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Preface

The present volume contains the post-proceedings of the second interna-
tional Workshop on Formal Aspects in Security and Trust (FAST2004), held
in Toulouse, 26-27 August 2004. FAST is an event of the 18t/l IFIP World
Computer Congress (WCC2004) and is under the auspices of IFIP WG 1.7. on
"Foundations of Security Analysis and Design".

The second international Workshop on Formal Aspects in Security and Trust
(FAST2004) aims at continuing the successfül effort of FAST2003 for foster-
ing the cooperation among researchers in the areas of security and trust. The
new challenges offered by the so-called ambient intelligence space, as a fu-
ture paradigm in the information society, demand for a coherent and rigor-
ous framework of concepts, tools and methodologies to provide user's trust &
confidence on the underlying communication/interaction infrastructure. It is
necessary to address issues relating to both guaranteeing security of the infras-
tructure and the perception of the infrastructure being secure. In addition, user
confidence on what is happening must be enhanced by developing trust models
efFective but also easily comprehensible and manageable by users.

FAST sought for original papers focusing of formal aspects in: security and
trust policy models; security protocol design and analysis; formal models of
trust and reputation; logics for security and trust; distributed trust management
systems; trust-based reasoning; digital assets protection; data protection; pri-
vacy and ID issues; information flow analysis; language-based security; secu-
rity and trust aspects in ubiquitous computing; validation/analysis tools; web
service security/trust/privacy; GRID security; security risk assessment; case
studies . . . .

FAST2004 program consists of: two invited speakers; 16 paper presenta-
tions selected out of 33 submissions (2 withdrawn) and two panels (jointly
managed with CSES workshop) on Examining trust management models from
different perspectives and Major trust andsecurity challenges for business cen-
tric virtual organizations. A few selected papers will be invited for possible
publication on a special issue on the International Journal of Informaüon Se-
curity (IJIS).
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SECURITY ISSUES IN THE TUPLE-SPACE
COORDINATION MODEL
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MuraAnteo Zamboni 7,1-40127Bologna, Italy.

{bravetti,busi,gorTieri,lucchi,zavattar}@cs.unibo.it

Abstract We present some security issues that emerge when the tuple-space coordination
model is used in open systems. Then we describe SecSpaces, a tuple-space
based language, which supports secure coordination in untrusted environments.
Finally, we will discuss some real examples of applications interacting via tu-
ple spaces by showing how to support some of the main security features with
SecSpaces.

1. Introduction

New networking technologies are moving to support applications for open
systems (e.g., peer-to-peer, ad-hoc networks, Web services), in which the enti-
ties that will be involved in the application are unknown at design time. Fur-
ther, the connectivity is exploding: a growing number of devices need to com-
municate with each other and the new challenge is how to design and to pro-
gram the communication among devices.

Coordination models and languages, which advocate a distinct separation
between the internal behaviour of the entities and their interaction, represent
a promising approach for the development of this class of applications. The
interaction is programmed by means of a coordination infrastructure that ab-
stracts away from the exact name/location of the components and the underly-
ing network.

One of the most prominent coordination languages is Linda [Computing
Associates, 1995] in which a shared space, containing tuples of data, is used
by agents to collaborate. Agents can insert new tuples into the space, con-
sume or read tuples from the space thus implementing the so-called generative
communication, in which tuples are independent of their producers.
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We present some security issues that emerge when Linda is used in open
systems, where any agent can access the tuple space. In this scenario, where
the presence of malicious agents may compromise the behaviour of the system,
designers have to deal with security. Unfortunately, Linda is not expressive
enough to provide security solutions, because any agent can read, remove and
reproduce any tuple available in the shared space.

We present the SecSpaces [Busi et al., 2002, Bravetti et al., 2003] coor-
dination language, based on the tuple-space coordination model introduced
by Linda, that supports security in untrusted environments by providing some
access control mechanisms on tuples with a granularity at the level of single
tuples. The proposed solution follows a data-driven approach: the access to
a tuple is subordinated to the proof of knowledge of certain data stored into
the tuple. In a few words, to access a tuple it is necessary to provide special
data, that we call control fields, that must match the ones stored inside the tu-
ple. We also describe how such control fields can be implemented and, finally,
how to define the matching rule. The proposed solution has also been devel-
oped [Lucchi and Zavattaro, 2004] in the context of Web Services technology,
which represents the emerging networking technology for programming Inter-
net applications.

In order to show how the SecSpaces mechanisms can be exploited for sup-
porting some security features (e.g., secrecy, entity authentication) we consider
real examples of applications where the interaction is programmed via tuple
spaces.

The paper is structured as follows. Section 2 describes the Linda coordina-
tion primitives and SecSpaces with particular care to the security mechanisms
obtained by decorating tuples with control fields. Section 3 describes some real
examples where the SecSpaces model is used to support some forms of secure
interaction. Finally Section 4 reports the main related works and concludes the
paper.

2* SecSpaces

The SecSpaces language is an extension of Linda supporting security. In
order to introduce SecSpaces we first present the Linda primitives. The Linda
language provides coordination primitives that allow processes to insert new
tuples into the tuple space (TS for short) or to access the tuples already stored
in the shared tuple space. More precisely, a tuple is a sequence of typed val-
ues [Computing Associates, 1995] and a TS is a multiset of tuples.

Processes can exchange tuples through introducing them into the TS. The
primitive out(e) permits to add a new occurrence of the tuple e to the TS.

The data-retrieval primitives permit processes, by specifying a template t,
to access tuples available in the TS that match the template. More precisely,
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a template is a sequence of fields that can be either actual or formal: a field
is actual if it specifies the type and a value, while it is formal if the type only
is given. Two typed values match if they have the same value, while a typed
value matches a formal fields if it has the type specified in the latter. A tuple e
matches the template t if t and e have the same arity and each field of e matches
the corresponding field of t.

The in(t) is the blocking input primitive: when a tuple e matching the tem-
plate t is available in the TS, an occurrence of e is removed from the TS and
the primitive returns e. The rd(t) primitive is the blocking read primitive: dif-
ferently from the in(t), when a tuple e matching the template t is in the TS, it
returns e without removing it from the TS.

Linda also provides the non-blocking version of the data-retrieval primi-
tives: the inp and the rdp are the non-blocking version of the in and the rd,
respectively. If the tuple e is in the TS, their behavior is the same as for the
blocking operations, otherwise they return a special value indicating the ab-
sence of e in the TS.

Recent distributed applications such as Web services, applications for Mo-
bile Ad Hoc Networks (MANETs), Peer to Peer Applications (P2P) are inher-
ently open to processes, agents, components that are not known at design time.
When the Linda coordination model is exploited to program the coordination
inside this class of applications (see e.g. Lime [Murphy et al., 2001] in the
context of MANETs and PeerSpaces [Busi et al., 2003] for P2P applications)
new critical aspects come into play such as the need to deal with a hostile
environment which may comprise also untrusted components.

The main issues are related with the fact that, in such a context, any entity
is allowed to perform insertion, read and removal of tuples to and from the
tuple space. In particular this means that any process can maliciously insert an
unbounded number of tuples; in such a way, since the manager of the space has
to handle any out operation, a process can generate a denial of service attack.

Another denial of service attack is due to the fact that any process can mali-
ciously read/remove any tuples from the space, thus compromising the applica-
tions interacting via tuple-space. Indeed any entity can, by using the wildcard,
generate a template that matches with any tuple having th same arity. There-
fore, for example, a template having two wildcard fields can be used to read
or remove any tuple containing two data fields. Moreover, since any entity can
read/remove/reproduce any tuple from and into the space in such a model, we
cannot authenticate neither the producer, nor the receiver of tuples. The threat
of such lacks, that SecSpaces aims to cover, will be highlighted in the follow-
ing section, but it should be rather clear that such state is to be avoided in open
systems, where the applications interact by using the same tuple space and the
availability of the tuples they produce is necessary to guarantee their correct
behavior.
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SecSpaces introduces an access control to the tuple-space coordination
model which follows the data-driven mechanism. More in detail, Linda tu-
ples are decorated with two kind of control fields: the partition key and the
asymmetric key. Each tuple contains, for each possible operation the process
can perform on the tuple (i.e. read and removal), a pair of control fields com-
posed of a partition and an asymmetric key. Control fields are evaluated in the
matching rule which is responsible for controlling the access to the tuple: the
access to a tuple is allowed only to the entities which provide control fields
matching those of the tuple associated with the operation the entity is perform-
ing. Two partition keys match if they are equal, while two asymmetric keys
match if one is the co-key of the other one.

Formally, let Mess, ranged over by ra, n , . . . , be an infinite set of messages,
Partition C Mess, ranged over by c, ct, . . . , be the set of partition keys and
AKey C Mess, ranged over by k, k!, kt, . . . , be the set of asymmetric keys.
We also assume that Partüion (resp. AKey) contains a special default value,
say # (resp. ?), used to allow any entity to access the space. Let ~ : AKey —>
AKey be a fünction such that ? = ? and if k = k' then k' — k. Informally,
such function maps asymmetric keys to the corresponding co-keys. Moreover,
as in the public-key mechanism, we assume that given an asymmetric key it is
not possible to guess its co-key. In the following, we use d to denote a finite
sequence of data fields.

The tuple structure in SecSpaces is defined as follows:

where d is a finite sequence of data fields whose values range over Mess,
c, c' G Partition and k, k' G AKey. The sequence of data fields in d repre-
sents the content of standard Linda tuples, while c and k (resp. c' and k') are
the control fields used when such tuple is accessed by a read (resp. removal)
operation. In the following we use the function key(e, op) (resp. akey(e, op))
as the one that given op G {rd, in} and a tuple e returns the partition key (resp.
asymmetric key) of e associated to op.

Templates are decorated with one occurrence of control fields, that will be
associated to the operation the process is performing:

where dt is a finite sequence of data fields, ct G Partition is the partition key
and kt G AKey is the asymmetric key associated to t. Differently from tuples,
data fields contained in dt can also be set to the wildcard value denoted with
nulh the wildcard is used to match with all field values.
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D E F I N I T I O N 1 ( M A T C H I N G R U L E ) Let e =< d i ; d 2 ; . . . ; d n >^}{d^\2\n be

a tuple, t =< dt\\ dti\ • • .; dtm > £*! be a template and op E {rd, in} be
an operation. We say that e matches t (denoted with e >op t) if the following
conditions hold:

1 m — n

2 dti = di or dti = null, 1 < i < n

3 key(e,op) = ct

4 akey(e, op) = kt.

Condition 1. and 2. rephrase the classical Linda matching rule, that is test if
e and t have the same arity and ifeach datafield ofe is equal to the corre-
sponding field oft or ifthis latter one is set to wildcard. Condition 3. tests
that the partition key ofthe tuple associated to the operation op is equal to that
ofthe template. Condition 4. checks that the asymmetric key ofthe template
corresponds to the co-key ofthe asymmetric key ofthe tuple associated to the
operation op.

Essentially partition keys are a special kind of data field that do not accept
wildcard in the matching evaluation. In this way, such keys logically partition
the space and the access to a partition is restricted to those processes that know
the associated key. Indeed, in order to perform an operation on the partition
containing all the tuples with a certain partition key, processes must know the
key which identifies that partition.

Differently from partition keys, the asymmetric keys make it possible to
discriminate the permission of write, read and remove of a tuple. For instance,
to read a tuple with asymmetric key k the process must provide a template
with asymmetric key set to k. It is worth noting that by using such keys the
knowledge used to produce a tuple (fc) is different from the one used for re-
trieving that tuple (k). Therefore, by properly distributing these values we can
assign processes the permission to perform a subset of the possible operations
on that tuple, thus discriminating among the processes that can produce, read
or remove that tuple.

E X A M P L E 2 Some matching example follow (e \f t means that e does not
match with t):

\]c\ r^'l fvd ^ IÜUJLL ^ | . — ,

< d >flrd}S\" hn < d' >'ä
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DEFINITION 3 (RETURN VALUE) Therd(resp. in) primitive with template
t terminates when a tuple e such that e >rd t (resp.e >in t) is available in the
tuple space and the return value is composed ofthe datafields contained in
e, while control fields are not returned. For example, ifthe matching tuple is

< d >rärd nPiin the return value is<d>.

By such definition it follows that dynamic privileges acquisition can happen
only when control fields values are stored inside the sequence of data fields.

SecSpaces implementation

The study of all the issues related with a secure implementation of the
SecSpaces model has been investigated in [Lucchi and Zavattaro, 2004]. Here
we just report the way we use to implement control fields.

The implementation of partition keys is rather easy and similar to symmet-
ric cryptography; the only assumption is that a process should not be able to
guess an unknown partition key used by other processes. Similarly to symmet-
ric encryption keys (see e.g. [Schneier, 1996]), we need to implement the set
Partition so that to guess one of its values has low probability. Such feature
can be realized, e.g., by encoding partition keys with data composed by a large
number of bits (say 512 bits).

The main problem we have to tackle when we implement asymmetric keys
is how to satisfy the function ~. Such fiinction must guarantee that: i)it is
possible to check whether two keys k and k! match (i.e. to verify if k' — k),
and ii)it is not possible for a process to guess k starting from the knowledge
of k. To implement such keys we exploit the public-key cryptographic mech-
anism. Formally, let PlainText, ranged over by p, p;,..., be the set of plain-
texts, Key, ranged over by PrivK, PubK, . . . , be the set of encryption keys
containing private and public keys. In the following, when we refer to pairs
of private and public keys (PrivK,PubK), we assume that a plaintext en-
crypted with PubK (resp. PrivK) can be decrypted only by using PrivK
(resp. PubK). Let Ciphertext, ranged over by s, st,-.., be the set of cipher-
texts obtained by encrypting plaintexts with encryption keys (we denote with
{p}k the encryption of p with key k).

We encode any asymmetric keys, except the default value ? encoded with
?7, with a triple (p, PubK, s). The following implementation of ~ satisfies the
requirements of asymmetric keys:

• given ?', we have that V = ?';

• given the triple (p, PubK, s), we have that (p, PubK, s) — (p', PubK', sr)
if s = {pf}privK' and sf = {p}privK-

Obviously, the correctness of such implementation is to be subordinate to a
perfect implementation of cryptographic operations.
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3. Examples

In this section we consider some real applications and we show how to man-
age the interaction by using the SecSpaces model. We show how SecSpaces
makes it possible to guarantee some of the main security properties like se-
crecy, producer/receiver authentication and data availability. In particular we
present two examples that we take from the use cases of [Gigaspaces]. For each
of them, we proceed as follows: i)we describe how it works, ii)we describe the
security lacks if the interaction is programmed with Linda, and iii)we describe
how to support security by using SecSpaces.

Distributed Session Sharing

This example shows how to exploit a tuple-space repository for implement-
ing a service for managing user sessions, e.g., the sessions used to control
business activities.

The use case we consider consist of a customer that intends to reserve a car
from one agency and a flight from another one. The car and flight reserva-
tion systems are located in separate servers. Both systems need to be able to
share the user session, so that from the customer's point of view it is a single
transaction. Since these services are distributed, we exploit the tuple space
to implement a distributed session server that makes it possible to share the
user session. The solution we are going to discuss is depicted in Fig. 1. The
idea is that at any customer sessions the travel agency collects user data (shop-
ping card, user id? etc.) and invokes (without a specific order) three services:
i)the car service, ii)the flight service, and iii)the billing service, by passing as
parameters the user session, shopping card and the user preferences. The infor-
mation the travel agency receives from such services consists of, respectively:
i)the ordered car, ii)the flight, and iii)the bill of the transaction. The car and
flight services supply the corresponding request and then insert a tuple con-
taining the fee of the supplied service and the user session id that is used as
key field by the billing service that consumes both tuples and then returns the
bill to the travel agency.

The main security problem is that the tuples inserted in the space are avail-
able to anyone, thus someone could maliciously use that id to perform, e.g.,
another business activity or to alterate the service fee. Indeed, let us sup-
pose that car and flight services produce tuples with the following structure:
< userid, fee,preferences, serviceinfo >, and that the billing service col-
lects such tuples by performing two in with < userid, null, null, null >
as template. The threat is that such tuples can be removed/manipulated by,
e.g., a malicious process, that can use the user id in a different context or can
change the service fee, the user preferences or the identifier of the service
(serviceinfo) supplying the requested task.
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Insert a tuplecontaining
Car Service TgL»carreservationinformation

Customer

Insert a tuplecontaining
flightmformation

Consume the tuple produced
Billing Service bycarandflightservices

Figure 1. Distributed user sessions managed with a tuple space

The security issues explained above can be tackled by exploiting SecSpaces.
In particular, the properties that should be guaranteed are: i)secrecy of ex-
changed data, and ii)receiver authentication. The former is needed to guarantee
that the exchanged information are not used by unauthorized users while the
latter is used to guarantee that the only process which is allowed to consume
the tuples < userid, fee,preferences, serviceinfo > is the billing service.

Let c and c' be two partition keys and k be an asymmetric key. To support
such properties, we assume that:

• c is a private partition key shared by the car and the billing service (i.e.
only those services know c),

• c' is a private partition key shared by the flight and the billing service
(i.e. only those services know c'), and

• k is a private data of the billing service, while k is a public data.

In this paper we do not tackle the problem of how to distribute in a secure way
such values. A possible solution is to exploit classic public-key infrastructure
[Schneier, 1996].

The tuples produced (and then inserted into the space by an out) respec-
tively by the car and by the flight service are now the following:

< userid, carf ee,pref erences, carserviceinf o >2)rd^m

< userid, flightfee,preferences,carserviceinfo >%}rd}^

To access such tuples it is necessary to provide a template having c (or c') as
partition key and k as asymmetric key. In particular, the billing service perform
in(< userid,null,null,null >y) and in(< userid,null,null,null >fJ)
to read (and remove) the tuple containing information produced by the car and
by the flight service, respectively. The secrecy of the data exchanged via the
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tuple space is guaranteed because only the two involved services (car-billing or
flight-billing) know the partition key, while the authentication of the receiver
directly follows by the fact that only the billing service is able to provide k as
asymmetric key.

Brokered messaging

The use case we consider here is a messaging service where the interaction
between the parties is mediated by a broker. Service producers (masters) pro-
duce messages about instructions or other information such as images, files,
specifying also the receiver of such messages. A special service, the broker, is
responsible for analysing submitted requests such as to determine which con-
sumer service it should be sent to. It can possibly modify or insert additional
data (e.g., a timestamp) into the message and then to deliver it to the relevant
service consumer.

Such interaction can be programmed by exploiting a tuple space: i)masters
insert a tuple containing all the information into the space with a certain struc-
ture that the broker knows, e.g., < broker, msg, to > where broker is the
key used to identify tuples that the broker should take into account, msg
is the information represented by the message and to specifies the receiver
(we assume receivers can be unequivocally identified by an id)? ii)the bro-
ker reads (and removes) submitted tuples by performing an in operation with
< broker, null, null > as template, it analyses the information about the mes-
sage and the receiver and, after having performed some controls on submit-
ted data, inserts a the tuple < to, msg, timestamp > into the space where
timestamp indicates when the message has been receiver by the broker, and
iii)any consumers whose id is consid performs an in by using < consid, null,
null > as template; in this way it obtains the transmitted object and its times-
tamp. The interaction schema of such application is described in Fig. 2.

There are several kinds of aspects that a secure implementation should take
into account like the secrecy of exchanged data (in order to guarantee the con-
fidentiality), or the authentication of the message producers and consumers
that can be managed by following an approach similar to the one used in the
previous example. Here we just describe how to support another aspect: the
fairness between producer and consumer. Indeed, any consumer (not only the
proper consumer) can consume any tuples submitted by the producer thus pre-
venting the broker to analyse such tuple. Essentially, the problem is that we
cannot guarantee non-repudiation. In such a way, for example, the consumer
can take an advantage w.r.t. the producer because it can also repudiate that it
has received such message.

By assuming that the broker logs the exchanged messages we can exploit
asymmetric keys of SecSpaces to cover this security lack by managing the
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Figure 2. Brokered messaging managed with a tuple space

authentication of the receiver (the broker) for the tuples submitted by the pro-
ducers. Moreover, we could manage the receiver authentication (the proper
consumer) for the tuples inserted by the broker. In this way we guarantee that
only the broker can consume (and then analyse) the tuples submitted by the
producers and that only the receiver specified by the producer can consume
the corresponding message. Technically, let k^ and ki for i = 1 , . . . ,ra be
asymmetric keys; we make the following assumptions:

• kb is a private information of the broker,

• ki is a private information of the consumer i,

• kb, ki for i = 1 , . . . , m are public data.

The producers insert tuples with asymmetric keys (both for rd and in) set to
fcb, say < broker,msg,to >r7n rm that only the broker can access since
it is the only one that knows fc^, which is needed to match the tuple. The
broker consumes and analyses such tuples and by evaluating the field to selects
the public key corresponding to the consumer, say ki, and insert the tuple <
to, msg, timestamp >r^-i that only the proper consumer can take since it is
the only which knows k^.

The example can be furtherly extended. Let us suppose the case where
the producer can also specify that the message can be read but not removed
because, e.g., it is necessary to track the execution of a complex activity or
protocol. In this case the broker can set to ki the asymmetric key of the tuple
associated to the rd and to set to another value that consumers cannot match
(e.g., kb) the one associated to the in. In this way consumers can only generate
templates that match such tuple when it is accessed with read operations.
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4. Conclusion

We have described the main security issues that emerge when Linda is used
in open systems and described SecSpaces that make it possible to support
some of the main security properties (e.g., secrecy, producer/receiver authenti-
cation). The adequacy of such proposal has been proved by considering some
real examples of usage of tuple spaces in the interaction.

Other proposals supporting security are available in literature. The most
interesting ones that deserve to be mentioned are Klaim [De Nicola et al.,
1998] and SecOS [Vitek et al., 2003]. The former exploits a classic access
control mechanism in which permissions describe, for each entity, which are
the operations it is allowed to perform (insertion, read and removal of tuples),
while the latter is based on access keys stored on tuples, which has inspired the
SecSpaces language. Another approach is presented in [Handorean and R o
man, 2003] where a password-based system on tuple spaces and tuples permits
the access only to the authorized entities, that is those that know the password.
In particular, password-based access permissions on tuples can be associated
to the read and to the removal operations. DifFerently from SecSpaces, if an
entity is allowed to remove a tuple (i.e. it knows the password associated to
the removal operations), it has also the permission of reading that tuple.

We consider that the data-driven approach followed by SecOS and subse-
quently by SecSpaces is more suitable for open systems w.r.t. to classic one
used in Klaim. In a few words, we identify the problem in the fact that to know
all the possible entities that may enter in the system is a difficult task. Since in
Klaim access permissions refer to entities, such task is necessary. On the other
hand, the data-driven mechanism makes it possible to avoid such task since
the access permissions are simply based on the proof of knowledge the entities
provide when they perform coordination primitives.

The main contribution of SecSpaces is a refinement of the SecOS access
permissions on tuples that make it possible to discriminate between the per-
missions of producing, reading and consuming a tuple. For example, in SecOS
a process that can consume a tuple is also able to reproduce that tuple, thus in
permission inherits out permissions. If we consider the brokered messaging
example, we cannot guarantee non-repudiation of the messages received by
the consumers.
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Abstract In multilevel systems it is important to avoid unwanted indirect information flow
from higher levels to lower levels, namely the so called covert channels. Initial
studies of information flow analysis were performed by abstracting away from
time and probability. Recently, work has been done in order to consider also
aspects either of time or of probability, but not both. In this paper we propose a
general framework, based on Probabilistic Timed Automata, where both proba-
bilistic and timing covert channels can be studied. As an application, we study a
system with covert channels that we are able to discover by our techniques.

1. Introduction

In a multilevel system every agent is confined in a bounded security level;
information can flow from a certain agent to another agent only if the level of
the former is lower than the level of the latter. Access rules can be imposed by
the system in order to control direct unwanted transmission from higher levels
to lower levels; however, it could be possible to transmit information indirectly
by using system side effects. Usually, this kind of indirect transmissions, called
covert channels, do not violate the access rules imposed by the system.

The existence of covert channels has led to the more general approach of
information flow security, which aims at controlling the way information may
flow among different entities. The idea is to try to directly control the whole
flow of information, rather than only the direct communication among agents.
In [10] the authors introduce the notion ofnon-interference, stating, intuitively,
that the low level agents should not be able to deduce anything about the ac-
tivity of the high level agents. By imposing some information flow rules, it
is possible to control direct and indirect leakages, as both of them give rise to
unwanted information flows.

In the literature, there are many different definitions of security based on
the information flow idea, and each one formulated in some system model
(see, e.g., [1, 5, 7-11, 16, 19]). Most of the properties considered are based
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on analysis of information flow that does not take into consideration aspects
of time or probability, and therefore are not usefiil to check the existence of
probabilistic or timing covert channels. To overcome this, a significant work
has been done in order to extend the study by considering either time (see,
e.g., [5, 7, 9]) or probability (see, e.g., [1, 11, 19]), but, to the best of our
knowledge, not both.

In this paper we propose a general framework where both probabilistic and
timing covert channels can be studied. For the description of systems we
choose the model of Probabilistic Timed Automata. Timed Automata have
been introduced by Alur and Dill [3], extensions with probability have been
proposed e.g. in [2, 6, 13, 14]. We introduce a particular class of Probabilistic
Timed Automata (PTA) well-suited for the analysis of information flow secu-
rity properties.

The framework of PTA allows one to specify timed systems showing a prob-
abilistic behavior in an intuitive and succinct way. Therefore, within the frame-
work of PTA, where time and probabilities are taken into consideration, the
modeler can describe, in the same specification, different aspects of a system
and analyze on a single model real-time properties, performance and reliability
properties (by using classical model checking techniques) and finally informa-
tion flow security properties able to detect both probabilistic and timing covert
channels.

2. Probabilistic Timed Automata

Let us assume a set X of positive real variables called clocks. A valuation
over X is a mapping v : X —* IR-0 assigning real values to clocks. For a
valuation v and a time value t G IR-°, let v -f t denote the valuation such that
(v + t)(x) = v(x) + t, for each clock x e X.

The set of constraints over X, denoted <&(X), is defined by the following
grammar: 4> ::= x ~ c \ <fi A </> | ->0 | 0 V 0 \ true, where </> ranges over $ (X) ,
x e X, c G Q and ~ e {<, <, =, ^ ,

We write v \= <$> when the valuation v satisfies the constraint </>. Formally,
v \= x ~ c iff v(x) ~ c, v \= <fii A (f>2 iff v \= <j)\ and v (= 02, v |= —i<j> iff
v ẑ 0? y |= (ß^ v 02 iff v \= (f)\ or v \= 02, and v (= true.

Let B C X; with v[B] we denote the valuation resulting after resetting
all clocks in B. More precisely, v[B](x) = 0 if x e B, v[B](x) = v(x),
otherwise. Finally, with 0 we denote the valuation with all clocks reset to 0,
namely 0(x) = 0 for all x G X.

DEFINITION 1 A Probabilistic Timed Automaton (PTA) is a sixtuple A =
{T,,X,Q,q^8,Tr)twhere:

• E is afinite alphabet ofactions.
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• X is afinite set ofpositive real variables called clocks.

• Q is afinite set ofstates and qo G Q is the initial state.

• 5 Q Q xEU{r} x $ (X) x 2X x Q is afinite set oftransitions. The
symbol r represents the silent or internal move. For a state q, we denote
with start(q) the set of transitions with q as source state, i.e. the set
{(gi,a,0,J3,g2) G S | qx = q}.

• 7T : ö —>]0,1] is a probability function such that 7r(e) is theprobability
ofperforming the transiüon e. We require that Yleestart(q) ^{e) = 1-

A configuration of A is a pair (g, v), where q G Q is a state of A, and v is a
valuation over X. The initial configuration of A is represented by (#o, 0) and
the set of all the configurations of A is denoted with SA-

There is a discrete transition step from a configuration si — (qi,vi) to a
configuration s^ = (<^, i>j) through action a G E U {r} , written s^ -^ Sj, if
there is a transition e = (^, a, <̂>, ß , qj) G 5 such that ^ [= 0, and Vj = Vi[B].

There is a continuous timed step from a configuration si = (qi,Vi) to a
configuration ŝ  = (qj,Vj) through time t € IR>0, written s^ —> Sj, if
qj = ^ and ^- = (^ + t).

Given a configuration «s = (q^, v^), with Adm(s) — {(qi,a,(j),B,q) G
5 \ Vi \= (f)} we represent the set of transitions that an automaton could execute
from configuration s, and we say that a transition in Adm(s) is enabled in s.
Given two configurations s^ = (^, vi), Sj = (qj, Vj) and given a G ZlU{r} we
representwith Adm(si, a, Sj) = {(^, a, 0, B, q^) e 6 \ v^ \= 4> A Vj = Vi[B]}
the set of transitions that lead from configuration s^ to configuration Sj through
a transition step labeled with a. A configuration s = (qi, vi) is called terminal
iffAdm(s') = 0 for all s' = (^, ^ + t) where * G IR-°; we denote with ST

the set of terminal configurations.
For configurations s^ — (^, v^), Sj — (^ , Vj) and a G S U {r} U IR>0, we

define with P(si, a, Sj) the probability of reaching configuration Sj from con-
figuration S{ through a step ŝ  -^-> ŝ - labeled with a. Formally P(si,a,Sj) =

^^ m ( s - ' Q ' S j ) ,V if a G E U {r} and P{si,a,Sj) = 1 if a G IR>0.

The probability of executing a transition step from a configuration 5 is cho-
sen according to the values returned by the function TT among all the transitions
enabled in s, while we set to 1 the probability of executing a timed step la-
beled with t G IR>0. Intuitively, an automaton chooses non-deterministically
whether to execute a transition step (selected probabilistically among all the
transitions enabled in 5) or to let time pass performing a timed step.

An execution fragment starting from SQ is a finite sequence of timed and
transition steps a = SQ —̂ > si - ^ 52 - ^ . . . —^ 5^. With ExecFrag



16 Formal Aspects ofSecurity and Trust

we denote the set of execution fragments and with ExecFrag(s) the set of
execution fragments starting from s. We define last(a) = s^ and \a\ = k.
The execution fragment a is called maximal ifflast(a) G ST- For any j < k,
with &i we define the sequence of steps so —^ si -^» . . . —̂ > Sj. If |cr| = 0
we put P(<J) = 1, else, if |<J| = fc > 1, we define P(cr) = P(SQ, a±, si) • . . . •
P(sib-i,aib,5fc).

An execution is either a maximal execution fragment or an infinite sequence
50 —^ 5i —̂> 52 -^» . . . . We denote with Exec the set of executions and
with Exec(s) the set of executions starting from s. Finally, let o \ denote the
set of executions a1 such that a <prefix o' •> where prefix is the usual prefix
relation over sequences.

Executions and execution fragments of a PTA arise by resolving both the
nondeterministic and the probabilistic choices [13]. To resolve the nondeter-
ministic choices of a PTA, we introduce now schedulers of PTAs.

A scheduler of a PTA A = (E, X, Q, qo, 5, TT) is a partial function F from
Exec to IR>0. For a scheduler F of a PTA A we define ExecFragF (resp.
ExecF) as the set of execution fragments (resp. executions) a = SQ —^

51 -^ s2 -^ ... such that a» G IR>0 iff F ^ " 1 ) = a*, for any 0 < i <
\a\. We note that, if F(a) is not defined, then a discrete step is chosen for a.
Namely, a^ 0 IR>0 iff F(CF1~1) undefined. A scheduler should also respect the
nonZeno condition of divergent times. Formally we have that for any infinite
sequence a = SQ -̂ -> 5i -̂ -> . . . in ExecF the sum X)a GIR>0 ai diverges.

Assuming the basic notions of probability theory (see e.g. [12]) we define
the probability space on the executions starting in a given configuration s e
SA as follows. Given a scheduler F, let ExecF(s) be the set of executions
starting in s, ExecFragF(s) be the set of execution fragments starting in 5,
and ^F

ieid(s) be the smallest sigma field on ExecF(s) that contains the basic
cylinders a f, where a E ExecFragF(s). The probability measure ProbF is
the unique measure on T,pield(s) such that ProbF(a | ) = P(<J).

In the following, A is a PTA, F is a scheduler for A, a stands for a if
Ö G S U IR>0 and for e (the empty string) ifa = r,seSA and C C SA.

Consider now ExecF(r*ä, C), the set of executions that lead to a configura-
tioninCviaasequenceinr*d. Wedefine-ExecF(s,r*d,C)
ExecF(s). Finally, given a scheduler F, we define the probability
ProbF(s,T*ä,C) = Pro&F(ExecF(5,r*d,C)) as:

1 ifa rAseC
EqeSA ProbF(s,r,q) • ProbF{q,r\C) if a = r A s ^ C
EqeSA ProbF(s, r, g) • Pro6F(g, r*a, C) + Pro6(5, a, C) i / a ± r

Weak bisimulation
The bisimulation of a system by another system is based on the idea of mu-
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tual step-by-step simulation. Intuitively, two systems A and A! are bisimilar,
if whenever one of the two systems executes a certain action and reaches a
configuration s, the other system is able to simulate this single step by execut-
ing the same action and reaching a configuration s' which is again bisimilar to
s. A weak bisimulation is a bisimulation which does not take into account r
(internal) moves. Hence, whenever a system simulates an action of the other
system, it can also execute some internal r actions before and after the execu-
tion of that action. A branching bisimulation is, instead, a weak bisimulation
where r moves are allowed only before the execution of the action to simulate.

To abstract away from r moves, Milner [18] introduces the notion of observ-
able step, which consists of a single visible action a preceded and followed by
an arbitrary number (including zero) of intemal moves. Such moves are de-
scribed by a weak transition relation =^> = (—^)* ~̂ -> (— -̂>)*, where —>
is the classical strong relation, and =?=> = (—^)*. It is worth noting that
with such a definition a weak internal transition =£> is possible even without
performing any internal action.

For the definition of weak bisimulation in the fully probabilistic setting,
Baier and Hermanns [4] replace Milner's weak internal transitions $ =?=> s' by
the probability Prob(s, r*, s') of reaching configuration s' from s via internal
moves. Similarly, for visible actions a, Baier and Hermanns define = > by
means of the probability Prob(s, r*a, 5').

DEFINITION 2 Let A = (E,X,Q,qo,ö,7r) be aprobabilistic timed automa-
ton. A weak bisimulation on A is an equivalence relation 1Z on SA such that,
for all (5, sr) G 1Z, C € SA/T^ and schedulers F, there exists a scheduler F'
such that Fro&^(s,r*a,C) = Prob^(sf,r*a,C) for every a G S U {r} U
1R>O, and vice versa.
Two configurations s, s' are called weakly bisimilar on A (denoted s ^A sf)
iff^s^s') € IZfor some weak bisimulation 1Z.

DEFINITION 3 Two probabilistic timed automata A = (S ,X,Q,^0J5,TT)
and Ä = (Z'iX'iQ'rffrS'y) such that Q f) Q' = 0 and X n X1 = 0
are caüed weak bisimilar (denoted by A « A!) if, given theprobabilistic timed
automaton Ä = ( E U S ' j U l ^ O U Q', qQ, S U 5', TT), with 7r(e) = ir(e)
ife e ö and 7t(e) = ir'(e) otherwise, it holds (go,O) ^ ^ (^o?^)' where the
valuation 0 is defined over all clocks ofthe set X U X'.

In [15] we have given an algorithm that resorts to the theory of regions of
timed automata [3] in order to decide weak bisimulation. Along the line of [15]
we derive the following proposition.

PROPOSITION 4 It is decidable to check whether two configurations or two
probabilistic timed automata are weak bisimilar.
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Auxiliary Operators for Probabilistic Timed Automata
We assume two probabilistic timed automata A\ = (£, X\, Q\, ro, 5i, TTI) and
A2 = (£, X2, Q2, ^o, $2,7T2) with Qi H Q2 = 0 and Xi n X2 = 0. We also
assume a set L C £ of synchronization actions. Finally, given a transition
e = (g, a, </>, £?, g') £ <̂ , with TTia(e) we denote the normalized probability of
executing transition e with respect to all other transitions starting from q and
labelled with a, i.e. 7r2a(e) = ^ ^ ^ T-JT, where startf(q) denotes the

set of transitions in 5i with g as source state and a as labelling action, i.e. the
set {(gi, a', 0, 5 , g2) G 5i \ qi = q A a' = a}.

DEFINITION 5 The parallel composition oftwo PTA A\ and A2, with respect
to the synchronization set L and the advancing speedparameter p E]0 , 1[, is
definedas Ai\\p

LA2 = (E,X,Q,(ro,uo),ö,7r). ThesetQ ofstatesofAi\\p
LA2

is given by the cartesian product Q\ x Q2 ofthe states ofthe two automata A\
and A2, while the set ofclocks X is given by the union X\ U X2. Given a state
(r, u) of A\ | \P

LA2, 6 and TT are obtained by thefollowing rules:

• Iffrom state r the automaton A\ has a transition e\ — {r^a^(j)^B^rf)
with action a $. L andprobability TTi(ei) = p', then Ai\\p

LA2 has a
transition e = ((r, u), a, 0, B, (r', u)) G 5 withprobability 7r'(e) = p-p'.

• Iffrom state u the automaton A2 has a transition e2 — (u, a, (/>, ß , u')
with action a §£ L andprobability 7r2(e2) = p', then A\\fLA2 has a
transition e = ((r, u),a, (ß, B, (r, u')) e 5 with probability 7r;(e) =

• Iffrom state r the automaton A\ has a transition e\ = (r, a, 0i , B\,rf)
with action a £ L andprobabilities 7Ti(ei) = p' and ^\a[e\) — p', and
from state u the automaton A2 has a transition e2(u,a,(f)2,B2,u

f) with
probabilities 7r2(e2) = p" and 7r2a(e2) = p", A\ and A2 can synchro-
nize and therefore A\\\^A2 has a transition e — ((r, ^), r, (j>i A 02, B\ U
^2 , (r7, ^ ) ) € 5 withprobability Kr(e) = p • p7 • p/ ; + (1 - p) • p" • p7.

Given such a definition of parallel composition, whenever A\ and A2 synchro-
nize they give rise to an internal action r . Note that, chosen a transition ei
(e2) with label a e L of automaton A\ (A2) the transition e2 (ei) of A2 (A\)
that synchronizes with e\ (e2) is chosen according to the probability 7r2a(e2)
(^ia(ei)) normalized with respect to all the other transitions labelled with a.
Besides, according to Definition 1, it holds that J2eestart(q) n(e) ^ {0> 1} f°r

each state g' of A\ \ \P
LA2. This is done due to the last rule, that uses the auxiliary

structure TT; to compute the normalized probabilities in TT.
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PROPOSITION 6 Given PTA A\ and A% A\\?LAi is a PTAfor allp e]0,1[
andL C E.

We now assume A = (E, X, Q, #o? ^ TT) and L C S .

DEFINITION 7 The restriction of a probabilistic timed automaton A with re-
spect to the set of actions L is given by A\L = (E, X, Q, qo, 5', TT') w/zere
J' = 6\{(q,a,4>,B,q>) | o 6 L} and ir'(e) = „ *<e> ^farall

e = (q,a,(/>,B,q') eö'.

DEFINITION 8 The hiding ofaprobabilistic timed automaton Awith respect
to the set of actions L is given by A/L = (E,X, Q, ^o? '̂?7*") where each
transition e = (q, a, (/>, B, q1) with a G L is replaced by the transition e' —
(q, r, 0, B, q'), where n(ef) = 7r(e).

PROPOSITION 9 Given a PTA A,A\L and A/L are PTAfor all L C E.

3. Security Properties

A multilevel system interacts with agents confined in different levels of clear-
ance. In order to analyze the information flow between parties with different
levels of confidentiality, the set of visible actions is partitioned into high level
actions and low level actions. Formally, we assume the set of possible ac-
tions E = ZH U E L , with EH f)EL = 0. In the following, with 1,1'...
and ft, h',... we denote actions of Sx, and £ # respectively. With F// and Ti
we denote the set of high level agents and low level agents. Formally, an au-
tomaton A = (?,f,X,Q,qo,5,7r) is in TH (TL) if E7 C EH (E' C SL). For
simplicity, we specify only two-level systems. More levels can by dealt with
by iteratively grouping them in two clusters.

A low level agent is able to observe the execution of all the steps labelled
with actions in E^ and all the timed steps. The basic idea of non-interference
is that the high level does not interfere with the low level if the effects of high
level communications are not visible by a low level agent. Finally, an impor-
tant assumption when dealing with non-interference analysis is that a system
is considered to be secure (no information flow can occur) if there is no inter-
action with high level agents (if high level actions are prevented).

Probabilistic Timed Non-interference
We say that a probabilistic timed automaton A satisfies the Probabilistic Timed
Non-interference property (PTNI) if high level agents are not able to interfere
with the observable behavior of the system from the low level point of view.
Formally PTNI can be formulated as follows.

DEFINITION 10 A PTA A is PTNIsecure (A e PTNI) <& A/Y,H « A \ EH.
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Figure 1. A probabilistic covert channel.

A \ EH represents the isolated system, where all high level actions are pre-
vented. Such a system is considered secure due to the notion of non-interference.
If the observational behavior of the isolated system is equal to the behavior of
A/YJH, representing the system which communicates with high level agents in
an invisible manner for the low agents point of view, PTA A is PTNI secure.
This property, defined in an environment where both probability and time are
studied, is able to catch information flow that may occur either due to the prob-
abilistic behavior of the system or due to the time when actions occur.

PROPOSITION 117 / is decidable to check whether a PTA A e PTNL

Proof. By the decidability of our weak bisimulation (see Proposition 4) and by
the computable definitions of the operators of hiding and restriction. •

EXAMPLE 12 In Figure 1 we show a case of probabilistic information flow.
Abstracting awayfromprobability, the system A could be consideredsecure (in
apurely nondeterministic setting, in both A/T>H and A \ £ # a low level agent
can observe the action l or the sequence IV without further information about
the execution ofh). In a probabilistic framework, given p -f- r -f q = 1, action
h interferes with the probability ofobserving either a single l or the sequence
ll'. Formally, in A \ £ # , a low level agent observes either the single l with
probability p + r or the sequence IV with probability q. However, in A/Y>H

the event l is observed with probability p and the sequence IV with probability
r + q. As a consequence, A/Y>H T̂  A \ £ # , so that the PTNI property reveals
the probabilistic covert channel.

EXAMPLE 13 In Figure 2 we show a case of timing information flow. Ab-
stracting awayfrom time, the system A could be consideredsecure (in apurely
untimednondeterministicsetting, in both AjY^u andA\ E# a low levelagent
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Figure 2. A timing covert channel.

can observe only the action l without further information about the execution
ofh). In a timed framework, given a clock x G IR-0, the high action h inter-
feres with the time ofobserving action l. Formally, in A \ £ # , a low level agent
observes l executed immediately, while in AjY^n l couldbe either observed im-
mediately or when the clock x reaches value 5. A low level agent, observing
the event l when clock x has value 5 knows that action h has occurred. As a
consequence, AfEjj 76 A \ £//, so that the PTNI property reveals the timing
covert channel.

Probabilistic Timed Non Deducibility on Composition
In [8] Focardi and Gorrieri promote the classification of a set of properties cap-
turing the idea of information flow and non-interference. The Non Deducibility
on Composition property (NDC) states that a system A in isolation has not to
be altered when considering all the potential interactions of A with the high
level agents of the external environment. We consider a notion ofNDC called
Probabilistic TimedNon Deducibility on Composition (PTNDC).

DEFINITION 14 A PTA A is PTNDCsecure (A G PTNDC)

] O , 1 [ , V L C E H

VII G T#, Vp e

As we have seen, A/EH represents the observable behavior of A from a low
level agent point of view (i.e. the isolated system where all high level actions
are hidden). System (A||^II) \ E// represents, instead, system A communicat-
ing with the high agent II and then prevented by the execution of other high
level actions. If the observational behavior of the isolated system is equal to
the behavior of the system communicating with any high level agent, PTA A
satisfies the PTNDC security property.

THEOREM 15 Ae PTNDC => A e PTNL

Proof. Consider II = (0,0, {q}, q, 0, n) e FH, i-e. an automaton representing
a high level agent which does not perform any transition, and consider then the
set L = 0. If PTAA is PTNDC, then \fp e]0,1[, A/Y,H « (A\\P

LU) \ XH.
Now, by the definition of parallel composition, (A||^II) = A and, therefore,
A/EH « A \ EH, stating that A G PTNL •
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Figure 3. Ae PTNI, but A <£ PTNDC.

EXAMPLE 16 Consider the PTA A of Figure 3. It is easy to see that A is
PTNI secure, since A/Y>H « A \ T,H. In both A/Y>H and A \ T±H, a low
level agent observes the single event l taken with probability 1. Ifwe consider,
instead, the high level agent II of Figure 3, the set L = {h} and p = ^,
we observe that A/T>H T̂  (^ I IL^- ) \ ^H- In fact, A/Y>H always performs
action l with probabüity 1, while (A||^II) \ T>H reaches a deadlock state r\
anddoes notperform any visible action with probability | (as it turns out after
the parallel composition ofA and H). As a consequence, automaton A is not
PTNDC secure.

Theorem 15 and Example 16 show that the PTNI property is not able to
detect some potential deadlock due to high level activities, exactly as put in ev-
idence in [8]. For this reason we resort to the PTNDC property, which implies
PTNI, in order to capture these finer undesirable behaviors.

It is worth noticing that, as it happens for the analogous properties defined
in [1, 8, 9], the above definition of the PTNDC property is difficult to use
in practice because of the universal quantification on the high level agents.
Decidability ofPTNDC depends, in fact, on the possibility of reducing all the
high level automata in F# to a finite case suitable for the particular automaton
A we would like to study.

4. An Application

As an application we consider a network device, also studied in [9] in a timed
framework, that manages, following a mutual exclusion policy, the access to a
shared buffer. Assuming that the agents on the network are classified as low
and high level agents, the device implements the no-write-down no-read-up
policy [10]. Intuitively, the policy states that high level users can only read the
buffer, while low level users can only write on it. Such a policy avoids direct
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information flow from high level to low level, however malicious agents can
exploit some covert channel in order to transmit information indirectly. For
example, a low level user could get information about the high level activity
by observing the amount of time the device is locked (non accessible by the
low level) when high agents are reading, or by observing the frequencies with
which high level agents make access on it. We would like to check whether
some covert channel can be exploited by giving a specification of the network
device, and then by checking the PTNDC property.

In the following we consider only a low level user and a high level user
communicating with the network device. We assume that the low level user
is always ready to write in the buffer, so we consider an agent that infinitely
waits for a grant from the device and then writes in the buffer. In this manner
we are considering a low level user that continuously monitors the activity of
the device. We also assume that the entire procedure of receiving a grant in
the network and writing in the buffer is executed in a time n. In Figure 4, we
model the specification of a simple device (see the PTA B). Actions reqn,
readfj, granti and writeL model respectively high level read requests, high
level reads, low level write grants and low level writes. The set S/j of high
level actions is {reqn,readn). The device B is always ready to accept an
access request from the high level agent with probability ^ and to grant a write
access to the low level user with the same probability. Obviously, we always
consider the device composed with a high level agent according to | \P

L (we as-
sume V —\ and L — {reqn, readn}). On the one hand, when the device is
composed with a high level agent that performs action reqn with probability
1, it synchronizes with the high agent accepting his request with probability
| . On the other hand, if the high level agent does not perform reqjj, the com-
posed system performs action grant^ with probability 1. As a consequence
we can find out the following covert channels. Consider the high agent IIi of
Figure 4, which executes a read request without performing the reading after-
wards. System (B| |£ll i) \ £ # reaches a deadlock state that is not reached
by B/YtH. In this way, the high level agent could transmit the bit 0 or 1 by
alternatively blocking or not the device. Such a covert channel can be detected
by the PTNDC property, in fact we have that B/Y>H 96 (ß | |^II i ) \ £ # so
that B £ PTNDC. Another interesting covert channel arises if one considers
II2, which locks the buffer and executes a reading only after a time k. A low
level user observing the behavior of (B\ \p

LTl2) \ ^H does not receive any grant
access for a time k when a reqn action is performed. In this way the high level
agent could indirectly transmit value k to the low level user. We obviously
have again that B/EH ^ (B\\P

LU2) \ E ^ .
The two covert channels introduced above could be avoided by introducing

a timeout mechanism which releases the device ifreadn is not performed and
by always releasing the device after a fixed amount of time has passed. In Fig-
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Figure 4. Device specification with timing covert channels.

ure 5 we show a device B' that accepts a high level request, and uses a clock
x as timer and £ as timeout. When it executes action reqn the timer is set to 0,
action readn could be performed only when x < t, and when x reaches value
t the device unlocks the buffer going back to qo. When transitions starting from
a given state have disjoint conditions we omit probabilities since their execu-
tion depends on the time configuration, rather than on the effective probability.
The timing covert channels shown in the previous case could not be exploited
anymore, however device B' is still insecure. In fact the device is unavailable
for the fixed amount of time when a high level access is performed, and this
is clearly observable by the low level user that has to wait the termination of
the high level request before obtaining access to the buffer. This represents a
typical situation where the unavailability of a shared resource can be encoded
as 0 or 1 in order to transmit data. Such a situation is captured by the PTNDC
property by considering again the automaton II2 and assuming k < t. In fact
we have again that B'/EH $ (Bf\\p

LU2) \ E# .
The capacity of such a covert channel could be reduced, but not totally

avoided, by considering a buffer that probabilistically locks himself without
any high level request. In this manner the low level user could not be sure
whether the buffer is really locked by the high user or not. In Figure 5, B"
represents a device that behaves in such a manner, locking himself with a prob-
ability r. As we have said, this does not avoid entirely the covert channel, but
the knowledge the low level user acquires is affected by some uncertainty. In
fact, if the device is locked, the low level user could deduce that the high user
locked the device with a certain probability while with probability r the device
has locked himself for masking the higher user's activity.

We can completely hide the high level activity to the low level user by parti-
tioning into two sessions the time in which users can access the buffer. During a
low session, lasting a fixed amount of time n, only the low level user can access
the buffer, then the device goes to the high session, where access is reserved,
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Figure 5. Improved device specifications.

Bs reqH

Figure 6. Secure Device.

for the same amount of time, to the high level user. This makes impossible
for the low level user to discover something about the high level activity, since
the same fixed amount of time is reserved to the high session even if the high
user does nothing. In Figure 6 we specify a buffer Bs that behaves in such a
manner: the buflfer is reserved for a time t to the low level user and to the high
level user alternatively. Automaton Bs is PTNDC, in fact, for every possible
high level user II, ( JB S | | ^ I I ) \ £ # « Bc « BS/Y>H- Intuitively, automaton Bc

of Figure 6 represents the automaton resulting after the parallel composition
between Bs and any high level user II, and, therefore, Bc is weak bisimilar to
Bs composed with any possible high level user II. Finally, it easy to see that
Bc « BS/EH.

5. Conclusions

The classical theory of non-interference must be extended to cope with real
systems which may exhibit probabilistic and timing covert channels that are
not captured by standard security models. In this paper we have developed
a general framework where both probability and time are taken into account.
By defining some information flow security property, we have shown how to
detect with our model both probabilistic and timing covert channels.
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We could easily give a definition of bisimulation requiring only that the
difference of the probabilities in Definition 2 is less than a certain value and
use it to give a measure of the security level of a system.
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Abstract This paper presents a language in which information flow is securely controlled
by a type system, yet the security class of data can vary dynamically. Informa-
tion flow policies provide the means to express strong security requirements for
data confidentiality and integrity. Recent work on security-typed programming
languages has shown that information flow can be analyzed statically, ensur-
ing that programs will respect the restrictions placed on data. However, real
computing systems have security policies that vary dynamically and that cannot
be determined at the time of program analysis. For example, a file has associ-
ated access permissions that cannot be known with certainty until it is opened.
Although one security-typed programming language has included support for
dynamic security labels, there has been no demonstration that a general mech-
anism for dynamic labels can securely control information flow. In this paper,
we present an expressive language-based mechanism for reasoning about dy-
namic security labels. The mechanism is formally presented in a core language
based on the typed lambda calculus; any well-typed program in this language is
provably secure because it satisfies noninterference.

1. Introduction

Information flow control protects information security by constraining how
information is transmitted among objects and users of various security classes.
These security classes are expressed as labels associated with the information
or its containers. Denning [5] showed how to use static analysis to ensure that
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programs use information in accordance with its security class, and this ap-
proach has been instantiated in a number of languages in which the type system
implements a similar static analysis (e.g., [23, 9, 27, 17, 2, 19]). These type
systems are an attractive way to enforce security because they can be shown to
enforce noninterference [8], a strong, end-to-end security property. For exam-
ple, when applied to confidentiality, noninterference ensures that confidential
information cannot be released by the program no matter how it is transformed.

However, security cannot be enforced purely statically. In general, programs
interact with an external environment that cannot be predicted at compile time,
so there must be a run-time mechanism that allows security-critical decisions
to be taken based on dynamic observations of this environment. For example, it
is important to be able to change security settings on files and database records,
and these changes should affect how the information from these sources can
be used. A purely static mechanism cannot enforce this.

To securely control information flow when access rights can be changed
and determined dynamically, dynamic labels [14] are needed that can be ma-
nipulated and checked at run time. However, manipulating labels dynami-
cally makes it more difficult to enforce a strong notion of information security
for several reasons. First, changing the label of an object may convert sen-
sitive data to public data, directly violating noninterference. Second, label
changes (and changes to access rights in general) can be used to convey in-
formation covertly; some restriction has to be imposed to prevent covert chan-
nels [25,20]. Some mandatory access control (MAC) mechanisms support dy-
namic labels but cannot prevent implicit flows arising from control flow paths
not taken at run time [4, 11].

JFlow [13] and its successor, Jif [15] are the only implemented security-
typed languages supporting dynamic labels. However, although the Jif type
system is designed to control the new information channels that dynamic labels
create, it has not been proved to enforce secure information flow. Further, the
dynamic label mechanism in Jif has limitations that impair expressiveness and
efficiency.

