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Chapter 1

INTRODUCTION

D.T. Lee

Academia Sinica, Taiwan

S. P. Shieh

National Chiao Tung University, Taiwan

J. D. Tygar
UC Berkeley

Computer security has moved to the forefront of public concern in the new mil-
lennium. Hardly a day passes where newspaper headlines do not scream out
worries about “phishing” , “identity theft” , “browser exploits” , “computer
worms” , “computer viruses” , “online privacy” , and related concerns. The
major vendor of computer operating systems has announced that computer se-
curity is now its top priority. Governments around the world, including most
major governments in North America, Europe, and East Asia continue to worry
about “cyber-terrorism” and “cyber-war” as active concerns.

It was in this charged environment that we decided to hold a workshop in
December 2003 on emerging technologies for computer security. The work-
shop was held in Taipei in conjunction with several other conferences (notably
Asiacrypt) and featured leading researchers from the Asia-Pacific region and
the United States. What followed was three days of exchange of ideas that led
to a number of significant developments. This book attempts to share some
of the research trends that were reflected in the best papers published at the
conference.

The first section deals with the classical issue of cryptographic protocols.
How can we build secure systems that need to exchange private data, while
guarding against eavesdroppers who listen in on attacks? Dieter Gollmann ex-
amines five case studies that show challenges in cryptographic protocol design
and argues for a new framework for viewing the problem. Yaping Li, J. D.
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Tygar, and Joseph Hellerstein show how private matching can be used to ex-
change database information while still protecting the privacy of individuals.
Jonathan Millen brings formal analysis to bear, showing that current techniques
of analyzing protocols still fail to protect against a number of problems. And
Tzong-Chen Wu and Yen-Ching Lin argue for a a new key agreement method
based on self-certification .

We next turn our attention to networking, and examine the rapidly expand-
ing fields of peer-to-peer networking and ad hoc networking. These clearly
introduce a number of new security challenges, and are especially relevant in
light of recent studies suggesting the peer-to-peer networking now comprises
the majority of networking over the Internet. Nitesh Saxena, Gene Tsudik, and
Jeong Hyung Yi present a new system, Bouncer , that provides arguably the
most fundamental element of peer-to-peer security: secure admissions con-
trol. They also discuss its actual implementation in several real peer-to-peer
networks. And Shih-I Huang, Shiuhpyng Shieh, and S. Y. Wu present key dis-
tribution systems for an important emerging type of ad hoc network : wireless
sensor networks .

A fundamental change in thinking about security has been the change of
emphasis from building impenetrable systems to building systems that rapidly
respond when attacks commence. Michael Howard, Jon Pincus, and Jeannette
M. Wing report on work at Microsoft that proposes a completely new way of
thinking about the vulnerability of systems: “relative attack surfaces . Pei-
Te Chen, Benjamin Tseng, and Chi-Sung Laih give a new may of modeling
intrusion detection systems . Fu-Yuan Lee, Shiuhpyng Shieh, Jui-Ting Shieh,
and Sheng-Hsuan Wang propose a new type of system for actively responding
to distributed denial of service attacks; and Chang-Hsien Tsai, Shih-Hung Liu,
Shuen-Wen Huang, Shih-Kun Huang, and Deron Liang discuss their BEAGLE
system that allows security faults to be reproduced for debugging purposes.

Finally we turn our attention to perhaps the hottest single topic in the set of
emerging security concerns: protecting multimedia content. Yao-Wen Huang
and D. T. Lee discuss issues in Web Application Security. Robert H. Deng,
Yongdong Wu, and Di Ma discuss their work in securing a new standard for
photographic images, JPEG2000 . And Chin-Chen Chang, Tzu-Chuen Lu,
and Yi-Long Liu discuss a new method of “watermarking” information in doc-
uments: a secret information hiding scheme.

Together, these works present an agenda of important security topics for
computer security in the new century.
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Chapter 2

CHALLENGES IN PROTOCOL DESIGN AND ANALYSIS

Dieter Gollmann

TU Hamburg-Harburg
Germany

diego@tu-harburg.de

Abstract The clarification of protocol goals and of the assumptions made about the en-
vironment protocols are intended for is an important but sometimes underes-
timated step in protocol design and analysis. Implicit assumptions about the
environment can profoundly influence our understanding of security and may
mislead us when faced with new challenges. Five case studies will support these
claims. Research on novel security properties and on the influence of assump-
tions about the environment are proposed as major challenges in protocol design
and analysis.

Keywords:  Protocol analysis, authentication, key establishment.

1. Introduction

Since Needham and Schroeder published their paper on authentication [Need-
ham and Schroeder, 1978], the design and analysis of security protocols has
been an active field of research. In Needham’s words, this paper had the
lasting effect of making research on three-line protocols socially acceptable.
The BAN logic of authentication [Burrows et al., 1990] provided further im-
petus for research on the formal analysis of security protocols. Considerable
progress has been made in developing increasingly powerful analysis methods,
see e.g. [Ryan et al., 2001]. New attacks were found against protocols that had
been in the public domain for years, and had even been the subject of prior
formal analysis [Lowe, 1996, Lowe, 1995]. Given the origins of this research
area, it is no surprise that many efforts were directed towards the aforemen-
tioned three-line protocols, and in particular towards authentication protocols.
The discovery of new attacks was seen as evidence that the design of security
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protocols is “difficult and error prone” and that tool support is necessary as
problems are too complex for analysis by hand.

We will argue that the perceived difficulties in protocol design are not so
much due to the inherent complexities of the attacks that have been found,
but to ambiguous protocol goals and changing assumptions about the environ-
ment a protocol is fielded in. For example, the report on the BAN logic of
authentication explicitly avoids giving a definition of authentication and ad-
vertises the logic as a means of differentiating between goals “authentication”
protocols might achieve. Authentication is quite an overloaded notion so mis-
understandings can occur easily. Clarification of goals is thus a crucial step in
protocol analysis.

The specification of novel security goals and research into the interrela-
tions between protocol goals and the environment a protocol is intended for
are therefore major challenges in protocol design and analysis. We will il-
lustrate these points with five case studies. Section 4.1 revisits Lowe’s attack
against the Needham-Schroeder protocol and explains this attack as a result of
changing assumptions about the intended environment and about the meaning
of authentication. Section 4.2 shows that it is possible to establish secure con-
nections without mutual entity authentication. Section 4.3 examines security
issues of location management in Mobile IPv6 . Section 4.4 reflects on data
integrity in sensor networks and shows that even generally accepted facts in
security may be rooted in implicit assumptions about the environment. Sec-
tion 4.5 refers to a study of key insertion attacks done more than a decade ago
to point out a direction in protocol analysis where we can face truly complex
attacks.

These case studies are preceded by preliminary discussions about the pur-
pose of protocol analysis and its repercussions on analysis methods, and about
fundamental changes in assumptions about the environments security protocols
are being designed for.

2. Purpose of Analysis

In protocol analysis, we are given a communications environment together
with a description of the adversary (sometimes implicitly), a set of security
goals (sometimes expressed in anthropomorphic metaphors ), and a protocol,
and examine whether the protocol does meet its desired goals. Two distinct
motivations can drive the development of methods and tools for protocol anal-
ysis.

= Analysis of protocols that address well established security requirements
and use established security primitives.

= Analysis of protocols that address novel requirements.



Challenges in Protocol Design and Analysis 9

In the first case, security goals, assumptions about the environment, and
standard cryptographic primitives can be integral parts of the methodology.
Methods of this kind are useful, for example, when dealing with system archi-
tectures that expose security to application writers. Systems where security is
the responsibility of the application layer tend to fall into this category. Typ-
ically, developers are not security experts but are asked to integrate standard
security mechanisms that meet standard goals into their designs. Changes to
any of these aspects would require some redesign of the methodology, but this
could be done “out-of-band” before a revised tool is handed back to the devel-
opers.

In the second case, we need agile methodologies where it is easy to de-
fine specific adversaries and to express novel security requirements. Mostly,
new protocols are designed because new requirements are emerging so that
traditional security assumptions have to be adjusted. The analysis of protocols
meeting novel security requirements is the main focus of this paper.

3. The Environment

Any model for analysing security protocols will in some way or other cap-
ture assumptions about the environment the protocol is deployed in, including
aspects of the communications network, the actions an adversary can take, and
the behaviour of regular protocol participants. When interpreting the results of
a protocol analysis, it is evidently important to understand which environment
had been modelled.

3.1 Dolev-Yao

Often, protocol analysis tries to assume as little as possible about the com-
munications systems and gives all messages to the adversary for delivery. Many
authors refer to the Dolev-Yao model [Dolev and Yao, 1983] when taking this
approach. This model makes two independent assumptions:

m Cryptography is “perfect”. The adversary does not try to exploit any
weakness in the underlying cryptographic algorithms but only algebraic
properties of cryptographic operators and interactions between protocol
messages.

m The adversary can observe and manipulate all messages exchanged in a
protocol run and can itself start protocol runs.

The second assumption had already been stated by Needham and Schroeder
[Needham and Schroeder, 1978]:

We assume that the intruder can interpose a computer in all communication
paths, and thus can alter or copy parts of messages, replay messages, or emit
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false material. While this may seem an extreme view, it is the only safe one
when designing authentication protocols.

The Dolev-Yao model makes no explicit provision for describing different
communications environments (other than by defining the derivation rules the
adversary can apply) and the adversary is limited to exploiting specific alge-
braic properties of cryptographic operators.

Analysing protocols in a setting as general as possible is not necessarily a
route to higher security. Protocols may build on particular features of their
intended environment and should in the first place be analyzed in a model
that is faithful to this environment. Showing that a protocol does not meet
is goal in a more general setting is useful side-information but should not be
automatically classified as an attack.

Thus, for any approach to protocol analysis we should query how differ-
ent communications environments and adversaries can be modelled. If an ap-
proach works for a fixed environment only, we should be aware of its limita-
tions. Fo illustration, we contrast the mechanisms and the assumptions under-
pinning security in closed and open environments.

3.2 Closed environments

Security research originated in places like research laboratories or university
departments. In such closed organisations, users have identities (company ID,
student ID), can be physically located, and are subject to the authority of other
entities in the organisation (managers, heads of department). Assumptions
specific to closed environments underpin many familiar approaches to security.
In traditional computer security,

m security policies refer to user identities; access control consists of au-
thentication (checking who you are) and authorisation (checking whether
you have the necessary access rights) [Lampson et al., 1992].

= Access control defends against attacks by outsiders; principals are “hon-
est” as stated by Needham [Needham, 2000]: If they [principals] were
people they were honest people; if they were programs they were correct
programs.

= Auditing is used to detect attacks by insiders: “If you break the rules we
can get hold of you™.

The anthropomorphic metaphor that principals are “honest” should not be
interpreted as a general expectation that people within the organisation are
honest. The metaphor just indicates that security mechanisms do not address
threats from insiders. Obviously, when a verification method such as the BAN
logic makes this assumption, any conclusion drawn is only valid in environ-
ments where the assumption holds.



Challenges in Protocol Design and Analysis 11

3.3 Open environments

For our purpose, open environments are characterized by the absence of
strict lines of authority. In the extreme case, parties may join and leave the
system on their own terms. Some ad-hoc networks fit this description [Miki
and Aura, 2002]. As another example, consider parties joining together in a
virtual organisation where there is some agreement between partners but no
entity has real authority over the others.

Our emphasis is on organisational structures. In this respect, our concerns
differ from those in open systems security as commonly understood in net-
work security. There, we are concerned with closed environments connected
by open networks. For security, the move to open environments has a number
of implications.

a  User identities may be of little value. Names are useful locally [Ellison
et al., 1999] but in an open environment we may deal with users not
previously known, whose name (identity) does not appear in any security
policy, and who may be outside the reach of any authority we are able to
invoke.

» Security policies use attributes other than user identity. Java security
[Gong, 1999] and .NET security [La Macchia et al., 2002] have been
moving to code-based (evidence based) access control for some time.

» There need not be a central authority for setting policies, e.g. in ad-hoc
networks or in peer-to-peer networks.

s There need not be a central entity making access control decisions.

m  There is no boundary between inside and outside. The enemy is within
by default. Principals need not be honest.

If security policies no longer refer to user identities and if authentication
checks who you are, we have access control without authentication. Con-
versely, if authorisation checks that your identity appears in an access control
list and if security policies are completely encoded in certificates, we have ac-
cess control without authorisation. Thus, even the language we use to discuss
security is geared to closed environments and starts to fail us when we move
to new settings.

A general challenge today is to expose closed system assumptions that are
inappropriate in open environments, both in the security mechanisms we are
familiar with and in the (formal) analysis methods at our disposal.
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4. Case Studies

We discuss four security protocols and their analysis, focusing on the speci-
fication of security goals and on the underlying communications environment.

4.1 Lowe’s attack

Protocol analysis using CSP and the model checker FDR came to promi-
nence with Lowe’s analysis of the Needham-Schroeder public key protocol
[Lowe, 1996, Lowe, 1995]. The fact that his analysis found a previously un-
reported attack is often quoted as evidence for the benefits of using formal
methods when analysing security protocols.

The Needham-Schroeder public key protocol was intended for establishing
secure connections. When starting a session, parties A and B with public keys
K, and K}, and in sole possession of the respective private keys, establish
shared secrets. A secure connection for exchanging messages during the ses-
sion is then created, for example, by deriving a session key from the shared
secrets. The three messages at the core of the protocol are [Needham and
Schroeder, 1978]:

1. A— B:eKy(Ng, A)
2. B — A:eKy(Ng, Np)
3. A — B:eKy(Ny)

Only B can decrypt the first message and obtain N,. Only A can decrypt
the second message, obtaining N, and a confirmation for its challenge NV,. In
the third message B receives a confirmation for its challenge N,. A session
key can now be derived from the two nonces N, and N;. A formal proof in
the BAN logic of authentication confirms that the protocol securely establishes
shared secrets [Burrows et al., 1990]. The logic explicitly considers attacks by
outsiders only.

In Lowe’s analysis, the protocol goals are given as correspondence proper-
ties:

= The initiator should only commit if the intended responder had replied
to its challenge.

»  The responder should only commit to a protocol run with the initiator
that had sent the challenge.

In the attack principal A starts a protocol run with an “evil” party E' that
manages to fool B and, depending on your point of view, also A:
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1. A— E:eK.(Ng, A)
2. E — B: eKy(Ny, A)
3. B— E:eKy(Ny, Ny)
4. E — A:eKy(Ny, Np)
5. A— E:eK.(Np)

6. E — B:eKp(Ny)

After the last step, B commits to a protocol run with A although A had
embarked on a protocol run with F and is unaware of B’s involvement. B
is deceived as E has impersonated A in a protocol run with B. Lowe also
reasoned that A successfully authenticates £ because it receives a valid reply
to its initial challenge in step 4.

In a trace-based analysis , expressing security properties as correspondence
conditions on traces comes natural. Often protocol specifications are amended
with auxiliary begin and end events for this purpose. We could try to define
authentication generically as a relation between two sets of events R and T.
“T authenticates R” [Schneider, 1996], or “R precedes 7" [Schneider, 1998],
when every occurrence of an event from T in the trace of a protocol run must
be preceded by the occurrence of an event from R.

We would get a range of formal properties reflecting different informal se-
curity requirements but we cannot take for granted that the goals of any given
so-called authentication protocol will be captured by our property of choice.
Not every correspondence property need relate to an established notion of au-
thentication either and reference to auxiliary events introduces another degree
of arbitrariness.

When correspondence properties were introduced [Bird et al., 1992], their
purpose was stated as:

Note that the requirement is that the exchange be authenticated, and not the
parties themselves.

Today, the term entity authentication is used in this meaning:

DEFINITION 2.1 Entity authentication is the process whereby one party is
assured of the identity of a second party involved in a protocol, and that the
second has actually participated [Menezes et al., 1997].

However, this was not always the case. The Needham-Schroeder authenti-
cation protocols were designed to establish secure connections. In this regard,
Lowe’s analysis misses an attack on A. At the end of the attack above, E
shares a key with A and B while A erroneously believes to share a key with E
only and B believes to share a key with A.

Lowe’s analysis also highlights the distinction between the traditional sce-
nario where honest principals seek protection from an outsider interfering with
their communications and settings where insider attacks are a concern. This
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change in assumption rather than the use of a model checker led to the discov-
ery of the attack against the Needham-Schroeder public key protocol, an attack
that is launched by a dishonest principal. This issue did not arise in the work
of Dolev and Yao, who analyze the secrecy of data items sent in a protocol
message. The Dolev-Yao model is thus silent on the nature of the adversary,
and this aspect should be clarified in any reference to it.

4.2 Secure connections without entity authentication

The previous section raises the question how entity authentication (Def. 2.1)
is related to establishing a secure connection. It may seem that entity authen-
tication is a prerequisite for, say, establishing a shared session key . If a party
cannot tell for certain whom it has executed a protocol run with, how can it tell
that it is not connected with an adversary?

However, this view is wrong as shown in [Mitchell and Pagliusi, 2003].
Their counterexample is set in an environment typical for mobile telecom-
munications systems like GSM (Global System for Mobile Communications).
There is a mobile device, a home server, and a visited server. Mobile and home
server share a secret key K;.

In GSM, when the mobile tries to register with the visited server, the server
contacts the home server and receives a triplet (V, R, K.), where N is a ran-
dom challenge, R the expected response, and K. a session key for optionally
encrypting the channel between visited server and mobile. Both R and K. are
derived from N and the key K. The visited server then sends the challenge
N to the mobile, which computes the response R and key K. from N and
K;, and returns its response. Authentication succeeds if returned response and
expected response match.

DEFINITION 2.2 Key authentication is the property whereby one party is as-
sured that no other party aside from a specifically identified second party may
gain access to a particular secret key [Menezes et al., 1997].

The GSM protocol provides unilateral authentication only. The visited net-
work authenticates the mobile, but not vice versa. The protocol cannot pre-
clude man-in-the-middle attacks where the adversary inserts itself between
mobile and visited server. Mutual key authentication is often suggested as
the remedy.

In GSM, mutual key authentication would not help as there is no integrity
protection for the subsequent voice traffic. Conventional cryptographic in-
tegrity protection of voice traffic is no option because the error rate on the
wireless channel is too high. Transmission errors would invalidate too many
data frames. The optional encryption would stop the attack, but in GSM the
adversary can tell the mobile to switch off encryption. Moreover, the proto-
col does not provide key freshness. An adversary who has obtained a triplet
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(N, R, K.) can mount a replay attack when the mobile makes a connection
requests.

Mitchell and Pagliusi constructed the following protocol specifically to show
that man-in-the-middle and replay attacks can be stopped without resorting to
mutual authentication [Mitchell and Pagliusi, 2003]. The environment is as
in the GSM example, with the addition that mobile and home server have syn-
chronized clocks. The home server provides the visited server with a 5-tuple
(N,R, K., K,,T) where

» challenge /V and response R are as in the GSM protocol,
m T is atimestamp,
m K., K, are keys derived from N, T', and the shared secret key K.

The visited server sends N and 7" to the mobile. The mobile checks whether
T is within an acceptable time window and aborts the protocol if 7" is too old.
This check prevents replay attacks. If T" is accepted, the mobile computes R,
K., and K, from N, T, and K. As before, the visited server matches expected
and received response to authenticate the mobile.

The key K, is again an encryption key for the data channel between mobile
and visited server. The key K, is used to protect the integrity of the signalling
channel between mobile and visited server. Thus, the adversary cannot modify
or forge signalling requests, e.g. asking the mobile to switch off encryption.
When encryption is switched on, the key K. provides the mobile with a con-
nection the adversary cannot eavesdrop on. Still, the mobile gets no evidence
whatsoever about the party it is running the protocol with. The mobile gets the
keys to build a secure connection without conducting entity authentication.

4.3 Location management in Mobile IPv6

Network addresses can serve two general aims. An address can uniquely
identify a node in the network, or encode the location of a node in the network
topology. As long as nodes remain in fixed positions it may not be necessary
to distinguish between identity and location. When nodes are mobile, identity
and location are clearly separate concepts. In Mobile IPv6, the 128-bit IP
addresses consist of a 64-bit interface identifier and a 64-bit routing prefix
(location information).

Mobile nodes can lie about their identity or their location. An adversary can
fraudulently present its own location as the victim’s current address to hijack a
connection or give the victim’s address as its own location to mount a flooding
attack . Thus, we need protocols for verifying that a node with a claimed
identity is in its claimed location.

We sketch a binding update protocol for mobile IPv6 [Aura et al., 2002],
assuming the following about the communications infrastructure. Each mobile
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node has an address in its home network. Messages sent to this home address
are routed to the mobile node via a secure IP tunnel . For better efficiency,
a mobile node can inform a correspondent node about its current location by
performing a binding update .

The adversary can eavesdrop on traffic on the wireless links used by the
mobile node, make arbitrary claims about its current location, and use arbitrary
identities when sending messages to the correspondent. We assume that the
channel between home network and correspondent is reasonably secure, e.g.
because it uses the wired Internet which could be secured by other means. For
detailed justifications the reader is referred to [Aura et al., 2002]. We have thus
three channels, with different security characteristics.

» Mobile < home: the mobile node and its home network have a pre-
arranged security association, which they can use to create a secure IP
tunnel to transfer messages.

= Correspondent +» home: uses the wired Internet.

= Mobile < correspondent: unprotected wireless channel.

In the protocol in Fig. 2.1, the mobile node first sends binding update re-
quests (BU) to the correspondent, via the home network and directly over the
radio channel (steps la and 1b). The correspondent replies to both requests
independently, sending a key Ky to the mobile node via the mobile’s home
address and a second key (3 directly to the claimed current location (steps 2a
and 2b). The mobile node uses both keys to compute a message authentication
code for the binding update (step 3).

This protocol does not rely on the total secrecy of cryptographic keys. In
the threat model chosen, it is admissible to send the keys K and K in the
clear on the channels from the correspondent. Technically, these keys can be
interpreted as challenges (nonces) that bind identity to location through the

home correspondent
2a. K Q

la. BU

secure ib. BU~Z
tunnel )

3. BU, h(Ky, K1, BU)

¢

mobile

Figure 2.1. Binding updates in Mobile IPv6
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hash h(Ky, K1, BU). The fluid border between keys and nonces was already
evident in Section 4.1,

As discussed in [Gollmann, 2003b], in communications security the term
authentication habitually refers to the corroboration of a link between an iden-
tity of some kind and an aspect of the communications model, like a message
or a session. In this respect, binding update protocols provide location authen-
tication .

4.4 Data integrity in sensor networks

Consider a network with the following characteristics [Vogt, 2003]. Nodes
can communicate with their direct neighbours. Nodes only have information
about nodes in their vicinity and no means for authenticating arbitrary nodes
in the network.

In cryptographic terms, there is nothing like a public key infrastructure.
Nodes share secret keys with nodes that are one or two hops away. Message au-
thentication codes protect the integrity of messages transmitted between nodes
that have shared keys.

Nodes can inject new messages into the network and forward messages they
receive. A discussion of suitable routing algorithms for such a network is out-
side the scope of this paper. We assume such an algorithm exists. A discussion
of potential applications of such networks is also outside the scope of this pa-
per. In such a network we want to achieve data integrity. Forwarded messages
cannot be manipulated or inserted!:

DEFINITION 2.3 Data integrity is the property whereby data has not been
altered in an unauthorized manner since the time it was created, transmitted,
or stored by an authorized source [Menezes et al., 1997].

Defence against the creation of messages with bad content is a separate issue
that is not being addressed here.

In the network given, the creator of a message cannot vouch for its integrity
as nodes further away would not share a key with the originator. The Can-
vas protocol thus uses interwoven authentication paths for data integrity [Vogt,
2003]. We slightly modify the original presentation and include the identities
of nodes on the routing path with messages. We only describe the forwarding
of messages. The injection step in [Vogt, 2003] is constructed along similar
lines.

Let Ky denote a symmetric key shared by nodes X and Y and let A, B, C,
D, denote nodes in the network. A message m is forwarded from B to C' as
follows (Fig. 2.2):

B — C:m,A,B,D,h(Kqy,m), h{Kpe, m), h(Kpq,m)
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Node A had forwarded the message to B, nominated C' as the next node, and
included the authenticator h(K,.,m). In turn, B nominates D as the next
node and constructs authenticators h( K., m) and h(Kpq,m). The recipient
C checks the two authenticators h(K,., m) and h(Kj., m), and discards m if
authentication fails.

Obviously, if A and B collude they can modify m without being detected
by C. However, it can be shown that the protocol achieves its goal if no two
adversarial nodes are direct neighbours [Vogt, 2003]. This observation con-
tradicts a view widely held in communications security that data integrity and
data origin authentication are equivalent properties, see e.g. [Menezes et al.,
1997, page 359].

DEFINITION 2.4 Data origin authentication (message authentication) is a
type of authentication whereby a party is corroborated as the source of speci-
fied data created at some time in the past [Menezes et al., 1997].

By definition, data origin authentication includes data integrity. In a com-
munications system where the sender’s identity (address) is an integral part of
a message, a message with a forged sender address should not be accepted as
genuine. To check the integrity of a message we would also have to verify its
origin. Moreover, if messages pass through a completely insecure network, we
can only rely on evidence provided by the sender to verify that a message has
not been altered in transit. For both reasons data integrity includes data origin
authentication.

However, in an open environment where the identities of other parties are
unknown the sender’s identity may not be an integral part of a message. Fur-
thermore, if we do not assume that the network is completely insecure, we
might accept that a message is received exactly as it was created if a sufficient
number of independent witnesses can vouch for this fact. We may have to rely
in turn on other witnesscs to confirm witness statements. In such a setting we
can have data integrity without data origin authentication.

There is a final twist to this case study. We can find an attack against the
protocol by adjusting assumptions about the adversary. Adversarial nodes still
cannot be direct neighbours in the network but they may agree a-priori on a
strategy for modifying messages and know their respective routing strategies.

MEpeom)  h{(Kpg,m)

Figure 2.2.  The Canvas protocol
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Two adversarial nodes A and C separated by a honest node B can then collude
to change a forwarded message m to /. The attack in Fig. 2.3 targets a node
that can be reached in one hop from one of the adversarial nodes and in two
hops from the other.

1 Adversary A forwards message m to B, naming C as the next node and
including h(Kge, ) in place of the authenticator h( Ky, m); F has to
be a node that can be reached in one hop from C' and in two hops from
A

2 Node B successfully checks the authenticators for m, names D as the
next node, and forwards h (K., ) unchecked.

3 Adversary C receives m from B, changes it according to the pre-arranged
strategy to m, generates authenticators for the modified message, and
forwards those together with h( Ky, m) to E.

4 Node E receives the modified message m with valid authenticators from
A and C and accepts it as genuine.

This attack could be prevented if E knows about valid routes in the network.
By assumption, A and C are not direct neighbours so messages could not arrive
along the route A — C — E. However, this would constitute yet another
change in assumptions. In our original set-up, nodes only store keys for some
neighbours but have no further information about the network topology. We
can only tell in concrete applications which assumptions about the environment
are really justified.

4.5 Complexity — key insertion attacks

Most protocols studied in the academic literature on protocol analysis are
not complex at all, nor are the attacks that have been found. Admittedly, even
for simple protocols security proofs can become quite complex. True com-
plexity, however, is met outside the traditional playing ground of Alice & Bob

e O

h(Kpq,m)
(Ko, ) @

hWKae,m) MK, m)  h{f,m)

V(K e, ) :

A

Figure 2.3.  An “attack” on the Canvas protocol; dotted lines indicate unused links.
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protocols. For illustration, we sketch a key insertion attack on a key manage-
ment module described in [Longley and Rigby, 1992].

Key management modules are used in the financial sector for executing sen-
sitive cryptographic operations. Only encrypted keys are allowed outside the
module. Keys for different types of applications have tags defining their in-
tended use. Our example has data encrypting keys (tags kds and kdr for send-
ing and receiving encrypted data), key encrypting master keys (tags kis, kir),
and change keys for re-encrypting keys (tag kc). Table 2.1 gives the functions
provided by the module.

In a key insertion attack the adversary tries to get a key K of her choice
encrypted under the master key K,,. The adversary can call all functions of the
module and may have access to encrypted keys that have been legally exported
from the module. It is a non-trivial exercise to construct such an attack, or to
prove that a system is not vulnerable in this way. Key insertion attacks have
received renewed attention in recent times [Bond and Anderson, 2001].

With the set of functions given in this case study, an attack can be mounted
[Longley and Rigby, 1992]. The adversary starts with an encrypted but un-
known key e K, (U') with tag kc and a random data block interpreted as eU (X).
In the attack the value X remains unknown to the adversary. The attack yields
eKp, (K) with tag kis:

1 eKp(X)[ke] — EMKKC(e K (U), eU(X))
2 Ko (X)[kis] «— EMKKIS(e K, (U), eU(X))

3 eKm(K')[kds],eX (K")[kdr] — KEYGEN(eKm(X))
4 eKm(K")[kc| « EMKKC(eKp(X), eX (K"))

5 eK'(K)[kc] — SECENC(K, eKpm(K'))

6 eKpm(K)[kis] — EMKKIS(eKm(K"), eK'(K))

function input tags | output

SECENC | DATA, eK,,(Kp) -, kds | eKp(DATA)

SECDEC | eKp(DATA), eKn(Kp) | -, kdr | DATA

KEYGEN | eK,,(K) kis eKm(Kg),eK(Kg) | kds, kdr

RTMK eK (K1), eKi(Ka), kir, kdr | e K, (K>9) kdr

EMKKC | eK, (Kn), eKp(K) ke, - | eK,,(K) ke

EMKXKIS | e/, (Kar), eKp (K) ke, - | eKp,(K) kis

EMKKIR | eKp(Kar), eKp(K) ke,- | eKp(K) kir
Table 2.1.  Functions of a key management module
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The attack was found by coding the functions in Prolog and using unification
to check whether the goal e K, (K') can be reached. There is no guarantee that
this process will terminate. There is scope for research in dedicated search
methods that work faster or give stronger guarantees.

Key insertion attacks can also be viewed as a particular instance of privilege
escalation. Code based access control where code segments can require and
assert privileges, as used in the .NET framework [La Macchia et al., 2002],
raises similar issues. In these settings, there is also potential complexity in the
formulation of security goals as we may have to account for a large number of
privileges.

5. Conclusions and Challenges

There are common themes to the first four case studies. The Dolev-Yao
model falls short of capturing all aspects of the situation we have to model and
the choice of security goals needs careful consideration. Authentication still
keeps coming up with surprises. More discussions about the various definitions
of authentication and their relationships can be found e.g. in [Gollmann, 2003b,
Gollmann, 1996, Gollmann, 2003a]. The standard reference for the current
cryptologic terminology is [Menezes et al., 1997].

New attacks on established protocols are less the fruit of sophisticated anal-
ysis than the results of changes in assumptions about the protocol goals or the
environment. Often, once the desired security properties and the assumptions
about the environment are made explicit, the attacks are quite obvious and
would have been found sooner or later by direct inspection. Of course, one
advantage of tool support for protocol verification is that the attacks are found
sooner rather than later.

Our understanding of security concepts tends to rely on features of the envi-
ronment the concepts emerged from. When the environment changes familiar
attitudes to security may in fact become misleading. Hence, efforts towards
formal protocol analysis might be justified not so much by the complexity of
the problems being tackled but by the fact that formal specifications encourage
us to clarify and justify our assumptions. In contrast, analysis with off-the-
shelf properties runs the danger of producing results that are irrelevant for the
problem at hand.

Rules of thumb for the design of security protocols [Abadi and Needham,
1994] should equally be treated with caution. On one hand, they may be based
on aspects that were taken for granted at the time the rules were proposed but
in hindsight turn out to be specific features of the applications discussed at that
time. On the other hand, they may be overly cautious and dissuade us from
exploiting specific features of the application at hand.
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Formal protocol analysis amounts to symbolic debugging more than to pro-
tocol verification. Even provably secure schemes can be, and have been broken
outside the model they have been analysed in. When protocols are adapted for
a new environment, it may well occur that some of the assumptions under-
pinning the original security analysis are no longer valid, and that a familiar
protocol is then no longer secure.

Challenges in protocol design and analysis come from novel application
areas like mobility or ubiquitous computing. There, standard but inappropriate
assumptions about the nature of security have to be identified and eliminated.
Formal analysis needs agile methodologies. Methods and tools that analyze
standard properties under standard assumptions are of little help. They have,
however, a role to play in supporting security-unaware application writers who
are dealing with well-understood security issues.

Challenges related to the complexity of the problem arise in multi-party pro-
tocols such as group key exchange, in multi-stage protocols such as optimistic
fair exchange protocols, or in settings where multiple functions can interact as
in our last case study.

Notes

1. Source [Vogt, 2003] refers to message authentication, but in [Menezes et al., 1997] this term appears
as a synonym for data origin authentication.
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Abstract

1.

Consider two organizations that wish to privately match data. They want to find
common data elements (or perform a join) over two databases without revealing
private information. This was the premise of a recent paper by Agrawal, Ev-
fimievski, and Srikant. We show that Agrawal et al. only examined one point
in a much larger problem set and we critique their results. We set the problem
in a broader context by considering three independent design criteria and two
independent threat model factors, for a total of five orthogonal dimensions of
analysis.

Novel contributions include a taxonomy of design criteria for private match-
ing , a secure data ownership certificate that can attest to the proper ownership
of data in a database, a set of new private matching protocols for a variety of
different scenarios together with a full security analysis. We conclude with a list
of open problems in the area.

Introduction

Agrawal, Evfimievski, and Srikant recently presented a paper [Agrawal
et al., 2003] that explores the following private matching problem: two par-
ties each have a database and they wish to determine common entries with-
out revealing any information about entries only found in one database. This
paper has generated significant interest in the research community and techni-
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cal press. While the Agrawal/Evfimievski/Srikant (AgES) protocol is correct
within in its assumptions, it is not robust in a variety of different scenarios.
In fact, in many likely scenarios, the AgES protocol can easily be exploited
to obtain a great deal of information about another database. As we discuss
in this paper, the private matching problem has very different solutions de-
pending on assumptions about the different parties, the way they interact, and
cryptographic mechanisms available. Our paper discusses flaws in the AgES
protocol, presents that protocol in the context of a framework for viewing pri-
vate matching and a family of possible protocols, and gives a number of new
techniques for addressing private matching, including a flexible powerful Data
Ownership Certificate that can be used with a variety of matching protocols.

The private matching problem is a practical, constrained case of the more
general (and generally intractable) challenge of secure multi-party computa-
tion . Private set matching is a simple problem that is at the heart of numerous
data processing tasks in a variety of applications. It is useful for relational
equijoins and intersections, as well as for full-text document search, coop-
erative web caching, preference matching in online communities, and so on.
Private matching schemes attempt to enable parties to participate in such tasks
without worrying that information is leaked.

In this paper we attempt a holistic treatment of the problem of two-party
private matching. We lay out the problem space by providing a variety of
possible design goals and attack models. We place prior work in context, and
present protocols for points in the space that had been previously ignored. We
also point out a number of additional challenges for future investigation.

1.1 Scenarios

We begin our discussion with three scenarios, which help illustrate various
goals of a private matching protocol.

Our first scenario comes from multi-party customer rclationship manage-
ment in the business world. Two companies would like to identify their com-
mon customers for a joint marketing exercise, without divulging any additional
customers. In this scenario, we would like to ensure that (a) neither party learns
more than their own data and the answer (and anything implied by the pair),
and (b) if one party learns the results of the match, both parties should learn it.
Agrawal, et al. discuss a special instance of this case in their work [Agrawal
et al., 2003], which they call semi-honesty , after terminology used in secure
multi-party literature [Goldreich, 2002]. In particular, the two companies are
assumed to honestly report their customer lists (or, more generally, the lists
they wish to intersect), but may try otherwise to discover additional informa-
tion about the other’s customer list. The semi-honest scenario here rests on the
presumption that a major corporation’s publicity risk in being detected lying
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outweighs its potential benefit in one-time acquisition of competitive infor-
mation. Below, we comment further on difficulties raised by this notion of
semi-honesty.

In many cases, we do not desire symmetric exchange of information. As
a second example, consider the case of a government agency that needs to
consult a private database. Privacy and secrecy concerns on the part of the
government agency may lead it to desire access to the private database without
revealing any information about the nature of the query. On the other hand,
the database owner may only want to release information on a “need-to-know”
basis: it may be required by law to release the answers to the specific query,
but may be unwilling to release any other information to the government. In
short, a solution to the situation should enable the government to learn only the
answer to its query, while the database owner will learn nothing new about the
government. In this asymmetric scenario, we need a different choice than (b)
above.

Finally, we consider a scenario that could involve anonymous and actively
dishonest parties. Online auction sites are now often used as a sales channel for
small and medium-sized private businesses. Two competing sellers in an online
auction site may wish to identify and subsequently discuss the customers they
have in common. In this case, anonymity of the sellers removes the basis
for any semi-honesty assumption, so guaranteed mechanisms are required to
prevent one party from tricking the other into leaking information.

Each of these examples has subtly different design requirements for a pri-
vate matching protocol. This paper treats these examples by systematically
exploring all possible combinations of security requirements along a number
of independent design criteria.

1.2 Critique of AgES

In their paper [Agrawal ct al., 2003], Agrawal, Evfimievski, and Srikant
consider the first scenario listed above, building on an earlier paper by Hu-
berman et al. [Huberman et al., 1999]. Here is an informal summary of the
AgES Set Intersection Protocol result; we discuss it more formally below in
Section 3.

Agrawal, et al. suggest solving the matching problem by introducing a pair
of encryption functions £ (known only to 4) and £’ (known only to B) such
that for all z, E(E'(z)) = E'(E(z)). Alice has customer list A and Bob has
customer list B. Alice sends Bob the message E(A); Bob computes and then
sends to Alice the two messages E'(E(A)) and E'(B). Alice then applies
E to F’'(B), yielding (using the commutativity of E and E’) these two lists:
E'(E(A)) and E'{E(B)). Alice computes E'(E(A)) N E'(E(B)). Since
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Alice knows the order of items in A, she also knows the the order of items in
E'(E(A)) and can quickly determine A N B.

Two main limitations are evident in this protocol. First, it is asymmetric: if
we want both parties to learn the answer, we must trust Alice to send AN B to
Bob. This asymmetry may be acceptable or even desirable in some scenarios,
but may be undesirable in others.

Second, we find the AgES assumption of semi-honesty to be hard to imagine
in a real attack scenario. Any attacker who would aggressively decode proto-
col messages would presumably not hesitate to “spoof” the contents of their
queries. If we admit the possibility of the attacker spoofing queries, then the
AgES protocol is not required; a simpler hash-based scheme suffices. In this
scheme (also suggested by Agrawal, et al.) the two parties hash the elements
of their lists A(A) and h(B) and then compute the intersection of those two
lists of hashes. Later in this paper, we augment this hash-based protocol with
an additional mechanism to prevent spoofing as well.

1.3 A broader framework

Below, we consider a broader framework for thinking about private match-
ing.

First, we break down the protocol design space into three independent cri-
teria :

Design criteria

= protocols that leak no information (strong) vs. protocols that leak some
information (weak)

= protocols that protect against spoofed elements (unspoofable) vs. proto-
cols that are vulnerable (spoofable).

» symmetric release of information vs. asymmetric release (to only one
party).

We will also consider two different dimensions for threat models:
Threat models

w semi-honest vs. malicious parties

» gmall vs. large data domains

We discuss the design criteria in more detail in the next section and cover
the threat models below in Section 3.
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2. Problem Statement

We define the private matching problem between two parties as follows. Let
the two parties Alice and Bob have respective sets A and B of objects in some
domain D. Suppose Alice wants to pose a matching query @ C D to Bob.
We call Alice the initiator of the query and Bob the recipient of the query.
We say @ is valid if Q C A and spoofed otherwise. A matching computes
P =@ nN Bor L;note that | is a message distinguishable from the set {J, and
can be thought of as a warning or error message.

We elaborate upon the three design criteria for private matching described
in the previous section:

»  We say that a matching protocol is strong if any party can learn only: P,
any information that can be derived from P and this party’s input to the
protocol, the size of the other party’s input, and nothing else; otherwise
the protocol is weak with respect to the additional information learnable.

u  We define a matching protocol to be unspoofable if it returns 1 or Q N
AN B for all spoofed (). Otherwise it is spoofable.

»  We say that a matching protocol is symmetric if both parties will know
the same information at any point in the protocol. Otherwise it is asym-
metric.

For each of these three dimensions, a bit more discussion is merited. We
begin with the strong/weak dichotomy. After executing a protocol, a party can
derive information by computing functions over its input to the protocol and
the protocol’s output. An example of such derived information is that a party
can learn something about what is not in the other party’s set, by examining
its input and the query result. Since any information that can be computed in
this way is an unavoidable consequence of matching, we use P to denote both
P and the derived information throughout our paper. Note that weak proto-
cols correspond to the notion of semi-honesty listed above — weak protocols
allow additional information to be leaked, and only make sense when we put
additional restrictions on the parties — typically, that they be semi-honest. In
contrast, strong protocols allow malicious parties to exchange messages. Note
that we allow the size of a party’s input to be leaked; the program of each
party in a protocol for computing a desired function must either depend only
on the length of the party’s input or obtain information on the counterpart’s
input length [Goldreich, 2002].

For the spoofable/unspoofable dimension, there are scenarios where a proto-
col that is technically spoofable can be considered effectively to be unspoofa-
ble. To guarantee that a protocol is unspoofable, it requires the protocol to
detect spoofed queries. Given such a mechanism, either of the following two
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responses are possible, and maintain the unspoofable property: (a) returning
L, or (b) returning @ N A N B. When a party lacks such a detection mech-
anism, it cannot make informed decision as when to return 1. However, in
some situations, the party may be expected to return the set Q@ N A N B with
high probability, regardless of whether the query is spoofed or not. This may
happen when it is very difficult to spoof elements. We will give an example of
this scenario later.

It is also useful to consider the the issue of symmetry vs. asymmetry for the
threat models covered in Section 3. In the semi-honest model, parties follow
the protocols properly, and so symmetry is enforced by agreement. However,
in a malicious model, the parties can display arbitrary adversarial behavior. It
is thus difficult to force symmetry, because one party will always receive the
results first. (A wide class of cryptographic work has revolved around “fair
exchanges” in which data is released in a way that guarantees that both parties
receive it, but it is not clear if those concepts could be efficiently applied in the
private matching application.)

2.1 Secure multi-party computation

The private matching problem is a special case of the more general prob-
lem from the literature called secure multi-party computation. We now give a
brief introduction to secure multi-party computation in the hope of shedding
light on some issues in private matching. In a secure m-party computation,
the parties wish to compute a function f on their m inputs. In an ideal model
where a trusted party exists, the m parties give their inputs to the trusted party
who computes f on their inputs and returns the result to each of the parties.
The results returned to each party may be different. This ideal model captures
the highest level of security we can expect from multi-party function evalu-
ation [Canetti, 1996]. A secure multi-party computation protocol emulates
what happens in an ideal model. It is well-known that no secure multi-party
protocol can prevent a party from cheating by changing its input before a pro-
tocol starts [Goldreich, 2002]. Note however, that this cannot be avoided in
an ideal model either. Assuming the existence of trapdoor permutations, one
may provide secure protocols for any two-party computation [Yao., 1986] and
for any multi-party computation with honest-majority [Goldreich et al., 1987].
However, multi-party computations are usually extraordinarily expensive in
practice, and impractical for real use. Here, our focus is on highly efficient
protocols for private matching, which is both tractable and broadly applicable
in a variety of contexts.
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3. Threat Models

We identify two dimensions in the threat model for private matching. The
first dimension concerns the domain of the sets being matched against. A do-
main can be small, and hence vulnerable to an exhaustive search attack , or
large, and hence not vulnerable to an exhaustive search attack.

If a domain is small, then an adversary Max can enumerate all the elements
in that domain and make a query with the entire domain to Bob. Provided
Bob answers the query honestly, Max can learn the entirety of Bob’s set with
a single query. A trivial example of such a domain is the list of Fortune 500
companies; but note that there are also somewhat larger but tractably small
domains like the set of possible social security numbers.

A large uniformly distributed domain is not vulnerable to an exhaustive
search attack. We will refer to this type of domain simply as large in this paper.
An example of such a domain is the set of all RSA keys of a certain length. If a
domain is large, then an adversary is limited in two ways. First, the adversary
cannot enumerate the entire domain in a reasonable single query, nor can the
adversary repeatedly ask smaller queries to enumerate the domain. In this way
the adversary is prevented from mounting the attack described above. Second,
it is difficult for her to query for an arbitrary individual value that another party
may hold, because each party’s data set is likely to be a negligible-sized subset
of the full domain.

The second dimension in the threat model for private matching captures the
level of adversarial misbehavior. We distinguish between a semi-honest party
and a malicious party [Goldreich, 2002]. A semi-honest party is honest on
its query or data set and follows the protocol properly with the exception that
it keeps a record of all the intermediate computations and received messages
and manipulates the recorded messages in an aggressively adversarial manner
to learn additional information.! A malicious party can misbehave in arbitrary
ways: in particular, it can terminate a protocol at arbitrary point of execution or
change its input before entering a protocol. No two-party computation protocol
can prevent a party from aborting after it receives the desired result and before
the other party learns the result. Also no two-party computation protocol can
prevent a party from changing its input before a protocol starts.

Hence we have four possible threat models: a semi-honest model with a
small or large domain, and a malicious model with a small or large domain. In
the rest of the paper, we base our discussion of private matching protocols in
terms of these four threat models.

3.1 Attacks

In this section we enumerate a number of different attacks that parties might
try to perform to extract additional information from a database. In the scenar-
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ios below, we use the notation A and B to denote parties, and A is trying to
extract information from B’s database.

= Guessing attack: In this attack, the parties do not deviate from the pro-
tocol. However, A attempts to guess values in B’s database and looks
for evidence that those values occur in B’s database. Typically, A would
guess a potential value in B’s database, and then look for an occurrence
of the hash in B’s database. Alternatively, A could attempt to decrypt
values in a search for an encrypted version of a particular potential value
in B’s database (following the pattern in the AgES protocol.) Because
of the limitations of this type of attack, it is best suited when the domain
of potential values is small. (A variant of this attack is to try all potential
values in the domain, an exhaustive search attack.)

= Guess-then-spoof attack: In this attack, the parties deviate from the
protocol. As in the guessing attack, A generates a list of potential values
in B’s database. In the spoofing attack , A runs through the protocol
pretending that these potential values are already in A’s database. Thus
A will compute hashes or encrypt, and transmit values as if they really
were present in A’s database. Because this attack involves a guessing
element, it is also well suited for small domains of potential database
values (e.g. social security numbers, which are only 10 digits long).

u  Collude-then-spoof attack: In this attack, A receives information about
potential values in B’s database by colluding with outside sources. For
example, perhaps A and another database owner C collude by exchang-
ing their customer lists. A then executes a spoofing attack by pretending
that these entries are are already on its list. As in guess-then-spoof at-
tack, A computes hashes or encrypts, and transmits values as if they were
really present in A’s database. Since A is deriving its information from
third party sources in this attack, it is suited for both small and large
domains of potential database values. (N.B.: we group both the guess-
then-spoof attack and the collude-then-spoof attack together as instances
of spoofing attacks. Spoofing attacks occur in the malicious model; in
the semi-honest model they can not occur.)

» Hiding attacks: In a hiding attack, A only presents a subset of its cus-
tomer list when executing a matching protocol, effectively hiding the
unrevealed members. This paper does not attempt to discuss defenses
against hiding attacks.

Although we would like to prevent all collusion attacks involving malicious
data owners, there are limits to what we can accomplish. For example, if Al-
ice and Bob agree to run a matching protocol, nothing can prevent Bob from
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simply revealing the results to a third party Charlie. In this case, Bob is acting
as a proxy on behalf of Charlie, and the revelation of the results occurs out-
of-band from the protocol execution. However, we would like to resist attacks
where Bob and Charlie collude to disrupt the protocol execution or use inputs
not otherwise available to them.

