanaswamy
Vijay Natarajan
David Naumann
Ashwin Nayak
Mikhail Nesterenko
Rolf Niedermeier
Johan Nilsson
Tobias Nipkow
Hans de Nivelle
Gethin Norman
Peter O’Hearn
David von Oheimb
Hitoshi Ohsaki
Luke Ong
Alon Orlitsky
Martin Otto
Joel Ouaknine
Eric Pacuit
Jens Palsberg
Girish Keshav Palshikar
P.K. Pandya
Marc Pantel
Marc Pauly
Gheorghe Paun
Benjamin Pierce
Denis Poitrenaud
Emmanuel Polonovski
Sanjiva Prasad
Pavel Pudlak
David Pym
Jaikumar

Radhakrishnan
C.R. Ramakrishnan
Rajiv Raman
Venkatesh Raman
S. Ramesh
Abhiram Ranade
M.R.K. Krishna Rao
S. Srinivasa Rao
B. Ravikumar
Rahul Ray
Sandip Ray

Ran Raz
Sreedhar Reddy
Kenneth W. Regan
Laurent Regnier
Horst Reichel
Jan Reimann
Steffen Reith
Greg Restall
Ingrid Rewitzky
Eike Ritter
Willem-Paul de Roever
Philipp Rohde
Shmuel (Mooly) Sagiv
Alex Samorodnitsky
Prahladavaradan

Sampath
Sudeshna Sarkar
Jayalal Sarma
Saket Saurabh
Anuj Saxena
Uwe Schöning
Christian Scheideler
Rick Schlichting
Holger Schlingloff
Alan Schmitt
Philippe Schnoebelen
Roy Schwartz
Alper Sen
Pranab Sen
Sandeep Sen
Micaela Serra
Olivier Serre
Anil Seth
Natarajan Shankar
Priti Shankar
R.K. Shyamasundar
Sudhir Kumar Singh
Bhabani Prasad Sinha
Aravinda Sistla
D. Sivakumar
Steve Skiena
Milind Sohoni
Robert Spalek
Jeremy Sproston
Ulrike Stege
Colin Stirling
Mariëlle Stoelinga

Thomas Streicher
Srihari Sukumaran
S.P. Suresh
Grégoire Sutre
Sebastiaan Terwijn
Hendrik Tews
Prasannaa Thati
Denis Thérien
P.S. Thiagarajan
Hayo Thielecke
Wolfgang Thomas
Cesare Tinelli
Sophie Tison
Jacobo Toran
Leen Torenvliet
Csaba Toth
Tayssir Touili
Richard Trefler
Stavros Tripakis
John Tromp
Pascal Urso
Moshe Vardi
G. Venkatesh
R. Venkatesh
Nikolai Vereshchagin
S. Vijayakumar
Janis Voigtländer
Adnan Vora
Klaus Wagner
Thomas Wahl
Nico Wallmeier
Igor Walukiewicz
Peng-Jun Wan
Yusu Wang
John Watrous
Stephanie Wehner
Thomas Wilke
Stefan Wöhrle
Ronald de Wolf
Hongseok Yang
Greta Yorsh
Nobuko Yoshida
Wies�law Zielonka
Pascal Zimmer
Uri Zwick

Table of Contents

Invited Papers

Genome Halving Problem Revisited
Max A. Alekseyev, Pavel A. Pevzner . 1

Verifying Probabilistic Procedural Programs
Javier Esparza, Kousha Etessami . 16

Streaming Algorithms for Geometric Problems
Piotr Indyk . 32

Toward a Grainless Semantics for Shared-Variable Concurrency
John C. Reynolds . 35

Regular Languages, Unambiguous Concatenation and Computational
Complexity

Denis Thérien . 49

Contributed Papers

Decidability of Zenoness, Syntactic Boundedness and Token-Liveness
for Dense-Timed Petri Nets

Parosh Abdulla, Pritha Mahata, Richard Mayr . 58

On the Urgency Expressiveness
Michaël Adéläıde, Claire Pagetti . 71

Asynchronous Automata-Theoretic Characterization of Aperiodic
Trace Languages

Bharat Adsul, Milind Sohoni . 84

A Decidable Fragment of Separation Logic
Josh Berdine, Cristiano Calcagno, Peter W. O’Hearn 97

Approximate Range Searching Using Binary Space Partitions
Mark de Berg, Micha Streppel . 110

Representable Disjoint NP-Pairs
Olaf Beyersdorff . 122

XIV Table of Contents

Symbolic Reachability Analysis of Higher-Order Context-Free Processes
Ahmed Bouajjani, Antoine Meyer . 135

Optimal Strategies in Priced Timed Game Automata
Patricia Bouyer, Franck Cassez, Emmanuel Fleury, Kim G. Larsen . . 148

A Calculus for Trust Management
Marco Carbone, Mogens Nielsen, Vladimiro Sassone 161

Short-Cuts on Star, Source and Planar Unfoldings
Vijay Chandru, Ramesh Hariharan, Narasimha M. Krishnakumar 174

Subdividing Alpha Complex
Ho-lun Cheng, Tony Tan . 186

Real-Counter Automata and Their Decision Problems
Zhe Dang, Oscar H. Ibarra, Pierluigi San Pietro, Gaoyan Xie 198

Adjunct Elimination Through Games in Static Ambient Logic
Anuj Dawar, Philippa Gardner, Giorgio Ghelli . 211

On the Bisimulation Invariant Fragment of Monadic Σ1 in the Finite
Anuj Dawar, David Janin . 224

On the Complexity of Hilbert’s 17th Problem
Nikhil R. Devanur, Richard J. Lipton, Nisheeth K. Vishnoi 237

Who is Pointing When to Whom?
Dino Distefano, Joost-Pieter Katoen, Arend Rensink 250

An Almost Linear Time Approximation Algorithm for the Permanent
of a Random (0-1) Matrix

Martin Fürer, Shiva Prasad Kasiviswanathan . 263

Distributed Games with Causal Memory Are Decidable for
Series-Parallel Systems

Paul Gastin, Benjamin Lerman, Marc Zeitoun . 275

Expand, Enlarge, and Check: New Algorithms for the Coverability
Problem of WSTS

Gilles Geeraerts, Jean-François Raskin, and Laurent Van Begin 287

Minimum Weight Pseudo-Triangulations
Joachim Gudmundsson, Christos Levcopoulos . 299

Table of Contents XV

Join Algorithms for the Theory of Uninterpreted Functions
Sumit Gulwani, Ashish Tiwari, George C. Necula 311

No, Coreset, No Cry
Sariel Har-Peled . 324

Hardness Hypotheses, Derandomization, and Circuit Complexity
John M. Hitchcock, A. Pavan . 336

Improved Approximation Algorithms for Maximum Graph Partitioning
Problems

Gerold Jäger, Anand Srivastav . 348

Learning Languages from Positive Data and a Finite Number of Queries
Sanjay Jain, Efim Kinber . 360

The Complexity of the Local Hamiltonian Problem
Julia Kempe, Alexei Kitaev, Oded Regev . 372

Quantum and Classical Communication-Space Tradeoffs from Rectangle
Bounds

Hartmut Klauck . 384

Adaptive Stabilization of Reactive Protocols
Shay Kutten, Boaz Patt-Shamir . 396

Visibly Pushdown Games
Christof Löding, P. Madhusudan, Olivier Serre . 408

Refinement and Separation Contexts
Ivana Mijajlović, Noah Torp-Smith, Peter O’Hearn 421

Decidability of MSO Theories of Tree Structures
Angelo Montanari, Gabriele Puppis . 434

Distributed Algorithms for Coloring and Domination in Wireless
Ad Hoc Networks

Srinivasan Parthasarathy, Rajiv Gandhi . 447

Monotone Multilinear Boolean Circuits for Bipartite Perfect Matching
Require Exponential Size

Ashok Kumar Ponnuswami, H. Venkateswaran . 460

Testing Geometric Convexity
Luis Rademacher, Santosh Vempala . 469

XVI Table of Contents

Complexity of Linear Connectivity Problems in Directed Hypergraphs
Mayur Thakur, Rahul Tripathi . 481

Actively Learning to Verify Safety for FIFO Automata
Abhay Vardhan, Koushik Sen, Mahesh Viswanathan, Gul Agha 494

Reasoning About Game Equilibria Using Temporal Logic
G Venkatesh . 506

Alternation in Equational Tree Automata Modulo XOR
Kumar Neeraj Verma . 518

Author Index . 531

Genome Halving Problem Revisited

Max A. Alekseyev and Pavel A. Pevzner

Department of Computer Science and Engineering,
University of California at San Diego,

La Jolla, CA 92093-0114, U.S.A.
{maxal, ppevzner}@cs.ucsd.edu

Abstract. The Genome Halving Problem is motivated by the whole
genome duplication events in molecular evolution that double the gene
content of a genome and result in a perfect duplicated genome that
contains two identical copies of each chromosome. The genome then
becomes a subject to rearrangements resulting in some rearranged du-
plicated genome. The Genome Halving Problem (first introduced and
solved by Nadia El-Mabrouk and David Sankoff) is to reconstruct the
ancestral pre-duplicated genome from the rearranged duplicated genome.
The El-Mabrouk–Sankoff algorithm is rather complex and in this paper
we present a simpler algorithm that is based on a generalization of the
notion of the breakpoint graph to the case of duplicated genomes. This
generalization makes the El-Mabrouk–Sankoff result more transparent
and promises to be useful in future studies of genome duplications.

1 Introduction

The Genome Halving Problem is motivated by the whole genome duplication
events in molecular evolution [13], [17], [15], [12], [5]. These dramatic evolu-
tionary events double the gene content of a genome R and result in a perfect
duplicated genome R⊕R that contains two identical copies of each chromosome.
The genome then becomes a subject to rearrangements that shuffle the genes in
R ⊕ R resulting in some rearranged duplicated genome P . The Genome Halv-
ing Problem is to reconstruct the ancestral pre-duplicated genome R from the
rearranged duplicated genome P (Fig. 1a).

From the algorithmic perspective, the genome is a collection of chromosomes,
and each chromosome is a sequence over a finite alphabet (depending on the
scale, the alphabet may vary from genes to synteny blocks). DNA has two strands
and genes on a chromosome have directionality that reflects the strand of the
genes. We represent the order and directions of the genes on each chromosome
as a sequence of signed elements, i.e., elements with signs “+” and “-”.

For the sake of simplicity, we focus on the unichromosomal case, where the
genomes consist of just one chromosome and assume that the genomes are circu-
lar. A unichromosomal genome where each gene appears in a single copy some-
times is referred to as signed permutation.

K. Lodaya and M. Mahajan (Eds.): FSTTCS 2004, LNCS 3328, pp. 1–15, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

2 M.A. Alekseyev and P.A. Pevzner

Genome
Halving
Problem

a)

b)
+b

+a
−c

+b

+a

+b

−c
+a

−c

duplication

reversals

 R = +a +b −c

 P = +b −c −c +a −a +b

 ?? ?? ??

 +a −a +c +c −b +b
 +a −a +c −b +b −c

⊕R R = +a +b −c +a +b −c

 +b −c −c +a −a +b

Fig. 1. a) Whole genome duplication of genome R = +a+b−c into a perfect duplicated
genome R ⊕ R = +a + b − c + a + b − c followed by three reversals. b) Whole genome
duplication of a circular genome

For unichromosomal genomes the rearrangements are limited to reversals.
The reversal (i, j) over genome x1x2 . . . xn “flips” genes xi . . . xj as follows:

x1 . . . xi−1 xi xi+1 . . . xj−−−−−−−−−−−−→
xj+1 . . . xn

↓
x1 . . . xi−1−xj − xj−1 · · · − xi←−−−−−−−−−−−−−−

xj+1 . . . xn.

The reversal distance between two genomes is defined as the minimal number
of reversals required to transform one genome into another.

The whole genome duplication is a concatenation of the genome R with itself
resulting in a perfect duplicated genome R ⊕ R (Fig. 1b). The genome R ⊕ R
becomes a subject to reversals that change the order and signs of the genes and
transforms R⊕R into a duplicated genome P . The Genome Halving Problem is
formulated as follows.

Genome Halving Problem. Given a duplicated genome P , recover the ances-
tral pre-duplicated genome R minimizing the reversal distance from the perfect
duplicated genome R⊕R to the duplicated genome P .

The Genome Halving Problem was solved in a series of papers by El-Mabrouk
and Sankoff [6], [7], [8] culminating in a rather complex algorithm in [9]. The
El-Mabrouk-Sankoff algorithm is one of the most technically challenging re-
sults in bioinformatics and its proof spans almost 40 pages in [9] (covering

Genome Halving Problem Revisited 3

both unichromosomal and multichromosomal genomes). In this paper we re-
visit the El-Mabrouk–Sankoff work and present a simpler algorithm for the case
of unichromosomal genomes.1

The paper is organized as follows. Section 2 reviews the Hannenhalli-Pevzner
theory and formulates the duality theorem for genomes without duplicated genes.
Section 3 discusses the problem of finding rearrangement distance between du-
plicated genomes and extension of the Hannenhalli-Pevzner theory to this case.
Section 4 introduces the concept of the contracted breakpoint graph for dupli-
cated genomes. In section 5 we study cycle decompositions of contracted break-
point graphs in the case when one of the genomes is perfect duplicated. Finally,
in section 6 we present our new Genome Halving Algorithm.

2 Hannenhalli-Pevzner Theory

A duality theorem and a polynomial algorithm for computing reversal distance
between two signed permutations was first proposed by Hannenhalli and Pevzner
[10]. The algorithm was further simplified and improved in a series of papers
[3], [11], [1], [16] using the breakpoint graph construction introduced in [2]. Re-
cently, Bergeron et al., [4] proposed yet another simplification of the Hannenhalli-
Pevzner proof that does not use the breakpoint graph construction.

Let P be a circular signed permutation. Bafna and Pevzner [2] described a
transformation of a signed permutation on n elements into an unsigned permu-
tation on 2n elements by substituting every element x in the signed permutation
by two elements xt and xh in the unsigned permutation.2 Each element +x in the
permutation P is replaced with xtxh, and each element −x is replaced with xhxt

resulting in an unsigned permutation P ′. For example, a permutation +a+ b− c
will be transformed into atahbtbhchct. Element xt is called an obverse of element
xh, and vice versa.

Let P and Q be two circular signed permutations on the same set of elements
G, and P ′ and Q′ be corresponding unsigned permutations. The breakpoint
graph3 G = G(P,Q) is defined on the set of vertices V = {xt, xh | x ∈ G} with
edges of three colors: “obverse”, black, and gray (Fig. 3). Edges of each color
form a matching on V :
– pairs of obverse elements form an obverse matching ;
– adjacent elements in P ′, other than obverse, form a black matching ;
– adjacent elements in Q′, other than obverse, form a gray matching.

Every pair of matchings forms a collection of alternating cycles in G, called
black-gray, black-obverse, and gray-obverse cycles respectively (a cycle is alter-
nating if colors of its edges alternate). The permutation P ′ can be read along a

1 A generalization of our results to multichromosomal and linear genomes will be
discussed elsewhere.

2 Indices “t” and “h” stand for “tail” and “head” respectively.
3 Our definition of the breakpoint graph is slightly different from the original definition

from [2] and is more suitable for analysis of duplicated genomes.

4 M.A. Alekseyev and P.A. Pevzner

ch

ct

ah

at

bh

bt

+b

+a
−c

Fig. 2. The breakpoint graph G(P, Q) for P = +a + b − c and Q = +a + b + c

single black-obverse cycle while the permutation Q′ can be read along a single
gray-obverse cycle in G. The black-gray cycles in the breakpoint graph G play
an important role in computing the reversal distance between the permutations
P and Q. According to the Hannenhalli-Pevzner theory, the reversal distance
between permutations P and Q is given by the formula:

d(P,Q) = b(G)− c(G) + h(G) (1)

where b(G) is the number of black edges in the breakpoint graph G, c(G) is
the number of black-gray cycles in the breakpoint graph G, and h(G) is a small
easily computable combinatorial parameter.

3 Reversal Distance Between Duplicated Genomes

While the Hannenhalli-Pevzner theory leads to a fast algorithm for computing
reversal distance between two signed permutations, the problem of computing
reversal distance between two genomes with duplicated genes remains unsolved.

Let P and Q be duplicated genomes on the same set of genes G (i.e., each
gene appears in two copies). If one labels copies of each gene x as x1 and x2 then
genomes P and Q become signed permutations and the Hannenhalli-Pevzner
theory applies. As before we turn the labelled genomes P and Q into unsigned
permutations P ′ and Q′ by replacing each element xi with a pair of obverses
xt

ix
h
i in the order defined by the sign of xi. Breakpoint graph G(P,Q) of the

labelled genomes P and Q has a vertex set V = {xt
1, x

h
1 , x

t
2, x

h
2 | x ∈ G} and

uniquely defines permutations P ′ and Q′ (and, thus, the original genomes P and
Q) as well as an inter-genome correspondence between gene copies.

We remark that different labellings may lead to different breakpoint graphs
for the same genomes P and Q (Fig. 3a) and it is not clear how to choose
a labelling that results in the minimum reversal distance between the labelled
copies of P and Q.

Currently, the only known option for solving the reversal distance prob-
lem for duplicated genomes is to consider all possible labellings for each du-
plicated gene, to solve the reversal distance problem for each labelling, and to

Genome Halving Problem Revisited 5

at
1

ah
1 bh

1

bt
1

bt
2bh

2

ah
2 at

2

at
1

ah
1 bh

1

bt
1

bt
2bh

2

ah
2 at

2

+a1+b1Q=
+a1 +b2−a2−b1P = +a1 +b2−a2−b1P =

−b1 −b2

at
1

ah
1 bh

1

bt
1

bt
2bh

2

ah
2 at

2

at
1

ah
1 bh

1

bt
1

bt
2bh

2

ah
2 at

2

+a1 +b2+a1Q= +b12+a 2+a
+a1 +b2−a2−b1P = +a1 +b2−a2−b1P =

−b1−b2 Q=

hb
ah

bt
at

b)

Q= +a1+b22

a)

+a +a2

Fig. 3. a) The breakpoint graphs corresponding to four different labellings of
P = +a − a − b + b and Q = +a − b + a + b. b) The contracted breakpoint graph
G′(P, Q)

choose the labelling with the minimal reversal distance. For genomes with n
genes, each present in k copies, it leads to (k!)n invocations of the Hannenhalli-
Pevzner algorithm rendering this approach impractical. In particular, for dupli-
cated genomes with n genes (each gene present in 2 copies) it results in 2n calls
to the Hannenhalli-Pevzner algorithm. Moreover, the problem remains open if
one of the genomes is perfectly duplicated (i.e., computing d(P,R ⊕ R)). Sur-
prisingly enough the problem of computing min

R
d(P,R ⊕ R) that we address in

this paper is solvable in polynomial time.
Using the concept of the breakpoint graph and formula (1) the Genome Halv-

ing Problem can be posed as follows. For a given duplicated genome P , find a
perfect duplicated genome R ⊕ R and a labelling of gene copies such that the
breakpoint graph G(P,R ⊕ R) of the labelled genomes P and R ⊕ R attains
the minimum value of b(G) − c(G) + h(G). Since b(G) is constant and h(G) is
typically small, the value of d(P,Q) mostly depends on c(G). El-Mabrouk and

6 M.A. Alekseyev and P.A. Pevzner

Sankoff [9] showed that the problems of maximizing c(G) and minimizing h(G)
can be solved separately in a consecutive manner. In this paper we focus on the
former, much harder, problem.

Weak Genome Halving Problem. For a given duplicated genome P , find a
perfect duplicated genome R⊕R and a labelling of gene copies that maximizes the
number of black-gray cycles c(G) in the breakpoint graph G of labelled genomes
P and R⊕R.

4 Contracted Breakpoint Graph

Let P and Q be duplicated genomes on the same set of genes G and G be a
breakpoint graph defined by some labelling of P and Q. For a vertex u = xj

i in
G (where x ∈ G, i ∈ {1, 2}, j ∈ {t, h}), we denote its counterpart by ū = xj

3−i.
Counterpart vertices form yet another matching in G.

A contracted breakpoint graph G′(P,Q) is a result of contracting every pair of
counterpart vertices in the breakpoint graph G into a single vertex (e.g., xt

1 and
xt

2 are contracted into a single vertex xt). So the contracted breakpoint graph
G′ = G′(P,Q) is a graph on the set of vertices V ′ = {xt, xh | x ∈ G} with each
vertex incident to two black, two gray, and a pair of parallel obverse edges (Fig.
3b). The contracted breakpoint graph G′(P,Q) is uniquely defined by P and Q
and does not depend on a particular labelling.4 The following theorem gives a
characterization of the contracted breakpoint graphs.

Theorem 1. A graph H with black, gray, and obverse edges is a contracted
breakpoint graph for some duplicated genomes if and only if

– each vertex in H is incident to two black edges, two gray edges, and a pair
of parallel obverse edges;

– H is connected with respect to black and obverse edges (black-obverse con-
nected);

– H is connected with respect to gray and obverse edges (gray-obverse con-
nected).

Proof. Suppose that graph H is a contracted breakpoint graph of the genomes P
and Q. Consider the graph H as a contraction of a breakpoint graph G(P,Q) for
some labelling of the genomes P and Q. Since there is a single black-obverse cycle
in G that cannot be split by contraction, the graph H is black-obverse connected.
Similar reasoning implies that the graph H is gray-obverse connected.

4 The contracted breakpoint graph is a natural generalization of the notion of break-
point graph for genomes with duplicated genes. The conventional breakpoint graph
(Bafna and Pevzner [2]) of signed permutations P and Q on n elements can be de-
fined as gluing of n pairs of obverse edges in the corresponded unsigned permutations
P ′ and Q′ (assuming P ′ and Q′ are represented as black-obverse and gray-obverse
alternating cycles). The breakpoint graph of duplicated genomes P and Q on n
elements is simply gluing of n quartets of obverse edges.

Genome Halving Problem Revisited 7

Consider a black-obverse and gray-obverse connected graph H and label end-
point of each obverse edge x by xt and xh. Since the graph H is black-obverse
connected, there exists an alternating Eulerian black-obverse cycle traversing all
the black edges in this graph. The order of vertices in this cycle defines some du-
plicated genome P . Similarly, since the graph H is gray-obverse connected, there
exists an alternating Eulerian gray-obverse cycle traversing all gray edges that
defines some duplicated genome Q. Then the graph H is a contracted breakpoint
graph for the genomes P and Q. ��

In the case when Q is perfect duplicated genome (i.e., Q = R ⊕R) the gray
edges in the contracted breakpoint graph G′(P,Q) form pairs of parallel gray
edges that we refer to as double gray edges. Similarly to the obverse edges, the
double gray edges form a matching in the contracted breakpoint graph G′.

Let G(P,Q) be a breakpoint graph for some labelling of P and Q. A set of
black-gray cycles in G(P,Q) is being contracted into a set of black-gray cycles
in the contracted breakpoint graph G′(P,Q) thus forming a black-gray cycle
decomposition of G′(P,Q). Therefore, each labelling induces a black-gray cycle
decomposition of the contracted breakpoint graph. We are interested in a reverse
problem: given a black-gray cycle decomposition of the contracted breakpoint
graph G′(P,Q), find labelling of P and Q that induces this cycle decomposition.

Theorem 2. Any black-gray cycle decomposition of the contracted breakpoint
graph G′(P,R⊕R) is induced by some labelling of P and R⊕R.

Proof. Consider a contracted breakpoint graph G′ = G′(P,R⊕R) of the genomes
P and R ⊕ R and suppose that labelling of P is fixed. We will show how a
particular black-gray cycle decomposition C of the graph G′ defines a labelling
on R⊕R that induces this cycle decomposition.

We will label elements of R⊕R in one-by-one fashion. First we represent R⊕R
as two copies of a linear sequence of unlabeled elements from G corresponding
to R. We label the first element x in the copies of R by x1 and x2.

Suppose that first m elements are labelled in both copies of R. Let x be the
m-th element in R. Without loss of generality we assume that x is labelled as
x1 in the first copy of R and as x2 in the second copy. Let y be the (m + 1)-th
(yet unlabeled) element in R. Since x and y are adjacent elements in R ⊕ R,
there exists a double gray edge (x, y) in the graph G′. In the black-gray cycle
decomposition this edge appears two times. Consider its adjacent black edges for
each appearance. Let (u, x), (x, y), (y, v) and (z, x), (x, y), (y, t) be two triples of
edges consecutively appearing in some black-gray cycles from C. For the black
edges (u, x), (y, v), (z, x), (y, t) we consider adjacencies in the labelled genome
P that these edges originated from. Without loss of generality we assume that
the originating adjacencies are (ui, x1), (yj , vk), (zl, x2), (ȳj , tm) for some indices
i, j, k, l,m ∈ {1, 2}. We label the element y as yj in the first copy of R and as
ȳj in the second copy so that elements x1, yj and x2, ȳj will be adjacent in the
labelled genome R⊕R. We continue labelling in a similar manner until the whole
genome R⊕R is labelled.

8 M.A. Alekseyev and P.A. Pevzner

Consider a breakpoint graph G(P,R⊕R) for the labelled genomes P and R⊕
R. The labelling procedure implies that any black edge and gray edge adjacent
in the breakpoint graph G(P,R⊕R) are contracted into a pair of adjacent edges
in the cycle decomposition C of the graph G′(P,R⊕R). Hence, the constructed
labelling induces the cycle decomposition C. ��

Let cmax(G′) be the number of cycles in a maximal black-gray cycle decom-
positions of the contracted breakpoint graph G′ = G′(P,R ⊕ R). Theorem 2
implies that the Weak Genome Halving Problem is equivalent to the following.

Cycle Decomposition Problem. For a given duplicated genome P , find a per-
fect duplicated genome R⊕R maximizing cmax(G′(P,R⊕R)).

Black and gray edges of the contracted breakpoint graph G′(P,R⊕R) form
a bi-colored graph that we study in the next section.

5 Cycle Decomposition of BG-Graphs

A BG-graph G is a graph with black and gray edges such that the black edges
form black cycles and the gray edges form gray matching in G (Fig. 5a). We refer
to gray edges in G as double gray edges and assume that every double gray edge
is a pair of parallel gray edges. This assumption implies that every BG-graph
can be decomposed into edge-disjoint black-gray alternating cycles.

Below we prove an upper bound on the maximal number of black-gray cycles
cmax(G) in cycle decomposition of the BG-graph G, and formulate necessary
and sufficient conditions for achieving this bound.

A BG-graph is connected if it is connected with respect to both black and
gray edges. A double gray edge in the BG-graph connecting vertices of distinct
black cycles is called interedge. A double gray edge connecting vertices of the
same black cycle is called intraedge. Note that a connected BG-graph with m
black cycles has at least m− 1 interedges.

Let G be a BG-graph on 2n vertices with m > 1 black cycles, C be a black-
gray cycle decomposition of G, and e = (x, y) be an interedge in G. We define
an e-transformation (G,C) e→ (G�, C�) of the graph G and its black-gray cycle
decomposition C into a new BG-graph G� on 2(n − 1) vertices with m − 1
black cycles and a black-gray cycle decomposition C� of G� of the same size
as C. In the cycle decomposition C there are two black-gray cycles c1 and c2
passing through edge e (it may happen that c1 = c2 when the same cycle passes
through e two times). Suppose that c1 traverses edges (u, x), (x, y), (y, v) while c2
traverses edges (z, x), (x, y), (y, t). To obtain graph G� from G we replace these
edges with black edges (u, v) and (z, t) respectively and delete vertices x and y
(Fig. 5). This operation transforms the cycles c1 and c2 in G into into cycles c�

1
and c�

2 in G�. We define the black-gray cycle decomposition C� as cycles c�
1, c

�
2

and all cycles from C, except c1 and c2.

Lemma 1. Let C be a maximal black-gray cycle decomposition of a BG-graph
G and (G,C) e→ (G�, C�) be the e-transformation for some interedge e = (x, y)
in G. Then cmax(G) = cmax(G�).

Genome Halving Problem Revisited 9

ah

hb

at

bt

hc

hd

he

hf
te

tf

tg

hg

tc

td

tf

tg
hctd

hg

he

tc

at

hb

bt

hf
te

ah

hd

ah

hb

at

bt

hc

hd

hf
te

tf

tg

hg

tc

td

he

a)

b) c)

Fig. 4. For a genome P = −a − b + g + d + f + g + e − a + c − f − c − b − d − e,
a) a BG-graph corresponding to the contracted breakpoint graph G′(P, R ⊕ R) for
R = +a − g − b − c + d − f + e; b) a BG-graph corresponding to the contracted
breakpoint graph G′(P, R ⊕ R) for R = −a − b − d − g + f − c − e; c) a maximal cycle
decomposition of the BG-graph in b)

c1

c2

G*x
y

z

u

t

v

e

*

*

u

z t

v

c1

c2

G

Fig. 5. e-transformation of a graph G into a graph G�. Black-gray cycles c1, c2

in G passing through interedge e = (x, y) are transformed into black-gray cycles
c�
1, c

�
2 in G�. The black cycles connected by e in G are merged into a single black

cycle in G�

10 M.A. Alekseyev and P.A. Pevzner

Proof. By the definition of e-transformation, cmax(G) = |C�| ≤ cmax(G�). On
the other hand, every black-gray cycle decomposition D� of the graph G� can
be transformed into a black-gray cycle decomposition D of G of the same size
(by simply substituting the black edges (u, v) and (z, t) in some black-gray cy-
cles in D� by black-gray-black triples (u, x), (x, y), (y, v) and (z, x), (x, y), (y, t)).
Therefore, cmax(G�) ≤ cmax(G). ��

Theorem 3. If G is a connected BG-graph with 2n vertices and m black cycles,
then

cmax(G) ≤ n + 2−m.

Proof. Suppose that cmax(G) = k, i.e., a maximal cycle decomposition of G
contains k black-gray cycles. Consider the BG-graph G as a result of contracting
these k black-gray cycles by a series of n gluings of pairs of gray edges into double
gray edges. Since one needs at least k−1 such gluings to contract k disconnected
black-gray cycles into a connected BG-graph, k − 1 ≤ n. It implies the theorem
for m = 1.

Assume m > 1. Since the BG-graph G is connected and contains m black
cycles, there exists an interedge e in G. For a maximal cycle decomposition C
of the BG-graph G, consider an e-transformation (G,C) e→ (G�, C�). Lemma 1
implies cmax(G) = cmax(G�). Note that G� is a connected BG-graph on 2(n−1)
vertices with m − 1 black cycles. Iteratively applying similar e-transformations
m − 1 times we will end up with a BG-graph G+ of size 2(n − (m − 1)) that
contains a single black cycle. Hence, cmax(G) = cmax(G+) ≤ n + 2−m. ��

Note that for a BG-graph G, cmax(G) equals the sum of cmax(H) over all
connected components H of G. Since the total size of all connected components
is b(G), Theorem 3 implies

cmax(G) ≤ b(G)/2 + 1 · s1 + 0 · s2 + (−1) · s3 + (−2) · s4 + . . . ,

where sm is the number of connected components with m black cycles. Let be(G)
be the number of even black cycles (i.e., black cycles of even size) in G. Since s1
does not exceed be(G),

cmax(G) ≤ b(G)/2 + be(G). (2)

To achieve the upper bound (2), each connected component of G must contain
either a single even black cycle (a simple BG-graph), or a pair of odd black cycles
(a paired BG-graph). Fig. 5b shows a BG-graph containing an even black cycle
forming a simple BG-graph, and a pair of odd black cycles forming a paired
BG-graph.

We represent each black cycle of a BG-graph as points on a circle such that
the arcs between adjacent points represent the black edges, and intraedges are
drawn as straight chords within these circles. A BG-graph is non-crossing if its
intraedges (as chords within each black circle) do not cross. A BG-graph in Fig.
5b is non-crossing while a BG-graph on in Fig. 5a is not.

Genome Halving Problem Revisited 11

0c

u

v

G’

u x

y

v

G

u

v

x

y

Fig. 6. Transformation of a BG-graph G into a BG-graph G′ by splitting a black-gray
cycle c0 consisting of parallel black and gray edges (x, y)

Theorem 4. For a simple BG-graph G on 2n vertices, cmax(G) = n+ 1 if and
only if G is non-crossing.

Proof. We prove the theorem in both directions by induction on n. The state-
ment is trivial for n = 1. Assume that the statement is true for any simple
BG-graph of size 2(n− 1) and prove it for a simple BG-graph G of size 2n.

We first prove (reasoning depends on the proof direction) that there exists a
double gray edge e in G parallel to a black edge (i.e., connecting two adjacent
points on a black circle) forming a black-gray cycle c0 of length 2.

If cmax(G) = n + 1, then a maximum cycle decomposition of the BG-graph
G consists of n+1 black-gray cycles. Since these cycles contain 2n gray edges in
total, the pigeonhole principle implies that there exists a cycle c0 with a single
gray edge e.

If the BG-graph G is non-crossing, consider a double gray edge e with the
minimal span. If e spanned more than one black edge then there would exist a
double gray edge with endpoints within the span of e, i.e., an edge with an even
smaller span, a contradiction.

For a found edge e = (x, y), let u and v be vertices adjacent to x and y on
the black cycle. Transform G into a simple BG-graph G′ on 2(n− 1) vertices by
removing the vertices x and y and all the incident edges, and by adding the black
edge (u, v) (Fig. 5). Note that cmax(G′) = cmax(G)− 1 and G′ is non-crossing if
and only if G is non-crossing.

By induction the graph G′ is non-crossing if and only if cmax(G′) = n. There-
fore, G is non-crossing if and only if cmax(G′) = n + 1. ��

Let G be a paired BG-graph G of size 2n (consisting of two odd black cycles)
and e be an interedge in G. For a maximal black-gray cycle decomposition C of
G, let (G,C) e→ (G�, C�) be an e-transformation of G. Note that the graph G�

is a simple BG-graph on 2(n − 1) vertices. Lemmas 1 and 3 imply cmax(G) =
cmax(G�) ≤ n. Therefore, according to Theorem 4, cmax(G) = n if and only if
the BG-graph G� is non-crossing. We are interested in a particular case of this
statement.

Theorem 5. For a paired BG-graph G of size 2n with a single interedge,
cmax(G) = n if and only if G is non-crossing.

12 M.A. Alekseyev and P.A. Pevzner

Proof. It is easy to see that for a single interedge e in a paired BG-graph G,
the e-transformation turns G into a non-crossing BG-graph if and only if G is
non-crossing. ��

We call a BG-graph optimal if its connected components are either simple
BG-graphs, or paired BG-graphs with single interedges. Theorems 4 and 5 imply

Theorem 6. For an optimal BG-graph G, cmax(G) = b(G)/2 + be(G).

An optimal BG-graph and its maximal cycle decomposition are shown at Fig.
5b,c.

6 Genome Halving Algorithm

In order to solve the Cycle Decomposition Problem for a genome P , we will con-
struct a contracted breakpoint graph G′(P, ·) which achieves the upper bound
(2). The genome P alone defines a vertex set of the graph G′, an obverse match-
ing, and black cycles in G′ so that G′ is black-obverse connected.

A BO-graph is a connected graph with black and obverse edges such that the
black edges form black cycles and the obverse edges form an obverse matching
(every duplicated genome P corresponds to a BO-graph). A BOG-graph is a
graph with black, obverse, and gray edges such that black and obverse edges
form a BO-graph (a BO-subgraph), and black and gray edges form an optimal
BG-graph (a BG-subgraph). Note that each black-gray connected component
of a BOG-graph is a simple non-crossing BG-graph or a paired non-crossing
BG-graph with a single interedge.

We now pose the Cycle Decomposition Problem for a genome P as follows. For
a given BO-graph G (defined by the genome P), find a gray-obverse connected
BOG-graph G′ having G as a BO-subgraph. Theorems 1 and 6 imply that such
a BOG-graph graph is a contracted breakpoint graph G′(P,R ⊕ R) for some
genome R for which cmax(G′) achieves the upper bound (2).

We remark that gray-obverse connected components of a BOG-graph form
gray-obverse cycles (alternating double gray and obverse edges). Hence, a BOG-
graph is gray-obverse connected if and only if it has a single gray-obverse cycle.

Lemma 2. For a BOG-graph with more than one gray-obverse cycle, there ex-
ists a black edge connecting two distinct gray-obverse cycles.

Proof. Let H be a BOG-graph with more than one gray-obverse cycle. First we
will show that there exists a black-gray connected component of the graph H
containing two double gray edges from distinct gray-obverse cycles. Assume that
all the double gray edges within each black-gray connected component belong to
the same gray-obverse cycle. Then each gray-obverse cycle contains vertices of
one or more black cycles. Let V1 and V2 be vertex sets of two distinct gray-obverse
cycles. Since black and obverse edges connect vertices within the same set, the
sets V1 and V2 are black-obverse disconnected, a contradiction to black-obverse
connectivity of the graph H.

Genome Halving Problem Revisited 13

Let C be a black-gray connected component of the BOG-graph H containing
two double gray edges from distinct gray-obverse cycles. We represent double
gray edges of the component C as vertices of a graph E with edges induced
by black edges of the component C. Black-gray connectivity of the component
C implies that the graph E is connected. If every two double gray edges in C
connected by a black edge belong to the same gray-obverse cycle in H, then
connectivity of the graph E would imply that all the double gray edges in C
belong to the same gray-obverse cycle. ��

Theorem 7. For a given BO-graph G, there exists a BOG-graph G′ with a
single gray-obverse cycle having G as a BO-subgraph.

Proof. First we group odd black cycles in G into pairs (formed arbitrary), and
introduce an arbitrary interedge connecting cycles in each pair. Then we com-
plete each black cycle with an arbitrary non-crossing gray matching so that
each vertex of G becomes incident to exactly one double gray edge. Denote the
resulting graph by H. Note that H is a BOG-graph having G as a BO-subgraph.

If H has a single gray-obverse cycle, then the theorem holds for G′ = H.
Otherwise, we show how to modify the set of double gray edges in H to reduce
the number of gray-obverse cycles.

Assume that there is more than one gray-obverse cycle in H. By Lemma
2 there is a black edge (x, y) connecting distinct gray-obverse cycles c1 and
c2. Let (x, u) and (y, v) be double gray edges incident to the vertices x and y
respectively. We replace the edges (x, u) and (y, v) in H with double gray edges
(x, y) and (u, v) resulting in a graph H ′. Fig. 6 illustrates two cases depending on
whether the edge (y, v) is an interedge (since (x, u) and (y, v) belong to the same
black-gray connected component, at most one of them can be an interedge).

We will show that the BG-subgraph of H ′ is optimal. There are two new
double gray edges in the BG-subgraph of H ′ compared to H. Since the intro-
duced double gray edge (x, y) is parallel to a black edge, it does not cross any
other intraedge (as chords). The introduced double gray edge (u, v) is either
an intraedge, or an interedge. In the former case any intraedge crossing the in-
traedge (u, v) would necessary cross (x, u) or (y, v) (as chords), a contradiction
to the fact that H has a non-crossing BG-subgraph. Hence, the BG-subgraph of
H ′ is non-crossing. On the other hand, it is easy to see that the transformation
H → H ′ turns a simple black-gray connected component of the graph H into a
simple black-gray connected component of H ′ (Fig. 6a), and a paired black-gray
connected component with a single interedge into a paired black-gray connected
component with a single interedge (Fig. 6b). Hence, the BG-subgraph of H ′ is
optimal and H ′ is a BOG-graph.

Note that the BOG-graph H ′ has G as a BO-subgraph (since black and
obverse edges were not affected by the transformation). The graph H ′ has the
same gray-obverse cycles as H, except for the gray-obverse cycles c1 and c2 which
are joined into a single cycle in H ′. Hence, the number of gray-obverse cycles in
H ′ is reduced as compared to H.

14 M.A. Alekseyev and P.A. Pevzner

2cc1

1c

2c

xx

u x

v

y

u x

v

y

a)

b)

H

u

H’

u

y
v

y v

H’H

Fig. 7. Merging gray-obverse cycles c1, c2 connected by a black edge (x, y) passing
through a) intraedges (x, u) and (y, v); b) an intraedge (x, u) and an interedge (y, v)

Iteratively reducing the number of gray-obverse cycles we will eventually come
up with a BOG-graph G′ having G as a BO-subgraph with a single gray-obverse
cycle. ��

We outline the Genome Halving Algorithm for a duplicated genome P as
follows.

1. Construct a BO-graph G defined by the genome P .
2. Find a BOG-graph G′ with a single gray-obverse cycle having G as a BO-

subgraph (Theorem 7).
3. Read a pre-duplicated genome R along the gray-obverse cycle in G′.

References

1. D.A.Bader, B.M.E.Moret, and M.Yan “A linear-time algorithm for computing in-
version distances between signed permutations with an experimental study”. J.
Comput. Biol., 8 (2001), pp.483-491.

2. V.Bafna and P.A.Pevzner “Genome rearrangement and sorting by reversals”.
SIAM Journal on Computing, 25 (1996), pp. 272-289.

3. A.Bergeron. “A very elementary presentation of the Hannenhalli-Pevzner theory”.
In Proceedings of the 12th Annual Symposium on Combinatorial Pattern Matching,
Lecture Notes in Computer Science, 2089 (2001), pp. 106-117.

4. A. Bergeron, J. Mixtacki, and J. Stoye A. Bergeron, J. Mixtacki, and J. Stoye.
“Reversal distance without hurdles and fortresses”. In Proceedings of the 15th An-
nual Symposium on Combinatorial Pattern Matching, Lecture Notes in Computer
Science, 3109 (2004), pp. 388-399

Genome Halving Problem Revisited 15

5. F.S.Dietrich et al. “The Ashbya gossypii Genome as a Tool for Mapping the Ancient
Saccharomyces cerevisiae Genome”. Science, 304 (2004), pp. 304-307.

6. N.El-Mabrouk, J.H.Nadeau, and D.Sankoff “Genome halving”. In Proceedings of
the 9th Annual Symposium on Combinatorial Pattern Matching, Lecture Notes in
Computer Science, 1448 (1998), pp. 235-250.

7. N.El-Mabrouk and D.Sankoff “On the reconstruction of ancient doubled circular
genomes using minimum reversal”. Genome Informatics, 10 (1999), pp. 83-93.

8. N.El-Mabrouk, B.Bryant, and D.Sankoff “Reconstructing the pre-doubling
genome”. In Proceedings of the Third Annual International Conference on Com-
putational Molecular Biology (RECOMB) (1999), pp. 154-163.

9. N.El-Mabrouk and D.Sankoff “The Reconstruction of Doubled Genomes”. SIAM
Journal on Computing, 32 (2003), pp. 754-792.

10. S.Hannenhalli and P.Pevzner “Transforming cabbage into turnip (polynomial algo-
rithm for sorting signed permutations by reversals)”. In Proceedings of the Twenty-
Seventh Annual ACM Symposium on Theory of Computing (1995), pp. 178-189.
Journal of the ACM, 46 (1999), pp. 1-27.

11. H.Kaplan, R.Shamir, and R.Tarjan. “Faster and simpler algorithm for sorting
signed permutations by reversals”. SIAM Journal on Computing, 29 (1999), pp.
880-892

12. M.Kellis et al. “Proof and evolutionary analysis of ancient genome duplication in
the yeast Saccharomyces cerevisiae”. Nature, 428 (2004), pp. 617-624.

13. S.Ohno, U.Wolf, and N.Atkin “Evolution from fish to mammals by gene duplica-
tion”. Hereditas, 59 (1968), pp. 169-187.

14. P.Pevzner and G.Tesler “Genome Rearrangements in Mammalian Evolution:
Lessons from Human and Mouse Genomes”. Genome Research, 13 (2003), 37-45.

15. L.Skrabanek and K.H.Wolfe “Eukaryote genome duplication - where’s the evi-
dence?”. Curr. Opin. Genet. Devel., 8 (1998), pp. 694-700.

16. E. Tannier and M.-F. Sagot “Sorting by reversals in subquadratic time”. In Pro-
ceedings of the 15th Annual Symposium on Combinatorial Pattern Matching, Lec-
ture Notes in Computer Science, 3109 (2004).

17. K.H.Wolfe and D.C.Shields “Molecular evidence for an ancient duplication of the
entire yeast genome”. Nature, 387 (1997), pp. 708-713.

Verifying Probabilistic Procedural Programs

Javier Esparza1 and Kousha Etessami2

1 Institute for Formal Methods in Computer Science,
University of Stuttgart
2 School of Informatics,
University of Edinburgh

Abstract. Monolithic finite-state probabilistic programs have been ab-
stractly modeled by finite Markov chains, and the algorithmic verifi-
cation problems for them have been investigated very extensively. In
this paper we survey recent work conducted by the authors together
with colleagues on the algorithmic verification of probabilistic procedu-
ral programs ([BKS,EKM04, EY04]). Probabilistic procedural programs
can more naturally be modeled by recursive Markov chains ([EY04]),
or equivalently, probabilistic pushdown automata ([EKM04]). A very rich
theory emerges for these models. While our recent work solves a num-
ber of verification problems for these models, many intriguing questions
remain open.

1 Introduction

The topic of this paper is the decidability and computational complexity of
verification problems for models of probabilistic programs. Loosely speaking, a
program is probabilistic if it can flip a coin in order to decide the next execution
step. Probabilistic models of programs are of interest for at least two reasons.
First, we may wish to model and analyze randomized algorithms, which are in-
trinsically probabilistic. Second, sometimes when we model a program’s behavior
we may wish to replace a deterministic branching choice by a probabilistic one in
order to obtain information about the induced probability of certain behaviors,
e.g., that the program terminates in a certain state. The probabilities chosen
for the branches may either be subjective choices or be based, e.g., on statistics
accumulated from profiling data.

As usual, in the area of automated software verification we assume that the
variables of the program have a finite domain, either because the program was
so designed, or because it is an abstraction of another program. The complex-
ity of probabilistic verification has been extensively studied for finite-state flat-
programs, where the program consists of one procedure containing no procedure
calls, and the control mechanisms are only the basic if-then-else instructions
and while loops.

In this case, the program has a finite number of states, and can be modeled
abstractly by a finite Markov Chain. There is already an extensive literature on
analysis of such models (see, e.g., [Var85, CY95, Kwi03]). Since last year, both

K. Lodaya and M. Mahajan (Eds.): FSTTCS 2004, LNCS 3328, pp. 16–31, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verifying Probabilistic Procedural Programs 17

authors, together with colleagues, have initiated a study of verification problems
for programs with multiple (possibly recursive) procedures, called procedural
programs in this paper [EKM04, EY04]. Since the state of such a program must
contain information about the stack of calls that have not yet been completed,
the state space is potentially infinite, and so these programs are more naturally
modeled by countably infinite Markov chains of a certain kind. As we will see,
verification questions related to these models lead to very interesting algorithmic
and mathematical problems.

In this paper we survey our published results and report on our work in
progress [EKM04, EY04, BKS]. While a number of interesting algorithmic ques-
tions have been answered, many questions remain. We use this opportunity to
emphasize the intuition behind the results and avoid the technicalities.

2 Models of Probabilistic Programs

The state of a running program, as usual, consists of the contents of memory
together with the location of the program’s control. This defines a state transition
system, whose transitions are from a state s to a state t whenever the program
can move in one step from s to t.

In the case of probabilistic programs we assume that transitions are labelled
with a positive probability, i.e., a number in the interval (0, 1], and that the sum
of the probabilities attached to the transitions leaving a state is 1, or 0 if the
state is a halting state. This transforms the state space into a Markov chain.

A state of a flat-program contains information about the current control point
and the current values of the variables. If we assume that variables have a finite
domain, as we always do in this paper, the state space of the program is finite,
and so probabilistic flat-programs can be modelled as finite Markov chains.

Let us now discuss formal models for probabilistic programs with procedures.
When a procedure or function Q is called from another procedure or function
P , with parameter values v passed from P to Q,

(1) the return address (i.e. the point of P to control has to return after comple-
tion of the call) and the current values of the local variables of P are stored
as an activation record on the call stack;

(2) control is transferred to an initial control point of Q, and the passed param-
eter values v can be treated as a value of a local variable of Q.

(3) upon completion of the call, control is transferred to the return address,
and the values of the local variables of P are restored according to the top
activation record on the call stack, and if the procedure Q returned a value
r, the value r is passed back to P in a local variable.

Thus, the state of a program with procedures contains information about the
current control point, the current values of the variables, and the current contents
of the call stack. We may represent a state by a triple (g, l, r), where g represents
the current values of the global variables, l the control point and values of the
local variables of the current procedure (which may include parameters passed

18 J. Esparza and K. Etessami

to it, or values returned to it), and r is a sequence of activation records, with
the top of the stack as first element of the sequence. Since the stack size is not
bounded a priori, the program may have an infinite state space, and the Markov
chain associated with a program with procedures may be infinite.

As in the case of finite flat-programs, we assume that transitions are labelled
with a positive probability. We also assume that the probability of a transi-
tion (q1, l1, r1) → (g2, l2, r2) depends only on g1, l1 and g2, l2. Intuitively, this
means that the probability of executing a particular instruction of the program
code only depends on the current program control point and the current values
of the program variables, and not on the contexts of the call stack. There are
some special situations in which one might like to weaken this condition (for
instance, some methods of the Java Development Kit inspect the stack of ac-
tivation records [BJMT01]), but even in this case, using coding tricks, one can
construct equivalent Markov chains satisfying it.

When the number of control points and the domains of program variables are
finite, such probabilistic procedural programs induce a particular family of infi-
nite Markov chains. We can not work directly with infinite Markov chains, but
need to work with finite representations of them. We consider two equivalent
finitely presented models of these Markov chains: Probabilistic Pushdown Au-
tomata (PPDAs) (studied in [EKM04]) and Recursive Markov Chains (RMCs)
(studied in [EY04]). These models have non-probabilistic counterparts which
have been studied extensively in recent research on verification and program
analysis: for Pushdown Systems (PDAs) see, e.g., [BEM97, EHRS00], and for
Recursive State Machines (RSMs) see [AEY01, BGR01].

2.1 Recursive Markov Chains

A recursive Markov chain is a tuple (A1, . . . , Ak), where each Ai is a component.
Each component models a procedure of the program and consists of:
– A set of nodes, with two distinguished subsets of entry and exit nodes.
– A set of boxes. A box b is labelled with an integer Y (b) ∈ {1, .., k}, and has a

call port, or just a call (en, b) for each entry node en of AY (b), and a return
port, or just a return (ex, b) for each exit node ex of AY (b).

– A set of transitions u x−→ v where
• u is either a non-exit node or a call port,
• v is either non-entry node, or a return port, and
• x is a positive probability, with the condition that the sum of the prob-

abilities of all the transitions having source u is 1 or 0, if the vertex u is
an exit node or call port, which has no outgoing edges in Ai.

Recursive Markov chains reflect the structure of a program with procedures.
Each procedure is modelled by a component. A node corresponds to a local state
of the procedure, i.e., to one of its control points and a valuation of its local
variables, plus the values of the global variables, if any. Entry nodes correspond
to the possible initial states of the procedures, which also reflect the parameter
values passed to it, and exit nodes correspond to local states from which control
is returned to the caller and the returned value. A transition to a call port (en, b)

Verifying Probabilistic Procedural Programs 19

of a box b labeled by Y (b) = i models a call with particular parameter values
reflected by the node en, to the procedure modelled by Ai. Similarly, a transition
from a return port corresponds to a return, with particular return values.

A RMC A = (A1, . . . , Ak) defines a (possibly infinite) Markov chain MA as
follows. Let a vertex be either a node, a call, or a return. The states of MA,
which we call global states, are pairs 〈u,B〉, where u is a vertex and B = b1 . . . bn

is a sequence of boxes. M has the following transitions:

– a transition 〈u,B〉 x−→〈u′, B〉 for every transition u x−→u′ and every sequence
of boxes B;

– a transition 〈(en, b), B〉 1−→〈en, bB〉 for every call port (b, en), and every se-
quence of boxes B; and

– a transition 〈ex, bB〉 1−→〈(ex, b), B〉 for every return port (ex, b), and every
sequence of boxes B.

RMCs can be depicted visually in a natural way. An example RMC is in
Figure 1. This RMC has only one component, A1. It contains two nodes: entry
en and exit ex, and two boxes, b1, and b2, both of which are labeled by the same
component, A1, i.e., Y (b1) = Y (b2) = 1. Each box bi has a call port (en, bi),
and a return port (ex, bi). (In this example, it so happens that the probability
of reaching the state 〈ex, ε〉 from 〈en, ε〉 is 1/2. We will see why this is the case
later.)

en ex
2/3

1/3

b1: A1 b2: A11 1

A1

Fig. 1. An example RMC, A

2.2 Probabilistic Pushdown Automata

A probabilistic pushdown automaton (pPDA) consists of
– a finite set of control states,
– a finite stack alphabet, and
– a finite set of rules of the form pX

x−→ qα, where p and q are control states, X
is a stack symbol, α is a word of stack symbols, and x is a positive probability.
The left hand side pX of a rule is the rule’s head, or just a head, for short.
A pPDA defines a Markov chain M : the states of M are pairs 〈p, S〉, where

p is a control state and S is a sequence of stack symbols. M has a transition
〈p,Xβ〉 x−→〈q, αβ〉 for every rule pX x−→ qα and sequence of stack symbols β.

20 J. Esparza and K. Etessami

We can easily transform a RMC into a pPDA. It suffices to take the set of
vertices as control states, boxes as stack symbols, and the following set of rules:
– a rule ub x−→u′ for every transition u x−→u′ and every box b,
– a rule (en, b)b′ 1−→ en bb′ for every call port (b, en) and every box b′, and
– a rule ex b 1−→(ex, b) for every exit node ex and every box b.

In this paper we assume that pPDA are in the following normal form:
– for every rule pX x−→ qα, α has length at most 2, and
– for every p and every X at least one rule has pX as left hand side.

Note that the pPDAs obtained from RMCs by the translation above are in
normal form. Normal form pPDAs can also be transformed to RMCs of the same
size, by mimicking a translation of PDAs to RSMs given in [AEY01]. Thus RMCs
have a tight correspondence to normal form pPDAs.1 Every pPDA can also be
put in normal form in linear time while preserving all properties of interest.

3 Reachability

Given two states s0, sf of a probabilistic sequential program, let [s0, sf] denote
the probability of eventually reaching sf starting from s0. We wish to answer
the following questions:
(1) The qualitative reachability problem: Is [s0, sf] = 1?
(2) The quantitative reachability problem: Given ρ ∈ (0, 1], is [s0, sf] ≥ ρ?

We may also wish to compute or approximate the probability [s0, sf].

3.1 Flat Programs

In the case of flat-programs, s0 and sf are states of a finite Markov chain M .
The answers to (1) and (2) are well-known, but we quickly recall them in order
to compare them with the answers in the procedural case.

In a finite Markov chain [s0, sf] = 1 holds if and only if either (a) there is a
single Bottom Strongly Connected Component (BSCC) of M that is reachable
from s0 and sf belongs to that component, or (b) sf belongs to every path
from s0 to any BSCC, i.e., removing sf makes all BSCC’s unreachable from s0.
These properties can be checked in linear time using standard graph algorithms.
Observe that whether [s0, sf] = 1 or not depends only on the topology of the
Markov chain, and not on the probabilities labelling the transitions.

Let us consider now the quantitative problem. Assume that the transitions
leaving s0 are s0

p1−−→ s1, . . . , s0
pk−−→ sk. We have the following equation:

[s0, sf] = p1 · [s1, sf] + . . . + pk[sk, sf]

If we write down the same equation for every pair s, s′, and look at the
terms [s, s′] as unknowns, we obtain a linear system of equations x = L(x),

1 There is a minor loss of information of the structure of the RMC when going from
an RMC to a pPDA (see [AEY01]).

Verifying Probabilistic Procedural Programs 21

in m unknowns x = (x1, . . . , xm), where each variable xi corresponds to some
unknown probability [s, s′]. It can be show that the probabilities we wish to
compute are given by the least non-negative solution for this system, by which
we mean a vector q = (q1, . . . , qm) ∈ Rm

≥0, such that q = L(q), and such that
if v ∈ Rm

≥0 is another solution then qi ≤ vi for all i, 1 ≤ i ≤ m. We will see a
generalization of this when we study RMCs and pPDAs.

There are a number of ways to compute this least solution. Since the system
is linear, the least solution is rational, and one could use, e.g., linear program-
ming methods to compute it. More efficiently, it turns out the system can be
transformed into another one such that the least solution of the old system is the
unique solution of the new system. The new system can then be solved using,
e.g., Gaussian elimination, or its solution can be approximated efficiently using
iterative numerical procedures like Jacobi or Gauss-Seidel, etc.

3.2 Procedural Programs

When we try to generalize the answers for probabilistic flat programs to the
procedural case, we quickly encounter a number of obstacles. To begin with, the
answer to the qualitative problem is no longer independent of the values of the
probabilities, as shown by the following example. Consider the pPDA given by
the rules.

pX
x−→ pXX

pX 1−x−−−→ pε

(We could also take the RMC A depicted in Figure 1, with the probabilities 2/3
and 1/3 replaced by x and 1−x, respectively.) The infinite Markov chain defined
by this pPDA corresponds to a ‘truncated’ Bernoulli walk, depicted in Figure
2, and a standard result states that [pX, pε] = 1 if and only if x ≤ 1/2. So the
answer to the qualitative problem “is [pX, pε] = 1 ?” depends not only on the
topology of the RMC, but also on the value of x.

. . .
x x x

1− x 1− x 1− x

〈p, ε〉 〈p,XX〉〈p,X〉

Fig. 2. The Markov chain of a pPDA

For computing these probabilities we can not simply proceed as in the finite
case to write down one linear equation for each probability [s, s′], for every pair
s, s′, because the Markov chain is in general infinite and this would lead us to
an infinite system of linear equations in infinitely many variables.

For the moment, let us consider a simpler problem: given a vertex u and an
exit node ex of the same component Ai, what is the probability of starting at
the global state 〈u, ε〉, eventually reaching the state 〈ex, ε〉? Let us denote this

22 J. Esparza and K. Etessami

probability by [u, ex]. Although we do not expand on it in this survey, com-
puting(or approximating) these probabilities is sufficient to allow us to compute
(approximate) reachability probabilities between other pairs of states s, s′.

Consider three cases of what [u, ex] might be, based on the vertex u:

– u = ex. Then [u, ex] = 1.
– If u is a node or a return port, and the transitions leaving u are

u
p1−−→ v1, . . . , v

pn−−→ vn. Then, as in the case of a finite Markov chain,

[u, ex] = p1 · [v1, ex] + . . . + pn · [vn, ex]

– u = (b, en) is a call port of a box b corresponding to a component Aj . Then,
in order to reach 〈ex, ε〉 from 〈(b, en), ε〉, we must follow a path of the form

〈(en, b), ε〉 1−→〈en, b〉 · · · 〈ex′, b〉 1−→〈(ex′, b), ε〉

If the exit nodes of the component Aj are ex′
1, . . . , ex

′
n, then, since the

probability of eventually reaching 〈ex′, b〉 from 〈en, b〉 is equal to the proba-
bility of eventually reaching 〈ex′, ε〉 from 〈en, ε〉, we get

[(en, b), ex] = [en, ex′
1] · [(ex′

1, b), ex] + . . . + [en, ex′
n] · [(ex′

n, b), ex]

We thus have a finite system of non-linear multi-variate polynomial equations
for the unknowns [u, ex], ranging over every pair u, ex, where u is a vertex of the
RMC and ex is an exit node of the same component. Lets associate each unknown
probability [u, ex] with a corresponding variable x[u,ex]. For convenience we index
these variables x1, . . . , xm, obtaining a vector x, and we have m multi-variate
polynomial equations, xj = Pj(x), which we write together as

x = P (x) (1)

Consider the partial order on m-vectors given by x y if and only if xi ≤ yi

for all i, 1 ≤ i ≤ m. The mapping P : Rm �→ Rm defines a monotone operator
on a compact and downward-closed (with respect to) subspace D of [0, 1]m.
Let P r(x) denote P (x) if r = 1, and P (P r−1(x)), for r > 1. It is clear, by the
non-negativity of coefficients of P (·), that P r(0) P r+1(0), for r ≥ 1.

Theorem 1. (see [EY04] and see [EKM04] for an equivalent result for pPDAs)
x = P (x) has a (unique) Least Fixed Point (LFP) solution q ∈ [0, 1]m, given by
q = limr→∞ P r(0). I.e., q = P (q), and q v for any solution v. Moreover the
vector q gives precisely the probabilities [u, ex], i.e.: [u, ex] = q[u,ex].

Now, how do we compute this LFP? Well, we can’t compute it exactly, and
there are several other nasty features to the systems x = P (x) that distinguish
them from the linear systems for finite Markov chains:

Theorem 2. ([EY04])
1. Irrational probabilities: There is an RMC for which the probability [en,ex] is

irrational, and in fact not “solvable by radicals”.

Verifying Probabilistic Procedural Programs 23

2. Slow convergence: There is an RMC for which |[en, ex] − P 2i

[en,ex](0)| ≥ 1
2i .

In other words, we need 2i applications of the operator P to get within i bits
of precision of the LFP.

3. Very small & large probabilities: There is a family of hierarchical (i.e., no
recursion) RMCs, A(n), parameterized by their size cn, for which [en, ex] =

1
22n in A(n). And a family, A′(n), of size cn, for which [en, ex] = 1− 1

22n .

We can still ask whether a probability is exactly 1, or at least ρ for some
rational number ρ, and we can still try to efficiently approximate the probabilities
to within a desired number of bits of precision.

RMCs and the Existential Theory of Reals. Given a system x = P (x) as-
sociated with an RMC, and a vector q ∈ [0, 1]n, consider the following existential
first-order sentence in the theory of reals:

ϕ ≡ ∃x1, . . . , xm

m∧
i=1

Pi(x1, . . . , xm) = xi ∧
m∧

i=1

0 ≤ xi ∧
m∧

i=1

xi ≤ qi

ϕ holds true precisely when there is some solution 0 z q, with z = P (z).
Thus, if we had a way to decide the truth of this sentence, we would be
able to tell whether [u, ex] ≤ qi, for some rational qi, by using the vector
q = (1, 1, . . . , qi, 1, . . . , 1). Now consider the sentence ψ, obtained from ϕ by
replacing

∧m
i=1 xi ≤ qi with

∨m
i=1 xi < qi. ψ is false precisely when there is no

solution z � 0, such that q � z. Thus, to decide whether q is the LFP, we need to
check the truth of ϕ and the falsehood of ψ. Furthermore, by a straightforward
“binary search”, we could use j “queries” to the existential theory of reals to
obtain a probability [u, ex] to within j bits of precision (see [EY04]).

Happily, beginning with Tarski, the decidability and complexity of the first-
order theory of real and its fragments has been deeply investigated. The current
state of the art (see e.g. [Can88, Ren92, BPR96]) provides a PSPACE algorithm
that decides whether an existential sentence with rational coefficients is true for
the real numbers. The algorithm’s running time is exponential only in the number
of variables of the sentence. Using these results one can obtain the following:

Theorem 3. ([EY04]) Given RMC A and rational value ρ, there is a PSPACE
algorithm to decide whether [u, ex] ≤ ρ, with running time O(|A|O(1) · 2O(m))
where m is the number of variables in the system x = P (x) for A. Moreover
[u, ex] can be approximated to within j bits of precision within PSPACE and
with running time at most j times the above.

Single-Exit RMCs and Stochastic Context-Free Grammars. Stochastic
Context-Free Grammars (SCFGs) have rules N x→ α, labeled with a probability
x, where N is a non-terminal, and α a string of terminals and nonterminals. The
probabilities of the rules associated with each non-terminal N must sum to 1.

It can be shown that SCFGs are “equivalent” in a precise sense to single-
exit RMCs where each component can have only a single exit (see [EY04]). In
particular, the probability [u, ex] of the RMC is the same as the probability

24 J. Esparza and K. Etessami

of termination starting at the corresponding non-terminal N[u,ex] in the corre-
sponding SCFG. They are also equivalent to pPDAs with a single control state,
also known as pBPAs: just write pN

x→ pα instead of N x→ α.
SCFGs have been studied extensively since the 1970s in connection with

Natural Language Processing (see, e.g., [MS99]), and their theory is intimately
connected with that of multi-type Branching Processes. Based on results on
branching processes (see, e.g., [Har63]), one can “characterize” questions of
almost sure termination for SCFGs based on eigenvalues of certain matrices
associated with the SCFG (see, e.g., [BT73]). These characterizations unfor-
tunately often omit special uncovered cases, or, worse, contain errors (e.g., the
often cited [BT73] contains errors). In [EY04], a detailed treatment of these char-
acterizations is given together with their algorithmic implications, establishing
the following:

Theorem 4. ([EY04]) There is polynomial-time algorithm that for a 1-exit
RMC A, and every vertex u and exit ex, determines which of the following
three cases hold: (1) [u, ex] = 0, (2) [u, ex] = 1, or (3) 0 < [u, ex] < 1.

RMCs and Newton’s Method. Although we can not compute the probabil-
ities associated with an RMC exactly, because as we saw they can be irrational,
we can nevertheless aim to efficiently approximate the probabilities numerically
within a desired number of bits of precision. Given that the LFP for equation
system x = P (x) is given by limr→∞ P r(0), and P r(0) grows monotonically with
r, one way to try to do this would be to calculate P r(0) for a “large enough” r.
Unfortunately, as we saw in Theorem 2, there are RMCs for which this approach
fails terribly, requiring 2i iterations to obtain i bits of precision.

A powerful numerical method for obtaining roots of equations is Newton’s
method. In its n-dimensional version (see, e.g., [SB93]), given a suitably differ-
entiable map F : Rn �→ Rn we wish to find a solution to the system F (x) = 0.
Starting at some x0 ∈ Rn, the method works by iterating

xk+1 := xk − (F ′(xk))−1F (xk)

where F ′(x) is the Jacobian matrix of partial derivatives given by

F ′(x) =

⎡⎢⎣
∂f1
∂x1

. . . ∂f1
∂xn

...
...
...

∂fn

∂x1
. . . ∂fn

∂xn

⎤⎥⎦
The method is not even defined if for some iterate xk the matrix F ′(xk)

is not invertible, and when defined it may not converge. In practice, however,
if it converges then it typically converges very fast. Remarkably, in [EY04] it
is shown that for a decomposed version of the monotone non-linear systems
x = P (x) arising from an RMC, Newton’s method started at x0 = 0 not only
converges to the LFP, but does so monotonically:

Verifying Probabilistic Procedural Programs 25

Theorem 5. ([EY04]) Starting at x0 = 0, Newton’s method converges mono-
tonically to the LFP, q, of the system x = P (x) (appropriately decomposed) of
an RMC. In other words, limk→∞ xk = q, and xk xk+1, for all k ≥ 0.

Moreover, from the proof it follows that, for all k ≥ 0, xk ≥ P k(0), and that
Newton’s method corresponds to a clever “acceleration” of the standard iteration
P k(·) which will typically be much faster than iterating P k(·). In particular, on
the examples known to require exponentially many iterations of P (·) to achieve
a given number of bits of precision, Newton’s method converging in only a linear
number of iterations (see [EY04] for an expanded explanation of these remarks).

Lower Bounds for Reachability. We have seen that basic questions about
reachability probabilities can be answered in PSPACE by using the existential
theory of reals, and that for the special case of single-exit RMCs (SCFGs),
the qualitative reachability problem, whether [u, ex] = 1, can be answered in
polynomial time. Can we provide any lower bounds for the remaining questions?
Hardness for standard complexity classes, such as NP or PSPACE, remains open.
However, we have the following strong evidence of “difficulty”. The square-root
sum problem is the following decision problem: given (d1, . . . , dn) ∈ Nn and
k ∈ N, decide whether

∑n
i=1

√
di ≤ k. It is known to be solvable in PSPACE, but

it has been a major open problem in the complexity of numerical computation
since the 1970’s (see, e.g., [GGJ76, Tiw92]) whether it is solvable even in NP,
with important consequences in subjects like computational geometry.

Theorem 6. ([EY04]) The square-root sum problem is polynomial-time re-
ducible to the problem of determining, given a single-exit RMC, a vertex u and
exit ex, and a rational value r, whether [u, ex] ≥ r.

A simple modification of this reduction shows that the square-root sum prob-
lem is polynomial-time reducible to problem of determining, given a 2-exit RMC,
a vertex u and exit ex, whether [u, ex] = 1.

4 Repeated Reachability

Let a run of a Markov chain be either an infinite path or a finite path ending at
a halting state without successors. Given an initial state s0 and a set of states
S, we are interested in the probability that the runs starting at s0 repeatedly
visit states of S, i.e., that they visit S infinitely often. (For a formal definition
of this probability and a proof that it exists, see for instance [Var85, EKM04].)
If the case of flat-programs, both the qualitative and the quantitative repeated
reachability problems can be solved by slight modifications of the algorithms
for the reachability problems, with the same complexity. Let us now consider
procedural programs. For convenience, we model the program as a pushdown
automaton with an initial configuration c0 = 〈p0, X0〉. To simplify the presenta-
tion we assume that the set of configurations that should be repeatedly visited,
denoted by Cr, is the set of configurations with head prXr for some control state
pr and some stack symbol Xr (see [EKM04] for a more general case).

26 J. Esparza and K. Etessami

We define a new finite Markov chain MH such that the repeated reachabil-
ity problem for c0 and Cr can be reduced to a repeated reachability problem
for MH , which we already know how to solve. The key notion we need are the
minima of an infinite run, defined inductively as follows. The first minimum
of an infinite run c0

x1−−→ c1
x2−−→ . . ., where ci = 〈pi, αi〉, is the smallest index j

such that |αk| ≥ |αj | for every k ≥ j. For every i > 1, if j is the i-th mini-
mum of the run, then the (i+ 1)-th minimum is the first minimum of the suffix
cj+1

xj+2−−−−→ cj+2 In words, the first minimum is the index of the first con-
figuration having minimal stack length and the (i + 1)-th minimum is obtained
by chopping off the prefix of the run up to the i-minimum, and taking the first
minimum of the rest. Now, what is the probability that the (i+ 1)-th minimum
has head qY , if the i-th minimum has head pX? It is proved in [EKM04] that
this probability depends only on pX and qY . Intuitively, if 〈p,Xα〉 is the config-
uration at the i-th minimum, all its successor configurations in the run have α at
the bottom of the stack. So α plays no rôle in determining the head of the next
minimum, because from 〈p,Xα〉 onward all stack operations “happen above α”.

This result allows us to define a Markov chain whose states are the heads
of the pPDA plus two special states Init and Ter , and whose transitions are as
follows, where PMin(pX, qY) denotes the probability that a minimum has head
pY assuming that the previous minimum has head pX:

– Init x−→Ter , where x is the probability that a run starting at c0 terminates,
i.e., reaches a configuration of the form 〈p, ε〉;

– Ter 1−→Ter ;
– Init x−→ pX for every head pX such that x = PMin(p0X0, pX) > 0; and
– pX

x−→ qY for every two heads pX and qY such that x = PMin(pX, qY) > 0.

How can we decide if PMin(pX, qY) > 0? Using the results of the previous
section, we can compute for every p, q,X the probability [pXq] of reaching 〈q, ε〉
from 〈p,X〉 (these are essentially the probabilities [u, ex] of the previous section),
and the probability [pX]↑ of never emptying the stack from 〈p,X〉 (i.e., of never
reaching a configuration of the form 〈q, ε〉 for any control state q). Consider now
a run starting at 〈p,X〉. In order to reach the next minimum at 〈q, Y β〉 for some
β, the pPDA has the following possibilities:

– Apply the rule pX
x−→ qY , if it exists, and then, from 〈q, Y 〉, never empty

the stack.
– Apply a rule pX x−→ qY Z for some Z, and then keep Z forever at the bottom

of the stack.
– Apply a rule pX x−→ rZY for some r, Z, from 〈r, ZY 〉 reach the configuration
〈q, Y 〉, and then never empty the stack.

It is easy to compute the probability of each case. Adding them we obtain:

PMin(pX, qY) =
∑

pX
x−→ qY

x · [qY]↑ +
∑

pX
x−→ qY Z

x · [qY]↑ +
∑

pX
x−→ rZY

x · [rZq] · [qY]↑

Verifying Probabilistic Procedural Programs 27

Since [pX]↑ +
∑

q∈Q[pXq] = 1, where Q is the set of control states of the
pPDA, deciding if PMin(pX, qY) > 0 reduces to deciding if [qY]↑> 0 for each
head qY . By the results of the previous section, this can be done in PSPACE,
and in PTIME for pBPAs or 1-exit RMCs.

Using this finite chain we can decide if a run repeatedly visits configurations
of Cr at minima with probability 1 (at least ρ). But, what happens if the con-
figurations of Cr occur between minima? To solve this problem, we split each
state pX into (pX, 0) and (pX, 1), and assign transition probabilities as follows.
For a transition (pX, f) x1−−→(qY, 1), where f ∈ {0, 1}, we set x1 to the prob-
ability that a run starting at 〈p,X〉 hits the second minimum (〈p,X〉 itself is
the first) at a configuration with head qY and visits some configuration of Cr

in-between. For a transition (pX, f) x0−−→(qY, 0) we set x0 = PMin(pX, qY)− x1.
The Markov chain MH mentioned at the beginning of the section is the result
of performing this modification. A run of the pPDA repeatedly visits configura-
tions of Cr if and only if it corresponds to a run of MH that repeatedly visits
states of the form (pX, 1). In order to solve the qualitative repeated reachability
problem, we construct MH and then apply the algorithm for the finite state
case. Notice, however, that we do not need the exact values of the transition
probabilities of MH , we only have to decide if they are positive. This yields
a PSPACE-algorithm for the qualitative repeated reachability problem, and a
PTIME-algorithm for pBPA or 1-exit RMC, the same status as for reachability.
A lower bound for the general case is open, but the remarks in section 3 on lower
bounds for reachability apply also to repeated reachability.

For the quantitative repeated reachability problem we need to solve a linear
system of equations whose coefficients are the probabilities of the transitions of
MH . Complexity questions have not been studied in detail yet.

5 Model Checking PCTL

The syntax of PCTL, the probabilistic extension of CTL proposed in [HJ94] is
given by:

ϕ ::= tt | A | ¬ϕ | ϕ1 ∧ ϕ2 | X≥ρϕ | ϕ1 U ≥ρϕ2

where A is an atomic proposition, ρ is a probability, and X and U are the
next and until operators of LTL. Formulas with operators ≤,=, <,> can be
‘simulated’ by boolean combinations. A state of a Markov chain satisfies X≥ρϕ
or ϕ1 U ≥ρϕ2 if the probability that a run starting at it satisfies Xϕ or ϕ1 U ϕ2,
respectively, is at least ρ. The qualitative fragment of PCTL is obtained by
requiring ρ ∈ {0, 1}.

Given a Markov chain M and a PCTL formula ϕ, let [[ϕ]] denote the set of
states of M satisfying ϕ. As in the case of CTL, the key to a model-checking
algorithm for PCTL consists of, given [[ϕ1]], [[ϕ2]], computing [[ϕ1 U ≥ρϕ2]]. In
the case of flat-programs, [[φ]] is computed bottom-up, i.e., computing first [[φ′]]
for all subformulas φ′ of φ. This can be done using well-known graph algorithms
if ρ ∈ {0, 1}, and solving linear systems of equations otherwise [HJ94].

28 J. Esparza and K. Etessami

In the procedural case, we face an obstacle: Since the Markov chain is infinite,
the set [[ϕ]] may be infinite, and cannot be computed by explicit enumeration
of its elements. Let us see the implications of this.

A valuation is regular if [[A]] is a regular set for every atomic proposition A,
where ‘regular’ is used in the language-theoretic sense: A configuration 〈p, α〉 is
seen as the word pα. It is shown in [EKM04] that if a valuation is effectively
regular, then [[ϕ]] is effectively regular for every PCTL formula ϕ. This provides
a solution to the infinity problem: Compute a finite automaton recognizing [[ϕ]].

We sketch the proof of this regularity result for a particular case. We
show that [[ϕ1 U ≥1ϕ2]] is regular if [[ϕ1]] is the set of all configurations, and
[[ϕ2]] = {〈q, ε〉} for some given control state q. Let a head pX be almost surely
terminating (a.s.t.) if a run starting at 〈p,X〉 empties the stack with probability
1. Given an a.s.t. pX, let Emp(pX) be the set of states r such that the prob-
ability of reaching 〈r, ε〉 from 〈p,X〉 is non-zero. Then [[ϕ1 U ≥1ϕ2]] is the least
set C containing 〈q, ε〉 and satisfying: If pX is a.s.t. and 〈r, α〉 ∈ C for every
r ∈ Emp(pX), then 〈p,Xα〉 ∈ C. Consider now the automaton having the set of
stack symbols as alphabet, all subsets of control states as states, all singletons
{p} as initial states, the set {q} as final state, and a transition P1

X−−→P2 if and
only if the head pX is a.s.t. for every p ∈ P1 , and P2 =

⋃
p∈P1

Emp(pX). This
automaton accepts α ∈ Γ ∗ from the state p if and only if 〈p, α〉 ∈ C, and so
[[ϕ1 U ≥1ϕ2]] is regular.

The exact complexity of the model checking problem for pPDAs and the
qualitative fragment of PCTL with regular valuations is still open. Using results
of [Wal00] it is easy to show that the problem is EXPTIME-hard, even for pPBAs
or 1-exit RMCs [May04]. We also know that the problem can be solved in triple
exponential time [Kuč04].

If ϕ does not belong to the qualitative fragment, the set [[ϕ]] may not be
regular, even for a regular valuation. Consider the pPDA

pX
1/2−−−→ qX qX

1/2−−−→ qε rX 1−→ rε sX 1−→ sX

pX
1/2−−−→ rX qX

1/2−−−→ sX rY
1/2−−−→ rε sY

1−→ sY

qY 1−→ qε rY
1/2−−−→ qY

and atomic propositions A1, A2 together with the regular valuation in which
[[A1]] is the set of all configurations, and [[A2]] = {〈q, ε〉}. It is easy to see that

{〈p,XnY m〉 | n,m > 0} ∩ [[A1 U =1/2A2]] = {〈p,XnY n〉 | n > 0}

which, since {〈p,XnY m〉 | n,m ≥ 0} is regular and {〈p,XnY n〉 | n ≥ 0} is not,
implies that [[A1 U =1/2A2]] is not regular. In [BKS], the pPDA above is used as
a building block in a reduction from the halting problem for 2-counter machines
to the model checking problem for pPDA’s and PCTL, which shows that the
latter is undecidable.

Verifying Probabilistic Procedural Programs 29

6 Model Checking Büchi Automata Specifications

Let M be a Markov chain modelling a program. We formalize the specification as
a Büchi automaton B. A word accepted by B is seen as a ‘good behaviour’ of the
program. (Recall that B accepts a word a1a2 . . . if it has a run q0

a1−−→ q1
a2−−→ . . .

and an accepting state q that the run visits infinitely often.) The verification
problem is to decide if a run of M is accepted by B (i.e., is ‘a good behaviour’)
with probability 1, or with probability at least ρ for a given ρ ∈ [0, 1].

For flat-programs, the alphabet of B is the set of states of M , which is finite.
For procedural programs, we take as alphabet the set of heads of P. This means
that specifications can refer to the control points and variables of the program,
but not to the stack of activation records (see [BKS] for a generalization).

The verification problem for flat-programs is solved (in two ways) in [Var85,
CY95]. For the procedural case, assume first that B is deterministic, as done in
[EKM04]. We construct the pPDA P × B having pairs (p, b) as states, where p
is a control state of P and b is a state of B, and rules (p, b)X x−→(p′, b′)α, where
pX

x−→ p′α is a rule of P and q
pX−−−→ q′ is a transition of B. We construct the

Markov chain MH having states of the form ((p, b)X, f), where f = 1 denotes
that some configuration 〈(q, b′), α〉 with b′ accepting has been visited since the
last minimum. A run of P is accepted by B with probability 1 (at least ρ) if and
only if a run of MH repeatedly visits states satisfying f = 1 with probability
1 (at least ρ). So the verification problem reduces to the repeated reachability
problem.

The nondeterministic case was left open in [EKM04]. The following solution is
from [BKS]. In a first step, B is transformed into a deterministic Muller automa-
ton B′ with acceptance sets Q1, . . . , Qn. (Recall that B′ accepts a word a1a2 . . . if
it has a run q0

a1−−→ q1
a2−−→ . . . and an acceptance set Qi such that the set of states

visited by the run infinitely often is exactly Qi.) The product P×B′ is defined as
above. However, we redefine the states of the Markov chain MH so that they not
only reflect whether some accepting state was visited since the last minimum,
but also which states of B′ were visited. More formally, we replace the boolean
f by a set of states of B′, and in a transition ((p1, b1)X1, S1)

x−→((p2, b2)X2, S2)
we set x to the probability of, starting at 〈(p1, b1), X1〉, hitting the next min-
imum at a configuration with head (p2, b2)X2, and visiting exactly the states
of S2 in-between. With this definition of MH , the runs of P are accepted by
B′ with probability 1 if and only if every bottom strongly connected compo-
nent of MH satisfies the following property: if the states of the component are
((p1, b1)X1, S1), . . . ((pn, bn)Xn, Sn), then S1∪ . . .∪Sn is an acceptance set of B′.
While this shows that the problem of checking Büchi automata specifications is
decidable, the exact complexity of the problem is open.

Acknowledgments. This survey is based on joint work by the first author
together with Tomáš Brázdil, Antońın Kučera, Richard Mayr and Oldřich
Stražovský [BKS, EKM04], and on joint work by the second author together
with Mihalis Yannakakis [EY04]. We would both like to acknowledge and thank
our collaborators.

30 J. Esparza and K. Etessami

References

[AEY01] R. Alur, K. Etessami, and M. Yannakakis. Analysis of recursive state ma-
chines. In Proceedings of CAV’01, volume 2102 of LNCS, pages 304–313,
2001.

[BEM97] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown
automata: Applications to model checking. In Proceedings of CONCUR’97,
volume 1243 of LNCS, pages 135–150, 1997.

[BGR01] M. Benedikt, P. Godefroid, and T. Reps. Model checking of unrestricted
hierarchical state machines. In Proceedings of ICALP’01, volume 2076 of
LNCS, pages 652–666, 2001.

[BJMT01] F. Besson, T. Jensen, D.L. Métayer, and T. Thorn. Model checking security
properties of control flow graphs. Journal of Computer Security, 9:217–250,
2001.

[BKS] T. Brázdil, A. Kučera, and O. Stražovský. Decidability of temporal proper-
ties of probabilistic pushdown automata. Technical report. In preparation.

[BPR96] S. Basu, R. Pollack, and M. F. Roy. On the combinatorial and algebraic
complexity of quantifier elimination. Journal of the ACM, 43(6):1002–1045,
1996.

[BT73] T. L. Booth and R. A. Thompson. Applying probability measures to ab-
stract languages. IEEE Transactions on Computers, 22(5):442–450, 1973.

[Can88] J. Canny. Some algebraic and geometric computations in pspace. In Pro-
ceedings of 20th ACM STOC, pages 460–467, 1988.

[CY95] C. Courcoubetis and M. Yannakakis. The complexity of probabilistic veri-
fication. Journal of the ACM, 42(4):857–907, 1995.

[EHRS00] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms
for model checking pushdown systems. In Proceedings of CAV’00, volume
1855 of LNCS, pages 232–247, 2000.

[EKM04] J. Esparza, A. Kučera, and R. Mayr. Model checking probabilistic
pushdown automata. In Proceedings of LICS’04, pages 12–21. IEEE
Computer Society, 2004. Full version: Tech. report FIMU-RS-2004-
03, Masaryk University, Brno, available online at http://www.fmi.uni-
stuttgart.de/szs/publications/info/esparza.EKM04rep.shtml.

[EY04] K. Etessami and M. Yannakakis. Recursive markov chains, stochastic gram-
mars, and monotone systems of non-linear equations. Technical report,
2004. School of Informatics, University of Edinburgh.

[GGJ76] M. R. Garey, R. L. Graham, and D. S. Johnson. Some NP-complete geo-
metric problems. In Proceedings of 8th ACM STOC, pages 10–22, 1976.

[Har63] T. E. Harris. The Theory of Branching Processes. Springer-Verlag, 1963.
[HJ94] H. Hansson and B. Jonsson. A logic for reasoning about time and reliability.

Formal Aspects of Computing, 6:512–535, 1994.
[Kuč04] A. Kučera. Private communication, 2004.
[Kwi03] M. Kwiatkowska. Model checking for probability and time: From theory

to practice. In Proceedings of LICS’03, pages 351–360. IEEE Computer
Society Press, 2003.

[May04] R. Mayr. Private communication, 2004.
[MS99] C. Manning and H. Schütze. Foundations of Statistical Natural Language

Processing. MIT Press, 1999.
[Ren92] J. Renegar. On the computational complexity and geometry of the first-

order theory of the reals. Parts I,II, III. Journal of Symbolic Computation,
pages 255–352, 1992.

Verifying Probabilistic Procedural Programs 31

[SB93] J. Stoer and R. Bulirsch. Introduction to Numerical Analysis. Springer-
Verlag, 1993.

[Tiw92] P. Tiwari. A problem that is easier to solve on the unit-cost algebraic RAM.
Journal of Complexity, pages 393–397, 1992.

[Var85] M. Vardi. Automatic verification of probabilistic concurrent finite-state
programs. In Proceedings of FOCS’85, pages 327–338. IEEE Computer
Society Press, 1985.

[Wal00] I. Walukiewicz. Model checking CTL properties of pushdown systems. In
Proceedings of FST&TCS’00, volume 1974 of Lecture Notes in Computer
Science, pages 127–138. Springer, 2000.

Streaming Algorithms for
Geometric Problems

Piotr Indyk

Computer Science and Artificial Intelligence Lab, MIT

1 Introduction

Computing over data streams is a recent phenomenon that is of growing interest
in many areas of computer science, including databases, computer networks and
theory of algorithms. In this scenario, it is assumed that the algorithm sees the
elements of the input one-by-one in arbitrary order, and needs to compute a
certain function of the input. However, it does not have enough memory to store
the whole input. Therefore, it must maintain a “sketch” of the data. Designing
a sketching method for a given problem is a novel and exciting challenge for
algorithm design.

The initial research in streaming algorithms has focused on computing sim-
ple numerical statistics of the input, like median [MP80], number of distinct
elements [FM85] or frequency moments [AMS96]. More recently, the researchers
showed that one can use those algorithms as subroutines to solve more complex
problems; see the survey [Mut03] for detailed description of the past and recent
developments. Still, the scope of algorithmic problems for which stream algo-
rithms exist is not well understood. It is therefore of importance to identify new
classes of problems that can be solved in this restricted settings.

Recently, several authors proposed streaming algorithms for geometric
problems [AHP01, FKZ02, TGIK02, Ind03, CM03, MS03, HS04, BCEG04, Cha04,
STZ04], [Ind04, HPM04, FIS04]1. Most of the algorithms appear to follow one of
the two approaches:

1. Merge and Reduce. The main component of this approach is an (off-line)
algorithm which, given a set of points P , constructs a subset of P which is
small but nevertheless ’well-approximates’ P . The algorithm is then applied
in a divide-and-conquer manner to the whole data stream. Because of the tree-
structured computation, the algorithm can be simulated using small memory.

This very general approach goes back to [MP80], and has been first adapted
to the geometric setting in [AHP01, AHPV], using the notion of a core-set.
However, it does not (appear to) work in the dynamic setting, where the
points can be deleted as well as inserted.

1 Several other algorithms were proposed for the more general metric space set-
ting [CCFM97,GMMO01,Mey01,COP03].

K. Lodaya and M. Mahajan (Eds.): FSTTCS 2004, LNCS 3328, pp. 32–34, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Streaming Algorithms for Geometric Problems 33

2. Randomized Embeddings. This approach relies on approximate embed-
dings of the set of points represented by a stream into a low-dimensional
space (see [Ind01] for more information on embeddings). Specifically, the set
of points is mapped to a low-dimensional vector, typically using a random
linear map or its variants. The vector is then used to estimate the desired
statistics of the data, such as the cost of the minimum tree spanning the set
of points.

In the context of streaming algorithms, this approach goes back to [AMS96]
or even [FM85]. The use of linear mappings enables to perform point deletions
as well as insertions. However, the resulting algorithms have typically higher
complexity than their insertions-only counterparts.

In this talk I will present an overview of the known results, and describe the
aforementioned methods. I will also present a list of open problems in the area.
The slides for the talk are available at

http://theory.csail.mit.edu/~indyk/GEOSTREAM/geostream.html

References

[AHP01] P. Agarwal and S. Har-Peled. Maintaining approximate extent measures
of moving points. Proceedings of the ACM-SIAM Symposium on Discrete
Algorithms, 2001.

[AHPV] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. Approximating
extent measure of points. Journal of the ACM.

[AMS96] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approxi-
mating the frequency moments. Proceedings of the Symposium on Theory
of Computing, pages 20–29, 1996.

[BCEG04] A. Bagchi, A. Chaudhary, D. Eppstein, and M. T. Goodrich. Deterministic
sampling and range counting in geometric data streams. Proceedings of
the ACM Symposium on Computational Geometry, 2004.

[CCFM97] M. Charikar, C. Chekuri, T. Feder, and R. Motwani. Incremental cluster-
ing and dynamic information retrieval. Proceedings of the Symposium on
Theory of Computing, 1997.

[Cha04] T. Chan. Faster core-set constructions and data stream algorithms in
fixed dimensions. Proceedings of the ACM Symposium on Computational
Geometry, 2004.

[CM03] G. Cormode and S. Muthukrishnan. Radial histograms for spatial streams.
DIMACS Tech Report, 2003.

[COP03] M. Charikar, L. O’Callaghan, and R. Panigrahy. Better streaming algo-
rithms for clustering problems. Proceedings of the Symposium on Theory
of Computing, pages 30–39, 2003.

[FIS04] G. Frahling, P. Indyk, and C. Sohler. Estimating the weight of euclidean
minimum spanning trees in data streams. Manuscript, 2004.

[FKZ02] Joan Feigenbaum, Sampath Kannan, and Jian Zhang. Computing diame-
ter in the streaming and sliding-window models. Yale University Technical
Report YALEU/DCS/TR-1245, 2002.

34 P. Indyk

[FM85] P. Flajolet and G. Martin. Probabilistic counting algorithms for data base
applications. Journal of Computer and System Sciences, 31:182–209, 1985.

[GMMO01] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan. Clustering data
streams. Proceedings of the Symposium on Theory of Computing, 2001.

[HPM04] S. Har-Peled and S. Mazumdar. Coresets for k-means and k-medians and
their applications. Proceedings of the Symposium on Theory of Computing,
2004.

[HS04] J. Hershberger and S. Suri. Adaptive sampling for geometric problems
over data streams. Proceedings of the ACM Symposium on Principles of
Database Systems, 2004.

[Ind01] P. Indyk. Tutorial: Algorithmic applications of low-distortion geometric
embeddings. Proceedings of the Symposium on Foundations of Computer
Science, 2001.

[Ind03] P. Indyk. Better algorithms for high-dimensional proximity problems via
asymmetric embeddings. Proceedings of the ACM-SIAM Symposium on
Discrete Algorithms, 2003.

[Ind04] P. Indyk. Algorithms for dynamic geometric problems over data streams.
Proceedings of the Symposium on Theory of Computing, 2004.

[Mey01] Adam Meyerson. Online facility location. Proceedings of the Symposium
on Foundations of Computer Science, pages 426–431, 2001.

[MP80] J. I. Munro and M. S. Paterson. Selection and sorting with limited storage.
TCS, 12, 1980.

[MS03] S. Muthukrishnan and M. Strauss. Maintenance of multidimensional his-
tograms. Proceedings of the FSTTCS, 2003.

[Mut03] S. Muthukrishnan. Data streams: Algorithms and applications (invited
talk at soda’03). Available at http://athos.rutgers.edu/∼muthu/stream-1-
1.ps, 2003.

[STZ04] S. Suri, C. Toth, and Y. Zhou. Range counting over multidimensional data
streams. Proceedings of the ACM Symposium on Computational Geometry,
2004.

[TGIK02] N. Thaper, S. Guha, P. Indyk, and N. Koudas. Dynamic multidimensional
histograms. Proceedings of the ACM SIGMOD International Conference
on Management of Data (SIGMOD), 2002.

Toward a Grainless Semantics for
Shared-Variable Concurrency�

John C. Reynolds

Carnegie Mellon University and Edinburgh University
john.reynolds@cs.cmu.edu

Abstract. Conventional semantics for shared-variable concurrency suf-
fers from the “grain of time” problem, i.e., the necessity of specifying a
default level of atomicity. We propose a semantics that avoids any such
choice by regarding all interference that is not controlled by explicit crit-
ical regions as catastrophic. It is based on three principles:
– Operations have duration and can overlap one another during exe-

cution.
– If two overlapping operations touch the same location, the meaning

of the program execution is “wrong”.
– If, from a given starting state, execution of a program can give

“wrong”, then no other possibilities need be considered.

1 Introduction

Ever since the early 1970’s, when researchers began to propose programming lan-
guages in which concurrent processes interact via shared variables, the problem
of default atomicity, which Dijkstra called the “grain of time” phenomenon, has
plagued the design and definition of such languages. Basically, if two concurrent
processes access the same variable, without any explicit description of atomicity
or mutual exclusion, the variety of outcomes will depend on a default choice of
the level of atomicity, increasing as the atomicity becomes more fine-grained.

For example, consider the concurrent execution of two assignments to the
same variable:

x := x× x ‖ x := x + 1 .

1. If each of these assignment commands is an atomic action, then there are
two possible interleavings of the actions, which lead to two distinct possible
outcomes.

2. If the evaluation of expressions and the storing of a value in a variable are
atomic, then there are more interleavings and more possible outcomes.

� Research was partially supported by National Science Foundation Grant CCR-
0204242, by an EPSRC Visiting Fellowship at Edinburgh University, and by the
Basic Research in Computer Science (http://www.brics.dk/) Centre of the Danish
National Research Foundation. A more preliminary version of this material was pre-
sented at POPL 2004 [1].

K. Lodaya and M. Mahajan (Eds.): FSTTCS 2004, LNCS 3328, pp. 35–48, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

36 J.C. Reynolds

3. If each load and store of a variable is atomic, there are still more interleavings
and outcomes.

4. In the extreme case, say if x is a double-precision floating-point number,
the atomic actions might be loads and stores of parts of the number repre-
sentation, so that the possible outcomes would depend upon details of the
machine representation of numbers.

In practice, at most the first of these interpretations would be useful to a
programmer, while efficient implementation would be possible only at levels 3 or
4, where hardware-implemented mutual exclusion of memory references would
suffice to guarantee atomicity.

The fact that there is no default level of atomicity that is natural for both
user and implementor led researchers such as Hoare [2] and Brinch-Hansen [3]
to propose that interfering concurrent commands such as x := x× x ‖ x := x + 1
should be prohibited syntactically, so that, whenever interference is possible, the
programmer must indicate atomicity explicitly by means of critical regions, e.g.,

with lock do x := x× x ‖with lock do x := x + 1 .

Unfortunately, this proposal floundered when applied to languages that per-
mit a flexible usage of pointers (which is why, for instance, the approach was not
followed in ADA, even though it was mandated in the early requirements speci-
fications of that language). For example, consider the concurrent composition of
two indirect assignments:

[x] := [x]× [x] ‖ [y] := [y] + 1

(where [x] denotes the contents of the pointer that is the value of x). This com-
mand should be prohibited just when x = y — but in general this kind of
condition cannot be determined by a compiler.

Our answer to this dilemma is that, when x = y, the semantics of the above
program is simply “wrong”. To provide any further information would make
no sense at any level of abstraction above the machine-language implementa-
tion, and would unnecessarily restrict the ways in which the program could be
implemented.

More precisely, we propose a compositional semantics of shared-variable con-
currency that avoids the “grain of time” phenomenon by employing three prin-
ciples:

– All operations, except locking and unlocking, have duration, and can overlap
one another during execution.

– If two overlapping operations lookup or set the same location, which may
be either a variable or a pointer, then the meaning of program execution is
wrong.

– If, from a given starting state, execution of a program can give wrong, then
no other possibilities need be considered.

It must be emphasized that there is no intention of implementing wrong
as a run-time error stop, which would be extremely inefficient and, in view of

Toward a Grainless Semantics for Shared-Variable Concurrency 37

the nondeterminacy of concurrent computation, of little use. Instead, when the
semantics of a program execution is wrong, there are no constraints on how it
may be implemented.

Thus it is the programmer’s obligation to make a convincing argument that
his program will not go wrong. We can define what that means, and we should
be able to provide a logic in which such arguments can be made rigorous. But
the development of programming languages over the past thirty years makes it
clear that this concept of wrongness cannot be decided automatically without
restricting the programming language in ways that are unacceptable for many
applications.

Our hope of providing an appropriate logic lies in the development of sepa-
ration logic [4], and, more particularly, in its extension to shared-variable con-
currency [5]. The soundness of this extension is very delicate, however, and thus
must be demonstrated rigorously with respect to a compelling semantics of the
concurrent programming language. Although we will not discuss separation logic
further in this paper, we believe that the work described herein can provide such
a semantics.

Recently, Steve Brookes proposed a novel semantics for shared-variable con-
currency and used it to establish the soundness of separation logic [6]. There
are considerable similarities between this work and ours: The starting point of
both is a form of transition-trace semantics developed earlier by Brookes [7] (and
based on still earlier ideas of Park [8]), in which traces are sequences of start-
finish pairs of states. In Brookes’s current semantics, these pairs are replaced by
“actions”, the actions of concurrent processes are interleaved, and uncontrolled
interference is mirrored by interference between adjacent actions.

In contrast, our semantics captures duration directly by regarding start and
finish as separate actions, between which the actions of other processes may
intervene. (Although these two approaches are conceptually quite distinct, each
has had significant influence on the other.)

2 Some Examples

The meaning of a command is a set of traces, each of which is a finite or infinite
sequence of actions. Except for critical regions, the relevant actions are states
labelled “start” or “fin”.

For example, the meaning of the operation x:=x×x, which we write [[x:=x×x]]
is the set of traces of the form

start[x:n] fin[x:n× n] ,

for all integers n. Notice that the states in the start and finish actions have
the same domain, which is the footprint of the operation, i.e., the exact set of
locations that are examined or set by the operation.

If x := x × x runs by itself, without other processes running concurrently,
its behavior is determined by executing the traces in its meaning. For example,
starting in the state [x: 3 | t: 22], the trace start[x: 3] fin[x: 9] has the execution

38 J.C. Reynolds

[x: 3 | t: 22]
↓ start[x: 3]

[t: 22]
↓ fin[x: 9]

[x: 9 | t: 22] .

In essence, the effect of the start action is to check that x = 3 and then mark
x “busy” by removing [x: 3] from the current state. Then the effect of the finish
action is to return x to the current state with a new value.

On the other hand, when started in a state with a different value of x, the
trace start[x: 3] fin[x: 9] is irrelevant and has no execution. But an execution
will be provided by another trace, such as start[x: 4] fin[x: 16], in [[x := x× x]].

A third possibility arises when x does not occur in the domain of the starting
state. In this case the execution goes wrong:

[t: 22]
↓ start[x: 3]

wrong .

When a command assigns indirectly to a pointer, its footprint is more com-
plex. For example, the meaning [[[x] := [x]× [x]]] is the set of traces

start[x:n1 | n1:n2] fin[x:n1 | n1:n2 × n2] ,

for all integers n1 and n2. Here the footprint contains both x and its value n1,
which is a pointer. (We regard pointers as integers, in order to permit unre-
stricted pointer arithmetic.) Similarly, the meaning [[[y] := [y] + 1]] is the set of
traces

start[y:n3 | n3:n4] fin[y:n3 | n3:n4 + 1] ,

for all integers n3 and n4.
Now consider the concurrent execution of these two indirect assignments. The

meaning

[[[x] := [x]× [x] ‖ [y] := [y] + 1]]

is the set of interleavings of the traces of each subcommand. This set includes
traces of the form

start[x:n1 | n1:n2] start[y:n3 | n3:n4]

fin[y:n3 | n3:n4 + 1] fin[x:n1 | n1:n2 × n2] ,

in which the two assignment operations overlap.

Toward a Grainless Semantics for Shared-Variable Concurrency 39

When n1 �= n3, such a trace executes without interference:

[x:n1 | n1:n2 | y:n3 | n3:n4]
↓ start[x:n1 | n1:n2]

[y:n3 | n3:n4]
↓ start[y:n3 | n3:n4]

[]
↓ fin[y:n3 | n3:n4 + 1]

[y:n3 | n3:n4 + 1]
↓ fin[x:n1 | n1:n2 × n2]

[y:n3 | n3:n4 + 1 | x:n1 | n1:n2 × n2] .

On the other hand, when n1 = n3 and n2 = n4, the two assignments interfere:

[x:n1 | n1:n2 | y:n1]
↓ start[x:n1 | n1:n2]

[y:n1]
↓ start[y:n1 | n1:n2]

wrong .

Our treatment of critical regions follows the recent work of Brookes [6]. Three
actions are involved, each of which names a lock or semaphore:

try(k) : Try to acquire k, but find it is already locked.

acq(k) : Succeed in acquiring k, and lock it.

rel(k) : Unlock k (or signal “impossible” if it is already unlocked).

For example, the meaning of the critical region with k do x := x × x is the
set of traces (for all integers n):

acq(k) start[x:n] fin[x:n× n] rel(k),

try(k) acq(k) start[x:n] fin[x:n× n] rel(k),

try(k) try(k) acq(k) start[x:n] fin[x:n× n] rel(k),
...

try(k) try(k) try(k) · · · .
To execute these new actions, we augment the current state of the computa-

tion with a set κ of “closed” locks. When k /∈ κ (and n is 3), a trace of the first
form has an execution:

κ, [x: 3 | t: 22]
↓ acq(k)

κ ∪ {k}, [x: 3 | t: 22]
↓ start[x: 3]

κ ∪ {k}, [t: 22]
↓ fin[x: 9]

κ ∪ {k}, [x: 9 | t: 22]
↓ rel(k)

κ, [x: 9 | t: 22] .

40 J.C. Reynolds

On the other hand, when k ∈ κ, the last trace has a nonterminating execution
that represents deadlock:

κ, [x: 3 | t: 22]
↓ try(k)

κ, [x: 3 | t: 22]
↓ try(k)
...

The remaining traces in [[with k do x := x× x]] can only execute successfully
after being interleaved with other traces that affect the same lock. For example,
one possible interleaving of

try(k) try(k) acq(k) start[x: 3] fin[x: 9] rel(k)

with
acq(k) start[x: 2] fin[x: 3] rel(k)

(which is a trace in the meaning of with k do x := x + 1) is

acq(k) start[x: 2] try(k) fin[x: 3] try(k)

rel(k) acq(k) start[x: 3] fin[x: 9] rel(k) ,

which executes as follows when k /∈ κ:

κ, [x: 2]
↓ acq(k)

κ ∪ {k}, [x: 2]
↓ start[x: 2]

κ ∪ {k}, []
↓ try(k)

κ ∪ {k}, []
↓ fin[x: 3]

κ ∪ {k}, [x: 3]
↓ try(k)
...

κ ∪ {k}, [x: 3]
↓ rel(k)

κ, [x: 3]
↓ acq(k)

κ ∪ {k}, [x: 3]
↓ start[x: 3]

κ ∪ {k}, []
↓ fin[x: 9]

κ ∪ {k}, [x: 9]
↓ rel(k)

κ, [x: 9] .

3 Syntax, States, and the Semantics of Expressions

The programing language we will use throughout this paper is an extension of
the simple imperative language:

〈exp〉 ::= 〈var〉 | 〈constant〉 | 〈exp〉+ 〈exp〉 | · · ·

〈boolexp〉 ::= 〈exp〉 = 〈exp〉 | · · · | 〈boolexp〉 ∧ 〈boolexp〉 | · · ·

〈comm〉 ::= 〈var〉 := 〈exp〉 | skip | 〈comm〉 ; 〈comm〉
| if 〈boolexp〉 then 〈comm〉 else 〈comm〉
| while 〈boolexp〉 do 〈comm〉

Toward a Grainless Semantics for Shared-Variable Concurrency 41

with operations for looking up and mutating the contents of addresses:

〈exp〉 ::= [〈exp〉]

〈comm〉 ::= [〈exp〉] := 〈exp〉
concurrent composition:

〈comm〉 ::= 〈comm〉 ‖ 〈comm〉

and critical regions:

〈comm〉 ::= with 〈lock〉 do 〈comm〉 | with 〈lock〉when 〈boolexp〉 do 〈comm〉

(In fact, the unconditional critical region with k do c can be regarded as an
abbreviation for the conditional critical region with k when true do c. We treat
it as a separate form for expository reasons.)

We assume that constants are integers, and that variables and locks are un-
structured syntactic names (which are not integers). We also identify addresses
with integers. Then we define a location to be either a variable or an address,
and a state to be a mapping from a finite set of locations to integers:

Addresses = Integers

Locations = 〈var〉 �Addresses

States =
⋃
{ δ → Integers | δ

fin
⊆ Locations } .

We will use the following metavariables (with occasional decorations) to range
over specific sets:

v : 〈var〉 (Variables)
e : 〈exp〉 (Expressions)
b : 〈boolexp〉 (Boolean Expressions)
c : 〈comm〉 (Commands)
n : Integers
t : Truth Values
� : Locations

δ : Finite Sets of Locations
σ : States
k : 〈lock〉 (Locks)
κ : Finite Sets of Locks
τ : Traces
T : Sets of Traces
Φ : Configurations

(Traces and configurations will be defined later.)
We will also need some concepts and notations for states. We say that σ and

σ′ are compatible, written σ � σ′, iff σ ∪ σ′ is a function, or equivalently, σ and
σ′ agree on the intersection of their domains. We also write δ ⊥ δ′ when the sets
δ and δ′ are disjoint, and σ ⊥ σ′ when domσ ⊥ domσ′.

When �1, . . . , �m are distinct, we write [�1:n1 | . . . | �m:nm] for the state
with domain {�1, . . . , �m} that maps each �i into ni. We also write [σ | �:n] for
the state such that

dom[σ | �:n] = domσ ∪ {�}

[σ | �:n](�) = n

[σ | �:n](�′) = σ(�′) when � �= �′ .

42 J.C. Reynolds

(Note that [σ | �:n] may either be an extension of σ or a possibly altered
function with the same domain as σ.)

The meaning [[e]] of an expression (or boolean expression) e is a set of pairs
〈σ, n〉 in which n is the value obtained by evaluating e in any state that is an
extension of σ, and in which the domain of σ is the footprint of the evaluation,
i.e., the set of locations that are actually examined during the evaluation.

For example,

[[x− x]] = { 〈[x:m], 0〉 | m ∈ Integers }

[[x + [y]]] = { 〈[x:m | y:n | n:n′],m + n′〉 | m,n,m′ ∈ Integers } .

The relevant semantics equations are

[[〈exp〉]] ⊆ States× Integers

[[n]] = {〈[], n〉}

[[v]] = { 〈[v:n], n〉 | n ∈ Integers }

[[e + e′]] = { 〈σ ∪ σ′, n + n′〉 | 〈σ, n〉 ∈ [[e]], 〈σ′, n′〉 ∈ [[e′]], and σ � σ′ }

[[[e]]] = { 〈σ ∪ [n:n′], n′〉 | 〈σ, n〉 ∈ [[e]], n′ ∈ Integers, and σ � [n:n′] }

[[〈boolexp〉]] ⊆ States× Bool

[[e = e′]] = { 〈σ ∪ σ′, n = n′〉 | 〈σ, n〉 ∈ [[e]], 〈σ′, n′〉 ∈ [[e′]], and σ � σ′ }

[[b ∧ b′]] = { 〈σ, false〉 | 〈σ, false〉 ∈ [[b]] }
∪ { 〈σ ∪ σ′, t′〉 | 〈σ, true〉 ∈ [[b]], 〈σ′, t′〉 ∈ [[b′]], and σ � σ′ } .

(Note that the final equation describes short-circuit evaluation of conjunction.)
Since expression evaluation in our programming language happens to be de-

terministic (though this is not required by the nature of our semantics), the
meaning of an expression will be a function, but because its domain contains
only states whose domains are footprints, this function will be a restriction of
the meaning in a conventional denotational semantics.

Nevertheless, one can show an appropriate property of totality: For all e and
σ, there are σ′ and n such that σ � σ′ and 〈σ′, n〉 ∈ [[e]]. A similar property
holds for boolean expressions.

4 Traces and the Semantics of Commands

Actions can be defined grammatically:

〈action〉 ::= start(〈state〉) | fin(〈state〉) | try(〈lock〉) | acq(〈lock〉) | rel(〈lock〉)

Then a trace is a finite or infinite sequence of actions, or a finite sequence of
actions followed by either wrong or ⊥.

Toward a Grainless Semantics for Shared-Variable Concurrency 43

We use “;” to denote the following concatenation of traces:

τ1 ; τ2 =

{
τ1 if τ1 is infinite, or ends in wrong or ⊥,

τ1 τ2 otherwise.

Then we can define the concatenation and exponentiation of trace sets in a
standard way:

T ; T ′ = { τ ; τ ′ | τ ∈ T, τ ′ ∈ T ′ }

T 0 = {ε}

Tn+1 = T ; Tn

T ∗ =
⋃∞

n=0 T
n

Tω = { τ0 ; τ1 ; · · · | ∀i ≥ 0. τi ∈ T } .

We will also need the concept of a filter to describe the use of boolean ex-
pressions to determine control flow:

filter(〈boolexp〉) ⊆ Traces

filter(b) = { start(σ) fin(σ) | 〈σ, true〉 ∈ [[b]] } .

From the totality property of boolean expressions, one can obtain a totality
condition for filters: For all b and σ, there is a σ′ such that σ � σ′ and

start(σ′) fin(σ′) ∈ filter(b) ∪ filter(¬ b) .

With these preliminaries, we can give semantic equations that determine the
sets of traces that are meanings of sequential commands:

[[〈comm〉]] ⊆ Traces

[[v := e]] = { start(σ ∪ [v:nold]) fin([σ | v:n]) |
〈σ, n〉 ∈ [[e]], σ � [v:nold] }

[[[e] := e′]] = { start(σ ∪ σ′ ∪ [n:nold]) fin([σ ∪ σ′ | n:n′]) |
〈σ, n〉 ∈ [[e]], 〈σ′, n′〉 ∈ [[e′]], σ � σ′, (σ ∪ σ′) � [n:nold] }

[[skip]] = {start[] fin[]}

[[c1 ; c2]] = [[c1]] ; [[c2]]

[[if b then c1 else c2]] = (filter(b) ; [[c1]]) ∪ (filter(¬ b) ; [[c2]])

[[while b do c]] =
(
(filter(b) ; [[c]])∗ ; filter(¬ b)

)
∪ (filter(b) ; [[c]])ω .

44 J.C. Reynolds

For example

[[[x] := [y] + 1]] =

{ start[x:m | m:m′ | y:n | n:n′] fin[x:m | m:n′ + 1 | y:n | n:n′]

| m,m′, n, n′ ∈ Integers and m �= n }
∪ { start[x:n | y:n | n:n′] fin[x:n | y:n | n:n′ + 1] | n, n′ ∈ Integers } .

To define concurrent composition, we must first introduce the concept of
a fair merge of the traces τ1 and τ2, which is an merge (or interleaving) that
contains every occurrence of actions in τ1 and τ2 (even when τ1 or τ2 is infinite).

To make this concept precise, we regard a trace as a function whose domain
is the finite or infinite set of nonnegative numbers less than the length of the
trace. Then τ is a fair merge of τ1 and τ2 iff there are functions φ1 and φ2 such
that

domφ1 = dom τ1 and domφ2 = dom τ2.

φ1 and φ2 are strictly monotone.

The ranges of φ1 and φ2 are a partition of dom τ .

For all i ∈ dom τ1, τ1(i) = τ(φ1(i)).

For all i ∈ dom τ2, τ2(i) = τ(φ2(i)).

Next, we define

τ1 ‖ τ2 = { truncate(τ) | τ is a fair merge of τ1 and τ2 } ,

where truncate is a function that captures the fact that wrong and ⊥ always
terminate traces: When τ does not contain wrong or ⊥,

truncate(τ) = τ

truncate(τ wrong τ ′) = τ wrong

truncate(τ ⊥ τ ′) = τ ⊥ .

Finally, the meaning of the concurrent composition c1 ‖ c2 is the set of trun-
cated fair merges of traces in the meaning of c1 with traces in the meaning of
c2:

[[c1 ‖ c2]] =
⋃
{ τ1 ‖ τ2 | τ1 ∈ [[c1]], τ2 ∈ [[c2]] } .

Our semantics of critical regions follows closely that of Brookes [6]:

[[with k do c]] =
(
{try(k)}∗ ; {acq(k)} ; [[c]] ; {rel(k)}

)
∪ {try(k)}ω

[[with k when b do c]] =(
wait∗ ; {try(k)}∗ ; {acq(k)} ; filter(b) ; [[c]] ; {rel(k)}

)
∪ waitω ,

where

wait =
(
{try(k)}∗ ; {acq(k)} ; filter(¬ b) ; {rel(k)}

)
∪ {try(k)}ω .

Toward a Grainless Semantics for Shared-Variable Concurrency 45

Notice that with k when b do c will fail to terminate if either it fails to ever
acquire the lock k, or if it acquires k, but never when b is true.

There is a concept of totality that is appropriate to sets of traces: A set T of
traces is said to be total whenever, if

τ start(σ0) τ ′ ∈ T ,

holds for some state σ0, then for every state σ there is a trace

τ start(σ′) τ ′′ ∈ T ,

such that σ � σ′.
There is also a somewhat analogous concept related to locks: A set T of traces

is lock-total whenever, if
τ acq(k) τ ′ ∈ T ,

then there is a trace
τ try(k) τ ′′ ∈ T .

It can be shown that, for all commands c, [[c]] is total and lock-total.

5 Executing Traces

The execution of traces is described by a small-step operational semantics. A
configuration Φ consists of a trace to be executed, coupled with the currently
available state and a finite set of closed locks, or it is one of three special con-
figurations that indicate abnormal termination or explicit nontermination:

Configurations =

Finite Sets of Locks× States× Traces ∪ {wrong, impossible,⊥} .

A configuration is nonterminal if it contains a nonempty trace; otherwise it
is terminal. (For readability, we omit empty traces from terminal configuations.)

Informally, the special terminal configurations have the following meanings:

– “wrong” indicates that a start operation has tried to access a location that
is not in the domain of the currently available state.

– “impossible” indicates that a fin operation has tried to extend the current
state at a location that is already in its domain, or that a rel has tried to
open a lock that is not closed.

– ⊥ indicates that the trace will execute forever without performing further
actions.

Transitions go from nonterminal configurations to configurations that are
either nonterminal or terminal. They are described by the relation

→ ⊆ Nonterminal Configurations× Configurations

that is the least relation satisfying:

46 J.C. Reynolds

κ, σ, start(σ′) τ →

⎧⎪⎨⎪⎩
κ, σ − σ′, τ if σ′ ⊆ σ

wrong if σ � σ′ and σ′ �⊆ σ

no transition if σ �� σ′

κ, σ,fin(σ′) τ →
{
κ, σ ∪ σ′, τ if σ′ ⊥ σ

impossible otherwise

κ, σ, try(k) τ →
{
κ, σ, τ if k ∈ κ

no transition if k /∈ κ

κ, σ,acq(k) τ →
{
κ ∪ {k}, σ, τ if k /∈ κ

no transition if k ∈ κ

κ, σ, rel(k) τ →
{
κ− {k}, σ, τ if k ∈ κ

impossible if k /∈ κ

κ, σ,wrong → wrong

κ, σ,⊥ → ⊥ .

It is easy to see that → is a partial, but not total function.
A sequence of configurations that begins with the nonterminal Φ = κ, σ, τ ,

and in which each configuration is related to the next, is called an execution of
τ in κ, σ. If there is such an execution that is finite and ends with Φ′, we write
Φ→∗ Φ′; if there is such an execution that is infinite, we say that Φ diverges.

Since → is a partial function, if Φ diverges, then there is no terminal Φ′ such
that Φ→∗ Φ′, while if Φ does not diverge, then there is at most one Φ′ such that
Φ→∗ Φ′. In other words, the execution of a trace is always determinate.

On the other hand, since → is not a total function, there are nonterminal
Φ = κ, σ, τ such that Φ does not diverge and there is no terminal Φ′ such that
Φ →∗ Φ′. In this case, there is no execution of τ in κ, σ, and we say that τ is
irrelevant to κ, σ.

Another property of trace execution stems from from the fact that in any
trace of any command in our programming language, the actions acq and rel,
and also start and fin, are balanced, in much the same sense as with paren-
theses. Specifically, in any prefix of any trace of any command, the number of
occurrences of rel(k) for a particular lock k will never exceed the number of oc-
currences of acq(k) for the same lock, and the number of occurrences of fin(σ)
for which a particular variable occurs in domσ will never exceed the number of
occurrences of start(σ′) for which the same variable occurs in domσ′.

Because of this property (which might not hold for a lower-level program-
ming language), one can show that the abnormal termination “impossible” never
arises: For all commands c, traces τ ∈ [[c]], lock sets κ, and states σ:

Toward a Grainless Semantics for Shared-Variable Concurrency 47

κ, σ, τ �→∗ impossible .

Finally, we define the execution of a set of traces T , in κ, σ:

Exec(κ, σ, T) = { 〈κ′, σ′〉 | ∃τ ∈ T. κ, σ, τ →∗ κ′, σ′ }

∪ if κ, σ, τ →∗ wrong then Wrong else {}

∪ if κ, σ, τ diverges then {⊥} else {} ,

where Wrong is the set of all terminal configurations, including “wrong”. Since

Wrong ∪ S = Wrong ,

for all sets S of terminal configurations, this captures the principle that Wrong
overrides other possible outcomes. It also captures the notion that Wrong can
be implemented arbitrarily.

In contrast to the execution of a particular trace, the execution of a trace
set that is the meaning of a command can be nondeterminate. On the other
hand, since command meanings are total and lock-total, Exec(κ, σ, [[c]]) contains
at least one terminal configuration for every command c, state σ, and finite lock
set κ.

6 Future Directions

Our trace semantics leads to a broader notion of observational equivalence than
the conventional semantics of shared-variable concurrency. For example, in a
conventional semantics the commands

x := x + 1 ; x := x + 2 and x := x + 3

are distinguishable when run concurrently with, say, x :=1. But in our semantics,
these commands are observationally equivalent: They would both go wrong if
run concurrently with any command that assigns to or evaluates x; otherwise
they would both increase x by three.

As suggested by this example, the broader notion of observational equivalence
should provide greater scope for the development of code optimization. Unfortu-
nately, however, our trace semantics is far from fully abstract; for example, the
above commands denote distinct trace sets.

We intend to study equivalences on trace sets that at least approach obser-
vational equivalence. For example, we conjecture that every command without
critical regions has a meaning that is equivalent to a set of traces whose members
each have one of the forms:

start(σ) fin(σ′) where domσ = domσ′

start(σ) ⊥
start(σ) wrong .

48 J.C. Reynolds

I hope to report more on this topic in my talk.
We also hope to extend the programming language described by our semantics

to include declarations of variables and locks. This should be a straightforward
adaptation of the approach used by Brookes for transition traces [7]. It would
also be useful to introduce operations for storage allocation and deallocation,
perhaps similar to the cons and dispose operations of separation logic.

Another important direction would be permit passivity, i.e., to relax the
assumption that overlapping operations on the same location go wrong, in order
to allow the overlapping of read-only operations.

Finally, we hope to use our grainless semantics to model concurrent separation
logic [5], and to relate the semantics to Brookes’s model [6].

Acknowledgement

The author wishes to thank Stephen D. Brookes for numerous helpful discussions.

References

1. Reynolds, J.C.: Towards a grainless semantics for shared variable concurrency (ab-
stract only). In: Conference Record of POPL 2004: The 31st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, New York, ACM
Press (2004)

2. Hoare, C.A.R.: Towards a theory of parallel programming. In Hoare, C.A.R.,
Perrott, R.H., eds.: Operating Systems Techniques. Volume 9 of A.P.I.C. Studies in
Data Processing, London, Academic Press (1972) 61–71

3. Brinch Hansen, P.: Structured multiprogramming. Communications of the ACM
15 (1972) 574–578

4. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
Proceedings Seventeenth Annual IEEE Symposium on Logic in Computer Science,
Los Alamitos, California, IEEE Computer Society (2002) 55–74

5. O’Hearn, P.W.: Resources, concurrency and local reasoning. In: CONCUR 2004
— Concurrency Theory, Proceedings of the 15th International Conference. Volume
3170 of Lecture Notes in Computer Science, Berlin, Springer-Verlag (2004) 49–67

6. Brookes, S.D.: A semantics for concurrent separation logic. In: CONCUR 2004
— Concurrency Theory, Proceedings of the 15th International Conference. Volume
3170 of Lecture Notes in Computer Science, Berlin, Springer-Verlag (2004) 16–34

7. Brookes, S.D.: Full abstraction for a shared-variable parallel language. Information
and Computation 127 (1996) 145–163

8. Park, D.M.R.: On the semantics of fair parallelism. In Bjørner, D., ed.: Abstract
Software Specifications. Volume 86 of Lecture Notes in Computer Science, Berlin,
Springer-Verlag (1980) 504–526

Regular Languages, Unambiguous
Concatenation and Computational Complexity

Denis Thérien

School of Computer Science, McGill University
denis@cs.mcgill.ca

Abstract. Regular languages are central objects of study in computer
science. Although they are quite “easy” in the traditional space-time
framework of sequential computations, the situation is different when
other models are considered. In this paper we consider the subclass of
regular languages that can be defined via unambiguous concatenation.
We show remarkable algorithmic properties of this class in the context
of boolean circuits and in that of computational learning.

1 Introduction

This paper will discuss various computational complexity issues that can be
related to regular languages. Our interest is two-fold.

First, the class of regular languages plays a central role in all of computer
science; it possibly constitutes the computational notion with the widest range
of real world applications and it thus appears quite meaningful to investigate
the class in details. The interest of the concept becomes even more apparent
in the light of the many equivalent characterizations arising from several, a
priori unrelated, points of view: for example, in terms of machines (finite-state
automata), in terms of algebra (finite monoids) or in terms of logic (second-order
monadic formulas).

Secondly, it has been realized over the years that regular languages can be
used to analyze some computational complexity questions that are of interest
in theoretical computer science. In the classical sequential model of space-time
complexity, regular languages appear as a most simple class as they are pre-
cisely the languages that are recognizable in constant space and linear time,
which seems to leave little to add. In models that have appeared later, e.g.
boolean circuits or communication complexity, the situation is quite different:
the class of regular languages provide “hard” examples for these models, and it
becomes interesting to understand natural parametrizations of the class in terms
of computational difficulty in the given framework. It is a pleasing situation that
standard classification on the language side corresponds often to computational
parametrization of interest. This is true in the two models mentioned above ([3]
for boolean circuits, [24] for communcation complexity), but in several other
contexts as well: constraint satisfaction problems ([13]), linear temporal logic
([26]), quantum automata ([1]), computational learning ([10]).

K. Lodaya and M. Mahajan (Eds.): FSTTCS 2004, LNCS 3328, pp. 49–57, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

50 D. Thérien

In this paper, we will argue for our paradigm by presenting two examples
in which it is possible to investigate computational issues in terms of regular
languages: boolean circuits and computational learning. As a running theme we
will focus attention on the subclass of so-called unambiguous languages, those
that are definable using disjoint union and unambiguous concatenation. In both
our examples, it will be seen that this restricted class corresponds to the existence
of efficient algorithms within the model being considered. A first survey of this
class has appeared in [23]; we here add some more recent results. The paper
is organized as follows: a first section will summarize the definitions on regular
languages that will be needed for our discussion. Our two examples are then
discussed in turn.

2 Regular Languages

The class of regular languages is well-known. We sketch here the small portion
of the framework that we will need; a more detailed treatment is found e.g. in
[15]. For each alphabet A, the class of regular languages over A consists of the
smallest family of subsets of A∗ that contains the finite sets, and that is closed
under union, concatenation and star. Regular languages arise naturally when
studying computations: in particular the famous theorem of Kleene asserts that
a language is regular iff it can be recognized by a deterministic finite automaton.
This immediately implies that the complement of a regular language is also
regular.

A slight variant of Kleene’s theorem paves the way to a very powerful algebraic
treatment to understand regular languages. A monoid is a set equipped with a bi-
nary operation that is associative and that admits a two-sided identity element.
A language L ⊆ A∗ is recognized by a monoid M iff there exists a morphism
φ : A∗ → M such that L = φ−1(φ(L)). Kleene’s result can be restated as follows:
a language is regular iff it can be recognized by a finite monoid. Actually, to each
regular language L can be associated in a canonical way a unique minimal monoid
that will recognize it; it is called the syntactic monoid ofL and denotedM(L). This
algebraic object can be effectively computed, e.g. from any regular expression for
L, and this often plays a key role in decidability issues in this theory. Intuitively, one
would believe that combinatorial characteristics of a language L can be related to
algebraic properties of its syntactic recognizer. This intuition is validated beyond
all hopes and the two theories, finitemonoids and regular languages, are nowdeeply
intertwined [9]. There also exists an elegant relationship between regular languages
and logic. Indeed, once the formalism is properly set up, regular languages are ex-
actly those arising in the monadic second-order theory of successor. We refer the
reader to [22] for a treatment of regular languages from that point of view.

The notion of regular language is thus ubiquitous, a good sign of mathe-
matical relevance. Moreover, because this class describes the computations of
finite-state devices, one is not surprized to see it showing up in a wide range
of real-world applications. Our interest in this article will be to present some

Regular Languages, Unambiguous Concatenation 51

computational complexity results about a remarkable subclass of regular lan-
guages, those that can be defined via unambiguous concatenation.

2.1 Unambiguous Languages

Although Rabin and Scott [16] had early on discussed some specific subfamilies
of the regular laguages, the first really significant subclass was investigated by
Schützenberger in [17]. The class of star-free languages over an alphabet A is
the smallest family containing the finite subsets of A∗, and closed under boolean
operations and concatenation. Note that closure under complement is required
explicitely. Schützenberger proved the difficult theorem that a language is star-
free iff its syntactic monoid contains no non-trivial groups; this implies that one
can decide if a given language is star-free. This class is also meaningful from a
logical point of view; it is not too hard to show that star-freeness corresponds
to definability in first-order logic with < being used as a numerical predicate.

Our attention will be focussed on yet a smaller class than the star-free sets.
Let us say that a concatenation of languages L1 · · ·Lk is unambiguous iff any
word belonging to this product admits a unique factorization w = w1 · · ·wk,
with each wi in Li. The class of unambiguous languages is defined by taking
disjoint unions of unambiguous concatenations of the form A∗

0a1A
∗
1 · · · akA

∗
k,

where each ai is a letter and each Ai is a subset of A. The ai’s will be refered
to as bookmarks. Note that each unambiguous language is star-free, since, for
every B ⊆ A, B∗ = ∩a	∈B∅a∅.

It is not apparent at all that the class of unambiguous languages is closed
under complement. This follows from another difficult theorem of Schützenberger
[18]. Let DA be the class of finite monoids M satisfying the condition that for
all e = e2 and for all s in M , MeM ⊆MsM implies ese = e.

Theorem 1. A language is unambiguous iff its syntactic monoid is in DA.

It is thus decidable if a language is unambiguous and the class is closed
under complement, because L and L always have the same syntactic monoid.
Unambiguity of concatenation is essential here, i.e. not all products of the form
A∗

0a1A
∗
1 . . . asA

∗
s have the property that their complement can be written in the

same form; for example the language A∗aaA∗ ⊆ {a, b}∗ cannot be written as
a disjoint union of unambiguous products (proof: its syntactic monoid can be
shown to be outside of DA) and its complement cannot be written as a union
of products of the same form, a result whose proof requires the deep theory
of partially ordered monoids introduced in [14]. The algebraic description of
unambiguous languages given by the theorem above once again has a logical
counterpart [25]; they correspond to languages which are definable by first-order
sentences using two variables only, and they also are those for which both a Σ2
and a Π2 sentence can be constructed.

Two further characterizations of unambiguous languages (or DA) will be
useful in our discussion. The first one is folklore.

Theorem 2. A group-free monoid is in DA iff it cannot recognize the language
A∗aaA∗ nor the language (ab)∗.

52 D. Thérien

The second one is proved in [19].

Theorem 3. A language is unambiguous iff it can be recognized by a partially
ordered two-way finite automaton.

We will use the following model which is equivalent to partially ordered finite
two-way automaton. A turtle program is given by T = (d1, a1) · · · (dk, ak), where
each di is either R or L, each ai is a letter. The program executes as follows on
input w of length n; if d1 = R then the initial position of the head is 0, otherwise
the initial position is n + 1; Each instruction (d, a) is then executed in turn,
moving the head from its current position to the next on the right (if d = R) or
on the left (if d = L) that contains the letter a. If no such position exists, the
instruction fails, and the language accepted by T is the set of words for which
no instruction fails. It can be shown that a language is unambiguous iff it is a
boolean combination of languages that can be recognized by turtle programs.

3 Boolean Circuits

An important result of Barrington [2] asserts that every language in NC1, i.e.
recognizable by a circuit of logarithmic depth constructed with binary gates,
reduces to a regular language via a polynomial-length projection. This theorem
is refined in [3] where, for example, it is shown that languages reducible to star-
free languages are exactly those in AC0, i.e. recognizable by constant-depth,
polynomial-size circuits constructed with unbounded AND and OR gates.

We will now consider at a finer level what is the difficulty of recognizing
star-free languages with boolean circuits. The result of [3] together with the
theorem of Sipser [21] stating that circuits of depth k can do strictly more
than circuits of depth k − 1, implies that there is no fixed constant-depth in
which we can do all star-free languages in polynomial size. We are interested
here in the number of wires. Surprizingly, for every star-free language L, for
every unbounded primitive recursive function g, there is a constant-depth circuit
recognizing L with O(ng−1(n)) wires [7]. That is every star-free language can be
recognized by a constant-depth circuit with a number of wires that is just above
linear. For general languages in AC0, no such claim can be made.

Theorem 4. For every fixed k, there is a language in AC0 which cannot be
decided in constant-depth with O(nk) wires.

Proof. We prove the result in terms of gates, which is equivalent. The argument
here is due to Harry Buhrman [6]. For large enough n, the number of circuits with
O(nk) gates is less than 2n2k log n. We diagonalize as follows: order the strings of
length n arbitrarily, and consider the first n2k log n of them. Declare the first one
to be in the language iff the majority of circuits with nk gates reject that string.
Declare the second string to be in the language iff the majority of the remaining
circuits reject that string. Continuing in this way for our n2k log n strings, and
declaring all other strings to be rejected, we create a language which cannot be

Regular Languages, Unambiguous Concatenation 53

recognized by any circuit of the required size, although it clearly can be done in
polynomial-size depth 2 using DNF.

Subsequent to the work of [7], the question can be asked as to which star-free
languages can be done with O(n) wires. This has recently been resolved in [12].
For technical reasons, we consider in this section only regular languages that
contain a neutral letter, i.e. a letter e such that for any word uv ∈ L iff uev ∈ L.
For example, the language (ab)∗ is trivial from a circuit point of view since for
any n it contains at most one word of that length; adding a neutral letter to the
language makes it much more interesting.

Theorem 5. A star-free language with a neutral letter can be recognized by an
AC0 circuit with a linear number of wires iff this language is unambiguous.

Proof. For the upper bound, it suffices to construct an efficient circuit for a
language recognized by a unique turtle program T = (d1, a1) · · · (dk, ak). Let
us assume that d1 = R, the other case is similar. We compute the value of
k + 1 variables B0, . . . , Bk where Bi indicates if the program has failed or not
after i instructions. In particular, B0 = 1 and Bk is the output gate of the
required circuit. For i = 1, . . . , k we also compute a vector bi1 . . . bin = 0j1n−j

to indicate that the reading head is in position j after i instructions (if Bi = 0
then this vector is arbitrary). We have B1 =

∨
j((xj = a1)) and b11 . . . b1n =

PREFIX-ORj((xj = a1)). Here, the function PREFIX-OR (y1, . . . , yn) returns
n boolean values z1, . . . , zn with zi = OR(y1, . . . , yi). It is known by [4] that this
function can be computed with linear number of wires. In general, let the ith

instruction be (R, a); we set Bi = Bi−1 ∧
∨

j(bi−1j ∧ (xj = a)), and bi1 . . . bin =
PREFIX-ORj((bi−1j ∧ (xj = a)). If the ith instruction is (L, a), we rather set
Bi = Bi−1∧

∨
j(bi−1j∧bi−1j+1∧(xj = a)), and bi1 . . . bin = SUFFIX-ORj(bi−1j∧

(bi−1j+1 ∧ (xj = a)). This clearly implies our claim.
The lower bound builds upon previous arguments dealing with superconcen-

trators. We refer to [12] for that proof.

4 Computational Learning

We will here consider Angluin’s model of exact learning, adapted to the frame-
work we are looking at. In a first variant, we are interested in functions f :
(A∗)n → {0, 1} that can be expressed as follows: there is a fixed language L
and the function is given by an expression f(X1, . . . , Xn) = u0Xi1u1 . . . Xis

us

which evaluates to 1 on a given n-tuple w = (v1, . . . , vn) iff the corresponding
word belongs to L. A learning algorithm must identify an unknown function of
this form by asking queries to a Teacher who knows f . In general, the model
allows Evaluation queries, where the algorithm sends a tuple w in (A∗)n and re-
ceives f(w), and Equivalence queries, where the algorithm sends an hypothesis
g and either succeeds or else is given a counterexample w where f(w) �= g(w).
We now show that unambiguity once again corresponds to a natural border in
computational complexity within this model.

54 D. Thérien

Theorem 6. If a language is unambiguous then any expression over it can be
identified with a polynomial number of Evaluation queries.

Proof. Let L be an unambiguous language and let t be a constant such that every
language recognized by the syntactic monoid of L can be written as a disjoint
union of terms of the form A∗

0a1A
∗
1 · · · asA

∗
s, where the product is unambiguous

and s ≤ t. The learning algorithm asks the polynomially many Evaluation queries
for all tuples w ∈ (A∗)n where the sum of the lengths of the components of w
is at most 2t. We argue that this defines the function uniquely for all tuples.
Suppose on the contrary that there are two distinct functions f and g consistent
with all the values returned by the teacher, and let w be a tuple on which they
differ. In particular f(w) and g(w) map to different elements in the syntactic
monoid and thus belongs to different unambiguous products, each having at
most t bookmarks. Let z be the tuple obtained from w by erasing all letters
that do not contribute any bookmark in neither f(w) nor g(w). Thus the sum
of the lengths of the components of z is at most 2t. We have f(w) = f(z) and
g(w) = g(z), since e.g. f(z) is obtained from f(w) by deleting letters which
are not bookmarks; because of consistency we also have f(z) = g(z), hence
f(w) = g(w), a contradiction.

We next show that the two minimal star-free languages which are not unam-
biguous cannot be identified efficiently.

Theorem 7. Let L = (ab)∗. Then expressions over L cannot be identified with
a subexponential number of Evaluation queries.

Proof. Consider expressions of the form T1 . . . Tn where each Ti is either abXib
or aXiab; there are thus 2n expressions of that form. Such an expression will
evaluate to a word in L for a given input (v1, . . . , vn) iff for each i vi ∈ La∗ if
Ti = abXib and vi ∈ bL if Ti = aXiab. A standard adversary argument shows
that 2n − 1 Evaluation queries are needed to identify the expression.

Theorem 8. Let L = A∗aaA∗. Then expressions over L cannot be identified
with a subexponential number of Evaluation queries.

Proof. Consider a monotone DNF formula T1 ∨ . . . ∨ Tk; form the expression
aT1a . . . aTkaP (X1) . . . P (Xn), where P (X) = bXaXba. If any variable Xi is
replaced by a word in L or by a word that begins or ends with the letter a,
the expression necessarily evaluates to a word in the language since it contains
the factor P (Xi) which is in L. The only interesting queries are thus for tuples
where each component is either the empty word (corresponding to the original
boolean variable being set to True) or to a word in bA∗b− L (corresponding to
the original boolean variable being set to False). On a given tuple the expression
then evaluates to a word in the language L iff the original DNF is satisfied by
the corresponding boolean assignment. Being able to identify expressions over
L thus implies being able to identify monotone DNF functions; this is known to
require an exponential number of Evaluation queries by [5].

Regular Languages, Unambiguous Concatenation 55

In a second variant that has been studied, one looks at boolean functions that
can be reduced to regular languages via projections of polynomial length. That
is there is a fixed regular language L ⊆ A∗ and a reduction f : {0, 1}n → Ank

having the property that for every j between 1 and nk, there exists ij between
1 and n such that the jth bit of f(w) depends only on the ithj bit of w. The
boolean function F being defined is F (w) = True iff f(w) ∈ L. As in the case of
boolean circuits, it is necessary here to consider languages which have a neutral
letter.

A theorem proved in [11] asserts that a boolean function can thus be com-
puted by a projection to an unambiguous language iff it can be computed by
a decision tree of bounded rank. These are known [20] to be learnable with a
polynomial number of Equivalence queries. The status of functions computed by
a projection to the language A∗ac∗aA∗ is unknown as learning these corresponds
to learning functions given by DNF, which is the major open question in com-
putational learning theory. A result of [8] implies that functions computed by
projections to (c∗ac∗bc∗)∗ can also be learned with polynomially many Equiva-
lence queries. An important difference with the case of unambiguous languages
though is that the polynomial in this second case is in n and also in the length
of the projection; on the contrary it can be shown that every projection to an
umambiguous language can be realized in polynomial length, hence the number
of queries in this case is a polynomial in n only.

5 Conclusion

Computer science students are most often introduced to theoretical ideas of the
discipline via regular languages and finite automata. These concepts are then
heavily used in formalizing several types of applications. The point that we are
making in this paper is that regular languages provide a good vehicle to study
issues arising in computations, in more general models than finite-state machines.
It is often the case that the natural combinatorial parametrizations known for
regular languages imply corresponding algorithmic parametrizations in various
models.

We have given two examples in favour of this paradigm, boolean circuits and
computational learning. In both cases we have shown that the well-known class of
unambiguous languages enjoyed remarkable algorithmic properties. In the case of
boolean circuits, it corresponds to those star-free languages which can be recog-
nized by constant-depth circuits with linear number of wires. It is an interesting
question to verify if the same statement holds when we count gates instead of
wires; we conjecture that the answer is affirmative and thus that, for star-free
languages, O(n) wires and O(n) gates have the same computational power. In
computational learning, unambiguity corresponds to certain type of functions
which can be identified with a polynomial number of Evaluation queries; in case
of boolean functions realized by projections to regular languages, the situation
is not completely resolved, but there again, unambiguity seems to be playing a
role.

56 D. Thérien

References

1. A. Ambainis, M. Beaudry, M. Golovkins, A. Kikusts, M. Mercer, and D. Thérien.
Algebraic results on quantum automata. In STACS, pages 93–104, 2004.

2. D. Barrington. Bounded-width polynomial-size branching programs recognize ex-
actly those languages in NC1. In STOC, pages 1–5, 1986.

3. D. Barrington and D. Thérien. Finite monoids and the fine structure of NC1. J.
ACM, 35(4):941–952, 1988.

4. G. Bilardi and F. Preparata. Characterization of associative operations with prefix
circuits of constant depth and linear size. SIAM J.Computing, 19(2):246–255, April
1990.

5. N. Bshouty, R. Cleve, R. Gavaldà, S. Kannan, and C. Tamon. Oracles and queries
that are sufficient for exact learning. Journal of Computer and System Sciences,
52:421–433, 1996.

6. H. Buhrman. Private communication. 2004.
7. A. Chandra, S. Fortune, and R. Lipton. Unbounded fan-in circuits and associative

functions. JCSS, 30:222–234, 1985.
8. Z. Chen and S. Homer. On learning counting functions with queries. In COLT,

pages 218–227. ACM press, 1994.
9. S. Eilenberg. Automata, Languages and Machines, volume B. Academic Press,

New York, 1976.
10. R. Gavaldà and D. Thérien. Learning expressions over monoids. In STACS, pages

283–293, 2001.
11. R. Gavaldà and D. Thérien. Algebraic characterizations of small classes of boolean

functions. In STACS, pages 331–342, 2003.
12. M. Koucký, P. Pudlák, and D. Thérien. Star-free languages needing linear number

of wires. In preparation.
13. C. Moore, P. Tesson, and D. Thérien. Satisfiability of systems of equations over

finite monoids. In MFCS, pages 537–547, 2001.
14. J. Pin and P. Weil. Polynomial closure and unambiguous product. In 22nd ICALP,

volume 944 of Lecture Notes in Computer Science, pages 348–359, Berlin, 1995.
Springer-Verlag.

15. J. E. Pin. Varieties of Formal Languages. Plenum, London, 1986.
16. M. O. Rabin and D. Scott. Finite automata and their decision problems. IBM J.

Res. Dev., 3:114–125, 1959.
17. M. Schützenberger. On finite monoids having only trivial subgroups. Inform. and

Control, 8:190–194, 1965.
18. M. Schützenberger. Sur le produit de concatenation non ambigu. Semigroup Fo-

rum, 13:47–75, 1976.
19. T. Schwentick, D. Thérien, and H. Vollmer. Partially-ordered two-way automata :

A new characterization of DA. In Developments in Language Theory, pages 239–
250, 2001.

20. H. Simon. Learning decision lists and trees with equivalence-queries. In EuroCOLT,
pages 322–336, 1995.

21. M. Sipser. Borel sets and circuit complexity. In STOC, pages 61–69, 1983.
22. H. Straubing. Finite Automata, Formal Logic and Circuit Complexity. Birkhäuser,

1994.
23. P. Tesson and D. Thérien. Diamonds are forever: the variety DA. In G. Gomez,

P. Silva, and J. Pin, editors, Semigroups, Algorithms, Automata and Languages.
WSP, 2002.

Regular Languages, Unambiguous Concatenation 57

24. P. Tesson and D. Thérien. Complete classifications of the communication com-
plexity of regular languages. In STACS, pages 62–73, 2003.

25. D. Thérien and T. Wilke. Over words, two variables are as powerful as one quan-
tifier alternation. In STOC, pages 234–240, 1998.

26. D. Thérien and T. Wilke. Nesting until and since in linear temporal logic. Theory
of Computing Systems, 37(1):111–131, 2004.

Decidability of Zenoness, Syntactic Boundedness and
Token-Liveness for Dense-Timed Petri Nets

Parosh Abdulla1, Pritha Mahata1, and Richard Mayr2

1 Uppsala University, Sweden
2 North Carolina State University, Raleigh NC, USA

{parosh, pritha}@it.uu.se, mayr@csc.ncsu.edu

Abstract. We consider Timed Petri Nets (TPNs) : extensions of Petri nets in which
each token is equipped with a real-valued clock. We consider the following three
verification problems for TPNs.

(i) Zenoness: whether there is an infinite computation from a given marking which
takes only a finite amount of time. We show decidability of zenoness for TPNs,
thus solving an open problem from [dFERA00].
(ii) Token Liveness: whether a token is alive in a marking, i.e., whether there is
a computation from the marking which eventually consumes the token. We show
decidability of the problem by reducing it to the coverability problem, which is
decidable for TPNs.
(iii) Boundedness: whether the size of the reachable markings is bounded. We
consider two versions of the problem; namely semantic boundedness where only
live tokens are taken into consideration in the markings, and syntactic bounded-
ness where also dead tokens are considered. We show undecidability of semantic
boundedness, while we prove that syntactic boundedness is decidable through an
extension of the Karp-Miller algorithm.

1 Introduction

Petri nets are one of the most widely used models for analysis and verification of con-
current systems. Timed Petri nets (TPNs) are extensions of Petri nets in the sense that
each token has an “age” which is represented by a real valued clock (see [Bow96] for a
survey). TPNs are computationally more powerful than timed automata [AD90], since
they operate on a potentially unbounded number of clocks. This implies that TPNs can,
among other things, model parameterized timed systems (systems consisting of an un-
bounded number of timed processes) [AN01]. Recently, several verification problems
have been studied for TPNs (see e.g. [RGdFE99, dFERA00,AN01,AN02]). These prob-
lems are both extensions of classical problems previously studied for standard (untimed)
Petri nets, and problems which are related to the timed behavior of TPNs. In this paper,
we consider three verification problems for TPNs.
Zenoness. A fundamental progress property for timed systems is that it should be pos-
sible for time to diverge [Tri99]. This requirement is justified by the fact that timed
processes cannot be infinitely fast. Computations violating this property are called zeno.
Given a TPN and a marking M , we check whether M is a zeno-marking, i.e., whether
there is an infinite computation from M with a finite duration. The zenoness problem
is solved in [Alu91] for timed automata using the region graph construction. Since region

K. Lodaya and M. Mahajan (Eds.): FSTTCS 2004, LNCS 3328, pp. 58–70, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Decidability of Zenoness, Syntactic Boundedness and Token-Liveness 59

graphs only deal with a finite number of clocks, the algorithm of [Alu91] cannot be
extended to check zenoness for TPNs. The zenoness problem was left open in [dFERA00]
both for dense TPNs (the model we consider in this paper) and for discrete TPNs (where
behavior is interpreted over the discrete time domain).

We show that even for dense-timed Petri nets, a decidable symbolic representation of
all zeno-markings can be effectively constructed. The construction can easily be modified
(in fact simplified) to deal with the discrete-time case.

Token Liveness. Markings in TPNs may contain tokens which cannot be used by any
future computations of the TPN. Such tokens do not affect the behavior of the TPN and
are therefore called dead tokens. We give an algorithm to check, given a token and a
marking, whether the token is dead (or alive). We do this by reducing the problem to
the problem of coverability in TPNs. An algorithm to solve the coverability problem is
given in [AN01]. Token liveness for dense TPNs was left open in [dFERA00].

Boundedness. We consider the boundedness problem for TPNs: given a TPN and an
initial marking, check whether the size of reachable markings is bounded. The decid-
ability of this problem depends on whether we take dead tokens into consideration. In
syntactic boundedness one considers dead tokens as part of the (size of the) marking,
while in semantic boundedness we disregard dead tokens; that is we check whether we
can reach markings with unboundedly many live tokens. Using techniques similar to
[RGdFE99] it can be shown that semantic boundedness is undecidable. On the other
hand we show decidability of syntactic boundedness. This is achieved through an ex-
tension of the Karp-Miller algorithm where each node represents a region (rather than a
single marking). The underlying ordering on the nodes (regions) inside the Karp-Miller
tree is a well quasi-ordering [Hig52]. This guarantees termination of the procedure.

Decidability of syntactic boundedness was shown for the simpler discrete-time case
in [dFERA00], while the problem was left open for the dense-time case.

2 Definitions

Timed Petri Nets. We consider Timed Petri Nets (TPNs) where each token is equipped
with a real-valued clock representing the "age" of the token. The firing conditions of a
transition include the usual ones for Petri nets. Additionally, each arc between a place
and a transition is labeled with a subinterval of natural numbers. When firing a transition,
tokens which are removed (added) from (to) places should have their ages lying in the
intervals of corresponding arcs.

We useN ,R≥0 to denote the sets of natural numbers and nonnegative reals, respec-
tively. For a natural number k, we letN k andN k

ω denote the set of vectors of dimension
k over N and N ∪ {ω}, respectively.

We use a set Intrv of intervals. An open interval is written as (w : z) where w ∈ N
and z ∈ N ∪ {∞}. Intervals can also be closed in one or both directions, e.g. [w : z] is
closed in both directions and [w : z) is closed to the left and open to the right.

For a set A, we use A∗ and A
 to denote the set of finite words and finite multisets
over A, respectively. We view a multiset over A as a mapping from A toN . Sometimes,
we write multisets as lists, so b = [2.4 , 5.1 , 5.1 , 2.4 , 2.4] represents a multiset b

60 P. Abdulla, P. Mahata, and R. Mayr

over R≥0 where b(2.4) = 3, b(5.1) = 2 and b(x) = 0 for x �= 2.4, 5.1. For multisets
b1 and b2 over N , we say that b1 ≤ b2 if b1(a) ≤ b2(a) for each a ∈ A. We define
b1 + b2 to be the multiset b where b(a) = b1(a) + b2(a), and (assuming b1 ≤ b2) we
define b2 − b1 to be the multiset b where b(a) = b2(a) − b1(a), for each a ∈ A. We
write |b| for the number of elements in b. We use ∅ to denote the empty multiset and ε
to denote the empty word.

Given a set A with an ordering and a subset B ⊆ A, B is said to be upward closed
if a1 ∈ B, a2 ∈ A and a1 a2 implies a2 ∈ B. Given a set B ⊆ A, we define the
upward closure B ↑ to be the set {a ∈ A| ∃a′ ∈ B : a′ a}. A downward closed set
B and the downward closure B ↓ are defined in a similar manner. We also use a ↑, a ↓,
a instead of {a} ↑, {a} ↓, {a}, respectively.

Definition 1. [AN01] A Timed Petri Net (TPN) is a tuple N = (P, T, In,Out) where
P is a finite set of places, T is a finite set of transitions and In,Out are partial functions
from T × P to Intrv .

If In(t , p) (resp. Out(t , p)) is defined, then p is an input (resp. output) place of t. We
let max denote the maximum integer appearing on the arcs of TPN. A marking M of N
is a multiset over P ×R≥0. The marking M defines the numbers and ages of tokens in
each place in the net. We identify a token in a marking M by the pair (p, x) representing
its place and age inM . Then,M((p, x)) defines the number of tokens with age x in place
p. Abusing notation again, we define, for each place p, a multisetM(p) overR≥0, where
M(p)(x) = M((p, x)). For a set M of markings, we define |M| = max(|M | : M ∈ M).
For a marking M of the form [(p1, x1) , . . . , (pn, xn)] and x ∈ R≥0, we use M+x to
denote the marking [(p1, x1 + x) , . . . , (pn, xn + x)].

Transitions: We define two transition relations on the set of markings : timed transition
and discrete transition.A timed transition increases the age of each token by the same real
number. Formally, for x ∈ R≥0, M1 −→x M2 if M2 = M+x

1 . We use M1 −→δ M2 to
denote that M1 −→x M2 for some x ∈ R≥0.

We define the set of discrete transitions−→D as
⋃

t∈T −→t, where−→t represents
the effect of firing the discrete transition t. More precisely,M1 −→t M2 if the set of input
arcs {(p, I)| In(t , p) = I} is of the form {(p1, I1), . . . , (pk, Ik)}, the set of output arcs
{(p, I)| Out(t , p) = I} is of the form {(q1,J1), . . . , (q�,J�)}, and there are multisets
b1 = [(p1, x1) , . . . , (pk, xk)] and b2 = [(q1, y1) , . . . , (q�, y�)] over P × R≥0 such
that the following holds: b1 ≤M1, xi ∈ Ii, for i : 1 ≤ i ≤ k, yi ∈ Ji, for i : 1 ≤ i ≤ �,
M2 = (M1 − b1) + b2. We say that t is enabled in M if there is a b1 such that the first
two conditions are satisfied. A transition t may be fired only if for each incoming arc,
there is a token with the “right” age in the corresponding input place. These tokens will
be removed when the transition is fired. The newly produced tokens may only have ages
which belong to the relevant intervals.

We write −→=−→δ ∪ −→D to denote all transitions and use
∗−→ to denote the

reflexive transitive closure of −→. It is easy to extend
∗−→ for sets of markings. We

define Reach(M) := {M ′ |M ∗−→M ′} as the set of markings reachable from M .
A M -computation π from a marking M is a sequence M0,M1, . . . of markings s.t

M0 = M and Mi −→Mi+1 for i ≥ 0.

Decidability of Zenoness, Syntactic Boundedness and Token-Liveness 61

For a computation π from M , the delay Δ(π) of the computation is defined as
follows.

– Δ(M0) = 0.
– Δ(M0, . . . ,Mi+1) = Δ(M0, . . . ,Mi) if Mi −→D Mi+1.
– Δ(M0, . . . ,Mi+1) = Δ(M0, . . . ,Mi) + x if Mi −→x Mi+1.

Intuitively, the delay is the total amount of time passed in all timed transitions in
the sequence. Notice that untimed Petri nets are a special case in our model where all
intervals are of the form [0 : ∞). Next, we recall a constraint system called regions
defined for Timed automata [AD90].

Regions. A region defines the integral parts of clock values up to max (the exact age of a
token is irrelevant if it is greater than max), and also the ordering of the fractional parts.
For TPNs, we need to use a variant which also defines the place in which each token
(clock) resides. Following Godskesen [God94] we represent a region in the following
manner.

Definition 2. A region is a triple (b0, w, bmax) where

– b0 ∈ (P × {0, . . . ,max})
. b0 is a multiset of pairs. A pair of the form (p, n)
represents a token with age exactly n in place p.

– w ∈
(
(P × {0, . . . ,max − 1})

)∗
. w is a word over the set

(P × {0, . . . ,max − 1})
, i.e., w is a word where each element in the word is a
multiset over P × {0, . . . ,max − 1}. Pair (p, n) represents a token in place p with
age x such that x ∈ (n : n + 1). Pairs in the same multiset represent tokens whose
ages have equal fractional parts. The order of the multisets in w corresponds to the
order of the fractional parts.

– bmax ∈ P
. bmax is a multiset over P representing tokens with ages strictly greater
than max . Since the actual ages of these tokens are irrelevant, the information about
their ages is omitted in the representation.

Formally, each region characterizes an infinite set of markings as follows. Assume a
marking M = [(p1, x1) , . . . , (pn, xn)] and a region R = (b0, b1b2 · · · bm, bm+1). Let
bj be of the form [(qj1, yj1) , . . . ,

(
qj�j , yj�j

)
] for j : 0 ≤ j ≤ m and bm+1 is of the

form [qm+1 1, . . . , qm+1 lm+1]. We say that M satisfies R, written M ∈ R, if there is a
bijection h from the set {1, . . . , n} to the set of pairs

{(j, k) | (0 ≤ j ≤ m + 1) ∧ (1 ≤ k ≤ �j)} such that the following conditions hold:

– pi = qh(i). Each token should have the same place as that required by the corre-
sponding element in R.

– If h(i) = (j, k) then j = m + 1 iff xi > max . Tokens older than max should
correspond to elements in multiset bm+1. The actual ages of these tokens are not
relevant.

– If xi ≤ max and h(i) = (j, k) then !xi" = yj k. The integral part of the age of
tokens should agree with the natural number specified by the corresponding elements
in w.

62 P. Abdulla, P. Mahata, and R. Mayr

– If xi ≤ max and h(i) = (j, k) then frac(xi) = 0 iff j = 0. Tokens with zero
fractional parts correspond to elements in multiset b0.

– If xi1 , xi2 < max , h(i1) = (j1, k1) and h(i2) = (j2, k2) then frac(xi1) ≤
frac(xi2) iff j1 ≤ j2. Tokens with equal fractional parts correspond to elements
in the same multiset (unless they belong to bm+1). The ordering among multisets
inside R reflects the ordering among fractional parts in clock values.

Notice that given a marking M , it is easy to compute the unique region RM

satisfied by M . We let [[R]] = {M |M ∈ R}. Given a marking M and a set R of
regions, we say that M ∈ R if there is a region R ∈ R such that M ∈ R. We also let
[[R]] = {M | ∃R ∈ R. M ∈ R}. The region construction defines an equivalence relation
≡ on the set of markings such that M1 ≡ M2 if, for each region R, it is the case that
M1 ∈ [[R]] iff M2 ∈ [[R]]. It is easy to show (similar to [AD90]) that ≡ is a congruence
on the set of markings. In other words, if M1 −→ M2 and M1 ≡ M3 then there is an
M4 such that M2 ≡M4 and M3 −→M4.

Ordering. We define an ordering on the set of markings s.t. M1 M2 if there is
an M ′

2 with M1 ≡ M ′
2 and M ′

2 ≤ M2. In other words, M1 M2 if we can delete
a number of tokens from M2 and as a result obtain a new marking equivalent to M1.
We let M1 ≺ M2 denote that M1 M2 and M1 �≡ M2. Notice that −→ is monotonic
with respect to the ordering , i.e, if M1 −→ M2 and M1 M3 then there is an M4
such that M2 M4 and M3 −→ M4. We identify a region R with the language [[R]]
it represents (we write R instead of [[R]]). Next we show how to compute the language
entailment of two regions. We lift on the set of markings to the set of regions.

Definition 3. Let R = (b0, b1 . . . bm, bm+1) and R′ = (c0, c1 . . . cl, cl+1) be regions.
Then,RR′ iff there is a strict monotone injection g : {0, . . . ,m + 1}→{0, . . . , l + 1}
with g(0) = 0 and g(m + 1) = l + 1 and bi ≤ cg(i) for each i : 0 ≤ i ≤ m + 1.

For regions R and R′, if R R′ then for each M ∈ [[R]],M ′ ∈ [[R′]], we have
M M ′. We let R ≺ R′ denote that R R′ and R �= R′.

Lemma 4. Union and intersection of (sets of) regions are computable as finite sets of
regions.

We define a function Post such that for a region R, Post(R) is a finite set of regions
where a marking M ′ satisfies a region in Post(R) iff there is a marking M ∈ [[R]] such
that M −→ M ′. Thus Post(R) characterizes the set of markings we can reach from a
marking satisfying R by a single transition.

Lemma 5. The set Post(R) is effectively constructible.

For a setR1 of regions, we define Pre(R1) :={R| ∃M1 ∈ R1,M ∈ R. M −→M1}.
We use min to denote a function which, given a set R1 of regions, returns the minimal
elements of R1. We use minpre([[R]] ↑) to denote the set min(Pre({R} ↑)). We define
Pre∗ to be the reflexive, transitive closure of minpre.

Lemma 6. Given a region R, the set Pre∗([[R]] ↑) is effectively constructible as a finite
set of regions [AN01].

Decidability of Zenoness, Syntactic Boundedness and Token-Liveness 63

3 Zenoness

A zeno-run of a timed Petri net is an infinite run that takes only finite time.

Definition 7. LetN = (P, T, In,Out)be a TPN. A markingM is called a zeno-marking
iff there exists an infinite M -computation π and a finite number m s.t. Δ(π) < m. Let
ZENO denote the set of all zeno-markings.

The computability of the zenoness-problem for timed Petri nets (i.e., the problem
if M ∈ ZENO for a given marking M , or, more generally, constructing ZENO) was
mentioned in [dFERA00] as an open problem for discrete-time Petri nets. Here we solve
this problem even for the more general class of dense-time Petri nets. We show that,
for any TPN, a decidable symbolic representation of the set ZENO can be effectively
computed. This implies the computability of ZENO also for discrete-time Petri nets,
since they can be encoded into dense-time ones. An alternative solution for discrete-time
Petri nets is discussed in Remark 23.

The following brief outline explains the main steps of our proof.

1. We translate the original timed Petri net N into an untimed simultaneous-disjoint-
transfer net N ′. Simultaneous-disjoint-transfer nets are a subclass of transfer nets
where all transfers happen at the same time and don’t affect each other. The compu-
tations of N ′ represent, in a symbolic way, the computations of N that can be done
in time < 1− δ for some predefined δ > 0.

2. Consider the set INF of markings of N ′ where infinite computations start. Since
INF is upward-closed, it is characterized by its finitely many minimal elements;
let INFmin be this set of minimal elements. While INFmin is not computable for
general transfer nets [DJS99, May03], it is computable for simultaneous-disjoint-
transfer nets, as shown in Lemma 21.

3. We re-interpret the set INF (resp. INFmin) of N ′ markings in the context of the
timed Petri net N and construct from it ZENO as a finite set of regions.

Definition 8. A simultaneous-disjoint-transfer net (short SD-TN) N is described by a
tuple (P, T, Input ,Output ,Trans) where P is a set of places, T is a set of ordinary
transitions, Input ,Output : T → 2P are functions that describe the input and output
places of every transition, respectively. Trans describes the simultaneous and disjoint
transfer transition. We have Trans = (I,O, S) where I ⊆ P , O ⊆ P , and S ⊆ P ×P .
I and O describe the normal input and output places of the transfer transition and the
pairs in S describe the source and target place of the transfer. The following restrictions
on Trans must be satisfied: If (s, t), (s′, t′) ∈ S then s, s′, t, t′ are all different and
{s, t} ∩ (I ∪ O) = ∅. Let M : P → N be a marking of N . The firing of normal
transitions t ∈ T is defined just as for ordinary Petri nets. The transfer transition Trans
is enabled at M iff ∀p ∈ I.M(p) ≥ 1. Firing Trans yields the new marking M ′ where

M ′(p) = M(p) if p ∈ I ∩O M ′(p) = M(p)− 1 if p ∈ I −O
M ′(p) = M(p) + 1 if p ∈ O − I M ′(p) = 0 if ∃p′. (p, p′) ∈ S
M ′(p) = M(p) + M(p′) if (p′, p) ∈ S M ′(p) = M(p) otherwise

(The restrictions above ensure that these cases are disjoint.)

64 P. Abdulla, P. Mahata, and R. Mayr

Definition 9. For a given TPN N = (P, T, In,Out) we now construct a SD-TN N ′ =
(P ′, T ′, Input ,Output ,Trans). The rough intuition is that N ′ simulates symbolically
all computations of N which can happen in time < 1− δ for some predefined δ > 0.

Let max be the maximal finite constant that appears in the arcs of the TPN. We
define a finite set of symbols Sym := {k | k ∈ N , 0 ≤ k ≤ max} ∪ {k + | k ∈
N , 0 ≤ k ≤ max} ∪ {k − | k ∈ N , 1 ≤ k ≤ max} and a total order on Sym by
k < k+ < (k + 1)− < (k + 1) for every k.

For every place p ∈ P of N we have several corresponding places p(s) for all
s ∈ Sym in P ′ of the SD-TN N ′. Thus P ′ = {p(s) | p ∈ P, s ∈ Sym}. The intuition is
as follows. A token on place p(k) encodes a token of age exactly k on place p. A token
on p(k+) encodes a token on place p of an age a which satisfies k < a ≤ k + δ for
some a-priori defined δ > 0. This means that the age of this token cannot reach k + 1
in any run taking time < 1 − δ. A token on p(k−) encodes a token on p whose age a
satisfies k − 1 + δ < a < k and which may or may not reach age k during a run taking
time 1 − δ. The SD-TN tokens p(k), p(k+) and p(k−) are called symbolic encodings
of the corresponding TPN token (p, a).

In particular, the age of such a p(k−) token could be chosen arbitrarily close to k,
such that its age could reach (or even exceed) k in runs taking an arbitrarily small time.
For example, consider a run taking time ε > 0 and a transition with an outgoing arc
labeled with the interval [0 : 1). This transition could produce a token with age 1− ε/2
which could reach age 1 or even 1 + ε/2 later.

We define a function enc : Intrv → 2Sym as follows.

enc([x : y]) := {s ∈ Sym | x ≤ s ≤ y} enc((x : y]) := {s ∈ Sym | x < s ≤ y}
enc([x : y)) := {s ∈ Sym | x ≤ s < y} enc((x : y)) := {s ∈ Sym | x < s < y}

For every transition t ∈ T in the TPNN we have a set T ′(t) of new transitions inN ′.
The intuition is that the transitions in T ′(t) encode all possibilities of the age intervals
of input and output tokens. For example, a discrete transition t with an input arc from
place p labeled [0 : 1] would yield 4 different transitions in T ′(t) with input arcs from
places p(0), p(0+), p(1−) and p(1), respectively.

We denote the transitions with their sets of input and output places A and B by
t′(A,B), i.e., Input(t′(A,B)) = A and Output(t′(A,B)) = B. For every t ∈ T we
define A(t) ⊆ 2P ′

as follows.

A(t) := {A ⊆ P ′ | In(t, p) �= ⊥ ⇔ ∃1s ∈ enc(In(t, p)). p(s) ∈ A}

For every t ∈ T we define B(t) ⊆ 2P ′
as follows.

B(t) := {B ⊆ P ′ | Out(t, p) �= ⊥ ⇔ ∃1s ∈ enc(Out(t, p)). p(s) ∈ B}

We use ∃1 to mean there exists ’exactly one’ in the above.
We define T ′(t) := {t′(A,B) |A ∈ A(t), B ∈ B(t)} and finally T ′ :=

⋃
t∈T T ′(t).

Note that in transition t′(A,B) of N ′, the set of input places A contains only one input
place p(s) for each non-empty interval In(t, p) s.t. s ∈ enc(In(t, p)). A similar remark
holds for the set of output places B.

So far, the transitions in T ′ only encode the discrete transitions of N . The transfer
arc will be used to encode the passing of time. However, since we need to keep discreet

Decidability of Zenoness, Syntactic Boundedness and Token-Liveness 65

transitions and time-passing separate, we must first modify the net to obtain alternating
discrete phases and time-passing phases.

First we add two extra places pdisc and ptime to P ′ which act as control-states for
the different phases. Then we modify all transitions t ∈ T ′ by adding pdisc to Input(t)
and Output(t). Thus normal transitions can fire iff pdisc is marked.

The transitions which encode the passing of time include both the transfer transition
and several normal transitions. After an arbitrarily small amount of time < 1 passes, all
tokens of agek have an age> k. This is encoded by the simultaneous-disjoint transfer arc,
which moves all tokens from places p(k) to places p(k+). Formally, Trans := (I,O, S)
where I := {pdisc}, O := {ptime}, and S := {(p(k), p(k+)) | 0 ≤ k ≤ max}. Note
that Trans starts the time-passing phase and switches the control-state from pdisc to
ptime . Now we add a new set of transitions which encode what happens to tokens of age
k−when (a small amount of) time passes. Their age might either stay below k, reach k or
exceed k. For every k ∈ {1, . . . ,max} we have a transition with input places ptime and
p(k−) and output places ptime and p(k). Furthermore, for every k ∈ {1, . . . ,max} we
have a transition with input places ptime and p(k−) and output places ptime and p(k+).
Finally, we add an extra transition tswitch with input place ptime and output place pdisc ,
which switches the net back to normal discrete mode. Note that after a time-passing
phase the only tokens on places p(k) are those which came from p(k−), because all
tokens on p(k) were first transferred to p(k+) by the transfer transition.

Definition 10. LetN be a TPN andN ′ the corresponding SD-TN, defined as in Def. 9.We
say that a marking M ′ of N ′ is a standard marking if M ′(pdisc)=1 and M ′(ptime)=0.
We denote by INF the set of all markings of N ′ from which infinite computations start.
Since INF is upward-closed it can be characterized by its finitely many minimal elements.
Let INFmin be the finite set of these minimal elements. Let INF ′ and INF ′

min be the
restriction to standard markings of INF and INFmin , respectively.

The following definitions establish the connection between the markings of the timed
Petri net N and the markings of the SD-TN N ′.

Definition 11. For every δ with 0 < δ < 1 we define a function intδ : (P ×R≥0)
 →
(P ′ → N) that maps a marking M of N to its corresponding marking M ′ in N ′.
M ′ := intδ(M) is defined as follows. For any k we have

M ′(p(k)) := M((p, k)) M ′(pdisc) := 1
M ′(p(k+)) :=

∑
k<x≤k+δ M((p, x)) M ′(ptime) := 0

M ′(p((k + 1)−)) :=
∑

k+δ<x<k+1 M((p, x))

Note that M ′ = intδ(M) is a standard marking by Def. 10.

The intuition is as follows. In an infinite computation π starting at M with Δ(π) <
1− δ, no token (p, x) with k < x ≤ k+ δ can reach age k+1 by aging. This is reflected
in N ′ by the fact that p(k+) tokens stay p(k+) tokens during the symbolic time-passing
phase. On the other hand, tokens (p, x) with k+δ < x < k+1 can reach an age≥ k+1
by aging. This is reflected inN ′ by the fact that p((k+1)−) tokens can become p(k+1)
or p((k + 1)+) tokens during the symbolic time-passing phase.

66 P. Abdulla, P. Mahata, and R. Mayr

Lemma 12. Given a TPNN with markingM0, the corresponding SD-TNN ′ from Def. 9
and 0 < δ < 1. If there exists an infinite M0-computation π s.t. Δ(π) < 1 − δ then in
N ′ there exists an infinite intδ(M0)-computation π′, i.e., intδ(M0) ∈ INF ′.

The reverse implication of Lemma 12 does not generally hold. The fact that
intδ(M) ∈ INF ′ for some marking M of a TPN N does not imply that M ∈ ZENO .
The infinite intδ(M)-run in N ′ depends on the fact that the p(k−) tokens do (or don’t)
become p(k) or p(k+) tokens at the right step in the computation.

To establish a reverse correspondence between markings of N ′ and markings of N
we need the following definitions.

Definition 13. Let N ′ be a SD-TN with places P ′ = {p(s) | p ∈ P, s ∈ Sym} ∪
{pdisc , ptime} and a standard markingM ′ : P ′ → N . LetM ′− := M ′

|{p(k−) | k−∈Sym}
and M ′+ := M ′

|{p(k+) | k+∈Sym} be the sub-markings of M , restricted to p(k−)
and p(k+) tokens, respectively. We define perm(M ′−) as the set of all words w =

b1 . . . bn ∈
(
(P × {0, . . . ,max − 1})

)∗
s.t. for all p and k < max we have that(⋃

1≤i≤n bi

)
((p, k)) = M ′−(p((k+1)−)). Similarly, let perm(M ′+) be the set of all

words w = b1 . . . bn ∈
(
(P × {0, . . . ,max − 1})

)∗
s.t. for all p and k < max we

have
(⋃

1≤i≤n bi

)
((p, k)) = M ′+(p(k+)).

Intuitively, perm(M ′−) describes all possible permutations of the fractional parts of
tokens in a TPN marking M which are symbolically encoded as p(k−) tokens in the
corresponding SD-TN standard markingM ′. Every symbolic markingM ′ of the SD-TN
defines a set of TPN markings, depending on which permutation of the p(k−) tokens
and p(k+) tokens is chosen.

Definition 14. Let N ′ be a SD-TN. Every standard marking M ′ : P ′ → N induces a
set of regions R(M ′, x, y) given by R(M ′, x, y) = (b0, xy, bmax), where b0((p, k)) =
M ′(p(k)) for all p and all k ≤ max , x ∈ perm(M ′+), y ∈ perm(M ′−) and bmax (p) =
M ′(p(max+)) for all p.

Lemma 15. Let N be a TPN with corresponding SD-TN N ′ and M ′ ∈ INF ′.

∃y ∈ perm(M ′−).∀x ∈ perm(M ′+). [[R(M ′, x, y)]]↑⊆ ZENO

Definition 16. Let N be a TPN with corresponding SD-TN N ′.

Z :=
⋃

M ′∈INF ′
min

⋃
x∈perm(M ′+)

⋂
y∈perm(M ′−)

Pre∗([[R(M ′, x, y)]]↑)

Now we show that the set ZENO is effectively constructible.

Lemma 17. ZENO = [[Z]] ↑.

Now we show that, for any SD-TN, the set INF ′
min is effectively constructible. For

this we use a result by Valk and Jantzen.

Decidability of Zenoness, Syntactic Boundedness and Token-Liveness 67

Theorem 18. [VJ85] A finite basis of an upward-closed set K ⊆ N k is effectively
computable iff for any vector u ∈ N k

ω , the predicate u↓ ∩K �= ∅ is decidable.

Lemma 19. For any SD-TN N with initial marking M0 the coverability graph can be
effectively constructed.

Note that Lemma 19 implies that place-boundedness is decidable for simultaneous-
disjoint transfer nets, while it is undecidable for general transfer nets [DJS99, May03].

Lemma 20. Given an SD-TN N with k places and an ω-marking M0 ∈ N k
ω , it is

decidable if M0 ↓ ∩ INF �= ∅.

Lemma 21. For any SD-TN N ′ the set INF ′
min can be effectively constructed.

Proof. Since INF is upward-closed, we can, by Lemma 20 and Theorem 18, construct
a finite basis of INF , i.e., the set INFmin . We obtain INF ′

min by the restriction of
INFmin to standard markings. ��

Theorem 22. Let N be a TPN. The set ZENO is effectively constructible.

Proof. We first construct the SD-TN N ′ corresponding to N , according to Def. 9. Then
we consider the set Z from Def. 16. We have ZENO = [[Z]] ↑ by Lemma 17. The set Z
is effectively constructible by Lemma 21, Definition 16 and Lemmas 6 and 4. ��

Remark 23. To compute ZENO for discrete-time Petri nets (left open in [dFERA00]),
one can simply remove the transfer-transition from the net N ′ in Def. 9. This modified
construction would yield ZENO for the discrete-time case, because (unlike in the dense-
time case) every infinite zeno-run in a discrete-time net has an infinite suffix taking no
time at all.

4 Token Liveness

First, we define the liveness of a token in a marking. Let M be a marking in a TPN
N = (P, T, In,Out). A token in M is called syntactically k-dead if its age is ≥ k. It is
trivial to decide whether a token is k-dead from a marking.A token is called semantically
live from a marking M , if we can fire a sequence of transitions starting from M which
eventually consumes the token. Formally, given a token (p, x) and a marking M , we
say that (p, x) can be consumed in M if there is a transition t satisfying the following
properties: (a) t is enabled in M , (b) In(t , p) is defined and x ∈ In(t , p).

Definition 24. A token (p, x) inM is semantically live if there is a finiteM -computation
π = MM1 · · ·Mr such that (p, x + Δ(π)) can be consumed in Mr.

For a marking M , we let L(M) be the multiset of live tokens in M .

Semantic liveness of tokens in TPN

Instance: A timed Petri net N with marking M and a token (p, x) ∈M .
Question: Is (p, x) live, i.e., (p, x) ∈ L(M) ?

68 P. Abdulla, P. Mahata, and R. Mayr

We show decidability of the semantic token liveness problem by reducing it to the
coverability problem for TPNs.

Coverability problem

Instance: A TPN N , a finite set of initial markings Minit of N , and an upward closed
set Mfin ↑ of markings of N , where Mfin is finite.

Question: Minit
∗−→ Mfin ↑?

Theorem 25. The coverability problem is decidable for TPN [AN01].

Suppose that we are given a TPN N = (P, T, In,Out) with marking M and a
token (p, x) ∈ M . We shall translate the question of whether (p, x) ∈ L(M) into
(several instances of) the coverability problem. To do that, we construct a new TPN N ′

by adding a new place p∗ to the set P . The new place is not input or output of any
transition. Now there are 2 cases. Either there is no transition in N which has p as its
input place. Then it is trivial that (p, x) �∈ L(M). Otherwise, we consider all instances
of the coverability problem defined on N ′ such that

– Minit contains a single marking M − (p, x) + (p∗, x).
– Mfin is the set of markings of the form [(p1, x1), . . . , (pn, xn), (p∗, x′)] such that

there is a transition t and
• the set of input places of t is given by {p, p1, . . . , pn}.
• x′ ∈ In(t , p) and xi ∈ In(t , pi) for each i : 1 ≤ i ≤ n.

In the construction above, we replace a token (p, x) in the initial marking by a token
(p∗, x); we also replace a token (p, x′) in the final marking with x′ ∈ In(t , p), by a token
(p∗, x′). The fact that the token in the question is not consumed in any predecessor of a
marking in Mfin, is simulated by moving the token into the place p∗ (in both the initial
and final markings), since p∗ �∈ P and not an input or output place in N ′. Therefore,
the token is live in M of N iff the answer to the coverability problem is ’yes’. From
Theorem 25, we get the following.

Theorem 26. The token liveness problem is decidable.

5 Boundedness

Syntactic Boundedness of TPN

Instance: A timed Petri net N with initial marking M0.
Question: Is |Reach(M0)| bounded ?

We give an algorithm similar to the Karp-Miller algorithm [KM69] for solving the
syntactic boundedness problem for TPNs. The algorithm builds a tree, where each node
is labeled with a region. We build the tree successively, starting from the root, which is
labeled with RM0 : the unique region satisfied by M0 (it is easy to compute this region).
At each step we pick a leaf with label R and perform one of the following operations:

1. If post(R) is empty we declare the current node unsuccessful and close the node.
2. If there is another (already generated) node which is labeled with R then declare

the current node duplicate and close the node.

Decidability of Zenoness, Syntactic Boundedness and Token-Liveness 69

3. If there is a predecessor of the current node labeled with R′ ≺ R then declare
|Reach(M0)| unbounded (the TPN is unbounded), and terminate the procedure.

