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Preface

Over recent years, the notion of agency has claimed a major role in defining the
trends of modern research. Influencing a broad spectrum of disciplines such as
sociology, psychology, philosophy and many more, the agent paradigm virtually
invaded every subfield of computer science, because of its promising applications
for the Internet and in robotics.

Multi-agent systems (MAS) are communities of problem-solving entities that
can perceive and act upon their environments to achieve their individual goals
as well as joint goals. The work on such systems integrates many technologies
and concepts in artificial intelligence and other areas of computing. There is a
full spectrum of MAS applications that have been and are being developed: from
search engines to educational aids to electronic commerce and trade.

Although commonly implemented by means of imperative languages, mainly
for reasons of efficiency, the agent concept has recently increased its influence in
the research and development of computational logic-based systems.

Computational logic, by virtue of its nature both in substance and method,
provides a well-defined, general, and rigorous framework for systematically study-
ing computation, be it syntax, semantics, and procedures, or implementations,
environments, tools, and standards. Computational logic approaches problems,
and provides solutions, at a sufficient level of abstraction so that they generalize
from problem domain to problem domain, afforded by the nature of its very
foundation in logic, both in substance and method, which constitutes one of its
major assets.

The purpose of the Computational Logic and Multi-agent Systems (CLIMA)
series of workshops is to discuss techniques, based on computational logic, for
representing, programming, and reasoning about multi-agent systems in a formal
way. This is clearly a major challenge for computational logic, to deal with real-
world issues and applications.

The first workshop in this series took place in Las Cruces, New Mexico,
USA, in 1999, under the designation Multi-agent Systems in Logic Programming
(MASLP 1999), and affiliated with ICLP 1999. In the following year, the name of
the workshop changed to Computational Logic in Multi-agent Systems (CLIMA
2000), taking place in London, UK, and affiliated with CL 2000. The subsequent
edition, CLIMA 2001, took place in Paphos, Cyprus, affiliated with ICLP 2001.
CLIMA 2002, took place in Copenhagen, Denmark, on August 1st, 2002, and
was affiliated with ICLP 2002 and was part of FLOC 2002.

The 4th International Workshop on Computational Logic in Multi-agent Sys-
tems, CLIMA IV (renamed because it took place in 2004 instead of 2003), was
co-located with the 7th International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR-7) and with the 8th International Sympo-
sium on Artificial Intelligence and Mathematics, and was held on January 6–7
in Fort Lauderdale, Florida, USA.
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For CLIMA IV, we received 25 submissions of which 13 were selected for
presentation, after a careful review process where each paper was independently
reviewed by three members of the Program Committee. After the workshop,
authors were invited to resubmit revised and extended versions of their papers.
After a second round of reviewing, 11 papers were finally selected for publication.

This book contains such revised and extended papers together with two in-
vited contributions coauthored by the CLIMA IV invited speakers: V.S. Subrah-
manian from the University of Maryland and Michael Fisher from the University
of Liverpool. It is composed of five parts: (i) invited papers, (ii) negotiation in
multi-agent systems, (iii) planning in multi-agent systems, (iv) knowledge revi-
sion and update in multi-agent systems, and (v) learning in multi-agent systems.
There follows a brief overview of the book.

Invited Papers

In Distributed Algorithms for Dynamic Survivability of Multi-agent Systems,
V.S. Subrahmanian, S. Kraus, and Y. Zhang address the problem of surviv-
ability of a multi-agent system. They present three distributed algorithms that
ensure that a multi-agent system will survive with maximal probability. Such
algorithms extend existing centralized algorithms for survivability but are com-
pletely distributed and are adaptive in the sense that they can dynamically adapt
to changes in the probability with which nodes will survive.

M. Fisher, C. Ghidini, and B. Hirsch, in their paper on Programming Groups
of Rational Agents, develop a programming language to deal with agents that
cooperate with each other and build teams and organizations. They suggest an
executable temporal logic, augmented by the concepts of capabilities, beliefs, and
confidence. An implementation in Java is described and illustrated by various
examples.

Negotiation in Multi-agent Systems

M. Gavanelli, E. Lamma, P. Mello, and P. Torroni present An Abductive Frame-
work for Information Exchange in Multi-agent Systems. They propose a frame-
work for information sharing among abductive agents whose local knowledge
bases are enlarged with a set of abduced hypotheses.

In Fault Tolerant and Fixed Scalable Structure of Middle Agents by P. Tichý,
the design and implementation of a structure of middle-agents called dynamic
hierarchical teamworks is described. This structure has a user-defined level of
fault-tolerance and is scalable.

An approach to negotiation using linear logic (LL) is introduced by P. Küngas
and M. Matskin in the paper Symbolic Negotiation with Linear Logic. This paper
extends their previous work by taking advantage of a richer fragment of LL and
introducing two sorts of nondeterministic choices into negotiation. This allows
agents to reason and negotiate under certain degrees of uncertainty.



Preface VII

Planning in Multi-agent Systems

S. Costantini and A. Tocchio, in Planning Experiments in the DALI Logic Pro-
gramming Language, discuss how some features of the new logic programming
language DALI for agents and multi-agent systems are suitable for programming
agents equipped with planning capabilities.

In A New HTN Planning Framework for Agents in Dynamic Environments,
H. Hayashi, K. Cho, and A. Ohsuga extend previous work where they presented
an agent life cycle that interleaves HTN planning, action execution, knowledge
updates, and plan modification. The agent life cycle is extended so that the agent
can handle partial-order plans.

Knowledge Revision and Update in Multi-agent Systems

In the paper Revising Knowledge in Multi-agent Systems Using Revision Pro-
gramming with Preferences, I. Pivkina, E. Pontelli, and T.C. Son extend Marek
and Truszczyński’s framework of Revision Programming to allow for the speci-
fication of preferences, thus allowing users to introduce a bias in the way agents
select one between alternative feasible ways of updating their knowledge. An
answer set-based computation methodology is presented.