In this paper, we propose an expressive language-based mechanism for se-
curely manipulating information with dynamic security labels. The mecha-
nism is formalized in a core language (based on the typed lambda calculus)
with first-class label values, dependent security types and run-time label tests.
Further, we prove that any well-typed program of the core language is secure
because it satisfies noninterference. This is the first noninterference proof for
a security-typed language in which general security labels can be manipulated
and tested dynamically, though a noninterference result has been obtained for
a simpler language supporting the related notion of dynamic principals [22].

Some previous MAC systems have supported dynamic security classes as
part of a downgrading mechanism [21]; in this work the two mechanisms are
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considered orthogonal. While downgrading is important, it is useful to treat
it as a separate mechanism so that dynamic manipulation of labels does not
necessarily destroy noninterference.

The remainder of this paper is organized as follows. Section 2 presents
some background on lattice label models and security type systems. Section 3
introduces the core language XüSec and uses sample XüSec programs to show
some important applications of dynamic labels. Section 4 describes the type
system ofXosec and the noninterference result. Section 5 covers related work,
and Section 6 concludes.

2. Background

Static information flow analysis can be formalized as a security type system,
in which security levels of data are represented by security type annotations,
and information flow control is performed through type checking.

2.1 Security classes

We assume that security requirements for confidentiality or integrity are de-
fined by associating security classes with users and with the resources that
programs access. These security classes form a lattice C. We write k C kf to
indicate that security class k! is at least as restrictive as another security class
k. In this case it is safe to move information from security class k to fc', be-
cause restrictions on the use of the data are preserved. To control data derived
from sources with classes k and k', the least restrictive security class that is at
least as restrictive as both k and k' is assigned. This is the least upper bound,
or join, written kUk'.

2.2 Labels

Type systems for confidentiality or integrity are concerned with tracking
information flows in programs. Types are extended with security labels that
denote security classes. A label £ appearing in a program may be simply a
constant security class k, or a more complex expression that denotes a security
class. The notation £\ C. £2 means that £2 denotes a security class that is at
least as restrictive as that denoted by £\.

Because a given security class may be denoted by different labels, the re-
lation C generates a lattice of equivalence classes of labels with U as the join
(least upper bound) operator. Two labels £\ and £2 are equivalent, written
£1 « £2, ifli E £2 and £2 E h- The join of two labels, £\ U £2i denotes the
security class that is the join of the security classes that £\ and £2 denote. For
example, if x has label £x and y has label £y, then the sum x+y is given the
labe l^U V
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2.3 Security type systems for information flow
Security type systems can be used to enforce security information flows

statically. Information flows in programs may be explicit flows such as as-
signments, or implicit flows [5] arising from the control flow of the program.
Consider an assignment statement x=y, which contains an information flow
from y to x. Then the typing rule for the assignment statement requires that
f-y E 4> which means the security level of y is lower than the security level of
x, guaranteeing the information flow from y to x is secure.

One advantage of static analysis is more precise control of implicit flows.
Consider a simple conditional:

if b then x = true else x = f alse

Although there is no direct assignment from b to x, this expression has an
implicit flow from b into x. A standard technique for controlling implicit flows
is to introduce a program-counter label [4], written pc, which indicates the
security level of the information that can be learned by knowing the control
flow path taken thus far. In this example, the branch taken depends on b, so
the pc in the then and e l s e clauses will be joined with 4 , the label of b.
The type system ensures that any effect of expression e has a label at least as
restrictive as its pc. In other words, an expression e cannot generate any effects
observable to users who should not know the current program counter. In this
example, the assignments to x will be permitted only if pc E £x, which ensures
4 E 4 .

3. The X^sec language
The core language Xpsec is a security-typed lambda calculus that supports

first-class dynamic labels. In Xpsec, labels are terms that can be manipulated
and checked at run time. Furthermore, label terms can be used as statically
analyzed type annotations. Syntactic restrictions are imposed on label terms to
increase the practicality of type checking, following the approach used by Xi
and Pfenning in ML^(C) [26].

From the computational standpoint, XDSCC is fairly expressive, because it
supports both first-class fünctions and state, which together are sufficient to
encode recursive functions.

3.1 Syntax
The syntax of Xnsec is given in Figure 1. We use the name k to range

over a lattice of label values C (more precisely, a join semi-lattice with bottom
element ±), x, y to range over variable names V, and m to range over a space
of memory addresses M.
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Figure 1. Syntax of AD

To make the lattice explicit, we write C |= fci E &2 to mean that &2 is at
least as restrictive as fci in £, and £ |= k = fei LJ fc^ to mean fc is the join of fci
and &2 in £. The least and greatest elements of £ are ± and T. Any non-trivial
label lattice contains at least two points L and H where H % L. Intuitively,
the label L describes what information is observable by low-security users who
are to be prevented from seeing confidential information. Thus, low-security
data has a label bounded above by L; high-security data has a label (such as
H) not bounded by L.

In XüSec, a label can be either a label value fc, a variable x, or the join of
two other labels f iLJ^ . For example, L, x, and L U x are all valid labels, and
LUx canbe interpreted as a securitypolicy that is asrestrictive asbothL and
x. The security type r = /?£ is the base type /? annotated with label £. The base
types include integers, unit, labels, flinctions, references and products.

The fünction type (X:T{) — ^ r^ is a dependent type since r i , T2, C and
pc may mention x. The component C is a set of /a&e/ constraints each with
the form ^i C ^2; they must be satisfied when the function is invoked. The
pc component is a lower bound on the memory effects of the function, and an
upper bound on the pc label of the caller. Consequently, a function is not able
to leak information about where it is called. Without the annotations C and pc,
this kind of type is sometimes written as Ux: r\ .TI [12].

The product type (x : ri)[C] * r^ is also a dependent type in the sense that
occurrences of x can appear in r i , r^ and C. The component C is a set of
label constraints that any value of the product type must satisfy. If r^ does
not contain x and C is empty, the type may be written as the more familiar
r\ * T2> Without the annotation C, this kind of type is sometimes written
S Z : T I . T 2 [12].

In XüSec, values include integers n, typed memory locations m r , functions
\(x:r)[C;pc].e, theunitvalue (), constantlabels k, andpairs (x = v\[C], v^'-
r ) . A function \{x : T ) [ C ]pc\. e has one argument x with type r , and the
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components C and pc have the same meanings as those in function types. The
empty constraint set C or the top pc can be omitted. A pair (x = v\ [C], V2'.T)

contains two values v\ and v^- The second element v^ has type r and may
mention the first element v\ by the name x. The component C is a set of label
constraints that the first element of the pair must satisfy.

Expressions include values v, variables x, the join of two labels £\ U £2,
applications e\ e^, dereferences !e, assignments e\ := e2, references r e f r e ,
label-test expressions i f £\ Q £2 then e\ e l s e e2, and product destructors
l e t (x,2/)=v ine2.

The label-test expression i f ^i C £2 then ei e l s e e2 is used to examine
labels. At run time, if the value of £2 is a constant label at least as restrictive as
the value of £1, then e\ is evaluated; otherwise, e^ is evaluated. Consequently,
the constraint £\ C £2 can be assumed when type-checking ei.

The product destructor l e t (x, y) = ei in e2 unpacks the result of ei, which
is a pair, assigns the first element to x and the second to y, and evaluates e2-

3.2 Operational Semantics

The small-step operational semantics of Xosec is given in Figure 2. Let M
represent a memory that is a finite map from typed locations to closed values,
and let (e, M) be a machine configuration. Then a small evaluation step is a
transition from (e, M) to another configuration (er, M'), written (e, M) 1—>
(e', M').

It is necessary to restrict the form of (e, M) to avoid using undefined mem-
ory locations. Let loc(e) represent the set of memory locations appearing in
e. A memory M is well-formed if every address m appears at most once in
dom(M), and for any mT in dom(M), loc(M(mT)) C dom(M). By induction
we can prove that evaluation preserves memory weH-formedness.

The notation e[v/x] indicates capture-avoiding substitution of value v for
variable x in expression e. Unlike in the typed lambda calculus, e[v/x] may
generate a syntactically ill-formed expression if x appears in type annotations
inside e, and v is not a label. However, this is not a problem because the type
system of XüSec guarantees that a well-typed expression can only be evaluated
to another well-typed and thus well-formed expression.

The notation M(mr) denotes the value of location mT in M, and the nota-
tion M[mr 1—> v] denotes the memory obtained by assigning v to mT in M.

The evaluation rules are standard. In rule (E3), notation address-space(M)
represents the set of locationnames in M, that is, {m\3r s.t. mT G dom(M)}.
In rule (E8), v^ may mention x, so substituting v^ for y in e is performed before
substituting v\ for x. The variable name in the product value matches x so that
no variable substitution is needed when assigning v\ and v^ to x and y. In rule
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£ \= k = ki U k2 m g. address-space(M)

(ki U/c2, M) i—> {k, M) •" (refrv, M) \—> (mT, M[raTi->- v])

[E2] (!mT, M> .—> (M(m r ) , M) [£4] (mT := v, M) i—> ((), M[mTH-> v])

[E5] ((X(x:r)[C;pc].e)v, M) —> (e^/z] , M>

L J (if fei C fc2 then ei else e2, M) i—> (ei, M)

(if fci C k2 then ei else e2, M) \—> (e2, M)

[JB8] ( le t (x,y) = (cc = fi[C], f 2 : r ) i n e , M) i—> (e^/yjffi /a:] , M)

(e, M> i—• (e;, Mr>
[ £ 9 ] <^[e ] 5 M ) H — (JS7[C'], M ' )

^ H » = [;1 e | t; [•] | [.] :=e\v : = [•] | l [•] | r e f - [•] | [•] U £2 \ k, U [•]
I if [•] E ^2 then ei else e2 | if k\ C [•] then ei else e2

Figure 2. Small-step operational semantics of XüSec

(E9), E represents an evaluation context, a term with a single hole in redex
position, and the syntax of E specifies the evaluation order.

3.3 Example: multilevel I/O channels

As discussed in Section 1, dynamic labels are vital for precisely controlling
information flows between security-typed programs and the external environ-
ment. When information is exported outside a program through an I/O chan-
nel, the receiver might want to know the exact label of the information, which
calls for multilevel communication channels [6] unambiguously pairing the in-
formation sent or received with its corresponding security label. Supporting
multilevel channels is one of the basic requirements for a MAC system [6].

In \osec, a multilevel channel can be encoded by a memory reference of
type ((x : l a b e l x ) * ±ntx)± ref, which stores a pair composed of an integer
value and its label. The confidentiality of the integer component is protected
by the label component, since extracting the integer from such a pair requires
testing the label component:

\z:((x:labelx) * int^i.. let (x,y) = z in if x C. L then m
intL := y else ()

In the above code, the constraint x C. L must be satisfied in order to store the
integer component in m i n t L . Since the readability of the integer depends on
the value of x, letting x recursively label itself ensures that all the authorized
readers of the integer component can test x and retrieve the integer.
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l C J

[C3] C h l C T [C4] C\- ±T£ [C5] C h f C

in 3 c h

Figure 3. Relabeling rules

Sending an integer through a multilevel channel is encoded by pairing the
integer and its label and storing the pair in the reference representing the chan-
nel:

Az:(((a;:labelx)) * intx)j_ ref )±. Xw:laibelw. A(y:intw)[±.\. z := (x = w, y:±ntx)

Like other I/O channels, a multilevel channel may have a label that is an upper
bound of the security levels of the information that can be sent through the
channel. Product label constraints can be used to specify the label of a multi-
level channel. For example, a bounded multilevel channel can be represented
by a memory reference with type ((#: labelx)[a: C £] * intx)j_ ref, where £
is the label of the channel, and the constraint x C £ guarantees any information
stored in the reference has a security label at most as high as £. Sending infor-
mation through a boimded multilevel channel often needs a run-time check as
in the following code:

Xz:(((x:labelx))[x Q £\ * intx)_L ref)j_. A
X(y:±ntw)[±].±± w C. ^then z := (x = w, y:±ntx) else ()

4. Type system and noninterference

This section describes the type system of \DSec and formalizes the nonin-
terference result (any well-typed program has the noninterference property),
whose proof is presented in the full version of this paper [29].

4.1 Subtyping

The subtyping relationship between security types plays an important role
in enforcing information flow security. Given two security types T\ — ßi^ and
r2 = p2£2, suppose T\ is a subtype of T2, written as T\ < r^. Then any data
of type r\ can be treated as data of type r^. Thus, data with label £\ may be
treated as data with label £2, which requires £\ C £2.

In Xosec, label terms have a restricted syntactic form so that they can be
used as type annotations, and constraints on label terms are also type-level in-
formation that the type checker can use. Indeed, label constraints introduced in
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C h r2 < n C h r{ < T̂
C h pc2 C pc, C, C2 h Ci

C ^ r i < r 2 Chr2<Ti 2 ~
C h (x:n) ^ ^ r{ < (x:r2)

C h n < r2 C h r{ < r̂  C, Ci h C2 C h ffi < /32

*r{ < ( X : T 2 ) [ C ] * T ^ [S4] C h (ß^ < {ß2)t2

Figure 4- Subtyping rules

label-test expressions, fünctions and pairs are critical for precise static analysis
of dynamic labels.

The type system keeps track of the set of label constraints that can be used
to prove relabeling relationships between labels. Let C h t\ E h denote that
£i n. £2 can be inferred from the set of constraints C. The inference rules are
shown in Figure 3; they are standard and consistent with the lattice properties
of labels. Rule (C2) shows that all the constraints in C are assumed to be true.

Since the subtyping relationship depends on the relabeling relationship, the
subtyping context also needs to include the C component. The inference rules
for proving C h r\ < r^ are the rules shown in Figure 4 plus the standard
reflexivity and transitivity rules.

Rules (S 1)-(S3) are about subtyping on base types. These rules demonstrate
the expected covariance or contravariance. In XüSec, function types contain
two additional components pc and C, both of which are contravariant because
they restrict where a function can be invoked. In rules (S2) and (S3), variable
x is bound in the fünction and product types. For simplicity, we assume that x
does not appear in C, since a-conversion can always be used to rename x to
another fresh variable. This assumption also applies to the typing rules.

Rule (S4) is used to determine the subtyping on security types. The premise
C h ßi < p2 is natural. The other premise C h £\ Q £2 guarantees that
coercing data from r\ to r^ does not violate information flow policies.

4.2 Typing

The type system of Xnsec prevents illegal information flows and guarantees
that well-typed programs have a noninterference property. The typing rules are
shown in Figure 5. The notation label(ßt) = £ is used to obtain the label of a
type, and the notations £ C. r and r E £ are abbreviations for £ C iabei(r) and
label(r) C £, respectively.

The typing context includes a type assignment F, a set of constraints C and
the program-counter label pc. F is a finite ordered list of x: r pairs in the order
that they came into scope. For a given x, there is at most one pair x: r in F.
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Figure 5. Typing rules for the Xosec language

A variable appearing in a type must be a label variable. Therefore, a type r
is well-formed with respect to type assignment F, written V h r , if F maps all
the variables in r to label types. The definition of well-formed labels (F h i)
is the same. Consider T — xi : TI, . . . , x n : rn. For any 0 < i < n, the
type Ti may only mention label variables that are already in scope: x\ through
Xi. Therefore, F is well-formed if for any 0 < i < n, r^ is well-formed with
respect to x\ : r i , . . . ,x^ : T{. For example, "x : l a b e l ^ , y : i n t x " is well-
formed, but "y: in t^ , x: l a b e l ^ " is not.
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The typing assertion F ; C; pc h e : r means that with the type assignment
F, current program-counter label as pc, and the set of constraints C satisfied,
expression e has type r .

Rules (INT), (UNIT), (LABEL) and (LOC) are used to check values. Value
v has type ß± if v has base type ß. Rule (LOC) requires typed location mT

contain no label variables so that mT remains a constant during evaluation.
This is enforced by the premise FV(r) = 0, where FV(r) denotes the set of
free variables appearing in r .

Rules (VAR), (JOIN), (REF), (DEREF), (ASSIGN), (ABS) and (SUB) are
standard for a security type system [27, 17]. Due to the space limitation, we
do not include the detailed descriptions of these rules, which can be found in
thefullpaper[29].

Rule (L-APP) is used to check applications of dependent functions. Ex-

pression e± has a dependent function type ((#: l abe l^ ) —:—> r)e, where x
does appear in £f, C', pd or r . As a result, rule (L-APP) needs to use £'[£2/%],
C'fa/x], pdfa/x] and T[£2/X], which are well-formed since £2 is a label.
That also explains why ei, with its dependent function type, cannot be applied
to an arbitrary expression e^- substituting e^ for x in £', C', pd and r may
generate ill-formed labels or types. The expressiveness of XüSec is not sub-
stantially affected by the restriction, because the function can be applied to a
variable that receives the result of an arbitrary expression. Rule (APP) applies
when x does not appear in C", pd or r . In this case, the type of e\ is just a
normal function type, so e\ can be applied to arbitrary terms.

Rule (PROD) is used to check product values. To check V2, the occurrences
of x in V2 and r^ are both replaced by v\, since x is not in the domain of V.
If v\ is not a label, then x cannot appear in T2. Thus, T2[v\/x] is always well-
formed no matter whether v\ is a label or not. Rule (UNPACK) checks product
destructors straightforwardly. After unpacking the product value, those prod-
uct label constraints in C' are in scope and used for checking e^.

Rule (IF) checks label-test expressions. The constraint £\ C £2 is added into
the typing context when checking the first branch e\.

This type system satisfies the subject reduction property and the progress
property. The proof is standard.

4.3 Noninterference theorem

This section formalizes the noninterference result: any well-typed program
in XüSec satisfies the noninterference property (see the full paper [29] for the
proof). Consider an expression e in XoSec Suppose e has one free variable x,
and x : r h e : i n t ^ where H C. r. Thus, the value of x is a high-security
input to e, and the result of e is a low-security output. Then noninterference
requires that for all values v of type r, evaluating e[v/x] in the same memory
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must generate the same result, if the evaluation terminates. For simplicity, we
only consider that results are integers because they can be compared outside
the context of Xnsec- Let i—>* denote the transitive closure of the i—> rela-
tionship. The following theorem formalizes the claim that the type system of

enforces noninterference:

THEOREM 1 (NONINTERFERENCE) Suppose x : r h e : int£, and H C
r. Given two arbitrary values v\ andv^ oftype r, and an initial memory M,
if(e[Vi/xl M) .—>* {v'i, M!)fori G {1,2}, then v[ = v'2.

The noninterference property discussed here is termination insensitive [19]
because e[v/x] is required to generate the same result only if the evaluation ter-
minates. The type system of Xnsec does not attempt to control termination and
timing channels. Control of these channels is largely an orthogonal problem.
Some recent work [1, 18, 28] partially addresses timing channels.

5. Related Work

Dynamic information flow control mechanisms [24,25] track security labels
dynamically and use run-time security checks to constrain information prop-
agation. These mechanisms are transparent to programs, but cannot prevent
illegal implicit flows arising from control flow paths not taken at run time.

Various general security models [10, 21, 7] have been proposed to incor-
porate dynamic labeling. Unlike noninterference, these models define what it
means for a system to be secure according to a certain relabeling policy, which
may allow downgrading labels.

Using static program analysis to check information flow was first proposed
by Denning and Denning [5]; later work phrased the analysis as type check-
ing (e.g., [16]). Noninterference was later developed as a more semantic char-
acterization of security [8], followed by many extensions. Volpano, Smith and
Irvine [23] first showed that type systems can be used to enforce noninterfer-
ence, and proved a version of noninterference theorem for a simple imperative
language, starting a line of research pursuing the noninterference result for
more expressive security-typed languages [9, 27, 17, 3]. A more complete sur-
vey of language-based information-flow techniques can be found in [19, 29].

The Jif language [13, 15] extends Java with a type system for analyzing
information flow, and aims to be a practical language for developing secure
applications. However, there is not yet a noninterference proof for the type
system of Jif, because of its complexity.

Banerjee and Naumann [3] proved a noninterference result for a Java-like
language with simple access control primitives. Unlike in XßSec, run-time
access control in this language is separate from the static label mechanism. In
their language, the label of a method result may depend in limited ways on the
(implicit) security state of its caller; however, it does not seem to be possible
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in the language to control the flow of information from an I/O channel or file
based on permissions discovered at run time.

Concurrent to our work, Tse and Zdancewic proved a noninterference result
for a security-typed lambda calculus (ARP) with run-time principals [22], which
can be used to construct dynamic labels. However, ARP does not support refer-
ences or existential types, which makes it unable to represent dynamic security
policies that may be changed at run time, such as file permissions. In addition,
support for references makes XDSCC more powerfül than ARP computationally.

6. Conclusions

This paper formalizes computation and static checking of dynamic labels in
the type system of a core language Xusec and proves a noninterference result:
well-typed programs have the noninterference property. The language Xnsec is
the first language supporting general dynamic labels whose type system prov-
ably enforces noninterference.
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Abstract We formally specify a payment protocol described in [Vogt et al., 2001].
This protocol is intended for fair exchange of time-sensitive data. Here
the fiCKL language is used to formalize the protocol. Fair exchange
properties are expressed in the regular alternation-free /x-calculus. These
properties are then verified using the finite state model checker from
the CADP toolset. Proving fairness without resilient communication
channels is impossible. We use the Dolev-Yao intruder, but since the
conventional Dolev-Yao intruder violates this assumption, it is forced to
comply to the resilient communication channel assumption.

1. Introduction

A fair exchange protocol aims at exchanging items in a fair manner.
Informally, fair means that all involved parties receive a desired item in
exchange for their own, or neither of them does so. It has been shown
that fair exchange is impossible without a trusted third party [Pagnia
and Gärtner, 1999]. A protocol for fair exchange of money for an item
using customer's smart card as a trusted party is described in [Vogt et al.,
2001]. This protocol considers time-sensitive items and is adapted for
wireless and mobile applications which lack a reliable communication
channel. Here a version of that protocol is considered. We describe,
in contrast to [Vogt et al., 2001], the exact contents of all messages.
The protocol is formally specified and the fairness properties are verified
using a finite-state model checker.

In comparison to other security issues, such as secrecy and authentic-
ity, fairness has not been studied formally so intensively. There are how-
ever some notable exceptions. [Shmatikov and Mitchell, 2002] use the
finite state model checker M\mp to analyze fair exchange and contract
signing protocols. They use an external intruder, based on the Dolev-
Yao intruder, that collaborates with one of the participants to model the
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malicious participant. Liveness can in general not be expressed in the
Muiip language. Most fair-exchange properties can however be expressed
as safety properties. But this is not the case with termination (of pro-
tocol). Termination thus relies on other arguments than a verification
using Mur</?. [Kremer and Raskin, 2001] use a game based approach for
verifying non-repudiation and fair exchange. They use alternating tran-
sition systems (ATS) to model protocols and alternating temporal logic
(ATL) to express the requirements. The method is automated using the
model checker Mocha. They have no explicit intruder. Instead differ-
ent versions of players are considered; honest and arbitrary. ATL then
offers very neat ways of expressing all desired requirements, including
liveness under fairness constraints. In ATS all players follow predeter-
mined finite sequences of steps, including intruders (arbitrary versions
of players). However, describing an intruder in such a way is not practi-
cal for large protocols. In [Schneider, 1998] a non-repudiation protocol
is modeled using CSP, and proofs are generated by hand. Belief logic
is used to formalize a protocol in [Zhou and Gollmann, 1998] and it is
discussed what may be needed for the verification of non-repudiation
protocols. In [Bella and Paulson, 2001] the theorem prover Isabelle is
used to model a non-repudiation protocol by an inductive definition and
to prove some desired properties.

In our work we formally specify a payment protocol in the process
algebraic language /iCRL [Groote and Ponse, 1995]. The idea of this
protocol comes from [Vogt et al., 2001], but there are some differences
(see section 6). Fairness properties for this protocol are formulated in the
regular alternation-free /i-calculus [Mateescu, 2000] and verified using
the model checker EVALUATOR 3.0 [Mateescu, 2000] from the CADP
tool set [Fernandez et al , 1996].

Our formalization in /xCRL contains a Dolev-Yao intruder [Dolev and
Yao, 1983]. The intruder is not separated from malicious participants.
Instead, we consider different versions of participants, honest and ma-
licious, where a malicious participant is an intruder that has access to
the participant's private key. Some fairness properties are liveness prop-
erties and to prove liveness properties resilient communication channels
are needed (i.e. sent messages will eventually be delivered). Since the
Dolev-Yao intruder has complete control over network, some cooperation
from the intruder is needed when verifying liveness properties. This co-
operation is obtained using fairness constraints on the labelled transition
system generated from the protocol specification in //CRL.

The rest of the paper is organized as follows. In section 2 we give
an overview of properties for fair exchange protocols. The fair exchange
protocol we investigate is described in section 3. In section 4 the formal
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analysis is described. Here the intruder model is presented and all prop-
erties verified using the model checker are given. Included in section 4 is
also a brief description of some optimization techniques used to generate
the state spaces. In section 5 the protocol is used in a practical context.
Some concluding remarks are given in section 6.

Due to space constraints, most of our formalization of the protocol
in /xCRL cannot be presented in this paper. However, the complete
formalization is given in [Cederquist and Dashti, 2004].

2. Fair Exchange Protocols

We assume two parties A and B. When the protocol starts, both
parties have an item and they want to exchange items.

According to [Asokan, 1998], a fair exchange protocol is a protocol
satisfying effectiveness, fairness, timeliness and non-repudiability. Ef-
fectiveness means that if both parties behave according to the protocol
and none of them want to abort during the protocol round, then the
protocol will terminate in a state where A has JB'S item and vice versa.
An exchange protocol is called fair if, when it has terminated, either
A has received JB'S item and B has received A's item, or none of the
parties have lost their items. Timeliness means that the protocol will
terminate for all parties (that behave according to the protocol) and af-
ter the termination point the degree of achieved fairness will not change.
Non-repudiability is, in general, not considered as a primary requirement
for fair exchange protocols, and it is omitted here.

[Asokan, 1998] distinguishes between strong and weak fairness. Strong
fairness is the fairness described above. Weak fairness means that either
strong fairness is achieved, or it is possible for a participant to prove to
an outside party that an unfair situation has occurred. [Pagnia et al.,
2003] extend Asokan's definitions by considering the parties' willingness
to cooperate and compensation for suffered disadvantage.

3. Protocol Description

Here we describe the protocol which is to be analyzed in section 4. The
protocol aims at fair exchange of time-sensitive data for some amount of
money, between a customer (C) and a vendor (V). The exchange uses a
bank (B) as a trusted online payment system and a trusted smartcard
(S) attached to C. S is a tamper-proof hardware. The identity of S is
however not necessarily known by V. Moreover, C is assumed to have
a secure communication channel with S. When the protocol starts, V
has an item m and a description h(m) of m is known publicly. C wants
to buy m for the amount a. Note that the item m is assumed to be
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confidential and should not be revealed to untrusted parties unless they
pay for it. Below we describe the intended scenarios of the protocol,
when all participants are honest.

In the protocol description, pay(C,V,a) means that C shall pay the
amount a to V, (m)x is the notation for the message m signed by X
(using X's private key), and {m}x is the notation for m encrypted for X
(using X's public key). It is assumed that m comes along with (m)x and
can be extracted by anyone. For an encrypted message {m}x only X
can extract m. A publicly known hash function h is used for describing
items and payments. T and F are two symbols. By convention we use T
for positive responses and F for negative.

The main scenario (when none of the participants want to abort the
protocol) is described as follows:

1.

[2a.
26.

3.

4.

5.
6.
7.

8.
9.

C-+S

s
s->c
S-+V
V -±B

B
B-+V

V
V -> S
S-+C
C->S

s
S-+C
S -*B

B

pay(C,V,a),h(m)
initiate(n)
(h(m),t,n,v,a)s ]
h(m),(pay(C,V,a),n)s

(pay(C,V,a),n)s
block(n)
(T,h((pay(C,V,a),n)s))B
commit(n)
{{m,n)v}s
T , n
T , n
receivein)
m

(n,T)s
transfer(n), terminate(n).

(1) C sends a query to S for buying item m from V for amount a. On
this request, S generates a fresh nonce n. In this way, a protocol session
possesses a unique nonce. Implicitly, S also notes the time t. (2a) 5
sends the nonce associated to the request and time to C. Later on, in
step 6, when S asks C if the item is still interesting, it just needs to
send the nonce. This simplifies the formalization. The time information
is signed by S to prevent C from changing it. (We abstract away from
this step in the formalization.) (2b) S signs and forwards the request
together with the nonce to V. Since S is trusted, this message will be
sent only upon a request from C. (3) If V wants to sell m to C for
price a, it forwards the request to B. B notices the signature of 5,
checks whether the nonce n is fresh and that C has the amount a in its
account. If this is the case, the money is blocked on C's account. (4) B
notifies V that a transfer of amount a from C's account to V's account
is possible. After this step V knows 5 is trusted. (5) V informs S that C
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can buy m for the amount a (n refers to a). (6) S validates the received
item by comparing it with h(m) and asks if C is still interested in the
item. (7) If C still wants the item, it answers T. (8) S sends the item
m to C. (9) S asks B to transfer the money, that was blocked on C's
account, to V's account. On this request B performs the transaction.

(The "abstract" actions inüiate(ri), block(n), receive(n), transfer(n)
and terminate(n) are explained with more details in section 4.4, and so
are the actions unblock(n) and cancel(n) below.)

There are some alternative scenarios of the protocol. When B receives
a payment request, the nonce n may not be fresh or C may not have the
required amount of money on its account:

41. B-+V: (F,h((pay(C,V,a),n)s))B
51. V-+S: (n)v

61. S->C: F,n
71. S^B: (n,F)s

B : unblock(n), terminate(n).

(71) S asks B to unblock money at C's account. If the money was
blocked earlier, with the same nonce, B unblocks it. If V does not want
to sell mtoC for the amount a, step 51 follows immediately after step 2b.

After step 2 and before step 6 (61), C has the possibility to cancel the
payment. This prevents V from blocking C's money without sending
the item to S:

6 2 . C

7 2 . £

8 2 . £

C :

?-> V :
B:

cancelyn)
n

(n, F)s
(F,n)s
unblock(n), terminatein).

S erases the session information after sending unblock (or transfer) com-
mands to B, and does not consider any message with a nonce from
completed sessions.

In exchange of items whose value may change during time, the pro-
tocol provides a possibility for C to reject items in case of (intentional)
delay in delivery. So, C can answer F after step 6:

73. C - > 5 : F,n
83. S->B: (n,F)5

B : unblock(n), terminate(n).

After step 26, S can perform a timeout:

S : timeout
34. 5 ->C: F,n
44. S-+V: (F,n)5

54. S-^B: (n,F)s

B : unblock(n), terminate(n).
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The timeout forces a time limit on the steps 26-7, it prevents in partic-
ular C from waiting arbitrarily before answering in step 7. Concerning
timeout, our description is non-deterministic. But it can also be as-
sumed that 5 reads the start time £, that was sent to C in step 2a, and
that it has a limit At hard coded or provided by V. If the current time
is greater than t + At, it generates a timeout.

4. Formal Analysis

The formalization of the protocol described in section 3 is carried
out in //CRL [Groote and Ponse, 1995]. The ^CRL toolset includes an
automatic state space (labelled transition systems) generator and sym-
bolic state space reduction tools. The properties effectiveness, timeliness
and fairness are expressed in the regular alternation-free /i-calculus [Ma-
teescu, 2000]. The model checker EVALUATOR 3.0 [Mateescu, 2000]
from the CADP tool set [Fernandez et al., 1996] is then used to verify
these properties (the formulas 1 to 11, in the sections 4.4 to 4.7).

For fair exchange protocols, beside protection from external intruders,
the participants need to be protected from each other. In our formal
model(s), we have three cases: (i) both C and V behave according to
the protocol, (ii) C is malicious (C is the attacker) and (iii) V is malicious
(V is the attacker). In the cases (ii) and (iii) all messages go via the
attacker, with exception of the messages between C and 5, which are sent
over a secure link. When verifying effectiveness, case (i) is considered.
All other properties are verified for the cases (ii) and (iii).

4.1 The /xCRL specification language

Here we briefly describe the symbols used in the formalization below.
For a complete description of the syntax and semantics of /xCRL we refer
to [Groote and Ponse, 1995].

The symbols . and + are used for the sequential and alternative com-
position operator, respectively. The operator YldeD P(d) behaves like
P(di) H- P{d,2) + • • •. The process expression if b then p else q, where
b is a term of sort bool and, p and q are processes, behaves like p if b is
true, and like q if b is false. Finally, the constant ö expresses that, from
now on, no action can be performed.

The notations send(a,x,b) and recv(a,x,b) are used for the actions
UA sends message x to B" and "B receives message x from A", respec-
tively. In our model, send and recv actions are synchronized, i.e. A can
only perform send(a,x,b) if B at the same time performs recv(a,x,b)
and vice versa. This synchronization point is denoted com(a,x,b) (in
section 3, the notation A —> B : x was used for that).
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4.2 Regular Alternation-free ^-calculus

The regular alternation-free /i-calculus is used here to formulate prop-
erties of (states in) labelled transition systems (see the sections 4.4-4.7).
It is a fragment of ^-calculus that can be efficiently checked. Here we
just briefly describe what is needed for expressing the fairness properties
of the protocol we investigate. For a complete description of the syntax
and semantics we refer to [Mateescu, 2000]. The regular alternation-free
/i-calculus is built up from three types of formulas: action formulas,
regular formulas and state formulas. We use V, 'V and '*' for concate-
nation, choice and transitive-reflexive closure, respectively, for regular
formulas. T and T are used in both action formulas and state formulas.
In action formulas they represent no action and any action, respectively.
The meaning of T and T in state formulas are the empty set and the
entire state space, respectively. The operators (• • •) and [• • • ] have their
usual meaning (O and • in modal logics). Finally, \x is the minimal fixed
point operator.

4.3 Intruder Models

We consider the Dolev-Yao intruder [Dolev and Yao, 1983]. It can
remember all messages that have been transmitted over network. It can
decrypt and sign messages, if it knows the corresponding key. It can
compose new messages from its knowledge. It can also remove or delay
messages in favour of others being communicated.

Below we define two intruder models in ^CRL, / and V. Both of them
are equivalent to the Dolev-Yao intruder, but they behave differently
under fairness constraints1. / is used when verifying safety properties
and V when verifying liveness properties. The reason for using both of
them is that / is not suitable for liveness properties, and V is expensive
to use when generating state spaces (see section 4.8).

The intruder / acts as customer (or vendor), intruder and network.
All messages (x) are sent to / explicitly. / decomposes (decomp) the
messages and adds the pieces to its knowledge (X). I then uses its
knowledge to synthesize (synth) new messages. How well the decompo-
sition and the synthesis work depend on what private keys the intruder
knows (abilities to sign and decrypt messages), decomp and synth are
thus parameterized over users whose private keys are known. (For effi-

are using two notions of fairness; fairness of a protocol and fairness constraints of a
labelled transition system. The second one is used to describe "fair" execution traces. In
our case, a trace is fair when no possibilities are excluded forever. Then only fair execution
traces are considered when proving the desired (liveness) property. To avoid confusion, we
refer to these two notions as "fairness" and "fairness constraints".
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ciency reasons the union |J also depends on known private keys.)

pg

recv{p, x,
if synihi(x,X)
then send(i,x,p).I(X)
else S ) +

if synth^m^X)
then got—hold—of(m).I(X)
else ö )

In order to prove liveness properties, resilient communication channels
are assumed. In fact, without this assumption fair exchange is not possi-
ble, because then the attacker can simply choose to never send the item
to one of the participants. In the presence of an intruder, resilient com-
munication channels are obtained by imposing fairness constraints on
the labelled transition system generated from the protocol specification.
These fairness constraints are expressed directly in regular /x-calculus
formulas (see property 7 in section 4.6). The use of fairness constraints
makes the model checker "skip circuits" and, in particular, it eventu-
ally forces the intruder to try to synthesize and send messages whenever
there is a recipient. Some amount of cooperation from the intruder is
usually needed in order to prove liveness properties. But, the fact that
the intruder / does not forget anything and its abilities to construct
messages itself together with fairness constraints can make "too many"
liveness properties true. In fact, an erroneous protocol that does not ter-
minate without intruder, may terminate with the intruder / and fairness
constraints.

The second intruder V can also synthesize new messages from its
knowledge, but it is not forced to. However, using fairness constraints,
it is forced to comply to the resilient communication channel assumption.
It is parameterized over a set of "resilient links" and all messages sent
over these links should eventually be delivered. In our case the resilient
link is the link between S and B. The corresponding messages are
represented by the set Z. As / , V gathers a set X of knowledge by
intercepting all communications. But, it can explicitly forget pieces
from this knowledge. The intruder uses a separate buffer Y of messages
transmitted over the resilient links. When fairness constraints are used,
the intruder is forced to eventually send all messages from this buffer.
The resilient channel assumption will thus be preserved. Since V can
forget, it does not have to generate new messages. However, this does
not restrict the intruder's power in general, as it has the choice of keeping
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its knowledge as well.

•* ( X , y ) — ( l p g ,

recv(p,x,i).
if x € Z
then I'{decomp^{x) |J; X, insert(x, Y))
else r(deeomPi(x) U X,Y) ) +

thenI'{X\{x},Y)
else 5 ) +

g p g

if z € y V synth^x.X)
then send(i, x, p).I'(X, remove(x, Y))
else (5 )

4.4 Abstract Actions

The CADP toolset [Fernandez et al, 1996] that we use to analyze
the labelled transition system generated from a /iCRL specification does
not allow variables in action parameters, in regular //-calculus formulas.
So, properties containing variables should actually be checked for each
instance. To avoid this, the protocol is extended with abstract actions
(initiate(n), block(n), receive(n), transfer(n),...) that can be used in-
stead of actions containing more variables. In fact, each protocol session
is associated to a nonce, so abstract actions (which only contain nonces)
are enough for expressing most interesting properties of the protocol.
Besides, they highlight implicit steps in the protocol and render more
readable properties.

For termination, the "abstract" action terminate(n) in B (where n is
a nonce) is used, instead of actual termination points for the users (C and
V). This action is used because it is convenient to abstract away from
messages to the users saying that a protocol round is terminated. This
abstraction is safe since, if such messages had been used, the resilient
communication channel assumption would have guaranteed their deliv-
ery. Thus terminate(n) implies that the users terminate. Also note, the
protocol may continue after terminate(n) with another protocol round,
using another (fresh) nonce.

The meaning of some of the other abstract actions need to be uniquely
defined. We start with block(n). Without loss of generality we can
assume that block(n) happens at the same time as (or immediately after)
B receives (pay(C, V, a),n)s- So, block(n) can be defined as the amount
a is blocked (for nonce n). The fact that a indeed is the correct amount



50 Formal Aspects ofSecurity and Trust

follows from

[T*.com(s, (h(m), (pay(C, V, ai),ri)s), i). m

T\com(i, {pay(C, V, a2),n)s, 6)].F, [ }

where a\ and a^ are difFerent amounts, and i is either c or v, depending
on who is malicious. Property 1 thus says that the intruder cannot
change the amount that C is willing to pay. We define transfer(n) and
unblock(n) to mean that the amount, which was blocked in block(ri), is
transfered and unblocked, respectively. Now we turn to receive(n). It
can be assumed that receive(n) happens at the same time as S sends an
item m to C. The fact that this item is the correct item (the item C
ordered) follows from

[T*.com(c, {pay{C, V, a), h(m\)), s)Anüiate(n). , ,
T*.receive(n).com(s, m^ c)]^7

where m\ and m^ are different items.
A malicious customer could possibly get hold of an item m by other

means than from 5 in action com(s,m,c). To show that this is not the
case, we verify

[(-icora(s, m, c))*.got—hold—of'(m)]?', (3)

where got—hold—of(m) is an abstract action that occur if the malicious
customer manages to synthesize the item m from gained knowledge (see
definition of intruder / , section 4.3).

4.5 Effectiveness

For effectiveness all participants are assumed to be honest and none
of them want to abort the protocoL First, termination is inevitable

[T*.inüiate(n)\iJJX((T)T A [-^terminate(n)]X), (4)

for an arbitrary nonce n. Second, if S does not timeout, V does not
say that C cannot buy the item, C does not answer T when 5 asks if
the item is still valuable, and C does not cancel the payment, then the
money will be transfered to V upon termination:

[{-y{ümeout V com(v, (n)v, s) V com(c, (T", n), s) V cancel(n)V
transfer(n)))* .terminate(ri)]T.

Under the same conditions, the item will also be received:

[(-^(timeout V com(v, (n)v, s) V com(c, (JF, n), 5) V cancel(n)V

(5)

receive(n)))* .terminate^n)]^7
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4.6 Timeliness
First, we verify that each fair trace eventually reaches terminate(n).

Whenever terminate(n) has not occurred, there is a path leading to
terminate(n):

[T* .initiate(n).(-iterminate(n)y](T* .terminate(n))T. (7)

Second, the degree of fairness does not change after termination:

[T*.terminate(n).T*. , ,
(receive(n) V block(n) V unblock(n) V transfer^n))]^.

4.7 Fairness2

For the properties that guarantee fairness it is important that the
protocol terminates, which is part of timeliness, section 4.6.

Here we split up the notion of fairness (introduced in section 2) into
fairness for C and V individually. We say that the protocol is fair for C
if, whenever C pays for an item, C will receive it (V potentially being
malicious). Fairness for V is defined correspondingly. Fairness for C is
thus formalized as

[(-^receive(n)y .transfer(n).(-*receive(n))* .terminate(n)\T. (9)

From C's point of view it is also important that if money for an item
is blocked and C does not receive the item, the block will be removed.
The following property may thus also be considered as fairness for C:

[T*.block(n).(-t(receive(n) V unblock(n)))*.terminate(n)]J-. (10)

Fairness for V means that if an item (corresponding to the nonce n)
is received, money will be transfered:

[(-itransfer(n))* .receive(ri).(-itransfer(n))* .terminate(n)]J-. (11)

4.8 Model Checking Details
One of the major obstacles during this work was state space explosion.

The case when the customer is malicious turned out to be most difficult
to generate. Our experiments show that this is mainly due to different
knowledges of the intruder, gathered during different execution traces. A

2The notion of fairness we are proving corresponds to F5 in the hierarchy of fairness
guarantees described in [Pagnia et al., 2003].
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common abstraction technique in such situations is to make the knowl-
edge of the intruder more uniform. We do that explicitly by, at the end of
a protocol round, giving the intruder information about traces that were
not taken. More traces will now end up in same states, with a smaller
state space as result. This extra information for the intruder should be
chosen carefully though to avoid "false attacks". For safety properties
this technique is sound, since the intruder just becomes more powerful.
This technique may however make "too many" liveness properties true.
When assuming fairness constraints, an intruder with more knowledge
provides more possibilities to reach a state. Instead, when generating
the state space for proving liveness properties, we explicitly put a 5 im-
mediately after the action we want always to be reached. In this way,
large parts of the state space will never be generated. In addition to
these two methods, all actions except for the ones used in the properties
are "hidden" and symbolic reduction techniques from the fiCRL toolset
(see [Blom et al , 2001] for a description of these techniques) are applied
to reduce the state spaces.

Using the techniques described above we could generate the state
spaces and prove the safety properties, with 3 nonces and 2 different
items (also 1 nonce, 2 different items with 2 possible different prices), in
the malicious customer and malicious vendor cases. For liveness prop-
erties (termination in case of malicious customer and vendor), it was
impossible to consider concurrent sessions. The state spaces were gen-
erated for 2 items and 2 prices.

5. Practical Considerations

It is usually not possible for a smart card to receive large chunks of
data, and store or process them. This limitation can cause practical
problems when the item is some large software, for instance, and the
smart card should store and validate it. On the other hand, if the item
validation phase is removed, it is not clear how the vendor is prevented
from sending fake items. Here we suggest employing a trusted offline
Item Validation Party (IVP) that guarantees correspondence between
an encrypted item and the description of the item. The protocol in
section 3 is modified by adding two messages at the beginning:

0a. C -> V : h{m)
06. V -> C : {m}pk, (/i(m), h({m}pk),pk)IVp-

In this scenario it is assumed that V generates key pairs (pk,sk) for
encryption and decryption of items. There is also an IVP which validate
encryptions offline. When C asks for an item with description h(m), it
will receive m encrypted with pk along with a certificate from IVP. In
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this way, C can validate the item before decrypting it. Then C buys the
decryption key sk from V using the protocol (in section 3), where the
public key pk replaces the description of the item h(m) (in message 1)
and S checks that sk and pk match.

Assuming perfect cryptography and that the key pairs (pk^sk) are
used only once, makes it safe to abstract away from the two initial mes-
sages Oa and 06. Consequently, correctness of this protocol follows from
correctness of the protocol described in section 3, which was treated
formally.

6. Conclusion

We have formally specified a payment protocol and verified its fair-
ness properties. The idea of the protocol comes from [Vogt et al., 2001],
but there are some differences. A version of the protocol that has an
online payment system (bank) is considered. We implement revocable
payments using block, unblock and transfer (as described in section 3).
To protect the vendor from the customer being passive, the smartcard
can timeout (in fact, without timeout property 7 does not hold). We
have also relaxed the assumptions on the communication links (eaves-
dropping, replay and forging of messages is possible in our model).

We have implemented an intruder that, for safety properties, is equiv-
alent to the Dolev-Yao intruder (which is the most powerful intruder,
see [Cervesato, 2001]). Our intruder is particularly suitable for verifying
liveness properties, since it does not violate the resilient communication
channel assumption under fairness constraints. It can be used in general
purpose specification languages like /iCRL.

Acknowledgments

We are grateful to the anonymous referees for their constructive and
detailed comments. We would also like to thank Stefan Blom, Wan
Fokkink, Jaco van de Pol and Miguel Valero for discussions and com-
ments on earlier versions of this paper.

The first author was supported by an ERCIM Fellowship.

References

[Asokan, 1998] Asokan, N. (1998). Fairness in electronic commerce. PhD thesis,
University of Waterloo.

[Bella and Paulson, 2001] Bella, G. and Paulson, L. C. (2001). Mechanical proofs
about a non-repudiation protocol. In Boulton, R. J. and Jackson, P. B., editors,
Theorem Proving in Higher Order Logics, lJ^th Intemational Conference, TPHOLs
2001, volume 2152 of LNCS, pages 91-104. Springer-Verlag.



54 Formal Aspects ofSecurity and Trust

[Blom et al., 2001] Blom, S., Fokkink, W., Groote, J. F., van Langevelde, L, Lisser,
B., and van de Pol, J. (2001). /zCRL: A toolset for analysing algebraic specifi-
cations. In Proceedings of the 13th Intemational Conference on Computer Aided
Verification, volume 2102 of LNCS, pages 250-254. Springer-Verlag.

[Cederquist and Dashti, 2004] Cederquist, J. and Dashti, M. (2004). Formal analysis
of a fair payment protocol. Technical Report SEN-R0410, Centrum voor Wiskunde
en Informatica, Amsterdam, The Netherlands.

[Cervesato, 2001] Cervesato, I. (2001). The Dolev-Yao Intruder is the Most Powerful
Attacker. In Halpern, J., editor, 16th Annual Symposium on Logic in Computer
Science — LICS'01, Boston, MA. IEEE Computer Society Press.

[Dolev and Yao, 1983] Dolev, D. and Yao, A. C. (1983). On the security of public
key protocols. IEEE Transactions on Information Theory, IT-29(2): 198-208.

[Fernandez et al., 1996] Fernandez, J.-C, Garavel, H., Kerbrat, A., Mateescu, R.,
Mounier, L., and Sighireanu, M. (1996). CADP: A protocol validation and verifi-
cation toolbox. In Alur, R. and Henzinger, T. A., editors, Proceedings of the 8th
Conference on Computer-Aided Verification, volume 1102 of LNCS, pages 437-440.
Springer-Verlag.

[Groote and Ponse, 1995] Groote, J. and Ponse, A. (1995). The syntax and semantics
of fiCKL. In Ponse, A., Verhoef, C , and van Vlijmen, S. F. M., editors, Algebra
of Communicating Processes '94, Workshops in Computing Series, pages 26-62.
Springer-Verlag.

[Kremer and Raskin, 2001] Kremer, S. and Raskin, J. (2001). A game-based verifica-
tion of non-repudiation and fair exchange protocols. In Larsen, K. and Nielsen, M.,
editors, Proceedings of the 12th Intemational Conference on Concurrency Theory,
volume 2154 of LNCS, pages 551-565. Springer-Verlag.

[Mateescu, 2000] Mateescu, R. (2000). Efficient diagnostic generation for boolean
equation systems. In Proceedings of 6th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems TACAS'2000, volume
1785 of LNCS, pages 251-265. Springer-Verlag.

[Pagnia and Gärtner, 1999] Pagnia, H. and Gärtner, F. C. (1999). On the impossi-
bility of fair exchange without a trused third party. Technical Report TUD-BS-
1999-02, Department of Computer Science, Darmstadt University of Technology.

[Pagnia et al., 2003] Pagnia, H., Vogt, H., and Gärtner, F. C. (2003). Fair exchange.
The Computer Journal, 46(l):55-7.

[Schneider, 1998] Schneider, S. (1998). Formal analysis of a non-repudiation protocol.
In Proceedings of The llth Computer Security Foundations Workshop, pages 54-65.
IEEE Computer Society Press.

[Shmatikov and Mitchell, 2002] Shmatikov, V. and Mitchell, J. C. (2002). Finite-
state analysis of two contract signing protocols. Theoretical Computer Sciene,
283(2):419-450.

[Vogt et al., 2001] Vogt, H., Pagnia, H., and Gärtner, F. C. (2001). Using smart
cards for fair exchange. In Electronic Commerce - WELCOM 2001, volume 2232
of LNCS, pages 101-113. Springer-Verlag.

[Zhou and Gollmann, 1998] Zhou, J. and Gollmann, D. (1998). Towards verification
of non-repudiation protocols. In International Refinement Workshop and For-
mal Methods Pacific '98: Proceedings of IRW/FMP '98, Discrete Mathematics and
Theoretical Computer Science Series, pages 370-380. Springer-Verlag.



PATTERN-MATCHING SPI-CALCULUSH

Christian Haack
DePaul University

Alan Jeffrey
Bell Labs, Lucent Technologies
and DePaul University

Abstract Cryptographic protocols often make use of nested cryptographic primitives, for
example signed message digests, or encrypted signed messages. Gordon and
Jeffrey's prior work on types for authenticity did not allow for such nested cryp-
tography. In this work, we present the pattern-matching spi-calculus, which is
an obvious extension of the spi-calculus to include pattern-matching as prim-
itive. The novelty of the language is in the accompanying type system, which
uses the same language of pattems to describe complex data dependencies which
cannot be described using prior type systems. We show that any appropriately
typed process is guaranteed to satisfy a strong robust safety property.

1. Introduction

Background. Cryptographic protocols are prone to subtle errors, in spite of the
fact that they are often relatively small, and so are a suitable target for formal
and automated verification methods. One line of such research is the develop-
ment of domain-specific languages and logics, such as BAN logic [6], strand
spaces [22], CSP [20, 21] MSR [8] and the spi-calculus [3]. These languages
are based on the Dolev-Yao model of cryptography [10], and often use Woo
and Lam's correspondence assertions [23] to model authenticity. Techniques
for proving correctness include rank fimctions [21, 16, 15], theorem provers [5,
19, 9], model checkers [17, 18] and type systems [1, 2, 7, 12, 13, 11].

Towards more complete and realistic cryptographic type systems. Type sys-
tems for interesting languages are incomplete, that is they fail to type-check
some safe programs. Type systems usually are tailored to a particular idiom,
for example [2] treats public encryption keys but not signing keys, and [13]

*This material is based upon work supported by the Nati.ona.1 Science Foundation under Grant No. 0208459.
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covers full symmetric and asymmetric cryptography but not nested uses of
cryptography. In this paper, we will use the techniques developed in [12, 13,
11] to reason about protocols making use of nested cryptography and hashing.

Small core Ianguage. While increasing the completeness of a cryptographic
type system, it is also important to keep the system tractable, so that rigorous
safety proofs are still feasible. For that reason, we chose to define a very
small core language and obtain the full language through derived forms. The
core language is extremely parsimonious: its only constructs for messages are
tupling, asymmetric encryption and those for asymmetric keys. We show that
symmetric encryption, hashing, and message tagging are all derived operators
from this small core.

Authorization types. The language of types is small, too. It contains key types
for key pairs, encryption and decryption keys. Moreover, it contains parameter-
ized authorizaüon types of the forms Public(M) and Secret(M). Typically, the
parameter M is a list of principal names. For instance, if principal B receives
from an untrusted channel a ciphertext | M | } ^ encrypted with^4's private sign-
ing key esA, then the plaintext M is of type Public(^(), because M is a public
message that has been authorized by A.

Patterns and nested cryptography. The process language combines the suite
of separate message destructors and equality checks from previous systems
[12, 13, 11] into one patten matching construct. Patterns at the process level
are convenient, and are similar to the communication techniques used in other
specification languages [22, 8,4]. Notably, our system uses patterns not only in
processes but also in types. This permits types for nested use of cryptographic
primitives, which would otherwise not be possible. For example, previous type
systems [12, 13, 11] could express data dependencies such as

(3a : Princ,3w : Msg,3Z?: Princ,[!begun(a,Z>,m)])

where !begun(a, b, m) is an effect ensuring that principals a and b have agreed
on message m. In this paper, we extend these systems to deal with more com-
plex data dependencies such as

{]#(3a: Princ,3m : Msg),3Z?: Princ^-i[!begun(ö,6,7w)]

where the effect !begun(a,Z?,m) makes use of variables a, b and m which are
doubly nested in the scope of a decryption \ • \dk-\ and a hash fimction #(•):
such data dependencies were not previously allowed because the occurrences
of a, b and m in !begun(<3,Z>, m) would be considered out of scope.

Reusable long-term keys. Another form of incompleteness is that previous
systems have often been designed for verifying small (yet, subtle) protocol
sketches in isolation, but not for verifying larger cryptographic systems where
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the same key may be used for multiple protocols. For instance, in [13] when
a signing key for A is generated, its type specification fixes a finite number of
message types that this key may sign. A more realistic approach for larger,
possibly extensible, cryptosystems would be to generate a key for encrypting
arbitrary data authorized by A. We show how the combination of key types,
authorization types and message tagging allow keys to be generated indepen-
dently of the protocols for which they will be used.