4. Otherwise, declare the current node as an interior node, add a set of successors to
it, each labeled with an element in Post(R). This step is possible due to Lemma 5.

If the condition of step 3 is never satisfied during the construction of the tree, declare
|Reach(M0)| bounded (the TPN is bounded).

The proof of correctness of the above algorithm is similar to that of original Karp-
Miller construction [KM69]. The termination of the algorithm is guaranteed due to the
fact that the ordering on the set of regions is a well-quasi-ordering (follows from
[Hig52]).

Theorem 27. Syntactic boundedness is decidable for TPNs.

It follows that termination is also decidable for TPNs. Since dead tokens cannot
influence the behavior of a TPN, one would like to abstract from them. Let N be a
TPN with marking M . Then we define the live part of TPN markings as Reach l(M) :=
{L(M ′) |M ′ ∗−→M ′}, i.e, the set of reachable markings without dead tokens.

Semantic Boundedness of TPN

Instance: A timed Petri net N with initial marking M0.
Question: Is |Reach l(M0)| bounded ?

Using slightly modified constructions of [RGdFE99] or [AN02], we can easily derive
the undecidability of semantic boundedness even for dense-timed Petri nets.

6 Conclusions

We have shown decidability of zenoness, token-liveness and syntactic boundedness for
dense-time timed Petri nets (TPNs) in which each token has an age represented by a
real number, and where the transitions are constrained by the ages of the tokens. This
class is closely related to the class of parameterized systems of timed processes where
each process is restricted to a single clock [AJ03]. We have considered TPNs with just
one real-valued clock per token. For all the problems studied so far, the decidability
results coincide for dense-time and discrete time (although the proofs for dense-time are
harder). However, if we consider TPNs with two clocks per token, there is a decidability
gap between the dense-time and the discrete time domain. The coverability problem
becomes undecidable for dense-time TPNs with only two clocks per token, while it re-
mains decidable for discrete TPNs with any finite number of clocks per token [ADM04].
The class of TPNs with multiple clocks per token is related to parameterized systems
of timed processes, with multiple clocks per process [ADM04]. It is therefore worth
investigating whether this more general class induces a similar gap for the problems we
have considered in this paper.

References

[AD90] R. Alur and D. Dill. Automata for modelling real-time systems. In Proc. ICALP ’90,
volume 443 of Lecture Notes in Computer Science, pages 322–335, 1990.

70 P. Abdulla, P. Mahata, and R. Mayr

[ADM04] P. A. Abdulla, J. Deneux, and P. Mahata. Multi-clock timed networks. In Proc. LICS
’04, pages 345–354. IEEE Computer Society Press, 2004.

[AJ03] P. A. Abdulla and B. Jonsson. Model checking of systems with many identical timed
processes. Theoretical Computer Science, 290(1):241–264, 2003.

[Alu91] R. Alur. Techniques for Automatic Verification of Real-Time Systems. PhD thesis,
Dept. of Computer Sciences, Stanford University, 1991.

[AN01] P. A. Abdulla and A. Nylén. Timed Petri nets and BQOs. In Proc. ICATPN’2001:
22nd Int. Conf. on application and theory of Petri nets, volume 2075 of Lecture Notes
in Computer Science, pages 53 –70, 2001.

[AN02] P. A. Abdulla and A. Nylén. Undecidability of ltl for timed petri nets. In INFINITY
2002, 4th International Workshop on Verification of Infinite-State Systems, 2002.

[Bow96] F. D. J. Bowden. Modelling time in Petri nets. In Proc. Second Australian-Japan
Workshop on Stochastic Models, 1996.

[dFERA00] D. de Frutos Escrig, V. Valero Ruiz, and O. Marroquín Alonso. Decidability of
properties of timed-arc Petri nets. In ICATPN 2000, number 1825 in Lecture Notes
in Computer Science, pages 187–206, 2000.

[DJS99] C. Dufourd, P. Jančar, and Ph. Schnoebelen. Boundedness of Reset P/T Nets. In
Proc. of ICALP’99, volume 1644 of LNCS. Springer Verlag, 1999.

[God94] J.C. Godskesen. Timed Modal Specifications. PhD thesis, Aalborg University, 1994.
[Hig52] G. Higman. Ordering by divisibility in abstract algebras. Proc. London Math. Soc.,

2:326–336, 1952.
[KM69] R.M. Karp and R.E. Miller. Parallel program schemata. Journal of Computer and

Systems Sciences, 3(2):147–195, May 1969.
[May03] R. Mayr. Undecidable problems in unreliable computations. TCS, 297(1-3):337–354,

2003.
[RGdFE99] V. Valero Ruiz, F. Cuartero Gomez, and D. de Frutos Escrig. On non-decidability of

reachability for timed-arc Petri nets. In Proc. 8th International Workshop on Petri
Nets and Performance Models, pages 188–196, 1999.

[Tri99] S. Tripakis. Verifying progress in times systems. In Proc. ARTS ’99, pages 299–314,
1999.

[VJ85] R. Valk and M. Jantzen. The Residue of Vector Sets withApplications to Decidability
Problems in Petri Nets. Acta Informatica, 21:643–674, 1985.

On the Urgency Expressiveness

Michaël Adéläıde and Claire Pagetti

Labri (UMR 5800), Domaine Universitaire,
351, cours de la Lib̈ı£¡ation 33405 Talence Cedex, France

{adelaide, pagetti}@labri.fr

Abstract. We present an algorithm for finding the minimal number of
clocks of a given timed automaton recognizing the language described
by a so-called bounded timed regular expression w. This algorithm is
based on the partition of the timed projection of w into so-called delay
cells. Using this decomposition, we give a method to compute practically
this number for w. We then apply this technique to prove that for some
n-clock timed automaton we need an additional clock to encode urgency.

Keywords: Timed automaton, timed regular expression, minimal num-
ber of clocks, n-clock timed language, urgency.

1 Introduction

Timed automata have been introduced by R. Alur and D. Dill in [2]. Practi-
cally, a timed automaton is a finite automaton extended with positive real-valued
variables called clocks. A linear behavior of such a model is an alternation of dis-
crete steps and continuous elapses of time. As with classical (without timing
constraints) finite automata, we can associate an equivalent timed regular lan-
guage [2] which coincides with the language recognized by a timed automaton.
Like untimed languages, we can express this language with a timed regular ex-
pression [6] and actually compute this expression from the timed automaton [9].

Urgency. For modeling huge systems, it is interesting to use high level hierar-
chical modeling languages such as AltaRica [5] or Charon [3] for instance. Such
languages contain modeling operators which allow an easiest specification of par-
ticular complex behavior. A classical operator is the urgency [8, 7] operator. If
a transition labeled by an urgent event is enabled in a location, some discrete
transition must occur immediately. It is equivalent to use time invariants [15]
or urgency. Using urgency or time invariants does not change the expressiveness
of timed automata and a procedure to turn a timed automaton with urgency
into a classical timed automaton with time invariants is given in [18, 13, 10]. This
procedure always adds a new clock.

Problem to Solve. The starting point of our work is the following question: “Is
it possible to make the urgency encoding with no addititional clock?”. [13] gives
a negative answer for n = 2 and conjectures that ∀n ∈ N, there exists a n-clock
timed automaton with urgency which can only be translated into a n + 1-clock
timed automaton.

K. Lodaya and M. Mahajan (Eds.): FSTTCS 2004, LNCS 3328, pp. 71–83, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

72 M. Adéläıde and C. Pagetti

Contribution. For n ≥ 1, we find a n-clock timed automaton with urgency which
can only be translated into a n + 1-clock timed automaton. This answers posi-
tively to the conjecture. From the theoretical point of view, it gives a limit for
anyone who wants to better the algorithm [18, 13, 10].

In our proof, we compute the minimal number of clocks of a bounded timed
regular expression. One must note that the general problem is not computable
[20, 19]. We introduce a representation for timing part of disjunction-free finite
timed languages, which is independent of the number of clocks, namely the
convex delay polyhedra. A convex delay polyhedron is a conjunction of timed
inequalities [17]. A timed inequality

∑k
i=j δi measures the time elapsed from the

entrance in the jth node to the leaving of the kth.
The representation consists in taking all the timed inequalities. Thus, we

show there exists a canonical representant for each convex delay polyhedron. Our
canonization is for timed inequalities what Difference Bound Matrices [14] are
for clocks constraints. Then, delay polyhedra are the dual of clocks constraints
and our delay-cells are the dual of zones. It means that two dates in the same
delay-cell cannot be distinguished by any clock-constraint. In other words, you
can add any clocks you want and any clock-constraints you want, you cannot
differentiate the two dates.
Related Works. One of the first results [4, 20] on minimizing the number of
clocks claims that for every n there exists an n-clock timed automaton for which
the accepting timed regular language cannot be recognized by any n− 1-clock
timed automaton. [20, 19] have yet shown that minimizing the number of clocks
in timed automata is known to be a non-computable problem. Consequently, the
authors in [12] use heuristics to turn a timed automaton into a timed system (not
necessarily a timed automaton) which have less clocks. In the other works on
minimization, the authors try to limit the explosion of the constraints. In [16],
the authors combine the symbolic computation with DBM and partial order
techniques to reduce the explosion of the size of the constraints that appear
when calculating reachable states. In [14], the authors replace the DBMs by
shorter representation included in the original DBMs.

Outline. The document is organized as follows. Section 2 is devoted to the defini-
tion of the notions we will need thereafter, timed automata and timed languages.
In section 3, we detail the practical method to compute the minimal number of
clocks for a bounded expression. Finally, in section 4, we apply this technique
to prove the Labroue’s conjecture with the Theorem 2.

2 Timed Systems

In this section, after reminding some notations, we recall the definitions [2] of
finite timed regular expression.
Notations. A clock is a positive real-valued variable following an evolution law.
We consider a finite set of clocks X. A clock valuation [2] on X is a map v : X →
R≥0 which assigns a positive real value to each clock of X. We denote by RX

≥0

On the Urgency Expressiveness 73

the set of all clock valuations. For t ∈ R≥0, the clock valuation v + t is defined
by ∀x ∈ X, (v + t)(x) = v(x) + t.

The set of convex clock constraints Cc(X) on X is inductively defined by:

g := x � r | x− y � r | g ∧ g

with x, y ∈ X,�∈ {<,≤, >,≥,=}, r ∈ N.
We denote by I(N) the set of intervals I ⊂ R≥0 with bounds in N ∪ {∞}.

2.1 Timed Automata

Practically a timed automaton [2] is a finite state machine constrained by timing
requirements handled by formulas on clocks.

Definition 1 (Timed Automaton [2]). A timed automaton is tuple A =
(Q,E,X, q0, F,→) such that: Q is a finite set of locations, E is a finite set of
actions, X is a finite set of clocks, qo ∈ Q is the initial location, F ⊆ Q are the
accepted locations and →⊆ Q× (Cc(X)×E × 2X)×Q is the transition relation.

Definition 2 (Timed Automaton Semantics [2]). The semantics of the
timed automaton A is given by the transition system (S,E∪R, s0, FS ,→S) with:

1. S = Q× RX
≥0 is the set of states;

2. s0 = (q0, ν0) such that ∀x ∈ X, ν0(x) = 0 is the set of initial states;
3. FS = F × RX

≥0 is the set of final states;
4. →S⊆ S × (E ∪ R) × S is the transition relation, it is defined by

((q, ν), e, (q′, ν′)) ∈→S iff⎧⎪⎪⎪⎨⎪⎪⎪⎩
either e ∈ E ∧ ∃(q, g, e, R, q′) ∈→ such that g(ν) = tt∧

ν′(x) =

{
0 if x ∈ R

ν(x) otherwise
or e = δ ∈ R ∧ q′ = q ∧ ν′ = ν + δ

For all d ∈ R ∪ E, s, s′ ∈ S such that (s, d, s′) ∈→, we write s →d s′.

Definition 3 (Particular Classes). We define the class LTA(n) for n ∈
N of line timed automata as the set of timed automata of the form (Q =
{q1, · · · , qn}, E,X, q1, qn,→) and →= {(qi, gi, ei, Ri, qi+1)|i = 1, · · · , n − 1}.
Graphically, such automaton is a line.

We define the class Star(n) for n ∈ N of star timed automata as the
set of timed automata of the form A = ∪k∈KAk is a finite union of Ak =
(Qk, E,X, q0, q

k
nk

,→k) ∈ LTA(nk) with nk ≤ n and ∀i �= j,Qi ∩Qj = {q1}. We
notice that an LTA(n) automaton is a particular Star(n) automaton.

Example 1. We consider the Star timed automaton A represented in the Fig-
ure 1. It is the union of two LTA automata.

74 M. Adéläıde and C. Pagetti

q1 q2 q3

q′
2 q′

3

c1 = 0, a, c1 := 0 c1 < 1, a

0 < c1, a c1 ≤ 1, a

Fig. 1.

2.2 Finite Regular Timed Expressions

It is also possible to give the semantics of a timed automaton by means of a timed
language [2]. Like in the untimed case, we compute the language recognized
by a finite automaton. It is equivalent to express a timed language by a timed
regular expression [6, 9]. We restrict ourselves to finite timed regular expressions.
Moreover, we will assume the alphabet E = {a}. This will not matter on our
results.

Definition 4 (Finite (Bounded) Timed Regular Expression). A finite
timed regular expression (FTRE for short) over an alphabet E is defined by the
following grammar:

w ::= ∅ | ε | a | < w >I | w.w′ | w ∨ w′ | w ∧ w′

with a ∈ E, I ∈ I(N) (integer-bounded interval).
A timed regular expression w is bounded (BTRE for short) if it is finite and

its time projection is bounded, i.e. there exists a bounded interval I ∈ I(N) such
that w =< w >I .

The semantics of these regular expressions associates to each expression a
timed language with:

1. �∅� = ∅, �ε� = {ε}, �a� = R× a,
2. �< w >I� = {(l1, a1)(l2, a2) · · · ∈ �w�|Σli ∈ I},
3. �w.w′� = �w�.�w′�, �w ∨ w′� = �w� ∪ �w′�, �w ∧ w′� = �w� ∩ �w′�.

Example 2. We can express the timed language of the timed automaton in the
Figure 1 by L(A) =< a >0< a >[0,1[∨ << a >]0,∞[a >[0,1].

3 Computing the Number of Clocks Practically

3.1 For Bounded Timed Regular Expressions

We are going to illustrate on an example how the following theorem, extracted
from [1] can be proved.

Theorem 1. The minimal number of clocks of a BTRE is computable.

On the Urgency Expressiveness 75

We proceed as follows. Let w be a disjunction-free FTRE w, the general case
is straightforward since a BTRE is a finite union of disjunction-free FTREs . We
first note that any timed automaton A that recognizes w can be transformed into
a Star automaton with the same number of clocks (as w is finite, it is sufficient
to transform A into a tree, which can be turned into a Star). It means that it is
sufficient to make the minimization on Star.

The general idea in [1] is to find a canonical representation of convex FTREs
and to describe a general FTRE as a union of indivisible convex FTREs .

Delay Polyhedra. We represent the timing part of a FTRE w by a particular
polyhedron, namely delay polyhedron. We introduce the family of delay polyhedra
for representing the constraints satisfied by the durations xi in the locations qi.

Definition 5 (Delay Polyhedron). Let n ∈ N and Tn = {(i, j) | (i, j) ∈
N2 ∧ 1 ≤ i ≤ j ≤ n}, a convex delay polyhedron of Rn is a tuple S = (J, IJ)
with J ⊆ Tn and ∀(i, j) ∈ J , Ii,j ∈ I(N). This tuple induces the linear system of
inequalities on the variables (x1, · · · , xn):⎛⎝ ∧

(i,j)∈J

Σj
k=ixk ∈ Ii,j

⎞⎠ ∧(n∧
i=1

xi ≥ 0

)

We denote by Sol(S) ⊆ Rn
≥0 the set of solutions of the linear system and in

the sequel we will indifferently refer to a convex delay polyhedron Π under its
3 forms: tuple, linear system or the set of solutions. We denote by P the set of
convex delay polyhedra and by P∗ the subset of P of non empty systems. We
denote by si,j(x) = Σj

k=ixk. We write S ∼ S′ for (S, S′) ∈ P2 iff Sol(S) =
Sol(S′). A delay polyhedron of Rn is a finite union of convex delay polyhedra of
Rn.

We notice that any disjunction-free FTRE w will induce a convex delay
polyhedron.

Example 3. Let us consider the timed regular expression w =< a < a >[0,1[>[0,1].
The timing part of w can be expressed by the convex delay polyhedron Πw =
(0 ≤ x1 +x2 ≤ 1) ∧ (0 ≤ x1)∧ (0 ≤ x2 < 1). Thus Πw = (T2, {I1,1 = R≥0, I1,2 =
[0, 1], I2,2 = [0, 1[}).

The LTA automaton given in the Figure 2, page 75 recognizes w.

q1 q2 q3
c2 := 0

0 ≤ c1 ≤ 1
0 ≤ c2 < 1

Fig. 2.

The Star automaton given in the Figure 1, page 74 recognizes also w. It
illustrates the link between Star-automata and union of convex delay polyhedra.

76 M. Adéläıde and C. Pagetti

We can write the same polyhedron in many different ways. We need a canon-
ical representation for the convex delay polyhedra to get rid of the multiple ways
for writing the same set.

Definition 6 (Canonical Representation in P). We define the mapping
canon : P∗ → P∗ which associates to each non-empty P-system S = (I, bI) an
equivalent system S′ = (Tn, b′

Tn
) with b′

i,j given by:

y ∈ b′
i,j ⇐⇒ ∃x1 . . .xn ∈ Rn.y = si,j(x) ∧

∧
(l,p)∈I

sl,p(x) ∈ bl,p ∧
n∧

i=1

xi ≥ 0

In the sequel, for a subset of indices J ⊆ Tn, we denote by canon(S)J the
subset of intervals of canon(S) indexed by J , i.e. b′

J .

Here, the b′
i,j are the least intervals containing

∑j
k=i xk when x ∈ Sol(I, bI).

The variable elimination can be realized by a Fourier-Motzkin elimination [11]
for instance, which ensures that b′

i,j ∈ I(N).

Example 4. Let us consider again the convex delay polyhedron Π defined in
Example 3. As the timed language is w =< a < a >[0,1[>[0,1], we have Π =
(T2, (I1,1 = R≥0, I1,2 = [0, 1], I2,2 = [0, 1[)). Its canonical representation is
(Tn, bTn

) with: (
b1,1 b1,2

b2,2

)
=
(

[0, 1] [0, 1]
[0, 1[

)
This matricial representation is a shorthand for representing some convex

delay polyhedron.

This representation is canonical in the sense that any convex delay polyhedron
and its canonical representation have the same set of solutions and testing the
equality of two convex delay polyhedra can be performed by testing the equality
on their canonical representations [1].

From now on, the hypothesis of boundedness plays a role. Let us assume
that any interval in the canonical representation canon(w) of w is bounded by
a constant M .

Delay-Cells and Delay-Blocks. We will partition the region {x ∈ Rn
≥0 |∑n

k=1 xk ≤M} into a finite number of cells. The blocks will be unions of cells.

Definition 7 (Canonical Delay-Cells and Delay-Blocks). Let n, M ∈ N.
We define the set of intervals IM ⊆ I(N) composed by:

1. The singletons {k} for all k ≤M ;
2. The open intervals]k, k + 1[for k ∈ N, 0 ≤ k < M .

A M -bounded-delay-cell of Rn is given by the following predicate :

∧
(i,j)∈Tn

j∑
k=i

xk ∈ Ii,j

On the Urgency Expressiveness 77

cell1 : x1 = x2 = 0

x1 + x2 = 1, 0 < x1 < 1, 0 < x2 < 1

x1 = 0, 0 < x2 < 1

x1 = 1, x2 = 0

cell5 : 0 < x1 < 1, 0 < x2 < 1, 0 < x1 + x2 < 1

cell7:x1 = 0, x2 = 1

cell6 :

cell4 :

cell3 :

cell2 : 0 < x1 < 1, x2 = 0

Fig. 3. Delay-cells for {(x, y) | x ≤ 1 ∧ y ≤ 1 ∧ x + y ≤ 1}

where Ii,j ∈ IM . We denote by CM be the set of non-empty M -bounded-delay-
cells.

A M -bounded-delay-block is a finite union of non-empty M -bounded-delay-
cells. We denote by BM the set of M -bounded-delay-blocks.

We can prove now that the cells of CM makes a finite partition of {x ∈
Rn

≥0 |
∑n

k=1 xk ≤M}.

Property 1 (Dividing the Space into Delay-Cells). Let M ∈ N. Then the follow-
ing holds:

1. Let cell and cell′ be two delay-cells, then either cell = cell′ or cell∩cell′ = ∅;
2. For any x ∈ Rn

≥0 such that
∑n

k=1 xi ≤ M , there exists cell ∈ CM such that
x ∈ cell. In the sequel, we denote by cell(x) such a cell;

3. The sets CM and BM are finite.

Example 5. For n = 2 and M = 1, the space {(x, y) | x ≤ 1∧ y ≤ 1∧ x + y ≤ 1}
is the union of the 7 delay-cells as it is shown in Figure 3, page 77.

If w is a BTRE , we show that Sol(w) is a M -bounded-delay-block. We
characterize the sub expressions w′ of w and we prove that they also verify
Sol(w′) ∈ BM .

Property 2 (Expressions as Delay Blocks). Let w be a BTRE , let M be the
greatest integer in canon(w). Suppose that w is not equivalent to the empty
expression. We have:

1. Sol(w) is a delay polyhedron and it is either a delay-block, i.e. Sol(w) belongs
to BM ;

2. Let w′ be a disjunction-free FTRE such that Sol(w′) ⊆ Sol(w), if M ′ is the
greatest integer in canon(w′), then M ′ ≤ M . Moreover, Sol(w′) belongs to
BM .

78 M. Adéläıde and C. Pagetti

As the number of delay-blocks of BM are finite, there exists a finite number
of possibilities for writing Sol(w) as a disjunction of convex delay-blocks. If we
write Sol(w) = ∪Sol(Πi) where the Πi are convex delay polyhedra, all we have
to do is to find for every Πi, an LTA automaton that recognizes it with a minimal
number of clocks. Then, we introduce another representation of LTA automata.

Definition 8 (LTA Representation). We can now represent an LTA timed
automaton A = ({q1, · · · , qn+1}, E, {a}, q1, qn+1,→) by a tuple (n, I, bI , p, h)
where:

1. (I, bI) ∈ P is a delay polyhedron such that Sol(I, bI) = projRn(L(A)),
2. p is the number of clocks of A,
3. h : I → {1, ..., p} maps for each temporal condition

∑j
k=i xk ∈ bi,j the index

of the clock which manages it. The mapping h is called a clock mapping. It
means that:
(a) p = 0 is equivalent to I = ∅;
(b) if I �= ∅ and h : I → {1, ..., p}, then h(i, k) = h(j, l) implies that [i, k] ∩

[j, l] = ∅ or i = j.

Example 6. For instance, the automaton of Figure 2, page 75 can be represented
by the tuple (

2, {(1, 2), (2, 2)},
(

[0, 1]
[0, 1[

)
, 2,

{
h(1, 2) = 1
h(2, 2) = 2

)
.

It means that there are 2 non-final nodes, (1, 2) and (2, 2) are the indices
of the useful constraints, the canonical-representation restricted on these indices

is
(

[0, 1] [0, 1]
[0, 1[

)
, there are 2 clocks, and the clock mapping

{
h(1, 2) = 1
h(2, 2) = 2 maps

each clock constraint to the index of clock used for measuring it.

It becomes clear that for a given convex delay-polyhedron of dimension n,
there exists a finite set of possibility for the clock mappings (with less than n
clocks).

3.2 Finding a Lower Bound for the Number of Clocks

We only want to find a lower bound on the number of clocks. We explain here
the principle of the method and illustrate it on a short example. Let w be a
disjunction-free FTRE and Π the delay polyhedron associated to w, we find
some “extreme point” x in the sense that the x belongs to Π and some cells
around cell(x) which are disjoint from Π give some information of the possible
writings of Π.

Definition 9 (Neighbor Cells). We say that two delay-cells cell and cell′ are
neighbor cells if there exist x ∈ cell and x′ ∈ cell′ such that the segment [x, x′]
is contained in cell ∪ cell′.

On the Urgency Expressiveness 79

1 20

x1 + x2 = 2
cell2

y2

x cell

y1

cell1

x2

x1

Fig. 4. Example of Neighbor Cells

Example 7. Let us consider the following cells of the plane:

1. cell = 1 < x1 < 2 ∧ 0 < x2 < 1 ∧ 2 < x1 + x2 < 3
2. cell1 = Sol

(
(1 < x1 < 2) ∧ (0 < x2 < 1) ∧ x1 + x2 = 2)

)
;

3. cell2 = Sol
(
(1 < x1 < 2) ∧ (x2 = 1) ∧ 2 < x1 + x2 < 3)

)
,

drawn in the Figure 4, page 79. Then, cell and cell1 are neighbor cells; cell and
cell2 are neighbor cells.

Definition 10 (Difference Set). Given two neighbor cells cell =
∧

(i,j)∈Tn∑j
k=i xk ∈ bi,j and cell′ =

∧
(i,j)∈Tn

∑j
k=i xk ∈ b′

i,j, Tn can be divided into two
disjoint subsets:

1. The first one contains the common constraints, Com(cell, cell′) = {(i, j) |
bi,j = b′

i,j};
2. The second one, called the difference set, contains the distinct constraints,

i.e. Diff(cell, cell′) = {(i, j) | bi,j �= b′
i,j}.

To compute Diff(cell, cell′) for two neighbor cells, it is sufficient to take an
element of each cell.

Example 8. In the example given in the Figure 4, we consider x =
(7

4 , 3
4

)
in cell,

y1 =
(7

4 , 1
4

)
in cell1 and y2 =

(7
4 , 1
)

in cell2.
We have x1, y

1
1 , y2

1 ∈]1, 2[, x2, y
1
2 ∈]0, 1[and x1 + x2, y

2
1 + y2

2 ∈]2, 3[. Thus, we
have Diff(cell, cell1) = {(1, 2)} and Diff(cell, cell2) = {(2, 2)}.

This is the core of the method: if two neighbor cells differ on a unique index
and if one belongs to a delay polyhedron but no the other, then we are sure that
the index is necessary to depict the delay polyhedron.

Property 3 (of Neighbor Cells). If two neighbor cells cell and cell′ differ on a
single index, i.e. Diff(cell, cell′) = {(i1, j1)}, and if a convex delay polyhedron
(I, b′′

I) is such that:

1. cell ⊆ Sol(I, b′′
I) and

2. cell′ ∩ Sol(I, b′′
I) = ∅,

then (i1, j1) ∈ I.

80 M. Adéläıde and C. Pagetti

The main idea is the following: one can transform any timed automaton A
that recognizes a disjunction-free BTRE w into a Star automaton A′ without
changing the number of clocks. Let x be an “extreme point” and cell the delay-
cell that contains x. There exists an LTA automaton LA which is a branch of
A′ such that cell belongs to the timed projection of the word recognized by LA.
Then, minimizing the number of clocks of LA gives a lower bound on the number
of clocks of A′, which in turn gives the result for A.

Example 9. Let w =< a < a >]0,1[>]2+∞[and Π = (x2 ∈]0, 1[) ∧ (x1 + x2 ∈
]2,+∞[). Let x = (7

4 , 3
4), then, cell(x) = cell defined in the Figure 4. We have

cell ⊆ Sol(Π), cell1 �⊆ Sol(Π) and cell2 �⊆ Sol(Π). Then for all representa-
tion (I, bI) of Π, necessarily {(1, 2), (2, 2)} ⊆ I. It means that there must be
some clocks verifying some constraints on {(1, 2), (2, 2)}. We conclude any Star
automaton that recognizes w has at least 2 clocks.

4 Application: Encoding Urgency

In this section, we show a first application of the previous result. We introduce
the modeling notion of urgency [18, 8, 7]. We show how to encode urgency in an
LTA automaton. Thus, we construct an n-clock timed automaton, we add some
urgency on it and we prove we require an additional clock to encode urgency, so
that we generate a n + 1-clock timed automaton.

4.1 Different Aspects of Urgency

Semantical Effect of Urgency Let A = (Q,E,X, q0, F,→) be a timed automaton
such that E = {a, au} and au is an urgent event. The urgency reduces the relation
transition since it forbids some delay transitions in some state.

Let (S,E ∪ R, s0, FS ,→S) = �A�, then the semantics of A taking in account
the urgency is the transition system �A� �urg= (S,E ∪ R, s0, FS ,→′

S) with:
((q, ν), δ, (q, ν + δ)) ∈→′

S⇐⇒ ∀δ′ ≤ δ, ((q, ν + δ′),
au, (q′, ν′)) �∈→S . It is also possible to encode syntactically urgency [18, 13, 10].

Effect of Urgency on a Finite Timed Regular Expressions. The aspect of urgency
we are interested in consists in defining the effect of the urgency on the recognized
language.

Let A = (n,→, E, I, bI , p, h) be an LTA automaton with E = {a, au}
and au is an urgent event. Assume that there is only one transition labeled au:
(qi, g, au, r, qi+1). Suppose also that g is left closed, i.e. for all l ≤ i, inf(bl,i) ∈
bl,i.

The action au must be fired as soon as all the bl,i are satisfied, this means
that at least one of the bl,i has just become true. Thus the finite timed reg-
ular expression recognized by A with urgency is ωu =

∨
1≤l≤i

(
ω ∧ a · · · <

a · · · au >inf(bl,i) · · · a
)
.

We first remark this procedure transforms an LTA automaton into a Star
automaton. We also notice that if the urgent transition is guarded by true then

On the Urgency Expressiveness 81

the effect is straightforward. Indeed, for all l ≤ i, inf(bl,i) = 0 and we have
ωu = ω ∧ a · · · < au >0 · · · a.

4.2 An Answer to the Labroue’s Conjecture

We know precisely the effect of urgency on the recognized language, the second
question is the effect on the number of clocks. The author of [13] conjectures
that ∀n ∈ N, there exists a n-clock timed automaton with urgency which can
only be translated into a n + 1-clock timed automaton.

Let us consider the timed regular expressions Wn, defined by the following
induction: {

W1 =< aaa >]0,1[
Wn+1 =< aWna >]0,2n+1[

Assume that the transition qn+1
a−→ qn+2 of An is a urgent transition. Since

the transition is guarded by true, the timed regular expression Wn is turned into
Wu

n as follows: {
Wu

1 =< a < a >0 a >]0,1[
Wu

n+1 =< aWu
n a >]0,2n+1[

We can now conclude the conjecture given in [13] is a theorem.

Theorem 2 (Requiring a Fresh Clock in the Syntactical Encoding of
Urgency). ∀n ∈ N, there exists a n-clock timed automaton with urgency which
can only be translated into a n + 1-clock timed automaton.

The timed regular expressions Wn and Wu
n give a positive answer to the

conjecture since any timed automaton that recognizes Wn has got at least n
clocks and any timed automaton that recognizes Wu

n has got at least n+1 clocks.
The proof is given in [1]. We only give here the choice of the extreme point and of
the neighbors. In both cases, we use the same point x = (x1, · · · , x2n+1) defined
as follows: ⎧⎪⎪⎨⎪⎪⎩

xk = 1 + ε− c for 1 ≤ k ≤ n− 1
xn+1+k = 1− ε for 1 ≤ k ≤ n
xn = ε− c
xn+1 = 0

where 0 < n4c < n2ε < 1. For the neighbor cells, let us take the points yp:{
y0 = x + b en+1
yp = x + pc en+1−p for 1 ≤ p ≤ n

where the ei are the ith unit vector of the canonical base of R2n+1 and 0 < n2b <
c. Finally, we can show that:

1. cell(x) and cell(yp) are neighbor cells;
2. Diff(cell(x), cell(yp)) = {(n + 1− p, n + 1 + p)}.

82 M. Adéläıde and C. Pagetti

5 Conclusion

In order to answer to the question of the urgency encoding, we have been brougth
to consider finite bounded timed regular expressions. We have given a procedure
based on enumeration for the computation of the minimal number of clocks
required for the recognition of a finite bounded timed regular expression. And
we have given an answer about the urgency encoding.

A great number of questions arises from these results:

1. is the assumption of boundedness necessary?
2. is it possible to carry over the computation of the minimal number of clocks

in case of infinite timed regular expressions with particular patterns. For
instance if w is a bounded timed regular expression, then can we deduce the
minimal number of clocks for w�?

References

1. M. Adéläıde and C. Pagetti. When the minimal number of clocks
is computable. Technical Report 1329-04, Labri/CNRS, Bordeaux, 2004.
http://www.labri.fr/Labri/Publications/Rapports-internes/Publications.htm.

2. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science
B, 126:183–235, 1994.

3. R. Alur, R. Grosu, Y. Hur, V. Kumar, and I. Lee. Modular specification of hybrid
systems in CHARON. In HSCC, pages 6–19, 2000.

4. R. Alur and T. A. Henzinger. Back to the future: Towards a theory of timed regular
languages. In IEEE Symposium on Foundations of Computer Science, pages 177–
186, 1992.

5. A. Arnold, A. Griffault, G. Point, and A. Rauzy. The AltaRica formalism for
describing concurrent systems. Fundamenta Informaticae, 40:109–124, 2000.

6. E. Asarin, P. Caspi, and O. Maler. Timed regular expressions. Journal of the
ACM, 49(2):172–206, 2002.

7. S. Bornot and J. Sifakis. An algebraic framework for urgency. Information and
Computation, 163(1):172–202, 2000.

8. S. Bornot, J. Sifakis, and S. Tripakis. Modeling urgency in timed systems. Lecture
Notes in Computer Science, 1536:103–129, 1998.

9. P. Bouyer and A. Petit. A Kleene/Bchi-like theorem for clock languages. Journal
of Automata, Languages and Combinatorics, 7:167–186, 2001.

10. F. Cassez, C. Pagetti, and O. Roux. A timed extension for AltaRica, 2004. To
appear in Fundamenta Informaticae.

11. V. Chandru and M.R. Rao. 175 years of Linear Programming, part 1. The French
Connection. The Journal of Science Education, 1998.

12. C. Daws and S. Yovine. Reducing the number of clock variables of timed automata.
In 7th IEEE Real Time Systems Symposium, RTSS’96, pages 73–81, Washington,
DC, USA, 1996. IEEE Computer Society Press.

13. A. Labroue. Conditions de vivacité dans les automates temporisés. Technical
Report LSV-98-7, Lab. Specification and Verification, ENS de Cachan, 1998.

14. K. Larsen, F Larsson, and P. Pettersson. Efficient verification of real-time systems:
Compact data structure and state-space reduction. Real-Time Systems — The
International, 25:255–275, 2003.

On the Urgency Expressiveness 83

15. K. G. Larsen, P. Pettersson, and W. Yi. Compositional and Symbolic Model-
Checking of Real-Time Systems. In Proc. of the 16th IEEE Real-Time Systems
Symposium, pages 76–87. IEEE Computer Society Press, December 1995.

16. D. Lugiez, P. Niebert, and S. Zennou. A Partial Order Semantics Approach to
the Clock Explosion Problem of Timed Automata. In TACAS, pages 296 – 311,
Barcelona, Spain, 2004.

17. O. Maler and A. Pnueli. On Recognizable Timed Languages. In FOSSACS, 2004.
18. J. Sifakis and S. Yovine. Compositional specification of timed systems. In 13th

Annual Symp. on Theoretical Aspects of Computer Science, STACS’96, volume
1046, pages 347–359. Lecture Notes in Computer Science, Springer-Verlag, 1996.
Invited paper.

19. S. Tripakis. Folk Theorems on the Determinization and Minimization of Timed
Automata. In FORMATS, 2003.

20. T. Wilke. Automaten und Logiken zur Beschreibung zeitabhängiger Systeme. PhD
thesis, Inst. f. Informatik u. Prakt. Math., CAU Kiel, 1994.

Asynchronous Automata-Theoretic
Characterization of Aperiodic Trace Languages

Bharat Adsul1 and Milind Sohoni2

1 Chennai Mathematical Institute, 92 G. N. Chetty Road,
Chennai 600 017, India
abharat@cmi.ac.in

2 Department of Computer Sc and Engg, Indian Institute of Technology,
Mumbai 400 076, India
sohoni@cse.iitb.ac.in

Abstract. We characterize aperiodic distributed behaviours, modelled
as Mazurkiewicz traces in terms of a very natural cascade product of
the gossip automaton with a counter-free asynchronous automaton. The
characterization strengthens the fundamental results of Schutzenberger
and, McNaughton and Papert and implies that star-free, equivalently,
first-order-definable trace languages admit counter-free asynchronous
acceptors modulo the gossip automaton.

1 Introduction

We focus on a special class of behaviours of distributed systems modelled as
Mazurkiewicz traces [DR, Maz, Tho]–the class of aperiodic distributed
behaviours. These behaviours are non-trivial generalizations of aperiodic (or
equivalently, counter-free) sequential behaviours. A fundamental result of
Schutzenberger [Sch] characterizes aperiodic sequential behaviours in terms of
word languages admitting star-free regular expressions or simply star-free word
languages. Aperiodic sequential behaviours also coincide with languages express-
ible in the popular specification formalism of the first-order logic, by a result
of McNaughton and Papert [McNP]. In the context of traces, aperiodic be-
haviours also coincide with appropriate star-free and first-order definable trace
languages [GRS, EM, DK].

Undoubtedly, aperiodic behaviours are an important and interesting subclass
of regular behaviours. Automata are natural machine models for sequential sys-
tems and precisely generate regular word languages. In a similar vein, regular
trace languages are generated by asynchronous automata which are natural and
robust machine models of distributed systems [Zie].

Our result concerns an asynchronous automaton-based characterization of
aperiodic trace languages. Towards this, we introduce the notion of cascade
product of two asynchronous automata. A similar construct has proved to be
extremely useful in the context of sequential automata [Arb]. The new character-
ization crucially uses the gossip automaton [MS2]—an asynchronous automaton

K. Lodaya and M. Mahajan (Eds.): FSTTCS 2004, LNCS 3328, pp. 84–96, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Asynchronous Automata-Theoretic Characterization 85

which allows to keep track of the latest information that the processes in a dis-
tributed system have about each other. Finally, we characterize aperiodic trace
languages in terms of a very natural cascade product of the gossip automaton
with a counter-free asynchronous automaton.

In the next section we develop notations for traces and setup the framework
of asynchronous automata. In Section 3, we present the gossip automaton and
use it in Section 4 to give an event calculus also called residue calculus which is
implicit in the work [MS1]. We present the important notion of cascade product
in Section 5 and use it to construct an asynchronous automaton for a regular
trace language. In Section 6, a novel analysis of this construction is carried out
which leads to the main result.

2 Preliminaries

Traces. Let P = {1, 2, . . . ,K} be a set of processes. A distributed alphabet over
P is a family Σ̃ = (Σi)i∈P . Let Σ =

⋃
i∈P Σi. For a ∈ Σ, we set loc(a) = {i ∈

P | a ∈ Σi}. By (Σ, I) we denote the corresponding trace alphabet, i.e., I is the
independence relation I = {(a, b) ∈ Σ2 | loc(a) ∩ loc(b) = ∅} induced by Σ̃. The
corresponding dependence relation Σ2 \ I is denoted by D.

A Σ-labelled poset is a structure F = (E,≤, λ), where E is a set, ≤ is a
partial order on E and λ : E → Σ is a labelling function. For e, e′ ∈ E, define
e � e′ iff e < e′ and for each e′′ with e ≤ e′′ ≤ e′ either e = e′′ or e′ = e′′. For
X ⊆ E, let ↓X = {y ∈ E | y ≤ x for some x ∈ X}. For e ∈ E, we set ↓e =↓{e}.
A trace over Σ̃ is a finite Σ-labelled poset F = (E,≤, λ) such that

– If e, e′ ∈ E with e � e′ then (λ(e), λ(e′)) ∈ D.
– If e, e′ ∈ E with (λ(e), λ(e′)) ∈ D then e ≤ e′ or e′ ≤ e.

Let TR(Σ̃) (or simply TR) denote the set of traces over Σ̃. Henceforth, a trace
means a trace over Σ̃ unless specified otherwise. Let F = (E,≤, λ) ∈ TR. Then
c ⊆ E is a configuration iff ↓c = c. We let CF denote the set of configurations
of F . Notice that the empty set and E are configurations. The event based
transition relation ⇒F ⊆ CF × E × CF is defined as c

e=⇒F c′ iff e �∈ c and
c∪{e} = c′. The action-based transition relation→F ⊆ CF ×Σ×CF is defined
as c a−→F c′ iff there exists e ∈ E such that λ(e) = a and c

e=⇒F c′.

Trace Languages. Let F = (E,≤, λ) ∈ TR and F ′ = (E′,≤′, λ′) ∈ TR. We
define FF ′ ∈ TR to be a trace (E′′,≤′′, λ′′) where

– E′′ = E � E′,
– ≤′′ is the transitive closure of ≤ ∪ ≤′ ∪{(e, e′) ∈ E×E′ | (λ(e), λ′(e′)) ∈ D},
– λ′′ : E′′ → Σ where λ′′(e) = λ(e) if e ∈ E; otherwise, λ′′(e) = λ′(e).

This operation, henceforth referred to as trace concatenation, is a generaliza-
tion of the concatenation operation on words and gives TR a monoid structure.

86 B. Adsul and M. Sohoni

Let η : TR → M be a morphism to a monoid M . A trace language L ⊆ TR
is said to be recognized by η if η−1(η(L)) = L. A trace language L is said to
be regular if it is recognized by a morphism into a finite monoid. Similarly, a
trace language L is said to be aperiodic if it is recognized by a morphism into an
aperiodic finite monoid. Recall that a monoid M is aperiodic if for some positive
integer n and for all m ∈M , mn = mn+1.

Asynchronous Automata. Each process i ∈ P is equipped with a non-empty
finite set of local i-states, denoted Si. We set S =

⋃
i∈P Si and call S the set

of local states. We let P,Q range over non-empty subsets of P and i, j range
over P. A Q-state is a map s : Q → S such that s(j) ∈ Sj for every j ∈ Q.
We let SQ denote the set of Q-states. We call SP the set of global states. If
Q′ ⊆ Q and s ∈ SQ then sQ′ is s restricted to Q′. We abbreviate loc(a) by a
when talking about states. Thus an a-state is a loc(a)-state and Sa denotes the
set of loc(a)-states.

A (deterministic) asynchronous automaton over Σ̃ is presented as a structure
A = ({Si}i∈P , {→a}a∈Σ , sin, Sfin) where

– Si is a finite non-empty set of i-states for each process i.
– For a ∈ Σ, →a ⊆ Sa × Sa is a transition function on a-states.
– sin ∈ SP is an initial global state.
– Sfin ⊆ SP is a set of final global states.

The global transition function →A ⊆ SP ×Σ × SP is defined as: s a−→A s′

iff (sa, s
′
a) ∈ →a and sP−loc(a) = s′

P−loc(a).
A run of A over F ∈ TR is a map ρ : CF → SP such that ρ(∅) = sin and for

every (c, a, c′) ∈ →F , ρ(c) a−→A ρ(c′). The run ρ is accepting if ρ(E) ∈ Sfin. As
A is deterministic, each trace F gives rise to a unique run. The trace language
accepted by A is the set L(A) = {F ∈ TR | the run of A over F is accepting}.

3 Local Views and Gossip Automaton

We develop some notation to introduce the important notion of a local view.
Let F = (E,≤, λ) ∈ TR. Then E is the set of events in F and for an event
e in F , loc(e) abbreviates loc(λ(e)). Further, let i ∈ P. The set of i-events in
F is Ei = {e ∈ E | i ∈ loc(e)}. This is the set of events in which process i
participates. It is clear that Ei is totally ordered with respect to ≤.

Let c ∈ CF and i ∈ P. Then ↓ i(c) is the i-view of c and it is defined as:
↓ i(c) =↓(c ∩ Ei). We note that ↓ i(c) is also a configuration. It is the “best”
configuration that the process i is aware of at c. Indeed, at c, process i is oblivious
to the occurrence of any event outside its local view ↓i(c). It is easy to see that
if ↓i(c) �= ∅ then there exists e ∈ Ei with ↓i(c) =↓e. For Q ⊆ P and c ∈ CF , we
let ↓Q(c) denote the set

⋃
i∈Q ↓i(c). Again, ↓Q(c) is a configuration. It represents

the collective knowledge of the processes in Q about the configuration c.
Now we develop more notation to describe the latest information of a process

about other processes at a given configuration.

Asynchronous Automata-Theoretic Characterization 87

Latest Information. Fix F = (E,≤, λ) ∈ TR and c ∈ CF . Let i, j, k ∈ P. We
define latesti→j(c) = e where e is the maximum j-event in ↓ i(c). If e does
not exist then latesti→j(c) is undefined. Further, we define latesti→j→k(c) to
be the maximum k-event in ↓ latesti→j(c). We often write latesti→j(F) and
latesti→j→k(F) for latesti→j(E) and latesti→j→k(E) respectively.

Let i ∈ P. We set primaryi(c) = ∪j∈P{latesti→j(c)}. Further, we also set
secondaryi(c) = ∪j,k∈P{latesti→j→k(c)}. Note, as latesti→j(c) = latesti→j→j(c),
primaryi(c) ⊆ secondaryi(c). We denote primaryi(E) and secondaryi(E) also by
primaryi(F) and secondaryi(F) respectively.

The key ingredient in our analysis is an asynchronous automaton called as
the gossip automaton [MS1, MS2] which solves the gossip problem: whenever
processes i and j meet at configuration c, they have to decide among themselves
whether latesti→k(c) ≤ latestj→k(c) or latesti→k(c) ≥ latestj→k(c), for each pro-
cess k in the system. The gossip automaton may be thought of as computing the
ordering information among primary events.

Now we present another automaton which maintains the ordering information
among secondary events as well. We start with encoding this information in
the form of a labelled directed graph. Fix F = (E,≤, λ) ∈ TR and c ∈ CF .
Further, let P ⊆ P and let i, j, k, i′, j′, k′ range over P. By SGF,P (c), we denote
a finite labelled directed graph whose labelled vertices correspond to the events
in
⋃

i∈P secondaryi(c). The vertex corresponding to latesti→j→k(c) is labelled
(i, j, k). As it is possible to have latesti→j→k(c) = latesti′→j′→k′(c), a vertex
may receive multiple labels. The directed edges of SGF,P (c) record the ordering
information between the events corresponding to vertices. We will refer to the
graph SGF,P (c) as the gossip of F at c among the processes in P or simply the
gossip graph. As usual, for F = (E,≤, λ) ∈ TR, SGP (F) abbreviates SGF,P (E).
Let G = {SGF,P (c) | F ∈ TR, c ∈ CF , P ⊆ P} be the set of all possible gossips.

Theorem 1 ([MS1]). There exists a deterministic asynchronous automaton
A of the form A = ({Γi}, {⇒a}, γin) and, for each P = {i1, i2, . . . , in}, a
function gossipP : ΓP → G with the following property. Let F ∈ TR and
c ∈ CF . Further, let ρF be the unique run of A over F with ρF (c) = γ. Then
SGF,P (c) = gossipP (γ(i1), . . . , γ(in)).

Any automaton that meets the requirements in Theorem 1 is called a gossip
automaton/implementation. Note that all gossip implementations compute the
same abstract gossip graphs.

4 Residue Calculus

We introduce residues and study their dynamics using the gossip information.
Let F = (E,≤, λ) ∈ TR and P ⊆ P. We also let i, j, k range over P. By FP

we denote the trace FP = (↓P (E),≤′, λ′) ∈ TR where ≤′ and λ′ are ≤ and λ
restricted to ↓P (E) respectively. With P = {i}, we abbreviate FP by Fi.

Fix F ∈ TR. Let i ∈ P and P ⊆ P. We start with the definition of a simple
residue R(F, i, P). We set R(F, i, P) to be another trace F ′ = (E′,≤′, λ′) ∈ TR

88 B. Adsul and M. Sohoni

where E′ = (↓i(E)− ↓P (↓i(E))) ⊆ E and ≤′, λ′ are restrictions of ≤, λ to E′

respectively. The residue R(F, i, P) represents the information that process i
knows and as far as i knows, no process in P knows.

j ji k i k

e1
e2

e1
e2

e4 e4

e3e3

Fig. 1. Simple and General Residue

Now we introduce general residues. Let P,Q ⊆ P. We set R(F, P,Q) to
be the trace F ′ = (E′,≤′, λ′) where E′ = (↓P (E)− ↓Q(↓P (E))) and ≤′ and
λ′ are the same ≤ and λ restricted to E′. Clearly R(F, P,Q) represents the
information that processes in P collectively know and, as far as processes in
P know, no process in Q knows. We abuse the notation to denote the final
configuration E′ of R(F, P,Q) byR(E,P,Q). Clearly,R(F, i, P) = R(F, {i}, P).
Also, R(F, P, ∅) = FP .

Figure 1 visualizes a simple residue and a general residue in a trace F . The
picture highlights the four key events e1, e2, e3 and e4. As shown there, e1, e2 and
e3 are the last i-event, j-event and k-event in F respectively. Further, we have
latesti→j(↓e1) = e4. The views ↓e1, ↓e2, ↓e3 and ↓e4 are visualized as inverted
cones starting at the horizontal line-segments corresponding to e1, e2, e3 and e4
respectively. The shaded portion in the left part visualizesR(F, i, {j}). Similarly,
the shaded portion in the right part visualizes R(F, {i, j, k}, {i}).

We now show that general residues can be expressed as concatenation of
simple residues using the gossip information in an appropriate gossip graph.
Recall that SGP (F) abbreviates SGF,P (E) which is a gossip graph recording the
gossip of the processes in P at the final configuration E of F .

Lemma 1. Let F ∈ TR,P,Q ⊆ P. Further, let P = {i1, i2, . . . , in} with a
fixed order i1, i2, . . . , in. Then there exist subsets Q1, Q2, . . . , Qn ⊆ P such that
R(F, P,Q) is a trace concatenation of R(F, i1, Q1),R(F, i2, Q2), . . . ,R(F, in, Qn)
in that order. Moreover, the sets Q1, Q2, . . . , Qn are determined by SGP (F).

5 Asynchronous Implementation

In this section, we use residue calculus to design an asynchronous implementation
of a morphism from the trace monoid to a finite monoid.

Asynchronous Automata-Theoretic Characterization 89

Cascade Product. In order to define a cascade of two asynchronous automata,
we develop some more notation. We associate, to an arbitrary finite set X, the
distributed alphabet Σ̃X = (ΣX

i)i∈P where, for each i, ΣX
i = Σi × X and

ΣX = ∪i∈PΣ
X
i = Σ ×X. The induced location function locX is: locX((a, x)) =

{i ∈ P | (a, x) ∈ ΣX
i } and IX is the induced independence relation. Recall that

loc is the induced location function and I is the induced independence relation
for the distributed alphabet Σ̃. An easy computation shows that, for a, b ∈ Σ
and x, x′ ∈ X, (a, b) ∈ I iff ((a, x), (b, x′)) ∈ IX . We abuse the notation and
write loc and I also for locX and IX respectively.

Let A = ({Si}, {δa}, {sin}) be an asynchronous automaton. Fix a set of
values V and further, let v, v′ range over V . A valuation v on A is a map v :
∪a∈Σ({a} × Sa) → Σ × V which acts as identity on the first component. More
precisely, for (a, sa) ∈ {a} × Sa, v((a, sa)) = (a, v) for some v ∈ V . Thus a
valuation simply records observations of a-states of A through V .

Definition 1 (Asynchronous Transducer). Let θA
v : TR → TR(Σ̃V) be

defined as follows. Fix F = (E,≤, λ) ∈ TR and let ρF be the unique run of
A over F . We set θA

v (F) = H where H = (E,≤, μ) ∈ TR(Σ̃V) with the labelling
μ : E → Σ × V defined as:

for e ∈ E, μ(e) = v((a, sa)) where a = λ(e) and s = ρF (↓e− e)

We call θA
v the asynchronous transducer of A.

Now we are ready to define the important operation of cascade product of
two asynchronous automata. Towards this, let B = ({Qi}, {δ(a,v)}, {qin}) be

an asynchronous automaton over Σ̃V . Note that, for each (a, v) ∈ Σ × V , as
loc((a, v)) = loc(a), δ(a,v) is a function from Qa to Qa.

We define the cascade product of A and B to be an asynchronous automaton
A ◦v B over Σ̃. We set A ◦v B = ({Si × Qi}, {Δa}, {(sin, qin)}) where, for a ∈
Σ, sa ∈ Sa and qa ∈ Qa, Δa((sa, qa)) = (δa(sa), δv((a,sa))(qa)).

asa

B

loc(a)

loc(a)

((a,s))a

A

v

Fig. 2. Cascade Product

90 B. Adsul and M. Sohoni

We call A and B as the first and second component of A ◦v B respectively.
We write a global state of A ◦v B as (s, q) where s and q are global states of A
and B, and refer to s and q as the first and second component respectively. We
also follow the same convention when dealing with a-states of A ◦v B.

The functionality of A ◦v B may be described as follows (see Figure 2). While
in operation, the first component A runs independently and at the same time
drives the second component B. On an action a, in A, processes in loc(a) record
the valuation v on their collective a-state and jointly update their local states.
In B, processes in loc(a) use the input action a as well as the feedback v from A
to jointly update their local states. In fact, a run of A ◦v B over a trace F may
be viewed as a run of A over F alongwith a run of B over θA

v .

Cascade Construction. Now we describe the asynchronous implementation of a
morphism η : TR→M from the trace monoid to the finite monoid M .

It turns out that the asynchronous implementation can be realized in the
form of a cascade A ◦v B of two appropriately defined asynchronous automata
A and B. We take A to be the gossip automaton (cf. Theorem 1). That is,
A = ({Si}, {δa}, {sin}) = ({Γi}, {⇒a}, γin). We set V to be the set G of gossips
and the valuation v : ∪a∈Σ({a} × Γa)→ Σ × V is defined as follows. For a ∈ Σ
and γa ∈ Γa, we set v((a, γa)) = (a, gossiploc(a)(γa)).

Now we define the component B = ({Qi}, {δ(a,v)}, {qin}) of the cascade.
Recall that |P| = K. For i ∈ P, we let Qi = M ×M × · · · ×M (2K times).
It will turn out that the reachable i-states of B correspond to sequences of the
form (η(R(F, i, P))P⊆P for some F ∈ TR. Moreover, the reachable global states

are of the form
(
(η(R(F, i, P))P⊆P

)
i∈P

for some F ∈ TR.

Note that an i-state qi consists of a sequence (mP)P⊆P of elements of monoid
M , one for each subset P ⊆ P. The transition functions are defined so that the
following invariant is maintained: the monoid element mP records η(R(F, i, P))
for a trace F ∈ TR which takes the cascade automaton to the i-state qi (starting
at the global initial state qin). We set the global initial state qin = ((id)P⊆P)i∈P
where id is the identity element of M . Now we define the transition functions
{δ(a,v)}(a,v)∈Σ×V . We define them only on reachable states. Also, δ(a,v) is defined
only for those v which correspond to gossips among processes in loc(a).

Fix a ∈ Σ with loc(a) = {i1, i2, . . . , in} and let v ∈ G be a gossip graph
corresponding to a gossip among processes in loc(a). Let qa ∈ Qa be a reachable
a-state with qa(i) = (mi,P)P⊆P for each i ∈ loc(a). Let δ(a,v)(qa) = q′

a with
q′
a(i) = (m′

i,P)P⊆P for each i ∈ loc(a) where (m′
i,P)P⊆P,i∈loc(a) is computed as

follows. Fix i ∈ loc(a) and P ⊆ P. If loc(a) ∩ P �= ∅ then we set m′
i,P = id.

Otherwise, we use the gossip graph v to determine sets Q1, Q2, . . . Qn as in
Lemma 1 and set m′

i,P = mi1,Q1mi2,Q2 · · ·min,Qn
η(a).

Now we verify that the invariant is preserved by the above definition of the
transition function. Let F ∈ TR be a trace which takes the cascade automa-
ton to the a-state qa. Then, for i ∈ loc(a) and P ⊆ P, mi,P = η(R(F, i, P)).
It follows from the definition of the gossip automaton and the asynchronous
transducer that v = SGloc(a)(F). Clearly, with F ′ = Fa, in order to main-

Asynchronous Automata-Theoretic Characterization 91

tain the invariant, we want m′
i,P = η(R(F ′, i, P)). Now if loc(a) ∩ P �= ∅ then

R(F ′, i, P) is the empty trace and hence m′
i,P = id. Otherwise, observe that

R(F ′, i, P) = R(F, loc(a), P)a and hence m′
i,P = η(R(F, loc(a), P))η(a). Thus

it suffices to compute η(R(F, loc(a), P)). From Lemma 1, R(F, loc(a), P) is a
concatenation of R(F, i1, Q1),R(F, i2, Q2), . . . ,R(F, in, Qn). Therefore

m′
i,P = η(R(F, loc(a), P))η(a)

= η(R(F, i1, Q1))η(R(F, i2, Q2)) · · · η(R(F, in, Qn))η(a)
= mi1,Q1mi2,Q2 · · ·min,Qn

η(a)

This shows that the invariant is indeed maintained and immediately leads to
the next proposition.

Proposition 1. Let F = (E,≤, λ) ∈ TR and ρF be the unique run of A ◦v B
over F . Further, let ρF (E) = (s, q) ∈ SP ×QP and q(i) = (mi,P)P⊆P for each
i ∈ P. Then mi,P = η((R(F, i, P)) for every P ⊆ P.

We define a map φ : SP×QP →M as follows. Let (s, q) ∈ SP×QP . Further,
let v be the global gossip graph gossipP(s) and q(i) = (mi,P)P⊆P for every i ∈ P.
We compute subsets Q1, Q2, . . . , QK as in Lemma 1 (with P = {1, 2, . . . ,K})
from the gossip graph v. Now we set φ((s, q)) = m1,Q1m2,Q2 · · ·mK,QK

. Note
that the function φ((s, q)) depends only on gossipP(s) and q. That is, for (s, q),
(s′, q) ∈ SP ×QP with gossipP(s) = gossipP(s′), we have φ((s, q)) = φ((s′, q)).

The next proposition says that the map φ computes the monoid morphism
η. It follows from the previous proposition, the above discussion and Lemma 1.

Proposition 2. Let F = (E,≤, λ) ∈ TR and ρF be the unique run of A ◦v B
over F with ρF (E) = (s, q) ∈ SP ×QP . Then φ((s, q)) = η(F).

Let L ⊆ TR be a trace language recognized by the morphism η. We set
N = η(L). Clearly, for F ∈ TR, F ∈ L iff η(F) ∈ N . It is immediate from
the above proposition that with φ−1(N) as the set of final global states, L is
accepted by A ◦v B. This shows that every regular trace language is accepted by
an asynchronous automaton and hence proves Zielonka’s theorem.

6 Counter-Free Automata

The main result of this section is about an asynchronous automata-theoretic
characterization of aperiodic trace languages.

We first recall the notion of counter-free sequential automata. Let Π be an
alphabet and C = (S, {δπ}π∈Π , s0) be a sequential transition system where

– S is a finite non-empty set of states with s0 ∈ S.
– For π ∈ Π, δπ : S → S is a transition function.

For u ∈ Π∗, let δu : S → S denote the naturally induced transition function.
We say C is counter-free if for every word u ∈ Π∗ and for every S′ ⊆ S such that

92 B. Adsul and M. Sohoni

size of S′ is atleast two, δu does not induce a non-trivial permutation on S′. It
is not very difficult to see that C is counter-free iff the corresponding transition
monoid {δu | u ∈ Π∗} is aperiodic [McNP]. In other words, C is counter-free iff
there exists a constant n such that, for u ∈ Π∗ and s ∈ S, δun(s) stabilizes, that
is, δun+1(s) = δun(s).

Let s ∈ S be reachable from the initial state s0. Then there exists a word
w ∈ Π∗ such that δw(s0) = s. In that case, the condition δun+1(s) = δun(s) is
clearly equivalent to the condition δwun+1(s0) = δwun(s0). We use this variant
as the definition of counter-free-ness. More precisely, the automaton C is said
to be counter-free iff there exists a constant n such that, for every u,w ∈ Π∗,
δwun(s0) stabilizes, that is, δwun+1(s0) = δwun(s0).

An asynchronous automaton is said to be counter-free iff the corresponding
global sequential automaton is counter-free. It is easy to see that this is equivalent
to the condition that there exists a constant n such that, for F,H ∈ TR, starting
at the initial global state, the global states reached at the end of FHn and
FHn+1 are the same.

We now turn our attention to the main result of this section (Theorem 2).
Let L be an aperiodic trace language and η : TR → M be a morphism to
an aperiodic monoid M recognizing L. We use the notation from the previous
section and fix an asynchronous implementation A ◦v B of η. Recall that A is the
gossip implementation fixed in Theorem 1. Moreover, L is accepted by A ◦v B.

A basic observation regarding A ◦v B is that the component B of the cascade
product does not depend on the particular gossip implementation A. In other
words, we can take A to be any gossip implementation.

Residue Stabilization. Below we show that the second component B of A ◦v B is
always counter-free. Recall that B is an asynchronous automaton over Σ̃V . We
have to show that, there exists a constant n such that, for F ′, H ′ ∈ TR(Σ̃V),
starting at the initial global state of B, the global states reached at the end of
F ′H ′n and F ′H ′n+1 are the same. We verify this condition only when F ′H ′n

and F ′H ′n+1 are generated by the transducer θA
v , that is, we assume that

F ′H ′n, F ′H ′n+1 ∈ θA
v (TR).

In fact, we will show that, for an appropriate n and for F,H ∈ TR, θA
v (FHn)

and θA
v (FHn+1) lead to the same global state in B. It is easy to see that this

implies the earlier condition. From the definition of the cascade product, it is
clear that this amounts to showing that the second components of the global
states of A ◦v B remain the same when FHn and FHn+1 are processed using
the cascade A ◦v B. By Proposition 1, the second components of the respective
global states are (η(R(FHn, i, P))P⊆P)i∈P and

(
η(R(FHn+1, i, P))P⊆P

)
i∈P .

Proposition 3. There exists a constant n such that the following holds. Let
F,H ∈ TR, i ∈ P and P ⊆ P. Then η(R(FHn, i, P)) = η(R(FHn+1, i, P)).

Proof. We examine R(FHk, i, ∅) for large values of k. For m ≥ 1, let Qm ⊆ P be
such that Qm = {j ∈ P | latesti→j(Hm) is defined}. It is clear that Qm ⊆ Qm+1.
Therefore there exists l ≥ 1 such that for all m ≥ l, Qm = Ql. In fact, we can

Asynchronous Automata-Theoretic Characterization 93

take l = K. We call this Ql as Q. Observe that, for k ≥ l,

R(FHk, i, ∅) = FQ HQHQ . . . HQ︸ ︷︷ ︸
k−l times

HQl−1HQl−2 · · ·HQ1Hi

Clearly η(R(FHk, i, ∅)) = η(FQ)η(HQ)k−lη(HQl−1)η(HQl−2) . . . η(HQ1)η(Hi).
Recall that M is aperiodic and hence, for large k, η(HQ)k−l = η(HQ)k+1−l.
It follows that there exists n such that η(R(FHn, i, ∅)) = η(R(FHn+1, i, ∅)).
Also, note that n depends only on K = |P| and the monoid M .

Now we turn our attention to R(FHk, i, P) for P ⊆ P. We define, for each
m ≥ 1, a pair of subsets (Qm, Rm) with Qm ⊆ Qm+1 and Rm ⊆ Rm+1 as follows:

Qm = {k ∈ P | latesti→k(Hm) is defined}
Rm = {k ∈ P | ∃j ∈ P such that latesti→j→k(Hm) is defined}

With these definitions, we have

R(Hk, i, P) = R(H,Qk−1, Rk−1)R(H,Qk−2, Rk−2) . . .R(H,Q1, R1)R(H, i, P)

Clearly there exists l ≥ 1 such that for all m ≥ l, Qm = Ql and Rm = Rl. We
can take this l to be K2. We call this Ql as Q and Rl as R. Then, for k ≥ l,

R(FHk, i, P) = R(F,Q,R)R(H,Q,R)R(H,Q,R) . . .R(H,Q,R)︸ ︷︷ ︸
k−l times

H ′

where H ′ = R(H,Ql−1, Rl−1)R(H,Ql−2, Rl−2) . . .R(H,Q1, R1)R(H, i, P). From
the above expression for R(FHk, i, P) and the aperiodicity of M , it is clear that
there exists a constant n such that η(R(FHn, i, P)) = η(R(FHn+1, i, P)). ��

We can conclude from the above analysis that the second component B is
counter-free. This implies one direction of our main result (Theorem 2).

Proposition 4. Let L ⊆ TR be aperiodic. Then L is accepted by a cascade
A ◦v B of a gossip implementation A over Σ̃ and a counter-free asynchronous
automaton B over Σ̃V .

Gossip Stabilization. Now we examine the first component A of the cascade
A ◦v B. Recall that A is the gossip implementation from Theorem 1. As noted
earlier, we can take A to be any gossip implementation.

The following example shows that no gossip implementation is counter-free.

Example 1. Let Π̃ = (Π1, Π2, Π3) with Π1 = {a, c}, Π2 = {b, c} and Π3 = {a, b}
be a distributed alphabet. Observe that, with Π = {a, b, c}, TR(Π̃) = Π∗.
Keeping this in mind, we sometimes write a trace over Π̃ as a word over Π.

Let CG = ({S1, S2, S3}, {δa, δb, δc}, sin ∈ S1 × S2 × S3) be a deterministic
asynchronous automaton which computes the gossip among processes 1 and
2 about process 3. That is, there is a function g1,2 : S1 × S2 → {1, 2} such

94 B. Adsul and M. Sohoni

that: if F = (E,≤, λ) ∈ TR(Π̃) and ρF is the unique run of CG over F with
ρF (E) = (s1, s2, s3), then g1,2((s1, s2)) = 1 iff latest1→3(F) ≥ latest2→3(F).

We show that CG is not counter-free. On the contrary suppose that CG is
counter-free. Then there exists n such that, starting at the initial global state
sin, the traces (ab)n and (ab)n+1 lead to the same global state, say s with
s = (s1, s2, s3). It follows that the trace ab fixes the state s. In other words,
δab(s) = δb(δa((s1, s2, s3))) = (s1, s2, s3).

Recall that δa does not change the 2-state and δb does not change the 1-state.
This implies that δa((s1, s2, s3)) = (s1, s2, s

′
3) for some s′

3 ∈ S3. Hence both (ab)n

and (ab)na lead to global states with the same local states for processes 1 and 2.
Clearly the gossip function g1,2 fails to distinguish between (ab)n and (ab)na. But
latest1→3((ab)n) < latest2→3((ab)n) and latest1→3((ab)na) > latest2→3((ab)na).
This gives a contradiction.

Although no gossip implementation A is counter-free, the related valuation
v turns out to be counter-free. Recall that the valuation is given in terms of the
family {gossipP }P⊆P of functions which compute the gossip graphs. The next
proposition shows that these gossip graphs eventually stabilize.

Proposition 5. There exists a constant n such that the following holds. Let
F,H ∈ TR and P ⊆ P. Then, for m ≥ n, SGP (FHm) = SGP (FHm+1).

A simple observation regarding secondary graphs is recorded in the next
proposition. See [MS1] for a proof.

Proposition 6. Let F,H ∈ TR with SGP(F) = SGP(H). Then, for a ∈ Σ and
P ⊆ P, SGP (Fa) = SGP (Ha).

Main Result. Now we are ready to state the partial converse to Proposition 4.
Let L be accepted by a cascade A ◦v B where A is any gossip implementation

over Σ̃ and B is an arbitrary counter-free asynchronous automaton over Σ̃V .
Moreover, the final global states accepting L satisfy the following property: for
(s, q), (s′, q) ∈ SP × QP with gossipP(s) = gossipP(s′), (s, q) is a final global
state iff (s′, q) is so. We abbreviate this by writing that L is accepted modulo
the gossip implementation. The partial converse to Proposition 4 claims that L
is aperiodic.

We show the following strong pumping property for L which implies that L
is aperiodic (see [McNP]). We will demonstrate existence of a constant k such
that, for F1, F2, F3 ∈ TR, F1F

k
2 F3 ∈ L iff F1F

k+1
2 F3 ∈ L. In other words, we

have to show that the unique run of A ◦v B over F1F
k
2 F3 is accepting iff the

unique run of A ◦v B over F1F
k+1
2 F3 is accepting.

Towards this, let F1, F2, F3 ∈ TR. It follows from Proposition 5 and Proposi-
tion 6 that, for large m, SGP(F1F

m
2 F3) = SGP(F1F

m+1
2 F3). Let s and s′ be the

global states reached at the end of the runs of A over F1F
m
2 F3 and F1F

m+1
2 F3

respectively. Then clearly we have gossipP(s) = gossipP(s′).
Now by the definition of A ◦v B, the second component of the global state

reached at the end of the run of A ◦v B over F1F
m
2 F3 is same as the global

Asynchronous Automata-Theoretic Characterization 95

state reached at the end of the run of B over θA
v (F1F

m
2 F3). By Proposition 5,

we know that there exists a constant n such that, for m ≥ n and P ⊆ P,
SGP (F1F

m
2) = SGP (F1F

m+1
2).

Let F ′
1 = θA

v (F1F
n
2) ∈ TR(Σ̃V) and F ′

2 ∈ TR(Σ̃V) be such that, we have
F ′

1F
′
2 = θA

v (F1F
n+1
2). Then Proposition 5 and Proposition 6 imply that, for large

m, θA
v (F1F

m
2) = F ′

1F
′
2
m−n. Again, it follows from Proposition 6 that there exists

F ′
3 ∈ TR(Σ̃V) such that, for large m, θA

v (F1F
m
2 F3) = F ′

1F
′
2
m−n

F ′
3. Recall that

B is counter-free. Hence there exists a constant l such that the global states
reached at the end of the runs of B over F ′

1F
′
2
l
F ′

3 and F ′
1F

′
2
l+1

F ′
3 are the same.

The above discussion implies existence of a constant, namely n+ l, with the
following property. Let (s, q), (s′, q′) ∈ SP × QP be the global states reached
at the end of the runs of A ◦v B over F1F

n+l
2 F3 and F1F

n+l+1
2 F3 respectively.

Then gossipP(s) = gossipP(s′) and q = q′. Finally recall that L is accepted by
A ◦v B modulo the gossip implementation. This implies that F1F

n+l
2 F3 ∈ L iff

F1F
n+l+1
2 F3 ∈ L. This completes the proof that L is aperiodic.

Theorem 2. Let L ⊆ TR. Then L is aperiodic iff L is accepted by a cascade
A ◦v B of a gossip implementation A over Σ̃ and a counter-free asynchronous
automaton B over Σ̃V , modulo the gossip implementation.

7 Discussion

Stated differently, our main result characterizes aperiodic, first-order-definable
or equivalently star-free trace languages by counter-free asynchronous acceptors
modulo the gossip automaton. We do not know if counter-free asynchronous au-
tomata alone suffice in the above characterization. Nevertheless, we have shown
that no gossip implementation (asynchronous computation of latest information
of processes about each other) can be counter-free.

Aperiodic sequential behaviours also coincide with properties expressible in
the popular and powerful specification formalism of propositional linear-time
temporal logic (LTL). The logic LTL is as expressive as the first-order logic and
has an elementary decision procedure for satisfiability. Designing “LTL-like”
trace logics has turned out to be a challenging problem (see [Ads] and references
therein). In this context, the main result suggests a decomposition of “global”
aperiodic behaviours into “local” aperiodic behaviours and highlights the impor-
tance of the gossip information (see [Ads] for more details). Simultaneously, it
gives a counter-free asynchronous implementation upto the gossip information.

References

[Ads] B. Adsul: Complete Local Logics for Reasoning about Traces, Ph.D. Thesis,
Indian Institute of Technology – Bombay, Mumbai, India (2004).

[Arb] M.A. Arbib (Ed.): Algebraic Theory of Machines, Languages and Semigroups,
Academic Press, New York (1968).

96 B. Adsul and M. Sohoni

[DK] M. Droste and D. Kuske: Languages and Logical Definability in Concur-
rency Monoids, Proc. CSL ’95, LNCS 1092 (1996) 233–251.

[DR] V. Diekert and G. Rozenberg (Eds.): The Book of Traces, World Scientific,
Singapore (1995).

[EM] W. Ebinger and A. Muscholl: Logical Definability on Infinite Traces, Proc.
ICALP ’93, LNCS 700 (1993) 335–346.

[GRS] G. Guaiana, A. Restivo and S. Salemi: Star-free Trace Languages, Theo-
retical Computer Science 97 (1992) 301–311.

[Maz] A. Mazurkiewicz: Concurrent Program Schemes and Their Interpretations,
Report DAIMI-PB-78, Comp Sci Dept, Aarhus University, Denmark (1978).

[McNP] R. McNaughton and S. Papert: Counter-free Automata, MIT Press, Cam-
bridge (1971).

[MS1] M. Mukund and M. Sohoni: Gossiping, Asynchronous Automata and
Zielonka’s Theorem, Report TCS-94-2, Chennai Mathematical Institute,
Chennai, India (1994).

[MS2] M. Mukund and M. Sohoni: Keeping Track of the Latest Gossip in a Dis-
tributed System, Distributed Computing 10 (3) (1997) 137–148.

[Sch] M.P. Schutzenberger: On Finite Monoids Having Only Trivial Subgroups,
Information and Control 48 (1965) 190–194.

[Tho] W. Thomas: Languages, Automata and Logic, in: Handbook of Formal Lan-
guages Vol. 3, Springer-Verlag, New York (1997) 389–456.

[Zie] W. Zielonka: Notes on Finite Asynchronous Automata, RAIRO Inform.
Théor. Appl. 21 (1987) 99–135.

A Decidable Fragment of Separation Logic

Josh Berdine1, Cristiano Calcagno2, and Peter W. O’Hearn1

1 Queen Mary, University of London
{berdine, ohearn}@dcs.qmul.ac.uk

2 Imperial College, London
ccris@doc.ic.ac.uk

Abstract. We present a fragment of separation logic oriented to linked
lists, and study decision procedures for validity of entailments. The re-
strictions in the fragment are motivated by the stylized form of reasoning
done in example program proofs. The fragment includes a predicate for
describing linked list segments (a kind of reachability or transitive clo-
sure). Decidability is first proved by semantic means: by showing a small
model property that bounds the size of potential countermodels that
must be checked. We then provide a complete proof system for the frag-
ment, the termination of which furnishes a second decision procedure.

1 Introduction

Separation logic is a new approach to reasoning about programs that manipulate
pointer structures [1]. The main advantage of the logic is the way it supports rea-
soning about different portions of heap which can be combined in a modular way
using the separating conjunction operation. In this paper we present a fragment
of separation logic and study decision procedures for validity of entailments.

These results are part of a bigger project that aims to provide algorithms and
tools to transfer the simplicity of handwritten proofs with separation logic to an
automatic setting. To make the task of automatic verification more feasible,
we restrict our attention to structural integrity properties (like not following
dangling pointers, preserving noncircularity of linked lists, not leaking memory),
rather than full correctness. Moreover, we restrict the language by disallowing
pointer arithmetic.

Even with these restrictions, the decidability questions are nontrivial. In par-
ticular, one of the most treacherous passes in pointer verification and analysis
is reachability. To describe common loop invariants, and even some pre- and
post-conditions, one needs to be able to assert that there is a path in the heap
from one value to another; a fragment that cannot account for reachability in
some way will be of very limited use. When we inquire about decidability we
are then square up against the bugbear of transitive closure (reachability is the
transitive closure of points-to); there are various decidable fragments of, say, the
first-order logic of graphs, but for many of these decidability breaks if transitive
closure is added.

K. Lodaya and M. Mahajan (Eds.): FSTTCS 2004, LNCS 3328, pp. 97–109, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

98 J. Berdine, C. Calcagno, and P.W. O’Hearn

So, a main technical challenge is to take on a form of reachability, in a way
that fits with the separating conjunction (and the possibility of dangling point-
ers). We begin simply, with linked list structures only, instead of general heap
structures with arbitrary sharing. Our analysis can be adapted to certain kinds of
tree structure, but we do not yet have a general picture of the kinds of inductive
definitions that are amenable to the style of analysis presented here.

Our approach started by observing the stylized reasoning that was done in
typical manual proofs using separation logic (e.g., [2–4]). For instance, we would
often say “I have a list here, and another there occupying separate storage”, but
never would we assert the negation of such a statement. Generally, in many ex-
amples that have been given, the assertions include a heap-independent, or pure,
boolean condition, and a number of heap-dependent (or “spatial”) assertions sep-
arately conjoined. So, we consider a restricted fragment where the formulæ are
of the form Π � Σ, where Π is a conjunction of equalities and inequalities and
Σ is a separating conjunction of points-to facts and list segment remarks. We
show the decidability of entailment between formulæ of this form.

In fact, two decision procedures are given. The first, a semantic procedure, is
based on a “small model property”. In essence, we have designed the fragment
so that formulæ do not admit any “unspecified” sharing, and then exploited
separation logic’s local reasoning to capitalize on the absence of interference
by avoiding case analysis on the possible interaction patterns between formulæ.
The essential result, which fails for separation logic as a whole, is that when
considering the possible models of our list segment predicate, no case analysis
on the possible interference patterns is necessary, instead considering either the
length zero or length two model immediately suffices. So decidability is achieved
not through some brute force interference analysis, but by leveraging locality.

The second is a proof-theoretic procedure. It has the advantage of not gen-
erating the exponentially-many potential countermodels in every case, as the
semantic procedure does. Also, this is the first complete proof theory that has
been given for (a fragment of) separation logic. It is a candidate for extension
to richer fragments (where we might not insist on decidability).

It is worth remarking on what is left out of the fragment. Although we are
asking about the validity of entailments, entailment is not itself internalized with
an implication connective; the additive and multiplicative implications (→ and
−−∗) from BI are omitted. A hint of the computational significance of these omis-
sions can be seen in the (easier) problem of model checking assertions (checking
satisfaction). In earlier work it was shown that a fragment with points-to and
nesting of −−∗ and →, but no list segment predicate, has model checking complex-
ity PSpace-Complete [5]. Even just wrapping negations around the separating
conjunction leads to PSpace-Complete model checking. In contrast, the model
checking problem for the fragment of this paper, which goes further in that it
considers list segments, is linear.

The fragment of this paper has been used in a prototype tool that checks
properties of pointer programs. Typically in tools of this kind, the assertion lan-
guage is closed under taking weakest preconditions of atomic commands. This

A Decidable Fragment of Separation Logic 99

is not the case for our fragment. However, it is possible to reduce entailments
arising from weakest preconditions to entailments in our fragment, by way of a
form of symbolic execution. Here we confine ourselves to the question of decid-
ability for the fragment, and leave a description of the symbolic execution phase
to a future paper.

2 Fragment of Separation Logic

The fragment of separation logic we are concerned with is specified by restricting
the assertion language to that generated by the following grammar:

x, y, . . . ∈ Variables variables

E � nil | x Expressions

P � E=E | ¬P simple Pure formulæ
Π � true | Π ∧ P Pure formulæ

S � E �→E | ls(E, E) simple Spatial formulæ
Σ � emp | S ∗Σ Spatial formulæ

A� P | Π | S | Σ | Π � Σ formulæ

Note that we abbreviate ¬(E1=E2) as E1 �=E2, and use ≡ to denote “syntac-
tic” equality of formulæ, which are considered up to symmetry of = and permu-
tations across ∧ and ∗, e.g, Π∧P ∧P ′ ≡ Π∧P ′∧P . We use notation treating for-
mulæ as sets of simple formulæ, e.g., writing P ∈ Π for Π ≡ P ∧Π ′ for some Π ′.

Formulæ are interpreted as predicates on program States with a forcing re-
lation, while expressions denote Values and depend only on the stack:1

s , h � A �E� ∈ Stacks → Values

Stacks def= Variables → Values
Heaps def= L-values fin

⇀ R-values
States def= Stacks×Heaps

R-values def= Values
L-values

def
⊂ Values

nil
def
∈ Values�L-values

The semantics of the assertion language is shown in Table 1, where fv(E)
simply denotes the variables occurring in E. Below we try to give some intuitive
feel for the assertions and what sorts of properties are expressible with a few
examples.

As always, a formula S ∗Σ is true in states where the heap can be split into
two separate parts (with disjoint domains) such that S is true in one part and
Σ is true in the other. The unit of this conjunction is emp, which is true only
in the empty heap. The only primitive spatial predicate is �→, which describes
individual L-values in the heap. So 10�→42 is true in the heap in which L-value 10

1 For a concrete instance of this model, take Values = Z, L-values = N�{0}, nil = 0.

100 J. Berdine, C. Calcagno, and P.W. O’Hearn

Table 1. Semantics of Assertion Language

�x�s
def= s(x) �nil�s

def= nil

s , h � E1=E2
def

iff �E1�s = �E2�s

s , h � ¬P
def

iff s , h � P

s , h � true always

s , h � Π ∧ P
def

iff s , h � Π and s , h � P

s , h � E1 �→E2
def

iff h = [∅ | �E1�s��E2�s]

s , h � ls(E1, E2)
def

iff there exists n. s , h � lsn(E1, E2)

s , h � ls0(E1, E2)
def

iff �E1�s = �E2�s and h = ∅
s , h � lsn+1(E1, E2)

def

iff �E1�s 	= �E2�s and

there exists v ∈ Values. [s | x�v] , h � E1 �→x ∗ lsn(x, E2)

for x /∈ fv(E1, E2)

s , h � emp
def

iff h = ∅
s , h � S ∗ Σ

def

iff there exists h1 ⊥ h2. h = h1∗h2 and s , h1 � S and s , h2 � Σ

s , h � Π � Σ def

iff s , h � Π and s , h � Σ

contains 42, and nothing else—the domain is the singleton {10}. Similarly, x�→42
asserts that whichever L-value the stack maps x to contains 42. In addition to
the spatial (heap-dependent) part, formulæ also have a pure (heap-independent)
part. So extending the last example, with x=y � x�→42 we also assert that the
stack maps x and y to equal R-values. Since the conjuncts of a ∗ formula must
be true in disjoint heaps, x=y � x�→nil ∗ y �→nil is unsatisfiable.

The ls predicate describes segments of linked list structures in the heap:
ls(x, y) describes a list segment starting at the L-value denoted by x whose last
link contains the value of y, which is a dangling pointer. That y is dangling is
significant, as it precludes cycles. So ls(x, x) describes the empty list segment,
and is equivalent to emp. Were the endpoint not required to be dangling, then
ls(x, x) could describe cyclic lists containing x. Instead, a cyclic list is described
for instance with x�→y ∗ ls(y, x). For some further examples, ls(x, nil) describes
“complete” lists, rather than segments. A list with an intermediate link can be
expressed with ls(x, y)∗ls(y, nil), two non-overlapping lists with ls(x, nil)∗ls(y, nil),
and two lists with a shared tail with ls(x, z) ∗ ls(y, z) ∗ ls(z, nil).

Our restriction to unary heap cells, and hence lists with links containing
nothing but a pointer to the next link, is not significant and need not cause alarm:
our development extends straightforwardly, all the formulæ just get longer.2

2 While with binary heap cells, unrolling a ls involves generating a fresh variable, this
is unproblematic for decidability in part due to Definition 10.

A Decidable Fragment of Separation Logic 101

3 Decidability, Model-Theoretically

As mentioned earlier, our primary concern in this paper is deciding validity of
entailments between formulæ in the fragment. That is, for entailments of the
form Π � Σ * Π ′ � Σ′, we wish to check if for all s, h. s , h � Π � Σ implies s , h �
Π ′ � Σ′. Before getting stuck into decidability, we try to develop some intuition
with a few examples.

First trivially, anything entails itself, up to equalities: x=y ∧ E=F � x�→E *
y �→F . As nil /∈ L-values, x�→E * x�=nil � x�→E. Also, since ∗ guarantees sep-
aration, spatial formulæ have implicit non-alias consequences: x�→E ∗ y �→F *
x�=y � x�→E ∗ y �→F . Explicit descriptions of list segments entail the inductive
descriptions: x=y � emp * ls(x, y) for length 0, x�=y � x�→y * ls(x, y) for length 1,
x�=y∧ z �=y � x�→z ∗ z �→y * ls(x, y) for length 2, and x�=y � x�→z ∗ ls(z, y) * ls(x, y)
for length “n + 1”. All the inequalities in these examples are actually necessary:
Since the ls predicate prohibits cycles in the consequent, there must be enough
inequalities in the antecedent to guarantee acyclicity. Crucially, there are valid
entailments which generally require induction to prove, such as appending a list
segment and a list: ls(x, z) ∗ ls(z, nil) * ls(x, nil).

Before attacking entailment validity, we must consider formula satisfaction:

Lemma 1 (Satisfaction Decidable). For given s , h, Π � Σ, checking the
satisfaction s , h � Π � Σ is decidable.

In fact, satisfaction checking is linear in the combined size of the model and
the formula. For a given stack and heap, first we check the pure part of the
formula against the stack in the obvious way. Then, to check the spatial part
we start from the left and proceed as follows. If the first formula is a points-to,
we remove the evident singleton from the heap (if present) and continue; if the
sigleton is not present we report “no”. If the formula is a ls we simply try to
traverse through the heap from the putative start until we get to the putative
end (deleting cells as we go). If the traversal fails we report “no”, otherwise we
continue on with the rest of the spatial part. When we get to the empty spatial
formula we just check to see if we have the empty heap.

Informally, checking validity of entailments of the form Π � Σ * Π ′ � Σ′ is
decidable because it suffices to consider finitely-many potential models of the
antecedent. This small model property is captured primarily by:

Proposition 2. The following rule is sound:

UnrollCollapse
Π ∧E1=E2 � Σ * Π ′ � Σ′

Π ∧ E1 �=E2 ∧ x�=E2 � E1 �→x ∗ x�→E2 ∗Σ * Π ′ � Σ′

Π � ls(E1, E2) ∗Σ * Π ′ � Σ′ x /∈ fv(Π,E1, E2, Σ, Π ′, Σ′)

102 J. Berdine, C. Calcagno, and P.W. O’Hearn

This rule says that to prove that a ls entails a formula, it suffices to check
if the lss of lengths zero and two3 entail the formula. That is, it eliminates ls
from the form of antecedents, and allows the conclusion of an inductive property
from finitely-many non-inductive premisses. From a different perspective, this
rule expresses a form of heap abstraction in that, as far as entailment is con-
cerned, each of all the possible models of the ls is equivalent to either the empty
one or the length two one. Pushing this further, we see that the case analysis
UnrollCollapse performs when read bottom-up effects a sort of symbolic state
space exploration.

Before presenting the proof, we show how this result yields decidability.

Lemma 3. For fixed Π,Σ,Π ′, Σ′ such that no subformula of Σ is of form
ls(E1, E2), checking Π � Σ * Π ′ � Σ′ is decidable.
Proof (Sketch). Because the antecedent’s spatial part is a list of points-to facts,
any potential model must have a heap whose domain is exactly the size of the
antecedent. Furthermore, there is an evident notion of isomorphism, where two
states are isomorphic just if one is obtained from the other by L-value renam-
ing. The fragment is closed (semantically) under isomorphism and, up to iso-
morphism, there are only finitely-many states of any given size. So, we check
the antecedent on finitely-many canonical representatives of these equivalence
classes, and when the antecedent holds we check the conclusion. ��
Corollary 4 (Validity Decidable). For fixed Π, Σ,Π ′, Σ′, checking Π � Σ *
Π ′ � Σ′ is decidable.

Proof. Applying UnrollCollapse repeatedly yields a set of entailments whose
antecedents do not contain ls, and so can each be decided due to Lemma 3. ��

The semantic decision procedure gotten from the small model property shows
that validity is in coNP; to show invalidity we can guess one of exponentially-
many models of a suitably bounded size, and then satisfaction of both antecedent
and consequent can easily be checked in polynomial time. We are not sure about
hardness. On one side, the absence of negation from the fragment may suggest a
polynomial complexity. However, a subtle form of negation is implicit in formulæ
like y �=z � ls(x, y) ∗ ls(x, z), which implies that either ls is empty, but not both.
Preliminary attempts to exploit these implicit disjunctions to reduce one of the
standard coNP-complete problems to validity of entailment have failed.

3.1 Soundness of UnrollCollapse

Note that while we are only investigating a fragment, the metatheory uses the
whole of separation logic. The full logic is used in particular to state the fol-
lowing properties of the ls predicate, upon which soundness of UnrollCollapse

depends:

3 There is no need to consider length one because if the right-hand side accepts a list
of length two then it also accepts a list of length one. The converse does not hold
because of �→.

A Decidable Fragment of Separation Logic 103

– The end of a ls dangles:

ls(−, E2) → (E2 �↪→−) (1)

– Each L-value reachable in a ls, except the end, does not dangle:

(E1 �=E2 ∧ ls(−, E2) ∧ −↪→E1) → (E1↪→−) (2)

– Models of sublss can be changed provided cycles are not introduced:

ls(E1, E4) ∧ (ls(E2, E3) ∗ true)
↔ (ls(E2, E3) ∧ E4 �↪→−) ∗

(
(ls(E2, E3) ∧ E4 �↪→−) −−∗ ls(E1, E4)

) (3)

These can be understood simply as particular properties of ls, but there are
more elucidating readings. That is, (1) and (2) provide a non-inductive charac-
terization of what L-values are, and are not, in heaps modeling a ls. In other
words, they characterize the points-to facts about models of lss.

Property (3) states that heaps containing segments from E1 to E4 (ls(E1, E4))
via a segment from E2 to E3 (∧(ls(E2, E3) ∗ true)) can be split into a heap
containing the subsegment (ls(E2, E3)) which, due to acyclicity, must not contain
the endpoint (∧E4 �↪→−), and (∗) a heap which when augmented with any heap
containing a segment from E2 to E3 without E4 (ls(E2, E3)∧E4 �↪→−) yields (−−∗)
a segment from E1 to E4 (ls(E1, E4)). That is, while the semantics in Table 1
specifies how models of a ls are related to models of the inductive occurrence,
(3) characterizes how models of a ls are related to any submodel which is a ls
(which, summarizing the above, is simply that the submodels do not contain the
endpoint). In other words, (3) characterizes the ls facts about models of lss.

The soundness argument for UnrollCollapse is largely concerned with ana-
lyzing the impact on validity of entailment which changing from one model of a
ls to another has. For atomic formulæ, (1)–(3) give us a handle on this impact.
For compound formulæ, the local reasoning supported by ∗, and precision of
every predicate is essentially all we need. A predicate is precise [6] just when for
any given stack and heap, there is at most one subheap that satisfies it; and so
every predicate cuts out an unambiguous area of storage.

The general property we need is expressed in the following key lemma:

Lemma 5.
If Π � ls2(E2, E3) ∗Σ * Π ′ � Σ′ (4)
and s , h � Π ∧ E2 �=E3 ∧ E2 �↪→− ∧Σ (5)

then s , h � Π ′ ∧ (ls(E2, E3) −−∗ Σ′)

This expresses that the ls predicate is, in some sense, “abstract”; stating,
basically, that if a length two ls validates an entailment, then the entailment’s
consequent is insensitive to the particular model of the ls. The proof of this lemma
is omitted for space reasons. But it may be useful to note some formulæ that, were
they allowed, would cause this result to fail. First are imprecise predicates. Nearly

104 J. Berdine, C. Calcagno, and P.W. O’Hearn

everything breaks in their presence, but in particular, for imprecise A, B such
that s , h � A∗B, not all subheaps of h which model A need leave or take enough
heap for the remainder to model B, and so changing models of A can easily falsify
B. Another problematic addition would be existentials in consequents, which
would allow consequents to, e.g., impose minimum lengths with formulæ such as
∃x, y.E1 �→x∗x�→y∗ls(y, E2), which changing models of antecedents could violate.
Finally, allowing “unspecified” sharing with formulæ such as ls(x, y) ∧ Σ gives
two views of the same heap, one of which may be invalidated when replacing the
heap with a different model of the other. Banning unspecified sharing forces the
program annotations to explicate sharing; a restriction whose impact is presently
unclear.

Once we know that consequents are insensitive to particular models of lss, we
can replace any model with one of either length 0 or 2, depending on whether
or not the pure part of the antecedent forces the endpoints to be equal, making
proving soundness of UnrollCollapse straightforward:

Proof (Proposition 2). Suppose the premisses are valid:

Π ∧ E1=E2 � Σ * Π ′ � Σ′ (6)
Π ∧ E1 �=E2 ∧ x�=E2 � E1 �→x ∗ x�→E2 ∗Σ * Π ′ � Σ′ (7)

for x /∈ fv(Π,E1, E2, Σ, Π ′, Σ′). Fix s , h and assume the antecedent of the
conclusion: s , h � Π � ls(E1, E2) ∗Σ. Proceed by cases:

[�E1�s = �E2�s]: Hence s , h � Π ∧ E1=E2 � Σ, and so by (6), s , h � Π ′ � Σ′.
[�E1�s �= �E2�s]: Hence h = h12∗hΣ and there exists l. s′ , h12 � E1 �→x∗ls(x, E2)
and s′ , hΣ � Π ∧ E1 �=E2 � Σ where s′ = [s |x�l] for x fresh. Therefore by (7),
Lemma 5 ensures s′ , hΣ � Π ′ � (ls(E1, E2) −−∗ Σ′), and hence s , h � Π ′ � Σ′.

��

4 Proof Theory

In the previous section we saw how UnrollCollapse yields decidability of the
fragment model-theoretically. We now see that it also forms the basis of a sound
and complete proof theory, and a decision procedure based on proof-search.

The rules of the proof system are shown in Table 2. Since there is no Cut

rule, the rules have a rather odd form. What we have, essentially, is a collection
of axioms for the semantic properties of the assertion language, each of which
has been Cut with an arbitrary formula. A noteworthy point is that the rules
generally have only one premiss, so proof-search is largely simply rewriting.

Proposition 6 (Soundness). Every derivable entailment is valid.

Proof. The result follows from validity of each axiom’s conclusion, and validity
of each rule’s premisses implies validity of its conclusion. The UnrollCollapse

case is Proposition 2, and the others are straightforward calculations. ��

A Decidable Fragment of Separation Logic 105

Table 2. Proof System

Axiom

Π � emp true � emp

Inconsistent

Π ∧ E 	=E � Σ Π ′ � Σ′

Substitution
Π[E/x] � Σ[E/x] Π ′[E/x] � Σ′[E/x]

Π ∧ x=E � Σ Π ′ � Σ′

=ReflexiveL
Π � Σ Π ′ � Σ′

Π ∧ E=E � Σ Π ′ � Σ′

nilNotLval
Π ∧ E1 	=nil � E1 �→E2 ∗ Σ Π ′ � Σ′

Π � E1 �→E2 ∗ Σ Π ′ � Σ′

∗Partial
Π ∧ E1 	=E3 � E1 �→E2 ∗ E3 �→E4 ∗ Σ Π ′ � Σ′

Π � E1 �→E2 ∗ E3 �→E4 ∗ Σ Π ′ � Σ′

UnrollCollapse
Π ∧ E1=E2 � Σ Π ′ � Σ′

Π ∧ E1 	=E2 ∧ x	=E2 � E1 �→x ∗ x�→E2 ∗ Σ Π ′ � Σ′

Π � ls(E1, E2) ∗ Σ Π ′ � Σ′ x /∈ fv(Π, E1, E2, Σ, Π ′, Σ′)

=ReflexiveR
Π � Σ Π ′ � Σ′

Π � Σ Π ′ ∧ E=E � Σ′

Hypothesis
Π ∧ P � Σ Π ′ � Σ′

Π ∧ P � Σ Π ′ ∧ P � Σ′

Emptyls
Π � Σ Π ′ � Σ′

Π � Σ Π ′ � ls(E, E) ∗ Σ′

Frame
Π � Σ Π ′ � Σ′

Π � S ∗ Σ Π ′ � S ∗ Σ′

NonEmptyls
Π ∧ E1 	=E3 � Σ Π ′ � ls(E2, E3) ∗ Σ′

Π ∧ E1 	=E3 � E1 �→E2 ∗ Σ Π ′ � ls(E1, E3) ∗ Σ′

4.1 Decidability and Completeness

The proof-search algorithm makes use of a class of formulæ which are “maximally
explicit”. The primary characteristic of these formulæ, discussed later, is that
the Frame rule is complete for entailments with such formulæ as antecedents.

Definition 7 (Normal Form). A formula Π � Σ is in normal form if

Π � Σ ≡ (xi �=xj)1≤i	=j≤n ∧ (xi �=nil)1≤i≤n ∧ (Ei �=E′
i)1≤i≤m ∧ true

� x1 �→E′′
1 ∗ · · · ∗ xn �→E′′

n ∗ emp

for some n, m and where xi �≡ xj for i �= j and Ei �≡ E′
i.

We will be concerned with the following proof-search algorithm:

Algorithm 8. For goal entailment g, ps(g) either fails or returns a proof of g:

ps(g) = nondeterministically select a rule r such that:
g unifies with the conclusion of r, via some substitution s

and if r is nilNotLval, then E1 �=nil /∈ Π (8)
and if r is ∗Partial, then E1 �=E3 /∈ Π (9)

106 J. Berdine, C. Calcagno, and P.W. O’Hearn

and if r is Frame or NonEmptyls,
then the antecedent of g is in normal form

(10)

if no such rule exists, then fail
else if r is an axiom, then return r

else let p0, . . . , pn for some n be the premisses of r after applying s

in return r(ps(p0), . . . , ps(pn))

Here we consider axioms in the proof system to be proof constants, and rules
to be functions from proofs of their premisses to proofs of their conclusions.

A point to note about this algorithm is that as long as the additional sidecon-
ditions (8)–(10) are met, the order in which the rules are applied is inconsequen-
tial. The first step toward showing that ps is a decision procedure is termination:

Lemma 9 (Termination). For any goal entailment, ps terminates.

Proof. Termination of ps is established by observing that, with additional side-
conditions (8) and (9), applying any rule makes progress: the size of each premiss
of any rule application is lexicographically less than the size of the conclusion,
where size is defined by:

Definition 10 (Size). The size of an entailment Π � Σ * Π ′ � Σ′ is a triple of:

1. The number of lss occurring in Π � Σ * Π ′ � Σ′,
2. The number of inequalities missing from Π, that is, |{E0 �=E1 | E0, E1 ∈

fv(Π � Σ, Π ′ � Σ′) ∪ {nil}}�Π|,
3. The length of Π � Σ * Π ′ � Σ′, where length is defined in the obvious way

taking all simple formulæ to have length 1.
��

When ps fails, the short story is that it has found a disproof of the goal. We
begin explaining this by analyzing entailments with antecedents in normal form.

Observation 11. The antecedent of every entailment to which no rule applies,
except possibly Frame and NonEmptyls, is in normal form.

For a more intuitive characterization of normal form, note that formulæ Π � Σ
in normal form satisfy the following properties:

1. No equalities E=E′ (other than reflexive E=E) are guaranteed to hold.
2. The only inequalities E �=E′ guaranteed to hold appear explicitly in Π.
3. The only expressions E guaranteed to be in the domain of the heap appear

explicitly as E �→E′ in Σ.

A key property of normal forms is satisfiability. Later we will make use of
two different types of model of such formulæ:

Definition 12 (Bad Model). For Π � Σ in normal form:

1. A bad model of Π � Σ is a state s , h � Π � Σ where nil /∈ range(s) and s is
one-one on fv(Π � Σ), and h is uniquely determined by s .

A Decidable Fragment of Separation Logic 107

2. A bad model of Π � Σ with x=E is a state s , h � Π∧x=E � Σ where, for s′ , h′

a bad model of Π � Σ, s = [s′ |x��E�s′], and h is uniquely determined by s.

Lemma 13. For any formula Π � Σ in normal form:

1. There exists a bad model of Π � Σ.
2. For any x�=E /∈ Π, there exists a bad model of Π � Σ with x=E.

Now for the crux of correctness of ps in the failure case, and completeness of
the proof system: when ps reaches a stuck entailment, it is invalid, and invalidity
is preserved throughout the path of rule applications ps made from the goal to
the stuck entailment.4

Lemma 14 (Stuck Invalidity). Every entailment stuck for ps is invalid.

Proof (Sketch). Consider a stuck entailment Π � Σ * Π ′ � Σ′, whose antecedent,
by Observation 11, is in normal form. Proceed by cases:

[Σ′ ≡ emp and Π ′ ≡ Π ′′ ∧ E=E′]: Note E �≡ E′ since Π � Σ * Π ′ � Σ′ is stuck.
Therefore a bad model of Π � Σ is a countermodel.

[Σ′ ≡ emp and Π ′ ≡ Π ′′ ∧ E �=E′]: Note E �=E′ /∈ Π since Π � Σ * Π ′ � Σ′ is
stuck. Therefore a bad model of Π � Σ with E=E′ is a countermodel.

[Σ′ ≡ E �→E′ ∗Σ′′]: Therefore since Π � Σ * Π ′ � Σ′ is stuck, E �→E′ /∈ Σ. Hence,
s , h a bad model of Π � Σ is a countermodel, since either �E�s /∈ dom(h) or
h(�E�s) �= �E′�s.

[Σ′ ≡ ls(nil, E) ∗Σ′′]: Therefore s , h a bad model of Π � Σ is a countermodel,
since nil �= �E�s.

[Σ′ ≡ ls(x,E) ∗Σ′′ and for all E′.x�→E′ /∈ Σ]: Therefore s , h a bad model of Π �
Σ is a countermodel, since �x�s �= �E�s and �x�s /∈ dom(h).

[Σ ≡ x�→E ∗Σ0 and Σ′ ≡ ls(x,E′) ∗Σ1]: Note that Σ1 contains only lss, since
the other cases have already been covered. Let s , h be a bad model of Π � Σ
with x=E′ (x�=E′ /∈ Π since Π � Σ * Π ′ � Σ′ is stuck). Therefore s , h �
Π � x�→x ∗Σ0 and s , h � Π ′ � ls(x,E′) ∗Σ1, since no ls contains a nonempty
cycle. Therefore s , h is a countermodel. ��

Lemma 15 (Invalidity Preservation). For all rule applications satisfying
sidecondition (10) of Algorithm 8, invalidity of any of the rule’s premisses implies
invalidity of the rule’s conclusion.

Proposition 16 (Decidability). Validity of entailment is decidable, in par-
ticular, ps is a decision procedure.

Proof. Lemma 9 establishes termination. For correctness, in case ps returns nor-
mally with a proof, correctness is immediate from Proposition 6. Otherwise ps

4 Furthermore, countermodels of stuck entailments could be computed, and counter-
models of a rule’s conclusion could be computed from a countermodel of one the
rule’s premisses. So ps could be defined so as to either return a proof or a counter-
model of the goal.

108 J. Berdine, C. Calcagno, and P.W. O’Hearn

has failed after reaching a stuck entailment. We argue that this implies inva-
lidity of the goal entailment, and hence correctness, by noting that each stuck
entailment is itself invalid, due to Lemma 14, and that each rule application in
the path from the goal preserves invalidity, due to Lemma 15. Transitively, all
the entailments down to the goal are invalid. ��

Corollary 17 (Completeness). Every underivable entailment is invalid.

5 Conclusions

In this paper we have proven a decidability result for a logic for just one kind of
pointer data structure: linked lists. And it was not easy work. There have been
other results as well in this territory (e.g., [7–10]) but, frankly, we are not sure if
it is possible to obtain a canonical decidable fragment that covers a large variety
of structures. For example, decidability of monadic second-order logic with a
unary function symbol [7] implies decidability of our fragment. However, that
result is only applicable because we used unary heap cells, while our techniques
generalize to n-ary heap cells (necessary for binary trees for example).

Although the main focus in this paper was decidability, the fragment appears
to be of some interest in itself. Crucially, its proof theory is extremely determin-
istic. In particular, there is no need to attempt many different splittings of a
context as is usually the case in proof-search for substructural logics. This is
a reflection of a semantic property enjoyed by the fragment: every assertion is
precise. This then implies that there can be at most one heap splitting used
to satisfy a ∗ formula. The absence of (general) disjunction in the fragment is
crucial for precision. It is, however, possible to incorporate restricted, disjoint,
forms of disjunction, corresponding to if-then-else, without sacrificing precision.
These forms are useful in playing the role of guards for inductive definitions, and
one of them is implicitly present in the ls predicate.

In future work we plan to add a mechanism for inductive definitions to the
fragment. At present we can see how some definitions (e.g., trees) preserve de-
cidability, but we are not sure how far we can go in this direction. Even if
decidability cannot be maintained, the computational nature of the proof the-
ory of precise predicates should give a way to selectively consider how deep to
go in inductions in a way that gives strong control over proof-search.

Acknowledgements. We are grateful to the anonymous referees for helpful com-
ments. During Berdine’s stay at Carnegie Mellon University, this research was
sponsored in part by National Science Foundation Grant CCR-0204242. All three
authors were supported by the EPSRC.

References

1. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
LICS, IEEE (2002) 55–74

A Decidable Fragment of Separation Logic 109

2. Reynolds, J.C.: Intuitionistic reasoning about shared mutable data structure. In
Davies, J., Roscoe, B., Woodcock, J., eds.: Millennial Perspectives in Computer
Science, Houndsmill, Hampshire, Palgrave (2000) 303–321

3. Isthiaq, S., O’Hearn, P.: BI as an assertion language for mutable data structures.
In: POPL, London (2001) 39–46

4. O’Hearn, P., Reynolds, J., Yang, H.: Local reasoning about programs that alter
data structures. In: CSL. Volume 2142 of LNCS., Springer (2001) 1–19

5. Calcagno, C., Yang, H., O’Hearn, P.: Computability and complexity results for
a spatial assertion language for data structures. In: FSTTCS. Volume 2245 of
LNCS., Springer (2001) 108–119

6. O’Hearn, P.W., Yang, H., Reynolds, J.C.: Separation and information hiding. In:
POPL, Venice (2004) 268–280

7. Rabin, M.O.: Decidability of secon-order theories and automata on infinite trees.
Trans. of American Math. Society 141 (1969) 1–35

8. Jenson, J., Jorgensen, M., Klarkund, N., Schwartzback, M.: Automatic verification
of pointer programs using monadic second-order logic. In: PLDI. (1997) 225–236
SIGPLAN Notices 32(5).

9. Benedikt, M., Reps, T., Sagiv, M.: A decidable logic for describing linked data
structures. In: ESOP. Volume 1576 of LNCS., Springer (1999) 2–19

10. Immerman, N., Rabinovich, A., Reps, T., Sagiv, M., Yorsh, G.: Verification via
structure simulation. In: CAV. Volume 3114 of LNCS. (2004)

Approximate Range Searching Using Binary
Space Partitions

Mark de Berg � and Micha Streppel��

Department of Computer Science,
TU Eindhoven, P.O.Box 513,

5600 MB Eindhoven,
The Netherlands

Abstract. We show how any BSP tree TP for the endpoints of a set
of n disjoint segments in the plane can be used to obtain a BSP tree of
size O(n · depth(TP)) for the segments themselves, such that the range-
searching efficiency remains almost the same. We apply this technique
to obtain a BSP tree of size O(n log n) such that ε-approximate range
searching queries with any constant-complexity convex query range can
be answered in O(minε>0{(1/ε)+kε} log n) time, where kε is the number
of segments intersecting the ε-extended range. The same result can be
obtained for disjoint constant-complexity curves, if we allow the BSP to
use splitting curves along the given curves.

We also describe how to construct a linear-size BSP tree for low-
density scenes consisting of n objects in Rd such that ε-approximate
range searching with any constant-complexity convex query range can
be done in O(log n + minε>0{(1/εd−1) + kε}) time.

1 Introduction

Multi-functional data structures and BSP trees. In computational geometry, ef-
ficient data structures have been developed for a variety of geometric query
problems: range searching, point location, nearest-neighbor searching, etc. The
theoretical performance of these structures is often close to the theoretical lower
bounds. In order to achieve close to optimal performance, most structures are
dedicated to very specific settings; for instance, a structure for range searching
with rectangular ranges in a set of line segments will not work for range search-
ing with circular ranges in a set of line segments or for range searching with
rectangular ranges in a set of circles. It would be preferable, however, to have a
single multi-functional geometric data structure: a data structure that can store
different types of data and answer various types of queries. Indeed, this is what
is often done in practice.

� MdB is supported by the Netherlands Organisation for Scientific Research (N.W.O.)
under project no. 639.023.301.

�� MS is supported by the Netherlands Organisation for Scientific Research (N.W.O.)
under project no. 612.065.203.

K. Lodaya and M. Mahajan (Eds.): FSTTCS 2004, LNCS 3328, pp. 110–121, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Approximate Range Searching Using Binary Space Partitions 111

Another potential problem with the structures developed in computational
geometry is that they are sometimes rather involved, and that it is unclear how
large the constant factors in the query time and storage costs are. Moreover, they
may fail to take advantage of the cases where the input objects and/or the query
have some nice properties. Hence, the ideal would be to have a multi-functional
data structure that is simple and takes advantage of any favorable properties of
the input and/or query.

The existing multi-functional data structures can be roughly categorized into
bounding-volume hierarchies (BVHs) and space-partitioning structures (SPSs).
A BVH on a set S of objects is a tree structure whose leaves are in a one-to-
one correspondence with the objects in S and where each node ν stores some
bounding volume—usually the bounding box—of the objects corresponding to
the leaves in the subtree of ν. Note that the size of a BVH is linear in the
number of objects stored in it. An SPS is based on a partitioning of the space
into cells. With each cell, (pointers to) all objects intersecting that cell are stored.
Moreover, there is some search structure that makes it possible to quickly find
the cells in the partitioning intersecting a query range. Often the partitioning is
done in a hierarchical fashion, and the search structure is a tree whose leaves are
in one-to-one correspondence with the cells in the partitioning. Because objects
can potentially intersect many cells, the size of an SPS is not necessarily linear.
Both BVHs and SPSs can in principle store any type of input object, they can
be used to perform range searching with any type of query range—this implies
they can also be used for point location—and they can be used to do nearest
neighbor searching. The main challenge is to construct the BVH or SPS in such
a way that queries are answered efficiently and, for SPSs, that their size is small.
In this paper we study this problem for SPSs or, more precisely, for binary space
partition trees.

A binary space partition tree, or BSP tree, is an SPS where the subdivision
of the underlying space is done in a hierarchical fashion using hyperplanes (that
is, lines in case the space is 2D, planes in 3D, etc.) The hierarchical subdivi-
sion process usually continues until each cell contains at most one (or maybe a
small number of) input object(s). BSP trees are used for many purposes. For
example, they are used for range searching [2], for hidden surface removal with
the painter’s algorithm [15], for shadow generation [12], for set operations on
polyhedra [18, 26], for visibility preprocessing for interactive walkthroughs [23],
for cell decomposition methods in motion planning [7], and for surface approxi-
mation [5].

In some applications—hidden-surface removal is a typical example—the ef-
ficiency is determined by the size of the BSP tree, as the application needs to
traverse the whole tree. Hence, several researchers have proposed algorithms to
construct small BSP trees in various different settings [3, 4, 9, 10, 20, 21, 25]. For
instance, Paterson and Yao [20] proved that any set of n disjoint line segments in
the plane admits a BSP tree of size O(n log n). Recently Tóth [24] showed that
this is close to optimal by exhibiting a set of n segments for which any BSP tree
must have size Ω(n log n/ log log n). Paterson and Yao also proved that there are

112 M. de Berg and M. Streppel

sets of n disjoint triangles in R3 for which any BSP tree must have quadratic
size, and they gave a construction algorithm that achieves this bound. Since
a quadratic-size BSP tree is useless in most practical applications, de Berg [9]
studied BSP trees for so-called uncluttered scenes. He proved that uncluttered
scenes admit a BSP tree of linear size, in any fixed dimension. Unfortunately, his
BSP tree can have linear depth, so it is not efficient for range searching or point
location. However, by constructing additional data structures that help to speed
up the search in the BSP tree, he showed it is possible to perform point location
in O(log n) time in uncluttered scenes. Range searching in low-density scenes can
be done as well in O(log n) time—again using some additional structures—but
only if the diameter of the query range is about the same as the diameter of the
smallest object in the scene. Surprisingly, we do not know of any papers that
investigate the efficiency of BSP trees, without any additional data structures
as in [9], for range searching on non-point objects.

Approximate Range Searching. Developing a multi-functional geometric datastruc-
ture—one that can store any type of object and can do range searching with any
type of query range—that provably has good performance seems quite hard, if
not impossible. As it turns out, however, such results can be achieved if one is
willing to settle for ε-approximate range searching, as introduced by Arya and
Mount [6]. Here one considers, for a parameter ε > 0, the ε-extended query range
Qε, which is the set of points lying at distance at most ε ·diam(Q) from Q, where
diam(Q) is the diameter of Q. Objects intersecting Q must be reported, while
objects intersecting Qε (but not Q) may or may not be reported; objects outside
Qε are not allowed to be reported. In practice, one would expect that for small
values of ε, not too many extra objects are reported.

Arya and Mount [6] showed that approximate range searching can be done
very efficiently when the input is a set of n points in Rd. Their BBD-tree
can answer range queries with any constant-complexity convex1 query range
in O(log n + (1/ε)d−1 + kε) time, where kε is the number of points inside Qε.
Later Duncan et al. [13, 14] achieved the same results using so-called BAR-trees,
which are a special type of BSP trees that use splitting hyperplanes with only
a fixed number of orientations. In fact, as observed by Haverkort et al. [17], the
parameter ε is only needed in the analysis and not in the query algorithm, which
can simply report only the objects intersecting Q. This means that a query can
be answered in time O(log n + minε>0{(1/ε)d−1 + kε}).

Our main objective is to obtain similar results for more general input objects
than points, thus providing a truly multi-functional geometric data structure.
Some results in this direction have been obtained recently by Agarwal et al. [1]
and Haverkort et al. [17]. Agarwal et al. showed how to construct a boxtree—
that is, a BVH that uses axis-aligned bounding boxes as bounding volumes—for
any set S of n input boxes in Rd, such that a range query with a box as query

1 For non-convex ranges, one needs to replace the factor 1/εd−1 by 1/εd. This holds
for all results mentioned below, including ours, so we do not mention this extension
in the sequel.

Approximate Range Searching Using Binary Space Partitions 113

can be answered in time Θ(n1−1/d + k), where k is the number of input boxes
intersecting the query box. They also showed that this is optimal in the worst
case, even if the input boxes are disjoint. Unfortunately, this result is rather
limited: even though a boxtree can store any type of object and query with
any range, there is only a performance guarantee for a very specific setting:
orthogonal range searching in a set of boxes. Moreover, the bound is fairly high.
Haverkort et al. therefore studied approximate range searching. They presented
a BVH that can answer range queries on a set of boxes in R3, for any constant-
complexity query range, in time O((λ/ε) log4 n + kε), where λ is the density of
the scene.2 The density of a set of objects is defined as the smallest number
λ such that any ball B intersects at most λ objects whose minimal enclosing
ball has radius at least radius(B) [11]. When the input objects are disjoint and
fat, the density λ is a constant (depending on the fatness). This result is more
general than the result of Agarwal et al. [1], as it holds for any range, but still
there is no performance guarantee for input objects other than boxes. Indeed,
even for disjoint fat objects, the query time can be linear for a point location
query, because the bounding boxes of the input boxes may all contain a common
point.

Our Results. In this paper we show that it is possible to construct BSP trees
for sets of disjoint segments in the plane, and for low-density scenes in any
dimension, whose query time for approximate range searching is as good, or
almost as good, as the best known bounds for point data. More precisely, our
results are as follows.

In Section 3 we study BSP trees for a set of n disjoint line segments in the
plane. We give a general technique to convert a BSP tree TP for a set of points to
a BSP tree for a set of disjoint line segments, such that the size of the BSP tree is
O(n ·depth(TP)), and the time for range searching remains almost the same. By
combining this result with the BAR-tree of Duncan et al. [14], we obtain a BSP
tree that can answer range queries with any convex constant-complexity query
range in time O(minε>0(1/ε + kε) log n), where kε is the number of segments
intersecting the ε-extended query range. This is the first result on approximate
range searching for disjoint segments in the plane. This result can be extended
to disjoint constant-complexity curves in the plane, if we allow the BSP to use
splitting curves (which will be along the input curves) in the partitioning.

In Section 4 we consider low-density scenes. We prove that any scene of con-
stant density in Rd admits a BSP of linear size, such that range-searching queries
with arbitrary convex ranges can be answered in time O(log n+minε>0{(1/εd−1)+
kε}). (The dependency on the density λ is linear.) This result is more general
than the result of Haverkort et al. [17], as they only have a performance guaran-
tee for boxes as input. Moreover, our time bound is better by several logarithmic
factors, and our result holds in any dimension.

2 In fact, the result is more general: the bound holds if the so-called slicing number of
the scene is λ.

114 M. de Berg and M. Streppel

2 Preliminaries

In this section we briefly introduce some terminology and notation that we will
use throughout the paper.

A BSP tree for a set S of n objects in Rd is a binary tree T with the following
properties.

– Every (internal or leaf) node ν corresponds to a subset region(ν) of Rd,
which we call the region of ν. These regions are not stored with the nodes.
When ν is a leaf node, we sometimes refer to region(ν) as a cell. The root
node root(T) corresponds to Rd.

– Every internal node ν stores a hyperplane h(ν), which we call the splitting
hyperplane (splitting line when d = 2) of ν. The left child of ν then corre-
sponds to region(ν)∩h(ν)−, where h(ν)− denotes the half-space below h(ν),
and the right child corresponds to region(ν) ∩ h(ν)+, where h(ν)+ is the
half-space above h(ν).
A node ν stores, besides the splitting hyperplane h(ν), a list L(ν) with all
objects contained in h(ν) that intersect region(ν). Observe that this list will
always be empty when the objects in S are d-dimensional.

– Every leaf node μ stores a list L(μ) of all objects in S intersecting the interior
of region(μ).

Note that we do not place a bound on the number of objects stored with
a leaf. In the BSP trees discussed in this paper, however, this number will be
constant.

The size of a BSP tree is defined as the total number of nodes plus the total
size of the lists L(ν) over all (internal and leaf) nodes ν in T . For a node ν in a
tree T , we use T (ν) to denote the subtree of T rooted at ν, and we use depth(T)
to denote the depth of T .

We assume that all our input objects, as well as the query range have constant
complexity. This means that we can compute the intersection of an object with
a line or with the query range in O(1) time.

3 BSPs for Segments in the Plane

Let S be a set of n disjoint line segments in the plane. In this section we describe
a general technique to construct a BSP for S, based on a BSP on the endpoints
of S. The technique uses a segment-tree like approach similar to, but more
general than, the deterministic BSP construction of Paterson and Yao [20]. The
range-searching structure of Overmars et al. [19] also uses similar ideas, except
that they store so-called long segments—see below—in an associated structure,
so they do not construct a BSP for the segments. The main extra complication
we face compared to these previous approaches is that we must ensure that
we only work with the relevant portions of the given tree during the recursive
construction, and prune away irrelevant portions. The pruning has to be done
carefully, however, because too much pruning can have a negative effect on the
query time.

Approximate Range Searching Using Binary Space Partitions 115

More specifically the construction of the BSP for S is as follows. Let P be
the set of 2n endpoints of the segments in S, and let TP be a BSP tree for P .
We assume that TP has size O(n), and that the leaves of TP store at most one
point from P . Below we describe the global construction of the BSP tree for S.
Some details of the construction will be omitted here.

The BSP tree TS for S is constructed recursively from TP , as follows. Let
ν be a node in TP . We call a segment s ∈ S short at ν if region(ν) contains
an endpoint of s. A segment s is called long at ν if (i) s intersects the interior
of region(ν), and (ii) s is short at parent(ν) but not at ν. In a recursive call
there are two parameters: a node ν ∈ TP and a subset S∗ ⊂ S, clipped to lie
within region(ν). The recursive call will construct a BSP tree TS∗ for S∗ based
on TP (ν). Initially, ν = root(TP) and S∗ = S. The recursion stops when S∗ is
empty, in which case TS∗ is a single leaf.

We will make sure that during the recursive calls we know for each segment (or
rather, fragment) in S∗ which of its endpoints lie on the boundary of region(ν), if
any. This means we also know for each segment whether it is long or short. This
information can be maintained during the recursive calls without asymptotic
overhead.

h(ν) h(ν)

a) b)

h(μ)

Fig. 1. Illustration of the pruning strategy. The black squares indicate endpoints of
input segments. a) There is a T-junction on h(ν): a splitting line in the subtree h(μ)
ends on h(ν). Pruning h(ν) would partition the empty part of the region, which might
have a negative effect on the query time. b) There is no T-junction on h(ν), so we can
prune h(ν)

Let L ⊂ S∗ be the set of segments from S∗ that are long at ν. The recursive
call is handled as follows.

Case 1: L is empty.
We first compute Sl = S∗ ∩ h(ν)− and Sr = S∗ ∩ h(ν)+. If both Sl and Sr

are non-empty, we create a root node for TS∗ which stores h(ν) as its splitting
line. We then recurse on the left child of ν with Sl to construct the left subtree
of the root, and on the right child of ν with Sr to construct the right subtree of
the root.

If one of Sl and Sr is empty, it seems the splitting line h(ν) is useless in TS∗

and can therefore be omitted in TS∗ . We have to be careful, however, that we do
not increase the query time: the removal of h(ν) can cause other splitting lines,

116 M. de Berg and M. Streppel

which used to end on h(ν), to extend further. Hence, we proceed as follows.
Define a T-junction, see Fig. 1, to be a vertex of the original BSP subdivision
induced by TP ; in other words, the T-junctions are the endpoints of the segments
h(μ) ∩ region(μ), for nodes μ in TP . To decide whether or not to use h(ν), we
check if h(ν)∩R contains a T-junction in its interior, where R is the region that
corresponds to the root of TS∗ . If this is the case, we do not prune: the root
node of TS∗ will store the splitting line h(ν), one of its subtrees will be empty,
and the other subtree will be constructed recursively on the non-empty subset.
If h(ν) ∩R does not contain a T-junction, however, we prune: the tree TS∗ will
be the tree we get when we recurse on the non-empty subset, and there will be
no node in TS∗ that stores h(ν).

Case 2: L is not empty.
Now the long segments partition R into m := |L| + 1 regions, R1, . . . , Rm.

We take the following steps.

(i) We split S∗ \ L into m subsets S∗
1 , . . . , S∗

m, where S∗
i contains the segments

from S∗ lying inside Ri.
(ii) We construct a binary tree T with m−1 internal nodes whose splitting lines

are the lines containing the long segments. We call these free splits because
they do not cause any fragmentation. The leaves of T correspond to the
regions Ri, and will become the roots of the subtrees to be created for the sets
S∗

i . To keep the overall depth of the tree bounded by O(depth(TP)), we make
T weight-balanced, where the weights correspond to the sizes of the sets S∗

i ,
as in the trapezoid method for point location [22]. The tree T is constructed
as follows. Let �i ∈ L separate the regions Ri and Ri+1. If

∑r−1
i=1 |S∗

i | = 0
simply build a binary tree on the long segments, otherwise determine the
integer r such that

∑r−1
i=1 |S∗

i | < |S∗ \ L|/2 and
∑r

i=1 |S∗
i | ≥ |S∗ \ L|/2.

The line �r−1 is then stored at ν, the root of T , and �r is stored at the
root of the right child μ. The left child of ν, denoted τ1, and the right
child of μ, denoted τ2 are constructed recursively. Note that both region(τ1)
and region(τ2) contain each less than |S∗ \ L|/2 short segments. The tree
TS∗ then consists of the tree T , with, for every 1 � i � m, the leaf of T
corresponding to Ri replaced by a subtree for S∗

i . More precisely, each subtree
Ti is constructed using a recursive call with node ν and S∗

i as parameters.

The following theorem states bounds on the tree TS created by the previous
algorithm.

Theorem 1. Let R be a family of constant-complexity query ranges in R2. Sup-
pose that for any set P of n points in R2, there is a BSP tree TP of linear size,
where each leaf stores at most one point from P , with the following property:
any query Q with a range from R intersects at most v(TP , Q) cells in the BSP
subdivision. Then for any set S of n disjoint segments in R2, there is a BSP tree
TS which can be constructed in O(n · depth(TP)) time such that

(i) the depth of TS is O(depth(TP))
(ii) the size of TS is O(n · depth(TP))

Approximate Range Searching Using Binary Space Partitions 117

(iii) any query Q with a range from R visits at most O((v(TP , Q)+k) ·depth(TP))
nodes from TS, where k is the number of segments intersecting the range.

Proof. In this extended abstract we only prove the bound on the number of
nodes visited with a query Q.

We distinguish two categories of visited nodes: nodes ν such that region(ν)
is intersected by ∂Q (the boundary of Q), and nodes ν such that region(ν) ⊂ Q.

We first bound the number of leaves of the first category, that is, the number
of cells intersected by ∂Q. This number is bounded by the number of intersections
of ∂Q and cell boundaries (except for the trivial case where Q lies completely
inside a single region). A cell boundary is composed of pieces of splitting lines
that were already present in TP and fragments of segments in S. Because we made
sure that the pruning step in our construction did not cause splitting ‘lines’ to
be extended, the number of pieces of splitting lines in TS intersected by ∂Q is
not more than the number of cells of the subdivision induced by TP that are
intersected by ∂Q. Furthermore, the number of segments in S intersected by ∂Q
is O(k). Hence, the total number of leaf cells intersected by ∂Q is O(v(TP , Q)+k).
Because the depth of TS is O(depth(TP)), the total number of nodes in the first
category is O((v(TP , Q) + k) · depth(TP)).

Nodes in the second category are organized in subtrees rooted at nodes ν
such that region(ν) ⊂ Q but region(parent(ν)) �⊂ Q. Let N(Q) be the collection
of these roots. Note that the regions of the nodes in N(Q) are disjoint. For a
node ν ∈ N(Q), let ks(ν) denote the number of segments that are short at ν,
and kl(ν) the number of segments that are long at ν. Then the size of the subtree
TS(ν) is O(kl(ν)+ ks(ν) ·depth(TS(ν)). Hence, the total number of nodes in the
subtrees TS(ν) rooted at the nodes ν ∈ N(Q) is bounded by∑

ν

O(kl(ν) + ks(ν) · depth(TS(ν)) = O(
∑

ν

kl(ν)) + O(depth(TP) ·
∑

ν

ks(ν)).

The first term is bounded by O(k · depth(TP)), because a segment is long at
O(depth(TP)) nodes. The second term is bounded by O(k · depth(TP)), because
the regions of the nodes in N(Q) are disjoint which implies that a segment will
be short at at most two such nodes (one for each endpoint).

Adding up the bounds for the first and the second category, we get the desired
bound. ��

A bound on the number of visited nodes does not directly give a bound on
the query time, because at a node ν we have to test whether Q intersects the
regions associated with the children of ν. These regions are not stored at the
nodes and, moreover, they need not have constant complexity.

In the application we consider in this paper, however, all regions have constant
complexity. In this case one can simply maintain the regions region(ν) of the
visited nodes, and so for constant-complexity query ranges the query time will
be linear in the number of visited nodes.

118 M. de Berg and M. Streppel

3.1 Application to Approximate Range Searching

Several of the known data structures for range searching in point sets are actually
BSP trees. For example, if we use the partition tree of Haussler en Welzl [16]
as underlying structure we can get a BSP on a set of n disjoint line segments
whose query time is O(n2/3+ε + k log n). Here we focus on the application using
BAR-trees [14], as it gives good bounds for approximate range searching for line
segments in the plane. The BAR-tree is a BSP tree, where all splitting lines have
orientations that come from a fixed set of predefined possibilities. In the plane
for a corner-cut BAR-tree e.g., the orientations that are used are horizontal,
vertical, and the two diagonal directions (45◦ and 135◦). Hence, the regions in a
BAR-tree have constant complexity. This also holds for the regions we get when
we transform a BAR-tree on the endpoints of a set of segments to a BSP tree
for the segments; such regions can only be twice as complex as the regions in a
BAR-tree.

The main strength of a BAR-tree is that it produces regions with bounded
aspect ratio: the smallest enclosing circle of a region is only a constant times
larger than the largest inscribed circle. This makes that a BAR-tree has excellent
query time for approximate range queries—see Duncan’s thesis [13] for details.
In the plane one can construct BAR-trees with logarithmic depth, such that the
number of leaves visited by a query with a convex query range Q is bounded by
O((1/ε) + kε).

By applying Theorem 1, we can thus obtain a BSP for segments with a query
time of O((ε−1 + kε) log n). We can even extend this result to disjoint constant-
complexity curves in the plane, if we allow the BSP to use splitting curves in the
partitioning. For the construction algorithm to work we have to ensure that any
splitting line can intersect a curve only once. We do this by cutting the curve at
every point where the orientation of its tangent is one of the possible orientations
of the splitting lines. These pieces are then used in the construction of TS . Since
the curves have constant-complexity and BAR-tree splitting lines have only four
possible orientations, a curve is cut at most into a constant number of pieces.

Corollary 1. Let S be a set of n disjoint constant-complexity curves in R2. In
O(n log n) time one can construct a BSP tree for S of size O(n log n) and depth
O(log n) such that a range query with a constant-complexity convex range can be
answered in time O(minε>0{(1/ε) log n + kε log n}), where kε is the number of
curves intersecting the extended query range Qε.

4 BSPs for Low-Density Scenes

Let S be a set of n objects in Rd. For an object o, we use ρ(o) to denote the radius
of the smallest enclosing ball of o. Recall from the introduction that the density
of a set S is the smallest number λ such that the following holds: any ball B is
intersected by at most λ objects o ∈ S with ρ(o) � ρ(B) [11]. If S has density
λ, we call S a λ-low-density scene. In this section we show how to construct a
BSP tree for S that has linear size and very good performance for approximate

Approximate Range Searching Using Binary Space Partitions 119

range searching if the density of S is constant. Our method combines ideas from
de Berg [9] with the BAR-tree of Duncan et al. [14]. We will call this BSP an
object BAR-tree, or oBAR-tree for short.

Our overall strategy, also used by de Berg [9], is to compute a suitable set of
points that will guide the construction of the BSP tree. Unlike in [9], however,
we cannot use the bounding-box vertices of the objects in S for this, because
that does not work in combination with a BAR-tree. What we need is a set G of
points with the following property: any cell in a BAR-tree that does not contain
a point from G in its interior is intersected by at most κ objects from S, for
some constant κ. We call such a set G a κ-guarding set [8] against BAR-tree
cells, and we call the points in G guards.

The algorithm is as follows.

1. Construct a κ-guarding set G for S, as explained below. The construction of
the guarding set is done by generating O(1) guards for each object o ∈ S, so
that the guards created for any subset of the objects will form a κ-guarding
set for that subset. We will use object(g) to denote the object for which a
guard g ∈ G was created.

2. Create a BAR-tree T on the set G using the algorithm of Duncan et al.
[14], with the following adaptation: whenever a recursive call is made with
a subset G∗ ⊂ G in a region R, we delete all guards g from G∗ for which
object(g) does not intersect R. This pruning step, which was not needed in
[9], is essential to guarantee a bound on the query time.

3. Search with each object o ∈ S in T to determine which leaf cells are inter-
sected by o. Store with each leaf the set of all intersected objects. Let TS be
the resulting BSP tree.

Constructing the Guarding Set. De Berg et al. [8] proved that any set S that has
a small guarding set against hypercubes also has a small guarding set against
arbitrary fat ranges. Since the bounding-box vertices of a λ-low-density scene
form a λ-guarding set against hypercubes, this implies that low-density scenes
admit linear-size guarding sets against fat ranges, as stated more precisely in
the following lemma.

Lemma 1. [8] Let S be a λ-low-density scene consisting of n objects in Rd.
Then there is an O(λ)-guarding set for S of size O(n/β) against β-fat ranges.

Since BAR-tree cells are fat, this implies there exists a guarding set for λ-low-
density scenes such that any BAR-tree cell without guards in its interior inter-
sects at most κ = O(λ) objects. Unfortunately the constants in the construction
are large: κ = 14dλ, and the dependency on d in the size is more than 23d(d−1).
In the full version of the paper we show that in the plane we can construct a
much smaller guarding set against BAR-tree cells.

The following theorem summarizes the properties of the oBAR-tree.

Theorem 2. Let S be a λ-low-density scene consisting of n objects in Rd. A
BSP tree TS of size O(λn) and depth O(log n) for S can be constructed in
O(λn log n) time such that a query range with a convex range Q takes

120 M. de Berg and M. Streppel

O(log n + λ ·minε>0{(1/ε) + kε}) time, where kε is the number of objects inter-
secting the extended query range Qε.

Proof. The bound on the size, depth and construction time follow almost imme-
diately from the bounds on the BAR-tree. The proof of the query time is similar
to the proof of Theorem 1. The complete proof is given in the full version of this
paper.

5 Conclusions

We have presented a general method to convert a BSP T on the endpoints of a
set of line segment into a BSP on the segments themselves, in such a way that
the time for range searching queries remains almost the same and the size of the
BSP is O(n · depth(T)). We used this to obtain a BSP of size O(n log n) with
O(minε>0{(1/ε) + kε} log n) query time for approximate range searching with
arbitrary ranges and showed how to generalize this to curves.

We also presented a linear-size BSP for approximate range searching in low-
density scenes in any dimension. Its query time is O(log n + minε>0{(1/εd−1) +
kε}). Thus we obtain the same bounds as for point data, but for much more
general objects. This improves the previously best known bounds for approxi-
mate range searching in R3 [17] by several logarithmic factors, and generalizes
the results to higher dimensions as well.

Our structures are the first pure BSP structures with guarantees on the
query time. This is attractive because of the simplicity of such structures, and
the fact that they are quite versatile. E.g., they can easily be used for (approx-
imate) nearest-neighbor searching, and one can readily insert new objects into
the structure (although then the query time may deteriorate). Moreover, the
query times for approximate range searching are quite good, and our methods
are surprisingly simple. Unfortunately, some of the constants (especially in the
BSP for low-density scenes) can be fairly large in theory. We expect that this bad
behavior will not show up in real applications, and that our structures will be
quite competitive in practice, but this still needs to be verified experimentally.

References

1. P.K. Agarwal, M. de Berg, J. Gudmundsson, M. Hammar, H.J. Haverkort, Box-
trees and R-trees with near-optimal query time, Discrete Comput. Geom. 28 (2002)
291–312.

2. P.K. Agarwal and J. Erickson. Geometric range searching and its relatives. In: B.
Chazelle, J. Goodman, and R. Pollack (Eds.), Advances in Discrete and Compu-
tational Geometry, Vol. 223 of Contemporary Mathematics, pages 1–56, American
Mathematical Society, 1998.

3. P.K. Agarwal, E. Grove, T.M. Murali and J.S. Vitter. Binary space partitions for
fat rectangles. SIAM J. Comput. 29:1422-1448, 2000.

4. P.K. Agarwal, T.M. Murali and J.S. Vitter. Practical techniques for constructing
binary space partition for orthogonal rectangles. In Proc. 13th ACM Symp. of
Comput. Geom., pages 382–384, 1997.

Approximate Range Searching Using Binary Space Partitions 121

5. P.K. Agarwal and S. Suri. Surface Approximation and Geometric Partitions. SIAM
J. Comput. 19: 1016-1035, 1998.

6. A. Arya, D. Mount, Approximate range searching, Comput. Geom. Theory Appl.
17 (2000) 135–152.

7. C. Ballieux. Motion planning using binary space partitions. Technical Report
Inf/src/93-25, Utrecht University, 1993.

8. M. de Berg, H. David, M. J. Katz, M. Overmars, A. F. van der Stappen, and
J. Vleugels. Guarding scenes against invasive hypercubes. Comput. Geom., 26:99–
117, 2003.

9. M. de Berg. Linear size binary space partitions for uncluttered scenes. Algorithmica
28:353–366, 2000.

10. M. de Berg, M. de Groot, and M. Overmars. New results on binary space partitions
in the plane. In Proc. 4th Scand. Workshop Algorithm Theory, volume 824 of
Lecture Notes Comput. Sci., pages 61–72. Springer-Verlag, 1994.

11. M. de Berg, M.J. Katz, A. F. van der Stappen, and J. Vleugels. Realistic input
models for geometric algorithms. In Proc. 13th Annu. ACM Sympos. Comput.
Geom., pages 294–303, 1997.

12. N. Chin and S. Feiner. Near real time shadow generation using bsp trees. In Proc.
SIGGRAPH’89, pages 99–106, 1989.

13. C.A. Duncan, Balanced Aspect Ratio Trees, Ph.D. Thesis, John Hopkins Univer-
sity, 1999.

14. C.A. Duncan, M.T. Goodrich, S.G. Kobourov, Balanced aspect ratio trees: Com-
bining the advantages of k-d trees and octrees, In Proc. 10th Ann. ACM-SIAM
Sympos. Discrete Algorithms, pages 300–309, 1999.

15. H. Fuchs, Z. M. Kedem, and B. Naylor. On visible surface generation by a priori
tree structures. Comput. Graph., 14(3):124–133, 1980. Proc. SIGGRAPH ’80.

16. D. Haussler, and E. Welzl Epsilon-nets and simplex range queries Discrete Comput.
Geom., 2:127–151, 1987.

17. H.J. Haverkort, M. de Berg, and J. Gudmundsson. Box-Trees for Collision Checking
in Industrial Installations. In Proc. 18th ACM Symp. on Computational Geometry,
pages 53–62, 2002

18. B. Naylor, J. A. Amanatides, and W. Thibault. Merging BSP trees yields poly-
hedral set operations. Comput. Graph., 24(4):115–124, August 1990. Proc. SIG-
GRAPH ’90.

19. M.H. Overmars, H. Schipper, and M. Sharir. Storing line segments in partition
trees. BIT, 30:385–403, 1990

20. M. S. Paterson and F. F. Yao. Efficient binary space partitions for hidden-surface
removal and solid modeling. Discrete Comput. Geom., 5:485–503, 1990.

21. M. S. Paterson and F. F. Yao. Optimal binary space partitions for orthogonal
objects. J. Algorithms, 13:99–113, 1992.

22. F.P. Preparata and M.I. Shamos. Computational Geometry: An Introduction.
Springer-Verlag, 1985.

23. S. J. Teller and C. H. Séquin. Visibility preprocessing for interactive walkthroughs.
Comput. Graph., 25(4):61–69, July 1991. Proc. SIGGRAPH ’91.

24. C.D. Tóth. A Note on Binary Plane Partitions. Discrete Comput. Geom. 20:3–16,
2003.

25. C.D. Tóth. Binary Space Partitions for Line Segments with a Limited Number of
Directions. SIAM J. Comput. 32:307–325, 2003.

26. W. C. Thibault and B. F. Naylor. Set operations on polyhedra using binary space
partitioning trees. Comput. Graph., 21(4):153–162, 1987. Proc. SIGGRAPH ’87.

Representable Disjoint NP-Pairs

Olaf Beyersdorff

Institut für Informatik,
Humboldt-Universität zu Berlin,

D-10099 Berlin, Germany
beyersdo@informatik.hu-berlin.de

Abstract. We investigate the class of disjoint NP-pairs under different
reductions. The structure of this class is intimately linked to the simu-
lation order of propositional proof systems, and we make use of the re-
lationship between propositional proof systems and theories of bounded
arithmetic as the main tool of our analysis. Specifically we exhibit a pair
which is complete under strong reductions for all disjoint NP-pairs rep-
resentable in a theory. We use these pairs to explain the simulation order
of NP-pairs under these reductions. As corollaries we also get simplified
proofs of results obtained earlier in [3] and [5].

1 Introduction

Disjoint NP-pairs (DNPP) naturally occur in cryptography (cf. [4]). The inves-
tigation of disjoint NP-pairs in connection with propositional proof systems was
initiated by Razborov [12] and further developed by Pudlák [11] and Köbler
et al. [5]. These applications attracted more complexity theoretic research on
the structure of the class of disjoint NP-pairs (cf. [2, 3, 5]). Various reductions
between NP-pairs were introduced by Grollmann and Selman [4]. For the most
usual form of a many-one-reduction between DNPP a polynomial time com-
putable function is required to map the components of the two pairs to each
other. We denote this reduction here by ≤p. Later Köbler et al. defined in [5]
a strong reduction (denoted by ≤s), where additionally to ≤p the reduction
function has to map the complements of the pairs to each other.

One of the most prominent questions regarding disjoint NP-pairs is whether
there exist complete pairs for the class of all DNPP under these reductions. These
problems remain open and various oracle results from [2] indicate that these are
indeed difficult questions. Under the assumption that there is an optimal proof
system, however, Razborov showed the existence of a ≤p-complete pair. This
was improved by Köbler et al. in [5] to the existence of a complete pair for ≤s.

Razborov associates to a proof system a canonical disjoint NP-pair and uses
the relationship between theories of bounded arithmetic and propositional proof
systems for his investigation. In this paper we define another canonical pair
for a proof system which plays the same role for the stronger ≤s-reduction as
Razborov’s pair for ≤p. We show that these canonical pairs are quite typical for
the class of all DNPP in the sense that every DNPP is ≤s-reducible to such a

K. Lodaya and M. Mahajan (Eds.): FSTTCS 2004, LNCS 3328, pp. 122–134, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Representable Disjoint NP-Pairs 123

canonical pair, and if there exists a ≤s-complete pair then it is equivalent to a
canonical pair. As one consequence we obtain that, while ≤p and ≤s are generally
different, the existence of a ≤p-complete pair already implies the existence of a
≤s-complete pair. This was also observed by Glaßer et al. in [3] using direct
arguments where no reference to proof systems is made.

In this paper, however, we aim to explain some facts about the structure of
disjoint NP-pairs by using the close relationship between NP-pairs, proof systems
and bounded arithmetic. This also considerably simplifies proofs of earlier results
in [3] and [5] which were originally shown by more involved simulation techniques.

Pursuing the afore mentioned goal we start in Sect. 2 by reviewing relevant
facts about the connection between propositional proof systems and bounded
arithmetic. We only give a very brief presentation tailored to our applications
in later sections and refer the reader to [6] or [10] for a detailed account of this
rich relationship.

In Sect. 3 we define and separate the afore mentioned reductions between
NP-pairs.

In Sect. 4 we start to explain the relationship between disjoint NP-pairs and
propositional proof systems by restricting the class of all DNPP to the DNPP
representable in some theory T of bounded arithmetic, where a DNPP is called
representable in T if the disjointness of the pair is provable in the theory T .
We present a ≤s-complete pair for all DNPP representable in sufficiently strong
theories. To make the paper self contained we also reprove some known results.

In Sect. 5 we show that if ≤s-complete pairs exist then these are equivalent to
a canonical pair from Sect. 4 and derive some consequences on the relationship
between the simulation order of proof systems and the class of DNPP.

In Sect. 6 we discuss separators and Turing reductions. We show that our
pairs from Sect. 4 are candidates for NP-pairs which can not be separated by
sets from P, and that the class of all DNPP representable in some theory T is
closed under smart Turing-reductions implying that even the existence of smart
Turing-complete pairs suffices for the existence of ≤s-complete DNPP which is
also shown in [3].

2 Preliminaries

Propositional proof systems were defined in a very general way by Cook and
Reckhow in [1] as polynomial time functions P which have as its range the set
of all tautologies. A string π with P (π) = ϕ is called a P -proof of the tautology
ϕ. By P *≤m ϕ we indicate that there is a P -proof of ϕ of length ≤ m. If ϕn is
a sequence of propositional formulas we write P *∗ ϕn if there is a polynomial
p such that P *≤p(|ϕn|) ϕn.

Given two proof systems P and S we say that S simulates P (denoted by
P ≤ S) if there exists a polynomial p such that for all tautologies ϕ and P -proofs
π of ϕ there is a S-proof π′ of ϕ with |π′| ≤ p (|π|). If such a proof π′ can even
be computed from π in polynomial time we say that S p-simulates P and denote

124 O. Beyersdorff

this by P ≤p S. A proof system is called (p-)optimal if it (p-)simulates all proof
systems.

In this paper we are only concerned with sufficiently strong proof systems
simulating the extended Frege proof system EF , where EF is a usual textbook
proof system based on axioms and rules and augmented by the possibility to
abbreviate complex formulas by propositional variables to reduce the proof size
(see e.g. [6]). For simplicity we call proof systems simulating EF strong. A
method how to actually construct strong proof systems was recently described
in [7].

We now review the relationship between theories of arithmetic and proof
systems. Let L be the language of arithmetic (cf. [6]). Bounded L-formulas are
formulas in the language of L where only quantifiers of the form (∀x ≤ t(y))
and (∃x ≤ s(y)) occur with L-terms t and s. In the following we are particularly
interested in Πb

1 and Σb
1-formulas where only bounded universal and bounded

existential quantifiers are allowed, respectively.
To explain the connection to propositional proof systems we have to trans-

late L-formulas into propositional formulas. Let ϕ(x) be a Πb
1-formula. We can

assume that ϕ is of the form (∀y) |y| ≤ |x|k → ψ(x, y) with some polynomial
time computable predicate ψ. Hence we can compute ψ(x, y) by polynomial size
boolean circuits Cn for numbers x of length n. From Cn we build a proposi-
tional formula ‖ϕ‖n with atoms p1, . . . , pn for the bits of x, atoms q1, . . . , qnk for
the bits of y and auxiliary atoms r1, . . . , rnO(1) for the inner nodes of Cn. The
formula ‖ϕ‖n describes that if the values for r̄ are correctly computed from p̄
and q̄ then the output of the computation of Cn is 1. Thus we get a sequence of
propositional formulas ‖ϕ‖n of polynomial size in n and ‖ϕ‖n is a tautology iff
ϕ(x) holds for all natural numbers of length ≤ n.

Encoding propositional formulas as numbers in some straightforward way we
can in a theory T speak of propositional formulas, assignments and proofs. Let
PrfP (π, ϕ) be a L-formula describing that π is the encoding of a correct P -proof
of the propositional formula encoded by ϕ. Similarly, let Taut(ϕ) be a L-formula
asserting that all assignments satisfy the formula ϕ. Because P is computable
in polynomial time PrfP is definable by a Σb

1-formula whereas Taut is in Πb
1 .

The reflection principle for a propositional proof system P is the L-formula

RFN(P) = (∀π)(∀ϕ)PrfP (π, ϕ) → Taut(ϕ)

and states a strong form of the consistency of the proof system P . From the last
remark it follows that RFN(P) is a ∀Πb

1-formula.
In [8] a general correspondence between L-theories T and propositional proof

systems P is introduced. Pairs (T, P) from this correspondence possess in par-
ticular the following two properties:

1. For all ϕ(x) ∈ Πb
1 with T * (∀x)ϕ(x) we have polynomially long P -proofs of

the tautologies ‖ϕ(x)‖n.
2. T proves the correctness of P , i.e. T * RFN(P). Furthermore P is the

strongest proof system for which T proves the correctness, i.e. T * RFN(S)
for a proof system S implies S ≤p P .

Representable Disjoint NP-Pairs 125

The most prominent example for this correspondence is the pair (S1
2 , EF)

where S1
2 is a L-theory with induction for Σb

1-formulas. This in particular allows
the formalization of polynomial time computations and the provability of its
basic properties (see e.g. [6] Chapter 6).

To every L-theory T ⊇ S1
2 with a polynomial time set of axioms we can

associate a proof system P which is unique up to ≤p-equivalence by property 2
above. Conversely every strong proof system has a corresponding theory, but
here according to property 1 only the ∀Πb

1-consequences of T are determined by
P .

As the correspondence only works for sufficiently strong proof systems we
will restrict ourselves to proof systems P ≥ EF and theories T ⊇ S1

2 .
By N we denote the standard model of arithmetic which is in particular a

submodel of all models of theories T considered here.

3 Reductions Between NP-Pairs

A pair (A,B) is called a disjoint NP-pair (DNPP), if A,B ∈ NP and A∩B = ∅.
To exclude trivial cases we additionally require A �= ∅ and B �= ∅. We consider
the following reductions between disjoint NP-pairs.

Definition 1. Let (A,B) and (C,D) be DNPP.

1. (A,B) is polynomially reducible to (C,D) ((A,B) ≤p (C,D)), if there exists
a function f ∈ FP such that f(A) ⊆ C and f(B) ⊆ D.

2. (A,B) is strongly reducible to (C,D) ((A,B) ≤s (C,D)), if there exists a
function f ∈ FP such that f−1(C) = A and f−1(D) = B.

3. As usual we write (A,B) ≡p (C,D) for (A,B) ≤p (C,D) and (C,D) ≤p

(A,B). ≡s is defined in the same way.

(A,B) ≤p (C,D) does not in general imply that A and B are reducible to C
and D, respectively, but if f realizes a ≤s-reduction from (A,B) to (C,D), then
f is simultaneously a many-one-reduction between A and C as well as between
B and D. Equivalently we can also view ≤s as a reduction between triples. In
addition to the two conditions f(A) ⊆ C and f(B) ⊆ D for ≤p we also require
f(A ∪B) ⊆ C ∪D.

Obviously ≤s is a refinement of ≤p. Under the assumption P �= NP this is
indeed a proper refinement. The reason for this lies in the following proposition:

Proposition 2. For every DNPP (A,B) there exists a DNPP (A′, B′) such that
(A,B) ≡p (A′, B′) and A′, B′ are NP-complete.

Proof. Choose A′ = A × SAT and B′ = B × SAT. Then we have (A,B) ≤p

(A′, B′) via x �→ (x, ϕ0) with a fixed formula ϕ0 ∈ SAT, and (A′, B′) ≤p (A,B)
via the projection (x, ϕ) �→ x. ��

With this proposition we can easily separate the reductions ≤p and ≤s under
the assumption P �= NP. Namely, let A and B be nonempty sets in P such

126 O. Beyersdorff

that A ∪B is also nonempty. Choose A′ and B′ as in the last proposition. Then
(A,B) ≡p (A′, B′) but (A,B) �≡s (A′, B′) because (A′, B′) ≤s (A,B) would
imply in particular A′ ≤p

m A and hence P=NP. On the other hand if P=NP
then all DNPP (A,B) where all three components A,B,A ∪B are nonempty
would be ≤s-equivalent. This equivalence of P �= NP and the separation of ≤p

from ≤s for DNPP with all three components nonempty (or equivalently for
DNPP with all three components infinite) is also observed in [3].

4 Representable NP-Pairs

In the following we investigate the relationship between disjoint NP-pairs and
propositional proof systems. We will use the correspondence between proof sys-
tems and arithmetical theories as explained in Sect. 2. For this section let P be
a strong proof system and T be a corresponding theory.

Following Razborov we call a Σb
1-formula ϕ a representation of an NP-set A,

if for all natural numbers a

N |= ϕ(a) ⇐⇒ a ∈ A .

A DNPP (A,B) is representable in T , if there are Σb
1-formulas ϕ and ψ

representing A and B, respectively, such that

T * (∀x)(¬ϕ(x) ∨ ¬ψ(x)) .

For the last line we also use the abbreviation T * A∩B = ∅. Since A∩B = ∅
is a ∀Πb

1-formula we can also express the disjointness of A and B propositionally
by the sequence of tautologies ‖¬ϕ(x)∨¬ψ(x)‖n, which we again shortly denote
by ‖A ∩B = ∅‖n.

The DNPP representable in T can also be characterized via the corresponding
proof system P in the following way:

Proposition 3. A DNPP (A,B) is representable in T if and only if

P *∗ ‖A ∩B = ∅‖n

for suitable representations of A and B.

Proof. Let ϕ and ψ be representations for A and B, respectively, such that

T * (∀x)(¬ϕ(x) ∨ ¬ψ(x)) .

Because this is a ∀Πb
1-formula, we have P *∗ ‖¬ϕ(x) ∨ ¬ψ(x)‖n, which we

write by definition as P *∗ ‖A ∩B = ∅‖n.
For the other direction let ϕ and ψ be representations of A and B, such that

for some natural number k we have P *≤nk ‖¬ϕ(x) ∨ ¬ψ(x)‖n. Consider the
formula

ψ′(x) = ψ(x) ∧ (∃π)|π| ≤ |x|k ∧ PrfP (π, ‖¬ϕ(y) ∨ ¬ψ(y)‖|x|) .

Representable Disjoint NP-Pairs 127

We have ψ′ ∈ Σb
1 and furthermore N |= (∀x)ψ′(x) ↔ ψ(x), i.e. ψ′ is also a

representation of B. From T * RFN(P) it follows that T * (∀x)(¬ϕ(x)∨¬ψ′(x)),
hence (A,B) is representable in T . ��

The next lemma shows that all pairs representable in a theory form a rea-
sonable complexity class.

Lemma 4 (Razborov [12]). The set of all DNPP representable in T is closed
under ≤p-reductions.

Proof. Let (A,B) and (C,D) be DNPP such that f : (A,B) ≤p (C,D) and
T * C ∩D = ∅. Consider the NP-sets

A′ = {x | x ∈ A and f(x) ∈ C}
B′ = {x | x ∈ B and f(x) ∈ D} .

Obviously A = A′ and B = B′. From T ⊇ S1
2 and f ∈ FP we get

T * (∀x)(∃!y)f(x) = y. Hence

T * (∀x)(x ∈ A′ ∩B′ → f(x) ∈ C ∩D)

and with T * C ∩D = ∅ we conclude T * A′ ∩B′ = ∅. ��
Following Razborov [12] we associate a disjoint NP-pair (Ref(P),SAT∗) with

a proof system P with

Ref(P) = {(ϕ, 1m) | P *≤m ϕ}
SAT∗ = {(ϕ, 1m) | ¬ϕ ∈ SAT} .

(Ref(P),SAT∗) is called the canonical pair of P .

Lemma 5 (Razborov [12]). The canonical pair of P is representable in T .

Proof. We argue in T . Let (ϕ, 1m) ∈ Ref(P). Then there is a P -proof π of
ϕ. Since RFN(P) is available in T we conclude from PrfP (π, ϕ) the formula
Taut(ϕ), hence ¬ϕ �∈ SAT and therefore (ϕ, 1m) �∈ SAT∗. ��

Now we associate a second disjoint NP-pair with a proof system P . For a
propositional formula ϕ let Var(ϕ) be the set of propositional variables occurring
in ϕ. Let

U1(P) = {(ϕ,ψ, 1m) | Var(ϕ) ∩Var(ψ) = ∅, ¬ϕ ∈ SAT and P *≤m ϕ ∨ ψ}
U2 = {(ϕ,ψ, 1m) | Var(ϕ) ∩Var(ψ) = ∅ and ¬ψ ∈ SAT} .

As for the canonical pair we get:

Lemma 6. The pair (U1(P),U2) is representable in T .

Proof. Let (ϕ,ψ, 1m) ∈ U1(P) and π be a P -proof of ϕ ∨ ψ of length ≤ m.
Because ¬ϕ ∈ SAT we have an assignment α with ϕ(α) = 0. If we substitute
the variables of ϕ by 0 or 1 according to α, we get from the proof π a proof π′

of ψ. Hence we have T * (∃π′)PrfP (π′, ψ). Because T proves the correctness of
P , we get T * Taut(ψ) and thus T * (ϕ,ψ, 1m) �∈ U2. ��

128 O. Beyersdorff

Now we come to the main theorem of this section which states the com-
pleteness of (U1(P),U2) for all DNPP representable in T under ≤s-reductions.

Theorem 7. A DNPP (A,B) is representable in T if and only if (A,B) ≤s

(U1(P),U2).

Proof. Let (A,B) be a DNPP such that T * A ∩B = ∅. Let the NP-sets A and
B be of the form

A = {x | (∃y)|y| ≤ |x|O(1) ∧ (x, y) ∈ C}
B = {x | (∃z)|z| ≤ |x|O(1) ∧ (x, z) ∈ D}

with polynomial time predicates C and D. Because of the correspondence be-
tween T and P there is a polynomial p for the ∀Πb

1-formula A ∩ B = ∅ such
that

P *≤p(n) ‖A ∩B = ∅‖n .

Here the formula ‖A ∩B = ∅‖n is more explicitly ‖(x, y) �∈ C ∨ (x, z) �∈ D‖n
and has propositional variables for x, y and z and auxiliary variables for the
computation of boolean circuits for C and D. We can plug into this formula
natural numbers a of length n for x by substituting the propositional variables
corresponding to x by the bits of a. We indicate this by the suffix (x/a).

Now we claim that the function

f(a) = (‖(x, y) �∈ C‖|a|(x/a), ‖(x, z) �∈ D‖|a|(x/a), 1p(|a|))

realizes a ≤s-reduction from (A,B) to (U1(P),U2).
If we choose different auxiliary variables for the computation of C and D and

also disjoint variables for y and z, then the formulas ‖(x, y) �∈ C‖|a|(x/a) and
‖(x, z) �∈ D‖|a|(x/a) have no common variables. Furthermore for every natural
number a the formulas

‖(x, y) �∈ C‖|a|(x/a) ∨ ‖(x, z) �∈ D‖|a|(x/a) =
‖(x, y) �∈ C ∨ (x, z) �∈ D‖|a|(x/a) =

‖A ∩B = ∅‖|a|(x/a)

have P -proofs of length≤ p(|a|), which we get from the P -proofs of ‖A∩B = ∅‖|a|

by substituting the variables for x by the bits of a.
The last thing to check is that the formula

¬‖(x, y) �∈ C‖|a| = ‖(x, y) ∈ C‖|a|,

expressing, that there is a correct accepting computation of C with input (x, y),
is satisfiable if and only if the variables of x are substituted by the bits of a
number a ∈ A.

Similarly, ¬‖(x, z) �∈ D‖|a|(x/a) is satisfiable if and only if a ∈ B.
The backward implication follows from Lemma 6 and the fact, that the DNPP

representable in T are closed under ≤p and hence also under ≤s according to
Lemma 4. ��

Representable Disjoint NP-Pairs 129

The pair (U1(P),U2) strongly resembles the interpolation pair defined by
Pudlák in [11]:

I0
P = {(ϕ,ψ, π) | P (π) = ϕ ∨ ψ, Var(ϕ) ∩Var(ψ) = ∅ and ¬ϕ ∈ SAT}

I1
P = {(ϕ,ψ, π) | P (π) = ϕ ∨ ψ, Var(ϕ) ∩Var(ψ) = ∅ and ¬ψ ∈ SAT} .

This pair is p-separable, if and only if the proof system P has the efficient
interpolation property. For ‖.‖-translations of ∀Πb

1-formulas provable in T we
can efficiently construct polynomially long P -proofs (i.e. with functions from
FP). Hence the proof of the last theorem also shows the ≤s-completeness of
(I0

P , I1
P) for all DNPP representable in T .

In [11] Pudlák defined a DNPP (A,B) to be symmetric if (B,A) ≤ (A,B).
With Lemma 6 also the pair (U2,U1(P)) is representable in T , hence by the
last theorem (U1(P),U2) is symmetric even with respect to the stronger ≤s-
reduction.

As a corollary of Theorem 7 we obtain the ≤p-completeness of the canonical
pair for all DNPP representable in T , which was shown by Razborov:

Theorem 8 (Razborov [12]). A DNPP (A,B) is representable in T if and
only if (A,B) ≤p (Ref(P),SAT∗).

Proof. For the forward implication we reduce (U1(P),U2) to (Ref(P),SAT∗) via
the projection

(ϕ,ψ, 1m) �→ (ψ, 1m+p(|ϕ|))

with a suitable polynomial p.
Let (ϕ,ψ, 1m) ∈ U1(P). Then there is a P -proof π of length ≤ m of ϕ(x̄) ∨

ψ(ȳ). The formula ¬ϕ(x̄) is satisfiable, so by substituting a satisfying assignment
ā into the proof π we get a proof π′ with |π′| ≤ m for ϕ(ā) ∨ ψ(ȳ). Since ϕ(ā)
is a false formula without free variables we can evaluate it in polynomially long
P -proofs to ⊥. Let p be a corresponding polynomial. Thus we get a P -proof of
length ≤ m + p(|ϕ|) for ψ.

If (ϕ,ψ, 1m) ∈ U2, then ¬ψ is satisfiable and hence (ψ, 1m+p(|ϕ|)) ∈ SAT∗.
This ≤p-reduction from (U1(P),U2) to (Ref(P),SAT∗) yields together with

the last theorem the ≤p-completeness of (Ref(P),SAT∗) for all DNPP repre-
sentable in T .

The backward implication follows from Lemma 4 and Lemma 5. ��
Thus the pairs (Ref(P),SAT∗) and (U1(P),U2) are complete for all DNPP

representable in T under ≤p- and ≤s-reductions, respectively.

5 NP-Pairs and the Simulation Order of Proof Systems

Now we use the results of the last section to make some observations about the
connection between the simulation order of proof systems and disjoint NP-pairs.

In Sect. 3 it was shown that the reductions ≤p and ≤s are different under
the assumption P �= NP. Still we have:

130 O. Beyersdorff

Proposition 9. For all strong proof systems P and DNPP (A,B) it holds

(A,B) ≤p (U1(P),U2) ⇐⇒ (A,B) ≤s (U1(P),U2) .

Proof. Let (A,B) ≤p (U1(P),U2). (U1(P),U2) is representable in T . Hence with
Lemma 4 also (A,B) is representable in T , from which we conclude with Theo-
rem 7 (A,B) ≤s (U1(P),U2).

The opposite implication follows by definition. ��

Corollary 10. Let P and S be strong proof systems. Then we have:

(Ref(P),SAT∗) ≤p (Ref(S),SAT∗) ⇐⇒ (U1(P),U2) ≤s (U1(S),U2) .

Proof. For the first direction we get from

(U1(P),U2) ≤p (Ref(P),SAT∗) ≤p (Ref(S),SAT∗) ≤p (U1(S),U2)

together with the last proposition (U1(P),U2) ≤s (U1(S),U2).
The other implication follows from

(Ref(P),SAT∗) ≤p (U1(P),U2) ≤p (U1(S),U2) ≤p (Ref(S),SAT∗) .

��

The following proposition is well known (see e.g. [11]):

Proposition 11. If P and S are proof systems with P ≤ S, then we have

(Ref(P),SAT∗) ≤p (Ref(S),SAT∗) .

Proof. By assumption there is a polynomial p, such that for all formulas ϕ and
P -proofs π of ϕ there is a S-proof π′ of length ≤ p(|π|). Therefore the mapping

(ϕ, 1m) �→ (ϕ, 1p(m))

is a ≤p-reduction from (Ref(P),SAT∗) to (Ref(S),SAT∗). ��

Proposition 11 and Corollary 10 yield:

Corollary 12. If P and S are strong proof systems with P ≤ S, then we have

(U1(P),U2) ≤s (U1(S),U2) .

Köbler, Messner and Torán proved in [5] that the existence of an optimal
proof system implies the existence of ≤s-complete NP-pairs. This result also
follows from the last corollary. Additionally we can exhibit a complete DNPP in
this case:

Corollary 13. If P is an optimal proof system, then (U1(P),U2) is ≤s-complete
for the class of all DNPP.

Representable Disjoint NP-Pairs 131

Proof. Let P be an optimal proof system and (A,B) a DNPP. The sequence
of tautologies ‖A ∩ B = ∅‖n can be constructed in polynomial time. Hence
there is a proof system S with polynomially long proofs of these tautologies (for
example just add these tautologies as axioms to the extended Frege system).
Using Proposition 3 and Theorem 7 we get (A,B) ≤s (U1(S),U2). By assumption
we have S ≤ P . Together with the previous corollary this yields (U1(S),U2) ≤s

(U1(P),U2), and hence (A,B) ≤s (U1(P),U2).
Therefore the pair (U1(P),U2) is ≤s-complete for all DNPP. ��

Proposition 14. Let (A,B) be ≤p-complete for the class of all DNPP. Then
we have (A,B) ≡p (Ref(P),SAT∗) for some proof system P .

Proof. As in the last proof let P be a proof system with P *∗ ‖A ∩ B = ∅‖n.
Then (A,B) ≤p (Ref(P),SAT∗) and by assumption (Ref(P),SAT∗) ≤p (A,B).

��

In the same way we get:

Proposition 15. Let (A,B) be ≤s-complete for the class of all DNPP. Then
we have (A,B) ≡s (U1(P),U2) for some proof system P .

The following proposition is also observed in [3]:

Proposition 16. The class of all DNPP contains a ≤p-complete DNPP if and
only if it contains a ≤s-complete DNPP.

Proof. For the first direction we can assume with Proposition 14 that the ≤p-
complete DNPP has the form (Ref(P),SAT∗) for some proof system P . Then
by Theorem 7 and Theorem 8 all DNPP are ≤s-reducible to (U1(P),U2).

The other direction holds by definition. ��

6 Separators and Turing Reductions

For disjoint NP-pairs we can also study Turing reductions as defined by Groll-
mann and Selman in [4]. For this we need the notion of a separator.

Definition 17. A set S is a separator for the DNPP (A,B) if A ⊆ S and
B ⊆ S.

Of central interest is the case where a given DNPP has a separator belong-
ing to P. Such a pair is called p-separable. The set of all p-separable DNPP
form the lowest degree with respect to the ≤p-reduction. For the stronger ≤s-
reduction this minimal degree shrinks to the set of all p-separable pairs with
empty complement, i.e. sets of the form (A, Ā) with A ∈ P. But also the set of
all p-separable pairs with nonempty complement splits into different ≡s-degrees.
Namely, if (A,B) is a p-separable DNPP then the pair (A × SAT, B × SAT) is
also p-separable and both of its components are NP-complete, hence we have:

132 O. Beyersdorff

Proposition 18. P �= NP iff there exist p-separable pairs (A,B) and (C,D),
such that A ∪B and C ∪D are nonempty and (A,B) �≡s (C,D).

The question whether p-inseparable pairs exist is open. Candidates for p-
inseparable pairs come from cryptography (cf. [4]) and proof systems. Namely,
Kra j́ıček and Pudlák demonstrate in [9] that a pair (A0, A1) associated with
the RSA-cryptosystem is representable in the theory S1

2 corresponding to EF .
By the results from Sect. 4 this means that (A0, A1) ≤p (Ref(EF),SAT∗) and
(A0, A1) ≤s (U1(EF),U2). Assuming the security of RSA the pair (A0, A1)
is not p-separable, hence under this assumption neither (Ref(P),SAT∗) nor
(U1(P),U2) is p-separable for any P ≥ EF .

If we look at the property of symmetry of pairs under ≤s it is clear that a
DNPP (A,B) can not be symmetric if we choose A from P and B NP-complete.
In other words:

Proposition 19. P �= NP iff there exist non-symmetric pairs with respect to
≤s.

A similar result for ≤p is not known as ≤p-non-symmetric pairs are p-
inseparable and it is not clear how to derive the existence of p-inseparable pairs
from the assumption P �= NP.

We now come to the definition of Turing-reductions between DNPP from [4]:

Definition 20. Let (A,B) and (C,D) be DNPP. (A,B) is Turing reducible to
(C,D) ((A,B) ≤T (C,D)), if there exists a polynomial time oracle Turing ma-
chine M such that for every separator T of (C,D) L(MT) separates (A,B).

If for inputs from A∪B the machine M makes only queries to C ∪D we call
the reduction performed by M a smart Turing reduction.

In [3] Glaßer et al. prove that the existence of a complete DNPP under smart
Turing reductions already implies the existence of a ≤p-complete DNPP (and
hence by Proposition 16 also of a ≤s-complete pair). We can easily reprove their
result in our framework by noticing:

Lemma 21. The set of all DNPP representable in a theory T is closed under
smart Turing reductions.

Proof. Let the pair (A,B) be smartly Turing reducible to (C,D) via the deter-
ministic oracle Turing machine M , and let (C,D) be representable in T . Consider
the NP-sets

A′ = {x | x ∈ A and M(x) accepts}
B′ = {x | x ∈ B and M(x) rejects} .

By ”M(x) accepts” we mean that M accepts the input x by a computation
where all oracle queries that are positively answered are verified by a computa-
tion of a nondeterministic machine for C and all negative answers are verified by
D. Since the reduction is smart we have A = A′ and B = B′. For T * A′∩B′ = ∅

Representable Disjoint NP-Pairs 133

it suffices to show in T the uniqueness of the computation of M at inputs x from
A∪B. T can prove the uniqueness of computations of the deterministic machine
M , and the possibility to answer an oracle query both positively and negatively
is excluded by T * C ∩D = ∅. ��

From this we conclude:

Proposition 22. Suppose (A,B) is a smart ≤T -complete pair. Then for any
theory T such that T * A ∩ B = ∅ the pair (U1(P),U2) is ≤s-complete for all
DNPP where P is the proof system corresponding to T .

Proof. Choose a theory T with T * A ∩ B = ∅. Then by the last lemma all
DNPP are representable in T and hence by Theorem 7 the pair (U1(P),U2) is
≤s-complete. ��

It is not clear whether the class of pairs representable in some theory T is
also closed under ≤T -reductions. This corresponds to the open problem from
[3] whether the existence of a ≤T -complete pair implies the existence of a ≤p-
complete DNPP.

Acknowledgments. For helpful conversations and suggestions on this work I
am very grateful to Johannes Köbler, Jan Kra j́ıček, and Pavel Pudlák.

References

1. S. Cook and R. Reckhow. The relative efficiency of propositional proof systems.
Journal of Symbolic Logic 44:36-50, 1979.

2. C. Glaßer, A. Selman, S. Sengupta, and L. Zhang. Disjoint NP-pairs. In Proceedings
18th Annual IEEE Conference on Computational Complexity, pages 313-332, 2003.

3. C. Glaßer, A. Selman, and S. Sengupta. Reductions between disjoint NP-pairs. In
Proceedings 19th Annual IEEE Conference on Computational Complexity, 2004.

4. J. Grollmann and A. Selman. Complexity measures for public-key cryptosystems.
SIAM Journal on Computing 17(2):309-335, 1988.

5. J. Köbler, J. Messner, and J. Torán. Optimal proof systems imply complete sets
for promise classes. Information and Computation 184:71-92, 2003.

6. J. Kraj́ıček. Bounded Arithmetic, Propositional Logic, and Complexity Theory. En-
cyclopedia of Mathematics and Its Applications, volume 60, Cambridge University
Press, Cambridge, 1995.

7. J. Kraj́ıček. Implicit proofs. Journal of Symbolic Logic 69(2):387-397, 2004.
8. J. Kraj́ıček and P. Pudlák. Quantified propositional calculi and fragments of

bounded arithmetic. Zeitschr. f. math. Logik und Grundlagen d. Math. 36:29-46,
1990.

9. J. Kraj́ıček and P. Pudlák. Some consequences of cryptographical conjectures for
S1

2 and EF . Information and Computation 140(1):82-94, 1998.
10. P. Pudlák. The lengths of proofs. In Handbook of Proof Theory, S. R. Buss ed.,

pages 547-637, Elsevier, Amsterdam, 1998.

134 O. Beyersdorff

11. P. Pudlák. On reducibility and symmetry of disjoint NP-pairs. In Proceedings 26th
International Symposium on Mathematical Foundations of Computer Science, vol-
ume 2136 of Lecture Notes in Computer Science, pages 621-632. Springer-Verlag,
Berlin, 2001.

12. A. A. Razborov. On provably disjoint NP-pairs. Technical Report TR94-006, Elec-
tronic Colloquium on Computational Complexity, 1994.

Symbolic Reachability Analysis of Higher-Order
Context-Free Processes

Ahmed Bouajjani and Antoine Meyer

Liafa, Univ. of Paris 7, Case 7014, 2 place Jussieu 75251,
Paris Cedex 5, France

{abou, ameyer}@liafa.jussieu.fr

Abstract. We consider the problem of symbolic reachability analysis of
higher-order context-free processes. These models are generalizations of
the context-free processes (also called BPA processes) where each process
manipulates a data structure which can be seen as a nested stack of
stacks. Our main result is that, for any higher-order context-free process,
the set of all predecessors of a given regular set of configurations is regular
and effectively constructible. This result generalizes the analogous result
which is known for level 1 context-free processes. We show that this
result holds also in the case of backward reachability analysis under a
regular constraint on configurations. As a corollary, we obtain a symbolic
model checking algorithm for the temporal logic E(U, X) with regular
atomic predicates, i.e., the fragment of CTL restricted to the EU and EX
modalities.

1 Introduction

Pushdown systems and their related decision and algorithmic analysis problems
(reachability analysis, model checking, games solving and control synthesis, etc)
have been widely investigated in the last few years [11, 7, 22, 5, 15, 8, 2]. This re-
cent intensive research effort is mainly motivated by the fact that pushdown
systems are quite natural models for sequential programs with recursive pro-
cedure calls (see e.g., [16, 14]), and therefore they are particularly relevant for
software verification and design.

Higher-order pushdown systems [13] (HPDS) are generalizations of these
models in which the elements appearing in a pushdown stack are no longer
single letters but stacks themselves. We call this kind of nested stack structures
higher-order stores. Stores of level 1 are sequences of symbols in some finite
alphabet (those are standard pushdown stacks), and stores of level n + 1 are
sequences of stores of level n, for any n > 1. The operations allowed on these
structures are (1) the usual push and pop operations on the top-most level 1
store, (2) higher-order push and pop operations allowing to duplicate or erase
the top-most level k store of any given level k ≤ n.

K. Lodaya and M. Mahajan (Eds.): FSTTCS 2004, LNCS 3328, pp. 135–147, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

136 A. Bouajjani and A. Meyer

This general model is quite powerful and has nice structural characterizations
[12, 10]. It has been in particular proved in [19] that HPDS are equivalent to
(safe) higher-order recursive program schemes. Interestingly, it has also been
proved that the monadic second-order theory of an infinite tree generated by a
HPDS is decidable [19, 11], which generalizes the analogous result for pushdown
systems proved by Muller and Schupp [20]. Also, it has been proved that parity
games can be solved for HPDS [9], which generalizes the result of Walukiewicz
for pushdown systems [22]. These results actually show that model checking is
decidable for HPDS. However, they only allow to check that a property holds in
a single initial configuration and they do not provide a procedure for computing
a representation of the set of configurations which satisfy some given property
(the satisfiability set of the property).

The basic step toward defining an algorithm which effectively computes the
satisfiability sets of properties is to provide a procedure for computing the set of
backward reachable configurations from a given set of configurations, i.e. their
set of predecessors. In fact, the computation of forward- or backward-reachable
sets is a fundamental problem in program analysis and in verification.

Since HPDS are infinite-state systems, to solve this problem we need to con-
sider symbolic representation structures which (1) provide finite representations
of potentially infinite sets of configurations, and (2) enjoy closure properties and
decidability properties which are necessary for their use in verification. Mini-
mal requirements in this regard are closure under union and intersection, and
decidability of the emptiness and inclusion problems.

A natural class of symbolic representations for infinite-state systems is the
class of finite-state automata. Recently, many works (including several papers
on the so-called regular model-checking) have shown that finite-state automata
are suitably generic representation structures, which allow to uniformly handle
a wide variety of systems including pushdown systems, FIFO-channel systems,
parameterized networks of processes, counter systems, etc. [5, 3, 18, 1, 23, 6, 4, 17].

In particular, for the class of pushdown systems, automata-based symbolic
reachability analysis techniques have been developed and successfully applied in
the context of program analysis [5, 15, 21]. Our aim in this paper is to extend this
approach to a subclass of HPDS called higher-order context-free processes (HCFP
for short). This class corresponds to the higher order extension of the well-known
context-free processes (also called BPA processes). HCFP can actually be seen as
HPDS with a single control state, similarly to level 1 CFP which are equivalent
to level 1 PDS with a single control state. The contributions of our paper can
be summarized as follows.

First, we observe that, due to the duplication operation, the set of immediate
successors (i.e. the post image) of a given regular set of configurations is in general
not regular, but it is always a context-sensitive set.

Then, we prove that, and this is our main result, for every HCFP of any
level, the set of all predecessors (i.e. the pre∗ image) of any given regular set
of configurations is a regular set and effectively constructible. As a corollary of
this result, we obtain a symbolic model checking algorithm (an algorithm which

Symbolic Reachability Analysis of Higher-Order Context-Free Processes 137

computes the set of all configurations satisfying a formula) for the temporal
logic E(F,X) with regular atomic predicates, i.e., the fragment of CTL with the
modalities EF (there exist path where a property eventually holds) and EX (there
exist an immediate successor satisfying some property).

Furthermore, we extend our construction of the pre∗ images by showing that
the set of predecessors under a regular constraint (i.e., the set of all predecessors
reachable by computations which stay in some given regular set of configurations)
is also regular and effectively constructible. For that, we use representation struc-
tures which can be seen as alternating finite-state automata. This result allows
us to provide a symbolic model checking algorithm for the logic E(U,X) with reg-
ular atomic predicates, i.e., the fragment of CTL with the operators EU (exists
until) and EX (exists next).