A. Bracciali and P. Torroni, in their preliminary report A New Framework for
Knowledge Revision of Abductive Agents Through Their Interaction, describe a
multi-agent framework for revising agents’ knowledge through cooperation with
other agents, where abduction and a constraint relaxation algorithm play the
central role.

P. Dell’Acqua in his paper Weighted Multi-dimensional Logic Programs, ex-
tends Leite et al.’s framework of Multi-dimensional Dynamic Logic Programs
by adding weights to the acyclic digraph that defines agent relationships in a
multi-agent setting, thus allowing the addition of a measure of strength to the
knowledge relationships represented by the edges.

In the paper (Dis)Belief Change Based on Messages Processing, L. Perrussel
and J.-M. Thévenin explore a belief revision framework where agents have to
deal with information received from other agents. A preference relation over the
agents embedded in the multi-agent system is specified and agents’ epistemic
states are modelled by keeping track of current (consistent) beliefs, current dis-
beliefs, and potential beliefs.

Learning in Multi-agent Systems

A.G. Hernandez, A. El Fallah-Seghrouchni, and H. Soldano address the issue
of Learning in BDI Multi-agent Systems. Their implementation enables multi-
ple agents executed as parallel functions in a single Lisp image. In addition,
their approach keeps consistency between learning and the theory of practical
reasoning.

C. Child and K. Stathis define The Apriori Stochastic Dependency Detec-
tion (ASDD) Algorithm for Learning Stochastic Logic Rules. They show that
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stochastic rules produced by their algorithm are capable of reproducing an ac-
curate world model in a simple predator-prey environment, and that a model
can be produced with less experience than is required by a brute force method
which records relative frequencies of state, action, and next state.

We would like to take this opportunity to thank the authors who answered our
call with very good quality contributions, the invited speakers, and all workshop
attendants. We would also like to thank the members of the Program Committee
for ensuring the high quality of CLIMA IV by giving their time and expertise
so that each paper could undergo two rounds of reviewing.

July 2004 Jürgen Dix
João Leite
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Peep Küngas, Mihhail Matskin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Planning in Multi-agent Systems

Planning Experiments in the DALI Logic Programming Language
Stefania Costantini, Arianna Tocchio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A New HTN Planning Framework for Agents in Dynamic Environments
Hisashi Hayashi, Kenta Cho, Akihiko Ohsuga . . . . . . . . . . . . . . . . . . . . . . 108

Knowledge Revision and Update in Multi-agent
Systems

Revising Knowledge in Multi-agent Systems Using Revision
Programming with Preferences

Inna Pivkina, Enrico Pontelli, Tran Cao Son . . . . . . . . . . . . . . . . . . . . . . 134

A New Framework for Knowledge Revision of Abductive Agents
Through Their Interaction

Andrea Bracciali, Paolo Torroni . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Weighted Multi Dimensional Logic Programs



XII Table of Contents

Pierangelo Dell‘Acqua . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

(Dis)Belief Change Based on Messages Processing
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Distributed Algorithms for Dynamic Survivability of
Multiagent Systems�

V.S. Subrahmanian1, Sarit Kraus2, and Yingqian Zhang3

1 Dept. of Computer Science, University of Maryland, College Park, MD 20742
vs@cs.umd.edu

2 Dept. of Computer Science, Bar-Ilan University, Ramat Gan, 52900 Israel
sarit@cs.biu.ac.il

3 Dept. of Computer Science, University of Manchester, M13 9PL, UK
zhangy@cs.man.ac.uk

Abstract. Though multiagent systems (MASs) are being increasingly used, few
methods exist to ensure survivability of MASs. All existing methods suffer from
two flaws. First, a centralized survivability algorithm (CSA) ensures survivability
of the MAS - unfortunately, if the node on which the CSA exists goes down, the
survivability of the MAS is questionable. Second, no mechanism exists to change
how the MAS is deployed when external factors trigger a re-evaluation of the
survivability of the MAS. In this paper, we present three algorithms to address
these two important problems. Our algorithms can be built on top of any CSA. Our
algorithms are completely distributed and can handle external triggers to compute
a new deployment. We report on experiments assessing the efficiency of these
algorithms.

1 Introduction

Though multiagent systems are rapidly growing in importance, there has been little
work to date on ensuring the survivability of multiagent systems (MASs for short). As
more and more MASs are deployed in applications ranging from auctions for critical
commodities like electricity to monitoring of nuclear plants and computer networks,
there is a growing need to ensure that these MASs are robust and resilient in the face of
network outages and server down times.

To date, there has been relatively little work on survivability of MASs. Most ap-
proaches to ensuring survivability of MASs are based on the idea of replicating or
cloning agents so that if a node hosting that agent goes down, a copy of the agent re-
siding on another network location will still be functioning. This paper falls within this
category of work. However, existing replication based approaches suffer from two major
flaws.

� Sarit Kraus is also affiliated with University of Maryland. This work was supported in part by
the Army Research Lab under contract DAAD19-03-2-0026, the CTA on Advanced Decision
Architectures, by ARO contract DAAD190010484, by NSF grants 0205489, IIS0329851 and
IIS0222914.

J. Dix and J. Leite (Eds.): CLIMA IV, LNAI 3259, pp. 1–15, 2004.
c© Springer-Verlag Berlin Heidelberg 2004
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The first major flaw is that the survivability algorithms themselves are centralized. In
other words, even though the agents in the MAS may themselves be distributed across
the network, the survivability algorithm itself resides on a single node. Thus, if the node
hosting the survivability algorithm goes down along with all nodes containing some
agent in the MAS, then the system is compromised. This way of “attacking” the MAS
can be easily accomplished by a competent hacker.

The second major flaw is that the survivability algorithms do not adapt to changes
that affect the survivability of the MAS. Most algorithms assume that once the surviv-
ability algorithm tells us where to replicate agents, we just replicate the agents at the
appropriate nodes and then ignore survivability issues altogether. It is clearly desirable
to continuously (or at least regularly) monitor how well the MAS is “surviving” and to
respond to changes in this quantity by redeploying the agent replicas to appropriate new
locations.