Notational conventions.. Ifthe meta-variable x ranges over set S, then x ranges
over finite sequences over 5, and xYanges over finite subsets of S.

2. An Introductory Example

Before the technical exposition, we want to convey a flavor of the type system
by discussing a simple example. Consider the following simple sign-then-
encrypt protocol:

A begins! (M,A,B)

The begin- and end-statements are Woo-Lam correspondence assertions [23].
They specify that Alice begins a protocol session (M,A,B), which Bob ends
after message reception.

Protocol specification in pattern-matching spi.. Here are Alice's and Bob's
side of this protocol expressed in pattern-matching spi calculus:

PA = begin!(M,^,5); outnet Us

PB = \npnet Usec(3x,B)bdsA-i$dpB-M end(x,A,B)

The variable net represents an untrusted channel and dsA and dpB are the
matching decryption keys for esA and epB. An output statement of the form
(out net N) sends a message N out on channel net. A statement of the form
(inp net X\P) inputs a message from channel net and then attempts to match
the message against pattern X. If the pattern match succeeds then P gets exe-
cuted, otherwise execution gets stuck. Existentials in patterns indicate which
variables get bound as part of the pattern match. In the input pattern above,
the variable x gets bound, whereas B, dsA and dpB are constants that must be
matched exactly.

Type annotations.. For a type-checker to verify the protocol's correctness
(and also for us to better understand and document it), it is necessary that
we annotate the protocol with types. For our example, the types for the free
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variables are:

M: Secret M will not be revealed to the opponent
epB : PublicCryptoEK(^) epB is B's public encryption key
dpB : PublicCryptoDK(2?) dpB is B's matching decryption key
esA : SigningEK(^) esA is ̂ f's private signing key
dsA : SigningDK(^4) dsA is A's matching signature verification key

No type annotations are necessary in PA, because PA does not have input state-
ments. In Pß we add two type annotations. The input variable x is annotated
with Secret. Moreover, we add a postcondition to the input statement that
indicates that a (x,A,B)-session can safely be ended after a successful pattern
match. Here is the annotated version ofPß'.

PB = \npnetUsec(3x: S e c r e t ^ J ^ - i ^ - i I l b e g u n ^ , ^ ^ ) ] ; end(x,A,B)

These type annotations, together with our Robust Safety Theorem are enough
to ensure the safety of this protocol in the presence of an arbitrary opponent.

3. A Spi Calculus with Pattern Matching

3.1 Messages

As usual in spi calculi, messages are modeled as elements of an algebraic
datatype. They may be built from atomic names and variables by pairing and
asymmetric-key encryption. Moreover, there are two special symbolic opera-
tors Enc and Dec with the following meanings: if message Mrepresents a key
pair, then Enc (M) represents its encryption and Dec (M) its decryption part.

In the presentation of messages, we include asymmetric-key encryption
|MHTV which encrypts plaintext M with encryption key N. We also allow mes-
sages HMH -̂i which represents the encryption of plaintext M with the encryp-
tion key which matches decryption key N. This is clearly not an implementable
operation: it is used in the next section when we discuss patterns.

Messages:

\y,z
m,n
L,M,N::=

n
X

0
(M,N)

variables
names
message

name
variable
empty message
message pair
M encrypted under encryption key N
M encrypted under inverse of decryption key N

Enc (M) encryption part of key pair M
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Dec (M) decryption part of key pair M

Syntactic restriction: No subterms of the form
Define: A message M is implementable if it contains no subterms

Because of the restriction that we never build messages ^M^Dec^yi, we
have to be carefiil with our definition of substitution. This is standard, except
for when we substitute into a term of the form

Substitution into Messages:

otherwise

We will write the list (M\,... , Af„) as shorthand for (M\,(..., (M„, ()).. .))

3.2 Patterns

Patterns are of the form {f. M | ^4}, where M is apattern body and 4̂ an as-
sertion set. Assertion sets are only used in type-checking, so we delay their
discussion until Section A.2. The variables x act as binders. A message Af
matches a pattern {x. M \ A} if it is of the form N = M{x<—L}, in which case
variables x will be bound to messages L. The pattern body Mmay have multi-
ple occurrences of the same variable and it may contain variables that are not
mentioned in x: such variables are regarded as constants and must be matched
exactly. For instance, the pattern {x. (x, §x$y) \ A} is matched by messages of
the form (M, {M}y)9 but not by messages (M, {Atyz) or (M, | % ) .

Patterns:

X,Y,Z::= _ pattern
{x. M | A } pattern matching term M binding x

Syntactic restrictions: x C fy(M) and f distinct.
Define: A pattern {x. M | ̂ 4} is implementable if (fn(M), fv(M) — jc, M Ih 3c).

Importantly, not all patterns are implementable. For instance, the patterns
{x,dk. ü^|}^-i | Ä} and {x. {)x|}ê  | A} are not implementable, because they
would allow access to the plaintext without knowing the decryption key. On
the other hand, {x. ||-x:[} -̂i | ̂ 4}and {x. -ß^HEnĉ ) M } a r e implementable pat-
terns. A syntactic restriction forbids non-implementable input patterns in pro-
cesses. We formalize the notion of implementablejpattern by making use of the
Dolev-Yao 'derivable message' judgment M\)~N meaning 'An agent which
knows messages M can construct messages N.9
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Dolev-Yao Derivability, M\\- N:

(DY Id) (DY And) ~ (DYNil) (DYPair) '
\ . . . M\\-Nk MW-N.N'

M,N\\-N M\\-Nu...,Nk M\\-() Mlh (N,Nf)

(DY Split) (DY Key)
M,N,N'\\-L M\\-N £e{Enc,Dec}

(DY Encrypt) (DY Decry^t) (DY Unencrypt)
M\\-N,Nf M\\-N M,NfhL M\\~ N M,N'\\-L

Mlh $N'y M^lfy-i hL

We use some convenient syntactic abbreviations that treat patterns as if they
were messages containing binding existentials. These 'derived forms' for pat-
terns are defined below. For example:

Usec(B,3x: p

= {x.UseciB^x)^-^^ | x : Secret,\begun(x,A,B)}

Derived Forms for Patterns:

M = {M\ }; T = {x.x\x:T}foxfKshx;

3x = {x.x\ }; . . . = (3x) forfreshx;

y = {x.§M\sN\Ä},\fX={x.M\Ä}; _

= {x.{Mhf-l\A},ifX={x_.M\A};

X[B] 4 {x.M\A,B}, ifX={x.M\A};

(Xi,...,X„) = {xu...,x„.(M\,...,M„) \Ä\,...,Ä„},

3.3 Processes

The spi-calculus with patterns is a variant of the spi-calculus, where we add
pattern-matching as a primitive capability (in the spi-calculus it is derived).

Processes:
i i

O, P, ß , R :: = process
out Â  M asynchronous output of M on N
i n p N X; P input from N against pattern X
new n\T\P name generation
P\Q parallel composition
\P replication
0 inactivity
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Syntacüc restrictions:
• In (out N M), both N and M are implementable messages.
• In (\npNX;P), N is an implementable message andX is an implementable pattern.

Scope:
• The scope ofx in (inpN {x.M\ Ä)\P) is M,/TandP.
• The scope of n in new n:T\P'\sP.

3.4 Specifying Authenticity by Correspondence Assertions
Following [12, 13, 11], we specify authenticity properties by inserting corre-
spondence assertions into protocol specifications.

Correspondence Assertions:
i i

O,P,Q,R::— process
asin Section3.3

begin! (L); P begin-many assertion
end(L); P end assertion

i i

A process is safe whenever at run-time each end (M) is preceded by a begin! (M)
(precise definitions can be found in the appendix). For example, consider pro-
cess P:

P = PA\ PB, where PA = (begin!(M,^,^); out we/

P5 = (inp net (3x,B)[\begun(x,A,B)}; end(x,A,B))

Process P is safe in isolation, but we are really interested in safety in the pres-
ence of an opponent. A process P is called robustly safe whenever (O \ P)
is safe for all opponent processes O. The example process P is not robustly
safe, because (out net N \ P) is not safe, and we ensure robust safety by adding
encryption:

P = newA::SigningKP(^); (out»e/(Dec(it)) \PA(Enc(k)) \PB(Dec(k)))
PA(ek) = beg\nl(M,A,B); out n
PB(dk) = mpnet{3x:Pub\\c,B

The crucial property of our system is that processes that only make use of
public data are robustly safe (we will return in Section 4.3 to the definition of
a public type):

Theorem (Robust Safety) Iff are public types and (n : f h P), then P is
robustly safe.

4. Highlights of the Type System
4.1 Environments
As is usual in most type systems, we give our judgments relative to a typing
environment. In our case, this typing environment is used to:
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• Track the names of bound variables, for example dk and x.
• Give message types, for example dk: SigningDK(^f) and \x,B\dk-\ : Un.
• List correspondences that have begun, for example !begun(x,;4,i?).

The environment containing these assertions would be:

dk,x\ dk : SigningDK(^), {Mfr^- i : Un, !

A significant difference to previous type systems for the spi-calculus [12, 13,
11] is that we are unifying the notions of variable environment and process
effect into a common language of environments.

Environments:
i i

A,B,C,D::= assertions
M:T type assertion
! begu n (M) begun-many assertion

E, F, Gv. — environments
x\A environment

A) = x environment domain

4.2 Typed Pattern Matching

We can now explain the assertion component of a pattern {x. M \ Ä}\ it gives
the preconditionyl which must be satisfied by any process that constructs a term
matchingthepattern. Forexample, thepattern (3x : Public,5)[!begun(x,^,.ö)]
is a derived form for {x. (x,B) \ x : Public, \begun(x,A,B)}.

Typed Pattern Matching (whereX = {x.N\A}):

E\-M€X = E\-M: Top, A{x^N}, where M = N{x<-N} Match

E,MeXV- J = E,M: Top,Ä{x<-N} h J, where M = N{x±-N} Unmatch

4.3 Kinds and Subkinding

A message is publishable if it may be sent to an untrusted target. A message
is untainted if it has been received from a trusted source. An important part of
the type system is a kinding relation (T :: K) that assigns kinds K to types T.
The type system is designed so that the following statements hold:

a If (T :: K) and Public G K, then members of type T are publishable.
• If (T :: K) and Tainted £• K, then members of type T are untainted.

We say that type T ispublic (respectively tainted) if (T ::K3 Public) (respec-
tively (T ::K3 Tainted)) for some kindK.
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Kinds and Subkinding:

' W Q {Public,Tainted} '

(Public € H) =» (Public G £) (Tainted e £) =» (Tainted e #)

K<H
i i

4.4 Types and Subtyping

We will now give the grammar of types, together with the definition of kinding
and subtyping. We discuss each of the types in more detail below.

Types:

T,U,V::=
KJop
KAuth{L)
(K,H)KT{X)

KT::=
EK
DK
KP

types
top type
authorized type
key type

key type symbols
encryption key
decryption key
key pair

KJopy.K;

(K,H)KP(X) ::KDH; (K,H)EK(X) ::K; (K,H)DK(X) ::H
i i

Kinds are used to define subtyping. The rule (Subty Public Tainted) states that
any message of public type also has any tainted type, as in [13]. The subtyping
rules (Subty Top) and (Subty Auth) are new and have not been part of [13].
Subtyping, T < U:

(Subty Refl) (Subty Top)
T::K K<H

T<T T<HTop

(Subty Auth) (Subty Public Tainted)
K<H r::^U{Public} U ::i/U{Tainted}

KAuth(Z) < HAuth(I) T < U

4.5 Top Types

Top types have the form ^TTop and are the most general types of kind K, by
(Subty Top). Moreover, {Tainted}Top is the greatest type of the entire type
hierarchy. We define the following derived forms:
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Derived Forms for Top Types:

Secret = 0Top; Public 4 {Public}Top; Un = {Public,Tainted}Top;
Top = Tainted = {TaintedjTop
i i

4.6 Authorization Types

A novel feature of this system is authorization types. A message M: K Auth(L)
is a message of kind K which requires authorization by or for L.

Derived Forms for Authorization Types:

Secret(L) = 0Auth(L); Tainted(L) ~ {Tainted} Auth(L);
Public(L) = {Public} Auth(L); Un(Z) = {Public,Tainted} Auth(L)

i i

In meaningful authorization types, parameter L is usually a list of principal
names. For example, Public(^4,5,C) is the type of public messages M that
require authorizations by principals A, B and C. These authorizations are ac-
quired by A, B and C digitally signing M.

4.7 Key Types

In this system, key types are extremely general: in examples, we will often use
specialized derived key types for applications such as signing, as discussed in
Section 5.2. The key type (K,H)KT{X) contains a patternX. These keys will
be used to encrypt plaintext messages Mto produce ciphertexts which have an
authorization type JAuth(L). In order to form the ciphertext, we require the
pair (M,L) to match the patternJf. The key type (K,H)KT(X) also contains
a kind K, which is the kind of the encryption key, and a kind H, which is the
kind of the decryption key. For example, in Section 5.2 we define principal A's
signing key to be:

SigningEK(^) = (0,{Public})EK(3x : Secret(^,;;),3^)

A key esA of type SigningEK(^4) is a secret encryption key, whose matching
decryption key is public. Thus, it is a signing key. It is typically used to
encrypt messages M of type Public(^,i?) to produce ciphertexts | ]M|}^ of
type Public(5): thus, by signing the message, A removes her name from the
list of principals required to authorize it.

4.8 Output and Input

The interesting rules for the process judgment E h P are for input and output.

E\-N: Un, M : Un £hN:Un x,E,M:Un^A x,E,A\-P

Et-outN M E\-\npN{x.M\A};P



Pattem-matching Spi-calculus 65

In the output rule, message M has to be of type Un in order to be sent out on
the untrusted channel N. Note that M may also be sent out if M's type is any
other public type, because each public type is a subtype of Un.

4.9 Encryption

There are two typing rules for encryption, which only differ in the kind at-
tributes of the types. The first rule applies to encryption with a trusted key:

Tainted^U//"1 __x A

E\-N:(K,H)EK(X), (M,L)eX P u b l l c _ 7 T a m t e d

771 n » ^ n Li- / T \ T a i n t e d * = P u b l i c

The condition Tainted 0KUH~l expresses that the ciphertext is only publish-
able if the encryption key is untainted and the corresponding decryption key is
not public. Otherwise, the following rule is used for encryption:

Tainted 6 KUH~l J = (f - {Tainted}) U(K- {Public})
E\-N: (K,H)EK(X), (M,L)eX, M.J'Jop

Note that here the ciphertext type ./Auth(Z) is only public if the plaintext type
/ T o p is public, and is tainted if the encryption key is tainted.

4.10 Decryption

There are two typing rules for decryption, which only differ in how they treat
kinds and authorizations. The first rule applies if both the decryption key and
the ciphertext are untainted, and is the inverse of the rule for encryption with a
trusted key:

Tainted ^HUJ
EY-N: (K,H) DK(X) E, (M,L) eX\-B

The second decryption rule applies if we cannot trust the ciphertext; in partic-
ular we do not know who has authorized the ciphertext:

Tainted G J E\~N:(K,H) DK(X) x,E, (M,x)
) ^> (x,E, M: JTop,x : Top h (M,x) eX)

Note that when we apply this rule, the authorization is unknown, so we replace
it by a fresh variable x, which acts as a placeholder for the 'real' authoriza-
tion. If the decryption key is untrusted, then we have an additional require-
ment: we can only add (M,x) to the assumption list if it is derivable from
(x,E,M: JTop,x : Top); as a result, untrusted keys can only be used when the
patternX is quite 'weak'.
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5. Derived Forms and Examples

5.1 Tagging

In previous type systems for cryptographic protocols [12, 13, 11], message
tags were introduced using tagged union types. These types are sound, and
they allow a key to be used in more than one protocol, but unfortunately they
require the protocol suite to be known before the key is generated, since the
plaintext type of the key is given as the tagged union of all the messages in the
protocol suite. In this paper, we adopt a variant of dynamic types to allow a
key to be generated with no knowledge of the protocol suite it will be used for.

In our system, we give message tags a type of the form £ : X—> Auth(7),
which can be used to tag messages Mof kind (JU Tainted) to get tagged mes-
sages £(M) : JAuth(L). For example, our previous protocol becomes:

P = newk:S\gn\ngKP(A);(outnet(Dec(k))\PA(Enc(k))\PB(Dec(k)))
PA{ek) = beg\n\(M,A,B); out netpnd(M,B)$ek

PB(dk) = \npnetqsnd(3x:Pub\\c,B)$dk-i[\begun{x,A,B)];end(x,A,B)
snd: (3x: Public?3Z?: Public)-*Auth(3a : Public,..,)[!begun(jc,a,6)]

Tags are not primitive in the pattern-matching spi-calculus, instead we can
encode tags as public key pairs, and message tagging as encryption. We treat
message tags £ as names with a globally agreed type.

£(M) 4

(X->Auth(7)) = ({Public},{Public})KP(X,7)

5.2 Signing Keys

A goal of this type system is to allow principals to have just one signing key,
which can be used for any protocol, rather than requiring different signing
key types for different protocols. Message tags are then used to ensure the
correctness of each protocol.

The type for a signing key is designed to support nested signatures, for
example | | { |M |}^ | }^ is a message M signed by A (using her signing key
esA : SigningEK(^l)) and B (using his signing key esB : SigningEK(i?)). This
message canbe given type {|{|M|}^[}e55 : Secret as long as M: Secret(^4,i?,j;)
for some^, and type {|{]M[}^|}^ : Public as long as M: Public(^,5,^) for
somey- This form of nested signing was not supported by[12, 13, 11].

A long version of this paper [14] contains a proof that the protocol in Sec-
tion 5.1 is well-typed.
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5.3 Public Encryption Keys

Public encryption is dual to signing: the encryption key is public, and the de-
cryption key is kept secret. One crucial difference is that although our type
system supports nested uses of signatures, it does not support similar nested
uses of public-key encryption. As a result, although we can support sign-then-
encrypt, we cannot support encrypt-then-sign, due to the well-known prob-
lems with encrypt-then-sign applications (see, for instance, the analysis of the
CCITT X.509 protocol in [6]).

PublicCryptaKT(Z,) = ({Public},0)£T(3x : Secret(Z),...)

5.4 Symmetric Keys

Symmetric cryptography is not primitive in pattern-matching spi-calculus, in-
stead we encode it using asymmetric cryptography:

() w 4 (0,

5.5 Hashing

We can encode hashing as encryption with a hashing key, where the matching
decryption key has been discarded.

#(M) = hash({M$ekH) where ekH : ({Public},
and hash : fßx : Secret(y)[}^//-+ Auth(3y)

From this point on, we assume that each environment E is implicitly extended
by the above type assertions for the special global names ekH and hash. We
can then adapt the example from Section 5.1 to allow A to sign the message
digest of Mrather than signing the entire message:

^begins! (M,A,B)
A->B M,^(

This example uses the types which were introduced in previous examples, a
fiill version is given in a long version of this paper [14].

Appendix
Structural Process Equivalence, P= Q:

P = P (Struct Refl)
P=Q^>Q = P (Struct Symm)

(Struct Trans)
(Struct Par)

P | 0 = P (Struct Par Zero)
P\Q = Q\P (Struct Par Comm)
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(P\Q)\R = P\(Q\R) (Struct Par Assoc)
\P = P | \P (Struct Repl Par)

i i

State Transition, (A ::: P) -» (B ::: Q):

(Redn Equiv) _
P = Pf {A w: P1)-+(B :v. Q!) Q' = Q

(A : : : /> ) ->(£ ::: Q)

ng fn(Ä,Q) => (Ä ::: (new n:T;P) \ Q) -> {Ä, n\T ::: P | Q) (Redn New)
(^ ::: (begin!(M);/>) | Q) -> (^, !begun(M) ::: i> | ß ) (Redn Begin)
(A, !begun(M) ::: (end{M);P) \ Q) -> (>4, !begun(M) \\\ P \ Q) (Redn End)
(A ::: (outL M{x^N} \ 'mpL {x.M\ A};P) \Q)->(A ::: P{x*-ft] \ Q) (Redn 10)

Good Environment, E h o:
i i

(Good Env)
fv(i4) C J

(Id)
E,A\-o

E,A\-A

(Sub)
EY-M: T

(Enc Part)
E\-M\

(And)
EhAi •-

E\-

T<U fv(U)

E\-M:U

( V U\ \ZZ5( V\yA , ri j r\ r [A. J

(Empty)

AU...,A„ E\-():

(Pair)
Cdom(£) E\-M:KTop

E\-{M,N)

(Dec Part)
E\~M\ (K,H)KP(X]

o

Public

, A^:^TTop

:£Top

)

£ h Enc (M) : (/:,//) EK(X) E V Dec (M) : (K,H) DK(X)

(Encrypt Trusted)

), (M,L)eX

E h {|M|}7v : Public(L)

(Encrypt Untrusted)
Tainted eKUH^ J = (J'- {Tainted}) U (K- {Public})
E\-N: {K,H)EK(X)7 (M,L) eX, M:/Top

: JAuth(L)

(Unsub) (Split)
fv(r)Cdom(£)
E,M:U\-A T<U E, M: KTop, N : KToph A

E, M\TVA E, {M,N):KTop\~A
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(Decrypt Trusted)
Tainted &HUJ

EhN:(K,H)DK(X) E,{M,L)eX\-B

E, decrypt{M,N) : JAuth(L) h B

(Decrypt Untrusted)
TaintedGJ E \-N : {K,H)DK{X) x£dom(£) x,£, (M,x) eX\- B

1) =» (x,E, M: JTop,x : Top h (M,x) eX)

E, decrypt(M,N) : JTop h B

whQTQdecrypt(M,N) = < | L J [ E n c ^ ,
^ v ; \ flA/Jtf-i otherwise

Well-typed Processes, E \-P:

(Proc Out) (Proc In)
xndo

E\-N:ün, M: Un £hN:Un jc,£,M: Un h^

E\-outNM E\~ \npN{x.M\ A};P

(Proc New) (Proc Par) (Proc Repl)
E,n:ThP n#fn(E) E Y- P E\-Q E h P

E\-ne\Nn:T;P E\-P\Q E\-\P

(Proc Stop) (Proc Begin Many) (Proc End)
£ho E, \begun(M)\-P E h !begun(M)

E \~ 0 £" h begin!(A/)j P
i

Well-typed Computation States, \-Ä :::

(State)
A nominal AV Ä Ä' h P

\-Ä ::: P

P:

E\-end(M);P
i

i
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Abstract The most studied property, secrecy, is not always sufficient to prove
the security of a protocol. Other properties such as anonymity, privacy
or opacity could be useful. Here, we use a simple definition of opacity
which works by looking at the possible traces of the protocol using a new
property over messages called similarity. The opacity property becomes
a logical constraint involving both similarities and syntactic equalities.
The main theorem proves that satisfiability of these constraints and thus
opacity are decidable without having to make the hypothesis of atomic
keys. Moreover, we use syntactic equalities to model some deductions an
intruder could make by performing bit-to-bit comparisons (i.e. known-
ciphertext attack).

Keywords: Opacity, Security, Formal Verification, Dolev-Yao Constraints, Rewrit-
ing Systems, Decidability.

The full version of this paper (including proofs) is available at
ht tp : //www-verimag. imag. f r/~lmazare/FAST04. pdf.

1. Introduction

During the last decade, verification of security protocols has been
widely investigated. The majority of the studies focussed on demonstrat-
ing secrecy properties using formal methods (see for example [Clarke
et aL, 1998], [Comon-Lundh and Cortier, 2003], [Comon-Lundh. and
Cortier, 2002] or [Goubault-Larrecq, 2000]). These methods have lead
to effective algorithms and so to concrete tools for verifying secrecy such
as these proposed by the EVA project [Bozga et al., 2002] or the Avispa
project [Avispa, 1999]. However, checking security protocols requires
studying other properties such as anonymity or opacity: hiding a piece
of information from an intruder. For example, in a voting protocol,
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whereas the intruder is able to infer the possible values of the vote (yes
or no), it should be impossible for him to guess which vote was ex-
pressed, only by observing a session of this protocol. Checking a protocol
should include a way of formalizing the informations that were leaked
and that the intruder can guess. In the last few years, attempts have
been made to properly define opacity properties, to prove their decid-
ability in certain cases and to propose some verification algorithms. As
far as we know, other versions of opacity ([Boisseau, 2003], [Hughes and
Shmatikov, 2004]) have been given in the literature but none of these
criterion were implemented. Our notion of opacity is very close to the
one introduced in [Hughes and Shmatikov, 2004] except that we use a
formalism dedicated to protocols studies when they use a more general
functional approach.

In this paper, we adopt a simple definition for opacity. The intruder
C has a passive view of a protocol session involving two agents A and
B. He is able to read any exchanged messages but he cannot modify,
block or create a message. A property will be called opaque if there
are two possible sessions oi the protocol such that: in one of these, the
property is true whereas it is not in the other, and it is impossible for
the intruder to differentiate the messages from these two sessions from
the messages exchanged in the original session. The starting point is
the notion of similarity. This binary relation noted ~ is an equivalence
relation between messages. Two messages are similar if it is not feasible
for the intruder to differentiate them. A typical example is two different
messages encoded by a key that the intruder cannot infer. From the
point of view of the intruder, these messages will be said similar. This
notion is of course dependent of the knowledge of the intruder given
by Dolev-Yao theory [Dolev and Yao, 1983]: if the intruder is able to
infer any of the used keys, then similarity will be equivalent to syntac-
tic equality. This notion of similarity will allow us to express opacity
properties as constraints. These constraints will also include syntactic
equality. Equalities are used to show that the intruder can perform bit-
to-bit comparisons between some messages (this is best known in the
literature as known-ciphertext attacks). Let us give a simple example
that will be useful throughout this paper. A simple electronic voting
protocol is given by the transmission between A (the voter) and S (the
authority counting votes). Variable v is the expressed vote chosen among
the possible values yes or no.

A -* S : {v}pub{s)

If the intruder intercepts the value of {v}pu^s)^ then as he can compare
it to {yes}pu^s) a nd {n°}pub(S)i the intruder is able to deduce the value
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of v. We will say that the intruder performed a bit-to-bit comparison
between {v}puh(S) and {yes}puh^S) (or {no}puh^S))-

The aim of this paper is to formalize opacity as two constraints in-
volving similarities and equalities taking into account possible bit-to-bit
comparisons. The main result is decidability of satisfiability for such
constraints using a finite-model property.

The remainder of this paper is organized as follows. In section 2, we
recall usual definition for messages and protocols. Similarity over mes-
sages is introduced in section 3 and some useful properties are given.
This section also formalizes the opacity property and translates it to
a constraint. Both section 2 and 3 are very close to sections appearing
in [Mazare, 2004], they give the necessary basis to formalize the following
sections. Then, section 4 proves that satisfiability for such constraints
is decidable. Section 5 introduces the bit-to-bit comparisons in our con-
straints. Eventually, section 6 shows how to use this technique on a
simple example, and section 7 concludes this paper.

2. Cryptographic Protocols

Let Atoms and X be two infinite countable disjoint sets. Atoms is the
set of atomic messages a, 6,... Set X contains variables called "protocol
variables" x, y,...

DEFINITION 1 (MESSAGE) LetY, bethe signature Atomsö{pair,encrypt}
where pair and encrypt are two binary functions. The atomic messages
are considered constant functions. Then a message is a first order term
over S and the set of variables X7 namely an element of T(H,X). A
message is said to be closed if ü is a closed term o/T(E,X); i.e. a term

In the rest of this paper, we will use the following notations:

(rai,ra2) =pair(mi,m2) {mi}m2 = encrypt(mi,m2)

Height of message m can be easily defined recursively and will be noted
\m\. Substitutions a from X to T(£,X) are defined as usual. Applica-
tion of substitution a to message m will be noted ma. If a is defined
by xa = n and ya = y for any other variable y, then we could write
m[x\n] instead of ma. The domain of a substitution a is the set dom(a)
of variables x such that xa ̂  x.

The set of variables used in a message m is noted var(m) (or free(m)).

DEFINITION 2 (PROTOCOL) Let Actors be a finite set of participants
called actors. The set of programs Progs is given by the following
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syntax where B is in Actors, m\, m^ and m are messages.

G ::= e | \Bm.G
| im.G | if m\ = m2 t/ien G eZse G / i

A protocol over the set of actors Actors is a function from Actors to
Progs associating a program to each actor.

The intuitive semantic of programs is the usual one: signification of !
is to send the message m to agent B, signification of ?ra is to receive
a message and using pattern matching, to replace the variables learnt
from m in the rest of the program.

For the following, the set of actors is fixed to Actors. Let free be
the function giving free variables of a program. It is easy to define free
in the usual recursive way. Then, free can be extended over protocols.
An instance of the protocol P is a protocol Pa where a instantiates
exactly the free variables of P with closed messages. For that purpose,
it is possible to rename every bound variable with a fresh variable such
that bound variables are distinct and not in the free variables set. The
substitution a is called a session of the protocol P. When there is no
risk of confusion on the protocol, its name will be omitted. Thus, we
will talk about a session o.

DEFINITION 3 (PROTOCOL SEMANTIC) The semantic of a protocol is
the transition system over protocols defined by the following rules:

• If m is a closed message and a is the most general unifier of m
and vnl (m! is called the proto-message of m),

Prog(A) =lBm.PA ProgjB) =?m'.PB

Prog ^ prOg[A - PA- B -> PB}a

Note that, if a does not exist, the protocol can be blocked. The
transition is from the protocol Prog to the protocol Prog[A —>
PA\B —> PB), i.e. the protocol linking A to program PA, B to
program PB and other actors D to program Prog(D).

• / / m\ and m^ are the same closed message,

Prog(A) —ijm\— m^ then PA else G fi
Prog -> Prog[A -> PA]

• / / m\ and m^ are two distinct closed messages,

Prog(A) = if mi = m^ then G else PA fi
Prog -> Prog[A -> PA)
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A protocol P terminates iff for any Q such that P —>* Q, it is possible
to reach the state e: Q —>* e. Note that only closed protocols could
terminate. A run of a session a for a protocol P is an ordered set of
messages r — r\.r2-..rn such that

Pa n

A protocol session is deterministic if it has exactly only one possible run.
This run will be noted run(Pa). In the following sections, protocols
will always be considered deterministic, i.e. each of their sessions is
deterministic.

Eventually, to simplify notations, instead of writing:

Prog(A) =\s{v}pub(S) Prog(S) =?{v}pub(S)

We will shorten this to: A —> S : {v}pub(s)-
This paper will make an extensive use of Dolev-Yao theory [Dolev and

Yao, 1983]. Let E be a set of messages and m b e a message, then we
will note E h m if m is deducible from E using Dolev-Yao inferences.

3. Similarity and Opacity

3.1 Similarity

The intuitive definition of opacity is that an intruder is not able to
distinguish a run where the property is satisfied from a run where it is
not. To distinguish two messages, the intruder can decompose them, ac-
cording to his knowledge but if he does not know the key k for example,
he will not be able to make the difference between two different mes-
sages encoded by this key k. Two such messages will be called similar
messages. This definition will be formalized using inference rules.

An environment is a finite set of closed messages. Usually, it will
denote the set of messages known by the intruder. This definition will
suppose that we only use symmetric key cryptography. However, all the
following results can easily be generalized to public key cryptography.

DEFINITION 4 (SIMILAR MESSAGES) TWO closed messages rai and m^
are said to be similar for the environment env iff env h m\ ~ m^ where
~ is the smallest (w.r.t set inclusion) binary relation satisfying:

a^Atoms ui<~^U2 t>i~i>2
a~a (ui,vi)~(u2,v2)

envhk u~v —>env\-k -^envhk'

Intuitively, this means that an intruder with the knowledge env will not
be able to distinguish two similar messages. The environment name
will be omitted as soon as it is not relevant for comprehension. Our
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definition of ~ is very closed to the = operator introduced by Abadi and
Rogaway in [Abadi and Rogaway, 2000], except that we have an explicit
environment to tell which keys are compromised instead of using directly
the messages linked by the = operator.

Moreover, the definition of ~ could easily be extended to non-closed
environments and messages by adding the inference: ~^- This can also
be achieved by defining m ~ n for non-closed messages as ma ~ na for
each G such that ma and na are closed.

PROPERTY 1 The binary relation ~ is an equivalence relation: let mi,
777.2 and 777,3 be three messages.

m\ ~ 7774 Vfl\ ~ 777-2 ^ ^ 2 ~ ^ l

Vfl\ ~ 7722 A 777-2 ~ 777-3 =^ ml ~ m2>

To prove that the ~ relation is compatible with the context operation, we
will have to suppose that only atomic keys are allowed. This hypothesis
is only required for the following property.

PROPERTY 2 (CONTEXT) Letm\, m,27 777,3 andm^ be four messages. If

777.3 and 777,4 have only one free variable x,

m\ ~ 777,2 A 777,3 ~ 777,4 => 7723[x\mi] ~ 777,4[x\m2]

And in particular,
m\ rsj 777,2 =^ 777,3 [x\777,i] ~ 777,3 [x\777,2]

Let 777, and n be two messages and x a variable. Let a be a substitution
such that xa ~ na. Then

ma ~ m[x\n]a

When considering similarity, an important problem is: given an envi-
ronment env and a closed message m, what is the set of closed message
n such that

env h 77, and env h m ~ n

Note that the main difficulty is that we do not necesseraly have env h m.
For that purpose, the fresh function will be introduced. It is induc-

tively defined over messages by the following equalities where all the
variables y have to be instantiated with different fresh variables (i.e.
variables that do not appear anywhere else).

fresh(a) = a
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fresh(x) = x
fresh((m, m1)) = (fresh(m), fresh(m'))

fresh({m}k) = {fresh(m)}k if env h k
fresh({m}k) = {y}k if em; F fc, y is a fresh variable

PROPERTY 3 For every substitution a, we have

ma ~ fresh(m)a

The reciprocal of this property is that if m is similar to n, then n is
an instance of fresh(m), i.e. fresh(m) where all free variables are
instantiated by closed messages.

PROPERTY 4 Let m and n be two closed messages. Ifm~n, then there
exists a substitution a that acts over the free variables of fresh(m) such
that n = fresh(m)a.

3.2 The Opacity Problem

Let us consider a protocol PR and one of its session a. We will
be interested in predicates over <J, namely properties ijj that act over
variables instantiated by G. Such properties may express the identity
of an agent, or the value of a vote, for instance. The opacity problem
considered here relies on several hypothesis:

• The intruder C has a passive view of protocol session a involving
two agents A and B. Passive means that the intruder can intercept
and view any messages exchanged by A and B but is not able to
block, modify nor to send any message.

• The intruder knows the protocol used PR.

• The intruder has an initial knowledge co, which is a predicate (for
example, co = {k\ = ^2) means that C knows that the keys that
will instantiate fci and k% are the same).

If we consider the witness run run(Pa) = mi.iri2--mn, property ip will
be opaque if there exist two possible sessions o\ and G^ of the protocol
giving messages similar to the witness messages (m\ to mn) where for
example, t/jai is true and <̂J2 is false. In this case, the intruder will not
be able to deduce any knowledge on tpa. Of course, there is no need
to find both a\ and o^- if ^cr is true, then we could use a instead of
<7i, as exchanged messages are the same, they are similar. But we will
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keep this notation with three substitutions to show the symmetry of this
problem.

DEFINITION 5 (OPACITY) A property I/J is said to be opaque for a pro-
tocol session a of P iff there exist two sessions of the protocol o\ and cr2

such that
CQCTI A pi ~ m\ A ... A pn ~ mn A j

C0&2 A qi ~ m\ A ... /\qn ~ rn<n A

Where P\.p2--Pn is ihe run of the protocol P related to &\, qi.qz-An i>s

related to o<i and mi.m2...mn is related to a. Note that the three runs
must have the same length n.

The environment env used in the previous conjunctions is {rai,..., mn,
Pi? ...,Pnj Qii •'"> Qn} and could be augmented with an initial knowledge
of the intruder env$.

We defined opacity for a protocol session, this can be extended to
protocols by saying that a property is opaque in a protocol if it is opaque
for all its session. The problem is that the number of possible sessions
(and their size) is unbounded. This leads to an unbounded number of
possible behaviors for a protocol. In the following, we give a method to
check opacity for a given session but we lack the method to extend it to
a whole protocol.

For instance, let us consider the simple electronic voting protocoL
Suppose that the session observed by the intruder is a = [v\yes\. Then,
the environment will be env = {yes,no,pub(S), {yes}pu^s)}- The pred-
icates expressing the opacity of the vote value will be:

{v}Pub(S)

{v}pub(S)
As both predicates are satisfiable, the vote value is opaque in this case.

Our property of opacity can also be used to check anonymity. For
example, if we take a definition of anonymity closed to the one given
in [Schneider and Sidiropoulos, 1996], we just have to add a "restricted
view" for the intruder, i.e. the intruder only intercepts some of the
exchanged messages (for example, when considering a system with both
secure and insecure channels). Then, opacity for property "identity of
such actor" will be similar to what is defined as anonymity.

4. Initial Predicates and Satisfiability

In this section, the environment env is a finite set of closed messages.
We will first define a class of predicates called initial predicates. Then,
we will show that satisfiability for such predicates is decidable.
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DEFINITION 6 (INITIAL PREDICATES) The set IP of initial predicates
is given by the following formulas:

P::=PA\PAP

PA .:= m ~ n\m = n|_L|T

Where m and n are two messages.

THEOREM 1 Satisfiability of initial predicates is decidable.

PROOF 1 Due to space limüation, the proof cannot be given here, but is
available in the full version of this paper. |

5. Syntactic Equality

The addition of syntactic equality in predicates will be used to model
the intruder performing bit-to-bit comparison between two deducible
messages. For example, if the intruder has intercepted {v}pub{S) a nd
has a bit-to-bit value equal to {yes}^^), then he can deduce that
the value of v is yes. Two such messages will be called identifiable
messages. We will show in this section that the knowledge brought by
identifiable messages is computable. A kind of attack close to this one
has already been studied with different techniques under the name of
guessing attacks in [Lowe, 2002], [Gong et al., 1993] or [Delaune, 2003].
But these studies do not precisely link the values to the protomessages
as will be done here. In the previous section, we used the Dolev-Yao
model: the only way to obtain some information from a ciphertext was
to find the right key and to decode it. Here, we use a model where
the intruder has stronger deduction capacities. This hypothesis holds
for some encryption schemes but most of them use random bits so that
these attacks are impossible to perform.

DEFINITION 7 Let M — {mi, ...,mn} be a finite set of messages and a
be a substitution such that Ma is closed. We define !-> as follows.

(~\\ MY-gm M\-an /Q\ M\-am M\-an /g\
M^aTrti \L> M\-a(m,n) VZ/ M\-a{m}n \ö)

The meaning of M \-a m is that an intruder knowing M and looking at
Ma can link the prototype m to its value ma. The intruder can add to
its knowledge m = ma but is not allowed to discompose m and ma as
soon as some keys could be not deducible. But, if the intruder can find
two times the same message linked to two different prototypes m and n,
then he will be able to deduce the syntactic equality m — n.
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Note that M \-a m implies Ma h ma. The inverse is of course false
(take for example m = x, M = {y} and xa — ya = a). First, we will
prove a general property on our new theory: its locality.

PROPERTY 5 (LOCALITY) The theory \-a is local: if M \-a m, then
there exists a proof of M \-a m such that for any intermediate occurrence
of M \-a m' in the proof, m! is either a sub-message of m, or a sub-
message of a message present in M.

A direct application of this property is that if the last rule used in a
minimal proof of M \-a m is a decomposition, then m i s a sub-message
of a message of M.

DEFINITION 8 (IDENTIFIABLE MESSAGES) TWO messages m and n are
said to be identifiable for a and M iff

• m^ n

• M \-(j m and M \-a n

m ma = na

m and n are minimal iff there does not exist a non initial position p
such that ra|p and n\p are identifiable (m\p is the sub-term ofm occuring
at position p).

If two messages m and n are identifiable, then the intruder can add m —
n to its knowledge. Now, we want to be able to add all the knowledge
that can be inferred to the intruder's knowledge without testing any
possible couple of messages. We want to show that this knowledge is
computable in a finite time. For that purpose, we will state two distinct
properties.

PROPERTY 6 The set of minimal identifiable messages is computable.

To prove this property, we will have to use the locality of our theory.
This property will lead us to a decision algorithm capable of producing
every possible pair of minimal identifiable messages. Let m and n be two
minimal identifiable messages. Consider minimal proofs for M \-a m and
M \-a n, using the symmetry between m and n, only three combinations
of final rules for M \-a m and M \-a n are possible.

• These rules are both 2 or 3: then either m = (7711,7712) and n =
(ni,ri2), either m — {mi}m2 and n = {ni}n2. Let us consider the
case of pairs. As we have m ^ n, we have m\ ^ n\ or m^ ^ n^-
To fix the idea, we will consider m\ ^ n\. We have, of course,
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m\G — n\a and M h> m\ and M \-a n\. So rrt\ and n\ are
identifiable, there is a contradiction with the minimality of the
pair m,n. That is why, these rules cannot occur at the end of
minimal proofs.

• If both rules are in 1, 4, 5 and 6. Then m and n are sub-messages
from M. These messages are only in finite number.

• If the rule concerning m is in 1, 4, 5 and 6 and the rule concerning
n is in 2 and 3. Then m is a sub-message of M. As ma = na, we
have na in SM(Ma) (sub-messages, i.e. sub-terms of Ma). So we
have

\na\ < max(\p\,p G SM(Ma))

And we obtain a bound of the length of n:

\n\ < max(\p\,p e SM(Ma))

The atoms occurring in n have to occur in M and the variables
occurring in n have to be instantiated by a. So there are only a
finite number of possible messages for n.

To find all the minimal similar messages, we have to test all the mes-
sages whose lengths are below max(\p\,p G SM(Ma)). Messages from
SM(M) are in that set. These messages can only use atoms used in M
and variables instantiated by a. That is why the set of messages to be
tested is finite. Moreover, checking that two messages are identifiable
and minimal can be done in a finite time too, and so all the minimal
identifiable messages can be found in a finite time.

PROPERTY 7 Ifm andn are identifiable and p\,...,Pk ^re the posüions
such that m\Pi and n\Pi are identifiable and minimal, then for any model

a |= (m = n <£> m\Pl = n\Pl A ... A m\Pk = n\Pk)

Using properties stated in this section, we now have a method to
model what an intruder can guess using bit-to-bit comparisons. Our
method is easy to apply but inefßcient as it tests any couple of message
whose lengths are below a fixed bound. It produces constraints of the
form m — n, they can be added to the opacity predicates. As we show in
the previous section, satisfiability of the resulting predicates will remain
decidable. More formally, M will be the awaited trace of the protocol
in terms of proto-messages augmented with the initial knowledge of the
intruder and env will be the set of intercepted messages as long as the
initial knowledge, so we will usually take env = Ma. Then, opacity of
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a property P will be checked as satisfiability of to predicates S A P and
SA-^P where S contains similarities that occur in the opacity constraint.
We will have to compute the set of minimal identifiable messages rai, n\
to mk,rik- This gives use another predicate E defined by:

E — {m\ = m A ... A rrik = n*)

And so, we will study satisfiability of two predicates: E A S A P and
E f\S f\ -iP. This will be applied in the next section on two very simple
electronic voting protocols.

6. Example: A Simple Electronic Vote Protocol

6.1 Simple Does Not Mean Secure

Let us consider the most simple electronic voting protocol. A is the
voter and S the authority that will count the different votes. The pos-
sible votes are yes and no. Of course, one of the objective is that the
expressed vote remains opaque. In a first version, the vote will just be
sent from A to S encoded using the public key of S. The protocols is
written:

A -> 5 : {v}pub(S)

Where v is chosen among the values yes and no. Let us suppose that the
expressed vote is yes, so the substitution a is defined by a — [v\yes\.
Then M is the set {{v}pu^s),yes,no,pub(S)}. The environment env
is the set Ma. The value of max(\p\,p £ SM(Ma)) is 2 (pub(S) is
considered as an atomic message). We easily obtain the set of minimal
identifiable messages:

So E = ({v}pub(S) — {ves}pub(S))i ^he constraints of opacity related to
the value of v are:

{v}Pub(S) = {yes}pub{S) A {v}Pub(S)

{v}Pub(S) = {yes}Pub(S) A {v}pub(S)

By using our rewriting system on the second predicate, we have

v = yesA {v}pub{s) - {yes}pub(s) Av = no

And so this constraint can be rewrited to _L, the second constraint is
not satisfiable. The value of v is not opaque: the intruder can guess the
vote. Intuitively, we already shew how the intruder could guess the vote
in the introduction. Now, we want to fix this opacity flaw by modifying
the protocol.
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6.2 Adding Complexity

The technique used by the intruder is to guess which message can be
encrypted and to compare the result with the intercepted message. As
we do not want the intruder to guess which message can be encrypted,
we add a nonce in the protocol:

A-+ S : {(v,n)}pub{S)

As in the previous example, let us suppose that the expressed vote is yes
and the nonce is instantiated by a fresh atom JV, so the substitution a is
definedbycr = [v\yes,n\N]. Then M is theset {{{viri)}Pub{S)iyes->noiPub(S)}-
The environment env is the set Ma. The value ofmax(\p\,p G SM(Ma))
is 3. But now, the set of minimal identifiable messages is empty, so the
constraints of opacity concerning the value of v are:

{(v,n)}pub{s) ~ {(yes,N)}pub(S) Av = yes

{(v,n)}pub(S) ~ {(yes,N)}pub(S) Av = no
It is easy to see that both constraints are satisfiable, so we now have
that the expressed vote is opaque. This protocol can be used without
fearing that an intruder can guess the value of the vote using bit-to-bit
comparisons.

7. Conclusion

In this paper, we extended the notions presented in [Mazare, 2004]:
opacity is also defined as satisfiability of two constraints, but we do not
need the hypothesis that keys are atomic anymore. However, the method
introduced in [Mazare, 2004] can be applicated to real case whereas our
new method to decide satisfiability of constraints is far more complex.
The set of predicates which satisfiability is decidable has been extended
to predicates using syntactic equalities and non-atomic keys. Moreover,
we introduced a new technique to determine what an intruder can guess
using bit-to-bit comparisons. Now, we have two distinct theories: on
one side Dolev-Yao h and on the other side \-a. Even if the two theories
are closely linked, an idea for future work would be to produce a single
theory modeling both kind of attacks. Another interesting extension
would be to make the intruder active. If C can intercept and modify
the messages, could he find the right messages to alter such that the
property is not opaque any more ?
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Abstract This paper focuses on the usability of the PINPAS tool. The PIN-
PAS tool is an instruction-level interpreter for smartcard assembler lan-
guages, augmented with facilities to study side-channel vulnerabilities.
The tool can simulate side-channel leakage and has a suite of utilities to
analyze this. The usage of the tool, for the analysis of a cryptographic
algorithm is illustrated using the standard AES and RSA. Vulnera-
bilities of the implementations are identified and protective measures
added. It is argued, that the tool can be instrumental for the design
and realization of secure smartcard implementations in a systematic
way.

Keywords: smartcard, side-channel attack, power analysis, fault analysis, DPA,
simulation, countermeasures, systematic hardening

1. Introduction

Since the ground-breaking papers of Paul Kocher Kocher, 1996; Kocher
et al., 1999 a vast amount of research on power analysis and other
side-channel attacks have been reported in the literature (e.g. Boneh
et al, 1997; Messerges, 2000; Coron et al, 2001; Quisquater and Samyde,
2001). Taking all types of attacks into account for a concrete implemen-
tation of a cryptographic algorithm on a specific smartcard and, fur-
thermore, investigating the feasibility of all appropriate countermeasure
is a daunting task. Apart from experience and engineering principles,
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feedback on intermediate stages during the development —instead of af-
ter the implementation phase— is valuable to the smartcard algorithm
programmer. The PINPAS tool, discussed here, can be used to provide
this information. More generally, the tool aims to contribute to a better
understanding of side-channel vulnerability and systematic hardening of
a smartcard application.

PINPAS is an instruction-level interpreter for smartcard assembler
together with facilities to collect and process side-channel information.
In this paper we focus on the usability aspects of the tool when assessing
the side-channel vulnerability of an implementation of a cryptographic
algorithm. As running examples, we investigate the vulnerability for
differential power analysis (DPA) of the AES and RSA algorithm. We
show, for basic smartcard implementations, how attacks and the effec-
tiveness of subsequent countermeasures can be analyzed.

In outline, the approach works as follows: First, a candidate algorithm
is implemented in the assembler language of the targeted smartcard.
Then, power traces are collected by the PINPAS tool while interpreting
the implementation. Next, iteratively, the feasibility of a DPA attack is
estimated and necessary countermeasures are put in place.

The PINPAS tool is still only a prototype. However, it clearly shows
the advantage of software-based feedback for side-channel attacks on
smartcards. The benefits of the tool include the following:

• Side-channel analysis can already start early in the development
process as no physical card or laboratory setup is needed.

• Time consuming measurements and signal-analysis can largely be
avoided.

* It is easy to switch platform and card type and change the attack
parameters such as the side-channel, attack point, etc.

• The tool provides quick feedback on the effectiveness of introduced
countermeasures.

• The simulation environment enables one to balance resource uti-
lization, performance and security, respectively.

• The flexible setup allows for easy experimentation with new poten-
tial attack or defense techniques. Additionally, the PINPAS tool
provides a setting to study hypothetical side-channel leakage.

The idea of performing timing attacks and differential power analysis on
a simulator is a clear one and may not be completely new. However,
the PINPAS tool is, to our best knowledge, the first tool reported in the
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academic literature. Moreover, the increase of computing power and ma-
turity of object-oriented programming languages have witnessed further
evolution since the advent of SPA and DPA. Today, an industrial-sized
tool based on PINPAS has come in reach. In fact, the prototype has
been adopted for further development.

Because of its broad applicability in early development stages, its flex-
ibility and ease of use, while avoiding involved physical measurements,
the PINPAS tool can be valuable to smartcard manufacturers, algo-
rithm designers, evaluators as well as researchers. The PINPAS tool
provides an instrument to study information leakage via side-channels
in a systematic sway. With the tool, countermeasures can be evaluated
for their effectiveness. This way, the prototype may serve as a stepping
stone toward a general theory of generating safe code from vulnerable
algorithms. An overview of the PINPAS tool was reported in den Hartog
et al, 2003.

2. The PINPAS tool

The PINPAS tool is a Java program that provides a number of vir-
tual machines for various smartcard assembler languages. On top of
this, the tool facilitates various type of side-channel attacks, both first
and higher-order. (The former type focuses on side-channel information
from one single source; the latter seeks to combine such information re-
trieved from several places.) Given a particular implementation code of
a cryptographic algorithm the tool provides an environment to assess
the vulnerability of the implementation, in particular for timing attacks
and for power analysis. Thus, the PINPAS tool consists of two main
building blocks: a simulator and an analyzer.

The simulator part for a particular brand of smartcard is based on
the overall architecture and the instruction set of the smartcard. If one
wishes to do so, one can restrict the so-called power profile to the mod-
eling of the CPU and storage, neglecting possible co-processors or ded-
icated components. Typically, a number of registers and memory space
is allocated by the simulator, comprising -together with the program
counter- its state. Instructions then are interpreted as state transfor-
mations. They affect the program counter, the registers and memory.
For each instruction a Java method is defined in the class implementing
the simulation of the smartcard. Interpretation of a program for the
smartcard consists of a loop that repeatedly calls the Java method that
corresponds to the card instruction to be executed. As an aside, note
that system calls and native APIs need not to be represented as low
level operations; Java methods that reflect the input/output behavior of
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such card components suffice. This way, the simulator abstracts away
from aspects that are not directly related to the cryptographic algorithm
itself.

The analyzer part supports the collection of abstract power traces.
A physical model of the smartcard architecture and the instruction set
are parameters to the tool. A rather coarse approach, very much like
common practice in actual power attacks to smartcards though, only
takes the Hamming weight of data into account. On the other side of
the spectrum, one can generate sampling information in a format com-
patible to that of the oscilloscope. Although the tool-generated power
traces cannot, by their nature, be exactly the same of those generated
physically, experiments have shown a clear similarity between the two.
While obtaining selected or randomly generated input values from file
one-by-one, the tool produces, by running the algorithm on the virtual
machine, as many abstract power traces as desired.

In addition, the tool provides a few built-in mechanisms for further
manipulation. In particular the DPA selection criteria or brute-force
byte attacks can be launched automatically. Note that, power traces
are produced directly from the assembler code, thus bypassing time and
effort needed to collect power traces physically from the algorithm loaded
onto a smartcard. Also, post processing of power traces to eliminate
noise and jitter has become a non-issue in this setting; by construction,
the traces are noise-free and lined up. However, in principle, physically
collected power traces can be presented to the analyzer part of the tool
as well.

3. A case study: AES and RSA

In the previous section we described the tool developed in the PINPAS
project. In this section, we demonstrate the steps in the development
of a secure smartcard implementation of a cryptographic algorithm. In
particular, we will create, in several steps, implementations of the AES
and RSA algorithms for a typical smartcard. For simplicity we have
chosen a generic platform based on the Hitachi H8 RlSC-processor.

3.1 AES and the PINPAS tool

The advanced encryption standard AES algorithm NIST, 2001; Dae-
men and Rijmen, 2002 is a block cipher which uses a number of rounds
consisting of reversible linear 'confusion' and non-linear 'diffusion' trans-
formations. The linear transformations exploit exclusive ors with key
material and AES's typical shifting and moving of rows and columns.
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The non-linear transformation includes a manipulation of bytes by S-
boxes.

Starting point for the smartcard implementation discussed here, was
a C-coded version of the AES algorithm. The C-code was optimized
with the efficiency of the resulting machine code in mind. Next, the gcc
compiler was run to generate Hitachi H8 code from this. In the discussion
below we will concentrate on the case of an 128-bit key length.

The analysis of the smartcard implementation starts off with some
standard procedures that are provided by the tool. A preliminary power
analysis shows that the different rounds can be distinguished from the
power signature. Also other information, such as the use of specific input
bytes, can be revealed.