The structure of this paper is the following. In the next two sections, we
introduce higher-order stores and the model of higher-order context-free pro-
cesses. We also provide a symbolic representation for (infinite) regular sets of
stores using a certain type of finite automata. Then, for the sake of readability,
we first present our algorithm for computing the unconstrained pre and pre∗

sets of a regular set of stores (Section 4), before extending it to the case of pre∗

sets constrained by a regular set C (Section 5). Due to lack of space, additional
definitions and detailed proofs can be found in the full version of this paper1.

2 Higher-Order Context-Free Processes

We introduce a class of models we call higher-order context-free processes, which
generalize context-free processes (CFP) and are a subclass of higher-order push-
down systems (HPDS). They manipulate data structures called higher-order
stores.

Definition 2.1 (Higher-Order Store). The set S1 of level 1 stores (or 1-
stores) over store alphabet Γ is the set of all sequences [a1 . . . al] ∈ [Γ ∗]. For
n ≥ 2, the set Sn of level n stores (or n-stores) over Γ is the set of all sequences
[s1 . . . sl] ∈ [Sn−1

+].

The following operations are defined on 1-stores:

pushw
1 ([a1 . . . al]) = [wa2 . . . al] for all w ∈ Γ ∗,

top1([a1 . . . al]) = a1.

We will sometimes abbreviate pushε
1 as pop1. The following operations are

defined on n-stores (n > 1):

pushw
1 ([s1 . . . sl]) = [pushw

1 (s1) . . . sl]
pushk([s1 . . . sl]) = [pushk(s1) . . . sl] if k ∈ [2, n[,

1 Available at http://www.liafa.jussieu.fr/˜ameyer/

138 A. Bouajjani and A. Meyer

pushn([s1 . . . sl]) = [s1s1 . . . sl]
popk([s1 . . . sl]) = [popk(s1) . . . sl] if k ∈ [2, n[,
popn([s1 . . . sl]) = [s2 . . . sl] if l > 1, else undefined,
topk([s1 . . . sl]) = topk(s1) if k ∈ [1, n[,
topn([s1 . . . sl]) = s1.

We denote by On the set of operations consisting of:

{ pushk, popk | k ∈ [2, n] } ∪ { pushw
1 | w ∈ Γ ∗ }.

We say that operation o is of level n, written l(o) = n, if o is either pushn or
popn, or pushw

1 if n = 1. We can now define the model studied in this paper.

Definition 2.2. A higher-order context-free process of level n (or n-HCFP) is
a pair H = (Γ,Δ), where Γ is a finite alphabet and Δ ∈ Γ × On is a finite set
of transitions. A configuration of H is a n-store over Γ . H defines a transition
relation ↪→

H
between n-stores (or ↪→ when H is clear from the context), where

s ↪→
H

s′ ⇐⇒ ∃(a, o) ∈ Δ such that top1(s) = a and s′ = o(s).

The level l(d) of a transition d = (a, o) is simply the level of o. Let us give
a few more notations concerning HCFP computations. Let H = (Γ,Δ) be a
n-HCFP. A run of H starting from some store s0 is a sequence s0s1s2 . . . such
that for all i ≥ 0, si ↪→ si+1. The reflexive and transitive closure of ↪→ is written
∗

↪→ and called the reachability relation. For a given set C of n-stores, we also
define the constrained transition relation ↪→C = ↪→ ∩ (C×C), and its reflexive
and transitive closure

∗
↪→C . Now for any set of n-stores S, we consider the sets:

postH[C](S) = { s | ∃s′ ∈ S, s′ ↪→C s },

post∗
H[C](S) = { s | ∃s′ ∈ S, s′ ∗

↪→C s },
preH[C](S) = { s | ∃s′ ∈ S, s ↪→C s′ },

pre∗
H[C](S) = { s | ∃s′ ∈ S, s

∗
↪→C s′ }.

When C is the set Sn of all n-stores, we omit it in notations and simply write
for instance preH(S) instead of preH[C](S). We will also omit H when it is clear
from the context. When H consists of a single transition d, we may write pred(S)
instead of preH(S).

3 Sets of Stores and Symbolic Representation

To be able to design symbolic verification techniques over higher-order context-
free processes, we need a way to finitely represent infinite sets (or languages) of
configurations. In this section we present the sets of configurations (i.e. sets of
stores) we consider, as well as the family of automata which recognize them.

Symbolic Reachability Analysis of Higher-Order Context-Free Processes 139

A n-store s = [s1 . . . sl] over Γ is associated to a word w(s) = [w(s1) . . . w(sl)],
in which store letters in Γ only appear at nesting depth n. A set of stores over Γ
is called regular if its set of associated words is accepted by a finite automaton
over Γ ′ = Γ ∪{ [,] }, which in this case we call a store automaton. We will often
make no distinction between a store s and its associated word w(s). Due to the
nested structure of pushdown stores, it will sometimes be more convenient to
characterize sets of stores using nested store automata.

Definition 3.1. A level 1 nested store automaton is a finite automaton whose
transitions have labels in Γ . A nested store automaton of level n ≥ 2 is a finite
automaton whose transitions are labelled by level n− 1 nested automata over Γ .

The existence of a transition labelled by B between two control states p and
q in a finite automaton A is written p

B−→
A

q, or simply p
B−→ q when A is clear

from the context. Let A = (Q,Γ, δ, q0, qf) be a level n nested automaton2 with
n ≥ 2. The level k language of A for k ∈ [1, n] is defined recursively as:

Lk(A) = { [Lk(A1) . . . Lk(Al)] | [A1 . . .Al] ∈ Ln(A) } if k < n,

Lk(A) = { [A1 . . .Al] | q0
A1−→
A

. . .
Al−→
A

qf } if k = n.

For simplicity, we often abbreviate L1(A) as L(A). We say a nested automa-
ton B occurs in A if B labels a transition of A, or occurs in the label of one.
Level n automata are well suited to representing sets of n-stores, but have the
same expressive power as standard level 1 store automata.

Proposition 3.2. The store languages accepted by nested store automata are
the regular store languages.

Moreover, regular n-store languages are closed under union, intersection and
complement in Sn. We define for later use the set of automata {An

a | a ∈ Γ, n ∈
N } such that for all a and n, L(An

a) = { s ∈ Sn | top1(s) = a }. We also write
A×B the product operation over automata such that L(A×B) = L(A)∩L(B).

4 Symbolic Reachability Analysis

Our goal in this section is to investigate effective techniques to compute the sets
pre(S), post(S), pre∗(S) and post∗(S) for a given n-HCFP H, in the case where
S is a regular set of stores. For level 1 pushdown systems, it is a well-known
result that both pre∗

H(S) and post∗
H(S) are regular. We will see that this is still

the case for pre(S) and pre∗(S) in the higher-order case, but not for post(S)
(hence not for post∗(S) either).

2 Note that we only consider automata with a single final state.

140 A. Bouajjani and A. Meyer

4.1 Forward Reachability

Proposition 4.1. Given a n-HCFP H and a regular set of n-stores S, the set
post(S) is in general not regular. This set is a context-sensitive language.

Proof. Let post (a,o)(S) denote the set { s′ | ∃s ∈ S, top1(s) = a ∧ s′ = o(s) }.
Suppose S is a regular set of n-stores, then if d = (a, pushw

1) or d = (a, popk), it
is not difficult to see that post (a,o)(S) is regular. However, if d = (a, pushk) with
k > 1, then post (a,o)(S) is the set { [n−k+1t t w | [n−k+1t w ∈ S }. It can be shown
using the usual pumping arguments that this set is not regular, because of the
duplication of t. However, one can straightforwardly build a linearly bounded
Turing machine recognizing this set. ��

4.2 Backward Reachability

We first propose a transformation on automata which corresponds to the pre
operation on their language. In a second time, we extend this construction to
deal with the more difficult computation of pre∗ sets.

Proposition 4.2. Given a n-HCFP H and a regular set of n-stores S, the set
pre(S) is regular and effectively computable.

We introduce a construction which, for a given HCFP transition d and a given
regular set of n-stores S recognized by a level n nested automaton A, allows us to
compute a nested automaton A′

d recognizing the set pre(S) of direct predecessors
of S by d. This construction is a transformation over nested automata, which
we call Td. We define A′

d = Td(A) = (Q′, Γ, δ′, q′
0, qf) as follows.

If l(d) < n, we propagate the transformation to the first level n−1 automaton
encountered along each path. We thus have Q′ = Q, q′

0 = q0 and

δ′ = { q0
Td(A1)−→ q1 | q0

A1−→
A

q1 } ∪ { q B−→ q′ | q B−→
A

q′ ∧ q �= q0 }.

If l(d) = n, we distinguish three cases according to the nature of d:

1. If d = (a, pushw
1), then Q′ = Q ∪ {q′

0} and δ′ = δ ∪ { q′
0

a−→ q1 | q0 w−→
A

q1 }.
2. If d = (a, pushn) and n > 1, then Q′ = Q ∪ {q′

0} and
δ′ = δ ∪ { q′

0
B−→ q2 | ∃q1, q0

A1−→
A

q1
A2−→
A

q2 } where B = A1 ×A2 ×A(n−1)
a .

3. If d = (a, popn), then Q′ = Q ∪ {q′
0} and δ′ = δ ∪ { q′

0
A(n−1)

a−→ q0 }.

It is not difficult to prove that L(A′
d) = pred(L(A)). Hence, if Δ is the set of

transitions of H, then we have pre(S) = pre(L(A)) =
⋃

d∈Δ L(A′
d).

This technique can be extended to compute the set pre∗(S) of all predecessors
of a regular set of stores S.

Theorem 4.3. Given a n-HCFP H and a regular set of n-stores S, the set
pre∗(S) is regular and effectively computable.

Symbolic Reachability Analysis of Higher-Order Context-Free Processes 141

To compute pre∗(S), we have to deal with the problem of termination. A
simple iteration of our previous construction will in general not terminate, as
each step would add control states to the automaton. As a matter of fact, even
the sequence (prei(S))i≥0, defined as pre0(S) = S and for all n ≥ 1 pren(S) =
pren−1(S) ∪ pre(pren−1(S)), does not reach a fix-point in general. For instance,
if d = (a, pop1), then for all n, pren([a]) = { [ai] | i ≤ n } �= pren+1([a]).

To build pre∗(S) for some regular S, we modify the previous construction
in order to keep constant the number of states in the nested automaton we
manipulate. The idea, instead of creating new control states, is to add edges
to the automaton until saturation, eventually creating loops to represent at
once multiple applications of a HCFP transition. Then, we prove that this new
algorithm terminates and is correct.

Let us first define operation Td for any n-HCFP transition d (see Figure 1
for an illustration). Let A = (Q,Γ, δ, q0, qf) and A′ = (Q,Γ, δ′, q0, qf) be nested
n-store automata over Γ ′ = Γ ∪ { [,] }, and d a n-HCFP transition. We define
A′ = Td(A) as follows.

If the level of d is less than n, then we simply propagate the transformation
to the first level n− 1 automaton encountered along each path:

δ′ = { q0
Td(A1)−→ q1 | q0

A1−→
A

q1 } ∪ { q B−→ q′ | q B−→
A

q′ ∧ q �= q0 }.

If l(d) = n then as previously we distinguish three cases according to d:

1. If n = 1 and d = (a, pushw
1), then δ′ = δ ∪ { q0 a−→ q1 | q0 w−→

A
q1 }.

2. If d = (a, pushn) for some n > 1, then
δ′ = δ ∪ { q0 B−→ q2 | ∃q1, q0

A1−→
A

q1
A2−→
A

q2 } where B = A1 ×A2 ×A(n−1)
a .

3. If d = (a, popn), then δ′ = δ ∪ { q0
A(n−1)

a−→ q0 }
Suppose H = (Γ,Δ) with Δ = { d0, . . . , dl−1 }. Given an automaton A such

that S = L(A), consider the sequence (Ai)i≥0 defined as A0 = A and for all
i ≥ 0 and j = i mod l, Ai+1 = Tdj

(Ai). In order to obtain the result, we have
to prove that this sequence always reaches a fix-point (Lemma 4.4) and this
fix-point is an automaton actually recognizing pre∗(S) (Lemmas 4.5 and 4.6).

i

A

i

A

a

w i

A
A1 A2

B A(n−1)
a

Fig. 1. Transformation Td(A) for d = (a, pushw
1), (a, pushk) and (a, popk)

Lemma 4.4 (Termination). For all nested n-store automaton A and n-HCFP
H = (Γ,Δ), the sequence (Ai)i≥0 defined with respect to A eventually stabilizes:
∃k ≥ 0, ∀k′ ∈ Δ, Ak′ = Ak, which implies L(Ak) =

⋃
i≥0 L(Ai).

142 A. Bouajjani and A. Meyer

Proof. First, notice that for all d, Td does not change the set of control states of
any automaton occurring in A, and only adds transitions. This means (Ai)i≥0
is monotonous in the size of each Ai.

To establish the termination of the conctruction, we prove that the number of
transitions which can be added to A0 is finite. Note that by definition of Td, the
number of states of each Ai is constant. Moreover, each new transition originates
from the initial state of the automaton it is added to. Hence, the total number
of transitions which can be added to a given automaton is equal to |Vn| · |Q|,
where Vn is the level n vocabulary and Q its set of states. Since |Q| does not
change, we only have to prove that Vn is finite for all n. If n = 1, V1 = Γ ,
and the property holds. Now suppose n > 1 and the property holds up to level
n − 1. By induction hypothesis, Vn−1 is finite. With this set of labels, one can
build a finite number N of different level n − 1 automata which is exponential
in |Vn−1| · K, where K depends on the number of level n − 1 automata in A0
and of their sets of control states. As each transition of a level n automaton is
labelled by a product of level n − 1 automata, then |Vn| is itself exponential in
N , and thus doubly exponential in |Vn−1|. Remark that, as a consequence, the
number of steps of the construction is non-elementary in n. ��

Lemma 4.5 (Soundness).
⋃

i≥0 L(Ai) ⊆ pre∗
H(S).

Proof (Sketch). We prove by induction on i the equivalent result that ∀i, L(Ai) ⊆
pre∗

H(S). The base case is trivial since by definition A0 = A and L(A) = S ⊆
pre∗

H(S). For the inductive step, we consider a store s accepted by a run in Ai+1
and reason by induction on the number m of new level k transitions used in this
run, where k is the level of the operation d such that Ai+1 = Td(Ai). The idea
is to decompose each run containing m new transitions into a first part with less
than m new transitions, one new transition, and a second part also containing
less than m new transitions. Then, by induction hypothesis on m and i, one can
re-compose a path in Ai recognizing some store s′ such that s′ ∈ pre∗

H(S) and
s ∈ pre∗

H(s′). ��

Lemma 4.6 (Completeness). pre∗
H(S) ⊆

⋃
i≥0 L(Ai).

Proof (Sketch). We prove the sufficient property that for all nested store automa-
ton A and HCFP transition d, pred(L(A)) ⊆ L(Td(A)). We consider automata A
and A′ such that A′ = Td(A), and any pair of stores s ∈ L(A) and s′ ∈ predj

(s).
It suffices to isolate a run in A recognizing s and enumerate the possible forms
of s′ with respect to s and d to be able to exhibit a possible run in A′ accepting
s′, by definition of Td. This establishes the fact that Td adds to the language L
of its argument at least the set of direct predecessors of stores of L by d. ��

As a direct consequence of Proposition 4.2 and Theorem 4.3, we obtain a
symbolic model checking algorithm for the logic E(F,X) with regular store lan-
guages as atomic predicates, i.e. the fragment of the temporal logic CTL for the
modal operators EF (there exists a path where eventually a property holds) and
EX (there exist an immediate successor satisfying a property).

Symbolic Reachability Analysis of Higher-Order Context-Free Processes 143

Theorem 4.7. For every HCFP H and formula ϕ of E(F,X), the set of config-
urations (stores) satisfying ϕ is regular and effectively computable.

5 Constraining Reachability

In this section we address the more general problem of computing a finite au-
tomaton recognizing pre∗

H[C](S) for any HCFP H and pair of regular store
languages C and S. We provide an extension of the construction of Proposition
4.3 allowing us to ensure that we only consider runs of H whose configurations
all belong to C. Again, from a given automaton A, we construct a sequence of
automata whose limit recognizes exactly pre∗

H[C](L(A)). The main (and only)
difference with the previous case is that we need to compute language inter-
sections at each iteration without invalidating our termination arguments (i.e.
without adding any new states to the original automaton). For this reason, we
use a class of alternating automata, which we call constrained nested automata.

Definition 5.1 (Constrained Nested Automata). Let B be a non-nested
m-store automaton3 (with m ≥ n). A level n B-constrained nested automaton
A is a nested automaton (QA, Γ, δA, iA, fA) with special transitions of the form
p

C−→
A

(q, r) where p, q ∈ QA, r is a control state of B and C is a level n − 1

B-constrained nested automaton.

For lack of space, we are not able to provide here the complete semantics
of these automata. However, the intuitive idea is quite simple. Suppose A is a
B-constrained nested n-store automaton, and B also recognizes n-stores. First,
we require all the words accepted by A to be also accepted by B: L(A) ⊆ L(B).
Then, in any run of A where a transition of the form p

D−→ (q, r) occurs, the
remaining part of the input word should be accepted both by A when resuming
from state q and by B when starting from state r. Of course, when expanding D
into a word of its language, it may require additional checks in B. As a matter
of fact, constrained nested automata can be transformed into equivalent level 1
alternating automata. As such, the languages they accept are all regular.

Proposition 5.2. Constrained nested automata accept regular languages.

The construction we want to provide needs to refer to whole sets of paths in
a level 1 store automaton recognizing the constraint language. To do this, we
need to introduce a couple of additional definitions and notations.

Definition 5.3. Let A be a finite store automaton over Γ ′ = Γ ∪{ [,] }. A state
p of A is of level 0 if it has no successor by [and no predecessor by]. It is of
level k if all its successors by [and predecessors by] are of level k− 1. The level
of p is written l(p).

3 i.e. a standard, level 1 finite state automaton.

144 A. Bouajjani and A. Meyer

We can show that any automaton recognizing only n-stores is equivalent to
an automaton whose control states all have a well-defined level. A notion of level
can also be defined for paths. A level n path in a store automaton is a path
p1 . . . pk with l(p1) = l(pk) = n and ∀i ∈ [2, k − 1], l(pi) < n. All such paths
are labelled by n-stores. Now, to concisely refer to the whole set of level n paths
between two level n control states, we introduce the following notation. Let

Q = { q ∈ QA | l(q) < n ∧ p1
+−→
A

q
+−→
A

p2 }

be the set of all states of A occurring on a level n path between p1 and p2. If Q
is not empty, we write p1

B
�
A

p2, where B is defined as:

B =
(
QB = Q ∪ {p1, p2}, Γ ′, δB = δA ∩ (QB × Γ ′ ×QB), p1, p2

)
.

Thanks to these few notions, we can state our result:

Theorem 5.4. Given a n-HCFP H and regular sets of n-stores S and C, the
set pre∗

H[C](S) is regular and effectively computable.

To address this problem, we propose a modified version of the construc-
tion of the previous section, which uses constrained nested automata. Let d =
(a, o) be a HCFP transition rule, A = (QA, Γ, δ, i, f) and A′ = (QA, Γ, δ

′, i, f)
two nested k-store automata constrained by a level 1 n-store automaton B =
(QB, Γ

′, δB, iB, fB) accepting C (with n ≥ k). We define a transformation TB
dj

(A),
which is very similar to Tdj

, except that we need to add alternating transitions
to ensure that no new store is accepted by A′ unless it is the transformation of
a store previously accepted by B (Cf. Figure 2). If l(d) < k, we propagate the
transformation to the first level k − 1 automaton along each path:

δ′ = { i T B
d (C)−→ (p, q) | i C−→

A
(p, q) } ∪ { p C−→ (p′, q′) ∈ δ | p �= i }.

If l(d) = n, we distinguish three cases according to the nature of d:

1. If d = (a, pushw
1), then

δ′ = δ ∪
{
i

a−→ (p, q) | i w−→
Ai

(p, q′) ∧ ∃q1, q ∈ QB,

l(q1) = l(q) = 0, iB
[n−→
B

q1
w−→
B

q
}
.

2. If d = (a, pushk), then for m = n−k+1 and C = (C1×C2)×(B1×B2)×A(k−1)
a ,

δ′ = δ ∪
{
i

C−→ (p, q) | i C1−→
Ai

C2−→
Ai

(p, q′) ∧ ∃ q1, q2, q ∈ QB,

l(q1) = l(q2) = l(q) = k − 1, iB
[m−→
B

q1
B1
�
B

q2
B2
�
B

q
}
.

Symbolic Reachability Analysis of Higher-Order Context-Free Processes 145

iB

C1 C2i

A

B
[∗ B1 B2

C
i

A

B
[∗

a

w

wiB iB

i

A

A(k−1)
a

B
[∗

Fig. 2. transformation T B
d (A) for d = (a, pushw

1), (a, pushk) and (a, popk)

3. If d = (a, popk), then for m = n− k + 1,

δ′ = δ ∪
{
i

A(k−1)
a−→ (i, q) | ∃q ∈ QB, l(q) = k − 1, iB

[m−→
B1

q
}
.

Suppose H = (Γ,Δ) with Δ = { d0, . . . , dl−1 }. Given an automaton A such
that S = L(A), consider the sequence (Ai)i≥0 defined as A0 = AB (the B-
constrained automaton with the same set of states and transitions as A, whose
language is L(A) ∩ L(B)) and for all i ≥ 0 and j = i mod l, Ai+1 = TB

dj
(Ai).

By definition of TB
d , the number of states in each Ai does not vary, and since

the number of control states of B is finite the same termination arguments as
in Lemma 4.4 still hold. It is then quite straightforward to extend the proofs of
Lemma 4.5 and Lemma 4.6 to the constrained case.

This more general construction also allows us to extend Theorem 4.7 to the
larger fragment E(U,X) of CTL, where formulas can now contain the modal
operator EU (there exists a path along which a first property continuously holds
until a second property eventually holds) instead of just EF.

Theorem 5.5. Given a HCFP H and formula ϕ of E(U,X), the set of configu-
rations (stores) satisfying ϕ is regular and effectively computable.

6 Conclusion

We have provided an automata-based symbolic technique for backward reach-
ability analysis of higher-order context-free processes. This technique can be
used to check temporal properties expressed in the logic E(U,X). In this respect,
our results provide a first step toward developing symbolic techniques for the
model-checking of higher-order context-free or pushdown processes.

Several important questions remain open and are left for future investigation.
In particular, it would be interesting to extend our approach to the more general
case of higher-order pushdown systems, i.e. by taking into account a set of control
states. This does not seem to be technically trivial, and naive extensions of our
construction lead to procedures which are not guaranteed to terminate.

Another interesting issue is to generalize our symbolic approach to more
general properties than reachability and/or safety, including liveness properties.

146 A. Bouajjani and A. Meyer

Finally, it would also be very interesting to extend our symbolic techniques in
order to solve games (such as safety and parity games) and to compute repre-
sentations of the sets of all winning configurations for these games.

References

1. P. Abdulla, A. Bouajjani, and B. Jonsson. On-the-fly analysis of systems with
unbounded, lossy fifo channels. In 10th CAV, volume 1427 of LNCS, pages 305–
318, 1998.

2. R. Alur, K. Etessami, and P. Madhusudan. A temporal logic of nested calls and
returns. In 10th TACAS, volume 2988 of LNCS, pages 467–481, 2004.

3. B. Boigelot, P. Godefroid, B. Willems, and P. Wolper. The power of qdds. In 4th
SAS, volume 1302 of LNCS, pages 172–186, 1997.

4. A. Bouajjani. Languages, rewriting systems, and verification of infinite-state sys-
tems. In 28th ICALP, volume 2076 of LNCS, pages 24–39, 2001.

5. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown au-
tomata: Application to model-checking. In 8th CONCUR, volume 1243 of LNCS,
pages 135–150, 1997.

6. A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular model checking. In
12th CAV, volume 1855 of LNCS, pages 403–418, 2000.

7. O. Burkart, D. Caucal, and B. Steffen. Bisimulation collapse and the process
taxonomy. In 7th CONCUR, volume 1119 of LNCS, pages 247–262, 1996.

8. T. Cachat. Symbolic strategy synthesis for games on pushdown graphs. In 29th
ICALP, volume 2380 of LNCS, pages 704–715, 2002.

9. T. Cachat. Higher order pushdown automata, the caucal hierarchy of graphs and
parity games. In 30th ICALP, volume 2719 of LNCS, pages 556–569, 2003.

10. A. Carayol and S. Wöhrle. The caucal hierarchy of infinite graphs in terms of logic
and higher-order pushdown automata. In 23rd FSTTCS, volume 2914 of LNCS,
pages 112–123, 2003.

11. D. Caucal. On the regular structure of prefix rewriting. TCS, 106:61–86, 1992.
12. D. Caucal. On infinite terms having a decidable monadic theory. In 27th MFCS,

volume 2420 of LNCS, pages 165–176, 2002.
13. J. Engelfriet. Iterated pushdown automata and complexity classes. In 15th STOC,

pages 365–373, 1983.
14. J. Esparza. Grammars as processes. In Formal and Natural Computing, volume

2300 of LNCS, pages 232–247, 2002.
15. J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithm for

model checking pushdown systems. In 12th CAV, volume 1885 of LNCS, pages
232–247, 2000.

16. J. Esparza and J. Knoop. An automata-theoretic approach to interprocedural
data-flow analysis. In FoSSaCS, volume 1578 of LNCS, pages 14–30, 1999.

17. J. Henriksen, J. Jensen, M. Jørgensen, N. Klarlund, R. Paige, T. Rauhe, and
A. Sandholm. Mona: Monadic second-order logic in practice. In 1st TACAS,
volume 1019 of LNCS, pages 89–110, 1995.

18. Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shahar. Symbolic model
checking with rich assertional languages. In 9th CAV, volume 1254 of LNCS,
pages 424–435, 1997.

19. T. Knapik, D. Niwinski, and P. Urzyczyn. Higher-order pushdown trees are easy.
In 5th FoSSaCS, volume 2303 of LNCS, pages 205–222, 2002.

Symbolic Reachability Analysis of Higher-Order Context-Free Processes 147

20. D. Muller and P. Schupp. The theory of ends, pushdown automata, and second-
order logic. TCS, 37:51–75, 1985.

21. Stefan Schwoon. Model-Checking Pushdown Systems. PhD thesis, Technische Uni-
versität München, 2002.

22. I. Walukiewicz. Pushdown processes: Games and model checking. In 8th CAV,
volume 1102 of LNCS, pages 62–74, 1996.

23. P. Wolper and B. Boigelot. Verifying systems with infinite but regular state spaces.
In 10th CAV, volume 1427 of LNCS, pages 88–97, 1998.

Optimal Strategies in Priced Timed Game Automata

Patricia Bouyer1,�, Franck Cassez2,�, Emmanuel Fleury3, and Kim G. Larsen3

1 LSV, UMR 8643, CNRS & ENS de Cachan, France
bouyer@lsv.ens-cachan.fr

2 IRCCyN, UMR 6597, CNRS, France
cassez@irccyn.ec-nantes.fr

3 Computer Science Department, BRICS��, Aalborg University, Denmark
{fleury,kgl}@cs.auc.dk

Abstract. Priced timed (game) automata extend timed (game) automata with
costs on both locations and transitions. In this paper we focus on reachability
priced timed game automata and prove that the optimal cost for winning such a
game is computable under conditions concerning the non-zenoness of cost. Under
stronger conditions (strictness of constraints) we prove that in case an optimal
strategy exists, we can compute a state-based winning optimal strategy.

1 Introduction

Optimal Scheduling in Timed Systems. In recent years the application of model-che-
cking techniques to scheduling problems has become an established line of research.
Static scheduling problems with timing constraints may often be formulated as reacha-
bility problems on timed automata, viz. as the possibility of reaching a given goal state.
Real-time model checking tools such as KRONOS and UPPAAL have been applied on a
number of industrial and benchmark scheduling problems [13, 15].

Often the scheduling strategy needs to take into account uncertainty with respect
to the behavior of an environmental context. In such situations the scheduling problem
becomes a dynamic (timed) game between the controller and the environment, where
the objective for the controller is to find a dynamic strategy that will guarantee the game
to end in a goal state [5, 11, 17].

Optimality of schedules may be obtained within the framework of timed automata
by associating with each run a performance measure. Thus it is possible to compare
runs and search for the optimal run from an initial configuration to a final (goal) target.
The most obvious performance measure for timed automata is clearly that of time itself.
Time-optimality for timed automata was first considered in [10] and proved computable
in [18]. The related problem of synthesizing time-optimal winning strategies for timed
game automata was shown computable in [4].

� Work partially supported by ACI Cortos, a program of the French government. Visits to Aal-
borg supported by CISS, Aalborg University, Denmark.

�� Basic Research in Computer Science (www.brics.dk).

K. Lodaya and M. Mahajan (Eds.): FSTTCS 2004, LNCS 3328, pp. 148–160, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Optimal Strategies in Priced Timed Game Automata 149

More recently, the ability to consider more general performance measures has been
given. Priced extensions of timed automata have been introduced where a cost c is asso-
ciated with each location � giving the cost of a unit of time spent in �. In [2] cost-bound
reachability has been shown decidable. [6] and [3] independently solve the cost-optimal
reachability problem for priced timed automata. Efficient incorporation in UPPAAL is
provided by use of so-called priced zones as a main data structure [16]. More recently
in [9], the problem of computing optimal infinite schedules (in terms of minimal limit-
ratios) is solved for the model of priced timed automata.

The Optimal Control Problem for Timed Games. In this paper we combine the notions
of game and price and solve the problem of cost-optimal winning strategies for priced
timed game automata. The problem we consider is: “Given a priced timed game au-
tomaton A, a goal location Goal, what is the optimal cost we can achieve to reach Goal
in A?”. We refer to this problem as the Optimal Control Problem (OCP). Consider the
example of a priced timed game automaton given in Fig. 1. Here the cost-rates (cost per
time unit) in locations �0, �2 and �3 are 5, 10 and 1 respectively. In �1 the environment
may choose to move to either �2 or �3 (dashed arrows are uncontrollable). However, due
to the invariant y = 0 this choice must be made instantaneous. Obviously, once �2 or �3
has been reached the optimal strategy for the controller is to move to Goal immediately
(however there is a discrete cost (resp. 1 and 7) on each discrete transition). The crucial
(and only remaining) question is how long the controller should wait in �0 before taking
the transition to �1. Obviously, in order for the controller to win this duration must be
no more than two time units. However, what is the optimal choice for the duration in the
sense that the overall cost of reaching Goal is minimal? Denote by t the chosen delay
in �0. Then 5t + 10(2 − t) + 1 is the minimal cost through �2 and 5t + (2 − t) + 7 is
the minimal cost through �3. As the environment chooses between these two transitions
the best choice for the controller is to delay t ≤ 2 such that max(21 − 5t, 9 + 4t) is
minimum, which is t = 4

3 giving a minimal cost of 14 1
3 .

�0

cost(�0) = 5

�1

[y = 0]

�2

cost(�2) = 10

�3

cost(�3) = 1

Goal
x ≤ 2;c1;y := 0

u

u

x ≥ 2;c2;cost = 1

x ≥ 2;c2;cost = 7

Fig. 1. A Reachability Priced Time Game Automaton A

Related Work. Acyclic priced (or weighted) timed games have been studied in [14]
and the more general case of non-acyclic games have been recently considered in [1].
In [1], the problem they consider is “compute the optimal cost within k steps”: we
refer to this bounded problem as the k-OCP. This is a weaker version than the one we
consider (OCP) and roughly corresponds to unfolding the game k times and to reducing

150 P. Bouyer et al.

the problem to solving an acyclic game. In [1], the authors focus on the complexity of
the k-OCP rather than on the decidability of the OCP and give a clever (exponential)
bound on the number of regions that appear after unfolding the game k times. In the
conclusion the authors also indicate that under some non-Zenoness assumption (similar
to the one we use in theorem 6) the number of iterations required to compute the optimal
cost (OCP) is finite and thus that, under this assumption, any game can be reduced to an
“optimal game in finite number of steps”. However both our work and [1] fail in solving
the general OCP without any (non-Zenoness) assumption.

In this work (following our research report [7]) that was done simultaneously and
independently from [1], we don’t provide any complexity bound for (k-)OCP, but rather
focus on the synthesis of winning strategies and their structural properties. The method
we use is radically different from the one proposed in [14, 1] and our main contributions
(which extend previous works) are then the following:

– in both above-mentioned papers, the definition of the optimal cost is based on a re-
cursive definition of a function (like the O function given in definition 11, page 155)
that can be very complex (e.g. in [1]); we propose a new run-based definition (def-
inition 9) of the optimal cost that is more natural and enables us to obtain new
results. For instance the definition of the optimal cost in [14, 1] is based on an
infimum-supremum computation: if the optimal cost is c the algorithm does not
give any hint whether c is actually realized (there is a strategy of cost c) or if c is
the limit of the optimal cost (there is a family of strategies of cost c+ε for all ε > 0).
In our settings, we can compute the optimal cost and answer the question whether
an optimal strategy exists or not (corollaries 1 and 2). Moreover we provide a proof
that non-Zenoness implies termination of our algorithm (theorem 6).

– in addition to the previous new results on optimal cost computation that extend
the ones in [14, 1] we also tackle the problem of strategy synthesis. In particular
we study the properties of the strategies (memoryless, cost-dependence) needed to
achieve the optimal cost which is a natural question that arises in game theory. For
example, in [1] setting, it could be the case that in two instances of the unfolding
of the game, the values of a strategy for a given state are different. In this paper
we prove that if an optimal strategy exists then one can effectively construct an
optimal strategy which only depends on the current state and on the accumulated
cost since the beginning of the play. We also prove that under some assumptions,
if an optimal strategy exists then a state-based cost-independent strategy exists and
can be effectively computed (theorem 7).

– finally the algorithms we obtain can be implemented [8] in HYTECH.

Proofs are omitted but can be found in [7].

2 Reachability Timed Games (RTG)

In this paper we focus on reachability games, where the control objective is to enforce
that the system eventually evolves into a particular state. It is classical in the literature
to define reachability timed games (RTG) [5, 11, 17] to model control problems. In this
section we recall some known general results about RTG.

Optimal Strategies in Priced Timed Game Automata 151

Timed Transition Systems and Games

Definition 1 (Timed Transition Systems (TTS)). A timed transition system is a tuple
S = (Q,Q0,Act,−→) where Q is a set of states, Q0 ⊆ Q is the set of initial states,
Act is a finite set of actions, disjoint from R≥0, −→⊆ Q×Σ ×Q is a set of edges. We
let Σ = Act ∪ R≥0. If (q, e, q′) ∈−→, we also write q

e−→ q′.

We make the following common assumptions about TTSs:

– 0-DELAY: q
0−→ q′ if and only if q = q′,

– ADDITIVITY: if q
d−→ q′ and q′ d′

−−→ q′′ with d, d′ ∈ R≥0, then q
d+d′
−−−−→ q′′,

– CONTINUITY: if q
d−→ q′, then for every d′ and d′′ in R≥0 such that d = d′ + d′′,

there exists q′′ such that q
d′
−−→ q′′ d′′

−−→ q′,
– DETERMINISM: if q

e−→ q′ and q
e−→ q′′ with e ∈ Σ, then q′ = q′′.

A run ρ = q0
t0−−→ q′

0
e0−−→ q1

t1−−→ q′
1

e1−−→ · · · qn
tn−−→ q′

n
en−−→ qn+1 . . . in S is a

finite or infinite sequence of alternating time (ti ∈ R≥0) and discrete (ei ∈ Act) steps.
States(ρ) = {q0, q

′
0, , q1, q

′
1, . . . , qn, q′

n, . . . } is the set of states encountered on ρ. We
denote by first(ρ) = q0 and if ρ is finite and has n alternating time and discrete steps
last(ρ) = qn. Runs(q, S) is the set of (finite and infinite) runs in S starting from q.
The set of runs of S is Runs(S) =

⋃
q∈Q Runs(q, S). We use q

e−→ as a shorthand for

“∃q′ s.t. q
e−→ q′” and extends this notation to finite runs ρ

e−→ whenever last(ρ) e−→.

Definition 2 (Timed Games (TG)). A timed game G = (Q,Q0,Act,−→) is a TTS
such that Act is partitioned into controllable actions Actc and uncontrollable actions
Actu.

Strategies, Reachability Games. A strategy [17] is a function that during the cause of
the game constantly gives information as to what the controller should do in order to
win the game. In a given situation the strategy could suggest the controller to either i)
“do a particular controllable action” or ii) “do nothing at this point in time, just wait”
which will be denoted by the special symbol λ. For instance if one wants to delay until
some clock value x reaches 4

3 (as would be a good strategy in the location �0 of Fig. 1)
then the strategy would be: for x < 4

3 do λ and for x = 4
3 do the control action from �0

to �1.

Definition 3 (Strategy). Let G = (Q,Q0,Act,−→) be a TG. A strategy f over G is a
partial function from Runs(G) to Actc ∪ {λ}.

We denote Strat(G) the set of strategies over G. A strategy f is state-based when-
ever ∀ρ, ρ′ ∈ Runs(G), last(ρ) = last(ρ′) implies that f(ρ) = f(ρ′). State-based
strategies are also called memoryless strategies in game theory [11, 19]. The possible
runs that may be realized when the controller follows a particular strategy is defined by
the following notion of outcome (see e.g. [11]):

Definition 4 (Outcome). Let G = (Q,Q0,Act,−→) be a TG and f a strategy over
G. The outcome Outcome(q, f) of f from q in G is the subset of Runs(q,G) defined
inductively by:

152 P. Bouyer et al.

– q ∈ Outcome(q, f),
– if ρ ∈ Outcome(q, f) then ρ′ = ρ

e−→ q′ ∈ Outcome(q, f) if ρ′ ∈ Runs(q,G) and
one of the following three conditions hold:
1. e ∈ Actu,
2. e ∈ Actc and e = f(ρ),
3. e ∈ R≥0 and ∀0 ≤ e′ < e,∃q′′ ∈ Q s.t. last(ρ) e′

−−→ q′′ ∧ f(ρ e′
−−→ q′′) = λ.

– for an infinite run ρ, ρ ∈ Outcome(q, f) if all the finite prefixes of ρ are in
Outcome(q, f).

Note that some strategies may block the evolution at some point for instance if
condition 3 above is not satisfied. One has to be careful when synthesizing strategies to
ensure condition 3 and this is not trivial (see [7], theorem 2 for details).

Definition 5 (Reachability Timed Games (RTG)). A reachability timed game G =
(Q,Q0,Goal,Act,−→) is a timed game (Q,Q0,Act,−→) with a distinguished set of
goal states Goal ⊆ Q such that for all q ∈ Goal, q

e−→ q′ implies q′ ∈ Goal.

If G is a RTG, a run ρ is a winning run if States(ρ) ∩ Goal �= ∅. The set of winning
runs in G from q is denoted WinRuns(q,G).

For reachability games one has to choose a semantics for uncontrollable actions:
either i) they can only spoil the game and it is up to the controller to do some control-
lable action to win ([5, 17, 14]) or ii) if at some state s only an uncontrollable action is
enabled but forced to happen and leads to a winning state then s is winning. The choice
we make is to follow the framework used by La Torre et al in [14, 1] where uncontrol-
lable actions cannot help to win. This choice is made for the sake of simplicity (mainly
for the proof of theorem 3). However, we can handle any reasonable semantics like ii)
above but the proofs are more involved (see [7]).

We now formalize the previous notions. A maximal run ρ is either an infinite run
(supposing strict alternation of delays and actions) or a finite run ρ that satisfies either

(i) last(ρ) ∈ Goal or ii) ∀t ≥ 0, if ρ
t−→ q′ a−−→ then a ∈ Actu (i.e. the only possible

next discrete actions from last(ρ), if any, are uncontrollable actions). A strategy f is
winning from q if all maximal runs in Outcome(q, f) are in WinRuns(q,G). A state q
in a RTG G is winning if there exists a winning strategy f from q in G. We denote by
W(G) the set of winning states in G and WinStrat(q,G) the set of winning strategies
from q over G.

Control of Linear Hybrid Games. In the remainder of this section we summarize pre-
vious results [11, 17, 20] obtained for particular classes of RTG: Linear Hybrid Games
(LHG).

Let X be a finite set of real-valued variables. We denote Lin(X) the set of linear
constraints over the variables in X . Linc(X) is the subset of convex linear constraints
over X . A valuation of the variables in X is a mapping from X to R (thus an element
of RX). For a valuation v and a linear assignment1 α we denote v[α] the valuation
defined by v[α](x) = α(x)(v). Assign(X) is the set of linear assignments over X . For
r : X −→ Q and δ ∈ R≥0 we denote v + r · δ the valuation s.t. for all x ∈ X ,
(v + r · δ)(x) = v(x) + r(x) · δ.

1 A linear assignment assigns to each variable a linear expression.

Optimal Strategies in Priced Timed Game Automata 153

Definition 6 (LHG [12]). A Linear Hybrid Game H = (L, �0,Act, X,E, inv, Rate)
is a tuple where L is a finite set of locations, �0 ∈ L is the initial location, Act =
Actc ∪ Actu is the set of actions (controllable and uncontrollable actions), X is a
finite set of real-valued variables, E ⊆ L × Lin(X) × Act × Assign(X) × L is a
finite set of transitions, inv : L −→ Linc(X) associates to each location its invariant,
Rate : L −→ (X −→ Q) associates to each location and variable an evolution rate.
A reachability LHG is a LHG with a distinguished set of locations Goal ⊆ L (with no
outgoing edges). It defines the set of goal states Goal× RX .

The semantics of a LHG H = (L, �0,Act, X,E, inv, Rate) is a TTS SH = ((L ×
RX , (�0,0),Act,−→)) where −→ consists of: i) discrete steps: (�, v) e−→ (�′, v′) if

there exists (�, g, e, α, �′) ∈ E s.t. v |= g and v′ = v[α]; ii) time steps: (�, v) δ−→ (�, v′)
if δ ∈ R≥0, v′ = v + Rate(�) · δ and v, v′ ∈ inv(�).

For reachability LHG, the computation of the winning states is based on the defini-
tion of a controllable predecessors operator [11, 17]. Let Q = L × RX . For a subset
X ⊆ Q and a ∈ Act we define Preda(X) = {q ∈ Q | q

a−−→ q′, q′ ∈ X}. The
controllable and uncontrollable discrete predecessors of X are defined by cPred(X) =⋃

c∈Actc Predc(X) and uPred(X) =
⋃

u∈Actu Predu(X). A notion of safe timed prede-
cessors of a set X w.r.t. a set Y is also needed. Intuitively a state q is in Predt(X,Y) if
from q we can reach q′ ∈ X by time elapsing and along the path from q to q′ we avoid
Y . Formally this is defined by:

Predt(X,Y) = {q ∈ Q | ∃δ ∈ R≥0 s.t. q
δ−→ q′, q′ ∈ X and Post[0,δ](q) ⊆ Y }

where Post[0,δ](q) = {q′ ∈ Q | ∃t ∈ [0, δ] s.t. q
t−→ q′}. Now we are able to define the

controllable predecessors operator π as follows:

π(X) = Predt

(
X ∪ cPred(X), uPred(X)

)
(1)

Note that this definition of π captures the choice that uncontrollable actions cannot
be used to win. A symbolic version of the π operator can be defined on LHG [11, 17].
Hence there is a semi-algorithm CompWin which computes the least fixed point of
λX.{Goal} ∪ π(X) as the limit of an increasing sequence of sets of states (starting
with the initial state Goal). If H is a reachability LHG, the result of the computation
μX.{Goal} ∪ π(X) is denoted CompWin(H).

Theorem 1 (Symbolic Algorithm for LHG [11]). W(SH) = CompWin(H) for a
reachability LHG H and hence CompWin is a symbolic semi-algorithm for computing
the winning states of a reachability LHG.

As for controller synthesis the previous algorithm allows us to compute the winning
states of a game but the extraction of strategies is not made particularly explicit. The
proof of the following theorem (given in [7]) provides a symbolic algorithm (assuming
time determinism) that synthesizes winning.

Theorem 2 (Synthesis of Winning Strategies [7]). Let H be a LHG. If the semi-
algorithm CompWin terminates for H , then we can compute a polyhedral2 strategy
which is winning in each state of CompWin(H) and state-based.

2 A strategy f is polyhedral if for all a ∈ Actc ∪ {λ}, f−1(a) is a finite union of convex
polyhedra for each location of the LHG.

154 P. Bouyer et al.

3 Priced Timed Games (PTG)

In this section we define Priced Timed Games (PTG). We focus on reachability PTG
(RPTG) where the aim is to reach a particular state of the game at the lowest possible
cost. We give a new run-based definition of the optimal cost. We then relate our defi-
nition with the one given in [14] (note that the definition of [1] seems close to the one
in [14] but it is not clear enough for us how close they are) and prove both definitions
are indeed equivalent.

Priced Timed Games

Definition 7 (Priced Timed Transition Systems (PTTS)). A priced timed transition
system is a pair (S,Cost) where S = (Q,Q0,Act,−→) is a TTS and Cost is a cost
function i.e. a mapping from −→ to R≥0 that satisfies:

– PRICE ADDITIVITY: if q
d−→ q′ and q′ d′

−−→ q′′ with d, d′ ∈ R≥0, then the

following holds: Cost(q d+d′
−−−−→ q′′) = Cost(q d−→ q′) + Cost(q′ d′

−−→ q′′).

– BOUNDED COST RATE: there exists K ∈ N such that for every q
d−→ q′ where

d ∈ R≥0, Cost(q d−→ q′) ≤ d.K

For a transition q
e−→ q′, Cost(q e−→ q′) is the cost of the transition and we note

q
e,p−−−→ q′ if p = Cost(q e−→ q′).

All notions concerning runs on TTS extend straightforwardly to PTTS. Let S be a
PTTS and ρ = q0

e1−−→ q1
e2−−→ . . .

en−−→ qn a finite run3 of S. The cost of ρ is defined
by Cost(ρ) =

∑n−1
i=0 Cost(qi

ei+1−−−−→ qi+1).

Definition 8 (Priced Timed Games). A priced timed game (PTG) (resp. Reachability
PTG) is a pair G = (S,Cost) such that S is a TG (resp. RTG) and Cost is a cost
function.

All the notions like strategies, outcomes, winning states are already defined for
(R)TG and carry over in a natural way to (R)PTG. The cost Cost(q, f) of a win-
ning strategy f ∈ WinStrat(q,G) is defined by: Cost(q, f) = sup {Cost(ρ) | ρ ∈
Outcome(q, f)}.

Definition 9 (Optimal Cost for a RPTG). Let G be a RPTG and q be a state in G.
The reachable costs set Cost(q) from q in G is defined by:

Cost(q) = {Cost(q, f) | f ∈WinStrat(q,G)}

The optimal cost from q in G is OptCost(q) = inf Cost(q). The optimal cost in G
is supq∈Q0

OptCost(q) where Q0 denotes the set of initial states.

3 We are not interested in defining the cost of an infinite run as we will only use costs of winning
runs which must be finite in the games we play.

Optimal Strategies in Priced Timed Game Automata 155

Definition 10 (Optimal Strategies for a RPTG). Let G be a RPTG and q a state in G.
A winning strategy f ∈ WinStrat(q,G) is said to be optimal whenever Cost(q, f) =
OptCost(q).

Optimal winning strategies do not always exist, even for RPTGs deriving from timed
automata (see [7]). A family of winning strategies (fε) which get arbitrarily close to the
optimal cost may be rather determined. Our aim is many-fold. We want to 1) compute
the optimal cost of winning, 2) decide whether there is an optimal strategy, and 3) in
case there is an optimal strategy compute one such strategy. Before giving a solution
to the previous problems we relate our definition of cost optimality to the one given
in [14, 1].

Recursive Definition of the Optimal Cost. In [14, 1] a method for computing the opti-
mal cost in priced timed games is introduced: it is defined as the optimal cost one can
expect from a state by a function satisfying a set of recursive equations, and not using a
run-based definition as we did in the last subsection. We give hereafter the definition of
the function used in [14] and prove that it does correspond to our run-based definition
of optimal cost. In [1], a similar but more involved definition is proposed, we do not
detail this last definition here.

Definition 11 (The O Function (Adapted from [14])). Let G be a RPTG. Let O be the
function from Q to R≥0∪{+∞} that is the least fixed point4 of the following functional:

O(q) = inf
q

t,p−−→q′
t∈R≥0

max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

min

⎛⎜⎜⎝
⎛⎜⎜⎝ min

q′ c,p′
−−→q′′
c∈Actc

p + p′ + O(q′′)

⎞⎟⎟⎠ , p + O(q′)

⎞⎟⎟⎠ (1)

sup
q

t′,p′
−−−→q′′

t′≤t

max
q′′ u,p′′
−−−→q′′′
u∈Actu

p′ + p′′ + O(q′′′) (2)
(�)

The following theorem relates the two definitions:

Theorem 3. Let G = (S,Cost) be a RPTG induced by a LHG and Q its set of states.
Then O(q) = OptCost(q) for all q ∈ Q.5

4 Reducing Priced Timed Games to Timed Games

In this section we show that computing the optimal cost to win a priced timed game
amounts to solving a control problem (without cost).

4 The righthand-sides of the equations for O(q) defines a functional F on (Q −→ R≥0 ∪
{+∞}). (Q −→ R≥0 ∪ {+∞}) equipped with the natural lifting of ≤ on R≥0 ∪ {+∞}
constitutes a complete lattice. Also F can be quite easily seen to be a monotonic functional on
this lattice. It follows from Tarski’s fixed point theory that the least fix point of F exists.

5 Note that if a state q ∈ Q is not winning, both O(q) and OptCost(q) are +∞.

156 P. Bouyer et al.

Priced Timed Game Automata. Let X be a finite set of real-valued variables called
clocks. We denote B(X) the set of constraints ϕ generated by the grammar: ϕ ::= x ∼
k | ϕ∧ϕ where k ∈ Z, x, y ∈ X and∼∈ {<,≤,=, >,≥ }. A valuation of the variables
in X is a mapping from X to R≥0 (thus an element of RX

≥0). For a valuation v and a set
R ⊆ X we denote v[R] the valuation that agrees with v on X \R and is zero on R. We
denote v + δ for δ ∈ R≥0 the valuation s.t. for all x ∈ X , (v + δ)(x) = v(x) + δ.

Definition 12 (PTGA). A Priced Timed Game Automaton A is a tuple (L, �0,Act, X,
E, inv, f) where L is a finite set of locations, �0 ∈ L is the initial location, Act = Actc∪
Actu is the set of actions (partitioned into controllable and uncontrollable actions),
X is a finite set of real-valued clocks, E ⊆ L × B(X) × Act × 2X × L is a finite
set of transitions, inv : L −→ B(X) associates to each location its invariant, f :
L ∪ E −→ N associates to each location a cost rate and to each discrete transition
a cost. A reachability PTGA (RPTGA) is a PTGA with a distinguished set of locations
Goal ⊆ L (with no outgoing edges). It defines the set of goal states Goal× RX

≥0.

The semantics of the PTGA is a PTTS SA = ((L × RX
≥0, (�0,0),Act,−→),Cost)

where−→ consists of: i) discrete steps: (�, v) e−→ (�′, v′) if there exists (�, g, e, R, �′) ∈
E s.t. v |= g and v′ = v[R]; Cost((�, v) e−→ (�′, v′)) = f(�, g, e, R, �′) ; ii) time steps:

(�, v) δ−→ (�, v′) if δ ∈ R≥0, v′ = v + δ and v, v′ ∈ inv(�); and Cost((�, v) δ−→
(�, v′)) = δ · f(�). Note that this definition of Cost gives a cost function as defined in
Def. 7.

From Optimal Reachability Game to Reachability Game. Assume we want to com-
pute the optimal cost to win a reachability priced timed game automaton A. We define
a (usual and unpriced) LHG H as follows: we use a variable cost in the LHG to stand
for the cost value. We build H with the same discrete structure as A and specify a rate
for cost in each location: if the cost increases with a rate of +k per unit of time in A,
then we set the derivative of cost to be−k in H; if the cost of a discrete transition is +k
in A, then we update cost by cost := cost − k in H . To each state q in (the semantics
of) A there are many corresponding states (q, c) in H , where c is the value of the cost
variable. For such a state (q, c) we denote ∃cost.(q, c) the state q. If X is a set of states
in (the semantics of) H then ∃cost.X = {q | ∃c ≥ 0 | (q, c) ∈ X}. From the PTGA of
Fig. 1 we obtain the LHG of Fig. 2.

�0

dcost
dt

= −5

�1

y = 0

�2

dcost
dt

= −10

�3

dcost
dt

= −1

Goal
x ≤ 2; c1 ; y := 0

u

u

x ≥ 2; c2

cost’ = cost − 1

x ≥ 2; c2

cost’ = cost − 7

Fig. 2. The Linear Hybrid Game H

Optimal Strategies in Priced Timed Game Automata 157

Now we solve the following control problem on the LHG: “can we win in H with the
goal states Goal ∧ cost ≥ 0?” Intuitively speaking we are asking the question: “what is
the minimal amount of resource (cost) needed to win the control game H?” For a PTGA
A we can compute the winning states of H with the semi-algorithm CompWin (defined
at the end of section 2) and if it terminates the wining set of states WH = CompWin(H)
is a union of zones of the form (�, R ∧ cost - h) where � is a location, R ⊆ RX

≥0, h
is a piece-wise affine function on R and -∈ {>,≥} (because π preserves this kind
of sets). Hence we have the answer to the optimal reachability game: we intersect the
set of initial states with the set of winning states WH , and in case it is not empty, the
projection on the cost axis yields a constraint on the cost like cost - k with k ∈ Q≥0
and -∈ {>,≥}. By definition of winning set of states in reachability games, i.e. this
is the largest set from which we can win, no cost lower than or equal to k is winning
and we can deduce that k is the optimal cost. Also we can decide whether there is an
optimal strategy or not: if - is equal to > there is no optimal strategy and if - is ≥
there is one.

Note that with our reduction of optimal control of PTGA to control of LHG, the cost
information becomes part of the state and that the runs in A and H are closely related.
The correctness of the reduction is then given by the next theorem.

Theorem 4. Let A be a RPTGA and H its corresponding LHG (as defined above). If
the semi-algorithm CompWin terminates for H and if WH = CompWin(H), then: 1)

CompWin terminates for A and WA
def
= CompWin(A) = ∃cost.WH ; and 2) (q, c) ∈

WH ⇐⇒ there exists f ∈WinStrat(q,WA) with Cost(q, f) ≤ c.

Computation of the Optimal Cost and Strategy. Let X ⊆ Rn
≥0. The upward closure

of X , denoted ↑X is the set ↑X = {x′ | ∃x ∈ X s.t. x′ ≥ x}.

Theorem 5. Let A be a RPTGA and H its corresponding LHG. If the semi-algorithm
CompWin terminates for H then for q ∈WA, ↑Cost(q) = {c | (q, c) ∈WH}.

Corollary 1 (Optimal Cost). Let A be a RPTGA and H its corresponding LHG. If the
semi-algorithm CompWin terminates for H then ↑Cost(�0,0) is computable and is of
the form cost ≥ k (left-closed) or cost > k (left-open) with k ∈ Q≥0. In addition we
get that OptCost(l0,0) = k.

Corollary 2 (Existence of an Optimal Strategy). Let A be a RPTGA. If ↑Cost(�0,0)
is left-open then there is no optimal strategy. Otherwise we can compute a winning and
optimal strategy.

Termination Criterion and Optimal Strategies

Theorem 6. Let A be a RPTGA satisfying the following hypotheses: 1) A is bounded,
i.e. all clocks in A are bounded ; 2) the cost function of A is strictly non-zeno, i.e. there
exists some κ > 0 such that the accumulated cost of every cycle in the region automaton
associated with A is at least κ. Then the semi-algorithm CompWin terminates for H ,
where H is the LHG associated with A.

158 P. Bouyer et al.

Note that the strategy built in corollary 2 is state-based for H but is a priori no more
state-based for A: indeed the strategy for H depends on the current value of the cost
(which is part of the state in H). The strategy for A is thus dependent on the run and
not memoryless. More precisely it depends on the last state (�, v) of the run and on the
accumulated cost along the run.

Nevertheless, we now give a sufficient condition for the existence of optimal cost-
independent strategies and exhibit a restricted class of automata for which this condi-
tions holds.

Theorem 7. Let A be a RPTGA and H the associated LHG. If CompWin terminates for
H and WH is a union of sets of the form (�, R, cost ≥ h) then there exists a state-based
strategy f defined over WA = ∃cost.WH s.t. for each q ∈ WA, f ∈ WinStrat(q,WA)
and Cost(q, f) = OptCost(q).

Note that under the previous conditions we build a strategy f which is uniformly
optimal i.e. optimal for all states of WA. A syntactical criterion to enforce the condition
of theorem 7 is that the constraints (guards) on controllable actions are non-strict and
constraints on uncontrollable actions are strict.

Remarks on the Hypotheses in Theorems 6 and 7. The hypothesis on A being bounded
is not restrictive because all priced timed automata can be transformed into bounded
priced timed automata having the same behaviours (see for example [16]). The strict
non-zenoness of the cost function can be checked on priced timed game automata:
indeed it is sufficient to check whether there is a cycle whose price is 0 in the so-called
“corner-point abstraction” (see [6, 9]) ; then, if there is no cycle with cost 0, it means
that the cost is strictly non-zeno, otherwise, it is not strictly non-zeno.

5 Conclusion

In this paper we have given a new run-based definition of cost optimality for priced
timed games. This definition enables us to prove the following results: the optimal cost
can be computed for the class of priced timed game automata with a strictly non-zeno
cost. Moreover we can decide whether there exists an optimal strategy which could
not be done in previous works [14, 1]. In case an optimal strategy exists we can com-
pute a witness. Finally we give some additional results concerning the type of informa-
tion needed by the optimal strategy and exhibit a class of priced timed game automata
for which optimal state-based (no need to keep track of the cost information) can be
synthetized. Our strategy extraction algorithm has been implemented using the tool
HYTECH [8].

Our future work will be on extending the class of systems for which termination is
ensured. Our claim is that there is no need for the strict non-zenoness hypothesis for ter-
mination. Another direction will consist in extending our work to optimal safety games
where we want to minimize for example the cost per time unit along infinite schedules
whatever the environment does, which would naturally extends both this current work
and [9].

Optimal Strategies in Priced Timed Game Automata 159

References

1. R. Alur, M. Bernadsky, and P. Madhusudan. Optimal reachability in weighted timed games.
In Proc. 31st Int. Coll. Automata, Languages and Programming (ICALP’04), LNCS 3142,
pp. 122–133. Springer, 2004.

2. R. Alur, C. Courcoubetis, and T. Henzinger. Computing accumulated delays in real-time
systems. In Proc. 5th Int. Conf. Computer Aided Verification (CAV’93), LNCS 697, pp. 181–
193. Springer, 1993.

3. R. Alur, S. La Torre, and G. Pappas. Optimal paths in weighted timed automata. In Proc. 4th
Int. Work. Hybrid Systems: Computation and Control (HSCC’01), LNCS 2034, pp. 49–62.
Springer, 2001.

4. E. Asarin and O. Maler. As soon as possible: Time optimal control for timed automata. In
Proc. 2nd Int. Work. Hybrid Systems: Computation and Control (HSCC’99), LNCS 1569, pp.
19–30. Springer, 1999.

5. E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthesis for timed automata. In
Proc. IFAC Symp. System Structure and Control, pp. 469–474. Elsevier Science, 1998.

6. G. Behrmann, A. Fehnker, T. Hune, K. Larsen, P. Pettersson, J. Romijn, and F. Vaandrager.
Minimum-cost reachability for priced timed automata. In Proc. 4th Int. Work. Hybrid Sys-
tems: Computation and Control (HSCC’01), LNCS 2034, pp. 147–161. Springer, 2001.

7. P. Bouyer, F. Cassez, E. Fleury and K. Larsen. Optimal Strategies on Priced Timed Game
Automata. BRICS Report Series, February 2004.

8. P. Bouyer, F. Cassez, E. Fleury and K. Larsen. Synthesis of Optimal Strategies Using
HYTECH. In Proc. Games in Design and Verification (GDV’04), ENTCS. Elsevier, 2004. To
appear.

9. P. Bouyer, E. Brinksma, and K. Larsen. Staying alive as cheaply as possible. In Proc. 7th
Int. Work. Hybrid Systems: Computation and Control (HSCC’04), LNCS 2993, pp. 203–218.
Springer, 2004.

10. C. Courcoubetis and M. Yannakakis. Minimum and maximum delay problems in real-time
systems. Formal Methods in System Design, 1(4):385–415, 1992.

11. L. De Alfaro, T. Henzinger, and R. Majumdar. Symbolic algorithms for infinite-state games.
In Proc. 12th Int. Conf. Concurrency Theory (CONCUR’01), LNCS 2154, pp. 536–550.
Springer, 2001.

12. T. Henzinger. The theory of hybrid automata. In Proc. 11th IEEE Annual Symp. Logic in
Computer Science (LICS’96), pp. 278–292. IEEE Computer Society Press, 1996.

13. T. Hune, K. Larsen, and P. Pettersson. Guided synthesis of control programs using UPPAAL.
In Proc. IEEE ICDS Int. Work. Distributed Systems Verification and Validation, pp. E15–
E22. IEEE Computer Society Press, 2000.

14. S. La Torre, S. Mukhopadhyay, and A. Murano. Optimal-reachability and control for acyclic
weighted timed automata. In Proc. 2nd IFIP Int. Conf. Theoretical Computer Science (TCS
2002), IFIP Proceedings 223, pp. 485–497. Kluwer, 2002.

15. K. Larsen. Resource-efficient scheduling for real time systems. In Proc. 3rd Int. Conf.
Embedded Software (EMSOFT’03), LNCS 2855, pp. 16–19. Springer, 2003. Invited talk.

16. K. Larsen, G. Behrmann, E. Brinksma, A. Fehnker, T. Hune, P. Pettersson, and J. Romijn.
As cheap as possible: Efficient cost-optimal reachability for priced timed automata. In Proc.
13th Int. Conf. Computer Aided Verification (CAV’01), LNCS 2102, pp. 493–505. Springer,
2001.

17. O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers for timed systems.
In Proc. 12th Annual Symp. Theoretical Aspects of Computer Science (STACS’95), LNCS
900, pp. 229–242. Springer, 1995.

160 P. Bouyer et al.

18. P. Niebert, S. Tripakis, and S. Yovine. Minimum-time reachability for timed automata. In
Proc. 8th IEEE Mediterranean Conf. Control and Automation, 2000.

19. W. Thomas. On the synthesis of strategies in infinite games. In Proc. 12th Annual Symp.
Theoretical Aspects of Computer Science (STACS’95), LNCS 900, pp. 1–13. Springer, 1995.
Invited talk.

20. H. Wong-Toi. The synthesis of controllers for linear hybrid automata. In Proc. 36th IEEE
Conf. Decision and Control, pp. 4607–4612. IEEE Computer Society Press, 1997.

A Calculus for Trust Management

Marco Carbone1, Mogens Nielsen1, and Vladimiro Sassone2

1 BRICS∗, University of Aarhus
2 Dept. of Informatics, University of Sussex

Abstract. We introduce ctm, a process calculus which embodies a no-
tion of trust for global computing systems. In ctm each principal (lo-
cation) is equipped with a policy, which determines its legal behaviour,
and with a protocol, which allows interactions between principals and
the flow of information from principals to policies. We elect to formalise
policies using a Datalog-like logic, and to express protocols in the pro-
cess algebra style. This yields an expressive calculus very suitable for the
global computing scenarios, and provides a formalisation of notions such
as trust evolution. For ctm we define barbed equivalences and study their
possible applications.

1 Introduction

In the last few years Global Computing (GC) has emerged as an important part
of computer science. A GC system is composed of entities which are autonomous,
decentralised, mobile, dynamically configurable, and capable of operating under
partial information. Such systems, e.g. the Internet, become easily very complex,
and bring forward the need to guarantee security properties. Traditional security
mechanisms, however, have severe limitations in this setting, as they often are
either too weak to safeguard against actual risks, or too stringent, imposing
unacceptable burdens on the effectiveness and flexibility of the infrastructure.
Trust management systems, in which safety critical decision are made based on
trust policies and their deployment in the presence of partial knowledge, have
been proposed as an alternative attempting to deal with those limitations.

Building on the experience of our previous work on trust [8] we introduce a
process calculus for modelling trust management systems (ctm). Many models
for trust based system have appeared in the literature, and most of them feature
some sort of logic to describe trust policies. However, lacking a notion of protocol,

Marco Carbone and Mogens Nielsen supported by ‘SECURE: Secure Environments
for Collaboration among Ubiquitous Roaming Entities’, EU FET-GC IST-2001-
32486. Marco Carbone supported by ‘DisCo: Semantic Foundations of Distributed
Computation’, EU IHP ‘Marie Curie’ HPMT-CT-2001-00290. Vladimiro Sassone
supported by ‘MyThS: Models and Types for Security in Mobile Distributed Sys-
tems’, EU FET-GC IST-2001-32617. ∗Basic Research In Computer Science funded
by the Danish National Research Foundation.

K. Lodaya and M. Mahajan (Eds.): FSTTCS 2004, LNCS 3328, pp. 161–173, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

162 M. Carbone, M. Nielsen, and V. Sassone

such approaches typically fall short to describe the exact behaviour of systems,
which is a fundamental property when security concerns are present. Consider
for instance a server whose policy is to grant access only to a certain class of
users, but whose (flawed) protocol of communication always allows access to a
particular resource. Even though the policy may be correct, the whole system
is not. A second aspect of paramount importance here is to allow principals’
interactions to feedback to the security mechanisms and influence future policies.
For instance, access rights can change for a principal in response to its behaviour,
and how precisely this behaviour should be observed and the variation should
take place ought to be part of the model.

The aim of this work is to develop a coherent framework centred on these
two aspects, and establish its basic theory. In ctm, a principal is specified by a
pair, a policy α and a protocol P , which interact in precise ways, as described
below. The policy α informs the protocol P as to what actions are allowed at
any given time, and works on the basis of evidence and observations collected
from past interactions. Dually, P interacts with a network of other principals,
and in doing so it produces the observations gathered in α. The protocol P will
consult α when making a decision, e.g. whether or not to grant a specific service
to a specific principal. Schematically, we can represent the situation as in the
informal picture below.

(Policy ⇐⇒ Protocol) ‖ Network

We model the “policy” side of the drawing with a decidable logic. The choice
is a Datalog-like logic: a principal’s policy will be represented as a set of formu-
las depending on a set of past observations. On the “protocol” side, our model
is based on a process calculus in the style of the π-calculus [14]. More pre-
cisely, ctm is a calculus with locations linked by channel names. Each location
(uniquely) identifies a principal, and the diagram above would be represented as
a{ P }α | N , where a is a principal with protocol P and policy α, in parallel
with the rest of the network N . In ctm we associate the action of sending a
message to another principal as granting a particular resource (viz. the service
represented by the channel name). Outputs will then be guarded by a formula
φ from the logic, as for instance φ :: b · �〈m̃〉, which according to the truth
value of φ allows the protocol to send m̃ to b on channel (or method) �. As a
concrete example, a protocol like Access(b,R) :: b · l〈n〉 would stand for “if my
policy grants b ‘Access’ to R, then send n along l to b.” Symmetrically, inputs
represent requests of services, and form the observable basis mentioned above.
For instance, if executing an input action b · print(y) . P , we receive a message
‘junk’ for y from b, we observe and record that b has attempted to print a cor-
rupted file. As mentioned above, multiple channels at a single location allows
to distinguish among different services provided by a principal. We assume in
ctm that the identity of communicating principals cannot be corrupted (i.e. we
assume implicitly that authenticity etc. is guaranteed by lower level protocols).

In order to allow principals to offer services to generic (as opposed to named)
clients, ctm features a new form of input capability, which allows to abstract from

A Calculus for Trust Management 163

the communicating principal. For instance, in order to offer a printing service
for all, we would write x · print(y) . P , where x is a variable, which at the time
of interaction will be bound to the name of the principal requesting the service.
We call this operation global input.

The calculus ctm seems a powerful tool for expressing several examples of
trust-based systems for GC. Casting these ingredients in the world of process
algebras provides many interesting theoretical notions, and in particular be-
havioural equivalences. The natural separation of principals in pairs of com-
ponents, viz. policies and protocols, induces new notions of equivalences. In
particular, besides studying equivalences of principals and networks, one can fo-
cus on protocols as well as policies. Technically, the main contribution of this
paper is to introduce a theory of observational equivalence for trust-based sys-
tems, which captures in a single, homogeneous framework with equivalence of
protocols, policies, and principals.

Related Work. To the best of our knowledge, the notion of trust has never been
fully treated in process calculi. In Dπ [3, 10] policies are statically specified, not
allowing dynamic updates; [9] considers a formalism for cryptographic protocols,
similar to ours: communications are guarded by logical formulas meant for prov-
ing correctness, whereas protocols are expressed with strand-spaces. Concerning
policies for access control, there are many works on logics, where a trust engine
is responsible for constructing [6, 11, 12] or checking [4] a proof that a desired
request is valid. In [13] and [5] authors provide a decidable logic for policies,
proposing variants of Datalog. In particular, Cassandra, provides a formalism
for expressing policies in a GC scenario, where, as in our case, each principal
has its own policy. They also allow references to other principals’ polices and
delegation, using fixed-point computations as in [8].

Plan of the Paper. Section 2 defines the calculus: logic for policies, syntax and
semantics of networks and protocols. In Section 3 we study barbed equivalences
on protocols, policies and principals, while Section 4 is about the expressiveness
of global input.

2 The Calculus

Let Val be a denumerable set of values ranged over by l,m and partitioned into
sets P and N, respectively the set of principals (ranged over by a, b, c) and the
set of names (ranged over by n). Moreover Var (ranged over by x, y, z) is a set
of variables such that Var ∩ Val = ∅. In the sequel we assume u, v in Var ∪ Val
and p in Var∪P. As usual a tilde over a letter indicates the extension to vectors.

A Small Logic for Policies. As explained in the introduction, each principal
acts on a body of knowledge built on the past interactions with other principals.
We represent such information using the notion of interaction datatype. Messages
in our calculus have form a · l̃ � m̃ representing a message m̃ from principal a on
channel l̃.

164 M. Carbone, M. Nielsen, and V. Sassone

Definition 1 (Interaction Datatype). An interaction datatype M over Val
is a triple (S,R, upd) where S is a generic set of so-called interaction values, R
is a set of decidable subset of S × Valk, and upd is a function which given s ∈ S
and a message a · l̃ � m̃ returns an element of S.

According to the above definition, the setS is a generic set: the idea is tobuild el-
ements of S as representation of abstract information about past interactions with
other principals.The setRdefines thebasicpredicates binding together interaction
values and elements of Val, and upd defines the effect in S by receiving a message.

Example 1 (Lists and Multisets). Let S be the set of lists with elements a · l̃�m̃,
i.e. S = {[a1 · l̃1 � m̃1, . . . , ak · l̃k � m̃k] | k ≥ 0} and upd the operation of list
concatenation. The setR could contain the relation lastm̃ which holds true of lists
whose last element carries the message m̃, and the relation from≥5(a), satisfied
whenever the number of messages in the list from a is larger than 5. Another
interesting example is when S is the set of multisets over elements a · l̃ � m̃ with
multiset union as upd. Predicates can express the number of message occurrences,
e.g. predicate x ·−�y < k is satisfied by all elements of S such that the number
of occurrences of elements x · z � y is less than k.

Principals use policies to make decisions based on the information contained
in an element s ∈ S of a given interaction datatypeM.

Definition 2 (Policy). Let M = (S,R, upd) be an interaction datatype, let
P and PM be disjoint signatures of predicates symbols, with PM in one-to-one
correspondence with R. A policy π is defined as a set of rules of type L(ũ) ←
L1(ũ1), . . .Lk(ũk) such that L ∈ P and Li ∈ P ∪ PM.

π is interpreted as a Datalog program [2] relative to an element s ∈ S. More
precisely, each rule in π is interpreted as Datalog implication, where predicate
symbols in PR take as an implicit first argument the interaction value s. Given
a pair (π, s) and a predicate A(l̃) we write (π, s) * A(l̃) meaning that A(l̃) is
entailed by the Datalog program π relative to s. In the sequel, letters α, β will
denote pairs (π, s).

Syntax for the Calculus. Let M be a interaction datatype, P a signature.
The syntax of ctm is then featured by two main syntactic categories: networks
(N) and protocols (P,Q).

N,M ::= ε (empty) P,Q ::= 0 (null)
| N | N (net-par) | Z (sub)
| a{ P }α (principal) | P | P (par)
| (νn) N (new-net) | (νn) P (new)

| !P (bang)
Z ::= p · ũ(ṽ) . P (input)

| φ :: p · ũ〈ṽ〉 . P (output) φ ::= L(l̃) L ∈ P (null)
| Z + Z (sum) φ ∧ φ (and)

A Calculus for Trust Management 165

A network N is composed of principals running in parallel. Each principal is
equipped with a protocol P and a policy α. From now on we assume to work
only with networks N where principals names are unique, i.e. for each a ∈ P
there is at most one subterm of N of the kind a{ P }α.

A protocol P is given in the style of π-calculus [14]. The protocol 0 represents
the inactive process. Terms (input) and (output) represent the main actions, and
both can be part of the standard sum operator (guarded choice). As remarked
in the introduction, the input capability can either refer to a specific principal,
or be global. The output action sends a message on a channel and is guarded
by a predicate φ in the signature P. For generality, we allow composite channel
names as in [7]. The (bang) and (par) operators are standard. The rest of the
paper will omit trailing inactive processes.

The set of free names fn (resp. bound names bn) and free variables fv (resp.
bound variables bv) are defined as usual on networks and protocols. Closed and
open terms are defined as usual (with respect to variables). The symbol σ denotes
a substitution from variables to names. Applying a substitution σ to a network
N (or a protocol P) will be denoted by Nσ (Pσ). The global input variable is a
strong binder, e.g. in x·l(y).x·l(y) the first x binds the second, instead the first y
does not bind the second y. We omit trivial guards from outputs, i.e. tt :: b · l̃〈m̃〉
will be written as b · l̃〈m̃〉 where tt denotes the “always” true predicate.

Reduction Semantics. In this section we give the formal semantics of the
calculus in terms of reduction semantics. The structural congruence relation ≡
is the least congruence relation on N such that | and + are commutative monoids
on protocols, | is a commutative monoid on networks, and such that it satisfies
alpha-conversion and the rules

(Struct1) a{ !P | Q }α ≡ a{ P | !P | Q }α

(Struct2) (νn) (νn′) W ≡ (νn′) (νn) W for W ∈ {P,N}
(Struct3) a{ (νn) P | Q }α ≡ a{ (νn) (P | Q) }α if n �∈ fn(Q)
(Struct4) (νn) N | M ≡ (νn) (N | M) if n �∈ fn(M)
(Struct5) a{ (νn) P }α ≡ (νn) a{ P }α

We define → as the least binary relation on N satisfying the rules given
in Table 1. Rule (RCom) defines communication between two principals. For
α = 〈π, s〉, the operator α⊕ [b · l̃ � m̃] returns a new α′ = 〈π, s′〉 such that s′ =
upd(s, b · l̃ � m̃). The operator . is defined on tuples, as the most general unifier
returning a substitution σ, whose application in the semantics is conditioned by
successful unification. The rule (RInt) describes internal communication and is
similar to (RCom). Rules (RStruct) and (RPar) are standard. As usual we
define →∗ as the reflexive and transitive closure of →.

Example 2. Suppose a printer a has two functions: black-and-white and colour
printing. The latter service is more expensive and therefore “harder” to get
access to. The system is trust-based, meaning that according to its behaviour a
principal may not be allowed to use a printer. In ctm this corresponds to writing

166 M. Carbone, M. Nielsen, and V. Sassone

Table 1. Reduction Rules

(RCom)
β φ α′ = α ⊕ [b · l̃ � m̃] b : m̃ � p : x̃ = σ

a{p · l̃(x̃) .P +P ′ |P ′′}α|b{φ ::a· l̃〈m̃〉 .Q+Q′ |Q′′}β→a{Pσ |P ′′}α′|b{Q |Q′′}β

(RInt)
α φ α′ = α ⊕ [a · l̃ � m̃] a : m̃ � p : x̃ = σ

a{p · l̃(x̃) . P +P ′ | φ :: a · l̃〈m̃〉 . Q+Q′ | Q′′ }α → a{ Pσ | Q | Q′′ }α′

(RRes)
N → N ′

(νn) N → (νn) N ′

(RStruct)
N ≡ N ′ N ′ → M ′ M ′ ≡ M

N → M
(RPar)

N → M

N | N ′ → M | N ′

principal a{ P }α where the policy and the protocol are defined as follows. Let
message j represent the reception of a ‘junk document’ andM be the interaction
datatype of lists, where the predicate a · −� j < k checks that messages in the
list of type a · l̃ � j occur less than k times. We then define the policy π as
{ Access(x, Colour) ← x · − � j < 3; Access(x,BW) ← x · − � j < 6} where
Access(x, y) is a predicate meaning that x can access y. Moreover we assume
that upd() keeps only lists of length at most n deleting the oldest messages and
judging if a message is junk. Finally protocol P is defined as

P = !x · printC(y) . Access(x,Colour) :: printer · printC〈y〉 |
!x · printBW(y) . Access(x,BW) :: printer · printBW〈y〉

In this example the action of granting access to the printer is modelled by
sending a message to printer. A user could then be modelled as principal b
running the protocol

Q = a · printC〈spam〉 . a · printBW〈spam〉 . a · printC〈spam〉 | a · printC〈doc〉

Suppose that upd() will store spam as j and consider the network N =
a{ P }(π,∅) | b{ Q }α where ∅ is the empty list. If a · printC〈doc〉 is executed
first, b will get the authorisation to use the printer. But if the left component is
all executed then b will no longer be able to colour-print as he has printed too
much junk. Note that as we chose the function upd() to keep lists of length at
most n, any principal can behave well for n times and regain trust.

3 Barbed Equivalences

We now move to study the semantic theory of ctm. We first discuss the notion
of observation formalised in terms of the actions offered to the environment.
Formally we write N ↓ a · b whenever one of the following conditions is satisfied:

A Calculus for Trust Management 167

– N ↓ a · b if N ≡ (νñ) a{ φ :: b · l̃〈m̃〉 . P + P ′ | Q }α | N ′ and α * φ, b �∈
P(N ′);

– N ↓ a · b if N ≡ (νñ) a{ p · l̃(x̃) . P + P ′ | Q }α | N ′ and b �∈ P(N ′).

where P(N ′) is the set of principals contained in N ′, l̃ ∩ ñ = ∅ and if p �∈ Var
then p = a. This definition excludes observing internal and restricted actions.
Moreover we write N ⇓ a · b whenever there exists M such that N →∗ M and
M ↓ a · b.

In the following we assume to work with closed protocols and networks.

Definition 3. A network barbed bisimulation is a symmetric relation R on
networks such that whenever NRM

– N ↓ a · b implies M ↓ a · b;
– N → N ′ implies M → M ′ and N ′RM ′.

Two networks are barbed bisimilar (
•0) if related by a network barbed bisim-

ulation. Moreover we define
•≈ as above where ↓ and → after the two “implies”

are substituted resp. by ⇓ and →∗.

3.1 Barbed Equivalences for Principals

We now define three different barbed equivalences for principals: one on proto-
cols, one on policies and one on principals.

Protocol Congruence. Protocol barbed congruence compares only protocols.
Contexts are, as usual, terms with a hole. We write Ca[P] for the insertion of
protocol P in the hole of context C, when the hole is placed in principal a.

Definition 4 (Protocol Barbed Congruence). Given a principal a, we say
that P and Q are a-barbed congruent, written P 0a Q, if Ca[P]

•0 Ca[Q] for all
contexts Ca[−].

Intuitively two protocols are congruent whenever they are able to observe
the same events, input the same data and granting access in the same way, i.e.
guards are such that there is no policy able to distinguish them. For instance,
φ :: b · l〈m〉 and φ′ :: b · l〈m〉 are equated only if φ and φ′ hold true for exactly
the same set of policies α.

Policy Equivalence. Varying the kind of contexts we use, we can use bisim-
ulation to assess policies with respect to a fixed protocol P . The idea is that,
given P , two policies are going to be equivalent whenever they “control” P ’s
behaviour in the same way.

Definition 5 (Policy Equivalence). Given a principal a, we say that π and
π′ are a-barbed equivalent wrt P , written π 0P

a π′, if for all contexts CP
a [·] =

a{ P }(−,s) | N , we have CP
a [π]

•0 CP
a [π′].

This notion allows, e.g., to remove formulas which P would never use.

168 M. Carbone, M. Nielsen, and V. Sassone

Definition 6. We write

– P ↓ φ if P ≡ (νñ) (φ :: b · l̃〈m̃〉 . P + P ′ | P ′′) for ñ ∩ l̃ = ∅;
– P ⇓ φ if there exists N and α such that a{ P }α | N →∗ a{ P ′ }α′ | N ′ and

P ′ ↓ φ;
– P ⇓ H if H = {φ | P ⇓ φ}.

We can now state the following.

Theorem 1. Suppose that P ⇓ H and for all φ ∈ H and s ∈ S we have that
(π, s) * φ if and only if (π′, s) * φ. Then π 0P

a π′.

The opposite is of course not true. Consider the protocol P = φ :: b · l〈m〉 |
φ′ :: b · l〈m〉 and policies π and π′ such that (π, s) * φ, (π, s) �* φ′, (π′, s) * φ′

and (π′, s) �* φ for all s. In this case we have that π 0P
a π′ but the policies entail

different formulas wrt s.

Corollary 1. Suppose that for all φ and s we have (π, s) * φ if and only if
(π′, s) * φ. Then, π 0P

a π′, for all P .

In the following we write π * H whenever H = {φ | (π, s) * φ for some s}.
Theorem 2. Suppose that π * H and π′ * H ′. If π 0P

a π′ for all P , then H
and H ′ are equivalent, i.e. equal up to logical equivalence of the formulas they
contain.

Principal Equivalence. We now introduce the last of our equivalences which
is the most general one.

Definition 7 (Principal Barbed Equivalence). Given a principal a, we say
that (π, P) and (π′, Q) are a-barbed equivalent, written (π, P) 0s

a (π′, Q), if
Cs

a[π, P]
•0 Cs

a[π′, Q] for any context Cs
a[−1,−2] = a{ −2 }(−1,s) | N .

It is possible to define the previous two equivalences in terms of barbed
principal equivalence. We are now able to state the following.

Proposition 1. P 0a Q if and only if for all s, π and protocols R we have that
(π, P | R) 0s

a (π,Q | R).

Proposition 2. π 0P
a π′ if and only if for all s we have that (π, P) 0s

a (π′, P).

Example 3 (Implication). We consider a variation of the printer access control
example and apply principal barbed equivalence. Suppose that a server a man-
ages two printers both offering colour and b/w printing as before. The only
difference between them is that Printer 1 does not distinguish colour from b/w
printing, while Printer 2 does, e.g., by granting access only for b/w printing. For
z ∈ {1, 2} we define the following protocol for a print server.

P (z) =(νn) (a · n() | !a · n〈〉 . x · z(y) . Access(z, x) :: x · z〈OK〉 .
(x · z · col() . Col(z, x) :: x · z · col〈OK〉 . a · n() +
x · z · bw() . BW (z.x) :: x · z · bw〈OK〉 . a · n()))

A Calculus for Trust Management 169

Note that the protocol first checks if it can give access to any type of printing,
then verifies which one. The bang is used for writing a recursive protocol: after
finishing dealing with a principal, the protocol will be ready once again to provide
the service for printer z. The final server protocol is P (1) | P (2); its policy is as
below, where j and doc represents respectively a junk and a proper document.

π = {Access(1, x) ← x · 1 � j ≤ x · 1 � doc; Col(1, x) ← Access(1, x);
Col(2, x)←x · 2 �j=0; BW (1, x)←Access(1, x); BW (2, x)←Access(2, x);
Access(2, x) ← x · 2 � j ≤ 5}

Then the principal would be represented by the pair (π, P (1) | P (2)). Using
the equivalence 0s

a we can rewrite the principal as (π,Q | P (2)) where

Q = (νn) (a · n() | !a · n〈〉 . x · 1(y) . Access(1, x) :: x · 1〈OK〉 .
(x ·1 · col() . x · 1 · col〈OK〉 . a · n() + x · 1 · bw() . x · 1 · bw〈OK〉 . a · n()))

In fact (π, P (1) | P (2)) 0s
a (π,Q | P (2)) for any s and this can be explained

by the following argument. In protocol P (1) | P (2) the output x · 1 · Col〈OK〉
is guarded by Col(1, x) instead in Q | P (2) it is unguarded. We need to show
that Col(1, x) is always true at that point of the computation. In fact in π the
predicate Access(1, x) implies Col(1, x) and the action x·1·bw does not change the
value of Access(1, x) (Q and P (z) are sequential) as well as the inputs executed
by the branch P (2).

We can also use our previous results: by Theorem 1 we have that π 0Q|P (2)
a π′

where

π′ = { Access(1, x) ← x · 1 � j ≤ x · 1 � doc; Col(2, x) ← x · 2 � j = 0;
Access(2, x) ← x · 2 � j ≤ 5}.

Now by Proposition 2 we then have that (π, P (1) | P (2)) 0s
a (π′, Q | P (2))

for all s.

3.2 A Barbed Congruence for Networks

Above we have analysed equivalences for manipulating single principals. But
clearly we also need techniques to reason about networks forming webs of trust.
For this purpose, we now introduce a barbed congruence for networks.

Definition 8 (Network Barbed Congruence). We say that two networks N

and M are barbed congruent, written N ≈ M , if for any context C[−] C[N]
•≈

C[M].

The above definition defines a congruence which is well known as weak barbed
congruence. We now show an interesting application of such a congruence in an
example where recommendations are taken into account.

Example 4 (Recommendations and Trust Security). Trusting someone may be a
consequence of observed good behaviour, but it may also be a consequence of

170 M. Carbone, M. Nielsen, and V. Sassone

good recommendations from a trusted third party. In this example we show how
to describe in ctm a system where principals’ trust is based both on observations
and recommendations. We consider a European network of banks where each
bank issues mortgages for customers according to a policy. The policy grants
a mortgage whenever the customer has always paid back previous mortgages
and, additionally, other banks’ opinions about the customer are positive. In
ctm, granting the mortgage is equivalent to proving a predicate G(x) from the
following policy

π1(Y)= {G(x) ← Y · −� (x, Bad)=0, M(x); Good(x) ← M(x), Bad(x) ← NoM(x)}.

The interaction datatype is multiset. The predicates Good and Bad (which will
be used for recommendations) depend on the predicate M and NoM only (local
observations), instead the predicate G depends also on the recommendations
received from Y . The predicate M(x) is assumed to check whether every mortgage
granted to x is matched by a full repayment: in order to get a mortgage, there
must be no outstanding mortgages. This is expressed by identifying messages
with a fresh name w. We can then define the following template for banks.

P1(X,Y) = !x · mg(w) . (νk) (Y · rec〈k, x〉 . Y · k(x, z) . G(x) :: X · gr〈x,w〉)
| !X · gr(x,w) . x · w〈〉 . x · w()
| !Y · rec(k, x) .(Good(x) :: Y · k〈x, Good〉+ Bad(x) :: Y · k〈x, Bad〉)

Bank X has three components: one for granting mortgages, one for account-
ing, and one for giving recommendations to another bank Y . When receiving a
request from a on channel mg a fresh name w reserved for the particular trans-
action is received. Then X will send a request of recommendation to bank Y .
At this point, if the predicate G is provable from the policy, the protocol will
transfer the request to the accounting component (on channel gr), which will
send an authorisation message to a, and will finally be waiting for a repayment.
In case G is not provable, the request will be pending. As pointed out before, the
policy will take care of denying further authorisations until repayment. The third
component, which gives recommendations to bank Y , just checks whether the
predicate Good or Bad are provable, and sends a message accordingly. Suppose
now that BF and BI are respectively French and Italian banks. We can define
a network of banks as follows.

N1 = BF { P1(BF , BI) }(π1(BI),∅) | BI{ P1(BI , BF) }(π1(BF),∅)

Suppose now that a customer a has just moved from Italy to France, and she
is asking the French bank BF for a mortgage, e.g. with the protocol (νw) BF ·
mg〈w〉 . BF ·w() . BF ·w〈〉. Let us now define a different network of banks using a
third party (O) which is going to deal with all the requests. The following policy
is used by principal O.

π2(X,Y) = {G(X,x) ← M(Y, x), M(X,x)}

A Calculus for Trust Management 171

All the operations previously performed by the banks will now be performed
by this policy, and we no longer need recommendations. The following is part of
the protocol for principal O.

F (W)=W (x,w) . G(W, x) ::O ·W · gr〈x,w〉 | !O ·W · gr(x,w) .W · w〈〉 .W · w()

The banks will only forward messages from the principals to O and vice-versa.

P2 = !x · mg(w) . O〈x,w〉 . O · w() . x · w〈〉 . x · w() . O · w〈〉
The entire new network will be

N2 =O{ !(F (BF) + F (BI))}(π2(BF ,BI)∪π2(BI ,BF),∅) |BF { P2 }(∅,∅) |BI{P2 }(∅,∅)

We then have that N1 ≈ N2 accordingly to the definition of ≈.
In this example, O works as a “headquarter” which collects information from

the banks. This is a further step from our previous work [8] where we computed
principal trust policies as the least fixed point of a global function. Such a thing,
plainly unfeasible in a distributed scenario, can be implemented in ctm. For in-
stance, the global trust function can be expressed as the policy of a principal, e.g.
O, and the fixed point as a computation. Then, using the network equivalence, one
may be able to simplify the network and avoid the use of “headquarters,” like in
this example. This is generic technique for stating (and proving) the correctness of
a “web of trust”, whith a specification in the form of a centralised “headquarter”.

4 On the Expressive Power of Global Input

Our calculus uses a new input construct: global input. In this section we prove
that such a construct adds expressiveness to the language. Let ctm−φ be the
fragment of ctm where all inputs are guarded by tt and let ctm−x;φ be the
fragment of ctm−φ without global input. Moreover let S be a list of observations
a1 · b1; . . . ak · bk; . . . and N ⇓ S if and only if N →∗ N1 →∗ . . .Nk →∗ and
N1 ↓ a1 · b1,. . . , Nk ↓ ak · bk,. . . In the following, with abuse of notation, we will
use [[−]] for both networks and protocols.

Definition 9. An encoding [[−]] : ctm−φ −→ ctm−x;φ is sensible whenever for
all protocols P,Q and networks N,M

– [[P | Q]] = [[P]] | [[Q]]
– [[N | M]] = [[N]] | [[M]]
– [[a{ P }α]] = a{ [[P]] }α
– for any N , a{ P }α | N ⇓ S if and only if [[a{ P }α | N]] ⇓ S

The first three rules represent the notion of uniform encoding, while the last
one corresponds to the notion of reasonable encoding according to [15].

Theorem 3. There is no sensible encoding [[−]] from ctm
−φ
P into ctm

−x;φ
P .

Proof. [Sketch] Suppose there exists such an encoding and consider a{ x·l(y) }α.
Principal a is such that a{ x · l(y) }α ↓ a · b for any b. Now we have that

172 M. Carbone, M. Nielsen, and V. Sassone

a{ [[x · l(y)]] }α �⇓ a ·b for all b. In fact we can prove by induction on the protocols
of ctm−x;φ

P that such a protocol does not exists. ��

5 Conclusion

We have introduced ctm, a calculus for trust management. The calculus enjoys
many new features which fit in global computing scenarios making use of the
notion of trust.

Principals in ctm have two components: the policy and the protocol. The
policy consists of an immutable part, α, and a variable s. The former expresses
the logic of the policy, i.e. the rules following which decisions are taken, on
the basis of past experiences. The latter records the observations which make
up such experiences, as a function of the messages exchanged in interactions
between principals.

It may be objected that this yields a generic concurrent calculus of stateful
entities, and not a calculus specifically designed to represent trust-based systems.
This is actually not the case. The key to the matter is that, while s is definitely a
kind of store, principals have absolutely no control as to what it stores, or when it
stores it: s is updated uniquely and exactly to reflect the outcome of interactions.
These include feedback on untrusted clients and advice from trusted principals.
In particular, a principal cannot store arbitrary values to s, or retrieve them from
it. In other words, the calculus represents faithfully a distributed set of principals
interacting with each other according to trust policies and risk assessment based on
computational histories. Similarly it is not possible to compare ctm to an extension
to locations of the applied π-calculus [1] as the latter does not model the notion of
collecting observations even though function guards can represent policies.

We remark also that our use of guards works quite effectively with the choice
of synchronous communications, to abstract the sequence of actions service re-
quest, risk assessment, response to client, and record observation, in a single,
atomic step where trust-based decisions are localised.

The equivalences for ctm are interesting but still lack efficient proof methods.
In order to accomplish this we aim at defining a labelled transition system for
characterising all the equivalences studied. It would also be interesting to treat
static analysis for the calculus, e.g. a type system, and study its relationship
with what shown in this paper.

Acknowledgements. We thank J. Almansa, S. Agarwal, B. Klin, K. Krukow and P.
Oliva for useful comments. Thanks also goes to the anonymous referees for their helpful
suggestions.

References

1. M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In
Proc. of the 28th symposium on Principles of Programming Languages (POPL’01),
pages 104–115. ACM Press, 2001.

A Calculus for Trust Management 173

2. S. Abiteboul, R. Hull, and V. Vianu. Foundations of databases. Addison-Wesley,
1995.

3. R. Amadio, G. Boudol, and C. Lhoussaine. The receptive distributed pi-calculus.
In Proc. of the 19th Conference on Foundations of Software Technology and The-
oretical Computer Science (FSTTCS ’99), volume 1738 of LNCS, pages 304–315.
Springer-Verlag, 1999.

4. A. W. Appel and E. W. Felten. Proof-carrying authentication. In Proc. of 6th
ACM Conference on Computer and Communications Security (CCS ’99), 1999.

5. M. Y. Becker and P. Sewell. Cassandra: Flexible trust management, applied to elec-
tronic health records. In Proc. of the 17th IEEE Computer Security Foundations
Workshop (CSFW ’04). IEEE Computer Society Press, 2004.

6. M. Burrows, M. Abadi, B. W. Lampson, and G. Plotkin. A calculus for access
control in distributed systems. In Proc. of 11th Annual International Cryptology
Conference Advances in Cryptology (CRYPTO ’91), volume 576, pages 1–23, 1991.

7. M. Carbone and S. Maffies. On the expressive power of polyadic synchronisation
in π-calculus. Nordic Journal of Computing (NJC), 10(2), September 2003.

8. M. Carbone, M. Nielsen, and V. Sassone. A formal model for trust in dynamic net-
works. In Proc. of International Conference on Software Engineering and Formal
Methods (SEFM’03), pages 54–61. IEEE Computer Society Press, 2003.

9. J. Guttman, J. Thayer, J. Carlson, J. Herzog, J. Ramsdell, and B. Sniffen. Trust
management in strand spaces: A rely-guarantee method. In Proc. of the European
Symposium on Programming (ESOP ’04), LNCS, pages 325–339. Springer-Verlag,
2004.

10. M. Hennessy and J. Riely. Resource access control in systems of mobile agents.
Information and Computation, 173(1):82–120, 2002.

11. S. Jajodia, P. Samarati, and V. S. Subrahmanian. A logical language for expressing
authorizations. In Proc. of the IEEE Symposium on Security and Privacy, pages
31–42. IEEE Computer Society Press, 1997.

12. A. J. I. Jones and B. S. Firozabadi. On the characterisation of a trusting agent.
In Workshop on Deception, Trust and Fraud in Agent Societies, 2000.

13. N. Li, J. C. Mitchell, and W. H. Winsborough. Design of a role-based trust man-
agement framework. In Proc. of the IEEE Symposium on Security and Privacy,
pages 114–130. IEEE Computer Society Press, 2002.

14. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I and II.
Information and Computation, 100(1):1–40,41–77, September 1992.

15. C. Palamidessi. Comparing the expressive power of the synchronous and the asyn-
chronous π-calculus. In Proc. of the 24th symposium on Principles of Programming
Languages (POPL’97), pages 256–265. ACM Press, 1997.

Short-Cuts on Star, Source and Planar
Unfoldings

Vijay Chandru, Ramesh Hariharan, and Narasimha M. Krishnakumar

Dept. of Computer Science and Automation, Indian Institute of Science,
Bangalore, India

Abstract. When studying a 3D convex polyhedron, it is often easier to
cut it open and flatten in on the plane. There are several ways to perform
this unfolding. Standard unfoldings which have been used in literature
include Star Unfoldings, Source Unfoldings, and Planar Unfoldings, each
differing only in the cuts that are made. Note that every unfolding has
the property that a straight line between two points on this unfolding
need not be contained completely within the body of this unfolding.
This could potentially lead to situations where the above straight line
is shorter than the shortest path between the corresponding end points
on the convex polyhedron. We call such straight lines short-cuts. The
presence of short-cuts is an obstacle to the use of unfoldings for designing
algorithms which compute shortest paths on polyhedra. We study various
properties of Star, Source and Planar Unfoldings which could play a role
in circumventing this obstacle and facilitating the use of these unfoldings
for shortest path algorithms.

We begin by showing that Star and Source Unfoldings do not have
short-cuts. We also describe a new structure called the Extended Source
Unfolding which exhibits a similar property. In contrast, it is known that
Planar unfoldings can indeed have short-cuts. Using our results on Star,
Source and Extended Source Unfoldings above and using an additional
structure called the Compacted Source Unfolding, we provide a necessary
condition for a pair of points on a Planar Unfolding to form a short-cut.
We believe that this condition could be useful in enumerating all Shortest
Path Edge Sequences on a convex polyhedron in an output-sensitive way,
using the Planar Unfolding.

1 Introduction

Star Unfoldings have proved useful tools in arguing about shortest paths on
the surface of a 3D convex polyhedron P (see Fig. 1(a)). A Star Unfolding is
obtained by cutting a 3D convex polyhedron along shortest paths emanating
from a reference point x and going to each of the vertices of P; the resulting
structure is then flattened on the plane. We denote the Star Unfolding with
respect to the reference point x by star(x). The idea of such an unfolding is due
to Aleksandrov [1], who uses it to show that P can be triangulated. Aronov and
O’Rourke [10] showed that this unfolding does not self-overlap (in fact they show

K. Lodaya and M. Mahajan (Eds.): FSTTCS 2004, LNCS 3328, pp. 174–185, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Short-Cuts on Star, Source and Planar Unfoldings 175

a stronger property, which we shall describe shortly). Subsequently, Agarwal,
Aronov, O’Rourke and Schevon [12] showed how the Star Unfolding can be used
for enumerating Shortest Path Edge Sequences on a convex polyhedron and
for finding the geodesic diameter of a convex polyhedron. Chen and Han [11],
independently, used Star Unfoldings for computing shortest path information
from a single fixed point on the surface of a convex polyhedron.

i+1

x 1

x
2

x
i−1

i

i+1
x

x m

mv

v

v v

v

vi−1

2

1

peel i+1

peel i
i

x

z

z’

a

b

Sector i−1

Sector i

ridge tree

Fig. 1. Star Unfolding

The Source Unfolding of a 3D convex polyhedron P is obtained by transform-
ing the Star Unfolding as follows. The Star Unfolding star(x) (with respect to
the reference point x) has a ridge tree [7] comprising all points which have two or
more distinct shortest paths from the reference point x. The leaves of this ridge
tree are the vertices of P (x aside) and internal ridge nodes are those points on
P which have 3 or more shortest paths to x. Cutting along each of the ridge tree
edges and the shortest paths to the vertices from x breaks the Star Unfolding
into several convex polygons, called peels. The Source Unfolding is obtained by
rearranging these peels around x. We denote the Source Unfolding with respect
to the reference point x by source(x). In Fig. 2(a) and (b), we have shown the
Source Unfolding of P with respect to x for the cases when x is not a vertex on
P and when x is a vertex of P, respectively. This unfolding was defined in [3].
Note that in case 1, x is completely surrounded by the body of the unfolding
while in the other case, there is an empty angular region incident on x due to
the positive curvature of the convex polyhedron at x.

We define Planar Unfoldings as follows. Consider any sequence of distinct
faces f1 . . . fk on the surface of P such that fi and fi+1 share an edge ei, for
all i, 1 ≤ i ≤ k − 1. Consider cutting out f1 . . . fk from P by cutting along
each edge that is on the boundary of some fi, with the exception of the edges
e1 . . . ek−1. Note that by virtue of f1 . . . fk being distinct, cuts are made along
all but exactly two of the boundary edges for each fi, 2 ≤ i ≤ k − 1, (the
exceptions being ei−1, ei for fi). Further, for f1 and fk, cuts are made along
all but exactly one of the boundary edges (the exceptions being e2, ek−1). With

176 V. Chandru, R. Hariharan, and N.M. Krishnakumar

peel i−1

x

v

v

v

i+1v

i−1

iv

m

23

(a)

x

vv

v

v

peel i−1

i+1

i−1

v

i

m

m1

(b)

peel i+1

peel ipeel i

peel i+1

v v

a

b

1v

Fig. 2. Source Unfolding

these properties, it is easy to see that the resulting structure can be flattened out
on a plane (because, after cutting out, fi and fi+1 are attached to each other by
exactly one edge, around which we can rotate to get fi and fi+1 on one plane).
We call this structure the Planar Unfolding with respect to the edge sequence
e1 . . . ek−1.

Our Results. Our contribution is four-fold, all using only elementary geometry.

1. Aronov and O’Rourke [10] showed that the Star Unfolding does not self-
overlap. Further, they showed a stronger property: the circular sectors between
adjacent peels (see Fig.1(a)) are also disjoint. As a corollary of this property,
they show that there are no short-cuts in the Star Unfolding with one endpoint
being the reference point x. In other words, a straight line between any instance
of x in the Star Unfolding and any other point a in the Star Unfolding is no
shorter than the shortest path between x and a on P. We extend this result to
all pairs of points on the Star Unfolding. So, for any pair of points a and b on
the Star Unfolding, we show that the straight line joining these two points is no
shorter than the shortest path between a and b on P.
2. Using the above result that the Star Unfolding has no short-cuts, we show that
the Source Unfolding also does not have short-cuts. The proof uses a stepwise
transformation of the Star Unfolding into the Source Unfolding.
3. Next, using the above result for Source Unfoldings, we show that the extension
(with respect to any point y) of the Source Unfolding does not have short-cuts,
i.e., for any point a on the extended line xy in the Extended Source Unfolding
and any other point b on the Source Unfolding, the straight line joining a and

Short-Cuts on Star, Source and Planar Unfoldings 177

b is no shorter than the shortest path between a and b on P. This notion of
Extended Source Unfoldings will be defined later.

x a

b

e
e

ek

2

1

Fig. 3. Planar Unfolding

4. It is known [5] that, unlike Star and Source Unfoldings, Planar Unfoldings
could have short-cuts, i.e., the distance between a pair of points x and y on a
Planar Unfolding can be shorter than the distance between the same pair of
points on the convex polyhedron. However, the above result on Extended Source
Unfoldings gives the following necessary condition for a pair of points to form a
short-cut on a Planar Unfolding.

A Necessary Condition for a Short-Cut on Planar Unfoldings: Consider
three points x, a, b on some Planar Unfolding of P (see Fig.3) such that xa and xb
are images of geodesics completely within this unfolding. For ab to be a short-cut
in this Planar Unfolding, neither xa nor xb must be a shortest path on P.

In the above process, we also define a new structure called the Compacted
Source Unfolding by re-folding the Source Unfolding in a certain way, and then
use this structure to show properties of shortest paths which are then used to
prove the above claims on Star, Source, Extended Source and Planar Unfoldings.

Applications and Further Work. Our motivation for studying short-cuts was
to obtain an output-sensitive algorithm for enumerating SPES’s (i.e., shortest
path edge sequences, sequences of edges which are crossed by at least one shortest
path) on the convex polyhedron P. Unlike previous work [12, 7] which uses the
Star Unfolding as its main tool, our approach was to use the Planar Unfolding,
where a particular edge sequence is considered if and only if all its prefixes
are SPES’s; this would lead naturally to output-sensitivity, as only SPES’s are
considered for further extension using a Dijkstra like scheme. The first hurdle
encountered in this process is that of short-Cuts. While we haven’t yet obtained
a complete output-sensitive algorithm for enumerating SPES’s, we believe that
the properties of short-cuts listed above could be useful in obtaining such an
algorithm.

Road Map. Section 2 lays out some preliminaries. Section 3 defines Compacted
Source Unfoldings and proves some properties needed in later sections. Sections

178 V. Chandru, R. Hariharan, and N.M. Krishnakumar

4, 5 and 6 prove that there are no short-cuts on Star, Source and Extended
Source Unfoldings, respectively. Section 7 shows our necessary condition for a
pair of points on a Planar Unfolding to form a short-cut. For want of space,
proofs do not appear in this abstract. They will appear in the full version of the
paper.

2 Definitions and Preliminaries

Let P denote a 3D convex polyhedron. We use the term vertex of P to denote
one of the corners of P. For any two points a, b on P, let SP (a, b) denote the
shortest path between a and b on P. For any two points a, b on the plane, let
ab denote both the straight line segment connecting a, b and the length of this
straight line segment as well (for convenience). Let C(a, ab) denote the circle
with center a and radius ab.

Definitions. For any two points a, b on the Star Unfolding, let star(a, b) be the
length of the straight line ab. source(a, b) and planar(a, b) are defined analo-
gously.

Aronov and O’Rourke [10] showed that the Star Unfolding can be embedded
in the plane without overlap. The resulting structure is a simple polygon (see
Fig.1(a)) whose vertices in cyclic order are denoted by x1, v1, x2, v2, . . . , xm, vm,
where x1 . . . xm are images of the source point x and v1 . . . vm are the vertices of
P (excluding x, if it is a vertex). Note that for each i, 1 ≤ i ≤ m, xivi = vixi+1
(here, and in what follows, i + 1 is taken modulo m, implicitly). Aronov and
O’Rourke actually showed the following stronger fact in Lemma 1, for which
we need the following definition. Let Sector(i) denote the sector of the circle
C(vi, xivi) which lies between the lines xivi and xi+1vi (see Fig.1).

Lemma 1. [10] The various sectors Sector(1) . . . Sector(m) are mutually pair-
wise disjoint; further these sectors lie completely outside the Star Unfolding. It
follows that the Star Unfolding does not self-overlap and is a simple polygon.

Lemma 1 yields the following lemma on peels (recall, peels were defined in
the introduction).

Lemma 2. For any point y on star(x), the Star Unfolding with respect to x,
there exists an xi, 1 ≤ i ≤ m, such that the straight line xiy is contained
completely within the peel containing xi; further, star(xi, y) = SP (xy).

Fact 1. Consider two points a, b on either a Star, Source or Planar Unfolding
such that the straight line joining them lies completely inside the unfolding. Then,
this straight line is an image of a geodesic on the surface of P and therefore, has
length at least SP (a, b).

Triangulating star(x) and Triangle Images. Note that if we triangulate the
peels in star(x) using triangles whose one endpoint is always the copy of x on the

Short-Cuts on Star, Source and Planar Unfoldings 179

same peel, then each such triangle has a congruent image triangle on some other
peel; this is illustrated in the picture below where t′j is the image of tj and t′i is
the image of ti. This is because, such a triangle will have one of the ridge edges in
the boundary of the peel as its base; since ridge edge is the locus a point that has
more than one shortest path from x on the polyhedron, the triangles are mirror
images of each other. This notion of image of a triangle will be used in defining
Compacted Source Unfoldings in the next section. Note that the image pairing
of triangles has a nesting property, namely that the various angular stretches
between triangles and their respective images are either mutually disjoint or one
stretch contains the other.

(a)

x 1

x
2

i

i+1
x

x m

v

a

b
ridge traingle t

ridge traingle t

ridge traingle t’

j

j
i

i

ridge traingle t’

i+1

x 1

x
2

x

i

i+1
x

x m

mv

v

v v

v

v
i−1

2

1

i
x

z

z’

a

b

(b)

i−1

ridge tree

Fig. 4. Star Unfolding: Triangle Images

3 The Compacted Source Unfolding

In this section we define a new structure called the Compacted Source Unfolding
which is obtained by folding the Source Unfolding as follows. Consider source(a),
the Source Unfolding with respect to a and suppose one is given any two points
u and v on the ridge tree. Then the line segments SP (au) and SP (av) are
maximal shortest paths in source(a). Consider the region of source(auv) which
lies clockwise from SP (au) to SP (av) and consider the triangles into which
peels in this region are triangulated. Some of these triangles will have their
images within this region as well, while others will not. Fold source(auv) in such
a way that each triangle which has its image in this region gets pasted to its
image, back to back (this is possible because of the nesting property described
above). The resulting structure will have a backbone, (Fig.5) comprising those
triangles which do not have images in this region, and ribs comprising triangles
which indeed have images in this region, with the images pasted back to back;
this is the Compacted Source unfolding with respect to a and u, v.

We can show the following properties on this Compacted Source Unfolding.
Theorem 1 and its corollary below follow from the fact that a path which goes

180 V. Chandru, R. Hariharan, and N.M. Krishnakumar

SP(cd)

SP(cd)

(cd)

a

1
2

i

c

tt t

t k

u

vd

(a)

a

(b)

SP(cd)rib 1
rib 2

back−bone

Fig. 5. The Compacted Source Unfolding: Backbones and Ribs

through the ribs can be shortened to one that stays on the backbone but has
the same source and destination. Theorem 2 is the key non-trivial claim that we
prove.

Lemma 3. The back-bone of source(a(uv)) is a convex polygon.

Theorem 1. Every pair of points on a peel is joined by a unique shortest path
on the convex polyhedron thats lies entirely on that peel.

Corollary 1. The intersection of a shortest path with a peel is connected.

Theorem 2. Consider a portion source(a(uv)) of source(a), where u and v are
any pair of ridge points such that the angle 	 vau < π (Fig.6(a)). Let (uv) de-
note the line segment that joins u and v on the plane that contains source(a) and
suppose that SP (av) ≥ SP (au). If (uv) lies completely outside the Source Un-
folding (except for its endpoints), then there exists another shortest path SP (au)
in source(a(uv)).

4 Star Unfoldings

We prove the following theorem in this section.

Theorem 3. Consider any two points a, b on the Star Unfolding with respect to
point x on P. Then star(ab) ≥ SP (ab).

The proof outline is as follows: By Fact 1., this is true if the line segment
ab is completely inside star(x). It now suffices to consider the case when ab
is completely outside star(x), for the only remaining case can be handled by
splitting ab into internal and external segments and arguing on each segment.
For the case when ab is completely outside as shown in Fig.7, using Lemma 1,
one can show that the path a to xi and then xj to b on the convex polyhedron
P is shorter than ab, as required.

Short-Cuts on Star, Source and Planar Unfoldings 181

τ 1 = t 1

ν 1
= n

1

= tkτ
s

a

(b) back−bone ?

u

v

τ 1 = t 1

ν 1
= n

1

= tkτ
s

(a) source(a)(uv)

τ p

p+1τ

a

u ν p

v

(uv)

Fig. 6. Source(a(uv)) and its back-bone

v

x

x

i

i

i+1

vj

j+1x

x j

a i ja bb

Fig. 7. a, b completely outside

5 Source Unfoldings

Theorem 4. Consider any two points a, b on the Source Unfolding with respect
to point x on P. Then source(ab) ≥ SP (ab).

Note that as in the case of star(x), we need only consider the case when
the line segment ab is completely outside source(x). The proof proceeds by
induction on the number of peels (call this the peel distance) in source(xab). If
this is one or two, then the argument is easily made by rotating peels from the
source configuration to the star configuration while showing that distance ab only
decreases in this process; this along with Theorem 3 finishes the proof. If the peel
distance is more than two, then Theorem 2 gives us a tool to perform induction.
Without loss of generality, we assume that the angle at x in source(xab) is < π
and that xb ≤ xa on source(x). Then, by Theorem 2, there exists another copy
b′ of b in source(xab). We then argue inductively on ab′ instead of ab, as the
former has a provably smaller peel distance.

182 V. Chandru, R. Hariharan, and N.M. Krishnakumar

6 Extended Source Unfoldings

We define the Extended Source Unfolding of source(x) constructively as the
structure obtained from the Source Unfolding by taking a shortest path xy on
source(x) (which also corresponds to a shortest path on the convex polyhedron
P) and then extending it as a geodesic for a finite stretch or until it reaches a
vertex of P. We prove the following theorem in this section.

Theorem 5. Consider the Source Unfolding source(x) with respect to x. Let xb
and xy be any pair of shortest paths. Let a be any point that lies on a geodesic
that is a finite extension of the shortest path xy. Then source(ab) ≥ SP (ab).

Proof. Let us assume that xa in the Extended Source Unfolding is along the
x-axis (in a Cartesian coordinate system). Then we have x, y and a in that order
from left to right along x-axis as shown in Fig.8. We have the following two cases
to consider.

C

x y

L

C(x,xb)

C(a,ab)

a

b’
b

C(y,yb)

Fig. 8. source(ab) ≥ SP (ab) in extended source unfolding: Case 1

Case 1: The portion ya of xa is a shortest path in source(y): Let source(x),
source(y) and source(a) denote the Source Unfoldings of the convex polyhe-
dron with respect to x, y and a respectively. Let us superimpose source(y) and
source(a) on the line segment xa in the Extended Source Unfolding of source(x)
such that the following conditions are satisfied.

Short-Cuts on Star, Source and Planar Unfoldings 183

– The portions xy (a shortest path) and ya (a shortest path) of xa in the
Extended Source Unfolding coincide with the shortest paths xy and ya in
source(y). This is always possible for the following reason. Since xa is an ex-
tension of the shortest path xy in the Extended Source Unfolding, y cannot
be a polyhedral vertex (according to the definition of the Extended Source
Unfolding). Hence, a small neighborhood of y in the Extended Source Un-
folding is identical to a small neighborhood of y in source(y). Thus, the
angle between the shortest paths ya and yx in each of the Extended Source
Unfolding and source(y) is equal to π.

– The portion ya (a shortest path) of xa coincides with the shortest path ya
in source(a).

Let b′ denote the position of b in source(y). That is, a shortest path from y to
b in source(y) is denoted by yb′. Consider the three discs C(x, xb), C(y, yb) and
C(a, ab) (we define the disc C(x, xb) as the set of points p such that xp ≤ xb,
other discs are defined similarly). Since xy and xb are shortest paths, according
to Theorem 4, yb ≥ SP (yb). Thus, the shortest path from y to b, that is yb′,
in source(y) is shorter than yb. Thus, b′ lies on the disc C(y, yb) (Fig.8). Since
yx and yb′ are shortest paths in source(y), xb′ ≥ SP (xb′) = SP (xb). Hence, b′

does not lie inside the disc C(x, xb) (because the radius of this disc is a shortest
path). Thus we have b′ on the portion of the disc C(y, yb) that is not inside
C(x, xb). Hence, b′ cannot lie to the left of the line segment L through b that is
normal to the x-axis. But this portion of the disc C(y, yb) (that contains b′) is
on the disc C(a, ab) because a is to the right of y. Thus, we have b′ on or inside
C(a, ab), that is, ab ≥ ab′.

Consider the two shortest paths ya and yb′ in source(y). Since, we have
assumed that the portion ya of xa is a shortest path, according to Theorem 4,
ab′ ≥ SP (ab′) = SP (ab). Thus, we have ab ≥ ab′ ≥ SP (ab), and the theorem
holds for this case.

Case 2: ya is not a shortest path in source(y): Let us partition xa into a
sequence of shortest paths (Fig.9) a0a1, a1a2, a2a3, ..., am−1am (where a0 = x,
a1 = y and am = a) such that, each partition aiai+1 is the portion of ya that lies
on a single peel. Each of these partitions satisfies the following two properties.

– Each partition is a shortest path (we will be showing in Theorem 1 that any
geodesic that lies inside a peel is a shortest path).

– We will show that the number of peels crossed by any finite geodesic is
countable. Hence, the number of partitions in xa is also countable.

The number of peels crossed by any finite geodesic xa is countable for the
following reason. Since xa is a geodesic, there is no polyhedral vertex in the
interior of xa. Thus, the intersection of a peel with xa is either null or of non-
zero length. Hence, we can order the peels that intersect xa in the direction
from x to a. Thus, the set of peels that have a non-empty intersection with xa
is countable.

Let bi denote the image of b in source(ai) for each i, 0 ≤ m. Consider the three
points ai, ai+1, ai+2 for any i, 0 ≤ i ≤ m − 2. We have already mentioned that

184 V. Chandru, R. Hariharan, and N.M. Krishnakumar

C(a ,a b)i i i

C(a , a b) m m i

C(a , a b)
i+4i+4 i

C(a , a b)
i+3 i+3 i

x−axis
a = a

L i

a i+2 a a

ib

mi+4i+3aa i+1i

C(a , a b)i+2 ii+2

i+1 i+1
C(a , a b)i

Fig. 9. source(ab) ≥ SP (ab) in extended source unfolding: Case 2

bi, bi+1 and bi+2 denotes the images of the point b in the source(ai) source(ai+1)
and source(ai+2), respectively. We have the following analogy to Case 1. We can
view the four points ai, ai+1, ai+2 and bi as x, y, a and b in Case 1, respectively.
An argument on lines similar to that of Case 1 shows the following (see Fig.9).

Since aibi and aiai+1 are shortest paths in source(ai), ai+1bi ≥ SP (ai+1bi) =
SP (ai+1bi+1) = SP (ai+1b). Thus, bi+1 lies on the disc C(ai+1, ai+1bi).

Since ai+1ai and ai+1bi+1 are shortest paths in source(ai+1), aibi+1 ≥ aibi =
SP (aibi). Hence, bi+1 does not lie inside the disc C(ai, aibi).

Thus, bi+1 lies on the disc C(ai+1, ai+1bi) but not inside the disc C(ai, aibi).
That is, bi+1 lies on the portion of the disc C(ai+1, ai+1bi) that is on or to the
right of Li where Li is the normal from bi to the x-axis.

Since, for each j ≥ i + 2, the point aj lies to the right of ai+1, the above
mentioned portion of the disc C(ai+1, ai+1bi) lies inside C(aj , ajbi). Thus we
have ajbi ≥ ajbi+1 for each j ≥ i + 2. In particular we have ambi ≥ ambi+1.

Since the above claims are true for each i, 0 ≤ i ≤ m− 2, we get

amb0 ≥ amb1 ≥ amb2 ≥ amb3 ≥ ... ≥ ambm−1.

Since am−1am and am−1bm−1 are shortest paths in the Source Unfolding
source(am−1), we have ambm−1 ≥ SP (amb). Thus we have source(ab) = amb0 ≥
SP (amb) = SP (ab) (recall am = a), and we have proved the theorem for case 2.

��

7 A Necessary Condition for Short-Cuts in a Planar
Unfolding

Our result on Extended Source Unfoldings above provides a necessary condition
for ab to be a short-cut on a Planar Unfolding, i.e., for planar(ab) ≥ SP (ab).

Short-Cuts on Star, Source and Planar Unfoldings 185

Theorem 6. Consider three points x, a, b on some Planar Unfolding such that
xa and xb are images of geodesics completely within this unfolding, and further,
the xa geodesic is actually a shortest path on P. Then planar(ab) ≥ SP (ab),
and therefore ab cannot be a short-cut.

Proof. Since the local neighborhoods of x in the Source and the Planar Unfold-
ings are identical, the angle between xa and xb in these two unfoldings are the
same. Hence, we have planar(ab) = source(ab). However, according Theorem
5, we have source(ab) ≥ SP (ab). Hence, we have planar(ab) = source(ab) ≥
SP (ab). ��

In particular note that if a lies on an edge of P and we take x to be on the
same edge, if xa is a geodesic then ab cannot be a short-cut. Since geodesics are
locally verifiable in contrast to shortest paths, this is a non-trivial condition. A
simple further corollary is that any planar unfolding between edges e0 and ek

with a geodesic from e0 to ek which lies completely inside this planar unfolding
cannot have shortcuts which cross this geodesic.

References

1. A. D. Aleksandrov and V. A. Zalgaller, Intrinsic Geometry of Surfaces, American
Mathematical Society, Providence, RI, 1967.

2. H. Buseman, Convex Surfaces, Interscience Publishers, 1958.
3. M. Sharir and A. Schorr, On shortest paths in polyhedral spaces, SIAM J. Com-

put.,15(1986), pp.193-215.
4. C. Schevon and J. O’Rourke, The number of maximal edge sequences on a convex

polytope, In Proc. 26th Allerton Conf. Commun. Control Comput., pages 49–57,
October 1988.

5. C. Schevon, Algorithms for geodesics on polytopes, PhD thesis, Johns Hopkins
University, 1989.

6. J. Mitchell, D. M. Mount, and C. H. Papadimitriou, The discrete geodesic problem,
SIAM Journal on Computing, 16(4):647-668, August 1987.

7. M. Sharir, On shortest paths amidst convex polyhedra, SIAM Journal on Comput-
ing, 16(3):561-572, June 1987.

8. D. M. Mount, The number of shortest paths on the surface of a polyhedron, SIAM
Journal on Computing, 19(4):593-611, August 1990.

9. P.K. Agarwal, B. Aronov, J. O’Rourke and C. Schevon, Star Unfolding of
a polytope with applications, in Proc. of 2nd Annual Scandinavian Work-
shop on Algorithm Theory, Lecture Notes in Computer Science,447, Springer-
Verlag,Berlin,1990,pp.251-263.

10. B. Aronov and J. O’Rourke, Non-overlap of the Star Unfolding, Discrete Comput.
Geom.,8(1992).pp. 219-250.

11. J. Chen and Y. Han, Shortest paths on a polyhedron, in Proc. 6th Annual ACM
Sympos. Comput. Geom., ACM,New York, 1990, pp.360-369.

12. P. K. Agarwal, B. Aronov, J. O’Rourke, Catherine A. Schevon, Star Unfolding of
a Polytope with Applications, SIAM J. Comput. 26(6): 1689-1713 (1997).

13. V. Chandru, N. Krishnakumar, R. Hariharan, Properties of Planar Unfoldings,
Manuscript under preparation.

14. N. Krishnakumar Properties of Short-Cuts, PhD Thesis, IISc, 2003.

Subdividing Alpha Complex

Ho-lun Cheng and Tony Tan

School of Computing, National University of Singapore
{hcheng, tantony}@comp.nus.edu.sg

Abstract. Given two simplicial complexes C1 and C2 embedded in Eu-
clidean space IRd, C1 subdivides C2 if (i) C1 and C2 have the same under-
lying space, and (ii) every simplex in C1 is contained in a simplex in C2.
In this paper we present a method to compute a set of weighted points
whose alpha complex subdivides a given simplicial complex.

Following this, we also show a simple method to approximate a given
polygonal object with a set of balls via computing the subdividing alpha
complex of the boundary of the object. The approximation is robust and
is able to achieve a union of balls whose Hausdorff distance to the object
is less than a given positive real number ε.

1 Introduction

The notion of alpha complexes is defined by Edelsbrunner [6, 10] and since then
it has been widely applied in various fields such as computer graphics, solid
modeling, computational biology, computational geometry and topology [7, 8].
In this paper, we propose a simple algorithm to compute the alpha complex that
subdivides a given simplicial complex. This can be considered as representing
the complex with a finite set of weighted points. See Figure 1 as an example.
Moreover, we also present a method to approximate an object with a union of
balls via its subdividing alpha complex.

1.1 Motivation and Related Works

The motivation of this paper can be classified into two categories: the skin ap-
proximation and the conforming Delaunay complex.

Skin approximation. Our eventual goal is to approximate a given simplicial
complex with the skin surface, which is a smooth surface based on a finite set of
balls [7]. Amenta et. al. [1] have actually raised this question and the purpose was
to perform deformation between polygonal objects. As noted in some previous
works [2, 7], deformation can be performed robustly and efficiently with the skin
surface. Our work here can be viewed as a stepping stone to our main goal.

As mentioned by Kruithof and Vegter [13], one of the first steps to approxi-
mate an object with a skin surface is to have a set of balls that approximate the
object. For this purpose, we produce a set of balls whose alpha shape is the same
as the object. It is well known that such union of balls is homotopy equivalent

K. Lodaya and M. Mahajan (Eds.): FSTTCS 2004, LNCS 3328, pp. 186–197, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Subdividing Alpha Complex 187

Fig. 1. An example of a subdividing alpha complex of a link embedded in IR3. The
right hand side of the figure shows a union of balls whose alpha complex resemble the
input link, shown in the left hand side

to the object [6]. At the same time, we are able to produce a union of balls that
approximate the object.

Approximating an object by a union of balls itself has applications in de-
formation. In such representation, shapes can be interpolated [15]. Some shape
matching algorithms also use the union of balls representation [18]. We believe
such approximation can also be useful for collision detection and coarse approx-
imation [12].

Conforming Delaunay Complex(CDC). The work on conforming Delaunay
complex(CDC) are done mainly for the unweighted point set in two and three
dimensional cases [3, 4, 5, 11, 14]. As far as our knowledge is concerned, there
is no published work yet on the construction of CDC for any given simplicial
complex in arbitrary dimension. The relation of CDC to our work here should
be obvious, that is, we compute CDC of weighted points in arbitrary dimension.

1.2 Assumptions and Approach

The assumption of our algorithm is a constrained triangulation of a simplicial
complex C is given, that is, a triangulation of the convex hull of C that contains C
itself. An example of this is the constrained Delaunay triangulation of C [19, 20].

Our approach is to construct the subdividing alpha complex of the l-skeleton
of C before its (l+1)-skeleton. For each simplex in the l-skeleton, we add weighted
points until it is subdivided by the alpha complex. In the process, we maintain
the invariant that the alpha shape is a subset of the underlying space of C. This is
done by avoiding two weighted points intersecting each other when their centers
are not in the same simplex. For this purpose, we introduce the protecting cells.

The main issue in this approach is that we do not add infinitely many points,
that is, our algorithm is able to terminate. To establish this, we guarantee that,
for each simplex, there is a positive lower bound for the weight of the added
point. This fact, together with the compactness of each simplex, ensures that
only finitely many points are added into the simplex. We will formalize this fact
in Section 5.

188 H.-l. Cheng and T. Tan

For our object approximation method, our main idea is to compute the subdi-
viding alpha complex of the object by assigning very small weights to the points
inserted in the boundary of the object. In this way, the weighted points in the
interior will have relatively big weights and they make a good approximation for
the object. Further clarification is in Section 6.

1.3 Outline

We start by describing some definitions and notations in Section 2. Then, in
Section 3 we outline some properties which our algorithm aims at. Section 4
introduces the notion of protecting cells. Finally, we present our algorithm and
method of object approximation in Sections 5 and 6, respectively. We conclude
with certain remarks in Section 7.

2 Definitions and Notations

We briefly review some definitions and notations on simplicial and alpha com-
plexes that we use in this paper.

Simplicial Complexes. The convex hull of a set of points, S ⊆ IRd, is denoted
by conv(S). It is a k-simplex if |S| = k + 1 and S is affinely independent. Let
σ = conv(S) be a k-simplex, its dimension is denoted as dim(σ) = k. For any
T ⊂ S, τ = conv(T) is also a simplex and it is called a face of σ, denoted by
τ ≺ σ. We consider σ is not a face of itself. If dim(τ) = l, then τ is called an
l-face of σ. Note that the faces of a simplex σ constitutes the boundary of σ,
whereas, the interior of σ is σ minus all its faces. A simplicial complex, C, is a
set of simplices with the following properties.

1. If σ ∈ C and τ ≺ σ then τ ∈ C, and,
2. If σ1, σ2 ∈ C then σ1 ∩ σ2 is a face of both σ1, σ2.

The underlying space of C is the space occupied by C, namely, |C| =
⋃

σ∈C σ.
We denote vert(C) to be the set of vertices in C.

For a set of simplices J ⊆ C, the closure of J , denoted by cl(J), is the
minimal simplicial complex that contains J . For σ ∈ C, the star of σ, denoted
by star(σ), is the set of simplices in C that contains σ.

A constrained triangulation TC of a simplicial complex C is a triangulation of
the convex hull of |C| in which C ⊆ TC. Note that not all simplicial complexes can
be triangulated without additional vertices, e.g. the Schönhardt polyhedron [16].

Alpha Complexes. A ball b = (z, w) ∈ Rd × R, is the set of points whose
distance to z is less than or equal to

√
w. We also call this a weighted point

with center z and weight w. The weighted distance of a point p ∈ Rd to a ball
b = (z, w) is defined as πb(p) = ‖pz‖2 − w.

⋃
X is to denote the union of a set

of balls X and
⋂
X is to denote the common intersection of X.

Let B be a finite set of balls in Rd. The Voronoi cell of a ball b ∈ B, νb, is
the set of points in Rd whose weighted distance to b is less than or equal to any

Subdividing Alpha Complex 189

other ball in B. For X ⊆ B, the Voronoi cell of X is νX =
⋂

b∈X νb. The Voronoi
complex of B is VB = {νX | X ⊆ B and νX �= ∅}.

For a ball b and a set of balls X, we denote z(b) to be the center of b and
z(X) to be the ball centers of X. The Delaunay complex of B is the collection
of simplices,

DB = {δX = conv(z(X)) | νX ∈ VB}.

The alpha complex of B is a subset of the Delaunay complex DB which is
defined as follow [6],

KB = {δX |
⋃

X ∩ νX �= ∅, νX ∈ VB}.

The alpha shape of B is the underlying space of KB , namely, |KB |. Remark
that if δX ∈ KB then

⋂
X �= ∅.

3 Conditions for Subdividing Alpha Complex

The alpha complex of a set of balls, B, is said to subdivide a simplicial complex,
C, if (i) |KB | = |C|, and (ii) every simplex in KB is contained in a simplex in C.
We have the following main theorem that is used to construct the subdividing
alpha complex.

Theorem 1. Let B be a set of balls and C be a simplicial complex. If B satisfies
the following Conditions C1 and C2:

C1. for a subset X ⊆ B, if
⋂
X �= ∅ then z(X) ⊆ σ for some σ ∈ C, and,

C2. for each σ ∈ C, define B(σ) = {b ∈ B | b ∩ σ �= ∅}.
Then we have: z(B(σ)) ⊆ σ ⊆

⋃
B(σ),

then KB subdivides C.
The proof is fairly tedious and it is presented in the next subsection.
Condition C1 states that for a set of balls whose common intersection is not

empty, their centers must be in the same simplex in C. This also implies that
the center of each ball must be in C. In Condition C2, we require that if a ball
intersects with a simplex then its center must be in the simplex. Furthermore,
the simplex is covered by a set of balls whose centers are in the simplex.

To construct a set of balls that satisfies Condition C1, we introduce the notion
of protecting cell for each simplex in C, which is defined by the barycentric
subdivision. We use the protecting cell in order to control the weight of each
point. This will be discussed in Section 4. We show how to achieve Condition C2
in Section 5. Figure 1 on the front page illustrates an example of a subdividing
alpha complex satisfying Conditions C1 and C2.

3.1 Proof of Theorem 1

It is obvious that the following two properties are equivalent to the criteria for
subdividing alpha complex:

190 H.-l. Cheng and T. Tan

P1. Every simplex in KB is contained in a simplex in C.
P2. Every simplex in C is a union of some simplices in KB .

We divide the theorem into two lemmas. Lemma 1 states that Condition C1
implies property P1, while Lemma 2 states that Condition C2 implies property
P2.

Lemma 1. If B satisfies Condition C1, then every simplex in KB is contained
in a simplex in C, that is, property P1.

Proof. It is immediate that every vertex in KB is inside a simplex in C. Let δX

be a simplex in KB . By the remark in the definition of alpha complex,
⋂
X �= ∅.

Then, by Condition C1, all their centers are in the same simplex σ ∈ C. Therefore,
δX = conv(z(X)) ⊆ σ. ��

Lemma 2. If B satisfies Condition C2, then every simplex in C is a union of
some simplices in KB, that is, property P2.

Proof. Let σ ∈ C, recall that B(σ) ⊆ B is the set of balls which intersect with σ
and each of their centers are inside σ. We consider DB(σ), the Delaunay complex
of the balls B(σ). To prove σ is a union of simplices in KB , we prove the following
claims:

A. σ is a union of simplices in DB(σ), and,
B. every simplex in DB(σ) is a simplex in KB .

These two claims establish Lemma 2.
The proof of Claim A is as follow. For any vertex of σ, there exists a ball

b ∈ B(σ) centered on σ. Furthermore, the centers of balls of B(σ) are inside σ.
Thus, σ is the convex hull of z(B(σ)). It is a fact that the convex hull of a set of
points is the union of its Delaunay simplices. Therefore, σ is a union of simplices
in DB(σ).

For Claim B, we first show that if δX ∈ DB(σ) then νX ∩ σ �= ∅, where
νX ∈ VB(σ). The intuitive meaning is that every Voronoi cell in VB(σ) always
intersects σ. We prove it by induction on dim(σ).

The base case is dim(σ) = 0. It is true by Condition C2. Assume the statement
is true for every k − 1-simplex in C.

Let dim(σ) = k and δX be a simplex in DB(σ). There are two cases:

1. X ⊆ B(τ), where τ ≺ σ.
Consider the Voronoi cell ν′

X ∈ VB(τ) and the Voronoi cell νX ∈ VB(σ).
Under Condition C2, each point in τ has negative distance to some ball in
B(τ) and positive distance to every ball in B(σ) − B(τ). This means the
Voronoi cell ν′

X is not effected by the additional balls B(σ)− B(τ), that is,
νX ∩ τ = ν′

X ∩ τ . Applying the induction hypothesis, νX ∩ τ = ν′
X ∩ τ �= ∅. In

particular, since τ ≺ σ, we have νX ∩ σ �= ∅.
2. X � B(τ), for any τ ≺ σ.

This means X contain some balls which do not belong to B(τ), for any
τ ≺ σ. Let b be such a ball, that is, b ∈ X − {b′ | b′ ∈ B(τ), τ ≺ σ}.

Subdividing Alpha Complex 191

By Condition C2, each point in τ has negative distance to some balls in
B(τ) and positive distance to b. Since Voronoi cell νb is convex and νb �= ∅,
we have the Voronoi cell of a ball b ∈ B(σ) lies entirely in the interior of
σ. In particular, the Voronoi cell νX is inside the interior of σ. Therefore,
νX ∩ σ �= ∅.

Thus, this proves that for every δX ∈ DB(σ), νX ∩ σ �= ∅ where νX ∈ VB(σ).
Back to Claim B, we prove that if a simplex δX belongs to DB(σ), then

δX ∈ KB . Note that by result above, if δX ∈ DB(σ) then νX ∩ σ �= ∅ where
νX ∈ VB(σ). Under Condition C2, σ is covered

⋃
B(σ). Thus, for every point

p ∈ νX ∩ σ, p has negative distance to some balls in B(σ), in particular, p has
negative distance to all balls in X. Therefore,

⋃
X ∩ νX �= ∅. Moreover, by

Condition C2, p has positive distance to every ball which does not belong to
B(σ). This implies that p still belongs to the Voronoi cell of X in VB , thus, δX

is also a simplex in DB . This proves that δX ∈ KB . ��

4 Achieving Condition C1

We divide this section into two subsections. In Subsection 4.1 we give a for-
mal but brief construction of barycentric subdivision of a simplicial complex. In
Subsection 4.2 we define our notion of protecting cells. For some discussions of
barycentric subdivision, we refer the reader to [17].

4.1 Barycentric Subdivision

Let σ be a k-simplex with vertices S = {s1, . . . , sk+1}. The barycenter of σ is
denoted by σ, or S = 1

k+1

∑k+1
i=1 si.

Definition 1. Let σ = conv(S) be a simplex and T ⊆ S. For any t ∈ T , denote
σT (t) = conv(S ∪ {T} − {t}). The subdivision of σ by the barycenter of conv(T)
is the set of simplices: subdiv(σ, T) = {σT (t) | t ∈ T}.

Let C be a simplicial complex embedded in Rd. We have a sequence of com-
plexes C0, C1, . . . , Cd which is defined inductively as follows:

Definition 2. Let C0 be a constrained triangulation of C. The simplicial complex
Cj = cl({subdiv(σ, T) | σ ∈ Cj−1}) where

1. σ = conv(S) is of dimension d, and,
2. T = S ∩ vert(C0).

The simplicial complex Cd is called the barycentric subdivision of C0. We have
the following fact concerning C0 and Cd.

Fact 1. There is a 1-1 correspondence between simplices in C0 and vertices in
Cd. More precisely, each simplex in C0 corresponds to its barycenter in Cd.

192 H.-l. Cheng and T. Tan

4.2 Protecting Cells

Given a simplicial complex C in IRd, let Cd be the barycentric subdivision of TC,
a constrained triangulation of C. We use Fact 1 to define the protecting cells of
simplices in C.

Definition 3. Let σ ∈ C. The protecting cell of σ, denoted by ψσ, is defined as
the closure of the star of the barycenter of σ in Cd, namely,

ψσ = cl(star(σ)),

where σ is a vertex in Cd.

Figure 2 illustrates parts of protecting cells of various simplices in IR2.

A

C

MK

L

DB

C

EA

DB

E

W N V

M

U

L

T

K

W V

U
T

S

R

Q

P

N

Fig. 2. Suppose we have the polygon ABCDE as simplicial complex C embed-
ded in IR2. The left figure illustrates the barycentric subdivision of TC. Vertices
P, Q, R, S, T, U, V, W are barycenters of the edges in TC. Vertices K, L, M, N are
barycenters of the triangles in TC. The right figure shows the protecting cells of the
vertex C and the edge AE, respectively. ψC is the polygon KTLUMV NW , while ψAE

is the triangle AEN

Let p be a point in the interior of σ. Consider the link of the centroid of σ, σ,
in Cd, that is, cl(star(σ))− star(σ). This link uniquely defines the maximal ball
with the center on p and not intersecting any simplex which is not in ψσ. We
denote the weight of such maximal ball by MaxWeight(p). We call MaxWeight(p)
the maximum weight of p. The value MaxWeight(p) can be computed by finding
the distance from p to the nearest bounding (d− 1)-simplices.

Proposition 1. Let p1, p2 ∈ |C|. Suppose p1 is in the interior of σ1 ∈ C and p2
is in the interior of σ2 ∈ C. If σ1 and σ2 are not faces of each other then the
two balls (p1, γ ·MaxWeight(p1)) and (p2, γ ·MaxWeight(p2)) do not intersect
for any γ < 1.

Proof. We observe that if σ1 and σ2 are not faces of each other then their pro-
tecting cells can only intersect in their boundary. Thus, the proposition follows.

Subdividing Alpha Complex 193

Therefore, Condition C1 can be achieved if all balls in B have their weight
strictly less than the maximum weight of their centers.

5 Algorithm

The input is a simplicial complex C embedded in Rd, together with its triangula-
tion TC. As stated in Subsection 1.2, our algorithm will subdivide the l-skeleton
of C, starting from l = 0 up to l = d. For each simplex σ in C, we will construct
the set of balls B(σ) by executing the procedure ConstructBalls(σ). (Recall
the definition of B(σ) as stated in Theorem 1.)

Before we proceed to describe the details of ConstructBalls(σ) in the next
subsection, we need the following concept of restricted Voronoi complex.

For a set of balls B ⊂ Rd × R, consider the restriction of VB on a k-simplex
σ ∈ C. The restricted Voronoi cell of X ⊆ B is νX(σ) = νX ∩ σ. Similarly, the
restricted Voronoi complex VB(σ) is the collection of the restricted Voronoi cells.
For convenience, we also include the intersection of νX(σ) with faces of σ into
VB(σ). That is, VB(σ) = {νX(τ) | τ ∈ cl(σ)}.

Let σ ∈ C be an k-simplex. For a set of balls X, consider its restricted Voronoi
complex on σ, VX(σ). We define the following terms that will be used in this
subsection. A Voronoi vertex v in VX(σ) is called a negative, zero or positive
vertex, if πb(v) < 0, πb(v) = 0, or πb(v) > 0, respectively, where v is the Voronoi
vertex in the Voronoi cell of b ∈ X, i.e. v ∈ νb(σ). Note that if a vertex is positive
then it is outside every ball in X.

5.1 Procedure ConstructBalls(σ)

Procedure 1 describes the details of ConstructBalls() . In the procedure, we
denote γ by a real constant where 0 < γ < 1. Recall also that a ball centered at
a point u with weight w is written as (u,w).

Procedure 1 ConstructBalls(σ)
1: if dim σ = 0 then
2: B(σ) := (σ, γ · MaxWeight(σ))
3: else
4: Let l := dim σ
5: Let τ1, . . . , τl+1 be the (l − 1)-faces of σ.
6: X := B(τ1) ∪ · · · ∪ B(τl+1)
7: while ∃ a positive vertex u in VX(σ) do
8: w := γ · MaxWeight(u)
9: X := X ∪ {(u, w)}

10: end while
11: B(σ) := X
12: end if

194 H.-l. Cheng and T. Tan

It is obvious that the whole algorithm produces a correct set of balls B
provided that the procedure ConstructBalls(σ) produces the correct balls B(σ)
for each σ ∈ C. Since the weights of constructed balls are all strictly less than the
maximum weights of the centers, Condition C1 is achieved by Proposition 1. The
following Proposition 2 ensures that Condition C2 is achieved provided that the
procedure ConstructBalls() terminates. We establish the termination of our
algorithm in Theorem 2.

Proposition 2. Let X be a set of balls. Suppose z(X) ⊆ σ. Then σ ⊆
⋃
X if

and only if there is no positive vertex in VX(σ).

Proof. (⇒) Suppose X covers σ. Let v be an arbitrary Voronoi vertex of νb(σ)
for some ball b ∈ X. If πb(v) > 0 then for any b′ ∈ X, πb′(v) ≥ πb(v) > 0, thus,
contradicts our assumption that σ ⊆

⋃
X. Therefore, every voronoi vertex is not

a positive vertex.
(⇐) Suppose there is no positive Voronoi vertex in VX(σ). We claim that

νb(σ) ⊆ b for all b ∈ X. This claim follows from the fact that νb(σ) is bounded
and is indeed the convex hull of its Voronoi vertices. So, by our assumption that
the Voronoi vertices are not positive, it is immediate that νb(σ) ⊆ b for any
b ∈ X. Since σ is partitioned into νb(σ) for all b ∈ X, it follows that σ ⊆

⋃
X.

Theorem 2. The procedure ConstructBalls(σ) terminates for any σ ∈ C and
each weighted point in B(σ) has positive weight.

5.2 Proof of Theorem 2

The proof of Theorem 2 is based on the following proposition and the fact that
each simplex is compact.

Proposition 3. Let Λ be a subset of σ whose boundary lies entirely in the
interior of σ. Then there exists a constant c > 0 such that for all p ∈ Λ,
MaxWeight(p) > c.

Proof. For a point p in the interior of a simplex σ ∈ C, MaxWeight(p) > 0, since
it has nonzero distance to all other faces of d-simplex in ψσ. Let p1, p2, . . . be a
convergent sequence of points in σ. Suppose {pi} converges to p. MaxWeight(·) is
a continuous function. So, limi→∞ MaxWeight(pi) = MaxWeight(limi→∞ pi) =
MaxWeight(p) = 0 if and only if p is in the boundary of σ. Since the boundary of
Λ lies entirely inside the interior of σ, the infimum of the set MaxWeight(Λ) > 0.
Thus, our proposition follows.

The fact that each simplex σ ∈ C is compact can be rephrased as follow:
For every sequence of points p1, p2, . . . , pn, . . ., where each pi ∈ σ, there exists a
Cauchy subsequence that converges to a point p ∈ σ. For the detail discussion
we refer the reader to [17].

We prove Theorem 2 by induction on dim(σ). The base case is dim(σ) = 0. It
is immediate that the procedure terminates and its weight is greater than zero.
Assume that for any simplex of dimension k − 1 Theorem 2 holds.

Subdividing Alpha Complex 195

Let dim(σ) = k. We apply the induction hypothesis on the (k − 1)-faces of
σ. Let {τ1, . . . , τk+1} be the (k − 1)-faces of σ. By induction hypothesis, the
procedure ConstructBalls(τi) terminates for each τi and balls in B(τi) have
weights greater than zero. Consider the space Λ = σ −

⋃
1≤i≤k+1 B(τi). Since

all balls in each B(τi) have weights greater than zero, the boundary of Λ lies
entirely inside interior of σ. By Proposition 3, there exists a constant c > 0 such
that MaxWeight of each point in this space is greater than c.

Assume the contrary that ConstructBalls(σ) does not terminate. Thus,
it inserts infinitely many balls into X, (ui, wi) for i = 0, 1, 2, . . . with (ui, wi)
is inserted first before (ui−1, wi−1). According to the procedure, the balls are
inserted at a positive vertex, thus, each ui is not inside the ball (uj , wj) with
i > j.

Since σ is compact there exists a Cauchy subsequence of centers of the balls
uk1 , . . . , ukn

, . . . with ki ≥ i. We apply the Cauchy sequence criteria with some
ε < γ ·c. Thus, there exists N such that |uki

ukj
| < ε < c for any i, j > N . Assume

ki < kj , this means ukj
is inside the ball (ukj

, wkj
) since wkj

> c. This contra-
dicts that ukj is a positive vertex. Therefore, the procedure ConstructBalls(σ)
terminates.

6 Object Approximation

Let O be a simplicial complex representing an object in R3 and C be its boundary
such that |C| is a piecewise linear 2-manifold. For a given real positive number ε,
we can construct a subdividing alpha complex of C such that the weighted points
produced have weights less than ε. We achieve this by the following modification.
Replace line 8 in procedure ConstructBalls(σ) with the instruction below:

if (γ ·MaxWeight(u) > ε) then w := ε else w := γ ·MaxWeight(u)

It should be obvious that our algorithm is still correct and able to terminate.
Let Δ = {δX ∈ DB | DX ⊆ |O|}, that is, all the Delaunay tetrahedra that are

inside O. Each Delaunay tetrahedron determines a sphere which is orthogonal
to all the four weighted points. We consider the collection of all such balls B′

and observe that
⋃
B′ makes a good approximation of O. We make the following

observations:

1. All balls in B′ have positive weights and does not intersect with C.
2. The space O −

⋃
B is fully covered by the balls in B′.

3. The boundary of
⋃
B′ is homeomorphic to |C|.

4. The Hausdorff distance from O to
⋃

b∈B′ b′ is less than ε.

7 Concluding Remarks

In this paper we propose an algorithm to compute an alpha complex that sub-
divides a simplicial complex. We also show how via subdividing alpha complex

196 H.-l. Cheng and T. Tan

we can approximate a closed polygonal object. It should be obvious that the
approximation method can be generalized fairly easily to arbitrary dimension.

Discussion. The subdividing alpha complex discussed here is the weighted al-
pha complex. Figure 3 shows that a simple example where unweighted subdivid-
ing alpha complex is not always possible.

α α

P

Q

Α C

Β

Fig. 3. The unweighted subdividing alpha cannot exist when ∠A < 2 arcsin(1
4). There

must exist a ball centered on A. Also, there must be some balls centered on the segments
AP and AQ. Those balls will inevitably intersect and create an extra edge in the alpha
complex

One point worth mentioning here is that the number of balls needed for
subdividing alpha complex does not depend on the combinatorial properties of
the given C. Figure 4 illustrates a relatively simple simplicial complex which
requires huge number of balls for its subdividing alpha complex.

w

l

Fig. 4. The simplicial complex consists of only four vertices and two parallel edges.
The number of weighted points needed for subdividing alpha complex will be greater
than 2×l

w
. So if l is much bigger than w then the number of weighted points needed

can be huge too

References

1. N. Amenta, S. Choi and R. Kolluri. The power crust, union of balls, and the medial
axis transform. Comput. Geom. Theory Appl., 19:(2-3), 127-153, 2001.

2. H.-L. Cheng, H. Edelsbrunner and P. Fu. Shape space from deformation. Comput.
Geom. Theory Appl. 19, 191-204, 2001.

3. S.-W. Cheng, T. K. Dey, E. A. Ramos and T. Ray. Quality meshing for polyhedra
with small angles. Proc. 20th Sympos. Comput. Geom., 290-299, ACM-SIAM, 2004.

Subdividing Alpha Complex 197

4. S.-W. Cheng and S.-H. Poon. Graded conforming Delaunay tetrahedralization with
bounded radius-edge ratio. Proc. 14th Sympos. Discrete Alg., 295-304, ACM-SIAM,
2003.

5. D. Cohen-Steiner, E. Colin de Verdière and M. Yvinec. Conforming Delaunay
triangulations in 3D. Proc. 18th Sympos. Comput. Geom., 199-208, ACM-SIAM,
2002.

6. H. Edelsbrunner. Weighted alpha shape. Report UIUCDCS-R-92-1760, Dept. Com-
put. Sci., Univ. Illinois, Urbana, Illinois, USA, 1992.

7. H. Edelsbrunner. Deformable smooth surface design. Discrete Computational Ge-
ometry. 21, 87-115, 1999.

8. H. Edelsbrunner, M. A. Facello and J. Liang. On the Definition and the Construc-
tion of Pockets in Macromolecules. Discrete Appl. Math., 88, 83-102, 1998.

9. H. Edelsbrunner, D. Letscher and A. Zomorodian. Topological Persistence and
Simplification. Discrete Comput. Geom., 28 (2002), 511-533.

10. H. Edelsbrunner and E. P. Mucke. Three-dimensional alpha shapes. ACM Trans.
Graphics, 13, 43-72, 1994.

11. H. Edelsbrunner and T. S. Tan. An upper bound for conforming Delaunay trian-
gulation. Discrete and Computational Geometry, 10:2, 197-213, 1991.

12. P. M. Hubbard. Approximating polyhedra with spheres for time-critical collision
detection. ACM Transactions on Graphics, 15: 3, 179-210, 1996.

13. N. Kruithof and G. Vegter. Approximation by skin surfaces. Proc. 8th Sympos.
Solid Modeling and Applications, 86-95, ACM-SIAM,2003.

14. M. Murphy, D. M. Mount and C. W. Gable. A point-placement strategy for
conforming Delaunay tetrahedralization. Proc. 11th Sympos. Discrete Alg., 67-74,
ACM-SIAM, 2000.

15. V. Ranjan and A. Fournier. Matching and interpolation of shapes using unions of
circles. Computer Graphics Forum, 15: 3, 129-142, 1996.

16. E. Schönhardt. Überdie Zerlegung von Dreieckspolyedern in Tetraeder. Mathema-
tische Annalen, 98, 309-312, 1928.

17. H. Schubert. Topologie. English edition, translated by S. Moran, London, 1968.
18. A. Sharf and A. Shamir. Feature-Sensitive 3D Shape Matching. Computer Graphics

International, 596-599, 2004.
19. J. R. Shewchuk. Sweep algorithms for constructing higher-dimensional constrained

Delaunay triangulations. Proc. 16th Sympos. Comput. Geom., 350-359, ACM-
SIAM, 2000.

20. J. R. Shewchuk. Updating and Constructing Constrained Delaunay and Con-
strained Regular Triangulations by Flips. Proc. 19th Sympos. Comput. Geom.,
181-190, ACM-SIAM, 2003.

Real-Counter Automata and Their Decision Problems�

(Extended Abstract)

Zhe Dang1,��, Oscar H. Ibarra2, Pierluigi San Pietro3, and Gaoyan Xie1

1 School of Electrical Engineering and Computer Science,
Washington State University, Pullman, WA 99164, USA

2 Department of Computer Science, University of California, Santa Barbara, CA 93106, USA
3 Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italia

Abstract. We introduce real-counter automata, which are two-way finite au-
tomata augmented with counters that take real values. In contrast to traditional
word automata that accept sequences of symbols, real-counter automata accept
real words that are bounded and closed real intervals delimited by a finite number
of markers. We study the membership and emptiness problems for one-way/two-
way real-counter automata as well as those automata further augmented with other
unbounded storage devices such as integer-counters and pushdown stacks.

1 Introduction

An automaton is a finite-state language acceptor, that is possibly augmented with other
unbounded storage devices like counters, stacks, and queues. Decision problems like
membership and emptiness have been extensively studied in automata theory in the past
50 years. The membership problem is to decide whether a given word is accepted by
an automaton, while the emptiness problem is to decide whether the language accepted
by an automaton is empty. Studies on the decision problems have been one of the fo-
cuses in automata theory and have already benefited almost every area in computer
science, including model-checking [7, 26] that seeks (semi-) automatic procedures to
check whether a system design satisfies its requirements. Algorithmic solutions to de-
cision problems like emptiness for various classes of automata (e.g., finite automata,
Buchi automata, tree automata, pushdown automata, etc.) have become part of the the-
oretical foundation of model-checking finite-state/infinite-state systems. For instance,
it is known that various model-checking problems such as LTL model-checking over
finite-state transition systems and reachability for some infinite-state transition systems
can be reduced to various emptiness problems (e.g., [26, 10]). Still, practitioners in
formal specification/verification keep challenging automata theorists with new models
emerging from verification applications. Some of the models, however, have not been

� The research of Zhe Dang and Gaoyan Xie was supported in part by NSF Grant CCF-0430531.
The research of Oscar H. Ibarra has been supported in part by by NSF Grants IIS-0101134,
CCR-0208595, and CCF-0430945. The research of Pierluigi San Pietro has been supported in
part by MIUR grants FIRB RBAU01MCAC, COFIN 2003012437-004.

�� Corresponding author (zdang@eecs.wsu.edu).

K. Lodaya and M. Mahajan (Eds.): FSTTCS 2004, LNCS 3328, pp. 198–210, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Real-Counter Automata and Their Decision Problems 199

well-studied in traditional automata theory. A typical example concerns the theory and
fundamental verification techniques for analyzing hybrid transition systems containing
both real variables (e.g., to model time, water level, etc.) and other unbounded discrete
data structures (e.g., to model the number of times a request is sent, the call stack of a
recursive process, etc.). To this end, in this paper, we study real-counter automata which
contain counters that take real values.

In contrast to a traditional word automaton, a two-way real-counter automaton works
on a real word provided on the input tape.A real word is a bounded and closed real interval
(like [0,10]), in which the two end points and a finite number of other given (intermediate)
points are called markers. Each marker as well as each segment between two consecutive
markers is labeled with a color drawn from a finite color set. The automaton scans through
the input real word in a two-way fashion, and can distinguish whether the current read
head is over a marker or within a segment. The automaton can also recognize the color of
the corresponding marker/segment. During the scan, each real-counter stays unchanged
or is incremented/decremented (according to the instruction that is being executed) for
an amount equal to the “distance” the head moves. The automaton can also test a real-
counter against 0.

In this paper, we focus on membership and emptiness problems for two-way real-
counter automata (R-2NCMs), In general, these problems are undecidable, since R-
2NCMs automata have Turing computing power. Therefore, we study some restrictions
that can be applied to the model to obtain decidable membership/emptiness problems.
For instance, we show decidability for R-2NFAs (i.e., R-2NCMs that do not have
real-counters). Another restriction is reversal-boundedness: a real-counter is reversal-
bounded (r.b. for short) if the counter changes modes between nondecreasing and non-
increasing for at most a fixed number of times during any computation. We use r.b.
R-2NCMs to denote R-2NCMs where each real-counter is reversal-bounded. We show
that the membership problem for r.b. R-2NCMs is decidable, while the emptiness prob-
lem is undecidable. The latter undecidability remains even when the input real-words
have only k markers, for a fixed k. We also study the decision problems for various
versions of one-way real-counter automata. In particular, we study one-way/two-way
real-counter automata that are further augmented with other unbounded discrete stor-
ages like integer-counters and/or a pushdown stack. Some of our decidability results
make use of mixed linear constraints over both integer variables and real variables and
the concept of mixed semilinearity over a language of real words. The concept gener-
alizes the traditional notion of semilinearity [23] over a language of words. This makes
it convenient for us to study various classes of one-way/two-way real-counter automata
that have a mixed accepting condition which is a Boolean combination of mixed linear
constraints over real-counters and integer-counters.

The rest of the paper is organized as follows. Section 2 defines basic notations and
introduces some known results on integer-counter automata. Section 3 studies the mem-
bership and emptiness problems for two-way real-counter automata. Section 4 presents
decidability results on one-way real-counter automata, also further augmented with
integer-counters and a pushdown stack. Section 5 is a brief conclusion, also outlining
possible applications of the real counter model to the verification of classes of hybrid
systems.

200 Z. Dang et al.

2 Preliminaries

Letm andnbe nonnegative integers. Consider formulaΣ1≤i≤maixi+Σ1≤j≤nbjyj ∼ c,
where each xi is a real variable, each yj is an integer variable, each ai, each bj and c are
integers, 1 ≤ i ≤ m, 1 ≤ j ≤ n, and ∼ is =, >, or ≡d for some integer d > 0. The
formula is a mixed linear constraint if ∼ is = or >. The formula is called a real linear
constraint if ∼ is = or > and each bj = 0, 1 ≤ j ≤ n. The formula is called a discrete
linear constraint if∼ is > and each ai = 0, 1 ≤ i ≤ m. The formula is called a discrete
mod constraint, if each ai = 0, 1 ≤ i ≤ m, and ∼ is ≡d for some integer d > 0.

A formula is a mixed (resp. real, Presburger) formula if it is the result of applying
quantification (∃) and Boolean operations (¬ and ∧) over mixed (resp. real, discrete)
linear constraints. It is decidable whether the formula is satisfiable. It is well-known
that a Presburger formula can be written (i.e., Skolemized) as a disjunctive normal form
of discrete linear constraints and discrete mod constraints. It is also known that a real
formula can be written as a disjunctive normal form of real linear constraints. >From the
results in [27], a mixed formula can also be written as a disjunctive normal form of real
linear constraints, discrete linear constraints, and discrete mod constraints, when a real
variable is separated into an integral part and a fractional part. We use N (resp. R) to
denote the set of nonnegative integers (resp. nonnegative reals). A subset S of Rm×Nn

(resp. Rm, Nn) is definable by a mixed (resp. real, Presburger) formula P if S is exactly
the solution set of the formula (i.e., P (v) iff v ∈ S, for all v).

It is well-known that a finite automaton augmented with two integer-counters (each
integer-counter can store a nonnegative integer and can independently be incremented
or decremented by 1 and tested against 0), called a two-counter machine, is equivalent
to a Turing machine [20]. Therefore, in order to obtain some decidable results, we
need to restrict the behavior of an integer-counter. One such restriction is to make an
integer-counter reversal-bounded [17]: there is a nonnegative integer r such that in
any computation, each integer-counter can change mode between nondecreasing and
nonincreasing for at most r times.

We will use the following notations: a DFA (resp. NFA) is a deterministic (resp.
nondeterministic) finite automaton with a one-way input tape; a DCM (resp. NCM) is
a DFA (resp. NFA) augmented with multiple integer-counters; DPDA (resp. NPDA)
is a deterministic (resp. nondeterministic) pushdown automaton with a one-way input
tape; DPCM (resp. NPCM) is a DPDA (resp. NPDA) augmented with multiple integer-
counters. 2DFA, 2NFA, 2NCM, 2NPCM, ... will denote the variants with a two-way
input tape. A two-way model is finite-crossing if there is a nonnegative integer k such
that in any computation, the read head crosses the boundary between any two adjacent
cells of the input tape no more than k times.

We use reversal-bounded NCM (resp. NPCM, 2NCM, 2NPCM, etc) to denote an
NCM (resp. NPCM, 2NCM, 2NPCM, etc) where the integer-counters are reversal-
bounded. Many classes of machines with reversal-bounded integer-counters have nice
decidable properties (see, e.g., [17, 18, 13]), and the languages accepted by some of
the one-way variants have the so-called semilinear property, which have been useful in
showing that various verification problems concerning infinite-state systems are decid-
able [10, 9, 11, 14, 12, 24].

Real-Counter Automata and Their Decision Problems 201

Recall the definition of semilinear sets. A set S ⊆ Nn is a linear set if there exist
vectors v0, v1, . . . , vt in Nn such that S = {v | v = v0 + a1v1 + · · ·+ atvt, ai ∈ N}.
A set S ⊆ Nn is semilinear if it is a finite union of linear sets. It is known that S is
a semilinear set if and only if it is definable by a Presburger formula. Therefore, the
emptiness, containment, and equivalence problems for semilinear sets are decidable.

Let Σ = {a1, a2, . . . , an} be an alphabet. For each word w in Σ∗, define the Parikh
map of w to be ψ(w) = (#a1(w), ...,#an

(w)), where each #ai
(x) is the number

of occurrences of ai in w. For a language L ⊆ Σ∗, the Parikh map of L is ψ(L) =
{ψ(w) | w ∈ L}. We say that a class L of languages over Σ is semilinear (or have the
semilinear property) if for every language L inL, ψ(L) is a semilinear set. Many classes
of languages are known to be semilinear; e.g., regular languages, context-free languages,
etc. The following theorem summarizes what is known about language acceptors with
reversal-bounded integer-counters.

Theorem 1

1. Languages accepted by r.b. NCMs, r.b. NPCMs, and r.b. finite crossing 2NCMs are
effectively semilinear [17]. Hence, their emptiness problem is decidable.

2. The emptiness problem for r.b. 2DCMs is undecidable, even when there are only two
reversal-bounded integer-counters and the input comes from a bounded language
(i.e., from a∗

1...a
∗
n for some fixed n and distinct symbols a1, ..., an) [17].

3. The emptiness problem for r.b. 2DCMs with only one reversal-bounded integer-
counter is decidable [18].

4. The emptiness problem for r.b. 2NCMs with only one reversal-bounded integer-
counter and with the input coming from a bounded language is decidable [13]. (The
case when the input is unrestricted is open.)

The language acceptors mentioned so far work on words (i.e., sequences of symbols).
In this paper, we will study language acceptors that work on real words, where each
“symbol" is a real line segment.

3 Two-Way Real-Counter Automata

Let A0, · · · , Ak be k + 1 real numbers with 0 = A0 < · · · < Ak for some k. We use

W = 〈A0, · · · , Ak〉 (1)

to denote the real line between A0 and Ak (i.e., the set {x : A0 ≤ x ≤ Ak}) asso-
ciated with markers A0, · · · , Ak. In W , A0 (resp. Ak) is called the left (resp. right)
end marker, and each Ai (1 ≤ i < k) is called an internal marker. Each open in-
terval Si = (Ai, Ai+1), 0 ≤ i < k, is called a segment with length Ai+1 − Ai. Let
C = {c1, · · · , cm} be a nonempty and finite set of colors. W is a real word if each
segment and each marker is associated with a color in C, written

〈A0, c
0〉〈S0, d

0〉 · · · 〈Ak−1, c
k−1〉〈Sk−1, d

k−1〉〈Ak, c
k〉, (2)

where each ci (0 ≤ i ≤ k) is the color of marker Ai, and each di (0 ≤ i < k) is the color
of segment Si. We use color(W) ∈ C∗ to denote the sequence c0d0 · · · ck−1dk−1ck of
colors in W . For the real word W and a color c,

202 Z. Dang et al.

– markerc(W) is the number of markers in W with color c;
– segc(W) is the number of segments in W with color c;
– lenc(W) is the total length of segments in W with color c.

The Parikh map of W is the following vector Parikh(W) in Nm ×Nm ×Rm:

(markerc1(W), · · · , markercm(W), segc1
(W), · · · , segcm

(W), lenc1(W), · · · , lencm(W))

A real language L is a set of real words. The Parikh map of L is defined to be
Parikh(L) = {Parikh(W) : W ∈ L}. We say that L is a mixed semilinear language
if Parikh(L) is definable by a mixed formula.

Before we proceed further, some more definitions are needed. We use color(L) to
denote the set {color(W) : W ∈ L}. Let L be a family of languages, e.g., regular,
context-free (accepted by NPDA), context-sensitive, 2NPDA languages, etc. L is an L
real language if color(L) is an L language over alphabet C and, for any real word W ,
only color(W) decides the membership of W in L (the length of each segment in W
does not matter); i.e., W ∈ L iff color(W) ∈ color(L). A homomorphism h is a pair
of mappings hmarker, hseg : C → C. We use h(W) to denote the real word obtained
from W by modifying the color c of each marker (resp. segment) into hmarker(c) (resp.
hseg(c)). We use h(L) to denote the set {h(W) : W ∈ L}. L is commutative if,
for any W , only Parikh(W) decides the membership of W in L; i.e., W ∈ L iff
Parikh(W) ∈ Parikh(L). A real word W is uniform if segments sharing the same
color have the same length. We use uniform(L) to denote all uniform W ∈ L. The
following results can be shown easily.

Theorem 2. (1). Let L be a family of semilinear languages (e.g., regular, context-free,
languages accepted by NFAs augmented with reversal-bounded integer-counters, etc.).
Then L real languages are mixed semilinear languages. (2). Let h be a homomorphism.
If L is a mixed semilinear language, then so is h(L). (3). Let L1 and L2 be two mixed
semilinear languages. IfL2 is commutative, thenL1∩L2 is also a mixed semilinear lan-
guage. (4). IfL is a commutative and mixed semilinear language, then so is uniform(L).
In fact, both of them share the same Parikh map.

A two-way nondeterministic finite automaton over real words (R-2NFA),M, con-
sists of a finite number of states, a two-way read head, and an input tape that stores a
real word in (1). WhenM is about to make a move, it “knows" the current state. Addi-
tionally, even thoughM does not know the exact position of the head, it knows whether
the head is right over a marker or is located within a segment, as well as the color of the
corresponding marker or segment. A move makes use of whatM knows and switches
M’s state, moves the head to the right or to the left (depending on the instruction of
the move) for some distance and stops at a neighboring marker or within the current
segment. Formally, an R-2NFA M is defined as a tuple 〈C,Q, q0, F, T 〉, where C is
the color set mentioned earlier, Q is the set of states inM, q0 is the initial state, and F
is the set of accepting states. The finite set T specifies the transitions or instructions in
M, where each transition is in the form 〈q, a, c,m, q′〉, where:

– q, q′ ∈ Q indicates that, after firing the transition, the state is switched from q to q′;

Real-Counter Automata and Their Decision Problems 203

– a ∈ {Marker, Segment} indicates whether the current position of the head is right
over a marker or within a segment;

– c ∈ C indicates the color of the corresponding marker or segment;
– m ∈ {Left Marker, Right Marker, Left Segment, Right Segment, Stay} in-

dicates how the head is going to move after firing the transition:
• when m = Stay, the head does not move;
• when a = Marker and m = Left Segment (resp. m = Right Segment), the

head moves into the closest segment to the left (resp. to the right);
• when a = Segment and m = Left Segment (resp. m = Right Segment),

the head moves within the current segment to the left (resp. to the right);
• when a = Segment and m = Left Marker (resp. m = Right Marker), the

head moves right over the closest marker to the left (resp. to the right).

At any moment whenM is running, ifM tries to move beyond the left end marker
or beyond the right end marker,M crashes.

The semantics of M is defined as follows. A configuration is a triple (W, q, x)
consisting of an (input) real word W , a state q, and a nonnegative real x indicating the
position of the head (i.e., the distance between the left end marker of W and the head).
Clearly, when the configuration is given, one can figure out, from the values of internal
markers given in W , whether the head is over a marker or located within a segment,
as well as the color (also given in W) of the corresponding marker or segment. Let

t = 〈q, a, c,m, q′〉 be a transition in T . The one-step transition relation
t→ of t is defined

as follows: (W, q, x) t→ (W, q̂, x̂) iff all of the following conditions are satisfied:

– q̂ = q′;
– Suppose that W is in the form of (1) for some k. One of the following two items is

true:
• for some 0 ≤ i ≤ k, x = Ai (i.e., the current head is over the marker Ai). Then
a = Marker and c is exactly the color of the marker. Additionally, one of the
following is true:
∗ m = Stay and x̂ = x (i.e., the head does not move);
∗ m = Left Segment. In this case, i > 0, and Ai−1 < x̂ < Ai. That is, the

current marker is not the left end marker and the new position of the head
is within the segment (Ai−1, Ai);
∗ m = Right Segment. In this case, i < k, and Ai < x̂ < Ai+1. That is,

the new position of the head is within the segment (Ai, Ai+1);
• for some 0 ≤ i < k, Ai < x < Ai+1 (i.e., the current head is within segment

(Ai, Ai+1)). Then a = Segment and c is exactly the color of the segment.
Additionally, one of the following is true:
∗ m = Stay and x̂ = x (i.e., the head does not move);
∗ m = Left Segment. In this case, Ai < x̂ < Ai+1 and x̂ < x. That is, the

head moves to the left but still within the same segment;
∗ m = Right Segment. In this case, Ai < x̂ < Ai+1 and x̂ > x. That is,

the head moves to the right but still within the same segment;
∗ m = Left Marker. In this case, x̂ = Ai. That is, the head moves to the

left marker of the segment;

204 Z. Dang et al.

∗ m = Right Marker. In this case, x̂ = Ai+1. That is, the head moves to
the right marker of the segment.

A run τ on input real word W is a sequence of one-step transitions, for some n,

(W, q1, x1) t1→ (W, q2, x2) t2→ · · · tn−1

→ (W, qn, xn).

The run is an accepting run if (W, q1, x1) is the initial configuration (i.e., q1 = q0
and x1 = A0 = 0) and (W, qn, xn) is an accepting configuration (i.e, qn ∈ F and the
head position xn is over the right end marker of W). W is accepted byM ifM has an
accepting run on input W . We use L(M) to denote all the real words accepted byM.
M is an R-NFA if the input tape is one-way; i.e,M does not move to the left during
any run. One can show,

Theorem 3. R-2NFAs as well as R-NFAs accept exactly regular real languages.

Similarly, one can generalize R-2NFAs and R-NFAs to R-2NPDAs and R-NPDAs
(where a pushdown stack is operated along the moves in R-2NFAs and R-NFAs).

Corollary 1. R-2NPDAs accept exactly 2NPDA real languages, and R-NPDAs accept
exactly context-free real languages.

Remark 1. Completely in parallel to NFAs, one can show that decision problems like
membership, emptiness, containment, complement, equivalence, universe, are all de-
cidable for R-2NFAs as well as R-NFAs. Similarly, membership and emptiness are
decidable for R-NPDAs.

A (free) real-counter is a nonnegative real variable that can be incremented, decre-
mented by some real amount and can be tested against zero. The counter is reversal-
bounded if it changes mode between nondecreasing and nonincreasing for a bounded
number of times. A two-way nondeterministic real-counter automaton with real input
(R-2NCM)M is an R-2NFA augmented with a number of real-counters. That is, each
instruction in the R-2NFA is augmented with an enabling condition and a flow. The en-
abling condition compares real-counters to 0; e.g., x1 > 0∧ x2 = 0. The flow specifies
whether a real-counter is incremented, decremented, or staying unchanged. The incre-
ment/decrement amount for each real-counter is exactly the same as the head position
change after running the instruction in the R-2NFA.M crashes whenever a real-counter
becomes negative. Without loss of generality, we assume that whenM accepts on an
accepting state, the read head is at the right end marker and all the real-counters are zero.
One can show that,

Theorem 4. The membership problem as well as the emptiness problem for R-2NCMs
is undecidable. The undecidability remains even when the R-2NCMs contain 2 real-
counters and work on input real words with only one segment.

Remark 2. It is open whether the membership/emptiness problems become decidable
when the R-2NCMs contain only one real-counter. This is in contrast to the fact that
the membership problem for 2NCMs containing only one integer-counter is decidable
while the emptiness problem is undecidable.

Real-Counter Automata and Their Decision Problems 205

From Theorem 4 and Remark 2, it is necessary for us to restrict the behavior of an
R-2NCMM in order to obtain some decidable decision problems. One such restriction
is to consider r.b. R-2NCMs by making each real-counter inM reversal-bounded. We
say that the input real words are k-bounded if they contain at most k segments. One can
show,

Theorem 5. The emptiness problem for r.b. R-2NCMs is undecidable. The undecidabil-
ity remains even when the R-2NCMs work on k-bounded input real words for some fixed
k.

It is open whether the emptiness problem for r.b. R-2NCMs becomes decidable
when the R-2NCMs contain only one reversal-bounded real-counter. However, we can
show that the emptiness problem is decidable when the r.b. real-counter makes only one
reversal.

Theorem 6. The emptiness problem for r.b.R-2NCMs is decidable when theR-2NCMs
contain only one reversal-bounded real-counter that makes only one reversal.

Let L be a real language consisting of all the reals words with exactly two segments
such that: the length of the first segment divided by the length of the second segment
results in an integer. Clearly, L is not a mixed semilinear language. However, one can
easily construct an automaton in Theorem 6 accepting L. Therefore, the automata in the
theorem can accept languages that are not mixed semilinear.

Membership for R-2NCM is decidable, while emptiness is not. We say that a r.b.
R-2NCM is with mixed accepting condition if at the end of an accepting run, the r.b.
real-counters satisfy a given mixed formula (instead of returning to 0).

Theorem 7. The membership problem for r.b. R-2NCMs is decidable, even for r.b. R-
2NCMs with a mixed accepting condition.

While by Theorem 5, emptiness is in general undecidable for r.b. R-2NCMs, using
Theorem 7, one can show that the emptiness problem for r.b. R-2NCMs is decidable
when the R-2NCMs work on input real words with only one segment.

Theorem 8. The emptiness problem for r.b.R-2NCMs is decidable when theR-2NCMs
work on input real words with only one segment.

Remark 3. According to Remark 2, we do not know whether Theorem 7 still holds when
the r.b. R-2NCMs are further augmented with a free real-counter that is not necessarily
reversal-bounded.

4 One-Way Real-Counter Automata

The real-counter automata discussed in Section 3 are equipped with a two-way input
tape. Studies in classic automata theory have shown that many decision problems be-
come decidable when a one-way (instead of two-way) input tape is considered. In this
section, we use R-NCM to denote an R-2NCMM that does not move to the left dur-
ing any computation (i.e., the input tape is one-way). We first show that in general the
membership/emptiness problems for R-NCMs are undecidable.

206 Z. Dang et al.

Theorem 9. The membership problem as well as the emptiness problem for R-NCMs
is undecidable. The undecidability remains even when the R-NCMs contain four real-
counters and work on input real words with only one segment.

From Theorem 9, it is necessary to consider whether the emptiness problem becomes
decidable when the real-counters in the R-NCMs are reversal-bounded.

Theorem 10. Languages accepted by r.b. R-NCMs augmented with a free real-counter
are mixed semilinear. Hence, the emptiness problem for the R-NCMs is decidable. The
decidability remains even when the R-NCMs are with a mixed accepting condition.

A R-2NCMM is finite-crossing if there is a fixed constant k such that during any
run ofM on any input, the read head never crosses a point within the input real word
for more than k times.

Theorem 11. Languages accepted by finite-crossing r.b. R-2NCMs are mixed semilin-
ear. Hence, the emptiness problem for finite-crossing r.b. R-2NCMs is decidable. The
decidability remains even when the R-NCMs are with a mixed accepting condition.

Remark 4. We do not know whether Theorem 11 still holds when the R-2NCMs are
further augmented with a free real-counter. Additionally, the results in Theorems 10 and
11 become undecidable when the input real words are uniform (segments with the same
color share the same length). The proof can be easily obtained following the proof of
Theorem 5.

A real-counter automaton can be further augmented with unbounded discrete stor-
age devices such as integer-counters, a pushdown stack, etc. In such an augmented
automaton, instructions can be added, each of which performs a state transition and an
integer-counter/stack operation while keeping other real-counters and the read head un-
changed. However, decidable results are hard to obtain for two-way automata equipped
with integer-counters.

Theorem 12. (1). The emptiness problem for R-2NFAs augmented with one integer-
counter is undecidable. The undecidability therefore remains if one replaces the integer-
counter with a pushdown stack. (2). The emptiness problem for R-2NFAs augmented
with two reversal-bounded integer-counters is undecidable.

By restricting the input real word to the R-2NFAs to be bounded, we can show:

Theorem 13. The emptiness problem for R-2NFAs augmented with a pushdown stack
and a number of reversal-bounded integer-counters is decidable when the R-2NFAs
operate on a bounded language.

Currently, we do not know whether the decidability remains in Theorem 13 when
the R-2NFAs are further augmented with a (reversal-bounded) real-counter. Turning to
the case of one-way input, we can generalize Theorem 10 as follows.