We present three distributed algorithms to ensure that a multiagent system will sur-
vive with maximal probability. These algorithms extend centralized algorithms for sur-
vivability such as those developed by [1] but are completely distributed and are adaptive
in the sense that they can dynamically adapt to changes in the probability with which
nodes will survive. The algorithms are shown to achieve a new deployment that preserves
whatever properties the centralized algorithm has. For example, in a recent paper on sur-
vivability, Kraus et al. [1] develop a centralized algorithm called COD for computing
deployments of MASs that maximize the probability of survival of the deployment. If
our distributed algorithms were built on top of COD, the resulting deployments created
by our system would also maximize probability of survival.

We have also developed a prototype implementation of our algorithms and conducted
detailed experiments to assess how good the algorithms are from three points of view:
(i) what is the CPU time taken to find a deployment, (ii) what is the amount of network
time used up in redeploying agents, and (iii) what is the survivability of deployments.

2 Assumptions

Throughout this paper, we assume that an agent is a program that provides one or more
services. Our framework for survivability is independent of the specific agent program-
ming language used to program the agent. In addition, we assume that a multiagent
application is a finite set of agents. We will develop the concept of a deployment agent
introduced in the next section that can be used by the MAS to ensure its own survivability.

We assume that a network is a fully connected graph G = (V, E), i.e. E = V × V .
In addition, we assume that each node n ∈ V has some memory, denoted space(n), that
it makes available for hosting agents in a given multiagent system. We also use space(a)
to denote the space requirements of an agent a. If A is a set of agents, space(A) is used
to denote

∑
a∈A space(a).

When a set D of nodes in a network G = (V, E) goes down, the resulting network
is the graph G′ = (V −D, E−{(v1, v2) | (v1, v2) ∈ E and either v1 ∈ D or v2 ∈ D}).

A deployment of a MAS {a1, . . . , an} w.r.t. a network G = (V, E) is a mapping
μ : V → 2MAS such that for all 1 ≤ i ≤ n, there exists a v ∈ V such that ai ∈ μ(v).
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Suppose μ is a deployment of {a1, . . . , an} w.r.t. a network G and suppose G′ =
(V ′, E′) is the resulting network when some set D of nodes goes down. μ survives the
loss of D iff the restriction μ′ of μ to V −D is a deployment w.r.t. G′. Intuitively, this
definition merely says that a MAS survives when a set of nodes goes down if and only
if at least one copy of each agent in the MAS is still present on at least one node that did
not go down. We demonstrate our problem using the following example.

Example 1. Suppose V = {n1, n2, n3, n4} and MAS = {a, b, c, d}. A current deploy-
ment is given by: μold(n1) = {a}, μold(n2) = {b, d}, μold(n3) = {a, b}, μold(n4) =
{b, c}.

Suppose the system administrator of node n4 announces that this node will go down
in an hour in order to perform an urgent maintenance task. It is easy to see that μold

will not survive this event as agent c will not be present in any of the nodes. Thus, μold

should be changed: a copy of agent c should be deployed on one of the nodes n1, ..., n3
and additional copy of b may also be deployed in n1, ..., n3. Space restrictions of these
nodes may lead to additional changes in the deployment, e.g., a copy of d may be moved
from node n2 to node n3.

3 Distributed Multiagent Survivability

In this section, we provide three alternative algorithms to ensure the survivability of a
MAS.As mentioned above, we assume that our distributed survivability algorithms build
on top of some arbitrary, but fixed centralized survivability algorithm CSA. Several such
algorithms exist such as those in [1]. We now describe each of these three algorithms.
Note that all copies of the deployment agent perform the actions here, not just
one copy (if only one copy performed the computations, then we would just have a
centralized algorithm).

As mentioned earlier, our algorithms will use a deployment agent (da for short) which
will ensure survivability. da is added to the MAS as an additional survivability agent.

Definition 1. Suppose MAS is a multi-agent application. The survivability enhancement
of MAS, denoted MAS∗, is the set MAS ∪ {da} where da is a special agent called
deployment agent.

The rest of this section focuses on different ways of designing and implementing the
deployment agent da.

3.1 The ASA1 Algorithm

The ASA1 algorithm deploys a copy of da in every node of the network. We make the
following assumptions about da: (i) da knows the current deployment, (ii) whenever a
new deployment needs to be computed, da is triggered, (iii) da is built on top of any
arbitrary centralized survivability algorithm CSA.

As da is located in each node, we will assume that for any n ∈ V , space(n) is the
available memory on n excluding the space for da.

Whenever the da agents are notified that a new deployment needs to be computed,
each copy of the da agent performs the following steps:
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1. It examines the current deployment μold;
2. Once da is told to redeploy by an external process, it uses the CSA algorithm to

compute a new deployment μnew;
3. da stores the difference between μold and μnew in a special data structure called a

difference table. The difference table dif has the following schema:

– Node (string): node id for all n ∈ V ;
– Deploy (set of string): agents’ current deployments μold;
– Insrt (set of string): agents that are presently not located in the node but need

to be allocated according to the new deployment μnew;
– Remv (set of string): agents that are presently located in the node but need to

be deleted from it according to the new deployment μnew;

4. Each copy of da at each node looks at its Insrt and Remv columns and makes a
decision on how to delete and/or add agents from its node.

Notice that at any given instance in time, all the deployment agents on all nodes have
the same difference table. Our key task is to design step 4. Before doing this, we present
an example of a difference table.

Example 2. Consider the MAS and μold of Example 1. Consider a new deployment:
μnew(n1) = {a, b}, μnew(n2) = {b, c}, μnew(n3) = {a, d}, and μnew(n4) = {d}. In
this case, the difference table between μold and μnew is given by Table 1.

Table 1. A difference table generated by deployment agent

Node Insrt Remv Deploy
n1 b a
n2 c d b, d
n3 d b a, b
n4 d b, c b, c

Adding and/or deleting agents to/from nodes can be performed according to the
difference table. However, these operations should be handled very carefully as there
are two constraints that must be satisfied during the whole re-deployment process:

– space: while these operations are being performed, the space constraint on each
node must be satisfied;

– copies of agents: at any point in time during step (4), there must exist at least one
copy for each agent a ∈MAS in the network.