4, Terminology and Assumptions

We begin by assuming the existence of one-way collision resistant hash
JSunctions [Menezes et al., 1996] . A hash function A(-) is said to be one-
way and collision resistant if it is difficult to recover M given h{M), and it is
difficult to find M’ # M such that h(M') = h(M). Let SIGN(:, -) be a public
key signing function which takes a secret key and data and returns the signature
of the hash of the the data signed by the secret key. Let VERIFY(-, -, ) be the
corresponding public key verification function which takes a public key, data,
and a signature and returns true if the signature is valid for the data and false
otherwise. For shorthand, we denote { P} as the digital signature signed by
the secret key sk on a plaintext P. The function isIn(-,-) takes an element
and a set and returns true if the element is in the set and false otherwise.

The power function f : KeyF x DomF — DomF where f defined as
follows:

fe(z) = z° mod p

is a commutative encryption [Agrawal et al., 2003]:
» The powers commute:
(z% mod p)® mod p = 2% mod p = (z° mod p)? mod p
» Each ofthe powers f, is a bijection with its inverse being fo ! = fo-1 mod e

where both p and ¢ = (p — 1)/2 are primes.

We use the notation e <~ § to denote that element e is chosen randomly
(using a uniform distribution) from the set S.

We assume there exists an encrypted and authenticated communication chan-
nel between any two parties.
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1 Alice’s local computation:

(@) @n:={h(q) : g€ Q}.

(b) eqa & KeyF.

(c) QeA = {feA (Qh) tqn € Qh}
2 Bob’s local computation:

(a) By = {h(b):be B},

(b) ep «—, KeyF.

(C) BeB = {feB (bh) : bh € Bh}-
3 Alice— Bob: Q..
4 Bob’s local computation:

Qepep = {((JCAafGB(qu)) Tey € Qm}-

5 Bob— Alice: Bey, Qeyep-
6 Alice’s local computation:

(a) Q;A’CB =0 P =

(b) Beyea = {feA (ben) they € Be}.

(c) For every ¢ € (@, we compute
Geys = J[ei(R(q)), and find the pair
(QepsQenen) € Qeyeps given this we let

i:A‘,eB = Weaen U {(q’ qf:‘A,Cl.f)}'

(d) For every (q:Geyep) € Q;A,en,
if isIn(qe, ep,Beg,es), thenP =

Pui{q}.
7 Output P.

Figure 3.1.  AgES protocol
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5. Techniques

We present three matching protocols in this section: the trusted third party
protocol , the hash protocol , and the AgES protocol [Agrawal et al., 2003]. In
the next section, we describe a data ownership certificate mechanism that can
be combined with all three protocols to despoof all of the original protocols
even in threat models with small domains.

5.1 Trusted Third Party Protocol (TTPP)

Suppose Alice and Bob trust a third party Trudy. Alice and Bob can compute
their private matching through Trudy. Alice (resp. Bob) sends her query @
(resp. his data set B) to Trudy, and Trudy computes the intersection P of the
two sets. Trudy then returns the result to both parties in the symmetric case, or
to one of the parties in the asymmetric case.

We discuss the security of the TTPP in Section 7.

5.2 Hash Protocol (HP)

In this section, we present a Hash Protocol that do not require a trusted third
party . In the hash protocol, Alice sends Bob her set of hashed values. Bob
hashes his set with the same hash function, and computes the intersection of
the two sets. Bob may send Alice the result based on their prior agreement.

We discuss the security of the hash protocol in Section 7.

5.3 The AgES protocol

We gave a summary of the AgES protocol in Section 1.2. Now we present
the complete version of the protocol in Figure 3.1. For consistency we adapt
this protocol to our notation, but the essence of the protocol remains the same
as the original paper.

We discuss the security of the AgES protocol in Section 7.

6. Data Ownership Certificate (DOC)

An especially difficult attack for private matching to handle is the spoofing
problem. In this section, we propose a new approach to address spoofing: the
use of Data Ownership Certificates. The idea is to have the creator of data
digitally sign the data in a particular way so that parties that control databases
that include the data can not spoof data. For example, consider the case of
two companies each of which wants to find out as much as possible about the
other’s customer list. If one of the companies has access to a list of all residents
in a particular area, a straightforward spoofing attack is quite simple — it could
simply create false entries corresponding to a set of the residents. If any of
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those residents were on the other company’s customer list, private matching
would reveal their membership on that list. However, if the companies are
obligated to provide digitally signed entries, this type of spoofing would be
eliminated: neither of the companies would be able to falsify entries.

The above sketch is not sufficient, however, because it still leaves open the
possibility that corrupt companies could broker in digitally signed data entries.
For example, if customer E is a legitimate customer of firm F', we would have
the possibility that F" might try to trade or sell G’s digitally signed entry to A.
Then A would be able to falsely claim that ¢ was a customer and during private
matching, steal information through a spoofing attack. Below, we discuss an
architecture for data ownership certificates that resists both regular spoofing
attacks and colluding spoofing attacks .

Data Ownership Certificates do require more work on the part of individuals
creating data, and they are probably only practical in the case of an individual
who uses his or her computer to submit information to a database. Despite
the extra work involved, we believe that data ownership cettificates are not
far-fetched. In particular, the European Union’s Privacy Directive [Parliament,
1995] requires that individuals be able to verify the correctness of information
about them and control the distribution of that information. Data Ownership
Certificates give a powerful technical mechanism supporting that distribution.
Similarly, Agrawal, Kieran, Srikant, and Xu have recently argued for a type
of “Hippocratic Database” that would provide similar functionality [Agrawal
et al., 2002]. Data Ownership Certificates would work well with these Hippo-
cratic Databases.

Now we begin a formal presentation of Data Ownership Certificates (DOC).
A Data Ownership Certificate 1s an authorization token which enables a set
owner to prove it is a legitimate owner of some particular data. The first goal
of the DOC is to prevent spoofing in a small domain. Data Ownership Certifi-
cates prevent spoofing by ‘boosting” the size of the small domain D to a larger
domain D x S, where S is the domain of the DOCs. The intuition is that by
expanding the domain, DOCs make the probability of guessing a correct value
negligible in the cryptographic sense and protect database owners from guess-
then-spoof attacks. Now, if an attacker wants to spoof a particular value, e.g.
John’s information, the attacker needs to correctly guess the associated DOC
as well.

A second goal of Data Ownership Certificates is access control. A DOC is
essentially a non-transferable capability issued by the originator of data to a
database owner. We refer to the originators of data as active entities. We say
that an active entity E authorizes a set owner O sharing access to its informa-
tion d when E issues O a DOC C(? for d. Ideally, a common element between
two databases should be discovered only when both databases have been au-
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thorized with DOCs by the corresponding active entity for that element. More
precisely, we require two security properties from Data Ownership Certificates:

»  Confidentiality: If Bob is not an authorized owner of d, Bob should not
be able to learn that Alice possesses d if he runs a matching protocol
directly with Alice.

w Authenticity: If Bob is not an authorized owner of d and Alice is an au-
thorized owner of d, Bob should not be able to pollute Alice’s matching
result, i.e., Bob cannot introduce d into the matching result.

We find that confidentiality is difficult to achieve. We thought of two ap-
proaches to do the access control. First, Alice checks whether Bob has the
authorization before she gives an element v to Bob. It seems essential that
Alice obtains some knowledge k& that links the access controlled object v to
requester Bob before granting the access. This requester-specific knowledge k
reveals at least partial information of what element Bob has. It is then only fair
that Bob checks for Alice’s permission to access k. This leads to an infinite
reduction. Second, Alice can give Bob a box which contains John’s informa-
tion d. The box is locked by John. Bob can only open the box if he has the
key. This implies that John uses a lock for which he knows Bob has the key.
This kind of precomputation on John’s part is not desirable. We leave this as
an open problem for future work and we relax our requirement for access con-
trol in this paper. We propose a third solution that allows two parties to learn
their common element d if both of them have d and some common nonce for d
instead of some requester specific access token. We refer to the goal of DOC
as reduced confidentiality requirement.

6.1 Our instantiation of DOCs

Our instantiation of Data Ownership Certificates consists of two parts: a
common nonce (random string) and an ownership attestation component. The
common nonce serves the purpose of both boosting the domain and satisfying
the reduced confidentiality requirement. The ownership attestation component
satisfies the authenticity requirement.

A Data Ownership Certificate C has the form of (pk,n, o). Each active
entity ' maintains three keys ki, sk, and pk. For each piece of information
d originating from E, E generates a unique n = G(k1||d) where G(-) is a
pseudo-random number generator and || is the concatenation function. Assume
that the output n of G(-) is [ bits long and G(-) is cryptographically secure,
then by the birthday paradox, one needs to guess approximately V2! numbers
to have one of them collide with n. If [ is large enough, say 1024, then guessing
the correct n is hard. This nonce n will be used in matching protocols instead
of the original data d.



38 COMPUTER SECURITY IN THE 21 CENTURY

When E submits d to some database A, it generates a signature o = {d|| A}
where A is the unique ID of the database. The signature does not contain the
plaintext information d or A, however anyone knowing the public pk and the
plaintext information d and A may verify that A is indeed an authorized owner
of d by verifying the authenticity of o using pk.

6.2 Certified matching protocols

In this section, we describe the integration of Data Ownership Certificates
with the proposed protocols from Section 5.

We assume that each set element in database A is a pair (d, C') of data and
a Data Ownership Certificate C' = (pk, n, o) where o = {d||A}sx. The owner
of database A now runs a matching protocol with n instead of d as the data.

6.2.1 Certified Trusted Third Party Protocol (CTTPP). We describe
how to use Data Ownership Certificates to extend the Trusted Third Party Pro-
tocol . Let A (resp. B) be the ID of Alice (resp. Bob). The set that Alice (resp.
Bob’s) sends to Trudy contains elements in the form of (n,, 04, Pky,) (resp.
(ny, 0p, Pkn,)), i.€., triples of a common nonce, ownership attestation compo-
nent, and the corresponding public key. The nonce n, (resp. ny) is associated
with elements a (resp. b).

When Trudy finds a matching between two common nonces n, and ny, she
compares the corresponding public keys pky,, and pk,,. If they are not the
same, then it means that Alice and/or Bob spoofed the element and forged the
corresponding certificate. Trudy cannot tell which is the case and she simply
returns _L to both of them. If the corresponding public keys are the same, Trudy
runs the verification algorithm on Alice’s and Bob’s ownership attestation com-
ponent VERIFY (pkn,,a||A,0,) = w2 and VERIFY(pky,,b||B,0p) = va to
check whether Alice and/or Bob are authorized owners of the matching value.
Trudy will find one of the following three cases to be true:

1 v; = true and vy = true
2 v = true and vs # true or vice versa

3 v # true and vy # true

If Trudy encounters case (1), then she concludes Alice and Bob are the
authorized owners of the matching element. She adds the element to the result
set and continues with the matching computation. We show why this is the
case. Suppose only Bob is the authorized owner of the element associated with
np. It is unlikely that Alice spoofs the common nonce n, where n, = ny as
discussed in Section 6.1. Suppose Alice obtains n, and the associated DOC
for soine other database owner, it is highly unlikely that Alice can generate a
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public/private key pair that is the same as the key pair for ny. By symmetry,
it is highly unlikely to be the case that Alice is the authorized owner of the
element associated with n, and Bob spoofs ny or the public/private key pair.
If (2) or (3) is the case, it implies Alice and/or Bob spoofed the nonce and
an associated DOC or obtained her/his element from some other authorized
owner(s) and spoofed a DOC. Trudy returns | for this case.

If Alice (resp. Bob) did not pose a spoofed query and receives | from
Trudy, then she (resp. he) knows that the other party was not honest.

6.2.2 Certified Hash Protocol (CHP).  The integration of data owner-
ship certificates with the Hash Protocol is slightly different from that with the
Trusted Third Party Protocol . We assume that Alice poses a query (), each
element of which is in the form of (h(n,), o,) where o, = {a||A}sk, -

Bob hashes each of his common nonces and checks if it matches one of
h(ng). If he discovers a match between h(n,) and h(np), then he assumes that
the two corresponding ownership attestation components were signed by the
same private key and does the following check. Bob first looks up his copy of
the public key pk; for ny and checks if VERIFY(pks, b|| 4, o) returns true.
If it does return true, it means that Alice is an authorized owner of b. Bob
may add b to the result set P and continue with his matching computation.
Otherwise Bob can conclude that Alice is not the authorized owner of b —
she either obtained h(n,) and the corresponding certificate from some other
authorized owner of @ or she was able to guess h(n,) and forged the ownership
attestation component. Bob cannot tell which was the case. Now Bob has
the following two options: (a) returning ! to Alice, or (b) continuing with
the matching computation but omitting b from the final result. Either way the
modified protocol satisfies the security goal of being unspoofable and it enables
parties to detect cheating.

We need to be careful about the usage of hash functions in the Certified Hash
Protocol. Consider the following two scenarios. In the first scenario, assume
that Alice, Bob, and Charlie are authorized owners of some customer John’s
information d. Imagine Alice executes the Certified Hash Protocol with Bob
and Charlie and she receives data from Bob and Charlie. If Bob and Charlie
use the same hash function, e.g. MD35 or SHA1 , then Alice may infer that
all three of them have d after the protocol executions with Bob and Charlie
respectively. Alice hashes her own copy of the nonce ng associated with d
and discovers ny, is in the sets that Bob and Charlies sends to her. The second
scenario is that both Bob and Charlie are authorized owners of d but Alice
is not. Furthermore, assume Alice does not have a copy of d and its DOC
from some other authorized owner. In this case, Alice may infer that Bob and
Charlie share some common information although she does not know what it
is.
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We propose using an HMAC in the Hash Protocol to prevent the inference
problem in the second scenario. An HMAC is a keyed hash function that is
proven to be secure as long as the underlying hash function has some reason-
able cryptographic strength [Bellare et al., 1996]. An HMAC(T) =

h(k & opad, h(k @ ipad, T))

is a function which takes as inputs a secret key & and a text T' of any length;
“opad” and “ipad” are some predetermined padding. The output is an [-bit
string where ! is the output of the underlying hash function A(-).

Using HMAC in the Certified Hash Protocol avoids the problem in the sec-
ond scenario as long as each pair of parties uses a different key every time they
run the Certified Hash Protocol. This prevents adversaries from correlating
elements from different executions of the Hash Protocol.

6.2.3 Certified AgES protocol (CAgES). We need to modify the AgES
protocol in Figure 3.1 in three ways. First, both Alice and Bob hash and en-
crypt the common nonce instead of the actual data. Second, Bob returns pairs
(o1, feg (R(np))) for each of his encrypted elements fe, (h(np)). Third, when-
ever there is a match, Alice verifies whether Bob is an authorized owner by
checking the corresponding oy,

6.3 Homomorphic DOC (HDOC)

The data ownership certificate as proposed is limited in a way that it intro-
duces linear storage growth if authorized set owners wish to match a subset
of the attribute values of an active entity’s information. This partial match-
ing property is desirable in many situations. For example, customer database
A is an authorized owner of some customers’ name, credit card number, and
mailing address and customer database B is an authorized owner of the same
customers’ name, credit card number and email addresses. Suppose A and B
wish to find out their common costumers by intersecting their respective set of
credit card numbers. This cannot be done efficiently with our proposed DOC
since A’s (resp. B’s) customers need to generate one DOC for their names,
credit card numbers and mailing addresses (resp. email addresses) respec-
tively. When a database has various information about a customer, the storage
overhead can be quite high. In this section, we describe a Homomorphic Data
Ownership Certificate scheme that allows a customer to generate one DOC
for all of his or her information submitted to a database and still enables the
databases to intersect certain attributes of customer information.

The semantics for a homomorphic data ownership certificate call for a mal-
leable DOC scheme. Given a DOC CSQ for S from an active entity E, we
would like the set owner to generate a valid C_'g for S’ where S’ C S without
the help of E.
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Homomorphic signatures have the right property we are looking for. Let
© be a generic binary operator. Intuitively, a homomorphic signature scheme
allows anyone to compute a new signature Sig(z © y) given the signatures
Sig{x) and Sig(y) without the knowledge of the secret key. Johnson et. al
introduced basic definitions of security for homomorphic signature systems
and proposed several schemes that are homomorphic with respect to useful
binary operators [Johnson et al., 2002].

We are interested in the set-homomorphic signature scheme proposed in [John-
son et al., 2002] that supports both union and subset operations. More pre-
cisely, the scheme allows anyone to compute Sig(S7 U S2) and Sig(S’) where
S’ C S if he possesses S1, Sq, Sig(S1) and Sig(Ss).

‘We now describe our construction for a Homomorphic Data Ownership Cer-
tificate (HDOC) scheme. We need to modify both the common nonce and the
data ownership component to use the homomorphic signatures. Let S be a set
of strings, E the active entity that originates S, and skg the signing key exclu-
sively used for S. When E submits its information S’ C S to database A, it
issues A an HDOC H§ = (pks, Sig,,, (57), Sig, (8" U A)).

Computing intersection on data with HDOC is straight forward. Suppose
databases A and B wish to compute intersection on their customers’ credit
card number. Then for each customer ¢;’s HDOC components Sigy. (Se;)
and Sig;. . (Sc; U A), database A computes Sig(Sy, ) and Sig(S, U A) where
S, = {c;s credit card #}. B does similar computations. Now A and B may
run any matching protocol as described in Section 6.2 using the recomputed
HDOC.

7. Security Analysis

Recall that we consider four threat models in our paper: the malicious model
with a large or small domain, and the semi-honest model with a large or small
domain.

‘We have also identified three goals that a private matching protocol can sat-
isfy: strong/weak, unspoofable/spoofable, and symmetric/asymmetric. In this
section, we analyze the effectiveness of the three private matching protocols
with respect to each of the threat models and determine what security goals
each protocol achieves.

In this section, We analyze the fulfillment of the security goals of the TTPP
, HP , AgES , CTTPP , CHP , and CAgES protocols in the four threat models.
We summarize the results in Figure 3.2(a) through Figure 3.3(b).

7.1 The malicious model with a large domain

We now analyze the fulfillment of the security goals of the TTPP, HP, AgES,
CTTPP, CHP, and CAgES protocols in the malicious model with a large do-
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main. All the unmodified protocols are unspoofable in the absence of collude-
then-spoof attacks. Although a large domain makes it difficult for an adversary
to guess an element in the other party’s set, the adversary can include values
obtained from another database in the query to increase the probability of suc-
cess.

7.1.1 Trusted Third Party Protocol.  The Trusted Third Party Protocol
(TTPP) is a spoofable, strong and either symmetric or asymmetric matching
protocol. TTPP is strong because both parties learn only P and nothing else in
a symmetric setting; in an asymmetric setting, one party learns P and the other
party learns nothing. TTPP is always strong for this reason in all four threat
models. TTPP can be either symmetric or asymmetric depending on whether
the sends query results to one or both parties.

Technique Unspoofable | Strong | Symmetric
Sym X X
TTPP
Asym X
HP )
AgES X
Sym X X X
CTTPP
Asym X X
CHP P (*)
CAgES XM X
(a) Malicious model with a large domain
Technique Unspoofable | Strong | Symmetric
Sym X X
TTPP
Asym X
HP
AgES X
Sym X X X
CTTPP
Asym X X
CHP XM (*)
CAgES XM X

(b)y Malicious model with a small domain

Figure 3.2.  Security goals satisfied by the protocols in the malicious model. (*): Note that
for these examples, we do not have a strong protocol. However, we do have a collusion-free
strong protocol which is strong in the absence of colluding attacks . X*) denotes a protocol is
unspoofable in the absence of colluding adversaries.
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Technique Unspoofable | Strong | Symmetric
Sym X X X
TTPP
Asym X X
HP X @)
AgES X X
Sym X X - X
CTTPP
Asym X X
CHp X *
CAgES X X
(a) Semi-honest model with a large domain
Technique Unspoofable | Strong | Symmetric
Sym X X X
TTPP
Asym X X
HP X
AgES X X
- Sym X X X
CTTPP
Asym X X
CHP X *)
CAgES X X

(b) Semi-honest model with a small domain
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Figure 3.3.  Security goals satisfied by the protocols in the semi-honest model. {(*): Note that
for these examples, we do not have a strong protocol. However, we do have a collusion-free
strong protocol which is strong in the absence of colluding attacks . X denotes a protocol is
unspoofable in the absence of colluding adversaries.
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7.1.2 Hash Protocol. The Hash Protocol is spoofable, collusion-free
strong, and asymmetric. It is strong in the absence of colluding attacks ; since
the domain is large, it is difficult for the recipient of a hashed set to guess an
element that is actually in the other party’s set. However, it is easier for the
recipient of a hashed set to learn whether an element is in the other party’s set
if the recipient uses values obtained from another database in the matching.
The Hash Protocol is asymmetric since the party that receives the result first
may or may not send the (correct) result to the other party.

7.1.3 AgES protocol. The AgES protocol is spoofable, strong, and
asymmetric. The AgES is strong because no attacker may learn any additional
information besides the query result and the size of the other party’s set. It is
asymmetric since the party that receives the result first may or may not send
the (correct) result to the other party.

7.1.4 Certified matching protocols. CTTPP is unspoofable. If one
of the parties spoofs some element d, the trusted third party can detect it by
checking the ownership attestation component as described in Section 6.2.1.

Both CHP and CAgES are unspoofable in the absence of colluding adver-
saries. The common nonces in a DOC prevent a party from guessing the correct
nonce associated with certain data and thus prevent guess-then-spoof attacks.

When colluding parties exist, CHP and CAgES are spoofable. Assume Al-
ice is an authorized owner of some information d and Charlie is not. Alice
colludes with Charlie and gives data d and the associated DOC to Charlie.
When Bob sends his data set to Charlie in a CHP execution, Charlie can learn
whether Bob has d by hashing the nonce ng4 associated with d and checking
if it is in Bob’s set. There is a non-negligible probability that ny is in Bob’s
set. This matching result violates the definition for unspoofable. Similarly, in
a CAgES protocol execution, Charlie may encrypt the nonce ng and send it to
Bob. Charlie will discover whether Bob has d when Bob honestly responds to
the query.

On the other hand, if Charlie and Bob switch roles in the CHP and CAgES
protocol executions, Charlie cannot prove to Bob that he has d since he does
not have a valid ownership attestation component for d.

7.2 The malicious model with a small domain

With a small domain, a malicious adversary can guess an element of the
other party’s set with non-negligible probability. An adversary can then launch
a spoofing attack and learn elements of the other party’s set not contained in
its own with non-negligible probability. Thercfore, without modification, all
three protocols are spoofable in the malicious model with a small domain.



Private Matching 45

7.2.1 Trusted Third Party Protocol.  The trusted third party is spoofa-
ble, strong, and either symmetric or asymmetric. The analysis is similar to that
of the malicious model with a large domain presented in Section 7.1.1.

7.2.2 Hash Protocol.  The hash protocol is spoofable, weak, and asym-
metric. It is weak because a malicious party may launch a guess-then-spoof
attack and succeed in learning the entire set of the other party with high prob-
ability. The analysis for asymmetry is similar to that of the hash protocol for
the malicous model with a large domain presented in Section 7.1.2.

7.2.3 AgES protocol. The AgES protocol is spoofable, strong, and
asymmetric. The AgES is spoofable because although the encryption scram-
bles the data, it cannot prevent spoofing attacks. The analysis for AgES being
strong is similar to that of the malicious model with a large domain in Sec-
tion 7.1.3. The analysis for asymmetry is similar to that of a large domain
presented in Section 7.1.3.

7.2.4 Certified matching protocols. By combining the DOC with
TTPP, HP, and AgES, we obtain protocols that satisfy the same security prop-
erties in the malicious model with a small domain as the corresponding certi-
fied protocols in the malicious domain with a large domain. In particular, by
adding the DOC component, we enable the protocol to detect spoofed queries
in the absence of colluding attacks .

7.3 The semi-honest model with a large domain

All three protocols are trivially unspoofable in a semi-honest model since
parties do not cheat in a semi-honest model. For the strong/weak dimension,
each protocol satisfies the same security goal as the corresponding protocol in a
malicious model with a large domain in Section 7.1. The TTPP is can be either
symmetric or asymmetric depending on whether the trusted party sends the
result to one or both parties. The HP and AgES can also be either symmetric
or asymmetric depending on whether the protocol prescribes the party which
receives the result first sends it to the other party.

The TTPP is unspoofable, strong, and symmetric/asymmetric. The analysis
of TTPP being strong is similar to that of a large domain presented in Sec-
tion 7.1.1.

The AgES is an unspoofable, strong, and symmetric/asymmetric and proto-
col. The analysis of AgES beging strong is similar to that of a malicious model
with a large domain in Section 7.1.3.

7.3.1 Certified matching protocols. All unmodified protocols are
unspoofable in the semi-honest model. The DOC mechanism is not applica-
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ble in the semi-honest model with a large domain and this becomes clear in

Section 7.4.

7.4

The analysis for the semi-honest model with a small domain is similar to
that of the semi-honest model with a large domain. The only difference is
that the HP is collusion-free strong in the large domain and weak in the small
domain and by combining the DOC with the HP, we obtain a protocol that is

COMPUTER SECURITY IN THE 21 CENTURY

The semi-honest model with a small domain

collusion-free strong in the semi-honest model with a small domain.

| Protocol || Cost | Complexity |
TTPP glogg+blogq O(blogb)
HP Crlg +b) +blogh+ qlogb ()(blog b)
AgES (Cr +2C.)(qg+b) + 2blogh + 3qlogq | O(C,b)
CTTPP qlogq + blogq -+ 2C,r O(Cyr)
CHP Cr{g+b) +blogb+ qlogb+ Cyr O(Cyr)

(a) Computational cost

| Protocol || Cost | Complexity |
Asymmetric TTPP (g+b+7)-n O(bn)
Symmetric TTPP (g+b+2r)-n O(bn)
HP b1 O]
AgES (2¢+b) -7 O(bm)
Asymmetric CTTPP || (¢ + b+ 7) +(g+0b)-k | O(bn)
Symmetric CTTPP || (g + b6+ 7") n + (g+b)-k | O(bn)
cHp (EDR O(bk)

(b) Communication cost

Figure 3.4.  Cost analysis
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8. Cost Analysis

In this section, we use the following notations. Alice poses a query ) to Bob
who has a set B. Let P = (Q N B be the query result. Let ¢ = |Q|, b = {B|,
and p = |P|. Let C}, be the cost of hashing and C,, be the cost of running
the public key verification algorithm VERIFY(-,-,-). Let j be the length of a
public key, k be the length of the ownership attestation component, [ be the
length of the output of h(-), m be the length of each encrypted code word in
the range of F, and n be the length of each element; all quantities are in bits.
We assume that the set () is larger than the set B, i.e. b < ¢, and we assume
thatl < k+j <n.

We present the computational and communication cost in Figure 3.4(a) and
Figure 3.4(b) respectively.

The computational costs of the trusted third party and hashing protocols are
dominated by the cost of sorting the list. For the AgES and certified protocols,
the computation cost is dominated by the encryption/decryption and public key
signature verification respectively. Further details can be found in Figure 3.

As we may see from Figure 3.4(b), the communication cost for any proposed
protocol is linear in the size of the sets being sent. This linear communication
cost is the lower bound of any set intersection protocols which compute exact
matching [Kalyanasundaram and Schnitger, 1992].

9, Related Work

Private Information Retrieval (PIR) schemes allow a user to retrieve the i-th
bit of an n-bit database without revealing i to the database [Beimel and Ishai,
2001, Cachin et al., 1999, Chor et al., 1995]. These schemes guarantee user
privacy. Gertner et al. introduce Symmetrically-Private Information Retrieval
(SPIR) where the privacy of the data, as well as the privacy of the user is
guaranteed [Gertner et al., 1998]. In every invocation of a SPIR protocol, the
user learns only a single bit of the n-bit database, and no other information
about the data. Practical solutions are difficult to find since the PIR literature
typically aims for very strong information-theoretic security bounds.

There has been recent work on searching encrypted data [Boneh and Franklin,
2004, Waters et al., 2004] inspired by Song, Wagner, and Perrig’s original pa-
per describing practical techniques for searching encrypted data [Song et al,,
2000]. Song et al. proposed a cryptographic scheme to allow a party C to en-
crypt and store data on an untrusted remote server K. R can execute encrypted
queries issued by C and return encrypted results to C'.
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10.

COMPUTER SECURITY IN THE 21 CENTURY

Future Work

This paper explores some issues associated with private matching. But many
areas remain to be explored. Here, we list a few particularly interesting chal-
lenges:

In this paper, we examined two party protocols. What are the issues that
arise with more complicated protocols with more than two parties?

There is a basic asymmetry that arises between two parties where one
party knows significantly more than a second party. Parties that control
large sets may be able to extract significantly more interesting informa-
tion than parties that control small sets. There may be instances where
parties controling small sets can detect and reject these queries.

Here, we only consider examples of matching elements from two sets.
More interesting and more far-ranging examples are possible. For in-
stance, this paper considered listing queries — we actually listed all the
elements held in common between two sets. We can consider a broader
range of functional queries which return a function calculated over the
intersection of two sets. While a broad literature in statistical databases
exists, the question of functional operations is a more general notion that
deserves further attention.

There is an interesting connection between our spoofing discussion and
the database literature on updates through views. The view update liter-
ature provides (constrained) solutions for the following: given a query
on relation instances R and S resulting in a set P, what changes to R
and S could produce some new answer P’? The reasoning used to ad-
dress that problem is not unlike the reasoning used to learn information
via spoofing: by substituting R’ for R and observing the query result P/,
what can be learned about §? The literature on updates through views
is constrained because it seeks scenarios where there is a unique modi-
fication to R, S that can produce P’. By contrast, much can be learned
in adversarial privacy attacks by inferring a non-unique set of possible
values for S.

In large distributed systems, it may be desirable to have a set of peer
systems store information in a variety of locations. In this broader dis-
tributed system, can we still guarantee privacy properties.

In our list of attacks in Section 3.1, we discussed a hiding attack where a
database owner pretends certain values don’t occur in its database. Can
we provide effective defenses against hiding attacks?
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Notes

1. In the introduction, we argued that semi-honest protocols were unrealistic in many situations. How-
ever, for completeness we will consider them here.
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1. Introduction

Security analysis of cryptographic protocols is getting to be an old, classical
subject. The mathematical approach to protocol analysis, as opposed to cryp-
tosystem analysis, goes back to [Dolev and Yao, 1983]. The essential ideas
in that paper were in abstract algebraic treatment of encryption, and the secu-
rity threat in the form of an active entity in the network that could intercept,
redirect, and construct messages. This interest in formal protocol analysis was
motivated by the observation that security analysis was too subtle for reliable
informal analysis. The first influential published example of the kind of vul-
nerability that escaped informal analysis was the replay attack in [Denning
and Sacco, 1981] on the symmetric-key protocol in [Needham and Schroeder,
1978]. This showed that the security of a protocol could be compromised with-
out breaking the encryption algorithm.

The Dolev-Yao results were still not powerful enough to apply to the Needham-
Schroeder protocols, so other methods such as model checking and inductive
verification on state-transition models were developed. Current research is
aimed at making thesc methods more efficient and expanding their scope. The
efficiency of some tools is remarkable; current model checking tools can ana-
lyze typical protocols in seconds or fractions of seconds.
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The objective of this note is to take a closer look at some of the limitations
of current analysis approaches, and mention some work and open problems
related to expanding their scope. We consider both limitations in the proto-
col modeling approach and limitations in the analysis approach. A protocol
modeling approach may be inadequately expressive in several respects, such
as:

® vocabulary of cryptographic and computational operators,
» representation of recursive or group protocol structure, or
™ security properties.

Limitations on the validity of conclusions obtained from analysis using formal
methods may arise partly from:

» incomplete axiomatization of individual operators,

= assumptions about type checking or the lack of it,

®  weakness in the attacker model, or

= resource limitations in the vulnerability search method.

Some of the more interesting problems and results in these areas are discussed
below.

2. Modeling Computational Operations

Messages are typically represented as algebraic terms over one or more sorts
of primitive data such as addresses and keys. Operators include at least encryp-
tion and pairing, and a hash function. Public-key and symmetric encryption are
distinguishable axiomatically, and one expects them both to be represented.
Differences between cryptosystems with the same axiomatic properties, such
as DES and AES, do not show up in the algebraic axioms, so different block
ciphers need not be distinguished. This much is expected.

If all we know about a encryption is represented with abstract rules like
d(e(X, K), K) = X, it is obvious that many properties of the operator and
many possible attacks might have been lost. The virtue of abstract analysis
at this level is that many possible attacks can still be found, and, with a few
exceptions, an attack that works at this level can be made to work on the real
protocol. Thus, the analysis approach is conservative, from a security point
of view. Furthermore, if the analysis approach finds an unimplementable at-
tack, it is usually easy to check that it will not work. With a carefully chosen
implementation, it may even be the case that there are no other attacks. A
completeness statement like this is the goal of some work, discussed below,
regarding the computational soundness of formal encryption.
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Even at this extreme level of abstraction, there are design choices. For ex-
ample, the ability to decrypt a (symmetrically) encrypted data item may be
represented either as a reduction rule d(e(X, K), K) = X or as an attacker
derivation rule e(X, K), K + X. The derivation rule approach is used when
it is desired to use a free algebra for message terms (so that “d” need not be
explicit). The use of a free algebra has some advantages for justifying and im-
plementing analysis approaches, but some attacks might be lost, as discussed
in [Millen, 2003]. Even if “d” is not required explicitly to state the protocol,
this formalism cannot represent the ability of an attacker to decrypt data that
has not already been encrypted.

For example, consider a (very artificial) protocol in which one party sends a
secret s encrypted with a secret key k, as e(s, k). Assume that a second party
replies to any message of the form e(e(X, ¢), k) with X, where X is a pattern
variable and ¢ is a key known to the attacker. This protocol compromises s
if we can write the equation s = (X ¢), since X is then sent by the second
party and the attacker knows c¢. However, that equation cannot be satisfied in a
free algebra, where terms are equal only if identical. Thus, analysis based on a
free algebra will overlook the compromise.

It is shown in [Millen, 2003] that the culprit is (X, ¢), in which an unknown
received item X is encrypted alone. If such items are always encrypted in
some context, such as e([X, al, ¢), no attacks are overlooked. This was shown
first for symmetric encryption , and the result has been extended to public key
encryption by [Lynch and Meadows, 2004].

Other operations, such as exclusive-or (bitwise binary addition ), have prop-
erties that are not representable with a free algebra. As a commutative oper-
ation, exclusive-or shares some of the difficulty of exponentiation as used in
Diffie-Hellman , which is discussed below.

Another issue with abstract models is the handling of concatenation. The
simplest models allow only the formation of pairs [X,Y]. If a message has
three fields, it might be written either as [[X, Y], Z] or [X,[Y, Z]|, and one
might ask whether these two forms are distinguishable; that is, is pairing con-
sidered to be associative? In many models it is, but in a protocol that imple-
ments pairing as concatenation of bit strings, it is not. Thus, an attack that
rests on indistinguishability of the two forms will be overlooked in the abstract
analysis.

One might also ask whether longer lists are distinguishable from nested
pairs. Is [X, Y] distinguishable from a triple [X, U, V]? What if Y = [U, V]?
There is an interesting (but academic) attack on a modified version of the
Needham-Schroeder public-key handshake that plays on this confusion. Lowe’s
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version of the protocol, generally regarded as secure, is:

A — B : [N, Alpk(B)
B — A : [N,, Ny, Blpk(4)
A — B : [Ny]pk(B)

The important modification is the addition of B in the second message. If we
change the first message to [A, Ny|pk(B), an apparently trivial change, an at-
tack is possible, given in [Millen and Shmatikov, 2001]. The intruder creates
a message [A, E]pk(B) to get the reply [E, Ny, Blpk(A), and sends this to A,
hoping that A will act as a responder, see this message as [E, [Ny, B]|pk(A4),
and reply with [Ny, B], N,, Alpk(F) so that E can read N,. This formal at-
tack is likely to fail in reality for several reasons, but it is interesting because it
shows that

= some formal attacks might not be exploitable,

= the distinction between [X, Y, Z] and [ X, [Y, Z]] is worth thinking about,
and

s protocol analyzers can find surprising attacks.

This example also raises questions about what kind of type checking is done
in real protocol implementations. Cryptographic APIs may be very sophisti-
cated about the way encryption is implemented, but message construction is
usually a simple processing of bit strings. Separation of a message into fields
is accomplished by a combination of counting off the bit-length of fields of
an expected size, plus some checking of the contents of fields with expected
values. Abstract protocol models usually do not represent this procedure ac-
curately. Many protocol models assume that strong type checking is done,
typically because the model is stated and analyzed in some formal language
or environment where type assignment is mandatory. Protocol models with
free algebras assume that one can distinguish data with different term repre-
sentations, such as a key constant X from an encryption e( X, K'), even though
the encrypted result might be the same length, and might even be used as a
key. With regard to type checking, is it worth noting the result in [Heather,
et al., 2003], which shows how type flaw attacks can be prevented by adding
encryption-protected tags to data fields.

For models of symmetric encryption , it is a desirable feature to allow non-
atomic or computed keys. In SSL , the protocol used in standard Web browsers,
for example, a “master secret ” is computed by hashing a “pre-master secret”
and some random data. Similar constructions are used in many Internet pro-
tocols to construct symmetric keys or nonces. A model that does not allow
computed keys is unrealistically limited. On the other hand, a model that al-
lows any computational result to be a key is unrealistically permissive. The
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question of what computed data can be used as a key (or an address, or other
message field) is related to questions about type checking.

3. Diffie-Hellman and Group Protocols

The seminal key-agreement protocol is the Diffie-Hellman protocol, in which
two parties have private secrets z and y, and they exchange exponentials a®
mod p and a¥ mod p. Then they can both compute a common key a*¥
mod p = a¥* mod p without disclosing the secrets to each other or to anyone
else. Can this kind of protocol be axiomatized abstractly without incorporat-
ing a complete theory of finite-field arithmetic? As a reasonable first step, one
could introduce two abstract operations exp(z, y) representing z¥ mod p, and
g(x) representing ¢ mod p, with the relation exp{g(z),y) = exp(g{v), z).
(Something like this was suggested in [Blanchet, 2001].) This representation
is good enough to show how Diffie-Hellman works in some protocols, but it is
limited. It cannot show that exp(exp(g(x), ), 2) = exp(exp(g(y), 2), x), for
example, and some protocols and some attacks might depend on that.

A few papers have begun to investigate how Diffie-Hellman could be han-
dled in an abstract but adequate way for protocol analysis ( [Meadows and
Narendran, 2002, Microsoft, 2003, Chevalier, et al., 2003]). Part of the ap-
proach is to solve unification problems involving nested exponentials, like
a®™*, by reducing them to unification problems for products of exponents zyz.
The product is understood as an Abelian group operation. There are some de-
cidability results, but there are not yet any efficient algorithms for performing
the analysis of protocols with exponentiation.

The Diffie-Hellman idea can be extended to key agreement protocols with
three or more parties in a natural way. The result is group Diffie-Hellman.
A good axiomatization of Diffie-Hellman, together with the associated uni-
fication and other techniques, can take care of group Diffie-Hellman as well.
However, group protocols are challenging to specify and analyze for additional
reasons. A group protocol, by definition, involves a variable and dynami-
cally changing number of participants. Multicast or broadcast of messages
is usually required. Furthermore, messages may include lists, the lengths of
which vary according to the current number of members participating in the
group. Finally, new kinds of operations, like threshold encryption , are use-
ful for groups. There have been some experiments with automated analysis of
group protocols, but there are still no general tools available for them. There
is an interesting example of a protocol vulnerability in a protocol using group
Diffie-Hellman, in [Pereira and Quisquater, 2001]. That cxamplc may very
well turn into the “Needham-Schroeder”-like standard example for group pro-
tocol analysis methods to come.
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4. Deeper Models of Encryption

Security protocol analysis can be conducted using computational methods
with more detailed models of cryptographic algorithms. These methods ex-
amine complexity and probabilistic issues. While encryption is all-or-none in
the ideal models used in more abstract analysis, computational methods can
detect attacks that cause partial information to be “leaked.” The computational
approach can explain attacks like the Bleichenbacher attack , which takes ad-
vantage of malleability in basic RSA to extract a plaintext message, a fraction
of a bit at a time, over many sessions of the PKCS #1 protocol (see [Bleichen-
bacher, 1998)).

Malleability is the ability to modify the decrypted plaintext in a predictable
way while it is still encrypted. In the case of PKCS #1, the vulnerability arises
from the homomorphic property of RSA : (xy)¢ = z®y®. Understanding ex-
ponentials, as for Diffie-Hellman, is not enough to uncover the attack; proba-
bilistic arguments are needed also.

With certain conditions on the cryptographic algorithm, one can state that it
is “ideal” in the sense that it is indistinguishable, according to a probabilistic
complexity model, to its abstractly axiomatized representation. The first result
of this kind was in [Abadi and Rogaway, 2002]. With ideal cryptographic
primitives, security conclusions from the abstract analysis should carry over
to the implementation. One of the first papers to study the relationship of
computational to formal models is [Abadi and Rogaway, 2002]. This work
looked at message terms in isolation. The next step was to extend that result to
a sequence of messages in a protocol. This is the approach taken by [Backes,
et al., 2003]. They showed how to implement cryptographic primitives in a
protected way, through a controlled interface designed to remove all traces of
malleability. Their abstract interface is different from the usual abstract model,
so that it will be a challenge for formal methods to adapt to the differences.

5. Decidable Formal Methods

Despite the simplicity of models used in abstract methods, security anal-
ysis is undecidable in an environment with active attacks and an unbounded
number of protocol processes. This has been proved with several different
models in different ways from the the first undecidability proof in 1983 by
[Even and Goldreich, 1983], and more recently, for example, in [Durgin, et al.,
1999]. Undecidability arises partly from data types that are viewed abstractly
as unbounded, such as the key space, and the unbounded number of concurrent
protocol sessions. The fact that these parameters are bounded in reality doesn’t
help much; the undecidability result reflects real difficulties in the complexity
of analysis. It has been shown that if the number of concurrent honest proto-
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col processes is unbounded, then secrecy analysis is decidable, but it is still
NP-complete (see {Rusinowitch and Turuani, 2001]).

When the number of sessions is bounded, the analysis approach still has to
deal with the problem of unbounded data in messages and the unbounded ac-
tivity of the intruder. [Huima, 19997 suggested using a symbolic approach, in
which message subfields were represented by variables that were not instanti-
ated unless necessary. This permits the symbolic message space to be bounded
for purposes of analysis. His approach was not fully presented, but the ideas
were developed further by several researchers.

The SRI constraint solver presented in [Millen and Shmatikov, 2001] im-
plements the symbolic approach in an unusual but efficient and understandable
way. A protocol is converted to a set of algebraic term closure constraints. The
constraints have a solution if and only if a security vulnerability exists. Term
closure constraints require new techniques to solve. They are not, for example,
Just set constraints, which are not adequate to describe cryptographic protocols
without some extensions, as discussed by [Comon, et al., 2001].

An analysis problem is presented as a semibundle , which is a finite col-
lection of symbolic strands representing protocol processes in the sense of
[Thayer, et al., 1999]. A strand is a sequence of nodes representing message
send and receive events. Each role in a protocol can be represented as a schema,
that is instantiated to form strands for processes in that role. There may be any
number of strands in a semibundle, since each role in the protocol may be in-
stantiated any number of times. A semibundle that represents a realizable par-
tially ordered message history is a bundle. In a bundle, received messages can
be identified with sent messages. One must keep in mind that a sent message
may have been computed by an attacker from previously sent messages. The
standard strand space model uses primitive “penetrator” strands for allowable
attacker computations. A tool called Athena was the first to treat the analysis
problem as a search for a way to complete a semibundle to a bundle, in [Song,
1999].

The constraint solver does not use penetrator strands. Instead, it expresses
the computation requirement directly by enumerating the possible sequential
(send and receive) event histories. Then, for each received message in a given
history, the computation condition is expressed as a term closure constraint.
The closure of a set of (sent message) terms is the collection of messages that
can be computed from it; this closure must contain the next received message.
Security violations are expressed with special “test” strands. Security is vio-
lated for a semibundle if there is a history containing a test strand in which the
constraints for all received messages are satisfied.

It is not necessary to generate all possible histories. The original constraint
solver had a “send-first” optimization that eliminated some. Others can be
eliminated by solving constraint sets incrementally, to discard whole subtrees
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of unsolvable cases (see [Corin and Etalle, 2002]). This optimization has been
incorporated into the Prolog constraint solver on the SRI CSL web site. Re-
cently, a group at ETH Zurich found another significant optimization called
“constraint differentiation;” see [Basin, et al., 2003].

6. Future Directions

Several challenges for new security protocol analysis tools have been men-
tioned:

= Recognize the limitations of the free algebra model for messages.
= Allow for computed symmetric keys.

m Represent concatenations appropriately.

»  Make realistic type-checking assumptions.

» Handle Diffie-Hellman in a general way.

m Represent and analyze group protocols.

» Take advantage of results based on computational methods.

Despite advances in computational methods, formal methods remain neces-
sary for protocol analysis. Within their own domain, modern analysis tools
must deal in some constructive and useful way with the known sources of
undecidability and complexity in protocol analysis, such as unbounded data
types, unbounded intruder activity, and an unbounded number of protocol pro-
cesses. At the same time, they must be efficient when applied to suitably small
examples. The constraint solver is a tool that is up to date with respect to de-
cidability results, straightforward enough conceptually to inspire confidence in
its soundness, and flexible enough to encourage further development.
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Abstract Password-only authenticated key agreement (or PAKA for short) protocols al-
low communication parties to mutually authenticate with each other and share
an authenticated secret key by only using easy-to-remember passwords. In this
paper, we present a point-to-point PAKA protocol (or 2-PAKA for short) based
on self-certified approach. The proposed 2-PAKA can be easily generalized to
a point-to-multipoint PAKA (or n-PAKA for short) that allows n communica-
tion parties to achieve mutual authentication and key agreement. The proposed
PAKA protocols achieve the properties of perfect forward secrecy and known-
key security. Communication messages produced by the proposed PAKA proto-
cols are self-certified, and therefore no trusted servers or public key certificates
are required during the key agreement phase. We also discuss some essential but
potential attacks on the proposed PAKA protocols, including on-/off-line pass-
word guessing, password-compromised impersonation, and unknown key-share.

1. Introduction

Using easy-to-remember passwords for user authentication is widely adopted
in contemporary computer systems, because of its ease of use, cost effec-
tive, and ease of implementation. In 1992, Bellovin and Merritt [Bellovin and
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Merritt, 1992] proposed a family of password-based encrypted key exchange
(EKE) protocols, whereby any two communication parties shared with a pre-
chosen password in advance can exchange a session key . In 1995, Steiner,
Tsudik and Waidner [Steiner et al., 1995] successfully modified the Bellovin-
Merritt’s protocols into the so-called three-party EKE protocols . Their proto-
cols require a trusted server during the key agreement phase. Any two com-
munication parties (act as clients) can only use their passwords to achieve
mutual authentication and key agreement with the assistance of the trusted
server. Since then, several password-based three-party EKE protocols are de-
veloped [Bellare ef al., 2000, Bresson et al., 2000, Lee et al., 1999, Lin et al.,
2001, MacKenzie et al., 2000]. We call such type of key agreement protocols
as the PAKA protocols for short.

Basically, an authenticated key agreement protocol shall achieve the fol-
lowing security requirements addressed in [Blake-Wilson and Menezes, 1998,
Ding and Horster, 1995]:

1 It is known-key security. That is, an attacker cannot derive any session
keys established between the communication parties from any compro-
mised session key .

2 It is perfect forward secrecy. That is, an attacker cannot derive any pre-
viously established session keys from a compromised password which
is regarded as a long-term private key.

3 It is resistant to on-/off-line password guessing attacks. That is, an at-
tacker cannot find out the passwords, even though it is easy-to-remember,
from the intercepted messages by using an or by using a password dic-
tionary.

4 It is resistant to password-compromised impersonation. Suppose that
an attacker compromised a party U;’s password PW,. Clearly, he can
thoroughly impersonate U;. However, it may be desirable in some cir-
cumstances that the attacker cannot impersonate any other parties, say
Uj, to U; using the compromised PW;.

5 It is resistant to unknown key-share attacks. The scenario of launching
such attack is as follows: An attacker intercepted the communication
messages originated by one party U; and then replayed, or modified and
resent, these messages to the other party U;. For the success of such
attack, U; ends up believing that he shares a session key with Uj;, and
although this is in fact the case, U; mistakenly believes that the session
key is instead shared with some other party U, # U..