Theorem 14. (1). Languages accepted by r.b. R-NCMs augmented with r.b. integer-
counters are mixed semilinear. Hence, the emptiness problem for R-NCMs is decidable.
The decidability remains when the R-NCMs are with a mixed accepting condition over

Real-Counter Automata and Their Decision Problems 207

Table 1. Main decidability results (U=undecidable, D = decidable, Emp. = Emptiness, Mem.=
Membership)

r.b.R-2NCM r.b.R-NCM R-2NFA R-2NCM R-NCM

Emp.

U (also with bounded
input words). D with
one-segment words or
with finite-crossing or
with only 1 rb counter
making at most one
reversal

D (also with one
free real counter
and a mixed
accepting
condition)

D. U with one free
integer-counter or with 2
rb integer counters, but
D on bounded languages
also with a stack and rb
integer counters

U
(already
with 2
free
counters
and one-
segment
words)

U
(already
with 4
free
counters
and one-
segment
words)

Mem.
D (also with a mixed
accepting condition)

D also with r.b.
integer counters
and one
pushdown stack

D

the real-counters and the integer-counters. (2). The membership problem for r.b. R-
2NCMs augmented with reversal-bounded integer-counters and a pushdown stack is
decidable. The decidability remains when the R-2NCMs are with a mixed accepting
condition over the real-counters and the integer-counters. (3). The emptiness problem
for r.b. R-NCMs augmented with a free real-counter, reversal-bounded integer-counters
and a pushdown stack is decidable.

Remark 5. Theorem 14(1) can be generalized to finite-crossing R-2NCMs. Also, as in
Remark 4, the results in Theorem 14 become undecidable when the input real words are
uniform. The proof can also be easily followed from the proof of Theorem 5.

Theorem 14 (2) is interesting, since it entails the decidability of emptiness for R-
NFAs augmented with a free real-counter and a free integer-counter. This is in contrast
to the undecidability result when the real-counter is replaced with an integer-counter.

5 Conclusions

In this paper, we introduced real-counter automata, which are two-way finite automata
augmented with counters that take real values. In contrast to traditional word automata
that accept sequences of symbols, real-counter automata accept real words that are
bounded and closed real intervals delimited by a finite number of markers. We studied
the membership and emptiness problems for one-way/two-way real-counter automata as
well as those automata further augmented with other unbounded storage devices such as
integer-counters and pushdown stacks. The main results are summarized in the following
table.

Results obtained in the previous sections can be useful in the area of formal ver-
ification, in particular for hybrid systems that contain operations on both continuous
variables and discrete variables. The model itself may not be suitable for directly mod-
eling hybrid systems. However, a different approach may be followed, by using the real
counter model to study properties of hybrid systems.

208 Z. Dang et al.

Our results on real-counter automata may be used to investigate reachability prob-
lems for a class of finite-state programs augmented with real-counters. Such a program
is capable of incrementing/decrementing the real-counters synchronously (for the same
amount that is nondeterministically chosen) and comparing a real-counter with an in-
teger constant. For instance, let P be a finite-state program containing a real-counter
x and an integer-counter y. An instruction in P , besides its state transition, can incre-
ment/decrement x by some (nondeterministically chosen) amount. An instruction can
also increment/decrement y by 1. Additionally, both x and y can be tested against a
given integer constant. This program may model a discrete controller regulating one
continuous, bounded physical variable (such as the water level in a reservoir) monitored
only at discrete steps and measured with finite precision. The exact law governing the
real variable may not be known. The difference between the measured value and the
actual value may be considered as a noise, potentially disrupting system behavior.

The following reachability problem may be shown to be decidable: starting from a
given state in P with both counters are 0, can P reach a designated state during which x
is always bounded between two constants (e.g., 0 and 10), and when the designated state
is reached, a linear constraint such as 2x−3y+4z > 5∧3x+y > 6z is satisfied? Here
z denotes the total amount of increments made to the real-counter x. The decidability
derives immediately from one of the results in the paper, namely the decidability of
the membership problem for r.b. R-2NCMs, with a mixed linear accepting condition,
augmented with additional reversal-bounded integer-counters and a pushdown stack.

Our model of real-counter automata and the decidability results are new and are
related to but disjoint with the existing results on hybrid automata. The above decidability
result cannot be obtained from existing results on computing transitive closures for a
restricted class of hybrid systems (e.g., [25, 5, 15, 8]). The decidability does not follow
from decidable models of hybrid automata [1, 16] either. For instance, some decidable
results exist for restricted hybrid automata (see, e.g., timed automata [2], some multirate
automata [1, 21], initialized rectangular automata [22], etc.). However, modeling the
amount z in the above reachability problem (recall that the z stands for the total amount
of increments made to the real-counter x) would require a stop-watch like variable. But
even under a simple set-up, it is known that timed automata augmented with one stop-
watch [22] is already undecidable. The decidable reachability cannot be derived from our
recent results [28] on a different model, called dense-counter machines, of real-counter
programs. In a dense-counter machine, each counter can be incremented/decremented
by 1 or some amount between 0 and 1. Additionally, the counter can be tested against 0.
The main result in [28] shows a decidable case of a dense-counter machine, which is not
strong enough to show the decidable reachability in the above mentioned example: the
real-counter x in the example can be compared to an integer constant (while in a dense-
counter machine, only comparisons to 0 are possible), and moreover the integer-counter
y is not allowed in a dense-counter machine.

Future work will be devoted to better understanding the applicability of real-counter
automata, and their relation with more established timed models, such as the timed
languages of [4] (also in the two-way version of [3]) and the data languages of [6], and
with decidable classes of hybrid systems, such as the Integration Graphs of [19].

Real-Counter Automata and Their Decision Problems 209

References

1. R. Alur, C. Courcoubetis, T. A. Henzinger, and P. Ho. Hybrid automata: An algorithmic
approach to the specification and verification of hybrid systems. In Hybrid Systems, volume
736 of Lecture Notes in Computer Science, pages 209–229. Springer, 1992.

2. R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, April 1994.

3. R. Alur and T. A. Henzinger. Back to the future: Towards a theory of timed regular languages.
In Proceedings of FOCS’92. IEEE press.

4. E. Asarin, P. Caspi, and O. Maler. Timed regular expressions. Journal of the ACM, 49(2):172–
206,.

5. B. Boigelot and P. Wolper. Symbolic verification with periodic sets. In Proceedings of the
6th International Conference on Computer Aided Verification, volume 818 of Lecture Notes
in Computer Science, pages 55–67. Springer-Verlag, 1994.

6. P. Bouyer, A. Petit, and D. Therien. An algebraic characterization of data and timed lan-
guages. In CONCUR’01, volume 2154 of Lecture Notes in Computer Science, pages 248–261.
Springer-Verlag, 2001.

7. E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM Transactions on Programming Languages
and Systems, 8(2):244–263, April 1986.

8. H. Comon and Y. Jurski. Multiple counters automata, safety analysis and Presburger arith-
metic. In CAV’98, volume 1427 of Lecture Notes in Computer Science, pages 268–279.
Springer, 1998.

9. Z. Dang. Pushdown time automata: a binary reachability characterization and safety verifi-
cation. Theoretical Computer Science, 302:93–121, 2003.

10. Z. Dang, O. H. Ibarra, T. Bultan, R. A. Kemmerer, and J. Su. Binary reachability analysis
of discrete pushdown timed automata. In Proceedings of the International Conference on
Computer Aided Verification (CAV 2000), volume 1855 of Lecture Notes in Computer Science,
pages 69–84. Springer, 2000.

11. Z. Dang, O. H. Ibarra, and R. A. Kemmerer. Generalized discrete timed automata: decidable
approximations for safety verification. Theoretical Computer Science, 296:59–74, 2003.

12. Z. Dang, O. H. Ibarra, and P. San Pietro. Liveness Verification of Reversal-bounded Multi-
counter Machines with a Free Counter. In Proceedings of the 20th International Conference
on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2001),
volume 2245 of Lecture Notes in Computer Science, pages 132–143. Springer, 2001.

13. Z. Dang, O. H. Ibarra, and Z. Sun. On the emptiness problems for two-way nondeterministic
finite automata with one reversal-bounded counter. In Proceedings of the 13th International
Symposium on Algorithms and Computation (ISAAC 2002), volume 2518 of Lecture Notes in
Computer Science, pages 103–114. Springer, 2002.

14. Z. Dang, P. San Pietro, and R. A. Kemmerer. Presburger liveness verification for discrete
timed automata. Theoretical Computer Science, 299:413–438, 2003.

15. L. Fribourg and H. Olsen. A decompositional approach for computing least fixed-points of
Datalog programs with Z-counters. Constraints, 2(3/4):305–335, 1997.

16. T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: A Model Checker for Hybrid Systems.
In O. Grumberg, editor, Proceedings of the 9th International Conference on Computer Aided
Verification, volume 1254 of Lecture Notes in Computer Science, pages 460–463. Springer-
Verlag, 1997.

17. O. H. Ibarra. Reversal-bounded multicounter machines and their decision problems. Journal
of the ACM, 25(1):116–133, January 1978.

210 Z. Dang et al.

18. O. H. Ibarra, T. Jiang, N. Tran, and H. Wang. New decidability results concerning two-way
counter machines. SIAM J. Comput., 24:123–137, 1995.

19. Y. Keste, A. Pnueli, J. Sifakis, and S. Yovine. Integration graphs: A class of decidable hybrid
systems. InWorkshop on Theory of Hybrid Systems, volume 736 of Lecture Notes in Computer
Science, pages 179–208. Springer-Verlag, 1992.

20. M. Minsky. Recursive unsolvability of Post’s problem of Tag and other topics in the theory
of Turing machines. Ann. of Math., 74:437–455, 1961.

21. X. Nicollin, A. Olivero, J. Sifakis, and S.Yovine. An approach to the description and analysis
of hybrid systems. In Hybrid Systems, volume 736 of Lecture Notes in Computer Science,
pages 149–178. Springer, 1992.

22. A. Puri P. Kopke, T. Henzinger and P. Varaiya. What’s decidable about hybrid automata? 27th
Annual ACM Symposium on Theory of Computing (STOC’95), pages 372–382, 1995.

23. R. Parikh. On context-free languages. Journal of the ACM, 13:570–581, 1966.
24. P. San Pietro and Z. Dang. Automatic verification of multi-queue discrete timed automata.

In Proceedings of the 9th Annual International Computing and Combinatorics Conference
(COCOON 2003), volume 2697 of Lecture Notes in Computer Science, pages 159–171.
Springer, 2003.

25. P. Z. Revesz. A closed form for datalog queries with integer order. volume 470 of Lecture
Notes in Computer Science, pages 187–201. Springer, 1990.

26. M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verification
(preliminary report). In Proceedings 1st Annual IEEE Symp. on Logic in Computer Science,
LICS’86, Cambridge, MA, USA, 16–18 June 1986, pages 332–344, Washington, DC, 1986.
IEEE Computer Society Press.

27. V. Weispfenning. Mixed real-integer linear quantifier elimination. Proc. Intl. Symp. on
Symbolic and Algebraic Computation, pages 129–136, Vancouver, B.C., Canada, July 29-31,
1999.

28. G. Xie, Z. Dang, O. H. Ibarra, and P. San Pietro. Dense counter machines and verification
problems. In Proceedings of the 15th International Conference on Computer Aided Veri-
fication (CAV 2003), volume 2759 of Lecture Notes in Computer Science, pages 163–175.
Springer, 2003.

Adjunct Elimination Through Games
in Static Ambient Logic
(Extended Abstract) �

Anuj Dawar1, Philippa Gardner2, and Giorgio Ghelli3

1Cambridge University
2Imperial College, London

3Pisa University

Abstract. Spatial logics are used to reason locally about disjoint data
structures. They consist of standard first-order logic constructs, spa-
tial (structural) connectives and their corresponding adjuncts. Lozes has
shown that the adjuncts add no expressive power to a spatial logic for
analysing tree structures, a surprising and important result. He also
showed that a related logic does not have this adjunct elimination prop-
erty. His proofs yield little information on the generality of adjunct
elimination. We present a new proof of these results based on model-
comparison games, and strengthen Lozes’ results. Our proof is directed
by the intuition that adjuncts can be eliminated when the corresponding
moves are not useful in winning the game. The proof is modular with
respect to the operators of the logic, providing a general technique for
determining which combinations of operators admit adjunct elimination.

1 Introduction

Spatial logics have been introduced to provide local reasoning about disjoint
data structures: O’Hearn and Reynolds have developed a new program logic
(the separation logic) for low-level programs that manipulate RAM data struc-
tures, based on the bunched logic of O’Hearn and Pym [1]; Cardelli, Gardner and
Ghelli have developed techniques for analysing and manipulating tree structures
(such as XML), based on the ambient logic of Cardelli and Gordon [2–4]. These
logics extend first-order logic with “spatial” connectives and their corresponding
adjuncts. The spatial connectives allow us to reason locally about disjoint sub-
structures. The adjuncts are used to obtain weakest pre-conditions for a Hoare
logic for updating heaps [5], an elegant proof of the Schorr-Waite algorithm [6],
and specifications of security properties of ambients [4].

We study adjunct elimination results for spatial logics. Lozes has recently
proved that adjuncts add no expressive power to the ambient logic for specifying
properties about trees with hidden names [7]. This result is fascinating as, for

� A preliminary version of this work was presented at the LICS’04 workshop LRPP.

K. Lodaya and M. Mahajan (Eds.): FSTTCS 2004, LNCS 3328, pp. 211–223, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

212 A. Dawar, P. Gardner, and G. Ghelli

the logic without adjuncts, validity is undecidable while model-checking is in
PSPACE, while for the logic with adjuncts, validity can be reduced to model-
checking, suggesting that adjuncts are powerful. However, Lozes proof is not
modular with respect to the operators of the logic. This means that the proof
is not particularly illuminating and it is difficult to determine which variants of
the logic enjoy the adjunct-elimination property.

We take a different approach. We provide a natural adaptation of Ehrenfeucht-
Fräıssé games to the ambient logic, and use these games to provide a modular
proof and an intuitive explanation of Lozes’ results. Ehrenfeucht-Fräıssé games
are two-players games, played on a pair of structures (in our case trees) T1 and
T2, where one player Spoiler aims to show that the two structures are different
while the other player Duplicator aims to show that they are similar. The num-
ber of moves in the game is determined by a fixed rank. Each move corresponds
to an operator in the logic. At each move, Spoiler selects one of the trees and
makes a move to which Duplicator must respond in the other tree. Spoiler wins
if Duplicator has no reply. Duplicator wins if Spoiler runs out of moves without
having forced a win. A winning strategy for Duplicator implies that the two trees
cannot be distinguished by any sentence of the corresponding rank. Such games
have previously been used for proving inexpressivity results for a variety of logics
(see, for instance [8]). Here, we use them as tool for establishing a translation.

Our adaptation of the game to spatial logics is natural, reinforcing our view
that spatial logics are themselves natural. For example, the standard composition
operators A |B or A ∗ B declare that the data structure can be split into two
parts, one part satisfying A and the other B. The corresponding game move is:
Spoiler chooses one of the two structures (here called boards) and splits it into
two disjoint boards; Duplicator answers by splitting the other board into two
corresponding boards; Spoiler then chooses on which pair to continue playing
the game. The standard adjoint operators A " B and A −∗ B declare that
whenever the data structure is put into a composition context that satisfies A
then the result satisfies B. The corresponding game move is based on choosing
a context to add to each board and going on either with the contexts or with
the extended boards. Our proof is based on the intuition that adjuncts can be
eliminated if extending a tree does not help Spoiler win, as Duplicator can respond
by extending the other tree identically.

We prove soundness and completeness results for our games: that is, Spoiler
has a winning strategy with rank r if and only if there is a logical sentence of rank
r that can distinguish between the two trees. One feature of the games we define
is that the rank (of a formula or a game) is more refined than just a number.
This helps us to extend Lozes’ result, by showing that any sentence admits an
adjunct-less equivalent of the same rank. This preservation of rank is intriguing,
as model-checking for the logic without adjuncts is decidable while that for
the logic with adjuncts is undecidable. This implies that the translation from a
formula with adjuncts to an equivalent one without adjuncts is not computable.
However, the preservation of rank implies that the uncomputability is not due
to an unbounded increase in size of the formula.

Adjunct Elimination Through Games in Static Ambient Logic 213

Our elimination results focus on a spatial logic for analysing tree structures
with private names (using the hiding quantification and appears construct). A
natural question is whether the result holds in the analogous logic with existential
quantification. We prove adjunct non-elimination in the presence of existential
quantification, regardless of the additional logical operators present. In contrast,
Lozes simply provides a specific counterexample for a logic with existential quan-
tification and appears operator, and, moreover, the counterexample relies on the
absence of equality. Indeed, our game approach provides an intuitive insight into
the interaction of existential and hiding quantifiers with adjuncts.

2 Tree Model and Logic

2.1 Trees

We give a simple algebra to describe unordered, edge-labelled trees, where the
labels may be free (public) or hidden (private). These trees have been used to
form the basic structure of ambients [9] for describing public or private firewalls,
and web data [3] (similar to XML) for describing public or private information.

We assume a set N of names, ranged over by n,m, The set of trees, de-
noted T , is defined by the grammar

T ::= 0 the tree consisting of a single root node
n[T] the tree with a single edge from root,

labelled with free name n, leading to T
T |T the root-merge of two trees (commutative and associative)
(νn)T the tree T where label n is hidden.

The set of free names of a term is given by fn(T): for example, fn(n[T]) =
{n}∪ fn(T) and fn((νn)T) = fn(T)\{n}. The congruence on trees, analogous to
that given for π-processes, is an equivalence relation generated by the axioms in
Table 2.1 and closed with respect to the tree constructors. It says that edges
are unordered, and that the actual name of a private name is irrelevant, provided
that its difference with other names (private and public) is preserved.

Table 2.1. Congruence

T |U ≡ U |T (T |U) |V ≡ T | (U |V) T |0 ≡ T

m /∈ fn(T)⇒ (νn)T ≡ (νm)T{n←m} (νn1)(νn2)T ≡ (νn2)(νn1)T
n /∈ fn(T)⇒ T | (νn)U ≡ (νn)(T |U) (νn)0 ≡ 0
n1 �= n2 ⇒ n1[(νn2)T] ≡ (νn2)n1[T]

The following decomposition properties are standard.

214 A. Dawar, P. Gardner, and G. Ghelli

Lemma 1 (Decomposition)

1. If T |U ≡ n[V] then either T ≡ n[V] and U ≡ 0, or U ≡ n[V] and T ≡ 0.
2. If T |U ≡ V1 |V2, then ∃T1, T2,U1,U2. T1 |T2 ≡ T , U1 |U2 ≡ U , T1 |U1 ≡

V1, T2 |U2 ≡ V2.

2.2 Logic

We describe the (static) ambient logic for specifying properties about trees with
hidden names, which we denote in this paper by L. It has been used to analyse
security properties for ambients [4], and to declare typing properties in a pattern-
matching language for manipulating web data [3]. It consists of the Boolean
connectives, additional spatial (structural) connectives and their corresponding
adjuncts from the propositional ambient logic, and the less familiar hiding quan-
tifier Hx. for analysing private names and appears operator c©n declaring that
n occurs free [10].

Definition 1. The set A of the formulae of L is defined by the following gram-
mar, where pebble η stands for either a name n∈N or a name variable x∈X :

A,B ::= 0 | η[A] | A |B | A ∧ B | ¬A | T | A@η | A " B | Hx.A | c©η

The satisfaction relation T � A between trees in T and closed formulae in L is
defined in Table 2.2. The relation T � A |B specifies that T can be split into two
trees satisfying A and B respectively. For example, the formula n[T] | ¬0 means
that a tree can be split into an edge n with an unspecified subtree satisfying the
true formula T, and a non-empty tree satisfying the formula ¬0. The order of
edges is irrelevant, since satisfaction is closed with respect to tree isomorphism.

The location adjunct A@n states that property A holds when the tree is
put under edge n. The composition adjunct A " B specifies that whenever we
compose a tree satisfying A to the tree being analysed, then the result satisfies
B. For example, if formula attacker specifies what an attacker can do, then
T � attacker"A states that, for any attacker O described by attacker, the system
O |T must satisfy A (for example, secret names are not communicated).

A tree T satisfies Hx.A if T ≡ (νn)T ′ and T ′{n←m} � A{x←m}, for some
fresh m. Hence, Hx. quantifies x over the private names in T . However, m may
be also bound to a private name that is not in fact used in T , since T ≡ (νn)T
when n /∈ fn(T). The appears construct c©n can be used to prevent this possibility.
In particular, T � Hx. (c©x ∧ A) states that T ≡ (νm)T ′, T ′{n←m} � A{x←
m}, and n∈ fn(T ′). Thus, the private name structure can be fully analysed by
the logic.

The definition of free variables is standard: variable x is free in x[A], c©x,
A@x, and the hiding quantification Hx.A binds x in A. A sentence is a formula
where no variable is free. We use fv(A) to denote all the free variables in A, and
fn(A) to denote all the free names in A. Notice that, while name occurrences
can be bound in a term by (νn) , only variables can be bound in formulae.

Adjunct Elimination Through Games in Static Ambient Logic 215

Table 2.2. Satisfaction

T � 0 def⇔ T ≡ 0

T � n[A] def⇔ ∃U ∈ T . T ≡ n[U] ∧ U � A

T � A | B def⇔ ∃T1, T2 ∈ T . T ≡ T1 | T2 ∧ T1 � A ∧ T2 � B

T � A ∧ B
def⇔ T � A ∧ T � B

T � ¬A
def⇔ T 	� A

T � T always

T � A@n
def⇔ n[T] � A

T � A � B
def⇔ ∀U ∈ T . U � A ⇒ T | U � B

T � Hx. A
def⇔ ∃n∈(N \ fn(A)), U ∈T . T ≡ (νn)U ∧ U � A{x←n}

T � c©n
def⇔ n ∈ fn(T)

Lemma 2 (Basic Properties)

1. Satisfaction relation is closed wrt congruence: T � A ∧ T ≡ U ⇒ U � A.
2. Logical equivalence ≡L equals structural congruence: T ≡L T ′ ⇔ T ≡ T ′.

With the interpretation of hiding quantification Hx.A, it is intuitively clear
the property A{x←m} holds regardless of which fresh m is chosen. This uni-
versal property is formally stated in the following lemma, mimicking a previous
result in Gabbay and Pitts’ seminal work on abstract syntax with binders [11].

Lemma 3 (Universal Characterization of H)

T � Hx.A ⇔ ∀n∈N \ (fn(A) ∪ fn(T)). ∃U ∈T . T ≡ (νn)U ∧ U � A{x←n}

The hiding quantifier Hx.A and c©η are taken here as primitive in the orig-
inal spirit of [12]. Lozes focuses on the alternative formulation [10, 13], using
freshness quantification Nx.A and revelation η R©A introduced in [4]. The two
pairs can be mutually encoded, as we prove in the full paper [14]. Throughout
the paper, we comment on how our results adapt to the case with revelation.
In particular, revelation R© has an accompanying adjunct A�η. As part of our
adjunct-elimination results, we show that the revelation adjunct is also elim-
inable (Corollary 2). We report here the definition of Nx.A, n R©A, and A�n.
The interdefinability of Nx.A, n R©A and Hx.A and c©η is described in the full
paper.

Definition 2 (Alternative Operators)

T � Nx.A
def⇔ ∃n ∈ (N \ (fn(T) ∪ fn(A))). T � A{x←n}

T � n R©A
def⇔ ∃U ∈ T . T ≡ (νn)U and U � A

T � A�n
def⇔ (νn)T � A

216 A. Dawar, P. Gardner, and G. Ghelli

3 Games

We define an Ehrenfeucht-Fräıssé style game for L. We prove that the game is
sound and complete: that is, Spoiler has a winning strategy for a game on (T1, T2)
with rank r if and only if there is a sentence of rank r that distinguishes T1 from
T2. Each move in the game is associated with a specific operator from the logic.
Our results are modular with respect to these moves, which means that they
automatically extend to sublogics of L (as long as ∧, ¬ and T are present).

3.1 Ranks, Valuation, and Discrimination

The rank of a formula A is a function |A| that maps each operator (other than
∧ , ¬, T) to the depth of nesting of that operator in A. For example, the rank
|n[T] " (n[T] " 0)| is the tuple {0 �→ 1; [] �→ 1; " �→ 2; else �→ 0}. The operators
∧ , ¬, and T are not in the rank domain, since there are no associated game
moves. The leaf operators 0 and c© may only be mapped to 0 or 1, since they
do not nest.

We write r + r′, r − r′, r � r′, r ≥ r′ to denote pointwise sum, subtrac-
tion, lub, and comparison between ranks r and r′. We write δ(Op) for the Kro-
necker delta function: δ(Op) is the tuple {Op �→ 1; else �→ 0}. Hence, a rank
{" �→ 2;n �→ 1; else �→ 0} can be written 2δ(") + δ(n).

Table 3.3. Examples of Ranks

|n[0] | (n[0] |n[0])| = 2δ(|) + δ([]) + δ(0)
|Hx.¬0 ∧ m[x[0]]| = δ(H) + δ(0) + 2δ([])

For rank r, Ops(r) def= {Op : r(Op) > 0}. For rank r, set of names N , and set
of variables Y, L(r,N,Y) are the formulae of rank r which only use names and
variables in N and Y, i.e. L(r,N,Y) def= {A : |A| ≤ r, fn(A) ⊆ N, fv(A) ⊆ Y}.

We say that a tree T is distinguished from U by a sentence A when T � A and
U �� A. A sentence identifies a set of trees (those that satisfy it). We therefore
say that two trees are distinguished by a set P if one is in the set and the other
is not. To deal with open formulae, we define a valuation to be a finite partial
function f from N ∪ X into N , such that, for every n∈N , either f(n) = n or
f(n) is undefined. (This extension of valuations to names as well as variables is
used in Section 3.2.) For any valuation f : N ∪ X → N , let A{f} denote the
result of substituting x with f(x) in A for every x ∈ fv(A) for which f is defined.
We use dom(f) and ran(f) to denote the domain and range of f .

Definition 3. For any valuation f , T is f-discriminated from U by a formula
A with fv(A) ⊆ dom(f) iff T � A{f} and U �� A{f}.

The next lemma is standard, but crucial.

Adjunct Elimination Through Games in Static Ambient Logic 217

Lemma 4. For each rank r, finite set of names N , and finite set of variables
Y, a finite subset Ar,N,Y of L(r,N,Y) exists such that any formula in L(r,N,Y)
is equivalent to some formula in Ar,N,Y .

For f : N ∪ X → N , the formula Dr,N,f
T =

∧
{A∈Ar,N,dom(f) : T � A{f}}

is itself a formula of rank r and has the property that if U � Dr,N,f
T {f} then

U and T cannot be f -discriminated by a formula of rank r (Lemma 5). Hence,
Dr,N,f

T describes T as seen at rank r.

Lemma 5. For any T , U , f , r, N :

(∀A∈L(r,N, dom(f)). T � A{f} ⇔ U � A{f}) ⇔ U � Dr,N,f
T {f}

Before proceeding to define the games, we present a final lemma, which will
be crucial in the proof of Adjunct Elimination (Corollary 2).

Lemma 6. Let P be a set of trees such that, for any P -discriminated pair
(T,U), there is a sentence AT,U ∈L(r,N, ∅) that discriminates T from U . Then,
P is defined by a sentence A∈L(r,N, ∅).

Proof Hint. The disjunction of the descriptors Dr,N
U of the trees U in P defines

P : A
def=
∨
{B ∈ Ar,N,∅ | ∃U ∈P. B ⇔ Dr,N

U }.

3.2 Games

We define a game parametrised by a finite rank r. The game is played by two
players, Spoiler and Duplicator. At any stage of the game, the position consists of
a quadruple (T1, T2, f, r) where T1 and T2 are trees, f is an injective valuation,
and r is a rank. Initially, for some set of names N , f coincides with fN , the
function that sends every n ∈ N to itself and is undefined otherwise. While a
complete game position is given by (T1, T2, f, r), we will just write (T1, T2, f) or
(T1, T2) when the rest is clear, or irrelevant.

At each turn, Spoiler makes a move and Duplicator responds. Spoiler can
choose any move Op such that r(Op) > 0, provided that the move preconditions
are met. Either the Op move terminates the game, as described below, or the
game goes on with the Ti’s and f updated as prescribed by the move and with
r(Op) decreased by one. Spoiler wins if it plays a move which Duplicator cannot
answer (0, c©, and sometimes []). Duplicator wins when Spoiler has no move left
to play, because r has become zero on every Op which can be played.

In the description below, most moves begin with Spoiler choosing a tree T
between T1 and T2; in these cases, U is used for the other tree.
0 move Spoiler chooses T so that T ≡ 0 and U �≡ 0, and wins.
[] move Spoiler chooses a tree T and a pebble η such that T ≡ f(η)[T ′]. If
U ≡ f(η)[U ′], the game continues with (T ′,U ′); otherwise, Spoiler wins.
| move Spoiler chooses T , and two trees T ′ and T ′′ such that T ≡ T ′ |T ′′.
Duplicator chooses U ′ and U ′′ such that U ≡ U ′ |U ′′. Spoiler decides whether the
game will continue with (T ′,U ′), or with (T ′′,U ′′).

218 A. Dawar, P. Gardner, and G. Ghelli

" move Spoiler chooses T and new tree T ′; Duplicator chooses new tree U ′.
Spoiler decides whether the game will continue with (T |T ′,U |U ′) or (T ′,U ′).
@ move Spoiler chooses a pebble η, and replaces T with f(η)[T] and U with
f(η)[U].
H move Spoiler chooses T , a name n not in fn(T) ∪ fn(U) ∪ ran(f), a variable
x /∈ dom(f), and a tree T ′ such that (νn)T ′ ≡ T . Duplicator chooses a tree U ′

such that (νn)U ′ ≡ U . The game continues with (T ′,U ′, (f ;x �→n)).
c© move Spoiler chooses T and η so that f(η) is in T but not in U , and wins.

The definition is easily extended to the operators for freshness, revelation
and the revelation adjunct (see [14]).

We may classify the moves according to their effect on the state of the game:

– [], 0, c© may end the game;
– H may extend f and change h-names to names;
– |, [] reduce the size of the board; @ and " may increase the board.

Indeed, one begins to see why adjunct moves may be useless. Spoiler is trying
to show that the two boards are different, while Duplicator aims to show that they
are similar enough. In a challenging game, Spoiler plays with a small rank over
two large boards with a small difference buried somewhere. A typical strategy
for Spoiler is “zooming in”: splitting the boards, removing edges, until the small
difference is exposed. In this setting, adjunct moves are quite useless: " and @
blur the difference between the two boards by extending both with isomorphic
trees (in a " move, Duplicator will typically choose a U ′ isomorphic to the T ′

chosen by Spoiler). This is the intuition that we are going to exploit in our
adjunct-elimination proof.

3.3 Soundness and Completeness

We state soundness and completeness results for our game. The proofs are in
the full paper [14]. The proofs are completely “modular”; for each move, they
only depend on the properties of the corresponding operator in the logic. This
means that the result holds for any sublogic of L, provided that it includes all
the operators that appear in r. Similarly, our results easily extend to the logic
with operators N, R© and �.

Lemma 7 (Game Soundness). If a sentence A ∈ L(r,N, ∅) exists such that
T � A ∧ U �� A, then Spoiler has a winning strategy for the game (T,U, fN , r).

Lemma 8 (Game Completeness). If Spoiler has a winning strategy for the
game (T,U, fN , r), then there exists A∈L(r,N, ∅) such that T � A ∧ U �� A.

4 Adjunct Elimination

We prove that any sentence can be transformed to an equivalent adjunct-free
sentence of the same rank, hence extending Lozes result which does not express

Adjunct Elimination Through Games in Static Ambient Logic 219

rank preservation. The basic idea is that, when Spoiler adds a context around one
board, Duplicator can answer by adding the same context around the other board;
whatever Spoiler does on the new context, Duplicator can mimic on the other
copy. Our result requires that r(0) is non-zero. This condition is not surprising,
since, for example, the formula n[T]"n[T] is logically equivalent to 0, and cannot
be expressed without adjuncts and without 0 itself. Recall that we focus on the
logic L with hiding and appears. Since our proofs are modular, the results also
hold for the logic without these constructs. We include hiding and appears to link
more closely to Lozes’ original work, and to make the comparison with the non-
eliminability of adjuncts in the presence of existential quantification (Section 5).
Our results simply extend to the logic L with the additional revelation adjunct
� [14]. We use DW (and SW) to denote the sets of game positions such that
Duplicator (and Spoiler) has a winning strategy.

Lemma 9. If (T,U, f, r)∈DW and r(0) > 0, then T ≡ 0 ⇔ U ≡ 0.

Theorem 1. If (T,U, f, r)∈DW and (T ′,U ′, f, r)∈DW for {0} ⊆ Ops(r) and
η ∈ dom(f), then:

(f(η)[T], f(η)[U], f, r) ∈ DW (1)
(T |T ′,U |U ′, f, r)∈DW (2)

Proof. (Sketch). The proof is by induction on r, and by cases on the possible
moves of Spoiler. We analyse each move Op that Spoiler may make on the bigger
board, and show that he cannot win under the hypothesis that he could not
win on the original boards. We only show here the cases Op = | and Op = ",
assuming that Spoiler chooses T ; the complete proof is in the full paper. When
we analyse a move Op, we write r− for r − δ(Op).
|, property (1): Spoiler splits f(η)[T] into two trees, which must be congruent

to f(η)[T] and 0 by Lemma 1(1). Duplicator splits f(η)[U] into f(η)[U] and
0. The game (0,0, f, r−) is in DW by game completeness (Lemma 8) (0 is
logically equivalent to 0). (T,U, f, r) ∈ DW implies that (T,U, f, r−) ∈ DW ,
hence (f(η)[T], f(η)[U], f, r−) ∈ DW by induction.
|, (2): Spoiler splits T |T ′ into two trees T1 and T2 which, by Lemma 1(2),

can be written expressed as T1 ≡ T ′
1 |T ′′

1 and T2 ≡ T ′
2 |T ′′

2 such that T ′
1 |T ′

2 ≡ T
and T ′′

1 |T ′′
2 ≡ T ′. Since (T,U, f, r) ∈ DW and (T ′,U ′, f, r) ∈ DW , Duplica-

tor has a response to a move by Spoiler in the game (T,U, f, r) where Spoiler
splits T into T ′

1 and T ′
2 and similarly for the game (T ′,U ′, f, r). Suppose the

moves for Duplicator in these two games involve splitting U into U ′
1 |U ′

2 (re-
spectively U ′ into U ′′

1 |U ′′
2), then by hypothesis Duplicator wins each of the

four games (T ′
1,U

′
1, f, r−), (T ′

2,U
′
2, f, r−), (T ′′

1 ,U ′′
1 , f, r−) and (T ′′

2 ,U ′′
2 , f, r−).

By induction hypothesis, this means that (T ′
1 |T ′′

1 ,U ′
1 |U ′′

1 , f, r−) ∈ DW and
(T ′

2 |T ′′
2 ,U ′

2 |U ′′
2 , f, r−) ∈ DW . Thus, splitting the tree U |U ′ as (U ′

1 |U ′′
1) |

(U ′
2 |U ′′

2) is a winning move for Duplicator as required.
" (1,2): Let C{T} be either T |T ′, or f(η)[T] and C{U} denote U |U ′, or

f(η)[U], respectively. Spoiler chooses a tree V to compose with C{T}. Duplicator
responds by adding the same tree to C{U}. If Spoiler chooses to proceed with

220 A. Dawar, P. Gardner, and G. Ghelli

(V, V), then Duplicator wins by game completeness (Lemma 8). Assume that
Spoiler chooses to proceed with (C{T} |V, C ′{U} |V, f, r−). (T,U, f, r) ∈ DW
and (T ′,U ′, f, r) ∈ DW imply that (T,U, f, r−) ∈ DW and (T ′,U ′, f, r−) ∈
DW , hence (C{T}, C ′{U}, f, r−) ∈ DW follows by induction, and hence
(C{T} |V, C ′{U} |V, f, r−) ∈ DW also follows by induction.

Corollary 1 (Move Elimination). If (T,U, f, r) ∈ DW , r� def= r � δ(0), and
{",@} ⊇ Ops(radj), then:

(T,U, f, r�) ∈ DW ⇒ (T,U, f, r + radj) ∈ DW
(T,U, f, r + radj) ∈ SW ⇒ (T,U, f, r�) ∈ SW

We can finally show that adjuncts do not add expressive power to the logic.
Not only that but, for each sentence containing adjuncts, there is an equivalent
adjunct-less sentence of a related rank. There are only a finite number of in-
equivalent sentences for each rank (Lemma 4), but it remains an undecidable
problem to determine which one is equivalent to a given sentence with adjuncts.

Corollary 2 (Adjunct Elimination). Any property that can be expressed by
a sentence in L(r + radj , N, ∅), where {",@} ⊇ Ops(radj), can be expressed by a
sentence in L(r � δ(0), N, ∅).

Proof. Let P be defined by a sentence A in L(r + radj , N, ∅). For each T ∈ P
and U /∈ P , by Game Soundness (Lemma 7), (T,U, fN , r + radj) ∈ SW . By
Corollary 1, (T,U, fN , r� δ(0)) ∈ SW . By Game Completeness (Lemma 8), this
implies that, for each P -discriminated pair T,U , there is a sentence BTU in
L(r � δ(0), N, ∅) that discriminates T from U . By Lemma 6, there is a sentence
B in L(r � δ(0), N, ∅) that defines P .

In the full paper we use the same technique to prove adjunct elimination for
the logic extended with revelation adjunct. Revelation adjunct allows c©n to be
expressed as (n[0] " ((¬(¬0 | ¬0))�n))@m (for any m �= n). For this reason, in
the revelation-adjunct version of Theorem 1 the hypothesis {0} ⊆ Ops(r) must
be strengthened to {0, c©} ⊆ Ops(r), and δ(c©) appears in the statement of the
adjunct elimination result, as follows.

Theorem 2 (Adjunct Elimination with). Any property that can be expressed
by a sentence in L(r + radj , N, ∅), where {",@,�} ⊇ Ops(radj), can be expressed
by a sentence in L(r � δ(c©) � δ(0), N, ∅).

5 Adjunct Non-eliminability for ∃
The hiding quantifier H is similar to existential quantification ∃. A natural ques-
tion is whether a similar adjunct elimination result holds for the logic with
existential quantification. In [7], Lozes gives a counterexample to show that ad-
juncts cannot be eliminated in a logic with both existential quantification and

Adjunct Elimination Through Games in Static Ambient Logic 221

c©. This result, although interesting, is weak since existential quantification is
not usually associated with c© and, moreover, the counterexample relies on the
absence of primitive equality from the logic. Here we complete the analysis, by
proving that adjuncts cannot be eliminated in a logic with ∃ and without c©,
regardless of the presence of equality.

Let L∃,� denote the (static) ambient logic with existential quantification and
the composition adjunct, and let L∃,= denote the corresponding logic without
the composition adjunct and with equality. We have shown that the parity of
trees is not definable in L∃,= (and, hence, neither in L∃), using a standard
game inexpressivity argument which we give in the full paper (Theorem 3). It
is however definable in L∃,�, a result due to Hongseok Yang and reported here
(Theorem 4).

Theorem 3 (No Parity in L∃,=). No sentence A in L∃,= expresses the prop-
erty that T is flat,1 differently-labelled, and has an even number of edges.

The L∃,� sentence used in Theorem 4 to describe parity in L∃,� is based on
the following sentences:

EachEdge(A) def= ¬(((∃y. y[T]) ∧ ¬A) | T)
Flat def= EachEdge(∃x.x[0])
Diff def= ¬(∃x.x[0] |x[0] |T)
Pairs def= EachEdge(∃x, y. c[x[0] | y[0]])
DiffP def= ¬∃x. (c[x[0] |x[0]] |T) ∨ (c[x[0] |T] | c[x[0] |T] |T)
A ∝ B

def= ¬(A " ¬B)

T � EachEdge(A) denotes that every top-level edge of T satisfies A. Hence,
T � Flat states that T is a flat-tree, and Flat ∧ Diff means that its edges have
different labels. Similarly, T � Pairs means that T is composed of c[n[0] |m[0]]
edges, while Pairs ∧ DiffP means that all second-level labels are mutually dif-
ferent. Finally, T � A ∝ B iff there exists U such that U � A and T |U � B.

Theorem 4 (Yang: Parity in L∃,�). The sentence

Even def= (Flat ∧Diff) ∧ ((Pairs ∧ DiffP) ∝ (∀x. x[0] |T ⇔ c[x[0] |T]))

defines the set of flat, differently-labelled trees with an even number of edges.

Proof. T � Even iff T is a flat tree where all the labels are different (expressed
formally by T � Flat ∧ Diff), and there exists U such that U � Pairs ∧ DiffP
and T |U � ∀x. x[0] |T ⇔ c[x[0] |T]. Hence, U has a shape

c[n1[0] |n2[0]] | . . . | c[n2k−1[0] |n2k[0]],

all the ni’s are different, and U contains an even number of them. Finally, T |U �
∀x. x[0] |T ⇔ c[x[0] |T] says that the labels of T are exactly the same as the
second-level labels of U , hence T has an even number of edges.

1 A ‘flat’ tree looks like n1[] | . . . | nj []; ‘differently labelled’ means ni 	= nj for i 	= j.

222 A. Dawar, P. Gardner, and G. Ghelli

Games offer an explanation why L∃,� is more expressive than L∃,=. Consider
a L∃,� strategy that corresponds to Yang’s sentence. Spoiler must distinguish
between even board T = n1[] | . . . |n2k[] and odd board U = m1[] | . . . |m2k+1[].
Spoiler adds the context V = c[n1[0] |n2[0]] | . . . | c[n2k−1[0] |n2k[0]] to the even
board. Now Duplicator is lost. He may add c[m1[0] |m2[0]] | . . . | c[m2k−1[0] |
m2k[0]] to the other board, but in this case there will be a name m2k+1 which
appears once in U |V , while every name (but c) appears exactly twice in T |V .
Now Spoiler can use ∃ to pebble that name and win.

In a game for L (with hiding and appears), such a strategy is not available
to Spoiler because only hidden names can be pebbled in that game, and no
hidden name can be shared between T and V above. Indeed, the key is that
a counterpart to Theorem 1(2) does not hold for L∃,� games. It is possible for
Duplicator to have a winning strategy on each of (T,U) and (T ′,U ′) while Spoiler
wins on (T |T ′,U |U ′) because of names shared between T and T ′.

6 Conclusions

We have investigated adjunct elimination results for spatial logics, by intro-
ducing game techniques for such logics. Our work provides a modular proof of
adjunct elimination which helps our understanding of why some combinations
of operators admit adjunct elimination while others do not. In particular, we
show the adjunct elimination results hold for a logic with hiding quantification
and appears (for reasoning about private and public names), and do not hold for
the analogous logic with existential quantification (for analysing shared names).
Another consequence of our proof is a rank preservation result that shows that
the elimination of adjuncts does not increase the rank of a sentence, which is
surprising as adjuncts cannot be computably eliminated.

References

1. O’Hearn, P., Pym, D.: The logic of bunched implications. Bulletin of Symbolic
Logic 5 (1999) 215–244

2. Cardelli, L., Ghelli, G.: TQL: A query language for semistructured data based on
the ambient logic. Mathematical Structures in Comp. Sci. 14 (2004) 285–327

3. Cardelli, L., Gardner, P., Ghelli, G.: Manipulating trees with hidden labels. In:
Proc. of FOSSACS’03, Warsaw, Poland. (2003) 216–232

4. Cardelli, L., Gordon, A.: Anytime, anywhere: modal logics for mobile ambients.
In: Proc. of POPL’00. (2000) 365–377

5. Ishtiaq, S., O’Hearn, P.: BI as an assertion language for mutable data structures.
In: Proc. of POPL’01. (2001) 14–26

6. Yang, H.: An example of local reasoning in BI pointer logic: the Schorr-Waite
graph marking algorithm. In: Proc. of SPACE’01 Workshop, London. (2001)

7. Lozes, E.: Adjuncts elimination in the static ambient logic. In: Proc. of Express’03,
Marseille. (2003)

8. Ebbinghaus, H.D., Flum, J.: Finite Model Theory. 2 edn. Springer (1999)

Adjunct Elimination Through Games in Static Ambient Logic 223

9. Cardelli, L., Gordon, A.: Mobile ambients. In: Proc. of FOSSACS’98, Springer-
Verlag (1998) 140–155

10. Cardelli, L., Gordon, A.D.: Logical properties of name restriction. In: Proc. of
TCLA’01, Krakow, Poland. Volume 2044 of LNCS., Springer (2001) 46–60

11. Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax with variable
binding. Formal Aspects of Computing (2002)

12. Caires, L.: A specification logic for mobility. Technical Report 4/2000,
DI/FCT/UNL (2000)

13. Caires, L., Cardelli, L.: A spatial logic for concurrency (Part I). In: Proc. of
TACS’01. Volume 2215 of LNCS. (2001) 1–37

14. Dawar, A., Ghelli, G., Gardner, P.: Adjunct elimination through games. (unpub-
lished)

On the Bisimulation Invariant Fragment of
Monadic Σ1 in the Finite

Anuj Dawar1 and David Janin2

1 University of Cambridge Computer Laboratory, Cambridge CB3 0FD, UK
anuj.dawar@cl.cam.ac.uk

2 LaBRI, Université Bordeaux I, 33405 Talence, France
janin@labri.fr

Abstract. We investigate the expressive power of existential monadic
second-order logic (monadic Σ1) on finite transition systems. In partic-
ular, we look at its power to express properties that are invariant under
forms of bisimulation and compare these to properties expressible in
corresponding fixed-point modal calculi. We show that on finite unary
transition systems the bisimulation invariant fragment of monadic Σ1 is
equivalent to bisimulation-invariant monadic second order logic itself or,
equivalently, the mu-calculus. These results contrast with the situation
on infinite structures. Although we show that these results do not ex-
tend directly to the case of arbitrary finite transition systems, we are still
able to show that the situation there contrasts sharply with the case of
arbitrary structures. In particular, we establish a partial expressiveness
result by means of tree-like tiling systems that does not hold on infinite
structures.

1 Introduction

The second author and Walukiewicz [5] showed in 1996 that any sentence of
monadic second-order logic (MSO) whose models are invariant under bisimula-
tion is equivalent to a sentence of Kozen’s modal μ-calculus (Lμ).

The importance of the theorem lies, on the one hand, in the fact that monadic
second-order logic is seen as a natural upper limit on the reasonable expressive
power of languages for the specification of behaviours of concurrent systems.
Indeed, almost all logics used in practice, such as LTL and CTL∗ are fragments
of this logic. On the other hand, bisimulation is a natural relation describing
the behavioral equivalence of processes. In speaking of behavioral specifications
expressed in MSO, it seems natural to restrict oneself to those that are invariant
under bisimulation. The theorem of Janin and Walukiewicz provides a syntactic
characterization of the properties that are bisimulation invariant. Looked at from
the other side, the theorem is also seen as an expressive completeness result for
the μ-calculus.

The methodology used in the proof of this theorem is based on automata
on infinite trees. Every transition system is equivalent by bisimulation to a tree

K. Lodaya and M. Mahajan (Eds.): FSTTCS 2004, LNCS 3328, pp. 224–236, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

On the Bisimulation Invariant Fragment of Monadic Σ1 in the Finite 225

and, on trees, the evaluation of MSO formulas can be expressed as the evalu-
ation of alternating tree automata. By considering trees that are, in a precise
sense, saturated one can transform automata to show that these formulas are
equivalent to formulas of the μ-calculus. This essential methodology has proved
productive in establishing variants of the original result. It is known, for instance,
that sentences of MSO that are invariant under counting bisimulation are equiv-
alent to Cμ—the modal fixed-point calculus with counting modalities [12, 4]. It
has also been shown that the existential fragment of MSO (which we denote
monadic Σ1) is, for bisimulation invariant properties, expressively equivalent to
N1—the fragment of the μ-calculus with only greatest fixed points [4].

However, it remains an open question whether a version of this expressive
completeness result is true if we restrict ourselves to finite structures. That is,
is it the case that every sentence of MSO that is bisimulation-invariant on finite
structures is equivalent, again on finite structures to a sentence of Lμ?

This statement has a weaker hypothesis and conclusion than the original
theorem and is therefore not a consequence of it. It has been the subject of
much recent investigation. The corresponding finite versions of the equivalence
between monadic Σ1 and N1 for bisimulation invariant properties and of MSO
and Cμ for counting bisimulation also remain open. One related result that is
known to carry over into the finite is the theorem of van Benthem (see [11])
that any first-order definable property that is invariant under bisimulation is
definable in propositional modal logic. It has been shown by Rosen [8] that this
statement is still true when we restrict ourselves to finite structures.

One reason why the question of the equivalence of these logics is so different
in the finite is that, once we restrict ourselves to finite structures, we no longer
have a tree model property. That is, it is no longer the case that every structure
is equivalent by bisimulation to a tree. In the general case, it is possible to
take the collection of all (saturated) infinite trees as a canonical class of models
that intersects every bisimulation equivalence class. Thus, as one is considering
formulae invariant under bisimulation, one can restrict oneself to this class and
on this class there are well-behaved automata models for the logics we consider.
Unfortunately, there is no class of finite structures that fulfills these conditions.

Main Results

In this paper, we are mainly concerned with the study of the bisimulation in-
variant fragment of monadic Σ1 in the finite.

We show that restricting ourselves to finite structures that are unary. i.e. in
which each node has a single successor, this fragment is as expressive as (the
bisimulation invariant fragment of) full monadic second order logic. In other
words, we obtain a complete characterization of the expressive power of the
bisimulation invariant fragment of MSO on such structures. As a corollary, the
correspondence between monadic Σ1 and N1 that holds on arbitrary (finite and
infinite) unary structures just fails in the finite.

226 A. Dawar and D. Janin

On finite structures that are not necessarily unary, however, the situation is
less clearcut. We obtain a counterexample to the equivalence of monadic Σ1 with
NC1 (the first level of the Cμ hierarchy) on finite structures, demonstrating that
this situation is distinct from the case of arbitrary (finite and infinite) systems.
We also show that monadic Σ1 is not as expressive as bisimulation-invariant
MSO, so the situation also differs from the unary case.

These two negative results leads us to consider tiling systems [10], which
are known to capture monadic Σ1 on finite structures. We show that when the
properties concerned are bisimulation invariant, simple tiling systems suffice.
More precisely, we show that if a sentence ϕ of monadic Σ1 is invariant under
bisimulation then there is a class of structures, including representatives of all
bisimulation classes, on which ϕ is characterized by a tree-like tiling system
of radius one (these terms are made precise below). One might expect that
this normal form could be further refined so that the tiles are what we call
forward looking. This would establish that bisimulation invariant properties of
monadic Σ1 can be expressed in N1. However, such a methodology would also
yield the result for the counting case, which is refuted by the counterexample
obtained on unary structures.

2 Background and Definitions

Models and Standard Logics

The logics we consider are interpreted in transition systems, also called Kripke
structures, or simply labeled directed graphs (in the sequel, when we use the
term graph, we mean a labeled directed graph). Fix a set A of actions and a set
Prop of atomic propositions. A transition system for A and Prop is a structure

K = 〈V, r, {Ea}a∈A, {pK}p∈Prop〉

with universe V (whose elements are called states), a distinguished element called
the root r ∈ V , binary relations Ea ⊆ V × V for each a ∈ A and unary relations
pK ⊆ V for each atomic proposition p ∈ Prop. For the sake of clarity, we confine
ourselves in this paper to vocabularies where A consists of a single action. We
then drop the subscript a on the binary relation E. All of our results apply
equally well to the more general case.

Such transition systems are usually used to interpret modal logics, which we
consider below. We also interpret standard predicate logics, in particular first-
order logic (FO) and monadic second-order logic (MSO) in transition systems.
In the sequel, we shall write ϕ(x1, · · · , xn) or simply ϕ(x̄) for an FO or MSO
formula with free first-order variables among x̄ = (x1, · · · , xn) regardless of the
free monadic predicate (or set) variables occurring in ϕ. More precisely, given
the set {X1, · · · , Xn} of all set variables occurring free in ϕ, we shall implicitly
and whenever required interpret the formula ϕ on transition systems with the
set of atomic proposition Prop′ = Prop ∪ {X1, · · · , Xn}.

On the Bisimulation Invariant Fragment of Monadic Σ1 in the Finite 227

Bisimulation and Counting Bisimulation

A directed (resp. undirected) path in a transition system K is a (finite or infinite)
sequence of vertices such that for any two consecutive vertices v1 and v2 in the
sequence one has (v1, v2) ∈ E (resp. (v1, v2) or (v2, v1) ∈ E). The directed (resp.
undirected) distance dd(v1, v2) (resp. d(v1, v2)) between two vertices v1 and v2
is the length of the shortest directed (resp. undirected) path from v1 to v2.

A directed (resp. undirected) cycle in K is a periodic infinite directed (resp.
undirected) path. Given an integer k, we say that a graph K is k-acyclic if any
undirected cyclic path in K contains at least k + 1 distinct vertices. Given two
transition systems K = 〈V, r, E, {pK}p∈Prop〉 and K′ = 〈V ′, r′, E′, {pK′}p∈Prop〉,
a bisimulation between K and K′ is a relation B ⊆ V ×V ′ such that, if (v, v′) ∈ B
then:

– for each p ∈ Prop, v ∈ pK ⇐⇒ v′ ∈ pK′
;

– for each w with (v, w) ∈ E there is a w′ with (v′, w′) ∈ E′ and (w,w′) ∈ B;
and

– for each w′ with (v′, w′) ∈ E′ there is a w with (v, w) ∈ E and (w,w′) ∈ B.

A counting bisimulation between K and K′ is a relation B ⊆ V × V ′ such
that, if (v, v′) ∈ B then:

– for each p ∈ Prop, v ∈ pK ⇐⇒ v′ ∈ pK′
;

– B contains a bijection between the sets {w : (v, w) ∈ E} and {w′ : (v′, w′) ∈
E′}.

Observe that any counting bisimulation is a bisimulation.
We say that K and K′ are (counting) bisimilar if there is a (counting) bisim-

ulation B between them with (r, r′) ∈ B. More generally, we say that two states
v ∈ K and v′ ∈ K′ (where K and K′ are not necessarily distinct) are (counting)
bisimilar if there is a (counting) bisimulation B between the two structures with
(v, v′) ∈ B.

Given a class C of transition systems, we say that an FO or MSO sentence ϕ
is (counting) bisimulation invariant on C when, for any two (counting) bisimilar
models K and K′ ∈ C one has K |= ϕ if, and only if, K′ |= ϕ. Accordingly, we say
that ϕ is bisimulation invariant in the finite when it is bisimulation invariant on
the class of finite structures.

Modal Logic and the Mu-calculus

The modal propositional logic (ML) consists of formulas built up from the propo-
sitions in Prop and the propositional constants true and false using the Boolean
connectives and the modalities � and �: i.e., for a formula α, �α and �α are
also formulas. For the semantics, we just note that K, v |= �α if, and only if,
there is a v′ with (v, v′) ∈ E such that K, v′ |= α (and dually for �α).

The modal depth of a modal formula is defined to be the maximal depth of
nesting of modalities in α, i.e. the modal depth of a modality free formula is
defined to be zero; if α is of modal depth k then the modal depth of �α or

228 A. Dawar and D. Janin

�α is k + 1; and the modal depth of a Boolean combination of formulas is the
maximum modal depth of any one of the formulas.

The modal μ-calculus Lμ is obtained by extending ML with a countable
collection of propositional variables X so that a variable by itself is a formula
and, if α is a formula and X a variable which occurs only positively (i.e., only
within the scope of an even number of negation signs) in α then μX.α and νX.α
are also formulas in which the variable X is bound. For the semantics, given a
structure K and an interpretation in K for all the free variables of α, we say
that K, v |= μX.α if v is in the least set X ⊆ V such that X ⇐⇒ α. Similarly
K, v |= νX.α if v is in the greatest fixed point defined by α.

A key feature of the modal logics ML and Lμ is that the properties they
express are bisimulation invariant. That is, if K and K′ are bisimilar then for
any formula α, K |= α if, and only if, K′ |= α.

There is a standard translation of formulas of ML into the first-order logic of
transition systems. That is, for each formula α of ML, there is a formula ϕα(x)
of first-order logic with one free first-order variable x (in the vocabulary with a
binary relation symbol E and unary relation symbols for each p ∈ Prop) that
defines in each K exactly the set of states in which α is true. Similarly, there is
a straightforward translation from Lμ to monadic second-order logic.

By results of van Benthem [11] and Janin and Walukiewicz [5] we know that
there are converses for these translations. That is, every property of transition
systems that is expressible in FO and is invariant under bisimulation is express-
ible in ML and any bisimulation-invariant property that is definable in MSO is
also definable in Lμ.

Using the equivalences �α ⇐⇒ ¬�¬α, νX.α ⇐⇒ ¬μX.¬α[¬X/X] and
De Morgan’s laws, it is possible to transform any formula of Lμ into negation
normal form, where negation signs only appear before propositional atoms. We
write N1 for the collection of formulas in negation normal form in which no
instance of the operator μ appears. Similarly, M1 is the collection of formulas
without ν. These are the bottom two levels of an alternation hierarchy which is
known to give strictly increasing expressive power (see [2]).

It is easily seen that when we translate Lμ to MSO, formulas of N1 yield ex-
istential MSO formulas (i.e., in prenex normal form, all second-order quantifiers
are existential) while formulas of M1 yield universal MSO formulas. By a result
of Janin and Lenzi [4] we get a converse of these statements for bisimulation-
invariant properties. That is, any bisimulation-invariant property definable in
existential MSO (also written as monadic Σ1) is definable in N1.

The counting modal logic and the counting μ-calculus Cμ are defined similarly
to ML and Lμ except the rules for � and � are replaced by: for each i ∈ IN, if α
is a formula then so are �iα and �iα. For the semantics, we say that K, v |= �iα
if there are at least i distinct v′ such that (v, v′) ∈ E and K, v′ |= α. We write
NC 1 (by analogy with N1) for the fragment of Cμ without least fixed-points.

In the sequel, we also use backward modalities �−1 and �−1, and backward
counting modalities �−1

i and �−1
i that are defined like the ordinary modalities

but with respect to the inverse edge relation E−1 in place of E. In the pres-

On the Bisimulation Invariant Fragment of Monadic Σ1 in the Finite 229

ence of backward modalities, the standard modalities are referred to as forward
modalities.

3 Monadic Σ1 on Finite Unary Graphs

In this section, we study the expressive power of monadic Σ1 on unary graphs.
We first review the straightforward relationship between (bisimulation classes
of) finite unary graphs and ultimately periodic infinite words. We establish that
monadic Σ1 in the finite is expressive enough to define all ω-regular languages.
Then we prove that, on finite unary graphs, the bisimulation (or counting bisim-
ulation) invariant fragment of monadic Σ1 is the same as the bisimulation in-
variant fragment of full MSO. These results contrast with the case of arbitrary
(finite or infinite) unary graphs where monadic Σ1 can only express topologically
closed regular languages.

A graph K is a unary graph if every vertex in K has a unique successor
under the relation E. Of course, the bisimulation class of a unary graph is
completely characterized by the infinite word (in the alphabet Σ = P(Prop))
that is described by the path emanating from the root. Thus, we can see any
bisimulation-invariant property of unary finite graphs as described by a language
of eventually periodic ω-words. So, given such a language L ⊆ Σω, and a class
of finite unary graphs C, we say that C is equivalent to L in the finite if:

– for any graph K ∈ C, there is a word wK ∈ L such that wK is the Σ-word
defined by the unique infinite path starting at the root of K.

– for any ultimately periodic word w ∈ L there is a graph Kw ∈ C such that
w is the Σ-word defined by the infinite path starting at the root of K.

By extension, we say that an MSO sentence ϕ is equivalent to L when the
class Cϕ of finite unary graphs it defines is equivalent to L. Note that if this is the
case then ϕ is invariant under counting bisimulation. Note further that on the
class of finite unary graphs, counting bisimulation coincides with bisimulation.

Theorem 1. For any regular ω-language L ⊆ Σω there is a (counting bisimula-
tion-invariant) monadic Σ1 formula ϕL equivalent to L in the finite.

Proof. Let L be an ω-regular language. First, one can show that that there is a
nondeterministic finite Büchi automaton AL = 〈Q,Q0, δ, F 〉 with set of states
Q, set of initial states Q0, transition function δ : Q×Σ → P(Q) and accepting
states F , that recognizes L and such that, for any infinite word of L of the form
u.vω, there is an initial state q0 ∈ Q0 and an accepting state q ∈ F such that,
there is a path in AL from state q0 to state q reading u (with q0 = q when u = ε),
and a cycle in AL from q to q reading v.

The formula ϕL can now be defined as follows: there is a collection of disjoint
sets Xq (q ∈ Q), such that: (i) r ∈ Xq0 for some q0 ∈ Q0; (ii) for each q ∈ Q
and x ∈ Xq, x has a single successor y and there is a state q′ ∈ δ(q, λ(x)) such
that y ∈ Xq′ , where λ(x) = {p ∈ Prop : p(x) holds}; and (iii) any element with

230 A. Dawar and D. Janin

two predecessors in
⋃

q∈Q Xq (and the root if it has one predecessor in
⋃

q∈Q Xq)
must belong to some Xq with q ∈ F .

One can check that ϕL defined in such a way (i) is counting bisimulation
invariant, (ii) does enforce that there is a unique path from the root and, (iii)
the word described by this path is accepted by the automaton AL. �

Since only topologically closed regular languages are definable in the level N1
of the mu-calculus hierarchy, this first theorem already shows that:

Corollary 2. There is a bisimulation invariant class of unary finite models de-
finable in monadic Σ1 that is not definable in N1.

One might expect a converse to Theorem 1 to hold. Indeed, we even prove a
stronger result.

Theorem 3. For any MSO formula ϕ, counting-bisimulation invariant on finite
graphs and true only on unary graphs, there is a regular language Lϕ ⊆ Σω

equivalent to ϕ in the finite.

The remainder of this section is dedicated to the proof of this theorem.
A unary graph K is called a lasso if the root of K has no predecessor and all

other vertices except one (called the knot) have exactly one predecessor while
the knot has exactly two predecessors.

Any lasso K is completely characterized by the two non empty finite words u
and v (in the alphabet Σ) that are described respectively by the (acyclic) path
from the root to the knot of K (excluding the knot) and the cyclic path from
the knot to itself (excluding the second occurrence of the knot). In the sequel,
we write Ku,v for such a lasso.

Observe that any finite unary graph is counting bisimilar to a lasso. More
precisely, it is counting bisimilar to the subgraph induced by the set of vertices
reachable from the root that forms (possibly after duplicating the root so that
it is distinct from the knot) a lasso.

We are now ready to start the proof of Theorem 3. Let ϕ be an MSO formula
as in Theorem 3.

Proposition 4. There is a finite set of pairs of regular languages (Ui, Vi)i∈I

such that, for any two words u and v ∈ Σ+, Ku,v |= ϕ if, and only if, there is
some i ∈ I such that u ∈ Ui and v ∈ Vi.

Proof. The mapping that maps any pair of non empty finite words (u, v) ∈
Σ+ × Σ+ to the lasso Ku,v is a FO-definable transduction. It follows, by an
extension of Shelah’s decomposition theorem [6–Theorem 11] that there is a
finite set of pairs of MSO formulas {(ϕi, ψi)}i∈I over finite Σ-words such that
for any two words u and v ∈ Σ+, Ku,v |= ϕ if and only if there is some i ∈ I such
that u |= ϕi and v |= ψi. By Büchi’s theorem, for all i ∈ I, the MSO-formulas
ϕi and ψi define the regular languages Ui and Vi we are looking for. �

Remark. One might think that Proposition 4 concludes the proof of the theorem.
Indeed, if Ku,v |= ϕ, then u.vω belongs to some Ui.V

ω
i so one might think that ϕ

On the Bisimulation Invariant Fragment of Monadic Σ1 in the Finite 231

is equivalent to the language
⋃

i∈I Ui.V
ω
i . However, this idea fails since, a priori,

nothing ensures that when an ultimately periodic word w belongs to some Ui.V
ω
i

then it is of the form u.vω with u ∈ Ui and v ∈ Vi so that Ku,v |= ϕ.
So far, we have not used the fact that ϕ is counting bisimulation invariant

on finite graphs.

Proposition 5. For any i ∈ I and any (u, v) ∈ Ui × Vi, there is a triple t =
(j, r, s) ∈ I ×Σ+ ×Σ+ such that:

1. r.sω = u.vω (hence Ku,v and Kr,s are counting bisimilar),
2. for all n > 0, r.sn ∈ Uj and sn ∈ Vj.

Proof. Let i, u and v be as above, so Ku,v |= ϕ. By invariance of ϕ, for each
k > 0, we also have Ku.vk,vk |= ϕ. Hence, by Proposition 4 for each k > 0 there is
some ik ∈ I such that (u.vk, vk) ∈ Uik

×Vik
. Since I is finite, there is some j ∈ I

such that j = ik for infinitely many k. Now, since both Uj and Vj are regular
languages and there are infinitely many k such that u.vk ∈ Uj and vk ∈ Vj there
must be some p > 0 such that u.vpn ∈ Uj and vpn ∈ Vj for all n > 0. Taking
r = u.vp and s = vp gives us the desired triple t. �

A triple t = (j, r, s) as in Proposition 5 is called special. Write S for the set
of all special triples.

To continue the proof of Theorem 3, we need some standard definitions from
formal language theory. Recall that the left congruence class [w]lL and the right
congruence class [w]rL of a finite word w ∈ Σ+ with respect to a language L ⊆ Σ+

are defined as the sets of words

[w]lL = {w′ ∈ Σ+ : ∀u ∈ Σ∗, u.w ∈ L⇔ u.w′ ∈ L}

and
[w]rL = {w′ ∈ Σ+ : ∀v ∈ Σ∗, w.v ∈ L⇔ w′.v ∈ L}

We know that if L is regular there are only finitely many distinct sets [w]lL
and [w]rL for w ∈ Σ∗ and each one is a regular language.

For any special triple t = (j, r, s) we define the languages

Dt = [r]rUj
.([s]lUj

∩ [s]rVj
) and Et = ([s]lUj

∩ [s]rVj
)

By construction, both languages Dt and Et are regular. Moreover:

Proposition 6. For any special triple t = (j, r, s), Dt ⊆ Uj, Et ⊆ Vj, Dt.E
+
t ⊆

Dt and E+
t ⊆ Et and, for any u and v ∈ Σ+, if u ∈ Dt and v ∈ Et then

Ku,v |= ϕ.

Proof. Immediate consequence of the constructions, Proposition 5 and Proposi-
tion 4. �

We now conclude the proof of Theorem 3 by proving the following proposition:

Proposition 7. The ω-regular language L =
⋃

t∈S Dt.(Et)ω is equivalent to ϕ.

232 A. Dawar and D. Janin

Proof. Assume that K |= ϕ for some finite model K. By assumption, K is unary
and counting bisimilar to some lasso Ku,v. We show that u.vω belongs to L
by applying Proposition 5. Indeed, this guarantees that there is a special triple
t = (j, s, r) such that u.vω = r.sω and, by construction, r.sω ∈ Dt.E

ω
t .

For the converse, let w be an ultimately periodic word in L. By definition of
L, this means that there is a special triple t = (j, r, s) such that w ∈ Dt.(Et)ω.
In other words, w = u1.w1 with u1 ∈ Ut and w1 ∈ V ω

t .
Now, since w is ultimately periodic so is w1 and thus, because Vt is regular,

w1 is of the form v1.v2 . . . vn.(vn+1 . . . vn+m)ω for some v1, . . . , vn+m ∈ Vt.
Defining u = u1.v1 . . . vn and v = vn+1 . . . vn+m, we have w = u.vω by

construction. Hence Kw is counting bisimilar to Ku,v. We also have u ∈ Dt and
v ∈ Et (applying Proposition 6) hence Ku,v |= ϕ and thus Kw |= ϕ. �

Putting Theorems 1 and 3 together gives the following corollary.

Corollary 8. Any MSO formula counting bisimulation-invariant on finite unary
graphs is equivalent to a monadic Σ1 formula.

Moreover, restricted to the class of unary graphs, the (counting or modal)
mu-calculus can define exactly the classes corresponding to ω-regular languages.
This gives us the following.

Corollary 9. The counting bisimulation-invariant fragment of monadic Σ1 on
finite unary graphs is equivalent to Lμ.

4 Monadic Σ1 on Arbitrary Finite Graphs

In this section, we aim at a characterization of the bisimulation invariant frag-
ment of monadic Σ1 on finite graphs. We establish two negative results that
demonstrate how this case differs from both the more restricted class of fi-
nite unary graphs and the wider class of arbitrary (finite or infinite) graphs.
Nonetheless, by means of a translation to tiling systems [10], we obtain a partial
characterization of this fragment.

Theorem 10. There is monadic Σ1 counting bisimulation invariant formula ϕ
that is not equivalent to a formula of the level NC1 of the counting mu-calculus.

Proof. The monadic Σ1 formula ϕL of Theorem 1 is counting bisimulation invari-
ant on all finite graphs, not just unary ones. Since any formula of NC1 defining
a regular language must define a topologically closed regular language, it suffices
to take for L a language that is not closed, e.g. L = (a + b)∗.bω. �

Theorem 11. There is a bisimulation invariant MSO formula that is not equiv-
alent (on finite graphs) to a bisimulation invariant monadic Σ1 formula.

Proof. We know [1] that directed reachability, though definable in monadic Π1 in
the finite, is not definable in monadic Σ1. Consider now the μ-calculus formula
p∧μX.(q∨�X) that defines the set of vertices satisfying p from which there is a

On the Bisimulation Invariant Fragment of Monadic Σ1 in the Finite 233

(directed) path to a vertex satisfying q. If there were an equivalent monadic Σ1
formula we would be able to define in monadic Σ1 the class of graphs in which a
distinguished target t is reachable from a source s. We would get this by replacing
p and q by formulas that define s and t respectively. �

We are now left with a direct attempt to characterize the expressive power
of the bisimulation invariant fragment of monadic Σ1 in the finite.

It is known (see, for instance, [9]) that monadic Σ1 formulas can only de-
fine local properties. Indeed, such formulas can be characterised by tiling sys-
tems [10], which are a generalization of automata operating on graphs rather
than strings or trees.

Given a positive integer k, we say an FO-formula ϕ is k-local around a first-
order variable x if it is equivalent to the formula obtained from ϕ by restricting
all quantifiers in ϕ to the k-neighborhood of x, i.e. replacing any subformula of
the form ∀yψ (resp. ∃yψ) in ϕ by one of the form ∀y(d(x, y) ≤ k) → ψ (resp.
∃y(d(x, y) ≤ k) ∧ ψ). A local formula is one that is k-local for some k.

Note for any modal (or counting modal) formula α of modal depth k, the FO
translation ϕα(x) is k-local around x. Indeed, it is k-local and forward-looking, in
that we can restrict the quantifiers to the directed k-neighborhood by replacing
∀yψ by ∀y(dd(x, y) ≤ k)→ ψ, etc.

Furthermore, when a sentence is (counting) bisimulation invariant, its truth
in a model only depends on the submodels induced by the vertices reachable
from the root. The following proposition is a consequence.

Proposition 12. Any (counting) bisimulation invariant sentence ϕ of monadic
Σ1 is equivalent, on the class of finite structures, to one of the form

∃X1 . . .∃Xl∀xϕ
where ϕ is local.

Proof. Immediate consequence of Theorem 3.4 in [9]. �

Adapting the terminology of Thomas [10], we call a monadic Σ1 formula of
this form a tiling system. The local formula ϕ in such a tiling system is called
a tiling constraint. When the tiling constraint is k-local, we say that k is the
radius of the tiling system. When the tiling constraint is equivalent to a modal
formula (with forward and backward modalities), we say that the tiling system
is tree-like. One can check that when no backward modalities occur in the tiling
constraint, a tiling system is just a closed (modal counting) alternating tree
automaton (see [4] for a precise definition).

Now, our aim is to push the construction that transforms a (counting) bisim-
ulation invariant tiling system into a tree automaton as far as it can go on finite
structures. We show that any such tiling system is equivalent to a tree-like tiling
system of radius 1 on a sufficiently rich class of graphs.

We say that a graph is k-acyclic when it contains no undirected cycle of length
less than k + 1. We first show that for any structure K and positive integer k,
we can find a k-acyclic structure that is counting bisimilar to K but contains no

234 A. Dawar and D. Janin

undirected cycles of length smaller than k. The construction is similar to that
of acyclic covers in [7].

Definition 13 (Powergraph). For a finite graph K = 〈V, r, E, {pK}p∈Prop〉
define its powergraph 2K to be the graph 2K = 〈V ′, r′, E′, {pK′}p∈Prop〉 defined
by V ′ = V × 2V (where 2V denotes the set of maps V → {0, 1}), r′ = (r, 0̄),
there is an edge E′ from a vertex (v, f) to a vertex (w, g) whenever (v, w) ∈ E
and g equals the function defined from f by taking, for each u ∈ V , g(u) = f(u)
when u �= w and g(w) = 1− f(w), and with, for each p ∈ Prop, pK′

= {(v, b̄) ∈
V ′ : v ∈ pK′}.

Proposition 14. Graphs K and 2K are counting bisimilar and, if K is k-acyclic
for some k then 2K is 2k-acyclic.

Proof. (sketch) The mapping h : V ′ → V that maps each vertex (v, f) in 2K to
the vertex h(v, f) = v in K induces a counting bisimulation. Now, consider an
undirected cycle in the graph 2K. Along any edge from (v, f) to (w, g), f and g
must differ in exactly one bit. Thus, for the cycle to return to its starting point,
all bits that are changed must flip at least twice. This then maps via h to a cyclic
path in K where all vertices occur at least twice. �

Corollary 15. For each positive integer k and every graph K, there is a k-
acyclic graph K′ counting bisimilar to K.

Proof. By iterating the powergraph construction. �

Let ϕ be a counting bisimulation invariant monadic Σ1 formula. By ap-
plying Proposition 12, we may assume that ϕ is a tiling system of the form
ϕ ≡ ∃X1 . . .∃Xl∀xψ with ψ k-local. The following proposition is straightfor-
ward from definitions:

Proposition 16. Let ψa be the k-local FO formula asserting that the k-neigh-
bourhood of x is acyclic. The formula ϕ is equivalent, over k-acyclic graphs, to
the formula, ϕ′ ≡ ∃X1 . . .∃Xl∀x(ψ ∧ ψa)

Now, we obtain the following

Theorem 17. Formula ϕ is equivalent on k-acyclic graphs to a formula ϕ′′ of
the form ϕ′′ ≡ ∃Y1 . . .∃Ym∀xψ′ with ψ′ a 1-local tree-like constraint.

Proof. (Sketch) The proof is based on the observation that the Hintikka type
(see [3]) of a tree centered on a node c is completely determined by the atomic
propositions that are true at c and the Hintikka types of the subtrees rooted at
the neighbours of c. Thus, by introducing a fresh set of second-order quantifiers
(logarithmic in the number of Hintikka types), it is not difficult to build the
formula ϕ′′. �

As the constraint ψ′ is tree-like of radius 1, it can be described by a counting
modal formula with forward and backward modalities.

On the Bisimulation Invariant Fragment of Monadic Σ1 in the Finite 235

Remark. If this formula were equivalent to one without backward modalities,
then one could show that we can obtain a formula θ of NC 1 that is equivalent
to ϕ on k-acyclic graphs. As ϕ is invariant under counting bisimulation on finite
structures by hypothesis and θ by definition and since the class of k-acyclic
graphs contains representatives of all bisimulation classes on finite structures, it
follows that θ and ϕ are equivalent on the class of all finite structures. Thus, we
would have proved that every formula of monadic Σ1 invariant under counting
bisimulation is equivalent to a formula of NC 1, contradicting Theorem 10.

5 Conclusions

On finite unary graphs, we provide a precise characterization of bisimulation-
invariant MSO. In this case, the structure of unary graphs is simple enough so
that standard techniques from mathematical logic and language theory apply.
Since unary graphs are closed under counting bisimulation, this also allows us to
show that on finite graphs in general, monadic Σ1 can express more counting-
bisimulation invariant properties than Cμ with only greatest fixed points.

In the general case the question of whether bisimulation-invariant MSO is
equivalent on finite structures to Lμ remains a challenging open problem. By
investigating this question at the first level of the monadic hierarchy we have
shown that the the problem is radically different to its counterpart on infinite
structures, while also being different to the restriction to unary structures.

We provide a translation of bisimulation-invariant monadic Σ1 formulas to
tree-like tiling systems on a sufficiently rich class of structures. However, it seems
that the use of backward modalities in such tiling systems cannot be eliminated
without passing to infinite structures. The relationship between these tiling sys-
tems and the μ-calculus needs to be investigated further out.

References

1. M. Ajtai and R. Fagin. Reachability is harder for directed rather than undirected
finite graphs. Journal of Symbolic Logic, 55:113–150, 1990.

2. J. Bradfield. The modal mu-calculus alternation hierarchy is strict. Theoretical
Computer Science, 195:133–153, 1998.

3. H-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, 2 edition, 1999.
4. D. Janin and G. Lenzi. On the logical definability of topologically closed recogniz-

able languages of infinite trees. Computing and Informatics, 21:185–203, 2002.
5. D. Janin and I. Walukiewicz. On the expressive completeness of the modal mu-

calculus with respect to monadic second order logic. In Conf. on Concurrency
Theory (CONCUR’96), pages 263–277. LNCS 1119, 1996.

6. J.A. Makowski and E. Ravve. Incremental model checking for decomposable stru-
tures. In J. Wiedermann and P. Hajek, editors, Mathematical Foundation of
Comp.Sci (MFCS’95), LNCS 969, pages 540–551, 1995.

7. M. Otto. Modal and guarded characterisation theorems over finite transition sys-
tems. In Proc. of the 17th IEEE Symp. on Logic in Computer Science (LICS),
pages 371–380, 2002.

236 A. Dawar and D. Janin

8. E. Rosen. Modal logic over finite structures. Journal of Logic, Language and
Information, 6:427–439, 1997.

9. T. Schwentick and K. Barthelmann. Local normal forms for first-order logic with
applications to games and automata. Discrete Mathematics and Theoretical Com-
puter Science, 3:109–124, 1999.

10. W. Thomas. Automata theory on trees and partial orders. In M. Dauchet
M. Bidoit, editor, TAPSOFT’97, pages 20–38. LNCS 1214, Springer-Verlag, 1997.

11. J. van Benthem. Modal Logic and Classical Logic. Bibliopolis, 1983.
12. I. Walukiewicz. Monadic second order logic on tree-like structures. In Symp.

on Theoretical Aspects of Computer Science, 1996. LNCS 1046. Full version in
Information and Computation 164 (2001) pp. 234-263,.

On the Complexity of Hilbert’s 17th Problem

Nikhil R. Devanur, Richard J. Lipton, and Nisheeth K. Vishnoi

College of Computing, Georgia Institute of Technology,
Atlanta GA 30332

Abstract. Hilbert posed the following problem as the 17th in the list
of 23 problems in his famous 1900 lecture:

Given a multivariate polynomial that takes only non-negative
values over the reals, can it be represented as a sum of squares
of rational functions?

In 1927, E. Artin gave an affirmative answer to this question. His
result guaranteed the existence of such a finite representation and raised
the following important question:

What is the minimum number of rational functions needed to
represent any non-negative n-variate, degree d polynomial?

In 1967, Pfister proved that any n-variate non-negative polynomial
over the reals can be written as sum of squares of at most 2n rational
functions. In spite of a considerable effort by mathematicians for over 75
years, it is not known whether n + 2 rational functions are sufficient!

In lieu of the lack of progress towards the resolution of this question,
we initiate the study of Hilbert’s 17th problem from the point of view
of Computational Complexity. In this setting, the following question is
a natural relaxation:

What is the descriptive complexity of the sum of squares rep-
resentation (as rational functions) of a non-negative, n-variate,
degree d polynomial?

We consider arithmetic circuits as a natural representation of rational
functions. We are able to show, assuming a standard conjecture in com-
plexity theory, that it is impossible that every non-negative, n-variate,
degree four polynomial can be represented as a sum of squares of a small
(polynomial in n) number of rational functions, each of which has a small
size arithmetic circuit (over the rationals) computing it.

1 Introduction

Hilbert proposed 23 problems in 1900, in which he tried to lift the veil behind
which the future lies hidden1. His description of the 17th problem is (see [7]):

1 A quote taken from [29].

K. Lodaya and M. Mahajan (Eds.): FSTTCS 2004, LNCS 3328, pp. 237–249, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

238 N.R. Devanur, R.J. Lipton, and N.K. Vishnoi

A rational integral function or form in any number of variables with real
coefficient such that it becomes negative for no real values of these variables, is
said to be definite. The system of all definite forms is invariant with respect to
the operations of addition and multiplication, but the quotient of two definite
forms in case it should be an integral function of the variables is also a definite
form. The square of any form is evidently always a definite form. But since,
as I have shown [12], not every definite form can be compounded by addition
from squares of forms, the question arises which I have answered affirmatively
for ternary forms [13] whether every definite form may not be expressed as a
quotient of sums of squares of forms. At the same time it is desirable, for cer-
tain questions as to the possibility of certain geometrical constructions, to know
whether the coefficients of the forms to be used in the expression may always
be taken from the realm of rationality given by the coefficients of the form
represented.

An affirmative answer to this problem was given by Emil Artin in 1927 [3]:

For every non-negative polynomial f ∈ R[x1, . . . , xn], there exist rational
functions g1, . . . , gs ∈ R(x1, . . . , xn), such that f = g2

1 + · · ·+ g2
s .

Motzkin’s example (see [26]) of P (x, y, z) = z6 + x4z2 + x2y4 − 3x2y2z2

illustrates that the rational functions in Artin’s result cannot, in general, be
replaced by polynomials. P (x, y, z) is non-negative everywhere over the reals,
and yet, cannot be written as sum of squares of polynomials over the reals.
Notice that Artin’s result shows that every non-negative polynomial can be
written as sum of squares of finitely many rational functions. This raised the
following important question about the size of such a representation:

What is the smallest number (denoted as ν(n, d)), such that every n-
variate, degree d, non-negative polynomial can be written as sum of
squares of ν(n, d) rational functions over the reals?

In 1967, Pfister [21] proved that ν(n, d) ≤ 2n. However, this upper bound
holds when one is allowed rational functions over a real closed field 2. Re-
markably enough, his bound does not depend on the degree of the polynomial.
The best lower bound on ν(n, 3) is n + 2. Over 75 years of effort by various
mathematicians, these are still the best known bounds in general. We remark
that the function ν(n, 2) is quite well understood from the time of Hilbert (see
[12, 14, 15]).

In lieu of the lack of progress towards the determination of ν(n, d), we initiate
the study of Hilbert’s 17th problem from the point of view of Computational
Complexity. In this setting, the following question is a natural relaxation:

What is the descriptive complexity of the sum of squares representa-
tion (as rational functions) of a non-negative, n-variate, degree d poly-
nomial?

2 See [5, 23] for a definition.

On the Complexity of Hilbert’s 17th Problem 239

We consider arithmetic circuits as a natural representation of rational func-
tions. We are able to show, assuming a standard conjecture in complexity theory,
that it is impossible that every non-negative, n-variate, degree four polynomial
can be represented as a sum of squares of a small (polynomial in n) number of
rational functions, each of which has a small size arithmetic circuit (over the
rationals) computing it.

1.1 Related Work

Like all of Hilbert’s problems, the 17th has received a lot of attention from
the mathematical community and beyond. For an extensive survey of the de-
velopment and impact of Hilbert’s 17th problem on Mathematics, the reader
is referred to excellent surveys by [10, 24, 26, 27]. The books [5, 23] also provide
good accounts of this and related problems.

Apart from what can be found in the references above, we are aware of
some recent work on various quantitative aspects of Hilbert’s 17th problem. For
instance, in [4], it has been proved that if the degree is fixed and the num-
ber of variables are allowed to increase, then there are significantly many more
non-negative polynomials than those that can be written as sum of squares of
polynomials. Further, in [25], it is shown that in general, one cannot obtain
a sum of squares representation in which each rational function has the same
denominator.

To the best of our knowledge the problem raised by this work, about the
representational complexity of non-negative polynomials in the computational
setting, is new.

2 Overview of Our Result

Notations. For k = R,Q or Z, k[x1, . . . , xn] denotes the ring of polynomials
over k and k(x1, . . . , xn) denotes the corresponding field of fractions. The follow-
ing notation about polynomials is used throughout this paper: A polynomial is
written as f =

∑
α cαxα. Here xα = xα1

1 · · ·xαn
n . deg(f) denotes the maximum

total degree of f. H(f) := maxα |cα|.

Arithmetic Circuits. An arithmetic circuit C over k 3 is a directed acyclic
graph. Each vertex has in-degree 0 or 2 and is labeled either by addition, multi-
plication, one of the input variables: {x1, . . . , xn}, or scalars from k. If the vertex
is labeled by a scalar or an input variable, then its in-degree must be 0. If the
vertex has in-degree 2, then it must be labeled either by + or by ×. There is
exactly one vertex with no outgoing edge, which naturally corresponds to the
polynomial (over k[x1, . . . , xn]) computed by C. The size of C is the number
of gates along with description size of all the constants used. As observed, C

3 In general k could be a commutative ring, but here k will be either the fields R and
Q, or the ring of integers Z.

240 N.R. Devanur, R.J. Lipton, and N.K. Vishnoi

computes a polynomial f(x1, . . . , xn) ∈ k[x1, . . . , xn]. The size of the smallest
arithmetic circuit that computes f ∈ k[x1, . . . , xn] is denoted by Lk(f). We will
drop the subscript wherever k is clear from the context. By allowing divisions
as well, the definition of Lk(f) can be extended to all f ∈ k(x1, . . . , xn).

2.1 Computational Complexity Preliminaries

The aim of this section is to present the definitions and notions in Computational
Complexity Theory. 4 The reader is referred to the book by Papadimitriou [20]
for a comprehensive treatment of this subject.

Some Complexity Classes. A language is a subset of {0, 1}∗. For a language
L, L̄ := {0, 1}∗\L. A p-ary relation is a language over the following p-ary prod-
uct: {0, 1}∗ × · · · × {0, 1}∗.5 The complexity class DTIME(f(n)) is the set of all
languages for which membership can be tested in time f(n), by a deterministic
Turing machine, in time f(n). P := ∪t≥0DTIME(nt). NP is the collection of all
languages L, such that there is a 2-ary relation RL ∈ P (called a polynomially
decidable relation) and a polynomial p(·), such that x ∈ L if and only if there is
a y ∈ {0, 1}∗, with |y| = O(p(|x|)), and (x, y) ∈ RL. The class co-NP is defined
as ∪L∈NPL̄. It follows that a language L is in co-NP if and only if there is a
polynomially decidable 2-ary relation RL and a polynomial p(·), such that x ∈ L
if and only if and for all y ∈ {0, 1}∗, with |y| = O(p(|x|)), (x, y) ∈ RL. It is
natural to define complexity classes based on compositions of these existential
and universal quantifiers. Starting with Σ1 = NP and Π1 = co-NP, one can de-
fine Σi and Πi as follows. For i ≥ 2, Σi is the collection of all languages L such
that there is a i-ary relation RL ∈ Πi−1, and a polynomial p(·), such that x ∈ L
if and only if there exists a y ∈ {0, 1}∗, with |y| = O(p(|x|)), (x, y) ∈ RL. Πi

is defined similarly as co-Σi. Further, define Δi := Σi ∩ Πi. One often thinks
of Δ0 = Σ0 = Π0 = P and Δ1 =NP∩co-NP. Polynomial Hierarchy (PH) is de-
fined to be the collection of classes Δi,Σi and Πi, for all i ≥ 0. It follows from
definitions that if NP=co-NP then Σi = Δi for all i ≥ 1.

Completeness. A language L is said to be hard for a a complexity class C, for
all L′ ∈ C, there is a polynomial p(·) and a Turing machine ML,L′ : {0, 1}∗ →
{0, 1}∗, such that x ∈ L if and only if ML,L′(x) ∈ L′. Moreover, for the complex-
ity classes we will be interested in, we assume that ML,L′ runs in time O(p(|x|)).
If L ∈ C and L is hard for C, then L is said to be complete for C. Complete
problems for a complexity class can be thought of as the hardest problems in
their class and can be thought of as characterizing the complexity class.

Next we define a problem which is known to be NP-complete. Consider a
boolean function φ : {0, 1}n �→ {0, 1} in the conjunctive normal form (3-CNF),

4 The reason we do so is it to broaden the scope of this paper to mathematicians
who may not be familiar with these notions, but are interested in understanding our
results on Hilbert’s 17th problem.

5 A 1-ary relation is just a language.

On the Complexity of Hilbert’s 17th Problem 241

that is φ(x1, . . . , xn) =
∧m

i=1 Ci, where each Ci is a boolean OR of at most 3
literals from {x1, x1, . . . , xn, xn}. φ is said to be satisfiable if there is a satisfying
assignment a1, . . . , an ∈ {0, 1}, such that φ(a1, . . . , an) = 1. The set of such
boolean functions, in 3-CNF form, that have a satisfying assignment is denoted
3SAT. One of the earliest and most important results in complexity Theory (see
[9, 18, 19]) was establishing that 3SAT is NP-complete. The corresponding co-NP
problem is UN3SAT, i.e. the set of boolean functions in 3-CNF that have no sat-
isfying assignment. It follows that UN3SAT is complete for co-NP. Generalizing
these results, it is known that there is a complete problem for Σi (and hence for
each Πi), for all i ≥ 1. This is precisely the reason why it is widely believed that
for all i ≥ 1, Σi �= Πi. This implies that PH �= Σ2, a conjecture on which our
result will be based on.

Probabilistic Complexity Classes. Randomized complexity classes are de-
fined with respect to Turing machines which have access to an additional tape
which contains an infinite number of uniform and independent random bits. For
this paper, we are just concerned with probabilistic polynomial time Turing ma-
chines which always halt (independently of the random tape) after a polynomial
number of steps (in the length of the input). Naturally, for an input x to such a
randomized machine M , one associates probabilities to the computation M(x).
The class RP is the class of all languages L, such that there is a probabilistic poly-
nomial time Turing machine ML, such that for all x ∈ L, Pr[ML(x) accepts] = 1
and for all x �∈ L, Pr[ML(x) accepts] ≤ 1/2. The probabilistic complexity classes
important for this paper will be RP and co-RP. Finally, we define the class
NPco−RP as the collections of languages L, for which there is a probabilistic
polynomial time machine ML, and a polynomial p(·), such that if x ∈ L there
is a y ∈ {0, 1}∗, with |y| = O(p(|x|)), Pr[ML(x, y) accepts] ≤ 1/2, and if x �∈ L,
then for all y ∈ {0, 1}∗, with |y| = O(p(|x|)), Pr[ML(x, y) accepts] = 1.

Unsatisfiability. Consider a boolean function φ : {0, 1}n �→ {0, 1} in the con-
junctive normal form (3-CNF), that is φ(x1, . . . , xn) =

∧m
i=1 Ci, where each Ci

is a boolean OR of at most 3 literals from {x1, x1, . . . , xn, xn}. φ is said to
be satisfiable if there is a satisfying assignment a1, . . . , an ∈ {0, 1}, such that
φ(a1, . . . , an) = 1. The set of such boolean functions, in 3-CNF form, that have
a satisfying assignment is denoted 3SAT. It is well known that 3SAT is NP-
complete. The corresponding co-NP problem is UN3SAT, i.e. the set of boolean
functions in 3-CNF that have no satisfying assignment. It follows that UN3SAT
is complete for co-NP.

Now we give the key definition and the main result of this paper.

Definition 1

HZ(n, d, h) := {f ∈ Z[x1, . . . , xn] : deg(f) ≤ d,H(f) = O(h),
∀(x1, . . . , xn) ∈ Rn f ≥ 0}.

Further, let HZ(d, h) := ∪n≥0HZ(n, d, h).

242 N.R. Devanur, R.J. Lipton, and N.K. Vishnoi

Remark 1. Note that we are implicitly viewing HZ(d, h) as a language. Fixing
a unique representation of polynomials (say the smallest arithmetic circuit over
Q), we can view polynomials in this set as binary strings, thus, justifying our
viewpoint. Hence, the length of the input is related to the description of the
polynomial and not n. But we concern ourselves only with the case when the
smallest arithmetic circuit computing an n-variate polynomial f is of size at
most a fixed polynomial in n, say n6. 6

2.2 Main Theorems

Theorem 1. Assuming PH �=Σ2, for all n ≥ 1, there exists a polynomial f ∈
HZ(n, 6, 1) such that no representation of f as sum of squares of rational func-
tions over Q, f =

∑s
i=1 g

2
i , gi ∈ Q(x1, . . . , xn), satisfies both of the following:

1. s = poly (L(f)).
2. For all i = 1, 2, . . . , s, L(gi) = poly (L(f)).

Thus, unless the polynomial hierarchy collapses to the second level, not every
non-negative polynomial has a succinct sum of squares representation. It is a
standard hypothesis in complexity theory that PH �=Σ2. In fact this theorem
says that even if the polynomial has degree 6 and all coefficients are integers and
bounded by a constant, there is no such representation. As remarked earlier, the
degree 2 case is well understood. We strengthen the previous result by bringing
the degree down to 4, at the cost of blowing up the size of the coefficients. It is
an interesting open problem if such a statement can be obtained for degree 3.

Theorem 2. Assuming PH�=Σ2, for all n ≥ 1, there exists a polynomial f ∈
HZ(n, 4,poly(n)) such that no representation of f as sum of squares of rational
functions over the rationals, f =

∑s
i=1 g

2
i , gi ∈ Q(x1, . . . , xn), satisfies both of

the following:

1. s = poly (L(f)).
2. For all i = 1, 2, . . . , s, L(gi) = poly (L(f)).

A Remark About the Representation Field. Although we state our the-
orems for Q, one can replace it by a finite real algebraic extension of Q. The
details are easy and we omit the details for the ease of presentation. It is im-
portant to note though, that Artin’s result does not, in general, imply existence
of a sum of squares representation, where each rational function is over Q. The
hard to represent polynomials guaranteed by our results have a further property
that these have small arithmetic circuits over the integers. It is conceivable that
for such polynomials, a succinct representation (in our sense) exists if and only
if a succinct representation exists over the reals. This is an interesting question
for which we do not know an answer.
6 For a non-negative, n-variate polynomial with arithmetic circuit complexity not

bounded by any polynomial in n, one cannot hope to write an efficient (polynomial
in n) sum of square representation by rational functions. Hence it makes sense only
to consider polynomials which are efficiently computable by small circuits.

On the Complexity of Hilbert’s 17th Problem 243

Outline of the Proofs. As the first step in the proof of Theorems 1 and 2,
we reduce an instance φ of UN3SAT to a polynomial Fφ which is non-negative
if and only if φ is unsatisfiable. This is a variant of an often used trick, which
allows one to use algebraic considerations to study a boolean formula. We give
two such reductions, corresponding to the two theorems: for Theorem 1 we give
a reduction such that Fφ is an instance of HZ(6, 1) and for Theorem 2, Fφ is an
instance of HZ(4,poly(·)). These results establish the co-NP hardness of the lan-
guages HZ(6, 1) and HZ(4,poly(·)). Artin’s Theorem guarantees a sum of squares
representation of Fφ over the reals. If there is some such representation which is
succinct (describable by a polynomial number of polynomial size arithmetic cir-
cuits), in NP we can guess it and in co-RP, check if the guessed representation is
the same as Fφ. (This last step is done by invoking polynomial identity testing.)
Formally we prove the following theorem:

Theorem 3. For all n, d, h ≥ 1, if for all f ∈ HZ(n, d, h), there exist g1, g2, . . . , gs

∈ Q(x1, . . . , xn), such that f =
∑s

i=1 g
2
i , s = poly (L(f)), and for all i =

1, 2, . . . , s, L(gi) = poly (L(f)) , then HZ(d, h) ∈ NPco−RP.

To derive the desired contradiction, in the end we invoke a result of Boppana,
Hastad and Zachos [6], which states that co-NP �⊆ NPco−RP, unless PH=Σ2.

Organization. Section 3 contains the arithmetizations of SAT needed to prove
Theorems 1 and 2. The main results, viz proofs of Theorems 1, 2, 3, are proved
in Section 4.

3 Arithmetization of SAT

In this section we give two different arithmetizations of instances of UN3SAT,
each of which will be used in proving one of Theorems 1, 2.

Given an instance φ = ∧m
i=1Ci of a UN3SAT problem: Call a literal z ∈

{z1, z1, . . . , zn, zn} positive, if z ∈ {z1, . . . , zn}. Else, call it negative. For a clause
C = C+ ∨ C− (C+ consists of positive literals while C− consists of negative
literals), define

A(C) :=

⎛⎝ ∏
z∈C+

(1− z)

⎞⎠ ·
⎛⎝ ∏

z∈C−

z

⎞⎠ .

For instance, if C = x1 ∨ x2 ∨ x3, then A(C) = (1 − x1)x2(1 − x3). Further
for a1, a2, a3 ∈ {0, 1}, A(C)(a1, a2, a3) = 0 if and only if C(a1, a2, a3) = 1, (or C
is satisfiable). Now define

Fφ(z1, . . . , zn) := 300

⎛⎝ n∑
i=1

z2
i (1− zi)2 +

m∑
j=1

(A(Cj))2

⎞⎠− 1. (1)

Thus for all φ, Fφ ∈ Z[z1, . . . , zn]. It is convenient to let fφ := Fφ/300. The
problem remains the same though, as the sign of fφ is the same as that of Fφ.
Let ε = 1

300 .

244 N.R. Devanur, R.J. Lipton, and N.K. Vishnoi

Lemma 1. φ is not satisfiable if and only if fφ ≥ 0 over the reals.

Proof. If φ is satisfiable, let a = (a1, . . . , an) ∈ {0, 1}n ⊂ Rn be a satisfying
assignment. Then by definition fφ(a) = −ε < 0. To prove the converse, consider
the case when φ is unsatisfiable. We need to show that fφ ≥ 0 over the reals.
Let δ = 1/4. We consider two cases:

1. Case 1: Let (s1, . . . , sn) ∈ Rn be a point such that there is an 1 ≤ i ≤ n such
that si does not lie in either of the two intervals: [−δ, δ], [1− δ, 1+ δ]. In this
case s2

i (1− si)2 > δ4. Since ε ≤ δ4, fφ(s1, . . . , sn) > 0.
2. Case 2: Hence, we may assume that for a point (s1, . . . , sn), all si are in

one of the intervals: [−δ, δ], [1 − δ, 1 + δ]. From this we construct a point
a = (a1, . . . , an) ∈ {0, 1}n as follows:
– If si ∈ [−δ, δ] then let ai = 0.
– If si ∈ [1− δ, 1 + δ] then let ai = 1.

Since φ is unsatisfiable, there is a clause, say C, which is not satisfied
by a. Let A(C) =

(∏
z∈C+

(1− z)
)
·
(∏

z∈C− z
)
. If zi ∈ C+, since C is not

satisfied by a, it must be that ai = 0, and hence si ∈ [−δ, δ], or equivalently
(1−si) ∈ [1−δ, 1+δ]. Similarly, if zi ∈ C−, ai = 1, and hence si ∈ [1−δ, 1+δ].
This implies that at the point (s1, . . . , sn), fφ ≥ A2(C) ≥ (1− δ)6 > ε.

Thus, if φ is unsatisfiable, fφ > 0 over the reals. This completes the proof.

The above arithmetization reduces UN3SAT to HZ(6, 1). Thus, the following
proposition follows from Lemma 1 and co-NP hardness of UN3SAT.

Proposition 1. HZ(6, 1) is co-NP hard.

Next we show how to obtain a quantitatively better result, if we allow the
coefficients to grow with the input size. First, we need a new reduction. As
before, let φ be a boolean function given in 3-CNF form on n variables and m
clauses.

f ′
φ(z1, . . . , zn) :=

n∑
i=1

(33 + 1)m
δ(m)4

z2
i (1− zi)2 +

m∑
j=1

(A(Cj))− ε(m). (2)

Here δ and ε are positive functions (but less than 1) of m such that ε <
(1−δ)3−mδ(1+δ)2. Note that one can choose such a δ and an ε since (1−δ)3 → 1
and mδ(1 + δ)2 → 0 as δ → 0. As in the previous case, we can always multiply
f ′

φ suitably to obtain a polynomial F ′
φ over the integers.

Lemma 2. φ is not satisfiable if and only if f ′
φ ≥ 0 over the reals.

Proof. If φ is satisfiable, let a = (a1, . . . , an) ∈ {0, 1}n ⊂ Rn be a satisfying
assignment. Then by definition f ′

φ(a) = −ε < 0. To prove the converse, consider
the case when φ is unsatisfiable. We need to show that f ′

φ ≥ 0 over the reals.
We consider two cases:

On the Complexity of Hilbert’s 17th Problem 245

Case 1: Suppose that for a point s := (s1, . . . , sn), all si are in one of the inter-
vals: [−δ, δ], [1− δ, 1 + δ]. From this we construct a point a = (a1, . . . , an) ∈
{0, 1}n as follows:

– If si ∈ [−δ, δ] then let ai = 0.
– If si ∈ [1− δ, 1 + δ] then let ai = 1.

Since φ is unsatisfiable, there is a clause, say C, which is not satisfied
by a. Let A(C) =

(∏
z∈C+

(1− z)
)
·
(∏

z∈C− z
)
. If zi ∈ C+, since C is not

satisfied by a, si ∈ [−δ, δ], or equivalently (1− si) ∈ [1− δ, 1 + δ]. Similarly,
if zi ∈ C−, ai = 1 and hence si ∈ [1− δ, 1 + δ]. This means that at the point
s, A(C) ≥ (1− δ)3.

Now consider a clause C ′ satisfied by a. Writing C ′ = C ′
+
∨
C ′

−, we see
that either some variable in C ′

+ is set to 1, or some variable in C ′
− is set to

0 in the assignment a. Without loss of generality, assume that zi ∈ C ′
+ is set

to 1 (ai = 1). Thus, si ∈ [1− δ, 1 + δ], or (1− si) ∈ [−δ, δ]. Thus

A(C ′) =

⎛⎝ ∏
z∈C′

+

(1− z)

⎞⎠ ·
⎛⎝ ∏

z∈C′
−

z

⎞⎠ ≥ −δ(1 + δ)2.

Adding the inequalities for unsatisfied and satisfied clauses, one gets that

m∑
j=1

A(Cj) ≥ (1− δ)3 −mδ(1 + δ)2.

By the choice of ε and δ, we have ε < (1− δ)3−mδ(1+ δ)2, and therefore
f ′

φ(s) > 0.

Case 2: Now consider a point s = (s1, . . . , sn) such that, there is an 1 ≤ i ≤ n,
such that si does not lie in either of the two intervals: [−δ, δ], [1 − δ, 1 + δ].
For a clause C, define

ΔC := max {{|1− si| : zi ∈ C+} ∪ {|sj | : zj ∈ C−}} .

It follows that A(C)(s) ≥ −Δ3
C . Now consider the following 2 cases:

Case 2a. ΔC > 3
Let sj∗ be such that either |sj∗ | or |1 − sj∗ | is equal to ΔC . Then
(sj∗)2(1− sj∗)2 ≥ Δ2

C(ΔC − 1)2 > Δ3
C + 1. This implies that A(C)(s) +

33+1
δ4 (sj∗)2(1 − sj∗)2 > −Δ3

C + 33+1
δ4 (Δ3

C + 1) > 1. The last inequality
follows by noticing that δ < 1.

Case 2b. ΔC ≤ 3
From the definition of case 2, ∃sj∗ such that (sj∗)2(1−sj∗)2 ≥ δ4. Hence,
33+1

δ4 (sj∗)2(1 − sj∗)2 > 33 + 1. By definition of ΔC , A(C)(s) ≥ −33.

Combining these inequalities, we get A(C)(s)+ 33+1
δ4 (sj∗)2(1−sj∗)2 > 1.

Now summing over all clauses, we get,
∑m

j=1A(Cj)(s)+
∑n

i=1
(33+1)m

δ4 s2
i (1−

si)2 > m. This is exactly what we set out to prove: fφ(s) > 0.

246 N.R. Devanur, R.J. Lipton, and N.K. Vishnoi

Thus, if φ is unsatisfiable, f ′
φ > 0 over the reals. This completes the proof.

This leads to the following:

Proposition 2. HZ(4,poly(·)) is co-NP hard.

Amplifying Positivity. Using the PCP Theorem of [1, 2], one can transform
the given formula so that, if it is unsatisfiable, then a large fraction (say c, 0 < c <
1) of clauses are unsatisfiable. This gives rise to an arithmetization such that fφ >
cm− 1 if and only if φ is unsatisfiable. This shows that even if one is given that
whenever f > 0, f > cm− 1, it is still co-NP hard to decide the positivity of f .

Circuit Complexity of the Arithmetized Polynomials. It is important
to note that for any 3CNF formula φ, there is an arithmetic circuit over Z
which computes Fφ and F ′

φ, whose sizes are at most n6. 7 In fact, the explicit
arithmetizations written down earlier can be converted into such circuits.

4 Main Results

Testing Identities. The Identity Testing problem for arithmetic circuits is to
decide if two given arithmetic circuits evaluate the same polynomial. More for-
mally, given two arithmetic circuits C1, C2 over Z, let f, g ∈ Z[x1, . . . , xn] be the
polynomials computed by them respectively. The problem is to decide efficiently
if f −g is identically zero over the integers. Here, efficiency is measured in terms
of the input size, which in this case, is the sum of the sizes of C1 and C2. The
following result by Ibarra and Moran [16] establishes that, in the presence of
randomness, there is an efficient solution to this problem. Formally, there is an
efficient randomized algorithm which takes as input two circuits and decides if
they compute the same polynomial. The algorithm is always correct when it says
NO, but there is a small chance that is is wrong when it says YES. This simple
but important result will play a crucial role in the proof of the main results
which we describe next.

Lemma 3. ([16]) The Identity Testing problem for arithmetic circuits over Z
is in co-RP.

The fact that non-negative polynomials can be represented as sum of squares
suggests the following algorithm for checking if f ∈ HZ(n, d, ·). Suppose it is
true that f = g2

1 + · · · + g2
s , and that this representation is succinct, that is

s = poly(n) and for all 1 ≤ i ≤ s, L(gi) ≤ poly(n). But we know [28, 17]
that L(p),L(q) = O

(
d2L(p/q)

)
, for any integer polynomials p and q, where d

is the degree of pq. If d is a constant, then up to a constant factor, the most
efficient way to represent a rational polynomial is to represent the numerator
and the denominator separately. Hence we may assume that each gi = αi

βi
, αi

and βi are polynomials over the integers, and βi �= 0, and for all 1 ≤ i ≤ s,

7 Since φ is in 3CNF, m ≤ (2n)3.

On the Complexity of Hilbert’s 17th Problem 247

L(αi),L(βi) ≤ poly(n). Then in NP, we can guess these polynomials αi, βi, as
the total bits one has to guess is a polynomial in n. Once we have guessed the
representation, one checks the following identity:

f

s∏
j=1

β2
j −

s∑
i=1

⎛⎝αi

∏
j 	=i

βj

⎞⎠2

≡ 0 (3)

Since f itself has an arithmetic circuit over the integers of size at most n6, the
polynomial on the LHS of the above identity has a polynomial size circuit. Hence
using the identity testing algorithm for arithmetic circuits over the integers, one
can verify the above identity in co-RP. Thus checking the validity of the guessed
representation.

This is formalized in the following proof:

Proof (of Theorem 3). Using NP, guess each gi = αi

βi
where αi and βi are polyno-

mials over Q. By hypothesis, we know that f
∏s

j=1 β
2
j and

∑s
i=1

(
αi

∏
j 	=i βj

)2

are arithmetic circuits with length a polynomial in n. Hence by Lemma 3,
checking whether they are equal is in co-RP. The time required to evaluate
the gi’s is also a polynomial in n. Hence we get HZ(d, h) ∈ NPco−RP, for any
constant d.8

Finally, we need the following result of Bopanna, et al [6].

Theorem 4. [6] co-NP ⊆ NPco−RP ⇒ PH = Σ2.

Now we are ready to prove Theorem 1.

Proof (of Theorem 1). Assume on the contrary. From Theorem 3, HZ(6, 1) ∈
NPco−RP. But HZ(6, 1) is co-NP-Hard by Proposition 1. Now by Theorem 4,
PH = Σ2, a contradiction is achieved.

Using Proposition 2 instead of Proposition 1 in the above proof, one obtains
a proof of Theorem 2.

Acknowledgments

We are grateful to Marie-Françoise Roy for valuable comments on an earlier
draft of this paper. We also thank Bruce Reznick for pointing us to refer-
ences [4, 8]. We would also like to thank Peter Bürgisser for his encourage-
ment.

8 In fact, if polynomial identity testing could be done deterministically, then we obtain
the stronger result that HZ(d, h) ∈ NP, implying co-NP ⊆ NP.

248 N.R. Devanur, R.J. Lipton, and N.K. Vishnoi

References

1. S. Arora, C. Lund, R. Motwani, M. Sudan, M. Szegedy. Probabilistic check-
ing of proofs: a new characterization of NP. Journal of the ACM, 45(1) (1998),
70–122.

2. S. Arora, S. Safra. Probabilistic Checking of Proofs. Proceedings of the 33rd Annual
Symposium on Foundations of Computer Science, 2–13, 1992.

3. E. Artin. Über die Zerlegung definiter Funktionen in Quadrate. Abh. Math. Sem.
Univ. Hamburg, 5 (1927), 100–115.

4. G. Blekherman. There are significantly more non-negative polynomials than sums
of squares. Preprint.

5. H. Bochnak, M. Coste, M.-F. Roy. Real algebraic geometry. Springer, 1998.
6. R. Boppana, J. Hastad, and S. Zachos. Does Co-NP Have Short Interactive Proofs?

Information Processing Letters, 25 (1987), 127–132.
7. Felix Browder (ed.) Mathematical developments arising from Hilbert’s Problems.

Proc. Symp. Pure Math., 28 (1976), Amer. Math. Soc.
8. M. D. Choi, Z. D. Dai, T. Y. Lam, B. Reznick: The pythagoras number of some

affine algebras and local algebras, J. Reine Angew. Math., 336 (1982), 45-82.
9. S.A. Cook. The complexity of theorem-proving procedures. Proceedings of the Third

ACM Symposium on the Theory of Computing, 151–158, 1971.
10. D. W. Dubois. Note on of Hilbert’s 17th problem. Bull. Amer. Math. Soc., 73

(1967), 540–541.
11. M. R. Garey, D. S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. Freeman, 1979.
12. D. Hilbert. Über die Darstellung definiter Formen als Summen von Formen-

quadraten. Math. Ann., 32 (1888), 342–350.
13. D. Hilbert. Über ternäre definite Formen. Acta Math., 17 (1893), 169–198.
14. D. Hilbert. Grundlagen der Geometrie. Leipzig, Chap. 7, 1899.
15. D. Hilbert. Darstellung definiter Formen durch Quadrate. Akad. Wiss. Göttingen

(1900), 284–285.
16. Oscar H. Ibarra, Shlomo Moran. Probabilistic Algorithms for Deciding Equivalence

of Straight-Line Programs. JACM , 30(1) (1983), 217–228.
17. E. Kaltofen. Greatest common divisors of polynomials given by straight-line pro-

grams. JACM, 35(1) (1988), 231–264.
18. R.M. Karp. Reducibility among combinatorial problems. Complexity of Computer

Computations, (R.E. Miller and J.M. Thatcher, eds.), 85–103, Plenum Press, 1972.
19. Leonid A. Levin. Universal’nye perebornye zadachi (Universal search problems : in

Russian). Problemy Peredachi Informatsii, 9(3) (1973), 265–266.
20. C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
21. A. Pfister. Zur Darstellung definiter Funktionen als Summe von Quadraten. Invent.

Math. 4 (1967), 229–237.
22. V. Powers, B. Reznick. A new bound for Po‘lya’s Theorem with applications to

polynomials positive on polyhedra, J. Pure Appl. Alg. 164 (2001) 221–229.
23. A. Prestel, C.N. Delzell. Positive Polynomials: From Hilbert’s 17th Prob-

lem to Real Algebra. Springer Monographs in Mathematics, 2001.
24. B. Reznick. Some concrete aspects of Hilbert’s 17th Problem. Publ. Math. Univ.

Paris VII, No. 56, Jan. 1996.
25. B. Reznick. On the absence of uniform denominators in Hilbert’s Seventeenth Prob-

lem. Preprint.

On the Complexity of Hilbert’s 17th Problem 249

26. Marie-Francoise Roy. The role of Hilbert’s problems in real algebraic geometry.
Proceedings of the ninth EWM Meeting, Loccum, Germany 1999.

27. G. Stengle. A Nullstellensatz and a Positivstellensatz in semialgebraic geometry.
Math. Ann., 207 (1974), 87–97.

28. V. Strassen. Vermiedung von Divisionen. J. Reine Angew. Math, 264 (1973), 184–
202.

29. R. Thiele. Hilbert’s Twenty-Fourth Problem. American Math. Monthly, 110(1)
(2003), 1–23.

Who is Pointing When to Whom?
On the Automated Verification of Linked List Structures

Dino Distefano�, Joost-Pieter Katoen, and Arend Rensink

Department of Computer Science, University of Twente,
P.O. Box 217, 7500 AE Enschede, The Netherlands

Abstract. This paper introduces an extension of linear temporal logic
that allows to express properties about systems that are composed of
entities (like objects) that can refer to each other via pointers. Our logic
is focused on specifying properties about the dynamic evolution (such
as creation, adaptation, and removal) of such pointer structures. The
semantics is based on automata on infinite words, extended with appro-
priate means to model evolving pointer structures in an abstract manner.
A tableau-based model-checking algorithm is proposed to automatically
verify these automata against formulae in our logic.

1 Introduction

Pointers are references to memory cells. Programming with pointers is an error-
prone activity with potential pitfalls such as dereferencing null pointers and the
creation of memory leaks. Unwanted side-effects may occur due to aliasing where
apparently unaffected variables are modified by changing a shared memory cell –
the so-called “complexity of pointer swing”. The analysis of pointer programs has
been a topic of continuous research interest since the early seventies [3, 7]. The
purpose of this research is twofold: to assess the correctness of pointer programs,
and to identify the potential values of pointers at compile time to allow more
efficient memory management strategies and code optimization.

Properties of Pointer Programs. Alias analysis, i.e., checking whether pairs of
pointers can be aliases, has received much attention initially (see, e.g., [6, 14]).
[8] introduced and provided algorithms to check the class of so-called position-
dependent alias properties, such as “the n-th cell of v’s list is aliased to the m-th
cell of list w”. Recently, extensions of predicate calculus to reason about pointer
programs have become en vogue: e.g., BI [12], separation logic [20], pointer as-
sertion logic (PAL) [13], alias logic [2], local shape logic [19] and extensions of
spatial logic [4]. These approaches are almost all focused on verifying pre- and
postconditions in a Hoare-style manner.

Since our interest is in concurrent (object-oriented) programs and in express-
ing properties over dynamically evolving pointer structures, we use first-order

� Currently at Dept. of Computer Science, Queen Mary, University of London, UK.

K. Lodaya and M. Mahajan (Eds.): FSTTCS 2004, LNCS 3328, pp. 250–262, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Who is Pointing When to Whom? 251

linear-time temporal logic (LTL) as a basis and extend it with pointer asser-
tions on single-reference structures, such as aliasing, as well as predicates to
reason about the birth and death of cells (which provide a model for object refer-
ences). The expressiveness of the resulting logic, called NTL (Navigation Tempo-
ral Logic), is similar to that of the recent Evolution Temporal Logic (ETL) [23].
Whereas ETL uses 3-valued logical structures as semantic models, we follow an
automata-based approach: models of NTL are infinite runs that are accepted by
Büchi automata where states are equipped with a representation of the heap.
PAL contains similar pointer assertions as NTL (and goes beyond lists), but has
neither primitives for the birth and death of entities nor temporal operators.
Evolving heaps have been lately used to model mobile computations. In that
view NTL combines both spatial and temporal features similar to the ambient
logic introduced in [5].

Heap Abstraction. A major issue in analyzing pointer programs is the choice
of an appropriate representation of the heap. As the number of memory cells
for a program is not known a priori and in general is unpredictable, a concrete
representation is inadequate. Analysis techniques for pointer programs therefore
typically use abstract representations of heaps such as, e.g., location sets [22]
(that only distinguish between single and multiple cells), k-limiting paths [14]
(allowing up to k distinct cells for some fixed k), or summary nodes [21] in shape
graphs. This paper uses an abstract representation of heaps that is tailored to
unbounded linked list structures. The novelty of our abstraction is its parame-
terization in the pointer program as well as in the formula. Cells that represent
up to M elements, where M is a formula-dependent constant, are exact whereas
unbounded cells (akin to summary nodes) represent longer lists. The crux of our
abstraction is that it guarantees each unbounded cell to be preceded by a chain
of at least L exact cells, where L is a program-dependent constant. Parameters
L and M depend on the longest pointer dereferencing in the program and for-
mula, respectively. In contrast with the k-limiting approach, where an adequate
general recipe to determine k is lacking, (minimal bounds on) the parameters L
and M can be easily determined by a static analysis.

Pointer Program Analysis. Standard type-checking systems are not expressive
enough to establish properties of pointers such as memory leaks and derefer-
encing null pointers. Instead, techniques for analyzing pointer programs are
more powerful and include abstract interpretation [8], deduction techniques
[2, 12, 13, 20], design by derivation à la Dijkstra [16], and shape analysis [21],
or combinations of these techniques.

As our aim is to obtain a fully automated verification technique the approach
in this paper is based on model checking. Our model-checking algorithm is a non-
trivial extension of the tableau-based algorithm for LTL [15]. For given NTL-
formula Φ, this algorithm is able to check whether the automaton-model of the
concurrent pointer program at hand satisfies Φ. The algorithm, like the ETL ap-
proach [23], suffers from false negatives, i.e., a verification may wrongly conclude
that the program refutes a formula. In such case, however, diagnostic information

252 D. Distefano, J.-P. Katoen, and A. Rensink

can be provided (unlike ETL, and as for PAL [13]) that may be used for fur-
ther analysis. Besides, by incrementing the parameters M and L, a more concrete
model is obtained that is guaranteed to be a correct refinement of the (too coarse)
abstract representation. This contrasts with the ETL approach where manually-
provided instrumentation predicates are needed. Compared to the PAL approach
which is fully automated for loop-free (sequential) programs, our technique is
fully automated for concurrent pointer programs that may include loops.

Main Contributions. Summarizing, the main contributions of this paper are:
(i) A first-order temporal logic that both contains pointer assertions as well as
predicates referring to the birth or death of memory cells; (ii) An automaton-
based model for pointer programs where states are abstract heap structures and
transitions represent the dynamic evolvement of these heaps; the model deals
finitely with unbounded allocations. (iii) A way of parameterizing the degree of
”correctness” of abstract heap structures, on the basis of a straightforward static
analysis of the program and formula at hand. On incrementing these parameters,
refined heap structures are automatically obtained. (iv) A model-checking algo-
rithm to check abstract representations of pointer programs against formulae in
our logic.

The main advantage of our approach is that it is completely automated: given
a program and a temporal logic property, the abstract automaton as well as the
verification result for the property are determined completely algorithmically.
Moreover, to our knowledge, this paper is the first to develop model-checking
techniques for (possibly) unbounded evolving heaps of the kind described above1.

Our current approach restricts to single outgoing pointers. This still allows
us to consider many interesting structures such as acyclic, cyclic and unbounded
lists (as in [16] and [8]), as well as hierarchies (by backpointers). Besides, several
“resource managers” such as memory managers only work with lists [18]. Our
abstract heap structures can also model mobile ambients (see [9]).

Details of the model checking algorithm and all proofs can be found in [10].

2 A Logic for Dynamic References

Syntax. Let LV be a countable set of logical variables ranged over by x, y, z, and
Ent be a countable set of entities ranged over by e, e′, e1 etc. ⊥ �∈ Ent is used
to represent “undefined”; we denote E⊥ = E ∪ {⊥} for arbitrary E ⊆ Ent.
Navigation Temporal Logic (NTL) is a linear temporal logic with quantification
of logical variables that range over entities, or may be undefined. The syntax of
navigation expressions is defined by the grammar:

α ::= nil
∣∣∣ x ∣∣∣ α↑

1 In this respect, the recent paper [1] only introduces a symbolic representation for
heaps intended for checking safety properties (but not liveness), and does not con-
sider model checking algorithms.

Who is Pointing When to Whom? 253

where nil denotes the null reference, x denotes the entity (or nil) that is the
value of x, and α↑ denotes the entity referred to by (the entity denoted by) α
(if any). Let x↑0 = x and x↑n+1 = (x↑n) ↑ for natural n. The syntax of NTL is:

Φ ::= α = α
∣∣∣ α new

∣∣∣ α � α
∣∣∣ Φ ∧ Φ ∣∣∣ ¬Φ ∣∣∣ ∃x. Φ ∣∣∣ XΦ

∣∣∣ ΦUΦ .

The basic proposition α new states that the entity (referred to by) α is fresh,
α = β states that α and β are aliases, and α � β expresses that (the entity
denoted by) β is reachable from (the entity denoted by) α. The boolean con-
nectives, quantification, and the linear temporal connectives X (next) and U
(until) have the usual interpretation. We denote α �= β for ¬ (α = β), α dead for
α = nil , α alive for ¬ (α dead), α �� β for ¬ (α � β) and ∀x. Φ for ¬ (∃x. ¬Φ).
The other boolean connectives and temporal operators � (eventually) and �

(always) are standard. For example, �(∃x. x �= v ∧ x � v ∧ v � x) expresses
that eventually v will point to a non-empty cycle.

Semantics. Logical formulae are interpreted over infinite sequences of sets of
entities that are equipped with information concerning the linking structure
between these entities. Formally, an allocation sequence σ is an infinite sequence
of pairs (E0, μ0)(E1, μ1)(E2, μ2) . . . where for all i � 0, Ei ⊆ Ent and μi :
E⊥

i → E⊥
i such that μi(⊥) = ⊥; μi encodes the pointer structure of Ei. Let

θ : LV ⇀ Ent⊥ be a partial valuation of logical variables. The semantics of
navigation expression α is given by:

[[nil]]μ,θ = ⊥
[[x]]μ,θ = θ(x) if θ(x) �= ⊥, and ⊥ otherwise
[[α↑]]μ,θ = μ ([[α]]μ,θ)

For a given allocation sequence σ, Eσ
i and μσ

i denote the set of entities,
respectively the pointer structure, in the i-th state of σ. The semantics of NTL-
formulae is defined by satisfaction relation σ,N, θ |= Φ where σ is an allocation
sequence, N ⊆ Eσ

0 is the set of entities that are initially new, and θ is a valuation
of the free variables in Φ. Let Nσ

i denote the set of new entities in state i, i.e.,
Nσ

0 = N and Nσ
i+1 = Eσ

i+1\Eσ
i , and let θσ

i denote the valuation at state i, where
θσ

i (x) = θ(x) if θ(x) ∈ Eσ
k for all k � i, and is ⊥ otherwise. The latter condition

prevents that contradictions like ∃x.X (x dead ⇒ X x alive) are satisfiable. Note
that once a logical variable is mapped to an entity, this association remains valid
along σ until the entity is deallocated. The satisfaction relation |= is defined as
follows:

σ,N, θ |= α new iff [[α]]μσ
0 ,θ ∈ N

σ,N, θ |= α = β iff [[α]]μσ
0 ,θ = [[β]]μσ

0 ,θ

σ,N, θ |= α � β iff ∃ k � 0. [[α↑k]]μσ
0 ,θ = [[β]]μσ

0 ,θ

σ,N, θ |= ∃x.Φ iff ∃e ∈ Eσ
0 : σ,N, θ{ e/x } |= Φ

σ,N, θ |= ¬Φ iff σ,N, θ � Φ
σ,N, θ |= Φ ∨ Ψ iff either σ,N, θ |= Φ or σ,N, θ |= Ψ
σ,N, θ |= X φ iff σ1, Nσ

1 , θ
σ
1 |= Φ

σ,N, θ |= ΦUΨ iff ∃i. (σi, Nσ
i , θ

σ
i |= Ψ and ∀j < i. σj , Nσ

j , θ
σ
j |= Φ).

254 D. Distefano, J.-P. Katoen, and A. Rensink

Here, θ{ e/x } is defined as usual, i.e., θ{ e/x }(x) = e and θ{ e/x }(y) = θ(y)
for y �= x. Note that the proposition α � β is satisfied if [[β]] = ⊥ and [[α]] can
reach some entity with an undefined outgoing reference.

Program Variables. To enable the specification of properties over entities pointed
to by program variables (rather than just logical ones), we introduce for each
program variable vi a logical variable xvi

. This variable always points to a distin-
guished entity evi which exists in every state. For convenience in NTL-formulae
let vi denote xvi↑ and let ∃x. Φ abbreviate ∃x. (x �= xv1 ∧ . . . ∧ x �= xvn) ⇒ Φ.

Example 1. Consider the following list-reversal program (see, e.g., [2, 20, 21]):

decl v, w, t : w := nil ; while (v �= nil) do t := w;w := v; v := v↑;w↑ := t od

Properties of interest of this program include, for instance: “v and w al-
ways point to distinct lists (heap non-interference)”: �(∀x. v � x ⇒ w �� x).
“v’s list will be (and remains to be) reversed” 2: ∀x.∀y.

(
(v � x ∧ x↑ =

y) ⇒ ��(y↑ = x)
)
. “None of the elements in v’s list will ever be deleted”:

∀x. (v � x ⇒ �x alive).

Example 2. The following program consists of two processes that concurrently
produce and add entities to the tail tl of a buffer, respectively remove and con-
sume them from the head hd of that buffer:

decl hd , tl , t :
(
new(tl); hd := tl ; while (true) do new(tl↑); tl := tl↑ od

‖ while (true) do if (hd �= tl) then t := hd ; hd := hd↑; del(t) fi od
)

For navigation expression α, new(α) creates (i.e., allocates) a new entity that
will be referred to by the expression α. The old value of α is lost. Thus, if α is the
only pointer to entity e, say, then after the execution of new(α), e is automatically
garbage collected together with the entities that are only reachable from e. del(α)
destroys (i.e., deallocates) the entity associated to α, so that α and every pointer
referring to it becomes undefined. Some example properties: “Every element in
the buffer is eventually consumed”: �(hd �= tl ⇒ ∃x. (x = hd ∧ �x dead)).
“The tail is never deleted or disconnected from the head”: �(tl alive ∧ hd � tl).

3 Abstracting Linked List Structures

The most obvious way to model pointer structures is to represent each entity and
each pointer individually. For most programs, like, e.g., the producer/consumer
program, this will give rise to infinite representations. To obtain more abstract
(and compact) views of pointer structures, in this paper chains of entities will be
aggregated and represented by one (or more) entities. We consider the abstrac-
tion of pure chains (and not of arbitrary graphs) in order to be able to keep the
“topology” of pointer structures invariant in a more straightforward manner.

2 If one is interested in only checking whether v’s list is reversed at the end of the
program, program locations can be added and referred to in the standard way.

Who is Pointing When to Whom? 255

Pure Chains. Let ≺ be the binary relation on entities (excluding⊥) representing
μ, i.e., e ≺ e′ iff μ(e) = e′. A sequence e1, . . . , ek is a chain (of length k) if
ei ≺ ei+1, for 0 < i < k. The non-empty set E of entities is a chain of length |E|
iff there exists a bijection f : { 1, . . . , k } → E such that f(1), . . . , f(k) is a chain;
let first(E) = f(1) and last(E) = f(k). E is a pure chain if |{ e′ | e′ ≺ e }| = 1 for
all e ∈ f(2), f(3), . . . , f(k) and f is unique (which may fail to be the case if the
chain is a cycle). Note that chains consisting of a single element are trivially pure.

Abstracting Pure Chains. An abstract entity may represent a pure chain of “con-
crete” entities. The concrete representation of abstract entity e is indicated by
its cardinality C(e) ∈ M = { 1, . . . ,M } ∪ { ∗ }, for some fixed constant M > 0.
Entity e for which C(e) = m � M represents a chain of m “concrete” entities;
if C(e) = ∗, e represents a chain that is longer than M . In the latter case, the
entity is called unbounded. (Such entities are similar to summary nodes [21], with
the specific property that they always abstract from pure chains.) The special
cardinality function 1 yields one for each entity. The precision of the abstraction
is improved on increasing M .

Configurations and Morphisms. States in our automata are triples (E, μ, C),
called configurations. Configurations representing pure chains at different ab-
straction levels are related by morphisms, defined as follows. Let Cnf denote
the set of all configurations ranged over by c and c′, and C({ e1, . . . , en }) =
C(e1)⊕ . . .⊕ C(en) where n⊕m = n+m if n+m � M and ∗ otherwise.

Definition 1. For c, c′ ∈ Cnf, surjective function h : E → E′ is a morphism if:

1. for all e ∈ E′, h−1(e) is a pure chain and C′(e) = C(h−1(e))
2. e ≺′ e′ ⇒ last(h−1(e)) ≺ first(h−1(e′))
3. e ≺ e′ ⇒ h(e) ′ h(e′) where ′ denotes the reflexive closure of ≺′.

According to the first condition only pure chains may be abstracted by a
single entity while keeping the cardinalities invariant. The last two conditions
enforce the preservation of the pointer structure under h. Intuitively speaking, by
means of a morphism the abstract shape of the pointer dependencies represented
by the two related configurations is maintained. The identity function id is a
morphism and morphisms are closed under composition. Configurations c and c′

are isomorphic, denoted c ∼= c′, iff there exist morphisms from c to c′ and from
c′ to c such that their composition is id.

4 An Automaton-Based Model for Pointer Evolution

Evolving Pointer Structures. Morphisms relate configurations that model the
pointer structure at distinct abstraction levels. They do not model the dy-
namic evolution of such linking structures. To reflect the execution of pointer-
manipulating statements, such as either the creation or deletion of entities (e.g.,
new in Java and delete in C++), or the change of pointers by assignments (e.g.,
x = x↑↑), we use reallocations.

256 D. Distefano, J.-P. Katoen, and A. Rensink

Definition 2. For c, c′ ∈ Cnf, λ : (E⊥ × E′⊥)→M is a reallocation if:
1. (a) C(e) =

⊕
λ(e, e′) and (b) C′(e′) =

⊕
λ(e, e′)

2. (a) for all e ∈ E, |{ e′ | λ(e, e′) = ∗ }| � 1 and (b) { e′ | λ(⊥, e′) = ∗ } = ∅
3. (a) for all e ∈ E, { e′ | λ(e, e′) �= 0 } and (b) for all e′ ∈ E′, { e | λ(e, e′) �= 0 }

are chains.

We write c
λ
� c′ if there is a reallocation (named λ) from c to c′.

The special entity ⊥ is used to model birth and death: λ(⊥, e) �= 0 denotes
the birth of (some instances of) e whereas λ(e,⊥) �= 0 denotes the death of (some
instances of) e. Intuitively speaking, reallocation λ redistributes cardinalities on
E to E′ such that (1a) the total cardinality allocated by λ to e ∈ E equals
C(e) and (1b) the total cardinality assigned to e′ ∈ E′ equals C′(e′). Moreover,
(2a) for each entity e unbounded cardinalities (i.e., equal to ∗) are assigned only
once (according to (1b) to an unbounded entity in E′), and (2b) no unbounded
entities can be born. The last condition is self-explanatory. Note that the identity
function id is a reallocation. The concept of reallocation can be considered as a
generalisation of the idea of identity change as, for instance, present in history-
dependent automata [17]: besides the possible change of the abstract identity of
concrete entities, it allows for the evolution of pointer structures. Reallocations
allow “extraction” of concrete entities from abstract entities by a redistribution
of cardinalities between entities. Extraction is analogous to materialisation [21].
Reallocations ensure that entities that are born cannot be reallocated from any
other entity. Moreover, entities that die can only be reallocated to ⊥.

Relating Abstract and Concrete Evolutions. As a next step we relate transitions
between abstract representations of pointer structures to transitions between
their corresponding concrete representations. To that end, “abstract” realloca-
tions are related to “concrete” ones. These are called concretions.

Definition 3. Let c λ
� c′ and ĉ

̂λ
� ĉ′ with Cĉ = Cĉ′ = 1. λ̂ is a concretion of λ,

denoted λ̂ � λ, iff there exist h and h′ such that:
1. h is a morphism between ĉ and c, and h′ is a morphism between ĉ′ and c′

2. λ(e, e′) =
⊕
{ λ̂(ê, ê′)|(h(ê), h′(ê′)) = (e, e′) }

3. h(e) = h(e′) ∨ (h′ ◦ λ̂)(e) = (h′ ◦ λ̂)(e′) implies e ≺ĉ e
′ ⇔ λ̂(e) ≺ĉ′ λ̂(e′)

4. (Cĉ ◦ h′)(e) = ∗ ⇒ e ∈ cod(λ̂), the co-domain of λ̂.

The first condition states that the concrete source-configuration ĉ and its ab-
stract source c are related by a morphism, and the same applies to their target
configurations ĉ′ and c′. (Stated differently, reallocations and morphisms com-
mute in this case.) The second condition requires the multiplicity of λ and λ̂
to correspond, while the third condition forbids the change of order (according
to ≺) between concrete entities and their abstract counterparts (unlike realloca-
tions). Hence, the order of entities in a chain should remain identical. The last
condition says that entities that are mapped onto unbounded ones in the target
states are not fresh. Due to the third condition all concrete entities represented
by an abstract entity enjoy a common fate: either all of them “survive” the
reallocation or all die.

Who is Pointing When to Whom? 257

Automaton-Based Model. In order to model the dynamic evolution of programs
manipulating (abstract) linked lists, we use a generalisation of Büchi automata
(extending [11]) where each state is a configuration and transitions exist between
states iff these states can be related by means of a reallocation reflecting the
possible change in the pointer structure.

Definition 4. A high-level allocation Büchi automaton (HABA) H is a tuple
〈X,C,→, I,F〉 with:

– X ⊆ LV, a finite set of logical variables;
– C ⊆ Cnf, a set of configurations (also called states);
– −→ ⊆ C×(Ent×Ent×M)×C, a transition relation, s.t. c−→ λ c′ ⇒ c

λ
� c′;

– I : C ⇀ 2Ent × (X ⇀ Ent), an initialisation function such that for all c with
I(c) = (N, θ) we have N ⊆ E and θ : X ⇀ E.

– F ⊆ 2C a set of sets of accept states.

Note that initial new entities cannot be unbounded. HABA can be used to
model the behaviour of pointer-manipulating programs at different levels of ab-
straction. In particular, when all entities in any state are concrete (i.e., C(e) = 1
for all e), and states are related by the identity reallocation, a concrete automa-
ton is obtained that is very close to the actual program behaviour.

Automata for Pointer-Manipulating Programs. As a start, we determine by means
of a static analysis of the program p, the “longest” navigation expression that oc-
curs in it and fix constant L such that L > max{n | (v↑)n occurs in p }. Besides
the formula-dependent constant M , the program-dependent constant L can be
used to tune the precision of the symbolic representation, i.e., by increasing L
the model becomes less abstract. Unbounded entities (i.e., those with cardinality
∗) will be exploited in the semantics to keep the model finite. The basic intuition
of our symbolic semantics is that unbounded entities should always be preceded
by a chain of at least L concrete entities. This principle allows us to precisely
determine the concrete entity that is referred to by any assignment, new and
del-statement. As assignments may yield unsafe configurations (due to program
variables that are “shifted” too close to an unbounded entity), these statements
require some special treatment (see [10]).

Folded Allocation Sequences. In NTL-formulae, entities can only be addressed
through logical variables, and logical variables can only be compared in the
same state. These observations allow a mapping of entities from one state in
an allocation sequence onto entities in its next state, as long as this preserves
the conditions of being a reallocation. A folded allocation sequence is an infinite
alternating sequence (E0, μ0,10)λ0(E1, μ1,11)λ1 · · · , where λi is a reallocation
from (Ei, μi,1i) to (Ei+1, μi+1,1i+1) for i � 0. Due to the unitary cardinality
functions, λi associates at most one entity in Ei+1 to an entity in Ei. We write
λσ

i for the reallocation function of σ in state i, and we define Nσ
0 = N , and

Nσ
i+1 = Eσ

i+1\cod(λσ
i). Similarly, θσ

0 = θ and θσ
i+1 = λσ

i ◦ θσ
i where λ ◦ θi(x)

equals e if θi(x) �= ⊥ and λ(θi(x), e) = 1, and ⊥ otherwise. Using these adapted

258 D. Distefano, J.-P. Katoen, and A. Rensink

definitions of N and θ, a semantics of NTL can be defined in terms of folded
allocation sequences that is equivalent to |= (see [10]). Runs of our symbolic
HABA automata “generate” folded allocation sequences in the following way:

Definition 5. HABA-run q0λ0q1λ1 · · · generates an allocation triple (σ,N, θ)
where σ = cσ

0λ
σ
0 c

σ
1λ

σ
1 · · · is a folded allocation sequence, if there exists a family

of morphisms hi (called a generator) from cσ
i to cqi such that, for all i � 0:

λσ
i � λi (via hi and hi+1), and I(q0) = (N ′, h0 ◦ θ) where N = h−1

0 (N ′).

We adopt the generalised Büchi acceptance condition, i.e, c0c1c2 · · · is a run
of HABA H if ci−→ ci+1 for all i � 0 and |{ i | ci ∈ F }| = ω for all F ∈ F .
Let runs(H) denote the set of runs of H. Then L(H) = { (σ,N, θ) | ∃ ρ ∈
runs(H). ρ generates (σ,N, θ) }.

Relating the Concrete and Symbolic Model. A given HABA abstracts a set of
concrete automata. We formally define this by first defining an implementation
relation over HABA and then using the correspondence of concrete automata to
a certain class of HABA. We say that a given HABA abstracts another one if
there exists a so-called simulation relation (denoted �) between their state sets.

Definition 6. Let H and H ′ be two HABAs such that C(e) = 1 for all e in
H. H ′ abstracts H, denoted H 4 H ′, iff there exists a simulation relation �⊆
C × (Ent ⇀ Ent)× C ′ between their state sets such that:

1. c1 �h c′
1 implies that h is a morphism between c1 and c′

1;
2. c1 �h c′

1 with c1−→λ c2 implies c′
1−→ λ′ c′

2 for some λ′ and c′
2 such that c2 �h′

c′
2 and λ � λ′ via h and h′;

3. c ∈ dom(I) implies I ′(c′) = (N,h ◦ θ) for some c′ ∈ C ′ and h such that
c �h c′ and I(c) = (h−1(N), θ);

4. there exists a bijection ψ : F → F ′ such that for all F ∈ F and c ∈ F ,
c �h c′ for some c′ ∈ ψ(F) and h.

c �h c′ denotes that c′ simulates c, according to a given morphism h. This implies
(1) that c′ is an abstraction of the pointer structure in c (due to the morphism
h), and (2) that every λ-transition of c is mimicked by a λ′-transition of c′ such
that λ′ � λ and the resulting target states are again in the simulation relation.
H is abstracted by H ′ if there is a simulation relation between their states such
that (3) initial states and (4) accept conditions correspond.

Let H |= Φ if for all (σ,N, θ) ∈ L(H) we have σ,N, θ |= Φ, where |= is the
satisfaction relation for NTL defined on folded allocation sequences.

Theorem 1. For H 4 H ′: L(H) ⊆ L(H ′) and (H ′ |= Φ ⇒ H |= Φ).

From this result it follows that all positive verification results on the (typically
finite) abstraction H ′ carry over to the (mostly infinite) concrete automaton H.

Who is Pointing When to Whom? 259

Note that false negatives may occur as the refutation of a formula by H ′ does
not necessarily has to imply that H refutes it as well3.

Example 3. Consider the following NTL-formulae: tl alive ⇒ �(tl alive) and
�(hd alive ⇒ hd � tl). It turns out that both formulae are valid in the abstract
HABA (L = M = 1) modelling the producer/consumer program. By Theorem 1
we conclude that they are valid also on the infinite corresponding concrete model.

5 Model Checking

The Parameters M and L. The precision of automaton H is ruled by two param-
eters: L, which controls the distance between entities before they are collected
into unbounded entities, and M , which controls the information we have about
unbounded entities. L is used in the generation of models from programs; it is no
longer of importance in the model checking stage. M is a formula-dependent con-
stant exceeding

∑
x∈Φ max{ i | (x↑)i occurs in Φ } for the formula Φ to check.

This may mean that the model H at hand is not (yet) suitable for checking a
given formula Φ, namely if M for that model does not meet this lower bound. In
that case we have to stretch the model. Fortunately, we can stretch a given model
without loss of information (but with loss of compactness, and hence increase of
complexity of the model checking). In fact, in [10] we define an operation H ⇑ M̂ ,
which stretches H so that in the resulting model the corresponding constant is
M̂ , and we have the following:

Theorem 2. For all HABA H such that C(H) < M̂ : L(H) = L(H ⇑ M̂).

Here, C(H) is the maximal cardinality of some entity in H. The automaton
H ⇑ M̂ is a factor M̂ −M times as large as H.

The Tableau Graph. The next step is to construct a tableau graph GH(Φ) for Φ
from a given model H, assuming that stretching has been done, so M satisfies
the given lower bound for Φ. GH(Φ) enriches H, for each of its states q, with
information about the collections of formulae relevant to the validity of Φ that
possibly hold in q. These “relevant formulae” are essentially sub-formulae of Φ
and their negations; they are collected into the so-called closure of Φ [15]. The
states of GH(Φ) are now so-called atoms (q,D) where q is a state of H and D
a consistent and complete set of valuations of formulae from the closure of Φ on
(the entities of) q. Consistency and completeness approximately mean that, for
instance, if Ψ1 is in the closure then exactly one of Ψ1 and ¬Ψ1 is “included in”
D (i.e., D contains a valuation for it), and if Ψ1 ∨ Ψ2 is in the closure then it

3 In [11] where we only considered the birth and death of entities we obtained a
stronger relationship between (a somewhat simpler variant of) the concrete and
symbolic model. Here, the abstraction is less precise and permits the abstracted
model to exhibit spurious behaviours that do not occur in the concrete model.

260 D. Distefano, J.-P. Katoen, and A. Rensink

is “in” D iff Ψ1 or Ψ2 is “in” D, etc. For any q, the number of atoms on q is
exponential in the size of the closure and in the number of entities in q.

A transition from (q,D) to (q′, D′) exists in the tableau graph GH(Φ) if
q−→ λ q

′ in H and, moreover, to the valuation of each sub-formula XΨ in D
there exists a corresponding valuation of Ψ in D′ — where the correspondence is
defined modulo the reallocation λ. A fulfilling path in GH(Φ) is then an infinite
sequence of transitions, starting from an initial state, that also satisfies all the
“until” sub-formulae Ψ1 UΨ2 in the atoms, in the sense that if a valuation of
Ψ1 UΨ2 is in a given atom in the sequence, then a corresponding valuation of Ψ2
(modulo a sequence of reallocations) occurs in a later atom.

Proposition 1. H |= Φ iff there does not exist a fulfilling path in GH(¬Φ).

Unfortunately, in contrast to the case of propositional logic (in [15]) and our
own earlier results in the absence of pointers (in [11]), in the setting of this paper
we have not found a decision procedure for the existence of a fulfilling path. In
fact, the existence of a self-fulfilling strongly connected sub-component (SCS) of
the tableau graph, which is the technique used in these other papers, gives only
a necessary criterion for the existence of a fulfilling path. To be precise, if we use
Inf (π) to denote the set of atoms that occur infinitely often in an (arbitrary)
infinite path π in GH(Φ), then we have:

Proposition 2. Inf(π) is not a self-fulfilling SCS ⇒ π is not a fulfilling path.

Since the number of SCSs of any finite tableau graph is finite, and the prop-
erty of self-fulfillment is decidable, this gives rise to a mechanical procedure for
verifying the satisfiability of formulae.

Theorem 3. H |= Φ can be verified mechanically for any finite HABA H.

This, combined with Th. 1, implies that, for any concrete automaton A of
which H is an abstraction, it is also possible to verify mechanically whether
A |= Φ. Note that this theorem leaves the possibility of false negatives, as usual in
model checking in the presence of abstraction. This means that if the algorithm
fails to show H |= Φ then it cannot be concluded that Φ is not satisfiable
(by some run of H). However, since such a failure is always accompanied by
a “prospective” fulfilling path of Φ, further analysis or testing may be used to
come to a more precise conclusion.

6 Conclusions

Although our heap structures are less general than those used in shape analysis,
our abstractions are less non-deterministic, and therefore, are potentially more
exact. Experimental research is needed to validate this claim. Although NTL is
essentially a first-order logic, it contains two second-order features: the reacha-
bility predicate α � β (which computes the transitive closure of pointers), and
the freshness predicate α new. The latter is second-order because it essentially

Who is Pointing When to Whom? 261

expresses that the entity denoted by α did not occur in the set of entities exist-
ing in the directly preceding state. In fact it would be very useful to extend the
latter to freshness with respect to an arbitrary previous state, for instance by
introducing formulae σX.Φ which bind X to the set of entities existing in the
current state, and predicates α ∈ X which express that the entity denoted by
α is in the set X. We conjecture that the results of this paper can be lifted to
such an extension without essential changes.

References

1. S. Bardin, A. Finkel, and D. Nowak. Towards symbolic verification of programs
handling pointers. In: AVIS 2004. ENTCS 2004 to appear.

2. M. Bozga, R. Iosif, and Y. Lakhnech. Storeless semantics and alias logic. In:
PEPM, pp. 55–65. ACM Press, 2003.

3. R. Burstall. Some techniques for proving correctness of programs which alter data
structures. Machine Intelligence 6: 23–50, 1971.

4. L. Cardelli, P. Gardner, and G. Ghelli. A spatial logic for querying graphs. In:
ICALP, LNCS 2380, pp. 597–610. Springer, 2002.

5. L. Cardelli and A.D. Gordon. Anytime, anywhere: modal logics for mobile ambi-
ents. In: POPL, pp. 365–377. ACM Press, 2000.

6. D.R. Chase, M. Wegman and F. Zadeck. Analysis of pointers and structures. In
PLDI, pp. 296–310. ACM Press, 1990.

7. S.A. Cook and D. Oppen. An assertion language for data structures. In: POPL,
pp. 160–166. ACM Press, 1975.

8. A. Deutsch. Interprocedural may-alias analysis for pointers: beyond k-limiting. In:
PLDI, pp. 230–241. ACM Press, 1994.

9. D. Distefano. On model checking the dynamics of object-based software: a foun-
dational approach. PhD. Thesis, Univ. of Twente, 2003.

10. D. Distefano, A. Rensink and J.-P. Katoen. Who is pointing when to whom? CTIT
Tech. Rep. 03-12, 2003.

11. D. Distefano, A. Rensink, and J.-P. Katoen. Model checking birth and death. In:
TCS, pp. 435–447. Kluwer, 2002.

12. S. Ishtiaq and P.W. O’Hearn. BI as an assertion language for mutable data struc-
tures. In POPL, pp. 14–26, ACM Press, 2001.

13. J. Jensen, M. Jørgensen, M. Schwartzbach and N. Klarlund. Automatic verification
of pointer programs using monadic second-order logic. In: PLDI, pp. 226–236. ACM
Press, 1997.

14. N.D. Jones and S.S. Muchnick. Flow analysis and optimization of Lisp-like struc-
tures. In S.S. Muchnick and N.D. Jones, editors, Program Flow Analysis: Theory
and Applications, Chapter 4, pp. 102-131, Prentice-Hall, 1981.

15. O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs
satisfy their linear specification. In: POPL, pp. 97–107. ACM Press, 1985.

16. G. Nelson. Verifying reachability invariants of linked structures. In: POPL, pp.
38–47. ACM Press, 1983.

17. U. Montanari and M. Pistore. An introduction to history-dependent automata.
ENTCS 10, 1998.

18. P.W. O’Hearn, H. Yang, and J.C. Reynolds. Separation and information hiding.
In: POPL, pp. 268–280. ACM Press, 2004.

262 D. Distefano, J.-P. Katoen, and A. Rensink

19. A. Rensink. Canonical graph shapes. In: ESOP, LNCS 2986, pp. 401–415.
Springer,2004.

20. J.C. Reynolds. Separation logic: A logic for shared mutable data structures. In
LICS, pp. 55–74. IEEE CS Press, 2002.

21. M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in languages
with destructive updating. ACM TOPLAS, 20(1): 1–50, 1998.

22. L. Séméria, K. Sato and G. de Micheli. Resolution of dynamic memory allocation
and pointers for the behavioural synthesis from C. In DATE, pp. 312–319. ACM
Press, 2000.

23. E. Yahav, T. Reps, M. Sagiv, and R. Wilhelm. Verifying temporal heap properties
specified via evolution logic. In: ESOP, LNCS 2618, pp. 204–222. Springer, 2003.

An Almost Linear Time Approximation
Algorithm for the Permanent of a

Random (0-1) Matrix

Martin Fürer� and Shiva Prasad Kasiviswanathan

Computer Science and Engineering, Pennsylvania State University,
University Park, PA 16802

{furer, kasivisw}@cse.psu.edu

Abstract. We present a simple randomized algorithm for approximat-
ing permanents. The algorithm with inputs A, ε > 0 produces an output
XA with (1−ε)per(A) ≤ XA ≤ (1+ε)per(A) for almost all (0-1) matrices
A. For any positive constant ε > 0, and almost all (0-1) matrices the al-
gorithm runs in time O(n2ω), i.e., almost linear in the size of the matrix,
where ω = ω(n) is any function satisfying ω(n) → ∞ as n → ∞. This
improves the previous bound of O(n3ω) for such matrices. The estimator
can also be used to estimate the size of a backtrack tree.

1 Introduction

The permanent of an n× n matrix A is defined as

per(A) =
∑

π

∏
i

a(i, π(i)),

where the sum is over all permutations π of {1, 2, . . . , n}. The permanent func-
tion was first introduced in the memoirs of Cauchy and Binet in 1812 (see [11]
for a comprehensive history). The (0-1) permanent also has a simple combina-
torial interpretation, per(A) counts the perfect matchings in the (n + n)-vertex
bipartite graph whose adjacency matrix is A. The permanent has important ap-
plications in physical sciences and plays a central role in many linear algebra
and combinatorial enumeration problems.

Despite its syntactic similarity to the determinant, no efficient method for
computing the permanent could be found for almost two centuries. This apparent
paradox was solved by Valiant [16] who showed in his celebrated paper that
per(A) is #P-complete. The class #P is defined as {f : ∃ a non deterministic
polynomial time Turing Machine M such that on input x, M has exactly f(x)
accepting leaves}. Thus, it comes as no surprise that there is no polynomial
time deterministic algorithm for calculating the permanent exactly. The best
known deterministic algorithm has a running time of O(n2n) [14]. Therefore,

� Research supported in part by NSF Grant CCR-0209099.

K. Lodaya and M. Mahajan (Eds.): FSTTCS 2004, LNCS 3328, pp. 263–274, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

264 M. Fürer and S.P. Kasiviswanathan

the more recent research has focussed on efficient approximation algorithms for
the permanent with desired performance guarantees. In this paper, we describe
a simple estimator for the permanent and prove that it has an overall running
time of O(n2ω) for random (0-1) matrices from G(n, 1/2), where ω = ω(n) is
any function satisfying ω(n)→∞ as n→∞. We then generalize our technique
to obtain a running time which is polynomial in the size of the input matrix
for the case of G(n, p). We also show how the same estimator when applied to
another problem, that of estimating the size of a tree, could result in better
running times for some kinds of random trees. The estimator is a randomized
approximation scheme.

2 Definitions

Let Q be some function from Σ∗ to the natural numbers. A fully-polynomial
randomized approximation scheme (a.k.a. fpras) for Q is a randomized algorithm
that accepts an input x ∈

∑� together with an accuracy parameter ε ∈ (0, 1],
outputs a number X (a random variable depending on the coin tosses of the
algorithm) such that

Pr[(1− ε)Q(x) ≤ X ≤ (1 + ε)Q(x)] ≥ 3
4

and runs in time polynomial in |x| and ε−1. The probability of 3
4 can be boosted

to 1− δ for any 0 < δ < 1 by outputting the median of O(log δ−1) independent
trials [7].

Suppose we would like to estimate Q and have a probabilistic algorithm
running in time polynomial in |x|, whose output is a random variable X such
that E[X] = Q(x) and E[X2] is finite. Suppose further that we can repeat this
experiment as many times as we wish, and the outcomes of the successive trials
are independent and identically distributed. Let Xi be the outcome of the ith

trial. A straightforward application of Chebychev’s inequality shows that, if we
conduct O(E[X2]

E[X]2
ε−2) trials and take the mean, we have an fpras for Q. Together,

the complexity of performing the stochastic experiment, and the ratio of E[X2]
E[X]2

(a.k.a. critical ratio) will determine the efficiency of the algorithm.

3 Related Work

Current research in the area of permanents has been divided into four major
categories [2]. They are: elementary recursive algorithms; reductions to deter-
minants; iterative balancing; and Markov chain Monte-Carlo methods. One of
the simplest estimators of the permanent using elementary recursive algorithms
was proposed by Rasmussen [13]. This estimator has a running time of O(n3ω)
for almost all (0-1) matrices. We will extend Rasmussen’s idea to get a running
time of O(n2ω) for almost all (0-1) matrices. The more famous K2L3 [8] esti-
mator uses reductions to determinants. This estimator, which is based on the

Linear Approximation for Permanent of a Random (0-1) Matrix 265

Godsil/Gutman estimator [4], has a running time of poly(n)2n/2 for all (0-1)
matrices. In 1995, Frieze and Jerrum [3] proved that the K2L3 estimator runs in
time O(nM(n)ω) for almost all non-negative matrices, where M(n) is the time
required to perform matrix multiplications. Recently, an fpras for computing
the permanent of an arbitrary matrix with non-negative entries was proposed
by Jerrum, Sinclair, Vigoda [6]. This is based on the Markov chain Monte-Carlo
approach. However, due to their high exponent in the running time, i.e. Õ(n10),
the algorithm is unlikely to be practical [2]. For this reason, it is still worth in-
vestigating alternative approaches. The following table summarizes the running
times of various estimators of the permanent of a random (0-1) matrix.

Authors Year Running Time
Jerrum and Sinclair [5] 1989 O(nO(1))
K2L3 [8], Frieze and Jerrum [3] 1993, 1995 O(nM(n)ω)
Rasmussen [13] 1994 O(n3ω)
Ours 2004 O(n2ω)

Fig. 1. Performance of Various Estimators for Random (0-1) matrices of G(n, 1/2)

4 The Rasmussen Estimator

The Rasmussen [13] estimator is inspired by Laplace’s expansion formula for the
permanent:

per(A) =
n∑

j=1

a1jper(A1j),

where A1j denotes the submatrix obtained from A by removing the 1st row and
the jth column, and the permanent of the empty matrix is set to 1. The idea
is similar to that of Knuth’s estimator [9] for estimating the size of a backtrack
tree. Let W={j : a1j = 1} (the set of columns with 1 in the current row).
The estimator XA is defined as the product of the number of 1’s in the current
row with the estimator XA1j

for the remaining submatrix. The column j is
chosen uniformly at random from W . The estimator is clearly unbiased (E[X] =
per(A) and E[X2] is finite) and one run of the algorithm can be implemented
in O(n2). The benefits of such an estimator are its simplicity and wide range of
applicability.

5 A Better Estimator

A closer look at the above estimator tells us that this estimator makes most of
its mistakes towards the end when the matrix becomes small. This motivates us
to increase the frequency of runs as we go down (here run stands for a single
application of the estimator algorithm over the remaining submatrix). At every

266 M. Fürer and S.P. Kasiviswanathan

Random Approximator of the Permanent:
RAP(A,n,s,r)
if n = 0 then

XA = 1
else

W = {j : a1j = 1}
if W = ∅ then

XA = 0
else

if n = si for some i ≥ 1 then
K = r

else
K = 1

for � = 1 to K do
choose J(�) u.a.r. from W
compute XA1J(�) using RAP (A1j , n − 1, s, r)

XA = |W |(1
K

∑K
�=1 XA1J(�))

Fig. 2. The Algorithm

level with height si(i ≥ 1) (= branching points), we do r (= branching factor)
runs on the submatrix, rather than the usual one. At height 1, we have only
one element. The estimator XA of a (0-1) n × n matrix A=(aij)(1 ≤ i, j ≤ n)
is computed as in Figure 2. We call our algorithm RAP. This idea is similar
to one used by Karger and Stein [15] to obtain a faster algorithm for Min-
Cut. The computation has a tree structure (Figure 3). Each path from the root
to a leaf represents one run of the Rasmussen estimator. We do a bottom-up
evaluation. At each branching level, we find the estimator by taking the product
of the number of 1’s in that row with the mean over the estimators of the
previous level. This gives an unbiased estimator for permanent of any (0-1)
matrix.

Height=0

Fig. 3. Run of the Algorithm RAP(A,4,2,3)

Linear Approximation for Permanent of a Random (0-1) Matrix 267

6 The Permanent of a Random Matrix

The two most frequently used models of random graphs are G(n, p) and G(n,m).
G(n, p) includes each possible edge with independent probability p and G(n,m)
assigns equal probability to all graphs with m edges (see [1] for an extensive
treatment). Following [13] we use A(n) to represent the set of all n×n (0-1) ma-
trices, A(n,m) to represent the set of all n×n (0-1) matrices with exactly m 1’s,
Eσ to represent the mean over the coin-tosses of the estimator, EA to represent
the mean over A(n), and EA(n,m) to represent the mean over A(n,m). In this
section we deal with the more widely used random graph model G(n, 1/2). Here
at every level with height 2i(i ≥ 1) (s = 2), we do r = 3 runs on the submatrix.

Theorem 1. The running time of the algorithm RAP(A,n, 2, 3) is O(n2).

Proof. Let 2i−1 < n ≤ 2i. Then the running time: Between top and 1st branching
level is < n2 ≤ 22i. Between 1st and 2nd branching level is < 3(2i−1)2. Between
2nd and 3rd branching level is < 9(2i−2)2. As this forms a geometric series, the
total running time is O(n2). ��

Our result rests on the following results of Frieze and Jerrum [3], Rasmussen
[13], which we state here without proof.

Lemma 1 (Frieze and Jerrum [3]) . Suppose m = m(n) satisfies m2

n3 → ∞
as n→∞, and choose A from A(n,m) (set of all (0-1) matrices with exactly m
1’s). Then

E[per(A)2] = (n!)2(
m

n2)2nexp(−n
2

m
+ 1 + O(

n3

m2))

and
E[per(A)2]
E[per(A)]2

= 1 + O(
n3

m2)

Lemma 2 (Rasmussen [13]) . Let ω = ω(n) be any function satisfying ω →
∞ as n → ∞. Let μ(n) = EA(n)[per(A)] denote the mean of the permanent
of a random matrix. Then for almost all (0-1) matrices A, and any unbiased
estimator XA of the permanent,

per(A) ≥ μ(n)
ω

and
Eσ[X2

A]
Eσ[XA]2

≤ ω
EA[Eσ[X2

A]]
EA[Eσ[XA]]2

For Rasmussen’s algorithm the critical factor Eσ [X2
A]

Eσ [XA]2
is O(nω). The idea of

repeated runs allows us to achieve an asymptotically lower bound on the critical
ratio.

Our algorithm RAP (Figure 2) differs from Rasmussen’s algorithm on what
it does only at branching points. R̂AP is an auxiliary random approximator of
the permanent. It’s only difference from RAP is that K=1 at the start, i.e., there
is no branching in the root of the computation tree even if n = 2j . The random

268 M. Fürer and S.P. Kasiviswanathan

variables X̂ and X are the outputs of R̂AP and RAP respectively. To model the
quality of R̂AP and RAP, we introduce two terms R̂(h) and R(h). R̂(h) models
the ratio of means of the auxiliary approximator R̂AP, while R(h) models the
ratio of means of RAP until height h.

R̂(h) =
EA[Eσ[X̂h

2
]]

EA[Eσ[X̂h]]2
and R(h) =

EA[Eσ[X2
h]]

EA[Eσ[Xh]]2

The proofs are organized as follows: We establish the recursive relationship
between R(h) and R̂(h) in Theorems 2 and 3. With Theorems 4 and 5, we
establish the claimed performance bounds. The following Theorem shows how
R̂(h) varies as a function of R(2�lg(h−1)�), i.e. R at the previous branching point.

Theorem 2. Let An denote a random matrix from the set A(n), and let R(h)
and R̂(h) be the functions defined as above. Then

R̂(h) =
{

2 for h = 1
h+1

2�lg(h−1)�+1R(2�lg(h−1)�) for h > 1

Proof. The numerator of R̂(h) is

EA[Eσ[X̂2
h]] =

h∑
m=0

EA[Eσ[X̂2
h]|Mh = m] Pr[Mh = m]

=
h∑

m=0

EA[m2Eσ[(Xh−1)2]] Pr[Mh = m]

= EA[M2
h]EA[M2

h−1] . . .EA[M2
(2�lg(h−1)�+1)] EA[Eσ[(X2�lg(h−1)�)2]]

where Mi denotes a binomial variable with parameters i and p = 1
2 and thus∑h

m=0 m
2 Pr[Mh = m] is equal to EA[M2

h]. The denominator of R̂(h) is

EA[Eσ[X̂h]]2 = E[per(Ah)]2 =
(
h!
2h

)2

=
h∏

i=1

E[Mi]2

R̂(h) =
E[M2

h]
E[Mh]2

E[M2
h−1]

E[Mh−1]2
. . .

E[M2
(2�lg(h−1)�+1)]

E[M(2�lg(h−1)�+1)]2
EA[Eσ[(X2�lg(h−1)�)2]]
EA[Eσ[X2�lg(h−1)�]]2

=
4h(h + 1)

4h2 . . .
4(2�lg(h−1)� + 1)(2�lg(h−1)� + 2)

4(2�lg(h−1)� + 1)2
EA[Eσ[(X2�lg(h−1)�)2]]
EA[Eσ[X2�lg(h−1)�]]2

=
h + 1

2�lg(h−1)� + 1
R(2�lg(h−1)�) ��

Before venturing into showing the dependence of R(h) on R̂(h) we establish
a few important lemmas. The following lemma estimates a bound of higher
moment of the binomial distribution. A lot of similar results have appeared in
literature (see [10] for more details).

Linear Approximation for Permanent of a Random (0-1) Matrix 269

Lemma 3. For n ≥ 0 we have

1
2n2

n2∑
j=0

(
n2

j

)
j2n = O

((
n2

2

)2n
)

Proof. The term
(
n2

j

)
j2n has its maximum value around j = n2

2 + n. The idea
is to split the summation into three parts around this point and to bound each
part. ��

In the following lemma we try to establish a relationship which is similar to
the one established in Lemma 1. Note that Lemma 1 holds for the random graph
model G(n,m), but we are interested in the more commonly used G(n, p) model.

Lemma 4. Let An be a matrix from the set A(n). Then for some constant c
independent of n

E[(per(An))2]
E[per(An)]2

≤ c

Proof. We can split the numerator by conditioning it on the number of 1’s (M)
in the matrix as

Pr[M <
n2

4
]E[(per(An))2|M <

n2

4
] + Pr[M ≥ n2

4
]E[(per(An))2|M ≥ n2

4
]

By Chernoff’s Bound, we have Pr[M < n2

4] < exp(−n2

16). So for the numerator
we have

Pr[M <
n2

4
] < Pr[M ≥ n2

4
] and E[(per(An))2|M <

n2

4
] ≤ E[(per(An))2|M ≥ n2

4
]

The second inequality follows as adding more 1’s can’t reduce the value of
the permanent. This implies

E[per(An)2] < 2 Pr[M ≥ n2

4
]E[(per(An))2|M ≥ n2

4
]

≤ 2E[(per(An))2|M ≥ n2

4
] = 2

n2∑
j= n2

4

E[(per(An))2|M = j] Pr[M = j]

Substituting for the probability of having j 1’s and using Lemma 1 for the
value of E[(per(An))2], we obtain

E[(per(An))2]
E[per(An)]2

≤ (22n+1)
(n!)2

n2∑
j= n2

4

(n!)2(
j

n2)2nexp (−n
2

j
+ 1 + O(

n3

j2))︸ ︷︷ ︸
≤c′

(
n2

j

)(
1
2

)n2

<
22n+1exp(c′)

n4n

n2∑
j=0

j2n

(
n2

j

)
2−n2

270 M. Fürer and S.P. Kasiviswanathan

However from Lemma 3, we know that
∑n2

j=0 j
2n
(
n2

j

)
= O(

(
n2

2

)2n

2n2
). Sub-

stituting this result we finish the proof of the Lemma 4. ��

We are now prepared to establish the dependence of R(h) on R̂(h). As men-
tioned earlier R(h) and R̂(h) vary only at the branching points.

Theorem 3. Let R(h) and R̂(h) be the functions defined as above. Then

R(h) ≤
{

R̂(h)
K + (K−1)c

K if h is a branching point
R̂(h) otherwise

where c is an upper bound on EA[per(A)2]
EA[per(A)]2 .

Proof. At all levels other than the branching levels, we have K = 1 implying
R(h)=R̂(h). However, at the branching levels we have:

R(h) =
EA[Eσ[X2

h]]
EA[Eσ[Xh]]2

=
EA[Eσ[(1

K

∑K
i=1 X̂

(i)
h)2]]

EA[Eσ[1
K

∑K
i=1 X̂

(i)
h]]2

.

Furthermore since the outcomes of the successive trials X̂(i)
h are independent

and identically distributed

Eσ[(
1
K

K∑
i=1

X̂
(i)
h)2] =

Eσ[X̂2
h] + (K − 1)Eσ[X̂h]2

K

R(h) =
EA[Eσ[X̂2

h]]
KEA[Eσ[X̂h]]2

+
(K − 1)EA[Eσ[X̂h]2]

KEA[Eσ[X̂h]]2
=

R̂(h)
K

+
(K − 1)EA(per(Ah)2]

KEA[per(Ah)]2

Using Lemma 4 we complete the proof. ��

Substituting K = 3, we get R(h) = R̂(h)+2O(1)
3 at the branching points. In

the following two Theorems we show that both R(h) and R̂(h) are bound by a
constant implying that the critical ratio is O(ω) from Lemma 2.

Theorem 4. Let R̂(h) and R(h) be the functions defined as above. Then for all
h ≤ n and for c from Theorem 3

R̂(h) ≤ 2c(h + 1)
2�lg(h−1)� + 1

and R(h) ≤
{

2c h = branching point
2c(h+1)

2�lg(h−1)�+1 otherwise

Proof. We use induction over h. We know that c ≥ 1. For h = 1, R̂(1) = 2 ≤
2c and R(1) = 2 ≤ 2c. Assuming the statement is true for h, we prove it for
h + 1. There are two cases:

Case 1: h + 1 is a branching point. From Theorem 2 we get

R̂(h + 1) =
h + 2

2�lg(h)� + 1
R(2�lg(h)�) ≤ 2c(h + 2)

2�lg(h)� + 1

Linear Approximation for Permanent of a Random (0-1) Matrix 271

(where R(2�lg(h)�) ≤ 2c is by induction hypothesis). From Theorem 3, we also
get R(h + 1) ≤ 2c.

Case 2: h + 1 is not a branching point.

R̂(h + 1) = R(2�lg(h)�)
h + 2

2�lg(h)� + 1
=

2c(h + 2)
2�lg(h)� + 1

From Theorem 3, R(h + 1) = R̂(h + 1). ��

Theorem 5. Let ω = ω(n) be any function satisfying ω →∞ as n→∞. Then
for almost all (0-1) matrices A, we have,

Eσ[X2
A]

Eσ[XA]2
= O(ω)

Proof. The factor of 2h
2�lg(h−1)�+1+1 is less than 2. Hence, both R(h) and R̂(h) are

O(1) (Theorem 4). Using Lemma 2, we bound the critical factor by O(ω). ��
Each run of the estimator presented here can be performed using O(n2)

operations, and the number of times we need to repeat the experiment to obtain
an fpras is O(ω). Thus, we obtain a total running time of O(n2ω) for almost all
(0-1) matrices.

7 Arbitrary Probabilities

Till now we have been dealing with the interesting random graph model G(n, 1
2).

In this section we investigate the performance of the proposed estimator for the
case G(n, p) for arbitrary edge probability p. We propose three different choices
of the branching point parameter s (Figure 4) to RAP depending on p. We
always branch by a factor of 2 at powers of s (branching point) rounded up to
the next integer. One can pretend the powers of s are integers because

1. With rounding up, one gets a result that is not worse (compared to rounding
down).

2. The extra cost (of rounding up compared to rounding down) is negligible. It
can trivially be bound by a factor of 2.

As before, together the complexity of performing the stochastic experiment,
and the ratio of E[X2]

E[X]2
will determine the efficiency of the algorithm. Results are

summarized in Figure 4.

Probability B.P. Selector s Single Run Critical Ratio Total Running Time

p > 1
3

√
2 < s < 2

1
(p−1−1) O(n2) O(ω(n)) O(n2ω(n))

p = 1
3

√
2 O(n2 lg n) O(lg(n)ω(n)) O(n2 lg2(n)ω(n))

p < 1
3 2

1
(p−1−1) < s <

√
2 O(n

1
lg s) O(n

1
p

−1− 1
lg s ω(n)) O(n

1
p

−1
ω(n))

Fig. 4. Performance of the Estimator for different Probabilities

272 M. Fürer and S.P. Kasiviswanathan

7.1 Probability p > 1
3

Here, the major contribution to the complexity is from the work we do at the
top of the computation tree, handling the first n/2 rows costs O(n2). In the
remaining part, the time spent between two consecutive branching levels decrease
as geometric series, giving us total running time of O(n2). Also as in Section 6,
we can show that R(n) = O(1).

7.2 Probability p = 1
3

Here we do O(n2) work between any two branching points, since we have O(lgn)
such branching levels, the complexity of a single run of the experiment is
O(n2 lg n).

Theorem 6. Let h = sk and h′ = sk+1 be two consecutive branching points. Let
2 be the branching factor. Then

R(h′) =
R(h)s(1

p −1) + c

2

where c is the constant from Theorem 3

Proof. In this probability space where each entry is chosen to be 1 with proba-
bility p

E[M2
h]

E[Mh]2
=
(

1 +
1− p

hp

)
Hence, between h and h′ the ratio R̂ grows by

sk+1∏
j=sk+1

(
1 +

1− p

jp

)
= exp

⎛⎝ln
sk+1∏

j=sk+1

(
1 +

1− p

jp

)⎞⎠ ≤ exp

⎛⎝ sk+1∑
j=sk+1

1− p

jp

⎞⎠
≤ exp

(
1− p

p

∫ sk+1

sk

dx

x

)
= s(1

p −1)

As in Theorem 2, we can show for this probability space R̂(h′) = s(1
p −1)R(h).

By using these values in Theorem 3 we complete the proof. ��

From Theorem 6, we can see that for p = 1/3 the R(h) increases by c
2 between

two consecutive branching points. Since there are O(lgn) such branching points,
R(n) = O(lgn).

7.3 Probability p < 1
3

Here the major contribution to the complexity of the experiment is from the work
we do at the leaves which is of order O(2

lg n
lg s) =O(n

1
lg s). Again by application of

Theorem 6, we can show R(n) is O
(
n

1
p −1−lg s

)
.

Linear Approximation for Permanent of a Random (0-1) Matrix 273

8 Permanent of Matrices with Arbitrary Entries

Let S = {e1, e2, . . . , en} be a large set, with element ei having weight wi. One
could again use the idea (Figure 5) of randomized selection to obtain an estimate
of the weight W =

∑n
i=1 wi of S. The estimator can easily be shown to be

unbiased. This idea can be used to extend our algorithm to deal with an arbitrary
matrix A with non-negative entries. When working with some row r containing
some vector v of entries. Choose entry arj with probability pv(j) and output
arj/pv(j), where one reasonable choice of probabilities is pv(j) = (

∑
i ari)−1arj

Algorithm to Estimate the Weight W of S: Assume
∑n

i=1 pi ≤ 1
Let qi =

∑i
j=1 pj

Select y uniformly at random from [0, 1). If qi−1 ≤ y < qi then pick ei and
output X = wi

pi
, else (qn ≤ y < 1) don’t pick anything and output X = 0.

Fig. 5. Estimator of the weight of S

9 Estimating the Size of Tree

One of the chief difficulties involved with the backtracking technique for combi-
natorial problems has been the inability to predict efficiency of the algorithm.
Knuth [9] was the first to present a reasonable estimator for this problem and
it was later enhanced by Purdom [12]. Knuth’s idea is to estimate the size of a
backtrack tree by repeatedly following random paths from the root. We could
also apply our method to construct an unbiased estimator for determining the
size of backtrack trees.

We conjecture that for certain classes of trees our estimator performs better
than Knuth’s estimator. One example where we perform better is a random
tree model where for every node at depth d we toss h − d coins to generate at
most h − d children. This results in height bounded random tree with degree
of nodes strictly decreasing as we go down. One could easily see that such a
restricted random tree model is essentially what we encounter with permanents,
and in previous sections we have shown that our estimator outperforms Knuth’s
estimator (Knuth’s estimator works similar to Rasmussen’s estimator).

10 Concluding Remarks

We have presented a very simple, randomized algorithm for approximating the
permanent. We have also shown that for almost all matrices the estimator runs
in time almost linear in the number of entries. This is the fastest known algo-
rithm for approximating permanents of random (0-1) matrices. To do better than
O(n2), one could think of an estimator that inspects only a fraction of elements
in a given row. Indeed, such unbiased estimators can easily be constructed by
estimating the number of ones in a row by sampling. However, on the flip side,
such a sublinear estimator may have a much higher variance.

274 M. Fürer and S.P. Kasiviswanathan

We envisage such a scheme to be part of larger general framework which can
be used to solve similar combinatorial problems. We already know that a similar
schema gives a good algorithm for finding a Min-Cut [15]. Also in the mean time
the same schema has been successfully extended to count matchings in general
graphs by the authors.

Acknowledgements

The authors would like to thank the referees for pointing out similarity of our
method with [15] and for providing valuable comments on the results.

References

1. B. Bollobás. Random Graphs. Academic Press, London, England, 1985.
2. S. Chien, L. Rasmussen, and A. Sinclair. Clifford algebras and approximating the

permanent. Proceedings of the 34th ACM Symposium on Theory of Computing,
pages 222–231, 2002.

3. A. Frieze and M. Jerrum. An analysis of a Monte-Carlo algorithm for approximat-
ing the permanent. Combinatorica, pages 67–83, 1995.

4. C. Godsil and I. Gutman. On the matching polynomial of a graph. Algebraic
Methods in Graph Theory, pages 241–249, 1981.

5. M. Jerrum and A. Sinclair. Approximating the permanent. SIAM Journal of
Computing, 18:1149–1178, 1989.

6. M. Jerrum, A. Sinclair, and E. Vigoda. A polynomial time approximation algo-
rithm for the permanent of a matrix with non-negative entries. Journal of the
ACM, 51(4), 2004.

7. M. Jerrum, L. Valiant, and V. Vazirani. Random generation of combinatorial
structures from a uniform distribution. Theoretical Computer Science, 43:169–188,
1986.

8. N. Karmarkar, R. Karp, R. Lipton, L. Lovsáz, and M. Luby. A Monte-Carlo
algorithm for estimating the permanent. SIAM Journal of Computing, 22:284–
293, 1993.

9. D. E. Knuth. Estimating the efficiency of backtrack programs. Mathematics of
Computation, 29:121–136, 1974.

10. V. D. la Pena and E. Giné. Decoupling, from Dependence to Independence. Springer
Verlag, New York, 1999.

11. H. Minc. Permanents, Encyclopedia of Mathematics and its Applications. Addison-
Wesley Publishing Company, 1982.

12. P. W. Purdom. Tree size by partial backtracking. SIAM Journal on Computing,
7(4):481–491, 1978.

13. L. Rasmussen. Approximating the permanent:A simple approach. Random Struc-
tures and Algorithms, 5:349–361, 1994.

14. H. Ryser. Combinatorial Mathematics, The Carus Mathematical Monographs. The
Mathematical Association of America, Washington DC, 1963.