Example 3. To see why Step 4 is complex, consider the difference table in Table 1. One
may be tempted to say that we can implement the insertions and deletions as follows:
(i) Insert c on n2. (ii) Delete d from n2. Notice however that we can insert c on n2 only
if there is enough space on n2 to accommodate b, c, d simultaneously (as otherwise the
host node n2 may reject the insertion of c) for space violations. Alternatively, one may
be tempted to first delete d from node n2 to free space to insert c - but this means that
agent d has disappeared from all nodes and is hence lost for ever!
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Before presenting our algorithm for deleting/adding agents, we first present a few
definitions of concepts that will be used in the algorithm.

Definition 2. An agent a can be safely deleted from node n (denoted by safeDel(a, n))
if the number of copies of agent a in the Deploy column of the difference table is larger
than the number of copies of agent a in the Remv column.

When an agent can be safely deleted, we are guaranteed that at least one copy of the
agent is present elsewhere on the network. In our running example (Table 1), the only
agent that can be safely deleted is agent b at node n3.

We use Insrt(n), Remv(n) and Deploy(n) to denote the insert list, the remove list
and the deploy list of node n ∈ V in the difference table. The implementation of da
in ASA1 algorithm is based on a set of logical rules governing the operations of da.
We first present these rules before describing the algorithm in detail. The rules use the
following action predicates (predicates representing actions are used in much the same
way as in Kowalski’s and Green’s formulations of planning, cf. [2]).

– ADD(a, n): Add agent a ∈MAS to node n ∈ V ;
– DEL(A, n): Delete a set of agents A ⊆MAS from node n ∈ V ;
– SWITCH(A, n, A′, n′): Switch two sets of agents A ⊆ MAS and A′ ⊆ MAS

that are located on nodes n and n′ respectively;
– remdif(A, L, n) and insdif(A, L, n): Suppose A is a set of agents, L is a string in
{Remv, Insrt, Deploy}, and n is a node. remdif(A, L, n) removes all nodes in the
L-list of node n in the difference table. Likewise, insdif(A, L, n) inserts all nodes in
A into the L list of node n’s entry in the difference table.

Note that Insrt(n) represents the Insrt field of node n in the difference table. It
specifies what new agents must be inserted into node n. In contrast, insdif(A, Insrt, n)
specifies that Insrt(n) must be updated to Insrt(n) ∪ A, i.e. it refers to an update of
the difference table itself. In the example of Table 1, remdif({b}, Deploy, n2) causes the
deploy field associated with n2 to be reset to just {d} instead of {b, d}.

We now introduce the rules governing the execution of these actions.

Rule 1. The first rule says that if A is a set of agents each of which can be safely deleted
from node n, then A can be removed from node n.
DEL(A, n) ← (∀a ∈ A)safeDel(a, n)

Rule 2. This rule says that if a set A of agents is deleted from node n, we need to update
the difference table by removing A from the remove and deploy lists of node n.
remdif(A, Remv, n) ∧ remdif(A, Deploy, n) ← DEL(A, n)

Rule 3. This rule says that an agent a can be added to node n if there is sufficient space
on node n to accommodate a’s memory needs.
ADD(a, n) ← (space(n)− space(Deploy(n)) ≥ space(a)

Rule 4. If agent a is added to node n, we must remove its id from the insert column and
add it to the deploy column of node n.
remdif({a}, Insrt, n) ∧ insdif({a}, Deploy(n)) ← ADD(a, n)
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Rule 5. These rules says that two sets of agents, A deployed on node n and A′ on node
n′, can be switched if: A′ is a subset of the insert set on node n as well as A′ is in the
deleted set of node n′; A is a subset of the remove set on node n and it is also in the
added list of node n′; furthermore, the space constraints on switching A and A′ between
n and n′ must be satisfied.
SWITCH(A, n, A′, n′) ←

A′ ⊆ Remv(n′) ∧A′ ⊆ Insrt(n) ∧A ⊆ Remv(n) ∧A ⊆ Insrt(n′)∧
CHKSWITCH(A, n, A′, n′).

CHKSWITCH(A, n, A′, n′) ←
(Space(n)− space(Deploy(n)) + space(A) ≥ space(A′))∧
(space(n′)− space(Deploy(n′)) + space(A′) ≥ space(A)).

SWITCH(A, n, A′, n′) performs appropriate ADD and DEL actions on agents at
the appropriate nodes.
(∀a ∈ A′)ADD(a, n) ∧ (∀a ∈ A)ADD(a, n′) ∧DEL(A′, n′) ∧DEL(A, n)
← SWITCH(A, n, A′, n′)

Rule 6. This rule says when SWITCH(A, n, A′, n′) is performed, we must update the
difference table.
remdif(A, Remv, n) ∧ remdif(A′, Remv, n′) ∧ remdif(A′, Insrt, n)
∧remdif(A, Insrt, n′) ∧ remdif(A, Deploy, n) ∧ insdif(A′, Deploy, n)
∧remdif(A′, Deploy, n′) ∧ insdif(A, Deploy, n′)
← SWITCH(A, n, A′, n′).

Rule 7. The rules below deal with the case where there is no agent that can be safely
deleted from node n (the case shown in rule 1) and there is no current available space
for adding an agent (as described in rule 3) and there is no direct switch that could be
performed (the case of rule 5). That is, when more than two nodes are involved with
switch, we need the following rules.
SWITCH(A, n, A′, n′) ←

A′ ⊆ Remv(n′) ∧ A ⊆ Remv(n) ∧ (∃B ⊆ A′)B ⊆ Insrt(n)∧
CHKSWITCH(A, n, A′, n′).