In this paper, we first present a point-to-point PAKA protocol (or 2-PAKA
for short) based on self-certified approach, and then extend the proposed 2-
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PAKA to a point-to-multipoint PAKA (or n-PAKA for short). The proposed
PAKA protocols achieve the security requirements described above. Mean-
while, the proposed PAKA protocols require no trusted servers or public key
certificates for assistance during the key agreement phase, because the com-
munication messages are self-certified.

2. Proposed 2-PAKA Protocol

The proposed 2-PAKA protocol requires a system authority (SA), whose
tasks are to initialize necessary parameters for system setup and to accept user’s
registration via an interception-resistant channel. Note that SA does not know
the registering user’s password; instead, SA just knows the protected password
blobbed by a public one-way function. The proposed 2-PAKA protocol is di-
vided into three phases: system setup, user registration, and key agreemenet.
Details of these phases are described in the following.

System setup phase: SA first selects two large primes (e.g., more than 512 bits)
P and @, and computes the composite of P and Q, i.e. N = P - Q. Then, SA
determines a generator g modulo N with the order R, where R is a prime and
is large enough (e.g., more than 160 bits) to withstand the exhaustive search
attack. Finally, SA determines a one-way function f, where 0 < f(z) < R
for any . The one-way function f can be easily constructed from the current
available hash functions such as MD5 or SHA-1 . At the end of this phase, SA
publishes NV and f, while keeping P,  and R secret.

User registration phase: Suppose that the user U;, with the identity ID; and
the password PW;, wants to register with the system. It is assumed that U;
and SA have already applied the password authentication scheme to share the
value of PW; in advance. Denote f(z)~! as the inverse of f(z) modulo R.
Upon receiving the registration request originated from U;, SA first randomly
chooses an integer d; € Zr and then computes:
¢; = d; TUDPW) " h AN

w; = (gfIPHPW s £(1D)I TP mod N (M
After that, SA sends {¢;, w;} to U; via the public channel. Note that {c;,
w;} is self-certified, so that U; can use his own password PW; to compute
d; = ¢; FIPPW)mod N and verify the authenticity of {ei, w;} by testing the
equality:

gfUDsPWadi L (0, fIDD o ¢(1DY)ymod N
At the end of this phase, U; keeps {¢;, w;} in the memory of the computing
device (e.g., IC cards) he holds.
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Key agreement phase: Suppose that two registered parties U; and U; want to
exchange an authenticated session key . They perform the following steps:
Step 1. U; randomly chooses x; and ¢; bounded by the output length of f and
computes:

d; = ¢; JUPPWimodN

Y = g¥modN 2
ri = g%modN 3)
8i = Yi ti +1i-x; + f(ID;, PW;) - d; “

Then, U; sends {ID;, w;, ys, 73, $;} to Uj.
Step 2. Uj verifies the authenticity of {ID;, w;, v;, 7, s;} by testing the
equality:

g% =¥ yi - (9P 4 F(1D:)) (modN)
Then, U; computes y;, r; and s; as that in Step 1, and computes the session
key :

K;i =y’ modN )
and m; = f(IDj, Kj4,y;). After that, U; sends {IDj, wy, yj, rj, $j, m;j} to
U;.

Step 3. U; verifies the authenticity of {ID;, wj, y;, rj, s;} as that in step 2.
Then, U; computes the session key K; ; = y;“modN and tests the equality:

fUID;, K j,y:) L my. If the equality holds, Uj; is confirmed that he shares
the same session key with U;. After that, U; computes m; = f(ID;, K; ;,v;)
and sends {ID;, m;} to U;.

Step 4. Uj tests the equality: f(ID;, Kj:,y;) z m;. If the equality holds, U;
is confirmed that he shares the same session key with Uj;.

3. Proposed n-PAKA Protocol

The proposed n-PAK A protocol is like the CLIQUES multiparty key agree-
ment protocol proposed by Steiner, et al. [Steiner et al., 1997]. Suppose that
n registered parties U; (1 < ¢ < n ) want to achieve mutual authentica-
tion and key agreement. First, they determine the communication sequence,
U, Us, ..., Up. Let Uy act as the originator of the n-PAK A protocol. They per-
form the following steps:

Step 1: U; randomly chooses z; and t; bounded by the output length of f,
obtains y; and 71 as that in step 1 of 2-PAKA and computes

st=y1-tr+rx+ f(X) - f(ID, PWh) - di ©)
where X1 = {g, g™ }. After that, Uy sends {ID;, X1, w1, y1, 71, 51} to Us.
Step 2: For each U;(2 < ¢ < n— 1) receiving {ID;_1, Xi-1, Wi~1, Yi-1,
ri—1, 8;—1} from U;_1, he verifies the equality:

))f(Xi——l)(

g%t _1_ Yo Yt (wi—lf(IDi_l) + f(IDi—l mOdN)
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If the equality holds, U;_; is authenticated. Then, U; obtains y;, r;, s, and X,
as that in setp 1, where

X’i — {(gHék:l&k#J‘) kaOdN“. S .7 S 'l‘),gni:l l‘kmOdN}

After that, U; sends {IDi, X, w;, Yis Ti» Si} to Ui+1.

Step 3: U, first verifies the authenticity of {1 Dp,—1, Xn_1, Wn_1, Yn—1, Tn—1,

Sp—1} as that in step 2 and obtains X,,, yn, ' and s, as that in step 1, where

X, = {(gH?k=1&k#j> |1 < j <n)}. Then U,, computes the group session

key K,, = (gnz;l1 &) nmodN and mp=f(ID1, IDs, ...,] Dy, Kp, Xy,). After

that, U, broadcasts {ID,,, Xy, Wy, T, Sn, My} to the other parties Uy(1 <

1<n-1).

Step 4: Each Uy(1 < i < n — 1) verifies the authenticity of {ID,, X,, wny,

Yns> Ty Sn, Mn } as that in step 1. Then, U; computes the group session key:
K; = (gHk=1sk: 2 )i 0d N 7

After that, U; tests the equality: m., L fID;,IDy,...,IDy,, K;, Xy,). If the
equality holds, it means that K; = K, and U; is confirmed that he shares the
same group session key with U,.

4, Security Analysis

The security of the proposed PAKA protocols is based on the intractability

of computing discrete logarithm modulo a large composite (DLMC) [McCur-
ley, 1988]. That is, given a large composite, N, of two primes, P and Q, a
generator g over Zy, and y = g*modN, it is computationally infeasible to
find x.
Achievement of the known-key security. From equations 5 and 7, it is to see
that each U; will produce a unique session key that depends on different z;. By
equations 2, 3, 4 and 6, an attacker will face the DLMC problem to compute
z; from public information {y;, v, s;}.

Achievement of the perfect forward secrecy. Suppose that PW; is compro-
mised. From equations 2, 3, 4 and 6, it can be seen that an attacker will face
DLMC problem to compute z; from PW; and {y;, r;, s; }-

Resistant of on-line password guessing attacks. An attacker cannot ensure the
success of launching the on-line guessing attack, since no trusted server is re-
quired during the key agreement phase.

Resistant to off-line password guessing attacks. ;(From equations 1, 4 and 6,
it can be seen that an attacker will face the DLMC problem for working out
f(ID;, PW;) and then off-line guessing PW; from {w;, v;, 74, i}
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Resistant to password-compromised impersonation attacks. For the success of
launching such attacks, an attacker should have the ability to construct {ID;,
! !

P s
wy, Y, 75, S5 } satisfying

’ ! ’ ID; -1
wf = (g% /y7 % = frD)) P modny

However, the attacker will face the DLMC problem for working out f(ID)modR.

Resistant to unknown key-share attacks. For the success of launching such
attacks, an attacker should have the ability to construct {IDq, wa, ¥i, Ti, Sa}
satisfying

Sq =ity + x50 1y —l—f(IDa,PWa) -dg,
However, the attacker will face the DLMC problem for working out z; from
g*imodN

5. Conclusion

We have presented a 2-PAKA protocol based on self-certified approach. The
proposed 2-PAKA protocol can be further generalized to an n-PAKA protocol.
Under the DLMC assumption, the proposed PAKA protocols achieve the secu-
rity requirements of perfect forward secrecy and known-key security. Besides,
the proposed PAKA protocols are resistant to the well-known attacks, such
as on-/off-line password guessing, password-compromised impersonation, and
unknown key-share.
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Abstract

Peer-to-peer (P2P ) security has received a lot of attention as of late. Most prior
work focused almost entirely on issues related to secure communication, such as
key management and peer authentication . However, an important pre-requisite
for secure communication — secure peer admission — has been neither recognized
nor adequately addressed. Only very recently, some initial work began to make
inroads into this difficult problem. In particular, [Kim et al., 2003] constructed
a peer group admission control framework based on various admission policies
matched with appropriate cryptographic techniques. Recent results {[Saxena et
al., 2003, Narasimha et al., 2003} also illustrate the design of, and experiments
with, certain group admission control mechanisms.

In this work, we report on the implementation of Bouncer, an experimental
peer group admission control toolkit used in [Saxena et al., 2003] and its trial
integration with two peer group systems with very different goals and seman-
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tics: Gnutella and Secure Spread . We also discuss some outstanding issues,
challenges and future research directions relevant to this topic.

Keywords:  Access Control , Peer-to-Peer Networks, Peer Group Communications

1. Introduction

The rising popularity of P2P applications prompts the need for specialized
P2P security services and mechanisms. This has been recognized by the re-
search community, however, the bulk of prior work is concerned with secure
P2P communication, e.g., authentication, anonymity and key management .
Although these issues are certainly important, another equally important topic
has remained mostly unaddressed. Informally, it has to do with how one be-
comes a peer in a P2P system. More concretely, the technology for secure
admission of peers into a P2P application simply does not exist. This state-
ment does not contradict the fact that there are many currently operating P2P
applications; they either operate in a completely open manner (i.e., have no ad-
mission control whatsoever) or admit peers on some ad hoc basis. This state
of affairs bears a certain similarity to the early days of group key management
when group keying was either non-existent or obtained by out-of-band means.
To exploit this a little further, we observe that, just as trivial key management
solutions severely limited the functionality of peer group applications, equally
trivial admission control techniques will do (or already have done) the same.
In other words, we believe that — without a well-thought-out architecture and
appropriate techniques for peer admission — most P2P systems will sooner or
later hit the proverbial “brick wall”.

1.1 Prior Work

Recently, [Kim et al., 2003] developed a group admission control frame-
work based on various cryptographic techniques. This framework classifies
group admission policy according to the entity (or entities) that makes peer ad-
mission decisions. The classification includes simple admission control poli-
cies, such as static ACL{Access Control List)- or attribute-based admission, as
well as admission based on the decision of some fixed entity: external (e.g.,
a TTP) or internal (e.g., a group founder). Such simple policies are relatively
easy to support and do not present much of a technical challenge. However,
they are inflexible and ultimately unsuitable for a dynamic P2P setting. Static
ACLs enumerate all possible members and hence cannot support truly dynamic
membership (although they work well for closed groups). Admission based on
decisions of a TTP or a group founder violates the peer nature of P2P, since the
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entire philosophy of P2P paradigm is based on collective, distributed services
and decisions.

To address more challenging collective (group-centric) admission policies,
a follow-on work [Saxena et al., 2003] built upon the framework in [Kim et al.,
2003] by designing a menu of suitable distributed mechanisms on a number of
cryptographic techniques. This work yielded mechanisms for both centralized
and (more challenging, yet also more realistic) decentralized group settings.
In the latter, all current group members can take part in the admission process
in a fully distributed manner. This work also assessed the practicality of dis-
tributed cryptographic mechanisms (such as verifiable threshold signatures) in
both synchronous and asynchronous P2P settings. For an in-depth discussion
of these admission control mechanisms, protocols and the experimental results,
the reader is referred to [Saxena et al., 2003, Narasimha et al., 2003, Kim et
al., 2003].

In this work we focus on the design and implementation of Bouncer, the ad-
mission control toolkit [Saxena et al., 2003] integrated with an asynchronous
P2P system (Gnutella [Gnutella]) and a synchronous group communication
system with strong membership semantics (Secure Spread [SSPR]). The
Bouncer toolkit is general, i.e., it can be easily grafted onto any peer group
setting.

2. Background

In this section, we describe a typical P2P admission procedure. The goal of
this procedure is to allow a prospective member to obtain a group membership
certificate. Using this certificate, a new member can prove membership and
take part in future admission decisions.

As described in [Saxena et al., 2003], the admission process is similar to a
general voting mechanism whereby a prospective member needs to collect a
certain minimum (threshold) number of positive votes (endorsements) before
becoming a group member. There are two types of threshold admission poli-
cies: fixed and dynamic. The former is specified as the minimum number of
votes, whereas, a dynamic threshold is specified as a fraction or percentage
of the current group size. A fixed threshold is essentially a ¢-out-of-n model
where the threshold ¢ is fixed and n (current group size) varies over time. In
contrast, a dynamic threshold (such as 30%) implies that ¢ shrinks or grows in
tandem with n.

The table below summarizes the notation used in the remainder of the paper.
The “generic” peer admission process is as follows:

Step 0. Bootstrapping: A prospective peer M, obtains the group char-
ter [Kim et al., 2003] out of band and then the information of current group
size from either GAuth or some bootstrap node. The group charter contains
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TD | trusted dealer
GAuth | group authority
7 | total number of peers
t | threshold (¢ < n)
Mnew | prospective member
M; | current member (0 < i < n)
PKCrew | public key certificate of M, eqy
GMCrew | group membership cettificate of Mpeqy

various parameters and admission policies, including: group name, signa-
ture/encryption algorithm identifiers, threshold (numeric or fractional corre-
sponding to fixed or dynamic threshold, respectively), below-threshold policy
and other optional fields. This process is performed only once per admission.

= = = broadcast
unicast

Figure 6.1.  Admission Control

Step 1. Join Request: As shown in Figure 6.1, M, initiates the proto-
col by sending a join request (JOIN_REQ) message to the group. This mes-
sage, signed by M.y, includes M,,,,’s public key certificate (PKC,,¢,,) and
the target group name. How this request is sent to the group is application-
dependent.!

Step 2. Admission Decision: Upon receipt of JOIN_REQ, a group member
first extracts the sender’s PK Cy,.,, and verifies the signature. If a voting peer
approves of admission it replies with a signed message (JOIN_COMMIT) Sev-
eral signature schemes (as described later in this section) can be used for this
purpose. Mp,,, verifies each vote.

Step 3. GMC Issuance: Exactly who issues the GM Cheq, for My, depends
on the security policy. If the policy stipulates using an existing GAuth, once
enough votes are collected (according to the group charter), My, sends to the
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GAuth a group certificate request message (GMC_REQ). It contains: PKCy,ey,
group name, and the set of collected votes. In a distributed setting with no

GAuth, M,,.,, verifies the individual votes, and, from them, composes her own
GM Chew.

Armed with a GMC , My, can act as a bona fide group member. To prove
membership to another party (within or outside the group) Mpe,, simply signs
a message (challenge) to that effect.

To perform the admission decision process, various signature schemes are
used, namely the plain RSA , Threshold RSA (TS-RSA) [Kong et al., 2001,
Luo et al., 2002, Kong et al., 2002], Threshold DSA (TS-DSA) [Gennaro
et al, 1996] and Accountable Subgroup Multisignatures (ASM) [Ohta et al.,
2001]. For a detailed description of these signature schemes and the admission
protocol, refer to [Saxena et al., 2003] and [Narasimha et al., 2003].

3. Bouncer: Admission Control Toolkit

We have implemented Bouncer, a general-purpose toolkit for P2P admis-
sion control based on the description in Section 2. All cryptographic functions
are developed using the OpenSSL library [OpenSSL]. The toolkit is written in
C on Linux and currently consists of about 45, 000 lines of code. The source
code for the membership control toolkit is publicly available at [PGAC].

3.1 System Design

The admission control system is made up of three basic layers of the ar-
chitecture; GAC APIs, security and management services, and the underlying
cryptographic functions. Figure 6.2 illustrates the architecture.

Peer Group Applications

{Gautella, Secute Spread, ete.)

!

o T QAC APLS T s s T

M Policy . (}‘_i;rti‘tiilcatc E Da:iq }l{’m(évl\;nl
anagement s lin, Encoding andli
Mo%ﬁ\lc n\ﬂoduleg M%?lulel" Modu{’eg

OpenSSL-supported

Figure 6.2. GAC System Architecture
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The GAC APIs define the application programming interface for accessing
the admission control services. These APIs are useful when integrating our
Bouncer with other peer group applications. The security and management
services are carried out by the following modules:

m Policy Management Module

»  Certificate Handling Module

» Data Encoding Module

m  Protocol Handling Module

All security services are provided by the underlying cryptographic libraries.

3.2 Cryptographic Libraries

Most of the general cryptographic functions such as SHA-1 , RSA , DSA,
and so on, are supported by OpenSSL . Specifically, we have implemented
three distributed cryptographic schemes on top of OpenSSL, and embedded
our libraries into it. The Bouncer supports four different signature schemes;
plain RSA , ASM , TS-RSA, and TS-DSA as addressed earlier.

33 Security and Management Services

3341 Policy Management Module. A policy management module
is the component which checks for conformance to the policy specified in the
group charter [Kim et al., 2003]. First, this module contains functions to check
the threshold type. If the threshold type is a static, it checks if the number of
current members is at least equal to the threshold (n > t). If n < ¢, the policy
manager enforces the BelowThreshold policy which requires it to either
forward the JOIN_REQ to GAuth directly, or to reset the threshold to reflect
current 7.

In most P2P systems, group size can fluctuate drastically within a short time.
As the number of peers grows or shrinks, we need to increase or decrease
the threshold. Since updating the threshold is an expensive operation which
requires a random number generation, it is impractical for every membership
event to trigger an update process. In order to prevent this, we apply a simple
window mechanism as shown in Figure 6.3. Specifically, cvery member keeps
state of ngq, which is the group size at the time of the last threshold-update
process. A new threshold-update process is triggered only when the difference
between the current group size n¢y,, and 1y is greater than Win — the window
buffer. In other words, threshold update process is triggered only when |ny, —
Nod| = Win.
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Function GAC_Dynamic.Threshold Update () ;

Input parameters:
X509% GChart,
int Neug,
int Ney,
int Tewr

* group charter +\
+ ©1d group size »\

% current group size «\

o

+ current threshold «\

Body:
int 4iff;
int offset;
int Win; \+ Window buffer size =\
int Taew \+ new threshold *\

Trnew=Teur i
Win=WIN_TIMES+GChart.threshold. fixed;
Aiff = Newr - Noid;
if (diff >= Win) {

offset = |diff / Win];

Notd = Nota + (offset«Win);

Tnew = |{GChart.threshold.dynamic /

100} * Npta);
1f (Thew > Teur)
Teur=Tnew;

}

return Tieqw

Figure 6.3.  Dynamic Threshold Update Procedure

332 Certificate Handling Module. Both GMC -s and group char-
ters generated by the Bouncer are compatible with X.509v3 [Housley et al.,
2002]). This certificate handling module takes care of all functions related to
certificate compatibility. For example, in the group charter, we need to define
several attributes in the extension field of certificate in order to codify certain
admission policy. And this module also has a function to bind the identity of
GMC to that of PKC as shown in Figure 6.4 to protect against the Sybil attack
[Douceur, 2002], assuming that a Certification Authority (CA) issues a PKC
with a unique identity to each user.

Further, possession of a GMC does not prove that the GMC actually belongs
to the bearer. One way to accomplish this is by requiring for every group
member to have a standard X.509 public key certificate (PKC) issued by the
CA. The GMC simply needs to contain the public key of the member extracted
from her PKC. Now the member (bearer of a GMC) can prove ownership of the
GMC by demonstrating knowledge (e.g., by signing a message) of the private
key corresponding to the public key referred to in in the GMC.

333 Data Encoding Module.  The data encoding module contains all
encoding and decoding functions which convert ASN.1-formed messages to
and from DER-encoded from. For example, 12d_PS_Join Request () isa
function which converts ASN.1-structured JOIN_REQ message based on plain
RSA into DER-encoded binary data in order to transfer the message over the
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X.509 PKC X.509 GMC

Subject ID Owner

Issuer Group ID

Serial Number Serial Number

Public Key Public Key

Extensions Attributes

Signature Extensions
Signature

Figure 6.4. Binding GMC to PKC

networks. Similarly, d2i_PS_Join Request () is called when receiving
JOIN_REQ message, to get internal form of the message.

3.34 Protocol Handling Medule. The protocol handling modules
includes functions used to identify admission control protocols and transfer
the messages to and from the corresponding libraries. Figure 6.5 shows the
structure of GAC packet. Each packet is classified on the protocol using the
packet type in the packet header.

) 7 8 15 16 31

Protocol Packet Data Length

Data

Protocol: the protocol identifier

1) PS (0x01)

2) TS-RSA (0x02)

3) TS-DSA (6x03)

4) ASM (0x04)
Packet: the packet type defined

1) JOIN_REQ: the join request (0x01)

2) JOTN_CMT: the join commit (0x02)

3) C(HAL_REQ: the challenge request (Gx03}

4) CHAL _RLY: the challenge response{0x04}
: the sign request (0x05)

. : the partial signature reply (0x06)

7) GMC_REQ: the GMC request (0x07)
8) GMC_RLY: the GMC reply (0x08)

Figure 6.5. GAC Packet Structure

34 GAC APIs

Application developers require no special knowledge of the organization of
the security and management modules as well as cryptographic libraries. They
justneed to use the GAC function interface to build any application. GAC APIs
are logically partitioned into functional categories. The goal of this logical par-
titioning is to assist application developers in understanding and making effec-
tive use of the security APIs. With this logical classification, we support the
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following APIs. Among these APIs, GMC_Request () and GMC_Reply ()
are optionally required only when we can assume the presence of a centralized
authority.

m  Plain RSA APIs

GAC_PACKET *PS_Join_Regest () ;
GAC_PACKET »PS_Join_Commit () ;
GAC_PACKET *PS_GMC_Request (); /+ optional =/
GAC_PACKET *PS_GMC_Reply(); /+ optional */

= TS-RSA APIs

GAC_PACKET *TSS Join_Request () ;

GAC_PACKET *TSS_Join_Commit () ;

GAC_PACKET *TSS_Sign_ Request () ;

GAC_PACKET *TSS_Part_Sign();

GAC_PACKET %TSS_GMC_Request(); /+ optional =/
GAC_PACKET *TS8S_GMC_Reply(); /* optional x/

s TS-DSA APIs

GAC_PACKET *TSD_Join_Request () ;
GAC_PACKET *TSD_Join Commit () ;
GAC_PACKET *TSD_Chal _Req{() ;
GAC_PACKET +TSD_Chal Rly();
GAC_PACKET +TSD_Rnd_Req () ;
GAC_PACKET +TSD Rnd Rly();
GAC_PACKET +TSD_Sign_Request () ;
GAC_PACKET +TSD_Part_Sign();

GAC_PACKET +TSD_GMC_Request(); /* optional =/
GAC_PACKET +TSD_GMC_Reply () ; /* optional */
s ASM APIs

GAC_PACKET *ASM Join_Request () ;
GAC_PACKET »ASM Join Commit () ;
GAC_PACKET *ASM Sign_Request () ;
GAC_PACKET *ASM_Part_Sign();

GAC_PACKET *ASM_GMC_Request (); /+ optional */
GAC_PACKET %ASM_GMC_Reply(); /+ optional /
4, Integration with Peer Group Systems

To evaluate the performance of our mechanisms and to measure the over-
head incurred due to incorporating admission control in the context of real-
world application, we integrated the Bouncer with a popular P2P file sharing
system, Gnutella /indexGnutella and with a wide area secure group communi-
cation system, Secure Spread . Secure Spread is selected as an example of a
synchronous P2P system, and Gnutella as an asynchronous one. We integrated
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the centralized admission protocol with the former and the decentralized one
with the latter to measure the performance in both settings.

In the following sub-sections, we discuss the implementation details for the
integration with both the systems.

4.1 Integration with Gnutella

The Gnutella is the “pure” P2P file sharing system which is closest to the
ideal structure of the P2P spirit, where all participants have uniform role. In
such an architecture, users are free to join and leave the group. Even malicious
users can easily join to deny or disrupt the system. To prevent such a security
threat in a fully distributed P2P environment, we integrated our Bouncer with
Gnut-0.4.21 [Gnut] (an open-source Gnutella [Gnutella] implementation).

New Member Group Members
Ping
Pong Join
‘ Commit
Query Il'l“-, SigReq
QueryRit SigRly
Push SPing
(download by htip) SPong
<Gnutella> <Secure Gnutella>

Figure 6.6.  Secure Gnutella Protocol Flow

At the setup phase of the Gnutella protocol , a connection is established by
communicating so-called Ping and Pong messages which are based on IP
addresses as shown in Figure 6.6. To look for a file, a new member sends out
a broadcast Query message to every member to which it is directly linked.
The group members identifying the rcquested file in their repository answer
with a QueryHit message which is returned to the connection from which
the request arrived. The QueryHit message contains the ResultSet and the
pair (/P address, port) that must be used to download the file via HTTP.

The Secure Gnutella protocol, illustrated in Figure 6.6, defines some ex-
tra messages for secure admission control ; Join, Commit, SigReq,
SigRly, SPing, and SPong. The message format for new protocol steps
is defined as follows;

®  Join{mesg, PKC, Sig)

®  Commit (port, IP addr, GMC, commit.val, Sig)
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®  SigReq(servant ID, sigreq.val, Sig)
® SigRly(servant ID, sigrlywval, Sig)
W SPing (Group ID, GMC)

®  SPong (port, IP adddr, # of files, # of Kbytes, GMC)

First, like in a standard Gnutella protocol , a new member broadcasts to all
her neighbors Join message which contains the join request message and her
own PKC . Upon reception of the Join message, some of group members
reply with Commit message to confirm that they will participate in admission
process. In this message, the commit_val is an encapsulated message of the
GAC protocol , which is DER-encoded form . The SigReq and SigR1ly are
newly specified messages for the GAC protocol . For checking the integrity
of protocol message, Commit, SigReq, and S1gR1ly messages include the
signature thereon which is PKCS7-formatted .

In order to prevent Sybil attacks [Douceur, 2002], we modified standard
Ping and Pong messages so that the connection is made only if the responder
answers with its valid GMC . For this purpose, we specified two new messages:
SPing and SPong. The SPing message contains the requester’s PKC , and
the SPong message contains the responder’s GMC and its signature (to prove
possession of its private key). In Secure Gnutella system, standard Ping and
Pong messages are no longer used.

4.2 Integration with Secure Spread

Spread [Spread] is a wide area group communication system . It provides
a high performance messaging service that is resilient to faults across external
or internal networks. Spread functions as a unified message bus for distributed
applications, and provides highly tuned application-level multicast and group
communication support. Spread services range from reliable message passing
to fully ordered messages with delivery guarantees, even in case of computer
failures and network partitions.

Secure Spread [SSPR] is an application built atop Spread. It enhances
Spread by integrating security services and key management .

In its present form, Secure Spread supports only static group access con-
trol which is provided at the daemon level using ACL’s. This clearly poses a
single point of failure problem. Moreover, as argued before, static admission
control is no good for dynamic groups. Secure Spread also has a notion of
a flush mechanism, in which all current group members need to acknowledge
any change in membership (e.g. join, leave, partition, merge). A prospective
member can join a group only after it has received flush OK messages from all
current group members. This is a very weak form of providing admission as
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this mechanism offers no security at all because there involves no authentica-
tion of either prospective or current members. Moreover, all group members
need to be involved in every admission process simultaneously.

In order to resolve these problems and of course to measure the perfor-
mance, we integrated Bouncer with Secure Spread . The integration involves
extension to the Spread API and can be used with any application (including
Secure Spread) that uses Spread.

We added the following function to the current interface of Spread.

int SP_GAC_join(mailbox mbox, congt char xgroup)

This function is declared in sp.h of Spread source tree. It joins a group
using the group admission mechanisms described in previous sections, with
the name passed as the string group. If the group does not exist among the
Spread daemons it is created, otherwise it joins the existing group. The mbox
of the connection upon which to join a group is the first parameter. The group
string represents the name of the group to join.

The function Returns 0 on success or one of the following errors (< 0):

ILLEGAL_GROUP
The group given to join was illegal for some reason. Usually because it was of
length 0 or length > max_Group NAME.

ILLEGAL_SESSION
The session specified by mbox is illegal. Usually because it is not active.

CONNECTION_CLOSED
During communication errors occurred and the join could not be initiated.

In case, the prospective member is not able to receive enough votes, the
function call will not be completed and the member will wait forever.

JOIN.REQ message is encapsulated within the standard spread message and
sent to all the group members using Spread multicasting. Figures 6.7 show
Spread header and the encapsulation of GAC message inside the spread mes-
sage (sizes are in bytes). The function makes a call to the spmulticast func-
tion of the Spread API . For details regarding the multicast message, refer to
the spread function interface in [Spread].

In order to receive replies back from the group members, the function sp_cac_join()
uses the sp_receive function of the Spread API .

We have also modified the sp_receive function. This takes care of the fact
that when a current group member receives the JOIN_REQ message from a
prospective member, it responds with a JOIN_CMT message as its vote. This
message again is encapsulated within the standard Spread message and its
sent to the requesting member using the Spread unicasting. For this purpose,
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Figure 6.7. Spread GAC Message Encapsulation

we again use the spmulticast function to send unicast message to the new
member using its private group name which is represented by #private user
namettdaemon name.

After collecting enough votes from group members, the prospective member
requests the GMC from the external GAuth. Once, the GAuth issues the GMC
to the new member, the admission process is completed. Then, the spread
daemons update the membership information and update/distribute the new
key to the newly joined member.

5. Experiments

In our experiments with Gnutella and Secure Spread, we measured the costs
of basic operations and then compared the performance of four cryptographic
protocols with both fixed and dynamic thresholds. We used 1024-bit modulus
in all mechanisms; that is, 1024-bit IV in RSA and TS-RSA, and 1024-bit p
and 160-bit ¢ in TS-DSA and ASM.

Since each protocol has different number of communication rounds, we
measured total processing time from sending of the JOIN_REQ to obtaining
new GMCs?. This means the join cost includes not only the signature gen-
cration and verification time in basic operations, but also the communication
costs such as packet encoding/decoding time, the network delay, and so on. To
get reasonably correct results, the experiments were repeated more than 1000
times for each.

5.1 Computation Costs

In this section, we demonstrate the cost of each signature scheme used as a
primitive in Bouncer.

Figure 6.8(a) shows the cost of signature generation versus the key size,
where t=3. We found that in TS-RSA , the cost in generating a signature is
much more expensive than that of RSA signature generation, since we can
not apply CRT (Chinese Remainder Theorem) to speed up the computation
as in plain RSA scheme. TS-RSA is slightly better than TS-DSA with 512-
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bit modulus, while TS-DSA is faster than TS-RSA with larger key size. As
evident from the figure, ASM is the best performer because it is based on the
efficient Schnorr’s signature scheme.

i
788 8 12 768 w4 1280 536 192 2048
. Key slz‘e {bits) . . Koy Size (bits)
(a) Signature Generation (b) Signature Verification

Figure 6.8. Basic Operation Cost

Figure 6.8(b) shows the cost of signature verification with varying key sizes.
In PS, the cost of signature verification is proportional to the threshold. All
other schemes, except PS, have only one resulting signature due to the ag-
gregation of partial signatures. We also observe that the verification costs of
TS-DSA and ASM are almost the same as for the underlying DSA and Schnorr
signature schemes respectively. However, verification cost for TS-RSA is ex-
tremely high. This is because m” (mod N) in t-bounded offsetting algorithm
[Kong et al., 2001] has to be computed almost every time the signature is ver-
ified. Due to this expensive operation, it turns out that the TS-RSA performs
much worse than the other schemes, contrary to our intuition.

5.2 Signature Size

From the analysis of the computation cost above, it turned out that both plain
RSA and ASM are more efficient than the two threshold signature schemes.
However, the length of the signature in plain RSA and ASM is linear in thresh-
old . In this experiment we extract the identities (which are X.509 DN format-
ted) from the GMC -s. We also used 1024-bit RSA key and SHA-1 as a hash
function for both ASM and TS-DSA .

In both plain RSA and ASM schemes, the signers’ identities should be in-
cluded in the resulting signature. Due to the size of the identity (i.e., 952
bits), the resulting signatures become very large depending on the threshold;
whereas, both TS-RSA and TS-DSA have a constant signature size (i.e., 1024
bits and 320 bits, respectively). For example, from the Figure 6.9, we can see
that the size of plain RSA is about 150 times as long as that of ASM when the
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Figure 6.9.  Signature Size

threshold is set to 25. Therefore, we recognize that both plain RSA and ASM
would not be suitable for large groups where the bandwidth is a major concern.

53 Gnutella Experiments

We measured the performance of the Secure Gnut which is the Gnut
system integrated with our Bouncer. We performed all measurements on the
following Linux machines connected with a high-speed LAN: P4-1.2GHz, P3-
977MHz, P3-933MHz, and P3-797MHz.

Figure 6.10(a) shows the join cost for the static threshold case. Figure 6.10(b)
shows the join costs for the dynamic threshold case where the threshold ratio
is set to 30% of current group size. All of these measurements were performed
with the equal number of member processes on each machine.

Average Join Time (seconds)

Average Join Time (seconds)

° 5 ® 15 m % 0 B 4 a5 N5

Threshotd {t) Number of Currént Members {n)

(a) Fixed Threshold (b) Dynamic Threshold (R=30%)

Figure 6.10.  Gnutella Experiments
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S.4 Secure Spread Experiments

For our experiments with Secure Spread , we used a cluster of 10 machines
at Johns Hopkins University. Each machine has P3-667 MHz CPU, 256 KB
Cache and 256 MB memory and runs Linux 2.4, We ran Spread daemons on
all machines which formed a Spread Machine Group. Almost equal number of
clients running on these machines connect randomly to the daemons. The new
joining member is a client running on a machine at UC Irvine with a Celeron
1.7 GHz CPU, 20 KB cache and 256 MB memory.

Experiments were performed with the above testbed for both fixed and dy-
namic thresholds for all signature schemes discussed thus far.

Figure 6.11(a) shows the plot for the average time taken by a new member
to join a group with a fixed threshold. We performed this test with 4-5 pro-
cesses on each machine and measured the join cost by changing the threshold.
As expected, plain RSA is the best performer in terms of computation time.
However, we also see that both TS-RSA and TS-DSA exhibit reasonable costs
(< 1 sec.), at least until t=10.

Figure 6.11(b) show the plots for the average time for a new member to
join a group with a dynamic threshold. In this experiment, the threshold ratio
(R) is set to 30% of the current group size. The actual numeric threshold is
determined by multiplying the group size by R. We measured the performance
up ton = 50.

4

average Join Time {seconds)

Average Jow Time (saconds)

¢ s © g e L » 0 5 0 % E - £l £ L 4% 50
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(a) Fixed Threshold {b) Dynamic Threshold (R=30%)
Figure 6.11.  Secure Spread Experiments

For a detailed discussion regarding the results of these experiments, the
reader is referred to [Saxena et al., 2003].

6. Discussion

As it is clearly reflected from the measurement results above, all the ad-
vanced cryptographic constructs i.e. the threshold signatures and the multisig-
natures perform quite poorly. Especially the threshold signatures are about 4-7
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times costlier than the plain RSA signatures for relatively larger groups. But,
as discussed in [Saxena et al., 2003], since for plain signatures and multisig-
natures the size of the combined signature and thus the size of the GMC varies
proportionally with the threshold, we can’t pick just one signature scheme for
all P2P settings. A certain balance has to be maintained between the size of the
GMC and the average join cost apart from the choice of the scheme-specific
features like anonymity, accountability, membership awareness and so on.

One might argue that group signature scheme [Ateniese et al., 2000] might
also be a possible candidate for the admission control especially in a P2P
scenario where signer anonymity is a must. We did in fact implement the
group signature scheme in our toolkit and experimented with it. But, unfor-
tunately, we have to rule out the possibility of using group signatures as they
perform way worse than the other signature schemes. Moreover, group sig-
nature scheme can only be used for the centralized admission protocol as it
requires the presence of a group manager.

In summary, we are faced with a couple of challenges in order to provide
secure admission control. One challenge is to make the admission process as
distributed as possible and the other is to do so in a highly efficient manner
with the lowest possible overhead (storage as well as bandwidth). Though in
a P2P setting, a distributed approach seems like the most natural one but it
turns out to be the hardest as well. A admission control mechanism will only
be applicable in mobile ad-hoc and sensor networks if it is both distributed
and power-efficient. As of now none of the schemes seem very useful in these
scenarios.

7. Future Directions

As is evident from the experimental results and above discussion, there is
a lot of scope for improvement and promise for further work. We have seen
that there is a trade-off between the performance and the signature size among
various schemes. So, one immediate objective is to find/design an efficient
signature scheme which on one hand has a fewer rounds in the protocol and on
the other smaller signature size in the GMC . Recently proposed aggregated
signature scheme [Boneh et al., 2003] appears to be an attractive candidate
for the same. But, we claim that one particular signature scheme would not be
sufficient for our purpose of admission control. The choice of the scheme to
be used has to be made based on a number of factors like type/size of group,
bandwidth, various features desired and the group policies.

Another possible enhancement could be to have admission decision based
on a trust based model. In the usual more practical scenario, a group member
can only probabilistically vote in or vote out a prospective member. In the
presence of a trust model, voting would be more deterministic.
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This work uses a certificate based approach toward admission control. With
certificates arises the issue of revocation which could be a hard problem to
deal with in a distributed setting. In order to avoid this issue, another future
direction is to design a non-certificate based approach for admission.

Another prospect of future work is the complementary problem of member-
ship revocation. If providing secure admission is hard, solving the problem of
revocation will be even more challenging.

Notes

1. Note that P K Chreqw does not have to be an identity certificate; it could also be a group membership
certificate for another group.
2. In these experiments we did not consider the partial share shuffling for both TS-RSA and TS-DSA.
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Abstract Wireless Sensor Networks (WSNs) are formed by a set of small devices, called
nodes, with limited computing power, storage space, and wireless communica-
tion capabilities. Most of these sensor nodes are deployed within a specific area
to collect data or monitor a physical phenomenon. Data collected by each sensor
node needs to be delivered and integrated to derive the whole picture of sensing
phenomenon. To deliver data without being compromised, WSN services rely
on secure communication and efficient key distribution . In this paper, we pro-
posed two key distribution schemes for WSNs, which require less memory than
existing schemes for the storage of keys. The Adaptive Random Pre-distributed
scheme (ARP) is able to authenticate group membership and minimize the stor-
age requirement for the resource limited sensor nodes. The Uniquely Assigned
One-way Hash Function scheme (UAO) extends ARP to mutually authenticate
the identity of individual sensors. The two proposed schemes are effective for
the storage of keys in a wireless sensor network with a large number of sensors.
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1. Introduction

Wireless Sensor Network (WSN) [Akyilidiz et al., 2002, Estrin et al., 1999]
is a kind of network composed of nodes associated with sensors. Each node
has the characteristics of small size, limited power, low computation power and
wireless access. The sensor node is responsible for collecting and delivering
data over wireless network, and it is desirable to keep the delivered data con-
fidential along the wircless transmission path from one node to another. [Tilak
et al., 2002, Kong et al., 2001]

To ensure secure peer-to-peer wireless communication [Slijepcevic et al.,
2002, He et al,, 2003, Heinzelman et al., 1999, Intanagonwiwat et al., 2000,
Zhou et al., 1999, Luo et al., 2002, Hubaux et al., 2001, Basagni et al., 2001],
the shared session key between any two nodes must be derived [Asokan et
al., 2000, Yi et al., 2002, Carman et al., 2000]. Some protocols use a trusted
third party to deliver keys to every node [Yi et al., 2003], while other proto-
cols pre-distribute communication keys to all nodes]. [Chan et al., 2003] Since
WSNs are self-organized, and trusted third party may not be available, key
pre-distribution protocols are often adopted in such networks. However, key
pre-distribution protocols need to store session keys in every node. This may be
difficult to achieve in a sensor network where thousands of nodes are deployed
with limited storage space only enough to store a small number of session
keys. 1t is desirable to design a new key pre-distribution protocol, which can
reduce the storage space of session keys for a large WSN without degrading its
security.

Much research has been done on key distribution in WSN over the past
few years. Carman et al. [Carman et al., 2002] analyzed various conventional
approaches for key generation and key distribution in WSN on different hard-
ware platforms with respect to computation overhead and energy consumption
[Hodjat et al., 2002, Heinelman et al., 2000]. The results showed that conven-
tional key generation and distribution protocols are not suitable for WSN. To
cope with the problem, a key management protocol [Carman et al., 2002] is
proposed for sensor networks, which is based on group key agreement proto-
cols and identity-based cryptography . This protocol used Diffie-Hellman key
exchange scheme to perform group key agreement . However, the high storage
and high computation requirements make it difficult to use.

Perrig et al. {Perrig et al., 2001] proposed a security protocol for sensor
networks named SPINS . SPINS uses base station as a trusted third party to set
up session keys between sensor nodes. Liu and Ning [Liu et al., 2003] extended
Perrig’s scheme and proposed an efficient broadcast authentication method for
sensor networks. Their scheme uses multi-level key chains to distribute the
key chain commitments for the broadcast authentication. Undercoffer et al.
[Undercoffer et al., 2002] proposed a resource-driven security protocol , which
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consider the trade-off between security levels and computational resources.
However, in a randomly dispersed wireless sensor network, the base station is
not always available for all nodes. Without the base station, a sensor network
using SPINS may be disconnected. Therefore, these schemes are not well
suitable for sensor networks due to the need of base station. Eschenauer and
Gligor [Eschenauer et at., 2002] proposed a key management scheme based on
Random Graph Theory . [Chan et al., 2003, Erdoos et al., 1960, Spencer, 2000]
The Random Graph Theory is defined as follows. A random graph G(n,p) is a
graph with n nodes, and the probability that a link exists between any two nodes
in the graph is p. When p is equal to 0, the graph G has no edges, whereas when
p is equal to 1, the graph G is fully connected. Erdds and Rényi [Erdoos et al.,
1960] showed the monotone properties of a random graph G(n, p) that there
exists a threshold value of p, over which value the property exhibits a “phase
transition”, i.e. the probability for G to have that property will transit from
“likely false” to “likely true”. The threshold probability is defined by:

o= In{n) — l?:l(—ln(Pc)) 7.1)

where P, stands for desired probability of the property. Furthermore, the
expected degree of a node can be calculated by:

(n — Din(n) — In(—In(P.))
n

d=p*x(n—1)= (7.2)

Therefore, the scheme only needs to select d keys to keep a network con-
nected under probability p. It can then significantly reduce the key space.
However, it is discovered that the degree d is proportional to the number of
nodes n under the same connectivity probability p. That is, when more nodes
are deployed, more storage space is needed in each sensor node. Since the
storage space in each node is fixed, the maximum number of nodes that can be
deployed is also fixed in this scheme. This characteristic restricts the deploy-
ment of sensor nodes and therefore the scalability of this scheme is some-
what limited. To improve the scalability, we propose two key distribution
schemes: Adaptive Random Pre-distributed scheme (ARP) and Uniquely As-
signed One-way Hash Function scheme (UAO) . Both ARP and UAO schemes
pre-distribute keys in each sensor node before its deployment. When the num-
ber of sensor nodes increases, both key distribution schemes dynamically ad-
just itself according to remaining storage space in each sensor node without
reducing the connectivity probability p. Both schemes minimize the storage
requirement for key management under the same connectivity probability p,
and can work well even when a large number of sensor nodes are deployed.
In contrast, ARP scheme needs the smallest storage space, while UAO scheme
provides the capability of
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The rest of this paper is organized as follows: The Adaptive Random Pre-
distributed scheme and the Uniquely Assigned One-way Hash Function scheme
are presented in Sections II and 111, respectively. The evaluation of the schemes
are provided in Section I'V. Finally, Section V concludes the paper.

2. Adaptive Random Pre-distribution Scheme

ARP scheme is composed of two parts. One is the key pool, and the other is
the key selection algorithm . The key pool is used to store randomly generated
keys, and the key selection algorithm is to select a set of keys from the key
pool. Every node needs to select a set of keys from the key pool by using
key selection algorithm before its deployment. These selected keys are saved
in each node’s storage space. Any two nodes shares a common key is able
to securely communicate with each other by using this shared key. In ARP,
the key pool is a two-dimensional key pool in which keys are generated in
two phases, and are arranged in two-dimensional ordered matrix. The key is
pre-generated as follows:

2.1 Key Pool Generation Algorithm

= Step 1: Randomly generate ¢ keys, called seed keys, and any ¢ one-way
hash functions.

w Step 2: For every seed key and one-way hash function, an one-way key
chain is generated.

It uses K¢ as initial input, and computes the generated key with an one-
way hash function F; . The generated key is fed back into F; to generate a
third key. The procedure K; ;11 = F(Kj;) is repeated until the entire key
chain is generated.

Consequently, the key chain K Cy of length s, is composed of a series of
keys, K;0, Ks1, ..., Kis—1 . Witht seed keys and ¢ one-way hash functions,
t key chains generated, namely KCy, KCi,..., KCy_1 .

Figure 7.1 demonstrates the difference between the conventional random
key pool and the Two-Dimension Key Pool. As shown in Figure 7.1(a), the
original random key pool can be regarded as a set of keys disorderly spread
into a large pool. In Figure 7.1(b), keys of the Two-Dimension Key Pool are
arranged in an s by t matrix.

2.2 Key Selection Algorithm

After key generation, a key pool of size st is generated. Each sensor needs
to randomly choose keys from the key pool by using key selection algorithm
described here. The number of keys can affect the connectivity of the entire
sensor network and the storage requirement of each sensor node. Fewer keys
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Figure 7.1.  Unordered key pool and the Two-Dimension key pool with ¢ = 10, s = 10.

can save storage but lower the probability for a sensor network to be connected.
More keys can guarantee higher connectivity probability but at the same time
increase the storage requirement. We’ll discuss the the relationship of keys,
connectivity probability and storage requirement later in the paper.

The key selection algorithm is used to select a set of communication keys
by all nodes before its deployment. The detail of the key selection algorithm
for ARP scheme is described as follows.

w Stepl: Let r be the number of keys each node needed to achieve con-
nectivity among n sensor node with probability p. » can be chosen
as d in eq.2. Each sensor node randomly picks up an one-way key
chain KC; = (KCi0,KC;1,...,KC;s_1) from the two-Dimension
key pool, and use the keys in the key chain.

»  Step2: Each sensor node randomly selects the remaining ' = r — s keys
from different key chains.

w Step3: Each sensor node has chosen one key chain KC; and r’ single
keys. For each sensor node, it will only need to memorize those 7’ keys
and the one-way hash function F; and seed key K} ¢ of the key chain
KC;.

Figure 7.2 shows an example of key selection, where £ = 10, s = 10, and
r’ = 5. The randomly selected one-way key chain is K Cs, and the rest ri’
randomly picked keys are KCy g, KCs 5, KCg 3, KCg 7, and KCy 4.
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Figure 7.2. A key selection example

3. Uniquely Assigned One-Way Hash Function Scheme

In ARP, any two nodes shared a can directly communicate with each other in
a secure way. However, a key in ARP may be shared by more than two nodes,
and therefore a node may not be able to authenticate with the shared key the
identity of an individual. To cope with the problem, UAQO extends ARP to
authenticate individual sensor node identities. The detail of UAQ is describes
as follows.

Each sensor node SNV; is assigned a unique identity I D; and a uniquely as-
signed one-way hash function F; before its deployment. In contrast to ARP key
selection algorithm, UAO scheme does not select a key. Instead, it uses I.D;
and F; to decide a key, where ID; can be the node’s MAC address or identi-
fier; and F; is an one-way hash function. The UAO key decision algorithm is
as follows:

3.1 Key Decision Algorithm:

m Stepl: Assume the required number of keys to achieve the Random
Graph Theory is . For each sensor node SN; in the network, SN; will
randomly select  sensor nodes, excluding itself, in the network, denoted
as SNvl, Ssz, cees SNU.,«.