Partial power trace for AES showing 6 complete rounds

Zoomed view of the usage of second input byte and the power trace (gray)

Starting from the assumption that Hamming weights of data may leak,
an attacker can focus on the first linear transformation using key ma-
terial, a socalled addroundkey. The crucial instruction in this code
fragment is

data[i] XOR key[i] (1)

which, obviously, xors two bytes. In the first round the data value is
known: It is simply the input to the algorithm. Thus, guessing the ith
byte of the key will allow one to predict the outcome of the xor. Having
such a criterion available a power attack can be launched.
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In the tool this criterion, or trace condition, - forming two groups of
traces with Hamming weights larger and smaller than 4, respectively -
can be reflected by the following piece of Java code.

boolean select( Trace trace )
{ wgt = hammingWgt( trace.getlnputByteC i ) keyguess ) ;

if ( wgt > 4 ) return t rue;
if ( wgt < 4 ) return fa lse;
throw new UnsortableExceptionO ;

The exception UnsortableExceptionO ; is used to discard traces, as
is done in this example with traces for which the Hamming weight wgt
equals 4. (Other, more advanced trace conditions can be used as well,
but for the purpose here, the above will do.)

The tool will divide the power traces in two groups according to the
trace condition. The average power consumption over these two groups
is compared, resulting in a so-called difference trace. If the key byte is
guessed correctly, a difference in average power consumption will occur
at the position of the instruction in equation (1) and result in a peak in
the difference trace. For an incorrect guess, a random partition of the
traces without significant peaks in the difference trace is expected.

To facilitate a quick and automatic attack, the PINPAS tool was
directed to record the power traces only for a small window including the
instruction to be analyzed. Apart from speeding up the simulation, such
facilities are also convenient when memory usage becomes a bottleneck.

An experiment using 250 traces discovered all but a few bits of the 128
bit round key. Because of the linearity of the attacked xor instruction,
a relatively high spike in the difference trace will already occur when 6
or more bits of the key byte are guessed correctly. Therefore, there is
a small probability that a false positive might be given while iteratively
stepping through all possible key byte values. This probability can be
reduced by using more traces. The same experiment based on 500 traces
predicted all key bytes without error.

Difference trace for an incorrect, almost correct and correct guess



Virtual Analysis and Reduction 91

Several coimtermeasures have been proposed to protect against the power
analysis attacks, including hiding of data by random masking Golic and
Tymen, 2003 or distribution of critical data over different locations Chari
et al., 1999; Goubin and Patarin, 1999. Other countermeasures seek to
make the aligning traces and the averaging of power consumption more
difficult. In particular, 'no-op' insertion introducing random waits and
randomization of control flow. Of course, due to the limited resources,
one needs to carefully balance the improvement of security yielded by
these techniques and the resource utilization and performance of the
resulting algorithm.

In order to defend the AES implementation described above, we intro-
duce a countermeasure that randomizes the flow of control. The observa-
tion is that in the exclusive or with bytes of the key in the addroundkey
section can be done in any order. The adapted code is as follows:

int [] order = permutation of 0..15
data[ order[i] ] = data[ order[i] ] XOR key[ order[i] ]

Experiments with the PINPAS tool show that the countermeasure is
effective. Repeating the DPA based on 500 traces no longer revealed
the key. We expected that simply more traces would suffice for a suc-
cessful DPA attack. Surprisingly, using 8000 traces (with 8000 traces
being 16 times 500 traces) did not prove successful either. Thus, the
tool helped not only in providing experimental evidence of the strength
of the countermeasure in reducing the vulnerability, but also provided
feedback on our engineering intuition. Recall that in the setting of the
tool the synthesized traces are noise-free; in physical experiments even
more traces need to be collected. However, it should be noted that
other DPA attacks are still possible, e.g. in the subbytes or shif trows
routines.

3.2 RSA and the PINPAS tool

As a second example we discuss the familiar RSA algorithm Rivest
et al, 1978. Encryption in the RSA algorithm uses exponentiation mod-
ulo a large composite n. For our implementation of RSA we assume to
have a co-processor available on the card. The co-processor is used for
two operations: squaring and multiplication in Z/nZ. We focus on the
common case of 512 bit numbers.

Using the operations provided by the co-processor, exponentiation can
be implemented as follows.

r = 1;
for( int i = 0; i < 512;
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{ r = SQR( r , n ) ;
if ( keybit( i) == 1 ) r = MUL( r , m, n ) ;

An SPA attack on this code is well-known, see e.g. Kocher, 1996; Dhem
et al , 1998. The multiplication MUL in the code above is done only if
the current bit of the key equals 1. By inspection of the shape of the
power consumption trace, one can distinguish the different rounds in
the algorithm. Moreover, one can determine for a round, by examin-
ing its length, whether it consists of only a squaring or also includes a
multiplication. This way, the key can directly be read from the power
trace.

The standard countermeasure to remedy this vulnerability is to intro-
duce a dummy multiplication into the code above for key bits which are
zero.

if ( keybit( i) == 1 ) r = MUL( r , m, n ) ;
else dummy = MUL( r , m, n ) ;

As all rounds are then of equal length, one can no longer decide the
value of a key byte by simply looking at the power consumption trace.
Unfortunately, as a side-effect of this defense, the vulnerability to DPA
attacks has been increased.

In the RSA algorithm the intermediate result for the variable r de-
pends on part of the key only. A DPA attack can be launched attacking
this value. By guessing e.g. the first byte of the key, the intermediate
value after 8 rounds can be predicted for given inputs. As before, a spike
in the difference trace indicates a correct guess for the key.

In contrast to the attack on the AES discussed above, the attack on
RSA has a cumulative nature. In order to find a byte of the key, all more
significant bytes should already have been found. If no byte value results
in a significant peak it is likely that one of the previous byte values has
been guessed incorrectly.

The correct key guess for the first byte of the key1

^The tooi has been instructed to only recorä power ccmsumpfcion vaiues at points relevant to
the attack.
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Experiments with the tool showed that the correct key could be ob-
tained using 125 traces. A complication in the attack is that significant
peaks are induced by a wrong guess, such as a shifted key value. How-
ever, one can eliminate these peaks by narrowing the window of analysis
to the correct round, for example the 8th round for the first byte (MSB)
of the key. The availability of the tool helped unraveling the occurrence
of peaks at unexpected locations in the difference traces.
Due to the mathematical setting of RSA several countermeasures avail-
able for block ciphers, such as (non-multiplicative) masking and dis-
tribution, do not apply here. Perhaps they are applicable for a com-
pletely different implementation of RSA, but it is hard to see how the
co-processor can then be exploited. In the same vein, although random
waits can be introduced, it seems likely that in practice, the attacker
can recognize and remove these from the power trace. When simulating
traces in the tool this is straightforward.

Experiments with the tool indicate that hardware defenses are effec-
tive. For example, adding to the coprocessor an internal buffer that
does not leak for storage of the intermediate result can help reduce the
DPA sensitivity. Countermeasures in hardware can be incorporated in
the tool, relatively easy, by adapting the Java classes implementing the
various machine instructions and adjustment of the power profile. As
seen from our discussion above, this coprocessor must also implement a
dummy multiplication operation which yields the same power signature
as a real multiplication, but does not update the internal buffer.

4. Significance of theoretical attacks

In the previous section we have demonstrated how attacks on AES
and RSA can be simulated in the PINPAS tool. Here we discuss the
practical relevance of the results found using the tool.

4.1 Measured vs. synthesized traces

Power traces generated by the simulation cannot, by their nature,
be the same as physically measured traces. However, a reasonable ap-
proximation is possible. So, what is a reasonable approximation? From
a security standpoint the amount of information leaked in the power
consumption is more relevant than, for example, the absolute difference
with actually measured values.

To do a correct analysis using the tool it is important that attacks
possible on the physical card can also be mimicked in the tool. This
means that information leakage in the power consumption trace of a
physical card should also be present in the simulated power trace. On
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the other hand, adding countermeasures cost money, time, performance,
etc. Thus, from a practical stand point, having too much information
in a simulated power trace is also not too attractive as this may cause
a waste of effort defending against attacks which are not really possible
anyway.

The power traces synthesized by the tool contain no noise, in contrast
to physically measured traces. Experiments, in which random noise has
been added to the synthesized power traces, have confirmed that this
does not affect the vulnerability to a DPA attack. The absence of noise
has several clear advantages in the analysis. One can concentrate on
the actual vulnerabilities in the code without a need for advanced signal
processing to align traces and reduce noise and jitter. Also, because
less traces are required for an attack, the amount of computation is
limited. Note that, when testing only with traces obtained from physical
measurements one may miss a vulnerability merely due to the fact that
an insufficiently many traces were used.

In comparing generated traces versus power traces with noise obtained
from physical measurement we observe the following: First, if no attack
is found on the generated traces, there will be none on the measure
power traces either. Second, if an attack was found, one will likely be
able to reconstruct this for measured power traces, possibly requiring
more measurements. The absence of a vulnerability for measured traces
may very well be due to the signal-tonoise ratio. By using generated
traces one can focus on the intrinsic lack of safety of an implementation
and devote time to finding the proper countermeasures.

4.2 Hamming weight and other side-channel
information

In the simulations used for the power analysis attacks in the previous
section, the Hamming weight of manipulated data leaks in the power
trace. Different cards may leak different information in their power
consumption. The PINPAS tool is rather flexible in the power profile
that is used, allowing the simulation to be adapted to the card under
consideration. Experience with smartcard hardware has shown that the
leakage of information in the power consumption is, in large part, due to
activity on the memory bus. Depending on the implementation of the
memory bus, the power consumption of the memory bus may be related
to changes of the value on the bus rather than to the actual value on
the bus. This means that in many cases assuming that the Hamming
weight leaks in the power consumption is probably an overestimation of
the amount of information that an attacker can obtain through power
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analysis. A power profile that captures the more restricted information
leakage has also been included in the tool.

As with noiseless traces, using Hamming weight leakage is playing
it safe: If no attacks are found with this strong form of leakage, it is
unlikely that there will be attacks on measured traces. It does mean,
however, that the practicality of attacks found in the tool needs to be
considered. In other words, if an attack is found, does one need to spend
considerable effort to prevent it or is it merely a theoretical attack? To
answer this question, the attack can be repeated on a different power
consumption profile which contains less information leakage, all the way
down to the actual hardware if needed (and a card is available). Having
predefined and tested the attacks and potential weak points expedites
the testing process on the hardware.

The attack on the AES in the previous section relies in an essential
way on leakage of Hamming weights. This means that this attack does
work directly on cards with a more restricted form of information leak-
age. The attack may still provide useful information if the attacker can
determine part of the value on the bus before the attacked instruction.
Intimate knowledge of the smartcard architecture and ad-hoc analysis
of the smartcard, along with heuristics, can be used to obtain the previ-
ous value on the bus. If one can safely assume, that the attacker is not
able to obtain this information, using a power profile with less informa-
tion leakage is appropriate. Tests in the tool using such a power profile
confirmed, that the described attack no longer works in this setting.
However, other attacks on AES can still be mounted. For example, by
guessing one byte of the key, the value of the output of the first non-linear
transformation (S-box) can be predicted. By looking at only a single bit
of this predicted value the attack will still work using the adapted power
profile. Note that, a defense using randomization of control flow, such
as introduced in the previous section, can also be used to help to protect
against this attack.

The SPA attack on RSA using timing of rounds only uses the general
shape of the power graph and easily translates to an attack on physical
traces. The DPA attack on the version of RSA strengthened against the
timing attack also used the fact that Hamming weights leak, but not in
an essential way; instead of predicting a byte of the intermediate value,
a single bit could be used. This attack requires more traces, but will
still work with the power profile with less information leakage.

In conclusion, one can use a liberal leakage profile for an initial anal-
ysis of an implementation. If vulnerabilities are found either counter-
measures can be introduced or attacks can be re-tested with a more
restrictive power profile. In this way, one can make precise which as-
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sumptions about the power consumption are essential for the safety of
the particular implementation.

5. Concluding remarks

Above we have illustrated the usability of the PINPAS tool for the
case of AES and RSA. It was explained how implementations of these
two algorithms can be run on the tool and side-channel vulnerabilities
can be identified. Next it was discussed how the effectiveness of the
countermeasures can be assessed. Finally the relevance of attacks on
synthesized traces for the security of a smartcard was treated.

We have argued, that it is advantageous to have a software tool for
the analysis of side-channel vulnerabilities available. The discussed at-
tacks are relatively straightforward. However, the approach is flexible
and suited to examine, e.g., higher-order strategies. For the particular
case of the strengthened AES implementation discussed above, summing
up the power consumption at all locations in the power trace where the
particular instruction can be loaded in the randomized execution will
reveal the key using the same number of traces. For RSA the results
for multiple bits or bytes can be combined to strengthen the correlation
and amplifying the spikes. It should be noted, that such refined attack
scenarios are also necessary in order to keep up with the developments of
unconventionally wired smartcard (glue logic) and associated a-typical
power profile. More generally, the tool can be deployed for higher-order
scenarios on implementations using masking or duplication Chari et al.,
1999; Goubin and Patarin, 1999; Akkar and Goubin, 2003 to test, e.g.,
the increase in the number of power traces needed. Currently, the points
of attack are selected manually, but it would be an interesting add-on
to the tool to do this automated (most likely, through integration with
other tools for security analysis, such as dependency checkers and high-
level program verifiers). A long-term goal of the PINPAS project is the
construction of a code optimizer that eliminates side-channel vulnerabil-
ities automatically. For the development of a theory of secure program
transformations, building on the notion of non-interference (see, e.g.,
Goguen and Meseguer, 1982; Ryan and Schneider, 2001; R. Focardi,
2000), the experiments performed with the tool play a crucial role.

In the previous sections we mainly focused on power analysis. How-
ever, also for other flavors of side-channel attacks the PINPAS tool can
be exploited fruitfully. For example, successful timing attacks have been
conducted. Also, the general idea of injecting hardware faults into the
smartcards execution Boneh et al., 1997; Biham and Shamir, 1997 can
easily be mimicked in the tool, much more precisely and practically as
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compared to a physical set-up. The virtual machine can be instructed
to temporarily step outside its main interpretation cycle and perform
a state transformation according to a faulty instruction (as physically
could have been enforced by a power glitch, light flash, card tear or other
means of card stressing). Due to the modular architecture of the tool
this can be implemented straightforwardly, e.g. along the lines of Dusart
et al, 2003 for AES and Boneh et al , 1997 for RSA. Thus, also for fault
analysis, the clean setting of the tool helps to avoid time-consuming and
labourious experiments (with, occasionally, annihilating consequences
for the smartcard used) while still obtaining a clear indication of the
particular vulnerabilities of the algorithm on the card.

Recent work Schramm et al., 2003; Schramm et al., 2004 reports on
enhancing cryptoanalytical collision attacks Dobbertin, 1998; Biham,
2002 with side-channel information resulting in successful attacks on
DES and AES. The crux in this hybrid approach is that high corre-
lation of power traces indicate that a collision has occurred. Practical
experiments support the view that collision attacks constitute a power-
ful technique, that is insensitive to various countermeasures. It turns
out that relatively few power traces are needed. However, having total
control, as in the software setting of the PINPAS tool advocated in this
paper, may be advantageous in collecting further experimental evidence
for the reach of collision attacks.

Acknowledgments

We gratefully acknowledge the contributions of Jan Verschuren and
Jaap de Vos to this research.

References

Akkar, M.-L. and Goubin, L. (2003). A generic protection against high-order differ-
ential power analysis. In Johansson, T., editor, Proc. FSE 2003, pages 192-205.
LNCS 2887.

Biham, E. (2002). How to decrypt or even substitute DES-encrypted messages in 228

steps. Information Processing Letters, 84:117-124.
Biham, E. and Shamir, A. (1997). Differential fault analysis of secret key cryptosys-

tems. In Kaliski Jr., B.S., editor, Proc. Crypto'97, pages 513-525. LNCS 1294.
Boneh, D., DeMillo, R.A., and Lipton, R.J. (1997). On the importance of checking

cryptographic protocols for faults. In Furny, W., editor, Proc. EuroCrypt'97:, pages
37-51. LNCS 1233.

Chari, S., Jutla, C.S., Rao, J.R., and Rohatgi, P. (1999). Towards sound approaches
to counteract power-analysis attacks. In Wiener, M., editor, Proc. Crypto'99, pages
398-412. LNCS 1666.

Coron, J.-S., Kocher, P., and Naccache, D. (2001). Statistics and secret leakage. In
Frankel, Y., editor, Proc. Financial Cryptography 2001, pages 157-173. LNCS 1962.



98 Formal Aspects ofSecurity and Trust

Daemen, J. and Rijmen, V. (2002). The design of Rijndael Springer Series on Infor-
mation Security and Cryptography. Springer.

den Hartog, J., Verschuren, J., de Vink, E., de Vos, J., and Wiersma, W. (2003).
PINPAS: a tool for power analysis of smartcards. In Gritzalis, D., Samarati, P.,
and Katsikas, S., editors, Proc. SEC 2003, page 5pp. Wolters-Kluwer. IFIP WG
11.2 Small Systems Security.

Dhem, J.-F., F. Koeume, P.-A. Leroux, Mestre, P., Quisquater, J.-J., and Willems,
J.-L. (1998). A practical implementation of the timing attack. In Quisquater, J.-
J. and Schneier, B., editors, Proc. Smart Card Research and Applications, pages
167-182. LNCS 1820.

Dobbertin, H. (1998). Cryptanalysis of MD4. Journal of Cryptology, 11:253-271.
Dusart, P., Letourneux, G., and Vivolo, O. (2003). Differential fault analysis on AES.

Technical Report 2003-01, LACO, Universite de Limoges.
Goguen, J. A. and Meseguer, J. (1982). Security policy and security models. In Proc.

of the 1982 Symposium on Security and Privacy, pages 11-20, Oakland. IEEE.
Golic, J.D. and Tymen, C. (2003). Multiplicative masking and power analysis of AES.

In Jr, B.S. Kaliski, Kog, C.K., and Paar, C , editors, Proc. CHES 2002, pages 198-
212. LNCS 2523.

Goubin, L. and Patarin, J. (1999). DES and differential power analysis (the "dupli-
cation" method). In KOQ, C.K. and Naccache, D., editors, Proc. CHES'99, pages
158-172. LNCS 1717.

Kocher, P. (1996). Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In Koblitz, N., editor, Proc. CRYPTO'96, pages 104-113.

Kocher, P., Jaffe, J., and Jun, B. (1999). Differential power analysis. In Wiener, M.J.,
editor, Proc. CRYPTO'99, pages 388-397. LNCS 1666.

Messerges, T.S. (2000). Power Analysis Attacks and Countermeasures for Crypto-
graphic Algorithms. PhD thesis, University of Illinois, Chicago.

NIST (2001). FIPS 197: Announcing the Advanced Encryption Standard. NIST.
Quisquater, J.-J. and Samyde, D. (2001). Electro-magnetic analysis (EMA) measures

and coimter-measures for smart cards. In Attali, I. and Jensen, T., editors, Proc.
E-Smart Card Programming and Security, pages 200-210. LNCS 2140.

R. Focardi, R. Gorrieri, F. Martinelli (2000). Non-interference for the analysis of
cryptographic protocols. In Montanari, U., Rolim, J.D.P., and Welzl, E., editors,
Proc. ICALP 2000, pages 354-372. LNCS 1853.

Rivest, R., Shamir, A., and Adleman, L. (1978). A method for obtaining digital sig-
natures and public-key cryptosystems. Communication of the ACM, 21:120-126.

Ryan, P.Y.A. and Schneider, S.A. (2001). Process algebra and non-interference. Jour-
nal of Computer Securüy, 9:75-103.

Schramm, K., Leander, G., Felke, P., and Paar, C. (2004). A collision-attack on AES
combining sidechannel- and differential attacks. In Proc. CHES 2004- LNCS.

Schramm, K., Wollinger, T., and Paar, C. (2003). A new class of collision attacks and
its application to DES. In Proc. FSE 2003, pages 206-222. LNCS 2887.



FAMILY SECRETS

James Heather and Jonathan Y. Clark
Department of Computing (H3)
University of Surrey
Guildford
GU2 7XH
United Kingdom

j.heather@eim.surrey.ac.uk j.y.clark@eim.surrey.ac.uk

Abstract
We consider the possibility of secure communications over an insecure chan-

nel when the two agents have no verifiable public keys, no shared cryptographic
information, and no trusted third party to assist them.

We investigate two scenarios. In the first, the agents are biologically related,
and use biological data to construct a shared key; the possibility of using DNA
data, shared between the two parties but not readily available to others, is con-
sidered. The second concerns unrelated parties who have some printed material,
such as a photograph, in common; we explore the possibility of scanning this
material at both ends and constructing a secret key from the shared information.

In each case, the two parties can convert their information into approximately
equal sequences of bits. We borrow results from coding theory to show how
these approximate sequences can be turned into exactly equal shared keys with-
out compromising security in the process.

1. Introduction

Alice and Bob, as is their wont, are looking to communicate securely over an
insecure channel. Usually when they find themselves in this situation, they are
spoilt for choice: they can use any of a whole host of well-known cryptographic
protocols to agree on a session key by means of a long-term shared secret or
their long-term public keys. This time, however, they have been somewhat
negligent: they have no cryptographic shared secret and no public keys, and
there is no trusted third party who can verify their identities and distribute any
public keys that they may choose to create. What to do now?

If they really can find nothing to work with, they will of course be stuck.
Alice cannot authenticate herself except by proving that she knows something
that only Alice is supposed to know—for example, a key she shares with a
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server; or proving that she can do something that only Alice is supposed to
be able to do—for example, recovering something from a message encrypted
with her public key.

However, they may, for any of several reasons, have access to some store
of shared information that is not normally considered 'cryptographic' but is
nonetheless accessible only to Alice and Bob. For two arbitrary members of
the human race, this is optimistic, to say the least; but if Alice and Bob know
each other well, or if they are closely biologically related, there may be cause
for hope.

This paper explores these possibilities in detail, presenting two different
solutions to this problem. In Section 2 we discuss the feasibility of recovering
approximate 'shared secrets' from biological information stored within Alice
and Bob themselves, in the case that they are closely related. We then discuss
in Section 3 the possibility of generating approximate shared secrets from a
shared photograph or similar. Section 4 considers how they can use results
from information and coding theory to turn these approximate secrets into an
exact shared secret, and provides some indications about the level of security
provided by these methods. In Section 5, we briefly consider other possible
methods of generating approximate shared secrets. Section 6 discusses future
related work; and Section 7 then forms the conclusion.

2. Biological secrets

There are a number of possible avenues of exploration for finding infor-
mation shared by siblings that is rare in others. Forensic science has a long
history of using fingerprints to identify individuals uniquely. Similarly, retinal
images are usually unique to the individual. However, it appears that, even if
the individuals are closely related, their fingerprints and retinal images will be
substantially different. (Even 'identical' twins have different fingerprints.)

DNA analysis, on the other hand, now in common use in forensic studies,
might be exactly what we are looking for: it is very similar in close relatives,
but different in those who are unrelated.

Although DNA is modelled as a double helix, the information on the second
strand merely mirrors that on the first. The nucleotide bases along the strands
are considered as base pairs, with C (Cytosine) always being paired with G
(Guanine), and T (Thymine) always paired with A (Adenine). Each base pair
is at a given 'locus' along the strand, and, since there are four possibilities
for the nucleotide appearing on the first strand, it can be represented with two
binary digits.

The idea is to perform a DNA analysis at each end, and use parts of the anal-
ysis that are likely to be similar between close relatives, but different between
unrelated people. The DNA in the nucleus of each cell contains about 3.1 bil-
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lion base pairs. Much of this is shared by other humans (and, indeed, other
animals), and is therefore effectively public information. However, if Alice
and Bob are siblings, then other possibilities become available. One such pos-
sibility involves the DNA contained within the 'powerhouses' of the cell, the
mitochondria. Mitochondrial DNA ('mtDNA') is identical between siblings in
the same family because mitochondria are inherited from the mother. Half-
brothers and half-sisters also share the same mtDNA signature provided that
they share the same mother. A grandmother and a great grandmother would
also share this secret mtDNA code. Blood-relative aunts would have the same
mtDNA sequence only if they were sisters of the mother.

The circular human mitochondrial genome consists of about 16,569 base
pairs. The best area to consider seems to be the so-called D-loop,because this
is the region that contains the greatest variation. The most relevant parts are
Hypervariable Region I (HVR-I), a sequence of about 342 base pairs, and Hy-
pervariable Region II (HVR-II), comprising about 268 base pairs. These are
the most highly variable regions and are of interest in forensic studies (Isenberg
and Moore, 1999). In a famous case, mtDNA was used to confirm the identity
of the remains of Tsar Nicholas II, since these were found to have a rare mix-
ture of sequences (Gill et al., 1994; Massie, 1995). As a practical guideline,
however, it has been reported by one forensic science laboratory (Tully et al.,
1998) that more than one base difference in the mtDNA genome has not been
observed by them in any one individual.

Germline mutation in mtDNA—that is, changes in mtDNA between succes-
sive generations—occurs about once in every thirty generations (Parsons et al.,
1997), so two individuals with a common female ancestor up to thirty gener-
ations back would be likely to have roughly the same sequence, provided that
there is an unbroken female line linking them. This means that there could be
many people with the same sequence, but, one hopes, sufficiently many with
different sequences to provide a 'family secret' to form at least one element of
an encryption key. Where these mutations do occur, they take the form of a
base insertion, a base deletion, or a substitution of one for another.

Of particular interest is an existing study reported in (Handt et al., 1998) in
which the degree of variation in the HVR-I and HVR-II areas within a collec-
tion of 728 individual sequences has been determined, after carefiil alignment.
Table 1 shows the number of variable loci, together with the number of possi-
ble nucleotide permutations. It should be noted that, although the figures are
thought to be representative of the human population as a whole, finding ex-
act figures would require all lineages to be represented within the data, which
is unlikely to have been the case. The number of bits of entropy has been
added by us. The optimistic figures take into account the number of possibil-
ities observed at each locus, according to (Handt et al., 1998); the pessimistic
figures assume equal probability of occurrence of any of the four DNA bases.
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HVR-I

Total
HVR-II

Total
Grand Total

2
3
4

2
3
4

188
66
21

275
89
15

1
105
380

188
132
42

362
89
30

2
121
483

376
132
42

540
178
30

2
210
750

Table 1. Human mtDNA D-loop: variation and representation

The latter would provide the maximum possible entropy. However, since the
probabilities are not equal, and fürther research might improve the optimistic
figures, it is more reasonable to consider a point somewhere midway between
the two, which would give us around 616 bits of entropy in the variable data
from the mtDNA. This is probably enough for our application, but since the
data from which this was compiled might not be completely representative of
the entire population, it is worthwhile also to consider other options.

Another potential source of information is the DNA in the cell nucleus. The
difficulties arise when trying to find sequences unique to Alice and Bob. A pos-
sible rich source might be the so-called short tandem repeats (STRs), which
are commonly used in forensic DNA fingerprinting. These areas are where two
or more bases repeat, and the number of times they repeat can be counted. One
might expect siblings to have similar lengths of STRs at these loci, and there is
at least one study (Biondo, 2000) that showed it was necessary to consider nine
different loci in order to separate the profile of two brothers. Although more
studies like this are needed for complete confidence, if it is assumed that eight
loci in common is typical for siblings, and each locus has a contribution (al-
lele) from each parent, then that would mean 16 attributes in common between
brothers out of a possible 26. If it is estimated that the maximum number of
permutations per allele is twelve, then each could be represented by four bits.
Thus 104 bits would be needed to represent the component of the data stream
derived from the STRs in the 'normar chromosomes.

However, if the two communicating agents are both male, then yet another
possibility becomes available. Female humans have a pair of X-chromosomes,
so recombination (shuffling or swapping) of genes occurs between the pair.
However, the Y-chromosome in a male has no such partner. This makes it
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as potentially useful a source of data as the mtDNA. A recent paper (Butler
et al., 2002) highlights 20 usefül loci and describes a method of investigation.
Since these loci contain a contribution from only one parent (the father), 80
bits would thus be sufficient to represent this information, using the earlier
assumption of around twelve difFerent attribute values at each locus.

It is possible for two close relatives to have their mtDNA and their STRs
sequenced (at a modest cost), and for each of them to turn the analysis into
two bit sequences, one for the mtDNA and one for the STRs. Depending on
decisions taken as to how much of the mtDNA information to use, the lengths
of these sequences will be around 610 bits for the mtDNA, and 104 bits for the
STRs. Whilst this data is applicable to all siblings wishing to exchange infor-
mation, two brothers could also take advantage of STRs on the Y-chromosome,
in which case another 80 bits could be used to provide a greater level of secu-
rity.

3. Photography

Another potential source of shared data that does not require the commu-
nicants to be related is possession of a shared photograph (or other printed
material). Clearly two agents who each have a copy of the same photograph
should be considered to share information in some sense; and if the photograph
is unavailable to others, they may be able to use this information to generate a
shared key. The question is how they are to 'unlock' the photograph and agree
on a shared key.

As with the biological data,what we give here is a method for obtaining
approximately equal bit strings. The technique for turning these into an exact
agreed secret key will be left for Section 4.

The procedure is very simple: roughly speaking, each end should scan the
photograph, at an agreed resolution, reduce the colour depth, and treat the pixel
information as a string of bits.

In experiments, we have managed to construct bit strings of about 700,000
bits in length, with an error rate of around 1.6%, using a moderate-sized pho-
tograph. This is more than adequate here.

There are, however, various considerations that need to be taken into account
when attempting this, in order to lower the error rate and increase the chances
of successfülly agreeing on a shared secret. For one, each scanner has different
characteristics, and care must be taken to reduce the discrepancies. Paint Shop
Pro's Histogram Equalize filter is particularly helpful here: it normalises the
data in each colour plane in the image, removing any colour or contrast bias.

Secondly, it is best to reduce each colour plane to a depth of two bits per
pixel before constructing the sequence. This is still enough information to
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provide for 'unguessability', but drastically reduces the error rate. It is possible
even to reduce this to one bit per pixel per colour plane.

Thirdly, by pushing the photograph up into the corner of the scanner's bed,
it is easy enough to avoid inadvertent rotation of the image. However, it is
not so easy to avoid a small translation of the image. But since the procedure
outlined below for converting these approximate sequences into an exact secret
is fairly quick, it is possible to try various different offsets into the image in
order to find a good match.

In Section 4, we shall find Alice sending Bob a relatively short message
from which Bob can discover Alice's exact sequence, thus enabling them to
agree on a shared key. If Bob ends up with the wrong key, he will need to try
the procedure a few times trying different offsets until he alights on the correct
key. In our experience, the required offsets have been very small (2 or 3).

Fourthly, one can reduce the effect of rotations and translations by blurring
the image a little before converting into a bit sequence. Paint Shop Pro's Gaus-
sian Blur has proved useful here.

4. Approximations

Let us suppose that Alice and Bob have followed the suggestions of Sec-
tion 2 or Section 3. By this point, they each have a sequence of bits of roughly
the same length. These sequences will be approximately the same, in the sense
that it will be possible to convert one into the other by a short sequence of
steps, each step involving inserting a new bit, deleting a bit, or substituting one
bit for another. (A substitution can be thought of as a deletion followed by an
insertion, but it will help us to consider this case separately.)

Of course, they cannot directly use these sequences to construct a shared
key, because the sequences are not exactly the same, and there is nothing to
be gained by encrypting a message under similar but not equal keys. What is
required is to find a method of using these approximately equal sequences to
agree on an exactly equal sequence, but without giving too much information
away to eavesdroppers.

The exact sequence on which Alice and Bob will eventually agree need not
be equal to Alice's sequence or Bob's sequence; it may be some amalgamation
of the two. However, the easiest approach is to get them to agree on either
Alice's sequence or Bob's sequence; we shall assume henceforth, without loss
of generality, that they will attempt to agree on Alice's sequence.

4.1 Dealing with substitutions

Let us start by considering a situation in which there are known to be no
insertions or deletions, but only substitutions. In that case, the sequences will
be of the same length l, and if the approximations have worked well, we shall
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be able to choose some k with k <C l such that there is a high probability of
not more than k differences between the two sequences.

Alice has the exact sequence; Bob has an approximation to it; Alice wants to
send as little as possible to Bob to enable him to establish the exact sequence.
This situation is exactly the same as if Bob had known nothing about Alice's
sequence, and Alice had just sent her sequence to Bob over a noisy channel—
that is, over a channel that has a tendency to corrupt data.

The usual way of communicating over a noisy channel is to use an error-
correcting code. (See (Welsh, 1988) for a good introduction to the general
topic of coding theory.) If we wish to communicate a message from {0,1} , we
can construct a set C C {0,1} +p of codewords such that changing d elements
of a codeword x G C never produces another codeword. (The number of
changes required to turn codeword c\ into codeword c<i is termed the Hamming
distance of c\ and C2.) By doing this, we increase the length of the transmission
along the channel (from / to l -f p), but provide some error detection and error
correction capabilities.

The code described above is d-error-detecting. If there are at most d errors
in a codeword, the receiver will be able to detect that errors have occurred,
because the errors cannot result in a distinct codeword having been received.

If d = 2z then the code is also said to be z-error-correcting. If there are
no more than z errors in a transmission, the receiver will be able to determine
which codeword was intended. The received vector cannot be within z errors of
two distinct codewords, or otherwise these codewords would differ by at most
2z — d places, and the code has been constructed to make this impossible.

Alice can make use of such a code to tell Bob how to convert his approxima-
tion into the exact sequence that Alice holds. Their sequences are of length l,
and there is a high probability that there are no more than k errors. They
need to make use of a code that has l possible codewords and that is fc-error-
correcting. They will want to make the codeword length as short as possible.
They also need a code in which the codeword representing c is of the form
(c|e); that is, where the codeword always starts with the message that is to be
communicated, and then follows this up with the error-correcting information.
Codes with this property are called systematic; not all codes are systematic.

As an example, let us take / = 4, p = 7, k = 1. (The numbers in practice
will, of course, be much bigger.) Consider the following code, discovered by
Hamming, and first published in (Shannon, 1949):

(0, 0, 0,0, 0, 0, 0) (0,1, 0, 0,1, 0,1) (1, 0, 0, 0,1,1, 0) (1,1,0, 0, 0,1,1)

(0,0,0,1,1,1,1) (0,1,0,1,0,1,0) (1,0,0,1,0,0,1) (1,1,0,1,1,0,0)

(0,0,1,0,0,1,1) (0,1,1,0,1,1,0) (1,0,1,0,1,0,1) (1,1,1,0,0,0,0)

(0,0,1,1,1,0,0) (0,1,1,1,0,0,1) (1,0,1,1,0,1,0) (1,1,1,1,1,1,1)
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The first / = 4 bits in each codeword are the message (making this code sys-
tematic); the last p — l = 3 are the error-correcting bits. Any two distinct code-
words differ in at least three places, so that if there is a single error in a code-
word transmission, it can be corrected. The code is thus 1-error-correcting.

4.2 Security by photograph

If Alice and Bob are using a scanned photograph as the basis for their shared
key, this is all they need. Following the principles set out in Section 3, they can
easily each get a large sequence of bits, with an error rate of under 10%.

Alice must then choose the systematic code that they will use, and tell Bob
(over a possibly insecure channel) what the code is. She should then send
him the error-correcting digits corresponding to the message formed by her
sequence; Bob can append these error-correcting digits to the sequence that he
has, and decode the resulting codeword to recover Alice's.

Alice and Bob now have the same sequence. It is likely that this sequence
will be too long for use directly as a shared key; however, they can each apply
a hash function to the sequence to get something of a more appropriate length.
The output of a hash function is often of the order of 100—200 bits, which
is ideal for symmetric cryptography. A good hash function will also ensure,
provided there is enough entropy in the bit sequence, that the resulting shared
key is uniformly distributed in the key space.

This, we believe, is secure against a Dolev-Yao-style intruder who can en-
gage not only in passive attacks but also in attacks requiring spoofing, inter-
ception or manipulation of messages. The intruder cannot break security by
changing the code, or modifying the codeword. If he changes anything, Bob's
decoding will not result in the same sequence as Alice's, and they will not agree
on the shared key. However, this will quickly become obvious to them when
they try to use it, and the intruder will not have managed to learn either of the
keys in any case. Clearly if the intruder has control over the communications
medium then he can stop them from successfülly agreeing on a shared key; but
there is nothing that can be done about this. An intruder who has control over
the communications medium can always stop agents from communicating.

4.3 Choosing a code

If the codewords are p bits long, and Alice's sequence itself is l bits long,
she will need to transmit p — l bits over the insecure channel in order for Bob
to be able to establish her sequence.

It is not immediately clear exactly how much information about Alice's se-
quence can be deduced by the intruder from these p — l bits. However, if only
p — l bits have been transmitted, then certainly at most p — l bits of information
can have been leaked to the intruder concerning Alice's sequence.
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The quantity of information that remains secret from the intruder is, then, at
least the amount of secret information in Alice's sequence less p — l. Getting
an acceptable level of security depends, therefore, on keeping this quantity of
information as high as possible. Alice and Bob will want to find a code to
minimisep — /.

B o u n d s on p — L Hamming's lower bound on the codeword size gives

Rough working figures for this are that if Alice's sequence is / bits long, with
102 < / < 105, a lower bound on the number of error-correcting bits required
will be somewhere around 0.66/ to correct an 8% error rate, 0.4/ to correct a
5% error rate, or 0.25/ to correct a 3% error rate. These factors get smaller as
/ increases, but not significantly so in the range that fits our purposes.

A code that meets exactly this theoretical lower bound is called perfect.
Perfect codes do exist for many values of/, p and k, but they are hard to find.

Gilbert, Shannon and Varshamov's upper bound, alongside work in (Garcia
and Stichtenoth, 1995), gives a method for constructing codes such that

r\Tt

2l>
V(p,2k)

This will halve the allowable error rate in the figures given above, so that if
Alice's sequence is / bits long, with 102 < / < 105, we can construct a code
with the number of error-correcting bits at somewhere around 0.66/ to correct
a 4% error rate, 0.4/ to correct a 2.5% error rate, or 0.25/ to correct a 1.5%
error rate.

P rac t i ca l impl ica t ions . In practice, for the photograph technique, re-
sults similar to ours would result in Alice and Bob agreeing on a sequence
of around 700,000 bits, by sending somewhat less than 250,000 bits of error-
correcting data. Running a suitable hash fiinction on the agreed 700,000-bit
sequence will create a secret key of about 128 bits, depending on the hash
fünction; this is a decent size of key to use for symmetric-key cryptography.

Whether this method should be regarded as secure hinges critically on the
information content of a photograph. Unfortunately, objective answers are dif-
ficult to find here: it largely depends on what sort of photograph is used—and
how can one possibly determine the information content of, say, a photograph
of a tree by a lake?

The information content is certainly much lower than the simple size of the
photograph in pixels multiplied by the colour depth: JPEG compression can
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reduce the file size by a factor of ten without significant loss of image quality.
In addition, much of the information will be lost by the reduction in colour
depth, and the Gaussian blur applied to the image. This notwithstanding, our
belief is that the number of bits in the sequence is so high that the information
content will still exceed the 128-bit key that results from the hash function.
For instance, if one imagines a photograph of a man standing in a busy high
street, it would not be difficult to think of 128 independent factors that could
be varied (angle of shot, distance to subject, number of people in background,
name of third shop on the left) and that would afFect the image and hence the
agreed bit sequence. However, these things are admittedly difficult to quantify.

Additionally, of course, it relies on the accuracy of Alice and Bob's beliefs
about who holds (or can get hold of) what photograph. If the photograph that
they believe to be secret is in fact available to an attacker, or if an attacker can
persuade Alice to use a photograph that he holds, then clearly security is lost.
This procedure can be used only with a photograph where its distribution is
known to the participants.

4.4 Security by biology

The codes referred to above will not be of great help with genetic 'secrets',
where the differences between one sequence and the other are attributable not
only to substitutions but also to insertions and deletions. Clearly an insertion
or deletion near the start of the sequence will cause a match failure from that
point onwards, and the Hamming distance between the two sequences will be
high even though the sequences may be intuitively very similar.

Fortunately, there are measures of distance between sequences other than the
Hamming distance. The Levenshtein distance, first proposed in (Levenshtein,
1966), takes into account the minimum number of substitutions, insertions,
deletions and transpositions (swapping of two consecutive elements) required
to turn one sequence into the other. It is the basis of automatic spelling cor-
rection techniques, where, for instance, we should want to be able to correct
URPLE to PURPLE without naively attempting to match the words letter by
letter and rejecting the match. Work in (Schulman and Zuckerman, 1997),
among others, building on previous work in (Levenshtein, 1966; Levenshtein,
1992), (Spielman, 1995), (Okuda et al., 1976), (Varshamov and Tenengolts,
1965), and (Calabi and Hartnett, 1969), allows for construction of efficient
error-correcting codes that correct insertions and deletions as well as substitu-
tions. The detail of these codes is beyond the scope of this paper; however,
Alice does by means of these codes have an efficient means of transmitting
error-correcting information to Bob, again enabling him to recover her genetic
sequence.
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Also, since there is a low expected error rate between the two sequences
when using genetic data, the number of error-correcting bits will be small.

The method given in Section 2 allows Alice and Bob to create sequences
totalling over 700 bits in length. The discussion there indicates that we can
expect at most one error (insertion, deletion or substitution) in the mtDNA part
of the sequence, and at most a 10% error rate in the STR part. Using any of
several of the available codes that allow for correction of insertions and dele-
tions, Alice should be able to communicate her exact mtDNA sequence to Bob
by sending less than 50 bits of error-correcting data; she can then communi-
cate the exact bit sequence constructed from her STRs (which may differ from
Bob's by substitution, but not by insertion or deletion) by sending a similar
amount of error-correcting data using the code suggested in Section 4.3.

P rac t i ca l impl ica t ions . As in the case of the photograph, it is diffi-
cult to quantify the information content in the bit sequences obtained by DNA
analysis. Here, it is not any lack of objective criteria that cause the difficulty,
but simply that although the science of DNA analysis has produced remarkable
results, it is still too young for firm answers to many questions to be available.
Not enough people have had their complete DNA sequenced. However, there
are few indications at present that there are 'patterns' in the DNA considered
here that would reduce the information content drastically. Until some drastic
'decoding' of this DNA demonstrates otherwise, it appears that the information
content is reasonably high.

Alice and Bob would then, as with the photograph, apply a hash fünction to
the bit sequence in order to generate a shared key. With current information,
we believe that the information content of the secret data agreed upon by Alice
and Bob is at least as high as the number of bits produced by the hash function
for use as the secret key. However, it is acknowledged that future advances in
human biological science may either support or contradict this position.

The security of this method clearly relies on making certain that an attacker
cannot get hold of enough genetic material from Alice or Bob to be able to
reproduce the DNA sequence for himself. In the short to medium term, de-
pending on the circumstances and the importance of the secret to the attacker,
this may well be realistic: the attacker would need a reasonable quantity of
genetic material, and would also need to be able to collect it without contami-
nating the samples. In the long term, if the attacker has significant fimds at his
disposal or is geographically close to either party, it is possible that he could
gather enough material to find the encryption key. This method is therefore
probably most applicable in situations in which it is vital that something re-
main secret, but only for a limited time. It is an emergency measure rather
than a suggested pattern for everyday life! It should also be noted that this is a
procedure that Alice and Bob cannot use more than once to generate a session
key. If they use the procedure twice, they will end up with the same key.
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5. Other possibilities

The connection between the photograph and the DNA analysis is simply
that each provides a mechanism for extracting an approximate secret shared
between the two participants. It may be that there are other ways of construct-
ing such an approximate sequence; however, it is worth noting that two of the
'easy' options have significant problems.

Text from a book (and similar). Alice and Bob cannot simply agree
to use the text "on page 53 from Barbara Cartland's latest novel": the point is
that they will be agreeing this over an insecure channel, and an attacker may
be listening in. If he hears them decide which book to use, it will usually be a
simple matter for him to obtain a copy of the book. Of course, Alice and Bob
may have ways of alluding to the book without saying its title; but this just
pushes the issue back a stage. Here, the allusion that they understand but the
attacker doesn't is itself the shared secret. They will need to be sure how much
information content there is in this shared secret before they commit to using
it for cryptographic purposes.

Chal lenge a n d response . It may be that Alice and Bob can get some-
where by using information relating to past common experiences: maybe they
are the only ones who know the answer to certain questions about their past.

Two scenarios need to be carefülly distinguished here. In one, they authen-
ticate each other by means of various questions until they are satisfied that they
really are speaking to each other, after which they have their private conversa-
tion; in the other, they use answers to such questions to create a shared key.

The former is not appropriate here. If the approach is to be able to deal with
Dolev-Yao attackers then there can be no guarantee that the attacker will not
wait for the authentication to take place and then subsequently break in and
masquerade as one party or the other. Indeed, even if he does nothing active,
he may still overhear the private conversation.

Construction of a shared key using answers to such questions may work;
however, it would require immense care and patience. To construct a key with,
say, 128 bits of entropy may need a lot of questions. Even 128 yes/no questions
will not be sufficient unless the probability of a yes for each question is 0.5 and
is independent of probabilities for all the other questions. Other questions may
have more information content, but assessing the information content and the
secrecy of the answer will be very difficult.

6. Future work

It may be that there are more efficient ways of turning approximately equal
sequences into exactly equal ones. Efficiency here is well worth striving for,



Family Secrets 111

since its consequence is that less error-correcting data will be transmitted, and
so less information about the secret key will be leaked to any eavesdropper.

If improvements are to be found, there are four promising lines of enquiry.
In the first place, Alice and Bob's agreed sequence need not be either Al-

ice's or Bob's original sequence. It may be that there is a way for them to
agree on some combination of the sequences with less communication than is
required for them to agree on Alice's sequence. It may also be possible for
them to exchange a small quantity of information that would enable them to
determine which parts of the sequence are likely to be the same and which
parts are not. If so, then they would be able to drop the different parts of the
sequence and exchange error-correcting data just on the parts likely to be the
same; this would reduce the length of the agreed sequence, but with a possibly
significantly reduced error rate.

Secondly, Wyner in (Wyner, 1975) and Csiszär and Körner in (Csiszär and
Körner, 1978) conducted work on secure key agreement over noisy channels.
Their models may shed light on the techniques discussed in this paper; for,
as we have already shown, the problem of converting approximate shared se-
crets to exact shared secrets is closely related to the problem of communicating
secrets over noisy channels.

In addition, there is recent work by Maurer and Wolf (see (Maurer and
Wolf, 1997; Maurer and Wolf, 2000) among others) on privacy amplification,
in which two agents hold a secret about which a Dolev-Yao attacker knows
partial information; they discuss how to convert this into a secret about which
almost nothing is known by the attacker. Their analysis also includes consider-
ation of noisy channels. The work they present differs from ours in that in their
scenario the information is fully shared but partially secret, whereas in ours the
information is only partially shared. However, this, we believe, will provide
interesting avenues for fürther exploration. In particular, it may be possible to
use their results to allow for and remove any information known to the attacker
resulting from less than perfect entropy in DNA and in photographs.

Thirdly, the codes discussed here are all designed to cope with errors that
can appear anywhere in the codeword, including in the error-correction data.
This is more robust than is required for our purposes. We need to allow for
errors in Bob's version of Alice's sequence, but we do not need a code that
allows for transmission errors in the error-correcting part of the code. This,
of course, reduces the number of cases that our error-correcting part needs to
be able to distinguish, and so might allow for a reduction in the size of the
error-correcting part itself. A code of this nature would be highly specialised;
in fact, it is difficult to think of any possible applications of it other than this
one. It is not surprising, then, that there seems not to have been any work done
on such codes. Investigation of this is the subject of planned füture work.
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Finally, the notion ofedit distance may be useful here. Atallah, Kerschbaum
and Du provide a way (Atallah et al., 2003) of enabling Alice and Bob to
calculate the edit distance of their similar sequences without revealing to each
other any more information than is contained in the edit distance itself. This
could certainly be used by Alice and Bob initially to determine the similarity
of their sequences and give a guide for how much error-correcting information
is needed; the technique could possibly be adapted to find an efficient way of
agreeing on a common sequence.

7. Conclusion

In this paper, we have given two methods by which two agents may be able
to agree on a secret key even when they have no previously agreed crypto-
graphic data with which to work, and no trusted third party who can verify
their identities and distribute public keys for them. In one case, where the
agents are closely biologically related, they can construct approximately equal
bit sequences by using the information stored in certain parts of their DNA; in
the other case, agents who have a shared photograph can extract the informa-
tion from this photograph and manipulate the information so as to construct
approximately equal bit sequences.

Regardless of which method is used, they can then use the techniques of
Section 4 to convert this into an exact shared secret that can be used for crypto-
graphic purposes. Although the approaches discussed here relate to DNA and
to photographs, any other approach that generates approximate shared secrets
could equally use the techniques of this section to construct a shared key.

It is worth observing that although the paper has been phrased in terms of
two agents who wish to share secret information between them, the approach
could be trivially extended to cover generation of a 'group key' for three or
more siblings, or three or more agents who all have the same photograph.

Much of what is presented here is admittedly speculative, and may often be
inapplicable to the two agents in question. However, it is sufficient to demon-
strate that the usual assumption in this regard—essentially, that one cannot
generate something from nothing—may not always hold.

Some of the more 'cloudy' issues will become clearer over time. There is
still much to be learnt about DNA, its information content, and its variation
throughout the population; the cost and difficulty of sequencing will also come
down over time. Biometric information will undoubtedly come to play a large
part in the world of security. Research is also ongoing into the discovery of
efficient codes; new light shed on this area may allow agents to generate and
use codes whose information rate is much closer to Hamming's lower bound.
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Abstract Interactive access control allows a server to compute on the fly missing
credentials needed to grant access and to adapt its responses on the ba-
sis of client's presented and declined credentials. Yet, it may disclose too
much information on what credentials a client needs. Automated trust
negotiation allows for a controlled disclosure on what credentials a client
has during a mutual disclosure process. Yet, it requires pre-arranged
policies and sophisticated strategies. How do we bootstrap from simple
security policies a comprehensive interactive trust management and ne-
gotiation scheme that combines the best of both worlds without their
limitations? This is the subject of the paper.

Keywords: Trust Management; Trust Negotiation; Interactive Trust Management;
Interactive Access Control; Credential-Based Systems; Internet Com-
puting; Logics for Access Control;

1. Introduction

The new business hype of the moment - virtual organizations based
on Web Services [1] - is particularly challenging for security research in
access control. In a nutshell, the idea is to orchestrate into a coherent
business process the Web Services (WS for short) offered by different
partners. The functional orchestration is not trivial but the orchestration
of security policies of partners even less, even if we take for granted the
usage of Trust Management systems [3, 2].

First, the client may have no idea on the right set of credentials that
have to be presented to each partner and the process may bring different

*This work is partially funded by the IST programme of the EU Commission FET un-
der the IST-2001-37004 WASP project and by the FIRB programme of MIUR under the
RBNE0195K5 ASTRO Project and RBAU01P5SS Project.
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partners on the forefront depending on the actual business execution
path. So, business partners must have a way to find out what credentials
are required (missing) for clients to get access to their resources. Second,
the client, once asked for the missing credentials, may be unwilling to
disclose them unless the server discloses some of its credentials first, i.e.
negotiates the need to disclose his own credentials.

Solution for the first problem has been proposed by Koshutanski and
Massacci [7, 8]: interactive access control. Assuming a logical formaliza-
tion (actually a rule-based policy is enough) and using some advanced
inference services, it is possible for the server to compute the missing
credentials on the fly. Credentials that may not be straightforwardly de-
duced from the security policy, as approached by the trust negotitation
paradigm, but may require a more sophisticated reasoning service.

Solution for the second problem is trust negotiation, for instance as
advocated by Winslett et al. [11]. Here, we can structure a security
policy to specify what credentials a client must have already shown to get
access to our own credentials, i.e. we specify the sequence of disclosable
credentials that gradually establish trust.

Notice that the two problems are related but different. For sake of
example consider the view point of a server. In the first one, we help
the server to compute the missing set of foreign credentials that a client
needs to get access to a service. The second approach helps the server,
in response to some counter requests, to control the disclosure of its own
credentials by stipulating what foreign credentials a client must supply
to get access to the server's local ones.

Both approaches in their core have limitations: the first approach does
not allow for a piecemeal disclosure to the clients of what they eventually
need. The second one requires a sophisticated and rigid structuring of
policies to work.

1.1 The Contribution of this Paper

If we merge the two frameworks we have the following problems:

1 Alice wants to access some service of Bob

2 Alice does not know exactly what credentials Bob needs, so

(a) Bob must compute what is missing and ask Alice,
(b) Alice must send to Bob all credentials he requested.

3 In response to 2b, Alice may want to have some credentials from
Bob before sending hers, so

(a) She must tell Bob what he needs to provide,
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(b) Bob must have a policy to decide how access to his credentials
is granted.

4 In response to 2a, Bob may not want to disclose all that is missing
at once but may want to ask Alice first some of the less sensitive
credentials, so

(a) Bob must have a way to request in a piecewise fashion the
missing credentials.

Here we combine the best of the both worlds under the limited as-
sumptions that we have just three policies:

(i) a policy for determining the credentials needed by a client to get
access to a service,

(ii) a policy for determining the credentials needed by a client to access
(see) server's credentials,

(iii) a policy for specifying what credentials are disclosable whose need
can be potentially demanded from a client.

The policies can be arbitrarily complex with almost everything that is on
the (Datalog for) Access Control market (say with negation as failure,
constraints on separation of duties, or other fancy credentials such as
those by Li et al. [9]). We only need deduction and its sister abduction1

Out of these two services we have constructed an algorithm that first
evaluates a client's request by checking whether the client can access the
requested service - using policy (i). If the client is not enough trusted
(i.e. he does not have enough credentials), the algorithm computes a
(minimal, trusted enough) set of missing credentials, from policies (i)
and (iii), that unlocks the desired resource. Then it starts a negotiation
process in which needed credentials are disclosed in a piecewise manner
according to policy (iii) and requested credentials are disclosed according
to policy (ii). The process continues until enough trust is established and
the service is granted. In a negotiation process a client, itself, may also
run the algorithm to control access to its own credentials.