(∀a ∈ A′)ADD(a, n) ∧ (∀a ∈ A)ADD(a, n′) ∧DEL(A′, n′) ∧DEL(A, n)
← SWITCH(A, n, A′, n′)

When switching A and A′, if we move an agent b to a node where b is not the desired
agent in the new deployment, we should delete b from that node in the future process,
that is, we should add b to the delete list of the node.
remdif(A, Remv, n) ∧ remdif(A′, Remv, n′) ∧ remdif(A, Deploy, n)∧

insdif(A′, Deploy, n) ∧ remdif(A′, Deploy, n′) ∧ insdif(A, Deploy, n′)
← SWITCH(A, n, A′, n′)

insdif({b}, Remv, n) ← (∀b ∈ A′)b /∈ Insrt(n) ∧ SWITCH(A, n, A′, n′).
remdif({b}, Insrt, n) ← (∀b ∈ A′)b ∈ Insrt(n) ∧ SWITCH(A, n, A′, n′).
insdif({b}, Remv, n′) ← (∀b ∈ A)b /∈ Insrt(n′) ∧ SWITCH(A, n, A′, n′).
remdif({b}, Insrt, n′) ← (∀b ∈ A)b ∈ Insrt(n′) ∧ SWITCH(A, n, A′, n′).
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Our algorithm to redeploy a MAS is based on the above set of rules.

Algorithm 1. ASA1(Ne, MAS, dif )
(� Input: (1) network Ne = (V, E) � )
(� (2) multiagent application MAS �)
(� (3) current difference table dif � )

1. flag1 = true
2. while flag1 do (* changes are needed by diff table *)

– if ( for all n ∈ V , Remv(n) = ∅ and Insrt(n) = ∅), then flag1 = false;
– else, do

(1) flag2 = true, flag3 = true
(2) while flag2, do (* do updates; diff table updated *)

(a) flag2 = false
(b) for each n ∈ V , do

A. A = Remv(n) (* do all possible deletions *)
B. if A �= ∅, then

(dif, flag2) = DEL(A, n, dif, flag2)
(c) for each n ∈ V do

A. A = Insrt(n)
B. if A �= ∅, then (* add all agents you can *)

(dif, flag2) =ADD(A, MAS, n, dif, flag2)
(3) for each n ∈ V , do

if flag3, then
i. A = Insrt(n)

ii. if A �= ∅, then (* switch agents that could not be added before *)
(dif, flag3) = SWITCH(A, MAS, n, dif, flag3)

The function DEL(A, n, dif, flag) receives as input: (1) a set of agents A, (2) a node
n (3) a current difference table dif and (4) a flag. For each agent in A, the algorithm
checks if it can safely delete the agent; if so it deletes the agent from n and updates the
dif table. It returns the updated dif table and sets the flag to be true if any agent was
deleted. The function ADD(A, MAS, n, dif ) receives as an input (1) a set of agents A,
(2) a multiagent application MAS, (3) a node n, (4) the current difference table dif ,
and (5) a flag. For each agent a ∈ A if there is enough space on n to deploy a, i.e.,
space(n) − space(Deploy(n)) ≥ space(a), it adds a to n, updates the dif table and
changes flag to indicate an agent has been added to n. It returns: (1) the dif table, and
(2) the flag.

The SWITCH function uses a subroutine called CHKSWITCH(A, n, A′, n′,
dif, MAS). This function checks to see if any space overflows occur when exchanging
a set A of agents current on node n with a set of agents A′ currently on node n′. If no
space overflow occurs, it returns true - otherwise it returns false.

Algorithm 2. SWITCH(R, MAS, n, dif, flag)
(� Input: (1) a set of agents R �)
(� (2) multiagent application MAS �)
(� (3) node id n �)
(� (4) current difference table dif �)
(� (5) flag �)
(� Output (1) updated difference table dif �)
(� (2) flag �)
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1. for each agent a ∈ R, if (flag), do
if there exists a set A ⊆ Remv(n), n′ ∈ V and a set A′ ⊆ Remv(n′) such that

a. a ∈ A′, and
b. CHKSWITCH(A, n, A′, n′, dif, MAS) = true

then
a. switch A and A′ between nodes n and n′

b. Remv(n) = Remv(n) \ A, Remv(n′) = Remv(n′) \ A′,
Deploy(n) = Deploy(n) ∪ A′ \ A,
Deploy(n′) = Deploy(n′) ∪ A \ A′

c. for each b ∈ A′, do
if b /∈ Insrt(n) then Remv(n) = Remv(n) ∪ {b}
else Insrt(n) = Insrt(n) \ {b}

d. for each b ∈ A, do
if b /∈ Insrt(n′) then Remv(n′) = Remv(n′) ∪ {b}
else Insrt(n′) = Insrt(n′) \ {b}

e. update dif
f. flag = false

2. return dif and flag

The following lemmas are needed to prove that ASA1 is correct.

Lemma 1. Each execution of action DEL, ADD, and SWITCH always results in a
decrease on the number of agents in column Remv or Insrt.

Proof. Rules 2 and 4 clearly show that the actions DEL(A, n) and ADD(a, n) remove
agents from Remv(n) and Insrt(n) respectively. Now consider the SWITCH action.
When switching agents between two nodes only (Rule 5), SWITCH(A, n, A′, n′) re-
moves A from Remv(n), A from Insrt(n′), A′ from Remv(n′), and A′ from Insrt(n),
as shown in Rule 6. In the case of Rule 7, where more than two nodes are involved in the
switch, action SWITCH(A, n, A′, n′) adds at most A + A′ − 1 agents in Remv(n)
and Remv(n′), while removing at least A + A′ + 1 agents from Remv and Insrt of
node n and n′. This shows that performing each action must reduce the number of agents
in the Remv or Insrt columns. �

Lemma 2. In each iteration of the while loop shown in Step 2 of algorithm ASA1, at
least one action (DEL, ADD, or SWITCH) must be executed.