= Step 2: For each sensor node SN,;, where j ranges from 1 to r, SNy;
uses its unique one-way hash function F; to generate a unique K; for
SN;. The Kj is generated by the following equation:

Kj = F;(I1D;)

SN; will memorize all pairs of K; and 1.D; in its key ring.
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3.2 Mutual Authentication

After applying key decision algorithm , every node is deployed in a WSN.
For communication between two nodes, SNN; and SN;, SNV; shares unique
session key K; with SN;, and SN; shares unique session key K; with SNV;.
Mutual authentication is achieved because SV; is the only node that owns
the unique one-way hash function F;. If SNi can correctly calculate K; and
decrypt the cipher, then SN; can authenticate the identity of SN;. Due to K
is derived from F; and I.D;, if SN; really owns the key K then it will make
the correct response. Therefore the SN; will be able to authenticate SN; with
ID;.

4. Evaluation

To evaluate ARP scheme and UAO scheme, both schemes are analyzed in
terms of connectivity and storage space.

4.1 Evaluation of ARP Scheme

To evaluate ARP scheme, the connectivity probability is analyzed because it
was observed in the preceding section that ARP is proposed based on Random
Graph Theory. If the connectivity probability of different schemes is the same,
the scheme requires smaller storage space to store keys.

To evaluate the required probability of connectivity, the network size n and
the expected probability Pc of forming a connected graph must be determined.
By given n and F., we can calculate the threshold probability p and the ex-
pected degree d by Equation 7.1 and 7.2. Moreover, since a sensor node can-
not communicate with all other nodes in the network, only a limited number
of neighbor nodes n’ can be contacted. Therefore, the probability of sharing a
common key between any two nodes in a neighborhood is:

, d

p = (7.3)

nl

Also, the required key ring size s and the key pool size K to achieve the
probability of neighborhood connectivity can be determined.

We denote the probability of any two nodes in the neighborhood sharing at
least one common key in Two-Dimension Key Pool Selecting scheme as p’. It
is proved that p’ is related to the number of key chains ¢, key chain length s,
and the number of selected keys r’. The p’ can be calculated by one minus the
probability that any two nodes in the neighborhood do not sharing any key. To
calculate the probability that any two nodes A and B do not sharing any key,
the calculation can be categorized into four parts:

1 A’s one-way key chain does not match with B’s one-way key chain.
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2 A’s one-way key chain does not match with any B’s selected keys.
3 A’s selected keys do not match with B’s one-way key chain.
4 A’s selected keys do not match with any B’s selected keys.

Since B selects one hash function and 7’ selected keys in different key
chains, A’s one-way key chain must belong to the rest of the t — (v’ + 1) key
chains. Therefore, the probability of matching both the first and the second
conditions are t—_w

For the third condition, we randomly choose 7’ key chains from the key
pool. A’s v’ selected keys must not belong to A’s key chain. As to match the

third condition, it must not also belong to B’s key chain. Thus the probability

can be calculated as
t—2
r’ t—r'—1

(t-1)" t—1
7",

For the fourth condition, it is assumed that A and B have exactly ¢ selected
keys belonging to the same ¢ key chains and the probability that A and B have
exactly ¢ selected keys belonging to the same ¢ key chains as p(i). There are

/
< 7; ) ways to pick 4 common key chains from B’s selected key ring, and

there are only (¢ — 2 — /) key chains to pick up the remaining A’s (r' — 1)
selected keys. This is because we have to eliminate A’s and B’s key chains
and the other 7’ key chains that B’s 7’ selected keys belong to. Thus there are

- ey
< ¢ r’2— Z.T > ways to pick up the remaining (r’ — i) key chains. The total

number of ways for A to choose ' key chains is < t ;, 2 ) . Therefore we get

(o))
(%)

Moreover, considering that A and B have exactly 4 selected keys belonging

to the same key chains, the probability that A’s selected keys do not match with
any B’s selected keys becomes:

the following equation:

p(i) =

p(E)(A - <)

§
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Hence, to calculate the probability of matching the fourth condition, we
have to consider all possible value of 4, where ¢ = 0,1,2,...,7r". Thus the
probability for the fourth condition is:

S P~
3=0

By Summarizing the above four conditions, we can calculate the probability
p’ by the following equation:

p'zl—(t‘(rt'“))(t“t’jl”) _rzlpu)(l—%)t

Figure 7.3 shows the probability of connectivity with different configura-
tions of number of key chains ¢ and the key chain length s.
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Figure 7.3, Comparison of different configured Two-Dimension Key Pool Selecting Schemes
and Eschenauer’s scheme (key pool size is 100,000)
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As Figure 3 shows, under the same connectivity probability, the ARP scheme
requires fewer keys than Eschenauer’s scheme . In other words, the ARP
scheme demands for less storage space than the Eschenauer’s scheme does.
Moreover, with different h and y value, the ARP scheme needs different stor-
age space. This can be left as an option for deployment consideration.

4.2 Evaluation of UAO

In this section, evaluation of the probability of connectivity and the maxi-
mum supported network size are analyzed. The maximum supported network
size stands for maximum sensor node capacity that can achieve mutual authen-
tication under the same memory storage space attached in every sensor node.
In addition, we also make a comparison with the random-pairwise scheme in
terms of maximum supported network size and the probability of connectivity.

= Probability of Connectivity:

In UAO scheme, the probability of any two nodes in the neighborhood
sharing a common key can be evaluated by one minus the probability of
that either nodes does not have any key derived from the other’s unique
one-way function. The probability for any node to get a key derived
from a particular node’s one-way function is -*5 . Because each node
gets r keys in the key ring, those keys are derived from other nodes in the
network. The probability of any two nodes in the neighborhood sharing

a common key will be

T

P=1-(1-—) (7.4)

n—1
= Maximum Supported Network Size:

By combining Equation 7.3 and 7.4, the following the equation can be
derived.

n—1
Furthermore, by using Equation 7.2, the above equation becomes:

(n— D(n(n) — In(=In(F))) _ 1—a- r
n—1

)2

n*n!

The equation can be simplified to:

2 (n = D(In(n) — In(-In(F)))

n*n

r?—2(n—r+(n—1) =0
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By calculating the root of the above quadratic equation, we can get:

RPN \/1 _ D00 ), g

nxn

It can be more simplified as:

r:Ur—Dﬂ—Ml—%)

In comparison with the Random-Pairwise scheme , we assume the net-
work size is n, expected degree of graph connectivity is d, the number of
neighbor nodes is n/, and the key ring size is . According to the defini-
tion of pairwise scheme, there are only r nodes having common shared
keys with each sensor node and it still has to achieve the expected degree
in the neighborhood. Then we can find the following equation:

I
d
d=""1 o 2220 (1.6)
n n

To analyze the relationship between memory space and network size,
first we combine Equation 7.2 and Equation 7.6 to obtain the following
equation:

(";, Y (1n(n) — In(—In(B.)) a7

r =

According to the Equation 7.7, it is clear that the complexity of memory
space requirement for the Random-Pairwise scheme is O(nin(n)) . In
addition, according to the Equation 7.5, it is found that the complexity
of memory space requirement for the UAO scheme is O(n+/In(n)).

Figure 4 shows the comparisons of UAO scheme and Random-Pairwise
keys distribution scheme in memory space requirement and the maxi-
mum supported network size. As Figure 4 shows, UAO scheme achieves
better performance in maximizing network size under the same memory
requirement. Therefore, with the same sensor node hardware equipment,
UAO can adapt more sensor nodes in a network while providing better
security than Random-Pairwise key distribution scheme.
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Figure 7.4. Comparison of Random-pairwise keys scheme and UAO scheme in memory re-
quirement and maximum supported network size.

5. Conclusion

Key distribution is a critical and fundamental issue for the security service
in wireless sensor networks. The pre-distributed and symmetric cryptography
based key management system is well suitable for the resource limited sensor
network. Two efficient schemes are proposed which are based on the Ran-
dom Graph Theory to provide key distribution for the secure sensor network
services.

Adaptive Random Pre-distributed scheme needs less memory space than ex-
isting schemes. ARP can be used in the WSN with a large number of nodes
where each node contains limited storage space. On the other hand, Uniquely
Assigned One-Way Hash Function scheme possesses the characteristics of mu-
tual authentication . The tradeoff between these two schemes depends on secu-
rity requirement, network size and available memory space. If mutual authen-
tication of individuals is desirable, Uniquely Assigned One-Way Hash Func-
tion scheme should be used. Otherwise, the Adaptive Random Pre-distributed
scheme should be used because it needs smaller storage space.
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Abstract

Keywords:

We propose a metric for determining whether one version of a system is more
sccurc than another with respect to a fixed set of dimensions. Rather than count
bugs at the code level or count vulnerability reports at the system level, we count
a system’s attack opportunities. We use this count as an indication of the sys-
tem’s “attackability ,” likelihood that it will be successfully attacked. We de-
scribe a system’s attack surface along three abstract dimensions: targets and
enablers, channels and protocols, and access rights. Intuitively, the more ex-
posed the system’s surface, the more attack opportunities, and hence the more
likely it will be a target of attack. Thus, one way to improve system security is
to reduce its attack surface.

To validate our ideas, we recast Microsoft Security Bulletin MS02-005 using
our terminology, and we show how Howard’s Relative Attack Surface Quotient
for Windows is an instance of our general metric.

Security metrics, attacks, vulnerabilities, attack surface, threat modeling.
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1. Introduction

Given that security is not an either-or property, how can we determine that a
new release of a system is “more secure” than an earlier version? What metrics
should we use and what things should we count? Our work argues that rather
than attempt to measure the security of a system in absolute terms with respect
to a yardstick, a more useful approach is to measure its “relative” security.
We use “relative” in the following sense: Given System A, we compare its
security relative to System B, and we do this comparison with respect to a
given number of yardsticks, which we call dimensions. So rather than say
“System A is secure” or “System A has a measured security number N” we
say “System A is more secure than System B with respect to a fixed set of
dimensions.”

In what follows, we assume that System A and System B have the same
operating environment. That is, the set of assumptions about the environment
in which System A and System B is deployed is the same; in particular, the
threat models for System A and System B are the same. Thus, it helps to think
of System A and System B as different versions of the same system.

1.1 Motivation

Our work is motivated by the practical problem faced in industry today. In-
dustry has responded to demands for improvement in software and systems
security by increasing effort’ into creating “more secure” products and ser-
vices. How can industry determine if this effort is paying off and how can we
as consumers determine if industry’s effort has made a difference?

Our approach to measuring relative security between systems is inspired by
Howard’s informal notion of relative attack surface [Howard, 2003]. Howard
identified 17 “attack vectors,” i.e., likely opportunities of attack. Examples
of his attack vectors are open sockets, weak ACLs, dynamic web pages, and
enabled guest accounts. Based on these 17 attack vectors, he computes a “mea-
sure” of the attack surface, which he calls the Relative Attack Surface Quotient
(RASQ), for seven running versions of Windows.

We added three attack vectors to Howard’s original 17 and show the RASQ
calcuation for five versions of Windows in Figure 8.1. The bar chart suggests
that a default running version of Windows Server 2003 is much more secure
than previous versions with respect to the 20 attack vectors. It also illustrates
that the attack surface of Windows Server 2003 increases only marginally when
IIS is enabled—in sharp contrast to Windows NT 4.0, where enabling IIS (by
installing the “Option Pack”) dramatically increased the RASQ, and to Win-
dows 2000, where IIS is enabled by default?. As will be discussed in Section
6.3, these differences in RASQ are consistent with anecdotal evidence for the
relative security of different Windows platforms and configurations.
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Figure 8.1. Relative Attack Surface Quotient of Different Versions of Windows [Howard,
2003]

1.2 A New Metric: Attackability

Two measurements are often used to determine the security of a system: at
the code level, a count of the number of bugs found (or fixed from one version
to the next); and at the system level, a count of the number of times a system
(or any of its versions) is mentioned in the set of Common Vulnerabilities and
Exposures (CVE) bulletins [CVE], CERT advisories [CERT], etc.

Rather than measure code-level or system-level vulnerability, we consider a
different measure, somewhat in between, which we call attack opportunity, or
“attackability” for short. Counting the number of bugs found (or fixed) misses
bugs that are not found (or fixed), perhaps the very one that is exploited; it
treats all bugs alike when one might be easier to exploit than another, or the
exploit of one may result in more damage than the exploit of another. Instead,
we want a measure—at a higher abstraction level—that gives more weight to
bugs that are more likely to be exploited. Counting the number of times a
system version appears in bulletins and advisories ignores the specifics of the
system configuration that give rise to the exploit: whether a security patch has
been installed, whether defaults are turned off, whether it always runs in sys-
tem administrator mode. Instead, we want a measure—at a lower abstraction
level—that allows us to refer to very specific states (i.e., configurations) of a
system. Given this intermediate viewpoint, we propose that there are certain
system features that are more likely than others to be opportunities of attack.
The counts of these “more likely to be attacked” system features determine a
system’s attackability.
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Further, we will categorize these attack opportunities into different abstract
dimensions, which together define a system’s attack surface. Intuitively, the
more exposed the system’s surface, the more attack opportunities, and hence
the more likely it will be a target of attack. Thus, one way to improve system
security is to reduce its attack surface.

Suppose now we are given a fixed set of dimensions and a fixed set of attack
opportunities (i.e., system features) for each dimension. Then with respect to
this fixed set of dimensions of attack opportunities, we can measure whether
System A is “more secure” than System B.

In our work, we use state machines to model Systems A and B. Our abstract
model allows Systems A and B to be any two state machines, each of which
interacts with the same state machine model of its environment, i.e., threat
model. In practice, it is more useful and more meaningful to compare two sys-
tems that have some close relationship, e.g., they provide similar functionality,
perhaps through similar APIs, rather than two arbitrary systems. The abstract
dimensions along which we compare two systems are derived directly from
our state machine model: process and data resources and the actions that we
can execute on these resources. For a given attack, which we define to be a se-
quence of action executions, we distinguish targets from enablers: targets are
processes or data resources that an adversary aims to control, and enablers are
all other processes and data resources that are used by the adversary to carry
out the attack successfully. The adversary obtains control over these resources
through communication channels and protocols. Control is subject to the con-
straints imposed by a system’s set of access rights. In summary, our attack
surface’s three dimensions are: targets and enablers, channels and protocols,
and access rights. Attackability is a measure of how exposed a system’s attack
surface is.

1.3 Contributions and Roadmap

We use a state machine formal framework to support three main contribu-
tions of this paper:

= The notion of a system’s attack surface.

s A new relative measure of security, attackability.

= A model for vulnerabilities as differences between intended and actual
behavior, in terms of pre-conditions and post-conditions (Section 2.2).

Our “relative” approach has the advantage that security analysts are more
willing and able to give relative rankings of threats and relative values to risk-
mitigation controls, than absolute numbers [Butler, 2003]. We also avoid the
need to assign probabilities to attacks.
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We view our work as only a first step toward coming up with a meaningful,
yet practical way of measuring (relative) security. By no means do we claim to
have identified “the right” or “all” the dimensions of an attack surface. Indeed,
our use of the word “dimensions” is only meant to be suggestive of a surface;
our dimensions are not orthogonal. We hope with this paper to spark a fruitful
line of new research in security metrics.

In Section 2 we present our formal framework and then in Section 3 we
explain our abstract dimensions of a system’s attack surface. To illustrate these
ideas concretely, in Section 4 we recast Microsoft Security Bulletin MS02-
005 in terms of our concepts of targets and enablers. In Section 5 we give an
abstract attack surface measurement function. Again, to be concrete, in Section
6 we revisit Howard’s RASQ metric in terms of our abstract dimensions. In
Section 7 we discuss how best to apply and not to apply the RASQ approach.
We close with a review of related work in Section 8 and suggestions for future
work in Section 9.

2. Terminology and Model

Our formal model is guided by the following three terms from Trust in Cy-
berspace [Schneider, 1991]:

» A vulnerability is an error or weakness in design, implementation, or
operation.

» An attack is the means of exploiting a vulnerability.

s A threat is an adversary motivated and capable of exploiting a vulnera-

bility.

We model both the system and the threat as state machines, which we will
call System and Threat, respectively. A state machine has a set of states, a set
of initial states, a set of actions, and a state transition relation. We model an
attack as a sequence of executions of actions that ends in a state that satisfies
the adversary’s goal, and in which one or more of the actions executed in an
attack involves a vulnerability.

2.1 State Machines

A state machine, M = (S, I, A, T), is a four-tuple where S is a set of states,
I C S is a set of initial states, A is a set of actions, and T = S x A x Sisa
transition relation. A state s € .S is a mapping from typed resources to their
typed values:

s: Respyr — Valpy

Of interest to us are state resources that are processes and data. A state tran-
sition, (s, a,s'), is the execution of action a in state s resulting in state s’. A



114 COMPUTER SECURITY IN THE 21 CENTURY

change in state means that either a new resource is added to the mapping, a
resource was deleted, or a resource changes in value. We assume each state
transition is atomic.

An execution of a state machine is the alternating sequence of states and
action executions:

Spal §1a2 82 ... 8i—-14;8; ...

where s9 € I and Vi > 0.(s;—1, a4, 8;) € T. An execution can be finite or
infinite. If finite, it ends in a state.

The behavior of a state machine, M, is the set of all its executions. We
denote this set Beh(M). A state s is reachable if either s € I or there is an
execution, e € Beh(M ), such that s appears in e.

We will assume that actions are specificd by pre- and post-conditions. For
an action, a € A, if a.pre and a.post denote a’s pre- and post-condition specifi-
cations, we can then define the subset of the transition relation, 7", that involves
only action ¢ as follows:

aT ={(s,a,s) : S x Ax S| apre(s) = apost(s,s)}

‘We model both the system under attack and the threat (adversary) as state
machines:

System = (Sg,Is, Ag, Ts)
Threat = (St, I, A7, Tr)

We partition the resources of a state machine, M, into a set of local resources
and a set of global resources, Resps = Resﬁ}l O] Reslc\’;[. We define the com-
bination of the two state machines, ST = System X Threat, by merging all the
corresponding components®:

- SST - 2Resgy~—> Valst

n Jgr=1IgUlr

» Agr = AsUAr

s Tgp=TgUTr
We identify the global resources of .S and the global resources of 7" such that
Reng = Resg = Res? and so Resgr = Res§ (] Resan ) Reng. Finally,
Valsr = Valg U Valr. We extend the definitions of executions, behaviors,

etc. in the standard way.
An adversary targets a system under attack to accomplish a goal:

System-Under-Attack = (System X Threat) x Goal
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where Goal is formulated as a predicate over states in Sg. Note that we make
explicit the goal of the adversary in our model of a system under attack. Exam-
ple goals might be “Obtain root access on host H” or “Deface website on server
S.” In other contexts, such as fault-tolerant computing, Threat is synonymous
with the system’s “environment.” Thus, we use Threat to model environmental
failures, due to benign or malicious actions, that affect a system’s state.

Intuitively, the way to reduce the attack surface is to ensure that the behavior
of System prohibits Threat from achieving its Goal.

2.2 Vulnerabilities

Vulnerabilities can be found at different levels of a system: implementation,
design, operational, etc. They all share the common intuition that something in
the actual behavior of the system deviates from the intended behavior. We can
capture this intuition more formally by comparing the difference between the
behaviors of two state machines. Suppose there is a state machine that models
the intended behavior, and one that models the actual behavior:

Intend = (Stnt, Iint, Arnt, Tine)
Actual = (Sact, Tacts Aacts Tact)

We define the vulnerability difference set, Vul, to be the difference in behaviors
of the two machines:

Vul = Beh(Actual) — Beh(Intend)

An execution sequence in Vul arises from one or more differences between
some compornent of the state machine Actual and the corresponding compo-
nent of Intend, i.e., differences between the corresponding sets of (1) states (or
more relevantly, reachable states), (2) initial states, (3) actions, or (4) transition
relations. We refer to any one of these kinds of differences as a vulnerability.
Let’s consider each of these cases:

1. SAct — St % @

If there is a difference in state sets then there are some states that are defined
for Actual that are not intended to be defined for Intend. The difference may
be due to (1) a resource that is in a state in 4ctual, but not in Intend or (2)
a value allowed for resource in Actual that is not allowed for that resource in
Intend. (A resource that is not in a state in Actual, but is in Intend is ok.)
The difference may not be too serious if the states in the difference are not
reachable by some transition in 4. If they are reachable, then the difference
in transition relations will pick up on this vulnerability. However, even if they
are not reachable, it means that if any of the specifications for actions changes
in the future, we must be careful to make sure that the set of reachable states
in Actual is a subset of that of Intend.
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2. Tact — I 7é )

If there is a difference in initial state sets then there is at least one state in
which we can start an execution when we ought not to. This situation can arise
if resources are not initialized when they should be, they are given incorrect
initial values, or when there are resources in an initial actual state but not in
any initial intended state.

3. AAct - Alnt % %)

If there is a difference in action sets then there are some actions that can
be actually done that are not intended. These actions will surely lead to un-
expected behavior. The difference will show up in the differences in the state
transition relations (see below).

4 Tact — Tint # @

If there is a difference in state transition sets then there is at least one state
transition allowed in Actual that should not be allowed according to Intend.
This situation can arise because either (i) the action sets are different or (ii) the
pre-/post-conditions for an action common to both action sets are different.

More precisely, for case (ii) where Aa.s = Appg, consider a given action
a € Arps. If a.Tae — a. Ty is non-empty then there are some states either in
which we can execute a in Actual and not in Intend or which we can reach as
a result of executing a in Actual and not in Intend. Let ac.pre and app,s.pre
be the pre-conditions for a in Actual and Intend, respectively, and similarly for
their post-conditions. In terms of pre- and post-conditions, no difference can
arise if

® Qpq.PTE = Qrpe.pre and

® 0 Ac-POST = Qpnt.POSE.

Intuitively, if the “actual” behavior is stronger than the “intended” then we are
safe.

Given that Actual models the actual behavior of the system, then our system
combined with the Threat machine looks like:

System-Under-Attack = (Actual X Threat) X Goal
as opposed to

System-Under-Attack = (Intend X Threat) x Goal
again with the expectation that were Infend implemented correctly, Goal would
not be achievable.

In this paper we focus our attention at implementation-level vulnerabilities,
in particular, differences that can be blamed on an action’s pre-condition or
post-condition that is too weak or incorrect. A typical example is in handling
a buffer overrun . Here is the intended behavior, for a given input string, s:

length(s) < 512 = “process normally” A length(s) > 512 = “report error and ter-
minate”
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If the programmer forgot to check the length of the input, the actual behavior
might instead be
length(s) < 512 = “process normally” A length(s) > 512 = “execute extracted
payload”
Here “execute extracted payload” presumably has an observable unintended
side effect that differs from just reporting an error.

2.3 Attacks

An attack is the “means of exploiting a vulnerability” [Schneider, 1991]. We
model an attack to be a sequence of action executions, at least one of which
involves a vulnerability. More precisely, an attack, k, either starts in an unin-
tended initial state or reaches an unintended state through one of the actions
executed in k. In general, an attack will include the execution of actions from
both state machines, System and Threat.

The difference between an arbitrary sequence of action executions and an
attack is that an attack includes either (or both) (1) the execution of an action
whose behavior deviates from the intended (see previous section) or (2) the
execution of an action, @ € Age — Arnt(# @). In this second case, the
set of unintended behaviors will include behaviors not in the set of intended
behaviors since A .t # Arnt.

For a given attack, k, the means of an attack is the set of all actions in &k and
the set of all process and data resources accessed in performing each action
in k. These resources include all global and local resources accessed by each
action in k and all parameters passed in as arguments or returned as a result to
each action executed in k.

3. Dimensions of an Attack Surface

We consider three broad dimensions to our attack surface:

n  Targets and enablers. To achieve his goal, the adversary has in mind
one or more targets on the system to attack. An attack target, or simply
target, is a distinguished process or data resource on System that plays
a critical role in the adversary’s achieving his goal. We use the term
enabler for any accessed process or data resource that is used as part of
the means of the attack but is not singled out to be a target.

n  Channels and protocols. Communication channels are the means by
which the adversary gains access to the targets on System. We allow both
message-passing and shared-memory channels. Protocols determine the
rules of interaction among the parties communicating on a channel.

m Access rights. These rights are associated with each process and data
resource of a state machine.
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Intuitively, the more targets, the larger the attack surface . The more chan-
nels, the larger the attack surface. The more generous the access rights, the
larger the attack surface.

We now look at each of these dimensions in turn.

3.1 Targets and Enablers

Targets and enablers are resources that an attacker can use or coopt. There
are two kinds: processes and data. Since it is a matter of the adversary’s goal
that determines whether a resource is a target or enabler, for the remainder of
this section we use the term targets to stand for both. In particular, a target in
one attack might simply be an enabler for a different attack, and vice versa.

Examples of process targets are browsers, mailers, and database servers.
Examples of data targets are files, directories, registries, and access rights.

The adversary wants to control the target: modify it, gain access to it, or
destroy it. Control means more than ownership; more generally, the adversary
can use it, e.g., to trigger the next step in the attack. Consider a typical worm
or virus attack, which follows this general pattern:

Step 1: Ship an executable—treated as a piece of data—within a carrier to a
target machine.

Step 2: Use an enabler, e.g., a browser, to extract the payload (the executable)
from the carrier.

Step 3: Get an interpreter to execute the executable to cause a state change on
the target machine.

where the attacker’s goal, achieved after the third step, may be to modify state
on the target machine, to use up its resources, or to set it up for further attacks.

The prevalence of this type of attack leads us to name two special types of
data resources. First, executables is a distinguished type of data resource in that
they can be interpreted (i.e., evaluated). We associate with executables one or
more eval functions, eval: executable — unit.* Different eval functions might
interpret the same executable with differing effects. Executables can be targets
and controlling such a target includes the ability to call an eval function on it.
The adversary would do so, for example, for the side effect of establishing the
pre-condition of the next step in the attack.

Obvious example types of eval functions include browsers, mailers, appli-
cations, and services (e.g., Web servers, databases, scripting engines). Less
obvious examples include application extensions (e.g., Web handlers, add-on
dil’s, ActiveX controls, ISAPI filters , device drivers), which run in the same
process as the application; and helper applications (e.g., CGI scripts), which
run in a separate process from the application.
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Carriers are our second distinguished type of data resource. Executables are
embedded in carriers. Specifically, carriers have a function extract_payload:
carrier — executable. Examples of carriers include viruses, worms, Trojan
horses, and email messages.

Part of calculating the attack surface is determining the types and numbers
of instances of potential process targets and data targets, the types and num-
bers of instances of eval functions for executables that could have potentially
damaging side effects; and the types and numbers of instances of carriers for
any executable.

3.2 Channels and Protocols

A channel is a means of communicating information from a sender to a
receiver (e.g., from an attacker to a target machine). We consider two kinds
of channels: message-passing (e.g., sockets, RPC connections , and named
pipes) and shared-memory (e.g., files, directories, and registries). Channel
“endpoints” are processes.

Associated with each kind of channel is a protocol, the rules of exchang-
ing information. For message-passing channels, example protocols include
ftp, RPC, http, and streaming. For shared-memory, examples include proto-
cols that might govern the order of operations (e.g., a file has to be open be-
fore read), constrain simultaneous access (e.g., multiple-reader/single-writer
or single-readet/single-writer), or prescribe locking rules (e.g., acquire locks
according to a given partial order).

Channels are data resources. A channel shared between System and Threat
machines is an element of Res§. in the combination of the two machines.
In practice, in an attack sequence, the Threat machine might establish a new
message-passing channel, e.g., after scanning host machines to find out what
services are running on port 80.

Part of calculating the attack surface is determining the types of channels,
the numbers of instances of each channel type, the types of protocols allowed
per channel type, the numbers and types of processes at the channel endpoints,
the access rights (see below) associated with the channels and their endpoints,
etc.

33 Access rights

We associate access rights with all resources. For example, for data that are
text files, we might associate read and write rights; for executables, we might
associate execute rights. Note that we associate rights not only with files and
directories, but also with channels (since they are data resources) and channel
endpoints (since they are running processes).
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Conceptually we model these rights as a relation, suggestive of Lampson’s
orginal access control matrix [Jampson, 1974]:

Access C Principals X Res X Rights

where Principals = Users U Processes, Res = Processes U Data, and Rights
is left uninterpreted. (Res is the same set of resources introduced in Section
2.) For example, in Unix, Rights = {read, write, execute}, in the Andrew
file system, Rights = {read, lookup, insert, delete, write, lock, administer},
and in Windows there are eighteen different rights associated with files and
directories alone; and of course not all rights are appropriate for all principals
or resources. More generally, to represent conditional access rights, we can
extend the above relation with a fourth dimension, Access C Principals X Res
x Rights x Conditions, where Conditions is a set of state predicates.

There are shorthands for some “interesting” subsets of the Access relation,
e.g., accounts, trust relationships, and privilege levels, that we usually imple-
ment in practice, in lieu of representing the Access relation as a matrix.

»  Accounts represent principals, i.e., users and processes. Thus, we view
an account as shorthand for a particular principal with a particular set of
access rights. Accounts can be data or process targets.

There are some special accounts that have default access rights. Exam-
ples are well-known accounts such as guest accounts, and accounts with
“admin” privileges. These typically have names that are easy to guess.

Part of calculating the attack surface is determining the number of ac-
counts, the number of accounts with admin privileges, and the existence
and number of guest accounts, etc. Also, part of calculating the attack
surface is determining for each account if the tightest access rights pos-
sible are associated with it.

» A trust relationship is just a shorthand for an expanded access rights ma-
trix. For example, we might define a specific trust relation, Tr C Princi-
pals x Principals, where network hosts might be a subset of Principals.
Then we might define the access rights for principal p; to be the same
as or a subset of those for principal po if Tr(p1, p2). We could do some-
thing similar to represent the “speaks for” relation of Lampson, Abadi,
Burrows, and Wobber [Lampson et al., 1992]. In both cases, by mod-
eling access rights as a (flat) ternary relation, however, we lose some
information: the structural relationship between the two principals (A
trusts B or A speaks for B). We choose, however, to stick to the simpler
access rights matrix model because of its prevalence in use.

s Privilege levels map a principal to a level in a total or partial order, e.g.,
none < user < root. Associated with a given level is a set of access
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rights. Suppose we have a function, priv_level: Principals — {none,
user, root}, then the rights of principal p would be those associated with

priv_evel(p).

Reducing the attack surface with respect to access rights is a special case of
abiding by the Principle of Least Privilege: Grant only the relevant rights to
each of the principals who are allowed access to a given resource.

4. Security Bulletins

To validate our general attack surface model, we described a dozen Mi-
crosoft Security bulletins [MSRC] using our terminology [Pincus and Wing,
2003]. The one example we present here illustrates how two different attacks
can exploit the same vulnerability via different channels.

The Microsoft Security Bulletin MS02-0035, posted February 11, 2002, re-
ports six vulnerabilities and a cumulative patch to fix all of them. We explain
just the first (see Figures 8.2 and 8.3). The problem is that the processing of an
HTML document (a web page sent.back from a server or HTML email) that
embeds another object involves a buffer overrun . Exploiting this buffer over-
run vulnerability lets the adversary run arbitrary code in the security context of
the user.

We now walk through the template which we use for describing these bul-
letins.

First we specify the vulnerability as the difference in actual from intended
behavior for an action. Here the action is the processing by MSHTML (the
HTML renderer on Microsoft Windows 2000 and Windows XP) of an HTML
document D in a security zone Z. The intended pre-condition is “true,” i.e.,
this action should be allowed in all possible states. However, due to a missing
validation check of the action’s input, the actual pre-condition is that the length
of the object, X, embedded in D, should be less than or equal to 512 bytes.

The intended post-condition is to display the embedded object as long as
the ability to run ActiveX Controls is enabled for zone Z. The actual post-
condition, due to the non-trivial pre-condition, is that if the length of X is
longer than 512 bytes, then the executable E extracted from X is evaluated for
its effects. By referring to the pre- and post-conditions of E, i.e., E.pre and
E.post, we capture E’s effects as if it were evaluated; this makes sense only for
a resource that is an executable, and thus has an eval function defined for it.
Note that most executables, when evaluated, will simply crash the MSHTML
process.

After describing the vulnerability, we give a series of sample attacks, each
of which shows how the vulnerability can be exploited by the adversary. Be-
fore giving some sample attacks for MS02-005a, we explain the parts in our
template that we use to describe each attack.
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Action Vulnerability: MSHTML processes HTML document D in zone Z.

Intended precondition: true
Actual precondition: D contains <EMBED SRC=X> = length(X) < 512
Intended postcondition: (one of many clauses)
D contains <EMBED SRC=X> A “Run ActiveX Controls ” is enabled for Z = display(X)
Actual postcondition: (one of many clauses)
D contains <EMBED SRC=X> A “Run ActiveX Controls” is enabled for Z =
[ (length(X) > 512 A extract.payload(X) = E) = (E.pre = E.post )
Alength(X) < 512 = display(X) ]

Attack 1: Web server executes arbitrary code on client.
Goal: Enable execution of arbitrary code on client.

Resource Table

' Resource ” Carrier [ Channel | Target/Enabler |
HTTPD web server (process) E
server-client web connection C (data) MP E
browser B (process) E
HTML document DD (data) Y E
MSHTML (process) T

Preconditions

m Victim requests a web page from adversary’s site S.
® Victim’s machine maps site S to zone Z.
w  Victim’s machine has “Run ActiveX Controls” security option enabled for zone Z.
®  Adversary creates HTML document D containing an embed tag <EMBED X>, where
length(X) > 512 and extract_payload(X) = E.
Attack Sequence
1 Web server sends document D to browser B over connection C.
2 B passes D to MSHTML in zone Z.
3 MSHTML processes D in zone Z.
Postconditions

= Arbitrary, depending on the payload.

Figure 8.2.  Microsoft Security Bulletin MS02-005a: Cumulative Patch for Internet Explorer
48]
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Attack 2: Mail-based attack (HTML email) executing arbitrary code on client.
Goal: Enable execution of arbitrary code on client.

Resource Table

| Resource ” Carrier ] Channel | Target/Enabler I
HTTPD web server (process) E
server-client mail connection C (data) MP E
Outlook Express OF (process) E
HTML mail message M (data) E
HTML document D (data) Y E
MSHTML (process) T

Preconditions

B Victim able to receive mail from attacker.
m Victim’s HTML email is received in zone Z.
m Victim’s machine has “Run ActiveX Controls ” security option enabled for zone Z.

= Adversary creates HTML document D containing an embed tag <EMBED X>, where
length(X) > 512 and extract_payload(X) = E.

m  Adversary creates mail message M with D included, where Z 5# Restricted Zone.
Attack Sequence
1 Adversary sends HTML message M to victim via email.
2 Victim views (or previews) M in OE.
3 OE passes D to MSHTML in zone Z .
4 MSHTML processes D in zone Z.
Postconditions

®  Arbitrary, depending on the payload.

Figure 8.3, Microsoft Security Bulletin MS02-005a: Cumulative Patch for Internet Explorer
(an
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s The goal of the attack.

= A resource table showing for each resource (data or process) involved in
the attack whether it serves as a carrier (“Y” means “yes; a blank, “no”
a channel (if so, “MP” means message-passing ; “SM” means shared-
memory; and a blank means it is not a channel), or a target or enabler
(“T” means it is a target; “E”, an enabler).

» The pre-condition for the attack. Each clause is a conjunct of the pre-
condition.

» The attack itself, written as a sequence of actions. The action exploiting
the vulnerability is in boldface. (More formally, we would specify each
action with pre- and post-conditions. For the attack to make sense, the
pre-condition of the attack should imply the pre-condition of the first
action in the attack, the post-condition of the ith action should imply
the pre-condition of the 4 + 1st action, and the post-condition of the last
action should imply the post-condition of the attack.)

w The post-condition for the attack. This post-condition corresponds to
the adversary’s goal, i.e., the reason for launching the attack in the first
place. It should imply the goal (see first item above).

Let’s now return to our example. Since MSHTML is used by both the
browser and the mailer, we give two sample attacks, each exploiting the same
vulnerability just described.

In the first attack (Figure 8.2), the adversary’s goal is to run arbitrary code
on the client. As indicated by the resource table for Attack 1, he accomplishes
his goal by using the web server and the client browser as enablers. The server-
client web connection is the message-passing channel by which the attack oc-
curs. The HTML document is the carrier of the payload and the MSHTML
process is the target of attack.

The pre-condition for the attack is that the victim should have requested a
web page from the adversary and should have enabled for zone Z the option to
run ActiveX Controls, and that the adversary’s site is mapped to zone Z on the
victim’s machine. The attack itself is the sequence of three actions: the web
server sends an HTML document D with an ill-formed embedded object to the
client browser; the browser passes D to the MSHTML process; the MSHTML
processes D as specified in the vulnerability. The post-condition of the attack
is the effect of running the embedded executable.

In the second attack (Figure 8.3), the adversary’s goal is the same and the
vulnerability is the same. The means of attack, however, are different. Here,
the enablers are an HTML mail document and the mailer process, i.e., Outlook
Express. Note that people usually consider Outlook Express to be the target,
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but in fact, for this attack, it is an enabler. The channel, carrier, and target are
the same as for the first attack.

The pre-condition is different: the victim needs to be able to receive mail
from the attacker and HTML email received is in zone Z that is not the re-
stricted zone. The attack is a sequence of four actions: the web server sends
an HTML document D with an ill-formed embedded object to the victim via
email; the victim views the HTML document in the mailer process, i.e., Out-
look Express; the mailer process sends D to MSHTML in zone Z; and finally,
the MSHTML processes D as specified in the vulnerability. The post-condition
is as for the first attack, i.e., the effect of running the embedded executable.

5. Analyzing Attack Surfaces

We use our broad dimensions of targets and enablers, communication chan-
nels and protocols, and access rights to guide us in deciding (1) what things
to count, to determine a system’s attackability ; (2) what things to eliminate or
reduce, to improve system security; and (3) how to compare two versions of
the same system. In this section we consider briefly the first two items; Section
6 gives a detailed concrete example of all three.

51 Measuring the Attack Surface

We can define a measure of the system’s attack surface to be some function
of the targets and enablers, the channels associated with each type or instance
of a target and enabler, the protocols that constrain the use of channels, and the
access rights that constrain the access to all resources.

surf = f(targets, enablers, channels, protocols, access rights)

In general, we can define the function f in terms of additional functions
on targets, enablers, channels, and access rights to represent relationships be-
tween these (e.g., the constraints imposed by protocols on channels, and the
constraints imposed by access rights on all resources), or weights of each type
(e.g., to reflect that certain types of targets are more critical than others or to
reflect that certain instances of channels are less critical than others).

We deliberately leave funinterpreted because in practice what a security an-
alyst may want to measure may differ from system to system. Moreover, defin-
ing a precise f'in general, even for a given system, can be extremely difficult.
We leave the investigation of what different types of metrics are appropriate
for ffor future work. In Section 6 we give a very simplistic /-

5.2 Reducing the Attack Surface

The concepts underlying our attack surface also give us a systematic way
to think about how to reduce it. We can eliminate or reduce the number of
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(1) types or instances of targets, processes, enablers, executables, carriers, eval
functions, channels, protocols, and rights; (2) types or instances of vulnera-
bilities, e.g., by strengthening the actual pre- or post-condition to match the
intended; or (3) types or instances of attacks, e.g., through deploying one or
more security technologies.

Principles and rules of thumb that system administrators and software de-
velopers follow in making their systems more secure correspond naturally to
our concepts. For example, the tasks specified in “lockdown instructions™ for
improving security of a system frequently include eliminating data and process
targets and strengthening access rights. Consider these examples:

| Colloquial | Formal

Turn off macros. Eliminate an eval function for one type of data.

Block attachments in Outlook. Avoid giving any executable (data)
as an argument to an eval function.

Secure by default. Eliminate entire types of targets, enablers, and channels;
restrict access rights.

Check for buffer overrun . Strengthen the post-condition of the actual behavior
to match that of the intended behavior.

Validate your input. Strengthen the pre-condition of the actual behavior
to match that of the intended behavior.

Change your password every 90 days. | Increase the likelihood that the authentication
mechanism’s pre-condition is satisfied.

6. An Example Attack Surface Metric

Howard 1dentified a set of 17 RASQ vectors [Howard, 2003] and defined a
simple attack surface function to determine the relative attack surface of seven
different versions of Windows. In Section 6.1 we present 20 attack vectors:
Howard’s original 17 plus 3 others we added later. In Section 6.2 we present his
RASQ calculation for all 20 attack vectors in detail. In Section 6.3 we analyze
his RASQ results: we confirm observed behavior reflecting user experience
and lockdown scenarios, but also we point out additional missing elements.

6.1 Attack Vectors for Windows

Howard’s original 17 RASQ vectors [Howard, 2003] are shown as the first
17 in Figure 8.4. Upon our® initial analysis of his work, we noted that he
had not considered enablers, such as scripting engines. Thus, we subsequently
added three more attack vectors, shown in italics. Figure 8.4 shows how we
map the 20 attack vectors into our terminology of channels, process targets,
data targets, process enablers, and access rights.

We describe each in more detail below.
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1

10

11

Open sockets: TCP or UDP sockets on which at least one service is
listening. Since one service can listen on multiple sockets and multiple
services can listen on the same socket, this attack vector is a channel
type; the number of channels is independent of the number of services.

Open RPC endpoints: Remotely-accessible handlers registered for re-
mote procedure calls with the “endpoint manager.” Again, a given ser-
vice can register multiple handlers for different RPC interfaces.

Open named pipes: Remotely-accessible named pipes on which at least
one service is listening.

Services: Services installed, but not disabled, on the machine. (These
are equivalent to daemons on UNIX systems.)

Services running by default: Services actually running at the time the
measurements are taken. Since our measurements are taken when the
system first comes up, these are the services that are running by default
at start-up time.

Services running as SYSTEM: Services configured to log on as Local-
System (or System), as opposed to LocalService or some other user.
(LocalSystem is in the administrators group.)

Active Web handlers: Web server components handling different proto-
cols that are installed but not disabled (e.g., the W3C component handles
http; the nntp component handles nntp).

Active ISAPI filters : Web server add-in components that filter partic-
ular kinds of requests. ISAPI stands for Internet Services Application
Programming Interface; it enables developers to extend the functionality
provided by a web server. An ISAPI filter is a dynamic link library (.dll)
that uses ISAPI to respond to events that occur on the server.

Dynamic web pages: Files under the web server root other than static
(.html) pages. Examples include .exe files, .asp (Active Server Pages)
files, and .pl (Perl script) files.

Executable vdirs: “Virtual Directories” defined under the web server
root that allow execution of scripts or executables stored in them.

Enabled accounts: Accounts defined in local users, excluding any dis-
abled accounts.

Enabled accounts in admin group: Accounts in the administators group,
excluding any disabled accounts.
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13 Null sessions to pipes and shares: Whether pipes or “shares” (directories
that can be shared by remote users) allow anonymous remote connec-
tions.

14 Guest account enabled: Whether there exists a special “guest” account
and it is enabled.

15 Weak ACLs in FS: Files or directories that allow “full control” to ev-
erybody. “Full control” is the moral equivalent of UNIX rwxrwxrwx
permissions.

16 Weak ACLs in Registry: Registry keys that allow “full control” to ev-
erybody.

17 Weak ACLS on shares: Directories that can be shared by remote users
that allow “full control” to everybody. Even if one has not explicitly
created any shares, there is a “default share” created for each drive; it
should be protected so that others cannot get to it.

18 VBScript enabled: Whether applications, such as Internet Explorer and
Outlook Express, are enabled to execute Visual Basic Script.

19 Jscript enabled: As for (18), except for Jscript.
20 ActiveX enabled: As for (18), except for ActiveX Controls.

6.2 Attack Surface Calculation

In Howard’s calculation, the attack surface area is the sum of independent
contributions from a set of channels types, a set of process target types, a set
of data target types, a set of process enablers, all subject to the constraints of
the access rights relation, A.

surfA = surfA -+ sur; A—I—sur A—I—sur A
ch pt dt pe

This simple approach has a major advantage in that it allows the categories
to be measured independently. This simplification comes at a cost. For ex-
ample, since interactions between services and channels are not considered,
Howard’s RASQ calculation fails to distinguish between sockets opened by
a service running as administrator and (less attackable) sockets opened by a
service running as an arbitrary user.

Figure 8.5 gives a table showing each of the four terms in detail. Each term
takes the form of a double summation: for each type (of channel types, chty,
process target types, ptty, data target types, dfty), and process enabler types,
pety, for each instance of that type, a weight, w, for that instance is added
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20 RASQ Attack Vectors

Formal

Open sockets

Open RPC endpoints

Open named pipes

Services

Services running by default
Services running as SYSTEM
Active Web handlers

Active ISAPI Filters

Dynamic Web pages

Executable vdirs

Enabled accounts

Enabled accounts in admin group
Null sessions to pipes and shares
Guest account enabled

Weak ACLs in FS

Weak ACLs in Registry

Weak ACLs on shares

VBScript enabled

Jscript enabled

ActiveX enabled

channels

channels

channels

process targets

process targets, constrained by access rights
process targets, constrained by access rights
process targets

process targets

process targets

data targets

data targets

data targets, constrained by access rights
channels

data targets, constrained by access rights
data targets, constrained by access rights
data targets, constrained by access rights
data targets, constrained by access rights
process enabler

process enabler

process enabler

Figure 8.4. Mapping RASQ Attack Vectors into Our Formalism
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to the total attack surface. For a given type, 7, we assume we can index the
instances per type such that we can refer to the ith instance by 7;. For weight
functions, w, that are conditional on the state of the instance (e.g., whether or
not an account is default), we use the notation (cond, v1, v9) where the value
is vy if cond is true and wvq if cond is false.

For channels, access control is factored into the weights in one very limited
case: Howard gives a slightly lower weight to named pipes compared to the
other channels because named pipes are not generally accessible over the In-
ternet. An alternate, more general approach to modeling this situation would
be to calculate a “local attack surface” and “remote attack surface,” each of
which is appropriate for different threats.

For process targets, the weight function for services makes use of the access
rights relation explicitly by referring to whether a service is a default service
or if it is running as administrator.

The influence of the access rights relation is the most obvious for data tar-
gets, since it is used to determine whether an account is in a group with ad-
ministrator privileges and whether it is a guest account. Note that we view an
account as a shorthand for a subset of the access rights, i.e., a particular prin-
cipal with a particular set of rights. Access rights is also used to determine the
value of weakACL on files, registry keys, and shares. The predicate weakACL
is true of its data target if all principals have all possible rights to it, i.e.,“full
control”.

The weights for process enablers are the count of the number of applica-
tions that enable a particular form of attack. Here, we consider only two ap-
plications, Internet Explorer and Outlook Express; in general, we would count
others. Script-based attacks, for example, may target arbitrary process or data
targets, but are enabled by applications that process script embedded in HTML
documents. Malicious ActiveX components can similarly have arbitrary tar-
gets, but any successful attack is enabled by an application that allows execu-
tion of the potentially malicious component.

Our reformulation of Howard’s original model shows that there are only 13
types of attack targets, rather than 17; in addition, there are 3 types of enablers.

6.3 Analysis of Attack Surface Calculation

The results of applying these specific weight functions for five different ver-
sions of Windows are shown in Figure 8.1. As mentioned in the introduction,
the two main conclusions to draw are that with respect to the 20 RASQ at-
tack vectors (1) the default version of a running Windows Server 2003 system
is more secure than the default version of a running Windows 2000 system,
and (2) a running Windows Server 2003 with IIS installed is only slightly less
secure than a running Windows Server 2003 without IIS installed.
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A |
surfa =3 conty Sy w(es) |

chty w(e;)
socket 1.0
endpoint 0.9
namedpipe 0.8
nullsession 0.9

I Su/rf;tt - ZpEpttU Zi;p:il w(pl) |

piy w(pi)
service 0.4 + def(p;) + adm(p;)
webhandler 1.0
isapi 1.0
dynpage 0.6
where deflp;) = (defauli(p;),0.8,0.0)
adm(p;) = (run_as_admin(p;), 0.9, 0.0)

)
| 5“"7(:141‘, - Zdédtt’g lele w(ds) I

dity w(d;)
account | 0.7 + adg(d;) + gue(d;)
file (weakACL(d,;), 0.7, 0.0)

regkey (weakACL(d;), 0.4, 0.0)
share (weakACL(d;), 0.9, 0.0)
vdir (executable(d;), 1.0, 0.0)
adg(d;) = (d; € AdminGroup, 0.9, 0.0)
gue(d;) = (d;name = “guest”, 0.9, 0.0)

where

I Surf;r/)‘e = Zeepety Zeie{lE,OE} w(e’i) l
pety w(es)

vbscript | (app-executes_vbscript(e;), 1.0, 0.0)
jscript (app _executes jscripi(e;), 1.0, 0.0)
activex | (app-executes_activex{e;), 1.0, 0.0)
IE = Internet Explorer

OE = Outlook Express

where

Figure 8.5. Howard’s Relative Attack Surface Quotient Metric
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While it is too early to draw any conclusions about Windows Server 2003,
the RASQ numbers are consistent with observed behavior in several ways:

= Worms such as Code Red and Nimda spread through a variety of mecha-
nisms. In particular, Windows NT 4.0 systems were at far greater risk of
being successfully attacked by these worms if the systems were installed
with IIS than if they were not. This observation is consistent with the
increased RASQ of this less secure configuration.