2. Interactive Access Control for Web Services

In the framework introduced by Koshutanski and Massacci [7, 8] each
partner has a security policy for access control VA and a securüy policy
for disclosure control Vx>- The policy for access control is used for mak-
ing decision about usage of all web services offered by a partner. The

xNote that if the former is decidable within complexity class C, the latter is decidable within
complexity class E c or at worst Hc if minimality of abductive solutions is requested.
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Roie: Ri >- Role: Rj when role Role: FU dominates role Role: Rj.

Role:Ri ^webServS Ro\e:Rj when role Role : R{ dominates, just for service WebServ : 5, the
role Ro\e :Rj.

assign (P, WebServ: 5) when an access to the service WebServ: S is granted to P. Where P
can be either a Role:ß or User.U.

forced (P, WebServ: S) when access the service WebServ: S must be forced to P (P can be
either a Ro\e:R or öser:U).

(a) Predicates for assignments to Roles and Services

declaration (öseriU) it is a statement by the User:U for its identity.

credential (User:U, Ro\e:R) when \Jser:U has a credential activating Role:/?.

credentialTask (User: U, WebServ: S) when User: U has the right to access WebServ: S.

(b) Predicates for Credentials

Figure 1. Predicates used in the model

policy for disclosure control is used to decide the credentials whose need
can be potentially disclosed to a client.

To execute a service, under the control of a partner, a user will submit
a service request r and a set of credentials Cr. When the user sends the
request r the server starts a negotiation session and creates a client's
profile. The client's profile consists of two sets - the set of presented
credentials C-p and the set of declined credentials Cj^. Both sets are
kept up-to-date by the server as at each interaction step, Cp is updated
with the credentials the client currently sends, while Cj^ is updated as
a difference between the missing credentials CM, the client was asked in
the previous interaction, and the ones presented in the current step.

For the syntax we have three disjoint sets of constants: one for users
identifiers denoted by User:C7; one for roles denoted by Role:i?; and one
for services denoted by WebServ:5.

The predicates can be divided into three classes: predicates for assign-
ments of users to roles and services (Fig. la), predicates for credentials
(Fig. lb), and predicates describing the current status of the system.
The last class of predicates keeps track on the main activities done by
users and services, such as: successful activation of services by users;
successful completion of services; abortion; etc. We refer to [8] for addi-
tional details on the model.

We note here that the model, presented in the this section, can be
adapted to any generic policy framework. Since the information we
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need from the underlying policy model, for our basic reasoning services,
is shown in Figure 1 and that infromation can be found in (extracted
from) most policy languages.

Below are the definitions of the basic reasoning services used in our
formal framework.

DEFINITION 1 (LOGICAL CONSEQUENCE AND CONSISTENCY) We USe
the symbol P \= L, where P is a policy and L is either a credential or a
service request, to specify that L is a logical consequence of a policy P.
P is consistent (P \£ ±) if there is a model for P.

DEFINITION 2 (1-STEP DEDUCTION) We use the symbolP f=i A, where
P is a policy with a predefined set of ground atoms srf and A is a posüive
literal, if for some literals L i , . . . , Ln holds the following:
(i) A <— L i , . . . , Ln is in ground(P),
(ü) srf | = L i , A . . . A , L n .

DEFINITION 3 (ABDUCTION) Abduction soluüon (see Fig. 2(b)) over a
policy P, a set of predicates H (with a defined p.o. over subsets of H)
and a ground literal L is a set of ground atoms E such that:
(i) ECH,
(ii) PUE\=L,
(iii) PUE ^ ±,
(iv) any set Ef -< E does not satisfy all conditions above.

Traditional p.o.s are subset containment or set cardinality.
The core of our interactive trust management protocol, introduced

in the next section, is shown in Figure 2. The basic computations of
deduction (Def. 1) and abduction (Def. 3) are shown in Figure 2(b). The
global variables Cßf and C-p represent the client's profile (as described
earlier). The protocol takes as input the request r and the partner's
policies for access and disclosure control - VA, VV- The output is either
grant r, or deny r, or ask(C^) - the set of missing credentials that the
client needs to provide in order to get r.

The intuition behind the algorithm is the following. First (in step
1) it is checked whether the client's credentials C-p are enough to get
access to service r according to policy Vj^. In the case of failure, the
algorithm runs the abduction process (step 3) to compute what is missing
(complement) to C-p that unlocks r. A preliminary step to abduction is
computing the set of disclosable and not declined credentials Cv (step
2). The set Cx> stores those credentials that are disclosable by Vv and
C-p and does not contain any credential of Cj^. Then the abduction
process computes all possible subsets of Cp that are consistent with the
access policy VA ^nd, at the same time, grant r. Out of all these sets
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Global vars: C/s, CT>\
Protocol input: r, VA, VT>;
Protocol output: grant/deny/ask(C>t);

InteractiveAccessControKr, VA»

1: if doDeductionCr,^ UC-p) then return grant

2: else compute the set of disclosable credentials Cx> = {c | Vv U Cv (= c

3: resuZt = doAbduction(r, Cz>, P^UC-p);

4: if result == 0 then return dera/

5: else CM — vesult and return ask(CM)\

}

(a) Interactive Access Control Algorithm

doDeductionCÄ: Query, P: LogProgram) { / / check for P \= R?

1: run DLV* in deduction mode with input: P, R? ;

2: check output: if R is deducible then return true else return false;

}
doAbduction(.R: Observation, H: Hypotheses, P: LogProgram) {

1: run DLV in abduction diagnosis mode with input: R, H, P ;

2: DLV output: all sets d that (i) d C H, (ii) PUd \= R, (iii)

3: if no d exists then return _L

4: else select a minimal Cmin and return Cmin',
}
*DLV System - www.dlvsystem.com

(b) Basic Functionalities of Deduction and Abduction

Figure 2. Basic Trust Management Protocol

(if any) the algorithm selects the minimal one. Here we point out that
the minimality criterion could be different for different contexts. We
have identified two criteria: minimal set cardinality and role minimality
(least privilege).

When the abduction is finished the protocol either returns ask(Cj^)
or denies r if no CM was computed.

3. Automated Trust Negotiation

The main idea in a trust negotiation process is to gradually dis-
close sensitive credentials between negotiation participants until suffi-
cient trust is established.
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In Winslett et al framework [11, 12] a policy protects a resource, being
it access to a service or disclosure of a credential, by stipulating what
the requestor should satisfy to be authorized for that resource. They
require, first, a policy to be monotonic - if a set of credentials unlocks a
service also a superset unlocks it - and, second, for each resource there
should be exactly one solution (set of statements) that unlocks it.

One can abstract from any policy language by wrapping it in a policy
compliance checker module and treat it as a black box, encapsulating
a decision engine for the underlying policy language. It accepts as an
input a set of credentials and a policy and returns as output the subset of
the credentials that satisfy the policy. However, the actually used policy
language can be easily casted into a set of negation-free Datalog rules.
Each alternative set of credentials that unlock a resource can be casted
in a Datalog rule having a predicate corresponding to the resource in
the head and the needed credentials in the body.

Winslett et al define a TrustBuilder negotiation protocol and, running
on top of it, families of strategies that address the requirements and
needs of each party to negotiate in a way best suited for it. The pro-
tocol defines message type and ordering while the strategy controls the
content of negotiation messages. Both the negotiation protocol and the
families of strategies are located in a negotiation strategy module - the
TrustBuilder.

So, whenever two parties want to negotiate, they first choose (agree
on) negotiation strategies that guarantee a successful interoperation and
completion of the process. Once they chose the strategies, they run the
TrustBuilder protocol.

Abstracting from the concrete strategy and family, in its essence, the
relevant strategy for selecting the next set of credentials (message) is
the following: for every credential relevant to the service request, if the
credential is disclosable by the client's presented set of credentials it is
added to the output else its policy (the part that protects the resource)
is added instead. Then in the final output of the current strategy step
the client can find the newly unlocked credentials together with policies
for the others (not disclosed ones) that the client should satisfy in order
to continue the process. The process continues with parties swapping
roles until all requirements are satisfied and the resource is granted or a
consensus was not reached by one of the parties and terminated.
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4. Bootstrapping Trust Negotiation

To combine automated trust negotiation and interactive access control
we only assume that both a client and a server have some logical security
policies. In particular we assume available:

1 a policy for access to own resources VAIZ on the basis of foreign
credentials,

2 a policy for access to own credentials VAC on the basis of foreign
credentials,

3 a policy for disclosure the need of (missing) foreign credentials Vv-

Here VAU is a logic program over the predicates defined in Section 2 in
which no credential and no execution atom can occur in the head of a
rule and role hierarchy atoms occur as facts. Respectively, VAC and Vv
are logic programs in which no role hierarchy atom and no execution
atom can occur in the head of a rule.

Technically speaking we could merge 1 and 2 into a flat policy for
protecting sensitive resources. We believe that a structured approach is
better because the criteria behind (and likely the administrator of) each
policy are different. Resource access is decided by the business logic,
whereas credential access is due to security and privacy considerations.

So, a client and server do not need to worry about interoperable strate-
gies but can simply run the trust negotiation protocol shown in Fig. 3.
The intuition behind the protocol is the following:

• A client, Alice, sends a service request r and (optionally) a set of
credentials Cr to a server, Bob (steps 1 and 2).

• Then Bob looks at r and if it is a request for a service he calls
InteractiveAccessControl with his policy for access to resources
and his policy for disclosure of foreign credentials < VAH,'PV >
(step 6) and we fall back in the case of Section 2.

• If r is a request for a credential then he calls InteractiveAccessControl
with his policy for access to own credentials and again his policy
for disclosure of foreign credentials < VAC^V > (step 9).

• In the case of computed missing credentials CM (in step 11), he
transforms that into requests for credentials (askCredentials(...)
function in Figure 3) and waits until receives all responses. At this
point Bob acts as a client, requesting Alice the set of credentials
CM- Alice will run the same protocol swapping roles.

• When Bob's main process receives all responses it checks whether
the missing credentials have been supplied by Alice (step 13).
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Global vars: Cyv", Cv'-'> initially set up to 0 when the main process is started;
InteractiveTrustManagement(){ / / runs in a new thread.

1: r = receiveRequestO;

2: CT = receiveCredentialsO;

4: repeat

5: if isService(r) then

6: result = InteractiveAccessControKr, VAIZ , V-D);

8: else // isCredential (r (c))

9: result = InteractiveAccessControKr, VAC> V-D)\

11: if result = = askCC^) then

12: askCredentials (CM );

13: if CM C C-p then result = grant;

14: until result = = grant or result = = deny;

15: ifresult ~= grant and isCredential(r) then

16: sendResponse(cred(r));

17: else

18: sendResponse(resw/O;

askCredentials (CM ) {

1: parfor each c 6 CM do

2:

3:

4:

5:

6:

7:

8:

sendRequest(r(c));

if receiveResponseO =

cv =cvyj{c}-
CM = CA/1 \ {c};

else \i c£Cv then

C^ =C^U{c};
done

= cred(c) then

Figure 3. Interactive Trust Negotiation Protocol

If CM w^s not reached, Bob restarts the loop and consults the
InteractiveAccessControl algorithm for a new decision.

When a final decision is taken, a respective response (steps 16 and
18) is sent back to Alice.
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The server initiates the main trust negotiation process when a client
initially submits a request for a service. Then each counter request from
the client side is run in a different thread that shares the same globally
accessible client's profile {C-p, Cj^) with other threads running under the
same negotiation process.

Technicality in the protocol is in the way the server requests missing
credentials back to the client. As indicated in the figure, we use the key-
word parf or for representing that the body of the loop is run each time
in a parallel thread under the thread that has computed CM- At that
point of the protocol, it is important that each of the finished threads
updates the presented and declined set of credentials appropriately. So,
we avoid the situations where some running parallel threads ask the
client already asked credentials or already declined ones computed in
other running threads under the same main process.

Also an important point here is to clarify the way we treat decliend
and not yet released credentials. In a negotiaition process, declining a
credential is when an entity is asked for it and the same entity replies to
the same request an empty set (saying no). In the second case, when the
entity is asked for a credential and, insted of reply, there is a counter re-
quest for more credentials, then the thread, started the original request,
awaits the client for an explicit reply and treats the requested credential
as not yet released. In any case, at the end of a (sub) negotiation process
a client either supplies the originally asked credential or declines it.

The thread based implementation (with shared C-p and C/v) is nec-
essary to allow for a polynomial execution time of the trust negotiation
protocol in the number of queries to the abduction algorithm. Indeed,
without a shared memory for received credentials it is possible to struc-
ture the policies in a way that a credential will be asked far too many
times. In this way the protocol queries to VAC a r e bounded by the
number of credentials in the policy.

REMARK 1 It can be proved that if policies are negation free then the
algorithms on the client and server sides interoperate.

It is possible to run the TrustBuilder by Yu et al. [12] on top of our
mechanism so that our framework abstracts away the requirements on
policies and strategies that should be imposed on the user's disclosure
policy if using TrustBuilder directly.

However, we have not solved the problem of piecewise disclosure of
missing foreign credentials yet. This turns out to be also possible as we
shall see in the next section.
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Global vars: Cj^, Cv\
InteractiveTrustManagement(){ . . .

PiecewiseDisclosure(Cjw ,

1: Cvi = {c\ VvUCv HC}\CM;

2: Vvi = {c+-B\c<-Be Vv} U
{c <— c | c 0 CT>\ and c *~ B € Vx> for some B}\

4: CMI = doAbduction(g,

5: return CM I ;

askCredentials(CAi,

1: repeat

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

CMI = PiecewiseDisclosure(C>t, VT>)]

if CM I = = -L then return;

parfor each c G CM I do

sendRequest(r(c));

if receiveResponseO ===== cred(c) then

Cv =CvU{c}-

CM =CM\{C};

else \i cqLCv then

CM =CVU{C};

done

CM = CM \ Cv;

until CM C C\r;

Figure 4- Piecewise Trust Management Protocol

5. Controlled Disclosure of Missing Credentials

The intuition here is that Bob may not want to disclose the missing
credentials all at once or directly to Alice. Instead he may want to
ask Alice first some less sensitive credentials6 assuring him that Alice is

6Here we point out that the stepwise approach may concern credentials that are not directly
related to a specific resource but needed for a finer-grained disclosure control.
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enough trustworthy to disclose her other credentials and so on continuing
until the missing ones are disclosed.

To address this issue we extend the protocol in Section 4 with an
algorithm for piecewise disclosure of missing credentials. The basic in-
tuition is that the logical policy structure itself tells us which credentials
must be disclosed to obtain the information that other credentials are
missing. So, we simply need to extract this information automatically.
We perform a step-by-step evaluation on the policy structure. For that
purpose we use one step deduction (Def. 2) over the disclosure policy
Vv to determine the next set of potentially disclosable credentials.

Essentially, the protocol replaces the askCredentials function with
a new version of it using the piecewise disclosure algorithm and adds the
disclosure policy to its arguments, see Figure 3.

With its new version the askCredentials function (Figure 4) takes
as input the set of missing credentials CM (as the old one) together
with the policy for disclosure control Vv that CM was computed from.
In a nutshell, the algorithm requests the client all missing credentials
supplied in the input, but with the difference of stepwise awaiting for
each of the computed steps by the PiecewiseDisclosure algorithm. In
other words, when a next step of missing credentials is computed (step
2) the algorithm waits until the client responds to all current requests.
Again here the client's profile is updated on each request/response to
facilitate other threads' access decisions. Then the check in step 3 for
CMI comprises two cases: either the set of presented credentials C-p has
been updated (indirectly) by other running threads such that now CM
is satisfied and there is no next step or the client has declined some
credentials that stop his way further to CM •

The task of the PiecewiseDisclosure is to determine at each inter-
action step exactly the relevant credentials that are needed to reach at
the end the set CM-

Basically, we compute the set of abducible credentials in one step as
Cvi (compare with the corresponding step 2 in Figure 2(a)). Out of
those, we extract only the minimal set of credentials that is actually
necessary to derive CM- TO this extent, we modify policy Vv by adding
a new atom q that can be derived if all (and only) CM credentials are
derived. Additionally, we also change syntactically the structure of Vv
rule so that relevant credentials in Cvi must be abduced and can no
longer be derived from chaining other rules.

We do that by changing a rule of the from c <— c\,..., cn into a pair of
rules c <— c i , . . . , cn and c <^ c, where c is a new symbol. The informal
meaning of the first rule is that c is disclosable if all c^ are. So, we now
say that the need for the fictitious c is disclosable if the need for all C{
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is disclosable and that the need for credential c is disclosable if the need
for Ci is.

Then if we remove the c <— c for all c in Cx>\ there will be no rule to
infer that the need for c is disclosable so we must abduce c as a primitive
atom (if it is actually needed to derive q, i.e. some of the

6. Implementation

For the implementation of the framework we have chosen Collaxa8

manager. Collaxa server supports many standards as BPEL4WS, WSDL,
SOAP, etc. and interoperates with platforms as BEA's WebLogic and
Microsoft .NET. So, this makes it well-suited for the purposes of the
framework. The main idea of the work is that using BPEL4WS spec-
ification [5] we can orchestrate the requirements and communications
between client and partners in an automatic and transparent way via a
main authorization server.

For the implementation of the algorithms and protocols, presented in
the paper, we need at a lower level a suitable engine for the basic rea-
soning services of deduction and abductiom. For that purpose we have
done a wrapper (a set of interfaces) to the DLV system that manages
all internal computations, queries and transformations to and from the
DLV's defined front-ends.

For the actual crypto infrastructure we decided to use PERMIS9 [4].
We chose PERMIS because it implements RBAC using entirely X.509
Identity and Attribute Certificates [6]. It allows for creating, verify-
ing and validating attribute certificates and for storing and allocating
them using LDAP directories [10]. For the integration with PERMIS, we
extend the PERMIS's Access Decision Function (ADF) with the func-
tionality of our model such that PERMIS validates and gathers client's
credentials on its own and then asks our algorithm for an access decision
(next possible step) presenting the newly collected credentials.

7. Conclusions

In this paper we have proposed a framework for leveraging trust man-
agement and negotiation scheme between a client and a service provider
in the WS world. We proposed a basic access control algorithm that
evaluates a client's request with respect to a partner's policies and in
the case of failure it computes what is necessary for the client to get
the desired resource. Then we devised an interactive trust management

8www.collaxa.com | www.oracle.com/technology/bpel
9 www.permis.org
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protocol that communicates and negotiates the missing credentials in
a piecewise manner until enough trust is established and the service is
granted or the negotiation failed and the process was terminated.

The protocol can be run on both the client and server side so that they
understand each other and automatically interoperate until a desired
solution is reached or denied.

It is also possible to run the TrustBuilder by Yu et al. [12] on top
of the protocol with the only requirement of transforming each time the
protocol input/output to a syntax understandable by TrustBuilder.

One of the advantages in our approach is that we do not pose any
restrictions on partner's policies since the basic computations performed
on the policies are deduction and abduction, which do not require any
specific policy structure.

References

[1] BENATALLAH, B., CASATI, F., AND TOUMANI, F. Web service conversation
modeling: a cornerstone for e-business automation. IEEE Internet Computing
8, 1 (Jan/Feb 2004), 46-54.

[2] BLAZE, M., FEIGENBAUM, J., IOANNIDIS, J., AND KEROMYTIS, A. The KeyNote

Trust-Management System Version 2, 1999. RFC 2704.

[3] BLAZE, M., FEIGENBAUM, J., AND LACY, J. Decentralized trust management.
In Proc. of IEEE Symposium on Security and Privacy (1996), pp. 164-173.

[4] CHADWICK, D. W., AND OTENKO, A. The PERMIS X.509 role-based privilege
management infrastructure. In 7th ACM SACMAT (2002), pp. 135-140.

[5] FRANCISCO CURBERA, ET AL. Business Process Execuüon Language for
Web Services (BPEL4WS). BEA, IBM, Microsoft, May 2003. http://www-
106.ibm.com/developerworks/webservices/library/ws-bpel/.

[6] ITU-T RECOMMENDATION X.509:2000(E) | ISO/IEC 9594-8:2001 (E). The
directory: Public-key and attribute certificate frameworks.

[7] KOSHUTANSKI, H., AND MASSACCI, F. Interactive access control for Web Ser-
vices. In 19th IFIP Information Security Conference (SEC 2004), PP- 150-166.

[8] KOSHUTANSKI, H., AND MASSACCI, F. A logical model for security of Web
services. Tech. rep., lst International Workshop on Formal Aspects of Security
and Trust (FAST), Pisa, Italy, September 2003.

[9] Ll, N., AND MITCHELL, J. C. RT: A role-based trust-management framework.
In Proc. of 3rd DARPA Information Survivabilüy Conference and Exposition
(DISCEX III) (Los Alamitos, California, April 2003), pp. 201-212.

[10] WAHL, M., HOWES, T., AND KILLE, S. Lightweight Directory Access Protocol

(v3), December 1997. RFC 2251.

[11] WlNSLETT M, ET AL. Negotiating trust in the Web. IEEE Intemet Computing
6, 6 (Nov/Dec 2002), 30-37.

[12] Yu, T., WINSLETT, M., AND SEAMONS, K. E. Supporting structured creden-
tials and sensitive policies through interoperable strategies for automated trust
negotiation. ACM TISSEC 6, 1 (2003), 1-42.



COMPLEMENTING COMPUTATIONAL PROTOCOL
ANALYSIS WITH FORMAL SPECIFICATIONS*

Kim-Kwang Raymond Choo, Colin Boyd, Yvonne Hitchcock, and Greg Mait-
land
lnformation Security Research Centre
Queensland University ofTechnology
GPO Box 2434, Brisbane, QLD 4001, Australia

{k.choo,c.boyd,y.hitchcock,g.maitland}(5>qut.edu.au

Abstract The computational proof model of Bellare and Rogaway for cryptographic pro-
tocol analysis is complemented by providing a formal specification of the ac-
tions of the adversary and the protocol entities. This allows a matching model
to be used in both a machine-generated analysis and a human-generated compu-
tational proof. Using a protocol of Jakobsson and Pointcheval as a case study,
it is demonstrated that flaws in the protocol could have been found with this ap-
proach, providing evidence that the combination of human and computer analy-
sis can be more effective than either alone. As well as finding the known flaw,
previously unknown flaws in the protocol are discovered by the automatic anal-
ysis.

1. Introduction
Cryptographic protocols are fundamental security tools for electronic com-

munications and a high level of assurance is needed in the correctness of such
protocols. Techniques to verify the correctness of security proofs for cryp-
tographic protocols have been directed in two distinct directions, namely the
formal methods approach [1,4] and the computational complexity approach [5,
6, 10, 17].

In the formal methods approach, emphasis is placed on model checking
and automatic theorem proving. Usually the abstract formal specification is in
the tradition of the model of Dolev and Yao [12]. This means that a 'black
box' model of cryptographic operations is used, which ignores different cryp-
tographic properties and possible loss of partial information. Therefore it is
quite possible to have flaws in protocols that were proven secure in the Dolev-

*This work was partially funded by the Australian Research Council Discovery Project Grant DP0345775.
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Yao sense [3, 15] and we cannot be entirely confident that such a protocol can
be implemented securely.

In the computational complexity approach, emphasis is placed on a proven
reduction from the problem of breaking the protocols to another problem be-
lieved to be hard. Such proofs are invariably generated by humans. Application
of the computational complexity approach to protocol analysis was initiated by
Bellare and Rogaway in 1993, with a proof for a simple two party entity au-
thentication and key exchange protocol [6]. They formally defined a model of
adversary capabilities with an associated definition of security. Since then, the
model has been further revised several times. In 1995, Bellare and Rogaway
analysed a three-party server-based key distribution protocol [7] using an ex-
tension to the 1993 model. The most recent revision to the model was proposed
in 2000 by Bellare, Pointcheval and Rogaway [5], hereafter referred to as the
BPR2000 model.

A complete mathematical proof with respect to cryptographic definitions
provides a strong assurance that a protocol is behaving as desired. However,
the difficulty of obtaining correct computational proofs of security has been
illustrated dramatically by the well-known problem with the OAEP mode for
public key encryption [17]. Although OAEP was one of the most widely used
and implemented algorithms, it was several years after the publication of the
original proof that a problem was found (and subsequently fixed in the case
of RSA). Problems with proofs of protocol security have occurred too. In this
paper, we will use the original version of a protocol due to Jakobsson and
Pointcheval [13] which carried a claimed proof in the Bellare-Rogaway model
but was later found to be flawed by Wong and Chan [18].

In recent years a number of researchers have started to recognize the dis-
parity in the two different approaches to protocol analysis. Previous efforts in
unifying the two domains have been devoted towards providing abstract mod-
els of cryptographic primitives which are suitable for machine analysis and yet
can be proven to be functionally equivalent (in some well-defined sense) to the
real cryptographic primitives that they model. Abadi and Rogaway [2] started
this trend, and more recently comprehensive efforts have been under way in
two different but related projects by Canetti [9] and by Backes et ai [3].

In this work we take a different, more pragmatic, approach to the prob-
lem. We are motivated by the observation that so far no researchers have
tried to utilize the communication and adversary model from computational
proofs in a machine specification and analysis. Although we cannot capture
the complexity-based definitions for security and cryptographic primitives, we
can ensure that the same protocol and adversary capabilities are specified in
both the human-generated proofs and the machine analysis. In other words,
rather than trying to unify the two approaches, we treat them as complemen-
tary but ensure that, as far as possible, they are analysing the same objects.
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Our thesis is that the human proof will take care of the cryptographic details
lacking in the machine analysis, while the machine analysis will help to ensure
that human error resulting in basic structural mistakes is avoided.

We provide a formal specification and machine analysis of the adversary
model from the BPR2000 model as shown in Figure 1. The Bellare-Rogaway
model is the most widely used model for human-generated security proofs of
protocols. As a case study we analyse the protocol of Jakobsson and Pointcheval.
The original version appeared in the unpublished pre-proceedings of Financial
Cryptography 2001 with a claimed proof of security in the Bellare-Rogaway
model. Nevertheless, a flaw in the protocol was discovered by Wong and Chan.
In the published paper [13], the flaw in the protocol has been fixed.

Our choice of formalism for this work is Asynchronous Product Automata
(APA), a universal state-based formal method [16]. APA is supported by the
Simple Homomorphism Verification Tool (SHVT) [14] for analysis and verifi-
cation of cooperating systems and communicating automata. Once the possible
state transitions of each automaton have been specified, SHVT can be used to
automatically search the state space of the model. SHVTprovides a reachabil-
ity graph of the explored states. In our APA specification, the abstract commu-
nication model captures the representation of the protocol, the message trans-
mission, and the communication channels. The automated state space analyses
performed with SHVT reveal the known attack on the Jakobsson-Pointcheval
protocol and also two other previously unpublished attacks.

i
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1
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Cryptographic
Protocol Analysis
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1
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Complexity
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Figure 1. Our proposed approach

This work differs significantly from related earlier work of Boyd and Viswa-
nathan [8], as their formal specification did not capture the entire Bellare- Ro-
gaway model. In addition, no automatic searching was performed and no new
attack was revealed in their earlier work.
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We regard the main contributions of this paper to be confirmation of the fea-
sibility of using formal specifications to identify problems in human-generated
computational complexity proofs, demonstration of the use of SHVT in an au-
tomated manner to find unknown attacks in protocols, and a re-usable frame-
work for automatic analysis of protocols proven secure in the BPR2000 model.

The remainder of this paper is structured as follows: Section 2 briefly ex-
plains the adversarial model used in our formal specification framework and
the Bellare-Rogaway adversarial model. Section 3 describes the original ver-
sion of the mutual authentication and key exchange protocol (MAKEP) due to
Jakobsson and Pointcheval, and the hijacking attack first mentioned by Wong
and Chan. Section 4 briefly outlines the state-based APA specification, fol-
lowed by the results of the protocol analysis using SHVT. Section 5 presents
the conclusions.

2. Overview of Our Formal Specification Framework
In this section, we present an overview of the BPR2000 model, followed

by a definition of an adversary in our APA formal specification framework.
We follow the general adversarial formalism of the BPR2000 model, except
that the probabilistic characteristics of the BPR2000 adversary are not explic-
itly modelled in our formal specification due to the deterministic nature of
SHVT. However, since our thesis is that the human proof will take care of the
cryptographic details lacking in the machine analysis, this does not present an
obstacle to our protocol analysis.

2.1 The BPR2000 Model
The BPR2000 model defines provable security for entity authentication and

key distribution goals. In the model, the adversary ABR is a probabilistic
machine that has the capability to read, delay, replay, modify, delete, and fab-
ricate messages between communicating principals and to start new instances
of communicating principals. ABR controls all the communications that take
place between parties by interacting with a set of oracles at any time in any
order. Each of the oracles represents an instance of a principal (II \j denotes
the i-th instance of a principal U) in a specific protocol run. The predefined
oracle queries are described informally as follows.

The SendClient and SendServer queries allow the adversary to simulate
the actions of the principals according to the protocol by sending some
message of her choice to any client or server oracle at will. The client or
server oracle, upon receiving the query, will compute what the protocol
specification demands and send back the response.
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• The Reveal query allows the adversary to expose an old session key
which has been previously accepted. Any oracle receiving this query,
if it has accepted and holds some session key, will send this session key
back to the adversary. This query enables the modelling of the require-
ment that loss of a session key should only affect the session that used
the key, and not any other session. In addition, some session keys may
not need to be kept secret after the completion of a session, e.g. keys
used for message authentication.

• The Corrupt query allows the adversary to corrupt any principal at will,
and thereby learn the complete internal state of the corrupted principal.
The Corrupt query also gives the adversary the ability to overwrite the
long-lived key of the corrupted principal with any value of her choice.
This query can be used to model the real world scenarios of an insider
cooperating with the adversary and an insider who has been completely
compromised by the adversary.

• The Test query is the only oracle query that does not correspond to any
of ABR$ abilities. If the oracle being asked a Test query has accepted
with some session key, and depending on the randomly chosen bit b,
ABR is given either the actual session key or a session key drawn ran-
domly from the session key distribution. ABR may only make one Test
query during a game simulation. The use of the Test query is explained
inSection 2.1.3.

The definition of security depends on the notions of partnership of oracles
and indistinguishability. The definition of partnership is used in the definition
of security to restrict the adversary's Reveal and Corrupt queries to oracles that
are not partners of the oracle whose key the adversary is trying to guess.

2.1.1 Definition of Partnership. Partnership is defined using the no-
tion of session identifiers (SIDs). SIDs are defined as the concatenation of
messages exchanged during the particular protocol run in question. An oracle
who has accepted will hold the associated session key, a SID and a partner
identifier (PID).

DEFINITION 1 Two oraclesy WA and Tl3
B, are partners if, and only if, both

oracles have accepted the same session key with the same SID, have agreed on
the same set ofprincipals (i.e., the initiator and the responder of the protocol),
and no other oracles besides Ul

A and UJ
B have accepted with the same SID.

2.1.2 Definition of Freshness. Definition 2 describes the notion of
freshness, which depends on the notion of partnership in Definition 1.
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DEFINITION 2 Oracle Iil
A isfresh (or it holds afresh session key) at the end

ofexecution, if, and only if, oracle WA has accepted with or without apartner
oracle UJ

B, both oracle WA and its partner oracle Ii3
B (ifsuch a partner oracle

exists) are unopened (Le., have not been sent a Reveal query), and none ofthe
players are corrupted (i.e.y no one has been sent a Corrupt query).

2.1.3 Definition of Security. Security is defined using the game Q,
played between a malicious adversary ABR and a collection of oracles. ABR
runs Q and is able to send any oracle queries at will. At some point during Q,
ABR will choose a fresh session on which to be tested and send a Test query
to the fresh oracle associated with the test session. Depending on the randomly
chosen bit b, ABR is given either the actual session key or a session key drawn
randomly from the session key distribution. ABR continues making any oracle
queries of its choice. Eventually, ABR terminates the game and outputs a bit
b', which is its guess of the value of b.

Success of ABR is measured in terms of ABR$ advantage in distinguishing
whether ABR receives the real key or a random value. ABR wins if, after
asking a Test query, ABR$ guess bit b' equals the bit b selected during the
Test query. If the advantage of ABR is denoted by Adv^BR, then Adv^BR =
2 x Pr[b = b'] - 1.

DEFINITION 3 A protocol is secure if both the following requirements are
satisfied: (1) when the protocol is run between two oracles in the absence ofa
malicious adversary, the two oracles accept the same key, and (2)for allproba-
bilistic, polynomial-time adversaries ABR> the advantage Adv^BR is negligible
and the advantage that any adversary has in violating entity authentication is
negligible. An adversary is said to violate entity authentication if some fresh
oracle terminates (i.e., accepts a session key and completes the protocol) with
no partner.

2.2 Our Formal Specification Framework
In our formal framework using APA specification, protocol principals are

modelled as a family of elementary automata. The various state spaces of
the principals are modelled as a family of state sets. The channel through
which the elementary automaton communicates is modelled by the addition
and removal of messages from the shared state component Network, which
is initially empty. Each of the elementary automata only has access to the
particular state components to which it is connected. In addition to the regular
protocol principals, we specify an adversary A, which has access to the shared
state component Network, but no access to the internal states of the principals.

Adopting the adversary formalism from the BPR2000 model, we consider
an adversary A who is able to intercept messages in the Network, swap data
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components in the intercepted messages to form new messages, remove mes-
sages from the Network, or fabricate new messages. A is then able to send
these messages to the client or server oracles via the Network (corresponding
to SendClient and SendServer queries in the BPR2000 model). Also, once an
oracle, II^, has accepted and holds a session key, the (SID, PID) pair associ-
ated with that oracle becomes visible to the adversary A via the shared state
component Transcript. If A so chooses, A is then able to obtain the session
key of II^ via a Reveal query or a Corrupt query. The shared state component
Transcript also contains a log of all sent messages and is equivalent to a tran-
script in the Bellare-Rogaway model. The graphical illustration of MAKEP in
APA specification is shown in Figure 2.

A_Keys A_Statej B.State B_Keys

Figure 2. Graphical illustration of MAKEP in APA specification

The advantage of ABR is not explicitly modelled in our specification due
to its probabilistic nature. Instead of modelling the attack to distinguish be-
tween the real key and a random value, we simplify the game Q defined in
Section 2.1.3 by assuming that Adv^BR = 1 if ABR can obtain a fresh session
key, otherwise A6\/ABR = 0. Consequently, some attacks might be left out
while analysing the game Q. However, since our aim is to leave computational
matters to the human-generated proof, this does not present an obstacle to our
protocol analysis.

When using formal specification tools, insecurity is commonly specified in
terms of the unreachability of the desired states or reachability of insecure
states and a "secure" protocol in a formal specification does not necessarily
imply that the protocol is secure. Hence, we find it more natural to define in-
security in our formal framework as given in Definition 4. Protocols proven
insecure in our formal specification model will also be insecure in the Bellare-
Rogaway model. Definition 4 depends on the notions of partnership in Defini-
tion 1 and freshness in Definition 2.

DEFINITION 4 A protocol is insecure in our formal framework if:

1 twofresh non-partner oracles accept the same key, or
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2 some fresh oracle accepts some key, which has been exposed (i.e., is
known to A), or

3 somefresh oracle accepts and terminates with no partner.

3. Original Version of Jakobsson-Pointcheval MAKEP
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B
A
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Server B (b, gb)
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Figure 3. Original version of MAKEP
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Figure 4. A hijacking attack on original version of MAKEP

There are two communicating principals in MAKEP shown in Figure 3,
namely the server and the client of limited computing resources, A. The secu-
rity goals of the protocol are mutual authentication and key agreement between
the two communicating principals. A and B are each assumed to know the
public key of the other party. Prior to the protocol run, A can pre-compute the
session key k which is a hash of the shared secret with B using Diffie-Hellman
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key exchange, the value r used for client authentication and £?'s public key
(i.e., k = ho(gb, grA, K)). In the protocol, the notation TA €R %q denotes that
Tj\ is randomly drawn from 7Lq.

Despite claims of the original version of MAKEP being proven secure in the
Bellare-Rogaway model, a hijacking attack on the protocol was discovered by
Wong and Chan [18] which breaks the client authentication as shown in Fig-
ure 4. The result of the attack is that B actually shares a key with a malicious
adversary A when B believes the key is being shared with A. This attack is
revealed by the SHVT analysis explained in Section 4.2.1.

4. Protocol Specification and Analysis
In this section, using the original version of MAKEP as a case study, we

specify the protocol using APA. We demonstrate that SHVT can be used to find
the hijacking attack first mentioned by Wong and Chan, and two previously
unknown flaws in the protocol. For the remainder of this section, E denotes
the adversary.

4.1 Protocol Speciflcation

Examples of some basic types
Agents :
A_State :
A_Keys :
Accepted :

gFunction(g, m) :

verifyGFun(ml, m2) :

:= set of all the principals (i.e., A, B) and A (i.e., E)
:= A's internal state
:= set of A's public and private keys
:= set of all oracles who had accepted (visible to A)

Examples of some functions
:= denotes gm, where m is some value (e.g.,

gFunction(g, rA) denotes gTA shown in Figure 3)
:= the verification function used to verify if

gmi' 2= g™2' for some ml' and mi'. (e.g.,
verifyGFun(gFunction(gFunction(g, a), b),
gFunction(gFunction(g, b), a)) will return true)

Figure 5. Examples of basic types and functions

The first phase of our formal specification is to specify the basic types and
the functions as shown in Figure 5. In order to increase run-time efficiency,
and to overcome storage restrictions, we replace each unique data item in any
message with a unique numeric message identifier (MID) in our specification.
For example, the message in message flow 1 sent by A consists of two data
items, gTA and r, whose message identifiers are MID — 1 and MID — 2
respectively. SID is then the concatenation of these unique MIDs (e.g. SID =
[1,2,...]) instead of the concatenation of messages from the BPR2000 model.
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Initial State of the Original Version. The initial state of MAKEP is shown
in Figure 6. The left-hand column shows the SHVT specification of the various
initial states, and an explanation is given in the right-hand column.

A_State:=

A_Keys:=
B_State:=

B_Keys:=
E_State:=

Network:=
Transcript:=

{(B,server),(start,B),
(publicK,gFunction(b),B)};

{(publicK,gFunction(a)),(privateK,a)};
{(A,agent),(respond,A),
(publicK,gFunction(a), A)};

{(publicK,gFunction(b)),(pnvateK,b)};
{(publicK,gFunction(a),A),publicK,
gFunction(b),B)};

0;
0;

A knows that B is a server, can
start a protocol session run with
B (indicated by the keyword
start), and knows the public
key of B (i.e., gb).
A owns a key pair (a,ga).
B knows that A is an agent, can
respond to a protocol run initi-
ated by A (indicated by the key-
word respond), and knows the
public key of A (i.e., ga).
B owns a key pair (b,gb).
.4(Eve) knows the public keys
of A and B.
Network is initially empty.
Transcript is initially empty.

Figure 6. Initial state

Step 1 of the Original Version. Starting from the initial state shown in
Figure 6, SHVT computes all reachable states. The first state transition of
the initiator client A is explained in Figure 7. To ensure uniqueness of the
values VA, ^A and MID in the APA specification, once these values are as-
signed, they are removed from the pre-defined sets new jrandom sionce and
MIDs. We assume that (SIDA.PIDA) cannot be modified by the adversary.
The (SIDA.PIDA) tuple is required to enable the SHVT analysis to define
partnership.

A Malicious State Transistion. An active adversary A is able to intercept
message (grA, r) meant for B from A, to fabricate a new message (gTE, r) and
to send the fabricated message (grE, r) to B via the Network. This state transi-
tion as shown in Figure 8 is equivalent to a SendServer query in the BPR2000
model. Due to space contraints, details of other possible state transitions for
the adversary and the protocol are omitted.

4.2 Protocol Analysis
Having formally specified the protocol in APA, we analyse the protocol

specification using SHVT as shown in the sections below. The analyses were
run on a Pentium IV 2.4 GHz computer with 512 Mb of RAM and the anal-
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def_trans_pattern A step.l
B,gb,rA,tA,rAA,r,k,k2,K,SIDA,PIDA,MID
['start',B] ? A_State,

[B/server'] ? A_State,
['publicK\gb,B] ? A_State,

rAA « new_random_nonce,
rA := head(rAA),
tA := head(tail(rAA)),
tail(tail(rAA))» new_random_nonce,
MID « SIDs,
tail(tail(MID))» SIDs,

SIDA := [head(MID),head(tail(MID))],

PIDA := B,
K := ['KFunction\gb,rA],
k := ['hashO',gb,['gFunction',g,rA],K],

r := ['hashl',['gFunction',g,tA]],
k2 := ['hash2',gb,['gFunction',g,rA],K],
['start',B] « A_State,

[SIDA,PIDA,[tA,k,k2,K]]» A_State,

(A,B, [head(SIDAl), head(tail(SIDAl))],
[['gFunction',g, rA], r]) » Network;

Definition of a state transition
Variables used in this step
Precondition: A can start protocol run
with B.
Precondition: A knows B is the server.
Precondition: A knows B's public key
gb. (gb is a variable that takes the value
gFunction(b).)
Random unique nonce values are drawn
from the pre-defined set
newjrandomjnonce and assigned to TA
and tA respectively.
Random unique MIDs are drawn from the
pre-defined set SIDs are assigned to gTA

and r respectively.
SID is the concatenation of these unique
MIDs.
PID ofAissettoB.
A computes a new K = (gb)TA.
A computes the new shared secret k us-
ing the hash function HQ (i.e., k —
ho(g

b,grA,K)).
A computes r = h\(gtA).
A computes k2 = h2(g

b, gTA, K).
A initiated one session with B, so one tu-
ple enabling a session to start is removed
from A's state.
A stores the information that she shares
with B for this protocol run.
A sends message gTA, r to the Network.

Figure 7. State transition - step 1

ysis statistics are shown in Figure 9. We set the break condition to terminate
the SHVT analysis if any of the requirement(s) in Definition 4 are violated.
The attack sequence and the internal states can be examined by viewing the
reachability graph produced by SHVT.

For run-time efficiency, and to avoid enormous branching factors in the
search space, we restrict the actions of the adversary so that certain actions
are possible for only some message types. Running SHVT with adversaries
having various restrictions and also restricting A to only two protocol runs
results in SHVT finding the attacks shown in Figures 4, 10, and 11.
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def trans pattern E SendServer
(ga,gb,A,B,M,SIDE,S,rE)
['publicK',ga,A] ? E.State,
CpublicK',gb,B) ? E_State,
[A/agent'] ? E_State,
[B/server'] ? E_State,
A ^ B ,

(A,B,S,M) ? Network,

rAA « new_random_nonce,
rA := head(rAA),
tA := head(tail(rAA)),
tail(tail(rAA))» new_random_nonce,
SIDE « SIDs,
tail(tail(SIDE))» SIDs,

['fabricated','mfl',[head(SIDE),elem(2,S)],
j['gFunction',g, head(rE)]]» E_State,
(A,B,[head(SIDE),elem(2,S)], [['gFunc-
tion', g,head(rE)], elem(2,M)])» Network;

Definition of a state transition
Variables used in this step
Precondition: A knows Ays public key.
Precondition: A knows B's public key.
Precondition: A knows A exists.
Precondition: A knows B exists.
Precondition: A and B are two different
principals.
Precondition: Checks if there exists any
message from A intended for B in the net-
work.
Random unique nonce values are drawn
from the pre-defined set
newjrandomjfionce and assigned to r^
and tA respectively.
Random unique MIDs are drawn from the
pre-defined set SIDs and assigned to grE
and rE respectively.
A stores information in her internal state.

A sends a fabricated message to B via the
Network.

Figure 8. A malicious state transition

Protocol Analysis
Hijacking Attack
New Attack 1
New Attack 2

#
2
2
2

Players # Runs
1
2
2

# Nodes
34
144
1538

Figure 9. Analysis statistics

Run-Time
2 secs
3 secs
79 secs

Flaws?
Yes
Yes
Yes

4.2.1 Hijacking Attack. State space analysis performed in the SHVT
analysis reveals that both requirements 2 and 3 of Definition 4 can be violated.
This attack was first mentioned by Wong and Chan [18] as shown in Figure 4.

4.2.2 New Attack 1. State space analysis in SHVT reveals that require-
ment 1 of Definition 4 is violated. The internal state of the final node in the
reachability graph reveals that the following four oracles have accepted some
session key: n^2'7 )10 '12 ! ) belonging to A and having SID - [1,2, 7,10,12]
accepted ho(g

rA\gtA1, (grA1)tA1), n^'4'9'8'11]) belonging to A and having

SID = [3,4,9,8,11] accepted ho(g
rA\gtA2,{grA1)tA2), n£ ' 4 ' 7 ' 8 ' n ! ) be-

longing to B and having SID = [1,4,7,8,11] accepted ho(g
tA1, grA1, (gtA1)

rA1), and ng'2'9 '10'12l ) belonging to B and having SID = [3,2,9,10,12] ac-
cepted ho(g

tA1,grA2, (gtA2)rAl). By Definition 1, none of these oracles have
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any partner oracles since their SIDs are different. However, we observe that
*u • /rT[l»2,7,10,12]) ^[1,4,7,8,11]). , /TT[3,4,9,8,11]) ^[3,2,9,10,12]).,
the pairs (Il^ , TvB

 iJ) and (II^ , I l^ u) have ac-
cepted with the same session keys as shown in Figure 10.
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70. New attack 1

This implies that by revealing one oracle in any pair, the adversary A is able
to distinguish the session key held by the other oracle in the same pair. Hence,
the protocol state is not secure since the adversary A can find a fresh session
key. In addition, mutual authentication is violated since both the client and
server oracles terminate without a partner.

The attack sequence is shown in Figure 10, and is revealed by following
the reachability graph to the insecure state. The attack sequence is as follows:
the adversary A intercepts and removes the two original messages from the
Network, swaps the components in these two messages to form two new mes-
sages, and sends these two modified messages to B impersonating A via the
Network. B, upon receiving these two messages, will respond as per the pro-
tocol specification. A intercepts the messages in protocol flow 2 sent by B to
A, and swaps the components in these two messages to form new messages
and again sends these two modified messages back to the Network, imperson-
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ating B. If A authenticates the server, she will respond with some value d as
per the protocol specification. B receives the messages d\ and d^ in protocol
flow 3. Once some oracle has accepted and holds some session key, the partic-
ular (SID, PID) pair will be made visible to the adversary via the shared state
component Transcript. A is then able to send Reveal queries to the oracles of
B, and receive the session keys held by the associated fresh oracles of A.
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Figure 11. New attack 2

4.2.3 New Attack 2. State space analysis in SHVT reveals that require-
ments 2 and 3 of Definition 4 are violated and the internal state of the final
node in the reachability graph reveals that fresh oracles of B, Uß ' ' and

Uß ' ' ' J, have accepted with no partner. In addition, the adversary A is
able to compute both the session keys accepted by B since both session keys
are computed based on the random number grE chosen by the adversary A.
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Hence A is able to decrypt all messages sent by B to A encrypted with these
session keys. The attack sequence is shown in Figure 11, and is revealed by
following the reachability graph to the insecure state.

5. Conclusion and Future Work
We have described a formal model which can complement computational

complexity proofs in the Bellare-Rogaway model. In our model the adversary
capabilities match those in the Bellare-Rogaway model. Through a detailed
study of the Jakobsson-Pointcheval protocol we have demonstrated that this
approach can capture structural flaws in protocols. We were able to find both
existing and previously unknown flaws in the protocol using SHVT. Such a
tool is useful in checking the hand-generated Bellare-Rogaway proofs. We
may speculate that if Jakobsson and Pointcheval had access to such a tool when
constructing their original proof of security they could have spotted the flaw in
the protocol.

Further directions for this work include extending it to other cryptographic
protocols with proofs of security in order to gain better confidence in their cor-
rectness. In so doing we should be able to re-use the basic adversary model
already developed. We would also like to explore other computational com-
plexity models, in particular the Canetti-Krawczyk modular approach [10], to
gain a better understanding of the uses of a complementary model. Finally,
we would like to make use of the recent work of Canetti et al [9, 11] and/or
Backes et al. [4] in order to incorporate abstract cryptographic properties with
a sound computational basis.
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Abstract: The widespread use of the Internet signals the need for a better understanding of trust
as a basis for secure on-line interaction. In the face of increasing uncertainty and risk, users and
machines must be allowed to reason effectively about the trustworthiness of other entities. In this
paper, we propose a trust model that assists users and machines with decision-making in online
interactions by using past behavior as a predictor of likely füture behavior. We develop a general
method to automatically compute trust based on self-experience and the recommendations of
others. Furthermore, we apply our trust model to several utility models to increase the accuracy of
decision-making in different contexts of Web Services.

1. INTRODUCTION

With the expansion of the Internet, users and services are often required to
interact with unknown entities. This is so in application areas such as e-
commerce, knowledge sharing, and even game playing. Because the entities are
autonomous and potentially subject to different administrative and legal domains,
it is important for each user to identify trustworthy entities or correspondents
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with whom he/she should interact, and untrustworthy correspondents with whom
he/she should avoid interaction [6].
Trust models have emerged as an important risk management mechanism in such
online communities. The goal of a trust model is to assist users with decision-
making in online interactions by using past behavior as a predictor of likely
future behavior. Most electronic marketplaces on the Internet, such as eBay,
Yahoo Auction, Amazon, and Epinions, support some form of trust management
mechanism. eBay, for example, encourages both parties of each transaction to
rate the other participant with a positive (+1), neutral (0), or negative (-1) rating.
eBay makes the cumulative ratings of its members publicly known to every
registered user [10]. Epinions provides a mechanism to weave "the web of trust",
a network of members whose reviews and ratings have been consistently found
valuable. Each member can write a review on any topic and product. Reviews
can be rated as "Not Helpful", "Somewhat Helpful", "Helpful", and "Very
Helpfül". The Web of Trust mimics the way people share word-of-mouth advice
every day. Shareaza, a P2P flle sharing system, allows members to write
comments and ratings with respect to shared files. Thus, Shareaza allows
members to avoid those that are fakes and download good quality, accurately
represented files.
Our goal is to develop a general trust model that can be used for making rational
decisions in order to make optimal choices. It should be usable in the context of
Web Services and online transactions that meet real people's needs. We have
opted for a trust model that is based on stochastic models of Web Services. We
will explain how trust can be built up from experimental evidence and how
statistical methods can be applied, together with utility functions, to make
rational choices between different service providers or different strategies for
problem solving. Our trust model is scalable in the number of users and services,
and is usable, both for people and artificial autonomous agents.
The rest of this paper is organized as follows. Section 2 summarizes some related
work on trust models. Section 3 introduces our approach, a trust model with a
statistical foundation, giving the key deflnitions for the state space of possible
outcomes of actions, trust update, and outcome space mapping. Section 4
presents some decision models. Section 5 briefly introduces recommendations
and their evaluation. Section 6 concludes the paper and discusses potential
directions for future work.
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2. EXISTING DEFINITIONS OF TRUST AND RELATED
WORK

Due to limited space, this section is abridged from the full paper (available at
http://www.site.uottawa.ca/~cadams/papers/TrustStat.pdf).
We write Ta(ß,ö) for the trust an entity a has in another entity ß with respect to a
given situation S. General trust represents the trust an entity a has in an entity ß
over all situations. We write Ta(ß) for the general trust of entity a in entity ß.
Basic trust is the general trusting disposition of the entity. We write Ta for the
basic trust of entity a.

3. A TRUST MODEL WITH A STATISTICAL
FOUNDATION

In this section we propose a statistical foundation for a trust model. Such a
foundation is intuitive and useful in many practical situations, as will be shown in
Section 4.

3.1 A model of the trusted entity

Our trust model is based on a model of the trusted entity ß. We discuss the space
of possible outcomes with respect to a service performed by ß and then propose a
stochastic model for ß.

3.1.1 The space of possible outcomes

Our trust model is based on an abstract model of the trusted entity. We assume
that the trust concerns the execution of a certain action by the entity. In most
cases, the execution of the action corresponds to a specific service that is
provided by the trusted entity. There may be different outcomes of the action.
The trust is concerned with some form of prediction of what the outcome will
probably be. In the case of situational trust, we are concerned with a particular
action in a certain situation; in the case of general trust, the action represents any
action of the trusted entity that may be of interest.
It is important to identify the space of possible outcomes. This space determines
the nature of the associated trust model. We note that the granularity of this space
determines the precision with which any prediction of future behavior can be
made. We give in the following some typical examples.
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a) Discrete categories
In this case, the outcomes are classifled into a flnite set of categories. For
instance, the eBay trust model foresees the three categories: "positive", "neutral",
and "negative". In the case of trust concerning the quality of the food in a
restaurant, the categories may be "excellent", "good", "average", "bad", and "very
bad". The case of two-valued outcomes is a special case of discrete categories;
here the outcomes are classified into two categories, which may be called "good"
and "bad".
While in the above examples, the different categories were ordered according to
some intuitive "goodness" relationship ("good" being better than "average", for
instance), there are cases in which such an ordering does not necessarily exist.
We may consider the example where the outcomes are classifled into the
following categories: "normal: all options OK", "option A failed", and "option B
failed". Here it is not clear which of the last two categories would be better.

b) Numeric outcomes
There are many cases in which the outcome can be characterized by a numerical
value. For instance, the trust may concern the response time of a Web server, or
the delivery delay of a parcel delivery service. In these cases, we are interested in
the delay for completing the action, and this delay may be measured in fractions
of seconds, minutes, or hours, depending on the precision that is reasonable for
the application. In these cases, the number of different outcomes is in principle
inflnite.
Other examples where the outcomes can be classifled by a numerical value are
the following: (1) What percentage of cost overruns can one expect in a
construction contract? - or (2) What is the expected quality of a video obtained
from a video-on-demand service?

c) Multidimensional outcome characterization
In many situations, the outcome of the action of interest has several parameters
that are important to consider. Each of these parameters can usually be
characterized either by a value from discrete value space, or a numerical (integer
or real) value. In this case, we say that the space of the possible outcomes is
multi-dimensional (one dimension for each parameter). Here are two examples:
1. Restaurant service with several evaluation criteria: (i) quality of food, (ii)
service, and (iii) environment. For each of these three criteria, the restaurant may
be classified into a certain number of discrete values, such as "excellent" down to
"very bad". Therefore, the outcome of a restaurant experience may be classifled
as a point in this three-dimensional space, where each coordinate in this space is
defined by a value between "excellent" and "very bad".
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2. Multimedia presentation quality: As explained in [14] and [15], the quality of
a multimedia presentation may be characterized by three values: (i) frame rate (in
video frames per second), (ii) resolution (number of pixels within a frame), and
(iii) color quality (number of colors distinguished per pixel). Therefore, the
outcome of a video presentation obtained from a video-on-demand service may
be characterized by three numerical values corresponding to these three quality
of service parameters.