Proof. In Step (b) of the while loop (2), all possible deletions DEL will be performed
if agents in Remv can be safely deleted according to Rule 1. In the loop of Step (c),
all possible additions ADD will be done based on constraints shown in Rule 3. Even
if no action is performed in the while loop (2), in Step (3), according to Rule 5 and
Rule 7, there must exist two sets of agents on two different nodes such that action
SWITCH(A, n, A′, n′) can be performed. This shows that for each while loop in
Step 2, at least one action on agents will be executed. �

Theorem 3 (Correctness). Suppose the rules (Rule 1 - 7) are applied according to
the order listed. Then the sequence of actions performed by Algorithm ASA1 is the one
performed by the rules. ASA1 always terminates.
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Proof. In ASA1, the execution of actions is determined by the rules. With the assumption
that the actions of the rules are taken according to their order, actions executed by the
algorithm are those entailed by the rules.

In Algorithm ASA1, the while loop of Step (2) makes sure that no more agents can
be safely deleted and no more agents can be added to the nodes, i.e. flag2 = false.
Thus, the loop in Step (2) terminates after some iterations.

For each execution of the while loop in Step 2, according to Lemma 2, there must
execute at least one action on some agent at some nodes. Moreover each action must
reduce the size ofRemv(n)or Insrt(n) as explained in Lemma 1.Thus the size ofRemv
and Insrt decreases monotonically with each iteration of the while loop. Therefore
the algorithm must reach a step where for all n in the network, Remv(n) = ∅ and
Insrt(n) = ∅, which make flag1 false, and the algorithm terminates. �
Example 4. Consider the network and the deployment of example 1. Suppose each
node in the network can store a deployment agent da and two regular agents. Suppose
that da were triggered and suppose they computed a new deployment as specified in
example 2. Then, each copy of da computes the dif table as listed in Table 1. According
to algorithm ASA1, b is first deleted from node n3 by da located on that node and b and
c are deleted from node n4 by its deployment agent. d is not deleted in the first round
because it is not safe to delete it at that stage. b is then inserted into node n1 (copied
from n2) and d is inserted into node n3 and n4. d is then removed from n2, and finally
c is inserted into node n2.

3.2 The ASA2 Algorithm

In this algorithm the deployment agent da is not located at each node. Instead, we add
da to a multiagent system MAS to get an updated multiagent system MAS∗ and apply
the centralized algorithm on MAS∗. This returns a new deployment μnew which is then
executed by the deployment agent. In this case, the programming of da is somewhat
different from the programming of it in ASA1 because there is no guarantee that every
node has a copy of da.

Algorithm ASA2 assumes that each agent has a mobility capability, i.e., it can obtain
a movement instruction from a da and perform it. In addition, each agent can delete
itself. In addition, all agents in MAS as well as da satisfy the condition that whenever it
receives a message from any da to move to another location, it does so. After performing
the move, it sends a message to all deployment agents saying it has moved.

Once μnew is computed by CSA, each copy of da executes an algorithm called
DELETECOPY that deletes all but one copy of all agents in MAS. All copies of da
send messages to the agent copies to be deleted telling them to delete themselves. da
copies create a plan to move and/or copy the one remaining copy of each agent to the
nodes specified by μnew. Note that all copies of da perform the same actions at the same
time.

Algorithm 4. ASA2(Ne, MAS∗, μold, μnew)
(� Input: (1) network Ne = (V, E) � )
(� (2) multiagent application MAS∗ �)
(� (3) current deployment μold �)
(� (4) new deployment μnew �)
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1. for each a ∈ MAS∗, do DELETECOPY(a, μold);
2. flag = true;
3. while flag, do

– if ( for all n ∈ V , μold(n) = μnew(n)), then flag = false

– else, do
(a) flag2 = false, flag3 = true
(b) for all n ∈ V , do

i. A = μnew(n)
ii. flag2 = ADDCOPY (A, μold, μnew, n)

(c) if (flag2 = false), then
for each n ∈ V , do

if flag3, then

i. A = μold(n)
ii. flag3=SWITCHCOPY(A, μold, μnew)

The above algorithm uses DELETECOPY (not specified explicitly due to space
constraints) which uses a deterministic algorithm to delete all but one copy of each agent
(e.g. via a lexicographic order on nodes). It is important that all copies of da use the same
DELETECOPY algorithm so that they all agree on what nodes each agent should be
deleted from. Likewise ADDCOPY (a, μold, μnew, n) adds a copy of agent a to node
n if there is space on node n and if the new deployment μnew requires a to be in n -
it does this by asking a node currently hosting a to clone and move such a copy of n.
Details of ADDCOPY are suppressed due to space constraints. All these algorithms
update μold.

Algorithm 5. SWITCHCOPY(A, μold, μnew)
(� Input: (1) a set agents A � )
(� (2) old deployment μold �)
(� (3) new deployment μnew �)
(� Output: (1) flag � )

1. for each agent a ∈ A, do
if there exists a set A′ on n′ such that

(a) a ∈ μold(n′), and
(b) CHKSWITCH(A, n, A′, n′) = true

then

(a) switch A and A′ between nodes n and n′ and update μold;
(b) flag = false;

2. return flag

Example 5. Suppose nodes n1 and n3 of the network of Example 1 can store a da agent
and two other agents. Suppose n2 and n4 can store only two regular agents. First, agents
a,b and da are removed from node n3. Then, agent b is removed from node n4. The
deployment agent da in node n1 is responsible for all these deletions and for further
updates. It also updates μold accordingly. b is then added to node n1, and d and da are
added to nodes n3 and n4. Only then is d deleted from n2. c is then added to n2 and then
deleted from n4.
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3.3 The ASA3 Algorithm

Just as in algorithm ASA2, the deployment agent used in Algorithm ASA3 is not located
on each node. Instead it is treated just like any other agent and deployed using the CSA.
However, the procedure to decide on the order of deletion and adding copies of agents
to nodes is that of algorithm ASA1. The behavior of the deployment agent is as follows.

Originally, it is deployed (along with other agents) using the CSA algorithm.
When survivability of one or more nodes changes, each da computes the dif-
ference table (as in the ASA1). Each da then sends a message to all agents
that can be safely deleted (including, possibly a deployment agent da ) telling
them to delete themselves and send a message just when they are about to finish
the operation. After this, they send “move" or “exchange" messages to agents
one at a time. When they get an acknowledgment that the move has been per-
formed, they send a move message to the next agent, and so on until they are
done. Note that while in Algorithm ASA1, agents can be moved/copied to other
nodes simultaneously, in algorithm ASA3 this is done sequentially.