»  Windows 2000 security is generally perceived as being an improvement
over Windows NT 4.0 security [IW, 2001]; the differences in RASQ for
the two versions in a similar configuration (i.e., with IIS enabled) reflect
this perception.

»  Conversely, Windows 2000 (unlike Windows NT 4.0) is shipped with
IIS enabled by default, which means that the default system is actually
more likely to be attacked. This observation is consistent with anecdotal
evidence that many Windows 2000 users (including one author of this
paper) affected by Code Red and Nimda had no idea they were actually
running IIS.

As a sanity check , we also measured the RASQ in two “lockdown” config-
urations: applying IIS security checklists to both NT 4.0 with IIS [MS-1ISv4]
and Windows 2000 [MS-IISv5]. Since the tasks specified in the lockdown in-
structions include disabling services, eliminating unnecessary accounts, and
strengthening ACLs, the RASQ unsurprisingly decreases: on Windows NT
4.0, from 598.3 in the default configuration to 395.4 in the lockdown configu-
ration; on Windows 2000, from 342.2 in the default to 305.1. These decreases
are consistent with users’ experience that systems in lockdown configurations
are more secure; for example, such configurations were not affected by the
Code Red worm [MSB, 2001].

Our set of 20 attack vectors still misses types and instances, some of which
also need more complex weight functions:

» For channels, some IPC mechanisms were not counted; for example
COM is counted if DCOM is enabled, but otherwise it is not.

= For process targets, we did not handle executables that are associated
with file extensions that might execute automatically (i.e., “auto-exec”)
or be executed mistakenly by a user. Also, we did not count ActiveX
controls themselves as process targets, only as process enablers, i.e.,
whether applications such as IE and OE were set up to invoke them.

»= The model treats all instances of each type the same, whereas some in-
stances should probably be weighted differently. For example, a socket
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over which several complex protocols are transmitted should be a bigger
contributor to the attack surface than a socket with a single protocol; and
port 80 is well-known attack target that should get a higher weight than
other channel endpoints.

m Just as for process targets that are services, for other types of process
targets the weight function should take into consideration the privileges
of the account that the process is executing as. For example, for versions
of IIS < 5.0, ISAPI filters always run as System, but in IIS 6.0, they run
as Network Service by default.

These missing attack opportunities and refined weight functions suggest po-
tential enhancements to Howard’s RASQ model and the attack surface calcu-
lation.

7. Discussion of the RASQ Approach
We have some caveats in applying the RASQ approach naively:

» Obtaining numbers for individual attack vector classes is more mean-
ingful than reading too much into an overall RASQ number. It is more
precise to say that System A is more secure than System B because A
has fewer services running by default rather than because A’s RASQ is
lower than B’s. After all, summing terms with different units does not
“type check”. For example, if the number of instances in one attack vec-
tor class is IV for System A and 0 for System B, but for a different attack
vector class, the number is 0 for System A and N for System B, then
all else being equal, the systems would have the same RASQ number.
Clearly, the overall RASQ number does not reflect the security of either
A or B with respect to the two different attack vector classes.

s The RASQ numbers we presented are computed for a given configura-
tion of a running system. When an RASQ number is lower for System
A than System B because certain features are turned off by default for
System A and enabled by default for System B, that does not mean that
System A is inherently “more secure”; for example, as the owner of Sys-
tem A begins to turn features on over time it can become just as insecure
as System B. On the other hand, if 95% of deployed systems are always
configured as System A initially (e.g., features off by default) and re-
main that way forever, then we could say in some global sense that we
are “more secure” than if those systems were configured as System B.

» Do not compare apples to oranges. It is tempting to calculate an RASQ
for Windows and one for Linux and then try to conclude one operating
system is more secure or more attackable than the other. This would be
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a big mistake. For one, the set of attack vectors would be different for
the two different systems. And even if the sets of attack vectors were
identical, the threat models differ.

Rather, a better way to apply the RASQ approach for a given system is first
to identify a set of attack vectors, and then for each attack vector class, compute
a meaningful metric, e.g., number of running instances per class. Comparing
different configurations of the same system per attack vector class can illumi-
nate poor design decisions, e.g., too many sockets open initially or too many
accounts with admin privileges. When faced with numbers that are too high or
simply surprising, the system engineer can then revisit these design decisions.

8. Related Work

To our knowledge the notion of “attackability ” as a security metric is novel.
At the code level, many have focused on counting or analyzing bugs {(e.g.,
[Chou et. al, 2001, Gray, 1990, Lee and Iyer, 1993, Sullivan and Chillarge,
19917) but none with the explicit goal of correlating bug count with system
vulnerability.

At the system lcvel, Browne ct al. [Browne et al., 2001] define an analytical
model that reflects the rates at which incidents are reported to CERT. Follow-
on work by Beattie et al. [Beattie et al., 2002] studies the timing of applying
security patches for optimal uptime based on data collected from CVE entries.
Both empirical studies focused on vulnerabilities with respect to their discov-
ery, exploitation, and remediation over time, rather than on a single system’s
collective points of vulnerability.

Finally, numerous websites, such as Security Focus [SecurityFocus], and
agencies, such as CERT [CERT] and MITRE [CVE], track system vulnerabil-
ities. These provide simplistic counts, making no distinction between different
types of vulnerabilities, e.g., those that are more likely to be exploited than
others, or those relevant to one operating system over another. Our notion of
attackability is based on separable types of vulnerabilities, allowing us to take
relative measures of a system’s security.

9. Future Work

Our state machine model is general enough to model the behavior an adver-
sary attacking a systcm. We identificd some useful abstract dimensions such as
targets and enablers, but we suspect there are others that deserve consideration.
In particular, if we were to represent configurations more explicitly, rather than
as just states of the system (in particular the resources and access rights), then
we can more succinctly define what it means for a process to be running by
default or whether an account is enabled.
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Further into the future we imagine a “dial” on the workstation display that
allows developers to determine if they have just increased or decreased the at-
tack surface of their code. We could flag design errors or design decisions that
tradeoff performance for security. For example, consider a developer debating
whether to open up several hundred sockets at boot-up time or to open sockets
on demand upon request by authenticated users. For a long-running server, the
first approach is appealing because it improves responsiveness and is a simpler
design. However, even a simple attack surface calculation would reveal a sig-
nificant increase in the server’s attackability ; this potential security cost would
need to be balanced against the benefits.

Measuring security, quantitatively or qualitatively, has been a long-standing
challenge to the community. The need to do so has recently become more
pressing. We view our work as a first step in revitalizing this research area. We
suggest that the best way to begin is to start counting what is countable; then
use the resulting numbers in a qualitative manner (e.g., doing relative com-
parisons). Perhaps over time our understanding will then lead to meaningful
quantitative metrics.
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Notes

1. For example, Microsoft’s Trustworthy Computing Initiative, started in January 2002.

2. NT 4.0 measurements were taken on a system where Service Pack 6a had been installed; NT 4.0
with IIS enabled, with both Service Pack 6a and the NT 4.0 Option Pack installed. IIS stands for Internet
Information Server.
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3. There are more elegant formulations of composing two state machines; we use a simple-minded
approach that basically merges two state machines into one big one. In the extreme, if the local resources
sets are empty, then the two machines share all state resources; if the global resource set is empty, they
share nothing. Thus our model is flexible enough to allow communication through only shared memory,
only message passing, or a combination of the two.

4. Writing the return type of eval as unit is our way, borrowed from ML, to indicate that a function has
a side effect.

5. Pincus and Wing
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Abstract In this paper, we first show that traditional IDSs cannot reach the minimal cost
design from the auditing viewpoints. Then we propose the definition of design
architecture of IDSIC (Intrusion Detection System with Identification Capability
). In IDSIC, its architecture consists of a new detection engine that can examine
packet headers, which provide a separability of security auditors and hackers.
With this architecture, we will reduce the cost of false alarms, either positive or
negative false alarms.

Keywords:  Intrusion Detection System (IDS), Identification Capability, fingerprint , Secu-
rity Auditor

1. Introduction

In 1987, Denning proposed the first model of intrusion-detection expert sys-
tem (IDES) [Denning, 1987] that can detect a wide range of security, such as
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attempted break-in, masquerading or successful break-in, Trojan horse , virus
, Denial-of-Service , and so on. After IDES model, the intrusion detection re-
search topic has been a hot issue since the last decade. Several current systems
are based on part of IDES prototype technology [Krawczyk et al., 1997, Bel-
lare et al., 1996]. For example, the Next-Generation Intrusion Detection Ex-
pert System (NIDES) [Anderson et al., 1995], Multics Intrusion Detection and
Alerting System (MIDAS) [Whitehurst, 1987], Network Anomaly Detection
and Intrusion Reporter (NADIR) [Hochberg et al., 1993], Network Security
Monitor (NSM) [Heberlein et al., 1990], Distributed Intrusion Detection Sys-
tem (DIDS) [Snapp et al., 1991], and so on.

However, most IDS models do not consider the role of security auditors.
In some security standards, it suggests that there should be an inner auditor
periodically checks the security issues in the enterprise networks. In order to
discover the real security holes or vulnerabilities, the security tools using by
the auditors are the same tools used by the outside hackers. These tests can be
separated into two situations. One situation is the rehearsal; the auditors notify
the system managers when the security auditing starts and how the security
tests go on. It has to guarantee that no other attack can access the system
during execution. Because both the system managers and the auditors know
scenarios of security tests, the testing results in this situation are very little.

The other situation is that auditors imitate hackers’ behaviors when perform-
ing security tests. The system managers do not know when, where, and how
the tests will take place in advance. Because auditors use the same tools that
used by hackers, the IDS response component will triggle alarms. If hackers
attack the system in the meanwhile, system managers may ignore the real at-
tack alarms. Thus, it not only takes system managers a lot of time to recover
the system but also lowers the efficiency of IDSs during the security auditors
examining the system.

Lee et al. propose a cost-sensitive model for IDSs by using some major cost
factors, such as damage cost (DCost), response cost (RCost), operational
cost (OpCost), etc, to evaluating the total cost of IDSs, and they mentioned
that IDSs should minimize these costs [Fan et al., 2000, Lee et al., 2000]. How-
ever, the traditional IDSs (TIDSs) do not consider the behavior of the security
auditors and the cost in TIDS is not the minimal. In this paper, we propose
a new model of IDS, called IDSIC (Intrusion Detection System with Identifi-
cation Capability), to distinguish the roles of hackers and auditors. Therefore,
the damage cost and response cost in TIDS could be reduced. By this identifi-
cation capability, IDSIC could minimize the associated cost mentioned in [Fan
et al., 2000, Lee et al., 2000].

The rest of this paper is as follows. In Section 2, we describe the roles
needed in traditional IDSs. The new model with identify capability will be
proposed in Section 3. The key idea is from the IP packet marking technique
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[Dean et al., 2001, Savage et al., 2000] using in IP traceback to detect the
DDoS originator. Finally, a conclusion will be given in Session 4.

2. Traditional IDS model
2.1 Roles in TIDSs

In [Cannady, 2000], the design and implementations of TIDSs are focus on
requirements, like tolerance, and minimal resource, etc. There are further re-
quirements in large enterprise networks. One of which is the need of frequently
audition testing. In order to describe these requirements in large networks, we
give some definitions of the roles in TIDSs, so that we can discuss more gen-
eral model in the next session. The roles in TIDSs could be classified into three
parts.

Hackers - People who attempt to gain unauthorized access to a computer
system. These people are often malicious and have many tools for breaking
into a system.

System Manager (SM) - the person who takes charge to minimize the use
o excess, network management, and system maintenance costs. If a system
under some attacks results IDSs alarms, they have to make efforts to find out
where the problem is.

Detection System (DS) - the system that monitor the events occurring i pro-
tected hosts or networks and analyze them for signs of intrusions. Figure 9.1
shows the relationships between these three roles.

Figure 9.1.  The roles and relationships in TIDSs.



142 COMPUTER SECURITY IN THE 21 CENTURY

2.2 Cost analysis

Table 9.1 shows the Consequential Cost (CCost) in every situation [Fan et
al., 2000]. Here, event e = (a, p, ) is the function of the attack a, the progress
p, and the resource r. ¢’ means the misidentified event. PCost(e) represents
penalty cost of treating legitimate event as an intrusion. ¢; is the function of
the progress p of the attack and 0 < ¢; < 1. More detail analysis is shown in
[Fan et al., 2000, Lee et al., 2000]. Therefore, for the entire event set F, and

Table 9.1. The Consequential Cost (CCost) in every situation [Fan et al., 2000, Lee et al.,
2000]. Notice that FN, FP, TP and TN denote False Negative, False Positive, True Positive and
True Negative respectively.

Situtation Consequential Cost(CCost) Condition
FN DCost(e)
5P RCose(e’) + PCost(e) if DCost(e’) > RCosele)
0 if DCost(c') < RCose(e’)
TP RCose(e') + et PCost(e),0 <e1 <1 ifDCost(e) > RCose{e)
DCost(e) if DCost(e) < RCose(e)
TN 0

each event e € F, we have the cumulative cost of TIDSs as follows:
CumulativeCost(E) = ) . sCCost(e) + OpCost(e)) (1)

However, this cumulative cost is not the minimal cost in TIDSs. Because it
does not think about the roles of the auditors performing security tests in large
enterprise environment. By thinking of the auditing roles, the cost in (1) is not
the minimal situation and can be reduced more. We will discuss this in the next
Session.

3. A New model based on Identification (IDSIC)
3.1 Roles and components in IDSIC

We define a new Detection System with Identification Capability (DSIC) to
tell the auditors from hackers. Roles and functionality of security auditors can
be defined as follows.

Security Auditor (SA) - A person appointed and authorized to audit whether
the security equipments work regularly or not by using the vulnerability testing
tools.
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Detection System with Identification Capability (DSIC) - One type of DS
that runs the same function of DS. However, it has an extra functionality to
distinguish between the roles of hackers and SAs.

When SAs want to perform the security tests, some secret information,
called fingerprint, should be calculated in advance. We set two components,
fingerprint adder and fingerprint checker, in SA and DSIC respectively. The
fingerprint adder adds the fingerprint into the packets that are sent by the SAs.
The relative component, fingerprint checker, helps DSIC to differentiate hack-
ers’ attack and SAs’ tests. Figure 9.2 shows these roles and components in
IDSIC.

3.2 Cost analysis

Since we take the role of SAs into account, all the cost in TIDS should be
reconsidered. The damage cost (DCost) should be divided into two parts;
hackers” and SAs’ damage cost, i.e. DCost(e) = HDCost{e) + SDCost(e)

The term H DCost(e) means the damage cost caused by hackers that may
harm to the systems. The cost of SAs, SDCost(e), is the amount of secu-
rity testing cost that may damage to the systems. Similarly, the response cost
(RCost) will also be separated into two parts: the cost of response generated
by hackers (H RCost) and the one created by SAs (SRCost). It means that
RCost(e) = HRCost(e) + SRCost(e) .

FNjc Cost in IDSIC, this cost may be major in HDCost although some
serious security tests performed by SAs’ will also harm to the systems. There-
fore, the FNIC Cost can be presented by H DCost(e) + e3SDCost(e) . Here
€3 € [0,1], and very close to 0, is a function of the progress p. F Prc Cost
happens when normal behavior, e, is misidentified as the attack, ¢’ . By finger-

Fingerprint

‘ Adder

N
Intranat \w
—

-

Internet Fingerprint

Hackers

Figure 9.2.  The roles and components in IDSIC.
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print, we can distinguish SAs’ events, eg4 , from these misidentified events,
i.e. the remainder events, e” = e’ — eg 4 , are real misidentified events. Hence,
we could reduce the FP Cost by changing the misidentified event ¢’ to e .

T Prc Cost in IDSIC should compare with H DCost, SDCost, HRCost,
and SRCost. Because DSIC does not alert alarms and just logs the occurrence
when DSIC detects fingerprint sent by SAs, the SRCost could be ignored. Be-
sides, most security tests are not harmful to the system resource; the SDCost
could be near to 0. Therefore, the DCost and RCost in TIDS can reduce to
(HDCost(e) + €45 DCost(e) and HRCost(e) respectively.

( HRCost(e) + e, HDCost(e)+ if(HDCost{e)+
€164SDCCost(e), €4S DCost(e))
0<e,4<1 > HRCost(e)
TPrcCost =
HDCost(e) + eaSDCost(e)  if(HDCost(e)+
e4aSDCost(e))
{ < HRCost(e)

Same with TIDSs, TN Cost should be always 0 that DSIC detects no at-
tacks. Therefore, we could minimize the IDSIC’s CumlativeCost by rewrit-
ing the CCost(e) to ICCost(e) in Equation (1). The following Equation (2)
shows this result. The ICCost(e) is defined in Table 2.

CumulativeCost(E) = 3" . pICCost(e) + OpCost(e)) (2)

Comparing with Equation (1) and (2), although OpCost(e) is equivalent,
but CCost(e) in TIDS is greater than ICCost(e) in IDSIC in every situation.
Therefore, by fingerprint, IDSIC could have smaller CumulativeCost(E) than
TIDS.

4. Conclusion

In this paper, we propose that there should exist a role, security auditor,
inspecting the system holes. From the security auditors’ viewpoint, we present
a new model of IDS, called IDSIC, which can distinguish the roles between
hackers and security auditors. We also analyze the costs in TIDS and IDSIC
and IDSIC has lower costs. Therefore, in IDSIC model, we can ensure not
only the system performance but also the system managers’ working efficiency
during the security auditors examine the system.
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Abstract In this paper, a DDoS defense scheme is proposed to deploy in routers serv-
ing as the default gateways of sub-networks. Each router is configured with
the set of IP addresses belonging to monitored sub-networks. By monitoring
two-way connections between the policed set of IP addresses and the rest of the
Internet, our approach can effectively identify malicious network flows consti-
tuting DDoS attacks, and consequently restrict attack traffics with rate-limiting
techniques. Current source-end DDoS defense scheme cannot accurately distin-
guish between network congestion caused by a DDoS attack and that caused by
regular events. Under some circumstances, both false positive and false nega-
tive can be high, and this reduces the effectiveness of the defense mechanism.
To improve the effectiveness, new DDoS detection algorithms are presented in
this paper to complement, rather than replace existing source-end DDoS defense



148 COMPUTER SECURITY IN THE 21 CENTURY

systems. The design of the proposed detection algorithm is based on three es-
sential characteristics of DDoS attacks: distribution, congestion, and continuity.
With the three characteristics, the proposed detection algorithm significantly im-
proves detection accuracy, and at the same time reduces both false positive and
false negative against DDoS attacks.

Keywords:  information warfare , DoS/DDoS attacks , source-end defense

1. Introduction

Current Internet infrastructure is vulnerable to network attacks, and partic-
ularly, many security incidents have shown that the Internet is weak against
distributed denial-of-service (DDoS) attacks. In general, a DDoS attack is ac-
complished by persistently overloading critical resources of the target Internet
service so as to completely disable or degrade the service over an extended
period of time. Such resource overloading can be achieved in several ways.
First, an Internet service can be overloaded by a large number of service re-
quests issued in a short period of time. As a result, legitimate service requests
may be dropped due to insufficient resource such as computation power or
memory space. Second, attackers can overload a network link near the target,
and consequently, all flows traverse through the link will cxpericence significant
degrade of service quality .

To generate a great amount of traffic or service requests, attackers may first
compromise a large number of computer systems. This can be easily accom-
plished due to the large number of insecure computer systems and the set of
easily acquired and deployed exploit programs, such as Tribal Flood Network
(TFN), TFN2K and Trinoo . On the other hand, detecting or preventing a
DDoS attack is relatively much harder. The lack of explicit attack signa-
tures/patterns makes it extremely difficult to distinguish attacks from legitimate
traffic. Furthermore, the anonymous naturc of IP protocol allows the attackers
to disguise the attack origins, and thus makes it hard to detect the sources of
DDoS attacks. These difficulties make the construction of an effective DDoS
defense mechanism become a very challenging problem.

Issues for defending DDoS attacks have been extensively investigated in
recent years, and several defense mechanisms have been presented in the liter-
ature. The deployment of these schemes can be categorized into three classes.
The first class of schemes [Shaprio and Hardy, 2002, T. Aura and Leiwo,
2001, Mirkovic et al.,, 2002a, Juels and Brainard, 1999, Wang and Reiter,
2003, Leiwo et al., 2000, Mann et al., 2000, Feinstein et al., 2003, NFR,
, Net, , Roesch, 1999] involve detecting and preventing a DDoS attack at the
victim network. In this context, the term victim network indicates that the
installed DDoS defense systems are used to protect a limited set of comput-
ers. These defense systems are generally deployed at end host systems or at
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routers which are able to examine and control communications between pro-
tected hosts/networks and the rest of the Internet. Placing defense mechanisms
at the victim networks can be easier for detecting DDoS attacks. Since the
DDoS traffic is aggregated toward the victim, a burst of network traffic would
be the signal of a DDoS attack. However, from the network’s perspective, fil-
tering out DDoS attack packets at the victim side is ineffective because the
attack flows may cause network congestion and waste valuable computation
power of the routers along the path they traversed.

To improve the effectiveness of packet filtering, schemes in the second class
attempt to construct DDoS defense lines toward attack sources. To achieve this
objective, several schemes have been proposed, and these schemes can be fur-
ther divided into two types. First, DDoS attacks are detected by DDoS defense
systems installed in victim networks , and subsequently Internet core routers
in the attack paths are requested to filter out attack traffic according to filter-
ing criteria specified by downstream routers or DDoS defense systems [Fer-
guson, 1998, Park and Lee, 2001, Sung and X, 2002, Ioannidis and Bellovin,
2002, man, , Mahajan et al., 2002]. Second, traceback techniques [Savage
et al., 2001, Savage et al., 2000, Dean et al., 2002, Song and Perrig, 2001] are
utilized to identify attack sources and then legal sanctions can be performed
to deter DDoS attacks. Schemes in the second class can partially avoid attack
flows blending with legitimate flows and consequently somewhat reduce the
complexity for distinguishing from attack traffic and legitimate traffic. Fur-
thermore, it may also reduce to certain degree possible network congestion
caused by attack flows. However, owing to the cooperative and distributed na-
ture, these schemes heavily rely on cooperation among Internet core routers .
This would generally incur high deployment cost. Routers need to be upgraded
to support packet filtering in high speeds. Coordination among ISPs may also
bring unpredictable difficulties. In addition to the deployment costs, the way
that core routers drop packets according to the information passed from victim-
end systems may implicitly bring other substantial cost and security breaches.
For instance, an Internet-wide authentication framework is needed; otherwise,
core routers may accept instructions from malicious attackers and drop legit-
imate traffic. Therefore, to secure and authenticate communications between
core routers and victim-end systems in large networks may bring infeasible
high overhead. Thus, schemes in the second class are generally inadequate to
be deployed in large networks such as the Internet.

Similar to the victim-end approaches, the third class of schemes involve de-
ploying DDoS defense mechanisms at default gateways. The major difference
is that, DDoS defense mechanisms in the third class are used to police hosts
in the monitored networks from participating in DDoS attacks rather than pro-
tecting them. This approach can ideally prevent attack traffic from entering
the Internet. In other words, DDoS attack flows are contained in their sources.
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It subsequently avoids attack flows blending with legitimate flows, and as a
result network congestion can be significantly reduced. Furthermore, since
the degree of flow aggregation is relatively low and routers closer to source
networks are likely to relay less traffic than core routers, it is possible to use
sophisticated detection strategies which may require more computation power
and system resources.

Although the idea of defending DDoS at sources is attractive, detecting the
occurrence of a DDoS attack at the attack sources is very difficult [Chang,
2002]. The main difficulty arises from the insignificant aggregate of attack
traffic which can be observed in attack sources. Other criteria for identify-
ing DDoS attacks must be discovered. For instance, in the D-WARD system
proposed by Mirkovic et al [Mirkovic et al., 2002b], network congestion mea-
sured by the ratio of incoming and outgoing packets of network connections is
used to judge whether the monitored flow is part of a DDoS attack or not. By
monitoring the changes of the ratio, D-WARD would be able to detect a DDoS
attack that has already disable the victim. However, it is hard for D-WARD
to distinguish a DDoS attack from network congestion caused by other events.
On one hand, D-WARD can mis-classified a flow if the ratio of flow is high
in its normal operation. On the other hand, D-WARD is weak in detecting
low-rate attacks . In other words, a well-designed attack script can avoid being
detected by D-WARD by carefully control the congestion caused by the attack.

To address the weakness of D-WARD, in this paper, we propose a source-
end DDoS detection algorithm and an attack response mechanism, where the
former can accurately identify an ongoing DDoS attack and the latter can ef-
fectively limit attack traffic in source networks. The proposed detection and
response algorithms are built upon the system architecture originally proposed
in D-WARD. Our proposal focuses on reducing both false positive and false
negative on detecting two-way connections. That is, the proposed scheme at-
tempts to complement, rather than replace the D-WARD system.

The design of proposed scheme is based on the observation of three essen-
tial characteristics of a DDoS attack: distribution, congestion, and continuity.
Distribution refers to the spreading of attack traffic from a large number of
compromised hosts. Congestion refers to the inherent consequence of a DDoS
attack. That is, an increasing packet loss rate observed in a monitored network
flow would generally represent a signal of a DDoS attack . Third, continu-
ity directs to the observation that network congestion caused by DDoS attacks
usually lasts for an extended period of time. Combining the above three crite-
ria allows us to differentiate a DDoS attack from a typical network congestion
caused by other events. Based on the three characteristics, a new DDoS de-
fense mechanism is proposed. Since the proposed mechanism is built upon D-
WARD architecture, the proposed DDoS defense mechanism is also deployed
at routers serving as the default gateways. Online traffic statistics, in terms
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of distribution, congestion, and continuity, are gathered and compared against
previous statistics derived from normal traffic. In this way, malicious network
flows are identified and rate-limited. Rate limits are dynamically adjusted ac-
cording to the behavior of malicious network flows. On one hand, dynamic
adjustment allows a misclassified network flow to regain network bandwidth
when the flow shows compliance to legitimate flow model. On the other hand,
since attack scripts has no way to distinguish the effect of rate-limiting from
that of a successful DDoS attack, dynamic adjustment helps restrain malicious
flows.

This paper is organized as follows. Section 2 gives an review of the D-
WARD system. The proposed source-end DDoS defense scheme is presented
in Section 3, including its detection and rate-limiting mechanism. Section 4
describes an implementation of the proposed scheme and presents several ex-
periments on estimating the effectiveness. Subsequently, we summarize and
conclude our findings in Section 5.

2. Review of D-WARD

In this section, we briefly review D-WARD system, including system archi-
tecture, detection algorithm, and attack response algorithm.

2.1 System Architecture

From the architectural point of view, D-WARD consists of a observation
component and a throttling component. The observation component examines
all communications between the set of IP addresses in the monitored network
and the external IP addresses, and then computes on-line traffic statistics. Note
that, in D-WARD, time are divided into a set of uniform intervals, called obser-
vation period , which serves as a unit time frame to compute traffic statistics. In
cach obscrvation period, new traffic statistics are compared against past statis-
tics derived from normal traffic. Network flows are classified according to the
comparison results. Moreover, the statistics and comparison results are then
passed to the throttling component which generates rate-limiting rules based
on the behavior of the monitored network flows.

Fig. 10.1 shows a possible deployment of D-WARD. As depicted in the
figure, D-WARD is a separate unit that acquires traffic from the default gateway
and feeds the gateway with rate-limiting rules.

2.2 Attack Detection

In D-WARD, the aggregate traffic between monitored addresses and a cor-
respondent host is defined as a flow. A flow is considered two-way if its data
flow comprises packets originating from the sender and corresponding reply
from the peer. TCP connections and several types of ICMP messages, such as
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Figure 10.1.  An example of the deployment of D-WARD

“timestamp” and “echo”, are typical examples of two-way flows. On the other
hand, a flow is considered one-way (or uni-directional) if its data flow does not
require reply messages in its normal operation. Traffics based on UDP protocol
are examples of one-way flows.

For TCP flows, D-WARD defines a threshold that specifies the maximum
allowed ratio of the number of packet sent to and received from in a flow.
Notice that in the following context in this paper, the ratio of the number of
packet sent and received in a flow is refereed to as the O/I of the flow. Then, for
TCP flows, whenever the O/I value of a flow breaches a pre-defined threshold,
TC Py, the flow is classified as a DDoS attack flow. Similarly, for ICMP-
based two-way flows, IC M P,,, is used to define the maximum O/I value of
an ICMP flow. In D-WARD’s experimental scttings, T'C Py, is set to 3 and
ICMP,;, issetto 1.1.

For a onc-way flow, D-WARD defines three thresholds: an upper bound
on the number of allowed monitored hosts issuing one-way connections to a
correspondent host, a lower bound on the number of allowed packets in each
one-way connection, and a maximum allowed sending rate. Whenever any of
the three threshold is breached, the flow is considered attack. In D-WARD’s
experiment, the number of host in the same UDP flow must be smaller than
100. There must be at least one packet in each connection, and the maximum
allowed sending rate is 10MBps.

In D-WARD, a flow is classified as normal, suspicious or attack according
to the comparison on the statistics derived from normal flows and the currently
gathered statistics. If the statistics of a monitored flow does not consistent with
normal model defined by thresholds mentioned above, the flow is classified as
attack. If a flow that was ever classified as attack and the current comparison
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indicates compliance with normal flow model, it is classified as suspicious.
Finally, if a flow 1s always compliant with normal flow model, it is classified
as normal.

23 Attack Response

According to the comparison result passed from the observation component,
the throttling component specifies allowed sending rates for monitored flows.
D-WARD utilizes a flow control mechanism which is similar to the conges-
tion control mechanism of TCP protocol. The sending rate is exponentially
decreased in the first phase of attack response. Then, if further comparison in-
dicates compliance with the normal flow model, a rate-limited flow can regain
its bandwidth after the slow recovery and fast recovery process. On the other
hand, a rate-limited flow can be more severely restrained if it does not comply
with the rate limit and attempts to persistently rebel against the limited sending
rate.

3. Proposed System

In this section, we first show that there are normal TCP flows with its O/T
valuc which is greater than the threshold defined by D-WARD. This indicates
that D-WARD would classify these TCP flows as attack while they are in their
normal operations. This problem cannot be solved by using a sufficient large
threshold since it will increase the false negative. Specifically, low rate attacks
will not be detected. To cope with the problem, a new algorithm for detecting
and limiting TCP-based DDoS attacks are presented herein.

It is worthy to notice that although DDoS attacks may take many different
forms, it is reported [Chang, 2002, Mahajan et al., 2002, Moore et al., 2001]
that over 94% of DDoS attacks use TCP. Thus, the scheme presented in this
paper may help defend against a majority of DDoS attacks. As to the detection
of DDoS attacks based on of one-way flows, we suggest using the algorithm
presented in D-WARD at current stage, but further enhancement is possible for
the future work.

3.1 Basic idea of the proposed scheme

As mentioned above, D-WARD classifies a TCP flow as an attack flow if
the O/I value of the flow is greater than TC Py4,. (Recall that, in D-WARD,
this threshold is set to 3.) This approach suffers from the difficulty in deter-
mining an appropriate value for T'C Pp4,. It is because the O/I value of a TCP
flow heavily depends on the implementation of TCP/IP protocol stack of the
peers, and other factors such as round trip time and network congestion . This
would result in a wide range of O/I values. For instance, Fig. 10.2 shows the
average O/I values of TCP flows in a typical network consisting of 30 personal
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computers. Operating systems installed in these computers include Windows
2000, Windows XP, FreeBSD, and Linux. As shown in the figure, there are
flows with O/I values which are greater than 3. (The highest average O/I value
is 3.68. It is observed in a flow consisting of only one FTP data connection.)

The observation motivates a new algorithm for detecting TCP-based DDoS
attacks. The proposed algorithm exploits three essential characteristics of
DDoS attacks, namely distribution, congestion and continuity, to detect the
presence of DDoS attacks. First, distribution refers to the observation that
DDoS attack scripts will normally infect as many insecure computer systems
as possible so as to amplify the power of the DDoS attack. Therefore, in the
monitored networks, if there is an increasing number of hosts attempting to
send traffic to a destination host, a DDoS attack may just have been started.
The statistics on the number of hosts sending packets to the same target will
provide a valuable criterion for judging whether there is a DDoS attack or not.
Second, DDoS attack usually lead to high packet loss rate toward the victim.
Since monitoring packet loss rates of individual TCP flows would incur infea-
sible high cost, similar to D-WARD, the packet loss rate of a flow is abstractly
represented as the O/] value of the flow. Third, continuity reflects to the obser-
vation that a DDoS attack usually lasts for an extended period of time. As we
shall see later, this makes us be able to distinguish network congestion caused
by DDoS attacks and other network events.

By taking advantage of the three DDoS characteristics, the proposed detec-
tion algorithm can classify TCP flows more precisely. In the proposed scheme,
there are two phases: initialization phase and detection phase. In the initial-
ization phase, the proposed scheme constructs initial profiles for TCP flows
according to the past traffic in the flows. In the profile database, each profile
specifically represents the legitimate flow model of a TCP flow. Then, in the
detection phase, traffic statistics are then compared with profiles. Profiles are

Average Off values

713019 25 31 37 43 49 35 61 67 T3

Figure 10.2.  Average O/ 1 values
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dynamically adjusted to reflect the current behavior of monitored flows In this
way, different thresholds can be used to classify different TCP flows, and thus
the efficiency of the detection algorithm can be effectively improved.

3.2 Detection Phase

In the proposed scheme, characteristics and thresholds of a flow are derived
from the past traffic of the monitored flow. For each TCP flow, its traffic statis-
tics computed from the current observation period are compared against the
legitimate flow model defined by the profile of the flow so as to determine
whether it is malicious or not. To better understand the proposed legitimate
flow model, somc notations are introduced as follows.

First, a two-way flow f is a collection of connections, and each connection
is associated with a pair of IP addresses — an IP address in the set of monitored
addresses and an IP address of the correspondent hosts. The former is referred
to as initial address and the latter is terminal addresses. The number of distinct
initial addresses in a flow f is denoted as Sy. For a connection ¢, . denotes the
ratio of the number of packets originated from the initial address and received
from the terminal address in one observation period in connection ¢. Then, n s
represents the average of the O/I value of all connections in flow f.

Furthermore, there are two threshold values, Ny and T, which help deter-
mine the malicious level of a monitored flow. N represents the mini threshold
ofa flow f. If ny < Ny, then f is considered as a normal flow. T denotes
the maximum allowed ny. If ny > Ty, then f is classified as an attack flow.
If Ny < ny < T, then further traffic statistics must be examined to determine
the malicious level of the flow.

Then, the level of congestion and distribution can be quantified. Consider
a flow f with Ny < ny < T, the level of congestion of f refers to (ny —
N¢)/(Ty — Ny). In this expression, we can clearly see that if the packet loss
ratc of the flow approaches T, the value of the expression will approach 1.
On the other hand, if ny approaches Ny, the value will approach 0. Next, the
level of distribution is quantified as S;/C, where C' denotes a configuration
parameter obtained from the past behavior of the monitored network (We will
describe how to obtain this parameter later). Then, the level of congestion
and distribution are combined and used to generate a value representing the
malicious level of a monitored flow. Herein, the malicious level is denoted o
and computed as follows. (In Eq. 10.1, X is a number between 0 and 1, that is,
0 < A < 1. Itis used to restrict the saturation of o between 0 and 1.)

[Sy/C]

1—-AX ’I‘Lf—Nfi
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It is worthy to note that o has two important characteristics. First, it is
clear that « increases as ny increases. In other words, if the packet loss rate
of a monitored flow f gets higher, ny will increase and consequently ¢ in-
creases. Second, « increases along with Sy even if ny remains the same. This
feature is especially useful in detecting DDoS attacks launched by attack pro-
grams which spoof source IP addresses. The o value will close to 0 when the
monitored flow is in its normal operation. On the other hand, it will increase
significantly when both the level of congestion and the level of distribution
increases.

Although a surge of o value may indicate an DDoS attack that results in an
abnormal increase in the packet loss rate or in the number of initial addresses
in a flow, the « value can also go up due to regular network congestion. Never-
theless, the period of time the o value arises becomes a significant difference
between the two causes. That is, normal network applications will stop send-
ing more packets to a highly congested destination host after several attempts
while DDoS attack scripts continually flush the victim for an extended period
of time. With this observation, we can effectively distinguish a DDoS attack
from a conventional network congestion by examining the length of time that
DDoS attack signal lasts. This concept is implemented as follows. Consider a
TCP flow f. ay is a threshold that represents the maximum allowed o derived
from the current network traffic. Once the threshold o is breached consecu-
tively for ¢ observation periods, f is considered a DDoS attack flow.

According to the proposed DDoS detection strategy, a network flow f can
be classified into four types: normal, suspicious, attack, and transient. The
transition of these types are depicted in Fig. 10.3. In brief, f is classified as a
suspicious flow if & > ay, where « is derived from the traffic in the current
observation period. If oy is breached for consecutive t; observation periods,
f is classified as an attack flow, and rate limiting techniques are applied to f.
Once the traffic statistics of f shows compliance with legitimate flow model,
ie. a < oy, for consecutive PenaltyPeriod observation periods, f is then
classified as transient. For transient flows, rate limiting rules are carefully
removed. When the allowed bandwidth of f reaches MaxRate, f is classified
as a normal flow. Algorithm 1 shows pseudo code of the proposed detection
algorithm.

In addition to the determination of the malicious level of monitored flows, it
is desirable to update the thresholds for classifying network flows. This allows
our scheme to learn the changing behavior of normal traffic, and dynamically
adjust the thresholds according the current traffic statistics of monitored flows.
For the adjustment of thresholds, attack traffic will be filtered out, and only
traffic of a normal flow will be used to update thresholds. In this way, thresh-
olds will not be polluted by attack traffic.
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Updating a threshold is accomplished by feeding back the current traffic
statistics. As we shall see shortly in this section, given a volume of historical
traffic of the monitored flow f, we can derive T, and Ny for the monitored
flow. In fact, by the same procedure, we can compute traffic statistics for each
observation period. Assume that flow f is classified as normal in period . Let
ffﬂ- denote the maximum allowed O/I value derived from the traffic volume in
observation period 4, and T’ ; denote the same threshold used to classify flow
f in period ¢ (i.e., Ty of period 7). Then, T ;1 of the next observation period
(¢ + 1) can be computed in the same way:

Tpipr =B+ Tpi+ (1 — B) + Ty,
In the similar fashion, N can be updated as follows.

Njip1 =0 Npi+ (1 - 6) * Ny,

where [ is a configurable parameter ranging from zero to one. At present,
we suggest 3 to be 1/2. However, its best value for a particular type of net-
works heavily relates to the variation of monitored network traffic, and may
need further investigation.

3.3 Initialization Phase

It is clear that the settings of thresholds play an important role for the clas-
sification. As mentioned above, the learning phase is to compute these thresh-
olds according to normal traffic of the monitored flows. It is worthy to note
that the traffic used in the learning phase must be carefully examined and can-
not contain attack traffic. Otherwise, the statistics derived will be incorrect and
cannot be used to detect attacks. Due to this concern, Currently in the pro-
posed scheme we perform off-line learning. That is, after all the thresholds are
determined according to the historical traffic, the learning phase halts. This
helps prevent our scheme from being polluted by on-line attack traffic. Next,
the configurations of the threshold are described.

Consider parameters used in Eq. 10.1, i.e. T, Ny and C. Recall that
T stands for the maximum allowed threshold of the O /I value of a monitored
flow and N represents a mini threshold of the O /I value. Assume that the trail
of historical network traffic is available which does not contain attacks. The
traffic is partitioned into volumes in terms of observation periods, and then,
thresholds are derived from the partitioned traffic volumes. In our scheme, the
O/I value of each observation is measured. Then, we set T = 2 % Olf o
and Ny = Ol 44, where Ol 1,4, denotes the maximum observed O/ value
of flow f derived from historical traffic data and Ol 4,  denotes the average
O/I value. Next, Let C be the maximum number of distinct initial addresses
in a flow during one observation period.
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Algorithm 1 Detection Procedure

1: loop
2:  Collect IP packets received in one observation period.
3:  for each packet originating from monitored IP addresses do
4 if Protocol = TCP then
5: Classify the packet into a flow according to the destination IP address.
6 end if
7:  end for
8:  calculate the O/I values of monitored TCP connections.
9:  for each flow (let the current flow be denoted as ) do
10: f Ny <my < Ty then
11 compute « for flow f.
12: if o« > oy then
13: increase the number of time that f is classified as suspicious.
14: if the number of times that f is classified as suspicious > ¢, then
15: generate a DDoS attack alert and classity the flow as attack.
16: perform rate-limiting.
17: end if
18: else
19: reset the number of times that f is classified as suspicious.
20: end if
1 elseif ny > T then
22: Set o to 1, gencrate a DDoS attack alert and classify the flow as attack.
23: perform rate-limiting
24: end if
25:  end for

26: end loop
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After Ty, Ny and C are configured, we can then compute a set of « values,
one for each observation period. Then, we can set o to the average of the set
of o values and subsequently set ¢ ¢ to be the maximum consecutive number of
times that o¢ is breached in the set.

34 Rate Limiting

In addition to detecting DDoS attacks, rate limiting is another component of
the proposed scheme. In our approach, if a flow f is classified as attack, rate
limiting technique will be applied to the flow in order to limit malicious traffic
to a manageable level. One important design principle of our rate limiting
strategy is that the rate limit applied to a malicious flow must reflect to current
behavior of the flow. In this way, we can further restrict an ill-behaviored flow
when it continually violates the legitimate flow model. From this point of view,
the o value, which represents the malicious level of the monitored flow, serves
as a rate limiting parameter. For the first time a flow is classified as an attack
flow, the correspondent rate limit is:

rl=R+(1—a) (10.2)

In Eq. 10.2, rl denotes the rate limit and R denotes the sending rate of the
monitored for in the current observation interval. In the following observation
periods, if the malicious flow does not show compliance to the legitimate flow
model, it will be restrict further, according to the following formula:

P

Inew = min(rlog, R) * (1 — o) % 5——F—
Tlnew = min(riygy, R) * ( a)*Ps+Pdrop

(10.3)

In Eq. 10.3, rl,eq denotes a new rate limit to be applied on the malicious
flow. rly4 denotes the rate-limit applied on the flow in previous observation
interval. R represents the realized sending rate in previous observation interval.
P is the total number of packets sent in the flow and Py, is the total number
of packets dropped because of the imposed rate limit.

In this way, flows that are part of DDoS attacks would be quickly restricted
to a very low rate since the attack scripts would persistently send attack packets
to the victim. Consequently, the fraction (Ps)/(Ps+ Parop) would become very
low quickly.

Next, consider the case that the rate limited flow is mis-classified. In this
case, TCP-based network applications will stop sending packets when the net-
work is highly congested. Since the TCP/IP protocol will actively slow down
the sending rate, the flow will show compliance with the legitimate flow model.
In our approach, whenever an attack flow is compliant with the normal flow
model for consecutive PenaltyPeriod observation periods, the flow is consid-
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ered a transient flow and the recovery process begins. In the recovery process,
rate limit are carefully removed according to the following equation:

P
Tlnew = /r'lold * —

_— 10.4
a*Ps+Pdrop ( )

In Eq. 104, it is clear that the speed of recovery is controlled by « and
Pg/(Ps + Pyrop). Both reflect the current behavior of the monitored flow.
When the rate limit reaches MaxRate, a transient flow is classified as a normal
flow, and rate limit is completely removed.

4. Performance Evaluation

To evaluate the performance of the proposed scheme, we implemented both
prototypes of D-WARD and our approach on a machine which runs the FreeBSD
operating system. In our experiment, two types of DDoS attacks are conducted:
TCP SYN flooding attack and link overloading attack. In the TCP SYN flood-
ing attack, each attack agent floods the victim with TCP SYN packet at the
maximum rate of 100KBps. In this experiment, we will show that attacks de-
tected by D-WARD can also be detected by our approach. Even further, our
scheme can detect the attacks earlier than D-WARD. Next, In the link overload-
ing attack, each agents sends the victim at the maximum rate of 100KBps. The
link bandwidth of the victim is restricted to S00KBps. This is accomplished
by using Dummynet [Rizzo, 1997]. (there are in total 10 agents) In this experi-
ment, we will show that our approach can detect attacks which cannot detected
by D-WARD. For both types of attacks, we replicate the four attack scenarios
tested in D-WARD. That is, constant rate attack , pulsing attack , increasing
rate attack and gradual pulsing attack.

4.1 Experimental Results

Fig. 10.4, 10.5, 10.6, and 10.7 show the experimental results of TCP SYN
attack. The x-axis denotes time measured in second and the y-axis stands for
attack bandwidth measured in KB per second. The line with “x” symbols rep-
resents the attack bandwidth generated by attack agents. The line with triangle
symbols represents attack bandwidth going through D-WARD, and the line
with square symbols denotes the attack bandwidth passing by the proposed
scheme. According to the figure, our scheme can detect the attack earlier than
D-WARD. This makes our scheme more effective than D-WARD mainly be-
cause the thresholds used in our scheme are continually adjusted and derived
from the past behavior of the monitored flows.

Next, we examine the experimental results of link overloading attacks. In
this experiment, by controlling the attack sending rate, the O/I value of the
attack flow only reaches 2, smaller than threshold value 3 used in D-WARD.
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Thus, D-WARD is unable to detect the presence of the attack. On the other
hand, the proposed scheme can identify the attack and perform subsequent
rate limiting. Fig. 10.8, 10.9, 10.10, and 10.11 show the experimental result.
Similarly, the x-axis denotes time measured in second and the y-axis stands
for attack bandwidth measured in KB per second. The line with “x” symbols
represents the attack bandwidth generated by attack agents. The line with tri-
angle symbols represents attack bandwidth passing by D-WARD, and the line
with square symbols denotes the attack bandwidth going through the proposed
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Figure 10.8. Constant bandwidth overloading attack.
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5. Conclusion and Future Work

Technology resisting DDoS attacks has drawn considerable attention in re-
cent years. However, most existing approaches suffer from either low detection
rate, high deployment cost, or lack of effective attack response mechanisms.
In this paper, we present a DDoS defense approach which monitors two-way
traffic between a set of monitored IP addresses and the rest of the Internet. Our
approach can accurately identify DDoS attack flows and consequently apply
rate-limiting to the malicious network flows. In this way, DDoS attack traffic
can be contained in source networks, and consequently lower the effectiveness
of the attack. To effectively stop DDoS attacks, our approach needs to be de-
ployed in routers serving as default gateways. With cooperative routers, our
approach provides an effective defense mechanism against DDoS attacks.