3.1.2 A stochastic model of the trusted entity

We assume that the trusted entity behaves like a stochastic process, in the sense
that the outcome of an action of interest cannot be predicted exactly, that the
outcome of one execution of an action of interest is statistically independent of
the outcome of previous executions of that action, and that, over the long run, the
probability that the outcome for the next execution of the action will be a
particular point within the space of possible outcomes is described by a
probability distribution, which we call the outcome distribution of the trusted
entity, and which we represent by Dß. The value of Dß for a particular outcome o
e O (where O is the space of possible outcomes) is written as Dß(o). The outcome
distribution is a distribution over the space of possible outcomes. Therefore the
sum over all possible outcomes of the outcome distribution must be equal to one.
In the case of discrete outcome spaces, one usually does not make any
assumptions about relationships between the outcome probabilities for different
outcomes (except that they must sum to one). However, in the case of numerical
outcomes, one may introduce additional assumptions. For instance, in Figure 1, a
Gaussian outcome distribution is assumed, and the parameters of the Gaussian
distribution are determined from a histogram of the outcomes observed during
multiple experiments.

Probability

Average Good VeryGood Excellent

Figure 1
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3.2 Building trust from experience

We now deflne trust and propose a model to build trust from prior experiences.

3.2.1 Definitionoftrust

Definition of trust: The trust of an entity a in the outcome of an action of entity
ß is an estimation of the outcome distribution Dß for the execution of the action
by entity ß.
The basic mechanism for building trust is by experience, that is, by observing the
execution of the action of interest by the entity ß a certain number of times. Let
us assume that the space of possible outcomes O is finite and that N observations
have been made, where the outcome of the i-th observation was O\. If we rnake no
assumptions about relationships between outcome probabilities for different
outcomes, then the best estimation of Dß, the trust of the observing entity a, is
given by the formula

Ta(ß) (o) = (number of times that the outcome o, was equal to ö) IN (for all o
eO)
In the case that the space of possible outcomes includes a dimension with a
numerical coordinate, the set of possible outcomes becomes infmite. In this case,
the above simple average value calculation is not possible. Instead, the numerical
coordinate is usually partitioned into a discrete number of intervals, as shown in
Figure 1. Each interval is then treated like a discrete value and the above formula
can be applied. If the model of the trusted entity includes an assumption about
the fimctional form of the outcome distribution function Dß then the trust should
be of the same form, and the parameters of this function should be adjusted to
best flt the experimental data.
Instead of keeping in memory all previous experimental outcomes, one may use
an incremental trust update formula. The following incremental formula is
equivalent to the comprehensive formula above. For calculating the trust
incrementally, we keep in memory the current trust Ta(ß)(o) for each o e O and
the number of observations to date. When a new experience yielding outcome o
is observed, the values of Ta(ß) and TVwill be updated as follows:

Ta (ß) (o) =(Ta (ß) (o) *7V+ 1)/(N+ 1)
Ta (ß) (o') = Ta (ß) (o') *N/(N+ 1) for o' different from o
N = N+ 1

Note that the incremental formula and the comprehensive formula are applicable
to both situational trust and general trust. In the case of the independent

K

multidimensional outcome space, Ta(ß)(o) = P(o) = J ^ P(o^) where P(o) is
k=\
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the probability of outcome o, o= (OI,O2,..-,OK) and ok is the outcome in k-th
dimension. Here the marginal distribution of ok can be used instead of the joint
distribution of o because the dimensions are independent.
Consider the example of restaurant service ß whose three-dimensional outcomes
are independent. Entity a has situational trust in restaurant ß based on nine
experiences (N=9) as follows

Table 1
Distribution T(o)

excellent
good
bad
very bad

Qualityoffood7/foJ
6/9
2/9
1/9
0

Service T2(o)
2/9
4/9
2/9
1/9

Environment T3(o)
4/9
3/9
1/9
1/9

After entity a obtains one outcome such as o= ("Quality offood"= "excellent",
"service"="good", "environment"="bad"), entity a updates situational trust
according to the incremental trust update formula and obtains the following trust
(N=10)

Table 2
Distribution T(o)

excellent
good
bad
very bad

Qualityoffoodryfoj
7/10
2/10
1/10

0

Service T2(o)
2/10
5/10
2/10
1/10

Environment T3(o)
4/10
3/10
2/10
1/10

3.2.2 Estimating the error of the trust value

Generally the trusting entity estimates the true trust value with some uncertainty,
both because of inherent product or service variability and because of imperfect
information. Thus, it is necessary to have a method of determining the standard
error of experimental outcomes. The main objective is to obtain both a desirable
accuracy and a desirable confidence level with minimum cost - number of
experiences.
For an outcome with a score of 0 or 1 for no or yes (Bernoulli Distribution), the
standard error (SE) of the estimated proportion p, based on random sample
observations, is given by: SE = [p(l-p)/N]12 where/7 is the proportion obtaining
a score of 1, and Â  is the sample size [16]. This SE is the standard deviation of
the range of possible estimate values. The SE is at its maximum when p = 0.5,
therefore the worst case scenario occurs when 50% are yes, and 50% are no.
Under this extreme condition, the sample size, N, can then be expressed as the
largest integer less than or equal to 0.25/SE2. To have some notion of the sample
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size, note that for SE to be 0.04 (i.e. 4%), a sample size of 156 will be needed;
5%, 100; 10%, 25.

3.2.3 Considering trusted entities with evolving performance

If it can be assumed that the performance of the trusted entity is not constant, but
evolving over time, then the basic assumption about a given outcome distribution
for the actions of the entity, valid over all times, is not true any more. In this
case, we must take into account that the outcome distribution of the trusted entity
evolves over time. If the trusting entity knows the speed of this evolution,
possibly defined by a given characteristic time delay, then the trusting entity may
include in the trust calculation only recent experiments not older than the
characteristic time delay.
It is also possible to give different weights to the different experiments, either
according to their age or their order. The following incremental trust update
formula based on the order of the experiments may be used:
Ta(ß)(o) = (Ta(ß)(o) +y)/(l+y)
Ta (ß) (o') = Ta (ß) (o') /(1+y) for o' different from o
where the value of y determines the weight of the last experience compared with
the previous trust estimation.

3.2.4 Initial trust values

In two cases, entity a needs to set his/her initial trust values in entity ß. (i) When
entities a and ß have no previous relationship (in any situation) and entity a has
no knowledge about entity ß, then entity a needs to initialize his/her general trust
and situational trust in entity ß. (ii) When entities a and ß have no previous
relationship in a new situation but entity a has general trust in entity ß, then
entity a needs to initialize his/her new situational trust in entity ß. To address
these problems, a mapping between different spaces is needed. Mapping to initial
trust for a particular entity or situation depends on the space of possible outcomes
of that situation.

3.2.5 Mapping between spaces

In many cases, entity a needs to map between different spaces. (i) In the case of
setting initial trust values, entity a needs to map his/her basic trust space to
his/her general trust space, as well as his/her general trust space to his/her
situational trust space. (ii) In the case of general trust update, entity a needs to
map his/her situational trust space to his/her general trust space. (iii) There may
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also be cases in which entity a will update his/her basic trust as a result of a large
number of general or situational trust experiences. We focus in the following
two mappings:
1. Generalization mapping: from situational trust space to general trust space for
the purpose of general trust update. We write G(o) for the outcome of general
trust when the situational trust outcome is o. Using G(o) one can update his/her
general trust Ta(ß)(G(o)). Note that this kind of generalization mapping causes
information loss since the general trust would be more "general" (abstract) in
nature and the mapping is usually a many-to-one mapping, which implies that the
number of discrete outcomes of general trust space must be no more than that of
the situational trust space.
2. Specialization mapping: from basic trust space to general trust space and from
general trust space to situational trust space for the purpose of setting initial trust
values. We write S(o) for the outcome of situational trust when the general trust
outcome is o. We also write S(o) for the outcome of general trust when the basic
trust outcome is o. Using S(o) one can set initial situational trust Ta(ß,ö)(S(o)) and
initial general trust Ta(ß)(S(o)). Note that the specialization mapping is the
reverse process of the generalization mapping. It usually is a one-to-many
mapping. An example of a mapping from the general trust to the situational trust
is illustrated in the following flgure.
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Figure 2

In this example, the entity a will map his/her general trust to situational trust by
defining the mapping S(o):
- outcome "Good" in general trust maps to outcomes "average" or higher in
situational trust
- outcome "Bad" in general trust maps to outcomes "Bad" or lower in situational
trust
Note that the areas must be the same; that is, Ta(ß)(o) = Ta(ß,ö)(S(o)). Thus
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Ta(ß)("Good") = Ta(ß,ö)("Excellent")+ Ta(ßfö)("Very Good")+
Ta(ß,ö)("Good") + Ta(ß,ö)("Average") = 80%, and
Ta(ß)("Bad") = Ta(ß,ö)("Bad")+ Ta(ß,ö)((iVery Bad") = 20%.

This histogram is then the initial set of values for situational trust outcomes (i.e.,
N ~ Ninu) that will be updated over time as entity a has further interactions with
service ß.

4. DECISION MAKING

Decision making is often a question of selecting the optimal choice among a
number of alternatives. It is therefore important to understand how different
alternatives are evaluated in order to determine which is optimal. This means that
for each alternative, a utility must be defined so that the alternative with the
highest utility can be chosen. These kinds of approaches have been used in
different areas.
In this section, we apply our trust model to several utility models to show how
our trust model can be used for rational decision making. For most economic
scenarios, the highest expected current utility model [13] is appropriate. For
some critical scenarios, the lowest expected failure rate model [17] is
appropriate. For some service scenarios, the total satisfaction model [14] is
appropriate.
Expected Utility Theory (EUT) [12] states that the decision maker (DM) chooses
between risky or uncertain prospects by comparing their expected utility values,
i.e., the weighted sums obtained by adding the utility values of outcomes
multiplied by their respective probabilities. The most popular expected utility
fimction is the linear compensatory model in which preference for a product or

service is represented by Xj = ^^wkyJk where x, is the preference for a product
k=\

or servicey, yjk is the amount of attribute k in product or servicey, and wk is the
importance weight assigned to attribute k [13]. In quality of service negotiation
[14], a user satisfaction function plays a similar role.
Based on our trust model, we propose the following: if entity a wants to use
his/her trust for decision making, the entity should first establish the utility of the
action of a trusted entity ß for each possible outcome. We write Ua(o) for the
utility when the outcome is o. Then it is clear that the expected utility obtained
from the execution of an action by entity ß for which the trust is Ta (ß,ö) can be
calculated by the formula
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oeO

In the case of multi-dimensional outcome spaces, the different dimensions may
have their own utility mapping fimctions, and the overall utility may be the sum
of the single-dimension utilities, adjusted with weight factors for the different
dimensions. We then get an analogous formula to the one given in [13]. If all
dimensional outcomes are independent, then the above expected utility formula

K

can be generalized to Ua{ß) = ^U^iföxw™ where U(
a

k\ß)is the
k=\

expected k-th dimensional utility, w^ is the subjective weight ofk-th dimension

(we assume that the sum of all weights is equal to 1).
We note that the latter formula corresponds to the formula for the expected utility
quoted from [13] above. u^\ß) in our formula corresponds to the value jy* in the
formula above.
We give three examples of making decisions and choosing the utility mapping
function Ua(o).
1. Consider the example of restaurant service ß. Entity a assumes that all three
evaluation criteria are independent. Let us assume that entity a adopts the
following mapping fimctions and dimensional weights with the following values:

*1* = 0.6; W<2) = 0.3; FF^ = 0.1.

Table 3
Utility Mapping U(o)

excellent
good
bad
very bad

Qualityoffoodt/yVoj
5.6
2.7
0
-4

Service l/2)(o)
3
1

-0.5
-2

Environment l/3)(o)
2
1
0
-1

The weighted "quality of food" dimension utility can be calculated using the trust
values from the table in Section 3.2.1 as follows

Ul = sum over all o in dimension "quality of food" of ( jJJ)(o) * Tl(o) *
) = ( 5.6 * (7/10) + 2.7 * (2/10) + 0.0 * (1/10) + (-4) * 0 ) * 0.6 = 2.676

Similarly, the weighted "service" dimension utility U2 has the value 0.24, and
the weighted "environment" dimension utility U3 has the value 0.1. Therefore
the utility for entity a of this restaurant service ß is Ua(ß) = Ul + U2 + U3 =
2.676 + 0.24 + 0.1=3.016
Following the same process, entity a can calculate the utility of other restaurant
services. Entity a would choose the restaurant service with the highest utility
value.
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2. Consider the example of multimedia presentations. Based on the multi-
dimensional outcome space discussed at the end of Section 3.1.1, we could use
the above formula to calculate the overall utility. However, Richards et al. [14]
propose another formula. They call satisfaction sk what we call utility lfk\ and
they assume that the values of satisfaction range between zero (unacceptable
quality) and one (ideal quality). Instead of the weighted summation formula

above, they propose to calculate the overall satisfaction byStotal = K/^—. The
k=\ Sk

reason for proposing this formula is the following argument: If the satisfaction
for one dimension is zero, then the total satisfaction should be zero (which is not
satisfied by our formula). Both formulae satisfy the following property: If the
satisfaction for all dimensions has the same value, then the overall satisfaction
has that same value. Richards' formula can be extended to include weights.

3. Consider the previous example of restaurant service ß. Entity a, this time, uses
a failure probability model similar to failure rate as proposed in [17] for decision
making. Entity a first maps the outcome space to a consideration space which
consists of 2 outcomes, namely "success" and "failure"; for instance, we may
assume that we have "failure" when the value of Ua(o) is less than zero. The
service failure probability is the proportion of outcome "failure" and can be

represented byi^ = ^Ta(ß,ö)(o). The service with the lowest failure
Ua (o)=" faili4re"

probability can be chosen. Note that one can consider this model as a special case
of expected utility model in which the utility mapping has only two values,
"success" and "failure".

5. ISSUES RELATED TO RECOMMENDATIONS

Entity a can build up his/her situational and general trust from past experiences,
as has been discussed in the previous sections. Due to the limitation of resources,
entity a may need to rely on recommendations from other entities in order to
obtain trust with sufficient confidence. Entity a could get many independent
recommendations from different entities. Some of these recommendations will
probably conflict with each other. To address the conflict, a recommendation
evaluation and combination algorithm is necessary. A recommendation need not
necessarily represent the real belief of the recommending entity. In fact,
recommenders may lie or give out contradictory recommendations to different
entities.
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Following Yu and Singh [11], we define local trust and global trust (reputation).
An entity's local trust with respect to another entity is from his/her direct
experiences. The local trust consists of situational trust which can be propagated
to others upon request. An entity's global trust (reputation) with respect to
another entity combines the local trust (if any) with recommendations received
from other entities.
How to find recommenders is another issue. Yu and Singh [11] proposed an
algorithm to find acyclic paths between a querying entity and recommenders. The
number of possible paths is related to the connections between entities. If the
entities are densely connected, the number of paths is quite large. If the entities
are sparsely connected, the number of paths could be quite small or even zero.

6. CONCLUSIONS AND FUTURE WORK

We have addressed the problem of building a general trust model for online
entities based on their direct experiences and the recommendations of other
entities. Considering trust a complex and multi-faceted thing, we use the
estimated distribution in a multidimensional outcome space to represent trust.
The statistical characterizations of trust (incremental trust update, estimated
error, outcome space mapping) are discussed. Our trust model can be used by
different decision models (utility, failure probability, satisfaction) for rational
decision making in different scenarios.
For füture research, we plan to investigate how the recommendations from
different entities can be combined, how malicious recommendations can be
detected, and how recommenders can be found. We intend to test the behavior of
our trust model using simulations.
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Abstract
In a previous work, [1], we presented a Petri Net based framework

in which various confidentiality properties may be expressed in terms of
predicates over system state and abstraction mappings from the reach-
able states and transitions of the underlying Petri Net. Here we extend
that work by generalising these mappings by allowing them to be state
dependent. This provides a natural framework in which to model var-
ious situations of importance in security, for example key compromise
and refresh, downgrading of secrecy labels and conditional anonymity.
We also show how global changes in the abstraction mappings can be
used to model how some secrecy requirements depend on the status of
the observer. We illustrate this by modelling the various flavours of
anonymity that arise in the dining cryptographers example.

A further development on the earlier work is to provide a more com-
plete treatment of silent actions. We also discuss the expressiveness of
the resulting framework and the decidability of the associated verifica-
tion problems. l

Keywords: opacity, non-deducibility, anonymity, Petri nets, observable behaviour,
silent actions.

1. Introduction

The notion of opacity with respect to a given system predicate, see for
example [10], formalises the idea that an observer of a system may never
be able to establish the truth of that predicate. As such it appears to
be very general and flexible and to allow a wide class of well-established
notions of secrecy to be captured.

In a previous paper, [1], we presented a Petri Net based framework in
which various opacity properties may be expressed in terms of predicates
over system state and abstraction mappings from the reachable states
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and transitions of an underlying Petri Net. in this paper we extend this
earlier work in a number of respects:

• Rather than just considering a static abstraction mapping we allow
the transition labels to depend on the markings, i.e., the system
state.

• We give a more satisfactory treatment of silent actions.

• We introduce a further Petri Net based notion of opacity, namely
total opacity.

• We give a more extensive discussion of the notion of anonymity in
this framework. In particular we illustrate, using the full dining
cryptographers example, how flavours of anonymity may change
with the observer viewpoint, i.e., with the abstraction mapping.

• The decidability results of [1] are extended to this richer model.

Our earlier framework allowed us, via the notion of opacity, to cap-
ture a number of situations of importance in security but that sit awk-
wardly with the more familiar information flow concepts such as non-
interference [3]. These include, for example, anonymity and encrypted
channels in which there is inevitably some partial information flow. The
extended framework presented here allows us to go further and capture
situations in which the information flow may vary with the state of the
system. Note that we can include the state of an adversary in our system
model. Thus we can now model key compromise or refresh as well as
classification downgrades.

The new form of opacity, total opacity, that we introduce here further
allows us to capture the notion of non-inference.

Using the framework of Petri nets gives us access to a raft of existing
results and tools that have been developed in the Petri net community.

2. Petri nets

In this section, we introduce Petri nets with weighted arcs [12], and
give their operational semantics in terms of step sequences2.

A (weighted) net is a triple N = (P, T, W) such that P and T are
disjoint finite sets, and ^ : ( T x P ) U ( P x T ) - > M . The elements of P
and T are respectively the places and transitions, and W is the weight
function of N. In diagrams, places are drawn as circles, and transitions
as rectangles. If W(x,y) > 1 for some (x,y) G (T x P) U (P x T), then
(x,y) is an arc leading from x to y. As usual, arcs are annotated with
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their weight if this is 2 or more. We assume that, for every t €T, there
is a place p such that W(p, t) > 1.

The pre- and post-multiset of a transition t G T are multisets of places,
PREJV(£) and POSTjv^), respectively given by PRE^(t)(p) = W(p, t) and
POSTJV(£)(P) = W(t,p), for all p E P. Both notations extend to fi-
nite multisets of transitions U: PREjsr(U) = ^2teuU(t) ' PRE^(t) and

A marking of a net iV is a multiset of places. Following the standard
terminology, given a marking M of N and a place p G P, we say that
p is marked if M(p) > 1 and that M(p) is the number of tokens in p.
In diagrams, M will be represented by drawing in each place p exactly
M(p) tokens (black dots).

Transitions represent actions which may occur at a given marking and
then lead to a new marking. Here we define this dynamics in terms of
multisets of (simultaneously occurring) transitions.

A step is a non-empty finite multiset of transitions, U : T —> N. It
is enabled at a marking M if M > PREN{U). Thus, in order for U to
be enabled at M, for each place p, the number of tokens in p under M
should at least be equal to the total number of tokens that are needed
as an input to [/, respecting the weights of the input arcs.

If U is enabled at M, then it can be executed leading to the marking
M' — M — PREiv(^) -f POST]v(t/). This means that the execution of U
'consumes' from each place p exactly W(p,t) tokens for each occurrence
of a transition t G U that has p as an input place, and 'produces' in each
place p exactly W(t,p) tokens for each occurrence of a transition t G U
with p as an output place. If the execution of U leads from M to M' we
write M[U)M'.

An execution from a marking M to a marking M' is a sequence /i =
MUiMx... Mn-iUnM' such that M [Ux) Mx • • • Mn_i \Un) M' . We also
say that M' is reachable from M.

3. Observing Petri net behaviour

In this section, we introduce a specific device aimed at modelling
various observation capabilities based on the executed behaviours of a
Petri net. Our framework is deliberately general to allow one to deal
with a wider range of observation scenarios. We also extend the previous
scheme, by allowing even greater discriminating power on the observer's
side.

We start by making a small (but important from the point of view
of applications) adjustment of the standard notion of a marked net, by
assuming that the system specification we are given at the outset is a
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pair £ = (JV, JMO), where N is a net as defined in the previous section
and A4Q is a non-empty finite set of initial markings. This allows us to
easily model situations where only partial information of the initial state
of the system is available to an observer.

We will denote by [Mo) the set of all markings reachable from any of
the markings in Mo, and by RG(E) the reachability graph of £ defined
as the labelled directed graph whose nodes are the markings in [.Mo), a n d
the labelled arcs represent all steps executed at these markings according
to the rules from the previous section We will denote by RGstepsfä) the
set of all the steps labelling the arcs of RG(T,).

3.1 Visibility of reachable markings and
executed steps

In our approach, we assume that there is a mapping obs which for each
reachable marking in [MQ) returns some label obs(M) which is meant
to capture the observable or visible aspects of system's global states.
We further assume that the mapping is defined for steps of executed
transitions; more precisely, for each reachable marking M and a step
of transitions U enabled by M, obs(M, U) issome label which is meant
to capture the observable or visible aspects of executing step U at the
global state M.

We do not place any restrictions on the nature of the obs mapping at
this point; indeed, it is left under-specified deliberately to accommodate
a wide range of observation scenarios. We only assume that markings
and steps are visible through different sets of labels (i.e., obs(M) •=/=•
obs(M', U), for all M, M' e [Mo) and U enabled at M').

We employ a special label r which is returned as the value of obs(M, U)
in cases when U is a step invisible to the observer in the system state
M.

Notice that, unlike in [1], we do not define the mapping obs for steps,
i.e., obs(U) is not assumed to be given (clearly, if obs{M,U) returns
the same label i for all markings M enabling [/, then we can define
obs(U) = £ and we have exactly the setup from [1]). The motivation for
this is that we envisage application when the observability of executed
transitions would depend on the current state of the system (for example,
after breaking one of the cryptographic keys used by a system under
attack, the adversary would typically be able to deduce more from the
observed message exchange).

Suitable choices of obs mapping can be used to encode the various
levels of visibility of system behaviour that we attribute to the environ-
ment or adversary. Thus transitions visible only to a secret user might
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be mapped to a r label. Such events would be completely invisible to
the environment, i.e., the environment would not be aware that any
transition had occurred (and, if all the transitions in an executed step
are invisible, then the whole step is mapped to r) . Transitions corre-
sponding to the transmission of encrypted values could be mapped to
a single label. Transitions deemed visible to the adversary may be left
unchanged by the obs rnapping.

Note that, in particular, obs allows us to 'detect' properties like
deadlock-freeness or acceptance sets. The theory is rich enough to in-
corporate and reason about them. It is another matter, of course, how
deadlocks would be detected or observed in the real life system, but these
issues are beyond the scope of the current paper.

Having defined the observable aspects of individual markings and
steps of transitions, we can define the effect of the observation mapping
on the executions of the marked net E.

Let ß — MQUIMI . . . Mn-iUnMn be an execution from a marking
O- We first introduce two auxiliary notations:

• obsf(fi) = ^o^i^i •.. £'n£n is the sequence obtained from \i by replac-
ing each Mi by £\ — obs(Mi) and each Ui by ^ = obs(Mi-\, Ui).

• obs"(/j) is obtained from obsf(/i) by replacing each maximal sub-
sequence <^4+i^i+i... ^ j such that i < j and ^ = • • • = £j and
4+1 = • • • = ^ = r , by £f, where 5 = {Af*, M m , . . . , M,}.

o6s/; collapses sequences of the same (observable) states interspersed
with r 's into a single state, since this is what will be observable to the
user.

Suppose now that obs"(ii) = ̂ f1^^2 • •. Ü^. Then the observation of
\i is given by obs(n) — £^£[£2 • • - £m- Moreover, for each i < m, obsl(n) =
5» and obsinit{fi) = Si , obsfin(fi) = Sm , obsal\fj) = Si U . . . U Sm .

For example, if /i = MQUIMIU^M^U^M^ is such that obsf(fi) =
zrzbwry then obs(fi) — zbwry, obsinit(ß) — {M0,Mi}, obs* (n) =
{M3} and o65

a//(/x) = {M0,Mi, Af2,M3}.
Note that one could have deleted from obs(ß) all the remaining r's

without changing any of the subsequent results, but this would have led
to a more complicated definitions and constructions in proofs.

Examples. The two basic forms of defining the obs mapping are
transition labelling and marking projection. In the first case, we assume
that each transition t has its own (not necessarily unique) label £{t) and



164 Formal Aspects ofSecurity and Trust

then the visibility of a step U = {t\,..., tk} is defined as the multiset

r} otherwise .

In the case of marking projection, we assume that Vis C P is a set of
places on which we can always see the tokens, and all places in P \ Vis
are hidden from us (in the extreme case, Vis — 0 which effectively
means that no information about the tokens is available). Then, for
every marking M, we define M\VÜ a s a multiset over Vis such that
^ I Vis(p) = M(p) for every place p G Vis.

Dynamic observation functions can be encoded using these projec-
tions. We simply include information that the observer has as part of
the net. For example, in Figure 1, the net on the left represents the
transmitting of messages encrypted using a key k. The net on the right
represents the observers state of knowledge of the encryption key. Before
the inverse key (k~l) is known is represented by state S2 and after the
inverse key is known by state 53. The key may be refreshed (modelled
by the ref transition); this moves the observer back to the initial state.
We include the possibilty that the ref transition may also occur before
the key is compromised.

Figure 1. An encoding of a dynamic observation mapping.

The (relevant part of the) obs mapping can then be defined as
obs(M) = M , obs({Si, 52}, {m}k) = {m}k , o6s({5i, 53}, {m}k) = m
and so when the observer has the inverse key he can read any messages

which pass on this channel.
Of course, once the observer has the inverse key he can go back to any

previously read messages which he has saved, and decode them offline.
It is possible that the observation function could also take this post-
hoc analytic ability into consideration, but we do not pursue that idea
further in this paper.

The same construction also seems suitable to model the notion of
a downgrader: Once the appropriate downgrade action takes place an
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uncleared user may observe the messages or read the files which have
been downgraded.

Figure 2 is an example of using the r transitions to model information
flow. Consider two system users, high and low. high is able to execute
either of two large processes, initiating them with the action exe\ or exe^
as appropriate. low is using the same system, but is a lower-priority user.
His work request will be disallowed if high is executing one or other of
his processes.

Figure 2. An encoding of an information flow.

We can consider the exe\ and exe2 transitions as silent or r transitions
with respect to the low user. If the high user is in state 52 or S% then
when low attempts to work he will be unable to perform the transition.
This will allow him to deduce that either S2 or S3 is occupied, but not
which one.

The (relevant part of) the obs mapping would then be defined as

obs({SuS
obs({S2,
obs({S3,

obs({S2,S4},
obs({S3,S4},

obs(M)
4}, {work})

54},{exe})
54},{exe})
{end.exe})
{end-exe})

= M s4

= work
= T

= r
= r
= r

Although low cannot see the state of high directly, some information
can be deduced by the willingness of the system to respond to his own
work requests. Either high is in state S± and the work request will be
granted, or high is in one of states $2 a nd S3, and the work request will
not be granted.

In fact, this approach appears somewhat linked to the CSP refusals
semantic model [9]. In that, the semantics of the system is taken to
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be the observed traces of events, together with the sets of events that
may be refused to an observer. Here, the semantics of the systems (as
observed by low) is taken as a trace of states and transitions (events) but
some refusal information is captured by our treatment of silent actions.

Exploring and formalising such links to other semantic models is not
pursued here, but will be considered in a forthcoming paper.

3.2 Opacity

In the present framework, we are interested in whether an observer
can establish a property V at some specific state(s) of the execution of
the system solely on the basis of its visible version. We consider here
any state property, i.e., one which can be evaluated at any reachable
marking in [.Mo)- Clearly, any such property can simply be represented
as the set of those reachable markings where it holds, and so we will
take V to be any subset of [Mo)-

Now, given an observed execution of the system, we will be interested
in finding out whether the fact that an underlying rnarking belongs to
V can be deduced by the observer. Note, however, that we are not in-
terested in establishing whether the underlying marking does not belong
to V. To do this, we would rather consider the property V — [MQ)\V.

What it means to deduce a property can mean different things de-
pending on what is relevant or important from the point of view of real
application. Below, we formalise four possible ways of defining variants
of opacity. The first two properties can be used to capture the fact that
we are only interested in the holding of our property in the observed
initial or final state, respectively.

• V is initial-opaque if for every execution \i from any marking in
Mo, if obsimt(/j,)nV ^ 0, then there exists an execution ji' from a
marking in Mo such that obs(fi) = obs(f2f) and obsvmt (ß')r\V = 0.

• V is final-opaque if for every execution \x from any marking in
A1o> if obs^in(/x) P\V T̂  0 , then there exists an execution ß' from a
marking in MQ such that obs(ß) = obs(ß') and obs^in{iJi')r\V = 0.

The next property reflects a view that we are interested in the holding
of our property at all the specific observed states of the execution.

• V is always-opaque if for every execution /i from any marking in
Mo, if obsl(fi) fl P / 0 for some i, then there exists an execution
fi' from a marking in Aio such that obs(n) = obs^) and obsl(ii')^
V = 0 .

The last property capture the situation that the holding of our prop-
erty can never be established for sure.
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• V is total-opaque if for every execution /J, from any marking in MQ
such that obsall(n) f l P ^ 0 there exists an execution / / from a
marking in Mo such that obs(fj,) = obs(ß') and obsall(fjf)nV = 0.

initial-opacity is illustrated by the dining cryptographers example. It
would appear that initial-opacity is suited to modelling situations in
which initialisation information such as crypto keys, etc, needs to be
kept secret. More generally, situations in which confidential information
can be modelled in terms of initially resolved non-determinism can be
captured in this way. always-opacity would seem more appropriate to
capture situation in which secret information is input at run time, for
example due to high level interactions.

The distinction between total-opacity and always-opacity can be illus-
trated in the two diagrams below.

(a) (b)

Figure 3. The difference between total-opacity and final-opacity.

Assume that each of the paths through the nets in figure 3 gives rise to
the same observation. In figure 3(a), a property which holds at each of
the states marked T will be always-opaque, because at each of the states
where it holds there is a corresponding execution for which the property
does not hold in the corresponding state. But it is not total-opaque,
because by the end of whichever execution we observe, we can say that
the property has held at some point. For total-opacity we would require
the extra execution of figure 3(b). Now, at the end of the execution we
do not know if the property was ever true.

Informally, the notion of non-inference, [11], captures the idea that
an observer should never be able to eliminate the possibility that the
High user did nothing. More formally:

V£ G traces(S) 3t' G traces(S) •
t | Low = t' | Low A t' l High = ()
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We will be exploring the application of these formal properties in a
future paper.

PROPOSITION 1 IfV is total-opaque then ü is initial-opaque, final-opaque
and always-opaque. Moreover, if V is always-opaque then it is initial-
opaque and final-opaque. No other implication of this kind in general
holds.

THEOREM 2 For x £ {initial^final^always^total}, it is the case that
V — 0 25 x-opaque, V = [MQ) ^S n°t x-opaque, and ifVCV' and V' is
x-opaque then V is x-opaque.

What now follows are crucial results stating that three of the four
notions of opacity are decidable provided that the system has finitely
many states. In all the results that follow, it is assumed that [MQ) is
finite.3

THEOREM 3 It is decidable whether V is initial-opaque.

THEOREM 4 It is decidable whether V is final-opaque.

THEOREM 5 It is decidable whether V is total-opaque.

4. Dining cryptographers

To illustrate our approach, we use the example of the dining cryptog-
raphers, first presented in [4]. A simplified version (involving only two
cryptographers) was presented in [1].

This example involves three diners and admits some further anonymity
properties, e.g., a paying cryptographer can remain anonymous w.r.t. his
or her companions.

The three cryptographers, Anne, Bob and Charlie, enjoy a meal in
a restaurant. When they call for the bill, the waiter tells them that it
has already been paid. Each cryptographer wishes to know whether the
bill was paid by the NSA, or if it was one of them. However, if one of
them paid, they do not want an eavesdropper, Yves, on the neighbouring
table to know which of them paid. The protocol they choose to solve
this problem is as follows:

They each toss a coin, and reveal the result only to the cryptographer
sitting one their left. Yves, of course, cannot see any of the coins. If
Anne paid, she lies about the parity of the two coins (she calls 'agree' if
she sees a head and a tail, and 'disagree' otherwise). If Anne did not pay,
she tells the truth about the parity of the coins. Similarly for Bob and
Charlie. Now each cryptographer knows if the NSA paid for the meal,
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or if the bill was settled by one of them. If the number of "disagree"
calls is even, then the NSA is paying. If the number is odd, then one of
the cryptographers is paying. In this case, the other two cryptographers
do not know which of their dining companions has paid for the meal.
Yves cannot distinguish the paying cryptographer from the others.

AP

BP

CP

BO

Figure 4-

markings.
Net for the 3-way dining cryptographers example with one of the n initial

Figure 4 presents a possible encoding of the protocol. The two places
at the top of the diagram represent Anne's initial state (having paid is
represented by placing a single token in place AP, and having not paid
is represented by placing a single token in place A->P). The two places
at the right represent Bob's initial state (BP and B-^P) and the two
places on the left Charlie's initial state (CP and C~*P). The possible ini-
tial markings for these places are {AP,JB-IP, C^P}, {A^P,BP,C-^P},

{A^P,B-*P,C^P}. The three sets of two places in
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the centre of the diagram represent the three coins (heads is represented
by placing tokens in place c^h, and tails is represented by placing tokens
in place c\t, for i = 1,2,3). For each pair, the marked place must contain
two tokens. This is because two cryptographers must see each coin. The
possible initial markings for the coins are therefore

{{lh,lh},{lt,lt}} x {{2h,2h},{2t,2t}} x {{3h,3h}, {3t,3t}}
The set of possible initial markings, MQ, is the cross product of the

cryptographer markings and the coin markings.
The eight transitions at the top represent the eight possible scenarios

for Anne, given by two possibilities for each coin multiplied by the two
possibilities for her own initial state. Each transition is labelled with
'AO' (if Anne says the coins 'disagree') or lAV (if Anne says the coins
'agree'). Similarly for Bob on the right and Charlie on the left. This gives
the transition labelling £ which will be used for defining the visibility of
steps.

Yves' observation function is simple. He can see none of the places
(he does not know the initial state of the cryptographers, nor the state of
the coins), but he can see all of the labels of the executed transitions (he
can hear all that they say). In other words, for every reachable marking
M and executed step £7, we have the following (see section 3.1):

obsY{M) = M\0 = 0 , obsY(U) = £{U).
Note that Yves also knows the structure of the original net, i.e., the

protocol.
We wish to demonstrate that after observing the execution of tran-

sitions, although Yves may be able to determine whether the meal
was paid for by one of the cryptographers, he can never know which
one. The three properties we wish to be initial-opaque are therefore
VA = {M e Mo | M{AP) = 1} and VB = {M e Mo \ M(BP) = 1}.
VC = {M eM0\ M{CP) = 1}.

Yves cannot determine the satisfaction of any of the above predicates.
Note, however, that Yves can in either case determine the satisfaction
of the property V = {M e Mo \ M(AP) + M(BP) + M(CP) = 1}, i.e.,
he knows when one of the cryptographers paid the bill. In terms of our
framework, both V\ and V2 are initial-opaque, but V is not.

These properties are similar to the ones which hold for the limited
version of the case study, presented in [1]. The difference is that in
the situation where one of the cryptographers paid for the meal, the
other two do not know who it was. The paying cryptographer remains
anonymous with respect to their dining companions. To see this, we
model the point of view of one of the cryptographers, by change the obs
function to model the increased level of knowledge. For example, the
observation function of Anne is such that, for every reachable marking
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M and executed step [/,

obsAnne(U) = £(U).

Anne knows her own initial state, and can see the state of her coin and
the coin on her left. Given this observation function, she learns exactly
what she wants to know — did the NSA pay, or was it one of her friends?

5. Conclusions and future work

We have presented an extension of our earlier Petri net framework in
order be able to capture a richer class of information flow requirements.
In this richer model we can encompass conditional information flow poli-
cies (e.g., downgraders) as well as scenarios that include key compromise
and key refreshment.

In this paper we model the full dining cryptographers example which
allows us to illustrate how various flavours of anonymity can be captured,
corresponding to the various observer viewpoints.

A further advance presented here is a full treatment of invisible events.
The decidability results of the earlier paper have been extended to

the richer model presented here and for the new total opacity property.
In future work we intend to explore the relationship of the approach

presented here to process algebraic formulations of generalised non-
interference [14] and anonymity [15].

A major challenge in such work is the choice of appropriate abstrac-
tions to encode the adversary's observational capabilities. This is partic-
ularly delicate where cryptographic mechanisms are involved. Adversary
deductions and algebraic manipulations complicate the modelling. We
intend to investigate using the dynamic obs mappings presented here to
address such issues.

A further line of research is to explore analogues in this framework
of the notion of non-deducibility on strategies, due to Johnson and Wit-
tbold [17]. This seeks to capture the possibility of a secret user and
an uncleared user colluding and using adaptive strategies to cause in-
formation flows in violation of the policy. This is likely to require more
precise modelling of various flavours of non-determinism within the Petri
net framework.

We will also investigate the problem of preservation of opacity prop-
erties under refinement and composition of Petri nets.
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Notes
1. A fuller version of this paper, which includes the omitted proofs, can be found at [2].
2. We have already demonstrated in [1] that step and interleaving semantics lead to

different notions of opacity (even without the r labels we introduce later).
3. Note that the finiteness of [.Mo) is decidable, and can be checked using the standard

coverability tree construction [12].
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Abstract The security of a network configuration is based not just on the security of its in-
dividual components and their direct interconnections, but also on the potential
for systems to interoperate indirectly across network routes. Such interoperation
has been shown to provide the potential for circuitous paths across a network that
violate security. In this paper we propose a constraint-based framework for rep-
resenting access control configurations of systems. The secure reconfiguration
of a system is depicted as a constraint satisfaction problem.

Keywords: Secure interoperation, constraint satisfaction.

1. Introduction

In its most general case, determining the security of a system is undecidable
[Harrison et al., 1976] (the safety problem). This has led to the design of a
wide range of decidable security mechanisms that are based on more restric-
tive forms of security, for example, [Amman and Sandhu, 1992, Bertino et al.,
1998]. These mechanisms decide whether an access by a subject is authorized
according to the rules set out in a security policy. A system is secure (upholds
its security policy) if it is not possible for a subject to gain unauthorized access.

The composition of secure systems is not necessarily secure. A user may
be able to gain unauthorized access to an object by taking a circuitous access
route across individually secure but interoperating systems [Gong and Qian,
1996, Foley, 2000]. Determining security is based not just on the individual
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system authorization mechanisms but also on how the systems are configured
to interoperate. For example, if Alice is permitted to have access to Bob's files
on the Administration system, and Clare is permitted access Alice's files on the
Sales system, then is it safe to support file sharing between these systems? The
extent of system interoperation must be limited if the administration security
policy states that Clare is not permitted access to Bob's (administration) files.

The computational challenges of secure interoperation for access control
systems is considered in [Gong and Qian, 1994, Gong and Qian, 1996]. In
their research Gong and Qian represent access control as an abstract graph of
system entities (files, users, etc.) with arcs representing (binary) potential for
access. System interoperation is defined as a form of graph composition, and
determining whether an interoperation is secure can be performed in polyno-
mial time. However, given systems whose interoperation is not secure, then
optimally re-configuring the interoperation such that composition is secure is
NP-complete. Finding an optimal re-configuration is desirable in order to min-
imize the extent of the additional access restrictions and maximize desired in-
teroperation: reconfiguring access control to deny all access, while secure, is
overly restrictive.

We are interested in the development of practical tools for modelling and
analyzing complex system configurations. In this paper we describe how con-
straints [Bistarelli et al., 1997, Bistarelli, 2004, Wallace, 1996] provide a prac-
tical and natural approach to modelling and solving the secure interoperation
problem. Constraint solving is an emerging software technology for declara-
tive description and effective solving of large problems. The advantages of ex-
pressing secure interoperation as a constraint satisfaction problem is that there
exists a wide body of existing research results on solving this problem for large
systems of constraints in a fully mechanized manner. Section 2 provides a brief
introduction to soft constraints.

In Section 3 we propose a constraint-based framework for representing ac-
cess control configurations of systems. By building on a semiring of permis-
sions, our framework is sufficiently general to be applied to models such as
[Gong, 1999, Sandhu et al., 1996]. Section 4 defines what it means to securely
reconfigure a system as a constraint satisfaction problem and Section 5 uses
this definition to formulate the meaning of secure interoperation. The advan-
tage of taking the constraint approach is that information about all possible
interoperation vulnerabilities are effectively available during analysis. This
provides the potential for managing tradeoffs between vulnerabilities using
techniques such as [Bistarelli and O'Sullivan, 2003]. Conventional tests for in-
teroperation [Gong and Qian, 1994, Gong and Qian, 1996] are designed to find
just one vulnerability. Section 6 considers a special case of secure interopera-
tion that is not unlike the approach described in [Gong and Qian, 1994, Gong
and Qian, 1996]. In Section 7 a number of concluding remarks are made.
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2. Soft Constraints

Constraints have been successfully used in the analysis of a wide variety of
problems ranging from network management, for example [Fruehwirth and
Brisset, 1997, Aziz et al., 2004], to complex scheduling such as [Bellone
et al., 1992]. They have also been used to analyze security protocols [Bella
and Bistarelli, 2001, Bella and Bistarelli, 2002, Bella and Bistarelli, 2004],
to represent integrity policy [Bistarelli and Foley, 2003a, Bistarelli and Foley,
2003b], for secure systems interoperation [Bistarelli et al., 2004b, Bistarelli
et al., 2004a] and in the development of practical security administration tools
[Konstantinou et al., 1999]. In [Konstantinou et al., 1999] constraints are used
to help the System Administrator to easily describe network configurations and
relations among servers, firewalls and services for the final users. Constraints
are used to represent, in a declarative manner, the relations among network
objects. This permits the use of local propagation techniques to reconfigure
the network when hardware/software changes occur (particularly in a wireless
environment). Such automatic reconfiguration would not be possible if the
network policy was encoded using conventional shell scripts.

The constraint programming process consists of the generation of require-
ments (constraints) and solution of these requirements, by specialized con-
straint solvers. When the requirements of a problem are expressed as a col-
lection of boolean predicates over variables, we obtain what is called the crisp
(or classical) Constraint Satisfaction Problem (CSP). In this case the problem
is solved by finding any assignment of the variables that satisfies all the con-
straints.

Sometimes, when a deeper analysis of a problem is required, soft constraints
are used instead [Bistarelli et al., 1997, Bistarelli et al., 2002, Bistarelli, 2004].
Soft constraints associate a qualitative or quantitative value either to the entire
constraint or to each assignment of its variables. More precisely, they are based
on a semiring structure 5 = (A, +, x, 0,1) and a set of variables V with do-
main D. In particular the semiring operation x is used to combine constraints
together, and the -f operator for disjunction, projection and for comparing lev-
els (a partial order <s is defined over A such that a <s b iff a + b = b).

Technically, a constraint is a fünction which, given an assignment r\ : V —>
D of the variables, returns a value of the semiring. So C — r\ —> A is the set of
all possible constraints that can be built starting from S, D and V (values in A
are interpreted as levels of preference or importance or cost).

When using soft constraints it is necessary to specify, via suitable com-
bination operators, how the level of preference of a global solution is ob-
tained from the preferences in the constraints. The combined weight of a set
of constraints is computed using the operator ® : C x C —> C defined as
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(ci <S> C2)r\ — c\r) xs C2Tj. Disjunction of constraints © : C x C —» C is instead
defined as follows: (ci 0 02)77 = c\r\ +s C277

By using the ©5- operator we can easily extend the partial order <s over
C by defining c\ CI5 c^ *<=> c\ ©5 c^ — C2. In the following, when the
semiring will be clear from the context, we will use C.

Moreover, given a constraint c e C and a variable Ü G 7 , the projection ofc
over y — {v}9 written c 4(y-{v}) is the constraint c' s.t. c'rj = YldeD cv[v : =

3. Access Configuration

Let ENT represent the domain of all possible entities (subjects, objects,
principals) that are of interest across all systems in a network. Access relation-
ships are defined in terms of the permission that one entity holds for another.
The current access constraints in a system are represented as a soft-constraint
C(X, Y) over variables X, Y, where for o, b e ENT then C(a, b) e PERM
is the access permission that entity a holds for entity b.

Permissions are represented using a semiring S == {PERM, +, x, _L, T)
where PERM represents the set of all possible permissions, -f- (union) and
x (intersection) are used to combine permissions. _L represents the no-access
permission and T represents fiül-access permission. In general, an entity with
permission p G PERM implicitly has permission p' < p, where < is the
partial order relation on the semiring S. Encoding permissions using a partial
order is common, for example, [Bell and Padula, 1976] is based on a partial or-
der of security classes, Java Security permissions are partially ordered [Gong,
1999] and [Bharadwaj and Baras, 2003] codifies Role and Permission lattices
within a semiring.

DEFINITION 1 Access Configuration. An access configuration of a system
is represented as a constraint on the access permissions between entities from
ENT. D

EXAMPLE 1 Given an arbitrary semiring S = (PERM, -h, x, _L, T) of per-
missions, an access configuration that denies all access for all entities in X, Y G
ENT is defined as:

A system that places no access restrictions on entities is specified as the null
constraint CT, where CT (X, Y) = T for all X, Y. A

EXAMPLE 2 Consider a simple system 51 with permissions no-access (F)
and full-access (T) that are represented by the Boolean algebra:

= <{P,T},V,A,F,T) .
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•"si

c •—"•

Figure 1. An access flow permitted through transitivity (Example 2).

The system has entities: a, b and c with access constraints

CSi(c,b) = F

Cs x(b,a) = F

In this constraint network we can evaluate Csi(a, b) = Csi(b, c) = T and,
by transitivity, Csi(a,c) = T. This situation is depicted in Figure 1. Note
that in this figure, and in all others in this paper, solid (light/green) lines repre-
sent permitted flows (T in this case), and dashed (dark/red) lines represent not
permitted flow (F in this case).

In practice, access control need not always be transitive and many interest-
ing and useful requirements can be described by, what are effectively, non-
transitive access configurations [Lee, 1988, Foley, 1992, Foley, 1997, Foley,
2000]. To model non-transitive access flows, prohibitions on transitive access
must be explicitly specified within the system of constraints. For example,
adding the constraint Csi(a, c) = F implies that Csi(a, c) is evaluated as F
(the greatest lower bound on the weights of all paths that connect a to c). The
class of all access configurations that are based on the boolean semiring of
permissions is equivalent to the set of reflexive policies described in [Foley,
1992,Foley, 1997]. A

EXAMPLE 3 A system supports read and write access control, as defined by
the semiring Srw = ({2^r'W^,U, fl, {}, {r,w}). The system has constraints
(see Figure 2):
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CS1

•* a {rw}

{r}

A

c "'••

Figure 2. The access flows in the system described in Example 3.

A

4. Access Reconfiguration

An existing access configuration may be safely re-configured by further re-
stricting (decreasing permission levels) the existing access relationships. In-
creasing (according to the semiring) permissions between existing system en-
tities is not permitted as it may lead to an entity having access that was previ-
ously denied.

DEFINITION 2 Secure Reconfiguration. We say that Csr is a suitable recon-
figuration of access configuration Cs ifCs' E Cs, where for any assignment rj
of variables to domain values from ENT, then Cs'T) < C577. D

It follows by definition that C is a partial order with most restrictive configu-
ration C± and least restrictive configuration C-\. We have for any configuration

EXAMPLE 4 Configuration C51 can be securely reconfigured as C52 (see
Figure 3), where

CSr2tu(a,b)-{r,w} Cs?Jb,c) = {r} Cs?Ja,c) = {}
Cs^ (b, a) = {} Cs?w (c, b) = {} Cs?w (c, a) = {}

We have C± Q CS2w C Csiw QCj. A
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{rw} b

Figure 3. The secure reconfiguration of Csi^ as CS2^ (Example 4).

5. Access Interoperation

A network is composed of a number of different interoperating systems. For
the purposes of this paper we assume that interoperation is represented by en-
tities that are common to the individual systems. For example, a system with
user a and a shared filesystem b, interoperates with any system that has the
same user a or mounts the same file system b. While a system has control
over its own system it has no jurisdiction over access control on other systems.
Therefore, when a system interoperates with another, we need to ensure that
the interoperation is such that it is not possible for the access rules of the orig-
inal system to be bypassed by taking a circuitous route through the connected
system.

When (securely) composing systems 51 and 52, the new 'combined' sys-
tem 53 must represent a secure reconfiguration of 51 and 52, that is, C53 Q
Csi and Csz E Cs2- It is clear that C± is a secure re-configuration as it pro-
hibits all access. However, C± is overly restrictive; we seek the least restrictive
secure re-configuration of 51 and 52.

DEFINITION 3 Secure Configuration Composition. The (secure) configura-
tion of interoperating systems 51 and 52 is configured as Csi ®Cs2, where for
any assignment rj of variables to domain values from ENT, then {c\ <g> 02)77 =
c\r) Xs C2T]. This corresponds to conjunction of constraints. •

The set of all possible secure access configurations forms a lattice, with
partial order C, greatest lower bound operator 0 and unique lowest bound C±.
Therefore, the configuration specified by Csi ®Cs2 provides the least restrictive
secure re-configuration for the interoperation of systems 51 and 52.
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EXAMPLE 5 Using the semiring from Example 2, a system 53 manages enti-
ties {a,c,d} and has access configuration

C53(a,c) = F C53(a,d) = F

CSs{d,c) = F CS3(d,a) = F

Since the system does not control access to entity b, no access constraints can
be placed on this entity. The least restrictive re-configuration of the composed
system is depicted as Csi 0 C53 in Figure 4. This new configuration ensures

• 'S3

Figure 4. Configurations C51, C53 and Csi <S> Cs3 (Example 5).

(under the [I ordering) that the access restrictions of the original configurations
are preserved. For example, while Csi(a,c) = T w e have Csi <g)Cs3(s,c) = F
sinceC53(a,c) = F.

A

Configuration intersection can be used to guide the re-configuration of the
original systems. A system 51 that is to be (securely) composed with a system
52 should be re-configured using the access restrictions of (Csi 0 Cs^)- Since
0 gives the greatest lower bound on configurations according to the secure
reconfiguration (C) relation, then (Csi 0 C52) gives the least restrictive secure
re-configuration ofCsi that also ensures the access restrictions of Cs2-

DEFINITION 4 Strict Secure Interoperation. Systems 51 and 52 securely
interoperate in a strict manner if they enforce the access constraints of each
other, that is, if Csi can be regarded as a secure re-configuration of C52 and
vice-versa.

To ensure strict secure interoperation, system 51 should be (securely) re-
configured as Cf

si = (Csi 0 Cs^) and, similarly C'S2 == (ßsi 0 C52). D
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The above definition of secure interoperation is overly restrictive as it re-
quires each system to be able to enforce the access restrictions of the other.
While the constraint (Csi ® C52) represents the best secure (according to Q
re-configuration for the 'combined' system (defined in terms of entities from
both systems), in practice, the system 51 can only enforce the restrictions on
the entities that it manages, and similarly for 52. It may not be feasible to
securely re-configure 51 with Csi <S> C52 if *S1 has no jurisdiction over entities
that are managed only by 52. We therefore consider a weaker notion of secure
interoperation.

Let the alphabet ENTS C ENT of a system 5 define the set of entities
over which the system 5 can exercise access control. If we do not require
a system to be responsible for access control on entities that are not in its
alpabet then for secure interoperation between 51 and 52 we need only ensure
that Cs\ enforces the access constraints of the combined system for elements
of ENTsi, that is, whenever we have domain entities a,b e ENTsi then
C5i(a,b) < (Csi <8> C52)(a,b). This can be defined in terms of the secure
re-configuration relation as follows.

DEFINITION 5 Loose Secure Interoperation. Let C j represent a system 5
that places/assumes no access constraint over elements in ENT$, and com-
pletely denies flows among entities when one of them is not in ENTs- More
formally, we have Cj(X, Y) = T when both X and Y are elements ofENTs,
and Cj(X, Y) = _L when either X ovY (or both) are not elements ofENTs.
Systems 51 and 52 loosely securely interoperate if they uphold the constraints
(with respect to elements from their alphabet) in their composition, that is,

To ensure loose secure interoperation, system 51 should be (securely) re-
configured as C'S1(X, Y) = (CSi 0 C52) when X, Y € ENTS, and similarly
for 52. In the case of a boolean semiring, loose secure interoperation corre-
sponds to the lattice of reflexive flow policies defined in [Foley, 1992]. D

EXAMPLE 6 Continuing Example 5, 51 and 53 are re-configured for loose
secure interoperation as depicted in Figure 5. Note that in practice, networks
C'S1 and Cf

S2 would also include nodes d and b, respectively, but with no con-
necting arcs (unconstrained permissions, which we assume to be equivalent to
permitted accesses/flows).

If systems Csi and C53 are reconfigured in this way then we can be confident
that their interoperation will be secure. A
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Figure 5. Re-configurations C'Si and C'S3 (Example 6).