The correctness proof of ASA3 is similar to the one done for ASA1. The details of
the proof are omitted in the paper due to space constraints.

4 Implementation and Experimental Results

We developed a prototype implementation of all the above algorithms in Java and tested
them out on a Linux PC.We used a sample of 31 existing agents to determine a distribution
of agent sizes (in the 0 to 250 KB range). We ran experiments with varying network
bandwidths - for space reasons we only report on experiments where the bandwidth
was 100 KB/s (this is twice the bandwidth of a dial-in model, but much smaller than
the bandwidth of broadband connections that may exceed 100 MB/s). The centralized
survivability algorithm we used for our experiments was COD [1].

Figure 1 shows the effect of problem size on the CPU time required by the algorithms
as well as the network time required to move the agents around.We used various measures
of “problem size” in our experiments (such as sum of numbers of agents and nodes, ratio
of number of agents to the number of nodes, etc.). Only the first is reported in figure 1
due to space constraints. The markings such as n : 5, a : 4 refer to a MAS of 4 agents
deployed over 5 nodes. We made the following observations:

1. CPU Time: ASA1 and ASA3 always outperform ASA2 w.r.t CPU time. ASA1 and
ASA3 are more or less incomparable.

2. Network Time: Again, ASA1 and ASA3 always outperform ASA2. As the problem
size gets larger, ASA1 outperforms ASA3.

Due to space constraints, we are unable to present full details of all our experiments.
However, the above experiments imply that ASA1 is preferable to both ASA2 and ASA3
as far as time is concerned.
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Fig. 1. CPU and Network Times of the Three Algorithms

Figure 2 reports some results on survivability of deployments using the three al-
gorithms described in this paper. In the first set of experiments, we fix the size of da
agent but vary the problem size, while in the second set of experiments, we change the
ratio of da size to the average agent’s size. As shown in Figure 2, when the problem
size increases or the size of the da agent increases, the survivability of the deployments
identified by ASA3 becomes higher than the survivability of deployments identified by
ASA1 (note ASA2 has the same survivability as ASA3 ). The results demonstrate the
effect of da agents on survivability of deployment. Compared with ASA2 and ASA3,
ASA1 deploy more da agents in the network, and hence, the amount of available space
for adding regular agents is decreased.
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Fig. 2. Survivability of deployments by ASA1and ASA3when the problem size increases and
when the size of da increases

5 Related Work and Conclusions

To our knowledge, there are no distributed probabilistic models of survivability of a MAS.
In addition, there are no works we are aware of that allow for redeployment of agents
when there are changes that trigger the need to examine if a redeployment is needed.
[7, 6] use agent-cloning and agent-merging techniques to mitigate agent over-loading and
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promote system load balancing. Fan [8] proposes a BDI mechanism to formally model
agent cloning to balance agent workload. Fedoruk and Deters [12] propose transparent
agent replication technique. Though an agent is represented by multiple copies, this
is an internal detail hidden from other agents. Several other frameworks also support
this kind of agent fault tolerance. Mishra and Huang [17, 13] present a Dependable
Mobile Agent System (DaAgent), which includes three protocols for recovering node
and communication failures. Marin et al. [10] develop a framework to design reliable
distributed applications. They use simulations to assess migration and replication costs.
Kumar et al. [11] apply the replication technique to the broker agents who may be
inaccessible due to system failures. They use the theory of teamwork to specify robust
brokered architectures that can recover from broker failure. Our algorithms ASA1, ASA2
and ASA3 can be built on top of any of these centralized agent survivability models. The
RECoMa system in [3] uses multiple servers to support matching agents to computer.
Our framework assumes that any agent can be deployed on any computer, and focuses
on dynamically deploying agents to increase system survivability taking into account
space constraints on nodes.

Klein et al. [18] propose a domain independent approach to handling of exceptions
in agent systems. This service can be viewed as a “coordination doctor", who prede-
fines several typical abnormal situations that may arise in the system. Based on that,
they monitor agent’s behaviors, diagnose problematic situations and take recovery ac-
tions. Exception handling in their method is carried out by a set of collaborative agents,
however, the approach itself is essentially centralized. Kaminka et al [19] utilize social
knowledge, i.e. relationships and interactions among agents, to monitor the behavior of
team members and detect the coordination failures. Their work focuses on exceptions
concerning the agents themselves.

The fault-tolerance research area has used the N-Version Problem (NVP) approach
for fault tolerance. NVP involves the “independent generation of N ≥ 2 functionally
equivalent programs from the same initial specification” [4]. In this approach, the re-
liability of a software system is increased by developing several versions of special
modules and incorporating them into a fault-tolerant system [14]. However, no dis-
tributed architecture for ensuring the survivability of the program ensuring survivability
is discussed.
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Abstract. In this paper, we consider the problem of effectively pro-
gramming groups of agents. These groups should capture structuring
mechanisms common in multi-agent systems, such as teams, cooperative
groups, and organisations. Not only should individual agents be dynamic
and evolving, but the groups in which the agents occur must be open,
flexible and capable of similar evolution and restructuring. We enable the
description and implementation of such groups by providing an extension
to our previous work on programming languages for agent-based systems
based on executable temporal and modal logics. With such formalism as
a basis, we consider the grouping aspects within multi-agent systems. In
particular, we describe how this logic-based approach to grouping has
been implemented in Java and consider how this language can be used
for developing multi-agent systems.

1 Introduction

Computational power is increasing, and increasingly available, for example via
the development of ubiquitous computing. Once large numbers of computational
elements can communicate with each other, via wireless networks or the Inter-
net, then new problems arise in engineering software for such systems. By rep-
resenting these computational elements as agents, we can provide a simple and
intuitive metaphor for both individual computation and that within multi-agent
systems. However, software designers need to have appropriate, and semanti-
cally clear, mechanisms for controlling not only how individual agents adapt
and evolve, but also how agents interact and combine to form new systems.
Without this control not only will the practical development of complex multi-
agent systems remain difficult, but agents themselves will not be trusted for use
in critical applications.