Although the scheme presented in this paper can effectively detect DDoS
attacks based on two-way flows, several important issues need further investi-
gation. For instance, one pressing problem not addressed in this paper is how to
establish the profile of a new type of flow that did not appear in historical traf-
fic data. As mentioned previously, historical traffic used in the learning phase
must not have attack traffic; otherwise, characteristics of normal flow behavior
may not be derived. To achieve this, the simplest way is to manually examine
the collected traffic before it can be passed to learning process. However, it is
clear that this approach is not efficient since it requires an extensive amount
of time to examine the traffic manually. Furthermore, investigation for effec-
tive creation of new flow profiles is desirable. Additionally, an effective profile



A Source-End Defense System against DDoS Attacks 167

management system is important and critical to the overall performance of the
DDoS defense system. With all the systems putting together, the source-end
DDoS defense can be quite effective and consequently deter DDoS attacks.
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Abstract

Software vulnerabilities can be attributed to inherent bugs in the system. Several
types of bugs introduce faults for not conforming to system specifications and
failures, including crash, hang, and panic. In our work, we exploit security faults
due to crash-type failures. It is difficult to reconstruct system failures after a pro-
gram has crashed. Much research work has been focused on detecting program
errors and identifying their root causes either by static analysis or observing
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their running behavior through dynamic program instrument. Our goal is to de-
sign a tool that helps isolate bugs. This tool is called BEAGLE (Bug-tracking
by Execution Auditing from Generated Logs and Errors). BEAGLE periodically
makes stack checkpoints of program in execution. If the software crashes, we
can approximate to the latest checkpoint and infer the precise corrupt site. After
identifying the site of control state corruption, tainted input analysis will deter-
mine system exploitability if untouched passed through the corrupt site. Several
case studies of corrupt site detections and tainted input analysis prove the appli-
cability of our tool.

Keywords:  Dynamic Analysis, Software Wrapper , COTS Vulnerability Testing, Control
State Corruption

1. Introduction

Abnormal program running behaviors have much to do with software secu-
rity, including access race conditions, tainted input attributed to system failures
such as buffer overflow and indefinitely hang of denial of service. We can clas-
sify such cases of anomaly into crash, hang, and panic. Especially, crashed
software may be exploited to be a potential vulnerability. It is difficult to re-
construct system failures after a program has crashed due to corrupted control
state and gaps between crash sites and corrupt sites.

In order to meet the time to market, software releases with unintended flaws.
Some of them cause software crash, while others may introduce security vul-
nerabilities. Our goal is to design a tool that helps analyze the program running
behavior and determine if it is an exploitable vulnerability. We try to intercept
and monitor running behaviors during programs in execution when only COTS
(Commercial Off The Shelf) executables available for analysis.

We develop a run-time instrument and interception tool called BEAGLE to
periodically monitor software running behavior. If the software crashes, we
can approximate to the latest checkpoint and determine if the failure point is
exploitable through tainted input analysis. We can observe the internal behav-
ior of running programs, such as API call sequence, call parameters and return
values through wrapping system call API techniques, and determine whether
these things are anomalous or not. We develop such a dynamic instrument tool
able to determine if the crash site is security exploitable.

We investigate the design and implementation of the BEAGLE system to
instrument the interfaces between the software application and the operating
system functions with an interactive software wrapper. This wrapper cannot
only intercept the functions to record the parameters and the return value but
also receiving testing directives to replace calling parameters and the return
value with any arbitrary value. We could use this tool to easily instrument the
application, change the intended OS function call parameters with testing data
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and observe the response of the application to find out the suspicious crash
sites.

2. The Detection of Control State Corruption

Our research uses the following approaches to manifest and analyze the
crash process as precisely as possible.

2.1 Distinguishing Corrupt site and Crash site

We must clarify the difference between corrupt site and crash site. The crash
site is obviously the point where software crashes. The corrupt site is the point
where software stack is corrupted. For example, in Figure 11.1, function foo
passes its local buffer buf to function bar, which overflows the buffer. After
strcpy () returns, the stack is corrupted. However, the program do not crash
until the function foo returns(in line 4). Therefore, we must monitor the corrupt
site to find the root causes.

2.2 Algorithm

< ebpi,ebpa, ..., ebpn_1,ebpy, > is a strictly decreasing list. ebp; points
to the address of ebp;—1, 1 < ¢ < n. When entering a function ebp,4 is
appended to the list; when exiting a function ebp,, is removed from the list.

Initial time, saved EBP of startup function, ebp; := ebp;; saved EBP of
main function ebp,, := ebps. At each checkpoint, Beagle performs the follow-
ing corrupt site detection algorithm:

Corrupt_Site_Detection { traverse from ebp,, to the head of list if ebp; #
ebpy AND ebp,, £ ebps then the stack is corrupt else if ebp, = ebp; AND
ebpy, # ebpg then in exception handler }

1. void foo(void) {

2. char buf [8];

3. bar (buf) ;

4. } /+crash sitex/

5. void bar(char xbuf) {

6. strcpy (buf, "this is a long string");
/xcorrupt sitex/

7.

8.}

Figure 11.1. A program with buffer overflow.
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2.3 API call interception

API call interception technique is the groundwork of this work. The ability
to control API function calls is extremely helpful and enables developers to
track down the internal actions happening during the API call. The purpose
of API call interception is to take control of some execution code. That is the
so-called ”’stub” to force the target application to execute the injected code.
Therefore, the injected code can easily monitor the program by parameter log-
ging, return value checking, stack dump, EBP tracing, etc. According to the
ways of injection of users’ DLL into the target process and interception mech-
anisms, there exists some different kind of works for different purposes. After
the consideration about stack frame evolving due to added monitor function
and the completeness of the API interception mechanism, Detours [ Galen and
Doug, 1999] is chosen to be the framework of this work.

2.4 Function call wrapping

For purpose of monitoring the stack frame evolving and tracing EBP and
return pair, however, API call interception still seems too coarse to pinpoint
the reason why the application programs crash. Actually, the most ideal sce-
nario for crash analysis is to figure out which line of code is the onset of bugs,
and it is impossible without source code. What we can do furthermore is to
wrap user functions to achieve the finer-grained monitoring. The process of
function call wrapper generation is shown in Figure 11.2. Function call wrap-
ping is especially helpful to catch the site resulting in crashes happening on
the stack. For instance, if a function in a program does some string manipula-
tion without careful bound checking, it may crash when the string in process
is out of bound. Such vulnerabilities bring about the classic and simple attack,
i.e. stack overflow. By overwriting the return address through stack variables
overflowing, the attacker can intercept the programs when this function re-
turns. Therefore, the control jumps to a location where the attacker would
have inserted malicious code. To deserve to be mentioned, the buffer overflow
attack is a kind of injection/interception mechanism. Compared with the API
interception techniques mentioned above, buffer overflow cannot successfully
return back to the correct site after some destructive activities since the return
address and the stack is overwritten. The principle of function wrapping is
similar to what Detours does in the API call interception. Detours replaces the
first few instructions of the target API with unconditional jump to the user-
provided monitor function. The primary difference between Detours and this
function wrapper is as follows:

1 Detours acquires the API call entry address from static linking. How-
ever, this function wrapper acquires the user function from the disas-
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sembly of the binary code of the application program through the FREE
tool named OllyDBG.

2 Detours only instruments the prologue of the API call. However, this
function wrapper instruments both the prologue and epilogue of the user
function. Comparing the stack tracing in a function’s entry and exit is
extremely helpful to detect the anomaly of the stack.

2.5 Input pollutant tracing

Establishing the bridge connecting the software robustness and security is
a brand-new and fantastic idea in the research area of software testing. Tra-
ditional testing techniques are well equipped to find the bugs that violate the
specification, but lack of looking for how these bugs relate to the security is-
sues. For example, there are plenty of application crashes during our everyday
life and you may wonder whether bugs leading to these crashes are security-
related.

‘When stack corruption occurs, current stack frame is infected by pollutants.
We apply the LCS(Longest Common Subsequence) in the following algorithm
to correlate the relevant local variables. If the pollutant variables are related to
some input, the bug may become security vulnerability.

input_pollutant_tracing { for ¢ = n downto 2 { leslen =
LCS(lebpn—1, ebpy), pollutant); if (leslen > threshold) then correlate
the local variables } }

.{Function Info
.

Figure 11.2. Process of the function wrapper generation
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3. The BEAGLE System Design and Implementation

The instrument tool mentioned above could help testers to know why the
programs crash by observing the stack and input tracing. Furthermore, to man-
ifest the exploit process of the known vulnerable programs is another proof that
this tool is useful. Using the log of runtime monitoring on the running appli-
cations, we hope that this tool could help analyze why this software could be
exploited. There is an instrument tool to communicate with the API/function
wrapper DLL that is injected into the target process. During the execution of
the application program, testers may want to modify the parameter or return
values of a certain suspicious functions. Figure 11.3 shows the system archi-
tecture.

3.1 Binary Disassembly

Our system relies heavily on the disassembly ability of OllyDBG, which
is a 32-bit assembler debugger on Microsoft Windows. It does much work
on binary code analysis that we could utilize especially when the source is
not available. It could recognize procedures, API calls, and complex code
constructs, like call to jump to procedure. These analyses help us parse the
disassembly of the application to retrieve the necessary information such as
procedure call sitse, and entry addresses. In addition, it could disassemble all
the executable modules the application loads.

3.2 Function Info Parser

In order to transfer control from the execution of the application process
to our runtime-generated stub, we need to replace instructions at the function
prologue and epilogue with a JMP to the stub. The type of the procedures

Process

Kernel
Snapshot,

W _____
User space
2 s .

=75 Wrapper.dit

Figure 11.3.  The architecture of Beagle
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we recognize is the typical function prologue and epilogue, which will do op-
erations on the stack and frame pointer. Our function info parser retrieves
prologue/epilogue information that is needed by the instrument library .

When doing instrument of the prologue, the targeted library will check the
length of the binary to be replaced. If the length is less than 5 bytes, it means
that there is not enough space to substitute the prologue for the JMP instruc-
tion and we leave this kind of procedure to breakpoint interruption instruction
instrumentation if needed. There may be multiple return sites of this function,
but not all of them have enough space to be instrumented.

33 Instrumentation Library

We develop an instrumentation library to replace the certain functions at
runtime. According to the information provided by the function info parser,
the instrument library will allocate the space for the stub and append the in-
tended instructions on the stub. The most important instruction is to CALL the
monitor function where we could backtrace the stack for corruption detection.
Detours provides some useful library to append the certain instruction on the
stub.

4. Experiments and Assessment
4.1 Calibration of Checkpoint Interval

We checkpoint notepad.exe with different intervals as shown in Figure 11.4.
With finer-grained interval, we get closer picture of the stack trace. However,
due to the hardware limitation and OS interrupt, the length of the interval is
limited.

4.2 Stack Tracing and Tainted Input Analysis

To validate the correctness of the BEAGLE prototype, we need to verify that
our stack corrupt site detection does point out the vulnerable function where
the stack is polluted. We instrument RobotFTP Server 1.0, which has a known
stack overflow vulnerability, to demonstrate that BEAGLE could detect the ab-
normal stack at runtime when running the exploit and terminate the program.
The description of the vulnerable program follows. RobotFTP Server is an
FTP server for the Microsoft Windows platform. It has a non-trivial buffer
overrun bug in the function that processes the login information that an FTP
client sends. An attacker can first login with a username longer than 48 char-
acters and login again with a username 1994 character long to overflow the
return address of this function. When this program is running under the BEA-
GLE instrumentation, this buffer overflow will be detected and terminate the
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program to prevent from transferring control to the attacker’s payload. The
result is shown as Figure 11.5.

Irtsrenl 100 ms Interval 10 ms Interval: 1 ms

SCk—topT U1 ack bager ULADDOTH
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Figure 11.5.  The stack backtrace of the RobotFTP Server 1.0 with overlong input

We can see first frame pointer and return address pair in the third line from
bottom, (41414141, 58585858), and this is the second overlong input user-
name. Before program returns from this vulnerable function, our epilogue
monitor function backtraces the stack and discovers that this stack trace is ab-
normal by comparing the stack trace in the prologue monitor function.

5. Related Work

A considerable amount of work has been performed on detecting program
errors and identifying their root causes either by static analysis or observing
their running behavior through dynamic program instrumentation. In this sec-
tion we review different work in each category and relate them to our work.
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5.1 Static analysis

Static analysis is based on the information provided by the source code.
It may validate the call sequence to find the program error or check if the
vulnerable function call is used without actually executing the application. The
drawbacks of this way to find bugs are:

1 there are too many program states to verify.

2 it cannot know some dynamic information such as pointers and should
use other inexact measures to analyze [Guyer and Lin, 2003, Shapiro
and Horwitz, 1997, Bjarne, 1996].

Our method combines the static analysis of binary disassembly and dynamic
instrument and monitor to point out where the corruption occurs.

Chen and Wagner use a formal approach to examine whether the program
violates the pre-defined security properties, which are described by Finite State
Automata (FSA) [Chen and Wagner, 2002] . The programs to be tested are
modeled as pushdown automation (PDA) and MOPS uses model-checking
techniques to determine the reachability of exception states in the PDA. Li-
blit and Aiken present an algorithm for computing a set of paths given a crash
site and a global control flow graph [Liblit and Aiken, 2002]. Furthermore,
it uses some post-crash artifacts such as the stack trace and the event trace to
reduce the set of possible execution paths.

5.2 System Call Interception Techniques

System call interception is the fundamental technique in our work. Detours
developed by Hunt and Brubacher is a library for instrument of arbitrary Win32
functions on x86 machines [ Galen and Doug, 1999]. It replaces the first few
instructions of the target function with unconditional jump, which points to
the user-provided detour function. Users can do the interception work in the
corresponding detour function.

Pietrek develops API-SPY in his book [Pietrek, 1995]. API-SPY tools lists
API’s name in the order they are called, and record the parameters as well as the
return value. The purpose of this work, the same as Detours, is to get control
before the intended target function call is reached. However, the technique
used in API-SPY is DLL redirection by modifying the Import Address Table
(IAT) , much different from the way Detours used, which is to modify the target
function’s prologue code to transfer control by inserting a JMP instruction at
the start of the function.
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53 Tracking Down Software Bugs Using Runtime
Inspection

A few systems automatically add codes in the source and observe the be-
havior of these codes at runtime. The difference from our work is that we in-
strument the runtime process image, not the source. Therefore even if we don’t
have the source, we can still detect program errors and add survival patches.
Hangal and Lam present DIDUCE for tracking down software bugs using au-
tomatic anomaly detection [Hangal and Lam, 2002]. DIDUCE aids program-
mers in detecting complex program errors and identifying their root causes.
It dynamically formulates hypotheses of invariants obeyed by the program.
Our work is also based on runtime inspection, but in different method from
DIDUCE. DIDUCE observes the invariants at runtime and check if the pro-
gram violates. Binary Rewriting protects the integrity of the return address on
the stack by modifying the binary code [Manish and Chiueh, 2003]. The dif-
ference from our work is that its detection on stack overflow has false positive
when the corruption occurs not in the current stack frame.

5.4 Fault Triggering and Robustness Testing

Fault triggering systems aide in producing system crashes and we can ex-
amine whether these crash are exploitable or not. Ghosh and Schmid present
an approach to testing COTS software for robustness to operating system ex-
ceptions and errors [Ghosh and Matthew, 1999]. That is, they bring up an idea
to assess the robustness of Win32 applications. It instruments the interface
between the software application and the Win32 APIs. By manipulating the
APIs to throw exceptions or return error codes, it analyzes the robustness of
the application under the stressful conditions. Whittaker and Jorgensen sum-
marize the experiences of breaking software in their lab [James and Jorgensen,
1999]. By studying how these software failed, they presents four classes of
software failures: improperly constrained input, improperly constrained stored
data, improperly constrained computation and improperly constrained output.
Software testers can use the four classes of failures to break the software.

6. Conclusions

We have tried to build up relationship between system robustness and soft-
ware security. Unreliable software with inherent bugs may be exploited to
violate security specifications, meant to be security faults. Types of bugs are
either faults not conforming to system specifications or failures such as crash,
hang, and panic. We design and implement the BEAGLE system to back-track
crash type failures and analyze tainted input by an input pollutant tracing algo-
rithm to determine if such failures are security exploitable. Crash-type failures
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are potentially vulnerable to be exploited by tainted input due to corruption of
control state. We try to approximate sites of control state corruption by stack
checkpoints and monitoring run-time status. Known exploits have been tested
to proof the applicability of the system. We hope to discover more failures that
will introduce security exploits with finer-grained stack checkpoints and fur-
ther improve the precision of approximation process for corruption detection.
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Abstract Web application security remains a major roadblock to universal acceptance of
the Web for many kinds of online transactions, especially since the recent sharp
increase in remotely exploitable vulnerabilities has been attributed to Web appli-
cation bugs. In software engineering, software testing is an established and well-
researched process for improving software quality. Recently, formal verification
tools have also shown success in discovering vulnerabilities in C programs. In
this chapter we shall discuss how to apply software testing and verification al-
gorithms to Web applications and improve their security attributes. Two of the
most common Web application vulnerabilities that are known to date are script
injection , e.g., SQL injection, and cross-site scripting (XSS) . We will formalize
these vulnerabilities as problems related to information flow security—a conven-
tional topic in security research. Using this formalization, we then present two
tools, WAVES (Web Application Vulnerability and Error Scanner) and Web-
SSARI (Web Application Security via Static Analysis and Runtime Inspection)
, which respectively utilize software testing and verification to deal in partic-
ular with script injection and XSS and address in general the Web application
security problems. Finally we will present some results obtained by applying
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013, NSC-93-2422-H-001-0001, and NSC-93-2752-E-002-005-PAE.



184 COMPUTER SECURITY IN THE 21 CENTURY

these tools to real-world Web applications that are in use today, and give some
suggestions about the future research direction in this area.

Keywords:  Web application security, software testing, software verification

1. Introduction

As World Wide Web usage expands to cover a greater number of B2B
(business-to-business), B2C (business-to-client), healthcare, and e-government
services, the reliability and security of Web applications has become an in-
creasingly important concern. In a Symantec analysis report of network-based
attacks, known vulnerabilities, and malicious code recorded throughout 2003
[Higgins et al., 2003], eight of the top ten attacks were associated with Web
applications; the report also stated that port 80 was the most frequently at-
tacked TCP port. In addition to holding Web applications responsible for the
sharp increase in moderately severe vulnerabilities found in 2003, the authors
of the report also suggested that Web application vulnerabilities were by far
the easiest to exploit.

Web application insecurity is attributed to several factors. Firstly, the Web,
which was initially designed as a data-delivery platform, has quickly evolved
into a complex application platform on top of which more and more sophisti-
cated applications have been developed. As a result, Web specifications have
grown rapidly to meet rising demands, and browsers and Web-development
languages fought a “feature war” to win market share. Unfortunately, security
issues have been left as an afterthought. The fast-expanded features did help
Web growth; however, many security side effects they induced have become
today’s major concern for Web adoption. Secondly, since software vendors are
becoming more adept at writing secure code and developing and distributing
patches to counter traditional forms of attack (e.g., buffer overtflows), hackers
are increasingly targeting Web applications. Web application vulnerabilities
are hard to eliminate because most Web applications a) go through rapid de-
velopment phases with extremely short turnaround time, and b) are developed
in-house by corporate MIS engineers, most of whom have less training and ex-
perience in secure software development compared to engineers at IBM, Sun,
Microsoft, and other large software firms. Lastly, current technologies such
as anti-virus software and network firewalls offer comparatively secure protec-
tion at the host and network levels, but not at the application level [Curphey
et al., 2002]. When network and host-level entry points are relatively secure,
the public interfaces to Web applications become the focus of attacks [Meier
et al., 2003] [Curphey et al., 2002]. In this chapter we shall first provide a brief
description of common Web application vulnerabilities. We then describe pos-
sible automated approaches to eliminating such vulnerabilities. Finally we will



Web Application Security—Past, Present, and Future 185

give some concluding remarks and present a few possible avenues for future
work in this area.

2. Common Web Application Vulnerabilities

Two of the most common Web application vulnerabilities are script injection
(e.g., SQL injection) and cross-site scripting (XSS). In this section, we will
briefly describe these vulnerabilities; the reader is referred to Scott and Sharp
[Scott and Sharp, 2002a] [Scott and Sharp, 2002b], Curphey et al. [Curphey
et al., 2002], and Meier et al. [Meier et al., 2003] for more details.

2.1 Cross-site Scripting

On Feb 2, 2000, CERT Coordination Center issued an advisory [CERT,
2001] on “cross-site scripting” (XSS) attacks on Web applications. This hard-
to-eliminate threat soon drew the attention and spawned active discussions
among security researchers [Neumann, 2000]. Despite the efforts of researchers
in the private sector and academia to promote developer awareness and to de-
velop tools to eliminate XSS attacks, hackers are still using them to exploit
Web applications. A study by Ohmaki (2002) [Ohmaki, 2002} found that al-
most 80 percent of all e-commerce sites in Japan were still vulnerable to XSS.
A search on Google News (http://news.google.com) for XSS advisories on
newly discovered XSS vulnerabilities within the month of March 2004 alone
yielded 24 reports. Among these were confirmed vulnerabilities in Microsoft
Hotmail [Varghese, 2004] and Yahoo! Mail [Krishnamurthy, 2004], both of
which are popular web-based email services. Figure 12.1 gives an example of
an XSS.

[ $nick=$_GET['nick’]; echo "Welcome, ".$nick."!" |

Figure 12.1.  Example of an XSS vulnerability.

Values for the variable $nick come from HTTP requests and are used to con-
struct HTML output sent to the user. An example of an attacking URL would
be:

http://www.victim.com/default.php?
nick=<scriptsmalicious.script () ;</script>

Attackers must find ways to make victims open this URL. One strategy is to
send an e-mail containing a piece of Javascript that secretly launches a hidden
browser window to open this URL. Another is to embed the same Javascript
inside a Web page, and when victims open the page, the script executes and
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secretly opens the URL. Once the PHP code shown in Figure 12.1 receives
an HTTP request for the URL, it generates the compromised HTML output
shown in Figure 12.2. In this strategy, the compromised output contains mali-

[ Welcome, <scriptsmalicious_script();</script>! [

Figure 12.2.  Compromised HTML output.

cious script prepared by an attacker and delivered on behalf of a Web server.
HTML output integrity is hence broken and the Javascript Same Origin Policy
[Microsoft, 1997] [Netscape] is violated. Since the malicious script is deliv-
ered on behalf of the Web server, it is granted the same trust level as the Web
server, which at minimum allows the script to read user cookies set by that
server. This often reveals passwords or allows for session hijacking. Further-
more, if the Web server is registered in the Trusted Domain of the victim’s
browser, other rights (e.g., local file system access) may be granted as well.

2.2 SQL Injection

Considered more severe than XSS, SQL injection vulnerabilities occur when
untrusted values are used to construct SQL commands, resulting in the execu-
tion of arbitrary SQL commands given by an attacker. Figure 12.3 shows an
example. In Figure 12.3, SHTTP_REFERER is used to construct a SQL com-

$sql="INSERT INTO client_log
VALUES (' SHTTP.REFERER' ) ; ";

mysgl_query ($sqgl) ;

Figure {2.3. Example of a SQL injection vulnerability.

mand. The referrer field of an HTTP rcquest is an untrusted value given by the
HTTP client; an attacker can set the field to:

") ; TRUNCATE TABLE client_log
This will cause the code in Figure 12.3 to construct the $sgl variable as:

INSERT INTO client_log VALUES(’'’);
TRUNCATE TABLE client_log;

Table “client_log” will be emptied when this SQL command is executed. This
technique, which allows for the arbitrary manipulation of backend database, is
responsible for the majority of successful Web application attacks.
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23 General Script Injection

General script injection vulnerabilities are considered the most severe of the
three types discussed in this chapter. They occur when untrusted data is used
to call functions that manipulate system resources (e.g., in PHP: fopen(), re-
name(), copy(), unlink(), etc) or processes (e.g., exec()). Figure 12.4 presents
a simplified version of a general script injection vulnerability. The HTTP re-
quest variable “df” is used as an argument to call fopen(), which allows arbi-
trary files to be opened. A subsequent code section may deliver the opened file
to the HTTP client, which allows attackers to download arbitrary files. A more

Sdownload._file = $_POST[’df’];
1f ($.POST[’action’] == ‘download’)
Sfp=fopen (Sdownload_file, ‘rb’) ;

Figure 12.4. Example of a general script injection vulnerability.
severe example of this vulnerability type is shown in Figure 12.5:

The intent for this code is to execute the validate user.exe program in or-

exec ("validate_ user.exe $_POST[’'user’]
$_POST[’'pass’1l");

Figure 12.5. A more severe script injection bug.

der to validate user accounts and passwords. However, since the “user” and
“pass” variables are untrustworthy, the code permits the execution of arbitrary
system commands. For instance, a malicious user can send an HTTP request
with user="x y; NET USER foo /ADD” and pass="". As a result, the actual
command becomes:

validate user.exe x y; NET USER foo /ADD
This results in the creation of new user “foo” with logon rights.

3. Current Countermeasures

In this section we will discuss current countermeasures or approaches to
ensuring Web application security. Scott and Sharp [Scott and Sharp, 2002a]
[Scott and Sharp, 2002b] have asserted that Web application vulnerabilities are
a) inherent in Web application programs; and b) independent of the technol-
ogy in which the application in question is implemented, the security of the
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Web server, and the back-end database. An intuitive solution to Web appli-
cation security is to increase the awareness of secure coding practices during
the code development and implementation phase. Recently, the Open Web
Application Security Project (OWASP), an open source community dedicated
to promoting Web application security, released a list of the “Top Ten Most
Critical Web Application Security Vulnerabilities” [OWASP, 2003]. Many or-
ganizations (including the United States Federal Trade Commission [Federal
Trade Commission, 2003]) have recommended the report as a “best practice”
for Web application development. VISA referenced the OWASP report in their
Cardholder Information Security Program (CISP) , and now requires that all
custom code be reviewed by knowledgeable reviewers before being put into
production [Visa U.S.A, 2003]. These actions suggest the growth of a security
auditing process—perhaps inevitable in light of the errors that even experi-
enced programmers tend to make [Holzmann, 2002]. Arguably, vulnerabilities
are less severe and easier to fix if they are discovered during or very soon
after the development stage. However, the process of code auditing by review-
ers who are competent enough to detect vulnerabilities is time-consuming and
costly [Cowan, 2002], and there is no guarantee that such reviews are complete
in that they will find every possible flaw in systems containing millions of lines
of code. With today’s Web applications being developed and constructed by
components from sources of different trust levels (e.g., in-house, out-sourced,
commercial-off-the-shelf, open-source), there is a serious need for automated
mechanisms. Researchers have proposed a broad range of automated measures
against XSS attacks. According to a) the development stage at which they are
adopted and b) their underlying technology, these measures can be categorized
into four categories—protection, testing, verification, and blended. Table 12.1
shows a comparison of each category’s strengths and drawbacks.

Table 12.1. A comparison of the three different strategies for Web application security.

Stage Immediate | Vulne- Run- Side Source Examples
deployed protection rability time effects re-
identifica- over- quired
tion head
Protection Production Yes No Yes No No AppShield,
InterDo
Testing Production/ No Yes No Yes No WAVES,
Development AppScan,
Weblnspect,
ScanDo
Verification | Development No Yes No No Yes JIF, CQUAL
Blended Production/ Yes Yes Yes No | Yes | ctured, web-
Development SSARI
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3.1 Protection Mechanisms

Installed at the deployment phase and capable of offering immediate se-
curity assurance, protection mechanisms are the most widely-adopted solu-
tion for Web application security. However, though protective technologies
such as anti-virus software, network firewalls and IDSs (intrusion detection
systems) offer comparatively secure protection at the host and network lev-
els, application-level [Curphey et al., 2002] protection technologies are still in
their infancies. Park and Sandhu’s cookie-securing mechanism can be adopted
to eliminate XSS, but it requires explicit modifications to existing Web appli-
cations. Scott and Sharp [Scott and Sharp, 2002a] [Scott and Sharp, 2002b]
proposed the use of a gateway that filters invalid and malicious inputs at the
application level; Sanctum’s AppShield [Sanctum, 2002], Kavado’s InterDo
[Kavado, 2003], and a number of commercial products now offer similar strate-
gies. Most of the leading firewall vendors are also using deep packet inspection
[Dharmapurikar et al., 2003] technologies in their attempts to filter application-
level traffic. According to a recent Gartner report [Sticnnon, 2003], those that
don’t offer application-level protection will eventually “face extinction.” Al-
though application-level firewalls offer immediate assurance of Web applica-
tion security, they have at least three drawbacks: a) they require careful con-
figuration [Bobbitt, 2002], b) they blindly protect against unpredicted behavior
without investigating the actual defects that compromise quality, and c¢) they
induce runtime overhead.

3.2 Formalizing Web Application Vulnerabilities for
Testing and Verification

Adopted during the development phase, software testing and verification
are two established technologies for improving software quality. Though in-
capable of offering immediate security assurance, the two technologies can
assess software quality and identify defects. To understand how they can be
applied to Web applications, we have to first formally model Web application
vulnerabilities. The primary objectives of information security systems are to
protect confidentiality, integrity, and availability [Sandhu, 1993]. From the
examples described in Section 2, it is obvious that for Web applications, com-
promises in integrity are the main causes of compromiscs in confidentiality
and availability. The relationship is illustrated in Figure 12.6. When untrusted
data is used to construct trusted output without sanitization, violations in data
integrity occur, leading to escalations in access rights that result in availability
and confidentiality compromises.

Both software testing and verification techniques can be used to identify
illegal information flow-specifically, to identify violations of roninterference
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Figure 12.6.  Web application vulnerabilities result from insecure information flow, as illus-
trated using XSS.

[Goguen and Meseguer, 1982] policies . We first make the following assump-
tions:

Assumption 1:  All data sent by Web clients in the form of HTTP requests
should be considered untrustworthy.

Assumption 2:  All data local to a Web application are secure.
Assumption 3: Tainted data can be made secure with appropriate processing.

Based on these assumptions we then define the following security policies:

Policy 1:  Tainted data must not be used in HTTP response construction.
Policy 2: Tainted data must not be written into local Web application storage.
Policy 3: Tainted data must not be used in system command construction.

Assumption 1 says that all data sent by Web clients (in the form of HTTP re-
quests) should be considered untrustworthy. A majority of Web application
sccurity flaws result when this assumption is ignored or neglected. The Web
uses a sessionless protocol in which each URL retrieval is considered an inde-
pendent TCP session, which is established when the HTTP request is sent and
terminated after a response is retrieved. Many transaction types (e.g., those
that support user logins) clearly require session support. In order to keep track
of sessions, Web applications require a client to include a session identifier
within an HTTP request. An HTTP request consists of three major parts—
the requested URL, form variables (parameters), and cookies. In practice, all
three are used in different ways to store session information. Cookies are the
most frequently used, followed by hidden form variables and URL requests
To manage sessions, Web applications are written so that browsers include all
session information following initial requests that mark the start of a session;
and processing HTTP requests entails the retrieval of that information. Even
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though such information is transferred to the client by the Web application, it
should not be considered trustworthy information when it is read back from an
HTTP request. The reason is that such information is usually stored without
any form of integrity protection (e.g., digital signatures), and is therefore sub-
ject to tampering. Using such information to construct HTML output without
prior sanitization is considered a Policy 1 violation—the most frequent cause
of XSS. Assumption 2 states that all data local to a Web application should be
considered secure. This includes all files read from the file system and data
retrieved from the database. According to this assumption, all locally retrieved
data are considered trusted, which results in Policy 2, which states that sys-
tem integrity is considered broken whenever untrustworthy data is written to
local storage. Since most applications use client-supplied data to construct
output, our mode! would be too strict without Assumption 3, which states that
untrustworthy data can be made trustworthy (e.g., malicious content can be
sanitized and problematic characters can be escaped). XSS vulnerabilities re-
sult in Policy 1 or Policy 2 violations. Script injection vulnerabilities such as
SQL injection are generally associated with Policy 3 violations.

3.3 Software Testing for Web Application Security

For Web application security, one advantage of software testing over ver-
ification is that it considers the runtime behavior of Web applications. 1t is
generally agreed that the massive number of runtime interactions that connect
various components is what makes Web application security such a challeng-
ing task [Joshi et al., 2001] [Scott and Sharp, 2002a]. Security testing tools for
Web applications are commonly referred to as Web Security Scanners (WSS)

Commercial WSSs include Sanctum’s AppScan [Sanctum, 2003], SPI Dy-
namics’ Weblnspect [SPI Dynamics, 2003], and Kavado’s ScanDo [Kavado,
2003]. Reviews of these tools can be found in [Auronen, 2002], but to our best
knowledge no literature exists on their design. Our contribution in this regard
is a security assessment framework, for which we have named the Web Appli-
cation Vulnerability and Error Scanner, or WAVES. We describe below WSS
design challenges and solutions based on our experiences with WAVES.

3341 Testing Model.  All WSSs mentioned above are testing platforms
posed as outsiders (i.e., as public users) to target applications. This kind of se-
curity testing is also referred to as penetration testing . They operate according
to three constraints:

I: Neither documentation nor source code will be available for the target
Web application.

2: Interactions with the target Web applications and observations of their be-
haviors will be done through their public interfaces, since system-level
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execution monitoring (e.g., software wrapping, process monitoring, and
local files access) is not possible.

3: The testing process must be automated and should not require extensive
human participation in test case generation.

Compared with a white-box approach (which requires source code), a black-
box approach to security assessment holds many benefits in real-world ap-
plications. Consider a government entity that wishes to ensure that all Web
sites within a specific network are protected against SQL injection attacks.
A black-box security analysis tool can perform an assessment very quickly
and produce a useful report identifying vulnerable sites. In white-box testing,
analysis of source code provides critical information needed for effective test
case generation [Rapps and Weyuker, 1985], whereas in black-box testing, an
information-gathering approach is to reverse-engineer executable code. WSSs
to date take similar approaches to identifying server-side scripts (scripts that
read user input and generate output) within Web applications. These scripts
constitute a Web application’s data entry points (DEPs) . Web application in-
terfaces that reveal DEP information include HTML forms and URLs within
HTML that point to server-side scripts. In order to enumerate all DEPs of a
target Web application, WSSs typically incorporate a webcrawler (also called
a softbot or spider) to browse or crawl the target—an approach described in
many studies involving Web site analysis (VeriWeb [Benedikt et al., 2002],
Ricca and Tonella [Ricca and Tonella, 2001a]} [Ricca and Tonella, 2000]) and
a reverse engineering technique (Di Luca et al [Di Lucca et al., 2001] [Di
Lucca et al., 2002], Ricca et al. [Ricca and Tonella, 2002] [Ricca and Tonella,
2001b] [Ricca and Tonella, 2001c]). From our experiments with WAVES, we
learned that ordinary crawling mechanisms normally used for indexing pur-
poses [Bowman et al., 1995] [Cho and Garcia-Molina, 2002} [Manber et al.,
1997] [Miller and Bharat, 1998] [Sebastien] [TMIS] are unsatisfactory in terms
of thoroughness. For instance, many pages within Web applications currently
contain such dynamic content as Javascripts and DHTML, which cannot be
handled by a webcrawler . Other applications emphasize session management,
and require the use of cookies to assist navigation mechanisms. Still others re-
quire user input prior to navigation. Our tests [Huang et al., 2003] show that all
traditional webcrawlers (which use static parsing and lack script interpretation
abilities) tend to skip pages in Web sites that have these features. In both se-
curity assessment and fault injection, completeness is an important issue—that
is, all data entry points must be correctly identified. Towards this goal, we pro-
posed a “complete crawling” mechanism [Huang et al., 2003]—a reflection of
studies on searching the hidden Web [Bergman, 2001] [Ipeirotis and Gravano,
2002] [Liddle et al., 2002] [Raghavan and Garcia-Molina, 2001] [Raghavan
and Garcia-Molina, 2000].
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If each DEP is defined as a program function, then each revelation is the
equivalent of a function call site. We define each revelation R of a DEP as
atuple: R={URL, T, Sa}, where URL stands for the DEP’s URL, T the
type of the DEP, and Sa = {A1, Ao, ..., A,} a set of arguments (or parame-
ters) accepted by the DEP. The type of a DEP specifies its functionality. The
possible types include searching (tS), authentication (tA), account registration
(tR), message posting (tM), and unknown (tU). By combining information on
a DEP’s URL with the names of its associated HTML forms, the names of its
parameters, the names of form entities associated with those parameters, and
the adjacent HTML text, WAVES [Huang et al., 2003] can make a determina-
tion of DEP type. Note that form variables are not the only sources of a DEP’s
input—cookies are also sources of readable input values. Therefore, the set
of R’s arguments Sa = Sp U S¢, where Sg = {P1, P, ..., P,} is the set of
parameters revealed by R, and S¢ = {C4, Cy, ..., C,} is the set of cookies
contained within the page containing R.

Just as there can be multiple call sites to a program function, there may be
multiple revelations of a DEP. In Google, both simple and advanced search
forms are submitted to the same server-side script, with the latter submitting
more parameters. We defined a DEP D as {dURL, dT, dSa}. For a set

Sp = {R1, Ry, ..., Ry} of all collected revelations of the same DEP D,
dURL=Ri.URL =R URL =...= R, URL. D’s type dT = Judge_T(R;.T,
Ry.T, ..., R,.T), where Judge T is a judgment function that determines a

DEP’s type, taking into account the types of all its revelations. D’s arguments
Sa=R;.5aU Ry.SaU...UR,.Sa.

3.3.2 Test Case Generation. Given such a definition, a DEP can
be viewed as a program function, with dU RL being the function name, dT'
the function specification, and dSa its arguments. The function output is the
generated HTTP response (i.e., HTTP header, cookies, and HTML text). In
this respect, testing a DEP is the same as testing a function—test cases are
generated according to the function’s definitions, functions are called using the
test cases, and outputs are collected and analyzed.

Testing for Policy 1 violations involved using our DEP definition to generate
test cases containing attack patterns, submitting them to the DEP, and studying
the output for signs of the attack pattern. The appearance of an attack pattern
in DEP output means that the DEP is using tainted (non-sanitized) data to
construct output. The two questions guiding our test case generation were a)
What is an appropriate test case size that allows for a thorough testing within
an acceptable amount of time? and b) What types of test cases will/will not
cause side effects?

In response to the first question, given a DEP D of dSa={A41, Aa, ..., An},
a naive approach would be to generate 7 test cases, each with a malicious value
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placed in a different argument. For each test case, arguments other than the
one containing malicious data would be given arbitrary values. This appears
to be a reasonable approach on the surface, but it is subject to a high rate
of false negatives because DEPs often execute validation procedures prior to
performing their primary tasks. For example, D may use A, to construct output
without prior sanitization, but at the beginning of its execution it will check A,
to see if it contains a “@” character, when As represents an email address. In
such situations, none of our n test cases would find an error, since they would
not cause D to reach its output construction phase. Instead, they would cause
D to terminate early and create an error message describing As as an invalid
email. However, D would indeed be vulnerable. A human attacker wanting to
exploit D could then supply a valid email address and learn that D uses A; to
construct output without sanitizing it first.

To eliminate this kind of false negatives, we employed a deep injection
mechanism in WAVES [Huang et al., 2003]. Using a negative response ex-
traction (NRE) technique, the mechanism determines whether or not D uses
a validation procedure. The naive approach is used in the absence of vali-
dation. Otherwise, WAVES attempts to use its injection knowledge base to
assign valid values to all arguments. Using a trial-and-error strategy, test cases
are repeatedly generated and tested in an attempt to identify valid values for
all arguments. If successful, then for each of the n test cases, valid values are
used for arguments that do not contain malicious data. Otherwise, WAVES
degrades to using the naive approach and generates a message indicating that
its test may be subject to a high false negative rate.

333 Side Effects Elimination. In [Huang et al., 2003], we acknowl-
edged two serious deficiencies in our original WAVES design—the testing
methodology had a potential side effect of causing permanent modifications
(or even damage) to the state of the targeted application. For example, for ev-
ery submission, a DEP D for user registration may add a new user record to a
database. If D accepts ten arguments, then to test for a single malicious pattern
requires generating ten test cases, with the test pattern placed at a different ar-
gument in each test case. But in practice, numerous patterns must be tested in
order to provide a decent coverage. And testing for say ten malicious patterns
would mean that one hundred meaningless database records would get created.

This potential side effect prevented us from performing large-scale empiri-
cal evaluations of WAVES. It should be noted that AppScan [Sanctum, 2003],
InterDo [Kavado, 2003], Weblnspect [SPI Dynamics, 2003], and similar com-
mercial and open-source projects have the same drawback. In our subsequent
efforts [Huang et al., 2004a], we added three testing modes to WAVES—heavy,
relaxed, and safe modes to remedy this drawback. The heavy mode was our
original mode; and side effects were simply ignored in the interest of discover-
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ing all vulnerabilities. For the two new modes, DEPs were classified according
to their types into three disjoint sets Ssqfe, Sunsafer aNdSunknown. VD €
Ssafe» D.T €{tS, tA}; VD € Sunsafe, D.T €{tR, tM}; VD € Sunknowns
D.T=tU. In both the relaxed and safe modes, DEPs belonging to Sy, fe are
not tested, and Sgq5. DEPs are tested using the heavy mode. In the relaxed
mode, Synknown DEPs are tested using the malicious pattern that is most likely
to reveal errors. In safe mode, these are not tested.

334 Output Observation. After submitting a test case to a DEP, its
output (HTTP response) is analyzed to detect any Policy 1 violations. To avoid
XSS vulnerabilities, client-submitted data containing jscript; HTML tags must
be processed prior to being used for output construction. Proper processing
entails a) outputting errors that indicate the detection of an attack, and b) re-
moving the tag while still processing the request, and c) encoding the jscripty,
tag so that it is displayed rather than interpreted by the browser. To help users
observe whether such sanitization steps are being taken by a DEP, we have
designed test patterns so that the absence of a sanitization routine triggers the
execution of a special Javascript by the browser when it renders the DEP out-
put. An example test pattern is shown in Figure 12.7.

| <script>alert ("WAVES_TEST_1") ; </script>

Figure 12.7.  An example of our test pattern for XSS.

335 Test Case Reduction. For any DEP accepting n arguments,
the naive approach requires nn X m test cases for testing against m malicious
patterns. To reduce the number of test cascs, we modified the test patterns ac-
cording to the arguments in which the patterns were placed. For example, if
placed in the first argument of a DEP, the test pattern shown in Figure 12.7 will
change to:

<scripts>alert ("WAVES.TEST.1.ARG.1") ;</script>

This allows for the use of IE behavior to identify vulnerable arguments. Using
this strategy, we placed modified versions of the same malicious pattern into
all arguments of a targeted DEP. This approach requires only 1 x m=m case
to be tested against m malicious patterns. When two or more malicious pat-
terns appear in the output, the message box events are captured sequentially
and vulnerable arguments are identified.
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3.3.6 Implementation. = WAVES’ system architecture is shown in Fig-
ure 12.9. The webcrawlers act as interfaces between Web applications and
software testing mechanisms. Without them we would not be able to apply
our testing techniques to Web applications. To make the webcrawlers exhibit
the same behaviors as browsers, they were equipped with IE’s Document Ob-
ject Model (DOM) parser and scripting engine. We chose IE’s engines over
others (e.g. Gecko [Mozilla] from Mozilla) because IE is the target of most
attacks. User interactions with Javascript-created dialog boxes, script error
pop-ups, security zone transfer warnings, cookie privacy violation warnings,
dialog boxes (e.g. “Save As” and “Open With™), and authentication warnings
were all logged but suppressed to ensure continuous webcrawler execution.
Note that a subset of the above events is triggered by our test cases or by Web
application errors. An error example is a Javascript error event produced by
a scripting engine during a runtime interpretation of Javascript code. The we-
berawler suppresses the dialog box that is triggered by the event and performs
appropriate processing. When an event indicates an error, it logs the event and
prepares corresponding entries to generate an assessment report.

When designing the webcrawler, we looked at ways that HTML pages re-
veal the existence of DEPs or other pages, and came up with the following list:

1. Traditional HTML anchors.

Ex: <a href = "http://www.google.com">Google</a>
2. Framesets.
Ex: «<«<frame src = "http://www.google.com/

top_-frame.htm">
3. Meta refresh redirections.
Ex: <meta http-equiv="refresh" content="0;
URL=http://www.google.com" >
4. Client-side image maps.
ExX: <area shape="rect" href ="http://www.google.
com" >
5. Javascript variable anchors.
Ex: document.write("\" + LangDir + "\index.htm");
6. Javascript new windows and redirections.
Ex: window.open("\" + LangDir + "\index.htm");
Ex: window.href = "\" + LangDir + "\index.htm";
7. Javascript event-generated executions.
Ex: HierMenus (http://www.webreference.com)
8. Form submissions.

We established a sample site to test several commercial and academic we-
berawlers, including Teleport [TMIS], WebSphinx [Miller and Bharat, 1998],
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Harvest [Bowman et al., 1995], Larbin [Sebastien], Web-Glimpse [Manber
et al., 1997], and Google. None were able to crawl beyond the fourth level of
revelation—about one-half of the capability of the WAVES webcrawler. Reve-
lations 5 and 6 were made possible by WAVES” ability to interpret Javascripts.
Revelation 7 also refers to link-revealing Javascripts, but only following an
onClick, onMouseOver, or similar user-generated event. WAVES performs
an event-generation process to stimulate the behavior of active content. This
allows WAVES to detect malicious components and assists in the URL discov-
ery process. During stimulation, Javascripts located within the assigned event
handlers of dynamic components are executed, possibly revealing new links.
Many current Web sites incorporate DHTML menu systems to aid user naviga-
tion. These and similar Web applications contain many links that can only be
identified by webcrawlers capable of handling level-7 revelations. Also note
that even though the main goal of the injection knowledge manager (IKM) is
to produce variable candidates so as to bypass validation procedures , the same
knowledge can also be used during the crawling process . When a webcrawler
encounters a form, it queries the IKM, and the data produced by the IKM is
submitted by the webcrawler to the Web application for deep page discovery.

In the interest of speed, we implemented a URL hash (in memory) in order
to completely eliminate disk access during the crawling process. A separate
100-record cache helped to reduce global bottlenecks at the URL hash. See
also Cho and Garcia-Molina [Cho and Garcia-Molina, 2002] for a descrip-
tion of a similar implementation strategy. The database feeder does not insert
retrieved information into the underlying database until the crawling is com-
plete. The scheduler is responsible for managing a breadth-first crawling of
targeted URLSs; special care has been taken to prevent webcrawlers from in-
ducing harmful impacts on the Web application being tested. The dispatcher
directs selected target URLSs to the webcrawlers and controls crawler activity.
Results from crawling and injections are organized in HTML format by the
report generator.

3.3.7 Experimental Results. We evaluated WAVES’ DEP discovery
ability by comparing its crawling (the number of pages retrieved for a target
site) with other webcrawlers. From our tests [Huang et al., 2003], Teleport
[TMIS] proved to be the most thorough of a group of webcrawlers that included
WebSphinx [Miller and Bharat, 1998], Larbin [Sebastien], and Web-Glimpse
[Manber et al., 1997]. This may be explained by Teleport’s incorporation of
both HTML tag parsing and regular expression-matching mechanisms, as well
as its ability to statically parse Javascripts and to generate simple form sub-
mission patterns for URL discovery. On average, WAVES retrieved 28 percent
more pages than Teleport when tested with a total of 14 sites [Huang et al.,
2003]. We attribute the discovery of the extra pages to WAVES’ script inter-
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Figure 12.8.  System architecture of WAVES.

pretation and automated form completion capabilities. In case study to evalu-
ate the effectiveness of the different scanning modes we proposed, the heavy
mode revealed 80 percent of all errors found by static verification [Huang
et al.,, 2004a]. This shows that our remote, black-box testing approach pro-
vides a useful alternative to static analysis when source code and local access
to the target Web application is unavailable. The 58.4 percent coverage of
the relaxed mode shows that an effective non-detrimental testing is possible.
The 55 strictly vulnerable sites identified during a 48-hour relaxed mode scan
shows that a) our proposed mechanism for testing insecure information flow
can be successfully used to detect XSS, b) non-detrimental testing still yields
effective results, and c) XSS still poses a significant threat to today’s Web ap-
plications. Furthermore, since tools similar to WAVES in many respects are
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being developed and used by hackers, we note that vulnerable websites can be
casily identified by performing controlled “attacks” similar to our experiment
with more malicious motivations.