6. Access Transitivity

Reconfiguration for (loose) secure interoperation gives the most permissive
reconfiguration (that does not violate the original configurations). If a system
does not include an entity in its alphabet then it is assumed that it places no
restrictions on access to it.

It is useful to consider variations of this operation for more restrictive sce-
narios. In particular, some entities that are common to interoperating systems
may induce transitive relationships between entities. For example, suppose
that c is a service that is shared between systems Sl and 53 (Example 5), and
Csi(b,c) and Cs3{c,d). Rather than permitting all accesses between b and d
(as computed by 0 , since there are no explicit restrictions these entities), we
could instead assume that there is an implicit transitive restriction and weaken
the policy by allowing access from b to d, but not vice-versa.

EXAMPLE 7 The system configuration CS2 (from Example 4) allows ac-
cesses C52 (a, b) = {r,w} and CS2 (b, c) = {r}. However, access is not
permitted between a and C in CS2 . Regarding b as a transitive entity would
induce a transitive access that is the greatest lower bound of the accesses along
a path from a to c through b; in this case we would have {r} n {r,w} = {r}
access from a to c. A

DEFINITION 6 Transitive Weakening. The transitive weakening of a system
configuration Csi with a set of transitive entities A is defined as Cjf, where

C*si(X,Z) = (Csi{X,Y)®C'sl(Y,Z))lL{XiZ}

where C'S1 is defined as follows:
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• for each entity e e ENT, C'SI (e, e) = T;

• if (e, g) e Csx, and e e A (e is a transitive entity), then C'S1 (e, g) = T;

D

In general we have Csi E C$f.

THEOREM 1 Given a system with no transitive entity Csi andthe same system
Cgf with a set oftransitive entities A, we have Cs\ E Csi•

The transitive weakening corresponds to a weakening of the configuration
constraint: the new configuration may include (transitive) accesses that are not
permitted by the original configuration.

DEFINITION 7 Secure Transitive Reconfiguration. Configuration Csi is a se-
cure transitive reconfiguration of configuration Cs2, with respect to a set of
transitive entities A, if its transitive weakening is a secure reconfiguration of

2, that is,
n-kA i

D

EXAMPLE 8 ForExample7,wehaveC^(a,c) = {r}andforany (X,Y) ^
orw

(a, c), C*sf
]{X, Y) = Csiw (X, Y) (from Example 4) and thus CS2w is not a

secure transitive reconfiguration of itself. A more strict configuration must be
found, for example, the most restrictive C±. A

THEOREM 2 For all systems Cs, andfor all sets oftransitive entities A, C±
is a secure transitive reconfiguration with respect to A of Cs- Also, given
Ai C A2 easily, C*S

M E C*S
A*.

In practice, selecting C± as the secure transitive reconfiguration is not useful
as the resulting configuration is overly restrictive. In general it is desirable to
iind the smallest number of changes that must be made on the access links be-
tween entities that will ensure a secure transitive reconfiguration. Formally, we
search for a least restrictive secure transitive reconfiguration of a configuration
Csi, that is, a configuration Cst such that there is no other configuration Cst'
with Cst E Cst' E Csi • We are currently exploring constraint-based schemes
for solving this type of problem.

DEFINITION 8 (Loose) Secure Transitive Interoperation. Systems Sl and S2
securely interoperate via transitive entities in A if their interoperation is secure
when considering transitive weakening (using A).
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To ensure secure transitive interoperation we seek the least restrictive secure
reconfigurations C^x and Cl

S2 of Csi and Cs2, respectively, such that

tryA(Ct
S2®Ct

s
r
2

D

EXAMPLE 9 The secure transitive interoperation reconfiguration of 51 and
53 (Example 5) with transitive entity b for permission flows is depicted in
Figure 6.

•4

d

Figure 6. Reconfiguration (Csi (Example 9).

Here, we assume that entity b can allow implicit transitive permission. This
means that since we have a flow between a and b and between b and c, we
must have also a flow between a and c.

The difference in the result is visible by comparing Csi ® C53 in Figure 4

and (Csi 0 C53)*{b} in Figure 6. A

7. Discussion and Conclusions

The approach that we present in this paper represents a paradigm shift in the
modelling and analysis of interoperability. We present a constraint model that
provides a natural description of a network of interoperating systems. While
constraint solving is NP-complete in general, this has not detracted from its
uptake as a practical approach to solving many real-world problems [Wallace,
1996]. Previous approaches determine secure interoperation in polynomial
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time, but re-configuring an existing network of systems for secure interop-
eration, in an optimal way, is NP-complete [Gong and Qian, 1994, Gong and
Qian, 1996]. Using a constraint model, we can rely on a significant body of
successful techniques from the field of constraint processing for finding the set
of secure re-configurations with reasonable effort. As part of our future work
in this area we plan to develop an constraint-based implementation with which
to demonstrate our approach on some real world data.
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Abstract We propose a language that allows agents to distribute data with usage
policies in a decentralized architecture. In our framework, the com-
pliance with usage policies is not enforced. However, agents may be
audited by an authority at an arbitrary moment in time. We design
a logic that allows audited agents to prove their actions, and to prove
their authorization to posses particular data. Accountability is defined
in several flavors, including agent accountability and data accountabil-
ity. Finally, we show the soundness of the logic.

1. Introduction

Consider the following scenario: Alice gives marketing company Big-
Brother some personal information (e.g., her spending patterns, music
preferences or part of her medical record), in exchange for some bonus
miles. In addition, Alice allows BigBrother to sell to a third party a piece
of this information, but only if anonimized and under provision that she
will receive 10 percent of the revenues. The problem here is, how can we
make sure that the data is being used only according to Alice's wishes.
Notice that in the above scenario BigBrother might sell Alice's data to
BigSister, who in turn might sell part of it to SmallNephew, and so on.

This problem is not only that of privacy protection in a distributed
setting. In fact, modern scenarios of digital asset delivery (where a
digital asset can be anything ranging from a piece of private information
to a movie or a character in a multiplayer game) are departing from
the usual schemas in which the assets are equipped with an immutable

*This work is partJy funded by the EU under project nr. IST-1-5Ü7894-IP, by 1OP GenCorn
under project nr. IGC03001 and by Telematica Institute under project nr. 10190
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usage policy that applies to the whole distribution chain. Instead, we
are moving towards a situation in which information brokers collect,
combine and redistribute digital assets. The question that needs to be
answered here is how can we describe and enforce usage policies in such
a decentralized dynamic, evolving context.

In this paper we present a logic data access and agent accountability
in a setting in which data can be created, distributed and re-distributed.
Using this logic, the owner of the data attaches a usage policy to the
data, which contains a logical specification of what actions are allowed
with the data, and under which conditions. This logic allows for different
kind of accountability and it is shown to be sound.

Part of problem we are tackling is that of enforcing that agents actu-
ally follow the behavior that policies dictate; in general, this is a difficult
task, typically requiring continuous monitoring of agents, which is usu-
ally infeasible. Therefore, we consider an alternative to policy enforce-
ment, based on an analogy with the real world, where people are not
always controlled for correct behavior. Instead, eventually an agent (say
Alice) might be suspected of incorrect behavior; in that case, an author-
ity would query Alice for a justification of her actions. This justification
can be supported by evidence, that the authority can check.

2. System, Syntax and running example

Our system consists of a group of communicating agents which create
and share data and an authorization authority which may audit agents.
The creation of data, as well as the communication between agents, is
assumed to leave some evidence and hence is observable from the per-
spective of the authorization authority (this is discussed in more detail
in section 4). As we do not continuously monitor agents, the internal
computations of agents are not considered to be observable. However,
when auditing an agent, the data and policies currently stored by an
agent become visible to the authorization authority. Thus, the model of
an agent consists of storage, (unobservable) internal computation and
(observable) actions such as communication.

EXAMPLE 1 As a running example we consider a scenario with three
agents, a content provider Alice (a), a reviewer/distributer Bob (b) and
a user Charlie (c). In this setting Alice creates content data (d) and
sends it to Bob for review with permission for Bob to read the data but
not to retransmit it, in effect protecting the data with a non-disclosure
agreement (NDA). After some time Alice lifts the NDA by giving Bob
permission to resend the data to Charlie. Bob sends the data to Charlie
with permission to read it. Charlie does not produce any observable
actions but the policy allowing him to read the data is in his storage
afler Bob sends it.
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The following subsections introduce the logical language used to express
policies and describe the system in more detail.

2.1 The syntax

For the formal model we will use a set of agents Q ranged over by a, b
and c and a set of data objects T> ranged over by d. As the order of
actions can be relevant we also introduce a notion of (global discrete)
time described by using a well-founded totally ordered set T, ranged
over by t (in examples we will use the natural numbers for T).

The policy formulae, expressing data usage policies, further require
a set of predicates C, ranged over by p, which express basic operations
that can be performed on data. For example, read(a, d) and print(a,d)
respectively indicate that user a may read and print data d. For read-
ability we will restrict our definitions to binary predicates taking a single
agent and a single data object.

DEFINITION 2 The set of policy formulae <I>; ranged over by </> and ip,
is defined by the following grammar (with a,b E Q, d £V, p £ C):

4> ::= p(a, d) \ a owns d \ a says 0to&|</>A0|</>V</>|0—></>

First, a policy formula can be a simple predicate p(a,d), such as
read(a, d) mentioned above. Second, we have the a owns d formula.
This formula indicates that a is the owner of data object d. As we will
see below, an owner of data can create usage policies for that data. A
third construction is a says (j> to b which expresses the claim that agent a
is allowed to give policy <j> to agent b. The 'says' contains a target agent
to which the statement is said instead of the broadcast interpretation
used for a similar construct in e.g. [7, 1]. This allows us to provide a
precise way of expressing policies to certain agents. Finally, the logic
constructions and, or and implication have their usual meaning.

The base data set of a policy formula 0, denoted dv((ß), consists of
the data objects the policy refers to. It is defined as one would expect:

dv(a owns d) — dv(p(a,d)) := {d}

dv(a says (/> to b) := dv(cß)

dv((f> A ip) = dv((f) V ip) = dv((f) -> iß) := dv(<t>) U dv{^)

We denote a formula <fi whose base data set is D, i.e. dv((f)) = D, as
4>[D\. If D is a singleton set, i.e. D = {d}, we simply write (fi[d\. Note
that the base data set of a formula is always non-empty.

EXAMPLE 3 The policy which allows Bob to read the data d is expressed
as read(b,d). Allowing agent Bob to send to data on to Charlie provided
he already has permission to read it is expressed by read(b, d) —> b says
read(c, d) to c.
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create(O, a, d) (0) comm(3, a => b, read(fe, d) —• b says(read(c, d)) to c) (3)

comm(l,a =>• b, read(b, d))

comm(2, b =>• c, read(c, d)) (2)

comm(4, b => c, read(c, d)) (4)

Figure 1. The actions of Alice (a), Bob (b) and Charlie (c) in our example. Solid
arrowed lines represent comimmieations, dashed lines represent observable events.

Beside usage policies we also have the observable actions of agents.
We will use evidence formulae to describe observable actions. As men-
tioned above, communication and creation of data are the observable
actions possible in our system. For simplicity we will only consider
these two types of observable actions though extension with other types
of observable actions is possible.

DEFINITION 4 The set of evidence formulae EV, ranged over by ev, is
defined by the grammar (with t £ T a, & G G, d G T> and (p G <&):

ev ::= creates(t, a, d) \ comm(t, a=> b,(j>)

First, we have the creates(t, a, d) evidence formula which states that
an agent a has created a piece of data d at time t. As we shall see
later, this will automatically make a the owner of d. Secondly, we have
a communication evidence formula comm(t, a => b, 0), which states that
agent b has received a policy formula (p from agent a at time t. To refer
to the time of an evidence formula we define the function time : EV —> T
as time(creates(t,a, d)) = time(comm(£, a => b,</))) :— t.

EXAMPLE 5 The formula creates(0, a, d) expresses that Alice created data
d at time 0. The formula comm(l,a => 6, read(6, d)) expresses that Alice
sent the permission for Bob to read d to Bob at time 1.

2.2 The model

The observable actions executed by agents (in a run of the system) are
combined in the so called evidence set S. We will simply use evidence
formulae to describe these observable actions, i.e. £ C EV. We make
the natural restriction that only finitely many actions can be executed
at any given moment in time.

As mentioned before, agents may be audited by an authorization au-
thority, say at time T. At this time each agent a E Q has a state 5a ,
representing a's storage, which contains her present data policies. Note
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that we do not assume that the store retains all internal actions per-
formed by the agent.

EXAMPLE 6 Let assume the actions ofthe agents be the one in Figure 1.
where Bob actually sends the read permission for the data to Charlie
twice: the second time this is fine but the first time violates the NDA.
This gives the following evidence set:

E = {create(0,a, d), comm(l,a ==> 6, read(6, d)), comm(2, b =>• c, read(c, d)),
comm(3, a => ö, read(6, d) —> b says(read(c, d)) to c), comm(4, b => c, read(c, d))}

When Charlie is audited at time 5 his storage Sc contains (among oth-
ers) read(cyd). This is discovered e.g by the authorüy examining his
storage. Apparently Charlie has done some (unobservable) internal com-
putation to arrive at the conclusion that he may read d. The question
now is, did Charlie correctly conclude that he was allowed to read d and
has anything unauthorized happened to the data. We will address this
issue in the next section.

3. Using usage policies: The proof system

This section describes the proof system used to derive the actions on
data that are allowed by the policies that a user possesses. We first
give the inference rules followed by the notion provable. Note that each
agents locally reasons about policies therefore the rules include the sub-
ject, i.e. the agent doing the reasoning. Inference rules have the format
premises/conclusions where a premise can be either a policy formula
(in 3>) or an evidence formula (in EV), conclusion is a policy formula.
Moreover we subscript each rule with a subject i.e., an agent in Q. The
rules of our proof system are presented in two parts. The first, includes
standard rules from the propositional logic:

(/> ip (ß Aifj (f) Aifj (f)

(p Aip pi\i (p y; 0 V ip

W] W

VIR , , , a VE ; a MP ; a —>I ~, T a
yj\J (p tp ip ip —» (p

We have the standard rules for respectively and introduction and elim-
ination, or introduction and elimination and implication introduction
and elimination (modus ponens). An overscript [0] above ip says that (j)
is required as temporary assumption in the proof of ip. The second part
of proof system consist of the following rules which deal with creation
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of policies and with the delegation of responsibility.

comm(t, a => b,(j>) creates(£,a, d)
COMM 7~7—7 b CREATES 1 a

a says <p to b a owns d

a says <\> to b a owns di . . . a owns dn
SAY 7 6 DERPOL

0
Note that these rules do not take time or existence of evidence into

account. This will be done in our notion of (authorization) proofs.
Rule (COMM) states that if agent b has received message <j> from an
agent a at some time, then b may conclude the corresponding a says
<j> to b formula. Rule (CREATES) expresses that by creating a piece of
data, the agent becomes the owner of that data. Rule (SAY) expresses
delegation of responsibility. If agent a says <\> to b then b can assume <j>
to hold. It is a's responsibility to show that it had permission to give (f)
to b. Note that in our current setup it would also have been possible to
omit this rule and derive <f> directly in rule (COMM). We expect, how-
ever, that with extension of our logic the separation of these two steps
will become useful. Rule (DERPOL) allows the creation of policies. An
agent a can create any usage policy for data that she owns.

3.1 Building Proofs
We are ready to introduce proofs built from our logic system. The

first definition states what is in fact a proof for some agent x.

DEFINITION 7 A proof V of <f> for x is a finite derivation tree such that:
(1) each rule of V has x as its subject; (2) each rule of V belongs to one
of the above rules (3) the root ofV is </>.

Given a proof V, we write prem(V) for the set of premises in the
initial rules of V which are not temporary assumptions (like in rules \JE
and —> / ) . We also write conc(V) to denote the conclusion of the last
rule of V, and subject(V) to denote the subject.

For auditing purposes, we want to restrict to proofs that only have ev-
idence formulae as premises and whose time of the evidences is bounded.
We call such proofs justification proofs.

DEFINITION 8 A proof V is called a justification proof (of 4> for x) at
time t if every formula in prem(V) is an evidence formula ev satisfying
time(ev) < t. We denote the set of all justification proofs with J.

Note that a justification proof at time t is just a proof which is poten-
tially valid at time t. Any evidence formula can be used as a premise.
To check whether the proof is indeed valid, a link has to be made with
the actions observed, i.e. those in the set £. This will be done in the
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next section. It is easy to see that justification proofs are monotonic,
i.e. any proof that is a justification at time t is also a justification at
time t' for any t' > t.

As an aside, our policy language is negation free and all proofs have a
'constructive' flavor. For extensions of the logic, it may be necessary to
go to intuitionistic or linear logic altogether. The constructive nature of
the proofs inherently means that the derivation system is not complete:
For example, read(c, d) —> print(c, d) can hold simply because read(c, d)
does not. However, there is no constructive derivation for this (Also, as
soon as read permission is obtained, the predicate may no longer hold.)

EXAMPLE 9 In our running example agent Charlie can provide an jus-
tification proof for read(c,d) at time 5 as follows.

COMM •
comm(4, b =$• c, read(c, d))

•T-N i CUMM : — z: c

r \ \ b says read(c, d) to c
SAY T7 T̂  c

read(c, d)

Note that replacing the first premise by comm(0, b => c, read(c, d)) also
gives a justification proof for read(c,d) at time 5. This second proof
should not be accepted by the authorization authority as Bob did not
actually send anything to Charlie at time 0. The next section will treat
what agents should prove and which proofs are accepted by the authority.

4. Accountability

As noticed in the example in the previous section, agents can poten-
tially provide different justification proofs. We model an agent providing
a proof of 4> at time t a s a function Pr:&xQxT-^J{J {_!_}. Here
the value _L represents that the agent cannot provide a proof.

We present two notions of accountability. The first notion, agent
accountability, focuses on whether the actions of a given agent where
authorized. The second notion, data accountability, expresses that a
given piece of data was not misused.

Recall that in our system, an agent a can be audited at time T at which
point Sa, the storage of a, becomes visible to the authorization authority.
The observable actions performed in the system are collected in S. For
both notions of accountability, it is important to link proofs to actual
observable actions. To this end we introduce the notion of authorization
proof, which is a justification proof that is backed by actual evidence.

DEFINITION 10 We say that a justification proofV of <f> for a at time t
is authorized7 written k\it(V), when prem(V) C £. In this case we call
V an authorization proof of (/> for a at time t.
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An agent is accountable for the policies she possesses and for the usage
policies she gives to others. Thus to pass the audit, the agent needs to
authorize her storage and her communication.

DEFINITION 11 (ACCOUNTABILITY OF a) We say that agent a is au-
thorized to have <fi at time t, denoted Aut^(a, t), if she provides an au-
thorization proof, i.e. Pr(</>, a,t) ^ _L and Aut(Pr(0, a, t)).

We write Aut (a) if a is authorized to have all usage policies in her
storage at the time T of auditing, i.e. V</> G Sa ' Aut^(a,T)

We write ComAut(a) ifa was authorized to send all the policies that
she did send, i.e. ̂ comm(t,a =$• b,ip) G £ : Auta says ^ to fc(a,£).

Finally, we say that agent a passes the accountability test, written
Acc(a), if both Aut(a) and ComAut(a) hold.

ExAMPLE 12 In our running example Charlie can show to be authorized
for having read(c,d) by providing the proof from Example 9. Assuming
he is also authorized for other policies in his storage we have Aut(c)
and also Acc(c) as Charlie did not send any messages (so ComAut(c) is
emptily satisfied).

Bob, on the other hand, cannot pass the accountability test as he can-
not provide an authorization for b says read(c, d) —>• c at time 2.

Checking authorization, Aut(c), is relatively easy: The agent has to
provide the proof and it is in the agents interest to show that the com-
munications used in the proof have indeed happened. Thus a setup with
undeniable communications, e.g. through use of some non-repudiation
scheme, will be sufficient. To check ComAut(c), a setup with a much
stronger authority is needed as the authority to find and check all com-
munications of the agent looking e.g. at communication logs. (Note that
the authority does not need to be able to decryption messages, the agent
can be required to do this at the time of the audit.) Missing commu-
nications may cause an unauthorized communication of the agent to go
unnoticed but will not cause the system to break down completely. Also,
the unauthorized communication may still be discovered if the agent re-
ceiving the communication is audited.

Agent accountability is useful to check the behavior of a single agent.
However, a data owner may be more interested in whether a specific
piece of data (with corresponding usage policy) was obtained correctly.
To describe this we introduce the notion of data accountability.

4.1 Data Accountability

Data accountability describes the authorization requirements for a
single data usage policy. Unlike agent accountability, this may require
authorizations from several different agents. We first introduce weak
data accountability, which describes that a given usage policy may have
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been obtained correctly. We will then discuss some potential issues with
this notion and introduce the notion of strong data accountability.

Weak data accountability expresses that an agent must provide a au-
thorization proof and that all delegated responsibilities must also be
accounted for, i.e. for any received policies used to derive the policy,
there is data accountability for sending of that policy at the sending
agent.

DEFINITION 13 (WEAK DATA ACCOUNTABILITY) We say that <j> at a
passes the weak data accountability test at time t, written Dac(0, a,t)
if a is authorized to have <j> at time t (i.e. a provides an authoriza-
tion proof) and for all communications in the premise of the provided
authorization proof, comm(tf,b => a, xß) G prera(Pr((/>, a, i)), we have
Dac(6 says ip to a,b,tf).

We write Dac(</>,a) for weak data accountabilüy at the time T of the
audit, i.e. for Dac(</>, a,T).

Note that this recursive definition is unproblematic, as time must
decrease {t' < i) by definition of authorization proof and time is well
founded. Weak data accountability corresponds to either of the proofs
depicted in solid or dashed lines (but not both) derivations in Figure 2-
(C). Intuitively, after checking authorization of (/>, we 'recurse' to the
sending agents where data accountability is checked for the policy which
allowed sending the communication.

If data accountability does not hold, then we can deduce that, at
some point, some agent did not provide an authorization proof. Clearly
this agent does not pass the agent accountability test. The proof of the
following proposition is straightforward.

PROPOSITION 14 //Dac(0) does not hold, then 3a e G such that Acc(a)
does not hold.

EXAMPLE 15 Weak data accountabüity of read(c,d) at c implies that
Charlie needs to provide an authorization proof. If Charlie provides the
proof given in example 9 then data accountability ofb says read(c, d) to c
for Bob at time 4 will be required. Bob can indeed provide an authoriza-
tion proof: read(6, d) —> (b says (read(c, d)) to c).

( c o m m ( l , a => 6, read(6, d)) ( comm(3, a => 6, ip)

COMM , . — h T> ) C0MM 7~T~Z— b

a says read(o, d)tob rz < a says ip to b
SAY TJ] r- b SAY ; b

read(6,d) [ ^
MP j T7 7T~ b ( 1 )

b says read(c, d) to c
Clearly Alice can provide authorization proofs for the two policies she

sent as she, being the owner of the data, may create any policy. Thus
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we have Dac(reac/(c,d),c,5). We do not have Dac(reac/(c,d),c,3). TAe
onZy authorization proof Charlie can provide uses the fact that Bob sent
read permission at time 2. As we have seen before, Bob cannot authorize
sending this permission at time 2.

The example above shows an issue with weak data accountability.
The result of the data accountability check depends on the authorization
proof that Charlie provides. Both the proof using Bobs read permission
at time 2 and at time 4 could be used by Charlie. If Charlie and Bob
are working together to try to hide that Bob did something wrong, the
weak data accountability test of read(c, d) for Charlie at time 5 will not
reveal that Bob violated the NDA.

To capture situations like this we introduce the notion of strong data
accountability. As the internal computations of an agent are not visible,
the authority cannot check if the provided proof is the proof an agent
actually used to arrive at a policy. Or even if the agent created a correct
proof at all before using the policy. The fact that there is no way to
check this is an unpreventable limitation due to the unobservability of
some of the agents actions. We can, however, check all correct proofs an
agent could have used to obtain a policy. This will allow us to prevent
situation as in the example above where Charlie behaves correctly but
can still hide Bobs violation of the NDA. With strong data accountability
we do not look at the authorization proof the agent provides but instead
look at all (reasonable) proofs. In this way we force checking of all
communication that may have been used to derive a policy.

A minimal proof V of (ß is a proof of (f) for which there are no unneces-
sary premises, i.e. there is no proof of <f> using a strict subset oiprem(V)
as premises.

DEFINITION 16 (STRONG DATA ACCOUNTABILITY) We say that (ß at a
passes the strong data accountability test at time t, written SDac(</>, a, i)
if a is authorized to have (j) at time t and for all minimal authorization
proofs V of (f) for a at time t and all comm(t'\ b => a,ijj) in prem{V), we
have SDac(& says ip to a, 6, tf).

We write SDac(0,a) for strong data accountability at the time T of
the audü, i.e. for SDac(0, a, T).

Strong data accountability corresponds to following both the solid or
dashed lines in Figure 2-(C). If we assume that agents provide minimal
proofs, strong data accountability is a stronger notion that weak data ac-
countability. However, as with checking ComAut(c), a setup with a much
stronger authority that is able to monitor communication is needed.

EXAMPLE 17 We do not have strong data accountabilüy of read(c, d) for
Charlie at time 5. Although Charlie can provide authorizaüon, checking
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all possible minimal proofs will also lead to checking the communication
from Bob to Charlie at time 2 which Bob cannot authorize.

5. Semantics

Even though the meaning of our logic operators is intuitive, in this
section we shall make that more precise and define a semantic evaluation
function J= for policy formulae. Recall that the truth value of a policy
formula depends on the time, the agent doing the reasoning and the
observable actions in the system.

DEFINITION 18 (SEMANTIC EVALUATION OF POLICY (p e $) Theseman-
tic function (=: Q x V(EV) x T x $ —> {true,false}7 denoted £ \=l

a <j>, is
defined as the least function (Talse < true) satisfying:

£ \=l
a (ß when ever £ (=* b says 4> to a for some b G Q

£ |=£ cf>[D] when ever £ \=f
a a owns d for all d G D

£ Ha 0 V ̂  exactly when £\=l
a(\) and £ |=* tp

£ \=f
a (j) Aip exactly when £ |=* 0 or £ |=* ip

£ Na 4> -^ ^ exactly when £ |=* <j> implies £ |=* iß

£ (=* a owns d when ever creates(tf', a,d) £ £ for some t' < t

£ |=£ & says <j> to a when ever (comm(tf, b => a, ^)) E 5 /or some t' < t

One can construct |= basically by building it starting from what fol-
lows directly from the evidence set (the last 2 rules) and then repeatedly
adding formulae using the other rules. A complication with implication
requires that this construction is done by induction on the number of
implications in a formula. We omit further details of this construc-
tion. Note that agents "do not care" about communications and data
of other agents; For instance, formula b says </> to c will not be valid for
a other than b or c, unless somebody explicitly tells a about this (e.g.,
by c says (b says <\> to c) to a. However, even in this case a is not able to
use (ß.)

We have that our logic is sound for this semantics.

THEOREM 19 (SOUNDNESS) If V is o authorization proof of a for 4> at
time t, then £ |=^ 0.

Proof. By induction on the length of V. •

6. Related Work

Our discussion of related work is brief due to space constraints. A
more complete discussion may be found in the extended version of this
paper (http://www.ub.utwente.nl/webdocs/ctit/l/000000fe.pdf).
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( B )

(C)

Figure 2. (A) An authorization proof of <p for a is a derivation tree wbose leaves
are evidence formulae e.g.. evi . . . evn which are supported by (global) evidences (here
with [ev] we indicate that ev € £): (B) accountabüity requires authorization for every
communication for which there is evidence that a sent it; (C) weak data accountability
of (p for a, requires a global proof which prove the authorization of <p back along all the
communication events; There can be more than one path, as illustrated here in solid
and dashed arrows. Strong daia accountability requires that all paths are accountable.

[10] was extended by Samarati and De Capitani di Vimercati [11] to
allow the transfer of object privileges when an associated copy flag was
present. By contrast, we allow subjects to transfer privileges even if
the subject does not have a right. Abadi presents in [1] a logic based
method to represent the AM model where subjects can make statements
or delegate part of their rights. This is somewhat similar to ours, differ-
ing in our formula a says 0 to 6, emphasizing the target agent. Appel
and Felten [2] propose a distributed authentication framework based
on proof-carrying proofs from a higher order logic. The agents are au-
thenticated and authorized to access other users' resources, based on
the proofs they construct (similarly to a centralized approach). On the
other hand, our proposal is decentralized, with the data and usage poli-
cies flowing between the agents. Moreover, proofs of accountability are
only required when a specialized authority inquires a proof, and not con-
tinuously. More similar to ours is the work of DeTreville [7], introducing
the language Binder, designed to express statements in a distributed sys-
tem. In that work, statements from any context can be exported from
any other context. This implies a total network connectivity, which we
do not require. Sandhu and Samarati [12] mention the importance of
auditing and having a decentralized administration of authorizations. In
a similar vein, Blaze et al. [5] study trust-management systems. These
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systems support, like in our approach, delegation and policy specifica-
tions. The recent work of Chun and Bavier [6] presents an approach to
continuously monitor the trust relations over time, and the use of ac-
countability to check the behavior of users along a chain of trust. How-
ever, implementing this approach is expensive and sometimes infeasible.
On the other hand, our lightweight approach can be easily deployed,
thanks to the fact that we avoid the monitoring of agents. Our system
can be used to protect private data, in the vein of Karjoth et al. [9]
and Ashley et al. [3], which have also introduced the Enterprise Privacy
Authorization Language(EPAL) [4]. However, EPAL is more suitable
for a centralized approach, in which the users are forced to accept the
policy of the company. This applies also to the work of Gunter, May
and Stublebine [8], where agents are required to follow the privacy rights
guarding its actions.

7. Conclusions and Future Work

We have presented a logic for data access and agent accountability in
a distributed, heterogeneous setting in which data can be created, dis-
tributed and re-distributed. This framework can be used for distributing
personal data as well as valuable digital assets. In our system, the owner
of the data attaches a usage policy to the data, which contains a logical
specification of what actions are allowed with the data, and under which
conditions it can be (re-) distributed. This logic allows for different kind
of accountability. We have also demonstrated the soundness of the logic.

We are working on extensions of our system, which can be explained as
follows. Suppose Alice gives to BigBrother her personal data d together
with a policy 0; <j> might allow BigBrother to re-sell d to BigSister with
a policy (j)1. In our setting (j) must incorporate cßf in some way. In
other words, <j>f must be determined by Alice (the owner of the content)
in the first place. In a more realistic scenario, however, BigBrother
might legitimately want to supply a <j>' devised by himself, and what we
should check is whether </>' complies with Alice's wishes (encoded in </>).
For instance (f> might say that each time that BigBrother resells d to
someone, Alice should receive a dollar, so everything we should check
about <f>' is whether </>f has such a provision. The crucial feature of this
extension is that of allowing non-owners to define policies on a content,
provided that these policies are in accordance to the owner's wishes. In
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extend our logic with variables and quantifiers. The use of conditions
should allow us to model policies such as the chinese wall security pol-
icy. The second extension will consist in adding obligations (e.g., the
obligation to pay the creator a dollar for each used/resent/... / or to
notify the creator/owner if the data is resent/ resold/, etc). This will
be done by extending the notion of observable action. Once conditions
and obligations are in place, we can allow non-owners to define a policy;
in the example above, the crucial condition we need to check is that </>' is
not more liberal than <f>\ e.g., that each time that </>' allows for an action
under certain conditions and obligations, then (a derivative of) (j) allows
the same action under the same conditions and obligations.
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Abstract
Current firewall configuration languages have no well founded semantics.

Each firewall implements its own algorithm that parses specific proprietary lan-
guages. The main consequence is that network access control policies are diffi-
cult to manage and most firewalls are actually wrongly configured. In this paper,
we present an access control language based on XML syntax whose semantics
is interpreted in the access control model Or-BAC (Organization Based Access
Control). We show how to use this language to specify high-level network ac-
cess control policies and then to automatically derive concrete access control
rules to configure specific firewalls through a translation process. Our approach
provides clear semantics to network security policy specification, makes man-
agement of such policy easier for the administrator and guarantees portability
between lirewalls.

1. Introduction

It is well known in the computer security community that specifying and
managing access control rules is a hard task whatever the level of abstraction
considered. These access control rules are actually part of a more global set of
rules called an organizational policy. We argue that this organizational policy
has to be unfolded to obtain packages of access control rules. Each rule pack-
age is handled by a security component. For instance, environmental security
package, physical security package, operating system security package, staff
package and network security package. Firewalls are those components that
deal with network security packages. They are used to block to some extent
any suspicious communication from Internet to the private local area network
(LAN) and to deny the members of the private LAN access the all harmful
Internet temptations. One of the problems encountered with firewalls is the
difficulty the administrators have to well configure them. There is really a lack
of methodology and corresponding supporting tools to help them in setting the
network security policy part, and generating and deploying the rules derived
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from this policy. There is actually no intermediary levels between the policy
requirement formulated as an English sentence and its equivalent set of firewall
rules, say the code.

Even if the firewall administrator is proficient in many configuration lan-
guages and tools, this expertise does not avoid from making mistakes. Without
a clear methodology and some corresponding supporting tools, this may lead
to the generation of configuration rules that are not consistent with the in-
tended network security policy. We claim that the use of a high level language
to specify a network security policy will avoid such mistakes and will help
to consistently modify the firewall rules when necessary. Moreover, this high
level language must allow administrators to specify security requirements and
have to be expressive enough to specify any network security policy.

We also notice that there is not a global security policy specification so that
an underlying hypothesis is always done: a single security component is used,
say a single firewall. Now, it is sometimes more convenient to deploy security
rules on several security components. In particular, access security rules can
be separated into relevant packages and enforced by more than one firewall on
the same LAN.

Furthermore, in most of firewalls, administrators use dual security policy.
That is they specify both permission and prohibition rules. In this case, the
selection by the firewall of the appropriate rule is based on a first matching
or a last matching procedure. In both cases, the decision depends on how the
security rules are sorted. Hence, administrators have to find out the correct and
efficient order of the rules, order that is dependent on the filtering procedure.
This is a complex task to manage especially when the security policy has to
be updated. Moreover, in some cases, it is even not always possible to sort the
rules. So, a closed access control policy that only includes permissions may be
an alternative.

In this paper, we present an access control language based on XML syn-
tax. This language is supported by the access control model Or-BAC [Kalam
et al., 2003] to specify access control meta-rules. The concepts introduced
by Or-BAC are used all top-down specification long to properly generate fire-
wall configuration rules. There are other attempts to suggest such a top-down
approach. For instance, [Hassan and Hudec, 2003] applies the RBAC model
[Sandhu et al., 1996] but fails to fit the model semantics to low level imple-
mentation. The reason is largely due to the fact that RBAC is less expressive
than Or-BAC and hence network level security rules are not naturally derived
(see section 5).

To handle a network security policy, some topology of the organization's
local area network must be enforced. Hence, the LAN is parcelled out into
zones. The access control consists in securely managing communications be-
tween these zones. We show in this paper that view and role definitions of Or-
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BAC allow a fine grained specification of zones. The hierarchy frameworks of
extended Or-BAC [Cuppens et al., 2004a] avoid the use of artifices like open
and closed groups - a specialization of zones - as suggested in [Bartal et al.,
1999] (see section 5). In this connection, we also investigate if it is possible
to specify a network security policy by making use of permissions only. The
great contribution of this closed policy is to avoid having to sort firewall rules
that are derived to enforce this policy. Sorting the rules is actually complex
to manage and is a major source of errors. It is one of the main drawbacks of
many firewall configuration languages.

There are some tools that help administrators to build their security pol-
icy and to translate it to the actual configuration language (for instance Cisco
PIX [Degu and Bastien, 2003], Ipfilter [Russell, 2002], ...) but these tools,
for example firewall builder [Kurland, 2003], are bottom-up approaches. That
is, they deal with the particular problem of producing the code in the config-
uration language of the target firewall. The reasoning process on the access
control policy is not considered. Hence, there is a lack of accurate semantics
that allows the security administrator to avoid firewall mis-configuration (see
section 5). We also investigate the automatic generation of the target firewall
rx\\Qsfrom theformal specification ofa network security policy.

The remainder of this paper is organized as follows. Section 2 presents the
main concepts of Or-BAC using an XML syntax [W3C, 2004] in expectation of
its translation into a given target platform. We explain in section 3 how to spec-
ify a network security policy in Or-BAC and its counterpart in XML. Section
4 presents the compilation process of the abstract policy into concrete firewall
rules through a real application. A comparison with other similar works is done
in section 5 and finally section 6 concludes this paper.

2. Modelling Or-BAC in XML

2.1 Basic model

The Or-BAC model was first presented in [Kalam et al., 2003] using first
order logic formalization. In this paper, we present an interpretation of Or-
BAC in XML. The complete XML schema corresponding to the basic Or-BAC
model is available in [Cuppens et al., 2004b].

The Or-BAC model enables o rgan iza t ions to define their access control
pol icy . An organization corresponds to any entity in charge of managing a set
of s e c u r i t y r u l e s . In the basic Or-BAC model, security rules are restricted
to permissions, but they may be extended to also include p r o h i b i t i o n s
and o b l i g a t i o n s (see section 2.2 below). For instance, a given hospital is
an organization. A concrete security component, such as a firewall, may be
also viewed as an organization since it manages a set of security rules. In
the organization, sub jec t s will request to perform ac t ions on ob jec t s and
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the final objective of an access control policy is to decide if these requests
are permitted or not. However, permissions in Or-BAC model do not directly
apply to subject, action and object. Instead, subject, action and object are
respectively abstracted into r o l e , a c t i v i t y and view.

Thus, subjects obtain permission based on the role they play in the organiza-
tion. We use a similar approach for actions and objects. An action is permitted
based on the role this action plays in the organization. In Or-BAC, an action
role is called an activity. For instance, a given organization may specify that
consult is an activity and that a possible role of action acroread is to consult
medical record. Similarly, permissions to have an access to an object are based
on the role this object plays in the organization. In Or-BAC, an object role
is called a view. For instance, a given organization may specify that medical
record is a view and that a possible role of objcctfich27.pdf is to be used as a
medical record.

Each organization respectively specifies the roles, activities and views that
are r e l evan t in this organization.

For each relevant role, the organization specifies the subjects that are as-
signed to this role using the XML element empower. Similarly, for each rel-
evant activity, actions are assigned to this activity using the XML element
consider and, for each relevant view, objects are assigned to this view us-
ing the XML element use.

The XML schema is interpreted by the set of predicates suggested in
[Cuppens et al., 2004a] to define a logical model for Or-BAC: (1) Pred-
icate relevantjrole(org, r) where org is an organization and r a role
to define roles that are relevant in a given organization, (2) Predicate
relevant-activity(org, a) where org is an organization and a an activ-
ity to define activities that are relevant in a given organization, (3) Pred-
icate relevantjuiew(orgyv) where org is an organization and v a view
to define views that are relevant in a given organization, (4) Predicate
empower(org,s,r) where org is an organization, 5 a subject and r a role
to define subjects that are empowered in a given role in a given organization,
(5) Predicate consider(org,a,a) where org is an organization, a an action
and a an activity to define actions that implement a given activity in a given
organization, (6) Predicate use(org,o,v) where org is an organization, o an
object and v a view to define objects that are used in a given view in a given
organization, (7) Predicate permission(org, r, a, v) where org is an organiza-
tion, r a role, a an activity and v a view to define that in a given organization,
some roles are permitted to perform some activities over some views.

The Or-BAC model also provides means to automatically derive con-
crete permissions between subjects, actions and objects. For this pur-
pose, the following predicate (not represented in the XML schema) is used:
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Figure 1. Or-BAC architecture

Isjpermitted(s, a, 6) where 5 is a subject, a an action and o an object to de-
fine that some subjects are permitted to perform some actions on some objects.

In Or-BAC, triples that are instances of the predicate Is-permitted are
derived from permissions granted to roles, views and activities by the predicate
permission using a logical general rule to specify that: if an organization org
grants role r permission to perform activity a on view v, and if org empowers
subject s in role r, and iforg uses object o in view v, and iforg considers that
action a implements activity a then 5 is permitted to perform a on o.

2.2 Or-BAC extensions

There are several possible extensions to the basic model presented in the
previous section (called Or-BAC core in figure 1). In particular, security rules
may include prohibitions and obligations in addition to permissions. Consider-
ing both permissions, prohibitions and obligations may lead to conflicts. Man-
aging conflicts in Or-BAC is discussed in [Cuppens and Miege, 2003a]. It
is also possible to consider contextual security rules. This problem is further
addressed in [Cuppens and Miege, 2003b] where we show how to manage var-
ious types of context, such as temporal, spatial, prerequesite, user-declared and
provisional contexts (see [Cuppens and Miege, 2003a] for further details). An-
other possible extension consists in activating AdOr-BAC, the administration
model of Or-BAC [Cuppens and Miege, 2004].

However, in the following, we shall suggest defining a network security pol-
icy using only non contextual permissions so that the context, prohibition and
obligation extensions are not activated. The only extension we shall actually
consider is the hierarchy extension.

In Or-BAC, it is possible to consider role, activity, view and organization hi-
erarchies (see [Cuppens et al., 2004a] for a more complete presentation and for-
malization in first order logic). All these hierarchies are partial order relations,
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i.e. reflexive and transitive relations. In the XML schema, role, activity and
view hierarchies are respectively specified using the subRole, subAct iv i ty
and subView elements. These XML elements are interpreted in a logical for-
malism by the following three predicates: (1) subjrole(org,ri,r2Y in orga-
nization org, role r\ is a sub-role of role T2, (2) sub.activity{org, a i , 02): in
org, activity a\ is a sub-activity of activity a^, (3) sub-view(org,vi,V2): in
org, view v\ is a sub-view of view V2-

The hierarchy on roles has the special meaning that, in organization org,
role r*i inherits from r^ all the permissions associated with r^. The hierarchy
on activities and views are associated with similar inheritance mechanisms.

In the hierarchy extension, we also consider hierarchies on organiza-
tion that may be specified using the subOrganization element in the
XML schema. This is interpreted by the following logical predicate:
sub-organization(orgi,org2) meaning that organization org\ is a sub-
organization of organization org^.

For those roles oforg^ that are relevant in orgi, we consider that the role,
activity and view hierarchies defined in org^ also applies in org\. We also
accept a similar principle for inheritance of permissions through the organi-
zation hierarchy provided that the role, activity and view in the scope of the
permission are relevant in the sub-organization.

3. Using Or-BAC to specify a network security policy

3.1 Principles

In this section, we show how to use Or-BAC in the context of network se-
curity. Our final objective will be to derive security rules to configure specific
firewalls (see section 4).

A firewall may be viewed as a security component that filters IP packets
with respect to a given security policy. How can we interpret the concepts of
subject, action and object in this case? Our proposal is the following. A subject
is any host machine. A host machine is modelled by two elements: IP address
and network mask. An action is any implementation of a network service such
as http, snmp or ping. In our model, a service has three elements: a protocol,
a source port and a destination port. Finally, an object is a message sent to
another host machine. A message is represented by two elements: a content
and a receiver (a host machine).

Thus, triples (subject, action, object) are interpreted as host machines that
use services to send messages to other host machines. Notice that messages
have content so that we can define security rules to make filtering decision
based on the IP packet content. However, this possibility is not used in the
remainder of this section but is further discussed in the conclusion.
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Figure 2. Application example

We shall now give interpretation to the Or-BAC notions of organization,
role, activity and view. To illustrate our approach, we reuse the example used
in Firmato [Bartal et al., 1999]. The objective is to model the access control
policy of a corporate network used in an organization H. H has a two-firewall
network configuration, as shown in figure 2. As presented in [Bartal et al.,
1999], the external firewall guards the corporation's Internet connection. Be-
hind is the DMZ, which contains the corporation's externally visible servers.
In our case these servers provide HTTP/HTTPS (web), FTP, SMTP (e-mail),
and DNS services. The corporation actually only uses two hosts to provide
these services, one for dns and the other (called MultLserver) for all the other
services. Behind the DMZ is the internal firewall which guards the corpora-
tion's intranet. This firewall actually has two interfaces: one for the DMZ and
another one for the private network zone. Within the private network zone,
there is one distinguished host, Admin, which provides the administration for
the servers in the DMZ and firewalls.

3.2 Organization

In Or-BAC, a security policy will be generally modelled using several or-
ganizations. Of course, the organization H which is defining its access con-
trol policy is an organization for Or-BAC. The network security policy of H
will be managed by a sub-organization of H. Let us call H.LAN this sub-
organization. A first objective in this section is to show how to use Or-BAC to
define the network security policy ofH-LAN.

Since the network security policy is actually managed by two firewalls, we
shall consider that H.LAN has two sub-organizations denoted H_fwi and
H.fwe that respectively correspond to the internal and external firewalls. An-
other objective of our approach is to show how to derive specifications of poli-
cies managed by H.fwi and H.fwe from the one defined for H.LAN using
inheritance rules presented in section 2.2.



210 Formal Aspects ofSecurity and Trust

or.empower

—} h

[ rQ{&p&ff

Figure 3. Role Definition

3.3 Role

As mentioned in section 3.1, subjects correspond to host machines. So, we
consider roles that may be assigned to hosts. Examples of such roles may
be dnsserver or firewalL Using the Or-BAC core model, the only way
to assign roles to hosts is by using the empower element. This means that
the security administrator must enumerate every host assigned to each role.
This would never be practical nor efficient since security configuration rules of
firewalls would be derived for each host.

This is why we suggest using ro l eDef in i t i on to define assignment
conditions of hosts to roles (see figure 3). Role definition has two parts:
hos t l nc lu s ion that corresponds to the positive condition a given host must
satisfy to be assigned to the role and hostExclusion that corresponds to the
negative condition the host must not satisfy. Each of these two conditions has
four sub-parts: host to enumerate hosts, subnet to specify network zones
identified by their mask, hostRange to specify intervals of IP addresses and
r o l e to refer to other roles.

Role definition of a role R in a given organization org can be interpreted by
a logical rule as follows:

Vs, (host(s) A hostJnclusion(s)
—> empower(org,s,R)

A -^host-exclusion(s))

where hostJnclusion(s) and host.exclusion(s) respectively represents the
disjunction of conditions specified by elements host, subnet, hostRange or
role. If the hostlnclusion element is actually empty, then we assume that
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hostJnclusion(s) is equivalent to true (meaning that any host is included); If
the hostExclusion element is empty, then host-exclusion(s) is equivalent
to false (meaning that no host is excluded).

For instance, the following XML structure [W3C, 2004] represents the
Pr iva t e role definition:

<relevantRole name="Private">

<n:roleDef inition>

<n:hostlnclusion>

<n:subNet>

<n:addr>111.222.2.0</n:addr>

<n:mask>24</n:mask>

</n:subNet>

</n:hostlnclusion>

<n:hostExclusion>

<n:role roleName="FW_intern"/>

<n:role roleName="Admin"/>

</n:hostExclusion>

</n:roleDefinition>

</relevantRole>

This structure says that a given host is empowered in the P r i v a t e role if it
belongs to the subnet 111.222.2.0/24 (host inclusion condition) and if it is not
empowered in role FVLintern or in role Admin (host exclusion condition).

3.4 Activities

Activities are abstractions of network services. Our approach is similar to
the one suggested for role definition. Instead of enumerating actions assigned
to activities, we suggest using act iv i tyDef i n i t i o n (see figure 4).

To specify an activity definition corresponding to network services, one has
first to choose a protocol tcp , udp or icmp. If the protocol is TCP, two el-
ements can be used to specify the activity: sc rPor t and des tPor t to re-
spectively express conditions on source and destination port numbers. Both
elements have similar structure. It is then possible to use the portRange ele-
ment to specify an interval of port numbers or s i ng l ePor t to enumerate a set
of port numbers.

The structure is similar to define activities corresponding to UDP protocols.
For ICMP protocol, the structure is different. It must be defined using two
elements: type and code.

For instance, the following XML structure represents the activity Web_HTTP:

<relevantActivity name="Web_HTTP">

<n:activityDefinition>

<n:tcp>

<n:destPort>

<n:singlePort>80</n:singlePort>

</n:destPort>
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</n:tcp>
</n:activityDefinition>

</relevantActivity>

This structure says that a given action corresponds to activity Web_HTTP if
protocol is equal to TCP and destination port number is equal to 80. Notice
that the s rcPor t element is not used. In this case, we assume that any source
port number are acceptable.

3.5 Views

Views are abstraction of messages sent to destination hosts. A view defi-
nition can be defined by using the element toTarget that must be assigned
to a role name. A view definition of a given view V defined by organization
org and having toTarget element equal to role R may be interpreted by the
following logical rule:

• Vm, (message(m) A dest(rn, h) A empower(org, /z, R))
—> use{org,m, V)

This rule says that a message m is used in a given view V if the destina-
tion host h of this message is empowered in the role R specified in the view
definition.

For instance, the following XML structure defines a view corresponding to
the messages whose destination hosts are empowered in the I n t e r n e t role:

<relevantView name="To_Internet">
<n:viewDefinition>
<n:toTarget roleName="Internet"/>

</n:viewDefinition>
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</relevantView>

In the following, we shall call such a view "target role" for short. Notice
that, since we do not consider filtering rules based on the message content
in the following, the view definition does not include possibility to specify
condition on the message content attribute. However, we plan to provide this
extension in the near fiiture.

3.6 Permission

To specify the access control policy using our approach, we have simply to
express permissions between role, activity and view. For instance, the follow-
ing XML structure specifies that role P r iva t e is permitted to perform activity
Web_HTTP on view To_Internet:
<permission roleName="Private"

activityName="Web_HTTP" viewName="To_Internet"/>

Notice that our approach enables the administrator to precisely specify
which hosts are empowered in a given role. This is why it is not necessary to
include prohibitions in the network security policy specification. Our method-
ology is based on a closed policy that only includes permissions, even though
deny rules may be generated from these permissions to configure a given target
firewall. This point is addressed in the following section.

4. Derivation of concrete firewall rules

We aim at deriving network components configuration from a network secu-
rity policy. This policy is expressed in the XML syntax based on the Or-BAC
semantics. In this section, we illustrate with the help of the running exam-
ple introduced in section 4, how our approach is used to derive firewall rules.
There are two steps in this derivation process. In the first step, we generate,
from the Or-BAC policy, rules expressed in an intermediary multi-target1 fire-
wall language that also uses an XML syntax (see section 4.1 below). In the
second step, we derive, from this intermediary language, concrete configura-
tion rules expressed in the specific target firewall language. In the next two
sub-sections, we give details about these two-steps derivation process.

4.1 From abstract policy to generic firewall rules

The aim of this first XSL transformation is to derive generic firewall rules
from the abstract network security policy expressed with the Or-BAC formal-
ism. This process uses hierarchy mechanisms to derive concrete rules relevant
for each firewall involved in the security architecture. For this purpose, once

!That is to say a language that is independent from the the target firewall.
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the network security policy of a given organization is specified (organization
H-LAN in our example), we have simply to specify which entities (roles, ac-
tivities and views) are relevant in the sub-organizations (firewalls H-fwi and
H-fwe in our example).

The derivation process is then able to automatically distribute every permis-
sion that each firewall has to manage. More precisely, if there exists a per-
mission that bounds a role R\ and a "target role" view corresponding to role
i?2, and if both roles R\ and R2 are relevant in a sub-organization, it means
that this permission will be managed by this sub-organization. For example,
the permission that bounds the role P r i v a t e and a target role To_DNS_server
is relevant for the internal firewall H-fwi because both roles P r iva t e and
DNS_Server are relevant in this sub-organization. When a role is relevant in
a sub-organization and the target role is relevant in another organization, we
cannot distribute the permission on only one organization. So, in this case we
conclude that this rule must be managed by both firewalls. For instance, with
this mechanism the permission that bounds P r i v a t e and To_Internet pre-
sented in section 3.6 is relevant to the two firewalls and must be duplicated on
bothofthem.

Notice that the derivation process must check that there is no loops in role
definitions. That is we construct a graph between roles where an edge from
role i?i to role R2 means that role R2 appears in the inclusionRole or
exclusionRole elements of i?i role definition. Then, we have to check that
this graph is free of loops else the security policy is rejected by the derivation
process.

To generate the security rules in the multi-target firewall language, the
derivation process parses abstract security rules specified in the Or-BAC model
to unfold role definition, activity definition and view definition.

4.2 From generic rules to specific firewall rules

In order to validate our approach, we have chosen to derive concrete rules
for NetFilter2. So we have designed XSL transformations to derive NetFil-
ter rules from the multi-target firewall language. Using the same example of
permission, the following configuration script for NetFilter shows the rules we
obtain when applying the specific XSL transformations for NetFilter:

iptables -N Intranet-Web_HTTP-To_Internet
iptables -A FORWARD -s 111.222.2.0/24 -p tcp —dport 80

-j Intranet-Web_HTTP-To_Internet
iptables -A Intranet-Web_HTTP-To_Internet -s \$Admin -j RETURN
iptables -A Intranet-Web_HTTP-To_Internet -s 111.222.2.1/32 -j RETURN
iptables -A Intranet-Web_HTTP-To_Internet -s 111.222.1.254/32 -j RETURN

2NetFilter is embedded in all Linux kernels upper than 2.4 version.
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iptables -A Intranet-Web_HTTP-To_Internet -d 111.222.0.0/16 - j RETURN
iptables -A Intranet-Web_HTTP-To_Internet - j ACCEPT

The first rule creates a chain called Intranet-WebJiTTP-ToJnternet. The
second rule corresponds to the positive inclusion condition. When a given
packet matches this rule, the decision is to jump to the chain Intranet-
Web-HTTP-ToJnternet to check the negative exclusion conditions. If this
packet matches a condition in the sub chain, then the decision is to return to
the main chain and the next rule in this chain will be checked. Else, if all ex-
clusion conditions expressed in the chain do not match, the packet is accepted.
In our example, the first exclusion condition corresponds to the Admin that is
excluded from the P r i v a t e role. The next two conditions exclude the two
internal firewall interfaces. The third condition excludes every destination ad-
dress that does not belong to the H-LAN network. Notice that it is possible to
optimize the rule generation to remove the condition on the firewall interface
with address 111.222.1.254 because this firewall interface (corresponding to
the DMZ interface) is not included in the subnet 111.222.2.0/24.