15. C. Stein and D. R. Karger. A new approach to the minimum cut problem. Journal
of the ACM, 43(4):601–640, 1996.

16. L. Valiant. The complexity of computing the permanent. Theoretical Computer
Science, 8:189–201, 1979.

Distributed Games with Causal Memory Are
Decidable for Series-Parallel Systems�

Paul Gastin, Benjamin Lerman, and Marc Zeitoun

LIAFA, Université Paris 7 & CNRS,
2, pl. Jussieu, case 7014, F-75251 Paris cedex 05, France

{Paul.Gastin, Benjamin.Lerman, Marc.Zeitoun}@liafa.jussieu.fr

Abstract. This paper deals with distributed control problems by means
of distributed games played on Mazurkiewicz traces. The main difference
with other notions of distributed games recently introduced is that, in-
stead of having a local view, strategies and controllers are able to use
a more accurate memory, based on their causal view. Our main result
states that using the causal view makes the control synthesis problem
decidable for series-parallel systems for all recognizable winning condi-
tions on finite behaviors, while this problem with local view was proved
undecidable even for reachability conditions.

1 Introduction

This paper addresses a distributed control problem. We are given a distributed
open system interacting with its environment. While actions of the environment
cannot be controlled, actions performed by the system are controllable. We are
also given a specification and the problem is to find, for each local process, a
finite-state local controller such that synchronizing each local process with its
local controller makes an overall system satisfying the specification.

Sequential versions of control problems have been studied for a long time [2,
16, 14] and have usually decidable answers. What makes the distributed control
problem more difficult is that a given process and its associated local controller
only have a partial view of what happened so far. For instance, a controller can-
not take a decision depending on what occurred on a concurrent process, unless
such information is forwarded to it (via another process or via the environment).

The problem can be modeled by a game with incomplete information. Each
process is a player of the controller team and the environment is the other team.
Finding a distributed controller is then equivalent to computing a distributed
winning strategy for the controller team. The general situation for multiplayer
games with incomplete information is undecidable [13, 12] and in this light, it
is not really surprising that the distributed control problem is undecidable even
for simple specifications [15, 7, 8, 10]. The aim of the present paper is to open

� Work partly supported by the European research project HPRN-CT-2002-00283
GAMES and by the ACI Sécurité Informatique 2003-22 (VERSYDIS).

K. Lodaya and M. Mahajan (Eds.): FSTTCS 2004, LNCS 3328, pp. 275–286, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

276 P. Gastin, B. Lerman, and M. Zeitoun

a breach in the list of undecidable results for distributed systems. Obtaining
efficient and broadly applicable algorithms is a long term issue, out of the scope
of the paper.

We believe that there are two main reasons for undecidability results obtained
in previous works and that they are both related to the fact that interleavings
were used to model distributed behaviors. First, specifications were often given
as regular conditions on linearizations and were not necessarily closed under
commutations of independent actions. This is a well-known cause of undecid-
ability, already addressed in [10]. The second reason has to do with the memory
that local controllers are allowed to use. This memory is an abstraction of the
part of the behavior that the controller is able to see. Previous works used a local
view : a process can only see its own previous actions. However, the distributed
control problem remains undecidable using this local view even when specifica-
tion are both regular and closed under commutations [10]. For distributed games
defined in [11], even reachability specifications are undecidable [1].

In our work, the local memory is based on the causal view of a process (a no-
tion which already yielded positive decidability results for branching-time spec-
ifications [9]). This causal view is more accurate than the local one and includes
all actions that are causally in the past of the current local action. Importantly,
this causal memory can be implemented for reasonable communication archi-
tectures by forwarding additional informations along with usual messages. The
main contribution of this paper is that, if we use causal memory, the distributed
control problem becomes decidable for series-parallel systems and for controlled
reachability conditions, encompassing specifications such as recognizability on
finite behaviors, and reachability and safety conditions (on finite or infinite be-
haviors). Further, one can effectively compute a distributed controller when it
exists. This result contrasts deeply with previous work since the problem is un-
decidable with local memory. Our proof is based on a structural induction that
is possible for series-parallel systems.

The causal view was also considered in [6]. It was shown that distributed
games with causal memory are undecidable for rational winning conditions on
linearizations even for cograph dependence alphabets. This explains why we
consider only recognizable winning conditions in this paper.

The distributed control problem remains open for classical conditions on
infinite traces such as Büchi, liveness, parity conditions, . . . We conjecture that
these problems are still decidable. Another important issue is to exhibit a more
direct construction of the winning strategies. Finally, the distributed control
problem is still open, even for finite behaviors, on non-cograph alphabets.

Due to lack of space, most proofs had to be omitted.

2 Definitions and Notation

Mazurkiewicz Traces. We briefly recall definitions for our models of distributed
behaviors, see [4] for details.

Distributed Games with Causal Memory Are Decidable for S-P Systems 277

If (V,≤) is a poset and S ⊆ V , the past of S is ↓S = {x ∈ V | ∃s ∈ S, x ≤ s}.
If x ∈ V , we write ↓x for ↓{x} and we let ⇓x = ↓x \ {x} be the strict past of x.
The successor relation associated with the partial order < is � = < \<2.

A dependence alphabet is a pair (Σ,D) where Σ is a finite alphabet and D
is a reflexive, symmetric binary relation over Σ, called the dependence relation.
For A ⊆ Σ, we let D(A) be the set of letters that depend on some letters in A.

A (Mazurkiewicz) trace over (Σ,D) is an isomorphism class [V,≤, �] of a
pomset such that for all x, y ∈ V : (1) �(x) D �(y) ⇒ x ≤ y or y ≤ x, (2)
x�y ⇒ �(x)D�(y) and (3) ↓x is finite. We denote by R(Σ,D) (resp. by M(Σ,D))
the set of traces (resp. of finite traces) over (Σ,D).

If t = [V,≤, �] is a trace, we denote by max(t) (resp. by min(t)) the set of
maximal (resp. minimal) elements of t. The alphabet of t is alph(t) = �(V). A
prefix of t is a trace s = [U,≤, �], where U ⊆ V satisfies ↓U = U . We write s ≤ t
if s is a prefix of t. In this case, we let s−1t = [V \ U,≤, �]. The empty trace is
denoted by ε.

Distributed Games. The distributed systems we want to control are based on
asynchronous automata [18]. We are given a finite set of processes communicating
asynchronously via shared memory variables. Each process stores a value in
a register. When executing, an action reads registers of some processes, and
then writes some other registers through a test-and-set instruction. Some actions
are controllable. The other ones, representing the environment’s actions, are
uncontrollable.

We model these systems by distributed games [6] over a given architecture
(Σ,P, R,W). Here, P is a finite set of processes, Σ = Σ0 �Σ1 is a finite set of
players (or actions), where Σ0 is the set of players of team 0 (the controller) and
Σ1 the set of players of team 1 (the environment). Player a ∈ Σ can atomically
read states of processes in R(a) ⊆ P and write new states on processes in
W (a) ⊆ P. We require two natural restrictions also considered in [18].

∀a ∈ Σ, ∅ �= W (a) ⊆ R(a)
∀a, b ∈ Σ, R(a) ∩W (b) = ∅ ⇐⇒ R(b) ∩W (a) = ∅

(S)

These conditions encompass in particular all purely asyn- q1

q2

q3

a

b

chronous architectures (i.e., such that R = W) and all cellu-
lar architectures (i.e., such that |W (a)| = 1 for all a ∈ Σ).
In contrast, we do not treat here “one way” communication
architectures, as the one depicted opposite, where circles rep-
resent processes read by the corresponding player, and squares represent pro-
cesses which are both read and written. That is, R(a) = {q1, q2}, W (a) = {q2},
R(b) = {q2, q3}, W (b) = {q3}, which obviously violates (S).

A distributed game over the architecture (Σ,P, R,W) is given by a tuple G =
(Σ0, Σ1, (Qi)i∈P , (Ta)a∈Σ , q0,W), where Qi is the set of local states (register
values) of process i. Given I ⊆ P, we let QI =

∏
i∈I Qi, and if q = (qi)i∈P ∈ QP ,

we let qI = (qi)i∈I . A global state of the game is then a tuple q ∈ QP . Player
a has a table of legal moves Ta ⊆ QR(a) × QW (a). A (sequential) play is a

278 P. Gastin, B. Lerman, and M. Zeitoun

sequence of moves starting in the global state q0 ∈ QP , the initial position of
the game. There is an a-move from p ∈ QP to q ∈ QP if (pR(a), qW (a)) ∈ Ta and
qP\W (a) = pP\W (a). The winning condition W describes a set of desired plays
and will be discussed later on.

Note that, if R(a)∩W (b) = ∅ = R(b)∩W (a) then in any global state p the two
moves a and b can be executed simultaneously or in any order without affecting
the resulting global state q: they are independent. Therefore, a (distributed)
play of a distributed game is more accurately defined by an equivalence class
of sequential plays, or equivalently, by a Mazurkiewicz trace over a suitable
dependence alphabet.

Distributed plays will be defined as traces with doubly labeled vertices: the
first label is the player’s name, and the second one is a vector of local states
representing what was written by the player. Formally, we consider a new symbol
/∈ Σ, with R(#) = W (#) = P. Let then Σ′ = {(a, p) | a ∈ Σ � {#} and p ∈
QW (a)}. We define the dependence relation D over Σ � {#} by a D b ⇔ R(a) ∩
W (b) �= ∅ ⇔ R(b) ∩ W (a) �= ∅ and D′ over Σ′ by (a, p) D′ (b, q) ⇔ a D b.
We write a trace of R(Σ′, D′) as [V,≤, �, σ], where � : V → Σ � {#} and σ :
V →

⋃
a∈Σ�{⊥} QW (a) together define the labeling: a vertex x is labeled by

(�(x), σ(x)). A trace t = [V,≤, �, σ] ∈ R(Σ′, D′) is rooted if �−1(#) = {x#} is a
singleton and x# ≤ y for all y ∈ V . The global state reached on a finite rooted
trace t ∈M(Σ′, D′) is q(t) = (qi(t))i∈P ∈ QP where:

qi(t) = (σ(y))i with y = max{x ∈ V | i ∈W (�(x))}.

In other words, we retain the last write action performed on each process.
A (distributed) play is a rooted trace t = [V,≤, �, σ] ∈ R(Σ′, D′) which obeys

the rules given by (Ta)a∈Σ , i.e., σ(x#) = q0 and

∀x ∈ V, �(x) = a �= # =⇒ (q(⇓x)R(a), σ(x)) ∈ Ta

Note that after the beginning of a play, several moves may be enabled, con-
currently or not, from Σ0 or from Σ1. Thus, we do not see a distributed play as
turn-based. The winning condition W can then formally be defined as a subset
of R(Σ′, D′). Team 0 wins the play t if t ∈ W.

Example. Romeo and Juliet are in two

r j

4 4

3 3

2 2
Broken line

1 1

separate houses and they want to set up
an appointment. There are four com-
munication lines of which exactly one is
broken. At any time, Romeo (or Juliet)
may look at the status of the communi-
cation lines to see which one is broken
and then chooses to connect to one line (the whole operation is atomic). The
environment tries to prevent the communication. For this, at any time, it might
look at which line Romeo and Juliet are connected, and then decide to change
the broken line (again this operation is atomic). The actions of Romeo and Juliet
are independent but they both depend on the action of the environment. The

Distributed Games with Causal Memory Are Decidable for S-P Systems 279

Q1

Q2

Q3

r

e j

Fig. 1. A simple cograph architecture

problem is to find two strategies, one for Romeo and one for Juliet, so that they
end up communicating whatever the environment does. If there is no restriction
on the environment then it might monopolize the system by constantly chang-
ing the broken line, thus preventing any action by Romeo or Juliet due to the
dependence of actions. Therefore we restrict the environment so that it cannot
act twice consecutively.

We formalize this system using three processes with states Q1 = Q2 = Q3 =
{1, 2, 3, 4} × {0, 1} and three players r, e, j whose read and write domains are
depicted in Figure 1, where circles represent processes read by the corresponding
player, and squares represent processes which are both read and written. State
(1, 0) for process 1 means that Romeo is connected to the first line and has played
an even number of times. The situation is similar for process 3 and Juliet. State
(2, 1) for process 2 means that line number 2 is broken and the environment
has played an odd number of times. The environment is allowed to play only if
the total number of moves is odd. A process based picture and a Hasse diagram
representation of a distributed play are given below. Between moves (whose reads
are • and read-writes are �), we draw local states which get modified by the test-
and-set legal moves. For instance, the first e reads (3,1), (1,0), (4,0) on processes
1, 2 and 3 and writes (3,1) on process 2. The global state reached at the end is
(1,0), (4,0), (1,1) which is winning for Romeo and Juliet. The interested reader
might check that Romeo and Juliet have memoryless strategies to win this game.

Q1

Q2

Q3

1,0

1,0

1,0#

3,1

r

2,1j 4,0j
3,1

e

1,0

r
4,0

e
1,1j

#
1, 0
1, 0
1, 0

j
2,1

j
4,0

r
3,1

e
3,1

r
1,0

e
4,0

j
1,1

Strategies and Memory. Intuitively, player a of team 0 can restrict its set of
potential moves depending on its own history of the play. In the distributed
setting, it would not make sense to define this history on sequential plays. Indeed,
the strategy of player a should not depend on the ordering of independent moves
that are in its past and it should not depend either on concurrent moves that
happen to occur before it in some linearization.

A first solution is to define the history of some move a as the sequence of
moves that have written on process W (a) (assuming W (a) is a singleton). This
is the minimal reasonable amount of information we want to provide to players.
This defines strategies with local memory [11, 8, 10]. Unfortunately, even games
with reachability conditions on the simple architecture given in Figure 1 are
undecidable with the local view [1].

280 P. Gastin, B. Lerman, and M. Zeitoun

The representation of plays by traces provides another natural solution. In
order to choose which move to take, player a may look at all the causal past
(in the partial order) of the last write-events on the processes in R(a). This is
intuitively the maximal amount of information we can provide to players. This
is technically a bit more complicated since this memory information has to be
computed in a distributed way via states. The idea is that any player a can
compute, in addition to the values qW (a), a memory value that he also writes in
all locations of W (a).

Let t = [V,≤, �, σ] ∈ R(Σ′, D′) be a rooted trace. For A ⊆ Σ, the trace
∂At is the smallest prefix of t containing all vertices labeled in A under �. For
I ⊆ P, the trace ∂It is the smallest prefix of t containing all vertices x such that
W (�(x)) ∩ I �= ∅.

An asynchronous mapping [3] is a function μ : M(Σ′, D′) → M such that
μ(∂A∪Bt) only depends on μ(∂At) and μ(∂Bt), and μ(∂D(a)t.a) only depends
on μ(∂D(a)t) and a. Asynchronous mappings can be computed in a distributed
way [3]. A distributed memory is a computable abstraction of an asynchronous
mapping. Formally, μ : M(Σ′, D′) → M is a distributed memory if there is
a computable asynchronous mapping ν : M(Σ′, D′) → N and a computable
function π : N → M such that π ◦ ν = μ. The function μ is the informa-
tion actually needed for a strategy, and the asynchronous mapping ν represents
an asynchronous implementation of this memory. Property (S) makes it possi-
ble to implement causal memory. Indeed, if x � y in a trace, then by definition
�(x)D�(y) and therefore, by (S), there is at least one process where x writes and
y reads. Hence, information computed by player �(x) can be forwarded to player
�(y). Observe that the environment’s team participates to the computation of
the causal view. This is not unrealistic: one cannot know when an environment’s
action will occur, but some systems may be designed so that events of the envi-
ronment forward the necessary information to compute the needed abstraction
of the causal view.

Intuitively, a given memory will be used by players of team 0 as an abstraction
(computed in M) of their past in a play. (This is why we call these memories
causal.) For instance, μ(t) = t is the largest possible memory and would provide
for each player a full view of its past.

The distributed memory μ : M(Σ′, D′) → M is said to be finite if it is realized
by a finite asynchronous mapping ν : M(Σ′, D′) → N . In this case, its size is
defined as the number of elements of a minimal such N .

A distributed strategy with memory μ : M(Σ′, D′) → M for team 0 is a
function f :

⋃
a∈Σ0

QR(a)×M ×{a}→ QW (a) ∪ {stop} such that if f(p,m, a) =
q �= stop, then (p, q) ∈ Ta. Intuitively, if f(p,m, a) = q �= stop, then the strategy
f dictates an a-move to q ∈ QW (a) on any distributed play t ∈ R(Σ′, D′) such
that ∂R(a)t is finite, p = q(∂R(a)t)R(a) and m = μ(∂R(a)t). If f(p,m, a) = stop,
the a-move is disabled by the strategy. Note that several players of team 0
may be simultaneously enabled by f during a play. A distributed play t =
[V,≤, �, σ] ∈ R(Σ′, D′) is an f-play if for all x ∈ V with �(x) ∈ Σ0, we have
σ(x) = f(q(⇓x)R(a), μ(⇓x), a).

Distributed Games with Causal Memory Are Decidable for S-P Systems 281

A play t is f-maximal if f(q(∂R(a)t)R(a), μ(∂R(a)t), a) = stop for all a ∈ Σ0
such that ∂R(a)t is finite. The maximality condition is natural: if the distributed
strategy of team 0 dictates some a-moves at some f -play t, then the f -play t is not
over. This applies also if t is infinite and corresponds to some fairness condition:
along an infinite f -play, a move of team 0 cannot be ultimately continuously
enabled by f without being taken. Note that any f -play t is the prefix of some f -
maximal f -play. If each f -maximal f -play is inW then f is a winning distributed
strategy (WDS) for team 0.

3 Controlled Reachability Games

In this section, we introduce controlled reachability games and we prove their
decidability on cograph dependence alphabets.

Define the set of global states seen along a rooted (possibly infinite) trace t as
P (t) = {q(s) | s finite and ε < s < t}

Observe that q(t) is not necessarily in the set P (t).

#

q(t)
︸ ︷︷ ︸

P (t)

Define (P , q)(t) = (P (t), q(t)) with q(t) = ∞ if t is infinite.
Let G = (Σ0, Σ1, (Qi)i∈P , (Ta)a∈Σ , q0,W) be a distributed game. Say that

G is a controlled reachability game if there is a set F ⊆ 2QP × (QP � {∞})
such that a play t is winning for team 0 iff (P , q)(t) ∈ F . One will then write
G = (Σ0, Σ1, (Qi)i∈P , (Ta)a∈Σ , q0,F). Note that we get classical reachability or
safety conditions as special cases of controlled reachability conditions.

An undirected graph is a cograph if it belongs to the smallest class of graphs
containing singletons and closed under parallel product and complementation.
Therefore, if (A,DA) and (B,DB) are cographs with A ∩ B = ∅, then so are
(A∪B,DA ∪DB) and (A∪B,DA ∪DB ∪A×B ∪B×A) and vice versa, every
cograph can be decomposed using these two operations. All Mazurkiewicz traces
on a cograph alphabet are series-parallel, that is, they can be described by an
expression using only single-vertex traces, and parallel and sequential product
of directed graphs. It is well-known that cographs are undirected graphs with
no P4, i.e., no induced subgraph of the form a – b – c – d. We can now state the
main result of the paper.

Theorem 1. Given a controlled reachability game on a cograph alphabet, one
can decide if team 0 has a WDS on this game. One can effectively compute such
a strategy if it exists.

We would like to stress that this theorem might be applied to more general
settings than series-parallel systems by adding dependencies (communication
channels) and thus turning an arbitrary dependence alphabet into a cograph.

282 P. Gastin, B. Lerman, and M. Zeitoun

Any recognizable winning condition on finite traces can be reduced to a
(controlled) reachability condition by building a product of the game with an
asynchronous automaton on the same architecture for this recognizable winning
condition.

Corollary 1. Given a distributed game on a cograph alphabet, with a recogniz-
able set of finite traces as winning condition, one can decide if team 0 has a
WDS on this game. One can effectively compute such a strategy if it exists.

To prove Theorem 1, we will build from an arbitrary WDS f with memory
μ another WDS f ′ whose memory is bounded by an effectively computable
function depending only on |Σ| and |QP |. By [6], given a distributed memory
μ, one can then effectively transform a distributed game G into a new game Gμ

such that team 0 has a winning distributed strategy with memory μ in G iff it
has a memoryless strategy in Gμ, which is decidable, again by [6].

We build f ′ from f by induction on the cograph alphabet. For technical
reasons, one proves in the induction the following additional property on f ′.

Definition 1. Let f , f ′ be two distributed strategies. Then f ′ is f -compatible
if for all finite f ′-play t′, there exists an f-play t such that (P , q)(t) = (P , q)(t′).

Obviously, the compatibility relation is transitive. The following result we
shall prove is more accurate than Theorem 1.

Theorem 2. Let G be a controlled reachability game. There exists a computable
function M : N2 → N, such that, for any WDS f over G, there exists a WDS f ′

which is f -compatible and whose memory is bounded by M(|Σ|, |QP |).

We start with an intuitive sketch of the proof of Theorem 2. We build the
f -compatible WDS f ′ using strategies obtained by induction over smaller al-
phabets. The parallel case is easy: the game defines two subgames, one on each
alphabet of the parallel product, and f induces WDS’s on these subgames. The
induction provides compatible WDS’s with bounded memory, which we recom-
bine into a new strategy on the parallel product.

The sequential case is more complex. To simplify notation, we write max(r) ⊆
A instead of �(max(r)) ⊆ A and we use similar a notation for min. We also
write alph(t) instead of �(t). On Σ = A � B, where A × B ⊆ D (with A,
B cographs), f -plays have the form (#, q0)s1s2 · · · where alph(si) ⊆ A iff
alph(si+1) ⊆ B. Each block si can be seen as a play (#, qi−1)si over A or
B where qi = q((#, q0)s1 · · · si). From f , one derives restricted strategies over A
or B to go from qi−1 to qi, visiting the same set of states. We then replace, using
the induction, these restricted strategies by strategies with bounded memory.
This is where controlled reachability is used: the induction hypothesis ensures
that states visited by the new strategies are the same as for original strategies.
We need this information to ensure we won’t reach new states from which team
1 could escape in the other alphabet. By simplifying the strategy f (removing
unwanted loops from all f -plays), this makes it possible to recombine the strate-
gies over the smaller alphabets to obtain the desired strategy f ′. We also have

Distributed Games with Causal Memory Are Decidable for S-P Systems 283

to prove that players of team 0 can detect with a distributed memory if they are
minimal in some block si, to know which restricted strategy they have to play.
The rest of this section is devoted to the formal proof of Theorem 2.

Induction Basis: |Σ| = 1
In this case, G is a 1-player sequential game. If we do not insist on getting an
f -compatible strategy for f ′ it would be enough to observe that the winning
condition is recognizable (alphabetic condition on states seen along the play and
reachability on the possible last state) and computable by an automaton of size
2|QP |. The existence of a winning strategy is therefore equivalent to the existence
of a winning strategy with memory less than 2|QP |. However, the strategy f ′ we
have to build must be f -compatible, and we cannot use directly this result. For
our proof, we distinguishes two cases.

1. Σ = {a} = Σ1. Then, the set of plays does not depend on the strategy of
team 0, since team 0 has no choice. Hence, if team 0 has a winning strategy, this
winning strategy is memoryless.
2. Σ = {a} = Σ0. Then, if player a has a winning strategy f , there exists a
unique f -maximal f -play r and this play is winning. It is possible to show that
one can build from r a new play t satisfying the following three conditions:

∀s, s′ ≤ t, (P , q)(s) = (P , q)(s′)⇒ s−1t = s′−1t (1)

(P , q)(t) = (P , q)(r) (2)

∀t′ ≤ t,∃r′ ≤ r, (P , q)(t′) = (P , q)(r′) (3)

Observe that property (1) guarantees that t is played according to a strategy
f ′ with memory μ : s → (P , q)(s) which is indeed distributed since Σ is a
singleton. Property (2) ensures that f ′ is winning, while (3) implies that f ′ is
f -compatible. It follows that M(1, |QP |) ≤ |QP | · 2|QP |.

Induction, First Case: Σ = A �B with (A×B) ∩D = ∅
Without loss of generality, we may assume that P = R(A) ∪ R(B) and that
R(A) ∩ R(B) = ∅. Indeed, since R(A) ∩W (B) = R(B) ∩W (A) = ∅, we have
i /∈ W (A) ∪ W (B) if i ∈ R(A) ∩ R(B). In other terms, such a component i
remains constant along a run, and does not play any role during the moves.

Abusing notation we write qA instead of qR(A) for q ∈ QP . Let qA ∈ QR(A)
and qB ∈ QR(B). One defines q = qA ‖ qB by qi = (qA)i if i ∈ R(A) and
qi = (qB)i if i ∈ R(B). Further, ∞ ‖ qB = qA ‖∞ = ∞ ‖∞ = ∞. One extends
this definition to pairs of 2QP × (QP � {∞}) by

(P, q) ‖ (P ′, q′) =
(
(((P ∪ {q} \ {∞}) ‖ P ′) ∪ (P ‖ (P ′ ∪ {q′} \ {∞}))), q ‖ q′).

Let A′ = {(a, p) ∈ Σ′ | a ∈ A} ∪ ({#} ×QR(A)), and B′ be defined similarly.
Let rA = (#, q0

A) · sA be a rooted trace over A′ and rB = (#, q0
B) · sB a rooted

trace over B′. Define rA ‖ rB = (#, q0
A ‖ q0

B) · sA · sB = (#, q0
A ‖ q0

B) · sB · sA.

Lemma 1. Let rA and rB be two rooted traces on the alphabets A′ and B′

respectively. Then (P , q)(rA ‖ rB) = (P , q)(rA) ‖ (P , q)(rB).

284 P. Gastin, B. Lerman, and M. Zeitoun

A rooted trace t over Σ′ can be uniquely factorized as t = tA ‖ tB where tA
and tB are rooted traces over alphabets A′ and B′ respectively.

If r = rA ‖ rB and s = sA ‖ sB are f -plays on G then rA ‖ sB is again
an f -play of G. Indeed, since A × B ∩ D = ∅, the strict past of a vertex of
rA ‖ sB is either (#, q0), or the same as that of the corresponding vertex in r
or in s (depending on whether �(x) ∈ A or �(x) ∈ B). If r and s are f -maximal,
then rA ‖ sB is also f -maximal since, if c ∈ A for instance, ∂R(c)(rA ‖ sB) =
∂R(c)(rA ‖ (#, q0

B)) = ∂R(c)(r).
The set S of f -maximal f -plays is therefore of the form S = SA ‖ SB . Let

FA = (P , q)(SA) and FB = (P , q)(SB). Let us show that FA ‖ FB ⊆ F . Let
rA ∈ SA and sB ∈ SB . By definition, there exists rB and sA such that r = rA ‖
rB ∈ S and s = sA ‖ sB ∈ S. We have seen that this implies t = rA ‖ sB ∈ S.
Using Lemma 1, one gets (P , q)(rA) ‖ (P , q)(sB) = (P , q)(t) ∈ F , since the
strategy f is winning and t ∈ S.

Let GA = (Σ0 ∩ A,Σ1 ∩ A, (Qi)i∈R(A), (Ta)a∈A, q0
A,FA) on the architecture

(A,R(A), R|A,W|A). This is again a distributed game. Define GB symmetrically.
Define fA(q(rA), μ(rA), a) = f(q(rA ‖ (#, q0

B)), μ(rA ‖ (#, q0
B)), a). Let us

show that fA is a WDS for GA. First, fA is a distributed strategy with memory
μ in GA, since one can associate to any play rA of GA the play rA ‖ (#, q0

B) of
G. It remains to show that fA is winning. Consider an fA-maximal fA-play rA

and let rB be an fB-maximal fB-play of GB . Then, rA ‖ rB is an f -maximal
f -play. Hence, (P , q)(rA) ∈ FA, and rA is a winning play of GA.

By induction, there exists an fA-compatible winning strategy f ′
A for team

Σ0∩A in GA with memory μA of size less that M(|A|, |QP |), and dually for B. We
define the memory μ on M(Σ′, D′) by μ(t) = (μA(tA), μB(tB)) for t = tA ‖ tB .
We build from f ′

A and f ′
B an f -compatible winning strategy f ′ for Σ0 in G

as follows. For a ∈ A and qR(a) ∈ QR(a), we define f ′(qR(a), (mA,mB), a) =
f ′

A(qR(a),mA, a) and similarly, we let f ′(qR(b), (mA,mB), b) = f ′
B(qR(b),mB , b)

for b ∈ B and qR(b) ∈ QR(b).
Using the next statement, one can bound the memory of f ′ by a function

depending only on M(|A|, |QP |) and M(|B|, |QP |), which finishes the induction
for the parallel case.

Lemma 2. The strategy f ′ is an f-compatible WDS for team 0 on G.

Induction, Second Case: Σ = A �B with (A×B) ⊆ D
We define the product r ·A s by r ·A s = rs if max(r) � A and min(s) ⊆ A. The
product is undefined otherwise. Let f be a WDS for team 0 on G and let S the
set of all f -plays. If t is a finite f -play, we let t−1S = {t−1S | t ≤ s and s ∈ S}
and FromA(t) = t−1S ∩ (min ⊆ A). We also define

CutA,P,q = {t ∈ S | t is finite, max(t) � A and (P , q)(t) = (P, q)}.

A distributed strategy f is (A,P, q)-uniform if for all r1, r2 ∈ CutA,P,q, we
have FromA(r1) = FromA(r2). Say that f is uniform if it is (A,P, q)-uniform
and (B,P, q)-uniform for all (P, q) ∈ 2QP ×QP .

Distributed Games with Causal Memory Are Decidable for S-P Systems 285

Lemma 3. For any winning distributed strategy f on G, there exists a winning
f-compatible distributed strategy on G, which in addition is uniform.

Thanks to Lemma 3 and using the transitivity of the compatibility relation,
we may assume that f is uniform for the rest of the proof of Theorem 2. Let
then

NextA(t) = FromA(t) ∩ (alph ⊆ A)

A play r is (f,A)-maximal if for all a ∈ A∩Σ0, f(q(r)R(a), μ(r), a) = {stop}.
If CutA,P,q �= ∅, we choose r ∈ CutA,P,q and define a winning condition FA,P,q:

FA,P,q =
{
(P , q)((#, q)s) | s ∈ NextA(r) and rs is (f,A)-maximal

}
Since f is uniform, FromA(r) and NextA(r) do not depend on r. One shows

that if rs is (f,A)-maximal, then for all r′ ∈ CutA,P,q, r′s is also fA-maximal.
One deduces that FA,P,q does not depend on the choice of r.

If CutA,P,q �= ∅, define GA,P,q = (Σ0∩A,Σ1∩A, (Qi)i∈P , (Ta)a∈A, q,FA,P,q).
From f , one can derive a distributed strategy for the distributed game GA,P,q:

fA,P,q(q((#, q)s), μ((#, q)s), a) = f(q(rs), μ(rs), a) where r ∈ CutA,P,q

Since f is uniform, fA,P,q does not depend on r, and by construction of fA,P,q,
the set of fA,P,q-plays is exactly (#, q)NextA(r). By construction of GA,P,q and
FA,P,q, all fA,P,q-maximal fA,P,q-plays are winning in GA, so fA,P,q is winning.

Moreover, GA,P,q is a controlled reachability game on the alphabet A, smaller
than Σ. By induction, there exists a winning strategy f ′

A,P,q on GA,P,q which is
fA,P,q-compatible and whose memory is of size at most M(|A|, |QP |). One easily
transforms f ′

A,P,q to ensure that if (∅, q) ∈ FA,P,q, then f ′
A,P,q((#, q), a) = {stop}

for all a ∈ Σ0 ∩ A. This modification does not change the amount of memory
necessary for f ′

A,P,q. Further, f ′
A,P,q is still fA,P,q-compatible and winning.

We now have WDS on smaller games GA,P,q, GB,P,q whose memories have a
controlled size. It remains to glue them suitably to reconstruct the f -compatible
WDS f ′. For this, we need to know on which subgame (A,P, q) or (B,P, q) to
play. To this aim, we have to compute necessary information with a distributed
memory: The lb-factorization (for last-block factorization) of a rooted trace t �=
(#, q0) is defined (in a unique way) as the factorization t = rs such that

t =

{
r ·A s with ∅ �= alph(s) ⊆ A

r ·B s with ∅ �= alph(s) ⊆ B.

One can write an MSOΣ′(≤)-formula LastcutP,q which is satisfied by a trace
t if and only if (P , q)(r) = (P, q) where t = rs is the lb-factorization of t. Now,
an MSOΣ′(≤)-definable trace language can be accepted by an asynchronous
mapping [17, 5, 3]. Hence, the mapping t �→ (P , q)(r) where t = rs is the lb-
factorization of t is a distributed memory. Similarly, one can show that a mapping
indicating to a player if its move (if played) would change the alphabet from A to
B or from B to A, is also a distributed memory. These informations give exactly

286 P. Gastin, B. Lerman, and M. Zeitoun

the needed information to players of team 0 to know in which game they are
playing. Hence, they make it possible to glue strategies f ′

A,P,q, f
′
B,P,q to obtain

the desired f -compatible WDS f ′. For lack of space, we cannot provide details
for this construction. Since we have bounded the sizes of the memories used by
the small strategies, this gives us a bound for the memory needed for f ′.

Acknowledgements. The authors wish to thank the anonymous referees for their
careful reading of the submitted version of the paper, which helped us improve its
presentation. We also thank J. Bernet, D. Janin and I. Walukiewicz for fruitful
discussions.

References

1. J. Bernet, D. Janin, and I. Walukiewicz. Private communication. 2004.
2. J. R. Büchi and L. H. Landweber. Solving sequential conditions by finite-state

strategies. Trans. Amer. Math. Soc., 138:295–311, 1969.
3. R. Cori, Y. Métivier, and W. Zielonka. Asynchronous mappings and asynchronous

cellular automata. Inform. and Comput., 106:159–202, 1993.
4. V. Diekert and G. Rozenberg, editors. The Book of Traces. World Scientific, 1995.
5. W. Ebinger and A. Muscholl. Logical definability on infinite traces. Theoret.

Comput. Sci., 154(1):67–84, 1996. Conference version in ICALP ’93.
6. P. Gastin, B. Lerman, and M. Zeitoun. Distributed games and distributed control

for asynchronous systems. In LATIN04, volume 2976 of LNCS, pages 455–465.
Springer, 2004.

7. O. Kupferman and M. Y. Vardi. Synthesizing distributed systems. In LICS ’01,
pages 389–398. Computer Society Press, 2001.

8. P. Madhusudan and P. S. Thiagarajan. Distributed controller synthesis for local
specifications. In ICALP ’01, volume 2076 of LNCS. Springer, 2001.

9. P. Madhusudan and P. S. Thiagarajan. Branching time controllers for discrete
event systems. Theor. Comput. Sci., 274(1-2):117–149, 2002.

10. P. Madhusudan and P. S. Thiagarajan. A decidable class of asynchronous dis-
tributed controllers. In CONCUR ’02, volume 2421 of LNCS. Springer, 2002.

11. S. Mohalik and I. Walukiewicz. Distributed games. In FSTTCS ’03, volume 2914
of LNCS, pages 338–351. Springer, 2003.

12. G. Peterson, J. Reif, and S. Azhar. Lower bounds for multiplayer noncooperative
games of incomplete information. Comput. Math. Appl., 41(7-8):957–992, 2001.

13. G. L. Peterson and J. H. Reif. Multiple-person alternation. In 20th Annual Sympo-
sium on Foundations of Computer Science (San Juan, Puerto Rico, 1979), pages
348–363. IEEE, New York, 1979.

14. A. Pnueli and R. Rosner. On the synthesis of an asynchronous reactive module.
In ICALP ’89, volume 372 of LNCS, pages 652–671. Springer, 1989.

15. A. Pnueli and R. Rosner. Distributed reactive systems are hard to synthetize. In
31th IEEE Symp. FOCS, pages 746–757, 1990.

16. P. Ramadge and W. Wonham. The control of discrete event systems. In IEEE,
volume 77, pages 81–98, 1989.

17. W. Thomas. On logical definability of traces languages. In workshop of ESPRIT
BRA 3166, ASMICS, pages 172–182, Kochel am See, 1990.

18. W. Zielonka. Asynchronous automata. In G. Rozenberg and V. Diekert, editors,
Book of Traces, pages 175–217. World Scientific, Singapore, 1995.

Expand, Enlarge, and Check: New Algorithms
for the Coverability Problem of WSTS�

Gilles Geeraerts, Jean-François Raskin, and Laurent Van Begin��

DI, Université Libre de Bruxelles

Abstract. In this paper, we present a general algorithmic schema called
“Expand, Enlarge and Check” from which new efficient algorithms for the
coverability problem of WSTS can be constructed. We show here that our
schema allows us to define forward algorithms that decide the coverability
problem for several classes of systems for which the Karp and Miller
procedure cannot be generalized, and for which no complete forward
algorithms were known. Our results have important applications for the
verification of parameterized systems and communication protocols.

1 Introduction

Model-checking is nowadays widely accepted as a powerful technique for the
automatic verification of reactive systems that have natural finite state abstrac-
tions. However, many reactive systems are only naturally modelled as infinite-
state systems. Consequently, a large (and successful) research effort has recently
focused on the application of model-checking techniques to infinite-state models
such as FIFO channel systems [2], Petri nets [15], broadcast protocols [7], etc.

One of the positive results is the decidability of the coverability problem for
well-structured transition systems (WSTS for short). WSTS enjoy an infinite set
of states that is well-quasi ordered by≤ and their transition relation is monotonic
w.r.t ≤. Examples of such systems are Petri nets and their monotonic extensions
[5, 15], broadcast protocols [8], lossy channel systems [2]. The coverability problem
asks, given two states c1 and c2, whether there is c3 ≥ c2 (c3 covers c2) that is
reachable from c1.

A general algorithm (i.e. a procedure that always terminates) is known to
solve the coverability problem for WSTS [1, 10]. It symbolically manipulates
upward-closed sets of states, obtained by unrolling the transition relation in a
backward fashion. Unfortunately, backward search is seldom efficient in practise
[12], and the only complete forward approach known so far is the Karp-Miller
algorithm that can only be applied to a small subclass of WSTS: Petri nets.

The Karp and Miller procedure computes, through a combination of a forward
exploration strategy and a simple acceleration technique, the so-called covering

� This research has been partially supported by the FRFC grant 2.4530.02.
�� Supported by a “First Europe” grant EPH3310300R0012 of the Walloon Region.

K. Lodaya and M. Mahajan (Eds.): FSTTCS 2004, LNCS 3328, pp. 287–298, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

288 G. Geeraerts, J.-F. Raskin, and L. Van Begin

set of the net, which is known to be well-suited to decide the coverability problem.
After several attempts to generalize this procedure to WSTS (which have all
produced incomplete approaches [8, 9]), it has been shown in [6] that Petri nets
form the sole class (among the examples cited above) for which the covering set
is constructible in general. However, this set always exists and is usually finitely
representable. Our main contribution is to make the best of this fact and devise a
forward technique that is complete to decide the coverability problem for a large
class of WSTS. This class includes, among others, all the monotonic extensions
of Petri nets defined in the literature, as well as lossy channel systems.

We present a new schema of algorithm: “Expand, Enlarge and Check” that
works by iteratively constructing more and more precise abstractions of the
system. These abstractions (made up of reachable states and limit elements) are
guaranteed to become precise enough to decide the coverability problem after
a finite number of steps. We show how to apply the schema on two classes of
WSTS of practical interest: monotonic extensions of Petri nets (that are useful
to model parameterized systems [11, 15]) and lossy channels systems (that are
useful to model communication protocols [2]).

Due to lack of space, most of the proofs have been omitted. A complete
version of the paper can be found at:
http://www.ulb.ac.be/di/ssd/cfv/TechReps/TechRep CFV 2004 25.pdf

2 Preliminaries

In this section, we recall some fundamental results about well-quasi orderings
and well-structured transition systems (the systems we analyze here). We show
how to finitely represent upward- and downward-closed sets of states (which will
allow us to devise symbolic algorithms), and discuss And-Or graphs (useful to
represent abstractions of systems).

Well Quasi-Orderings and Adequate Domains of Limits. A well quasi ordering
≤ on the elements of a set C (wqo for short) is a reflexive and transitive relation
such that for any infinite sequence c0c1 . . . cn . . . of elements in C, there exist
two indices i and j, such that i < j and ci ≤ cj . In the following, we note ci < cj

if ci ≤ cj but cj �≤ ci.
Let 〈C,≤〉 be a well-quasi ordered set. A ≤-upward closed set U ⊆ C is

such that for any c ∈ U , for any c′ ∈ C such that c ≤ c′, c′ ∈ U . A ≤-
downward closed set D ⊆ C is such that for any c ∈ D, for any c′ ∈ C such that
c′ ≤ c, c′ ∈ D. It is well-known that any ≤-upward closed set U ⊆ C is uniquely
determined by its finite sets of minimal elements. Formally, the set of ≤-minimal
elements Min(U) of a set U ⊆ C is a minimal set such that Min(U) ⊆ U and
∀s′ ∈ U : ∃s ∈ Min(U) : s ≤ s′. The next proposition is a consequence of wqo:

Proposition 1. Let 〈C,≤〉 be a wqo set and U ⊆ C be an ≤-upward closed set,
then: Min(U) is finite and U = {c | ∃c′ ∈ Min(U) : c′ ≤ c}.

Thus, any ≤-upward closed set can be effectively represented by its finite set
of minimal elements. To obtain a finite representation of downward-closed sets,

Expand, Enlarge, and Check: New Algorithms for the Coverability Problem 289

we must use well-chosen limit elements � �∈ C to represent downward closures of
infinite increasing chains of elements. Thus, we introduce the notion of adequate
domain of limits.

Definition 1. Let 〈C,≤〉 be a well-quasi ordered set and L be a set of elements
disjoint from C, the tuple 〈L,4, γ〉 is called an adequate domain of limits for
〈C,≤〉 if the following conditions are satisfied: (L1: representation mapping) γ :
L∪C → 2C associates to each element in L∪C a ≤-downward closed set D ⊆ C,
furthermore, for any c ∈ C, we impose that γ(c) = {c′ | c′ ≤ c}. In the following,
γ is extended to sets S ⊆ L ∪ C in the natural way: γ(S) = ∪c∈Sγ(c); (L2: top
element) There exists a special element 6 ∈ L such that γ(6) = C; (L3: precision
order) The elements of C∪L are ordered by the complete quasi order 4, defined
as follows: d1 4 d2 if and only if γ(d1) ⊆ γ(d2); (L4: completeness) for any
downward closed set D ⊆ C, there exists a finite set D′ ⊆ C∪L with γ(D′) = D.

Well-Structured Transition Systems and Coverability Problem. A transition sys-
tem is a tuple S = 〈C, c0,→〉 where C is a (possibly infinite) set of states,
c0 ∈ C is the initial state, →⊆ C × C is a transition relation. In the follow-
ing, c → c′ will denote that 〈c, c′〉 ∈→. For any state c, Post(c) denotes the set
of one-step successors of c, i.e. Post(c) = {c′|c → c′}. We require Post(c) �= ∅
for any c ∈ C1. This operator is extended to sets of states C ′ ⊆ C as follows:
Post(C ′) = {c|∃c′ ∈ C ′ : c′ → c}. A path of S is a sequence of states c1, c2, . . . , ck

such that c1 → c2 → · · · → ck. A state c′ is reachable from a state c, noted
c →∗ c′, if we have a path c1, c2, . . . ck in S with c1 = c and ck = c′. Given a
transition system S = 〈C, c0,→〉, Reach(S) denotes the set {c ∈ C | c0 →∗ c}.
Definition 2. A transition system S = 〈C, c0,→〉 is a well-structured transi-
tion system for the quasi order ≤⊆ C × C if the two following properties hold:
(W1: well-ordering) ≤ is a well-quasi ordering and (W2: monotonicity) for all
c1, c2, c3 ∈ C such that c1 ≤ c2 and c1 → c3, there exists c4 ∈ C such that
c3 ≤ c4 and c2 → c4.

From now on, S = 〈C, c0,→,≤〉 will denote the well-structured transition sys-
tem 〈C, c0,→〉 for ≤. In the sequel, we need to manipulate WSTS and adequate
domain of limits. In particular, we need the following effectiveness properties:

Definition 3. A WSTS S = 〈C, c0,→,≤〉 and an adequate domain of limits
〈L,4, γ〉 are effective if the following conditions are satisfied: (E1) C and L are
recursively enumerable; (E2) for any c1, c2 ∈ C, we can decide whether c1 → c2;
(E3) for any two finite subsets C ′ ⊆ C and L′ ⊆ L, for any d ∈ C ′ ∪ L′ and any
finite subset D ⊆ C ′ ∪ L′, we can decide whether Post(γ(d)) ⊆ γ(D); (E4) For
any finite subsets D1, D2 ⊆ C ∪ L, we can decide whether γ(D1) ⊆ γ(D2).

Problem 1. The coverability problem for well-structured transition systems is de-
fined as follows: “Given a well-structured transition system S and the ≤-upward
closed set U ⊆ C, determine whether Reach(S) ∩ U �= ∅ ?”

1 Note that this condition is not restrictive since we can always add a transition to a
dummy state.

290 G. Geeraerts, J.-F. Raskin, and L. Van Begin

To solve the coverability problem, we use covering sets, defined as follows:

Definition 4. Let S = 〈C, c0,→,≤〉 be a WSTS. The covering set of S, noted
Cover(S), is the (unique) smallest subset of C which (CS1) is ≤-downward closed
and (CS2) contains Reach(S).

Property. For any WSTS S = 〈C, c0,→,≤〉 with an adequate domain of limits
〈L,4, γ〉 for 〈C,≤〉, by property L4 of Definition 1, there exists a finite subset
CS(S) ⊆ L∪C such that γ(CS(S)) = Cover(S). In the following, CS(S) is called
a coverability set of the covering set Cover(S) and finitely represents that set.

Proposition 2. For any WSTS S = 〈C, c0,→,≤〉, the covering set of S is such
that for any ≤-upward closed set U ⊆ C: Reach(S)∩U = ∅ iff Cover(S)∩U = ∅.

And-Or Graph and its Avoidability Problem. An And-Or graph is a tuple G =
〈VA, VO, vi,⇒〉 where V = VA ∪ VO is the set of nodes (VA is the set of “And”
nodes and VO is the set of “Or” nodes), VA ∩ VO = ∅, vi ∈ VO is the initial
node, and ⇒⊆ (VA×VO)∪ (VO×VA) is the transition relation such that for any
v ∈ VA ∪ VO, there exists v′ ∈ VA ∪ VO such that (v, v′) ∈⇒.

Definition 5. A compatible unfolding of an And-Or graph G = 〈VA, VO, vi,⇒〉
is an infinite labelled tree TG = 〈N, root , B, Λ〉 where: (i) N is the set of nodes
of TG, (ii) root ∈ N is the root of TG, (iii) B ⊆ N ×N is the transition relation
of TG, (iv) Λ : N → VA∪V0 is the labelling function of the nodes of TG by nodes
of G that respects the three following compatibility conditions (Λ is extended
to sets of nodes in the usual way): (C1)Λ(root) = vi; (C2) for all n ∈ N such
that Λ(n) ∈ VA, we have that (a) for all nodes v′ ∈ VO such that Λ(n) ⇒ v′,
there exists one and only one n′ ∈ N such that B(n, n′) and Λ(n′) = v′, and
conversely (b) for all nodes n′ ∈ N such that B(n, n′), there exists v′ ∈ VO such
that Λ(n) ⇒ v′ and Λ(n′) = v′. (C3) for all n ∈ N such that Λ(n) ∈ VO, we have
that: there exists one and only one n′ ∈ N such that B(n, n′), and Λ(n) ⇒ Λ(n′).

Problem 2. The And-Or Graph Avoidability Problem is defined as follows:“Given
an And-Or graph G = 〈VA, VO, vi,⇒〉 and a set E ⊆ VA ∪ VO, does there exist
T = 〈N, root , Λ,B〉, a compatible unfolding of G, such that Λ(N) ∩ E = ∅ ?”.
When the answer is positive, we say that E is avoidable in G.

It is well-known that this problem is complete for PTIME.

3 A New Schema of Algorithms

In this section, we introduce our new schema of algorithms to decide the cover-
ability problem for WSTS. We first explain, in subsection 3.1, how to build an
abstraction of a given WSTS, w.r.t. a given finite set of reachable states C ′ ⊆ C
and a given finite set of limit elements L′ ⊆ L. These abstractions are And-Or
graphs whose nodes are annotated by downward-closed sets of states of a WSTS.
We show in subsection 3.2 that any unfolding of this And-Or graph is able to

Expand, Enlarge, and Check: New Algorithms for the Coverability Problem 291

simulate the behaviours of its associated WSTS (Proposition 3). Moreover, if the
downward-closed sets that are used to annotate the And-Or graph are precise
enough (in a sense that we make clear in Theorem 2), then the And-Or graph
can be used to decide negative instances of the coverability problem. Based on
those results, we propose a new algorithmic schema to decide the coverability
problem of WSTS. It works by iteratively constructing abstractions of the WSTS
which become more and more precise. In parallel, it also explores, in a breadth-
first fashion, the set of reachable states of the system (to be able to decide the
positive instances of the problem). Thus, after a finite number of steps either a
concrete trace to a covering state will be found, or precise enough abstraction
will be computed to prove that no covering state can ever be reached.

3.1 The And-Or Graph Abs(S, C′, L′)

Definition 6. Given a WSTS S = 〈C, c0,→,≤〉, an adequate domain of limits
〈L,4, γ〉 for 〈C,≤〉, a finite subset C ′ ⊆ C with c0 ∈ C ′, and a finite subset
L′ ⊆ L with6 ∈ L′, the And-Or graph G = 〈VA, VO, vi,⇒〉, noted Abs(S,C ′, L′),
is defined as follows: (A1) VO = C ′ ∪ L′; (A2) VA = {S ∈ 2L′∪C′ \ {∅} | �d1 �=
d2 ∈ S : d1 4 d2}; (A3) vi = c0; (A4.1) (n1, n2) ∈⇒ with n1 ∈ VA, n2 ∈ VO

if and only if n2 ∈ n1; (A4.2) for any n1 ∈ VO, n2 ∈ VA : (n1, n2) ∈⇒ if and
only if (i) successor covering: Post(γ(n1)) ⊆ γ(n2), (ii) preciseness: �n ∈ VA :
Post(γ(n1)) ⊆ γ(n) ⊂ γ(n2).

The following lemma states that the And-Or graph can be constructed for
any WSTS and adequate domain of limits that are effective.

Lemma 1. Given a WSTS S = 〈C, c0,→,≤〉 and an adequate domain of limits
〈L,4, γ〉 for 〈C,≤〉 that are effective, a finite subset C ′ ⊆ C with c0 ∈ C ′, and
a finite subset L′ ⊆ L with 6 ∈ L′, Abs(S,C ′, L′) is effectively constructible.

Notice that in Abs(S,C ′, L′) all the nodes have at least one successor. Indeed,
for all n ∈ VA, since n �= ∅ (following point A4.1 and point A2 of Definition 6),
n has at least one successor. Since And-nodes are subsets of limits that may
contain the 6 element, with γ(6) = C (following point L2 of Definition 1), we
can always approximate for any n ∈ VO the (non-empty) set of successors of
γ(n), hence we are guaranteed to have at least one successor of n (point A4.2 of
Definition 6).

Given a WSTS S=〈C, c0,→,≤〉, an associated And-Or graph Abs(S,L′, C ′)=
〈VA, VO, vi,⇒〉, and an ≤-upward-closed set of states U ⊆ C, we note Abs(U) the
set of nodes v ∈ VA ∪ VO such that γ(v)∩U �= ∅, that is, the set of nodes whose
associated downward-closed set of states intersects with U . It is easy to show
that this subset of nodes can be effectively computed for any effective WSTS
with adequate domain of limits.

Degenerated Case. If an And-Or graph is such that any Or-node has exactly
one successor, the And-Or graph is said to be degenerated. In that case, the
avoidability problem is equivalent to the (un)reachability problem in a plain

292 G. Geeraerts, J.-F. Raskin, and L. Van Begin

graph. From the definition of Abs(S,C ′, L′), we remark that the And-Or graph
will be degenerated if for any d ∈ C ′∪L′, there exists a unique minimal set γ(D)
such that D ∈ VA and Succ(γ(d)) ⊆ γ(D). This motivates the next definition:

Definition 7. Given a WSTS S = 〈C, c0,→,≤〉 and an adequate domain of
limits 〈L,4, γ〉 for 〈C,≤〉, we say that a pair 〈C ′, L′〉, where C ′ ⊆ C with c0 ∈ C
and L′ ⊆ L with 6 ∈ L′, is perfect if for any d ∈ C ′ ∪ L′, there exists a unique
minimal set D ⊆ C ′ ∪ L′ such that (i) Post(γ(d)) ⊆ γ(D) and (ii) there is no
D′ ⊆ C ′ ∪ L′ with Post(γ(d)) ⊆ γ(D′) ⊂ γ(D).

Lemma 2. Given a WSTS S = 〈C, c0,→,≤〉, an adequate domain of limits
〈L,4, γ〉 for 〈C,≤〉, a finite subset C ′ ⊆ C with c0 ∈ C ′, and a finite subset
L′⊆L with 6∈L′ such that 〈C ′, L′〉 is perfect, then Abs(S,C ′, L′) is a degener-
ated And-Or graph.

3.2 Properties of Abs(S, C′, L′)

In this section, we prove important properties of Abs(S,C ′, L′). Roughly speak-
ing, we prove now that the abstraction we have defined above is adequate for
any pair 〈C ′, L′〉 such that c0 ∈ C ′ and 6 ∈ L′ (Theorem 1) and complete (The-
orem 2) for some pair 〈C ′, L′〉. To establish those results, we first show that
Abs(S,C ′, L′) can simulate for any 〈C ′, L′〉 such that c0 ∈ C ′ and 6 ∈ L′ its
underlying WSTS.

Proposition 3 (Simulation). Given a WSTS S = 〈C, c0,→,≤〉 with an ade-
quate domain of limits 〈L,4, γ〉 for 〈C,≤〉, the following holds for any C ′ ⊆ C
with c0 ∈ C ′ and L′ ⊆ L with 6 ∈ L′: for any path c0c1 . . . ck of S and any
unfolding T = 〈N, root, B, Λ〉 of Abs(S,C ′, L′) there exists a path n0n1 . . . n2k of
T with n0 = root and such that ci ∈ γ(Λ(n2i)) for 0 ≤ i ≤ k.

Since any unfolding of Abs(S,C ′, L′) can simulate S = 〈C, c0,→,≤〉 for any
C ′, L′ with c0 ∈ C ′ and 6 ∈ L′, for any upward-closed set U ⊆ C we know that
if Abs(U) is avoidable in Abs(S,C ′, L′) then U does not intersect with Reach(S).
That is formally stated by the next theorem.

Theorem 1 (Adequacy). Given a WSTS S = 〈C, c0,→,≤〉, an adequate do-
main of limits 〈L,4, γ〉 for 〈C,≤〉, and an upward-closed set U ⊆ C, the follow-
ing holds for any C ′ ⊆ C with c0 ∈ C ′ and L′ ⊆ L with 6 ∈ L′: if Abs(U) is
avoidable in Abs(S,C ′, L′), then Reach(S) ∩ U = ∅.

Finally, we prove the completeness of our approach. Intuitively, the next the-
orem puts forward that, when the pair 〈C ′, L′〉 is precise enough, Abs(S,C ′, L′)
allows us to decide negative instances of the coverability problem.

Theorem 2 (Completeness). Given a WSTS S = 〈C, c0,→,≤〉, an adequate
domain of limits 〈L,4, γ〉 for 〈C,≤〉 and an upward closed set U ⊆ C, the
following holds for any C ′ ⊆ C with c0 ∈ C ′ and L′ ⊆ L with 6 ∈ L′ such that
CS(S) ⊆ C ′∪L′: if Reach(S)∩U = ∅ then Abs(U) is avoidable in Abs(S,C ′, L′).

Expand, Enlarge, and Check: New Algorithms for the Coverability Problem 293

i := 0;
while (true) do

“Expand” Compute Si;
“Enlarge” Compute Li;
“Check” if ∃c1, . . . , ck : c0 → . . . → ck with cj ∈ Si for all 0 ≤ j ≤ k and
ck ∈ U then return “Reachable”;
else if Abs(U) is avoidable in Abs(S, Si, Li) then return “Unreachable”;

Fig. 1. Abstract algorithm Its inputs are an effective representation of a WSTS
S = 〈C, c0, →, ≤〉 with the adequate limit domain 〈L, �, γ〉 for 〈C, ≤〉 and a finite
representation of the upward-closed set of states U ⊆ C

3.3 The New Algorithmic Schema

Let S0, S1, . . . , Sn . . . be an infinite sequence of finite sets of reachable states
of S such that (i) ∀i ≥ 0 : Si ⊆ Si+1, (ii) ∀c ∈ Reach(S) : ∃i ≥ 0 : c ∈ Si,
and (iii) c0 ∈ S0. Let L0, L1, . . . , Ln, . . . be a infinite sequence of finite sets of
limits such that (i) ∀i ≥ 0 : Li ⊆ Li+1, (ii) ∀� ∈ L : ∃i ≥ 0 : � ∈ Li and (iii)
6 ∈ L0. A schema of algorithm is given at Figure 1 and its correctness is stated
in Theorem 3.

Theorem 3. For any WSTS S with adequate domain of limits 〈L,4, γ〉 that
are effective, for any upward-closed set U represented by Min(U), Algorithm
at Fig. 1 terminates after a finite amount of time and returns “Reachable” if
Reach(S)∩U �=∅, “Unreachable” otherwise.

Proof. (Sketch) If Reach(S) ∩ U �= ∅, we have from Theorem 1 that Abs(U) is
not avoidable in Abs(S, Si, Li) for all i ≥ 0. Moreover, since for all c ∈ Reach(S)
there exists j such that c ∈ Sj′ for all j′ ≥ j, there exists i ≥ 0 such that we
have c0 → . . . → ck with cj ∈ Si for all j such that 0 ≤ j ≤ k and ck ∈ U . We
conclude that the algorithm at Fig. 1 returns “Reachable” if Reach(S) ∩ U �= ∅.

If Reach(S)∩U = ∅, we know that there exists i ≥ 0 and a finite coverability
set CS(S) such that CS(S) ⊆ Si ∪ Li. Hence, from Theorem 2 we have that
Abs(U) is avoidable in Abs(S, Si, Li) and we conclude that the algorithm at Fig.
1 returns “Unreachable” if Reach(S) ∩ U = ∅. �

Remark 1. Note that Theorem 3, that states the adequation and completeness
of our algorithmic schema for the coverability problem of effective WSTS, is
not in contradiction with the result of [6] which establishes that there does not
exist a procedure that always terminates and returns a coverability set for a
large class of WSTS, including ours. Indeed, to establish the correctness of our
algorithm, we only need to ensure that a coverability set will be included at
some point in the sequence of Si’s and Li’s. Nevertheless, given a pair 〈Si, Li〉, it
is not possible to establish algorithmically that this pair contains a coverability
set. Also, given a particular upward-closed set U , our algorithm may terminate
before reaching a pair 〈Si, Li〉 that contains a coverability set, because the set
U is reachable or because the abstraction constructed from a pair 〈Sj , Lj〉, with
j < i, is sufficiently precise to prove that U is not reachable.

294 G. Geeraerts, J.-F. Raskin, and L. Van Begin

Remark 2. Note that the constraints on the sequence of Li’s computed by the
algorithm of Fig. 1 may be relaxed. Indeed, those constraints ensure that the
algorithm eventually considers a set of limits which allows to construct a graph
that is precise enough to decide negative instances of the coverability problem.
However, following Theorem 2, it is sufficient to ensure that there exists i ≥ 0
such that Si ∪ Li contains a coverability set. Hence, only the limits of a cover-
ability set must appear in the sequence of Li’s.

4 Application to Self-Modifying Petri Nets

Let us show how to apply the approach proposed in the previous section to solve
the coverability problem for a large subclass of Self-modifying Petri nets [14]
(SMPN). SMPN are a general extension of Petri nets that includes almost all
the monotonic extensions of Petri nets defined in the literature and for which,
so far, there was no complete forward procedure.

4.1 Self-Modifying Petri Nets

A Self-Modifying Petri net [14], SMPN for short, is a tuple 〈P, T,D−, D+,m0〉.
P = {p1, . . . , pkP

} is a finite (non-empty) set of places. A marking is a function
m : P → N that assigns a natural value to each place. In the following, markings
are also seen as tuples in NkP where the ith dimension is the value assigned
to place pi. T = {t1, . . . , tkT

} is a finite (non-empty) set of transitions. For
any 1 ≤ i ≤ kT and any 1 ≤ j ≤ kP , D−

ij : NkP → N and D+
ij : NkP → N

describe respectively the input and output effect of transition ti on place pj .
Namely, D−

ij and D+
ij are functions of the marking m restricted to the form

α+
∑

k=1..kP
βk ·m(pk) where α ∈N and βk ∈N for all 1 ≤ k ≤ kP . m0 is the

initial marking of the SMPN.
We define the quasi order �⊆NkP×NkP on markings such that 〈m1,. . .,mkP

〉�
〈m′

1,. . .,m
′
kP
〉 if mi ≤ m′

i for all 1 ≤ i ≤ kP . It is well-known that � is a wqo.
A transition ti is firable from a marking m if m(pj) ≥ D−

ij(m) for all pj ∈ P .
Firing ti from m leads to a marking m′ ∈ NkP , noted m→ti m′, such that, for
any pj ∈ P : m′(pj) = m(pj) + D+

ij(m) − D−
ij(m). Given a set S of markings

and a transition ti, Post(S, ti) = {m′ | ∃m ∈ S : m→ti
m′}.

A SMPN P defines a transition system TP = 〈NkP ,m0,→〉 where→⊆ NkP ×
NkP is a transition relation and is such that we have 〈m,m′〉 ∈→, noted m→m′,
if and only if there exists ti ∈ T such that ti is firable from m and m→ti m′.

A SMPN P is �-monotonic when the underlying transition system TP satisfies
the monotonicity property for �. A SMPN P is strongly monotonic when for
every transition ti and markings m1,m2 and m3, the following holds: if m1 →ti

m3 and m1 � m2, there exists m4 such that m2 →ti
m4 and m3 � m4.

Obviously, all the strongly monotonic SMPN are �-monotonic.
We say that a transition t is unfirable, whenever there exists no marking m

such that t is enabled in m. In the following, we assume that the SMPN’s we

Expand, Enlarge, and Check: New Algorithms for the Coverability Problem 295

consider do not contain unfirable transitions. The following lemma defines the
syntactical subclass of SMPN’s that are strongly monotonic.

Lemma 3. Given a SMPN P = 〈P, T,D−, D+,m0〉 without unfirable transi-
tions, P is strongly monotonic if and only if for all ti ∈ T, pj ∈ P : D−

ij = α with
α ∈ N or D−

ij = m(pj).

Although strongly monotonic SMPN is a sub-class of SMPN, it remains a
general class of monotonic systems. Indeed, almost all the monotonic extensions
of Petri nets studied in the literature are syntactical sub-classes of strongly
monotonic SMPN, i.e. sub-classes defined by imposing constraints on the linear
expressions defining the effect of transitions. Examples of such extensions are
Petri nets with transfers [5], with reset [3] and Post self-modifying Petri nets
[14]. On the other hand, the other monotonic extensions of Petri nets are not
syntactical sub-classes of strongly monotonic SMPN, but we can construct (in
polynomial time) a strongly monotonic SMPN with the same set of places that is
equivalent to the original net with respect to the coverability problem. Examples
of such extensions are Petri nets with non-blocking arcs [13] and Lossy Petri nets
[4]. So the algorithm that we propose in the next section is a forward algorithm
that decides the coverability problem for all monotonic extensions of Petri nets
proposed in the literature.

In the following, we define the adequate domain of limits we consider, state its
effectiveness and show how to construct the sequences of Si’s and Li’s. Finally,
we show that we always obtain degenerated And-Or graph.

4.2 A Forward Algorithm to Decide the Coverability Problem for
Strongly Monotonic SMPN

Domain of Limits. We will consider the domain of limits 〈L,�e, γ(.)〉 where L =
(N∪{+∞})k\Nk, �e⊆ (N∪{+∞})k×(N∪{+∞})k is such that 〈m1, . . . ,mk〉 �e

〈m′
1, . . . ,m

′
k〉 if and only if ∀1 ≤ i ≤ k : mi ≤ m′

i where c < +∞ for all c ∈ N
(≤ is the natural order over N ∪ {+∞}). γ(.) is defined as: γ(m) = {m′ ∈ Nk |
m′ �e m}. In the following, tuples in L are called extended markings. It is
well-known, see for instance [15], that the following lemma holds.

Lemma 4. 〈L,�e, γ(.)〉 is an adequate domain of limits for 〈Nk,�〉.

Notice that in this case the 6 element such that γ(6) = Nk is the marking
that assigns +∞ to all the places.

Given a strongly monotonic SMPN P, we extend the underlying transition
relation from markings to extended markings by assuming that +∞ + +∞ =
+∞, +∞ · c = +∞ for all c ∈ N \ {0}, 0 ·+∞ = 0, +∞+ c = +∞ for all c ∈ Z.

Since our algorithm requires the WSTS and its associated domain of limits
to be effective (Definition 3), we state the following lemma :

Lemma 5. Any strongly monotonic SMPN P with the adequate domain of limits
〈L,�e, γ(.)〉 are effective.

296 G. Geeraerts, J.-F. Raskin, and L. Van Begin

i ← 1;
while (true) do

if ∃m∈Reachexact(Abs(P, i)),m′ ∈GU :m�m′ then return Reachable;
else

if �m∈Reach(Abs(P, i)),m′ ∈GU :m�e m′ then return Unreachable;
else i ← i + 1 ;

Fig. 2. A forward algorithm for SMPN Its inputs are P, a strongly monotonic
SMPN and GU , the set of minimal elements of the �-upward closed set U

The following definition explains how we construct the Si’s and Li’s. Fol-
lowing Definition 6, this is sufficient to define the And-Or graphs built by our
verification algorithm.

Definition 8. The sequences of Si’s and Li’s are defined as follows: (D1) Si =
{0, . . . , i}k ∪ {m0}, i.e. Si is the set of markings where each place is bounded by
i (plus the initial marking); (D2) Li = {m ∈ {0, . . . i,+∞}k |m �∈ Nk}.

It is easy to see that the Si’s and Li’s are finite sets and (i) for all i ≥ 0 :
Si ⊂ Si+1 and Li ⊂ Li+1, (ii) for any m ∈ Nk, there exists i ∈ N such that
for all j ≥ i : m ∈ Sj , (iii) for any m ∈ L, there exists i ∈ N such that for all
j ≥ i : m ∈ Lj , and (iv) m0 ∈ S0 and 6 ∈ L0.

Degenerated And-Or Graph. Let us show that in the present case, one obtains a
degenerated And-Or graph. For this purpose, we prove, following Lemma 2, that
the pairs 〈Si, Li〉 are perfect pairs.

Lemma 6. Given a SMPN P = 〈P, T,D−, D+〉 with the adequate domain of
limits 〈L,�e, γ(.)〉 any pair 〈Si, Li〉, with Si ⊆ NkP and Li ⊆ L constructed
following Definition 8, is a perfect pair.

Corollary 1. Given a strongly monotonic SMPN net P with the adequate do-
main of limits 〈L,�e, γ(.)〉 and the sets Si ⊆ NkP and Li ⊆ L constructed
following Definition 8, Abs(P, Si, Li) is a degenerated And-Or graph.

Algorithm for the Coverability Problem. Let Abs(P, i) be the graph (degener-
ated And-Or graph) Abs(P, Si, Li) constructed from P, Si and Li. We note ⇒
its transition relation. We define Reachexact(Abs(P, i)) as the set {m |m0⇒m1⇒
. . .⇒mn with ∀1 ≤ j ≤ n : mj ∈ Si,mn = m} and Reach(Abs(P, i)) as the set
{m | m0 ⇒ m1 ⇒ . . . ⇒ mn with ∀1 ≤ j ≤ n : mj ∈ Si ∪ Li,mn = m}.
By applying the schema presented in Section 3 to strongly monotonic self-
modifying Petri nets, we obtain the algorithm at Fig. 2. Remark that this al-
gorithm is incremental: one can compute Reachexact(Abs(P, i+ 1)) by extending
Reachexact(Abs(P, i)) for all i ≥ 0. Similarly, one can construct Reach(Abs(P, i))
from Reachexact(Abs(P, i)).

Theorem 4. For any strongly monotonic SMPN, the algorithm of Fig. 2 returns
“Reachable” if Reach(C) ∩ U �= ∅, “Unreachable” otherwise.

Expand, Enlarge, and Check: New Algorithms for the Coverability Problem 297

5 Application to Lossy Channel Systems

To show the generality of our new approach, we apply our schema of algorithm
to lossy channel systems, which are systems made up of automata extended with
FIFO channels that may lose messages. We recall the model, define an adequate
domain of limits and show how to construct the sets Si’s and Li’s.

A Lossy Channel System, LCS for short, is a tuple C = 〈Q, qi, F,Σ, T 〉 where Q
is a finite set of locations, qi ∈ Q is the initial location, F is a finite set of channels,
Σ is a finite alphabet, T ⊆ Q×Op×Q where Op : F �→

⋃
a∈Σ{?a, !a}∪{nop}. A

state is a pair 〈q,W 〉 where q ∈ Q, W : F �→ Σ∗. In the following, SC will denote
the 3B set of states of the LCS C. We define the order 	 on states in SC such that
for any s = 〈q,W 〉, s′ = 〈q′,W ′〉 : s 	 s′ if and only if q = q′ and W (c) is a (not
necessarily contiguous) subword of W ′(c) for all c ∈ F , i.e W (c) is obtained from
W ′(c) by deleting characters. It is well-known that 	 is a well-quasi order (see for
instance [1]). A LCS 〈Q, qi, F,Σ, T 〉 defines a transition system 〈SC , s0,→〉 where
(i) s0 = 〈qi,Wi〉 with Wi(c) = ε for each c ∈ F and (ii) (〈q,W 〉, 〈q′,W ′〉) ∈→
if and only if there exists t = 〈q1, Op, q2〉 ∈ T and 〈q,W ′′〉 with W ′′ 	 W such
that q = q1, q′ = q2 and for all c ∈ F : Op(c) =?a implies W ′′(c) = a ·W ′(c).
Furthermore, W ′(c)=W ′′(c) · a if Op(c) =!a and W ′(c)=W ′′(c) if Op(c)=nop.
In the following, we always consider a LCS C = 〈Q, qi, F,Σ, T 〉.
Domain of Limits. Let L(Σ) be the set of downward closed regular expressions
(dc-re) {(a1 + . . . + an)∗ | ∀1 ≤ i ≤ n : ai ∈ Σ,∀ai, aj : i �= j implies that ai �=
aj} ∪ {(a + ε) | a ∈ Σ} ∪ {ε}. A simple regular expression (sre) is either a
dc-re or an expression a1 · . . . · an where ∀1 ≤ i ≤ n : ai is a dc-re. The size
of a sre is the number of dc-re that compose it. The set of limits is L(Σ,Q) =
{〈q, E〉 | q ∈ Q,E : F �→ L(Σ)∗ assigns a sre to each channel2} ∪ {6}. For
〈q, E〉 ∈ L(Σ,Q) \ {ε}: [[〈q, E〉]] denotes the set of pairs 〈q,W 〉 ∈ SC such that
W (c) is a word in the language generated by the regular expression E(c) for
all c ∈ F . We define the function γ : SC ∪ L(Σ,Q) → 2SC such that (i) for all
〈q,W 〉 ∈ SC : γ(〈q,W 〉) = {〈q,W ′〉 | 〈q,W ′〉 	 〈q,W 〉}, (ii) γ(6) = {〈q,W 〉 |
q ∈ Q,W (c) ∈ Σ∗ for all c ∈ F} and (iii) for all 〈q, E〉 ∈ L(Σ,Q) \ {6} :
γ(〈q, E〉) = [[〈q, E〉]]. We define 4 : (SC ∪ L(Σ,Q))× (SC ∪ L(Σ,Q)) as follows :
c14c2 if and only if γ(c1) ⊆ γ(c2).

It is easy to see that (L(Σ,Q),4, γ) is an adequate domain of limits for
(SC ,) and that any LCS C with this domain of limits is effective.

Construction of the Si’s and the Li’s. We construct the sequences of the Si’s
and Li’s as follows. Si = {〈q,W 〉 ∈ SC | q ∈ Q,∀c ∈ F : W (c) = ε or W (c) =
a1 · . . . · an with n ≤ i and ∀1 ≤ j ≤ n : aj ∈ Σ}, i.e. Si is the set of states
where the contents of the channels are words of size at most i. Similarly, Li =
{〈q, E〉 ∈ L(Σ,Q) | ∀c ∈ F : E(c) = ε or E(c) = e1 · . . . · en with n ≤ i and ∀1 ≤
j ≤ n : ej ∈ L(Σ)} ∪ {6}, i.e. Li is the set of limits that assign sre of size at
most i to the channels (plus the 6 element).

2 We also require that E does not assign ε to all the channels because we require in
Definition 1 that the set of limits be disjoint from SC .

298 G. Geeraerts, J.-F. Raskin, and L. Van Begin

It is not difficult to see that the sequences of Si’s and Li’s satisfy the hy-
pothesis of the algorithm of Fig. 1.

6 Conclusion

In this paper, we have defined a new approach to solve the coverability problem
of WSTS, which we call “Expand, Enlarge and Check”. When applied to a large
class of monotonic counter systems (the strong monotonic Self-modifying Petri
nets), our approach produces an algorithm that uses forward analysis to decide
the coverability problem. Up to now, such a forward approach was known only
for Petri nets (the Karp and Miller algorithm), a restricted subclass of strong
monotonic SMPN. We have demonstrated the generality of our approach by
showing how to apply the algorithmic schema to lossy channel systems.

References

1. P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. General Decidability The-
orems for Infinite-state Systems. In Proc. LICS’96, pages 313–321. IEEE, 1996.

2. P.A. Abdulla and B. Jonsson. Verifying Programs with Unreliable Channels. In
Proc. LICS’93, pages 160–170. IEEE, 1993.

3. T. Araki and T. Kasami. Some decision problems related to the reachability prob-
lem for petri nets. Theoretical Computer Science, 3(1):85–104, 1977.

4. A. Bouajjani and R. Mayr. Model Checking Lossy Vector Addition Systems. In
Proc. STACS’99, LNCS 1563, pages 323–333. Springer, 1999.

5. G. Ciardo. Petri nets with marking-dependent arc multiplicity: properties and
analysis. In Proc. ICATPN 94, LNCS 815, pages 179–198. Springer, 1994.

6. C. Dufourd, A. Finkel, and Ph. Schnoebelen. Reset Nets Between Decidability and
Undecidability. In In Proc. ICALP’98, LNCS 1443, pages 103–115. Springer, 1998.

7. J. Esparza, A. Finkel, and R. Mayr. On the Verification of Broadcast Protocols.
In Proc. LICS’99, pages 352–359. IEEE, 1999.

8. E. A. Emerson and K. S. Namjoshi. On Model Checking for Non-deterministic
Infinite-state Systems. In Proc. LICS ’98, pages 70–80. IEEE, 1998.

9. A. Finkel, J.-F. Raskin, M. Samuelides, and L. Van Begin. Monotonic Extensisions
of Petri Nets : Forward and Backward Search Revisited. In Proc. INFINITY’02,
ENTCS 68(6). Elsevier, 2002.

10. A. Finkel and P. Schnoebelen. Well-structured transition systems everywhere!
Theoretical Computer Science, 256(1-2):63–92, 2001.

11. S.M. German and A.P. Sistla. Reasoning about systems with many processes.
JACM 39(3): 675–735, 1992.

12. T. A. Henzinger, O. Kupferman, and S. Qadeer. From prehistoric to postmodern
symbolic model checking. Formal Methods in System Design, 23(3):303–327, 2003.

13. J.-F. Raskin and L. Van Begin. Petri Nets with Non-blocking Arcs are Difficult to
Analyse. In Proc. INFINITY’03, ENTCS 96. Elsevier, 2003.

14. R. Valk. On the computational power of extended petri nets. In Proc. MFCS’78,
LNCS 64, pages 527–535. Springer, 1978.

15. L. Van Begin. Efficient Verification of Counting Abstractions for Parametric sys-
tems. PhD thesis, Université Libre de Bruxelles, Belgium, 2003.

Minimum Weight Pseudo-Triangulations
(Extended Abstract)

Joachim Gudmundsson1,� and Christos Levcopoulos2

1 Department of Mathematics and Computing Science, TU Eindhoven, 5600 MB,
Eindhoven, the Netherlands
h.j.gudmundsson@tue.nl

2 Department of Computer Science, Lund University, Box 118, 221 00 Lund, Sweden
christos@cs.lth.se

Abstract. We consider the problem of computing a minimum weight
pseudo-triangulation of a set S of n points in the plane. We first present
an O(n log n)-time algorithm that produces a pseudo-triangulation of
weight O(wt(M(S)) · log n) which is shown to be asymptotically worst-
case optimal, i.e., there exists a point set S for which every pseudo-
triangulation has weight Ω(log n · wt(M(S))), where wt(M(S)) is the
weight of a minimum spanning tree of S. We also present a constant
factor approximation algorithm running in cubic time. In the process we
give an algorithm that produces a minimum weight pseudo-triangulation
of a simple polygon.

1 Introduction

Pseudo-triangulations are planar partitions that recently received considerable
attention [1, 2] mainly due to their applications in visibility [13, 14], ray-shooting
[4, 8], kinetic collision detection [3, 9], rigidity [17], and guarding [16].

A pseudo-triangle is a planar polygon with exactly three convex vertices,
called corners. A pseudo-triangulation of a set S of n points in the plane is a par-
tition of the convex hull of S into pseudo-triangles whose vertex set is exactly S.
A related problem is the problem of triangulating a point set. Minimizing the
total length has been one of the main optimality criteria for triangulations and
other kinds of partition. Indeed the minimum weight triangulation (MWT), i.e.,
minimizing the sum of the edge lengths, has frequently been referred to as the
“optimal triangulation”. This triangulation has some good properties [5] and is
e.g. useful in numerical approximation of bivariate data [18]. The complexity of
computing a minimum weight triangulation is one of the most longstanding open
problems in computational geometry and it is included in Garey and Johnson’s
[6] list of problems from 1979 that neither are known to be NP-complete, nor
known to be solvable in polynomial time. As a result approximation algorithms

� Supported by the Netherlands Organisation for Scientific Research (NWO).

K. Lodaya and M. Mahajan (Eds.): FSTTCS 2004, LNCS 3328, pp. 299–310, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

300 J. Gudmundsson and C. Levcopoulos

for the MWT-problem have been considered. The best known approximation is
a constant factor approximation algorithm by Levcopoulos and Krznaric [11].

We consider the problem of computing a pseudo-triangulation of minimum
weight (MWPT) which was posed as an open problem by Rote et al. in [15].
An interesting observation that makes the pseudo-triangulation very favorable
compared to a standard triangulation is the fact that there exist point sets
where any triangulation, and also any convex partition (without Steiner points),
has weight Ω(n · wt(M(S))), while there always exists a pseudo-triangulation
of weight O(logn · wt(M(S))), where wt(M(S)) is the weight of a minimum
spanning tree of the point set. We also present an approximation algorithm that
produces a pseudo-triangulation whose weight is within a factor 15 times the
weight of the MWPT. In comparison, the best constant approximation factor
for the MWT-problem which is proved to be achievable by a polynomial-time
algorithm [11] is so much larger that it has not been explicitly calculated.

This paper is organized as follows. First we compare the worst-case weight of
a triangulation with the worst-case weight of a pseudo-triangulation. We give an
algorithm that produces a pseudo-triangulation that asymptotically meets this
bound running in time O(n log n). Even though this is asymptotically worst-case
optimal it can be far from the optimal solution for many point sets. In sections
3 and 4 we show a constant factor approximation algorithm for the MWPT-
problem. As a subroutine we use an algorithm that we believe is of independent
interest since it computes an optimal solution of a simple polygon in cubic time.

An edge/segment with endpoints in two points u and v of S will be denoted
by (u, v) and its length |uv| is equal to the Euclidean distance between u and v.
Given a graph T on S we denote by wt(T) the sum of all the edge lengths of
T . The minimum spanning tree of S and the convex hull of S, denoted M(S)
and CH(S) respectively, will be used frequently throughout the paper. Both
structures can be computed in O(n log n) time.

The proofs omitted in this extended abstract can be found in the full version.

2 A Fast Approximation Algorithm

As mentioned in the introduction there exist point sets S where any triangulation
will have weight Ω(n·wt(M(S))), an example is given in Fig. 1a. A natural ques-
tion is whether there exist similar worst-case bounds for pseudo-triangulations.
In this section we show that one can always construct a pseudo-triangulation of
weight O(logn · wt(M(S))), and this is asymptotically tight, i.e., there exists a
point set S for which every pseudo-triangulation has weight Ω(logn·wt(M(S))).
We start with the lower bound.

Observation 1. There exists a point set S in the plane such that any pseudo-
triangulation has weight Ω(wt(M(S))· log n).

Proof. The proof can be found in the full version. An illustration of the proof is
shown in Fig. 1b. ��

Minimum Weight Pseudo-Triangulations 301

(a) (b)

Fig. 1. (a) An example where any triangulation will have weight Ω(n · wt(M(S))).
(b) An example where any pseudo-triangulation will have weight Ω(log n · wt(M(S)))

Next we present an algorithm that produces a pseudo-triangulation whose
weight asymptotically meets the lower bound, that is:

Theorem 1. Given a set S of n points in the plane one can in time O(n log n)
produce a pseudo-triangulation of S of weight O(logn · wt(M(S))).

The algorithm performs two main steps: a partition of CH(S) into simple
polygons P1, . . . , Pm followed by a pseudo-triangulation of each polygon.

We first show how a visibility polygon P can be pseudo-triangulated in time
O(n log n) using edges of total weight O(wt(P) · log n). In the same section we
also show how to pseudo-triangulate a special polygon, called an hourglass poly-
gon. Then, in section 2.2, we show how we can construct a spanning graph of
S that partitions the convex hull of S into subpolygons that either are visi-
bility polygons, or hourglass polygons by using segments of small total weight.
Combining these results gives us Theorem 1.

2.1 Pseudo-Triangulating a Visibility Polygon

We start with some basic definitions. Two points p and q within a polygon P
are said to see each other if there exists a straight-line segment within P with
endpoints at p and q. A polygon P is said to be a visibility polygon with respect
to a vertex q of P if every point within P can be seen from q. A polygon P is
said to be a weak visibility polygon with respect to an edge (q1, q2) if every point
within P can see at least one point on (q1, q2). The edge (q1, q2) is called the
visibility edge of P . Finally, a (weakly) visibility polygon P (q) of P is said to be
maximal if P (q) contains every point of P that can be seen from q, where q can
be either a vertex or an edge.

Next we show that a weak visibility polygon whose visibility edge has two
convex vertices easily can be pseudo-triangulated using segments of small total
length. This result will be used in the algorithm that pseudo-triangulates a
visibility polygon. We start with a simple observation.

Observation 2. The geodesic shortest path between any pair of points p and q
in a weak visibility polygon P is a concave chain.

302 J. Gudmundsson and C. Levcopoulos

Proof. The observation follows since there exists a path containing three edges
within P from p to q, via the “visibility” edge of P . This path may self-intersect
but in that case the path can be shortened to two edges. ��
Observation 3. A weak visibility polygon P whose visibility edge (p1, p2) has
two interior convex vertices can be pseudo-triangulated in time O(n log n) using
edges of total weight O(wt(P) · log n).

p2 p1

p7m/28 ri

rj

p1

(a) (b) (c)

p2 pn

Fig. 2. (a) A pseudo-triangle can be found in a weak visibility polygon whose visibility
edge has two convex vertices. (b) A pseudo-triangle partitions a visibility polygon into
weak visibility polygons whose visibility edges has convex vertices. (c) An hourglass
polygon P can be pseudo-triangulated by adding one edge of weight at most 1/2·wt(P)

Now we are ready to extend the results to visibility polygons. Assume that
we are given a visibility polygon P with respect to q with n vertices p1, . . . , pn

ordered clockwise around the perimeter of P starting with q. Let r1, . . . , rm

be the convex vertices of P . Since P is a weak visibility polygon we may use
Observation 2, which implies that we can partition P into one pseudo-triangle
and a set of weak-visibility polygons by adding the pseudo-triangle with cor-
ners at p1, ri and rj , where 1 < i < j. The two convex vertices ri and rj are
chosen in such a way that the two angles ∠p2, p1, ri and ∠pn, p1, rj are less
than π, as illustrated in Fig. 2b. Note also that p2 and pn are convex vertices
since P is a visibility polygon. The pseudo-triangle will consist of the edges
in the concave chain between ri and rj plus the edges (p1, ri) and (p1, rj).
The resulting subpolygons outside the pseudo-triangle are weak visibility poly-
gons whose visibility edges have convex vertices. According to Observation 3
each of these subpolygons can be pseudo-triangulated in O(n log n) time us-
ing edges of total weight O(wt(P) · log n). Hence we have shown the following
lemma.

Lemma 1. The algorithm produces a pseudo-triangulation T of a visibility poly-
gon P in O(n log n) time whose weight is O(wt(P) · log n).

Pseudo-Triangulating an Hourglass Polygon. We end this section by con-
sidering the pseudo-triangulation of an hourglass polygon. A polygon P is said
to be an hourglass polygon if P consists of two concave chains connected by two
edges, as illustrated in Fig. 2c.

We will later need the following straight-forward observation:

Minimum Weight Pseudo-Triangulations 303

Observation 4. An hourglass polygon P can be pseudo-triangulated in linear
time by adding one edge e such that wt(e) � 1/2 · wt(P).

2.2 Partition a Point Set into Simple Polygons

As input we are given a set S of n points in the plane, and as output we will pro-
duce a set of polygons that are either hourglass polygons or visibility polygons.
The partition is done in two main steps.

Step 1: Construct the convex hull and the minimum spanning tree of S. This is
done in O(n log n) time and it partitions CH(S) into simple (maybe degenerate)
polygons, denoted P1, . . . , Pm.

Step 2: Each polygon Pi is processed independently. The task at hand is to
partition Pi into a set of hourglass polygons and “restricted” visibility polygons,
which can be pseudo-triangulated as described in the previous section.

A restricted visibility polygon rvp(P, q) of a polygon P with respect to a
vertex q is a visibility polygon of P with respect to q such that every vertex of
P (q) also is a vertex of P . A restricted visibility polygon can be obtained from
a visibility polygon by short-cutting the part of the perimeter going through
vertices in the visibility polygon that are not vertices of P .

Definition 1. Every edge e = (u, v) of a restricted visibility polygon R(q) that
short cuts exactly three edges of the maximal visibility polygon P (q) is said to be
a split edge, as illustrated in Fig. 3a.

Note that this definition implies that any ray from q that intersects e will hit
an edge f = (u′, v′) of P where neither u′ nor v′ is seen from q.

Now, let v1, . . . , vn be the vertices of P in clockwise order, starting at q = v1.
It remains to show how we can partition P into visibility polygons and hourglass
polygons in O(n log n) time. The idea is to recursively partition P into restricted
visibility polygons and hourglass polygons. Consider one level of the recursion. If
P is not a restricted visibility polygon with respect to q, or an hourglass polygon
then the following two steps are performed:

1. Build a restricted visibility polygon rvp(P, q) of P .
2. For each split edge e in rvp(P, q) construct an hourglass polygon H such

that H ∩R(q) = e.

A simplified description of the partition is as follows. An arbitrary point q
of P is chosen as start point. The restricted visibility polygon rvp(P, q) of P
is constructed. Assume that there are l split edges in rvp(P, q). For each split
edge e = (u, v) consider the edge f = (u′, v′) hit by a ray from q through (u, v).
Add the edges in a geodesic shortest path from u to u′ and, from v to v′. This
process partitions P into l+ 1 subpolygons of which one is a restricted visibility
polygon and l are hourglass polygons, as shown in Fig. 3b. The process continues
recursively on the remaining subpolygons, P1, . . . , Pm (the subpolygons that
are not restricted visibility polygons or hourglass polygons). Note that each

304 J. Gudmundsson and C. Levcopoulos

(a) (b)

q

v u

q

e

v′ u′

Split edge

restricted visibility
polygon

hourglass
polygon

hourglass
polygon

Fig. 3. (a) Illustrating a split edge (u, v) with respect to q, i.e., an edge that short cuts
exactly three edges of the maximal visibility polygon P (q). The shortest path within
P from v to v′ and from u to u′ is the boundary of an hourglass polygon. (b) The
first level in the recursion partitions P into a restricted visibility polygon, hourglass
polygons and a set of subpolygons that are processed recursively

remaining subpolygon Pj has exactly one edge ej = (uj , vj) that is not an
edge of P . For each of the subpolygons, either uj or vj is chosen as a visibility
point. When all subpolygons either are restricted visibility polygons or hourglass
polygons the recursion stops. A more precise description on how this can be
performed in time O(n log n) can be found in the full paper.

Lemma 2. A simple polygon P with n vertices can be partitioned into restricted
visibility polygons and hourglass polygons in O(n log n) time.

Proof. Recall that P is pre-processed in linear time to allow us to answer ray-
shooting queries and geodesic shortest path queries in O(logn) time. The total
complexity of the partition is O(n), and since every edge requires at most one
ray-shooting query and one shortest-path query the time-complexity of Parti-
tionPolygon is O(n log n) ��

Lemma 3. Algorithm PartitionPolygon produces a partition of P by adding
edges of total length at most 5 · wt(P).

Theorem 1 follows by putting together Lemmas 1-3 and Observation 4.

3 A MWPT of a Simple Polygon

Even though the above algorithm is asymptotically worst-case optimal with re-
spect to the weight of the minimum spanning tree it can be very far from the
optimal solution. For example, often an optimal solution will have weight which
is within a constant factor times the weight of a minimum weight spanning tree,
which implies that the above algorithm will produce a solution which is a factor
Θ(logn) of the optimal. In the rest of this paper we will focus on developing a
constant factor approximation algorithm for the MWPT-problem. As a subrou-
tine we will also develop an algorithm that finds an optimal pseudo-triangulation
of a simple polygon.

Minimum Weight Pseudo-Triangulations 305

Theorem 2. Given a simple polygon P one can compute the minimum weight
pseudo-triangulation of P in O(n3) time using O(n2) space.

We will use a similar dynamic programming method as proposed by Gilbert
[7] and Klincsek [10] for finding a minimum weight triangulation of a simple
polygon. The basic observation used is that once some (pseudo-)triangle of the
(pseudo-)triangulation has been fixed the problem splits into subproblems whose
solutions can be found recursively, hence avoiding recomputation of common
subproblems.

Let p1, . . . , pn be the vertices of P in clockwise order. Let δ(pi, pj) be the
shortest geodesic path between pi and pj . Define the order of a pair of points
pi, pj to be the value ((i − j − 1) mod n), i.e., the number of vertices on the
path from pi to pj along the perimeter of P in clockwise order. Sort the pairs
with respect on their order, ties are broken arbitrarily. Note that every pair of
points pi and pj will occur twice; once as (pi, pj) and once as (pj , pi). Process
each pair in sorted order as follows.

Assume we are about to process (pi, pi+j) and that the path δ(pi, pi+j) goes
through the vertices pi = pi+a0 , pi+a1 , . . . , pi+ak

= pi+j . Note that the path
partitions P into k+1 (possibly empty) subpolygons, see Fig. 4(a). Let L[i, i+j]
be the total edge length of an optimal pseudo-triangulation for the subpolygon
(or subpolygons) containing the chain pi, pi+1, . . . , pi+j of the perimeter of P .
Compute L[i, i+ j] recursively as follows. If (pi, pi+j) is not a convex or concave
chain then we set L[i, i+j] =∞. In the case when the path is a concave or convex
chain we obtain one polygon P ′ bounded by the path δ(pi, pi+j) and the path
between pi and pi+j , and k polygons P1, . . . , Pk where each Pl is bounded by the
edge (pi+al

, pi+al−1) and the edges from pi+al−1 to pi+al
along the perimeter of P .

(a) (b) (c)

pi+jpi

δ(pi, pi+j)

P1

P ′pi+1

pi+jpi

δ(pi, pi+j)

P1

P ′

pi

pi+j

δ(pi, pi+j)

P ′

P1 P2

P3

Fig. 4. Illustrating a concave shortest geodesic path between two points pi and pi+j

If the path is a concave or convex chain then we will have three cases. The
three cases are shown in Fig. 4.

– If δ(pi, pi+j) contains more than one edge then we know that L[∗, ∗] already
has been computed for every edge along δ(pi, pi+j), hence we only have to
add up the values of L[∗, ∗] which can be done in linear time, i.e., calculating∑k−1

α=0 L[pi+aα
, pi+aα+1].

– If δ(pi, pi+j) contains exactly one edge (pi, pi+j) then an optimal pseudo-
triangulation of P1 can be obtained in linear time as follows. We will have two
cases; either pi and pi+j are corners of the pseudo-triangle in P1 containing
(pi, pi+j) or not.

306 J. Gudmundsson and C. Levcopoulos

In the case when both pi and pi+j are convex vertices within P1 then an
optimal pseudo-triangulation of P1 can be obtained in linear time as follows.
Any optimal pseudo-triangulation of P1 that contains the edge (pi, pi+j)
must have pi and pi+j as corners thus we can try all possible vertices pm,
i < m < i + j as the third corner. Testing a pseudo-triangle with corners
at pi, pi+j and pm takes constant time since the L[∗, ∗]-value of the paths
between pi and pm, and pm and pi+j have already been computed.

– Otherwise, if one or both of the points are not convex interior corners of
P , then it holds that there must be a pair of points px and py along the
perimeter of P between pi and pi+j whose shortest geodesic path between
them contains the edge (pi, pi+j). Hence, in this case the optimal solution
has already been computed for P1 and can be found in linear time.

There are O(n2) pairs of points and each pair takes O(n) time to process.
The space bound follows from the fact that for every pair of points pi and pj we
store L[pi, pj]. When all the L[∗, ∗] have been computed we can easily test every
possible pseudo-triangle in constant time, thus Lemma 2 follows.

Note that the minimum weight pointed (minimum number of edges) pseudo-
triangulation can be computed using the same algorithm.

4 A Constant Factor Approximation Algorithm

In this section we will give an approximation algorithm for the MWPT-problem.
It is similar to the approximation algorithm presented in Section 2 in the sense
that the two main steps are the same; first a partition of the convex hull of
the point set into simple polygons followed by a pseudo-triangulation of each
polygon. In the pseudo-triangulation step we will use the optimal algorithm
presented in the previous section. As input we are given a set S of n points in
the plane, and as output we will produce a pseudo-triangulation T of S.

Algorithm PseudoTriangulate(S)

1. Construct the convex hull and the minimum spanning tree of S. This parti-
tions CH(S) into simple (maybe degenerate) polygons denoted Q1, . . . , Qk.

2. Apply Theorem 2 to each of the k polygons. The pseudo-triangulation ob-
tained together with the convex hull and the minimum spanning tree of S
is reported.

The aim of this section is to prove the following theorem.

Theorem 3. Given a point set S algorithm PseudoTriangulate computes a
pseudo-triangulation T of S in time O(n3) using O(n2) space such that wt(T) =
15 · wt(Topt), where Topt is a minimum weight pseudo-triangulation of S.

The running time of the algorithm is O(n3) since the time-complexity is
dominated by computing the MWPT of each polygon. Note that the algorithm
produces the minimum weight pseudo-triangulation that includesM(S), thus it

Minimum Weight Pseudo-Triangulations 307

suffices to prove that there exists a pseudo-triangulation of S that includes the
edges in a minimum spanning tree of S and whose weight is 15 · wt(Topt).

4.1 The Weight of a Pseudo-Triangulation That Includes a
Minimum Spanning Tree

In this section we will prove the following lemma, which completes the proof of
Theorem 3.

Lemma 4. Let S be a set of n points in the plane and let Topt denote a minimum
weight pseudo-triangulation of S. There exists a pseudo-triangulation T of S that
includes the edges of M(S) and whose weight is at most 15 · wt(Topt)).

(a) (b) (c)u

u1 v1

x1

ui−1

ui

vi−1

vi

xi−1

xi

ui−1

ui

vi−1

vi

xi−1

xi

Fig. 5. Three of the cases that may occur when the partial minimum spanning tree
edges (dashed) is replaced by a chain (fat).

Before we continue we need the following generalization of a pseudo-triangle.

Definition 2. A simple polygon P is said to be a pseudo-k-gon if P includes
exactly k convex vertices.

The proof of Lemma 4 is performed in two steps. First it will be shown that
one can construct a graph G of the vertices of P such that no edge of G intersects
an edge ofM(S), every face of G is a pseudo-k-gon for 3 � k � 6, and the weight
of G is bounded by 5 · wt(Topt). The second step, Observation 6, shows how a
pseudo-k-gon P , 4 � k � 6, can be partitioned into pseudo-triangles by adding
k − 3 edges to P of length at most wt(P). Since every edge can belong to at
most two polygons the final bound is 15 · wt(Topt).

Constructing G. Initially G contains the edges in M(S). Process every edge
e = (u, v) in Topt as follows. If e does not intersect any edge of M(S) then add
e to G. Otherwise assume for simplicity that e is vertical and that u lies above
v. Let f1 = (u1, v1), . . . , fm = (um, vm) be the edges of M(S) that intersect e
ordered with respect to their intersection with e from top to bottom, and let
xi denote the intersection point between e and fi. The following edges are now
added to G, as illustrated in Fig. 5.

(1) If |u1x1| < |v1x1| then the concave path δ(u, u1) between u and u1 for
which the region bounded by (u, v), δ(u, u1) and f1 is empty is added to G.
Otherwise, if |v1x1| � |u1x1|, the corresponding path between u and v1 is
added to G, as shown in Fig. 5a.

308 J. Gudmundsson and C. Levcopoulos

(2) If |umxm| < |vmxm| then the concave path δ(v, um) between v and um for
which the region bounded by (u, v), δ(v, um) and fm is empty is added to G.
Otherwise, if |vmxm| � |umxm|, the corresponding path between v and vm

is added to G.
(3) If m � 1 then for each 1 < i < m we will have four cases. Note that case (b)

and (d) are symmetric to (a) and (c) respectively. Let ai−1 be the endpoint
of (ui−1, vi−1) closest to xi−1, and let ai be the endpoint of (ui, vi) closest
to xi.
a. If ai−1 = ui−1 and ai = ui then the concave path δ(ui−1, ui) between

ui−1 and ui for which the region bounded by (u, v), δ(ui−1, ui), fi−1 and
fi is empty is added to G, as illustrated in Fig. 5b.

b. If ai−1 = vi−1 and ai = vi then the concave path δ(vi−1, vi) between
vi−1 and vi for which the region bounded by (u, v), δ(vi−1, vi), fi−1 and
fi is empty is added to G.

c. If ai−1 = ui−1 and ai = vi then the shortest path δ(ui−1, vi) between
ui−1 and vi for which it holds that the two regions bounded by (u, v),
δ(ui−1, vi), fi−1 and fi are empty is added to G, see Fig. 5c.

d. If ai−1 = vi−1 and ai = ui then the shortest path δ(vi−1, ui) between
vi−1 and ui for which it holds that the two regions bounded by (u, v),
δ(vi−1, ui), fi−1 and fi is empty is added to G.

Properties of G. It remains to prove that G has two important properties to
complete the proof of Lemma 4.

Observation 5. G is a planar spanning graph of S and each face of G is a
pseudo-k-gon, for 3 � k � 6.

Lemma 5. wt(G) � 5 · wt(Topt).

Proof. Consider an edge e = (u, v). If e does not intersect any edges of M(S)
then we are done, otherwise consider the edges added to G when e is processed in
the construction of G. Using the same notations as in the construction algorithm,
it holds that the path added between u and v can be seen as m + 1 subpaths,
P1, . . . , Pm+1, where P1 connects u to an edge of M(S), Pm+1 connects v to
an edge of M(S), and each the subpaths Pi, 1 < i � m connects two edges of
M(S), as shown in Fig. 5.

Let ei denote the part of e that is replaced by Pi. It will be shown that P1
and Pm+1 can be charged to e1 and em+1 respectively, and that Pi, 1 < i � m,
can be charged to ei.

Consider an edge (x, y) ofM(S), and let D(x, |xy|) and D(y, |xy|) be the discs
with radius |xy| and with center at x and y respectively. From the properties of
an edge ofM(S) it holds that the intersection of D(x, |xy|) and D(y, |xy|) must
be empty of points. From this it follows that |u, x1| > min(|x1u1|, |x1v1|) and
that |v, xm| > min(|xm, um|, |xm, vm|), thus the length of P1 is bounded by 2|e1|
and the length of Pm+1 is bounded by 2|em+1|. Since the part of a path Pi on
one side of ei is concave it holds that the length of P2, . . . , Pm is bounded by

Minimum Weight Pseudo-Triangulations 309

|e|−(|e1|+|em+1|)+2
∑

1�i<m(min{|uixi|, |vixi|}+min{|ui+1xi+1|, |vi+1xi+1|}).
Using the same emptiness property as discussed in the previous paragraph, gives
that

∑
1�i<m(min{|uixi|, |vixi|}+min{|ui+1xi+1|, |vi+1xi+1|}) � 2 · |e| and since

wt(M(S)) < wt(Topt) the lemma follows. ��

It remains to show how the resulting pseudo-k-gons, 3 < k � 6, can be
pseudo-triangulated. Note that the pseudo-k-gons in G are very special in the
sense that k − 3 of the convex chains are straight-line segments and they are
connected to concave chains that may or may not be straight-line segments, we
call these restricted pseudo-k-gons, see Fig. 6. To complete the proof of Lemma 4
we end this section with the following observation, which also completes the proof
of Theorem 3.

Observation 6. For any 3 < k � 6 it holds that a restricted pseudo-k-gon P
can be pseudo-triangulated in O(n) time by adding k− 3 edges of total weight at
most wt(P).

(a) (b) (c)

P2

P1

P1

P2

P3

v2

v1

v3v4

v5

C1

C2

C3

C4

C5C6
v1

v2

v3
v4

v5

v6

P4

Fig. 6. For any 3 < k � 6 it holds that a pseudo-k-gon can be pseudo-triangulated by
adding k − 3 edges of total weight wt(P)

5 Open Problems and Acknowledgement

An obvious question is whether the minimum weight pseudo-triangulation prob-
lem is NP-hard. Is it as hard as finding the minimum weight triangulation?
Computing the minimum weight triangulation is one of the few open problems
listed in Garey and Johnson’s 1979 book on NP-completeness [6] that remain
open today.

A second open problem concerning the weight of a pseudo-triangulation is
if there exists a minimum pseudo-triangulation of low weight. It was shown by
Streinu [17] that every point set allows a minimum planar pseudo-triangulation
that has 2n − 3 edges. Neither of the two algorithms presented in this paper
produces minimum pseudo-triangulations, although the dynamic programming
algorithm for simple polygons can be modified to compute a minimum weight
minimum pseudo-triangulation.

The authors would like to thank Mattias Andersson, Mark de Berg and Bet-
tina Speckmann for valuable discussions during the work of this paper.

310 J. Gudmundsson and C. Levcopoulos

References

1. O. Aichholzer, D. Orden, F. Santos, and B. Speckmann. On the Number of Pseudo-
Triangulations of Certain Point Sets. Proc. 15th Canadian Conference on Compu-
tational Geometry, pp. 141-144, 2003.

2. O. Aichholzer, G. Rote, B. Speckmann, and I. Streinu. The Zigzag Path of a
Pseudo-Triangulation Proc. 8th International Workshop on Algorithms and Data
Structures, pp. 377-388, Lecture Notes in Computer Science 2748, Springer Verlag,
2003.

3. J. Basch, L. J. Guibas, J. Hershberger, and L. Zhang. Deformable free space tiling
for kinetic collision detection. Proc. 4th Workshop on Algorithmic Foundations of
Robotics, 2000.

4. B. Chazelle, H. Edelsbrunner, M. Grigni, L. J. Guibas, J. Hershberger, M. Sharir,
and J. Snoeyink. Ray shooting in polygons using geodesic triangulations. Algo-
rithmica, 12:54–68, 1994.

5. G. Das and D. Joseph. Which triangulations approximate the complete graph?
In Proc. International Symposium on Optimal Algorithms, pp. 168–192, Lecture
Notes in Computer Science 401, Springer Verlag, 1989.

6. M. Garey and D. Johnson. Computers and Intractability. W. H. Freeman and
Company, 1979.

7. P. D. Gilbert. New results in planar triangulations. Report R–850, Univ. Illinois
Coordinated Science Lab, 1979.

8. M. T. Goodrich and R. Tamassia. Dynamic Ray Shooting and Shortest Paths in
Planar Subdivisions via Balanced Geodesic Triangulations. Journal of Algorithms,
23(1):51–73, 1997.

9. D. Kirkpatrick and B. Speckmann. Kinetic Maintenance of Context-Sensitive Hi-
erarchical Representations for Disjoint Simple Polygons. Proc. 18th ACM Sympo-
sium on Computational Geometry, pp. 179–188, 2002.

10. G. Klincsek. Minimal triangulations of polygonal domains. Annals of Discrete
Math., 9:121-123, 1980.

11. D. Krznaric and C. Levcopoulos. Quasi-greedy triangulations approximating the
minimum weight triangulation. Journal of Algorithms 27(2): 303-338. 1998.

12. D. A. Plaisted and J. Hong. A heuristic triangulation algorithm. J. of Algorithms
8:405-437, 1987.

13. M. Pocchiola and G. Vegter. Pseudo-triangulations: Theory and applications. In
Proc. 12th ACM Symposium on Computational Geometry, pp. 291–300, 1996.

14. M. Pocchiola and G. Vegter. Topologically sweeping visibility complexes via
pseudo-triangulations. Discrete Computational Geometry, 16(4):419–453, 1996.

15. G. Rote, C. A. Wang, L. Wang, and Y. Xu. On constrained minimum pseudotri-
angulations. Proc. 9th Symposium on Computing an Combinatorics, pp. 445–454,
Lecture Notes in Computer Science 2697 Springer Verlag, 2003.

16. B. Speckmann and C. D. Tóth. Allocating Vertex pi-guards in Simple Polygons
via Pseudo-Triangulations. Proc. 14th ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 109–118,2003.

17. I. Streinu. A Combinatorial Approach to Planar Non-Colliding Robot Arm Mo-
tion Planning. Proc. 41st ACM Annual Symposium on Foundations of Computer
Science, pp. 443–453, 2000.

18. P. Yoeli. Compilation of data for computer-assisted relief cartography. In J. Davis,
and M. McCullagh, eds., Display and Analysis of Spatial Data. John Wiley & Sons,
New York, 1975.

Join Algorithms for the Theory of Uninterpreted
Functions�

Sumit Gulwani1, Ashish Tiwari2, and George C. Necula1

1 University of California, Berkeley, CA 94720
{gulwani, necula}@cs.berkeley.edu

2 SRI International, Menlo Park, CA 94025
tiwari@csl.sri.com

Abstract. The join of two sets of facts, E1 and E2, is defined as the set
of all facts that are implied independently by both E1 and E2. Congru-
ence closure is a widely used representation for sets of equational facts
in the theory of uninterpreted function symbols (UFS). We present an
optimal join algorithm for special classes of the theory of UFS using the
abstract congruence closure framework. Several known join algorithms,
which work on a strict subclass, can be cast as specific instantiations of
our generic procedure. We demonstrate the limitations of any approach
for computing joins that is based on the use of congruence closure. We
also mention some interesting open problems in this area.

1 Introduction

Computational logic is used extensively in formal modeling and analysis of sys-
tems, particularly in areas such as verification of hardware and software systems,
and program analysis. A wide variety of logical theories are used for this pur-
pose. However, even for the simplest of theories, reasoning on formulas in the
presence of the conjunction ∧ and disjunction ∨ connectives is computationally
hard. Unsurprisingly, therefore, almost all practical uses of logical computation
have come in the form of decision procedures that work on facts stored as con-
junctions of atomic formulas. What happens when the application requires the
computation of the logical disjunction of two such facts? Join algorithms provide
an approximate solution by constructing a conjunction of atomic formulas that
is implied by the original disjunction.

Join algorithms were first studied in the context of program analysis. Ab-
stract interpretation [5] is a well-known static program analysis technique that
can be used to automatically generate program invariants, and to verify program
assertions, even in the absence of loop invariants. The program is evaluated over

� Research of the first and third authors was supported in part by NSF grants CCR-
0081588, CCR-0085949, and CCR-0326577, and gifts from Microsoft Research. Re-
search of the second author was supported in part by NSF grant CCR-0326540 and
NASA Contract NAS1-20334.

K. Lodaya and M. Mahajan (Eds.): FSTTCS 2004, LNCS 3328, pp. 311–323, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

312 S. Gulwani, A. Tiwari, and G.C. Necula

a lattice of abstract states, each one representing one or more concrete execution
states. The lattice join operation (�) is used to compute the abstract state follow-
ing a merge in a control-flow graph, from the abstract states before the merge
point. The join operation can be viewed as computing the intersection of the
facts (or union of the models) before the merge point. The lack of a suitable join
algorithm restricts the utility of several interesting theories for abstract inter-
pretation. Nevertheless, join algorithms are known for some important theories
such as linear arithmetic [10], linear inequalities [6, 3], polynomial equations [17],
and the initial term algebra [8, 18].

A join algorithm for a theory Th takes as input two sets of atomic facts
and produces the strongest set of facts that is implied independently by both
the input sets of facts in Th. For example, the join of the sets {a = 2, b = 3}
and {a = 1, b = 4} in the theory of linear arithmetic can be represented by
{a + b = 5}. The join of {a = x, b = f(x)} and {a = y, b = f(y)} in the theory
of uninterpreted function symbols (UFS) can be represented by {b = f(a)}.

It is interesting to point out that though decision procedures for satisfiability
of a conjunction of atomic formulas are well studied for a wide class of logical
theories, the same is not true for join algorithms. Join algorithms appear to be
much harder than the decision procedures for the same theory. While there are
efficient congruence closure based decision procedures for the theory of UFS, join
algorithms for this theory have been studied in this paper and independently
in [19]. In the special case of the theory of initial term algebra, several join
algorithms have been proposed [1, 18, 8]. All of these algorithms primarily use
EDAG/value graph like data structures [15, 12].

This paper has two main technical contributions. In Section 3, we present an
abstract congruence closure based algorithm that generalizes all the known join
algorithms for subclasses of UFS and can compute the join for a strictly bigger
subclass of the theory of UFS than these algorithms. We show that the existing
algorithms are a special case of our algorithm.

In Section 4 we present some results concerning the limitations of any congru-
ence closure based approach for obtaining join algorithms for the general theory
of UFS. We show that the join of two finite sets of ground equations cannot
be finitely represented (using ground equations). In special cases when it can
be finitely represented, the presentation can become exponential. This partially
explains the lack of any known complete join algorithms for even special classes
of the UFS theory.

2 Notation

A set Σ of function symbols and constants is called a signature. Function sym-
bols in Σ are denoted by f, g and constants by a, b. In the context of program
analysis, these constants arise from program variables, and henceforth we refer
to them as (program) variables. We use T (Σ) to refer to the set of ground terms
over Σ, which are constructed using symbols only from Σ. We use the notation

Join Algorithms for the Theory of Uninterpreted Functions 313

ft1 . . . tk to refer to the term f(t1, . . , tk). We also use the notation f it to denote
i applications of the unary function f on term t.

Definition 1 (Join). Let Th be some (first-order) theory over a signature Σ.
Let E1 and E2 be two sets of ground equations over Σ. The join of E1 and E2
in theory Th is denoted by E1 �Th E2, and is defined to be (any presentation
for) the set {s = t | s, t ∈ T (Σ), Th |= E1 ⇒ s = t, Th |= E2 ⇒ s = t}.

We ignore the subscript Th from �Th whenever it is clear from the context.
In this paper, we mainly concern ourselves with the theory of UFS. If E is a
set of equations (interpreted as a binary relation over terms, not necessarily
symmetric), the notation →E denotes the closure of E under the congruence
axiom. If → is a binary relation, we use the notation →∗ and ↔∗ to denote the
reflexive-transitive and reflexive-symmetric-transitive closure of →. Note that
↔∗

E is the equational theory induced by E.
The theory of uninterpreted function symbols (UFS) is just the pure the-

ory of equality, that is, there are no additional equational axioms. Treating the
constants in Σ as variables, we define the theory of initial term algebra as the
extension of UFS with the axioms (a) if fs1 . . . sm = gt1 . . . tn for m,n ≥ 1, then
f = g, m = n, and si = ti for all i, and (b) C[a] �= a for any nontrivial context
C[] and variable a.

3 Join Algorithms for Uninterpreted Functions

We represent (the equational theory induced by) finite sets of ground equa-
tions using an “abstract congruence closure” [9, 2], which is closely related to a
bottom-up tree automaton where the automaton specifies an equivalence on a
set of terms, rather than specifying a set of accepted terms. Abstract congruence
closure is reviewed in Section 3.1. The join of two abstract congruence closures
is closely related to their product, which we describe in Section 3.2.

3.1 Abstract Congruence Closure

An abstract congruence closure provides a rewrite rules (tree-automata) based
representation for a finite set of ground equations [2]. An abstract congruence
closure R is a convergent set of ground rewrite rules of the form fc1 . . . ck → c0
or c1 → c2, where f ∈ Σ is a k-ary function symbol (k ≥ 0) and ci’s are all
special constants from a set K disjoint from Σ. If E is a set of ground equations
over Σ, then R is said to be an abstract congruence closure for E if for all
s, t ∈ T (Σ), s ↔∗

E t iff there exists a term u ∈ T (Σ ∪K) such that s→∗
R u and

t →∗
R u. We will assume that R is fully-reduced, that is, if fc1 . . . ck → c0 ∈ R,

then there is no rule in R such that ci →R d for any i = 0, 1, . . . and any d. R is
fully-reduced implies that R is convergent.

If s →∗
R c, then we say that c represents s (via R). Given an abstract con-

gruence closure R, it is not the case that every term s ∈ T (Σ) is represented by

314 S. Gulwani, A. Tiwari, and G.C. Necula

f

f

a b

Consider the set E = {fab = a, f(fab)b = b}. An EDAG
representing the set E is shown in Figure 1. An EDAG con-
sists of a term graph (dark directed edges) and a set of
congruence closed equality (dotted) edges. A corresponding
abstract congruence closure representation is {a → c0, b →
c1, fc0c1 → c2, fc2c1 → c3, c1 → c0, c2 → c0, c3 → c0}. A
fully-reduced abstract congruence closure for E is R = {a →
c0, b → c0, fc0c0 → c0}. The rewrite system R can be seen
as a specification of a tree-automaton over the set K = {c0}
of states.

Fig. 1. EDAG and abstract congruence closure for E = {fab = a, f(fab)b = b}

a constant. Note that an abstract congruence closure provides a formal way for
reasoning about EDAG data-structure [15], as illustrated in Figure 1.

3.2 Join of Two Congruence Closures

We use congruence closures to represent sets of equations. If R1 and R2 are
abstract congruence closures over signatures Σ ∪ K1 and Σ ∪ K2 respectively,
then we want to construct an abstract congruence closure R3 such that for all
terms s, t ∈ T (Σ), it is the case that s ↔∗

R1
t and s ↔∗

R2
t, if and only if, s ↔∗

R3
t.

The solution involves the construction of the product congruence closure.

Definition 2. Let R1 and R2 be abstract congruence closures over signatures
Σ ∪ K1 and Σ ∪ K2. We define the product congruence closure R3 over the
signature Σ ∪ (K1 ×K2) as follows:

R3 = {f(〈c1, d1〉, 〈c2, d2〉, . . . , 〈ck, dk〉) → 〈c, d〉 :
f ∈ Σ, fc1c2 . . . ck → c ∈ R1, fd1d2 . . . dk → d ∈ R2}

Example 1. Let E1 = {f2a = a} and E2 = {f3a = a}. A fully-reduced abstract
congruence closure for E1 is R1 = {a → c0, fc0 → c1, fc1 → c0}, and that for
E2 is R2 = {a→ d0, fd0 → d1, fd1 → d2, fd2 → d0}.

A fully reduced abstract congruence closure for the join E1 � E2 is given
over the signature {a, f} ∪ {〈ci, dj〉 : i ∈ {0, 1}, j ∈ {0, 1, 2}} as R3 = {a →
〈c0, d0〉, f〈c0, d0〉 → 〈c1, d1〉, f〈c1, d1〉 → 〈c0, d2〉, f〈c0, d2〉 → 〈c1, d0〉, f〈c1, d0〉 →
〈c0, d1〉, f〈c0, d1〉 → 〈c1, d2〉, f〈c1, d2〉 → 〈c0, d0〉}. Here R3 is just the product of
R1 and R2.

The following lemma shows that product construction is sound (i.e., it rep-
resents only true equivalences), but complete (i.e., it represents all true equiva-
lences) only on terms represented explicitly by constants in R1 and R2.

Lemma 1. Let R1 and R2 be fully reduced abstract congruence closures over
signatures Σ ∪K1 and Σ ∪K2. Let R3 be the product congruence closure. Then,
for all terms s, t ∈ T (Σ), it is the case that s→∗

R1
c←∗

R1
t and s→∗

R2
d←∗

R2
t

for some constants c ∈ K1 and d ∈ K2, if and only if, s→∗
R3
〈c, d〉 ←∗

R3
t.

Join Algorithms for the Theory of Uninterpreted Functions 315

Proof. By induction on the structure of the term s, we can prove that it is the
case that s→∗

R1
c and s→∗

R2
d, iff s→∗

R3
〈c, d〉. The lemma follows immediately.

3.3 Special Cases for Which the Join Algorithm Is Complete

In this section, we show that for certain special cases, the product captures the
exact join.

Injective Functions. An important special case, from the point of view of pro-
gram analysis, is the theory of injective functions. In this case, all function sym-
bols f ∈ Σ are assumed to be injective, that is, whenever fs1 . . . sk = ft1 . . . tk,
then si = ti for all i.

Uninterpreted functions are a commonly used abstraction for modeling pro-
gram operators for the purpose of program analysis. If the conditionals of a
program are abstracted as non-deterministic, and all program assignments are
of the form a := e (where a is a program variable and e is some uninterpreted
function term), then it can be shown that if fs1 . . . sk = ft1 . . . tk holds at some
program point, then si = ti for all i must also be true at that program point [8].
Hence, the analysis of such programs can use the theory of injective functions.
Furthermore, injective functions can be used to model fields of tree-like data
structures in programs.

As a consequence of injectivity, there cannot be two distinct rules f . . . → c
and f . . .→ c in any fully-reduced abstract congruence closure.

Theorem 1. Let R1 and R2 be fully reduced abstract congruence closures over
signatures Σ ∪K1 and Σ ∪K2 that satisfy the injectivity assumption described
above. Let R3 be the product congruence closure. Then, the relation ↔∗

R3
is equal

to ↔∗
R1
∩ ↔∗

R2
over T (Σ).

Proof. Suppose s, t ∈ T (Σ) such that s ↔∗
R1

t and s ↔∗
R2

t. Consider the cases:
(1) there are constants c ∈ K1 and d ∈ K2 equivalent to s modulo R1 and R2
respectively: Since R1 and R2 are fully-reduced, it follows that s →∗

R1
c′ ←∗

R1
t

and s →∗
R2

d′ ←∗
R2

t for some constants c′, d′. It follows from Lemma 1 that
s ↔∗

R3
t.

(2) there is no constant in the equivalence class of s modulo R1: Then s =
fs1 . . . sm and t = ft1 . . . tm for some f ∈ Σ and si ↔∗

R1
ti for all i. Since s and

t are also equivalent modulo R2, by injectivity it follows that for all i, si and ti
are equivalent modulo R2. By induction on the depth of s and t, we conclude
that si ↔∗

R3
ti, and consequently, s ↔∗

R3
t.

(3) there is no constant in the equivalence class of s modulo R2: This case is
analogous to the second case above.

Finite Number of Congruence Classes. As a second specialization, consider the
case when only a finite number of distinct congruence classes are induced by
both R1 and R2. In this case, the product of R1 and R2 represents the complete
join of R1 and R2.

316 S. Gulwani, A. Tiwari, and G.C. Necula

Theorem 2. Let R1 and R2 be fully reduced abstract congruence closures over
signatures Σ ∪K1 and Σ ∪K2. Let R3 be the product congruence closure. If the
congruence relation ↔∗

R1
defined by R1 over T (Σ) induces only finitely many

congruence classes, and the same is true for R2, then the relation ↔∗
R3

is equal
to ↔∗

R1
∩ ↔∗

R2
over T (Σ).

Proof. If T (Σ) is partitioned into a finite number of congruence classes modulo
R1, then we claim that every term s ∈ T (Σ) is equivalent to some constant
modulo R1. Thereafter the proof is identical to case (1) of the proof of Theorem 1.
To prove the claim, note that if s is not equivalent to a constant, then all the
infinite terms C[s], where C is an arbitrary context, are in distinct equivalence
classes, thus contradicting the assumption.

3.4 Complexity and Optimizations

If the size of R1 and R2 is n1 and n2 respectively, then the product R3 of R1 and
R2 can be constructed in O(n1n2) time and the size of R3 is O(n1n2). Example 1
generalizes to show that in the case of finitely many equivalence classes, the ab-
stract congruence closure representation of the (complete) join can be quadratic
in size of the inputs, and hence product construction is optimal in this case.
Surprisingly, the same is also true for the theory of injective functions and the
special subclass of initial term algebra, as the following example demonstrates.

Example 2. Let Σ = {ai, bi, a
′
i, b

′
i | i ∈ I = {1, . . . , n}} be a set of 4n variables. It

is easy to see that the join of {a1 = · · · = an = b1 = · · · = bn = fb′
1} ∪ {fb′

i+1 =
bi, fai = ai+1 | i ∈ I} and {a′

1 = · · · = a′
n = b′

1 = · · · = b′
n = fb1} ∪ {fbi+1 =

bi, fai = ai+1 | i ∈ I} is {a′
i = f ibi, ai = f ib′

i | i ∈ I}, which can only be
represented by a congruence closure of quadratic size.

In the context of program analysis, abstract interpretation of a program with
n conditionals (in sequence) requires computing n successive joins. A quadratic
blowup in each step can lead to a double exponential complexity. In practice,
however, we would not expect the join to be quadratic in each step. Product
construction can be optimized using some heuristics. First we can delete un-
reachable constants, that is, a constant 〈c, d〉 that does not represent any term
over the original signature Σ. Rules that contain unreachable constants can also
be deleted. This optimization can be enforced at the product construction phase
by only creating constants that are guaranteed to be reachable. Second note that
any node that is not pointed to by any subterm edge or any equational edge can
also be recursively deleted. In other words, if 〈c, d〉 occurs exactly once, then the
rule containing 〈c, d〉 can be deleted, cf. [11].

3.5 Related Work

We recently discovered that Vagvolgyi [19] has shown that it is decidable if
the join of two congruence closures is finitely generated, and has described an
algorithm for computing the join that is based on tree-automata techniques. Our
work has focused on identifying classes of UFS for which joins are guaranteed to

Join Algorithms for the Theory of Uninterpreted Functions 317

be finitely generated in polynomial time using product construction of abstract
congruence closures.

Join algorithms for the theory of initial term algebra have been studied in
the context of the global value numbering problem [4, 8]. We show here that
these algorithms are specific instantiations of our generic join algorithm. The
global value numbering problem seeks to discover equivalences of program ex-
pressions by treating all program operators as uninterpreted, all conditionals as
non-deterministic, while all assignments are of the form a := e (where a is a pro-
gram variable and e is some uninterpreted function term). In this special case, a
congruence closure R is, in fact, a unification closure, i.e. whenever s and t are
equivalent modulo R, then (a) either s or t is a constant, or (b) s = fs1 . . . sm,
t = fs1 . . . tm, and si and ti are equivalent modulo R. The three different algo-
rithms proposed for computing joins in the initial term algebra [1, 18, 8] can be
viewed as essentially computing the product congruence closure. However, since
there is a potential of computing n successive joins and getting an exponential
blowup [8], these algorithms use heuristics to optimize computation of n joins.

The popular partition refinement algorithm proposed by Alpern, Wegman,
and Zadeck (AWZ) [1] is efficient, however at the price of implementing an in-
complete join. The novel idea in AWZ algorithm is to represent the values of
variables after a join using a fresh selection function φ, similar to the functions
used in the static single assignment form [7]. The φ functions are an abstraction
of the if-then-else operator wherein the conditional in the if-then-else expression
is abstracted away, but the two possible values of the if-then-else expression are
retained. However, the AWZ algorithm treats the φ functions as new uninter-
preted functions. It then performs congruence partitioning and finally eliminates
the φ functions. For example, the join of {x = a, y = f(a), z = a} and {x =
b, y = f(b), z = b} is represented as {x = φ(a, b), y = φ(f(a), f(b)), z = φ(a, b)}
and computed to be {x = z}. Note that the equality y = f(x) is missing in the
join. The AWZ algorithm is incomplete because it treats φ functions as unin-
terpreted. In an attempt to remedy this problem, Rüthing, Knoop and Steffen
have proposed a polynomial-time algorithm (RKS) [18] that alternately applies
the AWZ algorithm and some rewrite rules for normalization of terms involv-
ing φ functions (namely φ(a, a) → a and φ(f(a), f(b)) → f(φ(a, b))), until the
congruence classes reach a fixed point. Their algorithm discovers more equiva-
lences than the AWZ algorithm. Recently, Gulwani and Necula [8] gave a join
algorithm (GN) for the initial term algebra that takes as input a parameter s
and discovers all equivalences among terms of size at most s.

The GN Algorithm. In our framework, the basic strategy of the GN algorithm [8]
for computing the join of two congruence closures R1 and R2 can be described
by the recursive function match:
match(c,d) =

if ∃a : a→ c ∈ R1, a→ d ∈ R2 create a→ 〈c, d〉; return;
else if ∃fc1 . . . ck → c ∈ R1 and ∃fd1 . . . dk → d ∈ R2

create f〈c1, d1〉 . . . 〈ck, dk〉 → 〈c, d〉; match(c1, d1); . . . ; match(ck, dk);
else delete all rules created until now;

318 S. Gulwani, A. Tiwari, and G.C. Necula

For each variable a ∈ Σ such that a→ c ∈ R1 and a→ d ∈ R2, the function
match(c, d) is invoked once. Note that rules are deleted if they contain unreach-
able nodes. If R1 = {a → c1, fc2 → c1, b → c2} and R2 = {a → d1, fd2 →
d1, b → d2}, then the GN algorithm creates the rules {a → 〈c1, d1〉, f〈c2, d2〉 →
〈c1, d1〉, b→ 〈c2, d2〉} in that order.

The RKS Algorithm. This algorithm [18] uses the special φ function to represent
the join problem. The binary φ function corresponds to the pairing operator
〈 , 〉 : K1 ×K2 �→ K3, but extended to terms 〈 , 〉 : T (Σ ∪K1)×T (Σ ∪K2) �→
T (Σ ∪K3). The process of creating the rewrite rule f〈c1, d1〉 . . . 〈ck, dk〉 → 〈c, d〉
from the two initial rewrite rules fc1 . . . ck → c ∈ R1 and fd1 . . . dk → d ∈ R2 is
achieved by first explicitly representing the rewrite rule 〈fc1 . . . ck, fd1 . . . dk〉 →
〈c, d〉, and then commuting the φ function with the f symbol to get f〈c1, d1〉 . . .-
〈ck, dk〉 → 〈c, d〉. Finally, in the base case, when we get 〈a, a〉 → 〈c, d〉, the second
property of φ functions is used to simplify the left-hand side to a.

The AWZ Algorithm. The AWZ algorithm [1] also uses the special φ function,
but does not use any of the two properties of it (as described above). Conse-
quently, it only computes a few rewrite rules of the product congruence closure
and not all of them.

4 Limits of Congruence Closure Based Approaches

The congruence closure representation is inherently limited in its expressiveness.
It can only represent sets of equations that have a finite presentation. However,
the join of two finite sets of ground equations may not have a finite presentation.
For example, consider the following sets of equations E1 and E2.

E1 = {a = b} E2 = {fa = a, fb = b, ga = gb}
E1 � E2 = {gfna = gfnb | n ≥ 0}

We prove that E1 � E2 cannot be represented by a finite number of ground
equations below. We first define signature of a term.

Definition 3. Let ≡ be a congruence on the set of all ground terms. Let K
denote the set of all congruence classes induced by ≡. The signature Sig(t) of a
term t = f(t1, . . . , tk) with respect to ≡ is the term f([t1], . . . , [tk]) over Σ ∪K,
where [ti] denotes the congruence class of ti modulo ≡ and symbols in K are
treated as constants.

The following theorem gives a complete characterization of equational theo-
ries that admit finite presentations using ground equations, see also [11].

Theorem 3. A congruence relation ≡ on the set of ground terms (over Σ) can
be represented by a finite set of ground equations iff there are only finitely many
congruence classes that contain terms with different signatures, and each such
congruence class contains terms with only finitely many different signatures.

Join Algorithms for the Theory of Uninterpreted Functions 319

We will only use the forward (⇒) implication of this theorem, which follows
immediately using either an abstract congruence closure construction of the finite
set of ground equations, or analyzing the equational proofs.

Note that the two terms gfna and gfnb, for a fixed n ≥ 0, are equal in
E3 = E1 � E2, but their arguments are not (because E2 �|= a = b.) Thus,
E1 � E2 contains infinitely many congruence classes with two distinct signatures.
Hence it follows from Theorem 3 that E3 does not admit a finite presentation
using ground equations. We conclude that the congruence closure based approach
cannot be used to obtain a complete join algorithm for the full theory of UFS.
In fact, this example shows that this is true for even the special class of unary
UFS.

A set E of ground equations is said to be cyclic if there exists a term that
is equivalent to a proper subterm of itself modulo E, otherwise it is acyclic.
The acyclic subclass of UFS is closed under joins and guaranteed to have finite
presentations. Unfortunately, the (complete) join of two sets of acyclic ground
equations can be exponential in the size of the inputs. For example, consider the
following sets of equations E1 and E2.

E1 = {a = b}
E2 = {g(b′, a) = g(b′, b), b′ = f(a1, . . , an), a1 = a′

1, . . . , an = a′
n}

E1 � E2 = {g(s, a) = g(s, b) | s ∈ f(t1, . . , tn), ti ∈ {ai, a
′
i}} ∪ {g(b′, a) = g(b′, b)}

The set E1 � E2 requires an exponential number of ground equations for rep-
resentation. We conclude that the congruence closure based approach cannot be
used to get a polynomial time complete join algorithm for the acyclic subclass of
UFS. This remains true even when the signature is restricted to unary symbols,
as the following example shows.

E1 = {x0 = y0}
E2 = {fx0 = x1, . . , fxn−1 = xn, gx0 = x1, . . , gxn−1 = xn,

fy0 = y1, . . , fyn−1 = yn, gy0 = y1, . . , gyn−1 = yn, xn = yn}
E1 � E2 = {sx0 = sy0 | s ∈ (f |g)n}

Note that the set E1 � E2 contains 2n equations. The smallest set of ground
equations representing E1 � E2 is exponentially large.

4.1 Relatively Complete Join Algorithm

We cannot hope to get a complete join algorithm using the congruence closure,
or EDAG, data-structure. We can, however, get an algorithm that is complete
on a given set I of important terms.

Definition 4 (Relatively Complete Join Algorithm). A relatively com-
plete join algorithm for a theory Th over a signature Σ takes as input two
sets of ground equations E1 and E2, and a set I of terms over Σ and returns
E3 such that Th |= (E1 � E2) ⇒ E3 and Th |= E3 ⇒ (E1 � E2)|I , where
(E1 � E2)|I = {s = t | s and t occur as sub-terms in I, (s = t) ∈ E1 � E2}.

320 S. Gulwani, A. Tiwari, and G.C. Necula

Lemma 1 shows that the product construction method will detect exactly
those equivalences which involve terms that are explicitly represented (via con-
stants) in the two congruence closures. Hence, we can obtain relatively complete
join algorithms by first representing the set I of important terms in R1 and R2.
Define the function addTerm(K,R, s), which takes as input a set K of constants,
an abstract congruence closure R over Σ ∪K, and a term s, and returns a tuple
〈K ′, R′, c〉 as follows:

addTerm(K,R, c) = 〈K,R, c〉, if c ∈ K

addTerm(K,R, fc1 . . . ck) = 〈K,R, c〉, if fc1 . . . ck → c ∈ R

addTerm(K,R, fc1 . . . ck) = 〈K ∪ {c}, R ∪ {fc1 . . . ck → c}, c〉, if ci ∈ K, c �∈ K

addTerm(K,R, f . . . si . . .) = addTerm(K1, R1, f . . . c . . .),
if 〈K1, R1, c〉 = addTerm(K,R, si)

The function addTerm(K,R, s) adds new rules to R, if necessary, so that the
term s is explicitly represented (by a constant) in R. We extend this function
to add a set I of terms by successively calling the function addTerm(K,R, s)
for each s ∈ I. The relatively complete join algorithm relJoin for UFS involves
adding the new terms and then computing the product.

relJoin(R1,R2,I) =
〈K1, R1〉 := addTerm(K1, R1, I);
〈K2, R2〉 := addTerm(K2, R2, I);
R3 := product(R1, R2); return R3;

For example, consider the congruence closures R1 = {a → c, b → c} and
R2 = {a → d1, b → d2, fd1 → d3, fd2 → d3, gd1 → d4, gd2 → d4} for {a = b}
and {fa = fb, ga = gb} respectively. The product of R1 and R2 will be a
congruence closure for the empty set {} of equations since fa, fb, ga and gb are
not represented in R1. If I = {fa}, then we will add, say, the rule fc → c′ to
R1, and the product now represents {fa = fb}. It will still miss the equality
ga = gb.

The correctness of the relatively complete join algorithm outlined above fol-
lows immediately from Lemma 1 and noting that addTerm returns a fully re-
duced congruence closure if the input congruence closure is fully reduced [2]. As
a post-processing step, we can only keep those rules in R3 that are used in the
proof of s →∗

R3
c for some s ∈ I. This way the size of the output can be forced

to be linear in the size of the input I.

5 Interesting Future Extensions

Join Algorithms for Other Theories: Join algorithms for the theory of
commutative UFS can be used to reason about program operators like bitwise
operators and floating-point arithmetic operators. However, the join algorithm
for commutative UFS (cufs) may be more challenging than the one for UFS. For
example, consider the following sets of equations E1 and E2.

Join Algorithms for the Theory of Uninterpreted Functions 321

E1 = {a = a′, b = b′} E2 = {a = b′, b = a′}
E1 �ufs E2 = ∅
E1 �cufs E2 ⊃ {f(C[a], C[b]) = f(C[a′], C[b′]) | C is any context }

Here f is a binary symbol assumed commutative in the cufs theory. Note
that E1 �cufs E2 contains equalities like f(a, b) = f(a′, b′) and is not finitely
representable using ground equations even though E1 �ufs E2 is finite.

Context-Sensitive Join Algorithm: Precise inter-procedural program anal-
ysis requires computing “context-sensitive procedure summaries”, that is, invari-
ants parameterized by the inputs so that given an instantiation for the inputs,
the invariant can be instantiated to the most precise result for that input. Reps,
Horwitz, and Sagiv described a general way to accomplish this for a simple class
of data-flow analyses [16] . It is not clear how to do this in general for any abstract
interpretation. The real challenge is in building an appropriate data-structure
and a join algorithm for it that is context sensitive. For example, consider the
following sets of equations E1 and E2.

E1 = {a = a′, b = F (a′)} E2 = {a = b′, b = F (b′)}
E1 � E2 = {b = F (a)}

E1[a′ = b′] � E2[a′ = b′] = {a = a′, b = F (a)}
(E1 � E2)[a′ = b′] = {b = F (a)}

This example illustrates that our join algorithm is not context-sensitive since
it represents E1 � E2 as {b = F (a)} which when instantiated in the context
a′ = b′ does not yield the most precise result. This suggests that a different
data structure is required to obtain a context-sensitive join algorithm. Recently,
Olm and Seidl have described a context-sensitive join algorithm for the the-
ory of linear arithmetic with equality [13]. Their data structure is very dif-
ferent from the one used in Karr’s join algorithm [10], which is not context-
sensitive.

Combining Join Algorithms: Combining the join algorithm for UFS with
the one for linear arithmetic (la) will give a join algorithm for the combined
theory (la ufs), which can be used to analyze programs with arrays and pointers.
There are some nice results in the literature for combining decision procedures
for different theories [14], but none for combining join algorithms. Consider, for
example, the following sets of equations E1 and E2.

E1 = {a = a′, b = b′} E2 = {a = b′, b = a′}
E1 �la E2 = {a + b = a′ + b′} E1 �ufs E2 = ∅
E1 �la ufs ⊂ {∀i ≥ 0, f ia + f ib = f ia′ + f ib′}

Here f is uninterpreted. Note that E1 �la ufs E2 does not even admit finite
presentation using ground equations. However, it may be possible to obtain a
relatively complete join algorithm for the combined abstraction.

322 S. Gulwani, A. Tiwari, and G.C. Necula

6 Conclusion

This paper explores the closure properties of congruence closure under the join
operation. We show that the congruence closure representation is neither expres-
sive enough nor compact enough to be able to represent the result of a join in
the theory of UFS. The product of two congruence closures is related to the join
and we show that it indeed provides a complete algorithm for certain special
cases. This generalizes the known specific case of unification closures.

References

1. B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting equality of variables in
programs. In 15th Annual ACM Symposium on POPL, pages 1–11. ACM, 1988.

2. L. Bachmair, A. Tiwari, and L. Vigneron. Abstract congruence closure. J. of
Automated Reasoning, 31(2):129–168, 2003.

3. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. A static analyzer for large safety-critical software. In ACM PLDI
’03, pages 196–207, 2003.

4. P. Briggs, K. D. Cooper, and L. T. Simpson. Value numbering. Software Practice
and Experience, 27(6):701–724, June 1997.

5. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In 4th Annual
ACM Symposium on Principles of Programming Languages, pages 234–252, 1977.

6. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Fifth ACM Symposium on POPL, pages 84–96, 1978.

7. R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Efficiently
computing static single assignment form and the control dependence graph. ACM
Transactions on Programming Languages and Systems, 13(4):451–490, Oct. 1990.

8. S. Gulwani and G. C. Necula. A polynomial-time algorithm for global value num-
bering. In 11th Static Analysis Symposium, volume 3148 of Lecture Notes in Com-
puter Science, pages 212–227. Springer, 2004.

9. D. Kapur. Shostak’s congruence closure as completion. In Rewriting Techniques
and Applications, RTA 1997, pages 23–37. Springer-Verlag, 1997. LNCS 1103.

10. M. Karr. Affine relationships among variables of a program. In Acta Informatica,
pages 133–151. Springer, 1976.

11. D. Kozen. Partial automata and finitely generated congruences: an extension of
Nerode’s theorem. In R. Shore, editor, Proc. Conf. Logical Methods in Math. and
Comp. Sci., 1992. Also Tech. Rep. PB-400, Comp. Sci. Dept., Aarhus Univ., 1992.

12. S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kauf-
mann, San Francisco, 2000.

13. M. Müller-Olm and H. Seidl. Precise interprocedural analysis through linear alge-
bra. In 31st ACM Symposium on POPL, pages 330–341. ACM, Jan. 2004.

14. G. Nelson and D. Oppen. Simplification by cooperating decision procedures. ACM
Transactions on Programming Languages and Systems, 1(2):245–257, Oct. 1979.

15. G. Nelson and D. Oppen. Fast decision procedures based on congruence closure.
Journal of the Association for Computing Machinery, 27(2):356–364, Apr. 1980.

16. T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via
graph reachability. In 22nd ACM Symposium on POPL, pages 49–61. ACM, 1995.

Join Algorithms for the Theory of Uninterpreted Functions 323

17. E. Rodriguez-Carbonell and D. Kapur. An abstract interpretation approach for
automatic generation of polynomial invariants. In 11th Static Analysis Symposium,
volume 3148 of Lecture Notes in Computer Science. Springer, 2004.

18. O. Rüthing, J. Knoop, and B. Steffen. Detecting equalities of variables: Combining
efficiency with precision. In SAS, volume 1694 of LNCS, pages 232–247, 1999.

19. S. Vagvolgyi. Intersection of finitely generated congruences over term algebra.
Theoretical Computer Science, 300:209–234, 2003.

No, Coreset, No Cry�

Sariel Har-Peled��

Department of Computer Science,
University of Illinois,

201 N. Goodwin Avenue,
Urbana, IL, 61801, USA

Abstract. We show that coresets do not exist for the problem of 2-
slabs in R3, thus demonstrating that the natural approach for solving
approximately this problem efficiently is infeasible. On the positive side,
for a point set P in R3, we describe a near linear time algorithm for
computing a (1 + ε)-approximation to the minimum width 2-slab cover
of P . This is a first step in providing an efficient approximation algorithm
for the problem of covering a point set with k-slabs.

1 Introduction

Geometric optimization in low dimensions is an important problem in compu-
tational geometry [1]. One of the central problems is to compute the shape best
fitting a given point set, where the shape is restricted to belong to a certain
family of shapes parameterized by a few parameters, while minimizing a certain
quantity of the shape. For example, covering a point set P with minimum width
slab, where a slab is the region enclosed between two parallel hyperplanes and
the width of the slab is the distance between the two hyperplanes (i.e., this is
equivalent to computing the width of P). Problems falling under this framework
include computing the width and diameter of the point set, covering a point set
with minimum volume bounding box, covering with minimum volume ellipsoid,
covering with minimum width annulus, and a lot of other problems.

While some of those problems have exact fast solution, at least in low dimen-
sion, most of them can be solved only with algorithms that have running time
exponential in the number of parameters defining the shape. For example, the
fastest algorithm for computing the minimum width slab that covers a point set
in Rd runs in nO(d) time.

It is thus natural to look for an efficient approximation algorithms for those
problems. Here, one specifies an approximation parameter ε > 0, and one wish
to find a shape which is (1 + ε)-approximation to the optimal shape, see [2]. For
the 1-slab width problem, we wish to find a slab S that covers a point set P ,

� The full version of this paper is available from http://www.uiuc.edu/˜sariel/
papers/02/http://www.uiuc.edu/ sariel/papers/02/2slab/ 2slab/.

�� Work on this paper was partially supported by a NSF CAREER award CCR-
0132901.

K. Lodaya and M. Mahajan (Eds.): FSTTCS 2004, LNCS 3328, pp. 324–335, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

No, Coreset, No Cry 325

such that width(S) ≤ (1+ε)widthopt(P, 1), where widthopt(P, 1) is the minimum
width of a slab covering P .

In recent years, there was a lot research done on those and similar problems
(see [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] and references therein) and
currently most of them can be solved in O(n+ 1/εc) time [20], where c is a con-
stant that depends on the problem at hand.

The problem becomes notably harder when one wish to perform cluster-
ing of the point set. Namely, cover the point set by k shapes (k is an integer
constant larger than one), while simultaneously minimizing a global parame-
ter of those shapes. For example, the k-slab problem ask to cover the point
set by k slabs (S1, . . . ,Sk) of minimum width, where the width of (S1, . . . ,Sk) is
maxk

i=1 width(Si). Problems falling under this category with efficient approxima-
tion algorithms include the k-center problem [21, 22], and the k-cylinder problem
[23] (here we want to cover the point set with k cylinders of minimum radius).

It is known that in high dimensions, the exact problem is NP-Complete [24]
even for covering the point set by a single cylinder, and there is no FPTAS for this
problem [25]. For the problem of covering the point set with k cylinders of mini-
mum maximum radius, it is known that the problem is NP-Complete even in three
dimensions if k is part of the input [26], and it can not be approximated in polyno-
mial time unless P = NP . The currently fastest approximation algorithm known
in high dimensions [27, 28], runs in d·nO(poly(k,1/ε)) time, where poly(·) is a polyno-
mial of constant degree independent of the dimension. On the other hand, if we are
interested in finding a single minimum radius m-flat covering the given point set,
this can be ε-approximated inO(nd) time [25] (here the constant in theO depends
exponentially on 1/ε), where an m-flat is a m-dimensional affine subspace.

In the k-slab problem, we wish to cover the point set with k slabs of mini-
mum width (i.e., we wish to find k affine subspaces each of dimension d−1, such
that the maximum distance of any point of the input to its closest subspace is
minimized). At first, this problem might look somewhat artificial. However, it is
related to projective clustering in high dimensions. In the projective clustering
problem, we are looking for a cover of the points by k m-flats that have small
radius. Such a projective clustering implies that the point set can be indexed as k
point sets each of them being only m-dimensional. This is a considerable saving
when the dimension is very large, as most efficient indexing structures have ex-
ponential dependency on the dimension. Thus, finding such a cover might result
in a substantial performance improvements for various database applications.
Furthermore, a lot of other clustering problems, that currently it is unknown
how to solve them efficiently, can be reduced to this problem or its dual. In
particular, problems of covering a point set with: (i) k rings with minimum max
width, (ii) k bounding boxes of minimum maximum volume, (iii) k cylindrical
shells of minimum maximum radius, and others all fall into this framework (see
[20] for the details of the reduction of those problems into this problem).

This and the more general problem of finding efficient approximation algo-
rithm for the minimum radius k m-flat problem are still relatively open (both in
low and high dimensions). The most natural approach to attack this problem is

326 S. Har-Peled

to try and use coresets. Those are small subsets of the input, such that if we solve
the problem on those subsets, this yield an efficient solution for the original prob-
lem. Coresets had recently proved to be very useful in solving several clustering
problems, both in low dimensions [20, 23], and high dimensions [29, 27, 30, 25].
The surprising facts known about coresets is that their size is sometime dimen-
sion independent [29], and they are small even in the presence of outliers [31].
(Note however, that the notion of coresets in high-dimensions is slightly weaker.)
Interestingly, in low-dimensions, the existence of coresets immediately implies an
efficient approximation algorithm for the problem at hand [23].

Surprisingly, we show in Section 2, that there is no such coresets for the 2-
slab problem, in the worst case. Namely, any subset of the input that provides
a good estimate of the width of the coverage of the points by two slabs, for all
possible 2-slabs, must contain (almost) the whole point set. Thus, showing that
solving this problem efficiently would require a different approach.

On the positive size, in Section 3, we make a first step in the direction of
finding an efficient algorithm for this problem, and solve a special case which still
has no efficient approximation algorithm and does not have a coreset; namely,
the 2-slab problem in three dimensions. Formally, given a set P of n points
in three dimensions, and a parameter ε > 0, the algorithm compute, in near
linear time, a cover of P by two slabs, where the width of the solution is at most
(1+ε)widthopt(P, 2), where widthopt(P, 2) denotes the width of the optimal (i.e.,
minimum) cover of P by two slabs.

A natural application of our algorithm is for edge detection in surface recon-
struction. Indeed, given a set of points in R3 sampled from a region of a model
that corresponds to an edge, the edge can be detected by best fitting the given
points with two planes, that corresponds to the two faces adjacent to the edge.
One need to slightly modify our algorithm to deploy it for this case.

The paper is organized as follows: In Section 2 we precisely define the notion
of additive and multiplicative coresets, and prove that no small coresets exists
for the 2-slab problem. As an additional result, we show that there exists a
multiplicative coreset for the k-center problem. In Section 3, we present a a near
linear time approximation algorithm for the 2-slab problem in three dimensions.
Concluding remarks are given in Section 4.

2 When Coresets Do Not Exist

2.1 Definitions

Definition 1. Given a set P of n objects (usually points) in Rd, we are inter-
ested in the shape fitting problem, of finding the best shape that belongs to a
certain family of shapes F that matches P . For example, the smallest ball that
encloses the points of P . The price function radius(P), which returns the radius
of the smallest ball enclosing P , measures the quality of this fitting.

In the clustering problem, we are provided with an additional parameter
k, and we are interested in finding the best clustering of P into k clusters.

No, Coreset, No Cry 327

Namely, we would like to partition P into k sets, such that the overall price of
the clustering is minimized. Formally, we are interested in minimizing

rdk(P) = min
(P1,...,Pk)∈PW(P,k)

max
i

radius(Pi),

where PW(P, k) =
{

(P1, . . . , Pk)
∣∣∣∪iPi = P, Pi ∩ Pj = ∅, for i �= j

}
is the set

of all partitions of P into k sets.
For example, we would like to cover P by k balls, such that the radius of

maximum radius ball is minimized. This is known as the k-center clustering
problem (or just k-center). The price function, in this case, rdk(P) is the radius
of the maximum radius ball in the optimal solution.

Definition 2. Let P be a point set in Rd, 1/2 > ε > 0 a parameter.
For a cluster c, let c(δ) denote the cluster resulting form expanding c by δ.

Thus, if c is a ball of radius r, then c(δ) is a ball of radius r + δ. For a set C of
clusters, let

C(δ) =
{
c(δ)

∣∣∣ c ∈ C} ,
be the additive expansion operator ; that is, C(δ) is a set of clusters resulting form
expanding each cluster of C by δ.

Similarly,
(1 + ε)C =

{
(1 + ε)c

∣∣∣ c ∈ C} ,
is the multiplicative expansion operator, where (1 + ε)c is the cluster resulting
from expanding c by a factor of (1+ε). Namely, if C is a set of balls, then (1+ε)C
is a set of balls, where a ball c ∈ C, corresponds to a ball radius (1 + ε) radius(c)
in (1 + ε)C.

A set Q ⊆ P is an (additive) ε-coreset of P , in relation to a price function
radius, if for any clustering C of Q, we have that P is covered by C (ε radius(C)),
where radius(C) = maxc∈C radius(c). Namely, we expand every cluster in the
clustering by an ε-fraction of the size of the largest cluster in the clustering.
Thus, if C is a set of k balls, then C(εf(C)) is just the set of balls resulting from
expanding each ball by εr, where r is the radius of the largest ball.

A set Q ⊆ P is a multiplicative ε-coreset of P , if for any clustering C of Q,
we have that P is covered by (1 + ε)C.

Note, that ε-multiplicative coresets are by definition also ε-additive coresets.

Remark 1. Let C be a given clustering, and apply to it a constant length se-
quence of δ-expansion operations, either additive or multiplicative. Let C′ be
the resulting clustering. It is easy to verify that there exists a constant c, such
that the clustering D resulting from cδ-additive expansion of C, is larger than
C′. Namely, all the clusters of C′ are contained inside the corresponding clusters
of D.

Thus, we can simulate any sequence of expansion operations, by a single
additive expansion.

328 S. Har-Peled

2.2 On Multiplicative Coresets

Coresets for k-Center Clustering. The k-center problem, is NP-Complete,
and can be approximated up to a factor of two in linear time [32]. For a set
P of n points in Rd, let rd(P, k) denote the radius of the optimal clustering.
This is the minimum over all covering of P by k balls, of the largest ball in the
covering set.

Lemma 1. Let P be a set of n points in Rd, and ε > 0 a parameter. There
exists an additive ε-coreset for the k-center problem, and this coreset has O(k/εd)
points.

Proof. Let C denote the optimal clustering of P . Cover each ball of C by a grid
of side length εropt/d, where ropt is the radius of the optimal k-center clustering
of P . From each such grid cell, pick one points of P . Clearly, the resulting point
set Q is of size O(k/εd) and it is an additive coreset of P .

The following is a minor extension of an argument used in [23].

Lemma 2. Let P be a set of n points in Rd, and ε > 0 a parameter. There
exists a multiplicative ε-coreset for the k-center problem, and this coreset has
O
(
k!/εdk

)
points.

Proof. For k = 1, the additive coreset of P is also a multiplicative coreset, and
it is of size O(1/εd).

As in the proof of Lemma 1, we cover the point set by a grid of radius
εropt/(5d), let SQ the set of cells (i.e., cubes) of this grid which contains points
of P . Clearly, |SQ| = O(k/εd).

Let Q be the additive ε-coreset of P . Let C be any k-center clustering of Q,
and let Δ be any cell of SQ.

If Δ intersects all the k balls of C, then one of them must be of radius at
least (1− ε/2)rd(P, k). Let c be this ball. Clearly, when we expand c by a factor
of (1 + ε) it would completely cover Δ, and as such it would also cover all the
points of Δ ∩ P .

Thus, we can assume that Δ intersects at most k − 1 balls of C. As such, we
can inductively compute an ε-multiplicative coreset of P ∩Δ, for k−1 balls. Let
QΔ be this set, and let Q = Q ∪

⋃
Δ∈SQ QΔ.

Note that |Q| = T (k, ε) = O(k/εd)T (k − 1, ε) + O(k/εd) = O
(
k!/εdk

)
. The

set Q is the required multiplicative coreset by the above argumentation.

When Multiplicative Coresets Do Not Exist. Recently, Agarwal et al. [23]
proved that an additive ε-coreset exists for the problem of covering a point set
by k-cylinders. We next show that there is no small multiplicative coreset for this
problem. Note, that for a strip c, the set c(δ) is the strip with the same center
line as c, and of width w + 2δ, where w is the width of c, and similarly, (1 + ε)c
is the strip of width (1 + ε)w with the same center line as c.

No, Coreset, No Cry 329

Lemma 3. There exists a point set P in R2, such that any multiplicative (1/2)-
coreset of P , must be of size at least |P | − 2. Here the coreset is for the problem
of covering the point set with 2 strips, such that the width of the wider strip is
minimized.

Proof. Consider the point set P (m) =
{(

1/2j , 2j
) ∣∣∣ j = 1, . . . ,m

}
, where m is

an arbitrary parameter. Let Q be a (1/2)-coreset of P = P (n).
Let Q−

i = Q ∩ P (i) and Q+
i = Q \Q−

i .
If the set Q does not contain the point p(i) =

(
1/2i, 2i

)
, then Q−

i can be
covered by a horizontal strip h− of width ≤ 2i−1 that has the x-axis as its lower
boundary, and clearly if we expand h− by a factor of 3/2, the new (3/2)h− still
will not cover p(i). Similarly, we can cover Q+

i by a vertical strip h+ of width
1/2i+1 that has the y-axis as its left boundary. Again, if we expand h+ by a factor
of 3/2, the new strip (3/2)h+ will not cover p(i). We conclude, that any multi-
plicative (1/2)-coreset for P must include all the points p(2), p(3), . . . , p(n− 1).

Thus, no small multiplicative coreset exists for the problem of covering a
point set by strips.

When Small Additive Coresets Do Not Exist

Definition 3. A slab S in R3 is the close region enclosed between two parallel
planes. The width of S is the distance between those two parallel planes. The
plane parallel to the two boundary planes and with equal distance to both of
them, is the center of S.

Definition 4. Given a tuple Δ = (S1, . . . ,Sk) of k slabs in three dimensions,
the width of Δ; denoted by width(Δ) = width(S1, . . . ,Sk) = maxk

i=1 width(Si).
The k-slab width of a point set P in R3, is the width of the set of k slabs that
covers P and minimizes the k-slab width. We denote the this minimum width
by widthopt(P, k).

In the following, let P be a set of points in R3, which we want to cover by
k-slabs of minimum width.

Lemma 4. There exists a point set P in R3, such that any additive (1/2)-coreset
of P , for the 2-slab problem, must be of size at least |P | − 2.

Proof. Let P ′ be the two-dimensional point set used in Lemma 3. Let P be the
three-dimensional point set resulting from interpreting any point of P ′ as a point
lying on the plane z = 0. Let δ = 1/2.

Let C be an additive δ-coreset C of P , for the 2-slab problem, and let C′ be
the corresponding subset of P ′. We claim that C′ is a multiplicative δ-coreset of
P ′ for the problem of 2-strips cover.

Indeed, let S1,S2 be any two strips that covers C′, and assume that S1 is
wider than S2. And let T1, T2 be two slabs in three dimensions, of the same
width, such that S1 = T1 ∩ h, and S2 = T2 ∩ h, where h is the plane z = 0.
The existence of such two slabs of equal width can be easily proved, by starting

330 S. Har-Peled

from two slabs T ′
1 , T2 which are perpendicular to h, and their intersection with

h form S1 and S2, respectively. Next, rotate the wider slab, T ′
1 , such that its

width go down, while keeping its intersection with h fixed. We stop as soon as
the modified T ′

1 has equal width to T2.
Now, additively expanding T1 and T2 corresponds to multiplicatively ex-

panding them, since both of them have the same width. By assumption, the
δ-expanded slabs cover P , and as such, they cover P ′. Let V1,V2 be the intersec-
tion of the expanded slabs with h. Clearly, V1 and V2 are just the multiplicative
expansion of S1 and S2, respectively, by a factor of (1+ δ). Furthermore, V1 and
V2 covers the points of P ′. We conclude, that C′ is a δ-multiplicative coreset of
P ′, for the 2-strip problem.

However, since δ = 1/2, and by Lemma 3, it follows that |C| = |C′| ≥ |P | − 2.
Note, that Lemma 4 implies that there is no hope of solving the k-slab prob-

lem using coreset techniques. Furthermore, it is easy to verify that the above
lemma implies (in the dual) that one can not use coresets for the “dual” (and
more useful) problem of stabbing hyperplanes with segments.

Problem 1 (k-extent). Given a set H of n hyperplanes in Rd, and a parameter
k, find a set of k vertical segments that stabs all the hyperplanes of H, and the
length of the longest segment is minimized.

Lemma 5. There exists a set H of planes in R3, such that any additive (1/2)-
coreset of H, for the 2-extent problem, must be of size at least |P | − 2.

3 Algorithm for the 2-Slab in 3D

Our algorithm works, by deploying a decision procedure that decides (approxi-
mately) whether or not the point set can be covered by two slabs of width r. This
is done by performing the decision when two points are specified which lie on the
center plane of one of the slabs (Lemma 8). Then, we extend this algorithm, for
the decision problem when two points are given, which are “faraway” and lie in
the same slab in the optimal solution (Lemma 9). This yields the required decision
procedure, by enumerating a small number of pairs, one of them guaranteed to
be in the same slab in the optimal solution, and to be a long pair (see Lemma 10).

Having this decision procedure, we can now solve the problem using a binary
search over the possible widths. Naively, this leads to a weakly polynomial algo-
rithm. To improve this, we first show that if we know a pair of points that lie on
the center plane of one of the slabs, then we can compute a constant factor ap-
proximation in near linear time (Lemma 11). Now, we again generate a small set
of candidate pairs, and check for each one of them what solution it yields. This
results in a constant factor approximation (Lemma 12). Combining this con-
stant factor approximation, together with the binary search using the decision
procedure, results in the required approximation algorithm (Theorem 7).

In describing the algorithm, we use binary search and random sampling to
replace parametric search, since it is simpler to describe. Minor improvements

No, Coreset, No Cry 331

in running time are probably possible by using parametric search, and a more
careful implementation of the algorithm.

3.1 Preliminaries

Lemma 6 ([20]). Given a set P of n points in R3, and a parameter ε > 0, one
can compute a subset S ⊆ P , such that widthopt(S, 1) ≥ (1 − ε)widthopt(P, 1),
and |S| = O(1/ε2). Furthermore, S can be computed in O(n + 1/ε2) time.

Lemma 7 ([20]). Given a set P of n points in R3, one can maintain an ε-
approximate minimum width slab that contains P in O((log3 n)/ε2 + 1/ε6) time
per insertion/deletion. After each insertion/deletion the data-structure outputs
a slab covering P which is wider by at most a factor of (1 + ε) than the optimal
slab that covers P .

Fact 5. Given a set P of n points in R3, one can compute the width of P in
O(n3/2+ε) expected time [4]. To simplify the exposition, we would use the slower
quadratic time algorithm of [33].

3.2 Decision Problem

We are given a set P of n points in R3, a candidate width r, and a parameter ε >
0. In this section, we describe an algorithm that decides whether one can cover
P by two slabs of width at most r. More precisely, we describe an approximate
decision procedure for this problem. Namely, if there is a cover of width ≤ r, it
outputs a cover of width at most ≤ (1 + ε)r. If P can not be covered by two
slabs of width (1 + ε)r, it outputs that no such cover exists. Otherwise (in this
case the point set can not be covered with slabs of width r, but it can be covered
by slabs of width (1 + ε)r), it output either of those two answers.

Lemma 8. Given r, ε prescribed parameters, a set P of n points in R3, and a
pair p, q ∈ P . Then one can compute a cover (S,S ′) of P by two slabs, such that
p, q lie on the center (plane) of S, the width of S is r, and the width of S ′ is
≤ (1 + ε)ρ, where ρ is the minimum width of S ′ under those constraints. The
running time of the algorithm is O

(
n(log3 n/ε2 + 1/ε6)

)
.

Proof. We assume that p, q lie on the x-axis. Let S(α) be the slab of width r
with its center plane passing through p, q and this plane has an angle α with the
positive direction of the z-axis. Let Pin(α) = S(α) ∩ P denote the points of P
covered by S(α), and let Pout(α) = P \Pin(α) denote the points not covered by it.

Using standard sweeping techniques, we can maintain the sets Pin(α), Pout(α),
for 0 ≤ α ≤ π. This would require O(n) insertion/deletion operations, and would
take O(n log n) time. Thus, to find the required cover, we need to compute the
minimum width cover of Pout(α), for 0 ≤ α ≤ π, as the set Pin(α) is always
covered by a slab of width r (i.e., S(α)). Using Lemma 7, this can be done
approximately in O

(
n(log3 n/ε2 + 1/ε6)

)
time. Indeed, let Sout(α) denote the

minimum width slab that covers Pout(α), and ρ = minα width (Sout(α)). Overall,
the algorithm computes an α∗, such that width(Sout(α∗)) ≤ (1 + ε)ρ.

332 S. Har-Peled

Fig. 1. Demonstration of the proof of Lemma 9

Corollary 1. Given r, ε prescribed parameters, and a pair of points p, q ∈
P such that ‖pq‖ ≥ diam(P)/10. Let (S,S ′) be a 2-cover of P , such that
width(S,S ′) = r and p, q lie on the center of S. Then, one can compute a
2-cover of P of width at most (1 + ε)r. The running time of the algorithm is
O
(
n
(
log3 n/ε2 + 1/ε6

))
.

Definition 6. Given a sphere Φ in Rd of radius r, a δ-net of Φ, is a subset U of
Φ, such that for any x ∈ Φ, there exists a point u ∈ U such that ‖xu‖ ≤ δ.

Given Φ and δ, one can compute a δ-net for Φ of cardinality O
(
(r/δ)d−1

)
, in

linear time in the size of the δ-net.

Lemma 9. Given r, ε prescribed parameters, a point set P in R3, and two
points p, q ∈ P such that widthopt(P, 2) ≤ r, ‖pq‖ ≥ diam(P)/10 and p, q lie in
the same slab in the optimal 2-slab cover of P . Then, one can compute a cover
of P by two slabs of width ≤ (1 + ε)r in O

(
n
(
log3 n/ε6 + 1/ε10

))
time.

Proof. Omitted. Will appear in the full-version.

Lemma 10. Given r, ε prescribed parameters, and a set P of n points in R3,
such that widthopt(P, 2) ≤ r, then one can compute a cover of P by two slabs of
width ≤ (1 + ε)r in O

(
n
(
log3 n/ε8 + 1/ε12

))
time.

Proof. Omitted. Will appear in the full-version.

3.3 A Strongly Polynomial Algorithm

The algorithm of Lemma 10 provides immediately a weakly polynomial al-
gorithm that works by performing a binary search for the optimal width on
the range [0,diam(P)]. The resulting algorithm would execute the algorithm of
Lemma 10 O (log (diam(P)/(widthopt(P, 2)ε))) times. In practice, this might be
quite acceptable, although it is only weakly polynomial.

No, Coreset, No Cry 333

In this section, we present a strongly polynomial algorithm for approximating
the 2-slab width. We observe, that it is enough to compute a c-approximation w
to the 2-slab cover to P , where c > 1 is a constant. Indeed, once we have such an
approximation, one can compute a better approximation using a binary search
over the range [w/c,w].

Lemma 11. Let p, q be a pair of points of P . One can compute in O
(
n log4 n

)
a 2-slab cover (S,S ′) of P of width w, such that p, q lie on the center of S,
and w is constant factor approximation to the optimal 2-slab cover under this
condition.

Proof. Omitted. Will appear in the full-version.

Lemma 12. Given a set P of n points in R3, one can compute a cover of P by
two slabs of width O(widthopt(P, 2)) in O

(
n log4 n

)
time.

Proof. Omitted. Will appear in the full-version.

Now, once we have a constant factor approximation, an (1+ε)-approximation
can be easily performed by doing a binary search, and using the decision proce-
dure (Lemma 10). This would require O(log 1/ε) calls to the decision procedure.
We conclude:

Theorem 7. Given a set P of n points in R3, one can compute a cover of P by
two slabs of width ≤ (1 + ε)widthopt(P, 2) in O

(
n log4 n + n(log3 n/ε8 + 1/ε12)

log 1/ε
)

time.

4 Conclusions

In this paper, we showed that coresets do no exists for the problem of 2-slabs in
three dimensions. The author find this fact to be quite bewildering, considering
the fact that such coresets exists for balls and cylinders. This implies that solving
the k-slab problem efficiently in low dimensions (i.e., in near linear time) would
require developing new techniques and algorithms. We took a small and tentative
step in this direction, providing a near linear time algorithm for approximating
the min-width 2-slab cover of a point set in R3.

The main open question for further research, is to develop an efficient ap-
proximation algorithms for the k-slab problem in three and higher dimensions,
for k > 2. Currently, the author is unaware of any efficient constant factor ap-
proximation algorithm for this problem.

Finally, there seems to be a connection between solving the problem of k-
slabs in Rd in the presence of outliers, and solving the problem of k + 1 slabs
in Rd+1. (Intuitively and imprecisely, thats what our 2-slab algorithm in R3 is
doing: It reduces the problem into the problem of covering a point set in R2

with a single slab, while making sure that the points that are not covered can be
ignored.) Understanding this connection might be a key in understanding why
the k-slab problem seems to be harder than one might expect.

334 S. Har-Peled

Acknowledgments

The author wishes to thank Vladlen Koltun, Magda Procopiuc, Edgar Ramos,
and Kasturi Varadarajan for useful discussions on the problems studied in this
paper. The author would also thank the anonymous referees for their insightful
comments.

References

1. Agarwal, P.K., Sharir, M.: Efficient algorithms for geometric optimization. ACM
Comput. Surv. 30 (1998) 412–458

2. Bern, M., Eppstein, D.: Approximation algorithms for geometric problems. In
Hochbaum, D.S., ed.: Approximationg algorithms for NP-Hard problems. PWS
Publishing Company (1997) 296–345

3. Agarwal, P.K., Aronov, B., Sharir, M.: Computing envelopes in four dimensions
with applications. SIAM J. Comput. 26 (1997) 1714–1732

4. Agarwal, P.K., Sharir, M.: Efficient randomized algorithms for some geometric
optimization problems. Discrete Comput. Geom. 16 (1996) 317–337

5. Agarwal, P.K., Sharir, M., Toledo, S.: Applications of parametric searching in
geometric optimization. J. Algorithms 17 (1994) 292–318

6. Ebara, H., Fukuyama, N., Nakano, H., Nakanishi, Y.: Roundness algorithms using
the Voronoi diagrams. In: Proc. 1rd Canad. Conf. Comput. Geom. (1989) 41

7. Edelsbrunner, H., Guibas, L.J., Stolfi, J.: Optimal point location in a monotone
subdivision. SIAM J. Comput. 15 (1986) 317–340

8. Garćia-Lopez, J., Ramos, P., Snoeyink, J.: Fitting a set of points by a circle.
Discrete Comput. Geom. 20 (1998) 389–402

9. Le, V.B., Lee, D.T.: Out-of-roundness problem revisited. IEEE Trans. Pattern
Anal. Mach. Intell. PAMI-13 (1991) 217–223

10. Mehlhorn, K., Shermer, T.C., Yap, C.K.: A complete roundness classification
procedure. In: Proc. 13th Annu. ACM Sympos. Comput. Geom. (1997) 129–138

11. Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction.
Springer-Verlag, New York, NY (1985)

12. Rivlin, T.J.: Approximating by circles. Computing 21 (1979) 93–104
13. Roy, U., Liu, C.R., Woo, T.C.: Review of dimensioning and tolerancing: Repre-

sentation and processing. Comput. Aided Design 23 (1991) 466–483
14. Roy, U., Zhang, X.: Establishment of a pair of concentric circles with the minimum

radial separation for assessing roundness error. Comput. Aided Design 24 (1992)
161–168

15. Shermer, T.C., Yap, C.K.: Probing for near centers and relative roundness. In:
Proc. ASME Workshop on Tolerancing and Metrology. (1995)

16. Smid, M., Janardan, R.: On the width and roundness of a set of points in the
plane. Internat. J. Comput. Geom. Appl. 9 (1999) 97–108

17. Yap, C.K., Chang, E.C.: Issues in the metrology of geometric tolerancing. In
Laumond, J.P., Overmars, M.H., eds.: Robotics Motion and Manipulation. A. K.
Peters (1997) 393–400

18. Chan, T.M.: Approximating the diameter, width, smallest enclosing cylinder and
minimum-width annulus. Internat. J. Comput. Geom. Appl. 12 (2002) 67–85

19. Agarwal, P.K., Aronov, B., Har-Peled, S., Sharir, M.: Approximation and exact
algorithms for minimum-width annuli and shells. Discrete Comput. Geom. 24
(2000) 687–705

No, Coreset, No Cry 335

20. Agarwal, P.K., Har-Peled, S., Varadarajan, K.R.: Approximating extent measures
of points. J. ACM 51 (2004) 606–635

21. Gonzalez, T.: Clustering to minimize the maximum intercluster distance. Theoret.
Comput. Sci. 38 (1985) 293–306

22. Agarwal, P.K., Procopiuc, C.M.: Exact and approximation algorithms for cluster-
ing. Algorithmica 33 (2002) 201–226

23. Agarwal, P.K., Procopiuc, C.M., Varadarajan, K.R.: Approximation algorithms for
k-line center. In: Proc. 10th Annu. European Sympos. Algorithms. (2002) 54–63

24. Megiddo, N.: On the complexity of some geometric problems in unbounded di-
mension. J. Symb. Comput. 10 (1990) 327–334

25. Har-Peled, S., Varadarajan, K.R.: High-dimensional shape fitting in linear time.
Discrete Comput. Geom. 32 (2004) 269–288

26. Megiddo, N., Tamir, A.: On the complexity of locating linear facilities in the plane.
Oper. Res. Lett. 1 (1982) 194–197

27. Bădoiu, M., Clarkson, K.L.: Optimal core-sets for balls. In: Proc. 14th ACM-SIAM
Sympos. Discrete Algorithms. (2003) 801–802

28. Har-Peled, S., Varadarajan, K.R.: Projective clustering in high dimensions using
core-sets. In: Proc. 18th Annu. ACM Sympos. Comput. Geom. (2002) 312–318

29. Bădoiu, M., Har-Peled, S., Indyk, P.: Approximate clustering via core-sets. In:
Proc. 34th Annu. ACM Sympos. Theory Comput. (2002) 250–257

30. Kumar, P., Mitchell, J.S.B., Yildirim, E.A.: Fast smallest enclosing hypersphere
computation. In: Proc. 5th Workshop Algorithm Eng. Exper. (2003) to appear

31. Har-Peled, S., Wang, Y.: Shape fitting with outliers. SIAM J. Comput. 33 (2004)
269–285

32. Har-Peled, S.: Clustering motion. Discrete Comput. Geom. 31 (2004) 545–565
33. Houle, M.E., Toussaint, G.T.: Computing the width of a set. IEEE Trans. Pattern

Anal. Mach. Intell. PAMI-10 (1988) 761–765

Hardness Hypotheses, Derandomization, and
Circuit Complexity

John M. Hitchcock1 and A. Pavan2,�

1 Department of Computer Science, University of Wyoming
jhitchco@cs.uwyo.edu

2 Department of Computer Science, Iowa State University,
pavan@cs.iastate.edu

Abstract. We consider three complexity-theoretic hypotheses that have
been studied in different contexts and shown to have many plausible
consequences.

– The Measure Hypothesis: NP does not have p-measure 0.
– The pseudo-NP Hypothesis: there is an NP Language L such that

any DTIME(2nε

) Language L′ can be distinguished from L by an
NP refuter.

– The NP-Machine Hypothesis: there is an NP machine accepting 0∗

for which no 2nε

-time machine can find infinitely many accepting
computations.

We show that the NP-machine hypothesis is implied by each of the
first two. Previously, no relationships were known among these three
hypotheses. Moreover, we unify previous work by showing that several
derandomization and circuit-size lower bounds that are known to follow
from the first two hypotheses also follow from the NP-machine hypoth-
esis. We also consider UP versions of the above hypotheses as well as
related immunity and scaled dimension hypotheses.

1 Introduction

Unconditional results are very rare in complexity theory. Many results have been
proved using traditional hypotheses such as “P �= NP,” “NP �= co-NP,” or “the
polynomial-time hierarchy is infinite.” It is often the case that these hypotheses
lack explanatory power to answer some questions we are interested in. Thus
researchers propose new reasonable hypotheses and study the relations among
complexity classes. For example, we do not know if the derandomization of BPP
follows from P �= NP. However, BPP has been shown to be equal to P under
the hypothesis “EXP has high circuit complexity” [14]. Often these hypotheses
are introduced with a specific subarea in mind, and at first glance it is not clear

� This research was supported in part by National Science Foundation grants CCR-
0344187 and CCF-0430807.

K. Lodaya and M. Mahajan (Eds.): FSTTCS 2004, LNCS 3328, pp. 336–347, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Hardness Hypotheses, Derandomization, and Circuit Complexity 337

whether the hypotheses that arise in different contexts are related. We study
relationships among such hypotheses in this paper.

The principle hypotheses that we consider are “the measure hypothesis,” “the
pseudo-NP hypothesis,” and the “NP-machine hypothesis.”

– Measure Hypothesis. Lutz while developing resource-bounded measure
theory introduced “the measure hypothesis” which states that NP does not
have p-measure 0. This hypothesis has been extensively studied in the liter-
ature. Several remarkable consequences that are not known to be obtainable
from traditional hypotheses have been shown under the measure hypothe-
sis. For example, this hypothesis implies that Turing completeness for NP
is different from many-one completeness [25], NP-complete languages are
dense [24], BPP ⊆ ΔP

2 [2], and BPPΣP
k = PΣP

k for all k ≥ 1 [22]. More
recently, Impagliazzo and Moser [13] showed that if the p-measure of NP is
not zero, then AM = NP.

– Pseudo-NP Hypothesis. Kabanets [15] introduced “pseudo” classes and
the easy-witness method to show an unconditional derandomization result
for RP in a uniform setting. Later, Lu [20] extended this to AM. He con-
sidered what we call the “pseudo-NP hypothesis”. Informally, this says that
there is a language L in NP such that if L′ is in any language in DTIME(2nε

),
then there is a nondeterministic refuter that outputs a string in LΔL′. Lu
showed that the pseudo-NP hypothesis implies AM = NP.

– NP-Machine Hypothesis. The “NP-machine hypothesis” states that there
is a NP machine M that accepts 0∗ for which no 2nε

time-bounded machine
can correctly compute infinitely many accepting computations of M . Pa-
van and Selman [27] showed that the NP-machine hypothesis implies that
Turing completeness for NP is different from many-one completeness. Also,
several variants of this hypothesis have been previously studied in the lit-
erature. Hemaspaandra, Rothe, and Wechsung [8] studied the question of
whether there is a NP machine that accepts a language in P whose ac-
cepting computations cannot be computed by a polynomial-time-bounded
machine. They showed that this question is related to several questions re-
garding printability and immunity. Fenner, Fortnow, Naik, and Rogers [6]
showed that this question is equivalent to the question of whether there ex-
ists an NP machine that accepts Σ∗ whose accepting computations cannot
be computed by polynomial-time-bounded machines. They obtained several
equivalent characterizations of this question, for example, they showed that
such NP machines exist if and only if there exist honest, onto partial func-
tions that are one-way. Recently, Glaßer et al. [7] showed that the UP version
of this hypothesis implies the existence of disjoint Turing complete languages
for NP whose union is not Turing complete.