34 Software Verification for Web Application Security

Many verification tools are discovering previously unknown vulnerabilities
in legacy C programs, raising hopes that the same success can be achieved with
Web applications. In Section 3.2, formalizing Web application security using
three noninterference [Goguen and Meseguer, 1982] policies allows the use
of existing verification techniques to identify Web application vulnerabilities.
Sabelfeld and Myers [Sabelfeld and Myers, 2003] recently published a com-
prehensive survey on language-based techniques for specifying and enforcing
information-flow policies. Among them, sound type systems [Volpano et al.,
1996] based on the lattice model of Denning [Denning, 1976] appear most
promising. Banerjee and Naumann [Banerjee and Naumann, 2002] proposed
such a system for a Java-like language, and Pottier and Simonet [Pottier and Si-
monet, 2003] proposed one for ML. Myers [Myers, 1999] went a step further
to provide an actual JIF implementation—a secure information flow verifier
for the Java language. However, even though these languages can guarantee
secure information flow, many consider them too strict; furthermore, they re-
quire considerable effort in terms of additional annotation in order to reduce
false positives. Another problem is that most Web applications today are not
developed in JIF or Java, but in script languages (e.g., PHP, ASP, Perl, and
Python) [Hughes]. Using a type qualifier theory [Foster et al., 1999], Shankar
et al. [Shankar et al., 2002] detected insecure information flow within legacy
code with little additional annotation. Using metacompilation-based checkers
[Hallem et al., 2002], Ashcraft and Engler [Ashcraft and Engler, 2002] were
also able to detect insecure information flow in Linux and OpenBSD code
without additional annotation. However, checkers are unsound, and both ad-
dressed only commonly found insecure information flow problems in C. To
our knowledge, no comparable efforts have been made for Web applications,
which involve different languages and unique information flow problems.

In contrast to compile-time techniques, run-time protection techniques are
attractive because of their accuracy in detecting errors. A typical run-time
approach is to instrument code with dynamic guards during the compilation
phase. Cowan’s Stackguard [Cowan et al., 1998] is representative of this ap-
proach; its low overhead and high accuracy has led to its inclusion in a variety
of commercial software packages. Immunix Secured Linux 7+ is a commer-
cial distribution of Linux (RedHat 7.0) that has been compiled to incorporate
Stackguard instrumentation. Microsoft also includes a feature very similar to
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Stackguard in its latest release of the Visual C++ NET compiler [Microsoft,
2003].

We describe how static and runtime techniques can be used together to es-
tablish a holistic and practical approach to ensuring Web application security.
We presented here our tool WebSSARI (Web application Security by Static
Analysis and Runtime Inspection) [Huang et al., 2004b] [Huang et al., 2004c],
which a) statically verifies existing Web application code without any addi-
tional annotation effort; and b) after verification, automatically secures poten-
tially vulnerable sections of the code. In order to verify that Policies 1, 2 and 3
hold, WebSSARI incorporates a lattice-based static analysis algorithm derived
from type systems and typestate . During the analysis, sections of code con-
sidered vulnerable are instrumented with runtime guards, thus securing Web
applications in the absence of user intervention. With sufficient annotations,
runtime overhead can be reduced to zero. In this section we briefly describe
WebSSARI’s design and our experiences learned.

34.1 Secure Information Flow Research.  Type systems have proven
useful for specifying and checking program safety properties. By means of
programmer-supplied annotations, both proof-carrying codes (PCC) [Necula,
1997] and typed assembly languages (TAL) [Morrisett et al., 1999] are de-
signed to provide safety proofs for low-level compiler-generated programs. We
also used a type system to verify program security, but we targeted a high-level
language, i.e., PHP, and tried to avoid additional annotations.

Many previous software security verification efforts have focused on tem-
poral safety properties related to control flow. Schneider [Schneider, 2000]
proposed formalizing security properties using security automata , which de-
fine the legal sequences of program actions. Walker [Walker, 2000] proposed a
TAL extension, which uses security policies expressed in Schneider’s automata
to derive its type system. Jensen, Le Metayer and Thorn [Jensen et al., 1999]
proposed using a temporal logic for specifying a program’s security properties
based on its control flow, and offered a model checking technique for verifica-
tion. In a similar effort, Chen and Wagner [Chen and Wagner, 2002] looked
for vulnerabilities in real C programs by model checking for violations of a
program’s temporal safety properties. Though their main focus was not on
security, Ball and Rajamani [Ball and Rajamani, 2001] adopted a similar ap-
proach for their SLAM project and successfully applied it to Windows XP
device drivers.

Type-Based Analysis. Since vulnerabilities in Web applications are pri-
marily associated with insecure information flow, we focused our effort on
ensuring proper information flow rather than control flow. The first widely
accepted model for secure information flow was given by Bell and La Padula
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[Bell and La Padula, 1976]. They stated two axioms: a) a subject cannot ac-
cess information classified above its clearance, and b) a subject cannot write
to objects classified below its clearance. Their original model only dealt with
confidentiality; and Biba [Biba, 1977] is credited with adding the concept of
integrity to this model.

Denning [Denning, 1976] established a lattice model for analyzing secure
information flow in imperative programming languages based on a program
abstraction (similar to Cousot and Cousot’s [Cousot and Cousot, 1977] ab-
stract interpretation) derived from an instrumented semantics of a language.
Andrews and Reitman [Andrews and Reitman, 1980] used an axiomatic logic
to reformulate Denning’s model and developed a compile-time certification
method using Hoare’s logic. In both cases, soundness was only addressed in-
tuitively (a more formal treatment of Denning’s soundness can be found in
Mizuno and Schmidt [Mizuno and Schmidt, 1992]). Orbaek [Orbaek, 1995]
proposed a similar treatment, but addressed the secure information flow prob-
lem in terms of data integrity instead of confidentiality. Volpano, Smith and
Irvine [Volpano et al., 1996] argued that both works proved soundness with
respect to some instrumented semantics whose validity was open to question
in that no means was offered for proving that the instrumented semantics cor-
rectly reflect information flow within a standard language semantics. To base
directly on standard language semantics, Volpano, Smith and Irvine showed
that Denning’s axioms can be enforced using a type system in which program
variables are associated with security classes that allow inter-variable infor-
mation flow to be statically checked for correctness. Soundness was proven
by showing that well-typed programs ensure confidentiality in terms of non-
interference, a property introduced by Goguen and Meseguer [Goguen and
Meseguer, 1982] for expressing information flow policies. Recently, fully
functional type systems designed to ensure secure information flow have been
offered for high-level, strong-typed languages such as ML [Pottier and Si-
monet, 2003] and Java [Myers, 1999] [Banerjee and Naumann, 2002]. Based
on Foster et al’s theory of type qualifiers [Foster et al., 1999], Shankar et
al. [Shankar et al., 2002] used a constraint-based type inference engine for
verifying secure information flow in C programs, and detected several format
string vulnerabilities in some real C programs of which they were previously
unaware.

Type-based approaches to static program analysis are attractive because they
prove program correctness without unreasonable computation efforts. Their
main drawback is their high false positive rates, which often makes them be-
come impractical for real-world use. Regardless of whether security classes
are assigned through manual annotations or through inference rules, in con-
ventional type systems they are statically bound to program variables. It is
important to keep in mind that the security class of a variable is a property
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of its state, and therefore varies at different points or call sites in a program.
For example, in Myers’ JIF language [Myers, 1999], each program variable is
associated with a fixed security label (class). A value assumes the label of the
variable in which it is stored. When a value is assigned to a variable, the value
loses its original label and assumes the label of the new variable to which it is
assigned. Therefore, an assignment causes a re-labeling of the security label
of the assigned value. JIF ensures security by only allowing more restrictive
re-labeling. However, to precisely capture information flow, values should be
associated with fixed security labels, and variables should assume the labels
of values they currently store—in other words, assignments should result in
the re-labeling of variables rather than values. In JIF and similar type-based
systems, variable labels become increasingly restrictive during computation,
resulting in high false positive rates. JIF addresses this problem by giving
programmers the power to declassify variables—that is, to explicitly relax the
restrictiveness of variable labels.

Dataflow Analysis. False positives resulting from static verification of
secure information flow fall into two categories. Class 1 false positives arise
from the imprecise approximation of temporal variable properties. The prob-
lem described in the preceding paragraph and Doh and Shin’s [Doh and Shin,
2002] forward recovery and backward recovery definitions serve as examples.
In fact, most of the Denning-based systems suffer from Class 1 errors because
the security class of their variables remains constant throughout program ex-
ecution. Class 2 false positives result from runtime information manipulation
or validation. For example, untrusted data can be sanitized before being used,
with the original security class no longer applicable. This kind of false positive
is more commonly associated with verifications that focus on integrity.

Class 1 errors can be reduced by making approximations of the run-time
information flow more precise. Andrews and Reitman [Andrews and Reitman,
1980] first established an approach in which dataflow is semantically character-
ized in terms of program logic. By applying flow axioms, one can derive flow
proofs that specify a program’s effect on the information state. This allows
the security classes of variables to change during execution, and they argued
that their approach captures information flow more precisely than Denning’s.
Banatre, Bryce, and Le Metayer [Banatre et al., 1994] have offered a compa-
rable approach plus a proof checking method that resembles dataflow analy-
sis techniques associated with optimizing compilers. Joshi and Leino [Joshi
and Leino, 2000] examined various logical forms for representing information
flow semantics, leading to a characterization containing Hoare triples. Darvas,
Hahnle, and Sands [Darvas and Hihnle, 2003] went a step further in offering
characterizations in dynamic logic, which allows the use of general-purpose
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verifications tools (i.e., theorem provers) to analyze secure information flow
within deterministic programs.

A similar approach involves flow-sensitive analysis techniques used by op-
timizing compilers, which have been extensively researched starting from the
early works of Allen and Cocke [Allen, 1976] and followed by the works of
Hecht and Ullman [Hecht and Ullman, 1973], Graham and Wegman [Gra-
ham and Wegman, 1976}, Barth [Barth, 1978], and others. These methods
yield more accurate runtime state predictions than the other methods men-
tioned above. However, flow-sensitivity comes at a price—every branch in
a program’s control flow doubles the verifier’s search space and therefore lim-
its its scalability. ESP , the verification tool recently developed by Das, Lerner,
and Seigle [Das et al., 2002], is representative of this approach; and is based
on the assumption that most program branches do not affect the information
flow property that is being checked. Their contribution is distinctive because
ESP allows for flow-sensitive verification that scales to large programs. They
have also proposed a method called abstract simulation to restrict identifica-
tion and simulation to relevant branch conditions. Unlike ESP , Guyer, Berger,
and Lin’s [Guyer et al., 2002] approach has a specific security focus. They
used the flow-sensitive, context-sensitive, inter-procedural data flow analysis
framework provided by their Broadway optimizing compiler to check for for-
mat string vulnerabilities of real C programs.

34.2 Flow-Sensitive Type-Based Analysis. A third approach empha-
sizes more accurate or expressive types in type systems. In their trust analysis
of C programs, Shankar et al. [Shankar et al., 2002] introduced the concept of
type polymorphism in their type qualifier framework, and showed how it can
help reduce false positives. Others have considered extending types with state
annotations. The most well known approach of this kind is Strom and Yemini’s
typestate [Strom and Yemini, 1986], which is a refincment of types. Accord-
ing to their definition, an object’s type determines a set of allowable opera-
tions, while its typestate determines a subset allowable under specific contexts.
Because it allows the flow-sensitive tracking of variable states, it serves as a
technique applicable to reduce the number of Class 1 errors suffered by type-
based information flow systems. Inspired by typestate , DeLine and Fahndrich
[DeLine and Fahndrich, 2001] extended C types in their Vault programming
language with predicates (named #ype guards) that describe legal conditions
on the use of the type. In other words, types determine valid operations, while
type guards determine these operations’ valid times of use. In a recent project,
Foster et al. [Foster, 2002] extended their original, flow-insensitive type qual-
ifier system for C with flow-sensitive type qualifiers . Using their Cqual tool
, they demonstrated the effectiveness of their system by discovering a number
of previously unknown locking bugs in the Linux kernel.
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Interestingly, the authors of ESP [Das et al., 2002] (introduced in Sec-
tion 3.4.1, which tracks information flow using dataflow analysis, describe it
as “merely a typestate checker for large programs.” It appears that as type
systems are refined with states and incorporate flow-sensitive checking, fewer
differences will exist between type systems and dataflow analysis methods for
verifying information flow. Our approach for reducing Class 1 errors is based
primarily on typestate .

Static Checking. The goal of static checking is simply to find software
bugs rather than to prove that one does not exist [Ashcraft and Engler, 2002].
In other words, checkers are unsound. A pioneering work was that of Bishop
and Dilger [Bishop, 1996], which checked for “time-of-check-to-time-of-use”
(TOCTTOU) race conditions. One recent exciting result is that of Ashcraft and
Engler [Ashcraft and Engler, 2002], who used their metacompilation [Hallem
et al., 2002] technique to find over 100 vulnerabilities in Linux and OpenBSD,
over 50 of which resulted in kernel patches. The technique makes use of a
flow-sensitive, context-sensitive, inter-procedural data flow checking frame-
work that requires no additional annotations. In contrast, Flanagan et al.’s
ESC/Java [Flanagan et al., 2002] (designed to check the correctness of Java
programs) requires additional annotations from programmers.

Most efforts to develop checkers have resulted in publicly available tools
[Cowan, 2002], including BOON by Wagner et al. [Wagner et al., 2000], RATS
by Secure Software [Secure Software], FlawFinder by Wheeler [Wheeler],
PScan by DeKok [DeKok], Splint by Larochelle and Evans [Larochelle and
Evans, 2001] [Evans and Larochelle, 2002] , and ITS4 by Viega et al. [Viega
et al., 2000]. All these unsound checkers search for specific error patterns.
Splint is the only one that requires user annotations. With the exception of
ESC/Java, they are all designed for use with C programs.

A Comparison, Our algorithm can be described as a sound static verifi-
cation method and as a holistic method that ensures security in the absence of
user intervention. Most type-based static verification methods are considered
sound, provided as extensions to existing languages (e.g., Pottier and Simonet
[Pottier and Simonet, 2003], Banerjee and Naumann [Banerjee and Naumann,
2002], and Myers [Myers, 1999]), and designed to support secure program
development (as opposed to verifying existing code). Our work was partly in-
spired by the type qualifier-based verifier described in [Shankar et al., 2002]
(Shankar et al.) and [Das et al., 2002] (ESP ), both of which offer sound, flow-
sensitive, inter-procedural data flow analysis without additional annotations.
Broadway [Guyer et al., 2002} offers the same capabilities. Other checkers
(e.g., MC [Ashcraft and Engler, 2002], RATS [Secure Software], and ITS4

[Viega et al., 2000]) also perform dataflow analysis without additional annota-
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tions, but their analyses are considered unsound. And as mentioned in Section
3.4.1, most of these checkers (with the exception of RATS) are targeted at C
programs, while ours is targeted at PHP scripts. As its name suggests, RATS
is simply a Rough Auditing Tool for Security that offers limited checks for de-
fective PHP programming patterns; and in contrast WebSSARI offers a sound
information flow analysis. Another difference is that WebSSARI ensures secu-
rity by inserting runtime guards, while the other tools are limited to providing
verification.

WebSSARI , MC and ITS4 are the only approaches that support automated
declassification , defined as the process of identifying changes in a variable’s
security class resulting from runtime sanitization or validation. Automated
declassification helps reduce the number of Class 2 false positives. MC was
designed to detect sections of code that validate user-submitted integers. If the
code makes both upper bound and lower bound validations on an untrusted
value, it is assumed that validation has been performed; and the security class
of the validated value is then changed from untrusted to trusted. This approach
is based on the unsound assumption that as long as an untrusted value passes
a certain kind of validation, it is actually safe. Therefore, false positives are
reduced at the cost of introducing false negatives that compromise verification
soundness. In the case of ITS4 , its attempt to reduce Class 2 false positives
(while detecting C format string vulnerability) involves using lexical analysis
to identify sanitization routines based on unsound heuristics.

When verifying information flow in Web applications, one deals with strings
instead of integers, and PHP provides standard string sanitization functions.
By accepting all string values processed by these functions as trusted, we first
reduced a considerable number of Class 2 false positives. For cases in which
custom sanitization is provided by the programmer, we proposed type-aware
qualifiers , which resulted in a more expressive security lattice than the sim-
ple tainted-untainted lattice used by other efforts (e.g., Ashcraft and Engler
[Ashcraft and Engler, 2002] and Shankar et al. [Shankar et al., 2002]), and
achieved a further reduction in the number of Class 2 errors. To provide a
clear representation of how our efforts compare with those of others, we have
defined six criteria for classifying static analyzers: focus of scope, approach,
soundness, additional annotation effort, supported language, and declassifica-
tion support. A comparison based on these criteria is presented in Figure 12.9.

Runtime Protection. In many situations, it is difficult for static analysis
to offer satisfactory runtime program state approximation. One strategy is to
delay parts of the verification process until runtime. A good example of this
practice is Perl’s “tainted mode” [Wall et al., 2000], which ensures system in-
tegrity by tracking tainted data submitted by the user at runtime. In a similar
manner, Myers [Myers, 1999] also leaves some JIF security class checking
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Figure 12.9. A comparison among static verification tools.

operations until runtime. In dynamically typed languages such as Lisp and
Scheme, a common approach is to perform runtime type checking for objects
whose types have yet to be determined at compile-time. These kinds of dy-
namic checks are extremely expensive, resulting in the creation of such static
optimization techniques as dynamic typing [Henglein, 1992} and soft typing
[Wright and Cartwright, 1999] to reduce the number of runtime checks.

WebSSARI takes a similar approach—that is, by applying static analysis, it
pinpoints code requiring runtime checks and inserts the checks. A similar pro-
cess is found in Necula, McPeak, and Weimer’s CCured [Necula et al., 2002].
Though not specifically focused on security, their scheme combines type in-
ference and run-time checks to ensure type safety for existing C programs. A
major difference is that our inserted guards perform sanitization tasks rather
than runtime type checking——in other words, we insert sanitization routines in
vulnerable sections of code that use untrusted information. If they are inserted
at the proper locations, their execution time cannot be considered real over-
head because the action is a necessary security check; and WebSSARI will
have simply inserted lines of code omitted by a careless (or security-unaware)
programmer.

343 Verification Algorithm. In PHP , which is an imperative, de-
terministic programming language, sets of functions may trigger violations to
the three policies defined in Section 3.2. For example, exec() executes system



Web Application Security—PFust, Present, and Future 207

commands, and echo() generates output. Calling exec() with tainted argu-
ments violates Policy 3, while doing so with echo() violates Policy 1. We
refer to such functions as sensitive functions ; and vulnerabilities will result
from tainted (untrustworthy) data used as arguments in sensitive function calls.
For each sensitive function, we intuitively derived (based on Policies 1, 2 and
3) a trust policy (expressed as a precondition of the function), which states
the required trust level of the function’s arguments. We considered all values
submitted by a user as tainted (Assumption 1), and checked their propagation
against a set of predefined trust policies.

Information Flow Model. To characterize data trust levels, we followed
Denning’s [Denning, 1976] model and made the following assumptions:

1. Each variable is associated with a security class (trust level).
T ={mn,7a,...,Tn} is a set of security classes.

3. T is a partially ordered set by <, which is reflexive, transitive, and
anti-symmetric. For m, 70 € T, 7y = iff 11 < 7y and 1y # To.

4. T forms a complete lattice with a) a lower bound L such that V7 €
T,7 > 1 and b) an upper bound T such that V7 € T,7 < T.

These assumptions imply that a greatest lower bound operator and a least upper
bound operator exist on T". For subset Y C T, let MY denote T if Y is empty
and the greatest lower bound of the types in Y, otherwise; let LIY denote L if
Y is empty and the least upper bound of the types in Y, otherwise.

To develop an information flow system, we need to provide a method to
express the trust levels of variables. Following the lead of Foster et al. [Fos-
ter et al., 1999] and Shankar et al. [Shankar et al., 2002], we extended the
existing PHP language with extra fype qualifiers—a widely-used annotation
mechanism for expressing type refinements. When used to annotate a vari-
able, the C type qualifier const expresses the constraint that the variable can
be initialized but not updated [Foster et al., 1999]. We used type qualifiers
as a means for explicitly associating security classes with variables and func-
tions. In our WebSSARI implementation, we specified preconditions for all
sensitive PHP function using type qualifiers . These definitions are stored in a
prelude file and loaded by WebSSARI upon startup. Another prelude file con-
tains postconditions for functions that perform sanitization to generate trusted
output from tainted input. This serves as a mechanism for automated declas-
sifications . A third prelude file includes annotations (using type qualifiers )
of all possible tainted input providers (e.g., $-GET, $_POST, $_REQUEST).
Type qualifiers are also used as a means for developers to manually declas-
sify variables. Manual declassification support is important because it allows
for manual elimination of false positives, which in turn reduces the number of
unnecessary runtime guards, resulting in reduce overhead.
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Like Foster and Shankar we perform type inferencing (of security classes)
in attempt to eliminate user annotation efforts. In conventional type-based se-
cure information flow systems (e.g., JIF [Myers, 1999]), type inferencing is
used as a means to infer the initial security class of a variable, and a variable
is assumed to be associated with its initial security class throughout the en-
tire program execution. As explained in Section 3.4.1, fixed variable security
classes induce a large number of false positives. To develop a type system in
which variable classes can change and flow-sensitive properties can be con-
sidered, we maintain our type judgments based on Strom and Yemini’s [Strom
and Yemini, 1986] typestate . A type judgment I' is a set of mapping functions
(which map variables to security classes) at a particular program point, and ev-
ery program point has a unique type judgment. For each variable x € dom(I),
there exists a unique mapping, I' - z : 7, and we denote the uniquely mapped
type 7 of z in I as I" (). To approximate runtime typestate at compile-time,
a variable’s security class is viewed as a static most restrictive class of the
variable at each point in the program text. That is, if a variable has a particu-
lar class 7pat a particular program point, then its corresponding execution time
data object will have a class that is at most as restrictive as 7,, regardless of
which paths were taken to reach that point. Formally, for a set of type judg-
ments G, we denote @G as the most restrictive type judgment I" where, for all
z € {dom(I)|I" € G},T' F z : UY,. Y, = {IV(2) |I” € G} is the set of all
classes of x mapped in GG. When verifying a program at a particular program
point, I' = &G i, where G represents the set of all possible type judgments,
each corresponding to a unique execution-time path that could have been taken
to reach that point.

To illustrate this concept, we will use the widely-adopted tainted-untainted
(T-U) lattice of security classes (e.g., by BOON [Wagner et al., 2000], Ashcraft
and Engler [Ashcraft and Engler, 2002], and Shankar et al. [Shankar et al.,
2002]) shown in Figure 12.10. The T-U lattice has only two elements—untainted
as its lower bound and tainted as its upper bound. Assume that variable t is
tainted and that variables ul and u2 are untainted. Since exec() requires an
untainted argument, for Line 2 of Figures 12.12 and 12.13 to typecheck re-
quires that we know the static most restrictive class of X. In other words, we
need to know the security class 7o that is the most restrictive of all possible
runtime classes of X at line 2, regardless of the execution path taken to get
there. In line 2 of Figure 12.12, since X can be either tainted or untainted,
Tx_—2 = U{tainted, untainted} =tainted; line 2 therefore triggers a violation.
On the other hand, line 2 of Figure 12.13 typechecks.

To preserve the static most restrictive class, rules must be defined for resolv-
ing the typestate of variable names. For the sake of simplicity, we adopted the
original algorithm proposed by Strom and Yemini [Strom and Yemini, 1986].
First, we perform flow-sensitive tracking of typestate. Then at execution path
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merge points (e.g., the beginning of a loop or the end of a conditional state-
ment), we define the typestate of each variable as the least upper bound of the
typestates of that same variable on all merging paths. In our defined lattice
(Figure 12.11), the least upper bound operator on a set selects the most re-
strictive class from the set. Note that while Strom and Yemini originally used
typestate to represent the static invariant variable property, which requires ap-
plying the greatest lower bound operator, for our purpose typestate is used to
represent the static most restrictive class, so we need to apply the least upper
bound operator instead.

Tainted String

Tainted Tainted Integer
Untainted Untainted String
Untainted Integer
Figure 12.10. Primitive lattice. Figure 12.11.  Type-aware lattice.
1: if (C) X = t; else X = 1: 4if (C) X = ul; else X =
ul; ul;
2: exec(X); 2: exec(X);
Figure 12.12.  Example A. Figure 12.13.  Example B.

Type-Aware Security Classes. The first version of WebSSARI imple-
mented the verification algorithm mentioned above and made use of the T-U
lattice. An initial test drive revealed a common type of false positive. Appar-
ently many developers used type casts for sanitization purposes. An example
from Obelus Helpdesk is presented in Figure 12.14. In that example, since
$_POST [‘index’] istainted, $i is tainted after line 1. Line 2 therefore does
not typecheck, since echo () requires untainted values for its argument.

1: $i = (int) S$_POST[’index’];
2: echo "<hidden name = mid
value='8i’'>"

Figure 12.14.  Example of a false positive resulting from a type cast.

Six of the 38 responding developers who also included copies of their in-
tended patches for our review relied on this type of sanitization process. Since



210 COMPUTER SECURITY IN THE 21 CENTURY

all HTTP variables are stored as strings (regardless of their actual type), us-
ing a single cast to sanitize certain variables appears to be a common practice.
However, the false positive serves as evidence supporting the idea that security
classes should be type-aware. For example, echo() can accept tainted inte-
gers without compromising system integrity (i.e., without being vulnerable to
XSS). Figure 12.11 illustrates the type-aware lattice that we incorporated in our
second version of WebSSARI . Until now, it has been commonly believed that
annotations in type-based security systems should be provided as extensions
to be checked separately from the original type system. [Foster et al., 1999]
[Foster, 2002] [Shankar et al., 2002] [Flanagan et al., 2002]. In this chapter we
are proposing the use of a type-aware lattice model and introducing the idea of
type-aware qualifiers. Though still checked separately, type refinements (e.g.,
security classes) are type-aware.

Program Abstraction and Type Judgment. When verifying a PHP pro-
gram, we first use a filter to deconstruct the program into the following abstrac-
tion:

(commands) : ¢ ::= ¢y, co|z := ele|if e then ¢y else co
(expression) : e == z|nle; ~ ea]f(a)

, where x is a variable, n is an integer, ~ represents binary operators (e.g., +),
f(a) represents a function call. Commands that do not induce insecure flows
are referred to as valid commands. The type system maintains a separation be-
tween the statically typed and the untyped worlds. To infer types (i.e., security
classes) within the untyped world, and to check for command validity in the
typed world, we define the following two judgment rules:
(1) Expression typing: ' F e : 7 2) Command validity: T' + ¢
Commands (which do not produce values) are distinguished from expres-
sions (which do produce values). In these rules, I" denotes a type judgment,
which maps variables to types and also specifies the valid commands. Our typc
judgment rules are given below:

1. Mapping Rules:

(Initialization) (Operation) (Postcondition)
z€dom(I')  Tkey:ry Thesirs I'tf(a)
TFn:L Tho: L Trep~veqim U I+-f(a):E(X1a/p])

2. Checking Rule: 3. Concatenation Rule:
(Precondition) (Concatenation)

f(a)T(@)<T(p [hep Trep
I'+f(a) I'\IMreyiez
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4.Updating Rule:

(Assignment) (Restriction)
TFeim ey xi=e Tylcp Tabeg if ethency elseco
IFairiudry Dhzi=e IV=I"1@l'y 1VFif e then c1 else co

The set of PHP expressions that offer tainted data and the set of sensitive
functions are represented as set I and set O, respectively. To ensure secure
information flow, we add the following rule that infers all expressions in I as
tainted:

ﬁ_—% (Tainted Input)

We define preconditions for functions that belong to O as the safe sensitive
function rule: I's(p) = (untainted, . . ., untainted).

When verifying, we update type judgments according to command sequences
and raise an error if any checking rule is violated. If we can derive a type judg-
ment for each program point of the command sequence, we say the command
sequence is secure.

Soundness.  Since we always maintain the static most restrictive type judg-
ment at every program point, a variable’s type monotonically increases along
the updating sequence. This is an essential property that ensures the sound-
ness of our algorithm. However, PHP is an interpreted “scripting language”
that allows for dynamic evaluation. For example, one can write “$$a” to rep-
resent a “dynamic variable,” whose variable name can be determined only at
runtime. To retain soundness, all dynamic variables are considered as tainted.
When other kinds of dynamic evaluation exist in the target code, WebSSARI
degrades itself to a checker—it still checks for potential vulnerabilities, but
outputs a warning message indicating that it cannot guarantee soundness. We
do, however, support pointer aliasing by implementing the original solution
proposed by Strom and Yemini [Strom and Yemini, 1986]. We maintain two
mappings—an environment and a store. The environment maps the names of
variables involved in pointer aliasing to virtual locations, and the store maps
locations to security classes. Therefore, when two pointers point to the same
storage, we recognize their dereferences as a single value having a single se-
curity class. A trust level change in one pointer deference is reflected in the
other.

344 System Implementation.  The tool WebSSARI was developed to
test our approach that extends an existing script language with our proposed
type qualifier system. An illustration of WebSSARI’s system architecture is
presented in Figure 12.15. A code walker consists of a lexer, a parser, an
AST (abstract syntax tree) maker, and a program abstractor . The program
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abstractor asks the AST maker to generate a full representation of a PHP pro-
gram’s AST. The AST maker uses the lexer and the parser to perform this task,
handling external file inclusions along the way. By traversing the AST, the
program abstractor generates a control flow graph (CFG) and a symbol table
(ST). The verification engine moves through the CFG and references the ST
to generate a) type qualifiers for variables (based on the prelude file) and b)
preconditions and postconditions for functions. This routine is repeated until
no new information is generated. The verification engine then moves through
the control flow graph once again, this time performing typestate tracking to
determine insecure information flow. It outputs insecure statements (with line
numbers and the invalid arguments). For each variable involved in an insecure
statement, it inserts a statement that secures the variable by treating it with a
sanitization routine. The insertion is made right after the statement that caused
the variable to become tainted. Sanitization routines are stored in a prelude
file, and users can supply the prelude file with their own routines. Support for

| Code Walker

| Sabl;CC I

Figure 12.15.  'WebSSARI system architecture.

different languages is achieved by providing their corresponding code walker
implementations. Since the lexers and parsers can be generated by publicly
available compiler generators, providing a code walker for a language breaks
down to: a) choosing a compiler generator, and providing it with the language’s
grammar, b) providing an AST maker, and c¢) providing a program abstractor .
For step a), grammars for widely-used languages (e.g., C, C++, C#, and Java)
are already available for widely-used compiler generators such as YACC and
SableCC, and for step b), AST makers for different languages should only dif-
fer in preprocessing support (e.g., include file handling). However, since we
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expect considerable differences to exist in the ASTs of various languages, the
major focus on providing a code walker implementation for a language is on
implementing a program abstractor.

To support verification experiments using tens of thousands of PHP files,
we developed a separate GUI featuring batch verification, result analysis, error
logging, and report generation. Statistics can be collected based on a single
source code file, files of a single project, or files of a group of projects. Vulner-
able files are organized according to severity, with general script injection the
most severe, SQL injection second, and XSS third. To help users investigate
reported vulnerabilities, we added Watts’ PHPXREF [Watts, 2003] to generate
cross-referenced documentation of PHP source files.

In this project WebSSARI , we provided a code walker for PHP. We used
Gagnon and Hendren’s SableCC {Gagnon et al., 1998], an object-oriented
compiler framework for Java. Similar to YACC and other compiler gener-
ators, SableCC accepts LALR(1) [DeRemer, 1971] grammars. No formally
written grammar specifications for the PHP language exist, and no studies
have been performed on whether PHP’s grammar can be fully expressed in
LALR(1) form. We used Mandre’s [Mandre, 2003] LALR(1) PHP grammar
for SableCC, which has never been thoroughly tested. The combination of
SableCC and Mandre’s grammar allowed us to develop a code walker for PHP;
however, an initial test drive using approximately 5,000 PHP files revealed de-
ficiencies that caused WebSSARI to reject almost 25 percent of all verified files
as grammatically incorrect. With help from Mandre, we were able to reduce
that rejection rate to 8 percent in a subsequent test involving 10,000 PHP files.

345 Experimental Results. SourceForge.net [Augustin et al., 2002],
the world’s largest open source development website, hosts over 70,000 open-
source projects for more than 700,000 registered developers. PHP, currently
with 7,792 registered projects, clearly outnumbers all other script languages
(e.g., Perl, Python, and ASP) for Web application development. SourceForge.net
classifies projects according to language, purpose, popularity, and development
status (maturity). We identified a sample of 230 projects that reflected a broad
variation in terms of language, purpose, popularity, and maturity. We down-
loaded their sources, tested them with WebSSARI, and manually inspected
every report of a security violation. Where true vulnerabilities were identified,
we sent email notifications to the developers. Over the five-day test period,
we identified 69 projects containing real vulnerabilities; to date, 38 developers
have acknowledged our findings and stated that they would provide patches.
We note that in 33 of those 38 projects, the vulnerabilities had simply been
overlooked, even though sanitization routines had been adopted in the ma-
jority of cases. We also found (from the developers’ responses) that some
of these projects had vulnerabilities that had already been identified and dis-
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closed prior to the present project. Further inspection of their code revealed
that the developers had fixed all previously published vulnerabilities, but failed
to identify similar problems that were hidden throughout the code. These ob-
servations justify the need for an automated verification tool that can be used
repeatedly and routinely. In all, our WebSSARI scanned 11,848 files consist-
ing of 1,140,091 statements; and 515 files were identified as vulnerable. After
four days of manual inspection, we concluded that only 361 files were indeed
vulnerable-a false positive rate of 29.9 percent. The number of insecure files
dropped to 494 after adding support for type-aware qualifiers, yielding a false
positive rate of 26.9 percent. Type-aware qualifiers eliminated the false pos-
itive rate by 10.03 percent. Of the total 1,140,091 statements, 57,404 were
associated with making calls to sensitive functions with tainted variables as ar-
guments. WebSSARI identified 863 as insecure. After manual inspection, we
concluded that 607 were actually vulnerable. Adding sanitization functions to
all 57,404 statements caused 5.03 percent (57,404/1,140,091) of the 1,140,091
statements to be instrumented with dynamic guards, thus inducing overhead.
After static analysis, the number of statements requiring dynamic sanitization
was reduced to 863-a difference of 98.4 percent. As stated in Section 3.4.5,
this instrumentation for vulnerable statements cannot be considered overhead
because it simply adds code omitted by the programmer. Since only 607 state-
ments were actually vulnerable, WebSSARI only caused 0.02 percent of all
statements to be instrumented with unnecessary sanitization routines. Our ex-
periments were conducted using a machine equipped with one Intel Pentium
IV 2.0Ghz processor, 256 megabytes of RAM, and a 7,200 RPM IDE hard
disk. On average, WebSSARI processed 73.85 statements per second.

4. Concluding Remarks and Future Work

Security remains a major roadblock to universal acceptance of many kinds
of online transactions or services made available through the Web. This con-
cern has been attributed to vulnerabilities of Web applications that are remotely
exploitable. Many protection mechanisms are available and can offer immedi-
ate security assurance, but they induce overhead and do not address the actual
software defects. On the other hand, software testing and verification are both
common practices for improving software quality. In order to apply existing
techniques to Web applications, Web application vulnerabilities must be for-
malized. In this chapter, we have formalized Web application vulnerabilities as
problems involving insecure information flow, which is a conventional topic in
security research. Secure information flow research was mostly motivated by
confidentiality considerations; however, we have shown that Web application
security require more emphasis on data integrity and trust than on confiden-
tiality and availability. Based on our formalization, we then described how
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software security testing and verification could be applied to Web applications
security. In software testing, researchers and engineers from the private sec-
tor have devoted a considerable amount of resources to developing WSSs ,
but little is known about their design challenges and their potential side ef-
fects. Another drawback is that current WSSs (including our original WAVES
[Huang et al., 2003]) focus on SQL injection detection, but are deficient in
XSS detection. We addressed these problems by:

1: giving a formal definition of a WSS and a list of design challenges;

2: listing test types that may induce side effects;

3: describing a test case generation process capable of producing a non-
detrimental set of test cases;

4. showing how a Web application can be observed from a remote location
during testing;

5: normalsizedefining three modes of remote security auditing, with a focus
on potential side effects;

6: conducting an experiment using three different modes (heavy, relaxed and
safc modes) and five real-world Web applications to compare differences
in their coverage and induced side effects; and

7:  conducting an experiment using the relaxed mode to scan random web-
sites.
At least four assessment frameworks for Web application security (WAVES
[Huang et al., 2003], AppScan [Sanctum, 2003}, WeblInspect [SPI Dynamics,
2003], and ScanDo [Kavado, 2003]) provide black-boxed testing capability
for identifying Web application vulnerabilities. The advantage of testing over
protection mechanisms is their ability to assess software quality. However,
they have two disadvantages: a) they cannot provide immediate security as-
surance, and b) they can never guarantee soundness (they can only attempt
to identify certain vulnerabilities, but cannot prove that certain vulnerabilities
do not exist). By combining runtime mitigation and static verification tech-
niques, WebSSARI demonstrates an approach that retains the advantages and
eliminates the disadvantages of preceding efforts. Note that WebSSARI pro-
vides immediate protection at a much lower cost than Scott and Sharp’s, since
validation is restricted to potentially vulnerable sections of code. If it detects
the use of untrusted data following correct treatment (e.g., sanitization), the
code is left as-is. According to our experiment, WebSSARI only caused 0.02
percent of all statements to be instrumented with unnecessary sanitization rou-
tines. In contrast, Scott and Sharp [Scott and Sharp, 2002a] [Scott and Sharp,
2002b] perform unconditional global validation for every bit of user-submitted
data without considering the fact that the Web application may have incorpo-
rated the same validation routine, thus resulting in unnecessary overhead. If a
Web application utilizes HTTPS for traffic encryption, the associated decrypt-
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validate-encrypt may limit scalability. Furthermore, WebSSARI provides pro-
tection in the absence of user intervention, as compared with the user expertise
required for Scott and Sharp’s approach. Compared to WAVES, WebSSARI
offers a sound verification of Web application code. Since verification is per-
formed on source code, it does not require targeted Web applications to be up
and running, nor is there any danger of introducing permanent state changes
or loss of data. Compared to language-based approaches such as Myers [My-
ers, 1999], Banerjee and Naumann [Banerjee and Naumann, 2002], and Pottier
and Simonet [Pottier and Simonet, 2003], our approach verifies the most com-
monly used language for Web application programming, and also incorporates
support for extending to other languages. In other words, we provide verifi-
cation for existing applications while others have proposed language frame-
works for developing secure software. Their technique of typing variables to
fixed classes results in a high false positive rate; while in contrast, we used
typestate to perform flow-sensitive tracking that allows security classes of vari-
ables to change, resulting in more precise compile-time approximations of run-
time states. Comparing flow-sensitive approaches such as Ashcraft and Engler
[Ashcraft and Engler, 2002] and Shankar et al. [Shankar et al., 2002], we pro-
posed a type-aware lattice model in contrast to their primitive tainted-untainted
model. According to our experimental results, the use of this lattice model
helped reduce false positives by 10.03 percent. Compared to unsound checkers
[Ashcraft and Engler, 2002] [Flanagan et al., 2002] [Wagner et al., 2000] [Se-
cure Software] [Wheeler] [DeKok] [Larochelle and Evans, 2001} [Viega et al.,
2000], WebSSARI attempts to provide a sound verification framework. We
note that compared with a white-box approach (which requires source code)
such as WebSSARYI, a black-box testing approach to security assessment (e.g.,
WAVES and other WSSs ) still holds many benefits in real-world applications.
A black-box security analysis tool can perform an assessment very quickly and
produce a useful report identifying vulnerable sites. To assure high security
standards, white-box testing can be used as a complement.

4.1 Future Research Directions and Open Problems

4.1.1 Protection Mechanisms—anomaly detection or misuse detection?.
The primary job of protection mechanisms such as Scott and Sharp’s work
[Scott and Sharp, 2002a] [Scott and Sharp, 2002b] or commercial application
firewalls is to distinguish malicious traffic from normal traffic. In anomaly
detection, normal traffic is defined, and those that do not comply with the
definitions are considered malicious. Scott and Sharp adopted this approach
for every DEP of a Web application, and required that the network admin-
istrator supply definitions describing valid parameters for the DEP. HTTP re-
quests to a DEP that do not comply with its definition are considered malicious.
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Most commercial application firewalls, on the other hand, deploy deep packet
inspection [Dharmapurikar et al., 2003], which makes use of misuse detec-
tion. In misuse detection, a database of malicious patterns (“signatures™) is
maintained, and every HTTP request is filtered against this signature database
to verify the absence of malicious data. Unfortunately, even for known at-
tacks, neither anomaly nor misuse detection can guarantee detection. Scott and
Sharp’s approach asks that administrators specify valid parameters for every
DEP. Though this reduces the chance of DEPs being attacked, it does not elim-
inate all attack possibilities. For example, the definition for an address field
may be “it must be a string with length between 20 to 50 characters.” A skilled
attacker may still be able to exploit the DEP under this restriction—using a
cleverly-crafted 20-to-50-character malicious string. On the other hand, filter-
ing against a signature database cannot guarantee detection either. Signature-
based detection has proved very successful in the anti-virus technology, be-
cause once released by its developer, a virus’ executable code is fixed. How-
ever, due to the expressiveness and rich features of SQL, a same SQL injection
attack can take almost an unlimited number of patterns. A detailed explanation
was recently given in Maor and Shulman [Maor and Shulman, 2004]. Even if
all possible attack patterns can be enumerated, real-time filtering would be im-
practical even with the support of advanced string filtering algorithms such as
the bloom filter [Dharmapurikar ct al., 2003], which is already being deployed
in most application level firewalls. We note that since WebSSARI also per-
forms signature-based filtering to sanitize untrustworthy data, it is also subject
to this problem.

4.1.2 Testing—how to reduce false negatives?. WSSs available to
date suffer from the high rate of false negatives due to two main reasons.
Firstly, bypassing form validation procedures is difficult. Some WSSs, such
as VeriWeb [Benedikt et al., 2002] and AppScan [Sanctum, 2003], adopt a
profile-based solution that requires administrators to manually supply valid
values for every form field. WAVES incorporates techniques associated with
hidden Web crawling to address this problem. However, even with such a
mechanism in place, enumerating all execution paths is difficult. For example,
for many websites, a majority of DEPs will not be identified if the webcrawler
does not complete a login form correctly. Even if the webcrawler is capable of
recognizing a login form, the administrator must manually supply proper val-
ues (i.e., a pair of valid username and password). These suggest that manual
efforts are unavoidable in order to reduce false negatives. The second reason
is that current WSSs use malicious patterns to detect SQL injection vulnera-
bilities. They submit malicious patterns to DEPs and observe their output. A
majority of these malicious patterns are designed to make the backend database
of vulnerable Web applications output error messages. Such error messages are
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then delivered by a Web application as parts of its output and observed by the
WSSs . However, many Web applications today suppress such error messages,
and therefore subject current WSS testing methodology to a high rate of false
negatives.

4.1.3 Verification—Web languages are hard to verify. WebSSARI
incorporates a compile-time verification algorithm that statically approximates
runtime state. Such approximation is harder for weakly-typed languages, and
for languages that support features such as pointer aliasing, function pointers,
and object-oriented programming. These features often cause the number of
states of a verifier to grow exponentially, making the task of verifying larger
programs nearly impossible. Popular languages used for Web application de-
velopment, such as PHP and Perl, not only support all the above features, but
are also scripting languages. Scripting languages are not compiled into exe-
cutables but executed directly by interpreters. Therefore, they have a much
looser construct and support dynamic evaluation—that is, they can generate
code on the fly and have the interpreter execute them. In other words, they
can programmatically interact with the underlying interpreter at runtime. All
these features make it very difficult for runtime state approximation. Before the
Web, complex software were seldom developed using scripting languages, and
therefore not much efforts have been made to study the verification of script-
ing languages. However, today’s Web applications are large and complex, but a
majority of them are developed using scripting languages. To successfully ver-
ify these applications, techniques must be developed to handle features (such
as dynamic evaluation) unique to scripting languages.
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JPEG2000 is an emerging international standard for still image compression and
is becoming the solution of choice for many digital imaging fields and applica-
tions. Part 8 of the standard, named JPSEC , is concerned with all the security
aspects of JPEG2000 image code-streams, with emphasis presently on access
control and authentication. An important aspect of JPEG2000 is its “compress
once, decompress many ways” property [Taubman and Marcellin, 2000], i. e.,
it allows extraction of transcoded sub-images (e.g., images with various reso-
lutions, pixel fidelities, tiles and components) from a single compressed image
code-stream.

This paper presents our proposals to the JPSEC Working Group on an au-
thentication scheme and an access control scheme for JPEG2000 image code-
streams. Both schemes are fully compatible with the core part of the JPEG2000
standard. The authentication scheme possesses the so called “sign once, ver-
ify many ways” property. That is, it allows users to verify the authenticity and
integrity of any transcoded sub-images extracted from a single code-stream pro-
tected with a single signature. The access control has the “encrypt once, access
many ways” property. That is, it allows users access to transcoded sub-images
from a single encrypted JPEG2000 code-stream.

Access control, digital signature , JPEG2000, hash function , encryption, image
compression, rooted trees.
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1. Introduction

One of the well-known image compression standards is JPEG. JPEG stands
for Joint Photographic Experts Group, a community of experts that was formed
under the auspices of the ISO in the mid 1980°s to develop a standard for still
image coding. Since then, an evolution of image compression technology has
taken place and a much more superior image compression standard known as
JPEG2000 has been formed recently by ISO/IEC JTC/SC29/WG1 (the work-
ing group charged with the development of JPEG2000 standard). The major
intention of JPEG2000 is twofold [Taubman and Marcellin, 2000, Rabbani
and Joshi, 2002]. Firstly, it is designed to address most of the limitations of
the original JPEG standard. Secondly, it intends to cater for the widening of
application areas for JPEG technology. In addition to excellent coding per-
formance and good error resilience , a remarkable merit of JPEG2000 is its
“compress once, decompress many ways” functionality, i.e., it supports ex-
traction of transcoded images with different resolutions, quality layers and
regions-of-interest (ROIs), all from the same compressed code-stream. This
functionality allows applications to manipulate or disclose only the required
image data of a code-stream for any target users based on their privileges or
capabilities. JPEG2000 achieves “compress once, decompress many ways” by
encoding and organizing code-streams in a complicated but systematic way.
JPEG2000 refers to all parts of the standard: Part 1 (the core) [ISO154447]
is now published as an international standard, five more parts (Parts 2-6) are
complete or near complete, and four new parts (Parts 8-11) are under develop-
ment. In particular, Part 8 of this standard, named JPSEC, is concerned with
all the security aspects of JPEG2000 image code-streams and files. At the
time of this writing, the JPSEC Working Group focuses on access control and
authentication mechanisms for JPEG2000 image code-streams.

This paper presents our proposals to the JPSEC Working Group on an au-
thentication scheme and an access control scheme for JPEG2000 image code-
streams. Both schemes are fully compatible with the core part of the JPEG2000
standard. The authentication scheme possesses the so called “sign once, verify
many ways” property. That is, it allows users to verify the authenticity and
integrity of any transcoded sub-images extracted from a single code-stream
protected with a single signature. The access control has the so called “encrypt
once, access many ways” property. That is, it allows user access to transcoded
sub-images from a single encrypted JPEG2000 code-stream.

1.1 Related Work

Many data integrity and origin authentication techniques have been pro-
posed [Schneier, 1996, Menezes et al., 1996]. However, these generic data
authentication techniques completely ignore the internal data structure of the
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content under protection. A scheme using digital signature for authenticating
JPEG2000 code-streams is proposed in [Grosbois et al., 2001]: it simply signs
each code-block and attaches the digital signature to the end of the code-block
bit stream. Hence, the scheme is neither secure nor efficient. It will gener-
ate many signatures since a code-stream may contain many code-blocks. The
scheme is vulnerable to cut-and-paste attack since it only authenticates individ-
val code-blocks, not the image code-stream as a whole. A semi-fragile JPEG
image authentication scheme is presented in [Lin and Chang, 2000], which
aims at authenticating images under lossy compression and other common im-
age manipulations such as blurring and sharpening. For example, their scheme
accept JPEG lossy compression on the watermarked image to a pre-determined
quality factor, and reject malicious attacks. The objective of our authentication
scheme is different from that of [Lin and Chang, 2000]: we aim at authenti-
cating transcoded sub-images from a single original image code-stream. The
sub-images have not only have various qualities, but also different resolutions,
components and ROI.