Notice also that the order of the generated rules does not matter, as for the
abstract security rules, except for the last rule in our example (the rule that
takes the decision to accept the packet) that must be at the end of the chain.
Thanks to the chain mechanism of NetFilter, we can derive rules without or-
dering exclusion conditions. But for firewall languages that do not provide
such mechanism, exclusion conditions will correspond to deny rules. These
deny rules have to be interleaved with accept rules to obtain the same result as
with NetFilter chains. Ordering the rules has to be done by the XSL transfor-
mation process.

5. Comparison with related works

Most of firewall products are supplied with configuration tools with friendly
user interfaces. But these tools discard the main problem of managing security.
They do not give a way to think and specify an access control policy before de-
riving firewall configuration rules that enforce this policy. When the security
administrator chooses a particular firewall, may be a commercial product like
Cisco PIX [Degu and Bastien, 2003] or Checkpoint Firewall-1 [Checkpoint,
2004] or an open source product like FireHOL [Tsaousis, 2004] or Firewall
builder [Kurland, 2003], it is quite easy to set filtering rules using the configu-
ration tool included in the offering. There is however a snag: These rules can
be inconsistent with each other or/and with the global security policy leading
to security holes. Our approach avoids the administrator pondering on access
security using filtering rules. The specification of the access control policy is
done at a more abstract level and problems like inconsistency are solved before
generating the concrete filtering rules [Cuppens and Miege, 2003a].
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There are some works coming under the same topic as ours, that is: (1) spec-
ifying a network security policy which is not topology-dependent but rather
inspire it, (2) specifying a network security policy which is independent from
a particular firewall product and (3) generating automatically the configuration
rules from the high level network security policy. Hence, firewall management
toolkit Firmato [Bartal et al., 1999] uses an entity-relationship model to spec-
ify both the access security policy and the network topology and makes use of
the concept of roles to define network capabilities. In this approach there is
some mixing between the net topology - a particular concrete level - and the
access security policy to be enforced so that the role concept becomes ambigu-
ous. Indeed, the authors are bounded to introduce the "group" concept with
an unclear semantics ; sometimes group is used to design a set of hosts and
sometimes it stands for a role. This can lead to some difficulties to assign net-
work entities to the model entities. In this connection, Firmato's authors use
privileges inheritance through hierarchy of groups to derive automatically per-
missions. They also make use of artifices to avoid permission leakage. Hence,
they introduce notions of"open group" to authorize inheritance of permissions
and "closed group" to prohibit it. The reason is the fact that concept of group
is not well defined and we claim that this concept is not needed at the access
control policy specification level.

Another work whose motivations are close to ours is the RBNS model [Has-
san and Hudec, 2003]. Although authors claim that their work is based on the
RBAC model [Sandhu et al., 1996], it seems that they keep from this model
only the concept ofrole. Indeed, the specification of network entities and role
and permission assignments are not rigorous and does not fit any reality. In
particular, (1) all RBNS relations are binary even though an access control se-
curity goal and its equivalent filtering rule are always a triple (source, service,
target). This leads to a loss of information: permissions are missing in RBNS
model although authors consider the assignment of a service to an IP address
as a permission which is semantically weak. (2) Hosts are of two kinds, client
or server and roles are assigned to hosts thanks to the pre-declared type of
hosts. This is a wrong assignment as at the abstract level role of a given host
is service-dependent. (3) the approach makes an excessive use of the concept
of role, hence this leads authors to introduce a role-to-role assignments which
is a "limping" use of a role based access control model as it means assigning a
permission package to another permission package.

Using Or-BAC to model network security policy allows security adminis-
trator to make a clear separation between network entities and abstract model
entities like roles, services, groups of hosts having the same role, hosts con-
cerned by the source host query, and so on. Indeed, Or-BAC gives an ac-
curate semantics to permissions assigned to hosts (roles), services (activities)
and hosts targeted by the client host queries (views). Hence, some one is never
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surprised when he/she checks or analyzes configuration rules of the LAN fire-
walls as they are derived from well specified access control policy. If a security
problem occurs, it is due to a wrong security policy.

6. Conclusion

We have presented a formal approach to specify network security policies
based on the semantics of the Or-BAC model. We suggest an XML syntax to
specify an abstract level network security policy independently from the im-
plementation of this policy in a given firewall. Our proposal uses high level
concepts such as inheritance hierarchies between organizations, roles, activi-
ties and views. We show how to use these inheritance hierarchies to distribute
the abstract level network policy specification over several security compo-
nents. We illustrate this approach by an example of security architecture based
on two firewalls. We then design a translation process in XSLT to generate
filtering configuration rules of specific firewalls. This approach has been im-
plemented for the NetFilter firewall.

The originality of our proposal is that it provides a clear semantics link
between an abstract access control model, namely Or-BAC, and its implemen-
tation into specific security components, namely firewalls. Our approach pro-
vides a high level of abstraction compared to the final security rules used to
configure a firewall. This should simplify management of such security rules
and guarantee portability between firewalls.

There are several perspectives to this work. First, we plan to apply our ap-
proach to derive security configuration rules of other network security compo-
nents, in particular other firewall configuration languages (Cisco PIX, Check-
Point Firewall-1, ...) but also Network Intrusion Detection System (for in-
stance Snort). In this later case, we plan to use the content element associ-
ated with the message structure suggested in section 3.1 to specify high level
IDS signatures. A similar approach may also apply to configure other security
components such as access control modules of operating systems or database
management systems. Our final objective would be to actually use Or-BAC
to specify the global security policy of a given organization, and then using a
decomposition mechanism, derive configuration rules of various security com-
ponents involved in a given security architecture.

Finally, in the case of already configured security components, another ap-
plication of our approach would be to specify an abstract security policy and
then develop mechanisms to check if the concrete security rules are consistent
with this abstract security policy. Some proposals for such an approach are
already suggested in [Mayer et al., 2000].
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Abstract We extend a particular access control framework, the Privilege Calculus, with a
possibility to override denied access for increased flexibility in hard to define or
unanticipated situations. We require the overrides to be audited and approved by
appropriate managers. In order to automatically find the authorities who are able
to approve an override, we present an algorithm for authority resolution. We are
able to calculate from the access control policy who can approve an override
without the need for any additional information.

1. Introduction

Traditional access control models either permit access or deny it completely.
There is an implicit assumption that all access needs are known in advance and
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that the conditions of those needs can be expressed in machine readable form.
There are many reasons why it is difficult to specify the policy completely in
advance, and therefore the policy will be incomplete. That will cause a conflict
between needs for legitimate access and needs to protect against unauthorised
access. We have in a previous position paper Rissanen et al., 2004 categorised
access needs as follows:

1 Anticipated, allowedandmachine encodable: Access situations for which
we can say ahead of time that access should be allowed and for which
we can express the conditions in machine readable form. Ex. "All em-
ployees can read the company newsletter."

2 Anticipated, deniedandmachine encodable: Access situations for which
we can say ahead of time that access should be denied and for which we
can express the conditions in machine readable form. Ex. "Non-medical
personnel may not read patient records."

3 Anticipated, allowed and not machine encodable: Access situations for
which we can say ahead of time that access should be permitted but we
cannot express the conditions in machine readable form. Ex. "In case of
an emergency, any doctor may read the patient's records." (We cannot
formally define "an emergency".)

4 Änticipated, denied and not machine encodable: Access situations for
which we can say ahead of time that access should be denied but we
cannot express the conditions in machine readable form.

5 Unanticipated'. Situations that we have forgotten to consider or cannot
predict.

What is needed is some kind of flexibility, which will allow for granting
of access rights retroactively. We suggest as a solution to distinguish between
what a principal can do, what it is permitted to do, and what it is forbidden to
do. The intersection of can and notpermitted is what we refer to as possibility-
with-override or (sometimes) ability to override. In our framework which we
present here, the presence of a permission for an access means that the ac-
cess may be performed. The presence of an possibility-with-override, but no
permission for an access means the access may not be performed, but can be
performed if the user explicitly overrides the denial. If there is neither a per-
mission or a possibility-with-override, the access is not permitted and cannot
be done.

In addition to the possibility to override we introduce the notion of authority
resolution, which is an automatic procedure that will, given information about
an override and an access control policy, find who is in a position to audit and
approve the override.
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1.1 Related Work

The idea of being able to override denied access is by no means new. Lee
Badger Badger, 1990 describes a formalism for integrity constraints that can
be recovered after an override. Many commercial applications, for instance for
health care, have emergency override in them. There is also more recent work,
which is presented below.

Povey, 2000; Povey, 1999 focus is on guaranteeing system integrity by
means of transactions that can be rolled back.

Gunnar Stevens and Volker Wolf Stevens and Wulf, 2002 have performed
a case study at a steel mill and found practices to grant access rights either
before, during or after an access is performed, which is in line with our ideas.

Jaeger et. al. Jaeger et al., 2002 introduce a concept called access control
spaces. This concept is used primarily for analysing conflicts in access con-
trol policy or to analyse whether a set of assigned permissions and constraints
on possible assignments completely cover all possible assignments. The re-
lation to our work is that access control spaces, which present a partition of
permissions similar to which we use, can be used to eliminate any 'forgotten'
access possibilities. However, there is nothing access control spaces can do for
those cases where the desired policy cannot be expressed in the given policy
language. Jaeger et. al. in fact suggest the use of access override and audit in
some cases.

Provisional access control Kudo and Hada, 2000, which is included in XACML
OASIS, 2004 in the form of the obligation concept, can be used for instance to
specify different access levels and that an access should be logged.

Our main contribution in this paper is the concept of automatic authority
resolution, which we have not been able to find any previous work on.

2. Extending the Privilege Calculus

Here we present a framework for decentralised management of authorisa-
tions. It is a modified version of the framework presented in Bandmann et al.,
2002; Firozabadi et al., 2001, extended to include possibility-with-override.
We have chosen this particular framework since it provides information about
the source of authorisations.

We want possibility-with-override to be a part of the access control policy,
in contrast to a mechanism outside the policy, since for efficiency of implemen-
tation and administration it should be manageable in similar ways as regular
permissions.

The goals of the original Privilege Calculus were to decentralise access
control management and to differentiate between administrative and access
level authorisations. All authorisations are expressed in the form of delega-
tion certificates and removals are done by revoking certificates. Administrative
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rights contained in the certificates dictate which other certificates are consid-
ered valid, as explained below.

The Privilege Calculus is based on the concept of "constrained delegation",
which means that an administrative right contains constraints on what it applies
to and how it may be delegated fiirther. With these constraints it is possible to
divide up the management of access control at a central level in the organisa-
tion, without the need to micromanage the details. When we developed the
override mechanism, our goal was to use this existing division in the access
control policy to automatically send notifications of overrides to the right peo-
ple in the organisation without the need of any central planning specifically for
handling of the override audits.

The following presents the semantics of the calculus in a very brief manner.
Due to space constraints, for a more thorough understanding, we refer to the
original papers.

2.1 Semantics of the Privilege Calculus

Definition 1.. Let PRIN be the set of principals in the system. Further let
-< denote a subsumes relation over PRIN as follows:

• P di P if V is an atomic principal and p G PRIN.

• p -< P if p G P and P C PRIN;

• P\<P2 if P2 Q PRIN, and Px C P2.

Informally the relation •< is used for comparing group membership of prin-
cipals. We assume the existence of the relation, but leave its definition and
management outside the scope of this paper. We have chosen to not include
groups of objects and actions in order to be brief.

Definition 2.. Let I denote a time interval of type [£1, £2], where t i , £2 G R.
We define a subsumes relation between two time intervals as follows:

• U ̂  [̂ 1,̂ 2] if ti < U andti < t<i\

• [ti,t2] d fo,U] ift3 < h and t2 < U.

Definition 3.. Let PRIN, ACT, and OBJ be (disjoint, non-empty) sets
of agents, actions, and objects, respectively. We define the set of privileges $
inductively as follows:

• perm(s,a,o):I G $, ifs ^ PRIN, a G ACT,andoe OBJ;

• can(s, a, o) :I G $, if 5 ^ PRIN, a G ACT, and o G OBJ;



Discretionary Overriding ofAccess Control in the Privilege Calculus 223

• auth(s, <ß): J e $, if s r< PRIN, and <j> G $;

• auth*(s, (p) :7 G $, if 5 ^ PÄ/JV, and </> G $.

7 represents the time interval for which a privilege is valid. Privileges of the
form perm(s, a,o) :I denote access-level permissions. Privileges of the form
can(s, a, 6) :7 denote access-level possibilities-with-override. Privileges of the
form auth{s, (ß) :7 and auth*(s, (ß) :7 denote management-level authorities, that
is, the right to create the privilege <j>. The difference between auth and auth* is
explained below.

We call s in the above expressions the subject of the privilege.
Please note that the privilege expressions themselves do not grant any access

rights. Instead they are placed inside authorisation certificates and the validity
of the certificates are calculated based on what management-level authorisa-
tions are present. Thus, the semantics of these expressions are defined by the
following definitions in combination.

Definition 4.. We define the set of declaration certificates E + and the set of
revocation certificates E~ as:

• declares(s, 0, t, id) e S+, if s e PRIN, 0 G $, t e R, and id E N,
where R denotes the real numbers, and N denotes the natural numbers;

• revokes(s, id, t) e E~, if s e PRIN, id e N, and t eK.

Note that declarations and revocations can only be performed by atomic prin-
cipals and not by groups of principals.

Informally an element declares(s,(ß,t,id) G E + means that s claims at
time t that </> is true. The definitions below define when such a declaration is
considered to be valid.

Definition 5.. We define a comparison relation denoted by C between two
privileges as follows:

cf) C i\) if:

1 (j) =perm(si,a,o) : / i , ip = perm(s2,a,6) 1/2, 5i •< 52 and I\ •< I2',

2 <j) = can{s\,a, 6) : / i , ip = perm(s2, a, 6) 1/2, 5i •< S2 and I\ •< I^\

3 0 = can(si,a, o) : / i , I/J = can(s2, a, o) 1/2, s\ ^ 52 and I\ •< I2I

4 <j) = auth(si,a) : / i , ^ = auth(s2,ß) '-h, & E /?, 5i ^ 52 and 7i ^ J^;

5 (j) = auth(si,a) : / i , ^ = auth*(s2, ß) :h, OLQ ß, s\ < S2 and 7i ^ ^2;
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6 0 = auth*(si,a) : / i , iß = auth*{s2,ß) '-h, OL E ß, si :< $2 and h -<

8 0 = auth{si,a) :I\,i> = auth*(s2,ß) :/2 if «i ^ 52,a C auth*(s2,ß) :/2,
and/i ^ / 2 ;

9 0 = auth*(si,a) :ii, ̂  = auth*{s2,ß) :/2,if5i ^ 52,a C auth*(s2,ß) :h
and/ i ^ / 2 .

These comparisons are used below to make sure that administrators do not
exceed their authorisations when delegating. We can see in 2 that a permis-
sion implies a possibility-with-override, that is, if an administrator can create
a permission, he will also be able to create the weaker privilege of possibility-
with-override for the same object and action.

The auth*() construct needs some explanation. It is used to give flexibility
for administrators. The authorisation
auth(p, auth(G,perm(G, o, a) :I\) :/2) 1/3 means that we permit p to appoint
an administrator from within the group G, who then in turn can create access
permissions for object o and action a for principals within group G. Let us call
this administrator g. p will be limited in that he must appoint an administrator
from G and will not be able to issue the access level permission himself. Also,
p cannot create more than one immediate administrator, that is p will hand the
right to g, who in turn will create the permission to access o. If we instead cre-
ate the authorisation auth(p, auth*'(G\perm(G', o, a) \I\) :/2) 1/3, we will give
additional possibilities to p. p will be able to create the access level permission
directly if he chooses to do so, as given by rule 7. He can appoint an adminis-
trator g as previously, as given by rule 8. He can also permit g to delegate the
authority in several steps by appointing intermediary managers chosen from G.
This allows p to let subordinates organise their own sub-organisations within
G. For instance we could have p delegate to g who will delegate to gf who will
in turn create the access level permission. The use of the auth*() construct is
explained in more detail in Bandmann et al., 2002.

Definition 6.. We define a certificate database to be a tuple V — (So A, D+, D"
where SoA C $ is a finite set oiSource ofAuthority privileges, D + C E + is
a finite set of declaration certificates and D~ C E~ is a finite set of revocation
certificates. It is the combined contents of this certificate database that will
decide which accesses are permitted.

We adopt the following constraints on a certificate database.

1 If dedares(si,(f)i,ti,id) G D + , and declares(s2,02, t2,id) G D4",
then 5i = 52, 01 = 0 2 , and t\ —t^- This says that D + cannot contain
two different certificates with the same id.
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2 If declares(si,^>,ti,id) £ D + and revokes(52,id,^) £ D~, then
51 = 52 and £1 < £2. This says that a certificate can be revoked only
by its issuer and not before it is declared. In fact, the first restriction can
be relaxed but this introduces the need for extra components which are
omitted here for simplicity.

3 If revokes(si, id, t\) £ D~ and revokes(52,2^,^2) £ D~", then si =
52 and ti = t2. This says that there cannot be two revocations of the
same declaration certificate in the same database. We adopt this restric-
tion to simplify the database in order to streamline the theory.

Definition 7.. Let h be the validates relation between a privilege and a
declaration certificate, where

• auth(s2, $2) -I ^~ declares(si, <t>i,t, id), ifs\ •< 52, </>i E 02 and t < I\

and,

• r h d, if r C $, and 3 q e T such that q\- d.

Informally this defines the semantics of the administrative permission authQ,
that is, it makes us consider certain declarations to be valid. Also notice that
the auth*() form does not validate a declaration. auth*() is only used inside
an authi) expression. We will use the validates relation below to recursively
define which permissions are valid.

Definition 8.. We define the set oieffective declaration certificates Ep(t) C
D + of a database V at a certain time t, as:

Ev(t) = {declares{s,p:I,ti,id) G D + | t ^ / A

revokes(s,id,t2) £ D~ —> t^ > t}.

Informally, we define that the interval I defines when the authorisation is us-
able.

Definition9.. Letdi,d2 G D+,wheredi = declares(si, (ßi,ti,idi) andc/2
declares^s^-, 4>2, ^2-, id^). We define the supports relation Sx> as follows:

di 5x> d2 if di G E D ( ^ 2 ) , ^ I H d2 and ti < t2.

Informally, we define that a declaration depends on another previous declara-
tion to be valid.

We have modified this definition compared with the presentation in Firoz-
abadi et al., 2001 in that we have added the condition t\ < t^ to prevent cycles
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in the support relation. Cycles are not possible in Firozabadi et al., 2001, but
together with the auth* form from Bandmann et al., 2002 cycles become pos-
sible unless prevented with this extra constraint. Although cycles are not a
problem in principle, the authority resolution algorithm later on becomes more
complicated to explain for a cyclic graph, so we make this simplification.

Definition 10.. The set of certificate chains Cx> in a certificate database V
is the transitive closure of Sv-

Definition 11.. We define the set of true privilege statements at a time-point
t, in our calculus, by defining function hx> : R —> 2^ as:

hv(t) = {p\p:I e $ A

(p :I G SoAV

(di,declares(s,p:I,t2,id)) G C p A declares(s,p:I,t2,id) G Ep(t) A

SoA h di)}.

We also say that a privilege p holds at time-point t when p G hx>(t).
Informally, this means that although anybody can make a privilege state-

ment in the form of a declaration certificate, we will not accept the statements
as true unless they can be traced back to the SoA.

2.2 Access Requests

When we receive an access request, which is a tuple in the form of(u, o, a, i),
where uisa principal, o an object, a an action and t is the time of access, we
search among ho(t) for aperm(s, o, a) :I such that u •< s and t <I. If there
is such a permission, then the response is "yes". In case there is no permission,
we search for a can(s, o, a) :I such that u -^ s and t •< I. If there is such an
ability then the response is 'requires override'. In that case the user would be
presented with the option to override the denied access and the application will
log the access if the users chooses to override. If there is neither a matching
permission nor a possibility-with-override, the response is 'access denied'.

3. Approval mechanism and authority resolution

When a user performs an override to make an access, the override is logged,
and a message is sent to an appropriate authority for approval. In a large organ-
isation it may not be possible to have a single person or unit which is able to
comprehend or have authority over the whole organisation. We therefore need
to decentralise the responsibility of audit and approval of overrides. We call the
search for an appropriate authority for a given override authority resolution.
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3.1 Approval Mechanism Properties

In our earlier paper we identified two properties for an authority resolution
mechanism. The mechanism should be:

• Safe: Only legitimate authorities should be notified.

• Unobtrusive: Among the legitimate authorities, we should notify those
who are most likely to understand the override and least likely to be
bothered unnecessarily.

The first property is critical, but it is easily defined, as we will show below.
The second property is not critical if we define the approval mechanism appro-
priately and all legitimate authorities are potentially consulted. In that case the
ordering is thus somewhat arbitrary.

Since an approval of an override is in effect a retroactive granting of a per-
mission, the authorities who should be able to approve an override are precisely
those who can create a permission for the access that was overridden. In this
framework they correspond to the subjects of effective certificates who have a
valid support chain from the SoA such that their certificates support the cre-
ation of a permission for the access at the time of the override. So, for an access
override (u, o, a, t) that is approved at time t', they are all authorisations from
hD{t')r\ED(tr) ofXheformauth(si,'per'm{s2,o, a) 1/2) -h) suchthatw ^ 52,
t di h and t' < I\. In this case s\ would be a legitimate authority.

Since it is possible that there are multiple legitimate authorities for approv-
ing a given override, we would like to contact them in such an order that we
are least likely to bother many authorities.

We note that the access control framework we are using does not contain
negative permissions. We do not wish to introduce negative permissions just
because of the override approval mechanism. Since we view an approval as a
retroactive granting of a permission, in case some authorities approve and some
disapprove, the approvals should have precedence. If all of them disapprove
(or do not care), we view the override as disapproved. With these semantics
we can define an approval mechanism in which the order of authorities notified
does not affect the result.

For ordering the authorities we note that the person who created the possibility-
with-override that made an override possible is a prime candidate to be notified
first, as long as he is a legitimate authority. The rationale is that whoever made
the override possible is best placed to judge whether to approve the override.
The source of authority of a resource is always a legitimate authority, but we
want to keep him last in the notification list since he is the highest authority.
For authorities between the SoA and the lowest level administrators, we can
use the order of their appearance in the chain as a heuristic. In case of parallel
chains we can use an arbitrary ordering or notification in parallel.
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3.2 An Algorithm for Authority Resolution

Here we present a simple algorithm that is based on the above discussion.
Input to the algorithm is a performed override and a certificate database.

The algorithm consists of two parts. In the first part we create a reduced
graph from the delegation database. Let Gd be the graph that describes the
delegation database by letting there be a node in Gd for each certificate and
an edge between nodes that correspond to certificates between which there is a
direct support relation. Gd is directed and acyclic. It is acyclic because of the
condition on the time stamps in definition 9 of the access control framework.

Now form the reduced graph Gr by letting there be a node in Gr for each
certificate from /i£>(£)n£x>(£) which authorises approval of the given override
(as explained earlier). Let there be an edge in Gr between two nodes if there is
a path between the corresponding nodes in Gd- The motivation behind this is
that we want to remove all certificates that do not empower approval (to satisfy
the safety property of the authority resolution), but still keep as much of the
structure of decentralisation as possible (to be able to satisfy the unobtrusive-
ness property).

Gr can be calculated by performing a depth first search on Gd starting only
from the nodes that will be in Gr. When doing the search we need to keep in
each node, n, a lists of nodes, which will be filled with a list of all nodes of
Gr which can be reached from n. Once the search is complete, these lists will
give the edges of Gr.

In the second part of the algorithm we order the authorities by means of a
modified breadth first search on Gr from the bottom going up.

1 R <— empty list of sets of principal names
2 for each node n of Gr

3 n.counter <— number of children of n
4 S <— the set nodes for which counter = 0
5 do while S is not empty
6 add the set of subjects of all nodes in 5 to R

8 S +- 0
9 for each q in Q
10 for each parent p of q
11 reduce p.counter with one
12 ifp.counter is zero
13 addptoS

Table 1 lists some sample certificates. Figure 1 shows the support relations
among those certificates and illustrates the first part of the algorithm.
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ld

1
2
3
4
5
6
7
8
9
10

Issuer

r
b
c
d
b

f
9

f
h
i

Authorisation

auth(b, auth* (G,perm(G, o, a)))
auth(c, auth(G, perm(G, o, a)))
auth(d,perm(G, o, a))
can(e, o, a)
auth{f, auth* (G, perm(G, o,a)))
auth(g, auth* (G, perm(G, o, a)))
auth(h, auth* (G, perm(G, o, a)))
auth(h, auth*(G, perm(G, o, a)))
auth(i, perm(G, o, a))
can(e, o, a)

Table 1 Example delegation
certificates. For brevity we
have not included the time in-
tervals. The validity intervals
of all the authorisations are
[1,100] and all of the certifi-
cates are issued at the time
point equal to the id of the cer-
tificate.

Figure 1. Example of the graph reduction step in the authority resolution algorithm. The
graph on the left shows the support relations between the certificates in table 1. Circles represent
certificates that grant administrative authorisations. The rectangles represent certificates that
grant abilities. Thick circles are certificates that grant authority to issue a permission. The
graph to the right shows the reduced graph. Certificate 2 does not support direct granting of
access rights. Certificates 4 and 10 do not represent administrative permissions. The remaining
certificates all permit the granting of access permissions, thus approval.
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{d.i}

Figure 2. Example of the authority resolution algorithm. The algorithm works on the reduced
graph from figure 2. Each figure presents the state of the algorithm at each iteration of line 5.
The asterisks represent the set S. The numbers after the colons inside the nodes are the counters.
The lists below the graphs are the accumulated result lists of the algorithm. The final list is the
output of the algorithm. In this case we should notify the users d and i first, and if neither
approve, notify h, g, f, and b in that order. If none of them approves, the override is considered
unauthorised.
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Figure 2 illustrates the second part of the algorithm.
The result is an ordered list of sets of authorities to notify. We would send

the notification to all authorities in the first set. As a special case we could
divide this set into those who have issued a relevant possibility-with-override,
and notify them before the others.

In case someone approves the override we do not notify anyone else and the
override is considered to be approved. In case all notified authorities either dis-
approve or take no action, we would notify the next set of authorities from the
list, and so on. If anyone approves, the override is considered to be approved.
If in the end no one has approved the override, we view the override as disap-
proved, and the relevant authorities can take some kind of sanctioning action.
We leave the coordination of the sanctioning outside the scope of this paper.
We can see that the order in which authorities are notified does not affect the
end result.

Properties of the Algorithm. To see that the algorithm terminates, we note
that because a counter is reduced just before it is tested at line 12, a node can be
included in 5 only once. Because of line 8, S will be cleared in every iteration
of the loop. Since the number of nodes is finite, eventually there will be no
more nodes which can be included in S at line 13, and the loop at line 5 will
terminate.

Define the upper height of a node N as the length of the longest path origi-
nating from N. We can prove by induction on the upper height that every node
of the graph will be included in S.

Theorem:. A node with upper length n will be included in S.
Proof: Any node with upper height 0 will be included in S in lines 1-4. Thus
the theorem is true for n = 0.
Now, assume that the theorem is true for n = k. If a node N has upper height
k + 1, then all its children must have upper height k or less. By our assump-
tion, all those children will be included in S before the algorithm terminates.
Then, because of lines 9-13, the counter of N will reach zero and N will be
included as well. Thus we have proved that a node with upper height fc + 1 will
be included in S, and by induction it follows that any node with upper height
of 0 or more will be included in S. •

Since every subject of the nodes of the graph will be included in the result, all
possible authorities will be included in the result.

We choose to not formalise the order in which the notifications are gener-
ated, but just note that since we start from the bottom, lower level managers
will be notified before higher level managers.
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4. Conclusion and Further Work

In many cases it is not possible to define the security policy completely in
a machine readable form and we may not anticipate all needs. The incom-
pleteness of the policy will lead to a conflict between need to protect against
unauthorised access and the need for legitimate access. In case availability is
important, a solution may be to allow users to override access denials and then
have managers audit the override. Authority resolution is a mechanism for im-
proving the efficiency of this audit. We have shown that it is possible to use
only existing information in the Privilege Calculus framework to implement
authority resolution.

What we present is early work and many issues remain. Of main interest is
to perform a study of the usefulness of the approach.

Another area is to improve on the work-flow of the mechanism, which right
now is not as good as we wish in the case of disapproval of override. By using
an access control framework with negative permissions or additional informa-
tion, different mechanisms for propagation of notifications may be possible.

We are also interested in applying our ideas to other access control frame-
works such as XACML.
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Abstract Role-Based Access Control (RBAC) usually enables a higher level view of au-
thorization. In this model, access permissions are assigned to roles and, in turn,
roles are allocated to subjects. The usefulness of the RBAC model is well doc-
umented. It includes simplicity, consistency, scalability and ease of manage-
ability. In practice, however, only limited versions of RBAC seem to have been
successfully implemented, notably in applications such as databases and oper-
ating systems. The problem stems from the fact that most applications require
a finer degree of authorization than what core RBAC models are able to pro-
vide. In theory, current RBAC models can be adapted to capture fine grained
authorizations by dramatically increasing the number of distinct roles in these
models. However, this solution comes at an unacceptably high cost of allocating
low level privileges which eliminates the major benefits gained from having a
high level RBAC model.

This paper presents a methodology for refining abstract RBAC models into new
Parameterized RBAC models which provide finer grain of authorizations. The
semantics of the Parameterized RBAC model is given as a state-based core
RBAC model expressed in the formal specification notation Z. By systemati-
cally applying this methodology the scope of applications of RBAC is substan-
tially extended and the major benefits of having the core model are maintained.

1. Introduction

RBAC is an access control mechanism based on the rationale that access rights
are assigned to roles, rather than to the subjects that perform these roles [1-5].
This approach is attractive for concisely describing authorization, particularly
within organizations, because responsibilities are often assigned to employees
(subjects) based on their duties (roles). RBAC is also very useflil when it is
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adapted to fit the organizational structure of an institution because it bridges
the gap between its functional requirements and the technical authorization as-
pects of its security policy. Hence, offering a high level view of authorization
and its operational management. However, few examples can be found where
only limited versions of RBAC are applied, namely in databases and in op-
erating systems such as Solaris [7, 8]. The reason for this is that the direct
application of abstract RBAC requires significant expressive power to cater
for access requirements in large organizations. For instance, the way permis-
sions are currently described in RBAC suggest that every role has a unique
set of permissions, which are assigned to its associated subjects or principals.
With this, two different subjects, occupying exactly the same role, will have
identical permissions. This might not be desirable because every subject exer-
cises its permissions in the context of its own duties [9]. This type of definition
makes a successful direct application of RBAC requiring large amount of work
to express access rights. Its success might be more related to the advanced
techniques provided by the implemented application, such as the "views" in
databases [6], rather than the features of the adopted RBAC. To clearly illus-
trate the lack of expressiveness in a direct application of RBAC, consider the
case of online banking. In this case, the clients are the subjects and the bank
accounts are the objects, and the role to describe the clients who have bank ac-
counts is referred to as AccountJtiolder. Although this role applies to all bank
clients, which can reach hundreds of thousands, the access permissions associ-
ated with every client (subject) occupying this role should be different. When
using the online banking service, every client can only access its own account
details, and not those of other clients occupying the role Account-Holder. It is
possible to express the permissions for such clients by directly applying RBAC,
but only at a considerable cost:
Firstly, although roles such as Account-Holder are defined as a single role,
their implementation suggests their instantiation into a large number of roles
to cater for every client, which presents a huge burden on the intellectual man-
ageability of access rights.
Secondly, the direct implementation of RBAC reduces the scalability of the
mechanism in large organisations because instances of role have to be treated
as different roles instead of being grouped under a single definition.
Thirdly, the consistency of the distribution of access rights is affected because
similar roles will have to be treated differently and managed separately.
These advantages, generally associated with RBAC models, can be maintained
if this case study is modelled as a parameterized RBAC. In this model, core
RBAC components, such as roles, would depend on values of a parameter. To
extend RBAC into a parameterized model, data about the values of the pa-
rameters should be provided. New permissions that might be created due to
the parameterization should also be identified. Hence, the construction of the
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Parameterised RBAC (PRBAC) results from the combination of the new com-
ponents as follows:

RBAC+Parameters Data+New Parameterized Permissions => PRBAC (1)

When the direct implementation of the core RBAC results in many drawbacks,
the Parameterised RBAC achieves the same effect and avoids these drawbacks.
Reconsidering the online banking example, the role AccountJtiolder can be
generalised to a parameterized role (AccountJHolder, m), where m is an ac-
count number. This role can later be instantiated to each account to give
the appropriate instances of the permissions. Following this, there will be a
single general parameterized definition for a role. This parameterization can
be repeated to support further levels of granularity by including additional
parameters such as bank branch. In this case, a role would be defined as
{(AccountJHolder, m), m\), where m\ is the bank branch number. This series
of "nested" parameters can be related in a hierarchy that depends on the type
of the used parameters and the way the parameterization is performed. This
hierarchy is not to be confused with the role hierarchy such as job positions in
organisation.
In this paper, we present a rigorous formal model for a parameterized RBAC
[4], in the Z notation [12-14]. We refer to it as PFRBAC because it is derived
from an extension ofFRBAC, a flat RBAC presented in a previous work by the
authors of this paper [5]. Being formal, PFRBAC presents a clear and mathe-
matically concise way for the implementation ofFRBAC. It is detailed in its
modelling of the components and features of a Parameterised RBAC and com-
plete in its presentation of the necessary semantics. With its type of a general
parameterized definition of RBAC components, this model enables a good and
comprehensive intellectual manageability of access rights and provides a con-
sistency in their distribution. The support of a hierarchy of parameters helps
to achieve an extremely fine granularity in access control, which is difficult to
achieve in a non-parameterized RBAC.
The remainder of this paper is structured as follows. Section 2 provides a brief
overview of related work on Parameterised RBAC. The parameterized model
is constructed in Section 3. This section details the derivation of the parameter-
ized concepts from the core ones. It presents the formal state based description
of the model in Z and shows the process of building a nested parameterized
model from an hierarchy of parameters. Section 4 presents a discussion of the
effect of the choice of the parameterized concepts on the expressiveness of the
model and Section 5 concludes the paper.

2. Related Work

There has been few attempts to model the Parameterised RBAC in the con-
texts of many works [9, 11, 15]. One of these attempts included a very useful
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definition of the parameterized role [11]. This definition was general and very
expressive, however, the rest of this work did not reflect its usefulness because
it was restricted in terms of the presented semantics and did not expand in a
way that enables a useful way of implementing the Parameterised RBAC. This
attempt did not also present full formal semantics of a parameterized RBAC
which treat all its features and concepts, such as the parameterized roles, per-
missions and objects. The relation between the RBAC concepts in this attempt
and the ones in the widely known RBAC models such as [1-5] is not explicit.
Another parameterization of the definition ofrole was presented in [15]. This
work aimed to suit the problem of controlling access to the contents of objects
in RBAC and focused on databases as its area of application. Although this
might be useful in the mentioned applications (databases), it drifts from the
concepts of RBAC models such as the RBAC standard [4], RBAC96 [1] and
FRBAC [5] which consider the object as the primitive unit that can be assigned
access rights and do not model its content. The focus of the parameterized
RBAC to solve a particular problem has undermined the generality of the ap-
proach because of its limited applicability to cases outside the presented scope.
Another definition of role as a series ofpolicy statement and constraints has
been proposed when constructing another solution-specific version of a param-
eterized RBAC [9]. The data type definition for roles has been substituted for
role classes in order to be instantiated. Because of these changes in the con-
cepts, it was difficult see how the commonly known RBAC models, such as the
ones in [1, 4, 5], would fit in this work.
All these attempts did not present a methodology to guide into the param-
eterization of RBAC. The parameterized RBAC concepts have been defined
without specifically mentioning their original RBAC definitions. This makes
it difficult for implementers to derive a Parameterised RBAC from an existing
RBAC model because the parameterization would need a significant amount
of work. It also undermines the advantages of scalability, consistency and ease
of manageability that a Parameterised RBAC offers.

3. Model for the Parameterized RBAC

The parameterized RBAC model presented in this paper is based on an ex-
tension ofFRBAC [5]. It supports the commonly known RBAC adopted con-
cepts and definitions [1-5], and the results of this paper equally apply to the
core model in the RBAC standard [4]. This section presents the methodology
to construct a parameterized RBAC from FRBAC and a supply of data about
parameters and of newly created permissions (according to (1)). One impor-
tant property of this approach is that the parameterization can be done several
times and successively in order to obtain very fine grained access control. It
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turns out that this property of nesting is directly associated with the hierarchy
of data representing the parameters.

3.1 The Flat RBAC

The components of a flat RBAC model are derived from the following en-
tities: ROLE, OBJECT, SUBJECT, PRINCIPAL, OPERATION, TASK, PER-
MISSION, which are respectively the sets (or data types) for all roles, objects,
subjects, principals, operations, tasks andpermissions. The sets of components
of an implemented RBAC model are referred to as: Roles, Objects, Subjects,
Principals, Operations, Tasks and Permissions. For instance, Roles is the set of
roles that are defined in the organisation implementing RBAC. The same anal-
ogy applies to the other components. FRBAC is summarised in the following
schema [5].

Referring back to the online banking example. Subjects would be the clients
and the employees of the bank, and Principals would the set of their associated
usernames. We consider four roles in this example:
Account-Holder, Manager, Clerk, System^Administrator. To illustrate the ini-
tialisation of an RBAC model for the case of the online banking application,
we use this following toy example. We assume that the sets of all accounts and
pin numbers are referred to respectively as Accounts, and Pins. The " ' " sign
is a convention for the initialisation of the components in the Z notation [14].

^FRBAC
Roles : FROLE
Principals : F PRINCIPAL
RoleAllocation : PRINCIPAL -> FROLE
Subjects : P SUBJECT
SubjectAssociation : SUBJECT -> P PRINCIPAL
SubjectRole : SUBJECT - • FROLE
Objects : P OBJECT
Operations : FOPERATION
Tasks : F(OPERATION x FOBJECT)
Permissions : ROLE -> P TASK

dom RoleAllocation — Principals
ran RoleAllocation C Roles
dom SubjectAssociation = Subjects
ran SubjectAssociation C Principals
dom SubjectRole — Subjects
ran SubjectRole C Roles
dom Permissions — Roles
{jY&nPermissions C Tasks
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Initialisation of an Example State:

Roles'= {Account_Holder, Manager, Clerk, System_Administrator}
Principals'= {c_l, c_2, c_3, c_4, john_l, ema_l, ema_2, denise_l}
RoleAllocation= {(c_l, { Account_Holder}), (c_2, {Account_Holder}), (c_3, {Account_Holder}),

(c_4, {Account_Holder}), (john_l, {Clerk}), (ema_l, {Manager}),
(ema_2, {Manager, Clerk}), (denise_l, {System_Administrator}) }

Subjects'= {Anne Roling, Mike Lowe, John Brown, Ema Thomas, Denise Logan}
SubjectAssociation'= {(AnneRoling, {c_l}),(Mike Lowe, {c_2}),(JohnBrown,{john_l, c_3}),

(Ema Thomas, {ema_l, ema_2}), (Denise Logan, {denise_l, c_4})}
SubjectRole'= {(Anne Roling, {Account_Holder}), (John Brown, {Clerk, Account_Holder}),

(Ema Thomas, {Manager, Clerk}),(Mike Lowe, {Account_Holder}),
(Denise Logan, {System_Administrator, Account_Holder})}

Objects'^ { Accountnumbers: P(N), Accounts: N —»• Account, Pins: N —+ Pin }
Operations'= { Create, Deposit, Withdraw, View, Transfer, Assign, Backup}
Tasks'= { (Create(n:N, a: Account, p:Pin), {Accountnumbers, Accounts, Pins} ),

(Deposit(k:N, n:N),{Accounts}, (Withdraw(k:N, n:N), {Accounts}),
(View(n:N),{Accounts}), (Transfer(k:N, ni, n2:N), {Accounts}),
(Assign(n:N), {Pins}), (Backup, {Accountnumbers, Accounts, Pins}) }

Permissions'- {(Manager, {Create, Deposit, Withdraw, View, Transfer, Assign}),
(Clerk, {View, Deposit, Withdraw}), (Account_Holder, {}),
(System_Administrator, {Backup}) }

3.2 Construction of the Parameterized Model

Parameterizations. By associating privileges with roles instead of prin-
cipals, RBAC offers a scalable means for expressing access control. The size
of the privilege table grows proportionally to the number of roles (which is
usually small) as opposed to the number of principals (which can be very large
indeed). However, in practice, most real applications require a finer grain of
access control. As we have seen in the previous example of a pure RBAC
model of a Bank , we were able to fully specify access control for some roles
such as Manager and Clerk but not for other roles such as Account_Holder.
The privileges of two different customers holding the Account_Holder role
are not identical. Hence, new information needs to be added to the model
to correctly capture the appropriate privileges for this role. To overcome this
limitation, we propose parameterizations of the RBAC model. The effect of
parameterizations is usually to enlarge the size of one of the components of
the pure RBAC model, that is roles, objects, or tasks. This aim is achieved
by the addition of parameters to values in one of the RBAC components or
their attributes, i.e. roles. Hence, in the refined parameterized RBAC model
of a Bank, the Account_Holder role will no longer exist! It will be replaced
by several instances of Account_Holder(m) where m is a parameter (variable)
drawn from an appropriate set of values.
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Choice of Pa rame te r s . The choice of parameter and the set of values
from which it can be instantiated is application dependent. The overriding
objective is to be able to adequately and fully capture the privileges of each
role in the refined model. In theory, the values from which a parameter can be
instantiated is just a set of abstract labels and does't have to have any meaning!
The purpose is to refine a single entity (such as a role name) into a set of
labelled (or "colored") alternatives. In practice, however, the parameter may
correspond to the focus of access control (object or subject), may reflect an
underlying concept such as ownership (files and accounts) or the primary key
in a relational database, or may reflect a level in the organizational hierarchical
structure for managing the application (faculty, department, course or module).
Let PARAMETER be the type of the required parameter, say a variable m, and
let Mbe the set values from which it can be drawn in the application. We have:

m : PARAMETER; M: ¥(PARAMETER); m£M (2)

In the banking example, since objects are parameterized by the account num-
bers currently allocated to clients, the set accountnumbers, it will be useful
to use the same values to parameterize the AccountJHolder role. Hence, the
new role Account_Holder(m) denotes the role of holding a specific account,
namely that whose number is m.

M = {«_1, /i_2, w_3, «_4} (3)

Genera t ing refined Roles for Paramete r i sed RBAC. Having
chosen an adequate parameter and identified the range of its possible values,
the next step is to identify what RBAC components, such as objects and roles,
to parameterize. The most useful candidate for parameterizations is usually the
Roles component. The objective is to fully define the privileges for each role
in the model. Those roles for which access control is fiilly defined in the core
RBAC model, however, parameterizations may not be appropriate and will not
bring any benefits. Therefore, not all the values in a core RBAC component
can be parameterized. Hence, our approach is to split the content of each
core RBAC component into two parts: those which will be replaced by the
refined parameterized versions (ParamComponenf) and those which will be left
unchanged (Component — ParamComponent). The process of generating the
Roles component in the Parameterised RBAC model is illustrated in Figure 1.
The set of roles, PRoles, in the new model is derived as:

PRoles = (Roles - ParamRoles) U {ParamRoles x M) (4)

The type for a role in the parameterized RBAC model can be inferred as:
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Roles

Roles to be parameterised Roles left non—parameterised
(ParamRoles) (Roles-ParamRoles)

Figure 1. Division of Roles for parameterization.

PROLE = ROLE W (ROLE x PÄRAMETER) (5)

For ease of readability, we adopt the following syntactic convention:

(c,m) = c(m) (6)

where m is a parameter and c is an RBAC component such as a role or an object.
In the Banking application, for instance, only the role of AccountJHolder is
to be parameterized; hence, ParamRoles = {Äccount-Holder}. All the other
roles, (Roles - ParamRoles), will migrate unchanged into the parameterized
model. The set PRoles can be calculated as follows:

PRoles = {AccountJHolder{m) \ m G {H_1,H_2,/I_3,WL.4})
U {Manager, Clerk, System-Administrator}

Please note that AccountJHolder is no longer a role in the new model.

Generating Subjects and Principals for Parameterised RBAC.
Subjects refer in general to human users [4, 5] and may not be useful for

parameterizations. Because parameterizations only addresses the issue of fully
capturing access control, it would seem odd to allow the underlying set of
human users to change from the core model. Therefore, we have taken the view
that the Subjects component should remain unchanged after parameterizations.

The same reasoning may not necessarily apply to the generation of the set
Principles, that consists of usernames and public keys acting on behalf of users.
Parameterizations of principles may lead to a classification of usernames upon
which aspects of access control could be determined. Therefore, by analogy
with the role parameterizations, (Figure 1), the PPrincipals component of the
parameterized model can be calculated as follows.

PPrincipals — {Principals—ParamPrincipals) U {ParamPrincipals x M) (8)

The data type of principals in the Parameterised RBAC can be inferred as:

PPRINCIPAL = PRINCIPAL l±) (PRINCIPAL x PARAMETER) (9)

In the banking example, the set of principles remains the same as in the core
model. That is, ParamPrincipals = {}.

PPrincipals — {c_l, c_2, c_3, C-A,johnJ\., emaJi, ema-2, deniseJi } (10)
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Genera t ing refined Objects for t h e Parameter i sed RBAC. the
PObjects component of the parameterized model can be calculated as follows.

PObjects = (Objects - ParamObjects) U (ParamObjects x M) (11)

The data type of objects in the Parameterised RBAC can be inferred as:

POBJECT = OBJECT ö {OBJECT x PARAMETER) (12)

In the banking example, the set of objects remains unchanged. That is, ParamObjects

{}•
PObjects = Objects (13)

Genera t ing Permissions for Paramete r i sed RBAC. First the
tasks component in the parameterized model should take into consideration the
changes in the object component. If the object component remains unchanged
then the tasks component will also remain unchanged. Hence, in the banking
example, we have:

PTasks — {(Assign,p : Pins), (Create,a : Accounts), (Deposit,a : Accounts),
(Withdraw, a : Accouni), (Transfer, [a\ : Account, a^ : Accounts]),

(View, a : Accounts)}
(14)

What would only change in this case is the association of these tasks to new
roles (the parameterized ones), which are the permissions. A parameterized
permission relates a parameterized role to its authorized tasks. In a Parame-
terised RBAC, the permissions include 3 types:
Firstly, ParamPermissions, the permissions of RBAC parameterized as a result
of the instantiation of the roles that would be parameterized, associated with
the authorized tasks, and defined as:

ParamPermissions = {{r(m),p) •
{r,p) G Permissions A r G ParamRoles A m G M}

In the online banking example, these permissions are:

ParamPermissions = {(Account_Holder(m), (View,Accounts(m))),
(AccountJrIolder(m), (Withdraw',Accounts(m))), (16)

(AccountJH.older(m), (Transfer, {Account[m), a^ •' Account}))}

Secondly, the permissions of the RBAC model that need not be parameterized,
i.e. the permissions of RBAC whose domain of application is restricted to
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Roles—ParamRoles. These permissions are defined as: (Roles—ParamRoles?)<3
Permissions. In the online banking case, they are listed as:

PPermissions = Permission U ParamPermissions (17)

Thirdly, new permissions that result due to the required private accesses for
some parameterized components such as roles. Again, the data type of param-
eterized parameters can be deduced as:

PPERMISSION = PROLE x TASK (18)

Genera t ing t h e Paramete r i sed R B A C Model: . As shown in
the previous example, a non-parameterized RBAC cannot capture permissions
such as the one that authorise a bank client to view his own account
(Account-Holder•, (View, a : Accounts)), because it cannot guarantee that a is
exactly the account of the client requesting to view it. In this case, a parame-
terization of RBAC is needed. To be accomplished, this procedure requires the
following entities to be provided:

1 The non-parameterized RBAC model, containing all the declarations and
concepts of RBAC shown in (1) in the schema calledParameterize-RBAC.
Note the Z convention to postfix the symbol "?" after a variable's name
to denote an input, and to postfix the symbol "!" after a variable's name
to denote an output.

2 The list of parameters M, shown in (2).

3 The list of components to be parameterized, namely ParamProles, ParamPrincipals
and ParamObjects respectively defined in (3), (4) and (5). These are
derived from the components of the RBAC model that need to be pa-
rameterized.

4 The newly induced private permissions, referred to as New—Permissions
in (7), which are particular to the instances of the components.

The output Parameterised RBAC (PFRBAC in (8)) would be induced from the
extension ofFRBAC using the schema Parameterize^RBAC. The components
of this model would be named in conformity with RBAC, with the convention
that they would be prefixed by the capital letter P. As demonstrated earlier
on, the set of parameterized roles in the Parameterised RBAC (Proles in (9))
would contain both the parameterized roles of FRBAC (ParamRoles x M),
and the remaining roles ofFRBAC that have not been parameterized (Roles -
ParamRoles). The same reasoning applies to the derivation of principals (PPrincipals
in (12)) and derivation of objects (Pobjects in (17)) of the parameterized model.
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_ ParametehzeJR.BA C
(1) AFRBAC?
(2) Ml : FPARAMETER
(3) ParamRolesl : FROLE
(4) ParamPrincipalsl : FPRINCIPAL
(5) ParamObjectsl : FOBJECT
(7) NewJPermissionsl : FPPERMISSION
(8) PFRBACl

(9) PRolesl = (ßofes - ParamRoles?) U (ParamRoles? x M)
(10) dom PRoleAllocation = PPrincipals
(11) ran PRoleAllocation = PÄo/e^
(12) PPrincipalsl = (Principals — ParamPrincipals?)U

(ParamPrincipals? x M)
(13) dom PSubjectAssociation = PSubjects
(14) reniPSubjectAssociation = PPrincipals
(15) dom PSubjectRole = PSubjects
(16) ran PSubjectRole = PRoles
(17) PObjectsl = (Objects - ParamObjects?) U (ParamObjects? x M)
(18) POperations\ = Operations
(19) Prasfo! = T a ^
(20) PPermissions\ = {{Roles — ParamRoles?) <3 Permissions) U

ParamPermissions U New-Permissions!
(21) ParamPermissions = {(r(m),p) • (r,/>) G PermissionsA

r G ParamRoles f\m G M}
(22) dom New—Permissions C (ParamRoles x M)

3.3 The Nesting Property of the Parameterised
RBAC Model

This work presents a methodology for parameterizing RBAC components
in order to deduce a Parameterised RBAC model. The resulting model, which
is also an RBAC model, can be fiirther parameterized in order to achieve an
additional level of granularity. The components of the new model would now
depend on two parameters as shown in Figure 2. This figure depicts a hierar-
chy of parameters data. In it, we use the tree notation whereby a filled square
denotes a leaf and a circle denotes a node with children. This parameteriza-
tion can be repeated successively, and in a nested way, as long as required to
achieve the required access control granularity. In this way, new parameterized
RBAC model would be devised following the parameters' hierarchy, as shown
in Figure 2. However, there can be another way of nesting parameters; which
is by using the cross product of the set of parameters M and the RBAC com-
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Figure 2. The nesting of the parameterized models following the level of the appropriate
parameters.

ponents at every level. This means that we would parameterize all components
at every level. In this type of nesting parameterization the order of parame-
ters is not important. For instance, if in the online banking example both roles
Account—Holder(branch(accounti)) and Account-Holder(account\(branch))
are considered the same. The nesting by cross product results in a number of
redundant parameterized RBAC components at every level, which might not
be necessarily needed. This is prevented when using our methodology of pa-
rameterization because it enables the choice of parameters at every level of the
parameters' tree. Also, it enables to parameterize only'the required compo-
nents such as roles, objects and principals. This reduces the number of param-
eterized components at every level and eases the manageability of the access
rights.

4. Discussion
Two of the main advantages of RBAC are the simplification of access rights

management and the presentation of a high level view of security in an organ-
isation. However, in its current form, RBAC does not seem to have enough
power to express a wide range of security requirements and capture fine access
control granularity when put into application. These features can be accounted
for by extending RBAC to the Parameterised RBAC, in order to support param-
eters, as shown earlier on in this work. The Parameterised RBAC provides finer
granularity by creating instances of RBAC components according to the con-
texts of their use. With this, it can cater for special security requirements such
as the support of private access rights for each of the instances of the same role,
and the differentiation between the access rights of subjects associated with the
same role. Providing very fine granularity can however complicate the access
control list (ACL) because it involves handling access rights for a significantly
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higher number of roles, which is due to the instantiation of the RBAC roles.
This undermines the advantage of the simplicity of access rights management,
for which RBAC is known. It seems there is a tradeoff between simplifying
the management of access rights and providing fine granularity; and between
providing a higher view of security, and parameterizing RBAC concepts to in-
crease the expressive power of the Parameterised RBAC. Providing a balance
between these advantages in a Parameterised RBAC model is greatly affected
by the way the parameterization is performed. More specifically, this balance
depends on two factors:

• The choice of the parameterized RBAC concepts: this involves deciding
which RBAC concepts, such as roles, objects and principals, are to be
parameterized.

• The type of parameters: the parameters according to which the param-
eterization would be performed are often related to the environment or
context where the Parameterised RBAC is applied. As seen earlier on,
parameters can be faculty names and unit names in a university, or a
department name in a commercial organisation.

5. Conclusion

This paper has the proposed a rigorous formal model for the Parameter-
ized RBAC (PFRBAC). One strength of this model lies in the methodology
that is used to migrate from the direct implementation of an RBAC model,
which suffers the drawbacks of inconsistency of access rights distribution, dif-
ficulty of intellectual manageability and the weak scalability of the model, into
a parameterized RBAC which achieves the same results without bearing these
drawbacks. This parameterized implementation of RBAC is very important for
realistic applications because it achieves extremely fine grained access control
granularity. Another strength of PFRBAC is its completeness in terms of in-
vestigating all the concepts and semantics of a Parameterised RBAC and sup-
porting all the definitions and features of the well-known RBAC models in [1,
2, 4, 5]. The formalisation of PFRBAC in the Z notation makes it clear to
understand and eliminates ambiguities at the application phase.
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