Previously, no relationships among these three hypotheses are known. In
this paper we show that the NP-machine hypothesis is implied by both the
pseudo-NP hypothesis and the measure hypothesis. We show that this weaker
NP-machine hypothesis also implies NP = AM, thereby unifying the results of
Impagliazzo and Moser [13] and Lu [20] mentioned above.

338 J.M. Hitchcock and A. Pavan

In addition, we show a number of other consequences of the NP-machine
hypothesis. For example, we show that this hypothesis implies ENP does not have
circuits of size 2εn, for some ε > 0, and NEXP �⊆ P/poly. It is known that the NP-
machine hypothesis is implied by the hypothesis “NP∩co-NP has a DTIME(2nε

)-
bi-immune language” [27]. Thus, if NP ∩ co-NP has a 2nε

-bi-immune language,
then the above mentioned circuit lower bounds for ENP and NEXP follow. This
is particularly interesting, because concepts such as bi-immunity and circuit
complexity have been studied for a long time under different contexts. Our results
show an underlying relationships among these concepts. We also consider the UP
version of the hypothesis and show several consequences.

Finally, we consider the hypothesis “the −3rd-order scaled dimension of NP
is positive.” Under this hypothesis, we achieve a partial derandomization of AM
and show that AM ⊆ NP/nε for every ε > 0. This hypothesis seems to be in-
comparable with the above mentioned hypothesis. We show that this hypothesis
also implies NEXP �⊆ P/poly.

2 Preliminaries

Given a language L, Ln denotes the set {x | |x| = n, x ∈ L}. Given a string
L(x) = 1 if x ∈ L, and L(x) = 0, if x /∈ L. Given n, let s1, s2, · · · s2n be the
strings of length n in lexicographic order. Then L|n = L(s1) · · ·L(s2n). Given a
complexity class C, the class io-C is

{L | (∃A ∈ C)(∃∞n)Ln = An}.
An oracle circuit is a circuit that has special gates called oracle gates, in

addition to the normal AND, OR, and NOT gates. Given an oracle A, an A-
oracle circuit is an oracle circuit that has A as an oracle, i.e, if x is the input of an
oracle gate, then the output is A(x). Given a boolean function f : Σn → {0, 1},
and an oracle A, the A-oracle circuit complexity of f is the size of the smallest A-
oracle circuit that computes f . Given A, SIZEA(f(n)), is the class of languages
whose A-oracle circuit complexity is at most f(n).

An infinite language is immune to a complexity class C or is C-immune, if no
infinite subset of L belongs to C. An infinite language is C-bi-immune if both
L and L are C-immune. Balcázar and Schöning [4] observed that a language L
is DTIME(T (n))-bi-immune if and only if every machine that correctly decides
L takes more than T (n) time on all but finitely many strings. A set S is t(n)-
printable, if there exists a t(n)-time bounded algorithm that on input 0n outputs
all elements of Sn.

Lutz [21] developed resource-bounded measure theory, analogous to classical
Lebesgue measure, to study the quantitative structure of complexity classes. Here
we briefly give the definitions; the reader is referred to the survey papers [23, 3]
for more detail.

A martingale is a function d : Σ∗ → [0,∞) with the property that, for all
w ∈ Σ∗, 2d(w) = d(w0)+d(w1). A martingale d succeeds on a language A ⊆ Σ∗

if
lim sup

n→∞
d(A
 n) =∞,

Hardness Hypotheses, Derandomization, and Circuit Complexity 339

where A
 n is the length n prefix of A’s characteristic sequence. A class X of
languages has p-measure zero, written μp(X) = 0, if there exists a polynomial-
time computable martingale that succeeds on every language in X.

Kabanets [15] defined pseudo classes and refuters. Let A and B any two
languages and R be a nondeterministic polynomial-time machine. We assume
that R prints an output along every accepting path. We can view R as a machine
that computes a multi-valued function. We say R distinguishes A from B, if for
infinitely many n, every output of R(0n) is in (AΔB) ∩ Σn. Such R is called a
refuter.

Given a class C, [pseudoNP]-C is the class of all languages L such that there
exists a language L′ in C and every NP machine R, R does not distinguish L
from L′. We similarly define the class [pseudoUP]-C where we only insist that no
UP machine distinguishes L from L′.

Next we briefly review definitions of pseudo-random generators. We refer the
reader to the recent surveys of Miltersen [26] and Kabanets [16] for more details.

Let Gn : {0, 1}r log n → {0, 1}n be a family of functions, and let C = {Cn}n
the class of SIZE(n)-circuits. Then we say G is a pseudo-random generator if

∀n,
∣∣∣∣ Pr
x∈Σr log n

[Cn(Gn(x))]− Pr
x∈Σn

[C(x)]
∣∣∣∣ ≤ 1

n
.

The celebrated result of Impagliazzo and Wigderson [14] states that pseudo-
random generators can be constructed from any Boolean function with high
circuit complexity. Klivans and van Melkebeek [18] observed that, the construc-
tion of Impagliazzo and Wigderson relativizes, i.e, for any A, given a Boolean
function with high A-oracle circuit complexity, one can construct a pseudoran-
dom generator that is secure against A-oracle circuits. More precisely,

Theorem 2.1. (Klivans and van Melkebeek [18]) Let A be any language. There
is a polynomial-time computable function F : Σ∗×Σ∗ → Σ∗, with the following
properties. For every ε > 0, there exists a, b ∈ N such that

F : Σna ×Σb log n → Σn,

and if r is the truth table of a a log n-variable Boolean function whose A-oracle
circuit complexity is bigger than naε, then Gr(s) = F (r, s), r ∈ Σna

, s ∈ Σb log n,
is a pseudo-random generator that is secure against SIZEA(n) circuits. If A =
SAT , then this pseudo-random generator can be used to derandomize AM to NP
and BPPNP to PNP.

3 Comparison of Hypotheses

We now formally state our principle hypotheses.

Measure Hypothesis. NP does not have p-measure 0.

Pseudo-NP Hypothesis. There exists ε > 0 such that

NP �⊆ [io-pseudoNP]-DTIME(2nε

),

340 J.M. Hitchcock and A. Pavan

i.e., there exists a language L in NP such that for every language L′ in DTIME
(2nε

), there exists a NP refuter R such that for almost every n, R(0n) has an
output, and if R(0n) outputs a string x on some path, then |x| = n, x ∈ LΔL′.

NP-Machine Hypothesis. There exists an NP machine M and ε > 0 such
that M accepts 0∗ and no 2nε

-time-bounded Turing machine correctly computes
infinitely many accepting computations of M .

UP-Machine Hypothesis. There exists a UP machine M and ε > 0, such
that M accepts 0∗ and no 2nε

-time-bounded Turing machine correctly computes
infinitely many accepting computations of M .

First, we show that NP-machine hypothesis is weaker than the measure hy-
pothesis.

Theorem 3.1. The measure hypothesis implies the NP-machine hypothesis.

Theorem 3.1 follows immediately from Lemma 3.2 and Theorem 3.3 below.

Definition. A language L does not have superpolynomial gaps if there is a poly-
nomial p(n) such that for all n, there is some string x in L with n ≤ |x| ≤ p(n).

Lemma 3.2. The measure hypothesis implies that NP contains a DTIME(2nε

)-
bi-immune language that does not have superpolynomial gaps.

Theorem 3.3. If NP contains a DTIME(2nε

)-immune language that does not
have superpolynomial gaps, then the NP-machine hypothesis holds.

In addition to Theorem 3.3, the following is also known regarding immunity
and the NP-machine hypothesis.

Theorem 3.4. (Pavan and Selman [27]) If NP∩co-NP contains a DTIME(2nε

)-
bi-immune language, then the NP-machine hypothesis holds.

Next we use a Kolmogorov-complexity argument to show that the NP-machine
hypothesis is also weaker than the pseudo-NP hypothesis.

Theorem 3.5. The pseudo-NP hypothesis implies the NP-machine hypothesis.

Proof. Let L be a language NP that is not in [io-pseudoNP]-DTIME(2nε

). Let
ε′ > 0 be any constant that is less than ε. Consider the following machine N :
Let x an input of length n. N considers every string w whose 2nε′

time-bounded
Kolmogorov complexity is less than 2 logn, i.e, N considers a program p whose
length is less than 2 logn and runs the universal machine on p for 2nε′

steps
to produce w. If w is a witness of x, then it accepts x, if no such w is found
then it rejects x. It is clear that M is 2nε

time bounded. Let L′ be the language
defined by M . Since M is 2nε

time-bounded, L′ is in DTIME(2nε

). Since L is
not in [io-pseudoNP]-DTIME(2nε

), there exists a NP refuter R such that for all
but finitely many n, every accepting computation of R(0n) outputs a string of

Hardness Hypotheses, Derandomization, and Circuit Complexity 341

length n that is in LΔL′. Observe that if x is not in L, then N rejects x, i.e, N
is always correct on strings that do not belong to L. Thus every output of R(0n)
is in L but does not belong to L′. Also note that if R(0n) outputs x on some
path, then it must be the case that every witness w of x has 2nε′

time-bounded
Kolmogorov complexity bigger than 2 logn.

We now define a NP machine M that accepts 0∗. M on input 0n runs R(0n).
If an accepting computation of R(0n) outputs x, then M guesses a string w,
along that path, and accepts if and only if w is a witness of x. Recall that,
for every n, R(0n) outputs at least one string and for every string x that is an
output of R(0n), x ∈ L. Thus M accepts 0∗. Assume there exist a 2nδ

-time-
bounded machine P that outputs infinitely many accepting computations of M ,
where δ = ε′/2. Note that every accepting computation of M(0n) is of the form
xnwn, where xn is an output of R(0n), |xn| = n, xn ∈ L, and wn is a witness
of xn. Recall that if xn is an output of R(0n), then every witness wn of xn has
2nε′

time-bounded Kolmogorov complexity bigger than 2 logn. However, by our
assumption, P (0n) outputs xnwn for infinitely many n. Consider the universal
machine that given n as advice, simulates P (0n) and outputs w. Since P (0n)
halts in 2nδ

time, the universal machine halts in time 2nε′
. Thus there exists a

constant c > 0 such that for infinitely many n, K2nε′
(wn) ≤ log n + c. This is a

contradiction. Thus no 2nδ

time-bounded machine can compute infinitely many
accepting computations of M . Thus the NP-machine hypothesis is true. �

We can analogously define “the pseudo-UP hypothesis” and use a similar
argument to prove the following.

Theorem 3.6. The pseudo-UP hypothesis implies the UP-machine hypothesis.

4 Consequences

In this section we show that several interesting consequences of the NP-machine
and UP-machine hypotheses. We first show the following useful lemma using the
easy witness method [15]. Given a string x of length m, we view it as a boolean
function fx : {0, 1}log m → {0, 1}.

Lemma 4.1. Let M be a NP machine that accepts 0∗ such that, for some ε > 0,
no 2nε

time-bounded machine can compute infinitely many accepting computa-
tions of M . Without loss of generality assume that every accepting computation
of M(0n) is of length nk. Let δ = ε/3. Let wn be any accepting computation of
M(0n). Then, for every language A ∈ E, for all but finitely many n, the A-oracle
circuit complexity of fwn

is at least nδ.

Proof. Consider the following machine N that attempts to find accepting com-
putations of M . On input 0n, N considers every A-oracle circuit C, over k log n
inputs, of size nδ and computes the string w = C(x1)C(x2) · · ·C(xnk), where

342 J.M. Hitchcock and A. Pavan

x1, x2, · · ·xnk are all strings of length k log n. If w is an accepting computation
of M(0n), then N outputs w.

An A-oracle nδ size circuit, can make at most nδ queries each of size at most
nδ. Since A can be decided in time 2cn, each oracle query can be answered in time
2cnδ

time. Thus the total time taken to evaluate the value of the circuit on all
inputs is O(22cnδ

). A circuit of size of size nδ can be encoded as a string of length
nδδ log n. Thus the machine N considers at most 2n2δ

circuits. Thus the total
time taken by N is O(22n2δ

) which is less than 2nε

. Since no 2nε

time-bounded
machine can compute infinitely many accepting computations of M , the above
machine N fails to output accepting computations of M(0n) for all but finitely
many n. Thus for all but finitely many n, for every accepting computation wn

of M(0n), the A-oracle circuit complexity of fwn
is bigger than nδ. �

The following theorem states several consequences of the NP-machine hy-
pothesis.

Theorem 4.2. The NP-machine hypothesis implies the following.

(1) AM = NP.
(2) There exists ε > 0 such that for every A ∈ E, ENP �⊆ io-SIZEA(2εn).
(3) BPPNP = PNP.
(4) NEXP �⊆ P/poly.
(5) For every constant k > 0, PNP �⊆ io-SIZE(nk).
(6) There exist ε > 0, δ > 0 such that NP �⊆ io-DTIME(2nδ

)/nε.

Proof. Since the NP machine hypothesis is true, there exist a NP machine M
and ε > 0 such that no 2nε

time-bounded machine can compute infinitely many
accepting computations of M . Without loss of generality assume that the length
of every accepting computation of M(0n) is is nk. Let δ = ε/3.

(1) Let L be any language in AM. Let the randomness of Arthur is bounded
by nrk. Let ε′ = δ/k. Let a and b be the constants from Theorem 2.1. The
following NP machine accepts L. Given an input x of length n guess an accepting
computation w of M(0nra

). Let m = nkr. Note that |w| = nkra and it can
be viewed as a boolean function over a logm variables. By Lemma 4.1, any
accepting computation w gives a boolean function over a logm variables whose
SAT -oracle circuit complexity at least (nra)δ = maε′

. By Theorem 2.1, from
this hard boolean function a pseudo random that maps b logm bits to m = nkr

bits, can be constructed, and this pseudorandom generator derandomizes the
AM protocol.
(2) Let A be any language in E. Let an denote the maximum accepting com-
putation of M(0n). Thus |an| = nk. By Lemma 4.1, fan has A-oracle circuit
complexity bigger than nδ. We now define a language L as follows: Let L|m
denote the characteristic sequence of L on strings of length m. Given m, let m′

be the largest integer such that m′ < m and m′ is divisible by k. Let n = 2m′/k.
We set L|m = an0l, where l = 2m − 2m′

.
We claim that L is in ENP. Given a string x of length m, we can compute

m′ and now the goal is to compute the maximum accepting computation of

Hardness Hypotheses, Derandomization, and Circuit Complexity 343

M(02m′/k

) which gives L|m. Note that the length of maximum accepting com-
putation of M(02m′/k

) = 2m′ ≤ 2m. Thus we can extract the maximum accepting
computation of M(02m′/k

) in linear exponential time using an NP oracle.
Let δ′ = δ/2k. Assume that L ∈ io-SIZEA(2δ′m). Thus for infinitely many

m there exists a A-oracle circuit that accepts Lm. This implies that the A-
oracle circuit complexity of fL|m is at most 2δ′m. Recall that L|m = an0l, where
n = 2m′/k and l = 2m − 2m′

. Thus the A-oracle circuit complexity of fan

is at most 2δ′m. However nδ = 2m′δ/k > 2δ′m for large enough m. Thus if
L ∈ io-SIZEA(2δ′m), then for infinitely many n the A-oracle circuit complexity
of an is less than nδ. This is a contradiction.

(3) This immediately follows from (2) and Theorem 2.1.
(4) Impagliazzo, Kabanets, and Wigderson [12] showed that if NEXP ⊆

P/poly, then NEXP = MA. By item (1), the NP-machine hypothesis implies
AM = NP. Thus NEXP = NP which is a contradiction. Thus NEXP �⊆ P/poly.

(5) By the results of Kannan [17], Bshouty et al. [5], and Kobler and Watan-
abe [19], ZPPNP �⊆ io-SIZE(nk) for any k > 0. Since the NP-machine hypothesis
implies BPPNP = PNP, PNP �⊆ io-SIZE(nk) for every k > 0.

(6) Let ε′ = ε/3 and δ′ = ε/6k. Suppose NP ⊆ io-DTIME(2nδ′
)/nε′

. Consider
the following language in NP.

L =
{
〈0n, y〉

∣∣∣∣ |y| ≤ nk, there exists w such that yw
is an accepting computation of M on 0n

}
.

We can use a pairing function 〈·, ·〉 that encodes all tuples of the form
〈0n, y〉, |y| ≤ nk, at the same length. Note that if there is an oracle that gives
the membership of 〈0n, y〉, |y| ≤ nk, we can compute an accepting computation
of M(0n). Since NP ⊆ io-DTIME(2nδ′

)/nε′
, there is a L′ in DTIME(2nδ′

) and
an advice hn such that, |hn| ≤ nε′

,

∃∞n, ∀x ∈ {0, 1}n, x ∈ L⇔ 〈x, hn〉 ∈ L′.

Consider the following algorithm that computes infinitely many accepting
computations of M . On input 0n, it considers all advices of size up to nε′

and
with each advice it does a prefix search for a witness by querying L′. This
algorithm outputs infinitely many accepting computations of M and it can be
verified that the algorithm is 2nε

-time bounded. This is a contradiction. �

Fenner, Fortnow, Naik, and Rogers [6] asked the following question Q: Can
we find the accepting computations of every NP machine that accept Σ∗ in
polynomial time? The following is trivial.

Proposition 4.3. If the NP-machine hypothesis is true, then the answer to Q
is “No.”

It is shown in [6] that Q has several equivalent characterizations, so we
obtain from there a number of consequences of the NP-machine hypothesis.
For example, while we do not know if the NP-machine hypothesis implies that
P �= NP ∩ co-NP, we have the following.

344 J.M. Hitchcock and A. Pavan

Corollary 4.4. The NP-machine hypothesis implies that P �= NP ∩ co-NP or
there is an NP multi-valued total function that does not have a NP single-valued
refinement.

From Theorem 3.4, we know that if NP∩co-NP has 2nε

-bi-immune sets, then
the NP-machine hypothesis is true. This gives the following corollary.

Corollary 4.5. If NP∩co-NP has 2nε

-bi-immune sets, then all the consequences
in Theorem 4.2 follow.

By Theorem 3.3, if NP has a 2nε

-bi-immune language that does not have
superpolynomial gaps, then the NP-machine hypothesis is true. Thus all the
consequences of Theorem 4.2 follow if NP has a DTIME(2nε

)-bi-immune lan-
guage that does not have superpolynomial gaps. We now consider the hypoth-
esis “NP has a DTIME(2nε

)-bi-immune language”. This is weaker than both
the hypotheses “NP ∩ co-NP has a 2nε

-bi-immune set,” and “NP contains a
DTIME(2nε

)-bi-immune language that does not have superpolynomial gaps.”
Let L be any 2nε

-bi-immune language in NP, then for infinitely many n, 0n be-
longs to L. By using similar arguments as in Lemma 4.1, we can show that for
infinitely many n, every witness of 0n has high circuit complexity. This gives io-
versions of consequences in Theorem 4.2. For example:

Theorem 4.6. If NP has a 2nε

-bi-immune language, then the following hold.

(1) AM ⊆ io-NP.
(2) There exists ε > 0 such that for every A in E, ENP �⊆ SIZEA(2εn).
(3) NEXP �⊆ P/poly.

Now we turn our attention to the UP-machine hypothesis. It is obvious that
all the consequences of the NP-machine hypothesis follow from the UP-machine
hypothesis. In addition, we obtain the following consequences.

Theorem 4.7. The UP-machine hypothesis implies the following.

(1) ∃ε > 0, ∀A ∈ E, UE ∩ co-UE �⊆ io-SIZEA(2εn).
(2) PH ⊆ SPP.
(3) ∃ε > 0, δ > 0 UP ∩ co-UP �⊆ io-DTIME(2nδ

)/nε.
(4) ∀k > 0, SPP �⊆ SIZE(nk).
(5) BPP ⊆ UP.
(6) There exists a language in NP for which search does not reduce to decision.

5 Scaled Dimension

In addition to the measure hypothesis on NP, hypotheses on the resource-
bounded dimension of NP can also be considered (see [10] for example). While
dimension hypotheses are easily seen to be weaker than the measure hypothesis,
they seem incomparable with the other hypotheses considered in this paper. In

Hardness Hypotheses, Derandomization, and Circuit Complexity 345

Measure Hypothesis

NP-machine Hypothesis

Pseudo-NP Hypothesis

NP ∩ co-NP has a

NP has a 2nε
-bi-immune set

2nε
-bi-immune set

NEXP �⊆ P/poly
ENP �⊆ SIZE(2εn)
NP ⊆ io-AM

superpolynomial gaps
set with no

NP has a 2nε
-bi-immune

NP = AM

BPPNP = PNP

ENP �⊆ io-SIZE(2εn)

NEXP �⊆ P/poly

PNP �⊆ io-SIZE(nk)
NP �⊆ io-DTIME(2nε

)/nδ

this section we consider a hypothesis on the scaled dimension of NP and its con-
sequences for derandomization of NP and circuit-complexity lower bounds for
NEXP. For background on scaled dimension, we refer to [11, 9].

In the following, we consider dim(−3)
p (NP), the −3rd-order scaled polynomial-

time dimension of NP. If μp(NP) �= 0, then dim(−3)
p (NP) > 0. We now show

that this seemingly much weaker consequence of the measure hypothesis still
implies a derandomization of AM, albeit with a small amount of nonuniform
advice. This derandomization should be compared with the unconditional fact
that AM ⊆ NP/poly.

Theorem 5.1. If dim(−3)
p (NP) > 0, then AM ⊆ NP/nε for every ε > 0.

Using arguments of Impagliazzo, Kabanets, and Wigderson [12], the same
hypothesis implies that NEXP does not have polynomial-size circuits.

Theorem 5.2. If dim(−3)
p (NP) > 0, then NEXP �⊆ P/poly.

6 Conclusion

The following figure captures relations among various hypotheses and known
consequences. It is interesting to note that the UP-machine hypothesis implies
P �= UP∩ co-UP, whereas a similar consequence is not known to follow from the

346 J.M. Hitchcock and A. Pavan

NP-machine hypothesis. Theorem 3.1 partly explains this. Since the measure
hypothesis implies the NP-machine hypothesis, if the NP-machine hypothesis
implies P �= NP ∩ co-NP, then the measure hypothesis also implies P �= NP ∩
co-NP. However, it seems that the measure hypothesis does not say much about
NP ∩ co-NP.

There are several unanswered questions. For example: “Does the NP-machine
hypothesis imply NEXP �⊆ io-P/poly?” Though the NP-machine hypothesis im-
plies derandomization of AM and BPPNP, we do not know whether we can
derandomize BPP. Note that relative to any oracle where ZPP = EXP, the
NP-machine hypothesis holds and BPP = EXP. Perhaps we can derandomize
BPP using the UP-machine hypothesis. Another interesting question is the rela-
tion between the existence of cryptographic one-way functions and the measure
hypothesis.

An anonymous referee pointed the possible relations between this paper and
the work of Allender [1]. In that paper Allender introduced the notion of Kt-
complexity and exhibited several relations among Kolmogorov complexity and
derandomization. One of the hypotheses considered by Allender is similar to the
NP-machine hypothesis. In the full version of this paper we will discuss this in
more detail.

Acknowledgments

We thank an anonymous referee for pointing to the work of Allender [1]. We also
thank N. V. Vinodchandran for interesting discussions.

References

1. E. Allender. When the worlds collide: derandomization, lower bounds and kol-
mogorov complexity. In Foundations of Software Technology and Theoretical Com-
puter Science, pages 1–15. Springer-Verlag, 2001.

2. E. Allender and M. Strauss. Measure on small complexity classes with applica-
tions for BPP. In Proceedings of the 35th Annual Symposium on Foundations of
Computer Science, pages 807–818. IEEE Computer Society, 1994.

3. K. Ambos-Spies and E. Mayordomo. Resource-bounded measure and randomness.
In A. Sorbi, editor, Complexity, Logic and Recursion Theory, Lecture Notes in Pure
and Applied Mathematics, pages 1–47. Marcel Dekker, New York, N.Y., 1997.

4. J. Balcázar and U. Schöning. Bi-immune sets for complexity classes. Mathematical
Systems Theory, 18(1):1–18, 1985.

5. N. Bshouty, R. Cleve, S. Kannan, R. Gavalda, and C. Tamon. Oracles and queries
that are sufficient for exact learning. Journal of Computer and System Sciences,
52:421–433, 1996.

6. S. Fenner, L. Fortnow, A. Naik, and J. Rogers. Inverting onto functions. Informa-
tion and Computation, 186(1):90–103, 2003.

7. C. Glaßer, A. Pavan, A. L. Selman, and S. Sengupta. Properties of NP-complete
sets. In Proceedings of the 19th IEEE Conference on Computational Complexity,
pages 184–197. IEEE Computer Society, 2004.

Hardness Hypotheses, Derandomization, and Circuit Complexity 347

8. L. A. Hemaspaandra, J. Rothe, and G. Wechsung. Easy sets and hard certificate
schemes. Acta Informatica, 34(11):859–879, 1997.

9. J. M. Hitchcock. Small spans in scaled dimension. SIAM Journal on Computing.
To appear.

10. J. M. Hitchcock. MAX3SAT is exponentially hard to approximate if NP has posi-
tive dimension. Theoretical Computer Science, 289(1):861–869, 2002.

11. J. M. Hitchcock, J. H. Lutz, and E. Mayordomo. Scaled dimension and nonuniform
complexity. Journal of Computer and System Sciences, 69(2):97–122, 2004.

12. R. Impagliazzo, V. Kabanets, and A. Wigderson. In search of an easy witness:
Exponential time vs. probabilistic polynomial time. Journal of Computer and
System Sciences, 65:672–694, 2002.

13. R. Impagliazzo and P. Moser. A zero-one law for RP. In Proceedings of the 18th
IEEE Conference on Computational Complexity, pages 43–47. IEEE Computer
Society, 2003.

14. R. Impagliazzo and A. Wigderson. P = BPP if E requires exponential circuits:
Derandomizing the XOR lemma. In Proceedings of the 29th ACM Symposium on
Theory of Computing, pages 220–229, 1997.

15. V. Kabanets. Easiness assumptions and hardness tests: Trading time for zero error.
Journal of Computer and System Sciences, 63:236–252, 2001.

16. V. Kabanets. Derandomization: A brief overview. Bulletin of the EATCS, 76:88–
103, 2002.

17. R. Kannan. Circuit-size lower bounds and non-reducibility to sparse sets. Infor-
mation and Control, 55:40–56, 1982.

18. A. Klivans and D. van Melkebeek. Graph nonisomorphism has subexponential size
proofs unless the polynomial-time hierarchy collapses. SIAM Journal on Comput-
ing, 31:1501–1526, 2002.

19. J. Köbler and O. Watanabe. New collapse consequences of NP having small circuits.
SIAM Journal on Computing, 28(1):311–324, 1998.

20. C.-J. Lu. Derandomizing Arthur-Merlin games under uniform assumptions. Com-
putational Complexity, 10(3):247–259, 2001.

21. J. H. Lutz. Almost everywhere high nonuniform complexity. Journal of Computer
and System Sciences, 44(2):220–258, 1992.

22. J. H. Lutz. Observations on measure and lowness for ΔP
2 . Theory of Computing

Systems, 30(4):429–442, 1997.
23. J. H. Lutz. The quantitative structure of exponential time. In L. A. Hemaspaandra

and A. L. Selman, editors, Complexity Theory Retrospective II, pages 225–260.
Springer-Verlag, New York, 1997.

24. J. H. Lutz and E. Mayordomo. Measure, stochasticity, and the density of hard
languages. SIAM Journal on Computing, 23(4):762–779, 1994.

25. J. H. Lutz and E. Mayordomo. Cook versus Karp-Levin: Separating completeness
notions if NP is not small. Theoretical Computer Science, 164:141–163, 1996.

26. P. B. Miltersen. Derandomizing complexity classes. In Handbook of Randomized
Computing, volume II, pages 843–934. Kluwer, 2001.

27. A. Pavan and A. L. Selman. Separation of NP-completeness notions. SIAM Journal
on Computing, 31(3):906–918, 2002.

Improved Approximation Algorithms for
Maximum Graph Partitioning Problems

Extended Abstract

Gerold Jäger and Anand Srivastav

Mathematisches Seminar,
Christian-Albrechts-Universität Kiel,

Christian-Albrechts-Platz 4, D-24118 Kiel, Germany
{gej, asr}@numerik.uni-kiel.de

Abstract. In this paper we improve the analysis of approximation algo-
rithms based on semidefinite programming for the maximum graph parti-
tioning problems MAX-k-CUT, MAX-k-UNCUT, MAX-k-DIRECTED-
CUT, MAX-k-DIRECTED-UNCUT, MAX-k-DENSE-SUBGRAPH, and
MAX-k-VERTEX-COVER. It was observed by Han, Ye, Zhang (2002)
and Halperin, Zwick (2002) that a parameter-driven random hyperplane
can lead to better approximation factors than obtained by Goemans and
Williamson (1994). Halperin and Zwick could describe the approximation
factors by a mathematical optimization problem for the above problems
for k = n

2 and found a choice of parameters in a heuristic way. The
innovation of this paper is twofold. First, we generalize the algorithm
of Halperin and Zwick to cover all cases of k, adding some algorithmic
features. The hard work is to show that this leads to a mathematical
optimization problem for an optimal choice of parameters. Secondly, as
a key-step of this paper we prove that a sub-optimal set of parameters
is determined by a linear program. Its optimal solution computed by
CPLEX leads to the desired improvements. In this fashion a more sys-
tematic analysis of the semidefinite relaxation scheme is obtained which
leaves room for further improvements.

1 Introduction

For a directed graph G = (V,E) with |V | = n and a non-negative weight ωi,j on
each edge (i, j) ∈ E, such that ωi,j is not identically zero on all edges, and for
0 < σ := k

n < 1 we consider the following problems:

a) MAX-k-CUT: determine a subset S ⊆ V of k vertices such that the total
weight ω∗ of the edges connecting S and V \S or connecting V \S and S is
maximized1.

1 In some literature MAX-k-CUT denotes the problem of partitioning the set of ver-
tices into subsets S1, · · · , Sk, so that the total weight of the edges connecting Si and
Sj for 1 ≤ i 	= j ≤ k is maximized.

K. Lodaya and M. Mahajan (Eds.): FSTTCS 2004, LNCS 3328, pp. 348–359, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Improved Approximation Algorithms 349

b) MAX-k-UNCUT: determine a subset S ⊆ V of k vertices such that the total
weight ω∗ of the edges of the subgraphs induced by S and induced by V \ S
is maximized.

c) MAX-k-DIRECTED-CUT: determine a subset S ⊆ V of k vertices such that
the total weight ω∗ of the edges connecting S and V \ S is maximized.

d) MAX-k-DIRECTED-UNCUT: determine a subset S ⊆ V of k vertices such
that the total weight ω∗ of the edges of the subgraphs induced by S and
induced by V \ S plus the edge weights connecting V \ S and S is maxi-
mized.

e) MAX-k-DENSE-SUBGRAPH: determine a subset S ⊆ V of k vertices such
that the total weight ω∗ of the edges of the subgraph induced by S is max-
imized.

f) MAX-k-VERTEX-COVER: determine a subset S ⊆ V of k vertices such
that the total weight ω∗ of the edges touching S is maximized.

As all these problems are NP-hard, we are interested in approximating the
optimal solution to these problems within a factor of 0 ≤ $ ≤ 1. Goemans and
Williamson [10] showed in their pioneer paper that via the semidefinite pro-
gramming (SDP) relaxation an approximation factor of 0.878 can be proved for
the MAX-CUT problem. Stimulated by their work, many authors have consid-
ered only one or two of the six problems above (see [2] for MAX-k-CUT, [9]
and [15] for MAX-n

2 -CUT, [1] for MAX-k-DIRECTED-CUT, [16] for MAX-n
2 -

UNCUT and MAX-n
2 -DENSE-SUBGRAPH, [3], [7], [8] and [14] for MAX-k-

DENSE-SUBGRAPH and [2] for MAX-k-VERTEX-COVER). Feige and Lang-
berg [5] improved on known special and global approximation factors for the
four undirected problems with some new techniques based on semidefinite pro-
gramming. Their paper contains also a nice summary of known results. Han,
Ye and Zhang [12] also applied semidefinite programming to these four prob-
lems and in most cases they managed to obtain better approximation factors
than previously known. Halperin and Zwick [11] used more general methods for
the balanced version (σ = 1

2) and in this case achieved substantially improved
approximation factors for all six problems above.

In this paper we give an algorithm for the problems a) - f), generalizing
the approach of Halperin and Zwick, resp. of Han, Ye and Zhang by introduc-
ing new parameters which enlarge the region of the semidefinite programming
relaxation. This gives a new version of the semidefinite relaxation scheme (Al-
gorithm Graph Partitioning, section 2, page 351). In Theorem 1, we show that
the expectation of the approximation factors depend on a set of parameters,
which are used in the algorithm. The key observation is that a sub-optimal
choice of these parameters can be determined by a finite linear program (section
4). By discretizing the other parameters, we finally obtain a choice leading to
improvements over known approximation guarantees. Here are some examples
for which the improvement is significant (comprehensive tables can be found in
section 5).

350 G. Jäger and A. Srivastav

Problem σ Prev. Our Method

MAX-k-CUT 0.3 0.527 0.567
MAX-k-UNCUT 0.4 0.5258 0.5973

MAX-k-DIRECTED-CUT 0.5 0.644 0.6507
MAX-k-DIRECTED-UNCUT 0.5 0.811 0.8164
MAX-k-DENSE-SUBGRAPH 0.2 0.2008 0.2664
MAX-k-VERTEX-COVER 0.6 0.8453 0.8784

In summary, we see that our technique of combining the analysis of the ran-
dom hyperplane with mathematical programming leads to improvements over
many previously known approximation factors for the maximization problems
considered in this paper. This shows that a more systematic analysis of the
semidefinite relaxation scheme gives better approximation guarantees and opens
room for further improvements, if better methods for choosing an optimal pa-
rameter set can be designed.

2 The Algorithm

For S ⊆ V the set of edges E can be divided by E = S1 ∪̇S2 ∪̇S3 ∪̇S4, where
S1 = {(i, j) | i, j ∈ S}, S2 = {(i, j) | i ∈ S, j ∈ V \ S}, S3 = {(i, j) | i ∈ V \
S, j ∈ S}, S4 = {(i, j) | i, j ∈ V \ S}. As we will see, we distinguish the six
problems MAX-k-CUT, MAX-k-UNCUT, MAX-k-DIRECTED-CUT, MAX-k-
DIRECTED-UNCUT, MAX-k-DENSE- SUBGRAPH, MAX-k-VERTEX-CO-
VER by four {0, 1} parameters a1, a2, a3, a4. All these problems maximize some
of the four edge classes S1, S2, S3, S4.

For i = 1, 2, 3, 4 we define ai as 1, if the problem maximizes the edge weights
of Si, and 0 otherwise. The following values a1, a2, a3, a4 lead to the specific
problems:

Problem a1 a2 a3 a4

MAX-k-CUT 0 1 1 0
MAX-k-UNCUT 1 0 0 1

MAX-k-DIRECTED-CUT 0 1 0 0
MAX-k-DIRECTED-UNCUT 1 0 1 1
MAX-k-DENSE-SUBGRAPH 1 0 0 0
MAX-k-VERTEX-COVER 1 1 1 0

For F ⊆ E we define ω(F) =
∑

(i,j)∈F ωij and for S ⊆ V :

ωa1,a2,a3,a4(S) := a1ω(S1) + a2ω(S2) + a3ω(S3) + a4ω(S4).

The optimization problem considered in this paper is the following.

Improved Approximation Algorithms 351

General Maximization Problem

max
S⊆V,|S|=k

ωa1,a2,a3,a4(S) (1)

Let OPT(a1, a2, a3, a4, σ) be the value of an optimal solution of (1). Our aim
is to design a randomized polynomial-time algorithm which returns a solution
of value at least $ · OPT(a1, a2, a3, a4, σ), where $ = $(a1, a2, a3, a4, σ) is the
so-called approximation factor with 0 ≤ $ ≤ 1. In fact, we will show that the
expected value of $ is large.

In the algorithm we give a formulation of the general maximization problem
(1) as a semidefinite program, generalizing Halperin and Zwick [11].

Algorithm Graph Partitioning
Input: A weighted directed graph G = (V,E) with |V | = n, 0 < σ < 1 and
parameters 0 ≤ θ, ϑ, ν ≤ 1 and −1 ≤ κ ≤ 1, a maximum graph partitioning
problem with parameters a1, a2, a3, a4.
Output: A set S of k vertices with large ωa1,a2,a3,a4(S).

1. Relaxation We solve the following semidefinite program:
Maximize

∑
1≤i 	=j≤n

1
4ωij

[
(a1 + a2 + a3 + a4) + (a1 + a2 − a3 − a4)Xi0

+ (a1 − a2 + a3 − a4)Xj0 + (a1 − a2 − a3 + a4)Xij

]
with the optimal value ω∗ subject to the constraints
(a)

∑n
i=1 Xi0 = 2k − n

(b)
∑

1≤i,j≤n Xij = (2k − n)2

(c) Xii = 1 for i = 0, 1, · · · , n
(d) X ∈ Rn+1,n+1 is positive semidefinite and symmetric
(e) Xij + Xil + Xjl ≥ −1 for 0 ≤ i, j, l ≤ n

(f) Xij −Xil −Xjl ≥ −1 for 0 ≤ i, j, l ≤ n
From b), c) and d) it follows:

(g)
∑

1≤i<j≤n Xij = 1
2

(
(2k − n)2 − n

)
(This is the same semidefinite program like in [11] with new constraint (a)
and generalized constraint (b).)
We repeat the following four steps polynomially often and output the best

subset.
2. Randomized Rounding

– Choose parameters 0 ≤ θ, ϑ ≤ 1 and −1 ≤ κ ≤ 1 (note that for every
problem and for each σ we choose different parameters).

– Choose a positive semidefinite symmetric matrix Y = ZTZ ∈ Rn+1,n+1,
depending on θ, ϑ, κ as follows:
Put Y := θL + (1 − θ)P , where we define L = (lij)0≤i,j≤n and P =
(pij)0≤i,j≤n by

(lij)0≤i,j≤n =

⎧⎪⎪⎨⎪⎪⎩
1 for i = j

ϑX0i for i �= 0, j = 0
ϑX0j for i = 0, j �= 0
ϑXij or Xij or ϑ2Xij for 1 ≤ i �= j ≤ n

352 G. Jäger and A. Srivastav

(pij)0≤i,j≤n =

⎧⎨⎩
1 for i = j

κ for i = 0, j �= 0 ∨ i �= 0, j = 0
κ, if κ ≥ 0 or 1 or κ2 for 1 ≤ i �= j ≤ n

We can write the non diagonal elements of Y for 0 ≤ i �= j ≤ n as

Yij =
{
d1Xij + e1, if i = 0 ∨ j = 0
d2Xij + e2, otherwise

with d1 = θϑ; e1 = (1 − θ)κ; d2 = θϑ, θ, θϑ2; e2 = (1 − θ)κ, (if κ ≥ 0),
1− θ, (1− θ)κ2. Hence: −1 ≤ e1 ≤ 1; 0 ≤ d1, d2, e2 ≤ 1.
(It is easy to show that Y is a positive semidefinite symmetric matrix.)

– We choose ū with ūi ∈ N(0, 1) for i = 0, 1, · · · , n and let u = Zū.
– For i = 1, · · · , n let x̂i = 1, if ui ≥ 0 and−1 otherwise and let S = {i ≥ 1 |

x̂i = 1} (see [4]).
(As special cases we get previously used positive semidefinite matrices:
ϑ = 1 and case 3 for P in [12]; θ = 1 and case 1 for L in [11], which is
called outward rotation.)

3. Linear Randomized Rounding

– Choose a parameter 0 ≤ ν ≤ 1 (again for every problem and for each σ
we choose a different parameter).

– With probability 0 ≤ ν ≤ 1 we overrule the choice of S made above, and
for each i ∈ V , put i into S, independently, with probability (1 +Xi0)/2
and into V \ S otherwise.

4. Size Adjusting
a) If the problem is symmetric (MAX-k-CUT or MAX-k-UNCUT):
– If k ≤ |S| < n

2 , we remove uniformly at random |S| − k vertices from S.
– If |S| < k, we add uniformly at random k − |S| vertices to S.
– If n

2 ≤ |S| < n− k, we add uniformly at random n− k − |S| vertices to
S.

– If |S| ≥ n−k, we remove uniformly at random |S|−n+k vertices from S.
b) If the problem is not symmetric:
– If |S| ≥ k, we remove uniformly at random |S| − k vertices from S.
– If |S| < k, we add uniformly at random k − |S| vertices to S.

5. Flipping (only for MAX-n
2 -DIRECTED-CUT, MAX-n

2 -DIRECTED-UN-
CUT, MAX-n

2 -DENSE-SUBGRAPH, and MAX-n
2 -VERTEX-COVER)

If ωa1,a2,a3,a4(V \ S) > ωa1,a2,a3,a4(S), we output V \ S, otherwise S.

3 Computation of the Approximation Factors

3.1 Main Result

The main results are shown in the tables containing the approximation factors
for the different problems. Nevertheless, let us state them also in a formal way:

Improved Approximation Algorithms 353

Theorem 1 (Main Theorem) . The expected ratio ωa1,a2,a3,a4(S)/OPT of the
approximation factors for the problems MAX-k-CUT, MAX-k-UNCUT, MAX-k-
DIRECTED-CUT, MAX-k-DIRECTED-UNCUT, MAX-k-DENSE-SUBGRAPH
and MAX-k-VERTEX-COVER is bounded from below by the minimum of the
solutions of some linear programs. Solving these linear programs lead to the ap-
proximation factors shown in the tables of section 5.

We denote the sets S after the steps 2,3,4,5 by S′, S′′, S′′′, S′′′′(= S) and
define δ := |S′′|

n . We want to compute ρ := ωa1,a2,a3,a4 (S)
ω∗ . For x1 ∈ R, x2 ∈ R+

0
we consider the function of Han, Ye, Zhang [12]:

y(x1, x2) =
ωa1,a2,a3,a4(S

′′)
ω∗ + x1

|S′′|
n

+ x2
|S′′|(n− |S′′|)

n2

(Halperin, Zwick [11] consider this function only for x1 ∈ R−
0 . The case x2 < 0

could also be considered, but as it does not lead to any progress, we omit it.)
The first term ωa1,a2,a3,a4 (S′′)

ω∗ gives the value of the partition S′′ after step 3 in
relation to the optimal value, |S′′|

n and |S′′|(n−|S′′|)
n2 measure the closeness of the

partition to the required size. x1, x2 are parameters which depend on the specific
problem and σ. They are chosen so that the analysis leads to good approximation
factors. For analyzing this function, we have to estimate the expected values of
the three terms. This is done in the main lemma. Its proof is given in the full
paper.

Lemma 1 (Main Lemma) . For n→∞ there are constants α, β+, β−, γ with:

a) E
[

ωa1,a2,a3,a4 (S′′)
ω∗

]
≥ α(θ, ϑ, κ, ν)

b) E
[

|S′′|
n

]
≥ β+(σ, θ, ϑ, κ, ν)

c) E
[

|S′′|
n

]
≤ β−(σ, θ, ϑ, κ, ν)

d) E
[

|S′′|(n−|S′′|)
n2

]
≥ γ(σ, θ, ϑ, κ, ν)

3.2 Proof of Theorem 1

For x1 ≥ 0 define β(σ, θ, ϑ, κ, ν) as β+(σ, θ, ϑ, κ, ν) and otherwise as β−(σ, θ, ϑ, κ,
ν). As we repeat the steps 2 and 3 of the algorithm polynomially often, the
function z(x1, x2) is its expectation value, up to a factor of 1− ε, which can be
neglected. By Lemma 1 we get:

ωa1,a2,a3,a4(S
′′)

ω∗ + x1
|S′′|
n

+ x2
|S′′|(n− |S′′|)

n2

≥ E

[
ωa1,a2,a3,a4(S

′′)
ω∗

]
+ E

[
x1
|S′′|
n

]
+ E

[
x2
|S′′|(n− |S′′|)

n2

]
≥ α(θ, ϑ, κ, ν) + x1β(σ, θ, ϑ, κ, ν) + x2γ(σ, θ, ϑ, κ, ν)

354 G. Jäger and A. Srivastav

and so
ωa1,a2,a3,a4(S

′′)
ω∗

≥ α(θ, ϑ, κ, ν) + x1(β(σ, θ, ϑ, κ, ν)− δ) + x2(γ(σ, θ, ϑ, κ, ν)− δ(1− δ))

=: h(δ, σ, θ, ϑ, κ, ν, x1, x2) (2)

With λi := ω(S′′
i)

ω∗ for i = 1, 2, 3, 4 it is not difficult to show:

a1λ1 + a2λ2 + a3λ3 + a4λ4 ≥ h(δ, σ, θ, ϑ, κ, ν, x1, x2)
λ1 + λ2 + λ3 + λ4 ≥ 1

Define M1(p) :=

⎛⎜⎜⎜⎝
p2 0 0 0

p(1− p) p 0 0
p(1− p) 0 p 0
(1− p)2 1− p 1− p 1

⎞⎟⎟⎟⎠, M2(q) :=

⎛⎜⎜⎜⎝
1 1− q 1− q (1− q)2

0 q 0 q(1− q)
0 0 q q(1− q)
0 0 0 q2

⎞⎟⎟⎟⎠.

Furthermore M(δ, σ) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

M1
(

σ
δ

)
, if σ ≤ δ < 1

2

M2

(
1−σ
1−δ

)
, if 0 ≤ δ < σ

M2

(
σ

1−δ

)
, if 1

2 ≤ δ < 1− σ

M1
(1−σ

δ

)
, if 1− σ ≤ δ ≤ 1

in the symmet-

ric case and

M(δ, σ) :=

⎧⎪⎨⎪⎩
M1

(
σ
δ

)
, if σ ≤ δ ≤ 1

M2

(
1−σ
1−δ

)
, if 0 ≤ δ < σ

in the asymmetric case.

Then it is straightforward to show:

z := E

[
ωa1,a2,a3,a4(S

′′′)
ω∗

]
= (a1 a2 a3 a4) ·M(δ, σ) · (λ1 λ2 λ3 λ4)T (3)

=: fa1,a2,a3,a4(δ, σ, λ1, λ2, λ3, λ4) (4)

The expected approximation factor of Algorithm Graph Partitioning thus is:

min
0≤δ≤1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

min z

s.t.
a1λ1 + a2λ2 + a3λ3 + a4λ4 ≥ h(δ, σ, θ, ϑ, κ, ν, x1, x2)

λ1 + λ2 + λ3 + λ4 ≥ 1
0 ≤ λ1, λ2, λ3, λ4

z ≥ fa1,a2,a3,a4(δ, σ, λ1, λ2, λ3, λ4)
[for MAX-n

2 -DC, MAX-n
2 -DU, MAX-n

2 -DS, MAX-n
2 -VC:

z ≥ fa4,a3,a2,a1(δ, σ, λ1, λ2, λ3, λ4)]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5)

Note that for fixed δ, σ and constants θ, ϑ, κ, ν, x1, x2 the last inner minimiza-
tion problem is a linear program in the variables z, λ1, λ2, λ3, λ4.

Improved Approximation Algorithms 355

4 The Optimization Algorithm

By Theorem 1 and (5), the expected approximation factor for the general max-
imization problem (1) is z, where z = z(δ, σ, θ, ϑ, κ, ν, x1, x2) is a function de-
pending on the parameters δ ∈ [0, 1], σ ∈ (0, 1), θ, ϑ, ν ∈ [0, 1], κ ∈ [−1, 1], x1 ∈
R, x2 ∈ R+

0 in a complicated way. A polynomial-time algorithm for an opti-
mal choice of all parameters in (5) is not known. Thus we choose a hierarchical
approach.

For this we need the following theorem which shows that we can solve (5) by
hand for arbitrary, but fixed δ, σ, θ, ϑ, κ, ν. Note that for a previous approxima-
tion factor $ and a candidate z for a new approximation factor, we would like
to show z ≥ $ for a suitable set of parameters.

Theorem 1. Let fa1,a2,a3,a4(λ1, λ2, λ3, λ4) = b1λ1 + b2λ2 + b3λ3 + b4λ4 with
suitable b1, b2, b3, b4 (note that according to (3) and (4), (b1, b2, b3, b4) is given by
the vector (a1, a2, a3, a4) ·M(δ, σ)). Furthermore let v := minl∈{1,2,3,4} {bl}, w :=
minl∈{i∈I | ai=1}{bl}.

Then for all maximization problems except MAX-n
2 -DIRECTED-CUT, MAX-

n
2 -DIRECTED-UNCUT, MAX-n

2 -DENSE-SUBGRAPH, MAX-n
2 -VERTEX-

CO-VER it holds:
a) (5) has the solution

z =

⎧⎨⎩
w · h, if h ≥ 1

v · (1− h) + w · h, if 0 ≤ h < 1
v, if h < 0

b) For v = w, the condition z ≥ $ is equivalent to

h ≥ max
{ $

w
, 1
}

(6)

c) For v �= w, the condition z ≥ $ equivalent to

h ≥ min
{
$

w
,
$− v

w − v

}
(7)

For the proof of Theorem 1 we refer to the full paper.

Remark 1. We can derive similar expressions for z for the four remaining maxi-
mization problems leading to inequalities for h. Again we refer to the full paper.

An Algorithm for Parameter Setting
Our approach consists of three main steps. Let us consider σ as fixed.

1. Fixing the right-hand side. Let $0 be the previously known best approxi-
mation factor for the problem in the literature [11], [12], [5], and put $:=

356 G. Jäger and A. Srivastav

$0 + k · 0.0001 for k = 0, 1, · · ·. We would like to prove z ≥ $ for a k as large
as possible.

2. The linear program LP (Δ). For the moment let us fix the parameters θ, ϑ, κ, ν
and consider them as constants. Let h = h(δ, σ, θ, ϑ, κ, ν, x1, x2) be the func-
tion defined in (2). Since h is a linear function in x1 and x2 due to (2), we may
write h(x1, x2) = f1(δ)x1 + f2(δ)x2 + f3, suppressing the dependence of h
on θ, ϑ, κ, ν, writing h(x1, x2) instead of h(δ, σ, θ, ϑ, κ, ν, x1, x2), and putting
the dependence of h on δ into the coefficients f1(δ) and f2(δ).

Since by Theorem 1 a), z is only piecewise linear in h, z ≥ $ is not a
linear inequality in h. But by Theorem 1 b), c) z ≥ $ is equivalent to a linear
inequality in x1 and x2.

Still, the dependence on δ is an obstacle. We choose a discretization of
[0, 1] for the δ’s, i.e. we define Δ :=

{
k · 1

10l , k = 0, 1, · · · , 10l
}

for a suffi-
ciently large l ∈ N. The inequalities in (6) and (7), respectively for all δ ∈ Δ
form a finite linear program in the variables x1 and x2 which we denote by
LP (Δ).

3. Discretization of the other parameters. Whether LP (Δ) is solvable or not
depends on the choice of the parameters θ, ϑ, κ, ν. We discretize the ranges
of these parameters in finitely many points. For θ, ϑ, ν ∈ [0, 1], κ ∈ [−1, 1] we
take the discretization of both intervals with step size 1

10 (for some cases we
try even the finer discretization with step size 1

100). We consider all possible
values of (θ, ϑ, κ, ν) in this discretization and denote it by the parameter set
P. We test about 250,000 possibilities of tuples (θ, ϑ, κ, ν).

The algorithm for finding the parameters θ, ϑ, κ, ν, x1, x2 and a good approx-
imation factor $ is the following.

Algorithm Parameter Set

1. Choose $ as the best previously known approximation factor $0.
2. Choose (θ, ϑ, κ, ν) from the parameter set P.
3. Given $, solve LP (Δ) in the variables x1 and x2 by the simplex algorithm

using CPLEX.
4. a) If LP (Δ) is solvable, increase $ by 0.0001 and goto 3.

b) If LP (Δ) is not solvable and if not all parameters are tested, goto 2.
5. Output $.

Remark 2. Note that x1, x2 live in a large range, i.e. x1 ∈ R and x2 ∈ R+
0 , while

θ, ϑ, ν, κ are only in the relatively small ranges [−1, 1] and [0, 1], so that we have
optimized the two most difficult parameters.

5 The Final Approximation Factors

We state the results in the following tables.

Improved Approximation Algorithms 357

MAX-k-C MAX-k-UC MAX-k-DC MAX-k-DU

σ Prev. Our Meth. Prev. Our Meth. Prev. Our Meth. Prev. Our Meth.

0.02 0.5 0.5 0.9608 0.9608 0.5 0.1439 – 0.9804
0.04 0.5 0.5 0.9232 0.9232 0.5 0.18 – 0.9616
0.06 0.5 0.5 0.8872 0.8872 0.5 0.2211 – 0.9436
0.08 0.5 0.5 0.8528 0.8528 0.5 0.258 – 0.9264
0.1 0.5 0.5 0.82 0.82 0.5 0.2916 – 0.91
0.12 0.5 0.5 0.7888 0.7888 0.5 0.3223 – 0.8944
0.14 0.5 0.5 0.7592 0.7592 0.5 0.351 – 0.8796
0.16 0.5 0.5 0.7312 0.7312 0.5 0.3791 – 0.8656
0.18 0.5 0.5 0.7048 0.7048 0.5 0.4062 – 0.8524
0.2 0.5 0.5 0.68 0.68 0.5 0.4321 – 0.84
0.22 0.5 0.5 0.6568 0.6568 0.5 0.456 – 0.8284
0.24 0.5 0.5026 0.6352 0.6352 0.5 0.4779 – 0.8176
0.26 0.5 0.5252 0.6152 0.6152 0.5 0.498 – 0.8076
0.28 0.5 0.5467 0.5968 0.5968 0.5 0.5165 – 0.7984
0.3 0.527 0.567 0.58 0.58 0.5 0.5335 – 0.79
0.32 0.562 0.5864 0.5648 0.5648 0.5 0.5493 – 0.7824
0.34 0.593 0.6045 0.5512 0.5512 0.5 0.5644 – 0.7756
0.36 0.616 0.6218 0.5392 0.5644 0.5 0.5786 – 0.7696
0.38 0.642 0.6451 0.5288 0.5787 0.5 0.5914 – 0.7644
0.4 0.671 0.6727 0.5258 0.5973 0.5 0.603 – 0.7705
0.42 0.698 0.6994 0.5587 0.6238 0.5 0.6134 – 0.7776
0.44 0.721 0.7216 0.6013 0.6483 0.5 0.6227 – 0.785
0.46 0.734 0.7351 0.6353 0.668 0.5 0.6305 – 0.7919
0.48 0.725 0.7257 0.6451 0.6737 0.5 0.6371 – 0.798
0.5 0.7027 0.7016 0.6414 0.6415 0.644 0.6507 0.811 0.8164

MAX-k-DS MAX-k-VC MAX-k-DS MAX-k-VC

σ Prev. Our Meth. Prev. Our Meth. σ Prev. Our Meth. Prev. Our Meth.

0.02 0.02 0.0193 0.75 0.75 0.52 0.6022 0.6339 0.822 0.843
0.04 0.04 0.0407 0.75 0.75 0.54 0.6161 0.6471 0.8307 0.8532
0.06 0.06 0.0604 0.75 0.75 0.56 0.6287 0.6585 0.8377 0.8625
0.08 0.08 0.084 0.75 0.75 0.58 0.6402 0.6667 0.8425 0.8707
0.1 0.1 0.1123 0.75 0.75 0.6 0.6488 0.6753 0.8453 0.8784
0.12 0.12 0.1421 0.75 0.75 0.62 0.6539 0.6807 0.8556 0.886
0.14 0.14 0.1726 0.75 0.75 0.64 0.6563 0.685 0.8704 0.8934
0.16 0.16 0.2027 0.75 0.75 0.66 0.66 0.6888 0.8844 0.9008
0.18 0.18 0.2335 0.75 0.75 0.68 0.68 0.6927 0.8976 0.9081
0.2 0.2008 0.2644 0.75 0.75 0.7 0.7 0.6976 0.91 0.916
0.22 0.232 0.295 0.75 0.75 0.72 0.72 0.7024 0.9216 0.9241
0.24 0.2631 0.3248 0.75 0.75 0.74 0.74 0.7068 0.9324 0.9328
0.26 0.2942 0.3548 0.75 0.75 0.76 0.76 0.7266 0.9424 0.9424
0.28 0.3245 0.3833 0.75 0.75 0.78 0.78 0.7491 0.9516 0.9516
0.3 0.3541 0.4102 0.75 0.75 0.8 0.8 0.7714 0.96 0.96
0.32 0.3827 0.4359 0.75 0.75 0.82 0.82 0.7934 0.9676 0.9676
0.34 0.4105 0.4619 0.75 0.75 0.84 0.84 0.8152 0.9744 0.9744
0.36 0.4372 0.4864 0.75 0.75 0.86 0.86 0.8367 0.9804 0.9804
0.38 0.4626 0.5092 0.75 0.7538 0.88 0.88 0.858 0.9856 0.9856
0.4 0.4867 0.5305 0.75 0.7684 0.9 0.9 0.8806 0.99 0.99
0.42 0.5095 0.5505 0.7518 0.7819 0.92 0.92 0.9048 0.9936 0.9936
0.44 0.531 0.5688 0.7687 0.7947 0.94 0.94 0.9288 0.9964 0.9964
0.46 0.5511 0.5861 0.7844 0.8082 0.96 0.96 0.9527 0.9984 0.9984
0.48 0.5697 0.6031 0.7987 0.8209 0.98 0.98 0.9764 0.9996 0.9996
0.5 0.6221 0.6223 0.8452 0.8454

Comparison with Previous Results
For all six problems we compute approximation factors derived from our algo-
rithm and compare it with the best approximation factors previously known. We

358 G. Jäger and A. Srivastav

consider σ = 0.02, 0.04, · · · , 0.98 for MAX k-DENSE-SUBGRAPH and MAX
k-VERTEX-COVER and σ = 0.02, 0.04, · · · 0.5 otherwise, because in these cases
the approximation factors for σ are the same as for 1− σ.

We implemented the computation of the approximation factors in C++, using
the program package CPLEX to solve the linear programs.

MAX-k-CUT. The previously best factors are due to Ageev and Sviridenko
[2] for σ = 0.02, · · · 0.28 and due to Han, Ye, Zhang [12] for σ = 0.3, · · · 0.48.
We have an improvement for σ = 0.24, · · · 0.48. For the case σ = 0.5 we get the
same approximation factor 0.7016 as Halperin and Zwick. Feige and Langberg [6]
improved this factor to 0.7027, using the RPR2 rounding technique, which addi-
tionally analyzes the correction step of changing the sides of so-called misplaced
vertices.

MAX-k-UNCUT. For σ = 0.02, · · · 0.38 the previously best factors were re-
ceived by Feige and Langberg [5] and for σ = 0.4, · · · 0.48 by Han, Ye, Zhang [12].
We improve these factors for σ = 0.36, · · · 0.48. For σ = 0.5 the approximation
factor of 0.64142 can be improved by our algorithm to 0.6415.

MAX-k-DIRECTED-CUT. Ageev and Sviridenko [1] showed an approxima-
tion factor of 0.5 for arbitrary σ. For σ = 0.28, · · · 0.48, we substantially improve
this factor. For the case σ = 0.5 we also improve the approximation factor of
0.644 of Halperin and Zwick to 0.6507.

MAX-k-DIRECTED-UNCUT. For σ = 0.02, · · · 0.48, the approximation
factors have not been considered until now. For σ = 0.5 the approximation
factor of 0.8113 can be improved by our algorithm to 0.8164.

MAX-k-DENSE-SUBGRAPH. For σ = 0.2, · · · 0.48 and σ = 0.52, · · · 0.64,
the previously best approximation factors were given by Han, Ye and Zhang, for
σ = 0.5 by Halperin and Zwick and in the other cases by Feige and Langberg
[5]. Our improvement is for σ = 0.04, · · · 0.68.

MAX-k-VERTEX-COVER. For σ = 0.02, · · · 0.4, Ageev and Sviridenko [2]
found the previously best approximation factors. For σ = 0.42, · · · 0.48 and σ =
0.52, · · · 0.6 they were found by Han, Ye and Zhang and for σ = 0.5 by Halperin
and Zwick. For σ = 0.62, · · · 0.98 Feige, Langberg [5] found the previously best
factors. Our improvement is for σ = 0.38, · · · 0.74.

2 The approximation factor of 0.6436 of Halperin and Zwick seems to be incor-
rect. On page 16 [11], Halperin and Zwick claim that minx∈[− 1

3 ,0] {4 arccos(d2x)−
3 arccos

(
d2

4x−1
3

)
− arccos(d2)

}
≥ 0 holds for all d2 ≥ 0. But for d2 = 0.81 (their pa-

rameter for MAX-k-UNCUT) and x = − 1
3 we have: 4 arccos(− 1

3 ·0.81)−3 arccos(− 7
9 ·

0.81)− arccos(0.81) < 0. Using d2 = 0.81, we get an approximation factor of 0.6414.
3 Again the approximation factor of 0.8118 of Halperin and Zwick seems to be incor-

rect, as for d2 = 0.74 and x = − 1
3 we have: 4 arccos(− 1

3 ·0.74)−3 arccos(− 7
9 ·0.74)−

arccos(0.74) < 0. Their approximation factor becomes 0.811.

Improved Approximation Algorithms 359

Acknowledgement

We would like to thank Jiawei Zhang for some helpful discussions.

References

1. A. Ageev, R. Hassin, M. Sviridenko, A 0.5–Approximation Algorithm for MAX
DICUT with Given Sizes of Parts, SIAM Journal on Discrete Mathematics 14 (2),
p. 246-255, 2001.

2. A. Ageev, M. Sviridenko, Approximation Algorithms for Maximum Coverage and
Max Cut with Given Size of Parts, IPCO ’99, p. 17-30, 1999.

3. Y. Asahiro, K. Iwama, H. Tamaki, T. Tokuyama, Greedily Finding a Dense Sub-
graph, Journal of Algorithms 34, p. 203-221, 2000.

4. D. Bertsimas, Y. Ye, Semidefinite Relaxations, Multivariate Normal Distributions,
and Order Statistics, Handbook of Combinatorial Optimization (Vol. 3), Kluwer
Academic Publishers, p. 1-19, 1998.

5. U. Feige, M. Langberg, Approximation Algorithms for Maximization Problems aris-
ing in Graph Partitioning, Journal of Algorithms 41, p. 174-211, 2001.

6. U. Feige, M. Langberg, The RPR2 rounding technique for semidefinite programs,
Proceedings of the 33th Annual ACM Symposium on Theory of Computing, Crete,
Greece, p. 213–224, 2001.

7. U. Feige, G. Kortsarz, D. Peleg, The Dense k-Subgraph Problem, Algorithmica 29,
p. 410–421, 2001.

8. U. Feige, M. Seltser, On the densest k-subgraph problem, Technical report, Depart-
ment of Applied Mathematics and Computer Science, The Weizmann Institute,
Rehovot, September 1997.

9. A. Frieze, M. Jerrum, Improved Approximation Algorithms for MAX k-CUT and
MAX BISECTION, Algorithmica 18, p. 67-81, 1997.

10. M.X. Goemans, D.P. Williamson, Improved Approximation Algorithms for Maxi-
mum Cut and Satisfiability Problems Using Semidefinite Programming, Journal of
the ACM, 42, p. 1115–1145, 1995.

11. E. Halperin, U. Zwick, A unified framework for obtaining improved approxima-
tion algorithms for maximum graph bisection problems, Random Structures and
Algorithms 20 (3), p. 382-402, 2002.

12. Q. Han, Y. Ye, J. Zhang, An Improved Rounding Method and Semidefinite Pro-
gramming Relaxation for Graph Partition, Mathematical Programming 92 (3), p.
509–535, 2002.

13. S. Mahajan, H. Ramesh, Derandomizing approximation algorithms based on
semidefinite programming, SIAM Journal on Computing 28, p. 1641–1663, 1999.

14. A. Srivastav, K. Wolf, Finding Dense Subgraphs with Semidefinite Programming,
Approximation Algorithms for Combinatorial Optimization ‘98, p. 181–191, 1998.
(Erratum, Mathematisches Seminar, Universität zu Kiel, 1999.)

15. Y. Ye, A .699–approximation algorithm for MAX-Bisection, Mathematical Pro-
gramming 90 (1), p. 101–111, 2001.

16. Y. Ye, J. Zhang, Approximation of Dense-n
2 -Subgraph and the complement of Min-

Bisection, Unpublished Manuscript, 1999.

Learning Languages from Positive Data and a
Finite Number of Queries

Sanjay Jain1,� and Efim Kinber2

1 School of Computing, National University of Singapore, Singapore 117543
sanjay@comp.nus.edu.sg

2 Department of Computer Science, Sacred Heart University, Fairfield, CT
06432-1000 U.S.A.

kinbere@sacredheart.edu

Abstract. A computational model for learning languages in the limit
from full positive data and a bounded number of queries to the teacher
(oracle) is introduced and explored. Equivalence, superset, and subset
queries are considered. If the answer is negative, the teacher may pro-
vide a counterexample. We consider several types of counterexamples:
arbitrary, least counterexamples, and no counterexamples. A number of
hierarchies based on the number of queries (answers) and types of an-
swers/counterexamples is established. Capabilities of learning with dif-
ferent types of queries are compared. In most cases, one or two queries
of one type can sometimes do more than any bounded number of queries
of another type. Still, surprisingly, a finite number of subset queries is
sufficient to simulate the same number of equivalence queries when be-
haviourally correct learners do not receive counterexamples and may have
unbounded number of errors in almost all conjectures.

1 Introduction

Finding an adequate computational model for learning languages has been an
important objective for last four decades. In 1967, M. Gold [Gol67] introduced a
classical model of learning languages in the limit from full positive data (that is,
all correct statements in the target language). Under the Gold’s paradigm, the
learner stabilizes to a correct grammar of the target language (Ex-style learn-
ing). Based on the same idea of learning in the limit, J. Case and C. Lynes
[CL82] and D. Osherson and S. Weinstein [OW82] (see also [Bār74] and [CS83])
introduced a more powerful behaviorally correct type of learning languages, when
a learner almost always outputs correct (but not necessarily the same) grammars
for the target language (Bc-style learning). In both cases, the authors also con-
sidered a much stronger (and less realistic) model of learning languages in the
presence of full positive and negative data. In [BCJ95] the authors considered an
intermediate model, where a learner gets full positive data and a finite number
of negative examples. However, negative data in the latter paper is preselected,
and, thus, dramatically affects learning capabilities.

� Supported in part by NUS grant number R252-000-127-112.

K. Lodaya and M. Mahajan (Eds.): FSTTCS 2004, LNCS 3328, pp. 360–371, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Learning Languages from Positive Data and a Finite Number of Queries 361

In the paper [Ang88], D. Angluin introduced another important learning
paradigm, i.e. learning from queries to a teacher (oracle). Among others, D.
Angluin introduced three types of queries: equivalence queries - when a learner
asks if the current conjecture generates the target language; subset and super-
set queries - when a learner asks if the current conjecture generates a subset
or a superset of the target language, respectively. If the answer is negative,
the teacher may provide a counterexample showing where the current conjec-
ture errs. This learning paradigm of testing conjectures against the target con-
cept (and some other related types of queries) has been explored, primarily in
the context of learning finite concepts and regular languages, in several papers,
for example, [Ang01, NL00, Ang87, AHK93, Kin92, SHA03, IJ88]. In [LNZ02], the
authors applied this paradigm to explore learning (potentially infinite) languages
without knowing any data in advance (neither positive, nor negative) (see also
[LZ04b, LZ04a]).

In this paper, we combine learning languages from positive data and learn-
ing language from queries into one model. The first attempt of this kind was
made in [JK04a], where learning from positive data and negative counterexam-
ples to conjectures was considered. In this model, a learner essentially asks a
subset query about every conjecture. Thus, a learner, being provided with full
positive data, is concerned with “overgeneralizing”, that is, including into con-
jectures data not belonging to the target language. If the current conjecture is
not a subset, the teacher may provide a negative counterexample. In the cur-
rent paper, we concentrate on the case when a learner can query the teacher
only a bounded (finite) number of times - thus, limiting the amount of help
from the teacher. As avoiding overgeneralization is probably the main challenge
a language learner can face (see, for example, [OSW86, ZL95]), exploring help
from subset queries is our primary objective in this paper. In addition to subset
queries, we also consider learning with equivalence and superset queries. Using
the latter type of queries in the presence of full positive data may seem problem-
atic, as “counterexamples” in this case are positive, and the learner gets them
eventually anyway. However, sometimes, a teacher may have difficulty providing
negative counterexamples. Moreover, as we have shown, positive counterexam-
ples can help learning language that cannot be learned otherwise - even when
full positive data is eventually available!

As the number of queries in our learning model is always uniformly bounded,
it can naturally be considered as a measure of complexity of learning languages
(number of queries as a measure of complexity of solving hard computational
problems has been extensively explored, see, for example [GM98]).

Following [JK04a], in addition to the case when counterexamples provided
by the teacher are arbitrary (our basic learning model), we consider two further
variants of this basic model:
– the learner always gets the least counterexample (Ibarra et al. [IJ88] ex-

plored this type of learning using equivalence queries for finite deterministic
automata);

– the learner gets only answers “yes” or “no”, but no counterexamples (queries
of this type are known as restricted).

362 S. Jain and E. Kinber

In this paper we explore effects of different types of queries on learning ca-
pabilities. In particular, we explore:

– how the number of queries can affect learning capabilities (hierarchies based
on the number of queries);

– relationships between learning capabilities based on different types of queries;
– how three different variants of the basic model (described above) using dif-

ferent types of counterexamples given affect learning capabilities;

The paper is organized as follows. Section 2 is devoted to notation and some
basic definitions (in particular, definitions of Ex and Bc types of learning). In
section 3 we define learning from positive data via subset, equivalence, and super-
set queries, as well as three abovementioned variants of the basic learning model.

In Section 4 general hierarchies based on the number of queries are exhibited.
Our results here (Theorem 1 and Theorem 2) show that, for all three types of
queries, learning with (n+ 1) queries is stronger than with n queries. Moreover,
classes of languages witnessing hierarchies in question can be Ex-learned using
(n+ 1) restricted queries (providing only answers “yes” or “no”), but cannot be
learned by Bc-type learners getting the least counterexamples.

In Section 5 we establish hierarchies based on the differences between dif-
ferent variants of the basic learning model: using least counterexamples versus
arbitrary counterexamples, and arbitrary counterexamples versus no counterex-
amples. First, we show that, for all three types of queries, when only one query
is permitted, getting the least counterexample helps no better than getting no
counterexample (Theorem 3). On the other hand, (again for all three types of
queries) Ex-learners making just two queries and receiving the least counterex-
amples can do better than Bc-learners making n queries, making a finite number
of errors in almost all conjectures, and receiving arbitrary counterexamples to
queries (Theorem 4 and Theorem 5). In the rest of the section we demonstrate
that Ex-learners making just two queries and getting arbitrary counterexamples
can learn classes not Bc-learnable via any n queries with no counterexamples,
even when a finite number of errors is allowed in almost all conjectures (Theo-
rems 6 and 7).

In Section 6 we explore the relationship between various different kind of
queries. We show that there are classes of languages Ex-learnable with one re-
stricted subset query but not Bc-learnable with any finite number of equivalence
queries, even when always getting least counterexamples and allowing any finite
number of errors in almost all conjectures (Theorem 8). On the other hand, we
show that Ex-learners using just one restricted equivalence (or superset) query
can learn a class not learnable by Bc-learners which are allowed to ask finite
number of subset queries, and make a bounded number of errors in almost all
their conjectures (Theorem 9). We also disovered a subtle difference with the
above result in the case when Bc-learners can make any unbounded finite num-
ber of errors in almost all conjectures: in this case, Bc-learners using n restricted
equivalence queries cannot learn more than Bc-learners using the same number
of restricted subset queries (Theorem 10). Still, if the teacher provides counterex-
amples, Ex-learners making just two equivalence queries can do better than Bc-

Learning Languages from Positive Data and a Finite Number of Queries 363

learners making any finite (unbounded) number of subset queries, getting least
counterexamples and making any finite (unbounded) number of errors in almost
all conjectures (Theorem 11). We then show that Ex-learners making just one
restricted superset query can sometimes do better than Bc-learners making n
equivalence queries, getting least counterexamples, and making finite (bounded)
number of errors in almost all conjectures (Theorem 13). On the other hand one
can show that finite number of superset queries do not help when Bc-learners are
allowed unbounded finite number of errors in almost all its conjectures (Theo-
rem 12). Thus, as a corollary we show that there exist classes which are learnable
using one restricted subset or equivalence query, which cannot be learned using
unbounded, but finite number of superset queries (Corollary 1).

We can show Theorems 2, 5, 7, 9 and 13 with Ex∗ inplace of Bct in the
RHS. Furthermore, anomaly hierarchy for the criteria of learning with queries
can also be shown (details omitted due to space constraints).

We also considered the case when the size of counterexamples is bounded
by the size of positive data seen so far (thus, addressing complexity issues). We
have shown, however, that counterexamples of this kind do not enhance learning
capabilities. We also explored a variant of learning via positive data and negative
counterexamples to conjectures (see [JK04a]) mentioned above, where we restrict
the learner to receive only a bounded number of (negative) counterexamples.
On the surface, learners of this kind seem to be at least as capable as learners
using bounded number of subset queries. However, we have shown that one
“clever” subset query can sometimes do more than testing every conjecture and
getting up to any n counterexamples. We also discovered that for this criteria
of learning, learners getting (2n− 1) negative answers (and no counterexamples
to the conjectures) can simulate learners getting n least counterexamples, and
this bound is tight. These topics and most of the proofs are not included in the
current version due to size constraints. Interested readers may find the proofs
and further results in [JK04b].

2 Notation and Preliminaries

Any unexplained recursion theoretic notation is from [Rog67]. The symbol N de-
notes the set of natural numbers, {0, 1, 2, 3, . . .}. Cardinality of a set S is denoted
by card(S). The maximum and minimum of a set are denoted by max(·),min(·),
respectively, where max(∅) = 0 and min(∅) =∞. L1ΔL2 denotes the symmetric
difference of L1 and L2, that is L1ΔL2 = (L1 − L2) ∪ (L2 − L1). For a natural
number a, we say that L1 =a L2, iff card(L1ΔL2) ≤ a. We say that L1 =∗ L2,
iff card(L1ΔL2) < ∞. Thus, we take n < ∗ < ∞, for all n ∈ N . If L1 =a L2,
then we say that L1 is an a-variant of L2.

We let {Wi}i∈N denote an acceptable numbering of all r.e. sets. Symbol E
will denote the set of all r.e. languages. Symbol L, with or without decorations,

364 S. Jain and E. Kinber

ranges over E . By L, we denote the complement of L, that is N −L. Symbol L,
with or without decorations, ranges over subsets of E . By Wi,s we denote the set
Wi enumerated within s steps, in some standard method of enumerating Wi.

We now present concepts from language learning theory. A text T is a map-
ping from N into (N∪{#}). Intuitively, #’s represent pauses in the presentation
of data. T (i) represents the (i + 1)-th element in the text. T [n] denotes the fi-
nite initial sequence of T with length n. SEQ denotes the set of all finite initial
sequences, {T [n] | T is a text}. We let σ, τ , and γ, with or without decorations,
range over finite sequences. The empty sequence is denoted by Λ.

The content of a text T , denoted by content(T), is the set of natural numbers
in the range of T . A text T is for a language L iff content(T) = L. One can define
content(σ), for σ ∈ SEQ similarly. The length of σ, denoted by |σ|, is the number of
elements in σ. For n ≤ |σ|, the initial sequence of σ of length n is denoted by σ[n].

We denote the sequence formed by the concatenation of τ at the end of σ by
στ . Sometimes we abuse the notation and use σx to denote the concatenation
of sequence σ and the sequence of length 1 which contains the element x.

A language learning machine [Gol67] is an algorithmic device which com-
putes a mapping from SEQ into N . We let M, with or without decorations,
range over learning machines. M(T [n]) is interpreted as the grammar (index for
an accepting program) conjectured by the learning machine M on the initial
sequence T [n]. We say that M converges on T to i, (written: M(T)↓ = i) iff
(∀∞n)[M(T [n]) = i].

There are several criteria for a learning machine to be successful on a lan-
guage. Below we define some of them. All of the criteria defined below are variants
of the Ex-style and Bc-style learning described in the Introduction; in addition,
they allow a finite number of errors in almost all conjectures (uniformly bounded,
or arbitrary).

Definition 1. [Gol67, CL82] Suppose a ∈ N ∪ {∗}
(a) M TxtExa-identifies an r.e. language L (written: L ∈ TxtExa(M)) iff for
all texts T for L, (∃i |Wi =a L)(∀∞n)[M(T [n]) = i].
(b) M TxtExa-identifies a class L of r.e. languages (written: L ⊆ TxtExa(M))
just in case M TxtExa-identifies each language from L.
(c) TxtExa = {L ⊆ E | (∃M)[L ⊆ TxtExa(M)]}.

Definition 2. [CL82] Suppose a ∈ N ∪ {∗}
(a) M TxtBca-identifies an r.e. language L (written: L ∈ TxtBca(M)) iff for
all texts T for L, (∀∞n)[WM(T [n]) =a L].
(b) M TxtBca-identifies a class L of r.e. languages (written: L ⊆ TxtBca(M))
just in case M TxtBca-identifies each language from L.
(c) TxtBca = {L ⊆ E | (∃M)[L ⊆ TxtBca(M)]}.

For a = 0, we often write TxtEx and TxtBc, instead of TxtEx0 and
TxtBc0, respectively.

Learning Languages from Positive Data and a Finite Number of Queries 365

3 Learning with Queries

In this section we define learning with queries. The kind of queries considered
are

(i) subset queries, i.e., for a queried language Q, “is Q ⊆ L?”, where L is the
language being learned;

(ii) equivalence queries, i.e., for a queried language Q, “is Q = L?”, where L
is the language being learned;

(iii) superset queries, i.e., for a queried language Q, “is Q ⊇ L?”, where L is
the language being learned.

In the model of learning, the learner is allowed to ask queries such as above
during its computation. If the answer to query is “no”, we additionally can have
the following possibilities:

(a) Learner is given an arbitrary counterexample (for subset query, coun-
terexample is a member of Q−L; for equivalence query the counterexample is a
member of LΔQ; for superset query the counterexample is a member of L−Q);

(b) Learner is given the least counterexample;
(c) Learner is just given the answer ‘no’, without any counterexample.
We would often also consider bounds on the number of queries. We first

formalize the definition of a learner which uses queries.

Definition 3. A learner using queries, can ask a query of form “Wj ⊆ L?”
(“Wj = L?”, “Wj ⊇ L?”) on any input σ. Answer to the query is “yes” or “no”
(along with a possible counterexample). Then, based on input σ and answers
received for queries made on prefixes of σ, M outputs a conjecture (from N).

We assume without loss of generality that on any particular input σ, M
asks at most one query. Also note that the queries we allow are for recursively
enumerable languages, which are posed to the teacher using a grammar (index)
for the language. Many of our diagonalization results (though not all) would
still stand even if one uses arbitrary type of query language. However simulation
results crucially use the queries being made only via grammars for the queried
languages. We now formalize learning via subset queries.

Definition 4. Suppose a ∈ N ∪ {∗}
(a) M SubQaEx-identifies a language L (written: L ∈ SubQaEx(M)) iff for
any text T for L, it behaves as follows:

(i) The number of queries that M asks on prefixes of T is bounded
by a (if a = ∗, then the number of such queries is finite). Furthermore,
all the queries are of the form “Wj ⊆ L?”

(ii) Suppose the answers to the queries are made as follows. For a
query “Wj ⊆ L?”, the answer is “yes” if Wj ⊆ L, and the answer is “no”
if Wj − L �= ∅. For “no” answers, M is also provided with a counterex-
ample, x ∈ Wj − L. Then, for some k such that Wk = L, for all but
finitely many n, M(T [n]) outputs the grammar k.

(b)M SubQaEx-identifies a class L of languages (written: L⊆SubQaEx(M))
iff it SubQaEx-identifies each L ∈ L.

366 S. Jain and E. Kinber

(c) SubQaEx = {L | (∃M)[L ⊆ SubQaEx(M)]}

LSubQaEx-identification and ResSubQaEx-identification can be defined
similarly, where for LSubQaEx-identification the learner gets the least coun-
terexample for “no” answers, and for ResSubQaEx-identification, the learner
does not get any counterexample along with the “no” answers.

For a, b ∈ N ∪ {∗}, for I ∈ {Exb,Bcb}, one can similarly define SubQaI,
SupQaI, EquQaI, LSubQaI, LSupQaI, LEquQaI, ResSubQaI, ResSupQaI,
ResEquQaI.

For identification with queries, where there is a bound n on the number of
queries asked, we will assume without loss of generality that the learner never
asks more than n queries, irrespective of whether the input language belongs to
the class being learned, or whether the answers given to earlier queries are correct.

4 Hierarchies Based on the Number of Queries

Our first two results establish general hierarchies of learning capabilities with
respect to the number of queries for all three types of queries.

Theorem 1. Suppose n ∈ N . Then, there exists a class L such that following
hold.

(a) L ∈ ResSubQn+1Ex ∩ResEquQn+1Ex.
(b) L �∈ LSubQnBc∗ ∪ LEquQnBc∗.

We now turn our attention to the hierarchy based on the number of superset
queries. As LSupQ∗Bc∗ ⊆ TxtBc∗ (see Theorem 12), the hierarchy for superset
queries takes a slightly weaker form than hierarchies for other types of queries.

Theorem 2. Suppose n, t ∈ N . ResSupQn+1Ex− LSupQnBct �= ∅.

5 Hierarchies Based on Type of Counterexamples

Before turning our attention to hierarchies based on the type of counterexamples,
we first show that, when unbounded but finite number of queries is used, or only a
single query is used, different types of counterexamples do not make a difference.

Proposition 1. Suppose a ∈ N ∪ {∗}, I ∈ {Exa,Bca}
(a) ResSubQ∗I = SubQ∗I = LSubQ∗I.
(b) ResSupQ∗I = SupQ∗I = LSupQ∗I.
(c) ResEquQ∗I = EquQ∗I = LEquQ∗I.

Theorem 3. Suppose a ∈ N ∪ {∗}, n ∈ N , I ∈ {Exa,Bca}
(a) ResSubQ1I = SubQ1I = LSubQ1I.
(b) ResEquQ1I = EquQ1I = LEquQ1I.
(c) ResSupQ1I = SupQ1I = LSupQ1I.

Learning Languages from Positive Data and a Finite Number of Queries 367

The above theorem thus restricts us to consider at least two queries when
showing differences between various types of counterexamples. We will now ex-
plore advantages of having least counterexamples.

We first consider equivalence and subset queries. Our result shows that Ex-
learners using just two subset or equivalence queries and receiving the least
counterexamples can sometimes do better than any Bc∗-learner making any n
queries of either type and receiving arbitrary counterexamples.

Theorem 4. For all n ∈ N ,
LSubQ2Ex ∩ LEquQ2Ex− (SubQnBc∗ ∪EquQnBc∗) �= ∅.

The following theorem shows that Ex-learners using just two superset queries
and getting least counterexamples can sometimes do better than any Bct-learner
(t ∈ N) using superset queries and getting any n arbitrary counterexamples.
Note, though, that this theorem cannot be generalized for diagonalization against
SupQnBc∗ (as LSupQ∗Bc∗ ⊆ TxtBc∗, see Theorem 12) or against SupQ∗Ex
(as LSupQ∗I = SupQ∗I = ResSupQ∗I, see Proposition 1).

Theorem 5. For n, t ∈ N , LSupQ2Ex− SupQnBct �= ∅.

We now consider the advantage of having arbitrary counterexamples versus
being just told that there exists a counterexample. Again we separate the result
for superset queries from the others.

First, we show that there exists a class of languages that can be Ex-learned
using just two subset or equivalence queries returning arbitrary counterexamples,
but cannot be learned by any Bc∗-learner via any m restricted queries of either
type.

Theorem 6. Suppose n ∈ N . Then,
(EquQ2Ex ∩ SubQ2Ex)− (ResEquQnBc∗ ∪ResSubQnBc∗) �= ∅.

Our next theorem shows that Ex-learners using just two superset queries
and getting arbitrary counterexamples can sometimes do better than any Bct-
learner (t ∈ N) using any n number of restricted superset queries. Note that
this result cannot be generalized for diagonalization against ResSupQnBc∗

(as SupQ∗Bc∗ ⊆ TxtBc∗, see Theorem 12) or against ResSupQ∗Ex (as
LSupQ∗I = SupQ∗I = ResSupQ∗I, see Proposition 1).

Theorem 7. For all n, t ∈ N , SupQ2Ex−ResSupQnBct �= ∅.

6 Separations Among Different Types of Queries

We first show that using ∗-number of equivalence queries, one can learn the
class of all recursively enumerable sets. Thus, diagonalization against equivalence
queries can only be done for bounded number of equivalence queries.

368 S. Jain and E. Kinber

Proposition 2. E ∈ ResEquQ∗Ex.

We next consider relationship between subset and equivalence queries. The
following theorem demonstrates that sometimes Ex-learners using just one re-
stricted subset query can do better than any Bc∗-learner, asking at most n
equivalence queries and receiving least counterexamples.

Theorem 8. ResSubQ1Ex− LEquQnBc∗ �= ∅.
We now consider the advantages of having equivalence queries versus subset

queries. The following theorem demonstrates that just one restricted equivalence
(or superset query) made by an Ex-learner can sometimes do better than any
Bcm-learner asking finite (unbounded) number of subset queries and receiving
least counterexamples.

Theorem 9. For all t ∈ N , (ResEquQ1Ex∩ResSupQ1Ex)−LSubQ∗Bct �=
∅.

In contrast, our next theorem shows that n restricted equivalence queries
made by Bc∗-learners can be simulated by n subset queries. Here, lack of the
power of equivalence queries is compensated by possibility of unbounded number
of errors in the correct conjectures.

Theorem 10. For all n ∈ N . ResEquQnBc∗ ⊆ ResSubQnBc∗.

Proof. Suppose M ResEquQnBc∗-identifies a class L. Let M′ be defined as
follows. On T [m], M′ simulates M, asking the same queries as M does on
prefixes of T [m]. In the simulation, the answers given to the queries by M is
always no. Suppose the queried languages are (in order of query being made)
Wj0 ,Wj1 , . . . ,Wjk

, where k < n. Let pm denote the final conjecture by M based
on above simulation. Let,

xi
m =

{
−1, if answer to subset query for Wji was no.
min(content(T [m])−Wji,m), if answer to subset query for Wji

was yes.

For the following, we take −1 �∈ Wji
(this is for ease of presentation). Then,

M′ on T [m], outputs a program for the following language:

Lm =
⋃

s∈N ,(∀i≤k)[xi
m 	∈Wji,s]

[Wpm,s] ∪
⋃

s∈N ,r=min({i|xi
m∈Wji,s})

[Wjr,s]

Now suppose T is a text for L ∈ L. Consider the following cases.
Case 1: For all r ≤ k, Wjr �= L.

Let

yi
m =

{
−1, if answer to subset query for Wji

was no.
min(content(T)−Wji

), if answer to subset query for Wji
was yes.

Note that, for all but finitely many m, xi
m = yi

m. Thus, for all but
finitely many m, the language Lm defined above is Wpm

. Hence, M′

ResSubQnBc∗-identifies L on text T .

Learning Languages from Positive Data and a Finite Number of Queries 369

Case 2: Wjr
= L, for some r ≤ k.

Then choose the minimal such r. For i < r, define

yi
m =

{
−1, if answer to subset query for Wji was no.
min(content(T)−Wji

), if answer to subset query for Wji
was yes.

Now, for i < r, for all but finitely many m, yi
m = xi

m. Moreover, xr
m �=

−1, and xr
m ∈ content(T) = Wjr for all m. Thus, for all but finitely

many m, for all but finitely many s, (∀i ≤ k)[xi
m �∈Wji,s], does not hold.

Moreover, for all but finitely many m, for all but finitely many s, min({i |
xi

m ∈Wji,s}) would be r. Thus, for all but finitely many m, Lm =∗ Wjr

(as Lm would contain Wjr
and some finite sets due to “finitely many

s” for which (∀i ≤ k)[xi
m �∈ Wji,s], holds, or min({i | xi

m ∈ Wji,s}) �= r
holds). Hence, M′ ResSubQnBc∗-identifies L on text T .

Theorem follows from above analysis.

Thus, for diagonalization against Bc∗ learners asking subset queries, we need
to consider at least two unrestricted equivalence queries. In the theorem below
we show that Ex-learners making just two equivalence queries can sometimes do
better than any Bc∗-learner making unbounded finite number of subset queries
receiving least counterexamples.

Theorem 11. EquQ2Ex− LSubQ∗Bc∗ �= ∅.
We now turn our attention to superset queries. First we show that, if un-

bounded finite number of errors in almost all conjectures is allowed for Bc-
learners, then no finite number of superset queries (even unbounded) receiving
least counterexamples helps to learn more than what just regular Bc∗-learners
can do. In particular, this result will limit our search of separations of types of
learning using bounded number of superset queries from other types of learning
only to the cases when the latter types do not allow unbounded number of errors
in the correct conjectures.

Theorem 12. LSupQ∗Bc∗ ⊆ TxtBc∗.

The above result is used to derive the following corollary, demonstrating that
Ex-learners making just one subset or equivalence query can sometimes do better
than any Bc∗-learner using any finite (unbounded) number of superset queries
and receiving least counterexamples.

Corollary 1. SubQ1Ex ∩EquQ1Ex− LSupQ∗Bc∗ �= ∅.
Theorem 9 above already established the diagonalization from superset queries

to subset queries. The following result establishes the separation of superset
queries from equivalence queries. Note that ResSupQ1Ex − LEquQnBct �= ∅
cannot be improved to having Bc∗ on the RHS (as LSupQ∗Bc∗ ⊆ TxtBc∗,
Theorem 12) or to having ∗-number of equivalence queries (as E ∈ ResEquQ∗Ex,
Proposition 2).

Theorem 13. For n, t ∈ N , ResSupQ1Ex− LEquQnBct �= ∅.

370 S. Jain and E. Kinber

7 Conclusion

In this paper we explored learning classes of recursively enumerable languages
from full positive data and bounded number of subset, superset and equiva-
lence queries. We compared capabilities of learning models using different types
of queries and counterexamples and obtained hierarchies based on the num-
ber and types of counterexamples. We have not discussed yet another popular
and natural type of queries considered in literature - membership queries, as a
bounded number of such queries trivially does not help in the presence of full
positive data. On the other hand, learning languages from full positive data and
infinitely many membership queries is equivalent to learning from full positive
and negative data (so-called informants) thoroughly explored in literature (see
for example, [JORS99]). One can also show that infinite number of (superset,
subset or equivalence) queries together with full positive data makes it possible
to learn any recursively enumerable language.

In our research, we concentrated on learning classes of recursively enumerable
languages. One might also consider learning from positive data and bounded
number of queries for indexed classes of recursive languages (they include such
important classes as regular languages and pattern languages [Ang80]). Some of
our results are applicable to indexed classes of recursive languages. Still, further
research in this direction might be promising.

References

[AHK93] D. Angluin, L. Hellerstein, and M. Karpinski. Learning read-once formulas
with queries. Journal of the ACM, 40(1):185–210, 1993.

[Ang80] D. Angluin. Finding patterns common to a set of strings. Journal of Com-
puter and System Sciences, 21:46–62, 1980.

[Ang87] D. Angluin. Learning regular sets from queries and counter-examples. In-
formation and Computation, 75:87–106, 1987.

[Ang88] D. Angluin. Queries and concept learning. Machine Learning, 2:319–342,
1988.

[Ang01] D. Angluin. Queries revisited. In Algorithmic Learning Theory: Twelfth
International Conference (ALT’ 2001), volume 2225 of Lecture Notes in
Artificial Intelligence, pages 12–31. Springer-Verlag, 2001.

[Bār74] J. Bārzdiņš. Two theorems on the limiting synthesis of functions. In Theory
of Algorithms and Programs, vol. 1, pages 82–88. Latvian State University,
1974. In Russian.

[BCJ95] G. Baliga, J. Case, and S. Jain. Language learning with some negative in-
formation. Journal of Computer and System Sciences, 51(5):273–285, 1995.

[CL82] J. Case and C. Lynes. Machine inductive inference and language identifica-
tion. In M. Nielsen and E. M. Schmidt, editors, Proceedings of the 9th In-
ternational Colloquium on Automata, Languages and Programming, volume
140 of Lecture Notes in Computer Science, pages 107–115. Springer-Verlag,
1982.

[CS83] J. Case and C. Smith. Comparison of identification criteria for machine
inductive inference. Theoretical Computer Science, 25:193–220, 1983.

Learning Languages from Positive Data and a Finite Number of Queries 371

[GM98] W. Gasarch and G. Martin. Bounded Queries in Recursion Theory.
Birkhauser, 1998.

[Gol67] E. M. Gold. Language identification in the limit. Information and Control,
10:447–474, 1967.

[IJ88] O. Ibarra and T. Jiang. Learning regular languages from counterexamples.
In Proceedings of the Workshop on Computational Learning Theory, pages
337–351. Morgan Kaufmann, 1988.

[JK04a] S. Jain and E. Kinber. Learning language from positive data and negative
counterexamples. In Algorithmic Learning Theory: Fifteenth International
Conference (ALT’ 2004). Springer-Verlag, 2004. To appear.

[JK04b] S. Jain and E. Kinber. Learning languages from positive data and finite
number of queries. Technical Report TRC4/04, School of Computing, Na-
tional University of Singapore, 2004.

[JORS99] S. Jain, D. Osherson, J. Royer, and A. Sharma. Systems that Learn: An
Introduction to Learning Theory. MIT Press, Cambridge, Mass., second
edition, 1999.

[Kin92] E. Kinber. Learning a class of regular expressions via restricted subset
queries. In K. Jantke, editor, Analogical and Inductive Inference, Proceed-
ings of the Third International Workshop, volume 642 of Lecture Notes in
Artificial Intelligence, pages 232–243. Springer-Verlag, 1992.

[LNZ02] S. Lange, J. Nessel, and S. Zilles. Learning languages with queries. In
Proceedings of Treffen der GI-Fachgruppe Maschinelles Lernen (FGML),
Learning Lab Lower Saxony, Hannover, Germany, pages 92–99, 2002.

[LZ04a] S. Lange and S. Zilles. Comparison of query learning and gold-style learning
in dependence of the hypothesis space. In Algorithmic Learning Theory:
Fifteenth International Conference (ALT’ 2004), Lecture Notes in Artificial
Intelligence. Springer-Verlag, 2004. To appear.

[LZ04b] S. Lange and S. Zilles. Replacing limit learners with equally powerful one-
shot query learners. In John Shawe-Taylor and Yoram Singer, editors, Pro-
ceedings of the Seventeenth Annual Conference on Computational Learning
Theory, volume 3120 of Lecture Notes in Artificial Intelligence, pages 155–
169. Springer-Verlag, 2004.

[NL00] J. Nessel and S. Lange. Learning erasing pattern languages with queries.
In Algorithmic Learning Theory: Eleventh International Conference (ALT’
2000), volume 1968 of Lecture Notes in Artificial Intelligence, pages 86–100.
Springer-Verlag, 2000.

[OSW86] D. Osherson, M. Stob, and S. Weinstein. Systems that Learn: An Introduc-
tion to Learning Theory for Cognitive and Computer Scientists. MIT Press,
1986.

[OW82] D. Osherson and S. Weinstein. Criteria of language learning. Information
and Control, 52:123–138, 1982.

[Rog67] H. Rogers. Theory of Recursive Functions and Effective Computability.
McGraw-Hill, 1967. Reprinted by MIT Press in 1987.

[SHA03] H. Sakamoto, K. Hirata, and H. Arimura. Learning elementary formal sys-
tems with queries. Theoretical Computer Science A, 298:21–50, 2003.

[ZL95] T. Zeugmann and S. Lange. A guided tour across the boundaries of learning
recursive languages. In K. Jantke and S. Lange, editors, Algorithmic Learn-
ing for Knowledge-Based Systems, volume 961 of Lecture Notes in Artificial
Intelligence, pages 190–258. Springer-Verlag, 1995.

The Complexity of the Local Hamiltonian
Problem

Julia Kempe1, Alexei Kitaev2, and Oded Regev3

1 CNRS & LRI, Université de Paris-Sud, 91405 Orsay, France, and UC Berkeley,
Berkeley, CA94720

2 Departments of Physics and Computer Science, California Institute of Technology,
Pasadena, CA 91125

3 Dept. of Computer Science, Tel-Aviv University, Tel-Aviv, 69978, Israel

Abstract. The k-local Hamiltonian problem is a natural complete
problem for the complexity class QMA, the quantum analog of NP. It
is similar in spirit to MAX-k-SAT, which is NP-complete for k ≥ 2. It
was known that the problem is QMA-complete for any k ≥ 3. On the
other hand 1-local Hamiltonian is in P, and hence not believed to be
QMA-complete. The complexity of the 2-local Hamiltonian problem
has long been outstanding. Here we settle the question and show that
it is QMA-complete. We provide two independent proofs; our first proof
uses a powerful technique for analyzing the sum of two Hamiltonians;
this technique is based on perturbation theory and we believe that it
might prove useful elsewhere. The second proof uses elementary linear
algebra only. Using our techniques we also show that adiabatic compu-
tation with two-local interactions on qubits is equivalent to standard
quantum computation.

1 Introduction

Quantum complexity theory has emerged alongside the first efficient quantum
algorithms in an attempt to formalize the notion of an efficient algorithm. In
analogy to classical complexity theory, several new quantum complexity classes
have appeared. A major challenge today consists in understanding their structure
and the interrelation between classical and quantum classes.

One of the most important classical complexity classes is NP - nondetermin-
istic polynomial time. This class comprises languages that can be verified in
polynomial time by a deterministic verifier. The celebrated Cook-Levin theorem
(see, e.g., [1]) shows that this class has complete problems. More formally, it
states that SAT is NP-complete, i.e., it is in NP and any other language in NP
can be reduced to it with polynomial overhead. In SAT we are given a set of
clauses (disjunctions) over n variables and asked whether there is an assignment
that satisfies all clauses. One can consider the restriction of SAT in which each
clause consists of exactly k literals. This is known as the k-SAT problem. It is
known that 3-SAT is still NP-complete while 2-SAT is in P, i.e., has a polyno-
mial time solution. We can also consider the MAX-k-SAT problem: here, given

K. Lodaya and M. Mahajan (Eds.): FSTTCS 2004, LNCS 3328, pp. 372–383, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

The Complexity of the Local Hamiltonian Problem 373

a k-SAT formula and a number m we are asked whether there exists an assign-
ment that satisfies at least m clauses. It turns out that MAX-2-SAT is already
NP-complete; MAX-1-SAT is clearly in P.

The class QMA is the quantum analogue of NP in a probabilistic setting, i.e.,
the class of all languages that can be verified by a quantum verifier in polynomial
time probabilistically (the name is derived from the classical class MA, which is
the randomized analogue of NP). This class, which is also called BQNP, was first
studied in [2, 3]; the name QMA was given to it by Watrous [4]. Several problems
in QMA have been identified [4, 3, 5]. For a good introduction to the class QMA,
see the book by Kitaev et al. [3] and the paper by Watrous [4].

Kitaev, inspired by ideas due to Feynman, defined the quantum analogue of
the classical SAT problem, the local Hamiltonian problem [3].1 An instance
of k-local Hamiltonian can be viewed as a set of local constraints on n qubits,
each involving at most k of them. We are asked whether there is a state of the
n qubits such that the expected number of violated constraints is either below a
certain threshold or above another threshold, with a promise that one of the two
cases holds and both thresholds are at least a constant apart. More formally, we
are to determine whether the groundstate energy of the Hamiltonian is below
one threshold or above another.

Kitaev proved [3] that the 5-local Hamiltonian problem is QMA-complete.
Later, Kempe and Regev showed that already 3-local Hamiltonian is com-
plete for QMA [7]. In addition, it is easy to see that 1-local Hamiltonian is in
P. The complexity of the 2-local Hamiltonian problem was left as an open
question in [6, 8, 7, 9]. It is not hard to see that the k-local Hamiltonian prob-
lem contains the MAX-k-SAT problem.2 Using the known NP-completeness of
MAX-2-SAT, we obtain that 2-local Hamiltonian is NP-hard, i.e., any prob-
lem in NP can be reduced to it with polynomial overhead. But is it also QMA-
complete? or perhaps it lies in some intermediate class between NP and QMA?
Some special cases of the problem were considered by Bravyi and Vyalyi [9];
however, the question still remained open.

In this paper we settle the question of the complexity of 2-local Hamilto-
nian and show

Theorem 1. The 2-local Hamiltonian problem is QMA-complete.

In [3] it was shown that the k-local Hamiltonian problem is in QMA for
any constant k (and in fact even for k = O(logn) where n is the total number of
qubits). Hence, our task in this paper is to show that any problem in QMA can
be reduced to the 2-local Hamiltonian problem with a polynomial overhead.
We give two self contained proofs for this.

1 For a good survey of the local Hamiltonian problem see [6].
2 The idea is to represent the n variables by n qubits and represent each clause by a

Hamiltonian. Each Hamiltonian is diagonal and acts on the k variables that appear
in its clause. It ‘penalizes’ the assignment which violates the clause by increasing its
eigenvalue. Therefore, the lowest eigenvalue of the sum of the Hamiltonians corre-
sponds to the maximum number of clauses that can be satisfied simultaneously.

374 J. Kempe, A. Kitaev, and O. Regev

Our first proof is based on a careful selection of gates in a quantum circuit
and several applications of a lemma called the projection lemma. The proof is
quite involved; however, it only uses elementary linear algebra and hence might
appeal to some readers.

Our second proof is based on perturbation theory – a collection of techniques
that are used to analyze sums of Hamiltonians. This proof is more mathemati-
cally involved. Nevertheless, it might give more intuition as to why the 2-local
Hamiltonian problem is QMA-complete. Unlike the first proof that shows how
to represent any QMA circuit by a 2-local Hamiltonian, the second proof shows
a reduction from the 3-local Hamiltonian problem (which is already known
to be QMA-complete [7]) to the 2-local Hamiltonian problem. To the best of
our knowledge, this is the first reduction inside QMA (i.e., not from the circuit
problem). This proof involves what is known as third order perturbation theory
(interestingly, the projection lemma used in our first proof can be viewed as
an instance of first order perturbation theory). We are not aware of any sim-
ilar application of perturbation theory in the literature and we hope that our
techniques will be useful elsewhere.

Adiabatic Computation: It has been shown in [10] that the model of adiabatic
computation with 3-local interactions is equivalent to the standard model of
quantum computation (i.e., the quantum circuit model).3 We strengthen this
result by showing that 2-local Hamiltonians suffice.4 Namely, the model of adia-
batic computation with 2-local interactions is equivalent to the standard model
of quantum computation. We obtain this result by applying the technique of
perturbation theory, which we develop in the second proof of the main theorem.
This gives another application of the powerful perturbation theory techniques
developed in this paper.

Comparison with Previous Work: For readers familiar with [7], let us mention
the main differences between their 3-local construction and the 2-local construc-
tion we use in our first proof (our second proof is very different from all previous
proofs). We will describe these differences in more detail later. The main prob-
lem is in handling two-qubit gates. We would like to check a correct propagation
by using only two-local terms. In other words, we are supposed to construct a
Hamiltonian that penalizes bad propagations and does not penalize a correct
propagation. It can be seen that the techniques [7] are not enough to imple-
ment such a Hamiltonian. We therefore need some new ideas. The first idea is
to multiply the Hamiltonian that checks the one-qubit propagation by a large
factor. This allows us to assume that the propagation according to one-qubit
gates is correct. Hence, we only have to worry about the propagation according

3 Interestingly, their proof uses ideas from the proof of QMA-completeness of the local
Hamiltonian problem.

4 The main result of [10] is that 2-local adiabatic computation on six-dimensional
particles is equivalent to standard quantum computation. There, however, the par-
ticles were set on a two-dimensional grid and all two-local interactions were between
closest neighbors; hence, the two results are incomparable.

The Complexity of the Local Hamiltonian Problem 375

to two-qubit gates. The main idea here is to pad each two-qubit gate with four Z
gates, two before and two after. Since we know that the one-qubit propagation
is correct we can use these additional gates in constructing our Hamiltonian.
One of the crucial terms in our Hamiltonian is a term that connects time t and
time t + 2. Essentially, it compares how the state of the system changes after
two qubits have been changed. We can perform such a comparison thanks to the
extra one-qubit gates and to the strong one-qubit propagation Hamiltonian.

Structure: We start with describing our notation and some basics in Section 2.
Our first proof is omitted. In Section 3 we give the second proof of our main theo-
rem. This proof does not require the projection lemma and is in fact independent
of the first proof. We also omit the results relating to adiabatic computation.
Some open questions are mentioned in Section 4.

2 Preliminaries

QMA is naturally defined as a class of promise problems: A promise problem
L is a pair (Lyes, Lno) of disjoint sets of strings corresponding to Yes and No
instances of the problem. The problem is to determine, given a string x ∈ Lyes∪
Lno, whether x ∈ Lyes or x ∈ Lno. Let B be the Hilbert space of a qubit.

Definition 1 (QMA). Fix ε = ε(|x|) such that ε = 2−Ω(|x|). Then, a promise
problem L ∈ QMA if there exists a quantum polynomial time verifier V and a
polynomial p such that:

- ∀x ∈ Lyes ∃|ξ〉 ∈ B⊗p(|x|) Pr (V (|x〉, |ξ〉) = 1) ≥ 1− ε
- ∀x ∈ Lno ∀|ξ〉 ∈ B⊗p(|x|) Pr (V (|x〉, |ξ〉) = 1) ≤ ε

where Pr (V (|x〉, |ξ〉) = 1) denotes the probability that V outputs 1 given |x〉
and |ξ〉.

We note that in the original definition ε was defined to be 2−Ω(|x|) ≤ ε ≤ 1/3.
By using amplification methods, it was shown in [3] that for any choice of ε in the
this range the resulting classes are equivalent. Hence our definition is equivalent
to the original one. In a related result, Marriott and Watrous [11] showed that
exponentially small ε can be achieved without amplification with a polynomial
overhead in the verifier’s computation.

A natural choice for the quantum analogue of SAT is the local Hamilto-
nian problem. As we will see later, this problem is indeed a complete problem
for QMA:

Definition 2. We say that an operator H : B⊗n −→ B⊗n on n qubits is a
k-local Hamiltonian if H is expressible as H =

∑r
j=1 Hj where each term is a

Hermitian operator acting on at most k qubits.

Definition 3. The (promise) problem k-local Hamiltonian is defined as fol-
lows: A k-local Hamiltonian on n-qubits H =

∑r
j=1 Hj with r = poly(n). Each

376 J. Kempe, A. Kitaev, and O. Regev

Hj has a bounded operator norm ‖Hj‖ ≤ poly(n) and its entries are specified
by poly(n) bits. In addition, we are given two constants a and b with a < b. In
Yes instances, the smallest eigenvalue of H is at most a. In No instances, it is
larger than b. We should decide which one is the case.

An important notion that will be used in this paper is that of a restriction
of a Hamiltonian.

Definition 4. Let H be a Hamiltonian and let Π be a projection on some sub-
space S. Then we say that the Hamiltonian ΠHΠ on S is the restriction of H
to S. We denote this restriction by H|S .

3 Perturbation Theory Proof

In this section we give the second proof of our main theorem. The methods
and techniques we use are different from the first proof and might constitute a
useful tool for other Hamiltonian constructions. To this end, we keep the proof
as general as possible.

The underlying idea is similar to the previous proof in that we add two Hamil-
tonians and analyze the spectrum of their sum. As before, we think of one of
the Hamiltonians as having a large spectral gap (the unperturbed Hamiltonian
H) and the other one (the perturbation Hamiltonian V) as having a small norm
compared to the spectral gap of H. However, this time we will introduce the no-
tion of an effective Hamiltonian, which describes the effect of the perturbation V
inside the relevant (low-eigenvalue) subspace. More precisely, we will prove that
adding a perturbation to H gives a Hamiltonian that has almost the same spec-
trum as the effective Hamiltonian Heff . This will allow us to create an effective
3-local Hamiltonian from 2-local terms.

3.1 Perturbation Theory

For two Hermitian operators H and V , let H̃ = H+V . We refer to H as the un-
perturbed Hamiltonian and to V as the perturbation Hamiltonian. Let λj , |ψj〉 be
the eigenvalues and eigenvectors of H, whereas the eigenvalues and eigenvectors
of H̃ are denoted by λ̃j , |ψ̃j〉. In case of multiplicities, some eigenvalues might
appear more than once. We order the eigenvalues in a non-decreasing order

λ1 ≤ λ2 ≤ · · · ≤ λdim H, λ̃1 ≤ λ̃2 ≤ · · · ≤ λ̃dim H.

In general, everything related to the perturbed Hamiltonian is marked with
a tilde.

Our goal in this section is to study the spectrum of H̃. We start with a lemma
that gives a rough approximation for this spectrum. This approximation will be
greatly refined later.

Lemma 1. For all j, |λ̃j − λj | ≤ ‖V ‖.

The Complexity of the Local Hamiltonian Problem 377

Proof. Omitted. ��

Corollary 1. Spec H̃ is contained in the ‖V ‖-neighborhood of SpecH.

The goal of perturbation theory is to find a more accurate approximation
for λ̃j , assuming that ‖V ‖ is small. One important setting was described in the
projection lemma. Specifically, let H have a zero eigenvalue with the associated
eigenspace S, whereas the other eigenvalues are greater than Δ ; ‖V ‖. The
projection lemma shows that in this case, the lower part of Spec H̃ is close to
the spectrum of V |S . In this section we find a better approximation to Spec H̃
by considering certain correction terms that involve higher powers of V . For the
applications considered below, we need to carry out the calculation up to the
third order in V . We remark that the projection lemma (in a slightly stronger
form) can be obtained by following the development done in this section up to
the first order.

In order to capture the lower part of the spectrum, one does not actually
project the operator H̃ itself, but rather the resolvent of H̃:

G̃(z) =
(
zI − H̃

)−1 =
∑

j

(
zI − λ̃j

)−1∣∣ψ̃j

〉〈
ψ̃j

∣∣. (1)

It is a meromorphic5 operator-valued function of the complex variable z with
poles at z = λ̃j . In fact, for our purposes, it is sufficient to consider real z. The
resolvent is the main tool in abstract spectral theory [12]; in physics, it is known
as the Green’s function.6 Its usefulness comes from the fact that its poles can be
preserved under certain projections (while eigenvalues are usually lost).

By analogy with G̃(z), one can define the unperturbed Green’s function
G(z) = (zI −H)−1. The former can be expressed in terms of the latter (where
we omit the variable z):7

G̃ =
(
G−1−V

)−1 = G
(
I−V G

)−1 = G+GV G+GV GV G+GV GV GV G+· · · .

We remark that from this expansion, one can obtain an alternative proof of
Corollary 1. Indeed, let r be an arbitrary constant greater than ‖V ‖. For any z
be of distance at least r to SpecH, we have that ‖G‖ is at most 1/r. Hence, for
such z, the right hand side converges uniformly in the operator norm. It follows
that all the poles of G̃ (and hence Spec H̃) lie within a ‖V ‖-neighborhood of
SpecH.

To define the subspace over which we want to analyze H̃, let λ∗ ∈ R be some
cutoff on the spectrum of H.

5 A meromorphic function is analytic in all but a discrete subset of C, and these
singularities must be poles and not essential singularities.

6 Physicists actually use slightly different Green’s functions that are suited for specific
problems.

7 This expansion of G̃ in powers of V may be represented by Feynman diagrams [13].

378 J. Kempe, A. Kitaev, and O. Regev

Definition 5. Let H = L+⊕L−, where L+ is the space spanned by eigenvectors
of H with eigenvalues λ ≥ λ∗ and L− is spanned by eigenvectors of H of eigen-
value λ < λ∗. Let Π± be the corresponding projection onto L±. For an operator
X on H define the operator X++ = X|L+ = Π+XΠ+ on L+ and similarly
X−− = X|L− . We also define X+− = Π+XΠ− as an operator from L− to L+,
and similarly X−+.

With these definitions, in a representation of H = L+ ⊕ L− both H and G

are block diagonal and we will omit one index for their blocks, i.e., H+
def
= H++,

G+
def
= G++ and so on. Note that G−1

± = zI± −H±. To summarize, we have:

H̃ =

(
H̃++ H̃+−
H̃−+ H̃−−

)
V =

(
V++ V+−
V−+ V−−

)
H =

(
H+ 0
0 H−

)

G̃ =

(
G̃++ G̃+−
G̃−+ G̃−−

)
G =

(
G+ 0
0 G−

)

We write H = L̃+ ⊕ L̃− according to the spectrum of H̃ and the cutoff λ∗.
Then in the following, we analyze Spec H̃|

˜L−
, the lower part of the spectrum of

H̃. To this end, we will study the poles of the projected resolvent G̃−− in the
range (−∞, λ∗) and show that if H has a spectral gap around λ∗ then these
poles correspond exactly to the eigenvalues of H̃|

˜L−
(Lemma 2). We define

Σ−(z) = zI− − G̃−1
−−(z)

so that we can write
G̃−−(z) =

(
zI− −Σ−(z)

)−1

as in Eq. (1).
The operator-valued function Σ−(z) is called self-energy.8 We will relate

Spec H̃|
˜L−

to SpecΣ−(z) by showing that the poles of G̃−− in (−∞, λ∗) are
all z such that z is an eigenvalue of Σ−(z) (Lemma 3).

For certain choices of H and V , it turns out that Σ−(z) is nearly constant
in a certain range. In such a case, we can approximate it by a z-independent
Hamiltonian Heff to which we refer to as the effective Hamiltonian. The main
theorem of this section shows that in this case the lower part of the spectrum of
H̃ is close to the spectrum of Heff .

In order to find Heff , we represent Σ−(z) using a series expansion in terms
of G+ and the four blocks of V . We start by expressing G̃ in terms of G as

G̃ =
(
G−1 − V

)−1 =
(
G−1

+ − V++ −V+−
−V−+ G−1

− − V−−

)−1

.

8 The term H− is not usually considered part of self-energy, but we have included it
for notational convenience.

The Complexity of the Local Hamiltonian Problem 379

Then, using the block matrix identity(
A B
C D

)−1

=

((
A−BD−1C

)−1 −A−1B
(
D − CA−1B

)−1

−D−1C
(
A−BD−1C

)−1 (
D − CA−1B

)−1

)
we conclude that

G̃−− =
(
G−1

− − V−− − V−+
(
G−1

+ − V++
)−1

V+−
)−1

.

Finally, we can represent Σ−(z) using the series expansion (I − X)−1 =
I + X + X2 + . . .,

Σ−(z) = H− + V−− + V−+
(
G−1

+ − V++
)−1

V+−

= H− + V−− + V−+G+
(
I − V++G+

)−1
V+−

= H− + V−− + V−+G+V+− + V−+G+V++G+V+− +
V−+G+V++G+V++G+V+− + · · · .

(2)

With these intuitions in place we now state and prove the main theorem of
this section. It essentially says that if H and V are such that Σ−(z) can be
closely approximated by a constant operator Heff (independent of z), then the
spectrum of H̃|

˜L−
can be closely approximated by the spectrum of Heff .

Theorem 2. Assume H has a spectral gap Δ around the cutoff λ∗, i.e., all
its eigenvalues are in (−∞, λ−] ∪ [λ+,+∞), where λ+ = λ∗ + Δ/2 and λ− =
λ∗ − Δ/2. Assume moreover that ‖V ‖ < Δ/2. Let ε > 0 be arbitrary. Assume
there exists an operator Heff such that SpecHeff ⊆ [a, b] for some a < b < λ∗− ε
and moreover, the inequality

‖Σ−(z)−Heff‖ ≤ ε

holds for all z ∈ [a− ε, b+ ε]. Then each eigenvalue λ̃j of H̃|
˜L−

is ε-close to the
jth eigenvalue of Heff .

Proof. Our first lemma asserts that the poles of G̃−− in the range (−∞, λ∗)
are in one to one correspondence with the eigenvalues of H̃|

˜L−
. Hence we can

recover the eigenvalues of H̃|
˜L−

from the poles of G̃−−.

Lemma 2. Let λ̃ be in (−∞, λ∗) and let m ≥ 0 be its multiplicity as an eigen-
value of H̃|

˜L−
. Then around λ̃, G̃−− is of the form (z − λ̃)−1A+O(1) where A

is a rank m operator.

Proof. Omitted. ��

The next lemma relates the spectrum of H̃|
˜L−

to the operator Σ−(z).

Lemma 3. For any z < λ∗, the multiplicity of z as an eigenvalue of H̃|
˜L−

is
equal to the multiplicity of z as an eigenvalue of Σ−(z).

380 J. Kempe, A. Kitaev, and O. Regev

Proof. Omitted. ��
We observe that the function Σ−(z) is monotone decreasing in the operator

sense (i.e., if z1 ≤ z2 then Σ−(z1)−Σ−(z2) is positive semidefinite):

dΣ−(z)
dz

=
d

dz

(
V−− + V−+(zI+ −H+ − V++)−1V+−

)
=

−V−+(zI+ −H+ − V++)−2V+− ≤ 0.

Lemma 4. Let λ̃j be the jth eigenvalue of H̃|
˜L−

. Then it is also the jth eigen-

value of Σ−(λ̃j).

Proof. Omitted. ��
We can now complete the proof of the theorem. By Corollary 1 and our

assumption on Heff , we have that for any z ∈ [a − ε, b + ε], SpecΣ−(z) is
contained in [a − ε, b + ε]. From this and the monotonicity of Σ−, we obtain
that there is no z ∈ (b + ε, λ∗] that is an eigenvalue of Σ−(z). Similarly, there
is no z < a − ε that is an eigenvalue of Σ−(z). Hence, using Lemma 3 we see
that Spec H̃|

˜L−
is contained in [a − ε, b + ε]. Now let λ̃j ∈ [a − ε, b + ε] be the

jth eigenvalue of H̃|
˜L−

. By Lemma 4 it is also the jth eigenvalue of Σ−(λ̃j). By
Lemma 1 it is ε-close to the jth eigenvalue of Heff . ��

3.2 The Three-Qubit Gadget

In this section we demonstrate how Theorem 2 can be used to transform a 3-local
Hamiltonian into a 2-local one. The complete reduction will be shown in the next
section. From now we try to keep the discussion more specialized to our QMA
problem rather than presenting it in full generality as was done in Section 3.1.

Let Y be some arbitrary 2-local Hamiltonian acting on a space M of N
qubits. Also, let B1, B2, B3 be positive semidefinite Hamiltonians each acting on
a different qubit (so they commute). We think of these four operators as having
constant norm. Assume we have the 3-local Hamiltonian

Y − 6B1B2B3. (3)

The factor 6 is added for convenience. Recall that in the local Hamiltonian
problem we are interested in the lowest eigenvalue of a Hamiltonian. Hence, our
goal is to find a 2-local Hamiltonian whose lowest eigenvalue is very close to the
lowest eigenvalue of (3).

We start by adding three qubits to our system. For j = 1, 2, 3, we denote the
Pauli operators acting on the jth qubit by σα

j . Let δ > 0 be a sufficiently small
constant. Our 2-local Hamiltonian is H̃ = H + V , where

H = −δ
−3

4
I ⊗

(
σz

1σ
z
2 + σz

1σ
z
3 + σz

2σ
z
3 − 3I

)
V = X ⊗ I − δ−2(B1 ⊗ σx

1 + B2 ⊗ σx
2 + B3 ⊗ σx

3
)

X = Y + δ−1(B2
1 + B2

2 + B2
3)

The Complexity of the Local Hamiltonian Problem 381

The unperturbed Hamiltonian H has eigenvalues 0 and Δ
def
= δ−3. Associated

with the zero eigenvalue is the subspace

L− =M⊗C, where C =
(
|000〉, |111〉

)
.

In the orthogonal subspace C⊥ we have the states |001〉, |010〉, etc. We may
think of the subspace C as an effective qubit (as opposed to the three physical
qubits); the corresponding Pauli operators are denoted by σα

eff .
We now compute the self-energy Σ−(z) using the power expansion (2) up to

the third order. There is no zeroth order term, i.e., H− = 0. For the remaining
terms, notice that G+ = (z −Δ)−1IL+ . Hence, we have

Σ−(z) = V−− + (z −Δ)−1V−+V+− + (z −Δ)−2V−+V++V+− +
(z −Δ)−3V−+V++V++V+− + . . .

The first term is V−− = X ⊗ IC because a σx term takes any state in C to
C⊥. The expressions in the following terms are of the form

V−+ = −δ−2
(
B1 ⊗ |000〉〈100|+ B2 ⊗ |000〉〈010|+ B3 ⊗ |000〉〈001|

+B1 ⊗ |111〉〈011|+ B2 ⊗ |111〉〈101|+ B3 ⊗ |111〉〈110|
)

V++ = X ⊗ IC⊥ − δ−2
(
B1 ⊗

(
|001〉〈101|+ |010〉〈110|+ |101〉〈001|+

|110〉〈010|
)

+ B2 ⊗ (. . .) + B3 ⊗ (. . .)
)
,

where the dots denote similar terms for B2 and B3. Now, in the second term
of Σ−(z), V+− flips one of the physical qubits, and V−+ must return it to its
original state in order to return to the space C. Hence we have V−+V+− =
δ−4(B2

1 +B2
2 +B2

3)⊗ IC . The third term is slightly more involved. Here we have
two possible processes. Indeed, we may act by the operator X⊗IC⊥ (first part of
V++) after one of the qubits is flipped. Alternatively, V−+, V++, and V+− may
correspond to flipping all three qubits in succession. Thus,

Σ−(z) = X ⊗ IC + (z −Δ)−1δ−4(B2
1 + B2

2 + B2
3)⊗ IC

+ (z −Δ)−2δ−4(B1XB1 + B2XB2 + B3XB3)⊗ IC

− (z −Δ)−2δ−6(B3B2B1 + B2B3B1 + B3B1B2 + B1B3B2+

B2B1B3 + B1B2B3
)
⊗ σx

eff + O
(
‖V ‖4/Δ3).

(4)

The asymptotic expression for the error term holds since we take z = O(1)=
Δ and hence

(z −Δ)−1 = − 1
Δ

(
1− z

Δ

)−1
= − 1

Δ
+ O(z/Δ2) = −δ3 + O(δ6).

Simplifying the above, we obtain

Σ−(z) = Y ⊗ IC − 6B1B2B3 ⊗ σx
eff︸ ︷︷ ︸

Heff

+O(δ).

382 J. Kempe, A. Kitaev, and O. Regev

Notice that ‖Heff‖ = O(1) and hence we obtain that for all z in, say,
[−2‖Heff‖, 2‖Heff‖] we have

‖Σ−(z)−Heff‖ = O(δ).

We may now apply Theorem 2 with a = −‖Heff‖, b = ‖Heff‖, and λ∗ = Δ/2
to obtain the following result: Each eigenvalue λ̃j from the lower part of Spec H̃
is O(δ)-close to the j-th eigenvalue of Heff . In fact, for our purposes, it is enough
that the lowest eigenvalue of H̃ is O(δ)-close to the lowest eigenvalue of Heff . It
remains to notice that the spectrum of Heff consists of two parts that correspond
to the effective spin states |+〉 = 1√

2

(
|0〉 + |1〉

)
and |−〉 = 1√

2

(
|0〉 − |1〉

)
. Since

B1, B2, B3 are positive semidefinite, the smallest eigenvalue is associated with
|+〉. Hence, the lowest eigenvalue of H̃ is equal to the lowest eigenvalue of (3),
as required.

3.3 Reduction from 3-local Hamiltonian to 2-local Hamiltonian

In this section we reduce the 3-local Hamiltonian problem to the 2-local
Hamiltonian problem. By the QMA-completeness of the 3-local Hamilto-
nian problem [7], this establishes Theorem 1. The proof is based on the three-
qubit gadget and is omitted.

4 Conclusion

Some interesting open questions remain. First, perturbation theory has allowed
us to perform the first reduction inside QMA. What other problems can be
solved using this technique? Second, there exists an intriguing class between NP
(in fact, MA) and QMA known as QCMA. It is the class of problems that can be
verified by a quantum verifier with a classical proof. Can one show a separation
between QCMA and QMA? or perhaps show they are equal? Third, Kitaev’s
original 5-local proof has the following desirable property. For any Yes instance
produced by the reduction there exists a state such that each individual 5-local
term is very close to its groundstate. Note that this is a stronger property than
the one required in the local Hamiltonian problem. Using a slight modifica-
tion of Kitaev’s original construction, one can show a reduction to the 4-local
Hamiltonian problem that has the same property. However, we do not know
if this property can be achieved for the 3-local (or even 2-local) problem.

Acknowledgments

Discussions with Sergey Bravyi and Frank Verstraete are gratefully acknowl-
edged. JK is supported by ACI Sécurité Informatique, 2003-n24, projet “Réseaux
Quantiques”, ACI-CR 2002-40 and EU 5th framework program RESQ IST-2001-
37559, and by DARPA and Air Force Laboratory, Air Force Materiel Command,

The Complexity of the Local Hamiltonian Problem 383

USAF, under agreement number F30602-01-2-0524, and by DARPA and the
Office of Naval Research under grant number FDN-00014-01-1-0826 and dur-
ing a visit supported in part by the National Science Foundation under grant
EIA-0086038 through the Institute for Quantum Information at the California
Institute of Technology. AK is supported in part by the National Science Foun-
dation under grant EIA-0086038. OR is supported by an Alon Fellowship and
the Army Research Office grant DAAD19-03-1-0082. Part of this work was car-
ried out during a visit of OR at LRI, Université de Paris-Sud and he thanks
his hosts for their hospitality and acknowledges partial support by ACI Sécurité
Informatique, 2003-n24, projet “Réseaux Quantiques”.

References

1. Papadimitriou, C.: Computational Complexity. Addison Wesley, Reading, Mas-
sachusetts (1994)

2. Knill, E.: Quantum randomness and nondeterminism (1996) quant-ph/9610012.
3. Kitaev, A.Y., Shen, A.H., Vyalyi, M.N.: Classical and quantum computation.

Volume 47 of Graduate Studies in Mathematics. AMS, Providence, RI (2002)
4. Watrous, J.: Succinct quantum proofs for properties of finite groups. In: Proc.

41st FOCS. (2000) 537–546
5. Janzing, D., Wocjan, P., Beth, T.: Identity check is QMA-complete (2003)

quant-ph/0305050.
6. Aharonov, D., Naveh, T.: Quantum NP - a survey (2002) quant-ph/0210077.
7. Kempe, J., Regev, O.: 3-local Hamiltonian is QMA-complete. Quantum Inf. Com-

put. 3 (2003) 258–264
8. Wocjan, P., Beth, T.: The 2-local Hamiltonian problem encompasses NP. Inter-

national J. of Quantum Info. 1 (2003) 349–357
9. Bravyi, S., Vyalyi, M.: Commutative version of the k-local Hamiltonian problem

and non-triviality check for quantum codes (2003) quant-ph/0308021.
10. Aharonov, D., van Dam, W., Kempe, J., Landau, Z., Lloyd, S., Regev, O.: Adia-

batic quantum computation is equivalent to standard quantum computation. In:
Proc. 45th FOCS. (2004) quant-ph/0405098.

11. Marriott, C., Watrous, J.: Quantum Arthur-Merlin games. In: Proc. of 19th IEEE
Annual Conference on Computational Complexity (CCC). (2004)

12. Rudin, W.: Functional analysis. Second edn. International Series in Pure and
Applied Mathematics. McGraw-Hill Inc., New York (1991)

13. Abrikosov, A.A., Gorkov, L.P., Dzyaloshinski, I.E.: Methods of quantum field
theory in statistical physics. Dover Publications Inc., New York (1975)

Quantum and Classical Communication-Space
Tradeoffs from Rectangle Bounds

(Extended Abstract)�

Hartmut Klauck��

Institut für Informatik,
Goethe-Universität Frankfurt,

60054 Frankfurt am Main, Germany
klauck@thi.informatik.uni-frankfurt.de

Abstract. We derive lower bounds for tradeoffs between the communi-
cation C and space S for communicating circuits. The first such bound
applies to quantum circuits. If for any problem f : X × Y → Z the mul-
ticolor discrepancy of the communication matrix of f is 1/2d, then any
bounded error quantum protocol with space S, in which Alice receives
some l inputs, Bob r inputs, and they compute f(xi, yj) for the l · r
pairs of inputs (xi, yj) needs communication C = Ω(lrd log |Z|/S). In
particular, n × n-matrix multiplication over a finite field F requires C =
Θ(n3 log2 |F |/S), matrix-vector multiplication C = Θ(n2 log2 |F |/S). We
then turn to randomized bounded error protocols, and, utilizing a new
direct product result for the one-sided rectangle lower bound on random-
ized communication complexity, derive the bounds C = Ω(n3/S2) for
Boolean matrix multiplication and C = Ω(n2/S2) for Boolean matrix-
vector multiplication. These results imply a separation between quan-
tum and randomized protocols when compared to quantum bounds in
[KSW04] and partially answer a question by Beame et al. [BTY94].

1 Introduction

1.1 Quantum Tradeoffs

Computational tradeoff results show how spending of one resource must be in-
creased when availability of another resource is limited in solving computational
problems. Results of this type have first been established by Cobham [Cob66],
and have been found to describe nicely the joint behavior of computational re-
sources in many cases. Among the most important such results are time-space
tradeoffs, given the prominence of these two resources. It can be shown that
e.g. (classically) sorting n numbers requires that the product of time and space
is Ω(n2) [Bea91], and time O(n2/S) can also be achieved in a reasonable model
of computation for all logn ≤ S ≤ n/ log n [PR98].

� The complete version of this paper can be found on the quant-ph archive.
�� Supported by DFG grant KL 1470/1. Work partially done at Department of Com-

puter Science, University of Calgary, supported by Canada’s NSERC and MITACS.

K. Lodaya and M. Mahajan (Eds.): FSTTCS 2004, LNCS 3328, pp. 384–395, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Quantum and Classical Communication-Space Tradeoffs 385

The importance of such results lies in the fact that they capture the joint
behavior of important resources for many interesting problems as well as in
the possibility to prove superlinear lower bounds for tradeoffs, while superlinear
lower bounds for single computational resources can usually not be obtained
with current techniques.

Quantum computing is an active research area offering interesting possibili-
ties to obtain improved solutions to information processing tasks by employing
computing devices based on quantum physics, see e.g. [NC00] for a nice intro-
duction into the field. Since the number of known quantum algorithms is rather
small, it is interesting to see which problems might be candidates for quantum
speedups. Naturally we may also consider tradeoffs between resources in the
quantum case. It is known that e.g. quantum time-space tradeoffs for sorting
are quite different from the classical tradeoffs, namely T 2S = Θ̃(n3) [KSW04]
(for an earlier result see [A04]). This shorthand notation is meant as follows:
the lower bound says that for all S any algorithm with space S needs time
Ω̃(n3/2/

√
S), while the upper bound says that for all log3 n ≤ S ≤ n there is a

space S algorithm with time Õ(n3/2/
√
S).

Communication-space tradeoffs can be viewed as a generalization of time-
space tradeoffs. Study of these has been initiated in a restricted model by Lam
et al. [LTT92], and several tight results in a general model have been given by
Beame et al. [BTY94]. In the model they consider two players only restricted
by limited workspace communicate to compute a function together. Note that
whereas communication-space tradeoffs always imply time-space tradeoffs, the
converse is not true: e.g. if players Alice and Bob receive a list of n numbers
with O(logn) bits each, then computing the sorted list of these can be done
deterministically with communication O(n log n) and space O(logn).

Most of the results in this paper are related to the complexity of matrix
multiplication. The foremost question of this kind is of course whether quantum
algorithms can break the current barrier of O(n2.376) for the time-complexity
of matrix multiplication [CW90] (it has recently been shown that checking ma-
trix multiplication is actually easier in the quantum case than in the classical
case, and can be done in time O(n5/3) [BS04]). In this paper we investigate the
communication-space tradeoff complexity of matrix multiplication and matrix-
vector multiplication. Communication-space tradeoffs in the quantum setting
have recently been established [KSW04] for Boolean matrix-vector product and
matrix multiplication. In the former problem there are an n × n matrix A and
a vector b of dimension n (given to Alice resp. to Bob), and the goal is to com-
pute the vector c = Ab, where ci = ∨n

j=1 (A[i, j] ∧ bj). In the latter problem of
Boolean matrix multiplication two matrices have to be multiplied with the same
type of Boolean product. The paper [KSW04] gives tight lower and upper bounds
for these problems, namely C2S = Θ̃(n5) for Boolean matrix multiplication and
C2S = Θ̃(n3) for Boolean matrix-vector multiplication.

Here we first study these problems in the case when the matrix product is
not defined by for the Boolean operations ∧ and ∨ (which form a semiring with
{0, 1}), but over finite fields, and again for quantum circuits. Later we go back

386 H. Klauck

to the Boolean product and study the classical complexities of these problems,
in order to get a quantum/classical separation for the Boolean case. All these
results are collected in the following table.

Fields F Fields F Boolean Boolean
Matrix Mult. Matrix-Vector Matrix Mult. Matrix-Vect.

Quantum
upper O(n3 log2 |F |/S) O(n2 log2 |F |/S) Õ(n5/2/

√
S) Õ(n3/2/

√
S)

bound obvious obvious [KSW04] [KSW04]
Quantum
lower Ω(n3 log2 |F |/S) Ω(n2 log2 |F |/S) Ω(n5/2/

√
S) Ω(n3/2/

√
S)

bound this paper this paper [KSW04] [KSW04]
Determinis-
tic upper O(n3 log2 |F |/S) O(n2 log2 |F |/S) O(n3/S) O(n2/S)
bound obvious obvious obvious obvious
Random.
lower Ω(n3 log2 |F |/S) Ω(n2 log2 |F |/S) Ω(n3/S2) Ω(n2/S2)
bound [BTY94] [BTY94] this paper this paper

Note that in the above table all upper bounds hold for logn ≤ S ≤ n, and
that the results from [BTY94] are actually shown in a slightly different model
(branching programs that communicate field elements at unit cost) and hence
stated with a factor of log |F | less there.

1.2 Direct Product Results

As in [KSW04] we use direct product type results to obtain quantum commu-
nication-space tradeoff lower bounds for functions with many outputs. In this
approach (as in previous proofs concerning such tradeoffs) a space bounded cir-
cuit computing a function is decomposed into slices containing a certain amount
of communication. Such a circuit slice starts with a (possibly complicated) initial
state computed by the gates in previous slices, but this state can be replaced
by the totally mixed state at the cost of reducing the success probability by a
factor of 1/2S , where S is the space bound. If we manage to show that a circuit
with the given resources (but with no initial information) can compute k output
bits of the function only with success probability exponentially small in k, then
k = O(S), and we can prove a tradeoff result by concluding that the number of
circuit slices times O(S) must be larger than the number of output bits.

A direct product result says that when solving k instances of a problem
simultaneously the success probability will go down exponentially in k. There
are two different types of direct product results. In a strong direct product result
we try to solve k instances with k times the resources that allow us to solve the
problem on one instance with probability 2/3. In a weak direct product theorem
we have only the same amount of resources as for one instance.

Our approach is to show direct product type results for lower bound tech-
niques that work for quantum resp. randomized communication complexity of

Quantum and Classical Communication-Space Tradeoffs 387

functions f . We focus on lower bound methods defined in terms of the proper-
ties of rectangles in the communication matrix of f . There are several techniques
available now for proving lower bounds on the quantum communication complex-
ity (see [Ra03, Kla01]). The earliest such technique was the discrepancy bound
first applied to quantum communication by Kremer [Kre95]. This bound is also
related to the majority nondeterministic communication complexity [Kla01].

Definition 1. Let ν be a distribution on X × Y and f be any function f :
X×Y → {0, 1}. Then let discν(f) = maxR |ν(R∩f−1(0))−ν(R∩f−1(1))|, where
R runs over all rectangles in the communication matrix of f (see Section 2.2).

In the rest of the paper μ will always denote the uniform distribution on
some domain. disc(f) will be a shorthand for discμ(f). We will also refer to the
term maximized above as the discrepancy of a particular rectangle. Since we are
dealing with multiple output problems, also a notion of multicolor discrepancy
we are going to define later will be useful. − log(disc(f)) gives a lower bound on
the quantum communication complexity [Kre95].

As Shaltiel [Sha01] has pointed out, in many cases strong direct product
theorems do not hold. He however gives a strong direct product theorem for the
discrepancy bound, or rather a XOR-lemma: he shows that

disc(⊕i=1,...,kf(xi)) ≤ disc(f(x))Ω(k).

Previously Parnafes et al. [PRW97] showed a general direct product theorem
for classical communication complexity, but in their result the success probability
is only shown to go down exponentially in k/c, where c is the communication
complexity of the problem on one instance, so this result cannot be used for
deriving good tradeoff bounds. Klauck et al. [KSW04] have recently given a
strong direct product theorem for computing k instances of the Disjointness
problem in quantum communication complexity.

Instead of the usual direct product formulation (k independent instances of
a problem have to be solved) we first focus on the following setup (a generalized
form of matrix multiplication): Alice receives l inputs, Bob receives r inputs,
and they want to compute f(xi, yj) for all lr pairs of inputs for some function f .
We denote this problem by fl,r. We will show that when the communication in a
quantum protocol is smaller than the discrepancy bound (for one instance) then
the success probability of computing some k of the outputs of fl,r goes down
exponentially in k (for all k smaller than the discrepancy bound), and refer
to such a result as a bipartite product result. This differs from Shaltiel’s direct
product result for discrepancy [Sha01] in three ways: first, it only holds when the
communication is smaller than the discrepancy bound for one instance (a weak
direct product result), secondly, it deals with correlated input instances (in the
described bipartite way). Furthermore it does not speak about discrepancy of
the XOR of the outputs for k instances, but rather the multicolor discrepancy.

1.3 Our Results

The first lower bound result of this paper is the following:

388 H. Klauck

Theorem 1. Let f : X × Y → {0, 1} with disc(f) ≤ 1/2d. Then any quantum
protocol using space S that computes fl,r needs communication Ω(dlr/S).

A completely analogous statement can be made for functions f : X×Y → Z
for some set Z of size larger than two and multicolor discrepancy, where the
lower bound is larger by a factor of log |Z|.

The inner product function over a field F is IPF (x, y) =
∑n

i=1 xi · yi with
operations over F . IPGF (2) has been considered frequently in communication
complexity theory. It is known that its quantum communication complexity is
Θ(n) (the lower bound can be proved using discrepancy [Kre95]). Note that
IPF

n,n corresponds to the multiplication of two n×n matrices over F , while IPF
n,1

is the matrix-vector product. It is well known that disc(IPGF (2)) ≤ 2−n/2 (see
[KN97]). A generalization of this result given by Mansour et al. [MNT93] implies
similar bounds on the multicolor discrepancy of inner products over larger fields.
Together with a trivial deterministic algorithm in the model of communicating
circuits we get the following corollary.

Corollary 1. Assume log n ≤ S ≤ n log |F |.
IPF

n,n can be computed by a deterministic protocol with space S and commu-
nication O(n3 log2(|F |)/S), and any bounded error quantum protocol with space
S needs communication Ω(n3 log2(|F |)/S) for this problem.

IPF
n,1 can be computed by a deterministic protocol with space S and commu-

nication O(n2 log2(|F |)/S), and any bounded error quantum protocol with space
S needs communication Ω(n2 log2(|F |)/S) for this problem.

Using a lemma from [MNT93] (also employed in [BTY94]) we are also able
to give a lower bound for pairwise universal hash functions.

Definition 2. A pairwise universal family Y of hash functions from a set X to
a set Z has the following properties when h ∈ Y is chosen uniformly at random:

1. For any x ∈ X: h(X) is uniformly distributed in Z.
2. For any x, x′ ∈ X with x �= x′, and any z, z′ ∈ Z, the events h(x) = z and

h(x′) = z′ are independent.

In the problem of evaluating a hash function by a protocol Alice gets x ∈ X,
Bob gets a function h ∈ Y , and they compute h(x).

Corollary 2. Any bounded error quantum protocol that evaluates a pairwise
universal family of hash functions using space S needs communication at least
Ω(min{log(|X|) · log(|Z|)/S , log2(|Z|)/S}).

Beame et al. [BTY94] have established the first term in the above expression
as a lower bound for randomized communicating circuits. Hence our quantum
lower bound is weaker for hash functions that map to a small domain.

There are many examples of pairwise universal hash function, see [MNT93].
Let us just mention the function f : GF (r) × GF (r)2 → GF (r) defined by

Quantum and Classical Communication-Space Tradeoffs 389

f(x, (a, b)) = a · x + b. If n = 7log r8 then this function has a quantum commu-
nication tradeoff CS = Ω(n2). Also there are universal hash functions that can
be reduced to matrix-multiplication and matrix-vector multiplication over finite
fields, and we could have deduced the result about matrix-vector multiplication
in Corollary 1 from the above result. The result about matrix multiplication
would not follow, since the standard reduction from convolution (see [MNT93],
matrix multiplication itself is not a hash function) has the problem that for con-
volution the log2 |Z| term is much smaller than the log |X| · log |Z| term, and
we would not get a good lower bound. Also not every function fl,r, where f has
small discrepancy, is a universal hash function.

We then turn to classical communication-space tradeoffs for Boolean matrix
and Boolean matrix-vector multiplication. We show a weak direct product theo-
rem for the one-sided rectangle bound on randomized communication complexity,
which allows us to deduce a weak direct product theorem for the classical com-
plexity of the Disjointness problem. Using this we can show a communication-
space tradeoff lower bound for Boolean matrix multiplication, a problem posed
by Beame et al. [BTY94].

In the Disjointness problem Alice has an n-bit input x and Bob has an n-bit
input y. These x and y represent sets, and DISJ(x, y) = 1 iff those sets are dis-
joint. Note that DISJ is NOR(x∧y), where x∧y is the n-bit string obtained by
bitwise AND-ing x and y. The communication complexity of DISJ has been well
studied: it takes Θ(n) communication in the classical (randomized) world [KS92,
Ra92] and Θ(

√
n) in the quantum world [BCW98, HW02, AA03, Ra03]. A strong

direct product theorem for the quantum complexity of Disjointness has been es-
tablished in [KSW04], but the randomized case was left open. DISJn,n is (the
bitwise negation of) the Boolean matrix product.

Theorem 2. There are constants ε, γ > 0 such that when Alice and Bob have
k ≤ εn instances of the Disjointness problem on n bits each, and they perform
a classical protocol with communication εn, then the success probability of com-
puting all these instances simultaneously correct is at most 2−γk.

An application of this gives a classical communication-space tradeoff.

Theorem 3. For the problem DISJn,n (Boolean matrix multiplication) every
randomized space S protocol with bounded error needs communication Ω(n3/S2).

For the problem DISJn,1 (Boolean matrix-vector multiplication) every ran-
domized space S protocol with bounded error needs communication Ω(n2/S2).

The obvious upper bounds are O(n3/S) resp. O(n2/S) for all logn ≤ S ≤ n.
No lower bound was known prior to the recent quantum bounds in [KSW04].
Note that the known quantum bounds for these problems are tight as mentioned
above. For small S we still get near-optimal separation results, e.g. for polylog-
arithmic space quantum protocols for Boolean matrix multiplication need com-
munication Θ̃(n2.5), classical protocols Θ̃(n3). The reason we are able to analyze
the quantum situation more satisfactorily is the connection between quantum
protocols and polynomials exhibited by Razborov [Ra03], allowing algebraic in-
stead of combinatorial arguments.

390 H. Klauck

2 Definitions and Preliminaries

2.1 Communicating Quantum Circuits

In the model of quantum communication complexity, two players Alice and Bob
compute a function f on distributed inputs x and y. The complexity measure
of interest in this setting is the amount of communication. The players follow
some predefined protocol that consists of local unitary operations, and the ex-
change of qubits. The communication cost of a protocol is the maximal number
of qubits exchanged for any input. In the standard model of communication
complexity Alice and Bob are computationally unbounded entities, but we are
also interested in what happens if they have bounded memory, i.e., they work
with a bounded number of qubits. To this end we model Alice and Bob as com-
municating quantum circuits, following Yao [Yao93].

A pair of communicating quantum circuits is actually a single quantum circuit
partitioned into two parts. The allowed operations are local unitary operations
and access to the inputs that are given by oracles. Alice’s part of the circuit
may use oracle gates to read single bits from her input, and Bob’s part of the
circuit may do so for his input. The communication C between the two parties
is simply the number of wires carrying qubits that cross between the two parts
of the circuit. A pair of communicating quantum circuits uses space S, if the
whole circuit works on S qubits.

In the problems we consider, the number of outputs is much larger than
the memory of the players. Therefore we use the following output convention.
The player who computes the value of an output sends this value to the other
player at a predetermined point in the protocol, who is then allowed to forget
the output. In order to make the model as general as possible, we allow the
players to do local measurements, and to throw qubits away as well as pick up
some fresh qubits. The space requirement only demands that at any given time
no more than S qubits are in use in the whole circuit.

For more quantum background we refer to [NC00].

2.2 The Discrepancy Lower Bound and Other Rectangle Bounds

Definition 3. The communication matrix Mf a function f : X × Y → Z with
rows and columns corresponding to X,Y is defined by Mf (x, y) = f(x, y).

A rectangle is a product set in X × Y . Rectangles are usually labelled, an
�-rectangle being labelled with � ∈ Z. �(R) gives the label of R.

The discrepancy bound has been defined above. The application of the dis-
crepancy bound to communication complexity is as follows (see [Kre95]):

Fact 1 . A quantum protocol which computes a function f : X × Y → {0, 1}
correctly with probability 1/2 + ε over a distribution ν on the inputs (and over
its measurements) needs at least Ω(log(ε/discν(f))) communication.

We will use the following generalization of discrepancy to matrices whose
entries have more than two different values.

Quantum and Classical Communication-Space Tradeoffs 391

Definition 4. For a matrix M with M(x, y) ∈ Z for some finite set Z we de-
note its multicolor discrepancy as mdisc(M) = maxR maxz∈Z |(μ(R∩ f−1(z))−
μ(R)/|Z|)|, where the maximization is over all rectangles R in M .

The above definition corresponds to the notion of strong multicolor discrep-
ancy used previously in communication complexity theory by Babai et al. [BHK01].
A matrix with high multicolor discrepancy has rectangles whose measure of one
color is very different from the average μ(R)/|Z|. Note that we have defined this
only for the uniform distribution μ here, and that only functions for which all
outputs have almost equal probabilities are good candidates for small multicolor
discrepancy (e.g. the inner product over finite fields).

We next define the one-sided rectangle bound on randomized communication
complexity, see Example 3.22 in [KN97] and also [Kla03b].

Definition 5. Let ν be a distribution on X × Y . Then ν is (strictly) balanced
for f : X × Y → {0, 1}, if ν(f−1(1)) = 1/2 = ν(f−1(0)).

Definition 6. Let err(R, ν, �) = ν(f−1(1 − �)|R) denote the error of an �-
rectangle R. Denote size(ν, ε, f, �) = max{ν(R) : err(R, ν, �) ≤ ε}, where R
runs over all rectangles in Mf .

bound
(1)
ε (f) = maxν log(1/size(ν, ε, f, 1)), where ν runs over all balanced dis-

tributions on X × Y . Then let bound(f) = max{bound(1)
1/4(f), bound(1)

1/4(¬f)}.

The application to classical communication is as follows.

Fact 2 . For any function f : X × Y → {0, 1}, its (public coin) randomized
communication complexity with error 1/4 is lower bounded by bound(f).

3 Proving Quantum Communication-Space Tradeoffs

Suppose we are given a communicating quantum circuit that computes fl,r, i.e.,
the Alice circuit gets l inputs from X, the Bob circuit gets r inputs from Y , and
they compute all outputs f(xi, yj). Furthermore we assume that the output for
pair (i, j) is produced at a fixed gate in the circuit.

Our approach to prove the lower bound is by slicing the circuit. Let
mdisc(f) = 1/2d. Then we partition the circuit in the following way. The first
slice starts at the beginning, and ends when d/100 qubits have been commu-
nicated, i.e., after d/100 qubit wires have crossed between the Alice and Bob
circuits. The next slice starts afterwards and also contains d/100 qubits commu-
nication and so forth. Note that there are O(C/d) slices, and lr outputs, so an
average slice has to make about lrd/C outputs. We will show that every such
slice can produce only O(S) output bits. This implies the desired lower bound.

So we consider what happens at a slice. A slice starts in some state on S
qubits that has been computed by the previous part of the computation. Then
the two circuits run a protocol with d/100 qubits communication. We have to
show that there can be at most O(S) output bits. At this point the following
observation from [Kla03a] will be helpful.

392 H. Klauck

Proposition 1. Suppose there is an algorithm that on input x first receives S
qubits of initial information depending arbitrarily on x for free. Suppose the
algorithm produces some output correctly with probability p.

Then the same algorithm with the initial information replaced by the totally
mixed state has success probability at least p/2S.

Suppose the circuit computes the correct output with probability 1/2. Then
each circuit slice computes its outputs correctly with probability 1/2. Proposi-
tion 1 tells us that we may replace the initial state on S qubits by a totally mixed
state, and still compute correctly with probability (1/2) · 1/2S . Hence it suffices
to show that any protocol with communication d/100 that attempts to make
� bits of output has success probability exponentially small in �. Then � must
be bounded by O(S). What is left to do is provided by the following bipartite
product result.

Theorem 4. Suppose a quantum protocol with communication d/100 makes
k ≤ d/(100 log |Z|) outputs for function values f(xi, yj) of f : X × Y → Z
with mdisc(f) ≤ 2−d. Then the probability that these outputs are simultaneously
correct is at most (1 + o(1)) · |Z|−k.

We establish this result in two steps. First we show that for each function
with multiple outputs and small multicolor discrepancy all quantum protocols
have small success probability.

Lemma 3. If there is a quantum protocol with communication c that computes
the outputs of a function f : X l×Y r → Zk so that the success probability of the
protocol is 1/|Z|k + α (in the worst case), then mdisc(f) ≥ α2/210c.

Conversely, if c ≤ − logmdisc(f)/10− k log |Z|, then the success probability
of quantum protocols with communication c is at most (1 + o(1)) · |Z|−k.

The next step is to derive multicolor discrepancy bounds for fl,r from multi-
color discrepancy bounds for f .

Lemma 4. Let f : X × Y → Z have mdisc(f) ≤ 2−d. Let the set O =
{(i1, j1), . . . , (ik, jk)} contain the indices of k outputs for fl,r. Denote by fO the
function that computes these outputs. Then mdisc(fO) ≤ O(2−d/4), if k ≤ d/5.

These two lemmas imply Theorem 4. Now we can conclude the following
more general version of Theorem 1.

Theorem 5. Let f : X × Y → Z with mdisc(f) ≤ 1/2d. Then every quantum
protocol using space S that computes fl,r needs communication Ω(dlr log |Z|/S).

Proof. Note that if S = Ω(d), we are immediately done, since communicating the
outputs requires at least lr log |Z| bits. If S ≤ d/200, we can apply Theorem 4
and Proposition 1. Consider a circuit slice with communication d/100 and �
outputs. Apply Theorem 4 to obtain that the success probability of any protocol
without initial information is at most (1+o(1)) · |Z|−k for k being the minimum

Quantum and Classical Communication-Space Tradeoffs 393

of � and d/(100 log |Z|). With Proposition 1 we get that this must be at least
(1/2) · 2−S , and hence k ≤ (S + 2)/ log |Z|. In the case k = d/(100 log |Z|) we
get the contradiction S + 2 ≥ k log |Z| = d/100 to our assumption, otherwise we
get � ≤ (S + 2)/ log |Z| and hence C/(d/100) · (S + 2)/ log |Z| ≥ lr as desired.

We also get the following corollary in the same way.

Corollary 3. Let f be a function with m output bits so that for all k < d and
each subset O of k output bits mdisc(fO) < 2−d. Then every quantum protocol
with communication C and space S satisfies the tradeoff CS = Ω(dm).

4 Applications

In this section we apply Theorem 5 and Corollary 3 to show some explicit
communication-space tradeoffs. We have already stated our result regarding
matrix and matrix-vector products over finite fields in the introduction (Corol-
lary 1). The only missing piece is an upper bound on the multicolor discrepancy
of IPF for finite fields F .

Lemma 5. mdisc(ĨP
F

) ≤ |F |−n/4.

Proof. The following is proved in [MNT93].

Fact 6 . Let Y be a pairwise universal family of hash functions from X to Z.
Let A ⊆ X, B ⊆ Y , and E ⊆ Z. Then∣∣∣∣Probx∈A,h∈B(h(x) ∈ E)− |E||Z|

∣∣∣∣ ≤
√

|Y | · |E|
|A| · |B| · |Z| . (1)

IPF can be changed slightly to give a universal family, with X = Fn and
Z = F , by letting h(x) = IPF (x, y) + a for y drawn randomly from Fn and a
from F . Then the set of hash functions has size |Y | = |F |n+1.

To bound the multicolor discrepancy of evaluating the hash family we can
set E to contain any single element of F . Hence for each rectangle A × B con-
taining at least |F |(3/2)·n entries the right hand side of inequality (1) is at most
|F |(n+1)/2/(

√
|F |(3/2)·n · |F |) = |F |−n/4. This is an upper bound on μ(A × B)

times the multicolor discrepancy, and hence also an upper bound on the latter it-
self. Smaller rectangles can have multicolor discrepancy at most |F |−n/2−1, thus
the multicolor discrepancy of evaluating the hash function is at most |F |−n/4.
Hence also IPF has small discrepancy: its communication matrix is a rectangle
in the communication matrix for the hash evaluation.

Proof (of Corollary 2). We again make use of Fact 6. Assume that the output
is encoded in binary in some standard way using 7log |Z|8 bits. Fix an arbitrary
value of k output bits to get a subset E of possible outputs in Z. We would like to
have |E|/|Z| = 2−k, but this is not quite possible, e.g. for Z being {0, . . . , p− 1}
for some prime p. If we restrict ourselves to the lower log(|Z|)/2 bits of the

394 H. Klauck

binary encoding of elements of Z, however, then each such bit is 1 resp. 0 with
probability 1/2 ± 1/

√
|Z| for a uniformly random z ∈ Z, even conditioned on

other bits, so that the probability of a fixed value of k of them is between
(1/2− 1/

√
|Z|)k and (1/2 + 1/

√
|Z|)k. Then | |E|/|Z| − 1/2k | ≤ 2/

√
|Z|.

Let R = A×B be any rectangle in the communication matrix. Assume that

|R| ≥
√
|X| · |Y |. Then the right hand side of (1) is ≤

√
|Y |/(

√
|X||Y |) =

1/|X|1/4. If R is smaller, then its multicolor discrepancy is at most 1/
√
|X|. So

we can apply Corollary 3 with a multicolor discrepancy of at most |X|−1/4 +
2|Z|−1/2. Note that the number of output bits we consider is log |Z|/2, and we
get CS = Ω(log |X| · log |Z|) or Ω((log |Z|)2), whichever is smaller.

5 A Direct Product Result for the Rectangle Bound

Theorem 2 is an immediate consequence of the following direct product result
for the rectangle bound, plus a result of Razborov [Ra92].

Lemma 7. Let f : X × Y → {0, 1} be a function and denote by fk the problem
to compute f on k distinct instances. Assume that bound(f) ≥ b and that this
is achieved on a balanced distribution ν.

Then there is a constant γ > 0 such that the average success probability of
each classical protocol with communication b/3 for fk on νk is at most 2−γk for
any k ≤ b.

Now we state the result of Razborov [Ra92].

Fact 8 . bound(DISJ) ≥ εn for some constant ε > 0.

References

[A04] S. Aaronson. Limitations of Quantum Advice and One-Way Communica-
tion. In Proceedings of 19th IEEE Conference on Computational Complexity,
pages 320–332, 2004. quant-ph/0402095.

[AA03] S. Aaronson and A. Ambainis. Quantum search of spatial regions. In Pro-
ceedings of 44th IEEE FOCS, pages 200–209, 2003. quant-ph/0303041.

[BHK01] L. Babai, T. Hayes, P. Kimmel. The Cost of the Missing Bit: Communication
Complexity with Help. Combinatorica, 21(4), pages 455-488, 2001. Earlier
version in STOC’98.

[Bea91] P. Beame. A general sequential time-space tradeoff for finding unique ele-
ments. SIAM Journal on Computing, 20(2) pages 270–277, 1991. Earlier
version in STOC’89.

[BTY94] P. Beame, M. Tompa, and P. Yan. Communication-space tradeoffs for un-
restricted protocols. SIAM Journal on Computing, 23(3), pages 652–661,
1994. Earlier version in FOCS’90.

[BCW98] H. Buhrman, R. Cleve, A. Wigderson. Quantum vs. classical communication
and computation. 30th ACM Symposium on Theory of Computing, pages
63–68, 1998. quant-ph/9802040.

Quantum and Classical Communication-Space Tradeoffs 395

[BS04] H. Buhrman, R. Špalek. Quantum Verification of Matrix Products. quant-
ph/0409035.

[Cob66] A. Cobham. The Recognition Problem for the Set of Perfect Squares. Confer-
ence Record of the Seventh Annual Symposium on Switching and Automata
Theory (”FOCS”), pages 78–87, 1966.

[CW90] D. Coppersmith, S. Winograd. Matrix Multiplication via Arithmetic Pro-
gressions. J. Symb. Comput. 9(3), pages 251–280, 1990.

[HW02] P. Høyer and R. de Wolf. Improved quantum communication complexity
bounds for disjointness and equality. In Proceedings of 19th STACS, LNCS
2285, pages 299–310, 2002. quant-ph/0109068.

[KS92] B. Kalyanasundaram and G. Schnitger. The probabilistic communication
complexity of set intersection. SIAM Journal on Discrete Mathematics, 5(4),
pages 545–557, 1992. Earlier version in Structures’87.

[Kla01] H. Klauck. Lower Bounds for Quantum Communication Complexity. In
42nd IEEE FOCS, pages 288–297, 2001. quant-ph/0106160.

[Kla03a] H. Klauck. Quantum time-space tradeoffs for sorting. In Proceedings of 35th
ACM STOC, pages 69–76, 2003. quant-ph/0211174.

[Kla03b] H. Klauck. Rectangle Size Bounds and Threshold Covers in Communication
Complexity. In Proceedings of 18th IEEE Conference on Computational
Complexity, pages 118–134, 2003. cs.CC/0208006.

[KSW04] H. Klauck, R. de Wolf, R. Špalek. Quantum and Classical Strong Direct
Product Theorems and Optimal Time-Space Tradeoffs. To appear in 45th
IEEE FOCS, 2004. quant-ph/0402123.

[KN97] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge Uni-
versity Press, 1997.

[Kre95] I. Kremer. Quantum communication. Master’s thesis, Hebrew University,
Computer Science Department, 1995.

[LTT92] T.W. Lam, P. Tiwari, and M. Tompa. Trade-offs between communication
and space. Journal of Computer and Systems Sciences, 45(3), pages 296–315,
1992. Earlier version in STOC’89.

[MNT93] Y. Mansour, N. Nisan, P. Tiwari. The Computational Complexity of Uni-
versal Hashing. Theoretical Computer Science, 107(1), pages 121–133, 1993.
Earlier version in STOC’90.

[NC00] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum
Information. Cambridge University Press, 2000.

[PR98] J. Pagter, T. Rauhe. Optimal Time-Space Trade-Offs for Sorting. Proceed-
ings of 39th IEEE FOCS, pages 264–268, 1998.

[PRW97] I. Parnafes, R. Raz, and A. Wigderson. Direct product results and the GCD
problem, in old and new communication models. In Proceedings of 29th
ACM STOC, pages 363–372, 1997.

[Ra92] A.A. Razborov. On the distributional complexity of disjointness. Theoretical
Computer Science, 106(2), pages 385–390, 1992.

[Ra03] A.A. Razborov. Quantum communication complexity of symmetric pred-
icates. Izvestiya of the Russian Academy of Science, Mathematics, 67(1),
pages 159–176, 2003. quant-ph/0204025.

[Sha01] R. Shaltiel. Towards proving strong direct product theorems. In Proceed-
ings of 16th IEEE Conference on Computational Complexity, pages 107–119,
2001.

[Yao93] A. C-C. Yao. Quantum circuit complexity. In Proceedings of 34th IEEE
FOCS, pages 352–360, 1993.

Adaptive Stabilization of Reactive Protocols

Shay Kutten1 and Boaz Patt-Shamir2

1 The Technion, Haifa 32000, Israel
kutten@ie.technion.ac.il

2 Tel Aviv University, Tel Aviv 69978, Israel
boaz@eng.tau.ac.il

Abstract. A self-stabilizing distributed protocol can recover from any
state-corrupting fault. A self-stabilizing protocol is called adaptive if its
recovery time is proportional to the number of processors hit by the
fault. General adaptive protocols are known for the special case of func-
tion computations: these are tasks that map static distributed inputs to
static distributed outputs. In reactive distributed systems, input values
at each node change on-line, and dynamic distributed outputs are to be
generated in response in an on-line fashion. To date, only some specific
reactive tasks have had an adaptive implementation. In this paper we
outline the first proof that all reactive tasks admit adaptive protocols.
The key ingredient of the proof is an algorithm for distributing input val-
ues in an adaptive fashion. Our algorithm is optimal, up to a constant
factor, in its fault resilience, response time, and recovery time.

1 Introduction

Self-stabilizing distributed systems (sometimes abbreviated stabilizing systems)
recover from a particularly devastating type of fault: state-corrupting faults. A
state corrupting fault may flip arbitrarily the bits of the volatile memory in
the affected nodes; such faults are tricky, since the local state of each processor
may seem perfectly legal, and only a global view can indicate that the state is
actually corrupted. The model of stabilizing systems, that entails the idea of
state-corrupting faults, is an abstraction of all transient faults: if a system is
self-stabilizing, then it can recover from any transient fault, so long as its code
remains intact. Many systems today are implicitly designed to be stabilizing,
at least in some sense. For example, one of the popular techniques used by
practitioners to achieve partial stabilization is the time-out mechanism: the idea
is that each piece of information is stamped with a “time to live” attribute,
which says when does this particular piece of information expire. When executed
properly, this approach ensures that stale state will eventually be flushed out of
the system. But to ensure correctness, the duration of the timeout (and hence
the stabilization time) is proportional to the worst-case cross-network latency
(see, e.g., the spanning tree algorithm of Perlman [27]).

Another approach to make a system stabilizing, championed mainly in the
theoretical community, is the global reset method (see, e.g., [11]). In this ap-
proach, the idea is that a special stabilizing mechanism monitors the system for

K. Lodaya and M. Mahajan (Eds.): FSTTCS 2004, LNCS 3328, pp. 396–407, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Adaptive Stabilization of Reactive Protocols 397

illegal states, and whenever an inconsistency is detected, it invokes a special sta-
bilizing reset protocol that imposes some legal global state on the system. The
best reset protocols offer stabilization with relatively low space and communica-
tion overhead [10, 9, 11], but at a price of inherently high stabilization time—the
cross-network latency time. Still, the time complexity of reset is better than the
time-out approach for the following reason. On one hand, time-outs expire after
a fixed pre-determined amount of time, which must obviously be the worst-case
cross-network latency. On the other hand, the stabilization time of a reset proto-
col is proportional to the actual cross network latency when the reset is invoked,
and the actual time is typically much better than the worst-case time.

Nevertheless, the global reset approach was not widely adopted in practice.
Intuitively, the reason for that is that reset-based stabilization is too “twitchy”:
the slightest disturbance to the consistency of the system may trigger a system-
wide service outage (or “hiccup”) for a non-negligible amount of time, which
is clearly undesirable. In response to this shortcoming, a new approach, called
adaptive protocols, has recently taken the focus of attention in this research area
[23, 18, 22, 21, 3]. Informally, a stabilizing system is called adaptive if its recovery
time depends on the severity of the fault, measured by the number of processors
whose state was corrupted. For example, the adaptive system proposed in [21]
has the following property: if the state of f nodes is arbitrarily corrupted, then
the correct output is recovered everywhere in O(f) time.

However, most previous results for adaptive systems were limited to distributed
function computation: in this model, it is assumed that each node has a constant
input, and the task is to output a fixed function of the inputs. For example, the
input at each node may be the (non-changing) weights of its incident edges, and
the output is a (non-changing) minimum spanning tree of the network graph.
This model, while appropriate for some types of applications, does not capture
the full generality of distributed reactive systems [24]. In a reactive system, the
environment injects new inputs to the system from time to time, and the system
is required to produce new output values depending on the given inputs, in an
on-line fashion. More precisely, a specification of a reactive task consists of all
possible inputs, and for each input, all possible outputs. Unfortunately, the only
known results for adaptive reactive protocols either restrict the fault model in a
significant way, or they give ad-hoc solutions for specific problems (see below).

In this paper we outline the first proof that general reactive systems can be
implemented by an adaptive protocol. More specifically, we consider the following
setting. We assume that we are given a synchronous system, where in each round,
nodes exchange messages and perform some local computations. In each step,
the environment (that models users, or other interacting applications) may input
a value to each node, and expects output values to appear at the nodes. The
reactive task specifies what value each node is required to output at each step.
The output values are typically a function of (possibly remote) input values.

If each node had all input values locally available, then it could compute its
required output at each step. Thus, the key ingredient in our general implemen-
tation is an adaptive algorithm for distributing input values, which we describe

398 S. Kutten and B. Patt-Shamir

in detail in this paper. This primitive task simply requires all nodes to eventually
output a value input at a distinguished source node. Our algorithm is adaptive
and optimal, up to a constant factor, in the following measures.

– Response time: the elapsed time between inputting a value and changing the
relevant output values.

– Recovery time, which consists of the following two measures [18, 21]. Output
stabilization is the time it takes until the outputs stabilize to correct val-
ues after a fault; and state stabilization, which is the time until the system
completely recovers internally from a fault (meaning that it is prepared to
sustain another fault).

– Resilience: the severity of faults from which the algorithm fully recovers.

Resilience is measured in terms of agility [12]. To explain this concept, con-
sider the following situation. Suppose that immediately after a value is input at
a node, a fault occurs, and the state of that node is corrupted. Clearly, there is
no way for the system to recover the input value in that case, since all its traces
may have been completely wiped out. More generally, assume that a message
can traverse one link in one time unit. Now, if a value is input at a node v at time
t, and at time tf ≥ t all nodes in distance tf − t from v are hit by a fault, then,
by the same reasoning, the input value may be irrecoverable. In this paper, we
consider protocols that can recover from such faults—assuming that they occur
sufficiently late in the game (so that the protocol gets the chance to replicate
the input value elsewhere). The notion of agility makes this intuition concrete.
Formal definition is provided in Section 2.

As mentioned above, in this paper we focus on solving the basic building block
problem we call Stabilizing Value Distribution (abbreviated SBD). We observe
that any reactive task can be reduced to SBD, and therefore, we only outline
this reduction in this paper. The reduction is straightforward, albeit inefficient in
terms of communication and memory overhead. In this paper we concentrate not
on the algorithmic ideas of the reduction (the one we propose is rather simple),
but rather in the existential proof that any implementable reactive specification
has an adaptive solution.

Contributions of This paper. Our main technical contribution is the first adap-
tive protocol for the basic building block of SBD. Our protocol is also self-
stabilizing, and has optimal agility (up to a constant factor). As a corollary,
the presented protocol shows that theoretically, any reactive task admits a self-
stabilizing adaptive implementation. Our protocol complements results of [22, 21]
dealing with non-reactive tasks. There, it is assumed that all inputs and out-
puts are initially replicated at all nodes. A fault may corrupt some replicas, and
the task is to recover the original values. In a way, this task is self-stabilizing,
adaptive consensus. The question “how to perform the initial replication?” in a
self-stabilizing and adaptive manner is answered in the current paper.

Related Work. The study of stabilizing protocols was initiated by Dijkstra [14]
for the task of token passing. General algorithms started with reset-based ap-

Adaptive Stabilization of Reactive Protocols 399

proaches [20, 4, 10, 5]. In reset-based stabilization, the state is constantly mon-
itored; if an error is detected, a special reset protocol is invoked, whose effect
is to consistently establish a correct global state, from which the system can
resume normal operation. (The correct state may either be some agreed upon
fixed state, or a state that is in some sense “close” to the faulty state [16].) The
best reset protocols in terms of time are given in [9], where the stabilization time
is proportional to the diameter of the network. Logarithmic space protocols are
given in [4, 10], and a randomized constant-space protocol is given in [19]. An
extensive survey of self-stabilization is offered in [15].

The idea of adaptive protocols (with variants called fault-local, local stabiliz-
ing, or fault containing) is treated in [22, 23, 18, 21, 6, 7], all of them non-reactive.

In [21] it is proven that if a fault hits f nodes, then the output stabilization
time is Ω(f) time units; and that the state stabilization time may be as large
as the network diameter even for a small number of faults. This establishes the
optimality of our algorithm in the recovery time complexity measures.

In [13], an adaptive protocol for specific task of token passing on a ring is
presented. The only general solution for adaptive stabilization of reactive tasks
is [3], but it uses a much weaker fault model. Specifically, in [3] it is assumed
that the effect of a fault at a node is to change the local state to one chosen
uniformly at random. This unique assumption allows the protocol to detect faults
locally with high probability, by artificially “padding” local state spaces with
many identifiable, unreachable local states. The assumption that faults drive the
system to a uniformly chosen random state means that with high probability,
each affected node is put in one of these bogus states, and hence nodes can
locally detect whether their state is legal. We stress that the model of [3] is
a fundamental departure from the self-stabilization model (used in the current
paper): in self-stabilization, the heart of the difficulty is that faults are not locally
detectable; in [3], the focus is on local correction.

The technique of core, used in this paper, was proposed in [12] for broadcast
with error confinement (in error confinement, the goal is to allow only nodes that
were directly hit by a fault to err). Roughly speaking, the idea of the technique
of core is to perform broadcast in stages such that nodes receiving the broadcast
message in a certain stage, consult with a set of the nodes that received it in a
previous stage (called the current “core”). In [12], nodes joined the core using
a specific rule that ensured error confinement. In this paper we use a different
rule, that ensures adaptivity (the rule of [12] is not adaptive).

Another tool we use here is a technique that is becoming rather popular in
adaptive protocols, namely that error recovery messages travel faster than other
kinds of messages. This technique, called regulated broadcasts, appeared first in
[21, 2] and was used also, e.g., in [7, 13].

Paper Organization. In Section 2 we formalize the model and introduce some
notation. In Section 3 we present our algorithm for SBD, and in Section 4 we
analyze its properties. Finally, in Section 5, we briefly discuss extensions of the
basic result.

400 S. Kutten and B. Patt-Shamir

2 Preliminaries

2.1 System Model

The system topology is represented by an undirected connected graph G =
(V,E), where graph nodes represent processors (also termed network nodes)
and edges represent communication links. The number of the nodes is denoted
by n = |V |. The distance (in the number of edges) between nodes u, v ∈ V is
denoted by dist(u, v). The diameter of the graph is denoted by diam. We denote

ballv(d) = {u | dist(v, u) ≤ d}

for d ≥ 0 (thus ballv(0) = {v}). For v ∈ V , we define N (v) = ballv(1) − {v},
called the neighbors of i. We assume that the network topology is fixed and
known to the nodes.

A distributed protocol is a specification of the space of local states for each node
and a description of the actions which modify the local states. Included in each
local state are distinguished input and output registers, visible to the external
environment. The environment can take two types of actions: input injection,
i.e., assign values to input registers, and fault injection, i.e., arbitrarily change
the state of an arbitrary set of nodes. The nodes whose states are modified by a
fault injection action are said to be faulty. By convention, we denote the set of
faulty nodes by F , their number by f = |F |, and the time of the fault by tf . To
abstract the fact that fault injections are infrequent, we assume without loss of
generality that there is just one fault (in fact, another fault may occur after the
system has stabilized from the previous one). We say that the faulty nodes were
hit by a fault at time tf . If a node v was not hit by a fault in a time interval I,
we say that v is I-intact.

We assume that the system is synchronous, namely the execution proceeds
in rounds, where in each round, each processor sends messages to its neighbors,
receives messages, and does some local computation. In this paper we do not
restrict message sizes, which allows us to abstract the underlying communication
mechanism by assuming that actions may depend also on the state of neighboring
nodes (this is justified, e.g., in [4, 17]). Thus, in each step, each node reads its
own variables and the variables of its neighbors, and then changes its local state
according to the actions specification. As a convention, we denote the location of
variables using subscripts, and their time using parentheses; for example, Bv(t)
refers to the value of the variable B in node v at time t. Time is measured by
the number of synchronous steps.

As is usually assumed, a state corrupting fault may change only volatile state,
but not code nor constants such as the node’s unique identity ID.

2.2 Tasks and Problem Statement

An input assignment (respectively, output assignment) is a mapping from node
names to a given input domain (resp., output range). An input assignment his-
tory (resp., output assignment history) for time t is a set of input assignments

Adaptive Stabilization of Reactive Protocols 401

(resp., output assignments), one for each time step 0, 1, . . . , t. A reactive task (or
problem) is specified by a function mapping each time step to a binary relation
over the input and output histories. This means that a reactive problem says
what are the possible inputs, and for each input, what is the required output.
A reactive problem is said to be solved by a given algorithm if in any execution
of the algorithm, at each time step t, the sequence of values taken by the input
and output registers satisfy the mapping specified by the problem for time t.

Standard techniques (based on the full-information protocol) show that one
can reduce any reactive problem to the following basic building block problem.

Stabilizing Value Distribution Problem (SBD)
Each node v has a single output register denoted by outv. A special node
called source, denoted by s, has, in addition, an input register denoted
by Bs. At time 0, the environment writes an input value Bs(0). The
requirement is that eventually, outv holds Bs(0) for each node v.

The requirement is to be fulfilled even though at some unknown time tf > 0,
some unknown subset F of the nodes is corrupted arbitrarily. We denote f = |F |.

2.3 Agility

Consider a fault that occurs at time tf . We say that a value input to the system
at time t0 is ρ-recoverable if only a minority of the nodes in distance ρ(tf − t0)
from the origin of the value are affected by the fault, for some 0 ≤ ρ ≤ 1. An
environment is said to be ρ-constrained if all inputs are ρ-recoverable. For a
given ρ, a system is said to have agility ρ if it eventually outputs the correct
outputs when run on a ρ-constrained environment. For example, the protocol
for SBD in which the source repeatedly broadcasts its input value has 0 agility:
once the source is hit by a fault, it may never recover to produce correct output
values. On the other hand, a system with agility 1 can recover from any fault so
long as the majority of nodes that potentially could have heard about the input
value remains intact.

3 The Algorithm

In this section we present an algorithm for the SBD problem. We first review
the technique of regulated broadcast, introduced in [21].

3.1 Regulated Broadcasts

Regulated Broadcast (abbreviated RB) is an adaptive protocol to distribute and
maintain a value under conditions that are more favorable than those studied in
the current paper. Specifically, the problem of regulated broadcast is identical
to SBD with the crucial difference that the source is never faulty. The value at
node v of the regulated broadcast rooted at s is called the vote of s at v. In our
implementation, the RB protocol will be initiated by many nodes and thus we

402 S. Kutten and B. Patt-Shamir

will have many independent instances of the RB protocol running in parallel.
We identify instances by their root node.

A vote x of node u at node v is called authentic if x was indeed communicated
by u. The protocol presented in [21] ensures the following properties.

Lemma 1. If the fault occurs at some time tf , and it affects f nodes then:

– By time tf + 2f , any vote received by any node is authentic.
– Each node u starts receiving, at time no later than tf +2·dist(u, v), authentic

votes at every time step.

If no fault occurs, each node u starts receiving, by time 2 ·dist(u, v), authentic
votes at every time step (the RB protocol is assumed to start at time 0).

Note that in the case the above Lemma, hence no faults occur during time
interval (tf , tf +2 ·f], by the assumption that no additional batch of faults occur
until the system stabilizes from the current batch. (Otherwise the algorithm still
stabilizes, but is not required to be time adaptive).

As a consequence, the RB protocol allows every non-faulty node v to verify
whether a value communicated to it by an RB protocol is authentic. We formalize
this verifiability property in the following lemma for later reference. (It follows
directly from the RB properties.)