Access control involves authorizing legitimate users with appropriate priv-
ileges to access a certain resource while denying access from illegal users
[Eertino et al., 1993, Sandhu and Samarati, 1994]. Solutions for authoriza-
tion fall into two categories, access control models and cryptographic tech-
niques. An access control model mediates access to resources by checking
with access control rules established in conformance with a security policy. A
cryptographic method for access control manages authorization by encrypting
information items such that only authorized users have the right keys to decrypt
the scrambled data. A number of schemes (e.g., [Akl and Taylor, 1983, MacK-
innon et al., 1985, Harn and Lin, 1990, Ohta et al., 1991, Sandhu and Samarati,
1994]) relating to access control based on cryptographic techniques have been
proposed. All of these schemes assume that information items as well as users
are classified into a certain type of hierarchy and there is a relationship be-
tween the encryption key assigned to a node and those assigned to its children.
The related works differ mostly in the different cryptographic techniques em-
ployed for key generation. Most of them employ complex and computational
expensive cryptographic operations, such as RSA [Rivest et al., 1978] or large
integer modular exponentiations. Employing these schemes in access control
to JPEG2000 image code-streams is not feasible since user devices (such as
PDAs and cell phones) in JPEG2000 applications can be very resource con-
strained. The work directly relating to ours is the two access control schemes
for JPEG2000 image code-streams proposed in [Grosbois et al., 2001]. The
first scheme allows for a preview of low resolution image while preventing
the correct display of its higher resolutions by scrambling the sign bits of the
wavelet coefficients of the high resolutions code-block by code-block based
on pseudo-random sequences. The second scheme provides access control to
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image quality layers by introducing pseudo-random noise in the higher qual-
ity layers of the image. Random seeds for generating the pseudo-random se-
quences are encrypted and appended to image code blocks. The two schemes
in [Grosbois et al., 2001] have several serious drawbacks. Firstly, they are not
flexible, providing either resolution based access control or quality layer based
access control but not both at the same time. Secondly, they introduce consid-
erable overhead to the image code-stream. Thirdly, the two schemes lead to
decreased compression ratio because wavelet coefficients are randomized be-
fore compression. Finally, they are subject to several attacks [Wu and Deng,
2003].

1.2 Notations

We list below important notations used throughout the paper for ease of ref-
erence. Terminology such as precinct , resolution, resolution-increment , qual-
ity layer (or layer in short) and layer-increment will become clear in the next
section. We will refer a JPEG2000 image code-stream simply as JPEG2000
code-stream or just code-stream.

n¢ :the number of components in a code-stream

C. :the cth component in a code-stream, c=0,1,...,ng —1

ng :the number of resolutions/resolution-increments in a code-stream

R, :resolution-increment r in a code stream, r =0, 1,...,ng — 1

ny, :the number of layers/layer-increments in a code-stream

L; :layer-increment [ in a codestream, [ = 0,1, ...,ny, — 1

np :the number of precincts in a resolution. Without loss of generality, we
assume that every resolution has the same number of precincts.

P, :the pth precinct in a resolution, p = 0,1,...,np — 1

h(-) :a cryptographic one-way hash function

x|y :the concatenation of z and y

The rest of the paper is arranged as follows. Section 2 illustrates the basic
concepts and characteristics of JPEG2000 image code-streams. Section 3 pro-
vides an overview of the schemes being studied. Sections 4 and 5 present our
authentication and access control schemes, respectively. Section 6 contains our
concluding remarks.

2. Overview of JPEG2000 Code-streams

In what follows, we provide a brief description of the concepts and termi-
nology related to JPEG2000 code-streams. Our goal is to illuminate the main
concepts at a sufficient level to impart an understanding of our access control
scheme without dwelling into too much on the details. Those interested in the
details are referred to [1-3].
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2.1 Basic Concepts and Terminology

Tiles: JPEG2000 allows an image to be divided into rectangular non-overlapping
regions known as tiles, which are compressed independently, as though they
were entirely distinct images. Tiling reduces memory requirements during
compression and decompression. For the sake of simplicity and without loss
of generality, we will only consider single tile code-streams.

Components: An image is comprised of one or more components; each
consists of a rectangular array of samples. For example, a RGB color image
has three components with one component representing each of the red, green
and blue color planes.

Resolution-increments and Resolutions: Given a component, a (ng — 1)-
level dyadic wavelet transform is performed. The first wavelet transform de-
composes a component into four frequency subbands LL; (horizontally low-
pass and vertically lowpass), LH; (horizontally lowpass and vertically high-
pass), H Ly (horizontally highpass and vertically lowpass) and H H; (horizon-
tally highpass and vertically highpass). The second wavelet transform further
decomposes LL1 into another four subbands LLy, LH9, H Lo and H H,. Fi-
nally, the (ng — 1)th wavelet transform decomposes LL,,,_» into four sub-
bands LL,,_1, LHypp—1, HLy,_1and HH,,_1. Therefore, a (ng — 1)-
level dyadic wavelet transform generates np sets of subbands, denoted as
Ry = {LLnp-1}, RB1 = {LHnp—1,HLypp 1, HHpp1}, ..., Rup-1 =
{LH,HLy, HH,}. Wereferto R; as resolution-increment i of a code-stream.

The np resolution-increments above correspond to np image sizes or res-
olutions. The resolution 0 image is constructed from resolution-increment 0,
Ry, and is a small “thumbnail” of the original image. The resolution 1 image
is constructed from resolution-increments 0 and 1, Ry and R;, and is a bigger
“thumbnail” of the original image. In general, the resolution r image is con-
structed from resolution-increments 0 to r, { Ro, Ry, ..., Ry }. Note that the
resolution ng — 1 image is the original image. Figure 2.1 shows ng = 3 reso-
lutions of a code-stream. The original image (resolution 2) is of size 128 x 128,
resolution 1 is of size 64 x 64, and the lowest resolution 0 is of size 32 x 32.

Layer-increments and Layers: Following the wavelet decomposition, wavelet
coefficients are quantized and each quantized subband is partitioned into small
rectangular blocks, referred to as code-blocks. Each code-block is indepen-
dently entropy encoded to create a compressed bit-stream which is distributed
across ny, quality layers. Layers determine the quality or signal-to-noise ratio
of the reconstructed image. Roughly speaking, a higher quality image needs
more bits for each pixel representation than a lower quality image. Let L
denote the code-stream data needed to form a layer 0 image. Let L; be the ad-
ditional code-stream data to form a layer ! image given Ly, Ly, ..., L; — 1,1 =
1,2,...,nr—1. Thatis, a layer ] image is formed from { Lo, L1, ..., L;—1, L; }.
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(0) 32x32

Figure 13.1. mnpr = 3 resolutions of an image.

Note that the image of layer ny — 1 is the original image. We refer to L; as
layer-increment I, | = 0,1,2,...,nz — 1. Figure 13.1 illustrates two images
of different qualities, one at 0.05 bpp (bits per pixel) and the other at 0.5 bpp.

(a) 0.08bpp (b) 0.5bpp

Figure 13.2.  Two images of different qualities.

Precincts: In order to provide locality for accessing certain portions (e.g.,
ROI) of an image, an intermediate space-frequency structure known as precinct
is provided in JEPG2000. Unlike the tile and code-block partitions, the precinct
partition does not affect the transformation or coding of sample data; it instead
plays an important role in organizing compressed data within a code-stream.
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A precinct is a collection of spatially contiguous code-blocks from all sub-
bands at a particular resolution. In Figure 13.2a, the original image of size
512 x 512 is divided into 4 precincts of size 256 x 256 each. In Figure 13.2b,
each smaller resolution includes 4 precincts with one-to-one correspondence
to the 4 precincts in Figure 13.2a. For instance, the gray blocks marked A,
B and C form a precinct in resolutions 2, 1, and 0, respectively, and they all
correspond to the gray precinct in Figure 13.2a. In other words, the data in
precincts A, B and C can be used to reconstruct the gray region in the original
image.

Packets: Packets are the fundamental building blocks in a JPEG2000 code-
stream. It comprises the compressed bit-stream from code blocks belonging
to a specific component, resolution, layer and precinct. Figure 13.3 shows the
process for generating packets. The original image is first decomposed into
components. Then, the dyadic wavelet transform is applied to each compo-
nent to produce the subbands corresponding to various resolution-increments.
Each subband is quantized and divided into code-blocks. Certain spatially
contiguous code-blocks in subbands of a resolution form a precinct. Each
code-block is encoded independently into compressed bit-stream which is dis-
tributed into quality layer increments. Finally, compressed bits from the same
component, resolution-increment, precinct and layer-increment are encapsu-
lated into a packet.

2.2 Progression Orders

Progressive display allows images to be reconstructed with increasing pixel
quality or resolution, as needed or desired, for different target devices. JPEG2000
supports progression in four dimensions: quality layer, resolution, spatial lo-
cation and component [1-3].

1 Inlayer progression, image quality is improved when more layer-increments
are received. For example, the image with the lowest quality is recon-
structed from decoding Lg. The image with the next quality layer is
obtained by decoding Lg and L;.

2 In resolution progression, the first few bytes, i.e., Ry, is used to form a
small “thumbnail” of the image. As more resolution-increments R, are
received, r = 1,2,...,nr — 1, image width and height double.

3 In spatial location progression, image is displayed in approximately raster
fashion, i.e., from left to right and from top to down, or displayed by
ROL.

4 Component progression controls the order in which the data correspond-
ing to different components is decoded.
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512x512

(a) Precincts of the original image

512x512

64 X 64

(b) Precincts of lower resolutions

Figure 13.3. Partitioning resolutions into precincts.

These dimensions of progression can be “mixed and matched” within a sin-
gle compressed code-stream and this has been referred to as the “compress
once, decompress many ways” property of JPEG2000 [Taubman and Mar-
cellin, 2000]. Figure 2.2 shows a typical JPEG2000 code-stream which con-
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Original image —® Components --# Resolutions
-

(om0 ]

Packets  -— Layers --4—  Precincts

Figure 13.4. Packet generation process.

sists of a header, data packets Dy, Dy, ..., Dy arranged in a particular pro-
gression order, and an end-of-code-stream marker EOC.

Header } D, I D. I ! D
I

Figure 13.5.  Structure of a JPEG2000 code-stream.

Figure 13.5 shows the pseudo-code for generating a code-stream of pro-
gression order layer-resolution-component-precinct. It is very important to
note that a packet in a code-stream is uniquely determined by a given layer-
increment [, resolution-increment r, component ¢, and precinct p.

for/=0,1,..,n,-1
forr=0,1,...,m,-1
forc=0,1,...,n.-1
forp=0,1, ..., 1,1
packet D" corresponds to , 7, ¢, p.

Figure 13.6. Arrangement of packets in a code-stream following progression order layer-
resolution-component-precinct.
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3. Overview of The Schemes

Part 9 of the JEPG2000 standard, JPEG2000 Interactive Protocol (JPIP)
[Prandolini et al., 2002], specifies how to respond to user requests of images
with various progression orders. JPIP is mainly intended for interactive on-
line user/server type of applications. However, when protected with security
services, JPIP can also be adapted for non-interactive as well as off-line distri-
butions.

3.1 Setup of the Authentication Scheme

Our proposed authentication scheme is targeted for the third party publica-
tion scenario shown in Figure 3.1, where an image owner prepares JPEG2000
code-streams for a publisher (the third party) to disseminate to users on de-
mand. The responses from the publisher to users’ requests are transcoded
sub-images. In security-sensitive applications, it is highly desirable or even
mandatory for users to verify the authenticity of a received response, to make
sure that the sub-image is indeed originated from the owner as claimed and that
the content of the sub-image has not been modified during the transmission.

.
Publisher |

o  User

A

Figure 13.7. A third party publication model.

A straightforward solution is to let the publisher digitally sign each re-
quested sub-image in real-time. This requires that the publisher be trusted
by the users and does not tamper the original owner’s image streams. It also
requires that the private signing key be made on-line. Generally speaking, an
on-line signing key is vulnerable to both external hacking and insider attacks.
Another naive approach is to have the owner pre-compute signatures for all
possible sub-images and forward them together with the code-stream to the
publisher for distribution to users. This approach is infeasible in practice since
there are too many sub-images for a code-stream. The approach is also not
scalable to large number of code-streams.
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Our authentication scheme presented in the next section allows for “sign
once, verify many ways’”’; hence, it addresses exactly the authentication prob-
lem in the third party publication model. Using our scheme, the system in
Figure 3.1 operates as follows:

1 The owner of an image code-stream prepares a digitally signed code-
stream and then forwards it to the publisher.

2 A user sends the publisher a request for a sub-image of the code-stream.

3 Upon receiving the request, the publisher extracts the requested sub-
image and sends the sub-image, the digital signature from the owner
and a small amount of auxiliary data to the user.

4 The user verifies the authenticity of the sub-image using the digital sig-
nature and the auxiliary data. The user accepts the sub-image if the
verification is successful.

Using our authentication scheme in third party publications has three im-
portant advantages: 1) the owner only needs to compute the signature once
instead of pre-computing signatures for all possible sub-images, 2) the owner
need not sign sub-images in real time so that much better security is achieved
since the private signing key is not kept on-line and, 3) it requires less trust on
the publisher since the publisher is only used for information dissemination,
not for generation of digital signatures on behalf of the owner.

3.2 Setup of the Access Control Scheme

Our access control scheme aims at controlled access to JPEG2000 code-
streams which are distributed following the “super-distribution” model [Mori
and Kawahara, 1990]. A typical system setup is shown in Figure 3.2. High
level operation of the system consists of the following three steps:

Publisher

Figure 13.8.  The access control system setup.
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1 JPEG2000 code-streams are first encrypted by the publisher (or owner)
and then distributed to users. Since the code-streams are protected by
encryption, all conceivable ways of content data distribution can now
be enabled, including for examples Internet, digital cable TV, satellite
broadcast and CD-ROM publishing. This concept of super-distribution
provides the publisher a very flexible way to use the most appropriate
distribution channel.

2 The control data, i.e., keys for decrypting the content data, is forwarded
securely from the publisher to an on-line key server.

3 A user who desires to access portions of a code-stream sends his/her
request together with authentication information or payment data to the
key server. The key server, in turn, responds with appropriate decryption
keys according to user’s privilege or amount of payment.

4. The Authentication Scheme

In order to preserve the “compress once, decompress many ways” property
of the JPEG2000 code-streams, we require that our authentication scheme sup-
port “sign once, verify many ways”. That is, the scheme allows for verification
of the authenticity and integrity of any transcoded sub-images extracted from a
compressed code-stream signed with a single digital signature. We achieve this
design objective using the Merkle hash tree , or Merkle tree [Merkle, 1989].

4.1 The Merkle Hash Tree

To authenticate data values ny,no,...,n,,, the data source constructs the
Merkle tree as depicted in Figure 4.1 assuming that w = 4. Each node in
the tree is assigned a value. The values of the 4 leaf nodes are the message
digests, h(n;), i = 1,2, 3,4, respectively, of the data values under a one-way
hash function i(-). The value of each internal node of the tree is derived from
its child nodes. For example, the value of node A is hg = h(h(ny)]h(n2)).
The data source completes the levels of the tree recursively from the leaf nodes
to the root node. The value of the root node is h, = h(h,|hp) which is used
to commit to the entire tree to authenticate any subset of the data values n;,
na, N3, N4, in conjunction with a small amount of auxiliary information. For
example, a user, who is assumed to have the authentic root value h,, requests
for ng and requires the authentication of the received n3. Besides ns, the
source sends the auxiliary information ha and h(n4) to the user. The user
can then check the authenticity of the received ng as follows. The user first
computes h{ns), hy = h{h{(n3)|h{n4)) and h, = h(hy|hs), and then checks if
the latter is the same as the authentic root value h,.. Only if when this check is
positive, the user accepts ng. In general, to authenticate the data value n;, the
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auxiliary information are the values of all the sibling nodes of those nodes on
the path from the leaf node n; to the root.

The concept of Merkle tree has been used for certifying answers to queries
over XML documents [Devanbu et al., 2001a], for proving the presence or
absence of public key certificates on revocation lists [27,28], and for certify-
ing data published by untrusted publishers [Devanbu et al, 2001b]. However,
authenticating JPEG2000 image code-streams requires more careful treatment
since these streams are not as structured and are subject to various progression
orders which further complicates the issue. The innovative contribution of our
work is the development of a general authentication model of JPEG2000 code-
streams using the Merkle tree which is compatible with JPEG2000 standard.

h Root

h(n,) h(ny) h(n,) hiny

Figure 13.9. An example Merkle hash tree.

4.2 Description of the Scheme

Figures 13.3 and 13.5 show clearly a hierarchical structure of JPEG2000
code-streams. To keep our notations and drawings compact and without loss
of generality, we assume that a code-stream has 1 tile and 1 component. Then a
code-stream can be reviewed as a collection of precincts { P, p = 0,1, ...,np—
1}, resolution-increments {R,,r = 0,1,...,ng — 1}, and layer-increments
{Li,l = 0,1,...,n; — 1}. The Merkle tree for this code-stream is shown in
Figure 4.2.

In the tree of Figure 4.2, a leaf corresponds to a code-stream packet. In a
JPEG2000 code-stream, a packet is uniquely identified by a resolution, layer
and precinct. Therefore, the path from the root to a leaf node in Figure 4.2
identifies a unique packet. We assign the message digest of the packet under
a one-way hash function as the value of the leaf node. As an example, the
path from the root to the leftmost leaf node Ly is specified by Ry, Po, and L.
Hence the value of the leaf node in this path is the message digest of the packet
which corresponds to resolution-increment 0, precinct 0 and layer-increment
0. Once the values of the all the leaf nodes are assigned, the values of the other
nodes, including that of the root, can be computed recursively.
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Root

Pupa

Py Pn,,-l Py P"p‘l Py P"l"] Py

Figure 13.10. The Merkle tree for a code-stream.

A JPEG2000 code-stream header specifies important parameters of the code-
stream such as size, number of layers, number of resolutions and the progres-
sion order [Taubman and Marcellin, 2000]. It is important to protect the in-
tegrity of the header in order to correctly decode the code-stream. This can be
achieved by hashing the header together with the root value of the Merkle tree
and let the owner sign the output of the hash function. However, to keep the
presentation simple, we will not mention this explicitly in the rest of the paper.

We use an example to further illustrate the above description. Consider a
code-stream with 4 resolutions (or resolution-increments), 2 layers (or layer-
increments) and 2 precincts. Its Merkle hash tree is given in Figure 13.10.
There are 16 leaf nodes correspond to the 16 packets in the code-stream. For
example, the leftmost leaf node Py corrcsponds to the packet specified by
resolution-increment 0, layer-increment 0 and precinct 0. For ease of de-
scription, we denote the 16 packets as yq, ¥1, ..., y15 in Figure 13.10. The
owner of the code-stream assigns a value to each node in the tree according to
the process described above. As an example, the leftmost Fy node has value
h(y1), the leftmost P; node has value h(y2), the leftmost Ly node has a value
of h(h(y1)|h(y2)). This process continues until the root value is computed.
The owner generates a digital signature on the root value. The authenticated
code-stream is the code-stream plus the digital signature. When a user sends a
request for a transcoded sub-image with resolution 1, the owner (or a publisher
as shown in Figure 3.1) sends packets y1, yo, ..., ys, the digital signature and
some auxiliary data to the user. Here the auxiliary data are the values of the
nodes labeled as 1 and 2 in Figure 13.10. To authenticate the received packets,
the user first re-computes the root value of the hash tree based on the received
packets and the auxiliary data. The user then verifies the digital signature us-
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ing the owner’s public key and the computed root value. The user accepts the
received packets as authentic only if the verification is successful.

Root

P, PPPRPLP, PPy PPy PPy PLPy PP P
Vi Y2 Xy Vi Vs Yo Y1 s ¥y YigYu iz ¥ Y Ns Ve

Figure 13.11.  Merkle tree for an example code-stream.

A request for only one of the parameters - resolution, layer and precinct, is
called a single-parameter request. They are resolution-request, layer-request
and precinct-request. A request for more than one parameters is called a
multiple-parameter request. In the following we consider how to optimize
single-parameter requests in terms of minimizing the amount of auxiliary data.
Discussion on optimizing multiple-parameter is treated in [Wu and Deng, 2003,
Peng et al., 2003].

To minimize the amount of auxiliary data for resolution-request, first we
note that the nodes corresponding resolution-increments should be placed at
high as possible in (i. e., right below the root) the Merkle tree. Next, we re-
mark that resolutions and resolution-increments are two different concepts (see
Section 2). A resolution r sub-image is constructed from resolution-increments
O0tor, {Ro, R1,..., R+}. Aresolution-increment R, represents the additional
packets needed to construct a resolution r sub-image from a resolution r — 1
sub-image. Therefore, a resolution-request will ask for the sets of continuous
resolution-increments starting from resolution-increment 0. A similar discus-
sion applies to layers and layer-increments. Based on the above observation,
the Merkle tree in Figure 4.2 can be modified as shown in Figure 13.11, where
the nodes represent resolution-increments and the layer-increments, respec-
tively, are chained together to reflect their incremental relationships. As in
Figure 4.2, each leaf node here is assigned the message digest of a unique
packet. However, there are multiple nodes of the same type on a path from
the root to a leaf node. For example, nodes on the path from the root to the
second left P node are Ry, Lg, L1, Py. There are two nodes of type L. Hence
the method of mapping packets to leaf nodes as used for Figure 4.2 need to be
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modified. The modification is simple, we just ingore the nodes of the same type
except the one closest to the leaf node. In the example above, we ingore Ly, so
the nodes on the pruned path are Ry Ly, Py and the leaf node corresponds to
the packet specified by resolution-increment 0, layer-increment 1 and precinct
0.

Root

P... .

0 np—l

Figure 13.12.  The optimized Merkle tree.

Consider again the same code-stream with 4 resolutions (or resolution-increments),

2 layers (or layer-increments) and 2 precincts. Its optimized Merkle hash tree
is shown in Figure 13. When a user requests for the sub-image with resolution
1, the owner sends packets y;, ¥2, ..., ys, the digital signature and the value
of the node labelled with 1 as the auxiliary data. Note that to authenticate
the same sub-image, the tree in Figure 13.10 needs two message digests while
the tree here requires only one message digest. This code-stream is just a toy
example. The JPEG2000 standard allows a code-stream to support up to 33
resolution-increments and 65535 layer-increments. As the numbers of resolu-
tion and layer increments increase, the amount of reduction on the auxiliary
data becomes significant using the optimized Merkle tree.
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Figure ]13.13.  An example optimized Merkle tree.

5. The Access Control Schemes

In this section, we first define the security classes in a JPEG2000 code-
stream. We then describe our access control scheme.

5.1 Security Classes and Access Control Rules

Consider the situation where users and data can be classified into a hierarchy
of security classes [Sandhu, 1993]. If a security class A is the predecessor
of another security class B, we say that A strictly dominates B and denote
this relation as A > B. Similarly, we say that A dominates B, denoted as
A > B, if either A > Bor A = B. We say that A and B are comparable if
A > Bor B > A;otherwise A and B are incomparable. From the progression
properties of code-streams presented in Section 2.2, we define the following
security classes related to a JPEG2000 code-stream:

1 The security classes of resolution-increments, {R,,r = 0,1,...,np —
1}, is a total ordering [Sandhu, 1993], with
RnR—l > RnR——Z >...> Ry > Ry (13.1)
2 The security classes of layer-increments, {L;,l = 0,1,...,nr — 1}, is
a total ordering, with
LnL—l > LnL_2 >...>L1 > Ly (13.2)

3 The security classes of the precincts, {Pp,p = 0,1,...,np — 1}, are
isolated classes [Sandhu, 1993]. That is,

P, and P are incomparable for all p # p. (13.3)
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Based on the above security classes, our aim is to enforce the following
access control rules for a JPEG2000 code-stream:

1 A user who is allowed to access security class R, also have access to
R, forall v’ < r but notto R, for all v" > r.

2 A user who is allowed to access security class L; can also access Ly for
all I’ < I butnot Ly forall I > 1.

3 A user who is allowed to access a subset of {FPp,p = 0,1,...,np — 1}
can not have access to any other subsets outside of the granted subset.

4 Any “mix and match” of the above regardless of the progression order
of the code-stream.

Care must be taken in designing access control schemes for JPEG2000 code-
streams in order to avoid collusion attacks [Wu and Deng, 2003]. One ap-
proach to realize secure access control which meets our access control rules
above is, using the method given in [Sandhu, 1993], to form a combined hi-
erarchy of security classes from the isolated precinct security classes, the to-
tal ordered resolution-increment security classes and layer-increment security
classes. Unfortunately, the resulting hierarchy of security classes is a Directed
Acyclic Graph (DAG), not a rooted tree. There are cryptographic solutions
available in the literature for key generation and implementing access controls
in DAGs (see for examples [7-11, 18]). All of them, however, are based on
public key cryptosystems and are extremely complex and computationally ex-
pensive for our applications.

5.2 Description of the Scheme

Sandhu [Sandhu, 1998] introduces a cryptographic implementation for ac-
cess control in a situation where users and information items are classified into
a rooted tree of security classes, with the most privileged security class at the
root. The idea is that keys for security classes are generated from their par-
ent class using a parameterized family of one-way functions. In the following,
we seek to adapt Sandhu’s approach to arrive at a flexible, efficient and secure
access control scheme for JPEG2000 code-streams.

In the Sandhu tree, encryption keys associated with a tree of security classes
are generated as follows: 1) for the security class at the root assign an arbitrary
key; 2) if a security class Y is an immediate child of X in the tree, let ky =
h(kx|name(Y)), where kx and ky are the keys associated with X and Y,
respectively, and name(Y") is the name of Y. The keys kx and ky are used
to encrypt information items of security classes X and Y, respectively. A user
at a security level, say X, needs to know kx. Since one-way hash function
is public, keys for security classes dominated by X can be generated from
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kx as needed. However, it is computationally infeasible to compute keys for
any predecessors or any siblings of X due to the one-way nature of the hash
function.

We show the construction and application of Sandhu trees with a simple
example. Consider the security classes A, By, By, Cy, C1, Co, and Cs,
where A > By and By, By > Cg and Cy; and By > Cy and C3. The
Sandhu tree for this security class hierarchy is given in Figure 13.14. We
assign a random key k4 to the root. The keys for By and B are kg, =
h{ka|lname(By)) and kp, = h(ka|lname(B1)), respectively. The keys for
Co, C1, Cy, and C3 are k¢, = h{kp,|name(Ch)), ke, = h{kp,|name(C1)),
kc, = h(kp, Iname(Cy)) and ke, = h(kp, |name(C3)), respectively. A user
with security clearance Bj is given kp,. He can easily compute keys for Cs
and Cj, but not for any other nodes in the tree.

4
//.\\
AN
B-\/ ‘e 5,
7\ /
r roo

Figure 13.14.  An example Sandhu tree.

Our challenge here is to bring the advantages of Sandhu tree to the ac-
cess control of JPEG2000 code-streams. The key in meeting this challenge
is to construct a rooted tree hierarchy of security classes for JPEG2000 code-
steams. It turns out that this can be done in a systematic way. The trick is to
specify a preferred progression order when constructing the overall hierarchy
for a JPEG2000 code-stream.

We use an example to illustrate our idea. Assume that the preferred progres-
sion order is resolution-layer-precinct, the rooted tree hierarchy for a JPEG2000
code-stream is shown in Figure 13.15 (the dependence of the tree on the pro-
gression order will be made clearer in Section 5.3). Observe how the tree is
constructed based on the preferred progression order resolution-layer-precinct:
the resolution-increments form the trunk of the tree, the layer-increments form
the branches and finally the precincts form the leaves. Also observe that the
tree preserves the hierarchies of individual security classes, e.g., the trunk
formed from the resolution-increments is still a total ordering.

We remark that there are a number of subtle differences between our tree
and a Sandhu tree. First, a given class, say P, is assigned to multiple nodes
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Figure 13.15. Rooted tree for key generation for access control.

in our tree while this is not allowed in a Sandhu tree. Second, keys associated
with non-leaf nodes in a Sandhu tree are used for encrypting information items
associated with the nodes while in our tree only keys associated with the leaf-
nodes will be used to encrypt packets in the code-stream.

Packet key generation and encryption: Key generation in our rooted tree
follows the same approach as that in the Sandhu tree:

1 Given a code-stream, generate a random master key K.
2 Generate keys for the resolution nodes iteratively from the hash chain
k" = h(k™T1), (13.4)

forr =ngr—2,ng—3,...,1,0, where k"2~ = h(K|“R") and where
“R” denotes the ASCII code of the letter .

3 For a given r, generate keys for the layer nodes iteratively from the hash
chain

R(kmHD), (13.5)

forr=ngp—-1,np—2,...,1,0,l =ny —2,ny — 3,...,1,0, where
kr(ne=1) = h(k"|“L”) and where “L” denotes the ASCII code of the
letter L.
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4 For a given r and [, generate keys for the precinct nodes from

kP = h(k™|“P”|p), (13.6)
forr =ng—1,ng—2,...,1,0, =np —1,ny —2,...,1,0 and
p=0,1,...,np—2,np—1, where “P” denotes the ASCII code of the

letter P.

5 Encrypt the packet D™'P using the key k™ under a symmetric key algo-
rithmforr =0,1,...,ng~1,1=0,1,...,ny—landp=0,1,...,np—1.

Access encrypted code-stream: Refer to the setup of the access control scheme
in Figure 3.2, there are three cases to consider here depending on the user ac-
cess requirements.

Case I: A user requests access to the image of resolution ’ (i.e., the image
of resolution r’" with the highest quality layer and all the precincts). The key
server replies with k. To obtain the packets corresponding to the requested
image, the user proceeds as follows:

1 Compute, from k™, keys k"' ~1, k”'~2, ..., k!, kO, iteratively using
(13.4).

2 Compute, from the keys obtained in step 1, keys k™, iteratively using
(13.5), forr =7',...,1,0andl =ny — 1,...,1,0.

3 Compute, from the keys obtained in step 2, the packet key &"P us-
ing (13.6), and then decrypt the packet D™ for r = 0,1,...,7"; 1l =
0,1,...,nr —landp=0,1,...,np — 1.

Case 2: A user requests access to the image of resolution r’ and layer
(and with all the precincts). The key server supplies the user with keys k",
r = 0,1,...,7. The user then computes all the necessary packet keys using
(13.5) and (13.6).

Case 3: A user desires access to the image of resolution 7/, layer I’ and
m < mp precinets Fp, p = p1,p2,...,0m. The key server replies with the
keys k™ forr = 0,1,...,r",1 = 0,1,...,"and p = p1,p2,...,Pm. The
user simply uses these keys to decrypt the corresponding packets in order to
obtain the desired image.

Figure 13.16 depicts an example rooted tree for a code-stream with ng = 3,
nr = 3, and np = 2. The key associated with each node is shown in the
parentheses next to the node. To access the image with resolution 1, a user
only needs to know k'; to access the image with resolution 1 and layer 1, the
user needs to know k*! and £%%; to access the image with resolution 1, layer 1
and precinct 0, the user needs to know keys k10, k100 1010 apnq £000,
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Figure 13.16. An example rooted tree for a code-stream with ng = 3, nr = 3, and np = 2.

53 Discussion

This scheme allows privileged users to access images with any resolution,
layer and precinct as well as their combinations; therefore, it is very flexi-
ble and maintains the “compress once, decompress many ways” merit of the
JPEG2000 standard. The scheme in this section is protected from the collu-
sion attack discussed in [Wu and Deng, 2003] since its key generation process
is strictly sequential and is free from the combining operation as in the second
scheme.

The overhead for key transmission from the key server to a user depends on
the type of images requested and on the way the rooted tree is constructed. For
the tree in Figure 13.15, to access the image with resolution 7/, only one key
k™ is required; to access the image with resolution +’ and layer I/, (r'+1) keys,
kU r=0,1,...,7, need to be sent to the user; however, to access the image
of resolution r/, layer I’ and m precincts P,, p = p1,p2, . . . , Pm, the key server
has to transmit (' +1)(I' +1)m keys, k™ forr = 0,1,...,7,1=0,1,...,0,
and p = p1,p2,--.,Pm to the user. Therefore, the tree in Figure 13.15 is the
most efficient in accommodating resolution requests and the least efficient for
handling precinct requests. In general, we can easily adapt our rooted tree
construction according to user request patterns. To keep the paper compact,
however, we will omit the discussion here.

6. Conclusion

Based on the state-of-the-art wavelet technology, the JPEG2000 is an emerg-
ing international standard for image compression. Part 8 of the JPEG2000
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standard is work in progress and is concerned with JPEG2000 code-stream
security with particular emphasis on flexible authentication and access control.

The work presented in this paper is our response to the call for proposal
of the JPEG2000 Security (JPSEC) Working Group. Our authentication uses
Merkle tree which is optimized to accommodate the data structure of JPEG2000
code-stream. Our access control scheme uses hash functions and rooted trees
for systematic key generation and packet encryption. We have implemented
our schemes in a prototype which demonstrated the practical feasibility and
compatibility of the proposed schemes with JPEG2000 standard Part 1.

Media streaming is becoming increasingly popular due to the explosive
growth of Internet and multimedia processing technologies and applications.
It would be interesting to extend our authentication and access control tech-
niques to Motion JPEG2000 streaming in lossy networks. The technical chal-
lenge is how to make the security solutions compatible with Motion JPEG2000
functionality, efficient in processing, and more importantly, robust over lossy
networks.
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Abstract Vector quantization (VQ) is an efficient lossy image compression approach based
on the principle of block coding . In a VQ system, a host image is transformed
into a series of indices. In order to improve the compression rate, switching-
tree coding (STC) was designed to encode the output codevector indices. In this
paper, we propose a novel lossless hiding scheme. When this scheme is used,
information is hidden in STC compressed codes to broaden the efficiency of the
compressed codes. According to the experimental results, we find that informa-
tion can be efficiently hidden in the indices without the content being modified.
After decoding, the hidden information and the indices can be obtained. Only a
small number of extra bits are needed to record the hidden information.

Keywords:  data compression , information hiding, vector quantization, switching-tree cod-
ing

1. Introduction

A digital image is presented using a set of ordered pixels. In order to reduce
the storage of pixels, many image compression methods have been proposed
to eliminate redundant information of the image [Linde et al., 1980, Nasrabadi
and King, 1988]. VQ is an efficient image compression method that can reduce
the number of bits required to represent an image. Due to VQ’s high compres-
sion ratio, VQ has been widely used in various applications, such as image and
voice compression and voice recognition . In a VQ system, an input image is
first divided into a set of blocks, which are called vectors, with k-dimension.
Next, each vector is mapped onto a corresponding index that indicates the lo-
cation of the reference vector in a codebook based on the minimum Euclidean



256 COMPUTER SECURITY IN THE 21 CENTURY

distance criteria. Hence, the indices are used to replace all the blocks of the
original pixels of the input image.

In order to compact the indices of VQ, some researchers proposed their own
methods, such as switching-tree coding (STC) and search-order coding (SOC),
to re-encode the indices. Hsieh and Tsai proposed the SOC algorithm in 1996
[Hsieh and Tsai, 1996]. They exploited the interblock correlation in the in-
dex domain rather than in the pixel domain. Sheu et al. proposed the STC
algorithm in 1999 to re-encode the output vector indices after VQ compression
[Sheu et al.,, 1999]. They constructed three binary trees to allocate the optimal
variable-length noiseless code for each index. Both the SOC and STC algo-
rithms utilize the high correlation between neighboring blocks to encode the
VQ indices with fewer bits. In terms of the compression process of STC, we
find that there are some compressed codes in the indices that are useless. If
these codes can be wisely used to hide information, then the bandwidth effi-
ciency of the compressed codes may be increased. In this paper, we propose a
novel concept, that is, hiding information in the compressed codes of STC. In
addition, the proposed method does not modify the contents of the information
and the compressed image file.

2. Related Work

A VQ system is composed of two operations: an encoder and a decoder
[Gersho and Gray, 1992, Linde et al., 1980]. The encoder maps an original im-
age O in the vector space onto a finite set of vectors CB = {¢g, c1,...,cpm-1},
where CB is called a codebook, and ¢; is a k-dimension vector (codeword),
with 0<i<M-1, to form a small-sized index table. The image O is first di-
vided into Hx W blocks, called vectors, where each block has hxw pixels. Let
O’ = {Bqyo, Bo1, - - -, Bar—1,w—1} denote the divided image, where B;; is the
vector in row i and column j. Then each vector B;; is mapped onto a corre-
sponding index I;; by a search of the minimally distorted co-vector from CB.
Let I = {Ioo, lo1,...,Jg—1,w—1} denote the set of indices, called the index
table, of the image O'.

Sheu et al. adopted the correlation property of adjacent blocks, which is that
many neighboring blocks may be quantized into the same index to re-encode
the indices of VQ [Sheu et al.,, 1999]. They categorized the relationships be-
tween two neighboring indices into four categories: upper connection (UC),
left connection (LC), around connection (AC), and disconnection (DC).

Let P be the input index value of I,;,. Let L, which is to the left of P, be the
neighboring index value of I, _1 4. Let U, which is above P, be the neighboring
index value of I ;1. And let A, which is the same as P, be the around index
value of Iy 4% The rules used to determine the relationship between two
neighboring indices are given below: If U=P, then the index [, and the index
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I y+1 has the relationship UC. If L=P, then the index I, and the index Ipo1y
has the relationship LC. If A=P, then the index I, and the index Ik 1k
has the relationship AC. Otherwise, the index Iy, has the relationship DC with
neighboring indices.

For example, assume that an index table I of size 8x 8, as shown in Fig.
14.2, where P is the index value (l44), U is the upper index value of P (I34),
and L is the left index value of P (I43). If P = 7, which is the same as U, then
P and U have the relationship UC. If P = 10, which is the same as L, then P
and L have the relationship LC. If P = 18, which is the same as A in the around
indices (I12) of P, then P and A have the relationship AC. However, if P = 50,
which is completely different from all indices in the neighboring area, then P
and it’s neighboring indices have the relationship DC.

Based on these four relationships, Sheu et al. constructed three binary con-
nection trees to encode the indices. The trees are shown in Fig. 14.1. In the
figure, A is the around index of P. In order to check whether the neatby area of
P has the same value as P, Sheu et al. predefined a search path, which is shown
in Fig. 14.2. In the figure, (x) means the index can be excluded, since the same
index value is in the previous indices. The numbers in the range (0)~(7) indi-
cate the corresponding addresses of P. In Fig. 14.1 (a), if P and U (or L) has
the relationship UC (or LC), then P is encoded as ‘11’ (or ‘10%). For example,
if P =7 in Fig. 14.2, then the compressed code of P is “11°. If P and A has
the relationship AC, then the compressed code of P is composed of the prefix
codes ‘01’ and the index address of A in the binary system. For example, if P =
14, according to the predefined search path, we find that the index value of I3
is the same as P, where I33 is in the 37¢ corresponding address of P. Assume
that the previous indices that can be searched in the nearby area are 32 bits.
The number of bits to represent the address of this index is 5 bits, since log, 32
= 5. Then the compressed code of P is “01°||(3) = ‘0100011’

In this paper, we propose an efficient hiding scheme that is based on the STC
compression method. The proposed scheme quickly compresses the index ta-
ble of VQ into small-sized compressed codes and effectively hides information
in the compressed codes.
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The Proposed Method

In order to hide information in the compressed codes of STC, we propose
a novel information-hiding scheme, which is called IHSTC. Assume that a
sender wants to send an original image and secret information to a receiver.
Let O denote the original image and S = 5152 ... sx be the secret information,
where s; € [0,1], 1<j<K, and the length of S is K. In which S is obtained
by encrypting a plaintext T = {mymsg...mx} using a DES-like method as-
sociated with the private key, where m; € [0, 1] and 1<j<K. In order to save
the time that is required in transmitting, the image O is compressed into small-
sized indices by VQ compression method. Let I = {Iog, lo1,...,/ag—1,w-1}
be a set of the indices, where I;; €[0, M-1], M is the size of the codebook, H
is the height of I and W is the width of I. After VQ compressing, the image O
is transformed into the index table 1. Then IHSTC encoder compacts the index
table 1 into small-sized compressed codes and hides S in those codes at the
same time.

2.1 Encoder of IHSTC

In this subsection, we shall describe how to re-encode I into small-sized
compressed codes and hide information S in it at the same time. We only use
Tree A to re-code the indices. The encoder uses three binary connection trees
that can follow the same way. In Tree A, there are four cases to encode an
input index.

Case 1: P has relation UC to U, where P=U, then P'="11".

Case 2: P has relation LC to L, where P=L, then P'=°10".

Case 3: P has relation AC to A, where P=A, then P'=°01"|| 3(v(P)).
Case 4: P has relation to other indices, then P'=°00"|| 5(P).

The function v returns the address of A in the neighboring area of P except
U and L. If the same value as P cannot be found, then the function ~ returns
‘-1°. The function G(x) returns the binary string of the value x. If P has relation
UC, LC or AC to other index in the neighboring area, the compressed code of P
can be used to hide information s;. The compressed code after hiding is called
P’. Otherwise, the compressed code of P cannot hide any information and P’ is
formed by concatenating by ‘00’ with its original index in the binary system.
In addition, if the secret value of information sy, is ‘0°, then P is compressed
normally. Or P needs to give up the first equal index and to hide si in the
second equal index. IF P can find more than two equal indices, then P hides
sk in the second index rather than the first index. For example, assume P in
Fig. 142 is 7. If 55 = “0’, then P is compressed normally by Case 1, since
P =1, and P’ = ‘11°. However, if 5, = ‘1’, then P gives up the first index U
and searches next equal index in the neighboring area. The second index exists
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in the zeroth corresponding address of P (I35). Therefore, P’ = ‘01" ||3 (0) =
‘0100000°.

2.2 Decoder of IHSTC

When the receiver receives FC, the decoder is needed to decompress the
original index table and to extract the hidden information. The process of
decompressing and extracting is similar to that of compressing and hiding by
using THSTC. Since there are only four different encoding cases, the indicators
are always presented in 2 bits. In FC, the first two bits, F'Cy and F'C}, are for
the first indicator that is used to determine the length of the first index. The
length, t, should be 8, C, or 0. The bit sequence, FC; FC3K FCyy1, is then
transformed to be a decimal number as the first index. The following two bits,
FCiyo and FCy3, are then for the next index. Via performing this process
continuously, the indices can be decoded correctly from the compressed code
FC. In other words, in the decoder, F'C; F'C; 41 indicates P is encoded by which
case in Tree A. For example, if F'C; F'C.1 equals ‘00°, then P is obtained from
FCiq0 to FCiyg. If we can find another index, which has the same value as
P in the neighboring area (y(P)>0), it means that the hidden information is
‘1’ (s = 1). Then let the pointer i point to next indicator, where i =i + 10.
Similarly, if FC;FC;11 equals ‘01°, P is obtained from FCiya to FCi1oq1;
if FC;FCiq1 equals ‘10°, P is obtained from the left index L; if FC; FCiqq
equals ‘117, P is obtained from the upper index U.

3. Experiments

A system for compressing and hiding index tables, based on IHSTC and
called the IHSTC system, was developed on a PIII 450 MHz personal computer
with 128 Ram and was tested on several image files. Before the results of the
system are described, several notations are first defined below.

3.1 Notation Definition

Let S be the secret information and |S| be its length. PSNR is the peak
signal to noise ratio (PSNR) value of the image after VQ compressing. Let the
symbol ‘C’ be the number of bits for representing the size of the neighboring
area of P. For example, assume the neighboring area of P is 32, then C = 5
(2% = 32). NSTC is the total number of indices, which has relation UC, LC
or AC to other index, in an index table. It also equals the maximum length
of the secret information that can be hidden in the index table. Several image
files were used for compressing and hiding to evaluate the performance of the
THSTC system. The images are shown in Fig. 14.3.
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Figure 14.3.  The experimental images.

3.2 The Experimental Results

In order to find the most proper C value, different bit lengths of 4 and 5
were set to run the different sizes of image files in the IHSTC system. In the
first experiment, 2048 bits are hided in the index table of the image files, with
512x512 pixels, where |S| = 2048. The experimental results are shown in
Tables 14.1, and 14.2, in which C’s in Table 14.1 and Table 14.2 are 4 and
5, respectively. The column |ST'C| represents the total number of bits of the
index table after STC compressing, and the column |I HSTC| represents the
total number of bits of the index table after IHSTC compressing and hiding.
The column § is the difference of bits between the STC compressed codes and
the IHSTC compressed codes, which is equal to |THSTC| - |STC)|. The sub-
column ‘Tree A’ represents the index table compressed only by Tree A. On
the other hand, ‘3 Trees’ represents the index table compressed by three binary
connection trees.

The information load of an image is the maximum length of the information
string, which can be hidden in the image. The load in the IHSTC system is
based on NSTC. The third experiment was performed to calculate the required
extra bits of the images under the maximum information load. Tables 14.3,
and 14.4 show the experimental results, where |5 is equal to the NSTC of
each image.

Table 14.1. The experimental results of Table 14.2. The experimental results of
the images with |5]|=2048 and C=4, the images with {5]=2048 and C=5.
STC| THSTC] 3 STC THSTC] 8
Image NSTC ! \ I ! Image NSTC ! ! ! [
Tree A 3 Trees Tree A 3 Trees Tree A3 Trees Tree A 3 Trees Tree A 3 Trees Tree A3 Trees

Lena 12,132 86,280 86,202 89,516 90,125 3,236 3923 Lena 12,352 90,494 90,416 92222 92,555 1,728 2,139
Pepper 11,451 90,076 90,528 93,048 93,813 2,972 3,285 Pepper 11,685 93,835 94,287 95498 96,074 1,663 1,787
Baboon 6,527 130,376 132,328 133,580 135,444 3,204 3,116 Baboon 7,553 131,986 133,938 133,270 135,195 1,284 1,257
Airplane 12,111 80,740 78,209 83,072 81,216 2,332 3,007 Airplane 12,388 83,356 80,825 84,907 82,574 1,551 1,749
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Tuble 14.3. The experimental results of Table 14.4. The experimental results of
the images with |S|=NSTC and C=4. the images with | S|=NSTC and C=5.
TC| IHSTC 8 ISTC] TC! 8
Image NSTC ISTC] IHSTC| Image NSTC ISTC IHSTC| )
Tree A 3 Trees Tree A 3 Trees Tree A3 Trees Tree A 3 Trees Tree A 3 Trees Tree A3 Trees

Lena 12,132 86,280 86202 102.004104,74615,724 18,544 Lena 12,352 90,494 90,416 107,340109,918 16,846 19,502
Pepper 11,451 90,076 90,528 105,672108,067 15,596 17,539 Pepper 11,685 93,835 94,287 110,283 112,807 16,448 18,520
Baboon 6,527 130,376 132,328 140,856 142,351 10,480 10,023 Baboon 7.553 131,986 133,938 141,889 143,393 9,903 9,453
Airplane 12,111 80,740 78209 94,528 95,572 13,788 17,363 Airplane 12,388 83,356 80,825 99,051 100,08715,695 19,262

Some experimental observations are given below. 1) The NSTC of an image
is directly proportional to the image size. The information load in a large
image is greater than that in a small image. 2) Increasing the number of C
will increase the number of NSTC. That means increasing the number of C
can extend the information load of images. Nevertheless, extra bits may be
required to represent an index. 3) The IHSTC system obtains better results
when C = 4. 4) The IHSTC system using Tree A leads to better results than
using three binary connection trees. 5) The PSNR value of the image Baboon
is lower than that of the other images. It is the only image for which the
THSTC system gets better results when three binary trees are used. 6) The
IHSTC system can hide a huge amount of information in the index table of an
image file, and only a few extra bits are needed to record the corresponding
information.

4. Conclusions

In this paper, we proposed a novel information-hiding scheme that is based
on a switching-tree coding, called IHSTC. THSTC is able to completely re-
cover the index table of image files, which is compressed by VQ, and to hide
information in it. The average time needed to hide an information character
in an index table by using the IHSTC system is 0.077 seconds. From the ex-
perimental results, it is obvious that IHSTC is indeed an efficient and effective
scheme for hiding secret information in image files.
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