Lemma 2. Suppose that node v receives the same vote from a node u during
dist(u, v) consecutive steps. Then this vote is authentic.

3.2 Algorithm for SBD

Overview. The algorithm presented here expands the ideas of [12], presented
there for the more limited task of error confinement. At time 0, the source s
gets the input value and starts a broadcast to all other nodes. The idea is to
quickly, but carefully, create replicas of the original input value. The algorithm
should be quick, in the sense that it should create many replicas, or otherwise it
will have low agility. On the other hand, the algorithm should be careful in the
sense that it should try to make sure that new replicas have the correct values,
or otherwise its action would only be to amplify the effect of the original fault.

Consider a node v that receives a message that is supposed to be sent by
a remote node u. There are two difficulties to be answered. First, the message
may have never been sent by u: a faulty node between u and v may have altered
its contents, or even fabricated it completely from scratch. And second, even if
u has indeed sent the message, there is no reason for v to adopt the contents of
the message blindly, as u may be faulty, or it have been fooled earlier!

The basic approach we take to overcome these difficulties is to slow the system
down, so that the protocol will have enough time to make sure that its actions
are sound. Specifically, the first difficulty is circumvented by using regulated
broadcast, that allows each node to verify the authenticity of each message it
receives (cf. Lemma 2). The second concern is addressed by a special variant of
the core technique, whose main property is the following.

Adaptive Stabilization of Reactive Protocols 403

Definition 1 (Core Invariant). At each time step t there exists a set of nodes
core(t) such that the majority of the votes of nodes in core(t) is exactly the
original input value.

The central idea of the algorithm is that once a node v has verified the votes
of a majority of the current core, then it can (1) set its output correctly, and
(2) join the core itself, and start disseminating the correct value. To make the
algorithm adaptive, the core-joining rule is based on time as follows.

Definition 2. A node v joins the core at time t after verifying the authenticity
of the votes of a majority of the nodes of some previous core core(t′) where t′ = Pt
for some constant P < 1.

As we shall see, this rule leads to asymptotically optimal agility while main-
taining adaptivity. Intuitively, this rule allows core to grow during the time it
takes v to consult the nodes of core(Pt), thus improving the agility.

We remark that in the algorithm of [12], a different rule is used. The Core
Invariant is maintained inductively by forcing each node v to verify directly that
the values of all the nodes in some core were received in v before letting v join
the core. Definition 2 is simpler and not operational.

Algorithm Description. The algorithm works as follows. The source node s sleeps
until the environment writes the input value in Bs, and then the source initiates
an RB protocol rooted at the source. We say that ts0 = 0. Each other node v �= s
sleeps until v receives an RB message, at a step denoted by tv0 > ts0. Non-source
nodes start their own instance of the RB protocol when a certain condition is
met (see below).

To complete the specification of the algorithm, we need to explain when does
a node start its RB, what is the value each node broadcasts, and what is the
value it writes in its output register. We describe the algorithm for a generic
node v. Lemma 1 motivates the following concepts.

Definition 3. Node u is said to have a stable vote at node v at time t, denoted
by stablev(u, t), if v receives the same value from the RB rooted at u for at least
dist(u, v) consecutive time units in the time interval [t − 4dist(u, v), t]. A node
set A is said to be verified at node v at time t, denoted by verifiedv(A), if there
is a majority of nodes of A with identical stable votes at node v at time t.

At each time step t, v does the following. We use α = 0.107 and β = 2α. We
define core(t) ≡ balls(αt).

Algorithm Disseminate
(1) Participate in the currently active RB instances. Each instance of the RB

protocol carries the identity of its root u, the current distance from the root,
and the value of Bu.

(2) Set outv to be the majority of the current votes of RBs of nodes in core(t).
(3) If verified(core(Pt)) is true, then set Bv to the majority of values in core(Pt)

and start an RB of Bv.

404 S. Kutten and B. Patt-Shamir

(4) If Bv is defined, then continue the execution of the RB protocol rooted at v,
disseminating the value of Bv (which may be different than the value used
in the previous step).

For Steps 2 and 3, note that core(t) can be locally computed by v for any t
since the topology is known to v and hence the distance to each node is known.
For Step 3, note that verified can be computed by virtue of Lemma 2: this is
done by locally counting the number of steps since the last change of the value
arriving from the RB rooted at u.

4 Analysis

Intuitively, an execution unfolds as follows. At any given time, the core nodes
execute an RB rooted in each of them. Each node that received and verified the
votes from a majority of some previous core becomes a core member itself. The
core expansion rate is α, i.e., at time t all nodes at distance αt from the source are
in the core. The interesting point is that the core cannot grow too fast: to make
it grow fast, nodes must learn very quickly about the previous core, which they
cannot due to physical distance that forces long delays to ensure verifiability.

We start with the following lemma concerning verifiability.

Lemma 3. Consider an RB protocol rooted at a node u, and suppose that Bu re-
mains fixed during a time interval [t1, t2). Then, for every node v with dist(u, v) ≤
t2−t1

6 such that v is [t1, t2)-intact, we have that stablev(u, t2).

Proof. There are two cases to consider. If no fault occurs before time t1 + 3 ·
dist(u, v), then by Lemma 1 v receives Bu(t1) at least during the interval [t1 +
2 · dist(u, v), t1 + 3 · dist(u, v)]. Hence, stablev(u, t) holds at least in the interval
[t1 + 3 · dist(u, v), t1 + 6 · dist(u, v)], and the lemma is satisfied in this case. If
a fault occurs at time tf < t1 + 3 · dist(u, v), then by Lemma 1 we have that
by time tf + 2 · dist(u, v), v starts receiving Bu(t1) uninterrupted, and therefore
stablev(u, t) starts holding no later than time tf +3 ·dist(u, v) < t1 +6 ·dist(u, v),
and we are done in this case too. ��

Intuitively, the algorithm is feasible only if the time interval from Pτ to τ is
large enough for the votes of all the nodes in core(Pτ) become stable at nodes in
core(τ) − core(τ − 1). The following technical lemma will be used to show that
for a certain choice of P and α, feasibility is achievable.

Lemma 4. Let t0 > 0, 0 < α < 0.107, P = 2α, and τ ≥ t0/P. Then Pτ +
6(t0/2 + αPτ) ≤ τ .

Proof. By assumptions, we have

0 ≥ Pτ + 6(t0/2 + αPτ)− τ ≥ 4Pτ + 6αPτ − τ = 8ατ + 12α2τ − τ .

Dividing by τ and solving the quadratic equation 12α2 + 8α − 1 ≤ 0 for α,
we get that it is satisfied for (−

√
7/36−1/3) ≤ α ≤ (

√
7/36−1/3) ≈ 0.107. ��

Adaptive Stabilization of Reactive Protocols 405

The following lemma proves the feasibility of the algorithm.

Lemma 5. Let τ be a time and v be any node with dist(s, v) ≤ τ/2 such that v
is [Pτ, τ]-intact. Assume that for all u ∈ core(Pt)−F at all times Pτ ≤ t < τ , the
following holds: (1) Bu(t) = Bs(0), and (2) node u is the root of an RB protocol
disseminating Bu(t). Then verified(core(Pτ)) is true at v at time τ .

Proof. Consider a node v and let u ∈ core(Pτ)) − F . By Lemma 1, dist(s, v) ≤
tv0/2. By definition of core, dist(s, u) ≤ αPτ , and hence, by the triangle inequality,
dist(u, v) ≤ tv0/2 +αPτ . By assumption, u started its RB no later than time Pτ .
Therefore, by Lemma 3, we have that stablev(u, t) holds for all t ≥ Pτ +6(t0/2+
αPt). In particular, by Lemma 4, it holds for t = τ . Hence, by time τ , stablev(u, τ)
holds. Since this is true for all u ∈ core(Pτ)− F , and since |F | < |core(Pτ)|, we
may conclude that verified(core(Pτ)) is true at v at time τ , as required. ��

We now show that if the environment is sufficiently constrained, then the
values disseminated by algorithm are correct.

Lemma 6. If f < |core(Ptf)|/2 then for all times τ and for all nodes v ∈ core(τ)
such that v is [tv0,∞]-intact we have that Bv(τ) = Bs(0).

Proof. (Sketch.) We prove that the following invariant holds for all times τ :

1. If v ∈ core(τ)− core(τ − 1) and v is [tv0,∞]- intact, then Bv(τ) = Bs(0).
2. If v ∈ core(τ), v is [tv0,∞]- intact, and Bv(τ) = Bs(0), then Bv(τ +1) = Bs(0).

Clearly, the invariant implies the lemma. To prove the invariant, suppose,
for contradiction, that it does not hold, and let τ be the first time the invariant
is violated. First, note that τ > 0 since the invariant holds trivially for τ = 0.
Now, if the invariant is violated at time τ , then there exists a node v ∈ core(τ)
such that v is [tv0,∞]-intact, and such that at time τ , we have Bv(τ) �= Bs(0).
We first claim that verified(core(Pτ)) holds at v. This follows from the fact that
by the minimality of τ and the algorithm, all nodes in core(Pτ) continuously
broadcasts their value, and therefore Lemma 5 guarantees that verified(core(Pτ))
holds. Moreover, by the definition of verified, the value of the votes of these nodes
at v was stable, and hence it is authentic by Lemma 2.

Finally, we note that since the invariant holds at time Pτ , we have that the
votes of each node u ∈ core(Pτ)−F is correct, i.e., Bu(τ ′) = Bs(0) for all τ ′ < τ .
It remains to show that these votes are the majority of the votes of core(Pτ).
To see that, we consider two possible cases. If there are no faulty nodes, or
if tf > τ , then we are done. Otherwise, tf ≤ τ , and hence, by assumption,

|F | < |core(Ptf)|
2

≤ |core(Pτ)|
2

. ��

We can now summarize the properties of our algorithm. For conciseness, we
treat the case of no faults as tf =∞.

Theorem 1. Let ρ = 2α2. Suppose that a fault hits a set F of f nodes at time
tf ≤ ∞. If f < |balls(ρtf)|/2, then

406 S. Kutten and B. Patt-Shamir

1. There exists a time T = tf + O(f) such that outv(t) = Bs(0) for all t > T
and all v ∈ balls(αt).

2. There exists a time T = 1
P min{tf , 2diam} such that Bv(t) = Bs(0) for all

t > T and v ∈ balls(αt).
3. For all t < tf and v ∈ balls(αt) we have that outv(t) = Bv(t) = Bs(0).

Proof. Let v ∈ balls(αtf). To prove Part 1, first note that, by Lemma 1, there
exists a time T1 = tf+O(f), such that by time T1, v receives only authentic votes.
We claim that the votes equal to Bs(0) is a majority among the votes received at
v. By Lemma 6 and the assumption on the number of faults, there are at most f
incorrect votes from nodes in core(t) ⊇ balls(ρtf) (for any t ≥ tf). On the other
hand, 2f < |balls(ρtf)| ≤ |balls(αt)|, and hence |ballv(2f+1)∩balls(αt)| ≥ 2f+1 .
Therefore, by Lemma 1, there exists a time T2 = tf + O(f) such that at least
f + 1 correct votes arrive. The claim follows for T = max{T1, T2}.

We prove Part 2 of the theorem. Let T = 1
Pmin(tf , 2 · diam), and consider any

t ≥ T . By Lemma 6, this part of the theorem holds for every node v ∈ core(t)
such that v is [tv0,∞]-intact. We prove the claim for v ∈ F ∩ balls(αt) such that
tf ≥ tv0. Namely, dist(s, v) ≤ tf

2 ≤
tP
2 . By the choice of T , v is [Pt, t]-intact.

Finally, by Lemma 6, for all u ∈ core(t) − F we have that Bu(t) = Bs(0). Thus
we can apply Lemma 5 and conclude that verified(core(Pt)) holds at v at time t.
This means that v assigns to Bv(t) the majority vote of all the nodes of core(Pt).
These votes are authentic, by Lemma 2. By the assumption on f , and since
t ≥ tf , for a majority of these authentic votes the following holds: each comes
from some node u that is [tu0 , t] intact. By Lemma 6 the votes of this majority
are correct. The claim follows.

The proof of Part 3 is similar to the proof of Part 2. ��

5 Conclusion

In this paper we introduced the first protocol that implements broadcast in an
adaptive way. Due to lack of space, we can only sketch here a few applications and
extensions of this SBD protocol. First, as already mentioned, the SBD protocol
implies the existence of an adaptive solution for any adaptive task. More details
are given in [1]. Briefly, in synchronous systems, where the topology is known
in a advance, the idea is as follows: in each round, the input at each node is
considered to be the root of a new instance of SBD, and the output can be
computed locally since all inputs are eventually available locally.

Second, we note that the SBD protocol replicates its root bit everywhere.
It is possible to trade this maximal fault resiliency for better complexity, by
parameterizing the protocol to have some prescribed amount of replications.
Third, let us mention that the assumption that the network is synchronous can
be lifted using known techniques (e.g., [2] gives an asynchronous RB protocol).

Finally, let us stress once again that while in this paper we demonstrated the
existence of an adaptive solution, much work remains to be done in making such
a solution practical in terms of computational complexity.

Adaptive Stabilization of Reactive Protocols 407

References

1. Longer version of this paper iew3.technion.ac.il//zipped/kp00.ps.
2. Y. Afek and A. Bremler. Self-stabilizing unidirectional network algorithms by

power supply. Chicago J. of Theoretical Computer Science, 1998(3), Dec. 1998.
3. Y. Afek and S. Dolev. Local stabilizer. JPDC, 62(5):745–765, 2002.
4. Y. Afek, S. Kutten, and M. Yung. The local detection paradigm and its applications

to self-stabilization. Theor. Comput. Sci., 186(1-2):199–229, 1997.
5. A. Arora and M. Gouda. Distributed reset. IEEE T. Comp., 43(9):1026–1038,

1994.
6. A. Arora and H. Zhang. GS3: scalable self-configuration and self-healing in wireless

networks. In Proc. 21st PODC, pages 58–67, July 2002.
7. A. Arora and H. Zhang. LSRP: Local stabilization in shortest path routing. In

Proc. 2003 Int. Conf. on Dependable Systems and Networks (DSN), 2003.
8. B. Awerbuch, I. Cidon, I. Gopal, M. Kaplan, and S. Kutten. Distributed control

for PARIS. In 9th PODC, 1990.
9. B. Awerbuch, S. Kutten, Y. Mansour, B. Patt-Shamir, and G. Varghese. Time

optimal self-stabilizing synchronization. In Proc. 25th STOC, pages 652–661, 1993.
10. B. Awerbuch, B. Patt-Shamir, and G. Varghese. Self-stabilization by local checking

and correction. In 32nd FOCS, pages 268–277, Oct. 1991.
11. B. Awerbuch, B. Patt-Shamir, G. Varghese, and S. Dolev. Self-stabilization by

local checking and global reset. In Proc. 8th WDAG, pages 326–339. 1994.
12. Y. Azar, S. Kutten, and B. Patt-Shamir. Distributed error confinement. In 22nd

PODC, pages 33–42, June 2003.
13. J. Beauquier, C. Genolini, and S. Kutten. Optimal reactive k-stabilization: the

case of mutual exclusion. In 18th PODC, pages 209–218, May 1999.
14. E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Comm.

ACM, 17(11):643–644, November 1974.
15. S. Dolev. Self-Stabilization. MIT Press, 2000.
16. S. Dolev and T. Herman. Superstabilizing protocols for dynamic distributed sys-

tems. Chicago J. of Theoretical Computer Science, 1997(4), Dec. 1997.
17. S. Dolev, A. Israeli, and S. Moran. Self-stabilization of dynamic systems assuming

only read/write atomicity. In 9th PODC, 1990.
18. S. Ghosh, A. Gupta, T. Herman, and S. V. Pemmaraju. Fault-containing self-

stabilizing algorithms. In 15th PODC, May 1996.
19. G. Itkis and L. Levin. Fast and lean self-stabilizing asynchronous protocols. In

35th FOCS, pages 226–239, Nov. 1994.
20. S. Katz and K. Perry. Self-stabilizing extensions for message-passing systems. In

10th PODC, Quebec City, Canada, Aug. 1990.
21. S. Kutten and B. Patt-Shamir. Time-adaptive self-stabilization. In 16th PODC,

pages 149–158, 1997.
22. S. Kutten and D. Peleg. Fault-local distributed mending. In 14th PODC, 1995.
23. S. Kutten and D. Peleg. Tight fault locality (extended abstract). In 36th FOCS,

pages 704–713, 1995.
24. Z. Manna and A. Pnueli. Models for reactivity. Acta Informatica, 3:609–678, 1993.
25. J. McQuillan, I. Richer, and E. Rosen. The new routing algorithm for the

ARPANET. IEEE Trans. Comm., 28(5):711–719, May 1980.
26. J. Moy. OSPF version 2, Apr. 1998. Internet RFC 2328.
27. R. Perlman. Interconnections. Addison-Wesley Publishing Co., 2nd edition, 2000.

Visibly Pushdown Games

Christof Löding1,�, P. Madhusudan2,��, and Olivier Serre1,�

1 LIAFA, Université Paris VII, France
2 University of Pennsylvania

Abstract. The class of visibly pushdown languages has been recently
defined as a subclass of context-free languages with desirable closure
properties and tractable decision problems. We study visibly pushdown
games, which are games played on visibly pushdown systems where the
winning condition is given by a visibly pushdown language. We establish
that, unlike pushdown games with pushdown winning conditions, visi-
bly pushdown games are decidable and are 2Exptime-complete. We also
show that pushdown games against Ltl specifications and Caret spec-
ifications are 3Exptime-complete. Finally, we establish the topological
complexity of visibly pushdown languages by showing that they are a
subclass of Boolean combinations of Σ3 sets. This leads to an alterna-
tive proof that visibly pushdown automata are not determinizable and
also shows that visibly pushdown games are determined.

1 Introduction

The theory of two-player games on graphs is a prominent area in formal verifica-
tion and automata theory. The peculiar acceptance conditions used in the study
of automata on infinite words and trees, result in a theory of infinite games that
serves as a simple and unified framework for various proofs and constructions in
automata theory. In particular, the determinacy theorem for these games and the
solvability of infinite games on finite graphs are closely related to the decidability
of the monadic second-order logic on trees [14, 16].

In formal verification, infinite games are useful in two contexts. First, the
model-checking problem for the μ-calculus is intimately related to solving parity
games [6], the precise complexity of which is still open. Second, the theory of
games form a natural abstraction of the synthesis and control-synthesis problems,
where the aim is to synthesize a system that satisfies a given specification [9].

While most results in model checking involve problems on finite graphs, ab-
straction of data from software programs with procedures results in pushdown
models, where the stack is required to maintain the call-stack of the program.

� Supported by the European Community Research Training Network “Games and
Automata for Synthesis and Validation” (games).

�� Supported partially by ARO URI award DAAD19-01-1-0473, and NSF awards
ITR/SY 0121431 and CCR 0306382.

K. Lodaya and M. Mahajan (Eds.): FSTTCS 2004, LNCS 3328, pp. 408–420, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Visibly Pushdown Games 409

Formal verification of these models against regular specifications is however
tractable since emptiness of pushdown automata is decidable. In fact, a variety of
program analysis questions, static code analysis, and compiler optimization can
be reduced to reachability in pushdown models [10] and contemporary software
model-checking tools such as Slam [3] implement these decision procedures.

Although checking software models against regular specifications is useful,
there are important context-free requirements—specification of pre-post con-
ditions for procedures, security properties that require stack inspection, etc.
Recently, a temporal logic called Caret [1] has been defined which allows specifi-
cation of such context-free properties and yet preserves decidability of pushdown
model-checking.

In [2], the class of visibly pushdown languages (Vpl) is proposed as an
automata theoretic generalization of Caret. These languages are accepted by
visibly pushdown automata (Vpa), which are pushdown automata whose stack-
operations are determined by the input. Like the class of regular languages,
Vpl is closed under all Boolean operations; moreover, decision problems such
as inclusion, which are undecidable for context-free languages, are decidable for
Vpl. Vpl includes the class of languages defined by Caret and forms a robust
subclass of context-free languages [2].

Turning back to games, pushdown games with parity winning conditions are
known to be decidable [15]. This shows that pushdown games with any external
ω-regular winning condition can also be solved. However, it is easy to see that
solving pushdown games against pushdown winning conditions is undecidable. In
[5] a new winning condition for pushdown games was proposed, which declares
a play winning if and only if along the play, the stack is repeatedly bounded (i.e.
there is some stack depth n such that the stack was below depth n infinitely
often). The main motivation for this winning condition was that it defined a
class of plays that was in the Σ3 level of the Borel hierarchy (ω-regular winning
conditions define only sets that are in the Boolean closure of Σ2). It was shown
that solving these games was decidable. Note that for any pushdown game, if we
label the push transitions, pop transitions, and internal transitions differently,
then the set of repeatedly bounded plays is a visibly pushdown language.

Since visibly pushdown automata have a decidable model-checking problem
and since the set of repeatedly bounded words is a Vpl, a natural question
arises: given a visibly pushdown game graph G and a Vpl L describing the set
of winning plays, is the game problem (G, L) decidable? The main result of this
paper is that this problem is decidable and is 2Exptime-complete. Thus, the
tractability of visibly pushdown languages extends to the game problem as well.

The main technical challenge in handling visibly pushdown games is that the
specification automaton, which is a Vpa, is not, in general, determinizable [2].
This prevents us from taking a product with the game graph to reduce it to a
pushdown game with internal winning conditions. We invent a new kind of Vpa,
called stair Vpa, in which the winning condition is interpreted only at certain
points along the run, and the states met at other points are ignored. The i’th
letter of a word belongs to this evaluation set if for no j > i, the stack depth

410 C. Löding, P. Madhusudan, and O. Serre

at j is less than that at i. We then show that for every (nondeterministic) Vpa,
there exists an equivalent deterministic stair Vpa. We take the product of the
game graph with the deterministic stair Vpa, and show how pushdown games
with stair winning conditions can be solved.

The above result yields a 3Exptime decision procedure for pushdown games
against Caret specifications. However, this high complexity is not due to the
context-free nature of the specification, as we show the surprising result that
pushdown games against Ltl specifications is already 3Exptime-hard. We also
establish that solving pushdown games against nondeterministic Vpa (or even
nondeterministic Büchi automata) specifications is 2Exptime-hard.

Finally, we show that the class Vpl is contained in the Boolean closure of
Σ3, B(Σ3). This is one level higher than the class B(Σ2) which contains all
regular ω-languages. As a consequence, we get an alternative proof that visi-
bly pushdown automata cannot be determinized and also establish that visibly
pushdown games are determined (i.e. from any position in the game, one of the
players must have a winning strategy).

2 Preliminaries

For a finite set X we denote the set of finite words over X by X∗, the set of infinite
words (ω-words) over X by Xω, and the empty word by ε. For α ∈ X∗ ∪ Xω

and n ∈ N we write α(n) for the nth letter in α and α
n for the prefix of length
n of α, i.e., α
0= ε and α
n= α(0) · · ·α(n− 1) for n ≥ 1.

A pushdown alphabet is a tuple Ã = 〈Ac, Ar, Aint〉 that comprises three
disjoint finite alphabets—Ac is a finite set of calls, Ar is a finite set of returns,
and Aint is a finite set of internal actions. For any such Ã, let A = Ac∪Ar∪Aint.

We define visibly pushdown systems over Ã. Intuitively, the pushdown system
is restricted such that it pushes onto the stack only when it reads a call, pops
the stack only at returns, and does not use the stack on internal actions. The
input hence controls the kind of operations permissible on the stack—however,
there is no restriction on the symbols that can be pushed or popped.

Definition 1 (Visibly Pushdown System [2]). A visibly pushdown system
(VPS) over 〈Ac, Ar, Aint〉 is a tuple S = (Q,Qin, Γ,Δ) where Q is a finite set of
states, Qin ⊆ Q is a set of initial states, Γ is a finite stack alphabet that contains
a special bottom-of-stack symbol ⊥ and Δ ⊆ (Q × Ac × Q × (Γ \ {⊥})) ∪ (Q ×
Ar × Γ ×Q) ∪ (Q×Aint ×Q) is the transition relation.

A stack is a nonempty finite sequence over Γ ending in the bottom-of-stack
symbol ⊥; let us denote the set of all stacks as St = (Γ \{⊥})∗.{⊥}. A transition
(q, a, q′, γ), where a ∈ Ac and γ �= ⊥, is a push-transition where on reading a,
γ is pushed onto the stack and the control changes from state q to q′. Similarly,
(q, a, γ, q′) is a pop-transition where γ is read from the top of the stack and
popped (if the top of stack is ⊥, then it is read but not popped), and the control
state changes from q to q′. Note that on internal actions, there is no stack
operation.

Visibly Pushdown Games 411

The configuration graph of a Vps S is the graph GS = (VS , ES), where
VS = {(q, σ) | q ∈ Q, σ ∈ St}, and ES is the set that contains all triples
((q, σ), a, (q′, σ′)) ∈ VS ×A× VS , that satisfy the following:

[Push] If a is a call, then ∃γ ∈ Γ such that (q, a, q′, γ) ∈ Δ and σ′ = γ.σ.
[Pop] If a is a return, then ∃γ ∈ Γ such that (q, a, γ, q′) ∈ Δ and either γ �= ⊥

and σ = γ.σ′, or γ = ⊥ and σ = σ′ = ⊥.
[Internal] If a is an internal action, then (q, a, q′) ∈ Δ and σ = σ′.

For a word α = a1a2a3 · · · in Aω, a run of S on α is a sequence ρ =
(q0, σ0)(q1, σ1)(q2, σ2) · · · ∈ V ω

S of configurations, where q0 ∈ Qin, σ0 = ⊥ and
((qi, σi), a, (qi+1, σi+1)) ∈ ES for every i ∈ N.

A visibly pushdown automaton (Vpa) over 〈Ac, Ar, Aint〉 is a tuple M =
(Q,Qin, Γ,Δ,Ω) where (Q,Qin, Γ,Δ) is a Vps, and Ω is an acceptance condi-
tion. In a Büchi Vpa, Ω = F ⊆ Q is a set of final states, while in a parity Vpa,
Ω : Q→ N.

For a run ρ = (q0, σ0)(q1, σ1)(q2, σ2) · · · , we consider the set inf (ρ) ⊆ Q
which is the set of all states that occur in ρ infinitely often. A word α ∈ Aω is
accepted by a Büchi Vpa if there is a run ρ over α which infinitely often visits
F , i.e., if inf (ρ)∩F �= ∅. A word α ∈ Aω is accepted by a parity Vpa if there is a
run ρ over α such that the minimal color visited infinitely often by ρ is even, i.e.,
if the minimal color in Ω(inf (ρ)) = {Ω(q) | q ∈ inf (ρ)} is even. The language
L(M) of a VpaM is the set of words accepted by M.

A Vpa is deterministic if it has a unique initial state qin , and for each in-
put letter and configuration there is at most one successor configuration. For
deterministic Vpas we denote the transition relation by δ instead of Δ and write
δ(q, a) = (q′, γ) instead of (q, a, q′, γ) ∈ δ if a ∈ Ac, δ(q, a, γ) = q′ instead of
(q, a, γ, q′) ∈ δ if a ∈ Ar, and δ(q, a) = q′ instead of (q, a, q′) ∈ δ if a ∈ Aint.

Infinite Two-Player Games. Let A be a finite alphabet. A game graph G over A
is a graph G = (V, VE, VA, E) where (V,E) is a deterministic graph with edges
labeled with letters of A (i.e. E ⊆ V ×A×V such that if (v, a, v1), (v, a, v2) ∈ E,
then v1 = v2), and (VE, VA) partitions V between two players, Eve and Adam.
An infinite two-player game is a pair G = (G,Ω), where the winning condition
Ω can be of two kinds: An internal winning condition Ω is a subset of V ω and
an external winning condition Ω is a subset of Aω.

The players, Eve and Adam, play in G by moving a token between positions.
A play from some initial node v0 proceeds as follows: the player owning v0 moves
the token to some vertex v1 along an edge of the form e0 = (v0, a0, v1) ∈ E. Then
the player owning v1 moves the token to v2 along an edge e1 = (v1, a1, v2), and
so on, forever. If one of the players cannot make a move, the other player wins.
Otherwise, the play is an infinite sequence λ = v0a0v1a1 · · · ∈ (V.A)ω in G. For
internal winning conditions, Eve wins λ if v0v1v2 · · · ∈ Ω, and Adam wins it
otherwise. If Ω is an external winning condition, Eve wins λ if a0a1a2 · · · ∈ Ω,
and Adam wins it otherwise. A partial play is any prefix of a play.

A strategy for Eve is a function assigning to any partial play ending in some
node in v ∈ VE an edge (v, a, v′) ∈ E. Eve respects a strategy f during some

412 C. Löding, P. Madhusudan, and O. Serre

play λ = v0a0v1a1 · · · if for any i ≥ 0 such that vi ∈ VE, (vi, ai+1, vi+1) =
f(v0a0v1a1 · · · vi). Finally, a strategy f is said to be winning from some position
v, if any play starting from v where Eve respects f is winning for her.

A visibly pushdown game H = (S, QE, QA,M) consists of a Vps S, a Vpa

M (both over a common pushdown alphabet Ã), and a partition 〈QE, QA〉 of
the state set Q of S. H defines the game GH = (G,Ω), where G = (V, VE, VA, E),
(V,E) is the configuration graph of S, VE = {(q, σ) | q ∈ QE}, and VA = {(q, σ) |
q ∈ QA}. The set Ω is the external winning condition Ω = L(M).

We can now state the main problem we address in this paper: Given a visibly
pushdown game H = (S, QE, QA,M) and a state pin of S, is there a strategy
for Eve that is winning for her from the position (pin,⊥), in the game GH?

3 Deterministic Stair Vpas

Visibly pushdown automata over ω-words cannot be determinized [2]. In this
section, in order to obtain a determinization theorem, we propose a new mode
of acceptance for Vpas. Instead of evaluating the acceptance condition on the
whole run, we evaluate it only on a subsequence of the run. This subsequence
is obtained by discarding those configurations for which a future configuration
of smaller stack height exists. The sequence thus obtained is non-decreasing
with respect to the stack height, and hence we dub Vpas using this mode of
acceptance as stair Vpas (denoted StVpa). The main theorem of this section
is that for every nondeterministic Büchi Vpa, we can effectively construct an
equivalent deterministic parity StVpa.

For Y ⊆ N and ρ ∈ Xω (for some set X) we define the subsequence ρ|Y ∈
X∗ ∪Xω of ρ induced by Y as follows. Let n0 < n1 < n2 < · · · be an ascending
enumeration of the elements in Y . Then ρ|Y = ρ(n0)ρ(n1)ρ(n2) · · · .

For w ∈ A∗ we define the stack height sh(w) inductively by sh(ε) = 0 and

sh(ua) =

⎧⎨⎩sh(u) if a ∈ Aint,
sh(u) + 1 if a ∈ Ac,
max{sh(u)− 1, 0} if a ∈ Ar.

For α ∈ Aω define Stepsα = {n ∈ N | ∀m ≥ n : sh(α
m) ≥ sh(α
n)}. Note
that Stepsα is infinite for each α ∈ Aω.

Let Lmwm denote the set of all minimally well-matched words—the words of
the form cwr ∈ A∗, where the last letter r ∈ Ar is the matching return for the
first letter c ∈ Ac (formally, c ∈ Ac, r ∈ Ar, sh(w) = 0 and for any prefix w′ of
w, sh(cw′) > 0).

For any word α ∈ Aω, we can group maximal subwords of α which are in
Lmwm, and get a unique factorization α = w1w2 . . . where each wi ∈ Lmwm ∪A.
It is easy to see that if wi = c, for some c ∈ Ac, then there is no j > i such
that wj = r, for some r ∈ Ar. In fact, the points at which the word factorizes is
exactly Stepsα, i.e. n ∈ Stepsα iff ∃i ≥ 0 : |w1 . . . wi| = n.

Visibly Pushdown Games 413

To define acceptance for StVpas, we evaluate the acceptance condition at
the subsequence ρ|Stepsα

for any run ρ on α, i.e. at the positions after each prefix
w1 . . . wi, where i ∈ N.

Definition 2 (Stair Vpa). A (nondeterministic) stair Vpa (StVpa) M =
(Q,Qin, Γ,Δ,Ω) over 〈Ac, Ar, Aint〉 has the same components as a Vpa. A word
α ∈ Aω is accepted byM if there is a run ρ ofM on α such that ρ|Stepsα

satisfies
the acceptance condition Ω ofM. The language accepted byM is L(M) = {α ∈
Aω | M accepts α}.

Example 1. Let Lrb = {α ∈ Aω | ∃�∀m∃n > m : sh(α
n) = �} (with
Aint = ∅, Ar = {r}, and Ac = {c}) be the set of all repeatedly bounded words.
As shown in [2] there is no deterministic Vpa for this language. Now consider
the parity StVpa Mrb with states q1, q2, initial state q1, stack alphabet Γ =
{γ,⊥}, coloring function Ω(q1) = 1, Ω(q2) = 2, and transition function δ(q1, c) =
δ(q2, c) = (q1, γ) and δ(q1, r, γ) = δ(q2, r, γ) = δ(q1, r,⊥) = δ(q2, r,⊥) = q2. For
a run ρ of this StVpa the sequence ρ|Stepsα

contains infinitely many q1 iff the
input contains infinitely many unmatched calls and thus L(Mrb) = Lrb.

We aim at proving that for each nondeterministic Büchi VpaM there is an
equivalent deterministic parity StVpa D. Let α ∈ Aω and let the factorization
of α be α = w1w2 A stair Vpa reading α can refer to the states after each
wi only. In order to capture the wayM acts on a subword wi, we use summary
information which, intuitively, describes all possible transformationsM can un-
dergo when reading the word wi. For this purpose letM = (Q,Qin, Γ,Δ, F) and
set TQ = 2Q×{0,1}×Q. The transformation Twi

∈ TQ induced by wi is defined
as follows: (q, f, q′) ∈ Twi

iff there is a run of M on wi leading from (q,⊥) to
(q′, σ), for some σ ∈ St, with f = 1 iff this run meets some state in F . Note
that the initial stack content does not matter if wi ∈ Ac ∪ Aint ∪ Lmwm, and if
wi ∈ Ar, we know that when wi occurs in α, the stack must be empty.

Now consider the sequence τα = Tw1Tw2 . . . ∈ T ω
Q . M accepts α iff we can

string together a consistent run using the summaries in τα such that it visits F
infinitely often. Formally, a word τ ∈ T ω

Q is good if there exists ρ ∈ Qω such that
ρ(0) ∈ Qin and for all i ∈ N, (ρ(i), fi, ρ(i+1)) ∈ τ(i), for some fi ∈ {0, 1}, where
fi = 1 for infinitely many i ∈ N. Then it is easy to see that α ∈ L(M) iff τα is
good. Note that the set of all good words over TQ is in fact a regular ω-language
over the alphabet TQ. Hence we can build a deterministic parity automaton
ST = (S, sin, δ,Ω) which accepts the set of all good words. Moreover, ST can be
constructed such that S = 2O(|Q|·log |Q|) [13].

We can also show that the summary information can be generated by a
deterministic Vps. Formally, there is a deterministic Vps C with output such
that on reading any finite word w, if the factorization of w is w′

1 . . . w
′
k, C outputs

the transformation Tw′
k

on its last transition. Such a Vps C is easy to construct:
the state-space of C is TQ with initial state IdQ = {(q, 0, q) | q ∈ Q}. On reading
an internal action a ∈ Aint (or on reading a return when the stack is empty),
C updates its state from T to T ◦ Ta and outputs Ta; on reading a call c ∈ Ac,
it pushes c and the current state T onto the stack, updates the state to IdQ,

414 C. Löding, P. Madhusudan, and O. Serre

and outputs Tc; on reading a return r ∈ Ar when the stack is nonempty, it
pops T ′ and c ∈ Ac, updates its state from T to T ′ ◦

⋃
γ∈Γ (Tc,γ ◦ T ◦ Tr,γ), and

outputs
⋃

γ∈Γ (Tc,γ ◦ T ◦ Tr,γ). Here, T1 ◦ T2 is defined to be the set of all triples
(q, f, q′) such that there are some elements (q, f1, q1) ∈ T1, (q1, f2, q

′) ∈ T2 and
f = max{f1, f2}. The transformation Tc,γ (resp. Tr,γ) is the one induced by the
transitions pushing γ on reading c (resp. popping γ on reading r).

We are now ready to construct the deterministic parity StVpa D accepting
L(M). The state-space of D is TQ × S, and we will construct D such that after
reading any finite word w with factorization w = w′

1, . . . w
′
k, the second compo-

nent of D’s state is the state which ST would reach on the word Tw′
1
. . . Tw′

k
.

D inherits the parity condition from ST and it is easy to see that the above
property ensures that D accepts L(M).

D simulates the Vps C on the first component and the second component
is updated using the outputs of C. In addition to the information stored on the
stack by C, when reading a call symbol c ∈ Ac, D also pushes onto the stack
the state it was in before the call symbol was read. When D reads a return
symbol and the stack is not empty, the second component needs to be updated
to δ(s, T) where s is the state ST was in before it read the call corresponding to
the current return, and T is the summary of the segment from the corresponding
call to the current return. The state s is available on the top of the stack (since
D had pushed it at the corresponding call) and T corresponds to the output of
C; hence D can update the second component appropriately. We have:

Theorem 1. For each nondeterministic Büchi Vpa M over A there exists a
deterministic parity StVpa D such that L(M) = L(D). Moreover, we can con-
struct D such that it has 2O(|Q|2) states, where Q is the state-space of M.

As Theorem 1 shows, evaluating the acceptance condition on ρ|Stepsα
instead

of ρ increases the expressive power of deterministic Vpas. A nondeterministic
Vpa can guess the positions of Stepsα (and verify its correctness), and hence
stair acceptance does not change the expressive power of nondeterministic Vpas.

Theorem 2. For each nondeterministic parity StVpa M one can construct a
nondeterministic Büchi Vpa M′ such that L(M) = L(M′).

4 Games

In this section, our main aim is to prove that the problem of solving visibly
pushdown games as stated at the end of Section 2 is in 2Exptime. Our first
step is to internalize the winning condition M by transforming it to a deter-
ministic stair Vpa and then taking its product with the game graph defined by
H. This results in a game with a stair parity winning condition, which we then
solve.

Visibly Pushdown Games 415

A stair parity game ST = (S, QE, QA, col) consists of a Vps S = (Q,Qin, Γ,
Δ), a partition 〈QE, QA〉 of Q, and a coloring function col : Q → N. The game
defined by ST is GST = (G,Ω) with G = (V, VE, VA, E), where (V,E) is the con-
figuration graph of S, VE = {(p, σ) | p ∈ QE}, and VA = {(p, σ) | p ∈ QA}. The
set Ω is the internal winning condition Ω = {λ ∈ V ω | mincol(λ|Stepsλ

) is even}
where mincol(β) = min{i | ∃∞n s.t. col(β(n)) = i}. Here, Stepsλ is the nat-
ural adaption of the definition of Stepsα to sequences of configurations, i.e,
Stepsλ = {n ∈ N | ∀m ≥ n |λ(m)| ≥ |λ(n)|}.

Note that the labeling of the edges in a stair parity game does not matter
and, in the sequel, we will ignore it.

To transform a visibly pushdown game H = (S, QE, QA,M) into a stair
parity game let D be some deterministic StVpa such that L(D) = L(M). Since
S and D are over the same pushdown alphabet Ã, we can take the synchronized
product S⊗D to get a pushdown system S ′ (ignoring the acceptance condition).
We then have a stair parity game ST = (S ′, Q′

E, Q
′
A, col), where the partition of

the state-space is inherited from H and the coloring function is inherited from
the coloring function of D. Since D is deterministic one can easily show the
following proposition, where qin denotes the initial state of D.

Proposition 1. Let pin ∈ Q. Then (pin,⊥) is winning for Eve in GH if and
only if ((pin, qin),⊥) is winning for Eve in GST .

Now we explain how to adapt the classical techniques for pushdown parity
games and its variants [15, 4, 11] in order to solve stair parity games.

Let ST = (S, QE, QA, col) be a stair parity game, where S = (Q,Qin, Γ,Δ)
and let G = (V, VE, VA, E) be the associated game graph. We construct a finite
game graph G with a parity winning condition, such that Eve has a winning
strategy in G iff she has a winning strategy in G. Intuitively, in G, we keep track
of only the control state and the symbol on the top of the stack. The interesting
aspect of the game is when it is in a control state p with top-of-stack γ, and the
player owning p wants to push a letter γ′ onto the stack. For every strategy of
Eve there is a certain set of possible (finite) continuations of the play that will
end with popping this γ′ symbol from the stack. We require Eve to declare the
set R of all states the game can be in after the popping of γ′ along these plays.

Adam now has two choices—he can either continue the game by pushing γ′

onto the stack and updating the state (we call this a pursue move), or he can
pick some state p′′ ∈ R and continue from that state, leaving γ on the top of the
stack (we call this a jump move). If he does a pursue move, then he remembers
R and if there is a pop-transition on γ′ later on in the play, the play stops right
there and Eve is declared the winner if and only if the resulting state is in R.

The crucial point to note is that the jump transitions along infinite plays
in G (i.e. plays that never meet a pop-transition with the stack being non-
empty) essentially skip words of Lmwm, and hence the play really corresponds to
evaluating a play λ in the pushdown game at Stepsλ. Therefore the stair parity
condition gets evaluated along the play and ensures correctness of the reduction.

416 C. Löding, P. Madhusudan, and O. Serre

Let us now describe the construction more precisely. The main nodes of G
are tuples in Q × Γ × 2Q. A node (p, γ,R) has color col(p) and belongs to Eve
iff p ∈ QE. Intuitively, a node (p, γ,R) denotes that the current state of S is p,
γ is the symbol on the top of the stack, and R is the current commitment Eve
has made, i.e. Eve has claimed that if a pop-γ transition is executed, then the
resulting state will be in R. The starting node is (pin,⊥, ∅).

In order to simulate an internal-transition (p, p′) ∈ Δ, we have edges of
the form (p, γ,R) → (p′, γ, R) in G. Also, if the stack is empty, pop-transitions
are handled like internal transitions: if (p,⊥, p′) ∈ Δ, then there is an edge
(p,⊥, R)→ (p′,⊥, R) in G.

Pop-transitions are not simulated but are represented in G by edges to a
vertex tt (winning for Eve) and a vertex ff (winning for Adam) to verify the
claims made by Eve. Recall that in (p, γ,R) the set R represents the claim of
Eve that on a pop-γ transition the next state will be in R. Hence, in G there is an
edge from (p, γ,R) to tt if there is p′ ∈ R and a pop-transition (p, γ, p′) ∈ Δ. If p
belongs to Eve, then this transition can be used by Eve to win the game because
she was able to prove that her claim was correct. If there is a pop-transition
(p, γ, p′) ∈ Δ with p′ /∈ R, then there is an edge from (p, γ,R) to ff , which can
be used by Adam to win (if p belongs to Adam) since Eve made a false claim.

The simulation of a push-transition takes place in several steps. For a node
(p, γ,R) the player owning p first picks a particular push-transition (p, p′, γ′) by
moving to the node (p, γ,R, p′, γ′), which belongs to Eve. Then Eve proposes a set
R′ ⊆ Q containing the states that she claims to be reached if γ′ gets eventually
popped. She does this by moving to the node (p, γ,R, p′, γ′, R′), which belongs to
Adam. Now, Adam has two kinds of choices. He can do a jump move by picking
a state p′′ ∈ R′ and move to the node (p′′, γ, R). Or he can do a pursue move
by moving to the node (p′, γ′, R′).

If G denotes the parity game played on G, we get the following result which
can be shown using similar methods as, e.g., in [15, 4, 11].

Theorem 3. Let pin ∈ Q. Eve has a winning strategy from (pin,⊥) in the push-
down game GST if and only if she has a winning strategy in G from (pin,⊥, ∅). In
addition, one can effectively build pushdown strategies for both players in GST .

As a corollary of Theorem 3, Proposition 1, and the fact that the transforma-
tion from Proposition 1 preserves pushdown strategies, we have the following:

Corollary 1. The problem of deciding the winner in a visibly pushdown game
is in 2Exptime and pushdown strategies can be effectively built for both players.

It is a well known result that there always exists memoryless winning strate-
gies in parity games [6, 17]. Nevertheless, it is not the case for the preceding
winning conditions:

Proposition 2. There exist a stair parity (resp. visibly) pushdown game and a
configuration winning for Eve such that any winning strategy for Eve from this
position requires infinite memory.

Visibly Pushdown Games 417

Visibly pushdown games are solvable in 2Exptime, as we showed above.
Let us now consider pushdown games where the alphabet A is a subset of 2P

where P is a finite set of propositions. Caret is a temporal logic that can ex-
press a subclass of context-free languages which is contained in Vpl [1, 2]. From
constructions in [1], it follows that for every Caret formula ϕ over 2P , and a
partition Ã of 2P into calls, returns, and internal actions, we can construct a
Büchi visibly pushdown automaton of size 2O(|ϕ|) over Ã which accepts the pre-
cise set of strings that satisfy ϕ. Hence, it follows that solving visibly pushdown
games against Caret specifications is in 3Exptime.

However, this high complexity is not due to the pushdown nature of the
specification nor due to the fact that we are dealing with ω-length plays. If
we consider pushdown games against an Ltl specification ϕ, we can solve this
by first constructing a nondeterministic Büchi automaton accepting the models
of ϕ and then constructing an equivalent deterministic parity automaton for it
(resulting in an automaton whose size is doubly exponential in ϕ). Then, we
can take the product of the pushdown game and this automaton, and solve the
resulting parity pushdown game in exponential time [15]. The whole procedure
works in 3Exptime. By a reduction from the word problem for alternating
doubly exponential space bounded Turing machines one can show that this is a
lower bound as well:

Theorem 4. Given a pushdown game and an Ltl formula, checking whether
Eve has a winning strategy is 3Exptime-complete.

We also establish the exact complexity of the following pushdown game
problems:

Theorem 5

– Given a pushdown game and a Caret formula, checking whether Eve has a
winning strategy is 3Exptime-complete.

– Given a pushdown game and a nondeterministic Büchi automaton, checking
whether Eve has a winning strategy is 2Exptime-complete.

– Given a visibly pushdown game graph and a nondeterministic Büchi Vpa,
checking whether Eve has a winning strategy is 2Exptime-complete.

5 Topological Complexity

It is well known that the class of regular ω-languages is contained in the Boolean
closure of the second level of the Borel hierarchy. Our goal is to show that this
topological complexity is increased only by one level when we pass to visibly
pushdown languages, i.e., we show that the class of visibly pushdown languages
is contained in the Boolean closure of the third level of the Borel hierarchy. For
more details on the definitions and results used in this section we refer the reader
to [7] for set-theory in general and to [12] for results related to ω-languages.

418 C. Löding, P. Madhusudan, and O. Serre

For a set X we consider Xω as a topological space with the Cantor topology.
The open sets of Xω are those of the form U ·Xω for U ⊆ X∗. A set L ⊆ Xω is
closed if its complement L− = Xω \ L is open.

To define the finite levels of the Borel hierarchy we start with the class Σ1 of
open sets. For each n ≥ 1, Πn is the class of complements of Σn-sets and Σn+1 is
the class of countable unions of Πn-sets. By B(Σn) we denote the class of finite
Boolean combinations of Σn-sets (using union, intersection, and complement).

For L1 ⊆ Xω
1 , L2 ⊆ Xω

2 we say L1 reduces continuously to L2 if there is a
continuous mapping ϕ : Xω

1 → Xω
2 such that ϕ−1(L2) = L1, i.e., α ∈ L1 iff

ϕ(α) ∈ L2 for all α ∈ Xω
1 . A language L ⊆ Xω is called Σn-complete if it is in

Σn and every K ∈ Σn continuously reduces to L. The definition of Πn-complete
sets is analogous.

We show the result that any Vpl L belongs to B(Σ3) by using the model
of stair Vpa introduced in Section 3. Let L ⊆ Aω be a Vpl and let M =
(Q, qin, Γ, δ,Ω) be a deterministic parity stair Vpa with L(M) = L. To show
that L is in B(Σ3), we define for each q ∈ Q the language Lq containing all the
words α for which the run of M on α infinitely often visits q on positions from
Stepsα, and show that Lq belongs to Π3. The language L itself can be written
as a finite Boolean combination of the sets Lq corresponding to the definition of
the parity acceptance condition: α ∈ Aω is in L iff α ∈ Lq for some q with Ω(q)
even and α /∈ Lq′ for all q′ with Ω(q′) < Ω(q).

For the definition of Lq we will use the following sets of finite words.

– For each q ∈ Q, let Uq ⊆ A∗ be the set of all words w such that the run of
M on w ends in a configuration with state q.

– Let Umr = (Ac ∪ Aint ∪ Lmwm)∗ be the set of all words without unmatched
returns.

– Let U0 = (Ar ∪Aint ∪ Lmwm)∗ be the set of all words of stack height 0.

We describe Lq by stating that for each position m ∈ N there is a position
n > m that is in Stepsα and the prefix of α up to position n is in Uq. The only
difficulty is to express that position n is in the set Stepsα. For this we distinguish
two cases (which are not mutually exclusive). Position n is in Stepsα if α
n has
stack height 0 or if the suffix of α starting from position n does not contain any
unmatched returns. Formally, for α ∈ Aω and n ∈ N we get that n ∈ Stepsα and
the run ofM on α
n ends in a configuration with state q iff α is in the set

Lq,n = [(Uq ∩An).Aω] ∩
[
(U0 ∩An).Aω ∪

(⋂
n′>n

(An.Umr ∩An′
).Aω

)]
.

The basic sets involved in this definition are of the form U.Aω for U finite
(since we always intersect with the set of words up to a certain length). These
sets are open as well as closed. Since the class of closed sets is closed under
countable intersections and finite unions we obtain that Lq,n is closed for each
q and n.

By adding the quantifications for m and n we obtain the following definition
of Lq: Lq =

⋂
m∈N

⋃
n>m Lq,n. It directly follows from the definition that Lq is

in Π3 and hence we obtain the following theorem.

Visibly Pushdown Games 419

Theorem 6. The class of ω-Vpls is contained in B(Σ3).

One should note that there are nondeterministic Büchi Vpas accepting Σ3-
complete sets. The language Lrb from Example 1 is shown to be Σ3-complete in
[5]. The complement of this language is Π3-complete and is also a Vpl (since
visibly pushdown languages are closed under complement).

There are no complete sets for the class B(Σ3) but it is not difficult to see
that there are Vpls that are true B(Σ3)-sets in the sense that they are neither in
Σ3 nor in Π3. A simple way to define such a language is to consider an alphabet
A with priorities assigned to the letters, i.e., there are k calls, k internal actions,
and k returns, respectively, and they are assigned numbers from 1 to k. If we
define L to be the language containing all α such that α|Stepsα

satisfies the parity
condition w.r.t. the numbers assigned to the letters, then it is not difficult to see
that L is neither in Σ3 nor in Π3. But obviously L can be accepted by a StVpa
that moves on each letter to a state with the corresponding priority.

Furthermore, let us note that languages accepted by deterministic Vpas are
in B(Σ2). The proof is similar to the one showing that regular ω-languages are in
B(Σ2) [12]. From this result we obtain an alternative proof that the language Lrb
cannot be accepted by a deterministic Vpa, since Lrb is Σ3-complete. Finally,
the results of this section imply that games with a Vpl winning condition are
determined because games with Borel winning conditions are determined [8].

References

1. R. Alur, K. Etessami, and P. Madhusudan. A temporal logic of nested calls and
returns. In TACAS’04, volume 2988 of LNCS, pages 467–481. Springer, 2004.

2. R. Alur and P. Madhusudan. Visibly pushdown languages. In Proceedings of the
36th Annual ACM Symposium on Theory of Computing, STOC ’04, 2004.

3. T. Ball and S. Rajamani. Bebop: A symbolic model checker for boolean programs.
In SPIN 2000, volume 1885 of LNCS, pages 113–130. Springer, 2000.

4. A. Bouquet, O. Serre, and I. Walukiewicz. Pushdown games with the unbounded-
ness and regular conditions. In Proceedings of FSTTCS’03, volume 2914 of LNCS,
pages 88–99. Springer, 2003.

5. T. Cachat, J. Duparc, and W. Thomas. Solving pushdown games with a Σ3 winning
condition. In CSL’02, volume 2471 of LNCS, pages 322–336. Springer, 2002.

6. E.A. Emerson, C.S. Jutla, and A.P. Sistla. On model-checking for fragments of
μ-calculus. In CAV ’93, volume 697 of LNCS, pages 385–396. Springer, 1993.

7. A.S. Kechris. Classical Descriptive Set Theory, volume 156 of Graduate texts in
mathematics. Springer Verlag, 1994.

8. D. A. Martin. Borel Determinacy. Annals of Mathematics, 102:363–371, 1975.
9. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc. 16th

ACM Symposium on Principles of Programming Languages, Austin, January 1989.
10. T. Reps, S. Horwitz, and S. Sagiv. Precise interprocedural dataflow analysis via

graph reachability. In Proc. of ACM Symp. POPL, pages 49–61, 1995.
11. O. Serre. Games with winning conditions of high borel complexity. In Proceedings

of ICALP’04, volume 3142 of LNCS, pages 1150–1162. Springer, 2004.
12. L. Staiger. Handbook of Formal Language Theory, volume III, chapter ω-

Languages, pages 339–387. Springer, 1997.

420 C. Löding, P. Madhusudan, and O. Serre

13. W. Thomas. Handbook of Formal Language Theory, volume III, chapter Languages,
Automata, and Logic, pages 389–455. Springer, 1997.

14. W. Thomas. A short introduction to infinite automata. In Proceedings of DLT ’01,
volume 2295 of LNCS, pages 130–144. Springer, 2002.

15. I. Walukiewicz. Pushdown processes: Games and model checking. Information and
Computation, 164(2), January 2001.

16. I. Walukiewicz. A landscape with games in the background. In Proceedings of
LICS’04, Invited talk, 2004. To appear.

17. W. Zielonka. Infinite games on finitely coloured graphs with applications to au-
tomata on infinite trees. TCS, 200(1-2):135–183, 1998.

Refinement and Separation Contexts

Ivana Mijajlović1, Noah Torp-Smith2, and Peter O’Hearn1

1 Queen Mary, University of London
{ivanam, ohearn}@dcs.qmul.ac.uk

2 IT University of Copenhagen
noah@itu.dk

Abstract. A separation context is a client program which does not
dereference internals of a module with which it interacts. We use certain
“precise” relations to unambiguously describe the storage of a module
and prove that separation contexts preserve such relations. We also show
that a simulation theorem holds for separation contexts, while this is not
the case for arbitrary client programs.

1 Introduction

Pointers wreak havoc with data abstractions [1–4]. To see why, suppose that a
data abstraction uses a linked list in its internal representation; for example,
an implementation of resource manager will use a free list. If a client program
dereferences or otherwise accesses a pointer into this representation, then it
will be sensitive to changes to the internal representation of the module. In
theoretical terms, this havoc is manifest in the failure of classical “abstraction,
logical relation, simulation” theorems for data abstraction. For example, the
client program will behave differently if, say, the first rather than the second
field in a cons cell is used to link together elements of a free list.

Data refinement is a method where one starts with an abstract specification of
a data type and derives its concrete representation. Hoare introduced a method
of refinement for imperative programs [5, 6]. His treatment of refinement assumes
a static-scope based separation between the abstract data type and variables of
the client. Pointers break those assumptions, as described above.

Previous approaches to abstraction in the presence of pointers [1, 3, 4, 7, 8]
typically work by restricting what can point across certain boundaries. These
solutions are limited and complex, and have difficulty coping with situations
where pointers transfer between program components or where pointers across
boundaries do exist without being dereferenced at the wrong time.

Separation logic [9], on the other hand, enables us to check code of a client
for safety, even if there are pointers into the internals of a module [12]. It just
ensures that pointers not be dereferenced at the wrong time, without permission.

This paper takes a first step towards bringing the ideas from separation logic
into refinement. We present a model, but not yet a logic, which ensures sepa-
ration between a client and a module, throughout the process of refinement of

K. Lodaya and M. Mahajan (Eds.): FSTTCS 2004, LNCS 3328, pp. 421–433, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

422 I. Mijajlović, N. Torp-Smith, and P. O’Hearn

the module. Our conditions for abstraction, based on a notion of “separation
context”, are considerably simpler than ones developed by Banerjee et al [3]
and Reddy et al [4], and can easily handle examples with dangling pointers and
examples of dynamic ownership transfer. We illustrate this with the nastiest
problem we know of – toy versions of malloc and free.

The paper is organized as follows: we give some basic ideas and motivation in
Section 2. In Section 3, we give relevant definitions regarding the programming
language and relations on states. This enables us to define unary separation
contexts in Section 4, and to prove properties about them. A separation context
is a client program that does not dereference pointers into module internals. The
idea that a module owns a part of the heap is described by a precise relation,
which is a special kind of relation that unambiguously identifies a specific portion
of the heap. We show that separation contexts respect these unary relations,
where arbitrary contexts do not. Finally, in Section 5, we prove a simulation
theorem which is a cousin of a classic logical relations or abstraction theorem,
and which fails when a context is not a separation context. We also give a
condition which ensures that a separation context for an abstract module is
automatically a separation context for all its refinements.

2 Basic Ideas

We will discuss two simple examples in which we consider two different pieces of
client code. In both programs we assume that the client code interacts with the
memory manager module through two provided operations, new() and dispose(),
for allocating and disposing memory, respectively. Suppose the module keeps
locations available for allocating to a client, in a singly linked list.

To begin with we regard the program state as being separated into two parts,
one of which belongs to a client, and the other which belongs to the module.
The module’s part always contains the free list. The statement new(x); takes a
location from the free list puts it into x; at this point we regard the boundary
between the client and module states as shifting: the ownership of the cell has
transferred from the module to the client, so that the separation between client
and module states is dynamic rather than determined once-and-for-all before a
program runs. Similarly, when a client disposes a location we regard the owner-
ship of that location as transferring from the client to the module. The concept
of “ownership” here is simple: at any program point we regard the state as being
separated into two parts, and ownership is just membership in one or the other
component of the separated states.

Now, some programs respect this concept of separation while others do not.
Consider the following client code.

new(x);do something with x; dispose(x); dispose(x)

This simple program behaves very badly – it disposes the same location twice.
This is possible because after disposing the location pointed to by x the first time,
x holds the value of the location. Depending on the implementation of dispose,

Refinement and Separation Contexts 423

this code could destroy the structure of the free list, and might eventually cause
a program crash. This program contradicts our assumption of separation: the
second dispose(x) statement accesses a cell which the client does not own, since
it was previously transferred to the module.

In fact, any attempt to use the location after first dispose will contradict
separation, say if we replace the second dispose by a statement [x] := 42 that
mutates x’s location. And both cases contradict abstraction. For instance, if
the manager uses the [x] field as a pointer to the next node in the free list,
then [x] := 42 will corrupt the free list, but if the manager uses a different
representation of the free list, corruption might not occur: depends whether or
not it is representation-dependent.

In contrast, the following code obeys separation: the client code reads and
writes to its own part, and disposes only a location which belongs to it.

new(x); [x] := 15; y := [x]; dispose(x)

The issue here is not exclusive to low-level programming languages. In a
garbage collected language thread and connection pools are sometimes used to
avoid the overhead of creating and destroying threads and database connections
(such as when in a web server). Then, a thread or connection id should not be
used after it has been returned to a pool, until it has been doled out again.

In the formal development to follow a “separation contexts” will be a piece
of client code together with a precondition which ensures respect for separation.

3 Preliminary Definitions

In this section, we give relevant definitions regarding the storage model and
relations in it. We give a programming language and its semantics.

Storage Model. We describe our models in an abstract way, which will allow
various realizations of “heaps”. We assume a countably infinite set Var of vari-
ables given. Let S : Var → Val be the set of stacks (that is, finite, partial maps
from variables to values), and let H be a set of heaps, where we just assume
that we have a set with a partial commutative monoid structure (H, ∗, e). In
effect, our development is on the level of the abstract model theory of BI [10],
rather than the single model used in separation logic [11, 9]. We assume that ∗
is injective in the sense that for each h, the partial function h ∗ − : H ⇀ H is
injective. The set of states is the set of stack-heap pairs.

The subheap order 4 is induced by ∗ in the following way

h1 4 h2 ⇐⇒ ∃h3.h1 ∗ h3h2.

Two heaps h1 and h2 are disjoint, denoted h1#h2, if h1 ∗ h2 is defined.
We will often take H to be a set of finite partial functions

H = Ptr ⇀fin Val, where Ptr = {0, 1, 2, . . .} Val = {. . . ,−1, 0, 1, . . .}.

424 I. Mijajlović, N. Torp-Smith, and P. O’Hearn

The combination h ∗ h′ of two such heaps is defined only when they have
disjoint domains, in which case it is the union of the graphs of the two func-
tions. We will not restrict ourselves to this (RAM) model, but will assume it in
examples unless stated differently.

Separation Logic. Separation logic is an extension of Hoare logic, where heaps
have been added to the storage model. The usual assertion language of Hoare
logic is extended with assertions that express properties about heaps

A,B ::= emp | e1 �→ e2 | A ∗B | T | ∀∗p ∈ m. A | · · · .

The first asserts that the heap is empty, the second says that the current heap
has exactly one pointer in its domain, and the third is the separating conjunction
and means that the current heap can be split into two disjoint parts for which A
and B hold, respectively. The fourth is true for any state, and the last assertion
form is an iterated separating conjunction over a finite set. The semantics of
assertions is given by a judgement s, h |= A which asserts that the assertion A
holds in the state (s, h). More about separation logic can be found in [9].

Unary Relations. Certain special properties are used to identify the heap
portion owned by a module [12].

Definition 1. A relation M ⊆ S ×H is precise if for any state s, h there is at
most one subheap h0 4 h, such that (s, h0) ∈M .

We illustrate precise unary relations with an example. Let α be a sequence
of integers. The predicate list(α, x) is defined inductively on the sequence α by

list(ε, x) def= x = nil ∧ emp, list(a · α, x) def= x = a ∧ ∃y. x �→ y ∗ list(α, y)

where ε represents the empty sequence and · conses an element a onto the front
of a sequence α. This predicate says that x points to a non-circular singly-linked
list whose addresses are the sequence α (this is called a “Bornat list” in [9]).
For any given s, h, there can be at most one subheap which satisfies list(α, x),
consisting of the cells in α. Generally, a precise relation gives you a way to “pick
out the relevant cells”.

We define the separating conjunction of unary relations M,M ′ ⊆ S ×H by

M ∗M ′ = {(s, h) | ∃h0, h1.h0#h1 ∧ h = h0 ∗ h1 ∧ (s, h0) ∈M ∧ (s, h1) ∈M ′}.

Taking into account that ∗ is injective, a precise relation M induces a unique
splitting of a state (s, h). We write (s, hM) for the substate of (s, h) uniquely
described by M , if it exists. Otherwise, (s, hM) = e, the unit.

The Model. Our model will use a simple language with two kinds of atomic
operations: the client operations and the module operations. The denotation of
client commands will be given by functions f : (S ×H) → (S ×H) � {wrong},
and the denotation of module operations will be given by binary relations t ⊆

Refinement and Separation Contexts 425

(S ×H)× (S ×H) � {wrong}. The special state wrong results when a program
illegally accesses storage beyond the current heap. We presume there is a fixed
set of module variables VarM , which are never changed by the client:

∀x ∈ VarM .
f(s, h) = wrong ⇔ ∀v.f(s\{x �→ v}, h) = wrong and
f(s, h) = (s′, h′) ⇔ ∀v.f(s\{x �→ v}, h) = (s′\{x �→ v}, h′).

For a unary relation on states M , we write Mwrong to denote M ∪ {wrong}.
We will write (s, h)[t](s′, h′) to denote that the states (s, h) and (s′, h′) are in
the binary relation t.

The relation M ⊆ S×H is said to be preserved by a function f (respectively
relation t) on states, if for all (s, h), (s′, h′), such that state (s, h) is in M and
f(s, h) = (s′, h′) (respectively (s, h)[t](s′, h′)), imply (s′, h′) ∈Mwrong .

The reader will have recognized an asymmetry in our model: client primitive
operations are required to be deterministic, while in module operations non-
determinism is allowed. One effect of this is that, when frame conditions are
imposed later, the client operations will not be able to do any allocation; alloca-
tion will have to be viewed as a module operation. Technically, the determinism
restriction is needed for our simple simulation theorem.

Local Functions and Relations. We will consider functions and relations on
states that access resources in a local way. More formally, we say that a function
f : (S ×H) → (S ×H) � {wrong} (relation t ⊆ (S ×H)× (S ×H) � {wrong})
is local [12] if it satisfies the following properties

– Safety Monotonicity: For all states (s, h) and heaps h1 such that h#h1,
if f(s, h) �= wrong (respectively ¬(s, h)[t]wrong), then f(s, h ∗ h1) �= wrong
(respectively ¬(s, h ∗ h1)[t]wrong).

– Frame Property: For all states (s, h) and heaps h1 with h#h1, if f(s, h) �=
wrong (respectively ¬(s, h)[t]wrong) and f(s, h ∗ h1) = (s′, h′), (respectively
(s, h∗h1)[t](s′, h′)) then there is a subheap h′

0 4 h′ such that h′
0#h1, h′

0∗h1 =
h′ and f(s, h) = (s′, h′

0) (respectively (s, h)[t](s′, h′
0)).

The properties are the ones needed for soundness of the Frame Rule of sep-
aration logic; see [13]. We will only consider local functions and relations.

Programming Language. The programming language is an extension of the
simple while-language with a finite set of atomic client operations fj (j ∈ J) and
a finite set of module operations operi, i ∈ I. The syntax of the user language is

cuser ::= fj , j ∈ J | operi, i ∈ I | c1; c2 | if e then c else c | while e do c,
e ::= int | var | e + e | e× e | e− e, int ∈ Int, var ∈ Var,

Int = {. . .− 1, 0, 1, . . .}, Var = {x, y, . . .}, I, J − finite indexing sets.

The expressions used in the language do not access heap storage. Commands
such as x := e, [e1] := e2, x := [e], etc. are examples of atomic operations.

The semantics of the language is parameterized by a precise relation M and
a collection (oper i)i∈I of binary relations that preserve M ∗ T. It defines a big-
step transition relation � ⊆ (cuser × (S × H)) × ((S × H) � {wrong , av}) on

426 I. Mijajlović, N. Torp-Smith, and P. O’Hearn

Table 1. Operational semantics

fj(s, h) = (s′, h′)

fj , s, h � s′, h′

(s, h) = (s, hM) ∗ (s, hU)
fj(s, h) 	= wrong fj(s, hU) = wrong

fj , s, h � av
fj(s, h) = wrong
fj , s, h � wrong

(s, h)[oper i](s
′, h′)

operi, s, h � s′, h′
(s, h)[oper i]wrong
operi, s, h � wrong

c1, s, h � s′, h′ c2, s
′, h′ � K

c1; c2, s, h � K

c1, s, h � wrong
c1; c2, s, h � wrong

[[e]]s = 0
while e do c, s, h � s, h

[[e]]s 	= 0 c;while e do c, s, h � K

while e do c, s, h � K

c1, s, h � av
c1; c2, s, h � av

[[e]]s 	= 0 c1, s, h � K

if e then c1 else c2, s, h � K

[[e]]s = 0 c2, s, h � K

if e then c1 else c2, s, h � K

configurations, where av denotes a state in which client code illegally accesses the
heap storage owned by the module, and will be referred to as “access violation”.
The operational semantics of the language is given in Table 1. State (s, hM) ∈M
denotes the substate of (s, h) uniquely determined by relation M in the second
rule. What is left over, (s, hU), is the client’s state. K denotes an element of
(S ×H) � {av , wrong}.

4 Unary Separation Contexts

An essential point in the semantics in Table 1 is the way that module state is
subtracted when client operations fj are performed. If a client operation does not
go wrong in a global state, but goes wrong when the module state is subtracted,
we judge that this was due to an attempt to access the module’s state; in the
semantics this is rendered as an access violation, and a separation context is
then a program (with a precondition) that does not lead to access violation.

Definition 2. Let M ⊆ S × H be a precise unary relation, let P be a unary
predicate on states, and for i ∈ I let oper i ⊆ (S × H) × (S × H) � {wrong}
preserve relation M ∗ T. A program c is a unary separation context for M,P
and (oper i)i∈I if for all executions and all (s, h) ∈M ∗ P c, s, h �� av.

The idea is that M describes the heap storage owned by the module, and a
separation context will never access that storage. Separation contexts preserve
the resource invariant of a module because they change storage owned by the
module only through the provided operations.

Theorem 1. Let M ⊆ S ×H be a precise relation, let P be a unary predicate
on states, and for (i ∈ I) let oper i ⊆ S × H × (S × H) � {wrong} preserve
M ∗ T, and let c be a separation context for M,P and (oper i)i∈I . Then for all
such P and all states (s, h) and (s′, h′), if (s, h) ∈ M ∗ P , and c, s, h � s′, h′,
then (s′, h′) ∈ (M ∗ T)wrong .

Refinement and Separation Contexts 427

Separation Context Examples. We now revisit the ideas discussed in Sec-
tion 2 in our more formal setting. In order to specify the operations of the
memory manager module, we make use of the “greatest relation” for the spec-
ification {P}oper{Q}[X], which is the largest local relation satisfying a triple
{P} − {Q} and changing only the variables in the set X. It is similar to the
“generic commands” introduced by Schwarz [14] and the “specification state-
ments” studied in the refinement literature, but adapted to work with locality
conditions in [12].

The predicate ∃α.list(α, ls) describes the free list, and we choose it as the M
component in the definition of a separation context. The operations new(x) and
dispose(x) are the greatest relations satisfying the following specifications.

newC(x) : {list(a · α, ls)} − {list(α, ls) ∗ x �→ a}[x, ls]
{list(ε, ls)} − {list(ε, ls) ∗ x �→ −}[x, ls]

disposeC(x) : {list(α, ls) ∗ x �→ a} − {list(a · α, ls)}[ls]
For future reference, we will call this the concrete interpretation of the mem-

ory manager module. With these definitions we can judge whether a program
(together with a precondition) is a separation context.

Consider the following three programs

Program1 : Program2 : Program3 :
new(x); dispose(x); [81] := 42
[x] := 47; [x] := 47;
dispose(x);

We indicate whether a program, together with a precondition, is a separation
context in the following table.

Context Separation context?

{emp} Program1
√

{x �→ −} Program2
√

{emp} Program2 ×
{81 �→ −} Program3

√

{emp} Program3 ×

Most of the entries are easy to explain, and correspond to our informal dis-
cussion from earlier. The last one, though, requires some care. For, how do we
know that [81] := 42 interferes with the free list? The answer is that we do not.
It might or might not be the case that location 81 is in the free list, at any given
point in time. But, the notion of separation context is fail-safe: if there is any
possibility that 81 is in the free list, on any run, then the program is judged
not to be a separation context. And we can easily construct an example state
where 81 is indeed in the free list. On the other hand in the second-last entry the
precondition 81 �→ − ensures that 81 cannot be in the free list. This is because
of the use of ∗ to separate the module and client states.

428 I. Mijajlović, N. Torp-Smith, and P. O’Hearn

5 Refinement and Separation

In this section we first introduce precise binary relations and the separating
conjunction of binary relations. We give a definition of refinement and prove a
binary relation-preservation theorem.

Let R ⊆ (S0×H0)×(S1×H1) be a binary relation. We say that R is precise, if
each of its two projections on the corresponding set of states is precise. Formally,
for any state (si, hi) ∈ (Si×Hi) there is at most one h′

i 4 hi such that there exists
a state (s1−i, h1−i) ∈ (S1−i ×H1−i) such that (si, h

′
i)[R](s1−i, h1−i), for i=0,1.

We illustrate precise binary relations with an example. Suppose we have two
different implementations of a memory manager module. In the first implementa-
tion we assume that f is a set variable, which keeps track of all owned locations.
In the second implementation, we let this information be kept in a list. We use
the list predicate list(α, ls), defined in Section 3. Now, a precise binary relation

R =
{

((s, h), (s′, h′))
∣∣∣∣ (s, h |= ∀∗p ∈ f. p �→ −) ∧ (s′, h′ |= list(α, ls)) ∧
set(α) = s(f)

}
,

where set(α) is defined as the set of pointers in the sequence α, relates these two
implementations. Relation R relates pairs of states, such that one state can be
described as a set of different pointers, while the other is determined by the list
of exactly the pointers that appear in the mentioned set.

For two binary relations R,R′ ⊆ (S1 ×H1)× (S2 ×H2) on states, we define
their separating conjunction [4] as

R ∗R′ =
{

((s1, h1), (s2, h2))
∣∣∣∣∃h′

1, h
′′
1 , h′

2, h
′′
2 . h1 = h′

1 ∗ h′′
1 ∧ h2 = h′

2 ∗ h′′
2 ∧

(s1, h
′
1)[R](s2, h

′
2) ∧ (s1, h

′′
1)[R′](s2, h

′′
2)

}
Similarly to the unary case, for a binary relation on states R we will write

Rwrong to denote R ∪ {(wrong , wrong)}.

5.1 Refinement and Separation Contexts

In this section, we formally express what it means for one module to be a refine-
ment (or an implementation) of another. For simplicity, we assume that there is
only one operation of the module, i.e., that the index set I from the syntax of
the user language is singleton. In previous work on refinement [6], our definition
of refinement is called an upward simulation.

In the following, we will take H1, H2 and H3 to be three (in general differ-
ent, but possibly equal) heap models, assuming that (H1, ∗1, e1), (H2, ∗2, e2) and
(H3, ∗3, e3) have partial commutative monoid structure.

Definition 3. Let Z ⊆ (S1 ×H1) × (S2 ×H2) be a binary relation. We define
oper2 ⊆ (S2 ×H2)× (S2 ×H2) � {wrong} to be a refinement of oper1 ⊆ (S1 ×
H1)× (S1 ×H1) � {wrong} with respect to Z, if

– for all states (s1, h1), (s2, h2), (s′
2, h

′
2), such that (s1, h1)[Z](s2, h2) and (s2, h2)

[oper2](s′
2, h

′
2) there exists a state (s′

1, h
′
1), such that (s1, h1)[oper1](s′

1, h
′
1),

and (s′
1, h

′
1)[Z](s′

2, h
′
2), and

Refinement and Separation Contexts 429

– for all states (s1, h1), (s2, h2), such that (s1, h1)[Z](s2, h2) if
(s2, h2)[oper2]wrong then (s1, h1)[oper1]wrong.

In order to prove the relation preservation theorem, we need to instantiate
the refinement relation to a separating conjunction of binary relations, R, Q ⊆
(S1 ×H1)× (S2 ×H2). We assume that the following properties hold:

– R is precise
– Q is such that for any two states (s1, h1), (s2, h2) related by Q and a guard

(condition of if and while statements) b, s1(b) ⇔ s2(b)
– oper2 ⊆ (S2 ×H2)× (S2 ×H2) � {wrong} is a refinement of oper1 ⊆ (S1 ×

H1)× (S1 ×H1) � {wrong} with respect to R ∗Q
– We denote a pair (f1

j , f2
j) by fj . Pair fj ,is such that it maps Q-related states

to Qwrong -related states.

The role of R is to relate abstract and concrete subheaps which belong to the
module, while Q relates the clients’ parts of the heaps.

Simulation Theorem (Informally): Suppose we have two instantia-
tions of a client program, which use calls to concrete and abstract module
operations respectively, related by a refinement relation. Then, provided
both of these two instantiations are separation contexts with respect to
the corresponding modules, the effect of the concrete computation can
be tracked by the abstract.

Stating this more formally requires some notation. For a program c, let ci ⊆
(Si ×Hi) × (Si ×Hi) � {wrong} be a relation denoted by c in the operational
semantics defined by Ri and oper i, i = 1, 2, where Ri is the projection of R onto
(Si ×Hi). QP denotes Q ∩ (P ×Q(P)), where Q is a binary relation on states,
P is a unary relation on states, and Q(P) is their composition.

Theorem 2 (Simulation Theorem). Let R, Q, oper i, c, ci for i = 1, 2, be
as above, and let P ⊆ Q1 be a unary relation on states. Let c1 be a separation
context for R1, P and oper1, and let c2 be a separation context for R2, Q(P)
and oper2. Then for all such P and all (s1, h1), (s2, h2), (s′

2, h
′
2) if (s1, h1) [R ∗

QP] (s2, h2) and (s2, h2)[c2](s′
2, h

′
2) then there exists a state (s′

1, h
′
1) such that

(s1, h1)[c1](s′
1, h

′
1) and (s′

1, h
′
1)[R ∗Q](s′

2, h
′
2).

The crucial assumption is that c1 and c2 are separation contexts for the given
modules and preconditions, and without this condition the theorem fails.

One shortcoming is that we have to check whether both c1 and c2 are sepa-
ration contexts to apply Theorem 2. From the point of view of program devel-
opment it would be better if we knew that when we had a separation context
for an abstract module then it would automatically remain a separation context
for all its refinements. Then the check could be done once and for all. In order
to realize this aim, an extra concept is needed: safety. A safe separation context
is a client which does not touch any storage not in its possession.

430 I. Mijajlović, N. Torp-Smith, and P. O’Hearn

Definition 4 (Safe Separation Context). Let c be a separation context for
the precise relation M , precondition P and family of operations (oper i)i∈I . Pro-
gram c is a safe separation context for M , P , (oper i)i∈I if for all executions
and all states (s, h) ∈M ∗ P , c, s, h �� wrong.

Theorem 3. Let R, Q, oper i, c, ci for i = 1, 2 be as in Theorem 2, and let
P ⊆ Q1 be a unary relation on states. If c1 is a safe separation context for R1, P
and oper1, then c2 is a safe separation context for R2, Q(P) and oper2.

Safe Separation Context Example. To see the role of the concept of safety,
consider an abstract version of the memory manager procedures, the“magical
malloc module”. It is magical in that the module does not own any locations at
all, producing them as if out of thin air. (In implementation terms, the thin air
is like a call to a system routine such as sbrk.) Therefore, the resource invariant
of the module, M in our formal setup, is the predicate emp. Now, we define the
abstract operations newA(x) and disposeA(x) as the greatest relations satisfying
the following specifications.

newA(x) : {emp} − {x �→ −}[x], disposeA(x) : {x �→ −} − {emp}[]

This is the meaning of allocation and disposal that is usually presumed in
separation logic. Because the manager owns no storage whatsoever, there is no
way for a client to trample on it. As a result, every client program is a separation
context for this abstract module.

But, not every context is safe. Consider the context

{emp} [81] := 42

from the Separation Context Examples in Section 4. It immediately goes wrong,
and so is not safe. Recall also that in the more concrete semantics, from the
same section, this is not even an ordinary separation context.

This shows the import of Theorem 3. If we know that our context is safe in
the abstract setting, then this ensures that module internals will not be tam-
pered with in refinements. Put another way, module tampering in a concrete
implementation can show up as going wrong in the abstract, and the concept of
safe separation context protects against this.

Refinement Examples. Here, we illustrate refinement relations between dif-
ferent interpretations of the memory manager module with two examples.

To define the refinement relations we borrow some notation from relational
separation logic [15]. Let S1 × H1 and S2 × H2 be two state spaces. Let P ⊆
S1 ×H1, Q ⊆ S2 ×H2 and R ⊆ (S1 ×H1)× (S2 ×H2) be predicates. We let(

P
Q

)
∧R denote {(s1, h1), (s2, h2) | (s1, h1 |= P ∧ s2, h2 |= Q) ∧ R}.

The first example involves refinement between the abstract and the concrete
interpretations of the memory manager module. We have already specified both

Refinement and Separation Contexts 431

interpretations, the abstract – in the Safe Separation Context Example above,
and the concrete – in the ordinary Separation Context Example from Section 4.

The refinement relation ZAC between these two interpretations is a separating
conjunction of binary relations RAC and QAC . These are given by

RAI =
(

emp
∃α. list(α, ls)

)
QAI = Id.

Relation RAI relates modules’ states of the two interpretations and is ba-
sically the relation between their resource invariants. Relation QAC relates the
clients’ states and is the identity relation.

In the second example, we introduce the intermediate version of the memory
manager module. We do this for two reasons. First, this illustrates the use of
two different heap models, as allowed in our formal setting. Second, considering
refinement between the intermediate and the concrete interpretations requires a
subtler refinement relation.

On the intermediate level, the intention is to keep locations owned by the
module in a set, without committing to the representation of the set. If this set
becomes empty, we call a “system routine” (like sbrk) to get a new location.

For this interpretation, we assume the following heap model. Let Loc be
an infinite set of locations. A heap will be an element of the Cartesian prod-
uct Pfin(Loc) × H1, where (H1, ∗1, e1) is the partial commutative monoid of
the RAM model. We say that a pair (N,h) from this product is well-defined
if N ∩ dom(h) = ∅. The intermediate heap model H consists of these well-
defined elements. Two intermediate heaps (N1, h1) and (N2, h2) are disjoint,
(N1, h1)#1(N2, h2), whenever N1 ∩ N2 = ∅ and N1 ∩ dom(h2) = ∅ and N2 ∩
dom(h1) = ∅ and dom(h1) ∩ dom(h2) = ∅. We define ∗ between two heaps by

(N1, h1) ∗ (N2, h2) =

⎧⎨⎩ (N1 ∪N2, h1 ∗1 h2), if (N1, h1)#1(N2, h2) and
(N1, h1), (N2, h2) well defined

undefined, otherwise

We say that s, (N,h) |= act(p) if and only if p ∈ N . The resource invariant
can be described with ∀∗p ∈ f. act(p), where f is a set variable. We now de-
fine operations newI(x) and disposeI(x) as the greatest relations satisfying the
specifications

newI(x) : {∀∗p ∈ f. act(p) ∧ f = Y �= ∅} − {(∀∗p ∈ f. act(p) ∧ f = Y \ {x})∗
x �→ −}[x, f]
{∀∗p ∈ f. act(p) ∧ f = ∅} − {(∀∗p ∈ f. act(p) ∧ f = ∅) ∗ x �→ −}[x]

disposeI(x) :{(∀∗p ∈ f. act(p) ∧ f = Y) ∗ x �→ −} − {∀∗p ∈ f. act(p)∧
f = Y ∪ {x}}[f]

The variable Y is used to keep track of the initial contents of f , similarly to
how α was used in the concrete interpretation. Note that it is not altered because
it is not in the modifies set, a set of actual locations owned by the module. We
intend that newI(x) is the greatest relation satisfying both stated specifications.

432 I. Mijajlović, N. Torp-Smith, and P. O’Hearn

Now, the refinement relation ZIC between intermediate and concrete relations
is a separating conjunction of binary relations RIC and QIC given by

RIC =
(

f
list(α, ls)

)
∧ set(α)val(f) QIC = Id,

where val(f) is the value of set variable f . It can be verified that the operations
preserve these relations as required in the definition of refinement.

In these two examples we have not exercised the possibility of using a non-
identity relation to relate the abstract and concrete client states. A good such
example compares two implementations of a buffer, one of which copies two
values where the other passes a single pointer to the two values. It is omitted
here for space reasons.

Directions for Future Work. There are several directions for further work.
First, we have, for simplicity, considered the interaction between a client and
a single module; in the future we plan on investigating independence between
modules. Second, it would be worthwhile to consider multiple-instance classes
(e.g. [3]); here we have, in effect, a single single-instance class. It would also
be important to remove the restriction of determinism, imposed to the client
operations. Finally, we would like to use the model to make the connection
back to logic. Perhaps a relational version of the hypothetical frame rule, or the
modular procedure rule, from [12] can be formulated, borrowing from Yang’s
relational separation logic [15].

Acknowledgements. We would like to thank Hongseok Yang, Josh Berdine,
Richard Bornat and Cristiano Calcagno for invaluable discussions and anony-
mous referees for their careful comments. Torp-Smith’s research was partially
supported by Danish Natural Science Research Council Grant 51–00–0315 and
Danish Technical Research Council Grant 56–00–0309. Mijajlović and O’Hearn
were supported by the EPSRC.

References

1. Hogg, J.: Islands: Aliasing Protection In Object-Oriented Languages. OOPSLA’91
2. Hogg, J., Lea, D., Wills, A., deChampeaux, D., Holt, R.: The Geneva Convention

On The Treatment of Object Aliasing. OOPS Messenger (1992)
3. Banerjee, A., Naumann, D. A.: Representation Independence, Confinement and

Access Control [extended abstract]. 29th POPL. (2002)
4. Reddy, U. S., Yang, H.: Correctness of Data Representations involving Heap Data

Structures. Proceedings of ESOP .Springer Verlag (2003) 223–237
5. Hoare, C. A. R.: Proof of Correctness of Data Representations. Acta Informatica.

Vol. 1. (1972) 271–281
6. He, J., Hoare, C. A. R., Sanders, J. W.: Data Refinement Refined (Resume). Pro-

ceedings of ESOP . LNCS. Vol. 213. Springer Verlag (1986) 187–196
7. Clarke, D. G., Noble, J., Potter, J. M.: Simple Ownership Types for Object Con-

tainment. Proceedings of ECOOP . (2001)

Refinement and Separation Contexts 433

8. Boyapati, C., Liskov, B., Shrira, L.: Ownership Types for Object Encapsulation.
30th POPL. (2003)

9. Reynolds, J. C.: Separation Logic: A Logic for Shared Mutable Data Structures.
Proceedings of 17th LICS. (2002) 55–74

10. D. Pym, P. O’Hearn, H. Yang.: Possible Worlds and Resources: The Semantics of
BI. Theoretical Computer Science 313(1) (2004) 257-305

11. Ishtiaq, S., O’Hearn, P. W.: BI as an Assertion Language for Mutable Data Struc-
tures. 28th POPL (2001) 14-26

12. O’Hearn, P., Yang, H., Reynolds, J. C.: Separation and information hiding. 31st
POPL. (2004) 268–280

13. H. Yang, P. O’Hearn.: A semantic basis for local reasoning. In Proceedings of
FOSSACS’02 (2002) 402–416

14. J. Schwarz.: Generic Commands - A Tool for Partial Correctness Formalisms.
Comput. J. 20(2) (1977) 151-155

15. Yang, H.: Relational Separation Logic. Theoretical Computer Science (to appear)

Decidability of MSO Theories of Tree Structures

Angelo Montanari and Gabriele Puppis

Dipartimento di Matematica e Informatica, Università di Udine
via delle Scienze 206, 33100 Udine, Italy

{montana, puppis}@dimi.uniud.it

Abstract. In this paper we provide an automaton-based solution to
the decision problem for a large set of monadic second-order theories of
deterministic tree structures. We achieve it in two steps: first, we reduce
the considered problem to the problem of determining, for any Rabin tree
automaton, whether it accepts a given tree; then, we exploit a suitable
notion of tree equivalence to reduce (a number of instances of) the latter
problem to the decidable case of regular trees. We prove that such a
reduction works for a large class of trees, that we call residually regular
trees. We conclude the paper with a short discussion of related work.

1 Introduction

The automatic verification of properties of infinite state systems is a crucial
problem in computer science, which turns out to be undecidable in many cases.
A natural approach to this problem is to model a transition system as a di-
rected graph, whose vertices (resp. edges) represent system configurations (resp.
transitions). The expected behavior of the system is then expressed by a logical
formula, which can be satisfied or not by the corresponding graph. The verifica-
tion problem consists in deciding the satisfiability (resp. truth) of a given formula
(resp. sentence) over a fixed graph structure. In this paper, we address the ver-
ification problem for systems of monadic second-order (MSO) logic interpreted
over deterministic tree structures.

A fundamental result in the case of finite state systems is Büchi’s theorem
[2], that shows the decidability of the MSO theory of the linear order (N, <).
Such a result takes advantage of closure properties of language acceptors (Büchi
automata) with respect to union, intersection, complementation, and projection.
Later, Rabin extended this result to the theory of the infinite (complete) binary
tree by exploiting a new class of automata, called Rabin tree automata [20].
Büchi’s theorem has also been used to deal with expansions of (N, <) with suit-
able unary predicates. Given a unary predicate P ⊆ N, the decision problem
for the theory of the expanded structure (N, <, P) is the problem of determin-
ing, for any Büchi automaton M , whether M accepts (the infinite word that
characterizes) P . Elgot and Rabin gave a positive answer to this problem for
some relevant predicates, such as the factorial one [15]. Recently, Carton and
Thomas generalized such a result to the class of the so-called residually ulti-
mately periodic words (which includes the class of morphic infinite words) [7].

K. Lodaya and M. Mahajan (Eds.): FSTTCS 2004, LNCS 3328, pp. 434–446, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Decidability of MSO Theories of Tree Structures 435

In [19], Muller and Schupp brought the interest to MSO theories of graphs by
identifying a large family of decidable graphs. Several approaches to the problem
of deciding graph theories have been proposed in the literature. The transfor-
mational approach solves the problem for those graphs that are obtained by
applying decidability-preserving transformations to structures which are known
to be decidable, e.g., unfoldings [14], tree-graph operations [23], first-order inter-
pretations and inverse rational mappings [10], MSO definable transductions [13].
Other approaches capture decidable graph structures through rewriting systems
[8], transducers [4], or equational systems [11, 12]. As a matter of fact, different
characterizations of the same family of graphs have been obtained by following
different approaches. As an example, prefix-recognizable graphs [3] can be equiv-
alently described by means of rational restrictions of inverse rational mappings
of the infinite complete binary tree [10], MSO interpretations of infinite regular
trees [22], and vertex-replacement equational graphs [1].

In this paper we extend Carton and Thomas’ automaton-based approach [7]
to cope with the decision problem for a large set of MSO theories of deterministic
tree structures. First, we reduce the considered problem to the problem of de-
termining, for any Rabin tree automaton, whether it accepts a given tree. Then,
we exploit a suitable notion of tree equivalence to reduce (a number of instances
of) the latter problem to the decidable case of regular trees. We prove that such
a reduction works for a large class of trees, that we call residually regular trees.
Successively, we show that the proposed technique can be used to decide the
theories of some meaningful relational structures, including several trees in the
Caucal hierarchy [9] and trees outside it [6]. We conclude the paper with a short
discussion of related work.

2 Basic Notions

MSO logics. MSO logics over graph structures are defined as follows. Given a
finite alphabet Λ, a Λ-labeled graph structure is a tuple G = (S, (El)l∈Λ), where
S (also denoted Dom(G)) is a countable set of vertices (states) and (El)l∈Λ are
binary relations defining the edge labels. A graph is said to be deterministic if,
for each relation El, (u, v) ∈ El and (u,w) ∈ El imply v = w. MSO formulas are
built up from atoms of the forms xi = xj , Xk(xj), and El(xi, xj) by means of the
Boolean connectives ∨ and ¬ and the existential quantification over first-order
variables xi, xj , . . ., interpreted as single vertices, and second-order ones Xk, . . .,
interpreted as sets of vertices. The semantics of an MSO formula is defined
in the standard way [21]. For a given MSO formula ϕ(x1, . . . , xn, X1, . . . , Xm),
with free variables x1, . . . , xn, X1, . . . , Xm, we write G � ϕ[v1, . . . , vn, V1, . . . , Vm]
whenever ϕ holds in the structure G with the interpretation vi for xi, for 1 ≤ i ≤
n, and Vj for Xj , for 1 ≤ j ≤ m. In the following, we shall adopt a simplified, but
expressively equivalent, set-up where all variables are second-order and atomic
formulas are of the forms Xi ⊆ Xj and El(Xi, Xj). The decision problem for a
given structure G is the problem of establishing, for any MSO sentence ϕ, whether
G � ϕ. We shall focus our attention on expanded graph structures (G, V̄), where

436 A. Montanari and G. Puppis

V̄ = (V1, . . . , Vm), with Vj ⊆ Dom(G) for 1 ≤ j ≤ m. The decision problem for
expanded structures (G, V̄) is the problem of establishing, for any MSO formula
ϕ(X1, . . . , Xm), whether G � ϕ[V̄]. The set of all sentences (resp. formulas) that
hold in a structure G (resp. (G, V̄)) is called the MSO theory of G (resp. (G, V̄)),
denoted by MTh(G) (resp. MTh(G, V̄)). MTh(G) (resp. MTh(G, V̄)) is said to
be decidable iff there is an effective way to test whether any MSO sentence
(resp. formula) φ belongs to MTh(G) (resp. MTh(G, V̄)). As a matter of fact,
any expanded structure (G, V̄) can be encoded into a Σ-colored graph GV̄ , with
|Σ| = 2m, called the canonical representation of V̄ . Each color c ∈ Σ is a subset
of {1, . . . , m}: for any vertex v ∈ Dom(G), the color of v is the set of all and
only the indexes i such that v ∈ Vi.

Trees. For any k > 0, let [k] be the set {1, . . . , k}. A k-ary (Σ-colored) tree is
a [k]-labeled Σ-colored graph whose domain is a prefix-closed language over [k],
and whose edge relations are such that (u, v) ∈ El iff v = ul, for every l ∈ [k].
Given a tree T , we denote by T (v) the color of the vertex v. The frontier Fr(T)
of T is the prefix-free language {u ∈ Dom(T) : ∀ l ∈ [k]. ul �∈ Dom(T)}. In this
paper, we mainly deal with full trees, namely, trees such that if (u, ul) ∈ El for
some l ∈ [k], then (u, ui) ∈ Ei for every i ∈ [k]. Though the standard notion
of full tree includes both empty trees and singletons, it is convenient to exclude
them. A path of T is a (finite or infinite) word u such that every finite prefix of
u belongs to Dom(T). Given a path u of T , we denote by T |u the sequence of
colors associated with the vertices of u (formally, the finite or infinite sequence
T (u0)T (u1)T (u2) . . ., where ui denotes the i-character prefix u[1..i] of u). A
branch is a maximal path, namely, a path which is not a proper prefix of any
word in Dom(T). We denote the set of all (finite or infinite) branches by Bch(T).

Tree Automata. A k-ary Rabin tree automaton over the alphabet Σ is a
quadruple M = (S, I, E, AP), where S is a finite set of states, I ⊆ S is a
set of initial states, E ⊆ S × Σ × Sk is a transition relation, and AP is a
finite set of accepting pairs (Li, Ui), with Li, Ui ⊆ S [20]. Given an infinite
complete k-ary (Σ-colored) tree T , a run of the automaton M on T is any infinite
complete k-ary (S-colored) treeR such that (R(u), T (u),R(u1), . . . ,R(uk)) ∈ E
for every u ∈ Dom(R). We say that R is successful, and thus T is accepted
by M , if R(ε) ∈ I and, for every branch u, there exists (Li, Ui) such that
Inf (R|u) ∩ Li = ∅ and Inf (R|u) ∩ Ui �= ∅, where Inf (α) is the set of elements
that occur infinitely often in α. We further denote by Img(α) the set of elements
that occur in α. The language L (M) is the set of all trees accepted by M .

3 An Automaton-Based Approach to Decidability

In this section, we develop an automaton-based method to decide MSO theories
of infinite (complete) deterministic trees. It can be viewed as a generalization of
Carton and Thomas’ method, which exploits noticeable properties of residually
ultimately periodic words to decide MSO theories of labeled linear orderings [7].

Decidability of MSO Theories of Tree Structures 437

As a first step, we show how to reduce the decision problem for the considered
MSO theories to the acceptance problem for Rabin tree automata. Rabin’s The-
orem [20] establishes a strong correspondence between MSO formulas satisfied
by an expanded tree structure (T , V̄) and Rabin tree automata accepting its
canonical representation TV̄ : for every formula ϕ(X̄), we can compute a Rabin
tree automaton M (and, conversely, for every Rabin tree automaton M , we can
compute a formula ϕ(X̄)) such that T � ϕ[V̄] iff TV̄ ∈ L (M). Let us denote by
Acc(TV̄) the problem of deciding, for any given Rabin tree automaton, whether
it recognizes TV̄ . We have that

MTh(T , V̄) is decidable iff Acc(TV̄) is decidable.

By exploiting the closure under intersection and the decidability of the empti-
ness problem for Rabin tree automata, one can easily show that the problem
Acc(TV̄) is decidable for any regular tree TV̄ (a regular tree is a tree containing
only finitely many non-isomorphic subtrees). In the following, we shall extend
the class of trees for which this acceptance problem turns out to be decidable.
We introduce the class of residually regular trees and we solve their acceptance
problem by reducing them to equivalent regular trees (according to a suitable
notion of tree equivalence).

Let us preliminarily introduce some tools for tree manipulation [17] (for the
sake of simplicity, hereafter we shall omit the subscript V̄ , thus writing T for
TV̄).

Definition 1. Let T be a k-ary tree, U ⊆ Fr(T), and (Ru)u∈U be a family of
k-ary trees. We denote by T [u/Ru]u∈U the tree resulting from the simultaneous
substitution in T of each node u ∈ U by Ru.

Definition 2. For every pair of (full) k-ary Σ-colored trees T1 and T2 and every
color c ∈ Σ, the concatenation T1 ·c T2 is the tree resulting from the simultaneous
substitution of all the c-colored leaves of T1 by T2, namely, the (full) k-ary Σ-
colored tree T1[u/T2]u∈U , where U = {u ∈ Fr(T1) : T1(u) = c}.

It is not difficult to show that the operator ·c is not associative. We assume
that it associates to the left. Definition 2 can be generalized to the case of infinite
concatenations. Given an infinite sequence (cn)n∈N of colors in Σ and an infinite
sequence (Tn)n∈N of full k-ary (Σ-colored) trees, the infinite concatenation S =
T0 ·c0 T1 ·c1 . . . is defined as follows: Dom(S) =

⋃
n∈N
Dom(Sn), where S0 = T0,

Sn+1 = Sn ·cn
Tn+1, and S(u) = c if and only if Sn(u) = c for all, but finitely

many, n. A factorization is a finite or infinite concatenation T0 ·c0 T1 ·c1 . . .
(we denote infinite concatenations by

∏
i∈N

(Ti)ci
). A factorization is ultimately

periodic if every Tn is a regular full tree and there are two positive integers p and
q (called respectively prefix and period) such that, for every n ≥ p, cn = cn+q

(if cn+q exists) and Tn = Tn+q (if Tn+q exists). The following proposition links
ultimately periodic factorizations to regular trees [17].

Proposition 1. A full tree T is regular iff it has an ultimately periodic factor-
ization.

438 A. Montanari and G. Puppis

From Proposition 1, it immediately follows that Acc(T) is decidable for any
infinite (complete) deterministic tree T generated by an ultimately periodic fac-
torization.

3.1 Residually Regular Trees

We now show how to reduce the acceptance problem for a large class of infinite
(complete) deterministic trees to the acceptance problem for equivalent (accord-
ing to a suitable notion of tree equivalence ≡M) regular trees. As a preliminary
step, we introduce the notion of (finite or infinite) partial run of a Rabin tree
automaton M = (S, I, E, AP): a partial run of M on a full, finite or infinite,
(Σ-colored) tree T is a full (S-colored) tree P such that (i) Dom(P) = Dom(T)
and (ii) (P(v), T (v),P(v1), . . . ,P(vk)) ∈ E, for every v ∈ Dom(P) \ Fr(P).

Definition 3. Given a Rabin tree automaton M = (S, I, E, AP) over Σ, and
two full (Σ-colored) trees T1 and T2, T1 ≡M T2 holds iff, for every partial run
P1 of M on T1, there exists a partial run P2 of M on T2 (and vice versa) such
that

1. T1(ε) = T2(ε) and P1(ε) = P2(ε);
2. for every v ∈ Fr(T1), there exists u ∈ Fr(T2) such that T1(v) = T2(u),
P1(v) = P2(u), and Img(P1|v)) = Img(P2|u), and vice versa;

3. for any infinite branch v ∈ Bch(T1), there exists an infinite branch u ∈
Bch(T2) such that Inf (P1|v) = Inf (P2|u), and vice versa.

The equivalence ≡M satisfies the following properties [17].

Theorem 1. It holds that:

1. ≡M has finite index;
2. for every pair of factorizations T0 ·c0 T1 ·c1 . . . and T ′

0 ·c0 T ′
1 ·c1 . . . such that

Ti ≡M T ′
i for every i, we have T0 ·c0 T1 ·c1 . . . ≡M T ′

0 ·c0 T ′
1 ·c1 . . .;

3. for every pair of ≡M -equivalent infinite (complete) trees T1, T2, we have that
T1 ∈ L (M) iff T2 ∈ L (M) (in such a case we say that T1 and T2 are
indistinguishable by automaton M).

It is worth pointing out that the proposed notion of equivalence can be easily
tailored to different kinds of automata, such as, for instance, Muller and parity
tree automata.

Taking advantage of Theorem 1, we identify a large class of deterministic
trees, that we call residually regular trees, whose acceptance problem is decid-
able. We say that an infinite sequence S = T0 T1 T2 . . . of finite full trees is
1-residually ultimately periodic if, for every Rabin tree automaton M , one can
compute an ultimately periodic sequence S ′ = T ′

0 T ′
1 T ′

2 . . . of finite trees such
that Ti ≡M T ′

i , for all i. We call 1-residually regular trees those trees that
are obtained by concatenating the trees in a 1-residually ultimately periodic
sequence. The notion of 1-residually ultimately periodic factorization can be ex-
tended to level n, with n being any countable ordinal, by no longer considering

Decidability of MSO Theories of Tree Structures 439

finite trees but level n′ < n residually regular trees. For every countable ordinal
n, n-residually regular trees can be defined as follows, where we denote by [i]p,q

either i or p + ((i− p) mod q), depending on whether i < p or not.

Definition 4. Given a countable ordinal n, a factorization T0 ·c0 T1 ·c1 . . . is
n-residually ultimately periodic iff the following two conditions hold:
1. for every i, either Ti is a finite full tree or we can provide an n′-residually

ultimately periodic factorization of Ti, with n′ < n;
2. for any Rabin tree automaton M , there exist two positive integers p and q

(called prefix and period of the factorization with respect to ≡M) such that
ci = c[i]p,q

and Ti ≡M T[i]p,q
, for every i.

An n-residually regular tree is a tree enjoying an n-residually ultimately
periodic factorization. A residually ultimately periodic factorization is an n-
residually ultimately periodic factorization, for some countable ordinal n. A
residually regular tree is a tree enjoying a residually ultimately periodic fac-
torization.

It is worth noticing that the above definition allows residually ultimately
periodic factorizations to encompass residually regular factors of any arbitrary
level. For instance, we can start with some factors T0, T1, T2, . . . which respec-
tively are level 1, 2, 3, . . . residually regular, and concatenate them to build an
ω-residually regular tree; then, we can concatenate ω-residually regular trees to
obtain an (ω + 1)-residually regular tree, and so on.

In order to reduce the decision problem for (n-)residually regular trees to
regular trees, we introduce the notion of ≡M -regular form. Such a notion is de-
fined by transfinite induction on n, given a Rabin tree automaton M and an
n-residually ultimately periodic factorization. Precisely, an ≡M -regular form of
a 1-residually ultimately periodic factorization

∏
i∈N

(Ti)ci
is a tree

∏
i∈N

(T ′
i)ci

,
where T ′

i = T[i]p,q
and p and q are respectively a prefix and a period of the

factorization with respect to ≡M . For any countable ordinal n > 1, an ≡M -
regular form of an n-residually ultimately periodic factorization

∏
i∈N

(Ti)ci
is a

tree
∏

i∈N
(T ′

i)ci
, where, depending on whether Ti is finite or not, T ′

i is either
T[i]p,q

or an ≡M -regular form of an n′-residually ultimately periodic factorization
of T[i]p,q

, with n′ < n and p and q being respectively a prefix and a period of
the factorization with respect to ≡M . It is easy to verify that an ≡M -regular
form of a residually ultimately periodic factorization

∏
i∈N

(Ti)ci
is a regular tree

which is ≡M -equivalent to the tree generated by
∏

i∈N
(Ti)ci

. Furthermore, the
factorization of an ≡M -regular form is computable from a given n-residually ul-
timately periodic factorization S, which can be finitely represented by a function
mapping an integer i ∈ N to (an n′-residually, with n′ < n, ultimately periodic
factorization of) the i-th factor of S. Hence, we have the following theorem [17].

Theorem 2. Let T be the infinite (complete) deterministic tree resulting from
an n-residually ultimately periodic factorization

∏
i∈N

(Ti)ci
, M be a Rabin tree

automaton, and T ′ be an ≡M -regular form of
∏

i∈N
(Ti)ci

. We have that T ∈
L (M) iff T ′ ∈ L (M).

440 A. Montanari and G. Puppis

The upshot of such a result is that residually regular trees enjoy a decidable
acceptance problem and hence a decidable MSO theory.

3.2 Properties of Residually Ultimately Periodic Factorizations

We now identify some structural properties that allow us to easily build resid-
ually ultimately periodic factorizations. The resulting framework somehow gen-
eralizes previous results by Zhang [24] and Carton and Thomas [7]. Let T full

k,Σ

denote the language of all full k-ary Σ-colored trees. For any Rabin tree au-
tomaton M , the equivalence ≡M induces an homomorphism from the infinite
groupoid (i.e., a set endowed with a binary operation) (T full

k,Σ , ·c) to the finite
groupoid ([T full

k,Σ]/≡M
, ·c). Given a groupoid (G, ·), an element g ∈ G, and a num-

ber n ∈ N, we denote by gn+1 the n-fold iteration of ·g applied to g, namely,
gn+1 = g · g · . . . g. We define ultimately periodic functions with respect to finite
groupoids.

Definition 5. A function f : N → N is ultimately periodic with respect
to finite groupoids (residually ultimately periodic for short) if, for every finite
groupoid (G, ·) and every g ∈ G, there exist p ≥ 0 and q > 0 such that gf(n)+1 =
gf([n]p,q)+1, that is, (gf(n)+1)n∈N is a ultimately periodic sequence.

We say that a function is effectively residually ultimately periodic iff, for
every groupoid (G, ·) and every g ∈ G, it is possible to compute a prefix p and a
period q of the ultimately periodic sequence (gf(n)+1)n∈N. As a simple example,
the identity function is effectively residually ultimately periodic. From now on,
we restrict our attention to effectively residually ultimately periodic functions,
which can be characterized as follows.

Proposition 2. A function f : N → N is (effectively) residually ultimately
periodic iff for all l ≥ 0 and r > 0, one can compute p ≥ 0 and q > 0 such that
[f(n)]l,r = [f([n]p,q)]l,r.

Definition 6. A function f : N → N has unbounded infimum if it holds that
lim inf n → ∞f(n) = ∞. In this case, we assume that, for any k, we can compute
n0 such that f(n) ≥ k for all n ≥ n0.

The following theorem provides a number of ways to build residually ul-
timately periodic functions [17]. Examples of generated functions are n2, 2n,

2n − n2, nn, n!, and the exponential tower 22..
.2

.

Theorem 3. Let f and g be residually ultimately periodic functions. The fol-
lowing functions are residually ultimately periodic as well:

1. (Sum) f + g;
2. (Difference) f − g, provided that it has unbounded infimum;
3. (Product) f ∗ g;

Decidability of MSO Theories of Tree Structures 441

4. (Quotient) h defined by h(n) = ! f(n)
d ", with d > 0;

5. (Exponentiation) fg, provided that it has unbounded infimum;
6. (Exponential tower) h defined by h(0) = 1 and h(n + 1) = bh(n), with

b > 0;
7. (Generalized sum) h defined by h(n) =

∑n−1
i=0 f(i);

8. (Generalized product) h defined by h(n) =
∏n−1

i=0 f(i);
9. (Substitution) g ◦ f .

The next theorem shows how one can combine (colored) trees to obtain resid-
ually ultimately periodic factorizations [17]. In particular, case 1. links residually
ultimately periodic functions to residually ultimately periodic trees; case 2. states
that by interleaving the factors of residually ultimately periodic factorizations we
obtain again a residually ultimately periodic factorization; case 3. gives the possi-
bility of periodically grouping the factors of a given factorization; case 4. is useful
to recursively define the factors of a residually ultimately periodic factorization.

Theorem 4. Given an ultimately periodic sequence of colors c1c2c3 . . ., the fac-
torization

∏
i∈N

(Ti)ci
is residually ultimately periodic in each of the following

cases:

1. (Iteration) if Ti = U (f(i)+1)c , where U (f(i)+1)c denotes the f(i)-fold itera-
tion of ·c U applied to U , with U being a residually regular tree and f being
a residually ultimately periodic function;

2. (Interleaving) if there is q > 0 such that, for every 0 ≤ i < q,
∏

j∈N
(Tjq+i)c

is a residually ultimately periodic factorization;
3. (Grouping) if there is q > 0 and there is a residually ultimately periodic

factorization
∏

j∈N
(Uj)c such that, for every i ∈ N, Ti = (Uiq ·c Uiq+1 ·c . . . ·c

Uiq+q−1);
4. (Recursion) if T0 is a residually regular tree and there is a residually ul-

timately periodic factorization
∏

j∈N
(Uj)c such that Ti+1 = Ui ·c (Ti ·d Ui) ·c

(Ti ·d Ui) ·c

4 Some Applications of the Proposed Method

In the following, we apply the proposed method to decide the theories of two
meaningful tree structures. Futhermore, we provide an embedding of some rep-
resentative graphs of the so-called Caucal hierarchy [9], namely, tree generators
for MSO interpretations, into our framework. We first recall the basic notions of
unfolding and MSO interpretation [22].

Definition 7. Let G = (S, (El)l∈Λ) be a graph structure and let v0 ∈ S be a
designated vertex of G. The unfolding of G from v0, denoted by Unf (G, v0), is
a tree structure (S′, (E′

l)l∈Λ), where S′ is the set of all the finite paths of the
form v0l0v1 . . . ln−1vn, and E′

l is the set of all the pairs of paths of the form
(v0l0v1 . . . ln−1vn, v0l0v1 . . . ln−1vnlvn+1).

Notice that the unfolding of any finite graph is (isomorphic to) a regular tree.
Moreover, unfoldings from MSO definable vertices preserve the decidability of the

442 A. Montanari and G. Puppis

MSO theories of graph structures [14]. Another transformation which preserves
decidability is the MSO interpretation, which is defined as follows.

Definition 8. Given a graph structure G = (S, (El)l∈Λ) and a finite set of labels
Γ , an MSO interpretation of G in Γ is a family (ϕl)l∈Γ of MSO formulas over
G. It gives raise to a graph G′ = (S′, (E′

l)l∈Γ), where, for each l ∈ Σ, E′
l =

{(v, w) ∈ S × S : G � ϕl[v, w]}, and S′ ⊆ S is the set of all vertices occurring
in the edge relations E′

l.

As a first example of application of our approach, consider the semi-infinite
line L with forward edges, backward edges and loops (cf. Figure 1), which belongs
to the Caucal hierarchy, and its unfolding from the leftmost vertex.

#

1

1

#

1

1

#

1

1

#

1

1

#

1

1

Fig. 1. The semi-infinite line L

We provide an alternative proof of the decidability of the MSO theory of the
unfolding of L. The unfolded graph can be embedded into the infinite complete
{w, b}-colored tree T of Figure 2. Black nodes b correspond to nodes of the
original structure, while white nodes w are added to complete the tree. For the
sake of readability, we adopt {1, 1̄,#} instead of {1, 2, 3} as the set of edge labels.
By adding an auxiliary third color c to manage concatenation, a factorization∏

i∈N
(Ti)c of T can be inductively defined as follows (see the dashed regions in

Figure 2):

• T0 = U ·wW;
• Ti+1 = U ·w (Ti ·c U) ·w (Ti ·c U) ·w . . .,

where U =
∏

j∈N
(b〈w, b, c〉)b (we denote by b〈w, b, c〉 the full finite ternary tree

with a b-colored root and 3 leaves colored by w, b, and c, respectively) and W
is the infinite complete ternary {w}-colored tree. From Theorem 4 (case 4.), it
follows that such a factorization is residually ultimately periodic. This accounts
for the decidability of MTh(T).

As a second example, consider the infinite binary {w, b}-colored tree Ttow
such that Ttow (u) = b iff u = 1n0m, with m < tow(n), where tow is the expo-
nential tower defined by tow(0) = 1 and tow(n + 1) = 2tow(n) (cf. Figure 3). In
[6], Carayol and Wöhrle show that such a tree does not belong to the Caucal
hierarchy, but it enjoys a decidable MSO theory. We give an alternative proof
of the decidability of MTh(Ttow) by providing a residually ultimately periodic
factorization of Ttow . A factorization

∏
i∈N

(Ti)c of Ttow can be defined as follows
(see the dashed regions in Figure 3):

• T0 = b〈w, c〉 ·wW;
• Ti = b〈b, c〉 ·b

(
b〈b, w〉 ·wW

)(tow(i)−1)b ·bW for i ≥ 1,

Decidability of MSO Theories of Tree Structures 443

T0 T1

T0 T0 T1 T1

T0 T1

1 1 1

1 1

1

1

1

#

1 1 1 1 1

1 1

1

1

1

1

1

1

1

#

1 1

1

1

1

1

#

T0
T1
T1 T2

T2

Fig. 2. The tree T embedding the unfolding of L

whereW is the infinite complete binary {w}-colored tree. From Theorem 4 (case
1.), it follows that such a factorization is residually ultimately periodic, and thus
MTh(Ttow) is decidable.

...

...

2

1

2

1

2 2

1
2

1

2

1

2

1 1
2

1

2

1

2

1
2

1

n times︷ ︸︸ ︷
⎫⎪⎬⎪⎭ tow(n) times

Fig. 3. The residually regular tree Ttow

We conclude the section by showing that residually regular trees allow us
to capture a relevant subclass of the graphs in the Caucal hierarchy [9]. The
level 0 of the Caucal hierarchy consists of all the finite graphs. At level n +
1, we find all the graphs which are obtained from level n graphs by apply-
ing an unfolding followed by an MSO interpretation. Since both unfoldings
and MSO interpretations preserve decidability, the resulting hierarchy contains
only graphs with a decidable MSO theory. In [6], Carayol and Wöhrle show
that, for each level of the Caucal hierarchy, there exists a representative graph,
called generator, from which all the other graphs belonging to that level can
be obtained by the application of the basic operations of rational marking and
MSO interpretation. These generators are closely related to the ‘tree genera-
tors’ introduced by Cachat to simulate games on higher order pushdown sys-
tems [5]. The level 1 tree generator C1 is the infinite complete binary tree.

444 A. Montanari and G. Puppis

The level 2 tree generator C2 is the tree obtained from C1 by adding reverse
edges and a loop for each vertex (labeled by fresh symbols, e.g., 1̄, 2̄,#), and
then by unfolding the resulting graph from its root. C3 is obtained by apply-
ing the same operation (which we shortly denote by MSOUnf) to C2, and so
on. Since MSOUnf is an MSO interpretation followed by an unfolding, tree
generators belong to the Caucal hierarchy. Tree generators can be embedded
into residually regular trees as follows. First, C1 can be viewed as a uniformly
colored tree and thus it obviously is a residually regular tree. Then, by gen-
eralizing the construction used in the case of the semi-infinite line, one can
prove that the class of residually regular trees is closed under MSOUnf [17].
As matter of fact, we need to slightly modify the definition of MSOUnf to
operate inside the class of full trees; however, this is a trivial generalization
which preserves all results about decidability and expressiveness of tree genera-
tors.

5 Conclusions

In this paper we devised an automaton-based method that allows us to solve the
decision problem for the MSO theories of several deterministic tree structures.
First, by taking advantage of well-known results from automata theory, we re-
duced the problem to the acceptance problem for Rabin tree automata. Then,
we introduced the class of residually regular trees, which extends that of regular
trees, and we showed that one can solve the acceptance problem for this family
of trees by reducing it to the acceptance problem for equivalent regular trees.
Finally, we applied the proposed method to some meaningful examples of tree
structures.

The proposed method generalizes the one developed by Carton and Thomas
to decide the theory of the linear order (N, <) extended with suitable unary
relations, that is, those relations which are encoded by residually ultimately
periodic words [7]. Since any ω-word over a finite alphabet Σ can be seen as an
infinite 1-ary Σ-colored tree and string concatenation is definable in terms of tree
concatenation, the notion of residually regular tree subsumes that of residually
ultimately periodic word. Furthermore, some interesting binary relations over
the linear order (N, <) turn out to be MSO definable in terms of residually
regular trees. As an example, in [17, 18] we give an alternative decidability proof
for the theory of the linear order (N, <) extended with the flip function [16, 22].
Finally, many trees in the Caucal hierarchy [9] can be embedded into residually
regular trees. This last fact hints at the possibility of establishing a connection
between our approach and the transformational one developed by Caucal for
deciding MSO theories of infinite graphs.

We are currently trying to determine whether or not any deterministic tree
in the Caucal hierarchy can be embedded into a suitable residually regular tree.
We already know that the converse does not hold, since there exist some deter-
ministic trees, such as, for instance, Ttow (cf. Section 4), which do not belong
to the Caucal hierarchy, but can be handled by our method. We are also inves-

Decidability of MSO Theories of Tree Structures 445

tigating the possibility of extending the proposed automaton-based framework
to manage non-deterministic trees. To this end, we are looking for a more gen-
eral notion of tree equivalence based on more expressive automata, such as, for
instance, the automata on tree-like structures used in [23].

References

[1] K. Barthelmann. On equational simple graphs. Technical Report 9, UniversitSt
Mainz, Institut fnr Informatik, 1997.

[2] J.R. Bnchi. On a decision method in restricted second order arithmetic. In
Proceedings of the International Congress on Logic, Methodology and Philosophy
of Science, pages 1–11. Stanford University Press, 1960.

[3] A. Blumensath. Prefix-recognizable graphs and monadic second-order logic. Tech-
nical Report AIB-06-2001, RWTH Aachen, 2001.

[4] A. Blumensath and E. Gradel. Automatic structures. In Logic in Computer
Science, pages 51–62, 2000.

[5] T. Cachat. Higher order pushdown automata, the Caucal hierarchy of graphs and
parity games. In Proceedings of the 30th International Colloquium on Automata,
Languages, and Programming, volume 2719 of LNCS, pages 556–569, 2003.

[6] A. Carayol and S. Wöhrle. The Caucal hierarchy of infinite graphs in terms of logic
and higher-order pushdown automata. In Proceedings of the 23rd Conference on
Foundations of Software Technology and Theoretical Computer Science, volume
2914 of LNCS, pages 112–123. Springer, 2003.

[7] O. Carton and W. Thomas. The monadic theory of morphic infinite words and
generalizations. Information and Computation, 176:51–65, 2002.

[8] D. Caucal. On the regular structure of prefix rewriting. Theoretical Computer
Science, 106:61–86, 1992.

[9] D. Caucal. On infinite terms having a decidable monadic theory. In Proceedings
of the 27th International Symposium on Mathematical Foundations of Computer
Science, volume 2420 of LNCS, pages 165–176. Springer, 2002.

[10] D. Caucal. On infinite transition graphs having a decidable monadic theory.
Theoretical Computer Science, 290:79–115, 2003.

[11] B. Courcelle. The monadic second-order logic of graphs II: Infinite graphs of
bounded tree width. Mathematical Systems Theory, 21:187–221, 1989.

[12] B. Courcelle. Graph rewriting: An algebraic and logic approach. In J. Van
Leeuwen, editor, Handbook of Theoretical Computer Science, pages 193–242. El-
sevier, 1990.

[13] B. Courcelle. Monadic second-order graph transductions: a survey. Theoretical
Computer Science, 126:53–75, 1994.

[14] B. Courcelle and I. Walukiewicz. Monadic second-order logic, graph coverings,
and unfoldings of transition systems. Annals of Pure and Applied Logic, 92:35–62,
1998.

[15] C.C. Elgot and M.O. Rabin. Decidability and undecidability of extensions of
second (first) order theory of (generalized) successor. Journal of Symbolic Logic,
31(2):169–181, 1966.

[16] A. Montanari, A. Peron, and A. Policriti. Extending Kamp’s theorem to model
time granularity. Journal of Logic and Computation, 12(4):641–678, 2002.

446 A. Montanari and G. Puppis

[17] A. Montanari and G. Puppis. Decidability of MSO theories of tree structures.
Research Report 01, Dipartimento di Matematica e Informatica, Universita di
Udine, Italy, 2004.

[18] A. Montanari and G. Puppis. Decidability of the theory of the totally unbounded
ω-layered structure. In Proceedings of the 11th International Symposium on Tem-
poral Representation and Reasoning (TIME), pages 156–160, 2004.

[19] D. Muller and P. Schupp. The theory of ends, pushdown automata, and second-
order logics. Theoretical Computer Science, 37:51–75, 1985.

[20] M.O. Rabin. Decidability of second-order theories and automata on infinite trees.
Transactions of the American Mathematical Society, 141:1–35, 1969.

[21] W. Thomas. Languages, automata, and logic. In G. Rozemberg and A. Salomaa,
editors, Handbook of Formal Languages, volume 3, pages 389–455. Springer, 1997.

[22] W. Thomas. Constructing infinite graphs with a decidable MSO-theory. In Pro-
ceedings of the International Symposium on Mathematical Foundations of Com-
puter Science, LNCS, pages 113–124. Springer, 2003.

[23] I. Walukiewicz. Monadic second-order logic on tree-like structures. Theoretical
Computer Science, 275:311–346, 2002.

[24] G. Zhang. Automata, boolean matrices, and ultimate periodicity. Information
and Computation, 152(1):138–154, 1999.

Distributed Algorithms for Coloring and
Domination in Wireless Ad Hoc Networks

Srinivasan Parthasarathy1 and Rajiv Gandhi2

1 Department of Computer Science, University of Maryland, College Park,
MD 20742, Research supported by NSF Award CCR-0208005

sri@cs.umd.edu
2 Department of Computer Science, Rutgers University, Camden, NJ 08102

rajivg@camden.rutgers.edu

Abstract. We present fast distributed algorithms for coloring and (con-
nected) dominating set construction in wireless ad hoc networks. We
present our algorithms in the context of Unit Disk Graphs which are
known to realistically model wireless networks. Our distributed algo-
rithms take into account the loss of messages due to contention from
simultaneous interfering transmissions in the wireless medium.

We present randomized distributed algorithms for (conflict-free)
Distance-2 coloring, dominating set construction, and connected dom-
inating set construction in Unit Disk Graphs. The coloring algorithm
has a time complexity of O(Δ log2 n) and is guaranteed to use at most
O(1) times the number of colors required by the optimal algorithm. We
present two distributed algorithms for constructing the (connected) dom-
inating set; the former runs in time O(Δ log2 n) and the latter runs in
time O(log2 n). The two algorithms differ in the amount of local topology
information available to the network nodes.

Our algorithms are geared at constructing Well Connected Dominat-
ing Sets (WCDS) which have certain powerful and useful structural prop-
erties such as low size, low stretch and low degree. In this work, we also
explore the rich connections between WCDS and routing in ad hoc net-
works. Specifically, we combine the properties of WCDS with other ideas
to obtain the following interesting applications:

– An online distributed algorithm for collision-free, low latency, low
redundancy and high throughput broadcasting.

– Distributed capacity preserving backbones for unicast routing and
scheduling.

1 Introduction

Wireless ad hoc networks are composed of a set of mobile nodes which commu-
nicate with one another over a shared wireless channel. Unlike wired networks,

2 Part of this work was done when the author was a student at the University of
Maryland and was supported by NSF Award CCR-9820965. Research also supported
by Rutgers University’s Research Council grant.

K. Lodaya and M. Mahajan (Eds.): FSTTCS 2004, LNCS 3328, pp. 447–459, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

448 S. Parthasarathy and R. Gandhi

nodes in an ad hoc network do not rely on a pre-existing communication in-
frastructure. Instead, they communicate either directly with each other or with
the help of intermediate nodes in the network. The distributed, wireless and self-
configuring nature of ad hoc networks render them useful for several applications
such as mobile battlefields, disaster relief, sensing and monitoring. However, the
lack of a fixed communication infrastructure introduces several challenging and
interesting research issues in the design of communication protocols for these
networks. Any communication protocol for ad hoc networks should also contend
with the issue of interference in the wireless medium. When two or more nodes
transmit a message to a common neighbor at the same time, the common node
will not receive any of these messages. In such a case, we say that a collision has
occurred at the common node.

Coloring and connected domination are two fundamental primitives with sev-
eral applications in the wireless context. In wireless networks, we seek a conflict-
free coloring of the nodes such that two nodes which belong to the same color
class may transmit simultaneously without resulting in collisions. Clearly, such
a coloring has natural applications to collision-free wireless scheduling. In or-
der to overcome the lack of a fixed routing infrastructure, several researchers
have also proposed construction of a virtual backbone in ad hoc networks. A
virtual backbone typically consists of a small subset of nodes in the network
which gather and maintain information such as local topology and traffic condi-
tions. This information can be made use of by higher level protocols for providing
efficient communication services. Connected Dominating Sets (CDS) are the ear-
liest structures proposed as candidates for virtual backbones in ad hoc networks
[9, 8, 20].

Both coloring and (connected) dominating set construction are classical prob-
lems which have received tremendous attention in the literature. In general, all
existing distributed algorithms for these problems can be classified into two cate-
gories. The first category of algorithms are fast sub-linear time algorithms which
do not consider message losses due to collisions. Further, these all algorithms
model the network as an arbitrary undirected graph; both these assumptions
render them unsuitable for wireless ad hoc networks. The second category of
algorithms are (slower) linear time algorithms. These algorithms can be im-
plemented such that only a single node in the network transmits at any time
and hence no collisions occur during the course of the algorithm. A linear time
algorithm does not exploit the massive parallelism available in the ad hoc net-
work and is unsuitable for dynamic network conditions displayed by ad hoc
networks.

In this work, we focus on developing fast distributed algorithms for color-
ing and (connected) dominating set construction in wireless ad hoc networks.
Specifically, we view the following as the main contributions of this work.

1.1 Our Contributions

– Incorporating Wireless Interference: We present distributed algorithms
for conflict-free coloring, dominating set construction and connected domi-

Distributed Algorithms for Coloring and Domination 449

nating sets in the context of wireless networks. While several distributed al-
gorithms exist for coloring and domination in arbitrary graphs, we use Unit
Disk Graphs which realistically model wireless networks. Further, our algo-
rithms handle wireless interference; we take into account the loss of messages
at a node due to collisions from simultaneous neighboring transmissions. We
are not aware of any work which study these problems under message losses
due to wireless collision.

– Distributed Coloring: We present a distributed conflict-free (D2) coloring
of nodes in the network. This primitive arises naturally in many applications
such as broadcast scheduling and channel assignment in wireless networks.
In general, the colors could represent time slots or frequencies assigned to the
nodes. Minimizing the number of colors used in the coloring is very desirable
for these applications, but is known to be NP-hard [19]. Our algorithm runs
in time O(Δ log2 n), where Δ is the maximum degree and n is the number
of network nodes and uses O(Δ) colors for the D2-coloring; this is at most
O(1) times the number of colors used by an optimal algorithm.

– Distributed (Connected) Dominating Set: We present distributed
algorithms for dominating set and connected dominating set construction
where require knowledge of only local topology and global network param-
eters such as size and the maximum degree. We present two algorithms: a
D2-coloring based algorithm and a broadcast based algorithm which utilizes
the work of Gandhi et al. [10]. The coloring based algorithm requires each
node to know the maximum degree Δ and the total number of network nodes
n and runs in time O(Δ log2 n). The broadcast based algorithm requires
each node to know their three-hop topology and runs in time O(log2 n). All
these algorithms incorporate message losses due to collisions from interfering
transmissions.

– Wireless Routing Applications: The distributed CDS algorithms pre-
sented in this paper are geared at constructing CDSs with certain powerful
structural properties such as low size, low stretch and low degree (henceforth,
we refer to such a CDS as a Well Connected Dominating Sets (WCDS)).
The work by Alzoubi [1] deals with a linear-time distributed construction
of WCDS in ad hoc networks. In this paper, we also explore the rich con-
nections between WCDS and routing in wireless networks. Specifically, we
combine the structural properties of WCDS with other ideas to obtain the
following interesting applications:
• An online distributed algorithm for collision-free, low latency, low redun-

dancy and high throughput broadcasting.
• Distributed capacity preserving backbones for unicast routing and

scheduling.
We note that our algorithms and analysis only require that nodes know a

good estimate of the values of the network parameters n and Δ instead of their
exact values. Such estimates are easy to obtain in many practical scenarios.
For instance, consider the scenario where n nodes with unit transmission radii
are randomly placed in a square grid of area n. In this case, the maximum degree

450 S. Parthasarathy and R. Gandhi

Δ = Θ(log n
log log n) with high probability. Due to lack of space, we omit the proofs

of all the claims presented in this paper. All the proofs appear in the full version
of this work1.

2 Background

2.1 Network and Interference Model

We model the network connectivity using a unit disk graph (UDG) G = (V,E):
the nodes in V are embedded in the plane. Each node has a maximum trans-
mission range and an edge (u, v) ∈ E if u and v are within the maximum
transmission range of each other. We assume that the maximum transmission
range is the same for all nodes in the network (and hence w.l.o.g., equal to one
unit). Time is discrete and synchronous across the network; units of time are also
referred to as time slots. Since the medium of transmission is wireless, whenever
a node transmits a message, all its neighbors hear the message. If two or more
neighbors of a node w transmit at the same time, w will be unable to receive
any of those messages. In this case we also say that w experiences collision. In
any time slot, a node can either receive a message, experience collision, or trans-
mit a message but cannot do more than one of these. We work with the above
interference model for ease of exposition and analysis. However, all the results
presented in this paper easily extend to the so called protocol model [11] of
interference also.

2.2 Definitions

We now describe the definitions and notations used in the rest of the paper. All
the definitions below are with respect to the undirected graph G = (V,E).

Connected Dominating Set (CDS): A set W ⊆ V is a dominating set if
every node u ∈ V is either in W or is adjacent to some node in W . If the induced
subgraph of the nodes in W is connected, then W is a connected dominating
set (CDS). A Minimum Connected Dominating Set (MCDS) is a CDS with the
minimum number of nodes.

Maximal Independent Set (MIS): A set M ⊆ V is an independent set if no
two nodes in M are adjacent to each other. M is also a Maximal Independent
Set (MIS) if there exists no set M ′ ⊇ M such that M ′ is an independent set.
Note that, in an undirected graph, every MIS is a dominating set.

Well Connected Dominating Set (WCDS): A CDS W is a WCDS if it
satisfies the following properties:

(P1) Low Size: Let OPT be an MCDS for G. Then, |W | ≤ k1|OPT |, where
k1 is a constant.

1 Available at http://www.cs.umd.edu/∼sri/distcoldom.ps

Distributed Algorithms for Coloring and Domination 451

(P2) Low Degree: Let G′ = (W, E′) be the graph induced by the nodes in W .
For all u ∈W , let d′(u) denote the degree of u in G′. Then, ∀u ∈W, d′(u) ≤ k2,
where k2 is a constant.

(P3) Low Stretch: Let D(p, q) denote the length of the shortest path be-
tween p and q in G. Let DW (p, q) denote the length of the shortest path be-
tween p and q such that all the intermediate nodes in the path belong to W . Let
sW

.= max{p,q}∈V
DW (p,q)
D(p,q) . Then, sW ≤ k3, where k3 is a constant.

Distance-k Neighborhood (Dk-Neighborhood): For any node u, the Dk-
neighborhood of u is the set of all other nodes which are within k hops away
from u.

Distance-2 Vertex Coloring (D2-Coloring): D2-coloring is an assignment
of colors to the vertices of the graph such that every vertex has a color and two
vertices which are D2-neighbors of each other are not assigned the same color.
Vertices which are assigned the same color belong to the same color class. This
definition is motivated by the fact that nodes belonging to the same color class
can transmit messages simultaneously without any collisions.

3 Related Work

Coloring, dominating set construction and connected domination are classical
problems which have been extensively studied in the literature. However, we are
not aware of any distributed algorithms for these problems which incorporate
the geometry and transmission characteristics of wireless networks. To the best
of our knowledge, we are the first to study these problems for realistic multi-hop
wireless network models (Unit Disk Graphs) and incorporate loss of messages
due to collisions from interfering transmissions. In [19], it was shown that even
in the case of UDGs, it is NP-hard to minimize the number of colors used in
the D2-coloring. However, for many restricted graph classes such as UDGs, sev-
eral centralized approximation algorithms exist which use within O(1) times the
number of colors used by an optimal D2-coloring [19, 12, 18]. It was shown in [7]
that computing an MCDS is NP-hard even for UDGs. Cheng et al.[6] propose
a centralized polynomial time approximation scheme (PTAS) for approximating
MCDS in UDGs. Several distributed approximation algorithms exist for comput-
ing MCDS in UDGs [21, 16, 2, 3, 5]. These algorithms produce a solution whose
size is within O(1) times that of an MCDS. The time and message complexity of
these algorithms are O(n) and O(n log n) respectively. All these algorithms have
a stretch of O(n) [1]. Alzoubi et al.[4] proposed a distributed CDS algorithm
for UDGs which has O(n) time and message complexity and which results in a
CDS of size O(1) times MCDS. Alzoubi [1] showed that this CDS also has O(1)
stretch. We improve upon the time complexity of all the above algorithms by
proposing the first sub-linear time distributed algorithms for ad hoc networks
which constructs a WCDS of size O(1) times MCDS and O(1) stretch. In par-
ticular, we note that in comparison with [1], we achieve a drastic decrease in the

452 S. Parthasarathy and R. Gandhi

time complexity (from O(n) to O(log2n) at the expense of a slight increase in
the message complexity (from O(n) to O(n log n)). While the distributed algo-
rithm presented in [1] holds for both synchronous and asynchronous models of
communication, we restrict our focus only to the synchronous communication
model and leverage in the design of our distributed algorithms.

4 Distributed D2-Coloring

In this section, we present our distributed D2-coloring algorithm for unit disk
graphs. Our algorithm is modeled after Luby’s distributed graph coloring algo-
rithm [15]. The key technical difficulty in our algorithm as opposed to Luby’s
algorithm, lies in the the fact that simultaneous transmissions from neighboring
nodes could result in collisions and hence loss of messages at a particular node.
We handle this by probabilistic retransmission of the messages, and ensure that
all messages are eventually received by their intended recepients with high prob-
ability. Further, while Luby’s distributed coloring algorithm was a D1-coloring
of arbitrary graphs, our algorithm is intended for D2-coloring of unit disk graphs.
This allows us to exploit the geometric properties of UDGs to D2-color it using
O(Δ) colors; this yields a O(1) approximation for the number of colors.

Our algorithm is parametrized by three positive integers: c, t, and r (to be
specified later). Each node u has a list of colors L(u) which is initialized to
{1, 2, . . . c}. Time is divided into frames of length c time slots. As in Luby’s
algorithm [15], our algorithm also proceeds in a synchronous round by round
fashion. Typically, each round involves the following steps. Some of the yet-
uncolored nodes choose a tentative colors for themselves. Some of these nodes
will be successful, since none of their D2-neighbors would have chosen the same
tentative color as themselves. In this case, the tentative color becomes the per-
manent color for these nodes. The unsuccessful nodes update their color list by
removing the set of colors chosen by their successful D2-neighbors in this round
and continue their attempts to color themselves in the future rounds. The color-
ing algorithm terminates after t rounds. We now present the details of a specific
round.

Each round consists of four phases: TRIAL, TRIAL-REPORT, SUC-
CESS and SUCCESS-REPORT. The details of these phases are given below.

TRIAL: Only the yet-uncolored nodes participate in this phase. This phase
consists of a single frame. At the beginning of this phase, each yet-uncolored
node u wakes up or goes to sleep with probability 1/2 respectively. If u is awake,
it chooses a tentative color color(u) uniformly at random from L(u). Note that
L(u) is the list of colors available for node u in the current round and this list
may change in the future rounds. Node u then transmits a TRIAL message
{ID(u), color(u)} at the time slot corresponding to color(u) in this frame: for
e.g., if u is awake and if color(u) = 5, u transmits the message {ID(u), 5} at the
fifth time slot of this frame. In general, the TRIAL message (and other types of
messages below) may not reach all the neighbors of u due to collisions.

Distributed Algorithms for Coloring and Domination 453

TRIAL-REPORT: This phase consists of r frames. At the beginning of this
phase, every node u in the network prepares a TRIAL-REPORT message. This
message is the concatenation of all the TRIAL messages received by u in this round.
During every frame of this phase, u chooses a time slot independently at random
within the frame, and broadcasts the TRIAL-REPORT message during this time.

SUCCESS: This phase consists of a single frame. At the beginning of this
phase, every node u which is awake, determines if the tentative color it chose
during the TRIAL phase is a safe color or not. Intuitively, color(u) is safe if
no node in its D2-neighborhood chose the same color as u. In our algorithm, u
deems color(u) to be safe if the following conditions hold:
1. u received a TRIAL-REPORT message from each of its neighbors.
2. Each TRIAL-REPORT message received by u contained the TRIAL message

sent by u.
If the above conditions are met, color(u) becomes the permanent color for u.

In this case, u creates a SUCCESS message {ID(u), color(u)} and broadcasts
it to all its neighbors. This transmission is done at the time slot corresponding
to color(u) within this frame. In future rounds, u does not participate in the
TRIAL and SUCCESS phases since it successfully colored itself in this round.
SUCCESS-REPORT: This phase is similar to the TRIAL-REPORT phase.
The SUCCESS-REPORT message for every node u in the network is a concate-
nation of SUCCESS messages which were received by u in this round. This phase
also consists of r frames. During every frame of this phase, u chooses a time
slot independently at random within the frame and broadcasts its SUCCESS-
REPORT message during this slot. Crucially, at the end of this phase, any yet-
uncolored node v removes from its list L(v), any color found in the SUCCESS
or SUCCESS-REPORT messages received by v in this round. This ensures that,
in the future rounds, v does not choose the colors of its successful D2-neighbors.
This completes the description of a single round of the algorithm; the algorithm
consists of t such rounds. We show that for an appropriate choice of parameters,
our algorithm yields a O(1)-approximate D2-coloring for UDGs with high prob-
ability in O(Δ log2 n) time. Specifically, let the parameters have the following
values: c = k1Δ, t = k2 log n, and r = k3 log n, where k1, k2 and k3 are constants.
The following theorem holds.

Theorem 1. The distributed D2-coloring algorithm computes a valid D2-
coloring using O(Δ) colors in O(Δlog2n) running time w.h.p. The number of
colors used is at most O(1) times the optimal coloring. All messages in the algo-
rithm require at most O(Δ log n) bits. The total number of messages transmitted
by the algorithm is at most O(n log2 n).

5 Distributed Dominating Set Construction

In this section, we present our distributed dominating set algorithms for unit disk
graphs. We note that any Maximal Independent Set (MIS) is also a dominating

454 S. Parthasarathy and R. Gandhi

set in an undirected graph. Further, in the case of UDGs, it is well known that
the number of nodes in any Maximal Independent Set (MIS) is at most five
times the number of nodes in the minimum dominating set. Hence, a distributed
MIS algorithm also yields a 5-approximate dominating set in UDGs. Henceforth,
we focus on distributed MIS construction in UDGs.

5.1 D2-Coloring Based MIS Algorithm

We now present a simple D2-coloring based distributed MIS algorithm. Observe
that if we have a D2-coloring of the nodes using c colors, we can build an MIS
iteratively in c time slots as follows: during slot i, all nodes belonging to color
class i attempt to join the MIS. A node joins the MIS if and only if none of
its neighbors are currently part of the MIS. After joining the MIS, the node
broadcasts a message to its neighbors indicating that it joined the MIS. Nodes
transmitting during the same time slot belong to the same color class and hence
do not share a common neighbor. For the same reason, none of the messages
are lost due to collisions. Clearly, this stage requires exactly c time steps. Since
the distributed D2-coloring algorithm of Section 4 colors the UDG using O(Δ)
colors w.h.p. in O(Δ log2 n) time, we also have a distributed MIS algorithm
which terminates correctly w.h.p. in O(Δ log2 n) time.

Theorem 2. The D2-coloring based distributed algorithm constructs an MIS in
O(Δ log2 n) time w.h.p and the total number of messages transmitted during the
algorithm is O(n log2 n).

5.2 Broadcast Based MIS Construction

We now present our broadcast based distributed MIS algorithm, which makes
use of knowledge of the Distance-2 topology, and constructs an MIS in O(log2 n)
time. Specifically, we assume that each node knows its D2-neighborhood and
the edges between these nodes. As in Luby’s distributed MIS algorithm [14], our
algorithm also proceeds in a synchronous round by round fashion. The MIS is
initially empty. Typically, some nodes are successful at the end of each round. A
node is deemed successful if either the node joins the MIS or one of its neighbors
joins the MIS. Successful nodes do not participate in the future rounds (except for
forwarding messages), while remaining nodes continue their attempts to be suc-
cessful in the future rounds. The MIS construction terminates after t such rounds.

During the algorithm, each node u maintains a status variable which is defined
as follows: status(u)=in if u has joined the MIS; status(u)=out if any neighbor
of u has joined the MIS; status(u)=unsure otherwise. All nodes are initially
unsure and become in or out of MIS during the course of the algorithm. Let Vi

be the set of nodes whose status is unsure at the end of round i − 1. For any
node u ∈ Vi, let Ni(u) = N(u) ∩ Vi. Let MISi be the set of nodes which join
MIS in round i.

There are four phases in each round of the algorithm: TRIAL,
CANDIDATE-REPORT, JOIN, and PREPARE. We now present the de-
tails of these phases for a particular round i.

Distributed Algorithms for Coloring and Domination 455

TRIAL: In this phase, each unsure node decides if it is a candidate for MISi.
Specifically, each unsure node u chooses itself to be a candidate for joining
MISi, with probability 1

2(|Ni(u)|+1) . Node u will not be a candidate in this round
with the complement probability. This phase does not required any message
transmissions.

CANDIDATE-REPORT: This phase ensures that each node knows if there
is a neighbor who is a candidate. This step consists of p time frames, each frame
consisting of two slots. During every frame of this phase, each candidate node
chooses one of the two slots independently at random and broadcasts a CAN-
DIDATE message. Any node which receives a CANDIDATE message or experi-
ences collision during this phase, knows that there is a neighboring candidate;
otherwise it assumes that there is no neighboring candidate.

JOIN: This phase requires a single time slot. In this phase, some unsure nodes
become either in or out. How should a candidate decide if it should join MISi

(become in)? A candidate joins MISi if none of its neighbors are candidates
for MISi, i.e., if it did not receive a CANDIDATE message during the previous
phase. All nodes who joined MISi transmit a JOIN message. unsure nodes
which receive a JOIN message or experience collision, change their status to out.
Other unsure nodes do not change their status.

PREPARE: Each unsure node u computes Ni+1(u) at the end of this phase.
This phase consists of p time frames. Each frame is further subdivided into α
sub-frames of length c. During every frame of this phase, each node in MISi,
chooses independently at random, one of the α sub-frames. During this sub-
frame, it broadcasts a PREPARE message using the algorithm in [10] to its D2-
neighbors. The length of the sub-frame, c is the number of time steps required
by [10] to transmit a message from a node to its D2-neighbors. The PREPARE
message broadcast by a node simply consists of its ID. By the end of this phase,
every unsure node knows all the nodes in its D2-neighborhood which joined
MISi. Hence, it can easily compute Ni+1(u).

The algorithm terminates after t such rounds. The theorem below claims
that for an appropriate choice of parameters, the algorithm yields an MIS with
high probability in time O(log2 n). The analysis of this theorem involves a tricky
charging argument which heavily relies on the geometry of UDGs.

Theorem 3. The broadcast based distributed algorithm computes an MIS with
high probability in O(log2 n) time. Each message is at most O(logn) bits in
length and the expected number of messages transmitted is O(n log n).

6 Distributed Connected Domination

In this section, we present the results for our distributed connected dominating
set algorithms for UDGs. Alzoubi [1] presented a centralized algorithm for con-
structing a CDS with a stretch of O(1), size which is at most O(1) times that of

456 S. Parthasarathy and R. Gandhi

the minimum CDS, and has O(1) degree. Henceforth, we will call a CDS with
these properties as Well Connected Dominating Set (or WCDS). Alzoubi also
presented a distributed implementation of his centralized algorithm which runs
in linear time. The basic idea behind the centralized algorithm is as follows: we
first compute an MIS by iteratively choosing vertices which are currently not in
MIS and which do not currently have a neighbor in MIS. Since the input graph
is an undirected graph, any maximal independent set is also a dominating set.
Connectivity is handled as an orthogonal component as follows: every MIS node
u is connected to every other MIS node v in its D3-neighborhood, using a short-
est path between u and v. Nodes in the shortest paths along with the nodes in
MIS constitute the CDS W .

We present two distributed implementations of this approach. Due to lack of
space, the details of these implementations are presented in the full version. We
note that in both the algorithms, the basic idea is for each node in the MIS to
broadcast a message to its D3-neighborhood. After this step, each node in the
MIS connects itself to every other node in the MIS which is at most three hops
away, through a shortest path. The two implementations differ in how the MIS
is computed and how this broadcasting is achieved. The first implementation
uses the D2-coloring based scheme. The broadcasting is easily achieved in a
collision-free manner since the D2-coloring also yields a natural collision-free
schedule. The running time for this algorithm is O(Δ log2 n) and is dominated
by the D2-coloring step. In the second implementation, the MIS is constructed
via the broadcast algorithm discussed in Section 5.2. Here the broadcasting is
achieved using the algorithm in [10]. This implementation has a running time of
O(log2 n) and is dominated by the MIS construction. As discussed in Section 5,
these algorithms differ in extent of local topology information available to each
node in the network.

7 Network-Wide Broadcasting

We now present our results pertaining to our broadcast algorithm. Due to lack
of space, the details of the algorithm are presented in the full version. The basic
idea behind the broadcast algorithm is to first construct a WCDS W , and obtain
a valid D2-coloring of the WCDS. For ease of analysis, we assume that messages
are generated only by nodes in W . Our algorithm requires that nodes in W have
a valid D2-coloring using k colors. Let time be divided into frames of length
k. Every node in the WCDS, retransmits a message after receiving it, in the
first time slot in the following frame which corresponds to its own color. If there
are multiple messages to be transmitted, the one with the lowest ID is chosen
for transmission. This simple scheme guarantees that all nodes in the network
receive all messages collision-free. In addition, this scheme optimizes the latency,
the number of retransmissions, and the throughput of the broadcast to within
a constant factor of their respective optimal values. We analyze the behavior of
our broadcast algorithm under the following packet injection model.

Distributed Algorithms for Coloring and Domination 457

Theorem 4. The broadcast algorithm supports an long term rate of message
generation, which is within O(1) factor of the optimal rate. Further, the latency
experienced by any message is at most O(1) times the optimal latency for this
message. All messages are received collision-free by all nodes in the network. In
addition, the number of retransmissions for any message is at most O(1) times
the optimal number of retransmissions required to broadcast the message.

8 Unicast Routing

In this section, we show that a WCDS is an efficient backbone for unicast routing
in ad hoc networks. We derive our results in this section under the Distance-2
edge interference model (D2-model) [17, 18, 13]. We show that any routing al-
gorithm could be modified to operate over a WCDS such that, the modified
routing algorithm will use only the nodes in WCDS as intermediate nodes in the
paths, without incurring significant loss in the quality of the paths and sched-
ules when compared with the original algorithm. We formalize this intuition
below.

Let P = {p1, . . . pn} be a set of paths such that the maximum length of
any path is d. We will refer to the elements of P as both paths and packets
interchangeably. For any disk z, let n(z) denote the number of edges in all the
paths in P with an end point inside z. Let Z be the set of all disks on the
plane with radius 1/2. Let c = maxz|z∈Z n(z): i.e., c is the maximum number
of edges in P which have an end point inside any fixed disk of radius 1/2. We
call d and c, the dilation and congestion of P respectively. A schedule S for P
specifies the time at which every packet is transmitted collision-free along each
edge in its path. The length of the schedule |S| is the maximum latency of any
packet in this schedule, i.e., the maximum time at which any packet traverses
any edge. Observe that, under the D2-model, both c and d (and hence c+d

2) are
lower bounds on the length of any schedule for P. We now state the following
surprising claim from [13].

Claim. Let OPT be an optimal collision-free schedule for P under the D2-model.
Let |OPT | denote the length of OPT (which is the maximum latency experienced
by a packet in OPT). Then, |OPT | = Θ(c + d).

The following theorem holds.

Theorem 5. There exists a set of paths P ′ such that each path in P can be
replaced by an alternate path in P ′. Further, these paths are such that all their
internal nodes are from the WCDS and congestion c′ and dilation d′ of the path
system P ′ are such that c′ + d′ = Θ(c + d).

Acknowledgments. We would like to thank V.S. Anil Kumar, Madhav Marathe
and Aravind Srinivasan for several useful discussions.

458 S. Parthasarathy and R. Gandhi

References

1. K. M. Alzoubi. Connected dominating set and its induced position-less sparse
spanner for mobile ad hoc networks. In Proceedings of the Eighth IEEE Symposium
on Computers and Communications, June 2003.

2. K. M. Alzoubi, P.-J. Wan, and O. Frieder. Distributed heuristics for connected
dominating sets in wireless ad hoc networks. IEEE ComSoc/KICS Journal on
Communication Networks, 4:22–29, 2002.

3. K. M. Alzoubi, P.-J. Wan, and O. Frieder. Message efficient construction of non-
trivial connected dominating sets in wireless ad hoc networks. To appear in Special
Issue of ACM Journal of Monet, 2002.

4. K. M. Alzoubi, P.-J. Wan, and O. Frieder. Message-optimal connected-dominating-
set construction for routing in mobile ad hoc networks. In Proceedings of the Third
ACM International Symposium on Mobile Ad Hoc Networking and Computing,
June 2002.

5. K. M. Alzoubi, P.-J. Wan, and O. Frieder. New distributed algorithm for connected
dominating set in wireless ad hoc networks. IEEE HICSS35, 2002.

6. X. Cheng, X. Huang, D. Li, and D.-Z. Du. Polynomial-time approximation scheme
for minimum connected dominating set in ad hoc wireless networks. Technical
report.

7. B. Clark, C. Colbourn, and D. Johnson. Unit disk graphs. Discrete Mathematics,
86:165–177, 1990.

8. B. Das, R. Sivakumar, , and V. Bharghavan. Routing in ad-hoc networks using a
virtual backbone. In 6th International Conference on Computer Communications
and Networks (IC3N ’97), pages 1–20, September 1997.

9. Bevan Das and Vaduvur Bharghavan. Routing in ad-hoc networks using minimum
connected dominating sets. In ICC (1), pages 376–380, 1997.

10. Rajiv Gandhi, Srinivasan Parthasarathy, and Arunesh Mishra. Minimizing broad-
cast latency and redundancy in ad hoc networks. In Proceedings of the fourth
ACM international symposium on Mobile ad hoc networking and computing, pages
222–232. ACM Press, 2003.

11. Piyush Gupta and P. R. Kumar. The capacity of wireless networks. IEEE Trans-
actions on Information Theory, 46(2):388–404, March 2000.

12. Sven O. Krumke, Madhav V. Marathe, and S. S. Ravi. Models and approximation
algorithms for channel assignment in radio networks. Wireless Networks, 7(6):575–
584, 2001.

13. V. S. Anil Kumar, Madhav V. Marathe, Srinivasan Parthasarathy, and Aravind
Srinivasan. End-to-End Packet Scheduling in Ad Hoc Networks. To appear in ACM
SODA 2004.

14. Michael Luby. A simple parallel algorithm for the maximal independent set prob-
lem. SIAM Journal on Computing, 15(4):1036–1053, November 1986.

15. Michael Luby. Removing randomness in parallel computation without a processor
penalty. Journal of Computer and System Sciences, 47(2):250–286, 1993.

16. Madhav V. Marathe, Heinz Breu, Harry B. Hunt III, S. S. Ravi, and Daniel J.
Rosenkrantz. Simple heuristics for unit disk graphs. Networks, 25:59–68, 1995.

17. S. Ramanathan. A unified framework and algorithm for channel assignment in
wireless networks. Wireless Networks, 5(2):81–94, 1999.

18. Subramanian Ramanathan and Errol L. Lloyd. Scheduling algorithms for multihop
radio networks. IEEE/ACM Transactions on Networking (TON), 1(2):166–177,
1993.

Distributed Algorithms for Coloring and Domination 459

19. Arunabha Sen and Ewa Melesinska. On approximation algorithms for radio net-
work scheduling. In Proceedings of the 35th Allerton Conference on Communica-
tion, Control and Computing, pages 573–582, 1997.

20. R. Sivakumar, B. Das, and V. Bharghavan. Spine routing in ad hoc networks.
ACM/Baltzer Cluster Computing Journal (special issue on Mobile Computing),
1998.

21. P.-J. Wan, K. Alzoubi, and O. Frieder. Distributed construction of connnected
dominating set in wireless ad hoc networks. In IEEE INFOCOM, 2002.

Monotone Multilinear Boolean Circuits for
Bipartite Perfect Matching Require

Exponential Size

Ashok Kumar Ponnuswami and H. Venkateswaran

College of Computing,
Georgia Institute of Technology,

Atlanta GA 30309, USA
{pashok, venkat}@cc.gatech.edu

Abstract. A monotone boolean circuit is said to be multilinear if for any
AND gate in the circuit, the minimal representation of the two input
functions to the gate do not have any variable in common. We show
that multilinear boolean circuits for bipartite perfect matching require
exponential size. In fact we prove a stronger result by characterizing the
structure of the smallest multilinear boolean circuits for the problem.
We also show that the upper bound on the minimum depth of monotone
circuits for perfect matching in general graphs is O(n).

1 Introduction

Since Razborov [7] showed a super-polynomial lower bound on the size of mono-
tone circuits for perfect matching and established a super-polynomial gap be-
tween the power of general circuits and monotone circuits, there have been other
functions in P [9] for which the gap has been shown to be exponential. But the
lower bound for monotone circuits for perfect matching is still super-polynomial.
It has been shown in [6] that monotone circuits for perfect matching require lin-
ear depth.

Let PM denote the problem of finding whether a graph has a perfect matching
and let BPM denote the problem of finding whether a bipartite graph has a
perfect matching. The upper bound on size of arithmetic circuits for permanent
in [1] yields a 2O(n) size monotone boolean circuit for BPM directly (replace
the product and plus gates with AND and OR gates respectively) and can be
generalized to an upper bound on size for PM also. But the depth of these circuits
is Ω(n log n). We show in Section 2 that linear depth monotone circuits can be
constructed for PM.

Since attempts to show an exponential lower bound on the size of monotone
circuits for BPM have not succeeded, it seems worthwhile to check if such a
bound can be shown for restricted monotone circuits. In Section 3 we show
that under two different restrictions on the function calculated by AND gates
and OR gates, monotone circuits for BPM require exponential size. We call the
circuits satisfying the restriction on the AND gates multilinear because of the

K. Lodaya and M. Mahajan (Eds.): FSTTCS 2004, LNCS 3328, pp. 460–468, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Monotone Multilinear Boolean Circuits 461

similarity to the restriction of multilinearity in arithmetic circuits. As defined in
[5], an arithmetic circuit is multilinear if at each gate the power of any variable in
minimal representation of the polynomial computed is at most 1. Equivalently,
for any product gate, the minimal representation of the polynomials of its two
input gates have no variable in common. A recent result of Raz [5] shows a super-
polynomial lower bound on multilinear arithmetic formulas for the permanent.
Multilinearity for arithmetic circuits has been extensively studied for the lack
of strong lower bounds for general arithmetic circuits and because they seem to
be the most intuitive circuits for multilinear functions (see [4] and [5] for more
references). We call a monotone boolean circuit multilinear if for any AND
gate, the minimal representation of the of the two inputs to the gate do not
have any variable in common. We say a monotone boolean circuit is in the
simplest form if it satisfies the restriction on OR gates and a stronger restriction
on AND gates than multilinearity. The circuits constructed in Section 2 and
the circuits obtained from [1] for perfect matching are examples of circuits in
the simplest form. It turns out that the smallest multilinear boolean circuits
for BPM are also in the simplest form. The upper bound on size implied by
Section 2 and the lower bound shown in Section 3 are very close showing that
the analysis of the lower bound for monotone multilinear boolean circuits is
quite tight. Since the circuits in the simplest form not only seem to be the
most natural circuits for PM and BPM, but also attain the lower bound for
multilinear boolean circuits and provide the best known upper bound on the
size and depth of monotone circuits for these problems, it seems plausible to
conjecture that these are the smallest monotone circuits for the perfect matching
problem.

To the best of our knowledge, our lower bounds are not implied by any of
the known lower bounds for arithmetic and boolean circuits. When a multilinear
boolean circuit for BPM is converted to an arithmetic circuit in the natural way
(by replacing the AND and OR gates by product and plus gates), it does not
necessarily yield a multilinear arithmetic circuit for permanent because boolean
circuits can use idempotence.

We use the notion of minterm defined in [2] to analyze the circuits. Our
lower bounds use a direct argument for circuits computing BPM. One of the
key lemmas (based on the idea that there are not “many” perfect matchings
that do not have an edge crossing a “balanced” cut) is reminiscent of the
tree separator theorem [3]. The tree separator theorem has had many appli-
cations such as small depth circuits for context-free language recognition [8]
and showing the relationship between depth and size of monotone circuits
(see [10]).

In what follows, we will assume that all circuits are monotone boolean cir-
cuits in which the AND and OR gates have fan-in 2. The inputs to the circuit
correspond to edges of a graph G on a set V = {1, 2, . . . n} of n vertices, where n
is even. That is, the input corresponding to pair {i, j} is 1 if the edge is present
in G and 0 otherwise.

462 A.K. Ponnuswami and H. Venkateswaran

2 Upper Bounds on Depth and Size of Monotone
Boolean Circuits for PM

Let S ⊆ V and S be even. A subset m of edges is said to be an S-matching if m
is a matching with an edge incident on each vertex of S and no edge in m has
one end point in S and the other in V −S (m may contain edges that have both
end-points in V − S). We say m is an exact S-matching if m is an S-matching
and m has no edge incident on a vertex in V − S.

We first describe the depth upper bound for PM.

Theorem 1. PM has monotone circuits of O(n) depth.

Proof. For the sake of simplicity of this construction, we assume n = 2k, though
the result can be proven for any even n. If n = 2, the construction is trivial. So
assume n > 2. Suppose for each S ⊆ V, |S| = n/2, we are given a circuit CS

that evaluates to 1 iff there is a S-matching in the input graph G. If we take
the AND of CS and CSc , we get a circuit CP that evaluates to 1 iff there is
a perfect matching that does not cross the partition P = {S, Sc}. If we take
the OR of all circuits corresponding to the partitions of V into two sets of
n/2 vertices, we get a circuit CV for perfect matching on V (see Figure 1).
Since the number of partitions of V into n/2 vertices is n!

2!(n/2)!2 , the depth of
the OR gates at the output of CV is !log n! − log 2! − 2 log(n/2)!" ≤ an + b
where a and b are positive constants independent of n. Therefore the depth
of CV is an + b + 1 + max

S
depth(CS) where depth(CS) is the depth of CS .

The CS may be recursively constructed the same way as CV since CS is a
circuit for perfect matching on the graph induced by S. Therefore the depth of
C ≤ (an + b + 1) + (an/2 + b + 1) + . . . = O(n). If n were not a power of 2,
at each level of recursion, split the set of vertices into two sets of even sizes in
the most balanced way. For example if n = 36, we need to consider all subsets
of size 18 at the first level, all subsets of size 8 and 10 at the second level, all
subsets of size 4 and 6 at the third level and so on. ��

The upper bound on size for PM obtained above is nO(1)23n/2 as the level
of recursion that contains the maximum number of gates is the second level
with O(

(
n

n/2

)(
n/2
n/4

)
) gates. Since finding if there is a perfect matching in a bipar-

tite graph on n vertices is the same as checking whether the permanent of the
n/2×n/2 incidence matrix is not zero, we can obtain a upper bound of nO(1)2n/2

on size for BPM by replacing the product and sum gates in the arithmetic circuit
for permanent given in [1]. The same approach can be generalized to obtain a
better size upper bound for PM as follows. In the construction in Theorem 1, in-
stead of considering partitions {S, Sc} into the most balanced even sets, consider
partitions such that S is a set of two vertices, one of which is the vertex of smallest
index in V . Now the circuit for each Sc can be constructed recursively. At level 2,
we need at most

(
n−1
n−2

)
subcircuits to compute the different possible values for Sc.

In general, at level i, we need at most
(

n−i
n−2i

)
subcircuits. Solving for the value for

i that maximizes
(

n−i
n−2i

)
, we get that the circuit constructed has size O(20.695n).

Monotone Multilinear Boolean Circuits 463

CSCS CS CS CS CSr
c
r1 1 2 2

c c

Fig. 1. Construction of circuit CV for showing the depth upper bound

3 Lower Bound on Size of Restricted Monotone Circuits
for BPM

A minterm of a monotone boolean function is a minimal set of variables that
when set to 1, the function evaluates to 1 irrespective of the value of the variables.
Let C be a circuit. Let g be a gate of C. The function computed by g is the
boolean function representing the output of g in terms of the input gates. The
set of minterms of g in circuit C, denoted by mintermC(g) (or minterm(g) if the
circuit is clear from the context) is the set of minterms of the function computed
by g.

Throughout this section, we assume that the inputs to a circuit correspond to
the edges of a bipartite graph G on a bipartition {V ′, V ′c} of V = {1, 2, . . . n} into
equal sets. That is, there is an input corresponding to each pair (i, j) ∈ V ′×V ′c

that is 1 if the edge between i and j is present in G and 0 otherwise. The edge
set of gate g is the set of all edges that appear in some minterm of g. The vertex
set of a subset m of the edges is the set of all end points of the edges in m. The
vertex set of g is the vertex set of its edge set. The edge set and vertex set of a
subcircuit of C are defined to be the respective values for the output gate of the
subcircuit.

3.1 Lower Bound for Simple Circuits for BPM

A circuit is said to be simple if for any OR gate g in the circuit with input
gates g1 and g2, the vertex sets of g, g1 and g2 are the same. It can be seen by
induction that in a simple circuit, the vertex set of any minterm of a gate is the
same as the vertex set of the gate. The statement is true for input gates. If it is

464 A.K. Ponnuswami and H. Venkateswaran

true for the input gates g1 and g2 of an OR gate g, it is true for g as well since
minterms of g are either minterms of g1 or g2. If the statement is true for the
input gates g1 and g2 of an AND gate g, all the minterms of g have the same
vertex set since any minterm of g is the union of some minterm of g1 with some
minterm of g2 and all minterms of g1 have the same vertex set, as do minterms
of g2.

Lemma 1. Assume n > 2. Let C be a simple monotone circuit for BPM. For
any perfect matching m, ∃Vm ⊆ V , |V |/3 ≤ |Vm| ≤ 2|V |/3 such that Vm is the
vertex set of some gate g and m is a Vm-matching.

Proof. Set U = V , m′ = m and let g be the output gate of C. At any stage
later, we will ensure that (U,m′, g) satisfy the following constraints:

(1) U is the vertex set of g.
(2) m′ is a subset of m, m′ is a minterm of g and U is the vertex set of m′ (and

hence m is a U -matching).

Also, let U > 2|V |/3, which is true initially when U = V . Since |V | = n > 2,
the gate g can not be an input gate. If g is an OR gate, one of the two input
gates g1 or g2 of g, say g1, has m′ as a minterm. Let g ← g′ and repeat. If
g is an AND gate, let V1 and V2 be the vertex sets of its input gates g1 and
g2 respectively. Without loss of generality, let |V1| ≥ |V2|. There must be some
minterm m1 of g1 and m2 of g2 such that m′ = m1

⋃
m2. From a remark above

the lemma, we know that the vertex sets of m1 and m2 are V1 and V2 respectively,
and hence U = V1

⋃
V2. Therefore (V1,m1, g1) satisfy conditions (1) and (2). If

|V |/3 ≤ V1 ≤ 2|V |/3, then V1 is the required value for Vm. If not, |V1| > 2|V |/3,
since otherwise |V1| + |V2| ≤ 2|V |/3, contradicting |U | > 2|V |/3. Since C has a
finite depth, and input gates have vertex set of size 2, we will successfully find a
value for Vm. ��

The problem with proving the above lemma for general monotone circuits
for BPM is that for a particular gate, there can be two minterms with different
vertex sets. So we can not associate a “cut” with each gate such that none of its
minterms crosses it.

Theorem 2. Simple monotone circuits for BPM require exponential size.

Proof. Let n > 2 and let C be a simple monotone circuit for perfect matching.
Enumerate one set Vm satisfying the conditions of Lemma 1 for each possible
perfect matching m on the bipartition {V ′, V ′c}. For each U ⊆ V of size p,
there are at most (p/2)!n−p

2 ! perfect matchings that do not cross it (assuming
G is a complete graph, this number is exactly (p/2)!n−p

2 ! if U contains the same
number of vertices from V ′ and V ′c and zero otherwise). Therefore, each U ⊆
V, |V |/3 ≤ |U | ≤ 2|V |/3 corresponds to at most (n/6)!(n/3)! perfect matchings.
Since the number of perfect matchings in a complete bipartite graph is (n/2)!,
we must have enumerated

Monotone Multilinear Boolean Circuits 465

(n/2)!
(n/6)!(n/3)!

= nΩ(1)2(n/2 log 3−n/3) = Ω(2.459n)

distinct subsets of V , each of them corresponding to a different gate of C. There-
fore, the number of gates in C is Ω(2.459n). ��

3.2 Lower Bound for Multilinear Circuits for BPM

A circuit C is said to be multilinear if the edge set of any AND gate is the disjoint
union of the edge set of its input gates. Unlike simple circuits, multilinear circuits
are expressive enough to compute any monotone boolean function.

A circuit is said to be in the simplest form if it is simple and the vertex set
of any AND gate is the disjoint union of the vertex set of its input gates. It
can be seen that the circuits used to show upper bound on depth and size for
PM were in the simplest form. Also note that circuits in simplest form are also
multilinear.

Theorem 3. A multilinear circuit of smallest possible size for BPM is also in
the simplest form.

Proof. Let C be a multilinear circuit for bipartite perfect matching on {V ′, V ′c}
of smallest possible size. We will define a required vertex set Vg for each gate g
satisfying:

(1) If g is an AND gate with input gates g1 and g2, the required vertex of g is
the disjoint union of the required vertex sets of g1 and g2.

(2) If g is an OR gate with input gates g1 and g2, the required vertex sets of g,
g1 and g2 are the same.

(3) There is at least one minterm of g that is an exact Vg-matching.
(4) All minterms of g have an edge to each vertex in Vg.
(5) If the output from g is replaced by a new subcircuit that computes a function

f such that any minterm m of f is the superset of some minterm m′ of g,
and all minterms of g that are exact Vg-matchings are also minterms of f ,
then C still computes the same function.

Intuitively, if an input gate g1 to an OR gate g has no minterm that is an exact
Vg-matching, we can replace the input from g1 to g with a zero input without
affecting the function calculated by the circuit. For gate g (and any other gate
on the path from g to the output), the effect of this change is to increase the
size of some minterms while some minterms drop out. But all minterms that are
exact Vg-matchings are unaffected as they must have been minterms of the other
input gate to g.

The required vertex set of the output gate is defined to be its vertex set V .
It can be seen that it satisfies conditions (3)-(5). We define the required vertex
set of a gate g1 based on the required vertex set of its parents (gates to which g1
supplies an input) in C. Each parent gate g of g1 passes a requirement, a subset
of V , to g1 as defined below:

Case 1: g is an AND gate: By property (3), ∃m ∈ minterm(g) such that m is
an exact Vg-matching. Let g2 be the other input gate to g. Therefore, ∃m1 ∈

466 A.K. Ponnuswami and H. Venkateswaran

minterm(g1) and ∃m2 ∈ minterm(g2) such that m = m1
⋃
m2 and m1

⋂
m2 =

∅ (by multilinearity of C). The requirements passed to g1 and g2 are the vertex
sets of m1 and m2, say V1 and V2, respectively. Hence, m1 is an exact V1-
matching. Suppose some m′ ∈ minterm(g1) does not have an edge to some
v ∈ V1. Then some subset m′′ of m′⋃m2 is a minterm of g. Also, m2 does not
have an edge to v since m1

⋃
m2 was a V1

⋃
V2-matching and m1 has an edge

to v. But then m′′ does not have an edge to a vertex v in the required vertex
set of g, contradicting (4) for g. Therefore, all m′ ∈ minterm(g1) have an edge
to each vertex of V1.

This also means that any m′ ∈ minterm(g) which is an exact Vg-matching
is produced by the disjoint union of m′

1 ∈ minterm(g1) and m′
2 ∈ minterm(g2)

where m′
1 and m′

2 are exact V1-matching and exact V2-matching respectively
(Since m′ = m′

1
⋃
m′

2 is an exact Vg-matching, if m′
1 is not an exact V1-matching,

then ∃e1 ∈ m′
1 such that e1 has an endpoint v2 ∈ V2. But m′

2 has some edge e2
incident on v2. For m′

1
⋃
m′

2 to be a matching, e1 and e2 must be the same edge.
But this contradicts the multilinearity of circuit C). Suppose we replace the input
from g1 to g in C with an input from a new subcircuit C1 having output gate g′

1 to
get a circuit C ′. Let g′

1 satisfy the condition that ∀m′ ∈ mintermC′(g′
1),∃m ∈

mintermC(g1) such that m ⊆ m′, and if m ∈ mintermC(g1) is an exact V1-
matching, then m ∈ mintermC′(g′

1). Then if m ∈ mintermC(g) and m is an
exact V1

⋃
V2-matching, then m ∈ mintermC′(g) too. If m ∈ mintermC′(g)

then ∃m1 ∈ mintermC′(g′
1) and m2 ∈ mintermC′(g2) such that m = m1

⋃
m2.

Since m1 is the superset of some minterm of g1 in C, m is the superset of some
minterm in C. Therefore, by property (5) for g, C and C ′ compute the same
function.

Case 2: g is an OR gate: Let g2 be the other input gate to g. g passes its own
required vertex set Vg as the requirement to g1 and g2. Suppose g1 does not have
any minterm that is an exact Vg-matching. Replace the input from g1 to g with
the zero input to get a circuit C ′ (This has the same affect as replacing the output
from g with the output from g2 and deleting g). If m ∈ mintermC(g) is an exact
Vg-matching, then m /∈ mintermC(g1). Therefore m ∈ mintermC(g2). This
implies m ∈ mintermC′(g). If m ∈ mintermC′(g), then m ∈ mintermC(g2).
Therefore, ∃m′ ∈ mintermC(g) such that m′ ⊆ m. Therefore, by property (5)
for g, C and C ′ are equivalent. Therefore C is not the smallest multilinear circuit
for bipartite perfect matching on {V ′, V ′c}, a contradiction. Therefore g1 and g2
both have a minterm that is an exact Vg-matching.

Since minterms of g1 are the superset of some minterm of g, all minterms of
g1 have an edge to every vertex in Vg.

Let the input from g1 to g be replaced by an input from a new subcircuit C1
with output gate g′

1. Also let all minterms of g1 in C that are exact Vg-matchings
be minterms of g′

1, and if m′ ∈ mintermC′(g′
1), then ∃m ∈ mintermC(g1) such

that m ⊆ m′. Therefore if m′ ∈ mintermC′(g), either m′ ∈ mintermC′(g′
1) or

m′ ∈ mintermC(g2). In either case, ∃m ∈ mintermC(g) such that m ⊆ m′. Also
if m ∈ mintermC(g) is an exact Vg-matching, then either m ∈ mintermC(g1)

Monotone Multilinear Boolean Circuits 467

or m ∈ mintermC(g2). Therefore, m ∈ mintermC′(g). Therefore, by property
(5) for g, C and C ′ are equivalent.

If for some gate g1, all its parents pass the same requirement V0, define V0 to
be the required vertex set for g1. Conditions (3)-(5) are satisfied for g1.

Suppose two parents g and g′ of a gate g1 pass different requirements V1 and
V2 respectively. Without loss of generality, assume there exists vertex v satisfying
v ∈ V1, but v /∈ V2. Since g passed V1 as requirement to g1, all minterms of g1
have an edge to v. But since g′ passed V2 as requirement to g1, there exists a
minterm m of g1 that is an exact V2-matching, and hence m does not have an
edge to v, a contradiction. Therefore, all parents of g1 pass the same requirement.

We will now show that the required vertex set of each gate is in fact its vertex
set. Let g be a gate whose required vertex set is not the same as its vertex set.
Therefore ∃m ∈ minterm(g) with an edge e to a vertex outside its required
vertex set. If g is an OR gate, one of its two input gates, say g′, has m as a
minterm. Since the required vertex sets of g and g′ are the same, g′ too has an
edge to a vertex v outside its required vertex set. If g is an AND gate with
inputs g1 and g2, then ∃m1 ∈ minterm(g1) and m2 ∈ minterm(g2) such that
m1

⋃
m2 = m. Let e ∈ m1. Then g1 has a minterm m1 that has an edge to

a vertex v outside its required vertex set (since the requirement passed by an
AND gate to its input gate is a subset of its required vertex set). Since C has
finite depth, we obtain a input gate whose required vertex set is not the same
as its vertex set. But this is a contradiction of property (3).

Therefore, from conditions (1) and (2), multilinear circuit C was in fact in
the simplest form too. ��

Corollary 1. Multilinear circuits for BPM require exponential size.

Proof. This is easily seen from Theorem 2 and Theorem 3, since circuits in
simplest form are also simple. ��

References

1. Mark Jerrum and Marc Snir. Some exact complexity results for straight-line com-
putations over semirings. J. ACM, 29:874–897, 1982.

2. Mauricio Karchmer and Avi Wigderson. Monotone circuits for connectivity require
super-logarithmic depth. In Proceedings of the twentieth annual ACM symposium
on Theory of computing, pages 539–550. ACM Press, 1988.

3. P. M. Lewis II, R. E. Stearns, and J. Hartmanis. Memory bounds for recognition
of context-free and context-sensitive languages. In Conf. Record Switching Circ.
Theory and Log. Des., pages 191–202, 1965.

4. Noam Nisan and Avi Wigderson. Lower bounds on arithmetic circuits via partial
derivatives. In Proceedings of the 36th FOCS, pages 16–25, 1996.

5. Ran Raz. Multi-linear formulas for permanent and determinant are of super-
polynomial size. In Electronic Colloquium on Computational Complexity, vol-
ume 67, 2003.

468 A.K. Ponnuswami and H. Venkateswaran

6. Ran Raz and Avi Wigderson. Monotone circuits for matching require linear depth.
In ACM Symposium on Theory of Computing, pages 287–292, 1990.

7. A. A. Razborov. Lower bounds on the monotone complexity of some boolean
functions. Doklady Akademii Nauk SSSR, 281:798–801, 1985. In Russian. English
translation in Soviet Mathematics Doklady, 31:354–357, 1985.

8. Walter L. Ruzzo. Tree-size bounded alternation. Journal of Computer and System
Sciences, 21(2):218–235, 1980.

9. E. Tardos. The gap between monotone and non-monotone circuit complexity is
exponential. Combinatorica, 8:141–142, 1988.

10. Ingo Wegener. The complexity of Boolean functions. John Wiley & Sons, Inc.,
1987.

Testing Geometric Convexity

Luis Rademacher�� and Santosh Vempala��

Mathematics Department and CSAIL, MIT
{lrademac, vempala}@math.mit.edu

Abstract. We consider the problem of determining whether a given set
S in Rn is approximately convex, i.e., if there is a convex set K ∈ Rn such
that the volume of their symmetric difference is at most ε vol(S) for some
given ε. When the set is presented only by a membership oracle and a ran-
dom oracle, we show that the problem can be solved with high probability
using poly(n)(c/ε)n oracle calls and computation time. We complement
this result with an exponential lower bound for the natural algorithm
that tests convexity along “random” lines. We conjecture that a simple
2-dimensional version of this algorithm has polynomial complexity.

1 Introduction

Geometric convexity has played an important role in algorithmic complexity the-
ory. Fundamental problems (sampling, optimization, etc.) that are intractable
in general can be solved efficiently with the assumption of convexity. The al-
gorithms developed for these problems assume that the input is a convex set
and are often not well-defined for arbitrary sets. Nevertheless, sampling-based
approaches for optimization might be extendable to approximately convex sets,
since there is hope that approximately convex sets can be sampled efficiently.
This raises a basic question: How can we test if a given compact set in Rn is
convex? Similarly, do short proofs of convexity or non-convexity of a set exist?
Can one find these proofs efficiently?

To address these questions, we first need to decide how the set (called S
henceforth) is specified. At the least, we need a membership oracle, i.e., a black-
box that takes as input a point x ∈ Rn and answers YES or NO to the question
“Does x belong to S?” This is enough to prove that a set is not convex. We find 3
points x, y, z ∈ Rn such that x, z ∈ S, y ∈ [x, z] and y /∈ S. Since a set is convex
iff it is convex along every line, such a triple constitutes a proof of non-convexity.

On the other hand, how can we prove that a set is convex? Imagine the perverse
situation where a single point is deleted from a convex set. We would have to test
an uncountable number of points to detect the non-convexity. So we relax the goal
to determining if a set is approximately convex. More precisely, given 0 < ε ≤ 1,
either determine that S is not convex or that there is a convex set K such that

vol(S \K) + vol(K \ S) ≤ ε vol(S) .

�� Partially supported by NSF grant CCR-0307536

K. Lodaya and M. Mahajan (Eds.): FSTTCS 2004, LNCS 3328, pp. 469–480, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

470 L. Rademacher and S. Vempala

In words, the condition above says that at most an ε fraction of S has to be
changed to make it convex. We will call this the problem of testing approximate
convexity.

This formulation of the problem fits the property testing framework developed
in the literature ([1]). In fact there has been some work on testing convexity of
discrete 1-dimensional functions ([2]), but the general problem is open.

Testing approximate convexity continues to be intractable if S is specified
just by a membership oracle. Consider the situation where a small part of S is
very far from the rest. How do we find it? To counter this, we assume that we also
have access to uniform random points in S, i.e., a random oracle1. (There are
other alternatives, but we find this to be the cleanest). In this paper, we address
the question of testing approximate convexity of a set given by a membership
oracle and a random oracle. The complexity of an algorithm is measured by the
number of calls to these oracles and the additional computation time.

We begin with a proof that the problem is well-defined, i.e., there exists a clos-
est convex set. Then we give a simple algorithm with complexity poly(n)(c/ε)n

for any set S in Rn. The algorithm uses random sampling from a convex polytope
as a subroutine. Next, we consider what is perhaps the most natural algorithm
for testing approximate convexity: get a pair of random points from the set and
test if the intersection of the line through them with S is convex. This is moti-
vated by the following conjecture: If the intersection of S with “most” lines is
convex, then S itself is approximately convex. Many property testing algorithms
in the literature have this flavor, i.e., get a random subset and test if the subset
has the required property. Surprisingly, it turns out that the number of tests
needed can be exponential in the dimension. We construct an explicit family of
sets for which the lines through most (all but an exponentially small fraction)
pairs of points have convex intersections with the set (i.e., they intersect S in
intervals), yet the set is far from convex. Finally, we conjecture that if “most”
2-dimensional sections of a set S are convex, then S is approximately convex.

2 Preliminaries

The following notation will be used. Let S ⊆ Rn. If S is measurable, vol(S)
denotes the volume of S. The convex hull of S is denoted conv(S). Let 〈x, y〉 =∑n

i=1 xiyi, the usual inner product in Rn.

1 A non-trivial example where testing approximate convexity makes sense and the
oracles are naturally available is testing approximate convexity of the union of m
convex bodies given by membership oracles. In this case, the individual membership
oracles give a membership oracle for the union. Also, the membership oracles can
simulate random oracles for every convex set (approximately, see [3]), and allow
us to approximate the volumes of the convex bodies. Finally, by using a technique
similar to the one used to approximate the number of satisfying assignments of a
DNF formula (see [4], for example), one can simulate a random oracle for the union
(approximately) by means of the individual membership and random oracles and
the individual volumes, in time polynomial in m and the other parameters.

Testing Geometric Convexity 471

Let A,B ⊆ Rn be measurable sets. The symmetric difference measure dis-
tance (or simply, distance) between A and B is

d(A,B) = vol(AΔB) .

Let K denote the set of all compact convex sets in Rn with nonempty interior,
and the empty set.

Proposition 1. Let S ⊆ Rn compact. Then infC∈K d(S,C) is attained.

Proof. The set K with distance d is a metric space. The selection theorem of
Blaschke (see the appendix) implies that {C ∈ K, C ⊆ convS} is compact.
Moreover, d(S, ·) : K → R is continuous. Also, it is sufficient to consider convex
sets contained in convS, that is,

inf
C∈K

d(S,C) = inf
C∈K,C⊆conv S

d(S,C) .

The last expression is the infimum of a continuous function on a compact set,
thus it is attained. ��

Definition 2. Given S ⊆ Rn compact, a set C ∈ argminC∈K d(S,C) is called a
closest convex set of S. S is said to be ε-convex iff d(S,C) ≤ ε vol(S).

3 Algorithms for Testing Approximate Convexity

We are interested in the following algorithmic problem:
Let S ⊆ Rn be compact. We are given a membership oracle that given x ∈ Rn

answers “YES” if x ∈ S and “NO” if x /∈ S; we also have access to a random
oracle that when called gives a uniformly sampled random point from S. For any
given ε > 0, our goal is to determine either that S is ε-convex (output “YES”)
or that S is not convex (output “NO”).

In this section, we will give a randomized algorithm for the problem. We will
prove that the algorithm works with probability at least 3/4. This can be easily
boosted to any desired 1 − δ while incurring an additional factor of O(ln(1/δ))
in the complexity.

3.1 The One-Dimensional Case

One-dimensional algorithm
Input: Access to membership and random oracles of S ⊆ R.

1. Get 12/ε points from the random oracle. Let C be their convex hull
(the interval containing them).

2. Choose 12/ε random points in C. Check if they are all in S using the
membership oracle. If so, output ‘‘YES’’, else output ‘‘NO’’.

472 L. Rademacher and S. Vempala

Theorem 3. With probability at least 3/4, the one-dimensional algorithm de-
termines that S is not convex or that S is ε-convex.

Proof. Clearly, if S is convex then the algorithm answers “YES”. So assume that
S is not ε-convex. We say that the first step succeeds if we get at least one point
in the leftmost ε/4 fraction of S and another point in the rightmost ε/4 fraction
of S. The first step fails with probability at most 2(1− ε/4)12/ε ≤ 2/e3. Suppose
the first step succeeds. Then,

vol(S \ C) ≤ vol(S)
ε

2
.

This implies that
vol(C \ S) ≥ vol(S)

ε

2
.

From this, we get

vol(C \ S) ≥ max
{ ε

2
vol(S), vol(C)− vol(S)

}
= vol(C) max

{
ε

2
vol(S)
vol(C)

, 1− vol(S)
vol(C)

}
.

(1)

Given that ε > 0, the expression

max
{ ε

2
α, 1− α

}
is minimized as a function of α when ε

2α = 1− α, i.e., for α = 2
ε+2 . Thus, from

Equation (1) we get
vol(C \ S) ≥ ε

2 + ε
vol(C) .

That is, conditioned on the success of the first step, with probability at least
1 − (1 − ε/3)12/ε ≥ 1 − 1/e4 the algorithm answers “NO”. Thus, overall the
algorithm answers “NO” with probability at least (1 − 1/e4)(1 − 2/e3) ≥ 3/4.

��

3.2 The General Case

Here we consider the problem in Rn. It is not evident that the time complexity
of the problem can be made independent of the given set S (that is, depending
only on ε and the dimension). The following algorithm shows such independence
(m = m(ε, n) will be chosen later).

n-dimensional algorithm
Input: Access to membership and random oracles of S ⊆ Rn.

1. Get m random points from S. Let C be their convex hull.
2. Get 4/ε random points from S. If any of them is not in C, output ‘‘NO’’.
3. Get 6/ε random points from C. If each of them is in S according to the

membership oracle, then output ‘‘YES’’, else output ‘‘NO’’.

Testing Geometric Convexity 473

Checking if a point y belongs to C is the same as answering whether y can be
expressed as a convex combination of the m points that define C. This can be
done by solving a linear program. The third step requires random points from C,
which is a convex polytope. Sampling convex bodies is a well-studied algorithmic
problem and can be done using O∗(n3) calls to a membership oracle (see [3], for
example).

To prove the correctness of the algorithm we will use the following lemmas
(the first is from [5] and the second is paraphrased from [6]).

Lemma 4. Let C = conv{X1, . . . , Xm}, where the Xi’s are independent uni-
form random samples from a convex body K. Then for any integer t > 0,
E
(
(vol(C)/ vol(K))t

)
is minimized iff K is an ellipsoid.

Lemma 5. Let Bn ⊆ Rn be the unit ball. Let C = conv{X1, . . . , Xm}, where the
Xi’s are independent uniform random samples from Bn. There exists a constant
c such that, for m = (cn/ε)n,

E
(
vol(Bn \ C)

)
≤ ε vol(Bn) .

Theorem 6. Using m = (224cn/ε)n random points and poly(n)/ε membership
calls, the n-dimensional algorithm determines with probability at least 3/4 that
S is not convex or that S is ε-convex.

Proof. First, assume that S is convex. We want to show that the algorithm
outputs “YES” with probability at least 3/4. Let X = vol(S \C)/ vol(S). Then
by Lemma 4, E(X) is maximized when K is a ball and using Lemma 5 with our
choice of m, we get that

E(X) ≤ ε

224n
.

By Markov’s inequality, with probability at least 6/7,

vol(S \ C) ≤ ε

32
vol(S) .

Given this, Markov’s inequality implies that the algorithm will not stop at
step 2 with probability at least 3/4: in step 2, if we let Y be the number of points
not in C then

E(Y) ≤ ε

32
4
ε

=
1
8
,

and therefore, by Markov’s inequality,

P(algorithm outputs “NO” in step 2) = P(Y ≥ 1) = P
(
Y ≥ 8E(Y)

)
≤ 1

8
.

Thus, the algorithm outputs “YES” with probability at least 6
7

7
8 = 3

4 .
Next, if S is not ε-convex, the analysis can be divided into two cases after

the first step: either vol(S \C) ≥ vol(S)ε/2 or vol(S \C) < vol(S)ε/2. In the first

474 L. Rademacher and S. Vempala

case, step 2 outputs “NO” with probability at least 1−
(
1− ε

2

)4/ε ≥ 1− 1
e2 ≥ 3

4 .
In the second case we have

vol(C \ S) ≥ ε

2
vol(S)

and by the same analysis as the one-dimensional case, vol(C \ S) ≥ ε
3 vol(C).

Thus, step 3 outputs “NO” with probability at least 1− (1− ε
3)6/ε ≥ 3/4. ��

Note that, unlike the one-dimensional case, this algorithm has two-sided error.
The complexity of the algorithm is independent of S and depends only on n
and ε. It makes an exponential number of calls to the random oracle and this
dependency is unavoidable for this algorithm. It is known for example that the
convex hull of any subset of fewer than cn points of the ball, contains less than
half its volume [7].

The one-dimensional algorithm suggests another algorithm for the general
case: let �(x, y) be the line through x and y,

Lines-based algorithm
Input: Access to membership and random oracles of S ⊆ Rn compact.

Generate m pairs of random points (x, y) and test if �(x, y) ∩ S is convex.

How large does m need to be? Somewhat surprisingly, we show in the next
section that this algorithm also has an exponential complexity. Testing if �(x, y)∩
S is convex is not a trivial task (note that we have a membership oracle for
�(x, y) ∩ S from the oracle for S, but simulating a random oracle is not so
simple). However, for the purpose of showing a lower bound in m we will assume
that the one-dimensional algorithm checks exactly whether �(x, y)∩ S is convex
(that is, it is an interval).

4 The Lines-Based Algorithm Is Exponential

In this section, we construct an explicit family of compact sets each of which
has the following properties: (i) the set is far from convex, and (ii) for all but an
exponentially small fraction of pairs of points from the set, the line through the
pair of points has a convex intersection with the set. This implies that the lines-
based algorithm (described at the end of Section 3.2) has exponential worst-case
complexity. Thus, although exact convexity is characterized by “convex along
every line,” the corresponding reduction of approximate convexity to “convex
along most lines” is not efficient.

The proof of the lower bound is in two parts, first we show that the algorithm
needs many tests and then that the test family is far from convex (i.e., ε is large).

4.1 The Family of Sets: The Cross-Polytope with Peaks

The n-dimensional cross-polytope is an n-dimensional generalization of the oc-
tahedron and can be defined as the unit ball with the norm |x|1 =

∑n
i=1|xi|. Let

Testing Geometric Convexity 475

Tn be the “cross-polytope with peaks”, that is, the union of the cross-polytope
and, for each of its facets i ∈ {1, . . . , 2n}, the convex hull of the facet and a
point vi = λd, where d is the unit outer normal to the facet and λ ≥ 1/

√
n

is a parameter (that may depend on the dimension). Informally, one adds an
n-dimensional simplex on top of each facet of the cross-polytope. The volume of
the cross-polytope is a 1

λ
√

n
fraction of the volume of Tn. We will choose λ =

√
n

n−2 .
In that case, the cross-polytope as a convex set shows that Tn is O(1

n)-convex.
We will prove that Tn is not 1

12n2 -convex, i.e., for any convex set K, we have
d(K,Tn) > 1

12n2 volTn.

4.2 The Non-convexity of the Family Cannot be Detected by the
Lines-Based Algorithm

Proposition 7. If λ ≤
√

n
n−2 then the one-dimensional test has an exponentially

low probability of detecting the non-convexity of the cross-polytope with peaks.

Proof. First, we will prove the following claim:

Under the hypothesis, every peak is contained in the intersection of the
half-spaces determining the n facets of the cross-polytope adjacent to
the peak.

It is enough to see that the point vi = λd (a vertex of the peak) is contained in
that intersection. Because of the symmetry, we can concentrate on any particular
pair of adjacent facets, say those having normals d = (1, 1, . . . , 1)/

√
n and d′ =

(−1, 1, . . . , 1)/
√
n. The halfspace determining the facet with normal d is given

by {x ∈ Rn : 〈x, d′〉 ≤ 1/
√
n}. Then vi = λd is contained in the halfspace

associated to the facet with normal d′ (which is sufficient) if

〈λd, d′〉 ≤ 1√
n
.

That is,

λ ≤
√
n

n− 2
.

This proves the claim.
It is sufficient to note that, for the algorithm to answer “NO”, we need to

choose a line whose intersection with Tn is not convex. Suppose that a line L
shows non-convexity. Then it does not intersect the cross-polytope part of Tn a.s.
(almost surely), otherwise L intersects exactly 2 facets of the cross-polytope a. s.,
and intersects only the peaks that are associated to those facets, because of the
claim (if one follows the line after it leaves the cross-polytope through one of the
facets, it enters a peak, and that peak is the only peak on that side of the facet,
because of the claim), and thus L∩Tn would be convex. Now, while intersecting
a peak, L intersects two of its facets at two points that are not at the same
distance of the cross-polytope, a.s. The half of L that leaves the peak through
the farthest point cannot intersect any other peak because of the claim (the

476 L. Rademacher and S. Vempala

halfspace determined by the respective facet of the cross-polytope containing
this peak contains only this peak, and this half of L stays in this halfspace). The
half of L that leaves the peak through the closest point will cross the hyperplane
determined by one of the adjacent peaks2 before intersecting any other peak, a.s.;
after crossing that hyperplane it can intersect only one peak, namely, the peak
associated to that hyperplane, because of the claim. Thus, L has to intersect
exactly 2 peaks that have to be adjacent a. s., and L does not intersect the
cross-polytope. In other words, the two random points that determine L are in
the same peak or in adjacent peaks. The probability of this event is no more
than n+1

2n . ��

4.3 The Sets in the Family Are Far from Convex

To prove that Tn is far from being convex, we will prove that a close convex set
must substantially cover most peaks, and because of this, a significant volume
of a close convex set must lie between pairs of adjacent substantially covered
peaks, outside of Tn, adding to the symmetric difference. The following lemma
will be useful for this part. For A ⊆ Rn and H a hyperplane and v ∈ Rn a unit
normal for H, let

wH(A) = sup
x∈A
〈v, x〉 − inf

x∈A
〈v, x〉 .

Lemma 8. Let A,B ⊆ Rn compact. Let H be a separating hyperplane3 for A,B.
Let C = H ∩ conv(A ∪B). Then

Vn−1(C) ≥ min
{

volA
wH(A)

,
volB
wH(B)

}
.

Proof. There exist sections, parallel to H, of A and B that have (n−1)-volumes
at least (volA)/wH(A) and (volB)/wH(B), respectively. That is, there exist
a, b ∈ Rn such that A′ = (H + a) ∩ A, B′ = (H + b) ∩ B satisfy Vn−1(A′) ≥
(volA)/wH(A) and Vn−1(B′) ≥ (volB)/wH(B). Clearly H ∩ conv(A′ ∪B′) ⊆ C
and therefore

Vn−1(C) ≥ Vn−1(H ∩ conv(A′ ∪B′))
≥ min{Vn−1(A′), Vn−1(B′)}

≥ min
{

volA
wH(A)

,
volB
wH(B)

}
.

��
This bound is sharp: consider a cylinder with a missing slice in the middle,

that is, consider in the plane as A a rectangle with axis-parallel sides and non-

2 “The hyperplane determined by a peak” is the unique hyperplane that contains the
facet of the cross-polytope associated to the peak.

3 That is, a set of the form H = {x ∈ Rn : 〈x, y〉 = α} for some y ∈ Rn and α ∈ R,
such that for all x ∈ A we have 〈x, y〉 ≤ α and for all x ∈ B we have 〈x, y〉 ≥ α.

Testing Geometric Convexity 477

adjacent vertices (1, 0) and (2, 1), as B the reflection of A with respect to the
y-axis and as the separating line, the y-axis.

A

E

O

B

FD

C � vi C� � v j

A�

F�
E�R

Α

Β

x

y

Fig. 1. Projection of the peaks (i, j) of the cross-polytope with peaks onto vi, vj for
n = 4

Lemma 9. For λ =
√

n
n−2 , Tn is not 1

12n2 -convex.

Proof. Let Cn be a closest convex set to Tn.
Consider a pair of adjacent peaks (i, j). Figure 1 shows the projection of

the pair onto the plane containing the vertices vi, vj and the origin. B is the
projection of the intersection of the two peaks, an (n−2)-dimensional simplex. A
and C are the other two vertices of one of the peaks, A′ and C ′ are the respective
vertices of the other peak. The plane is orthogonal to the two respective facets
of the cross-polytope, the segment AB is the projection of one of them and A′B
is the projection of the other facet. D is such that DB is orthogonal to OB,
where O is the origin.

First, we will prove that the volume of the preimage (with respect to the
projection) of the triangle DBC is a 1

n−1 fraction of the volume of the peak. To
see this, let Q be the preimage of DB in the peak, which is a (n−1)-dimensional
simplex. Let α be the height of the triangle ABD with respect to A, and let β
be the height of the triangle DBC with respect to C. Then the volume of the
peak is

1
n
Vn−1(Q)(α + β) .

Also, the volume of the preimage of DBC is

1
n
Vn−1(Q)β .

Thus, the volume of the preimage of the triangle DBC is a β
α+β fraction of

the volume of the peak. We can compute α and β. Without loss of generality
we can assume that vi is parallel to (−1, 1, . . . , 1) and vj is parallel to (1, . . . , 1).
Then (0, 1

n−1 , . . . ,
1

n−1) is a vector in the preimage of B that is in the projection

478 L. Rademacher and S. Vempala

plane, and α is the norm of that vector, that is, α = 1/
√
n− 1. An orthonormal

basis of the projection plane corresponding to the x, y axes of Figure 1 is

{(1, 0, . . . , 0), (0, 1/
√
n− 1, . . . , 1/

√
n− 1)}.

Then, α + β is the length of the projection of vj onto (0, 1/
√
n− 1, . . . , 1/√

n− 1), that is, α + β =
√

n−1
n−2 and β = 1

(n−2)
√

n−1 . Thus, β
α+β = 1

n−1 , as
claimed.

EF is a segment parallel to DB and at a distance β
n+1 from it. That way,

the volume of the preimage of the triangle EFC is a (1 − 1
n+1)n ≥ 1

e fraction
of the volume of the preimage of the triangle DBC, which, as we saw, is a 1

n−1
fraction of the volume of the peak. That is, the preimage of the triangle EFC
is at least a 1

e(n−1) fraction of the volume of the peak.
Given a particular peak, we will say that it is substantially covered (by Cn)

iff the volume of the intersection of Cn and the peak is at least a 1 − 1
2e(n−1)

fraction of the volume of the peak. Because of the choice of EF , if a peak is
substantially covered, then at least a 1

2e(n−1) fraction of its volume is covered in
the preimage of the triangle EFC (that is, above the segment EF).

Now we will prove that every pair of adjacent substantially covered peaks
contributes to Cn \ Tn at least with a 1

6n2 fraction of the volume of a peak,
disjoint from the contribution of other pairs. To see this, let U be the subset of
Cn intersected with peak i that projects onto EFC and let V be the subset of
Cn intersected with peak j that projects onto F ′E′C ′. We will apply Lemma 8
to U , V and every hyperplane which is a preimage of a vertical line intersecting
the rectangle R. Moreover, for any such hyperplane H we have that wH(U) and
wH(V) are no more than the length of DB, which is a β

α+β = 1
n−1 fraction of

the length of AA′ (which is 2), i.e., 2
n−1 . Certainly W = R ∩ conv(U ∪ V) is

contained in Cn and disjoint from Tn. Because of the choice of EF , the width
of the rectangle R is a 1

n+1 fraction of the distance between C and C ′, that
is, 2

(n+1)(n−2) . Also, volU and volV are no less than a 1
2e(n−1) fraction of the

volume of a peak. Lemma 8 gives that

volW
vol(one peak)

≥ (width of R) min

{
volU

2
n−1

,
volV

2
n−1

}
1

vol(one peak)

≥ 2
(n + 1)(n− 2)

n− 1
2

1
2e(n− 1)

≥ 1
2e(n− 2)(n + 1)

≥ 1
6n2 .

Let ε(n) = d(Cn, Tn). We claim that the number of peaks that are not sub-
stantially covered is a fraction that is at most en2ε(n) of the total number of
peaks. To see this, let q(n) be the fraction of the volume of Tn that the peaks
contain. Clearly

Testing Geometric Convexity 479

q(n) =
λ− 1√

n

λ
=

2
n
.

Let X be the number of peaks that are not substantially covered. Then,

X
1

2e(n− 1)
q(n) ≤ ε(n) ,

that is,
X ≤ en(n− 1)ε(n) ≤ en2ε(n) . (2)

We will see now that eventually (as n grows) the number of pairs of adjacent
peaks that are substantially covered is a substantial fraction of the total num-
ber of adjacent pairs. For a contradiction, assume that, for some subsequence,
ε(n) < 1

12n2 . For n sufficiently large, en2ε(n) ≤ 1/4. The number of peaks is
2n; the number of (unordered) pairs of adjacent peaks is n2n−1. A peak that is
not substantially covered can participate in at most n pairs of adjacent peaks.
Because of (2), there are at most 1

42n = 2n−2 peaks that are not substantially
covered (for large n and a subsequence). That way, all the peaks that are not sub-
stantially covered can participate in at most n2n−2 = 1

2n2n−1 pairs of adjacent
peaks. Thus, at least 1/2 of the pairs of adjacent peaks involve only substantially
covered peaks. For γ equal to the volume of the contribution to Cn \Tn of a pair
of substantially covered peaks, this implies that

ε(n) ≥ vol(Cn \ Tn)
volTn

≥ vol(Cn \ Tn)
vol(all peaks)

vol(all peaks)
volTn

≥
1
2n2n−1γ

2n vol(one peak)
q(n)

≥ n

4
1

6n2

2
n

≥ 1
12n2

which is a contradiction. ��

5 An Algorithm Based on Planes

In this section, we state a conjecture about approximate convexity. Let S be
a compact subset of Rn whose center of gravity is the origin. For a pair of
points x, y �= 0 in Rn let the subspace spanned by them be H(x, y) and define
P (x, y) = S ∩ H(x, y) to be the part of S on this subspace. Our conjecture is
the following:

480 L. Rademacher and S. Vempala

Conjecture. Let μ be the distribution on 2-dimensional sections P (x, y) obtained
by picking x and y uniformly at random from S. If

Pμ

(
P (x, y) is convex

)
> 1− ε ,

then S is O(nε)-convex.
The conjecture motivates the following algorithm (here p(·) and q(·) are fixed

polynomials):
Repeat p(n, 1/ε) times

1. Get random points x, y from S.
2. Test if P (x, y) is q(1/n, ε)-convex.

Acknowledgements

We would like to thank David Jerison, Dana Ron and Ronitt Rubinfeld for
discussions on this topic. We also thank an anonymous member of the program
committee for suggesting an interesting application.

References

1. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to
learning and approximation. J. ACM 45 (1998) 653–750

2. Parnas, M., Ron, D., Rubinfeld, R.: On testing convexity and submodularity. SIAM
J. Comput. 32 (2003) 1158–1184 (electronic)

3. Lovász, L., Vempala, S.: Hit-and-run from a corner. In: STOC ’04. ACM, New
York (2004)

4. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press
(1995)

5. Groemer, H.: On the mean value of the volume of a random polytope in a convex
set. Arch. Math. (Basel) 25 (1974) 86–90

6. Bárány, I., Buchta, C.: Random polytopes in a convex polytope, independence of
shape, and concentration of vertices. Math. Ann. 297 (1993) 467–497

7. Bárány, I., Füredi, Z.: Computing the volume is difficult. Discrete Comput. Geom.
2 (1987) 319–326

8. Rockafellar, R.T., Wets, R.J.: Variational Analysis. Number 317 in Grundlehren
der mathematischen Wissenschaften. Springer-Verlag (1998)

Appendix

For the Hausdorff metric or the symmetric difference volume metric, we have
(see [8], Theorem 4.18, for example):

Theorem 10 (Blaschke’s Selection Theorem). In Rn, any bounded se-
quence (Ck)k∈N of nonempty, convex sets has a subsequence converging to some
nonempty, compact, convex set C.

Complexity of Linear Connectivity Problems in
Directed Hypergraphs�

Mayur Thakur1,� � � and Rahul Tripathi2

1 Dept. of Computer Science, University of Missouri–Rolla, Rolla, MO 65409, USA
thakurk@umr.edu

2 Dept. of Computer Science, University of Rochester, Rochester, NY 14627, USA
rahult@cs.rochester.edu

Abstract. We introduce a notion of linear hyperconnection (formally
denoted L-hyperpath) between nodes in a directed hypergraph and re-
late this notion to existing notions of hyperpaths in directed hyper-
graphs. We observe that many interesting questions in problem domains
such as secret transfer protocols, routing in packet filtered networks,
and propositional satisfiability are basically questions about existence
of L-hyperpaths or about cyclomatic number of directed hypergraphs
w.r.t. L-hypercycles (the minimum number of hyperedges that need to
be deleted to make a directed hypergraph free of L-hypercycles). We
prove that the L-hyperpath existence problem, the cyclomatic number
problem, the minimum cyclomatic set problem, and the minimal cyclo-
matic set problem are each complete for a different level (respectively,
NP, Σp

2 , Πp
2 , and DP) of the polynomial hierarchy.

1 Introduction

Roughly speaking, a directed hypergraph is a generalization of directed graphs in
which each directed hyperedge is allowed to have multiple source (tail) nodes and
multiple destination (head) nodes. Thus, a (simple) directed edge is a hyperedge
with exactly one tail node and exactly one head node. Directed hypergraphs
have been used to model a wide variety of problems in propositional logic [6, 20],
relational databases [3, 11, 28], urban transportation planning [10, 18], chemical
reaction mechanisms [26, 30], Petri nets [2, 23], operations research [10], and
probabilistic parsing [16]. They have been introduced under different names such
as “And-Or graphs” and “FD-graphs.”

Ausiello, D’Atri, and Saccá [3] introduced the notion of directed hypergraphs,
though they called them “FD-graphs,” where FD stands for “functional depen-
dency,” and used them to represent dependencies among attributes in relational
databases. They presented efficient algorithms for several problems related to
transitive closure, minimization, etc., of attributes in a database. Gallo et al. [10]

� Supported in part by grants NSF-INT-9815095 and NSF-CCF-0426761.
� � � Work done in part while affiliated with the Department of Computer Science at

the University of Rochester, Rochester, NY 14627, USA.

K. Lodaya and M. Mahajan (Eds.): FSTTCS 2004, LNCS 3328, pp. 481–493, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

482 M. Thakur and R. Tripathi

first formalized the basic notions related to directed hypergraphs like connectiv-
ity, paths, and cuts, and showed applications of directed hypergraphs to problems
such as functional dependency in relational database theory and route planning
in urban transport system design. More recently, a unified view of deterministic
and probabilistic parsing has been obtained by showing them to be equivalent
to traversals in directed hypergraphs [16].

The notion of connection in a directed graph is simple and can be recursively
defined as follows. Each node is connected to itself and a node x is connected
to another node y, if there exists a node z such that there is a connection from
node x to node z and there is an edge from node z to node y. But there does not
seem to be one common intuitive notion for a hyperconnection (i.e., connection in
directed hypergraphs). In fact, different notions of hyperpaths and hypercycles
in directed hypergraphs have been defined in the literature [7, 8, 10, 19, 30] based
on varying intuitive notions of hyperconnection in problem domains.

In this paper, first we review these notions of hyperpaths and hypercycles
in directed hypergraphs. We describe our notion of linear hyperconnection, and
define L-hyperpath and L-hypercycle. We identify domains such as secret trans-
fer protocols, packet filtered networks, and propositional satisfiability, where the
notion of linear hyperconnection can be used to capture key problems. We study
the complexity of basic computational problems in directed hypergraphs: find-
ing whether hyperpaths of certain a type exist between two given nodes, finding
whether hyperpaths of a certain type with a given bound on certain measure
exist between two given nodes, etc.

The cyclomatic number of a (simple) graph is the minimum number of
edges that need to be removed to make the graph acyclic. Intuitively speak-
ing, the cyclomatic number of a graph measures the degree of cyclicity of a
graph. We can define the cyclomatic number of a directed hypergraph analo-
gously to that in simple graphs. That is, the cyclomatic number of a directed
hypergraph w.r.t. L-hypercycles is the minimum number of hyperedges that
need to be removed such that the resulting hypergraph does not contain any
L-hypercycle. We study the computational complexity of problems related to
cyclomatic number of directed hypergraphs w.r.t. L-hypercycles: computing the
cyclomatic number of a directed hypergraph, finding whether a given set of
hyperedges forms a cyclomatic set, finding whether these hyperedges form a
minimal cyclomatic set, etc. We prove that many of these fundamental prob-
lems are computationally hard (under standard complexity-theoretic assump-
tions). We prove that these problems are each complete for a different level of
the polynomial hierarchy (see Definition 7 for precise definitions of these prob-
lems): CYCLOMATIC-NUMBER is Σp

2 -complete, MIN-CYCLOMATIC-SET is
Πp

2 -complete, and MINIMAL-CYCLOMATIC-SET is DP-complete.
It is interesting to compare the complexity of connectivity problems on di-

rected graphs and directed hypergraphs. In particular, consider the complexity
of the following path existence problems:
– Is there a path between two given vertices in a directed graph? This problem

is known to be NL-complete.

Complexity of Linear Connectivity Problems in Directed Hypergraphs 483

– Is there a B-hyperpath between two given vertices in a directed hypergraph?
This problem is in P [10].

– Is there an L-hyperpath between two given vertices in a directed hypergraph?
In this paper, we show that this problem is NP-complete.

Compare also the complexity of the following cyclomatic number problems:

– Is there a set of k edges whose deletion makes a directed graph free of cycles?
This problem is NP-complete [14].

– Is there a set of k hyperedges whose deletion makes a directed hypergraph
free of L-hypercycles? In this paper, we show that this problem is Σp

2 -
complete.

(Due to space limitations, proofs of most results have been omitted. Please see
the full version [27] for omitted proofs and for details of how L-hyperpaths in
directed hypergraphs can be used to model practical problems.)

2 Notions of Hyperpaths in Directed Hypergraphs

Definition 1 ([10]). A directed hypergraph H is a tuple (V, E), where V is a
finite set and E ⊆ 2V × 2V such that, for every e = (T (e), H(e)) ∈ E, T (e) �=
∅, H(e) �= ∅, and T (e) ∩ H(e) = ∅. For every integer k ≥ 1, a k-directed
hypergraph H is a directed hypergraph in which, for every e ∈ E(H), |T (e)| ≤ k
and |H(e)| ≤ k.

A B-hyperedge (F-hyperedge) is a hyperedge e = (T (e), H(e)) such that
|H(e)| = 1 (respectively, |T (e)| = 1). A B-hypergraph (F-hypergraph) is a
hypergraph H such that each hyperedge in H is a B-hyperedge (respectively, F-
hyperedge). A directed hypergraph H′ = (V ′, E′) is a subhypergraph of H if
V ′ ⊆ V , E′ ⊆ E.

Let e = (T (e),H(e)) be a hyperedge in some directed hypergraph H. Then,
T (e) is known as the tail of e and H(e) is known as the head of e. The size of rep-
resenting a directed hypergraph H is taken to be |V (H)|+ |E(H)| unless another
representation scheme is explicitly mentioned as in, for example, Section 6. Given
a directed hypergraph H = (V,E), its symmetric image H is a directed hyper-
graph defined as follows: V (H) = V (H) and E(H) = {(H, T) | (T, H) ∈ E(H)}.

Definition 2 ([10]). Let H = (V,E) be a directed hypergraph.

1. A simple path Πst from s ∈ V (H) to t ∈ V (H) in H is a sequence (v1, e1, v2,
e2, . . ., vk, ek, vk+1) consisting of distinct vertices and hyperedges such that
s = v1, t = vk+1, and for every 1 ≤ i ≤ k, vi ∈ T (ei) and vi+1 ∈ H(ei). If,
in addition, t ∈ T (e1) then Πst is a simple cycle. A simple path is cycle-free
if it does not contain any subpath that is a simple cycle.

2. A B-hyperpath from s ∈ V (H) to t ∈ V (H) in H can be defined in terms of
a notion of B-connection in directed hypergraphs. The recursive definition
of B-connection to a node s is as follows: (i) a node s is B-connected to
itself, and (ii) if there is a hyperedge e such that all the nodes in T (e) are B-
connected to s, then every node in H(e) is B-connected to s. A B-hyperpath

484 M. Thakur and R. Tripathi

v1

v3

v4

v6
e1

e2

e4

v7

v5

v2 e3

H1

v3v1

e1

v2

e2

v4

v5

v6

v7

v8

v9

e4

e3

e6

e5

H2

v5v4v1
e3e2

e1

v7

e4

v3

v2
v6

v8

e6

e5

H3

(a) (b) (c)

Fig. 1. (a) Πv1v4 = (v1, e2, v5, e4, v7, e3, v4) is a simple path and Πv1v3 =
(v1, e2, v5, e4, v7, e3, v3) is a simple cycle in H1. (b) Directed hypergraph G1 with
V (G1) = {v1, v2, v3, v5, v6, v8, v9} and E(G1) = {e1, e2, e4, e6} is a B-hyperpath from
v1 to v9 in H2, directed hypergraph G2 with V (G2) = {v3, v4, v6, v7, v8, v9} and
E(G2) = {e3, e5, e6} is an F -hyperpath from v3 to v9 in H2, and directed hypergraph
G3 with V (G3) = {v6, v7, v8, v9} and E(G3) = {e5, e6} is a BF -hyperpath from v7 to v9

in H2. (c) A directed hypergraph H3 with an L-hypercycle. In all the figures, arrows
on a hyperedge point to the vertices in the head of the hyperedge

from s to t in H is a minimal (with respect to deletion of vertices and hy-
peredges) subhypergraph of H where t is B-connected to s. (See also [7, 8]
and [5] for equivalent, but alternative, characterizations of B-hyperpaths.)

3. An F -hyperpath Πst from s ∈ V (H) to t ∈ V (H) in H is a subhypergraph
of H such that Πst is a B-hyperpath from t to s in H.

4. A BF -hyperpath is a hypergraph that is both a B-hyperpath and an F -
hyperpath.
Even though the notions of B- and F -hyperpath capture problems in several

different problem domains (see, e.g., [10, 12]), there are other problem domains
for which these definitions do not seem to be the right one. We mention three
such problem domains in Section 3.

3 L-Hyperpath

3.1 Definition and Relationship with Other Notions of Hyperpaths

The notions of hyperpaths (B-, F -, and BF -hyperpaths) defined by Gallo et
al. [10] differ from the notion of a (directed) path in a (simple) directed graph
in that, roughly speaking, the hyperpaths are not required to be “linear.” By
that we mean that while a path in a directed graph is an alternating sequence
of vertices and edges, a (B-, F -, or BF -) hyperpath may not have this form.
Although the definition of a simple path (Definition 2, part 1) requires linearity,
that definition is too weak to capture the expressiveness of directed hypergraphs
in the following sense: Given any directed hypergraph H and u, v ∈ V (H), there
is a simple path from u to v in H if and only if there is a simple path from u to v
in a directed graph G with V (G) = V (H) and E(G) = {(u, v) | (∃e ∈ E(H))[u ∈
T (e) and v ∈ H(e)]}.

In this section, we introduce a notion of linear hyperpath, called L-hyperpath,
and relate this notion of L-hyperpath with previously studied notions of directed
hyperpaths.

Complexity of Linear Connectivity Problems in Directed Hypergraphs 485

Definition 3. An L-hyperpath Πst from s to t in a directed hypergraph H =
(V,E) is a sequence (v1, e1, v2, e2, . . . , vk, ek, vk+1) consisting of distinct vertices
and hyperedges such that s = v1, t = vk+1, for every 1 ≤ i ≤ k, vi ∈ T (ei) and
vi+1 ∈ H(ei), and for every 1 ≤ i ≤ k, T (ei) ⊆ {s} ∪H(e1) ∪ . . . ∪H(ei−1). If,
in addition, t ∈ T (e1)(= {s}) then Πst is an L-hypercycle in H.

L-hyperpaths inherit the linearity property from simple paths and the re-
stricted B-connection property from B-hyperpaths. L-hyperpaths may alter-
natively be expressed in terms of directed hypergraphs as follows. For any
L-hyperpath Π = (v1, e1, v2, e2, . . . , vk, ek, vk+1), let HΠ be defined as the sub-
hypergraph of H such that, V (HΠ) = {v1} ∪H(e1) ∪H(e2) ∪ . . . ∪H(ek) and
E(HΠ) = {e1, e2, . . . , ek}. We say that HΠ is the hypergraph representation of
Π. In Figure 1(c), Π1 = (v1, e1, v3, e2, v4, e3, v5, e4, v7) is an L-hyperpath and
Π2 = (v1, e1, v3, e2, v4, e3, v5, e4, v7, e5, v1) is an L-hypercycle in H3. Also, note
that there is no L-hyperpath from v4 to v1 in H3 and that the hypergraph
representation of Π1 is H′ = (V (H3), {e1, e2, e3, e4}).

Theorem 4. Let H be a B-hypergraph, G be a subhypergraph of H, and s, t ∈
V (G). Then, the following holds: G is the hypergraph representation of an L-
hyperpath Πst from s to t if and only if G is a minimal (w.r.t. deletion of vertices
and hyperedges) subhypergraph of H such that t is B-connected to s and there is
a simple cycle-free path from s to t that consists of all the hyperedges of G.

The study of L-hyperpaths is interesting from a theoretical point of view
because, as argued earlier, the notion of L-hyperpaths is a restriction of the
notion of simple paths and the notion of B-hyperpaths. The study of cyclomatic
number of hypergraphs is of fundamental significance (see [9, 1]) and so it is
interesting to investigate the complexity of computing the cyclomatic number
(in the L-hypercycle notion) of directed hypergraphs. On the practical side, we
show in the full version [27] of this paper that many interesting questions in
problem domains such as secret transfer protocols, routing in packet filtered
networks, and propositional satisfiability can be modeled using the notion of
L-hyperconnection. The linearity constraint of L-hyperpaths turns out to be
crucial in correctly modeling problems in these domains.

4 Computational Problems on Directed Hyperpaths

Many applications of graphs require one to associate a cost (or, weight) on the
edges of the graph. The cost of a path in a graph is then defined to be the sum of
cost of edges in the path. In contrast, since the structure of a hyperpath is more
complicated, a number of measures on hyperpaths in a directed hypergraph are
defined and studied in the literature [4, 7, 8, 15, 17, 18, 24]. We observe that the
measures defined for previously studied notions of directed hyperpaths are appli-
cable also for L-hyperpaths if the hypergraph representation of an L-hyperpath
is considered in the definition. This indicates that the notion of L-hyperpaths
is robust and it suggests that L-hyperpaths may be used to model a variety of
problems that require these measures on hyperpaths.

486 M. Thakur and R. Tripathi

For any X ∈ {B,F,L} and for any measure function μX on X-hyperpaths of
H, we define the following decision problems related to directed hypergraphs:

1. X-HYPERPATH = {〈H, s, t〉 | H is a directed hypergraph that contains an
X-hyperpath Πst from s to t}.

2. μX -OPT-HYPERPATH = {〈H, s, t, k〉 | H is a directed weighted hypergraph
that contains an X-hyperpath Πst from s to t such that μX(Πst) ≤ k}.

Gallo et al. [10] showed that both B-HYPERPATH and F -HYPERPATH are
solvable in polynomial time. Ausiello et al. [7] and Italiano and Nanni [15] proved
that μB-OPT-HYPERPATH is NP-complete when μB is one of the following
measure functions: (a) number of hyperedges, (b) cost, (c) size. Ausiello et al. [7]
and Ausiello, Italiano, and Nanni [8] proved that μB-OPT-HYPERPATH is
solvable in polynomial time when μB is the rank of a B-hyperpath (see [7, 8]
for the definition of rank). Theorem 5 states our result related to L-hyperpaths.

Theorem 5. For every k ≥ 2, L-HYPERPATH is NP-complete when restricted
to k-directed B-hypergraphs.

It follows from the proof of Theorem 5 that, for every k ≥ 2 and for
any polynomial-time computable measure μL on L-hyperpaths, the problems
L-HYPERCYCLE (given a directed hypergraph H, does H contain an L-
hypercycle?) and μL-OPT-HYPERPATH are NP-complete when restricted
to k-directed B-hypergraphs. A simple observation shows that the problems
L-HYPERPATH and μL-OPT-HYPERPATH are in P when restricted to F -
hypergraphs. Thus, roughly speaking, the intrinsic hardness of these problems
is due to the presence of B-hyperedges. In contrast, we find that the proofs of
Theorems 8 and 9 seem to require both B- and F -hyperedges in the construc-
tion. It will be interesting to see whether proofs of Theorems 8 and 9 can be
carried out without requiring F -hyperedges in the construction.

5 Cyclomatic Number of a Directed Hypergraph

The cyclomatic number of a hypergraph is the minimum number of hyperedges
that need to be deleted so that the resulting hypergraph has no hypercycle.
For a connected graph G = (V,E), the cyclomatic number is given by |E| −
|V |+ 1. The cyclomatic number of any undirected hypergraph is also efficiently
computable [1]. For directed hypergraphs, the notion of cyclomatic number can
be defined as follows.

Definition 6. Given a directed hypergraph H = (V, E), the cyclomatic number
of H with respect to L-hypercycles is the following: min{k ∈ N |(∃B ⊆ E)[|B| = k
and there are no L-hypercycles in (V,E −B)]}.

In this section, we study the complexity of several decision problems related
to the abovementioned definition of cyclomatic number of a directed hypergraph.

Complexity of Linear Connectivity Problems in Directed Hypergraphs 487

Definition 7. 1. CYCLOMATIC-SET = {〈H, B〉 | H = (V, E) is a directed
hypergraph and B ⊆ E such that H′ = (V,E −B) has no L-hypercycle }.

2. CYCLOMATIC-NUMBER = {〈H, k〉 | H = (V, E) is a directed hyper-
graph such that there exists a set B ⊆ E, |B| ≤ k and 〈H, B〉 ∈
CYCLOMATIC-SET}.

3. MIN-CYCLOMATIC-SET = {〈H, B〉 | 〈H, B〉 ∈ CYCLOMATIC-SET and,
for each B′ such that |B′| < |B|, 〈H, B′〉 /∈ CYCLOMATIC-SET}.

4. MINIMAL-CYCLOMATIC-SET = {〈H, B〉 |〈H, B〉 ∈ CYCLOMATIC-SET
and, for each B′ such that B′ 	 B, 〈H, B′〉 /∈ CYCLOMATIC-SET}.
Clearly CYCLOMATIC-SET is coNP-complete, since for any directed

hypergraph H, 〈H〉 ∈ L-HYPERCYCLE ⇐⇒ 〈H, ∅〉 �∈ CYCLOMATIC-SET.
The completeness results for remaining problems is stated below.

Theorem 8. For every k ≥ 2, CYCLOMATIC-NUMBER is Σp
2 -complete when

restricted to k-directed hypergraphs.

Proof Sketch: It is clear that CYCLOMATIC-NUMBER is in Σp
2 . We give

a polynomial-time many-one reduction σ from QSAT2(F), a problem known to
be Σp

2 -complete (see [21]), to CYCLOMATIC-NUMBER. An instance 〈X,Y, φ〉
is in QSAT2(F) if and only if φ is a boolean formula on disjoint sets X and Y
of variables and there exists a truth-value assignment α for X such that for all
truth-value assignments β for Y , it holds that φ(α, β) = False.

Let 〈X,Y, φ〉 be an instance of QSAT2(F), where X = {x1, x2, . . . , xm} and
Y = {y1, y2, . . . , yn} are disjoint sets of variables. Without loss of generality, we
assume that each variable appears in any clause at most once. Let the clauses of
φ be φ1, φ2, . . . φs, and, for i ∈ {1, . . . , s}, let pi denote the number of occurrences
of variables from Y in φi. Also, for each 1 ≤ i ≤ s and 1 ≤ j ≤ pi, we use yv(i,j) to
denote the j-th variable in φi that belongs to Y . For each i ≤ n, let ni denote the
number of occurrences of yi (i.e., as yi or yi) in φ. On input 〈X,Y, φ〉, σ outputs
〈H,m〉 where H is a directed hypergraph whose construction we describe below.
The construction of H uses four kinds of gadgets. These are selector, k-divider
for k ≥ 1, k-chooser for k ≥ 0, and switch as shown in Figures 2 and 3.
H consists of (1) s choosers, C1, C2, . . . , Cs, where Ci is a pi-chooser cor-

responding to clause φi, 1 ≤ i ≤ s, (2) n dividers, D1, D2, . . . , Dn, where
Di is an ni-divider corresponding to variable yi, 1 ≤ i ≤ n, (3) m selectors,
L1, L2, . . . , Lm, where Li corresponds to variable xi, 1 ≤ i ≤ m, and (4)

∑s
i=1 pi

switches, S1,1, S1,2, . . . , S1,p1 , S2,1, . . . , S2,p2 , . . . , Ss,ps
where Si,j , 1 ≤ i ≤ s and

1 ≤ j ≤ pi, corresponds to the j-th literal in φi that belongs to Y . Note that
if for some i, pi = 0, i.e., if clause φi does not have any variable from Y , then
there is no switch corresponding to clause φi.

We use h(k, j) to denote the sum of the number of occurrences of yj in
clauses φ1, . . . , φk with h(0, j) = 0 for each j. For each switch S�1,�2 , where
1 ≤ �1 ≤ s and 1 ≤ �2 ≤ p�1 , let succ(S�1,�2) be the switch succeeding S�1,�2 in
the ordering S1,1, S1,2, . . . , S1,p1 , S2,1, . . . , S2,p2 , . . . , Ss,ps

if �1 �= s and �2 �= ps,
and is undefined if �1 = s and �2 = ps. For each label x and for each gadget y,
we use the shorthand vertexH(x, y) (edgeH(x, y)) to denote “the vertex labeled
x in gadget y in H” (respectively, “the hyperedge labeled x in gadget y in H”).

488 M. Thakur and R. Tripathi

.

J

1

2

A

B D

F G

E

C

A

B

.

.

.

.

.

1

2

k k’

3’

2’

1’

0

(k+1)’

F

3

0’

F’

.

(k+1) B

A

.

.

1 r+1 r+2r k

A

B

(a) (b) (c) (d)

Fig. 2. Gadgets used in the reduction from QSAT2(F) to CYCLOMATIC-NUMBER.
(a) A selector. (b) A k-divider, where k ≥ 1. (c) A k-chooser, where k ≥ 1. (d) A
0-chooser

A

F

1 1’

G

B

G’

K’K
4 4’

2’

3’3

2

C

D

5 F’

6

C’

D’

6’

5’

D

C C’

D’

A

B

S

v

u u’

v’

e e’

D

C C’

D’

A

B

S

v

u u’

v’

(a) (b) (c)

Fig. 3. (a) A switch. (b) Schematic representation of placing a switch S (shown as a
rectangular box in the figure) between edges e = ({u}, {v}) and e′ = ({u′}, {v′}). (c)
The actual placement of a switch S between edges e and e′: the edges e and e′ are
deleted and new edges ({u}, {C}), ({D}, {v}), ({u′}, {C′}) and ({D′}, {v′}) are added

The vertices of H consist exactly of the vertices of the above gadgets. The
gadgets are connected by hyperedges that are described as follows.

1. (Place a switch between the edge in chooser Ci corresponding to an occur-
rence of a variable yj and an edge in divider Dj .) For each 1 ≤ i ≤ s, and
for each 1 ≤ j ≤ pi, if yv(i,j) occurs as yv(i,j) in φi, then place switch Si,j

between edge j of pi-chooser Ci and edge h(i, v(i, j)) of divider Dv(i,j). Oth-
erwise, that is if yv(i,j) occurs as yv(i,j) in φi, then place switch Si,j between
edge j of pi-chooser Ci and edge h(i, v(i, j))′ of divider Dv(i,j).

2. (Connect the choosers in series.) For each 1 ≤ i < s, connect vertexH(B, Ci)
to vertexH(A,Ci+1) with a simple directed edge.

3. (Connect the dividers in series.) For each 1 ≤ j < n, connect vertexH(B, Dj)
to vertexH(A,Dj+1) with a simple directed edge.

4. (Connect the selectors in series.) For each 1 ≤ k < m, connect vertexH(J, Lk)
to vertexH(A,Lk+1) with a simple directed edge.

Complexity of Linear Connectivity Problems in Directed Hypergraphs 489

A

A

A

A

A

A

B

B

B

B

B

B

F

F
G

G
J

A

J

A

B

B D

D

C

C

1

2

1

1

2

3

1’

2’

3’

1’

1’

2’

1
2

1 2
3

A

A

A

B

C

F

C

C

1

F

D

G

F

D

G

E

H

A

B

A

B

B

B

E

E

1
2

1

2

F F’

F F’

F F’

B

A

B

A

B

C2

C3

C4

L1

L2

D1

D2

D3

S2,1

S3,1

S3,2

S4,1

S4,2

S4,3

To A of S1

To A of L1

C1

To A of C1

Fig. 4. Hyperedges used to connect gadgets when φ = (x1 ∨ x2) ∧ (x1 ∨ y1) ∧ (x2 ∨
y1 ∨ y3) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ y3). C1, C2, C3, and C4 are 0-chooser, 1-chooser, 2-
chooser, and 3-chooser, respectively. D1, D2, and D3 are 3-divider, 1-divider, and 2-
divider, respectively. S2,1, . . . , S4,3 are switches and L1 and L2 are selectors in H. The
hyperedges connecting selectors to choosers are bypass hyperedges

5. (Connect the switches in series.) For each �1, �2, where 1 ≤ �1 ≤ s and
1 ≤ �2 ≤ p�1 , if succ(S�1,�2) is defined then connect vertexH(B, S�1,�2) to
vertexH(A, succ(S�1,�2)) with a simple directed edge.

6. (Connect choosers, switches and selectors.) If φ does not contain any vari-
able from Y , then connect vertexH(B,Cs) to vertexH(A, L1) with a simple
directed edge. Otherwise, i.e., if there is at least one clause φi with an oc-
currence of a Y variable, do the following. Let S�1,�2 be the first switch and
S�′

1,�′
2

be the last switch (note: switches are ordered in the lexicographic or-
dering of pairs (i, j) denoting switches Si,j) such that 1 ≤ �1 ≤ s, 1 ≤ �′

1 ≤ s ,
1 ≤ �2 ≤ p�1 and 1 ≤ �′

2 ≤ p�′
1
. Connect vertexH(B, Cs) to vertexH(A, S�1,�2)

and connect vertexH(B,S�′
1,�′

2
) to vertexH(A,L1) with simple directed edges.

7. (Connect dividers and choosers.) Connect vertexH(B, Dn) to vertexH(A, C1)
with a simple directed edge.

8. (Connect selectors and dividers.) Connect vertexH(J, Lm) to vertexH(A, D1)
with a simple directed edge.

9. Bypass hyperedges: (Connect the selector Li corresponding to a variable
xi with the chooser Cj .) If a variable xi occurs as xi in φj , then add a hyper-
edge ({vertexH(G,Li), vertexH(A,Cj)}, {vertexH(B, Cj)}). Otherwise, if xi

490 M. Thakur and R. Tripathi

occurs as xi in φj then add a hyperedge ({vertexH(F, Li), vertexH(A, Cj)},
{vertexH(B,Cj)}).

We show in [27] that if 〈X,Y, φ〉 ∈ QSAT2(F) then the cyclomatic number
of H is m and if 〈X,Y, φ〉 �∈ QSAT2(F) then the cyclomatic number of H is
m + 1.

Via constructions based on the gadgets used in the proof of Theorem 8, we
can show the following results.

Theorem 9. For every k ≥ 2, MIN-CYCLOMATIC-SET is Πp
2 -complete when

restricted to k-directed hypergraphs.

Theorem 10. For every k ≥ 2, MINIMAL-CYCLOMATIC-SET is DP-
complete when restricted to k-directed B-hypergraphs.

6 Succinct Representations of Directed Hypergraphs

It is to be noted that a hypergraph on n vertices may have Θ(3n) hyperedges in
the worst case. In contrast, the number of edges in a (simple) graph is O(n2).
From an implementation perspective, any representation that stores information
for individual hyperedges of a hypergraph is impractical for hypergraphs with
a large number of hyperedges. Thus, alternative ways to represent hypergraphs
must be explored. Several graphs occurring in practice, such as the graphs that
model VLSI circuits, have a highly organized structure and can be described in
a succinct way by a circuit or a boolean formula. Galperin and Wigderson [13]
showed that trivial graph properties, (e.g., the existence of a triangle) become
NP-complete, and Papadimitriou and Yannakakis [22] showed that graph prop-
erties that are ordinarily NP-complete become NEXP-complete when the graph
is succinctly described by a circuit. In this section, we investigate the compu-
tational complexity of the L-hyperpath existence problem when directed hyper-
graphs are represented in an exponentially succinct way.

Definition 11. 1. A succinct representation of a directed hypergraph H(V, E),
where V = {1, . . . , n}, is a boolean circuit CH with 2n input gates and an
output gate such that, for each e ⊆ 2V × 2V , e ∈ E if and only if CH(x, y)
outputs 1, where x = χT (e)(1) . . . χT (e)(n) and y = χH(e)(1) . . . χH(e)(n).

2. A succinct representation of a k-directed hypergraph H(V, E), where V =
{1, . . . , n}, is a boolean circuit CH with 2k7log(n + 1)8 input gates and an
output gate, where 0�log(n+1)� is the encoding of a dummy node not in H
and for each 1 ≤ i ≤ n, bin(i)—the binary representation of integer i in
7log(n + 1)8 bits—is the encoding of node i in H. Furthermore, for each e =
({i1, . . . , i�1}, {j1, . . . , j�2}) ⊆ 2V × 2V , i1 < . . . < i�1 and j1 < . . . < j�2 , e ∈
E iff CH(x, y) outputs 1, where x = 0(n−�1)�log(n+1)�bin(i�1) . . . bin(i2)bin(i1)
and y = 0(n−�2)�log(n+1)�bin(j�2) . . . bin(j2)bin(j1).

Complexity of Linear Connectivity Problems in Directed Hypergraphs 491

Definition 12. 1. SUCCINCT-LHYPERPATH = {〈C, u, v〉 |C succinctly rep-
resents a directed hypergraph HC and 〈HC , u, v〉 ∈ L-HYPERPATH}.

2. k-SUCCINCT-LHYPERPATH = {〈C, u, v〉 | C succinctly represents a k-
directed hypergraph HC and 〈HC , u, v〉 ∈ L-HYPERPATH}.

Wagner [29] (see also [22]) showed that even for simple subclasses of graphs—
directed trees, directed acyclic graphs, directed forests, and undirected forests—
the reachability problem for each class with succinct input representation is
PSPACE-complete. Tantau [25] showed that the reachability problem for suc-
cinctly represented (strong) tournaments is Πp

2 -complete. Using the proof of The-
orem 5, it can be easily shown that SUCCINCT-LHYPERPATH is NP-complete
and, for every k ≥ 2, k-SUCCINCT-LHYPERPATH is NEXP-complete.

We leave open the exact complexity of the L-hyperpath existence problem
with succinct input representation for particular subclasses of directed hyper-
graphs.

7 Open Problems

Theorem 5 proves that L-HYPERPATH in NP-complete even when restricted
to 2-directed hypergraphs with only B-hyperedges. However, Theorem 8 only
shows that the CYCLOMATIC-NUMBER problem is Σp

2 -complete for 2-directed
hypergraphs. In fact, the construction uses both B- and F -hyperedges. It is
interesting to analyze the complexity of the CYCLOMATIC-NUMBER problem
restricted to directed hypergraphs with only B-hyperedges.

Acharya [1] showed a connection between the cyclomatic number and the
planarity of an undirected hypergraph. It will be interesting to find connections
between the cyclomatic number of directed hypergraphs w.r.t. L-hypercycles and
notions in the theory of directed hypergraphs.

In this paper, we mentioned three problem domains where L-hyperpaths can
be used to model the problem. It will be interesting to find more domains where
L-hyperpaths can be used to model interesting problems.

Acknowledgment. We thank Edith Hemaspaandra, Lane Hemaspaandra,
Christopher Homan, Proshanto Mukherji, Srinivasan Parathasarathy, Len Schu-
bert, and Holger Spakowski for helpful discussions and insightful comments. We
are grateful to anonymous referees for helpful comments.

References

[1] B. Acharya. On the cyclomatic number of a hypergraph. Discrete Mathematics,
27:111–116, 1979.

[2] P. Alimonti, E. Feuerstein, and U. Nanni. Linear time algorithms for liveness
and boundedness in conflict-free Petri nets. In Proceedings, 1st Latin American
Symposium on Theoretical Informatics, pages 1–14. Springer-Verlag Lecture Notes
in Computer Science #583, 1992.

492 M. Thakur and R. Tripathi

[3] G. Ausiello, A. D’Atri, and D. Saccá. Graph algorithms for functional dependency
manipulation. Journal of the ACM, 30:752–766, 1983.

[4] G. Ausiello, A. D’Atri, and D. Saccá. Minimal representation of directed hyper-
graphs. SIAM Journal on Computing, 15:418–431, 1986.

[5] G. Ausiello, P. Franciosa, and D. Frigioni. Directed hypergraphs: Problems, algo-
rithmic results, and a novel decremental approach. In Italian Conference on TCS,
pages 312–328. Springer-Verlag LNCS #2202, 2001.

[6] G. Ausiello and R. Giaccio. On-line algorithms for satisfiability formulae with
uncertainty. Theoretical Computer Science, 171:3–24, 1997.

[7] G. Ausiello, R. Giaccio, G. Italiano, and U. Nanni. Optimal traversal of directed
hypergraphs. Manuscript, 1997.

[8] G. Ausiello, G. Italiano, and U. Nanni. Hypergraph traversal revisited: Cost mea-
sures and dynamic algorithms. In Proceedings of the 23rd International Symposium
on MFCS, pages 1–16. Springer-Verlag LNCS #1450, 1998.

[9] C. Berge. Graphs and Hypergraphs. North-Holland, 1973.
[10] G. Gallo, G. Longo, S. Pallottino, and S. Nguyen. Directed hypergraphs and

applications. Discrete Applied Mathematics, 42:177–201, 1993.
[11] G. Gallo and G. Rago. A hypergraph approach to logical inference for datalog

formulae. Technical Report 28/90, Dip. di Informatica, Univ. of Pisa, Italy, 1990.
[12] G. Gallo and M. Scutella. Directed hypergraphs as a modelling paradigm. Tech-

nical Report TR-99-02, Dipartimento di Informatica, February 1999.
[13] H. Galperin and A. Wigderson. Succinct representations of graphs. Information

and Control, 56(3):183–198, March 1983.
[14] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory

of NP-Completeness. W. H. Freeman and Company, 1979.
[15] G. Italiano and U. Nanni. On line maintainenance of minimal directed hyper-

graphs. In 3rd Italian Conf. on Theoretical Computer Science, pages 335–349.
World Scientific Co., 1989.

[16] D. Klein and C. Manning. Parsing and hypergraphs. In Proceedings of the 7th
International Workshop on Parsing Technologies (IWPT-2001), 2001.

[17] D. Knuth. A generalization of Dijkstra’s algorithm. Information Processing Let-
ters, 6(1):1–5, 1977.

[18] S. Nguyen and S. Pallottino. Hyperpaths and shortest hyperpaths. Combinatorial
Optimization, 1403:258–271, 1989.

[19] L. Nielsen, D. Pretolani, and K. Andersen. A remark on the definition of a B-
hyperpath. Technical report, Department of Operations Research, University of
Aarhus, 2001.

[20] N. Nilson. Principles of Artificial Intelligence. Springer Verlag, 1982.
[21] C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
[22] C. Papadimitriou and M. Yannakakis. A note on succinct representations of

graphs. Information and Control, 71(3):181–185, December 1986.
[23] C. Petri. Communication with automata. Technical Report Supplement 1 to

Tech. Report RADC-TR-65-377,1, Univ. of Bonn, 1962.
[24] G. Ramalingam and T. Reps. An incremental algorithm for a generalization of

the Shortest Path problem. Journal of Algorithms, 21:267–305, 1996.
[25] T. Tantau. A note on the complexity of the reachability problem for tournaments.

In ECCCTR: Electronic Colloquium on Computational Complexity, 2001.
[26] O. Temkin, A. Zeigarnik, and D. Bonchev. Chemical Reaction Networks: A Graph-

Theoretical Approach. CRC Press, 1996.

Complexity of Linear Connectivity Problems in Directed Hypergraphs 493

[27] M. Thakur and R. Tripathi. Complexity of linear connectivity problems in di-
rected hypergraphs. Technical Report TR814, Department of Computer Science,
University of Rochester, September 2003.

[28] J. Ullman. Principles of Database Systems. Computer Science Press, 1982.
[29] K. Wagner. The complexity of combinatorial problems with succinct input repre-

sentations. Acta Informatica, 23:325–356, 1986.
[30] A. Zeigarnik. On hypercycles and hypercircuits in hypergraphs. DIMACS Series

in Discrete Mathematics and Theoretical Computer Science, 51, 2000.

Actively Learning to Verify Safety for FIFO
Automata

Abhay Vardhan, Koushik Sen, Mahesh Viswanathan, and Gul Agha�

Dept. of Computer Science, Univ. of Illinois at Urbana-Champaign, USA
{vardhan, ksen, vmahesh, agha}@cs.uiuc.edu

Abstract. We apply machine learning techniques to verify safety prop-
erties of finite state machines which communicate over unbounded FIFO
channels. Instead of attempting to iteratively compute the reachable
states, we use Angluin’s L* algorithm to learn these states symbolically
as a regular language. The learnt set of reachable states is then used
either to prove that the system is safe, or to produce a valid execution of
the system that leads to an unsafe state (i.e. to produce a counterexam-
ple). Specifically, we assume that we are given a model of the system and
we provide a novel procedure which answers both membership and equiv-
alence queries for a representation of the reachable states. We define a
new encoding scheme for representing reachable states and their witness
execution; this enables the learning algorithm to analyze a larger class
of FIFO systems automatically than a naive encoding would allow. We
show the upper bounds on the running time and space for our method.
We have implemented our approach in Java, and we demonstrate its
application to a few case studies.

1 Introduction

Infinite state systems often arise as natural models for various software systems
at the design and modeling stage. An interesting class of infinite state systems
consists of finite state machines that communicate over unbounded first-in-first-
out channels, called FIFO automata. FIFO automata are commonly used to
model various communication protocols; languages, such as Estelle and SDL
(Specification and Description Language), in which processes have infinite queue
size; distributed systems and various actor systems. A generic task in the auto-
mated verification of safety properties of any system is to compute a represen-
tation for the set of reachable states. For finite state systems, this is typically
done by an exhaustive exploration of the state-space. However, for infinite state
systems, exhaustive exploration of the state space is impossible; in fact, the
verification problem in general can shown to be undecidable.

� The third author was supported in part by DARPA/AFOSR MURI Award F49620-
02-1-0325 and NSF 04-29639. The other three authors were supported in part by
DARPA IPTO TASK Program (contract F30602-00-2-0586), ONR Grant N00014-
02-1-0715, and Motorola Grant MOTOROLA RPS #23 ANT.

K. Lodaya and M. Mahajan (Eds.): FSTTCS 2004, LNCS 3328, pp. 494–505, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Actively Learning to Verify Safety for FIFO Automata 495

In the Lever (LEarning to VERify) project, we are pursuing the goal of using
machine learning techniques for verification of infinite state systems. The idea
is as follows. Instead of computing the reachable states by iteratively applying
the transition relation until a fixpoint is reached (which may not be possible
in a finite number of iterations), we view the identification of the reachable
states as a language inference problem. Naturally, in order for a learner to be
able to learn the reachable region, we have to provide it with some information
about the reachable states. We can easily find examples of reachable states by
executing some sample sequence of transitions. Moreover, given a set of states
as the supposed reachable region, we can check if this set is a fixpoint under the
transition relation. If it is not a fixpoint then clearly it is not the correct reachable
region. However, most learning algorithms also require either negative examples
of the concept being learned or the ability to make membership and equivalence
queries. To provide this information, the algorithm learns an annotated trace
language representing reachable states as well as system executions witnessing
the reachability of these states. If the learning algorithm outputs a set of traces
that is closed under the transition relation of the system and does not reach
any of the unsafe states then clearly the system can deemed to be correct. On
the other hand, unsafe states output by the learning algorithm can be used to
obtain executions (called counter-examples) leading to the unsafe state because
we learn traces which provide witnesses along with the reachable states. Spurious
counter-examples can be used by the learner to refine the hypothesis, and the
process is repeated until either a valid counterexample is found or the system is
shown to be correct. Finally, based on the practical success enjoyed by regular
model checking [6], we assume that the set of annotated traces to be learnt is
regular. Our main observation is that this learning based approach is a complete
verification method for systems whose annotated trace language is regular (for
a precise condition see Section 4). In other words, for such systems, we will
eventually either find a buggy execution that violates the safety property, or
we will successfully prove that no unsafe state is reachable. We have previously
applied the RPNI[11] algorithm for verification of safety properties [14].

This paper presents two main new ideas. Firstly, we give a new scheme for
the annotations on traces. With this annotation scheme, many more practical
FIFO systems have regular annotated trace languages, thus enlarging the class of
systems that can be provably verified by our method. Secondly and more signifi-
cantly, we provide a method to devise a knowledgeable teacher which can answer
membership (whether a string belongs to the target) as well as equivalence-
queries (given a hypothesis, whether it matches the concept being learnt). In the
context of learning annotated traces, equivalence queries can be answered only
to a limited extent. However, we overcome our limitation to answer equivalence
queries exactly and present an approach that is still able to use the powerful
query-based learning framework. Our decision to use Angluin’s L* algorithm [2]
gives us significant benefits. First, the number of samples we need to consider
is polynomial in the size of the minimal automaton representing the annotated
traces. Second, we are guaranteed to learn the minimal automaton that rep-

496 A. Vardhan et al.

resents the annotated traces. Finally, we can show that the running time is
bounded by a polynomial in the size of the minimal automaton representing the
annotated traces and the time taken to verify if an annotated trace is valid for
the FIFO system.

We have implemented our algorithm in Java and demonstrated the feasibility
of this method by running the implementation on simple examples and network
protocols, such as the alternating-bit protocol and the sliding window protocol.
Our approach is complementary to previously proposed algorithmic verification
methods; there are examples of FIFO automata that our method successfully
verifies; however other approaches, fail (see [13]). We give the requirements
under which classes of infinite state systems other than FIFO automata can be
verified using the learning approach. Proofs of propositions and the details of
the complexity analysis are available in the full version of the paper [13].

Related Work: For automatic verification of infinite state FIFO systems, the
state space has to be represented by symbolic means. Some common represen-
tations are regular sets [6, 1], Queue Decision Diagrams [4], semi-linear regular
expressions [7], and constrained QDDs [5]. Since an iterative approach of comput-
ing the fixpoint for reachability may not terminate, various mechanisms are used
for finding the reachable set. In the approach using meta-transitions and accelera-
tion [4, 5, 7], a sequence of transitions, referred to as a meta-transition, is selected,
and the effect of its infinite iteration is calculated. Another popular method for
verification of FIFO automata (and parameterized and integer systems) is reg-
ular model checking [6, 1] where reachable states are represented as regular sets,
and a transducer is used to represent the transition relation. An approach for
computing the reachable region that is closely related to ours is widening given in
[6] and extended in [12] for parametric systems. However, in addition to proving
a system correct, our approach can also detect bugs, which is not possible using
widening (except for certain special contexts where it can be shown to be exact).

We introduced the learning to verify approach in [14], where we used RPNI [11]
to learn the regular set from positive and negative queries without active queries.
Concurrently and independently of our work, Habermehl et al. [8] have also pro-
posed a learning based approach for verification of systems whose transition can
be represented by a length-preserving transducer. They find all strings of a cer-
tain length that can be reached from the initial state and use a state merging
algorithm to learn the regular set representing the reachable region.

A more detailed description of the related work is available from the full
version of this paper [13].

2 Learning Framework

We use Angluin’s L* algorithm [2] which falls under the category of active learn-
ing. Angluin’s L* algorithm requires a Minimally Adequate Teacher, which pro-
vides an oracle for membership (whether a given string belongs to a target
regular set) and equivalence queries (whether a given hypothesis matches the

Actively Learning to Verify Safety for FIFO Automata 497

target regular set). If the teacher answers no to an equivalence query, it also
provides a string in the symmetric difference of the hypothesis and the target
sets. The main idea behind Angluin’s L* algorithm is to systematically explore
strings in the alphabet for membership and create a DFA with minimum number
of states to make a conjecture for the target set. If the conjecture is incorrect,
the string returned by the teacher is used to make corrections, possibly after
more membership queries. The algorithm maintains a prefix closed set S repre-
senting different possible states of the target DFA, a set SA for the transition
function consisting of strings from S extended with one letter of the alphabet,
and a suffix closed set E denoting experiments to distinguish between states. An
observation table with rows from (S ∪ SA) and columns from E stores results of
the membership queries for strings in (S ∪ SA).E and is used to create the DFA
for a conjecture. Angluin’s algorithm is guaranteed to terminate in polynomial
time with the minimal DFA representing the target set.

3 FIFO Automata

A FIFO automaton [7] is a 6-tuple (Q, q0, C,M,Θ, δ) where Q is a finite set of
control states, q0 ∈ Q is the initial control state, C is a finite set of channel
names, M is a finite alphabet for contents of a channel, Θ is a finite set of
transitions names, and δ : Θ → Q× ((C × {?, !} ×M) ∪ {τ})×Q is a function
that assigns a control transition to each transition name. For a transition name θ,
if the associated control transition δ(θ) is of the form (q, c?m, q′) then it denotes
a receive action, if it is of the form (q, c!m, q′) it denotes a send action, and if it
is of the form (q, τ, q′) then it denotes an internal action. We use the standard
operational semantics of FIFO automata in which channels are considered to be
perfect and messages sent by a sender are received in the order in which they
were sent. For states s1, s2 ∈ S = Q× (M∗)C , we write s1

θ→ s2 if the transition
θ leads from s1 to s2. For σ = θ1θ2 · · · θn ∈ Θ∗, we say s

σ→ s′ when there exist
states s1 . . . sn−1 such that s θ1→ s1

θ2→ · · · sn−1
θn→ s′. The trace language of the

FIFO automaton is L(F) = {σ ∈ Θ∗ | ∃s. s0 σ→ s} where s0 = (q0, (ε, . . . , ε)),
i.e., the initial control state with no messages in the channels.

4 Verification Procedure

We assume that we are given a model of the FIFO automata which enables us to
identify the transition relation of the system. To use Angluin’s L* algorithm for
learning, we need to answer both membership and equivalence queries for the
reachable set. However, there is no immediate way of answering a membership
query (whether a certain state is actually reachable or not). Therefore, instead
of learning the set of reachable states directly, we learn a language which allows
us to identify both the reachable states and candidate witnesses (in terms of the
transitions of the system) to these states. The validity of any witness can then
be checked, allowing membership queries to be answered.

498 A. Vardhan et al.

For equivalence queries, we can provide an answer in one direction. We will
show that the reachable region with its witness executions can be seen as the
least fixpoint of a relation derived from the transitions. Hence, an answer to the
equivalence query can come from checking if the proposed language is a fixpoint
under this relation. If it is not a fixpoint then it is certainly not equivalent to
the target; but if it is a fixpoint, we are unable to tell if it is also the least
fixed point. However, we are ultimately interested in only checking whether a
given safety property holds. If the proposed language is a fixpoint but does not
intersect with the unsafe region, the safety property clearly holds and we are
done. On the other hand, if the fixpoint does intersect with unsafe states, we
can check if such an unsafe state is indeed reachable using the membership query.
If the unsafe state is reachable then we have found a valid counterexample to
the safety property and are done. Otherwise the proposed language is not the
right one since it contains an invalid trace.

Safety property verified

Is "x" a member?
yes/no

Is hypothesis "L" the target?

Membership
oracle

LearnerIs "L" a
fixpoint?

Does "L"
intersect with
unsafe region?

"L" is not the target,
as shown by string "l"Is path to

unsafe state
valid? (use
membership)

yes

no no

yes

Safety property violated
Counterexample found

Equivalence oracle

yes

no

Fig. 1. Verification procedure

Figure 1 shows the high level view of the verification procedure. The main
problems we have to address now are:

– What is a suitable representation for the reachable states and their wit-
nesses?

– Given a language representation, we need to answer the following questions
raised in Figure 1:

• (Membership Query) Given a string x, is x a valid string for a reachable
state and its witness?
• (Equivalence Query(I)) Is a hypothetical language L a fixpoint under

the transition relation? If not, we need a string which demonstrates that
L is not a fixpoint.
• (Equivalence Query(II)) Does any string in L witness the reachability of

some “unsafe” state?

4.1 Representation of the Reachable States and Their Witnesses

Let us now consider the language which can allow us to find both reachable
states and their witnesses. The first choice that comes to mind is the language

Actively Learning to Verify Safety for FIFO Automata 499

of the traces, L(F). Since each trace uniquely determines the final state in the
trace, L(F) has the information about the states that can be reached. While it
is easy to compute the state s such that s0

σ→ s for a single trace σ, it is not
clear how to obtain the set of states reached, given a set of traces. In fact, even if
L(F) is regular, there is no known algorithm to compute the corresponding set
of reachable states.1 The main difficulty is that determining if a receive action
can be executed depends non-trivially on the sequence of actions executed before
the receive.

In [14], we overcame this difficulty by annotating the traces in a way that
makes it possible to compute the set of reachable states. We briefly describe
this annotation scheme before presenting the actual scheme used in this paper.
Consider a set Θ of co-names defined as follows:

Θ = {θ | θ ∈ Θ and δ(θ) �∈ Q× {τ} ×Q}

Thus, for every send or receive action in our FIFO automaton, there is a
new transition name with a bar. A barred transition θ in an annotated trace of
the system denotes either a message sent that will later be consumed, or the
receipt of a message that was sent earlier in the trace. Annotated traces of the
automaton are obtained by marking send-receive pairs in a trace exhibited by
the system.

The above annotation scheme allowed us to calculate the reachable set for
any regular set of annotated traces by a simple homomorphism. However, one
difficulty we encountered is that for some practical FIFO systems, the annotated
trace language is not regular; the nonregularity often came from the fact that
a receive transition has to be matched to a send which could have happened at
an arbitrary time earlier in the past. To alleviate this problem, we use a new
annotation scheme in which only the send part of the send-receive pair is kept.
This gives an annotated trace language which is regular for a much larger class of
FIFO systems (although we cannot hope to be able to cover all classes of FIFO
systems since they are Turing expressive). We now describe this annotation in
detail.

As before, we have a new set of barred names but this time only for the send
transitions:

Θ = {θ | θ ∈ Θ and δ(θ) ∈ Q× {ci!aj} ×Q for some ci, aj}

We also define another set of names TQ = {tq | q ∈ Q} consisting of a symbol
for each control state in the FIFO.

Now let the alphabet of annotated traces Σ be defined as (Θ − Θr) ∪ Θ ∪
TQ where Θr is the set of receive transitions {θr | δ(θr) ∈ Q × {ci?aj} ×
Q for some ci,aj }.

Given a sequence of transitions l in L(F), let A be a function which produces
an annotated string in Σ∗. A takes each receive transition θri in l and finds the

1 This can sometimes be computed for simple loops using meta-transitions.

500 A. Vardhan et al.

matching send transition θsi
which must occur earlier in l. Then, θri

is removed
and θsi

replaced by θsi
. Once all the receive transitions have been accounted

for, A appends the symbol tq ∈ TQ corresponding to the control state q which
is the destination of the last transition in l. Intuitively, for a send-receive pair
which cancel each other’s effect on the channel contents, A deletes the received
transition and replaces the send transition with a barred symbol. As before, a
barred symbol indicates that the message sent gets consumed by a later receive.
Notice that in the old annotation scheme both the send and the receive were
replaced with a barred version; here the receive transition is dropped altogether.
The reason we still keep the send transition with a bar is, as we will show shortly,
that this allows us to decide whether any given string is a valid annotated trace.
The symbol tq is appended to the annotated trace to record the fact that the
trace l leads to the control state q.

Fig. 2. A FIFO automaton

As an example, consider the FIFO automa-
ton shown in Figure 2. For the following traces
in L(F): θ1θ2θ3, θ1θ2θ3θ1θ2, the strings output
by A are respectively: θ1θ3tq0 , θ1θ3θ1tq2 .

Let the language of annotated traces be
AL(F) = {A(t) | t ∈ L(F)} which consists of
all strings in Σ∗ that denote correctly annotated
traces of F . Let ALold(F) be the annotated trace
language corresponding to the old annotation
scheme described earlier (in which we keep both parts of a send-receive pair).
The following proposition shows that the new annotation scheme has regular
annotated trace language for more FIFO automata than the old scheme.

Proposition 1. The set of FIFO automata for which AL(F) is regular is strictly
larger than the set of FIFO automata for which ALold(F) is regular.

AL(F) can be seen to represent both the reachable states of the FIFO sys-
tem and the annotated traces which in some sense witness the reachability of
these states. Thus, AL(F) is a suitable candidate for the language to use in the
verification procedure shown in Figure 1.

Given a string l in Σ∗, we say that l is well-formed if l ends with a symbol
from TQ and there is no other occurrence of symbols from TQ. We say that a
language L is well-formed if all strings in L are well-formed. For a well-formed
string l ending in symbol tq, let T (l) denote the prefix of l without tq and let
C(l) denote the control state q.

4.2 Answering Membership Queries

In order to answer a membership query for AL(F), given a string l in Σ∗ we
need to verify if l is a correct annotation for some valid sequence of transitions
l′ in L(F). Let A−1(l) be a function which gives the set (possibly empty) of
all sequences of transitions l′ for which A(l′) = l. First, if l is not well-formed,
A−1(l) = ∅ since all valid annotations are clearly well-formed. Assuming l is
well-formed, if we ignore the bars in T (l), we get a string l′′ which could po-

Actively Learning to Verify Safety for FIFO Automata 501

tentially be in A−1(l) except that the transitions corresponding to any receives
are missing. We can identify the possible missing receive transitions by looking
at the barred symbols in T (l); each barred send can potentially be matched by
a receive transition that operates on the same channel and has the same letter.
However, we do not know the exact positions where these receive transitions
are to be inserted in l′′. We can try all possible (finitely many) positions and
simulate each resulting transition sequence on the fly on the FIFO system. Any
transition sequence which is valid on the FIFO and gives back l on application
of A is then a member of A−1(l). If A−1(l) �= ∅ then l is a valid annotated trace.

For illustration, let us consider a membership query for the string θ1θ3θ1tq2

for the FIFO automata shown in Figure 2. We identify the possible missing
receive transitions as two instances of θ2. Since a receive can only occur after a
send for the same channel and letter, the possible completions of the input string
with receives are {θ1θ2θ3θ2θ1, θ1θ2θ3θ1θ2, θ1θ3θ2θ2θ1, θ1θ3θ2θ1θ2, θ1θ3θ1θ2θ2}. Of
these, θ1θ2θ3θ1θ2 can be correctly simulated on the FIFO system and gives back
the input string θ1θ3θ1tq2 on application of A. Therefore, the answer to the
membership query is yes. An example for a negative answer is θ1tq0 .

4.3 Answering Equivalence Queries

For learning AL(F) in the active learning framework, we need a method to verify
whether a supposed language L of annotated traces is equivalent to AL(F). If
not, then we also need to identify a string in the symmetric difference of AL(F)
and L to allow the learner to make progress.

Given a string l ∈ L and a transition θ in the FIFO, we can find if it is possible
to extend l using θ. More precisely, we define a function Post(l, θ) as follows.
If l is well-formed, let source(θ) and target(θ) be the control states which are
respectively the source and the target of θ.

Post(l, θ) =

⎧⎨⎩∅ if l not well-formed or if C(l) �=source(θ)
{T (l)θ ttarget(θ)} otherwise if δ(θ) = τ or δ(θ) = ci!aj

{deriv(T (l), θ) ttarget(θ)} otherwise if δ(θ) = ci?aj

deriv(T (l), θ) checks the first occurrence of a send θs in T (l) for channel ci and
if the send is for the character aj , replaces θs with θs. deriv(T (l), θ) is empty if
no such θs could be found or if θs outputs a character other than aj . Intuitively,
deriv is similar to the concept of the derivative in formal language theory, except
that we look at only the channel that θ operates upon.

Let Post(l) be
⋃

θ∈Θ Post(l, θ) and Post(L) be
⋃

l∈L Post(l).

Theorem 1. Let F(L) = Post(L) ∪ {tq0} where q0 is the initial control state.
F(L) is a monotone set operator, i.e. it preserves set-inclusion. Moreover, AL(F)
is the least fixpoint of the functional F(L).

Theorem 1 gives us a method for answering equivalence queries for AL(F)
in one direction. If L is not a fixpoint, it cannot be equivalent to AL(F). In this
case, we can also find a string in L⊕AL(F) as required for Angluin’s algorithm.

502 A. Vardhan et al.

Here, A⊕B denotes the symmetric difference of two sets. Consider the following
cases:

1. F(L) − L �= ∅. Let l be some string in this set. If l is tq0 then it is in
AL(F) ⊕ L. Otherwise, we can check if l is a valid annotation using the
procedure described in Section 4.2. If yes, then l is in AL(F)⊕L. Otherwise,
it must be true that l ∈ Post(l′) for some l′ ∈ L. If l is not valid, l′ cannot
be valid since Post() of a valid annotation is always valid. Hence l′ �∈ AL(F)
or l′ ∈ AL(F)⊕ L.

2. F(L) 	 L. From standard fixpoint theory, since AL(F) is the least fixed
point under F , it must be the intersection of all prefixpoints of F (a set Z
is a prefixpoint if it shrinks under the functional F , i.e. F(Z) ⊆ Z). Now, L
is clearly a prefixpoint. Applying F to both sides of the equation F(L) 	 L
and using monotonicity of F , we get F(F(L)) 	 F(L). Thus, F(L) is also a
prefixpoint. Let l be some string in the set L− F(L). Since l is outside the
intersection of two prefixpoints, it is not in the least fixpoint AL(F). Hence,
l is in AL(F)⊕ L.

3. F(L) = L. Let W(L) be the set of annotated traces in L which can reach
unsafe states (We will describe how W(L) is computed in the next section).
If W(L) is empty, since L is a fixpoint, we can abort the learning procedure
and declare that the safety property holds. For the other case, ifW(L) is not
empty then let l be some annotated trace in this set. We check if l is a valid
annotation using the procedure described in Section 4.2. If it is valid, we
have found a valid counterexample and can again abort the whole learning
procedure since we have found an answer (in the negative) to the safety
property verification. Otherwise, l is in AL(F)⊕ L.

A subtle point to note is that although we attempt to learn AL(F), because
of the limitation in the equivalence query, the final language obtained after the
termination of the verification procedure may not be AL(F). It might be some
fixpoint which contains AL(F) or it might be simply some set which contains
a valid annotated trace demonstrating the reachability of some unsafe state.
However, this is not a cause for concern to us since in all cases the answer for
the safety property verification is correct.

4.4 Finding Annotated Traces Leading to Unsafe States

In the previous section, we referred to a set W(L) in L which can reach unsafe
states. We now show how this can be computed.

We assume that for each control state q ∈ Q, we are given a recognizable
set [3] describing the unsafe channel configurations. Equivalently, for each q,
the unsafe channel contents are given by a finite union of products of regular
languages:

⋃
0≤i≤nq

Pq,i where Pq,i =
∏

0≤j≤k Uq(i, cj) and Uq(i, cj) is a regular
language for contents of channel cj . For each Pq,i, an unsafe state su is some
(q, u0, u1, . . . uk) such that uj ∈ Uq(i, cj).

Actively Learning to Verify Safety for FIFO Automata 503

For a channel c, consider a function hc : Σ →M∗ defined as follows:

hc(t) =
{
m if t ∈ Θ and δ(t) = c!m
ε otherwise

Let hc also denote the unique homomorphism from Σ∗ to M∗ that extends
the above function.

Let Lq be the subset of an annotated trace set L consisting of all well-formed
strings ending in tq, i.e. Lq = {l | l ∈ L and C(l) = q}.

If an unsafe state su = (q, u0, u1, . . . uk) is reachable, then there must exist a
sequence of transitions lθ ∈ Θ∗ such that s0

lθ→ su, where s0 is the initial state. In
lθ, if the receives and the sends which match the receives are taken out, only the
remaining transitions which are sends can contribute to the channel contents in
su. Looking at the definition of hc, it can be seen that for each channel content
uj in su, uj = hcj (A(lθ)) (recall that A converts a sequence of transitions into
an annotated trace). Thus, for su to be reachable, there must be some annotated
trace l ∈ AL(F) such that su = (C(l), hc0(l), hc1(l), . . . , hck

(l)).
Let h−1

cj
(Uq(i, cj)) denote the inverse homomorphism of Uq(i, cj) under hcj

.
For each Pq,i,

⋂
0≤j≤k h

−1
cj

(Uq(i, cj)) gives a set of annotated strings which can
reach the unsafe channel configurations for control state q. Intersecting this with
Lq verifies if any string in L can reach these set of unsafe states. If we perform
such checks for all control states for all Pq,i, we can verify if any unsafe state is
reached by L. Thus, the set of annotated traces in L that can lead to an unsafe
state is given by:

W(L) =
⋃
q∈Q

(
⋃

0≤i≤nq

(Lq ∩
⋂

0≤j≤k

h−1
cj

(Uq(i, cj))))

We summarize the verification algorithm in Figure 3.

Theorem 2. For verifying safety properties of FIFO automata, the learning to
verify algorithm satisfies the following properties:

1. If an answer is returned by algorithm, it is always correct.
2. If AL(F) is regular, the procedure is guaranteed to terminate.
3. The number of membership and equivalence queries are at most as many as

needed by Angluin’s algorithm. The total time taken is bounded by a polyno-
mial in the size of the minimal automaton for AL(F) and linear in the time
taken for membership queries for AL(F).

5 Generalization to Other Infinite State Systems

The verification procedure described for FIFO automata can be generalized to
other infinite state systems. The challenge for each class of system is to identify
the alphabet Σ which provides an annotation enabling the following:

504 A. Vardhan et al.

algorithm learner
begin
Angluin’s L∗ algorithm
end

algorithm isMember
Input: Annotated trace l
Output: is l ∈ AL(F)?
begin

if l not well-formed return no
else

find receives matching barred symbols
find possible positions for receives
simulate resulting strings on FIFO

system on the fly
if any string reaches C(l) with

correct annotation, return yes
return no

end

algorithm Equivalence Check
Input: Annotated trace set L
Output: is L = AL(F)?
If not, then some string in L ⊕ AL(F)
begin

F(L) = Post(L) ∪ {tq0}
if ∃l ∈ (F(L) − L)

if isMember(l)
return (no, l)

else
return (no, l′ where l = Post(l′))

else if F(L) � L
return (no, l ∈ (L − F(L)))

else if ∃l ∈ W(L)
if isMember(l)

Print (safety prop. does not hold, l); stop
else

return (no, l)
else

Print (safety prop. holds); stop
end

Fig. 3. Learning to verify algorithm

– membership query for the annotated trace language,
– function to compute Post() for a given annotated set, and
– function to find if a string in an annotated set can reach an unsafe state

Notice that in the verification procedure we do not assume anything else
about FIFO automata other than the above functions. In fact, the learning
algorithm does not have to be limited to regular languages; any suitable class of
languages can be used if the required decision procedures are available.

6 Implementation

We have updated the Lever (LEarning to VERify) tool suite first introduced
in [14] with the active learning based verification procedure for FIFO automata.
The tool, written in Java, is available from [9]. We use a Java DFA package
available from http://www.brics.dk/~amoeller/automaton/.

Size T Sizeold Told Trmc

Producer Consumer 7 0.3s 20 0.4s 3.3s
Alternating Bit 33 2s 104 4.1s 24.7s
Sliding Window 133 54s 665 81.2s 78.4s

Table 1. Running time

We have used Lever to
analyze some canonical FIFO
automata verification prob-
lems: Producer Consumer,
Alternating bit protocol and
Sliding window protocol (win-
dow size and maximum se-
quence number 2). Table 1

Actively Learning to Verify Safety for FIFO Automata 505

shows the results obtained. We compare the number of states of the final au-
tomaton (Size) and the running times (T) using the verification procedure in
this paper with the procedure we used earlier in [14] (columns Sizeold and Told).
It can be seen that there is an improvement using the new procedure (although
the comparison of Size should be taken with the caveat that the annotation in
the two procedures is slightly different). All executions were done on a 1594 MHz
notebook computer with 512 MB of RAM using Java virtual machine version
1.4.1 from Sun Microsystems. We also report the time taken (Trmc) by the regular
model checking tool [10] on the same examples. Although a complete compar-
ative analysis with all available tools remains to be done, it can be seen the
running time of Lever is slightly better than the regular model checking tool.

References

1. P. A. Abdulla, B. Jonsson, M. Nilsson, and J. d’Orso. Algorithmic improvements
in regular model checking. In Computer-Aided Verification (CAV’03), volume 2725
of LNCS, pages 236–248. Springer, 2003.

2. D. Angluin. Learning regular sets from queries and counterexamples. Inform.
Comput., 75(2):87–106, Nov. 1987.

3. J. Berstel. Transductions and Context-Free-Languages. B.G. Teubner, Stuttgart,
1979.

4. B. Boigelot. Symbolic Methods for Exploring Infinite State Spaces. PhD thesis,
Collection des Publications de la Faculté des Sciences Appliquées de l’Université
de Liége, 1999.

5. A. Bouajjani and P. Habermehl. Symbolic reachability analysis of FIFO-channel
systems with nonregular sets of configurations. Theoretical Computer Science,
221(1–2):211–250, June 1999.

6. A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular model checking. In
E. A. Emerson and A. P. Sistla, editors, Proceedings of the 12th International Con-
ference on Computer-Aided Verification (CAV’00), volume 1855 of LNCS, pages
403–418. Springer, 2000.

7. A. Finkel, S. Purushothaman Iyer, and G. Sutre. Well-abstracted transition sys-
tems: Application to FIFO automata. Information and Computation, 181(1):1–31,
2003.

8. P. Habermehl and T. Vojnar. Regular model checking using inference of regular
languages. In Proc. of Infinity’04, London, UK (to appear), 2004.

9. LEVER. Learning to verify tool. http://osl.cs.uiuc.edu/~{}vardhan/lever.html,
2004.

10. M. Nilsson. http://www.regularmodelchecking.com, 2004.
11. J. Oncina and P. Garcia. Inferring regular languages in polynomial update time. In

Pattern Recognition and Image Analysis, volume 1 of Series in Machine Perception
and Artificial Intelligence, pages 49–61. World Scientific, Singapore, 1992.

12. T. Touili. Regular model checking using widening techniques. In ENTCS, vol-
ume 50. Elsevier, 2001.

13. A. Vardhan, K. Sen, M. Viswanathan, and G. Agha. Ac-
tively learning to verify safety for FIFO automata (full version).
http://osl.cs.uiuc.edu/docs/lever-active/activeFifo.pdf, 2004.

14. A. Vardhan, K. Sen, M. Viswanathan, and G. Agha. Learning to verify safety
properties. In Proc. of ICFEM’04, Seattle, USA (to appear), 2004.

Reasoning About Game Equilibria
Using Temporal Logic

G. Venkatesh

Indian Institute of Management, Bangalore - 560076, India

Abstract. We use linear time temporal logic formulas to model strate-
gic and extensive form games. This allows us to use temporal tableau
to reason about the game structure. We order the nodes of the tableau
according to the players’ preferences. Using this, we can derive a decision
procedure for reasoning about the equilibria of these games. The main
result developed in this paper is that every finite game can be converted
into an equivalent bargaining game on temporal tableau, where the play-
ers negotiate the equilbrium outcome. The decision method proposed in
this paper has a number of merits compared to others that can be found
in the growing literature connecting games to logic - it captures a wide
variety of game forms, it is easy to understand and implement, and it
can be enhanced to take into account bounded rationality assumptions.

1 Introduction

There has been considerable recent interest in the connections between game
theory and logic. In one direction, game theory has helped formulate better
semantic models for a variety of logics [10]. In the other direction, modal logic has
helped in understanding games and equilibria, specifically the epistemic issues
in games of imperfect or incomplete information [4, 3, 2, 11, 6, 7, 14, 1, 9].

The idea of using a temporal logic (CTL) to model extensive games and to
reason about backward induction was discussed in [2]. The key argument used
here is that CTL frames have sufficient structure to represent the game trees of
sequential games. In [3], a new consequence mechanism (different from the usual
logical consequence relation) is defined so that propositional formulas hold in
the Nash equlibrium of a strategic game iff these formulas are consequences of
theories representing the players’ preference orderings. By using an appropriate
modal logic, this idea is extended to extensive games and subgame pefect equi-
libria in [4]. In [11, 6], a logic programming setting is used to capture the game
structure and players’ preferences, so that properties of the game equilibria can
be directly computed.

In this paper, we motivate the use of a simple linear time temporal logic
formulation to model and reason about both strategic form (simultaneous move)
and extensive form (sequential move) games. As in [2], we argue that there is
enough structure in the models of linear time temporal logic to represent a variety
of game forms. Besides, we can extend the tableau based decision procedures for

K. Lodaya and M. Mahajan (Eds.): FSTTCS 2004, LNCS 3328, pp. 506–517, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Reasoning About Game Equilibria Using Temporal Logic 507

temporal logic ([13, 5, 14]) to compute game theoretic consequences as defined in
[3]. This is accomplished by modeling each player’s preferences using an ordering
relationship on the tableau nodes, and by converting the original game into a
negotiation game on the nodes of the tableau. A notable aspect of the ordering of
the tableau nodes is that it accomodates defeasible reasoning, which is required
to resolve some of the paradoxes arising in repeated games.

The paper is organised as follows: Section 1 introduces strategic games and
PTL, with examples showing the approach. Section 2 deals with extensive form
games. Section 3 explains the basic result showing equivalence between game
equilibria and negotiation outcomes on temporal tableau. Sections 4 and 5 con-
clude with possible extensions and directions for future work.

2 Strategic Form Games

Strategic game situations arise when a set of players make their moves simul-
taneously, and the outcome of the game is dependent on the combination of
moves selected by the players. We follow the notation in [8], where the set of
players is denoted by N = {1, ..., n}, and for each player i ∈ N , the (finite
set of) actions (also called choices or strategies) available to her is denoted by
Ai, with Ai ∩ Aj = φ for i �= j. The set of consequences is denoted by C.
A = A1 × A2 × ...× An is the set of strategy profiles.

A strategic game form is given by G = < N,A, C, g > where g : A → C
is a map that associates with each strategy profile a consequence. The player’s
preferences for the consequences is given by the complete, reflexive, transitive
ordering �i on C. A strategic game < G,�i> is a strategic game form together
with a preference ordering for each player.

To model uncertainty between action and consequence, we could consider
a set of states Ω, and write the consequence relation g : A × Ω → C. It is
useful to recall [9], who considers consequences, acts and states as three ways
of partitioning a space of possible worlds. Consequences partition the space of
possibilities by what matters to the agent. Acts partition the space by what the
agent controls, or has the capacity to decide, and States by features of the world
on which the consequences may depend, but over which the agent has no control.

2.1 PTL

We use propositional variables P r
i to denote that player i has chosen an action

ar ∈ Ai. We assume that each consequence in C can be described using a proposi-
tional language using variables Cj , j = 1, ...,m. Similarly, we assume that states
in Ω can be described using a propositional language with variables M ∈ Aux.
Define PTL by the BNF grammar:

φ ::= P r
i |Cj |M | ¬φ |φ1 ∧ φ2 |φ1 ∨ φ2 | © φ |�φ |♦φ |φ1

⋃
φ2

We abbreviate ¬φ1 ∨ φ2 by φ1 ⇒ φ2, (φ1 ⇒ φ2) ∧ (φ2 ⇒ φ1) by φ1 ⇔ φ2,
and φ1 ⇔ ¬φ2 by φ1 ⊕ φ2.

508 G. Venkatesh

2.2 Modeling Strategic Form Games in PTL

We take it that actions of players in this period have bearing on the consequences
in the next period. Thus, the relationship between actions and consequences is
captured through temporal formulas using the next operator©. For example, the
statement “If player 1 chooses a1 and Player 2 chooses a2 then the consequence is
C1” is represented by P 1

1 ∧P 2
2 ⇒©C1. To express that each player has to choose

exactly one of her actions, we can use the choice formulas P r
i ⇒

∧
r′ 	=r ¬P r′

i .
We let Γ (G) denote the set of all such action-consequence and choice formulas
arising from the game form G, and will abbreviate Γ (G) to Γ whenever the game
form is clear from the context.

We assume that for each player i, there is a complete, reflexive, transitive
ordering �i on {Cj | j = 1, ...,m}. We can always directly derive this ordering
from the ordering of C, if we use one variable Cj to represent an element of C.
But, as we shall see later, we could gain some modeling flexibility by considering
the ordering on Cj and allowing properties of C to be modeled by propositional
formulas over Cj .

Example 1 (Prisoner’s Dilemma).
Game Description: Two suspects in a crime are put into separate cells. If they
both confess, each will be sentenced to 3 years in prison. If only one of them
confesses, he will be freed and used as a witness against the other, who will
receive 5 years. If neither confesses, they will both be convicted for a minor
offense and spend one year in prison.

We use four action propositions P c
1 , Pn

1 , P c
2 , Pn

2 , where P c
i means i chooses

to confess and Pn
i means i chooses to not confess. The four consequences are

C3y,3y, C5y,free, Cfree,5y, C1y,1y, where Cp,q represents the sentence p for Player
1 and q for Player 2. The temporal formulas representing this game are:

(F1) P c
1 ∧ P c

2⇒©C3y,3y (F2) P c
1 ∧ Pn

2 ⇒©Cfree,5y

(F3) Pn
1 ∧ P c

2 ⇒©C5y,free (F4) Pn
1 ∧ Pn

2 ⇒©C1y,1y

(F5) P c
1 ⊕ Pn

1 (F6) P c
2 ⊕ Pn

2

The obvious preference ordering is Cfree,5y �1 C1y,1y �1 C3y,3y �1 C5y,free

for Player 1, and C5y,free �2 C1y,1y �2 C3y,3y �2 Cfree,5y for Player 2.

2.3 Tableau Construction

Let 2PTL be the collection of all subsets of PTL formulas, and Γ ⊆ PTL.
A tableau is a graph < T (Γ),⇒◦, S >, with nodes T (Γ) ⊆ 2PTL, and
⇒◦ ⊆ T (Γ)× T (Γ) are arcs labeled © between nodes defined by
⇒◦= {< n1,n2 > | φ ∈ n2 iff ©φ ∈ n1}
and S ⊆ T (Γ) is the set of start states.
Whenever there is no confusion we will write T (Γ) instead of < T (Γ),⇒◦, S >.

Let for any Δ ⊆ PTL, Next(Δ) = {φ| © φ ∈ Δ}.
The construction of T (Γ) proceeds as follows:

We start with T (Γ) = {Γ} and S = {Γ}.

Reasoning About Game Equilibria Using Temporal Logic 509

Tableau Construction Procedure (see [12, 5])
Repeat the following operations on T (Γ) (and S) till there are no further changes:
Replace ¬(φ ∨ ψ) by ¬φ ∧ ¬ψ, ¬(φ ∧ ψ) by ¬φ ∨ ¬ψ, ¬© φ by ©¬φ;
Replace ¬♦φ by �¬φ, ¬�φ by ♦¬φ, ¬(φ

⋃
ψ) by �¬ψ ∨ ¬ψ

⋃
(¬φ ∧ ¬ψ) ;

Replace ♦φ by ♦P ∧�(P ⇔ φ), where P is a new propositional variable;
Replace φ

⋃
ψ by φ

⋃
P ∧�(P ⇔ ψ)∧♦P , P being a new propositional variable;

Replace ♦P by P ∨©♦P and φ
⋃

P by P ∨ φ ∧ ¬P ∧©φ
⋃

P ;
Replace φ ∧ ψ by two formulas φ and ψ ;
Replace �φ by two formulas φ and ©�φ;
Replace a node Δ ∪ {φ ∨ ψ} by two nodes Δ ∪ {φ} and Δ ∪ {ψ};
Add Next(n) to T (Γ) and < n,Next(n) > to ⇒◦;

Tableaus can be used to check if a set of formulas is unsatisfiable. A node in
the tableau is unsatisfiable if it contains P and ¬P for some proposition P . A
strongly connected component (SCC) is a subset of nodes O such that ∀n, n′ ∈ O,
there is a path from n to n′ in the tableau. An SCC is terminal if there are no
nodes outside the SCC that are reachable from a SCC node. A terminal SCC
is said to be unsatisfiable if all the nodes of the SCC contain both ¬P and©♦P .

Node Deletion Procedure
Repeat deletion of nodes from the tableau as follows:
Delete unsatisfiable nodes;
Delete unsatisfiable terminal SCCs;
Delete n if Next(n) is deleted

If there are no nodes left in S after this, the tableau is said to be empty.

Proposition 1. Γ ⊆ PTL is unsatisfiable iff the tableau T (Γ) is empty . ([13])

If the tableau is not empty, we let the remaining set of nodes of the tableau
be denoted by T (Γ), and the remaining start nodes by S.

2.4 Preference Relations on Tableau Nodes

The end nodes E ⊆ T (Γ) defined by E = {n ∈ T (Γ) | ∃j : Cj ∈ n} are those
nodes that contain consequence variables. The models of relevance to us are
sequence of nodes starting with a node in S and ending at a node in E. We
should note that such sequences may also contain intermediate nodes in E.

Since end nodes may contain more than one consequence variable, we extend
the ordering as follows: We draw an arc labeled �i from end node n1 to end
node n2 if ∀C ∈ n2, ∃C ′ ∈ n1 such that C ′ �i C. This means that each player
considers only the most preferred consequence in a node. We use this to model
reversal of preferences: since it is possible that n2 �i n1 but n1 ∪ {C} �i n2.

An end node n2 is said to be inferior to another end node n1 for player i
if there is a path with arcs labeled �i from node n1 to node n2. We will use
preferences to eliminate inferior nodes from E. Now, there is another way that
we can show that tableaus are empty : i.e. when E = ∅.

510 G. Venkatesh

For the Prisoners’ dilemma example, let Γ = {F1, F2, F3, F4, F5, F6}. The
relevant part of T (Γ) and ordering of end nodes is displayed below:

n2 n3 n4n1

��� �
� � ��

P c
1 P c

2 Pn
1 P c

2 P c
1 Pn

2 Pn
1 Pn

2
©C3y,3y ©C5y,free ©Cfree,5y ©C1y,1y

C3y,3y C5y,free Cfree,5y C1y,1y

� ���

� �
� ���1 �1

�1,�2

� ��� ��
�2 �2

2.5 Prisoners’ Dilemma as a Negotiation Game on Tableau

We now look at eliminating end nodes that are not preferred by the players.
However, it is unlikely that there is a common most preferred end node - Player
1 prefers n3 the most, while for Player 2 it is n2. Similarly for least preferred
end nodes - n2 is the least preferred for Player 1, while for Player 2 it is n3.

But interestingly, we can define a negotiation game on end nodes, in which
the players can negotiate the nodes they would like to eliminate. The game starts
with a collection of all end nodes in the tableau. A player attempts to eliminate
n that is inferior to n′, which is permitted only if she has an action that leads
to n′ but not to n. Another player can defeat this if she has an action that will
prevent this selection from taking place. The player whose selection is defeated
loses the game. To prevent this, a player will only select nodes that cannot be
defeated. When the players make such undefeated offers of end node sets, the
negotiated outcome is taken as the intersection of the selected sets.

In our example, Player 1 finds n2 is inferior to n1, and has a move (P c
1) that

leads to n1 but not to n2. Besides, Player 2 cannot defeat this (both result from
the same action P c

2 of Player 2). So Player 1 can successfully offer to eliminate
n2. Similarly between n3 and n4, she offers to eliminate n4. Player 1 thus offers
{n1, n3} in her first move. Likewise, Player 2 will offer {n1, n2}. Since both have
to arrive at a common set, they take the intersection of these sets which has only
n1, and this is the negotiated outcome.

It can be easily observed that this line of reasoning is exactly the same as
the one used for finding mutual best responses in a Nash equilibrium (see [3]).

2.6 Game Theoretic Consequence

We now explain how to prove properties of equilibria using tableaus.
To prove that both players will serve 3 years in prison, we show that Γ ∪{¬©

C3y,3y} is unsatisfiable. The tableau is similar to T (Γ) except that all end nodes
contain ¬C3y,3y (n1 already contains C3y,3y). If n1 is the result of negotiation,

Reasoning About Game Equilibria Using Temporal Logic 511

then this will result in the elimination of all the end nodes. Unfortunately, it is
not so straightforward. Since node deletion precedes negotiation, we would find
that n1 is already eliminated before negotiation starts. Then the players will be
unable to eliminate n2 and n3 respectively during negotiation (they need n1 for
this). The negotiated solution is {n2, n3}, and the tableau is not empty.

We work around this by marking sub-formulas originating from ¬© C3y,3y,
so that n1 survives the deletion procedure. Post negotiation, we remove the
markings, and carry out the node deletion procedure again. This time, the only
surviving end node n1 is deleted, leaving us with an empty tableau.

Marking/Unmarking: To mark φ, replace each proposition P by a new propo-
sition P ∗ to get φ∗. To unmark - replace P ∗ in φ by the original proposition P .

Example 2 (Hawk-Dove).
Game Description: Two contestants in a fight could each act like a hawk or as
a dove. The best outcome is to win without a fight - which occurs when she is a
hawk, while the other is a dove. The worst is when both are hawks, since both
get badly hurt. Both could be doves in which case peace prevails.

We use propositions Ph
1 , P d

1 , Ph
2 , P d

2 to denote the two players choice of hawk-
ish or dovish behaviour, and use Churt, Cpeace, C1wins, C2wins to model the con-
sequences. The consequence formulas are given by Ph

1 ∧Ph
2 ⇒©Churt, Ph

1 ∧P d
2 ⇒

©(C1wins∧¬Churt), P d
1 ∧Ph

2 ⇒©(C2wins∧¬Churt) and P d
1 ∧P d

2 ⇒©(Cpeace∧
¬Churt), and the preference ordering by C1wins �1 Cpeace �1 C2wins �1 Churt

and C2wins �2 Cpeace �2 C1wins �2 Churt. The tableau is displayed below:

n2 n3 n4n1

��� �
� � ��

P d
1 P d

2 Ph
1 P d

2 P d
1 Ph

2 Ph
1 Ph

2
©Cpeace ©C1wins ©C2wins ©Churt

Cpeace C1wins C2wins

¬Churt ¬Churt ¬Churt
Churt

� �� �

� �
� �� �1 �1

�1,�2

� � �� ��
�2 �2

Player 1 finds n1 inferior to n2 and n4 inferior to n3, with Player 2 not being
able to defeat these selections. Thus Player 1 offers the reduced set {n2, n3} in
the next round. Player 2 likewise offers {n2, n3} based on her preferences. The
negotiation stops here since neither is able to eliminate any more states.

To prove that neither player is hurt in the equilibrium, we include©C∗
hurt to

the set of formulas and construct the tableau. C∗
hurt is added to {n1, n2, n3, n4}.

The equilibrium negotiation produces {n2, n3}. Unmarking will replace C∗
hurt by

Churt in both of these nodes, which leads to a contradiction and both of these
are eliminated. We end up with an empty tableau.

512 G. Venkatesh

Example 3 (Bertrand Pricing).
Game Description: Two profitable firms selling an identical product get into a
phase of intense rivalry characterised by a price war. Each firm could choose to
change their price from high to low. The firm offering a low price could capture
the entire market but not make profits. A firm makes losses only if it sells nothing.

We wish to show that in equilibrium neither will make profits or losses. PLow
i

denotes that Player i prices low, Mi denotes that i sells in the market, and
Ci,loss, Ci,profit denotes i’s consequences of making losses or profits. The pref-
erence ordering can be written as Ci,profit �i ¬Ci,loss �i Ci,loss where we order
consequence literals rather than consequence variables to avoid introduction of
another consequence variable that would just represent ¬Ci,loss.

Simple Model: At least one of the firms will drop prices, i.e. PLow
1 ∨PLow

2 . The
third statement is expressed by PLow

1 ⇒©(M1∧¬C1,profit), ¬PLow
1 ∧PLow

2 ⇒
©¬M1, PLow

2 ⇒©(M2∧¬C2,profit) and ¬PLow
2 ∧PLow

1 ⇒©¬M2 . The last
statement is ©(¬M1 ⇔ C1,loss), ©(¬M2 ⇔ C2,loss). The choice function is
©(Ci,profit ⇒ ¬Ci,loss). The relevant part of the tableau is shown below:

n2 n3n1

�� �
� � �

¬PLow
1 PLow

1 PLow
1

PLow
2 ¬PLow

2 PLow
2

¬C1,profit ¬C2,profit ¬C1,profit ¬C2,profit ¬C1,profit

C1,loss ¬C2,loss ¬C1,loss C2,loss ¬C1,loss

¬C2,profit

¬C2,loss

� �� � ��

�1 �2

Node n1 is inferior to node n3 for firm 1 and firm 2 cannot defeat this selec-
tion, while node n2 is inferior to node n3 for player 2 and firm 1 cannot defeat
the selection. n3 is thus the negotiated equilibrium.

To prove that neither firm makes profits, we include ©(C∗
1,profit ∨C∗

2,profit).
n3 contains (C∗

1,profit ∨ C∗
2,profit) and is the negotiated outcome. When un-

marked, this contradicts with ¬C1,profit and ¬C1,profit already present in n3.
We get the same result when we include©(C∗

1,loss∨C∗
2,loss), and thus we are

able to conclude that neither firm makes profits or losses.

Full Model: We could consider a repeated game, where at each stage the play-
ers choose to retain or drop prices. Eventually one of them drops prices, ex-
pressed by ♦(PLow

1 ∨ PLow
2). The action-consequences are �(PLow

1 ⇒ ©(M1 ∧
¬C1,profit)), �(¬PLow

1 ∧PLow
2 ⇒©¬M1), �(PLow

2 ⇒©(M2 ∧¬C2,profit)) and
�(¬PLow

2 ∧ PLow
1 ⇒ ©¬M2). The remaining relations are: �(¬M1 ⇔ C1,loss),

�(¬M2 ⇔ C2,loss), �(Ci,profit ⇒ ¬Ci,loss). Both firms make profits till the price
war starts, which is expressed by (C1,profit ∧ C2,profit)

⋃
(PLow

1 ∨ PLow
2).

To show that one of the firms will not make losses, we use �(¬C∗
1,loss ∨

¬C∗
2,loss). We build the tableau with its negation ♦(C∗

1,loss ∧ C∗
2,loss). We don’t

Reasoning About Game Equilibria Using Temporal Logic 513

need any equilibrium arguments, though we would need to eliminate nodes with
unsatisfiable eventualities using SCCs (see [5]). In our case, ♦(PLow

1 ∨PLow
2) can-

not be satisfied in the only surviving SCC with the propositions ¬PLow
1 ,¬PLow

2 .
To show that neither firm will make losses, we use �(¬C∗

1,loss ∧¬C∗
2,loss). To

prove this, we add ♦(C∗
1,loss ∨ C∗

2,loss). We can recognise the following cases:

1. Loop containing ¬PLow
1 ,¬PLow

2 : The eventuality ♦(PLow
1 ∨PLow

2) cannot be
satisfied.

2. Transition from node containing ¬PLow
1 ,¬PLow

2 to a node containing either
PLow

1 or PLow
2 : The entire ♦(C∗

1,loss ∨C∗
2,loss) is carried into the latter node.

3. SCC of nodes containing either PLow
1 or PLow

2 : Nodes containing C1,loss

and C2,loss are considered inferior to those containing ¬C1,loss,¬C2,loss by
Players 1 and 2 respectively (all other contents of these nodes being identical)
(Note: We need a more precise definition of defeating node selections in a
SCC). The eventuality fails in the SCC once these inferior nodes are removed.

3 Extensive Form Games

To define extensive form games, we use histories (see [8]) which are finite se-
quences of actions taken from the sets Ai. If h = a0a1...ak is a history, then
a0a1...al, with l < k is a called a prefix of h. We consider finite sets H of his-
tories that are prefix closed i.e. if h′ is a prefix of h ∈ H, then h′ ∈ H. The set
of terminal histories Z ⊆ H are those that are not prefixes of any history in H.
P :(H\Z) → N is defined by P(a0a1...ak) = i, iff ak ∈ Ai . A finite extensive
game form is a tuple G =< N,Ai,H,P, C, g > where g : Z → C is a map that
associates with each terminal history a consequence. An extensive game is such
a tuple together with orderings �i of C for each player i .

3.1 Modeling Extensive Form Games in PTL

We use the © operators to represent progression of stages of the game. Hence a
sequence©...© of l applications of the© operator (represented by© l) denotes
the l + 1-th stage of the game.

Let a0a1...ak ∈ Z be a terminal history, and let P(a0a1...al) = il, for all
l ≤ k. To state that a consequence Cr holds in this history, we can use the PTL
formula P a0

i0
∧©P a1

i1
...∧© kP ak

ik
⇒© (k+1)Cr. Let Γ (G) be the collection of all

such temporal formulas derived from the histories in H.

Example 4 (Chain Store Game).
Game Description: A single local competitor in each city decides whether to
start a store competing with the chain store. If it does, the chain store could
start a price war (when both make losses) or could accomodate the competitor
(in which case they share the profits). The best situation for the chain store is
if the competitor stays out, when it enjoys monopoly profits.

514 G. Venkatesh

We use propositions PE
1 , PO

1 , PF
2 , PA

2 where Player 1 is the local competitor
whose actions are to enter or stay out, and Player 2 is the chain store who can
fight or accomodate. We use Closs, Cmpoly, Cshare to model consequences with
the ordering being Cshare �1 Cmpoly �1 Closs and Cmpoly �2 Cshare �2 Closs.
The consequence formulas are given by:

Γ = {PO
1 ⇒©Cmpoly, PE

1 ∧©PF
2 ⇒©©Closs, PE

1 ∧©PA
2 ⇒©©Cshare}.

We can argue about the tableau nodes using the corresponding temporal
formulas. The end nodes are {©©Cshare,©©Closs,©Cmpoly}. Player 2 finds
©©Closs inferior to ©©Cshare, with Player 1 unable to defeat the selection.
Thus Player 2 offers the reduced set {©©Cshare,©Cmpoly}. If Player 1 makes
no elimination offer, this set becomes the result of the first round. In the next
round, Player 1 eliminates the inferior ©Cmpoly, with Player 2 unable to defeat
this selection. The equilibrium is {©© Cshare}, and we are able to prove that
in equilibrium the chain store will always share profits with new entrants. This
line of reasoning is just the backward induction argument, which starts from the
leaves of the extensive game form and moves backward to the root.

Note that, Player 1 could eliminate ©© Closs in the first round, which it
finds inferior to ©Cmpoly and Player 2 is unable to defeat this. The negotiation
method thus provides for both forward and backward reasoning.

Chain Store Paradox: Backward reasoning can give rise to paradoxical situa-
tions, since it assumes that players ignore the past when making choices affecting
the future. Consider a repeated game in which the chain store competes in sev-
eral cities. Without loss of generality, we let Player 1 represent all the competi-
tors. The consequence formulas can be represented through �(PO

1 ⇒©Cmpoly),
�(PE

1 ∧©PF
2 ⇒©©Closs), �(PE

1 ∧©PA
2 ⇒©©Cshare). Since©©♦¬Cshare

cannot be satisfied, we can show that the chain store will always share profits.
The chain store paradox arises because, while the chain store may accomo-

date one competitor, it is not credible that it will share profits in all cities. It
may rather choose to start a price war and build a reputation as a fighter to deter
competition. In other words, past does influence the future through the reputa-
tion of Player 2, which we model using proposition Cimage earned by Player 2
if it “surprises” the opponent by fighting: �(PF

2 ⇒©Cimage).
The preference relations are: Cimage �2 Cmpoly, Cmpoly �1 Cimage �1 Closs

(Player 2 values its reputation the most, while Player 1 fears this more than a
monopoly). Note that since {Cimage, Closs} �2 {Cshare} �2 {Closs}, this causes
a reversal of preferences, i.e. Player 2 prefers to maintain his reputation at the
cost of making losses. Knowing this, Player 1 should opt to stay out.

To show this, note that Player 2 finds©©Cshare inferior to {©©Closs,©©
Cimage}, with Player 1 unable to defeat the selection. Player 2 thus offers end
nodes {©©Closs,©©Cimage} and ©Cmpoly. Player 1 continues to offer ©©
Cshare and©Cmpoly as before. The negotiated outcome is thus©Cmpoly, which
is reached when Player 1 opts to stay out.

Note that this makes the logic non-monotonic: ©©Cshare was a game
theoretic consequence of Γ , but is not a consequence of Γ∪{�(PF

2 ⇒©Cimage)}.

Reasoning About Game Equilibria Using Temporal Logic 515

4 Negotiation Games Over Tableau

We now formalise the negotiation game described using examples so far.
A game form over tableau is defined as a game < N, 2E > where the players

N = {1, ..., n} select subsets of E. For each player i, �i ⊆ E × E is defined
by �i= {< n1,n2 > | ∀C ∈ n2, ∃C ′ ∈ n1 C ′ �i C}. Let �∗

i be the transitive
closure of �i. Node n is inferior to n′ for player i if n′ �∗

i n, but not n �∗
i n′.

A path to end nodes E in the tableau T is a sequence of nodes n0, n1, ..., nk

with n0 ∈ S and nk ∈ E. The set of all such paths is denoted by Paths(E). A
path prefix of length l is the sub-sequence n0, n1, ..., nl of the path n0, n1, ..., nk,
with l ≤ k. We write Paths(E, l) to denote the set of such path prefixes. For
n ∈ E, Actionsi(l, n) = {P r

i |P r
i ∈ nl, n0, ..., nl ∈ Paths({n}, l)}.

We define Controli(n, n′, l) inductively as follows:

Controli(n, n′, 0)=True iff Actionsi(0, n)�= Actionsi(0, n′)
Controli(n, n′, l) =True iff Actionsi(l, n) �= Actionsi(l, n′)

and ¬Controlj(n, n′, l − 1), for all j �= i and for l > 0.

Intuitively, Player i can take an action at l which would lead to n but not to
n′ or vice-versa, and she cannot be pre-empted in this by anyone else.
Let Improvei(n, l) = {n′| Controli(n, n′, l) and n is inferior to n′} be nodes that
offer improvements for i.

For n′ ∈ Improvei(n, l), we say that player j �= i can defeat the selection
n′ of i if either Controlj(n, n′, l), or there is an end node n′′ ∈ Improvej(n′, k)
with k > l. Intuitively, j can defeat i’s selection at l, either if i and j have to
co-ordinate their actions at l, or j can later divert the game to node n′′ instead.
We let Feasiblei(n) =

⋃
l≥0{n′ ∈ Improvei(n, l)| ∀j �= i : j cannot defeat the

selection n′ of i}.
If Ek is the set of end nodes at any stage, we say Ei ⊆ Ek is a feasible subset

for player i if ∀n ∈ Ek − Ei, Feasiblei(n) ∩ Ei �= ∅.

The Negotiation Game
We set E0 = E as the available set for each player at the start. At each stage
k ≥ 1 of the game, player i chooses a feasible subset Ei ⊆ Ek−1. The negotiated
outcome of stage k is taken as Ek = ∩i∈N Ei. The negotiation game stops when
Em+1 = Em, i.e. when the players cannot improve on the negotiated outcome.

A terminal SCC O is now said to be unsatisfiable if there is some proposition
P , such that ∀n ∈ O − (E − Em), n contains both ¬P and ©♦P .

4.1 Tableau Based Game Consequence Decision Procedure

To show that a formula φ holds in all the equilibria of a game represented by a
set of formulas Γ :

Mark the formula φ to get φ∗;
Construct the tableau T (Γ ∪ {¬φ∗});
Execute the node deletion procedure;
Execute the negotiation game;

516 G. Venkatesh

Unmark all the formulas in the tableau;
Execute the node deletion procedure (using new definition of unsatisfiable SCCs)

We let TG(Γ, φ) denote the tableau resulting from this procedure.
TG(Γ, φ) is said to be empty if either the set of start or end nodes is ∅.
We abbreviate TG(Γ, False) by TG(Γ) .

Proposition 2 (Soundess and Completeness for Strategic Form Games)
If Γ is the set of temporal formulas representing the strategic game G. Then:
(1) The game has a Nash equilibrium iff the tableau TG(Γ) is not empty.
(2) φ is true in the Nash equilibria iff the tableau TG(Γ, φ) is empty.

Proof. Detailed proof omitted. We first show that the negotiation game cor-
responds to eliminating the choices that are not best responses, so that the
intersection will yield the Nash equilibrium. This proves (1). For (2), we use
induction on the structure of the formula φ and the nodes of the tableau. (Proof
sketch follows the line of argument used in [3]) ��

Proposition 3 (Soundness and Completeness for Extensive Form Games)
Let Γ be the set of temporal formulas representing the extensive form game
< N,Ai,H,P,�i> Then:

(1) The tableau TG(Γ) will not be empty, and
(2) φ holds in the sub-game perfect equilibrium iff TG(Γ, φ) is empty.

Proof. Detailed proof omitted. The negotiation game follows the backward in-
duction argument (Kuhn’s theorem, see [8]). This proves (1). For (2), we use
induction on the structure of the formula φ and the nodes of the tableau. (Proof
sketch follows the line of argument used in [4]) ��

5 Bounded Rationality

We saw in section 2.1 that the game theoretic consequence relationship defined
here is non-monotonic, and hence permits defeasible reasoning. In the example,
the chain store could “surprise” the competitor by choosing to fight, which causes
a revision in preference orderings and changes the negotiated outcome. An agent
“learns” about the game from surprise deviations from its calculated equilibrium.

Since temporal logic allows modeling of eventually periodic sequences, we
can take the basic epistemic unit to be finite or eventually periodic sequences of
actions and outcomes. As agents interact through game playing, they gain more
such units of knowledge about the game. The agent i’s knowledge accretion is
thus defined by the sequence of sets Γ 0

i , Γ 1
i , ... of temporal formulas. Then φ will

hold in the equilibria at stage l only if it is a consequence of each Γ l
i .

The two key computational elements we have introduced are - identifying
end node improvements (which involves preference orderings), and checking if
the selection can be defeated (which don’t). In principle, we could plug-in more
limited procedures for these two computations for each agent. The procedures
can then be improved as the agent gains experience playing games.

Reasoning About Game Equilibria Using Temporal Logic 517

6 Possible Extensions

Adding simultaneous moves in the extensive form does not change the deci-
sion procedure. The negotiation process can be easily extended to capture co-
ordination, where the players mutually prefer one equilibrium over another. It
is also possible to create a simple model of mixed strategies using multisets of
end nodes.

The method suggested is also quite amenable to creating a logic calculator
for games (see [5]).

Future work will be directed at coming up with a logic system that directly
captures the preference relations, using a method similar to the one in [3].

References

1. G B Asheim and M Dufwenberg: Deductive Reasoning in Extensive Games. The
Economic Journal 113 (April 2003). Blackwell Publishing. 305–325.

2. G Bonanno: Branching time logic, perfect information games and backward induc-
tion. In 3rd Conference on Logic and Foundations of Game and Decision Theory,
Torino, Italy, Dec 1998. International Centre for Economic Research (ICER).

3. P Harrenstein: A Game-Theoretical Notion of Consequence. In 5th Conference on
Logic and Foundations of Game and Decision Theory, Torino, Italy, Jun 2002.
International Centre for Economic Research (ICER).

4. P Harrenstein, W van der Hoek, J-J Meyer and C Witteven: A Modal Character-
ization of Nash Equilibrium, Fundamenta Informaticae, 57, pp. 281–321, 2003.

5. G L J M Janssen: Hardware verification using Temporal Logic: A Practical View.
IFIP (1990). L J M Claesen (ed). 159–168. Available at the TLA home page
http://research.microsoft.com/users/lamport/tla/logic-calculators.html

6. Marina De Vos and Dick Vermeir: Choice Logic Programs and Nash equilibria
in Strategic Games. In Jorg Flum and Mario Rodriguez-Artalejo (eds), Computer
Science Logic (CSL ’99), LNCS-1683. Springer Verlag. 266–276.

7. Marina De Vos and Dick Vermeir: Dynamically Ordered Probabilistic Choice Logic
Programming. FST&TCS -20, LNCS -1974, Springer Verlag, 2000.

8. Martin J Osborne and Ariel Rubinstein: A Course in Game Theory, The MIT
Press, Cambridge, Massachusets, London, England, third edition, 1996.

9. R Stalnaker: Extensive and strategic forms: Games and models for games. Research
in Economics 53 (1999). 293–319. Academic Press.

10. van Benthem: Logic and Games. Lecture notes. 1999. ILLC Amsterdam & Stanford
University.

11. S van Otterloo, W van der Hoek, M Woolridge: Preferences in Game Logics.
In AAMAS 2004. New York. http://www.aamas2004.org/proceedings/
021 otterloos preferences.pdf

12. G Venkatesh: A decision method for temporal logic based on resolution. In Pro-
ceedings of the 5th FST & TCS conference. Vol. 206, LNCS, 272–289.

13. P Wolper: The tableau method for temporal logic - an overview. Logique et Analyse
28 (1985). 119–152.

14. M Woolridge, C Dixon and M Fisher: A tableau based proof procedure for temporal
logics of knowledge and belief. Journal of Applied Non-Classical Logics (1998). Vol
8(3), 225–258.

Alternation in Equational Tree Automata Modulo XOR

Kumar Neeraj Verma

Institut für Informatik, TU München, Germany
verma@in.tum.de

Abstract. Equational tree automata accept terms modulo equational theories,
and have been used to model algebraic properties of cryptographic primitives in
security protocols. A serious limitation is posed by the fact that alternation leads to
undecidability in case of theories likeACU and that ofAbelian groups, whereas for
other theories like XOR, the decidability question has remained open. In this paper,
we give a positive answer to this open question by giving effective reductions of
alternating general two-way XOR automata to equivalent one-way XOR automata
in 3EXPTIME, which also means that they are closed under intersection but not
under complementation. We also show that emptiness of these automata, which
is needed for deciding secrecy, can be decided directly in 2EXPTIME, without
translating them to one-way automata. A key technique we use is the study of
Branching Vector Plus-Minimum Systems (BVPMS), which are a variant of VASS
(Vector Addition Systems with States), and for which we prove a pumping lemma
allowing us to compute their coverability set in EXPTIME.

1 Introduction

Tree automata [7, 4] are a well known tool for verifying cryptographic protocols [14, 8, 3].
Most approaches to verifying cryptographic protocols are based on the assumption of
perfect cryptography which ignores the algebraic properties of encryption. Such an
analysis is often unrealistic. For example an attack [17] was found against Bull’s re-
cursive authentication protocol which uses XOR for encryption, although the protocol
was shown to be secure [16] assuming perfect cryptography. To deal with such alge-
braic properties, we have introduced equational tree automata [20, 22, 21] which accept
terms modulo equational theories. While related, but not identical, notions of automata
have independently been introduced by others [15, 13], the distinguishing feature of our
approach is the description of automata transitions using Horn clauses, which provide a
uniform framework for expressing variants of general two-wayness and alternation [18]
(see also [4], Chapter 7), as well as for dealing with arbitrary equational theories.

Protocol insecurity is NP-complete [2, 1] for several theories including XOR, as-
suming bounded number of sessions. This may help in detecting attacks which require
very small number of sessions. But for certifying protocols we need some safe abstrac-
tion, which does not miss any attacks. A common safe abstraction is to let a bounded
number of nonces be used in infinitely many sessions, although security still remains
undecidable [3], even with perfect cryptography. With this abstraction, any protocol can
easily be modeled using Horn clauses, following e.g. the approach of [5]. The idea is to
define an unary predicate I such that I(m) holds exactly for messages m known to the

K. Lodaya and M. Mahajan (Eds.): FSTTCS 2004, LNCS 3328, pp. 518–530, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Alternation in Equational Tree Automata Modulo XOR 519

intruder. Then to obtain clauses of alternating general two-way automata we use some
safe abstraction, as in [10], or [9]. The secrecy problem then reduces to the intersection-
emptiness problem of these automata: we check that I(m) is false for certain set of m’s.

In our previous work, we have dealt with equational tree automata [22, 21] for the
theory ACU (consisting of the axioms x + (y + z) = (x + y) + z, x + y = y + x
and x + 0 = x) of an associative-commutative symbol + with unit 0, and its variants,
since these are the ones which occur most frequently in cryptographic protocols. These
variants are obtained by adding certain axioms to the theory ACU. The variants studied
include the theory AG of Abelian groups obtained by adding the axiom x + (−x) = 0,
the theory XOR obtained by adding the axiom x+x = 0, and the theory ACUI obtained
by adding the axiom x+x = x of idempotence. We have used the theories ACU and AG
to model [20] the IKA.1 group key agreement protocol [19] using decidable fragments
of our equational tree automata. More efficient approximate verification techniques for
the same modeling are used in [10] to obtain a fully automated proof of security of this
protocol in the so-called pure eavesdropper model. Unfortunately alternation leads to
undecidability in case of theories ACU and AG. Similarly general two-wayness encodes
alternation and leads to undecidability.

While alternation and general two-wayness lead to undecidability for theories ACU
and AG, the question was left open for the theories XOR and ACUI. Surprisingly, we
show in this paper that XOR automata are decidable even with alternation and general
two-wayness.We show that these automata can actually be reduced to equivalent one-way
XOR automata in 3EXPTIME, hence they are closed under intersection but not under
complementation, and their emptiness is decidable. We also show the latter problem to be
decidable in 2EXPTIME, without constructing the equivalent one-way automata. Recall
also that emptiness of alternating tree automata is EXPTIME-hard already in the non-
equational case [4]. Our results imply that secrecy of cryptographic protocols with XOR
modeled using alternating general two-way XOR automata is decidable in 2EXPTIME.

While our techniques used to deal with non-alternating equational tree automata
relied heavily on semilinear, or Presburger-definable, sets, the techniques required in
this paper to deal with the alternating case are remarkably different, based on studying
Branching Vector Plus-Minimum Systems (BVPMS), which are a variant of VASS [11],
similar to Branching VASS (BVASS) [23]. Unlike VASS and BVASS, BVPMS have a
minimum operation but no subtraction. We show an interesting and natural connection
between BVPMS and alternating XOR automata. A key result of the paper is a pumping
lemma for BVPMS, allowing us to compute their coverability sets, which are approxima-
tions of the set of reachable configurations, in EXPTIME. In contrast, coverability sets
of VASS and BVASS are computed using the Karp-Miller construction [12] which how-
ever only gives a non-primitive recursive algorithm. Our techniques also yield similar
decidability results for the theory ACUI which was the other open case.

Note that alternation is crucial for precise analysis
of protocols. Consider the following example protocol
in standard notation, whereKi

ab are private keys between

A→B : {Na}K1
ab
, {Na}K2

ab

B → A : Na
A→ B : {Nb}K1

ab

A and B. Following [5], and knowing that an intruder knows (m1,m2) iff it knows both
m1 and m2, we get clauses of the form I(enc(Na,K1

ab)), I(enc(Na,K2
ab)), I(x) ⇐

520 K.N. Verma

I(enc(x,K1
ab)) ∧ I(enc(x,K2

ab)), I(enc(Nb,K1
ab)) (enc represents encryption) and

also clauses for deductive abilities of the intruder, e.g. I(pair(x, y)) ⇐ I(x) ∧ I(y),
I(y) ⇐ I(pair(x, y)). These clauses are translatable to alternating general two-way
automata clauses. E.g. the third clause above is translated as P (K1

ab), Q(K2
ab), R(x) ⇐

I(enc(x, y))∧Q(y), I(x) ⇐ I(enc(x, y))∧R(x)∧P (y) for fresh predicates P,Q,R.
Nb is secret, and I(Nb) is not deducible. Note however that the variable x on the left
side of the third clause appears twice on the right. Such clauses violate the restrictions
imposed to obtain decidability in [22] and can easily encode alternation [22]. We may
abstract this as the clause I(x) ⇐ I(enc(x,K1

ab)) ∧ I(enc(y,K2
ab)), (note distinct

variables x and y). But now I(Nb) becomes true, producing a false attack. The point we
are making here is that disallowing alternation may force us to abstract away too much
information from the protocols.

To our knowledge the only other work which presents decidability results for un-
bounded number of sessions in presence of some equational theory is [5, 6], which
presents a decidable class C⊕ of Horn clauses with XOR. This is incomparable to ours:
they don’t allow +-pop clauses (see Section 2) unless P = P1 = P2 but allow more
general clauses involving other symbols. The clauses required for the example protocol
modeled using C⊕ in [5, 6] belong to our class. We give a 2EXPTIME algorithm for
deciding secrecy whereas the complexity upper bound known for C⊕ is non-elementary,
as remarked in [6]. In this work we are also interested in the expressiveness and closure
properties of our automata, besides the secrecy problem.

The paper is organized as follows. We start in the next section by introducing equa-
tional tree automata and examining the structure of derivations in alternating XOR
automata. We then introduce BVPMS in Section 3 and show how to decide emptiness
of alternating XOR automata by using their connections with BVPMS. In Section 4 we
prove a pumping lemma for BVPMS which allows us to compute their coverability sets.
This is then used in Section 5 to eliminate alternation from XOR automata. These results
are used to treat general two-wayness in Section 6.

2 Equational Tree Automata

Consider a signature which includes the special symbols + and 0. Symbols other than
+, 0 are called free. Functional terms are terms of the form f(t1, . . . , tn) where f is
free. We use unary predicates to represent states of automata. Read an atom P (t) as
‘term t is accepted at state P ’. An (equational) tree automaton is a finite set of definite
clauses P (t) ⇐ P1(t1) ∧ . . . ∧ Pn(tn) (t, ti’s may contain variables). Read this clause
as ‘if ti is accepted at Pi for 1 ≤ i ≤ n then t is accepted at P ’. P (t) is the head, and
the remaining part the tail of the clause. Given an equational theory E modulo which an
automaton A is considered, derivations of ground atoms are defined using the rules:

P1(t1σ)...Pn(tnσ)
P (tσ) (P (t) ⇐ P1(t1) ∧ ... ∧ Pn(tn) ∈ A)

P (s)
P (t) (s =E t)

whereσ is a ground substitution, and =E is the congruence on terms induced by the theory
E . Hence the derivable atoms are the elements of the least Herbrand model modulo E . If
S is a set of states then we also say thatS(t) is derivable to mean thatP (t) is derivable for

Alternation in Equational Tree Automata Modulo XOR 521

all P ∈ S. We writeA/E to indicate the equational theory modulo which the automaton
A is considered. We define the language LP (A/E) = {t | P (t) is derivable}. If in
addition some stateP is designated as final then the language accepted by the automaton
is LP (A/E). A state is empty if it accepts no term.

We are in particular interested in the following kinds of clauses, called zero clauses,

+-pop clauses, alterna-
tion clauses, free pop
clauses and general
push clauses respec-
tively, where x1, . . . , xn

are mutually distinct in
clauses (4) and (5),

P (0) (1) P (x + y) ⇐ P1(x) ∧ P2(y) (2)

P (x) ⇐ P1(x) ∧ . . . ∧ Pn(x) (n ≥ 1)(3)

P (f(x1, . . . , xn)) ⇐ P1(x1) ∧ . . . ∧ Pn(xn) (f is free)(4)

P (xi) ⇐ Q(f(x1, . . . , xn)) ∧ P1(xi1) ∧ . . . ∧ Pk(xik
)(5)

(f is free, 1 ≤ i, i1, . . . , ik ≤ n)

x, y are distinct in clause (2), andP,Q, Pi’s are states. See [10] for an example modeling
of cryptographic protocols using these clauses. Alternating automata contain clauses (1-
4). Alternating general two-way automata contain clauses (1- 5). Alternation clauses (3)
in whichn = 1 are called ε clauses. One-way automata are alternating automata in which
all alternation clauses are ε clauses. In the non-equational case, one-way automata are
exactly the classical tree automata usually described in the literature: clause (4) is usually
written as the rewrite rule f(P1, . . . , Pn)→ P , and ε clauses are written asP1 → P . For
an automaton A, we denote by Afree the set of clauses (4) in A, and by Aeq the set of
clauses (1-3) in A. The (emptiness of) intersection of a set S of states is the (emptiness
of) the set of terms t such that S(t) is derivable. In presence of alternation clauses,
deciding intersection-emptiness of S is the same as deciding emptiness of a fresh state
P by adding the clause P (x) ⇐

∧
Q∈S Q(x).

XOR Derivations. We examine the structure of derivations in alternating XOR automata
and relate them to BVPMS. Recall that modulo XOR, any term can be converted to a
normal form by repeatedly replacing subterms t+ t by 0. If s =XOR t then s and t have
the same normal form (upto =ACU congruence). As our interest is in the theory XOR,
throughout this paper, if s =ACU t then we treat s and t as the same object. This will
not cause any confusion. We think of derivations in equational tree automata as trees. At
each node we either apply a clause or rewrite using the equational theory. LetA/E be an
alternating automaton on a finite set of states P. Then any derivation δ of an atom P (t)
in A/E is uniquely described as C[δ1, . . . , δn] (the ordering of the δi’s being ignored)
such that each subtree δi uses an application of a free pop clauses at the root node, and
the nodes in C contain only applications of clauses from Aeq and rewritings using E . If
the conclusion of each δi is Pi(ti) then we call the (unordered) list P1(t1), . . . , Pn(tn)
as the functional support of δ. (Clearly each ti is functional.) This definition generalizes
that of [22] for one-way automata.

Let ZP = {S | ∅ �= S ⊆ P}. Introduce a new set of constants: A = {aS |
S ∈ ZP}. We use aS as abstraction for functional terms accepted at each state in S,
in order to analyze derivations. Let p = |ZP| = 2|P| − 1. We name the elements of
ZP as S1, . . . ,Sp. Modulo ACU, any term on the signature A ∪ {0,+} is of the form∑p

i=1 niaSi , equivalently p-tuples (n1, . . . , np) ∈ Np. In this paper we consider them

522 K.N. Verma

interchangeably as terms or p-tuples. For ν ∈ Np the ith component of ν is ν[i]. If
I = {i1, . . . , ik} where 1 ≤ i1 < . . . < ik ≤ p then ν[I] denotes (ν[i1], . . . , ν[ik]) ∈
Nk. The tuple (n, . . . , n) is also written as n. For n ∈ N define the characteristic
n∗ ∈ {0, 1} as: n∗ = 0 if n is even, and n∗ = 1 otherwise. For ν ∈ Np define
ν∗ = (ν[1]∗, . . . , ν[p]∗) ∈ {0, 1}p. Define partial order ≤xor (on N and on Np) as:
x ≤xor y iff x ≤ y and x∗ = y∗. For Z ⊆ ZP, define XA,Z to consist of atoms modulo
ACU which can be deduced by the following rules.

1. P (aS) (P ∈ S ∈ Z) 2. P (t+aS+aS)
P (t) 3. P1(t1) P2(t2)

P (t1+t2)
(P (x + y) ⇐ P1(x) ∧ P2(y) ∈ A)

4. P (0) (P (0) ∈ A) 5. P1(t)...Pn(t)
P (t) (P (x) ⇐ P1(x) ∧ . . . ∧ Pn(x) ∈ A)

Rule 2 is another way of saying that ifP (t) ∈ XA,Z and t′ ≤xor t thenP (t′) ∈ XA,Z .
An atom in XA,Z summarizes the effect of an arbitrarily large derivation in A/XOR
using clauses of Aeq. The constants aS represent the effect of applying the clauses of
Afree. The sets in Z account for the terms which are canceled using the XOR axiom
during the derivation. This is formally stated by Lemmas 1 and 2, and illustrated by
Example 1. Let (Xj)1≤j≤k denote an unordered list X1, . . . , Xk.

Lemma 1. Let t1 + . . . + tn be the normal form of t where each ti is functional.
Then every derivation δ of P (t) in A/XOR has a functional support of the form
(P j

i (ti))1≤i≤n,1≤j≤ki
, (Qj

i (ui))1≤i≤m,1≤j≤li with ki ≥ 1 for 1 ≤ i ≤ n, m ≥ 0
and li ≥ 1 for 1 ≤ i ≤ m, such that, letting Si = {P j

i | 1 ≤ j ≤ ki} for
1 ≤ i ≤ n and letting Ti = {Qj

i | 1 ≤ j ≤ li} for 1 ≤ i ≤ m, for all U1 ⊇
S1, . . . ,Un ⊇ Sn, V1 ⊇ T1, . . . , Vm ⊇ Tm, Z ⊇ {U1, . . . ,Un, V1, . . . , Vm} we have
P (aU1 + . . . + aUn

) ∈ XA,Z .

Lemma 2. Let P (aS1 + . . . + aSn) ∈ XA,Z . Then Si ∈ Z for 1 ≤ i ≤ n. If there
are terms t1, . . . , tn such that S1(t1), . . . , Sn(tn) are derivable in A/XOR, and if
for each S ∈ Z there is some term tS such that S(tS) is derivable in A/XOR, then
P (t1 + . . . + tn) is derivable in A/XOR.

Example 1. Let automaton A have following clauses:
P1(g(x)) ⇐ P5(x) P (x + y) ⇐ P1(x) ∧ P2(y) P5(f(x)) ⇐ P6(x)
P2(x + y) ⇐ P3(x) ∧ P4(y) P3(x) ⇐ P7(x) ∧ P8(x) P9(0)
P4(x + y) ⇐ P6(x) ∧ P9(y) P6(a) P7(a) P8(a)

P6(a)

P5(f(a))

P1(g(f(a)))

P7(a) P8(a)

P3(a)

P6(a) P9(0)

P4(a)

P2(a + a)

P (g(f(a)) + a + a)

P (g(f(a)))

Here is a possible derivation in A/XOR. Its functional support is P1(g(f(a))),
P7(a), P8(a), P6(a). Also P (a{P1}) ∈ XA,{{P1},{P7,P8,P6}}.

Alternation in Equational Tree Automata Modulo XOR 523

3 Branching Vector Plus-Minimum Systems

We will see that alternating XOR automata are naturally related to Branching Vector
Plus-Minimum System (BVPMS). Fix some 1 ≤ r ∈ N. We will be dealing with
non-negative r-tuples (i.e. elements of Nr). A BVPMS on some finite set Q of states
is defined to be a finite set of clauses of the following form, called constant clauses,
addition clauses and minimum clauses respectively, where P, Pi’s are from Q, x, y are
distinct variables, and x1, . . . , xn are mutually distinct variables.

P (ν) (ν ∈ {0, 1}r) (6) P (x + y) ⇐ P1(x) ∧ P2(y) (7)

P (x1 � . . . � xn) ⇐ P1(x1) ∧ . . . ∧ Pn(xn)(n ≥ 1) (8)

A configuration is of the form P (ν) for P ∈ Q and ν ∈ Nr. As for tree automata,
we can read it as ‘ν is accepted at P ’. Derivations of configurations in BVPMS are
inductively defined in a similar way as derivations of atoms in equational tree automata.
We interpret + as componentwise addition of r-tuples, and � as componentwise min-
imum. Then by instantiating all the variables in a clause by r-tuples, if the resulting
configurations in the tail are derivable then the resulting configuration in the head is said
to be derivable. The restriction ν ∈ {0, 1}r in clause (6) is for the complexity results.
Using clauses (6) and (7), we can clearly express clauses P ′(ν′) for arbitrary ν′ ∈ Nr.

Lemma 3. The emptiness problem for BVPMS, i.e. the question whether some state
accepts no tuple, is decidable in polynomial time.

From XOR Automata to BVPMS. The minimum clauses allow us to model the alter-
nation clauses of automata in presence of the cancellation axiom of XOR. Let A be an
alternating XOR automaton on a finite set of states P. Let ZP and p be as in Section 2.
We use a BVPMS V on p-tuples to compute the sets XA,Z . (The parameter r above is
instantiated to p). The set of states of V is Q = P × {0, 1}p × 2ZP . The configuration
(P, ν′, Z)(ν) represents the fact that P (ν) ∈ XA,Z and ν′ = ν∗. The intuition is that
Rules 2 and 5 in the definition of sets XA,Z can be represented by minimum clauses.
However we should not take the minimum of an even number with an odd number. This
is controlled by ν′ in the state (P, ν′, Z). The clauses of V are as listed below. Note
that by the conventions of Section 2, aS ∈ {0, 1}p in item (iii). We use the parame-
ter c1 to denote the maximum size of any clause in A, the size of a clause being the
number of atoms in it, and c2 to denote the number of clauses in A. The corresponding
parameters for BVPMS are v1 and v2. Without loss of generality we assume that in
clause (3), P1, . . . , Pn are mutually distinct. We have |Q| = 22O(|P|)

, v1 = O(|P|), and
v2 = c2 · 22O(|P|)

. V is computable in time c2 · 22O(|P|)
.

(i) (P, 0, Z)(0) for eachZ ⊆ ZP and clause
P (0) ∈ A

(iii) (P, aS , Z)(aS) for each P ∈ S ∈ Z ⊆
ZP.

(ii) (P, (ν1 + ν2)∗, Z)(x + y) ⇐
(P1, ν1, Z)(x)∧ (P2, ν2, Z)(y) for each
ν1, ν2 ∈ {0, 1}p, Z ⊆ ZP and clause
P (x + y) ⇐ P1(x) ∧ P2(y) ∈ A.

(iv) (P, ν, Z)(x1 � . . . � xn) ⇐
(P1, ν, Z)(x1) ∧ . . . ∧ (Pn, ν, Z)(xn)
for each ν ∈ {0, 1}p,Z ⊆ ZP and clause
P (x) ⇐ P1(x) ∧ . . . ∧ Pn(x) ∈ A.

524 K.N. Verma

Lemma 4. We have the following results:
(i) If P (ν) ∈ XA,Z then for some ν′, (P, ν∗, Z)(ν′) is derivable in V and ν ≤xor ν′.
(ii) If (P, ν′, Z)(ν) is derivable in V then P (ν) ∈ XA,Z and ν′ = ν∗.

This relation between BVPMS and setsXA,Z , together with the relation between sets
XA,Z and derivations inA as stated by Lemmas 1 and 2, are the basis of all results about
alternating XOR automata in this paper. First we show how to decide emptiness of the
latter. Recall that propositional Horn clauses are of the form X ⇐ X1∧ . . .∧Xn where
X,Xi’s are propositions. Derivations of propositions using a set of propositional Horn
clauses are inductively defined as usual. LetA and V be as above. Introduce proposition
XS for S ∈ ZP, and define a set H of propositional Horn clause to contain:

(i) clause XS ⇐ XS1 ∧ . . . ∧XSn , where S = {P 1, . . . , P k}, Si = {P 1
i , . . . , P

k
i } for

1 ≤ i ≤ n, and P j(f(x1, . . . , xn)) ⇐ P j
1 (x1) ∧ . . . ∧ P j

n(xn) ∈ Afree for 1 ≤ j ≤ k
(ii) clause XS ⇐

∧
T∈Z XT , where for some ν′ ∈ {0, 1}p, for all P ∈ Z, the state

(P, ν′, Z) is non-empty in V .

Then XS is derivable from H iff S has non-empty intersection. Clauses (i) are
standard. Clauses (ii) take care of permutations and cancellations using the XOR axioms.

Theorem 1. Emptiness of alternating XOR automata is decidable in 2EXPTIME.

Eliminating alternation requires more work. The coverability set of BVPMS is (some
finite representation of) the downward closure of the set of derivable configurations, for
the following ordering on configurations: P (ν) ≤ P ′(ν′) iff P = P ′ and ν ≤ ν′,
where ≤ also denotes the component-wise ordering on tuples. Since the sets XA,Z are
downward closed (for an ordering on configurations based on ≤xor), our main interest
is in the coverability set of V . For this we use a pumping lemma.

4 A Pumping Lemma for BVPMS

Fix a BVPMS V on r-tuples on a finite set of states Q. We will show that if a certain
component in a derivable configuration exceeds 2|Q| then it can become arbitrarily large.
We use a pumping argument which iterates certain portions of the derivation. Compared
to usual pumping arguments, the main difficulty here is that we need to do simultane-
ous pumping on several (possibly overlapping) parts of the derivation. For example in
clauses (8), in order to strictly increase x1 � . . . � xn in some lth component, we have
to ensure that each xi strictly increases in the lth component. At the same time we have
to take care that the other components do not decrease while pumping. Also note that
because of the minimum clauses, the values of configurations need not increase and
might even decrease if an observer goes from a node in a derivation towards the root.

An Add-Min Tree (AMT) in V is a finite tree T , each of whose nodes is labeled with
an element of Q, and each of whose edges is labeled with some ν ∈ Nr. Instead of
pumping directly on the derivations in V , we will compute AMTs which pick out those
paths on which we will pump. The values from other paths will label the edges. AMTs
are what we will pump on. As usual, positions (or nodes) in an AMT are described using
strings of positive integers. The empty string λ is the root node. The k children of a node

Alternation in Equational Tree Automata Modulo XOR 525

α are α · 1, . . . , α · k. The state labeling the node α is denoted θT (α). For all notations
we define, we omit the AMTs in subscripts if there is no confusion. If β is a descendant
of some node α then the distance from α to β, denoted dT (α, β) is the sum of the labels
of all the edges on the path from α to β. An AMT T is feasible if for every non-leaf
node α with k children, if (θ(α · i))(νi) is derivable in V for some νi for 1 ≤ i ≤ k,
then (θ(α))(1≤i≤k(νi + d(α, α · i)) is derivable in V . A valued AMT is an AMT T
together with a label ωT (α) ∈ Nr for every node α of T , such that, if α is a non-leaf
node with k children then ω(α) = 1≤i≤k(ω(α · i)+ d(α, α · i)), and if α is a leaf node
then (θ(α))(ω(α)) is derivable in V . From definitions:

Lemma 5. For a node α in a valued feasible AMT T , (θ(α))(ω(α)) is derivable in V .

As addition distributes over minimum, we have:

Lemma 6. In a valued AMT T , for every node α we have
ω(α) = β is a leaf in the subtree rooted at α(ω(β) + d(α, β)).

For 1 ≤ l ≤ r, we say ν1 <l ν2 to mean that ν1 ≤ ν2 and ν1[l] < ν2[l]. Given two
(possibly valued) AMTs T1 and T2, we say T1 <l T2 to mean that θT1(λ) = θT2(λ), and
for every leaf node α of T2, there is a leaf node β of T1, such that θT1(β) = θT2(α) and
dT1(λ, β) <l dT2(λ, α).

Lemma 7. Let T1 be a valued AMT and T2 a feasible AMT such that T1 <l T2. Then
(θT2(λ))(ν) is derivable in V for some ν such that ωT1(λ) <l ν.

Proof. (Sketch:) For each leaf node α of T2 let βα be a leaf node of T1 such that
θT1(βα) = θT2(α) and dT1(λ, βα) <l dT2(λ, α). We transform T2 into a valued AMT
by definingωT2(α) for each nodeα of T2. We do this by induction on the height ofα. Ifα
is a leaf, we define ωT2(α) = ωT1(βα). If α is a non-leaf node with k children, we define
ωT2(α) = 1≤i≤k(ωT2(α.i)+dT2(α, α.i)). Clearly this makes T2 a valued AMT. From
Lemma 5, (θT2(λ))ωT2(λ) is derivable. We now use Lemma 6 and arithmetic properties
of minimum to show that ωT1(λ) <l ωT2(λ). ��

We call a node α of an AMT T an l-major node if every edge out of α has a label
ν with 0 <l ν. Otherwise α is an l-minor node. Trivially a leaf node is always l-major.
We use l-major nodes for pumping in AMTs:

Lemma 8. Let T be a feasible AMT such that every leaf node α has a strict ancestor
(call it βα) which is l-major, such that θT (βα) = θT (α). Then there is a feasible AMT
T ′ with T <l T ′.

Proof. Let AMT T ′ be obtained from
T by replacing each leaf node α by the
subtree of T at position βα. T ′ is fea-
sible since T is feasible and θT (βα) =
θT (α). To show that T <l T ′, pick any
leaf node γ of T ′. We have to find a leaf
node β of T such that θT (β) = θT ′(α)

T ′ =

βα.α′

βα

α
βα.α′

βα

α

γ =
α.α′

T =

526 K.N. Verma

and dT (λ, β) <l dT ′(λ, α). By construction, there is a leaf node α of T and a string
α′ such that γ = α · α′, dT (βα, βα · α′) = dT ′(α, γ) and θT (βα · α′) = θT ′(γ).
We show that the required β is βα · α′. As βα is a strict major ancestor of α we have
0 <l dT (βα, α). Hence dT (λ, βα · α′) <l dT (λ, βα · α′) + dT (βα, α) = dT (λ, βα) +
dT (βα, βα ·α′)+dT (βα, α) = dT ′(λ, βα)+dT ′(α, γ)+dT ′(βα, α) = dT ′(λ, γ). ��

Observe that in the above proof we pump on every path of T . The pumping lemma is
now proved below. Given a derivation of a configuration in which the lth component is
large enough, we compute a suitable AMT in which every path has large enough number
of l-major nodes, allowing us to do pumping.

Lemma 9. If P (ν) is derivable in V and ν[l] ≥ 2|Q| then P (ν′) is derivable in V for
some ν <l ν′.

Proof. Given some derivation δ of some atom Q(μ) in V , we define a valued feasible
AMT Tδ by recursion on δ. T looks almost the same as δ except that when a node of
δ uses an addition clause, then in Tδ we selectively forget one of the children, and the
corresponding tuple is used as an edge label. The construction is such that the root of Tδ

is labeled with Q and μ. The construction is as follows:

(i) If δ is the derivation ofQ(μ) by applying the clauseQ(μ), then Tδ is a leaf labeled
Q and μ.

(ii) If δ is the derivation of Q(μ1 � . . . � μk), using a minimum clause, from the
derivations δi of Qi(μi) for 1 ≤ i ≤ k, then Tδ has the root node λ labeled with Q and
μ1 � . . . � μk, has k children Tδ1 , . . . , Tδk

, and each edge out of λ is labeled 0.
(iii) If δ is the derivation ofQ(μ1+μ2) using an addition clause, from the derivations

δ1 and δ2 of Q1(μ1) and Q2(μ1) respectively, then assume μ1[l] ≤ μ2[l]. (The case
μ2[l] ≤ μ1[l] is treated similarly.) Then Tδ has the root node λ labeled with Q and
μ1 + μ2, has one child Tδ2 , and the edge out of λ is labeled μ1.

Clearly Tδ is valued and feasible. The first step produces an l-major (leaf) node. The
second step creates an l-minor node. The third step creates an l-major node iff μ1[l] > 0.
Thus Tδ has the property that if β is a child of α then:

(i) If α is l-minor then ω(β)[l] ≥ ω(α)[l]. (ii) If α is l-major then 2ω(β)[l] ≥ ω(α)[l].
Hence for any i ≥ 1, if α is the ith l-major node on any path from the root, then

2i−1 ·ω(α)[l] ≥ ω(λ)[l]. Now let δ′ be a derivation in V of the atom P (ν). Let T = Tδ′ .
Since ν[l] ≥ 2|Q|, and since by construction ωT (α) ≤ 1 for any leaf node α, hence
every maximal path ξ in T contains at least |Q| + 1 distinct l-major nodes. Hence at
least two of them should be labeled with the same state. Let them be at the (distinct)
positionsαξ andαξ ·βξ. Let T1 be the AMT obtained from T by chopping off the subtree
below position αξ · βξ for each maximal path ξ of T . Since T is valued and feasible, by
Lemma 5, T1 is also valued and feasible. For every leaf position γ of T1, there is some
maximal path ξ of T such that γ = αξ · βξ. Hence every γ has a strict major ancestor
labeled with the same state. By Lemma 8 there is a feasible AMT T2 such that T1 <l T2.
The result then follows from Lemma 7. ��

Repeated applications of Lemma 9 allows us to show:

Alternation in Equational Tree Automata Modulo XOR 527

Theorem 2. If P (ν) is derivable in V and ν[I] ≥ 2|Q|, where I ⊆ {1, . . . , r}, then for
any number K there is some ν′ ≥ ν such that P (ν′) is derivable in V and ν′[I] ≥ K.

Computing the Coverability Set. The pumping lemma allows us to compute the cover-
ability set for BVPMS. Define ν� ∈ (N∪{∞})r for ν ∈ Nr as: ν�[i] =∞ if ν[i] ≥ 2|Q|

and ν�[i] = ν[i] otherwise. We extend +, � and ≤ by letting n +∞ = ∞ +∞ = ∞,
n � ∞ = n, ∞ � ∞ = ∞, n ≤ ∞ and ∞ ≤ ∞ for n ∈ N. They are extended to
r-tuples as usual. Define set CV = {P (ν�) | P (ν) is derivable in V}.

Lemma 10. CV is the coverability set of V , in the sense that
(i) If P (ν) ∈ CV and ν ≥ ν′ ∈ Nr then there is some ν′′ ≥ ν′ such that P (ν′′) is
derivable in V .
(ii) If P (ν) is derivable in V then ν ≤ ν′ for some P (ν′) ∈ CV .

Theorem 3. The coverability set of BVPMS can be computed in EXPTIME.

5 Eliminating Alternation

Let A be an alternating XOR automaton on a finite set of states P. We define a cor-
responding BVPMS V on set of states Q as in Section 3. Let ZP = {S1, . . . ,Sp} as
in Section 2. We now define an equivalent one-way XOR automaton B. We will need
clauses of the form P (x1 + . . .+ xn) ⇐ P1(x1)∧ . . .∧Pn(xn) which are translatable
in linear time to clauses of one-way automata by using some auxiliary states. We also
need extended ε-clauses of the form P (x) ⇐ P1(x) ∧ Q1(y1) ∧ . . . ∧ Qn(yn) where
x, y1, . . . , yn are mutually distinct variables. This can be thought of as the ε clause
P (x) ⇐ P1(x) together with emptiness tests on states Q1, . . . , Qn. As emptiness for
one-way equational tree automata is decidable in polynomial time [22, 20], these clauses
do not increase the expressiveness of one-way equational tree automata and can be elim-
inated in polynomial time [22, 20]. The states of B are of the form (S, ν′, Z, (νP)P∈S)
and S for S ∈ ZP, ν′ ∈ {0, 1}p, Z ⊆ ZP and tuples νP ∈ (N ∪ {∞})p such that
(P, ν′, Z)(νP) ∈ CV for each P ∈ S. State S is supposed to accept the terms accepted
at each state in S. The clauses added to B are as follows. We would have liked B to
contain the clause S(x1 + . . . + xn) ⇐ S1(x1) ∧ . . . ∧ Sn(xn) ∧

∧
T∈Z T (yT) if

P (aS1 + . . . + aSn
) ∈ XA,Z for each P ∈ S. However XA,Z may be infinite. Hence

we use states (S, ν′, Z, (νP)P∈S), and clauses (1a) and (1c), together with the loops in
clauses (1b) to achieve this effect. Clauses (2) are standard.

(1) For each state (S, ν′, Z, (νP)P∈S) (call it S) of B, let ν = P∈S νP . Let I = {i |
ν[i] =∞} and J = {1, . . . , p} \ I . We add to B the clauses

(a)S(
∑

i∈I,ν′[i]=1 xi+
∑

i∈J

∑ni

j=1 x
j
i) ⇐

∧
i∈I,ν′[i]=1 Si(xi)∧

∧
i∈J

∧ni

j=1 Si(x
j
i)

for ni’s such that ni ≤xor ν[i],
(b) S(x + y + z) ⇐ S(x) ∧ Si(y) ∧ Si(z) for each i ∈ I ,
(c) the extended ε-clause S(x) ⇐ S(x) ∧

∧
T∈Z T (yT).

(2) For each free f and clauses P i(f(x1, . . . , xn)) ⇐ P i
1(x1) ∧ . . . ∧ P i

n(xn) ∈ A for
1 ≤ i ≤ k, we add to B the clause S(f(x1, . . . , xn)) ⇐ S1(x1) ∧ . . . ∧ Sn(xn) where
S = {P 1, . . . , P k} and for 1 ≤ i ≤ n, Si = {P 1

i , . . . , P
k
i }.

528 K.N. Verma

The purpose of the clauses (1a) and (1b) is to accept at S a summation of terms
accepted at the Si’s. For i ∈ I , the number of summands from Si is an arbitrarily large
even or odd number with characteristic ν′[i]. For i ∈ J the number of summands from
Si is some ni ≤xor ν[i]. We do so because the elements of CV can be considered as
‘limits’ of elements of XA,Z’s. If Pf is the final state ofA then {Pf} is the final state of
B. Now since alternating automata are trivially closed under intersection, and one-way
XOR automata are not closed under complementation [21]:

Theorem 4. Alternating XOR automata can be converted to equivalent one-way XOR
automata in 3EXPTIME. The class of languages accepted by them is same as that
accepted by one-way XOR automata, is closed under intersection, but not closed under
complementation.

6 Eliminating General Two-Wayness

Let A be an alternating general two-way XOR automaton on a finite set of states P.
Define BVPMS V as in Section 3. In the absence of alternation clauses, and with restric-
tion i /∈ {i1, . . . , ik} in clauses (5), these automata have been shown to be equivalent
to one-way XOR automata in [22]. The case of alternation clauses was open. Also
clauses (5) without restriction can encode alternation [22] and the question of its de-
cidability was open. We now show decidability in presence of all these clauses. The
standard ‘saturation’ procedure in the non-equational case ‘short-cuts’ pop and general
push clauses to get new alternation clauses, till the general push clauses become redun-
dant. The problematic +-pop clauses are now dealt with using BVPMS. For example,
given clauses R(x) ⇐ Q(f(x, y)) ∧ P 1(x) ∧ P 2(y), Q(x + y) ⇐ P1(x) ∧ Q′(y),
Q′(x + y) ⇐ P2(x) ∧ P3(y) and P1(f(x, y)) ⇐ Q1(x) ∧ Q2(y), we can infer the
clause R(x) ⇐ Q1(x) ∧ P 1(x), provided that {P 2, Q2} has non-empty intersection,
and {P2, P3} has non-empty intersection. Formally for any alternating general two-way
automaton A′, let automaton A′

alt consist of clauses (1-4) of A′. If

(i)A contains a general push clause R(xl) ⇐ Q(f(x1, . . . , xn))∧
∧n

i=1
∧ki

j=1 P
j
i (xi),

(ii) (Q, aS , Z) is non-empty in V for some S,Z,
(iii) P (f(x1, . . . , xn)) ⇐ QP

1 (x1)∧ . . .∧QP
n (xn) ∈ A for some QP

i ’s for each P ∈ S

(iv) the set {P j
i | 1 ≤ j ≤ ki} ∪ {QP

i | P ∈ S} has non-empty intersection in
Aalt/XOR for i ∈ {1, . . . , n} \ {l}
(v) each T ∈ Z has non empty intersection in Aalt/XOR

then consider the clause C = R(xl) ⇐
∧kl

j=1 P
j
l (xl) ∧

∧
P∈S QP

l (xl). If C /∈ A then
we writeA A∪{C}, which we take to constitute one step of our saturation procedure.
Arbitrarily many applications of clauses (1-3) may occur in between the applications of
the free pop clauses and the general push clause. However after cancellations using the
XOR axiom, only a functional term should be left. This is checked by condition (ii).
Conditions (iv) and (v) can be effectively checked by Theorem 1.

Given any alternating general two-way automaton A our saturation procedure now
consists of (don’t care non-deterministically) generating a sequence (A =)A0 A1
A2 . . . until no new clauses can be added. This terminates because only finitely many

Alternation in Equational Tree Automata Modulo XOR 529

alternation clauses are possible. Let the final saturated automaton be C. We remove all
general push clauses to get alternating automaton Calt equivalent to A.

Theorem 5. Alternating general two-way XOR automata can be converted to equivalent
one-way XOR automata in 3EXPTIME. The class of languages accepted by them is same
as that accepted by one-way XOR automata, is closed under intersection, but not closed
under complementation.

7 Conclusion

We have given a positive answer to the open question of the decidability of alternating
general two-way XOR automata, in contrast to previous negative answers in case of
other theories. We have given 3EXPTIME reduction of these automata to one-way XOR
automata, thus also settling the expressiveness and closure properties of these automata.
We have shown that emptiness of these automata is decidable in 2EXPTIME, meaning
that secrecy of protocols modeled using these automata is decidable in 2EXPTIME.
Emptiness test for alternating general two-way XOR automata is trivially EXPTIME-
hard, but a more precise characterization of its complexity remains to be done. A key
technique of independent interest is a pumping lemma for Branching Vector Plus Mini-
mum Systems, allowing us to compute their coverability sets in EXPTIME.

Acknowledgments. I thank Helmut Seidl for many discussions and suggestions, and
Jean Goubault-Larrecq as well as the anonymous referees for valuable comments.

References

1. Y. Chevalier, R. Küsters, M. Rusinowitch, and M. Turuani. Deciding the security of protocols
with Diffie-Hellman exponentiation and products in exponents. In FSTTCS’03, pages 124–
135. Springer-Verlag LNCS 2914, 2003.

2. Y. Chevalier, R. Küsters, M. Rusinowitch, and M. Turuani. An NP decision procedure for
protocol insecurity with XOR. In LICS’03, pages 261–270, 2003.

3. H. Comon and V. Cortier. Tree automata with one memory, set constraints and cryptographic
protocols. Theoretical Computer Science, 2004. To appear.

4. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Ti-
son, and M. Tommasi. Tree automata techniques and applications.
http://www.grappa.univ-lille3.fr/tata, 1997.

5. H. Comon-Lundh andV. Cortier. New decidability results for fragments of first-order logic and
application to cryptographic protocols. In RTA’03, pages 148–164. Springer-Verlag LNCS
2706, 2003.

6. V. Cortier. Vérification Automatique des Protocoles Cryptographiques. Ph.D. thesis, ENS
Cachan, France, 2003.

7. F. Gécseg and M. Steinby. Tree languages. In G. Rozenberg and A. Salomaa, editors,
Handbook of Formal Languages, volume 3, chapter 1, pages 1–68. Springer-Verlag, 1997.

8. J. Goubault-Larrecq. A method for automatic cryptographic protocol verification. In
FMPPTA’00, pages 977–984. Springer-Verlag LNCS 1800, 2000.

530 K.N. Verma

9. J. Goubault-Larrecq. Une fois qu’on n’a pas trouvé de preuve, comment le faire compren-
dre à un assistant de preuve? In V. Ménissier-Morain, editor, Actes des 12èmes Journées
Francophones des Langages Applicatifs (JFLA’04). INRIA, collection didactique, 2004.

10. J. Goubault-Larrecq, M. Roger, and K. N. Verma. Abstraction and resolution modulo AC:
How to verify Diffie-Hellman-like protocols automatically. Journal of Logic and Algebraic
Programming, 2004. To Appear. Available as Research Report LSV-04-7, LSV, ENS Cachan.

11. J. Hopcroft and J. J. Pansiot. On the reachability problem for 5-dimensional vector addition
systems. Theoretical Computer Science, 8:135–159, 1979.

12. R. M. Karp and R. E. Miller. Parallel program schemata. J. Computer and System Sciences,
3(2):147–195, 1969.

13. D. Lugiez. Counting and equality constraints for multitree automata. In FOSSACS’03, pages
328–342. Springer-Verlag LNCS 2620, 2003.

14. D. Monniaux. Abstracting cryptographic protocols with tree automata. In SAS’99, pages
149–163. Springer-Verlag LNCS 1694, 1999.

15. H. Ohsaki. Beyond regularity: Equational tree automata for associative and commutative
theories. In CSL’01, pages 539–553. Springer-Verlag LNCS 2142, 2001.

16. L. C. Paulson. Mechanized proofs for a recursive authentication protocol. In CSFW’97, pages
84–95. IEEE Computer Society Press, 1997.

17. P. Ryan and S. Schneider. An attack on a recursive authentication protocol: A cautionary tale.
Information Processing Letters, 65(1):7–10, 1998.

18. G. Slutzki. Alternating tree automata. Theoretical Computer science, 41:305–318, 1985.
19. M. Steiner, G. Tsudik, and M. Waidner. Key agreement in dynamic peer groups. IEEE

Transactions on Parallel and Distributed Systems, 11(8):769–780, 2000.
20. K. N. Verma. Automates d’arbres bidirectionnels modulo théories équationnelles. Ph.D.

thesis, ENS Cachan, 2003.
21. K. N. Verma. On closure under complementation of equational tree automata for theories

extending AC. In LPAR’03, pages 183–197. Springer-Verlag LNCS 2850, 2003.
22. K. N.Verma. Two-way equational tree automata forAC-like theories: Decidability and closure

properties. In RTA’03, pages 180–196. Springer-Verlag LNCS 2706, 2003.
23. K. N. Verma and J. Goubault-Larrecq. Karp-Miller trees for a branching extension of VASS.

Research Report LSV-04-3, LSV, ENS Cachan, France, January 2004.

Author Index

Abdulla, Parosh 58
Adéläıde, Michaël 71
Adsul, Bharat 84
Agha, Gul 494
Alekseyev, Max A. 1

Berdine, Josh 97
Beyersdorff, Olaf 122
Bouajjani, Ahmed 135
Bouyer, Patricia 148

Calcagno, Cristiano 97
Carbone, Marco 161
Cassez, Franck 148
Chandru, Vijay 174
Cheng, Ho-lun 186

Dang, Zhe 198
Dawar, Anuj 211, 224
de Berg, Mark 110
Devanur, Nikhil R. 237
Distefano, Dino 250

Esparza, Javier 16
Etessami, Kousha 16

Fleury, Emmanuel 148
Fürer, Martin 263

Gandhi, Rajiv 447
Gardner, Philippa 211
Gastin, Paul 275
Geeraerts, Gilles 287
Ghelli, Giorgio 211
Gudmundsson, Joachim 299
Gulwani, Sumit 311

Hariharan, Ramesh 174
Har-Peled, Sariel 324
Hitchcock, John M. 336

Ibarra, Oscar H. 198
Indyk, Piotr 32

Jäger, Gerold 348
Jain, Sanjay 360
Janin, David 224

Kasiviswanathan, Shiva Prasad 263
Katoen, Joost-Pieter 250
Kempe, Julia 372
Kinber, Efim 360
Kitaev, Alexei 372
Klauck, Hartmut 384
Krishnakumar, Narasimha M. 174
Kutten, Shay 396

Larsen, Kim G. 148
Lerman, Benjamin 275
Levcopoulos, Christos 299
Lipton, Richard J. 237
Löding, Christof 408

Madhusudan, P. 408
Mahata, Pritha 58
Mayr, Richard 58
Meyer, Antoine 135
Mijajlović, Ivana 421
Montanari, Angelo 434

Necula, George C. 311
Nielsen, Mogens 161

O’Hearn, Peter W. 97, 421

Pagetti, Claire 71
Parthasarathy, Srinivasan 447
Patt-Shamir, Boaz 396
Pavan, A. 336
Pevzner, Pavel A. 1
Ponnuswami, Ashok Kumar 460
Puppis, Gabriele 434

Rademacher, Luis 469
Raskin, Jean-François 287
Regev, Oded 372

532 Author Index

Rensink, Arend 250
Reynolds, John C. 35

San Pietro, Pierluigi 198
Sassone, Vladimiro 161
Sen, Koushik 494
Serre, Olivier 408
Sohoni, Milind 84
Srivastav, Anand 348
Streppel, Micha 110

Tan, Tony 186
Thakur, Mayur 481
Thérien, Denis 49
Tiwari, Ashish 311

Torp-Smith, Noah 421
Tripathi, Rahul 481

Van Begin, Laurent 287
Vardhan, Abhay 494
Vempala, Santosh 469
Venkatesh, G. 506
Venkateswaran, H. 460
Verma, Kumar Neeraj 518
Vishnoi, Nisheeth K. 237
Viswanathan, Mahesh 494

Xie, Gaoyan 198

Zeitoun, Marc 275

	Frontmatter
	Invited Papers
	Genome Halving Problem Revisited
	Verifying Probabilistic Procedural Programs
	Streaming Algorithms for Geometric Problems
	Toward a Grainless Semantics for Shared-Variable Concurrency
	Regular Languages, Unambiguous Concatenation and Computational Complexity

	Contributed Papers
	Decidability of Zenoness, Syntactic Boundedness and Token-Liveness for Dense-Timed Petri Nets
	On the Urgency Expressiveness
	Asynchronous Automata-Theoretic Characterization of Aperiodic Trace Languages
	A Decidable Fragment of Separation Logic
	Approximate Range Searching Using Binary Space Partitions
	Representable Disjoint NP-Pairs
	Symbolic Reachability Analysis of Higher-Order Context-Free Processes
	Optimal Strategies in Priced Timed Game Automata
	A Calculus for Trust Management
	Short-Cuts on Star, Source and Planar Unfoldings
	Subdividing Alpha Complex
	Real-Counter Automata and Their Decision Problems
	Adjunct Elimination Through Games in Static Ambient Logic
	On the Bisimulation Invariant Fragment of Monadic Σ<Subscript>1</Subscript> in the Finite
	On the Complexity of Hilbert's 17th Problem
	Who is Pointing When to Whom?
	An Almost Linear Time Approximation Algorithm for the Permanent of a Random (0-1) Matrix
	Distributed Games with Causal Memory Are Decidable for Series-Parallel Systems
	Expand, Enlarge, and Check: New Algorithms for the Coverability Problem of WSTS
	Minimum Weight Pseudo-Triangulations
	Join Algorithms for the Theory of Uninterpreted Functions
	No, Coreset, No Cry
	Hardness Hypotheses, Derandomization, and Circuit Complexity
	Improved Approximation Algorithms for Maximum Graph Partitioning Problems Extended Abstract
	Learning Languages from Positive Data and a Finite Number of Queries
	The Complexity of the Local Hamiltonian Problem
	Quantum and Classical Communication-Space Tradeoffs from Rectangle Bounds
	Adaptive Stabilization of Reactive Protocols
	Visibly Pushdown Games
	Refinement and Separation Contexts
	Decidability of MSO Theories of Tree Structures
	Distributed Algorithms for Coloring and Domination in Wireless Ad~Hoc Networks
	Monotone Multilinear Boolean Circuits for Bipartite Perfect Matching Require Exponential Size
	Testing Geometric Convexity
	Complexity of Linear Connectivity Problems in Directed Hypergraphs
	Actively Learning to Verify Safety for FIFO Automata
	Reasoning About Game Equilibria Using Temporal Logic
	Alternation in Equational Tree Automata Modulo XOR

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