In our work, we are concerned with the development of a set of appropriate
logic-based abstractions that can allow us to program both individual rational
agents and more complex fluid organisational structures, and their encapsula-
tion within an agent-based programming language. In previous papers we have
started our investigation on the basic abstractions that can allow us to program
agent-based systems. In particular, we have based the programming of individ-
ual agents, their dynamic behaviour and the evolution of their knowledge and
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goals on the framework of executable temporal logic [7, 10], recently augmented
with the concepts of ability, belief, and confidence [11]. This framework provides
high-level descriptions of the concepts we are interested in, while having clearly
defined semantics.

The first contribution of this paper is to set the scene for our approach to
developing agent programming languages based upon computational logic by
outlining:

1. The implementation of individual agents through the direct execution of
a formal description of individual (rational) agent behaviour given using a
combination of temporal logic and logics concerning belief and ability.

This summarises work carried out over a number of years, where we have
attempted to use intuitive logical aspects to provide a simple, but effective,
mechanism for describing agent computation. It is our assertion that computa-
tional logic in general (and executable temporal logics in particular) can provide
an appropriate tool for studying not only verifiable agent descriptions, but also
novel concepts that can form the basis for the future programming of agent-based
systems.

We will then describe recent work extending the above framework, in partic-
ular:

2. The core notion of agent groups and how such groups contrast with individ-
ual agents; and

3. The ways in which multi-agent applications might be developed, by utilising
the combination of executable logic (as in 1) and group evolution (as in 2).

The work described in (1) and, partially, (2) above can be traced back to
previous work produced with a number of co-authors on executable temporal
logics [6, 2] and programming rational agents [9, 10]. However, our more recent
work has tackled the problem of organising agents within multi-agent systems,
not just programming individual agents. To some extent, such organisational
aspects are independent of the language used in each agent. Yet, we have shown
how, by again using executable temporal and modal logics, a high-level language
for developing multi-agent structures can be developed [15]. This is eased by
the fact that we treat group structures within multi-agent systems in exactly
the same way as individual agents [12]. Thus, the work tackling (3) covers more
recent work concerning grouping [12], group evolution [11] and construction [15].
In particular, this combination of executable temporal and modal logics, together
with a flexible agent grouping mechanism, has now been implemented in Java.
Thus, we provide examples based on this system in the paper.

To sum up, in this paper we will review the logic-based abstractions that we
have identified to program both individual rational agents and more complex
fluid organisational structures, and we will take a step forward by showing how
these abstractions can be encapsulated (implemented) within an agent-based
programming language. The structure of the paper is as follows. In §2 we outline
the logical framework we have developed to program individual agents. In §3 and
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§3.3 we consider the basic concepts and mechanisms that allow us to organise
and communicate between agents in a multi-agent space. In §4, we will describe
the implementation of the framework described in §2 and §3. In §5 and §6, we
conclude by showing an example of how to program group computation and
provide concluding remarks and future work.

2 Programming Individual Agents

There are many rational agent theories, and agent programming languages. How-
ever, the two rarely match. Our approach is to attempt to directly execute ra-
tional agent specifications — in this way, we can be more confident that the re-
quired behaviour is being exhibited. This not only provides a close link between
the theory and implementation, but also provides high-level concepts within the
programming language.

In [11] we introduced a logical model of rational agency incorporating the
key notions of ability, belief, and confidence, the last of these capturing a flexi-
ble motivational attitude. This logical model is built upon the MetateM [1, 6]
language, a language that has been developed as a high-level mechanism for spec-
ifying and executing simple individual agents. This approach is based upon the
principle of specifying an agent using temporal logic, and then directly execut-
ing [7] this specification in order to provide the agent’s behaviour. It provides a
high-level programming notation, maintaining a close link between program and
specification. With temporal logic as a basis, MetateM is able to describe the
dynamic behaviour of an agent and the evolution of its knowledge and goals. The
extensions introduced in [10, 11] provide the basic MetateM language with the
capability of expressing also abilities of agents, their belief, and their confidence.

We briefly review here the approach, starting by the original MetateM and
then illustrating the additional concepts of ability, belief and confidence. For
lack of space we only provide an intuitive description of the approach and do
not consider the logical basis for this agent programming language in any great
detail. The interested reader can refer to [7, 10, 11] for a better description of the
MetateM framework.

2.1 Programming Using Temporal Logics

Temporal logic is an extension of classical logic with the notion of temporal order
built in. With such logics we can describe many dynamic properties, but they
all boil down to describing

– what we must do now,
– what we must do next, and
– what we guarantee to do at some point in the future.

This, seemingly simple, view gives us the flexibility to represent a wide range
of computational activities.

The syntax of the temporal logic used here to specify an agent’s behaviour is
formally defined as the smallest set of formulae containing: a set, P, of propo-
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sitional constants, the symbols true, false, and start, and being closed under
propositional connectives ¬, ∨, ∧, ⇒ and temporal operators �, ♦, .

As usual, the semantics of this logic is defined via the satisfiability relation
on a discrete linear temporal model of time, m, with finite past and infinite fu-
ture [5]. Thus, m is a sequence of states s0, s1, s2, s3, . . . which can be thought
of as ‘moments’ in time. Associated with each of these moments in time, repre-
sented by a temporal index u ∈ N, is a valuation π for the propositional part
of the language. Intuitively, the temporal formula ‘ �A’ is satisfied at a given
moment in time if A is satisfied at the next moment in time, ‘♦A’ is satisfied
if A is satisfied at some future moment in time, and ‘ A’ is satisfied if A is
satisfied at all future moments in time. We also use a special propositional con-
stant start, which is only satisfied at the initial moment in time. Formally, the
semantics of the temporal language used here is defined in Fig. 1. Satisfiability
and validity are defined in the usual way.

〈m, 0〉 |= start

〈m, u〉 |= true

〈m, u〉 |= p iff π(u, p) = T (where p ∈ P)

〈m, u〉 |= ¬A iff 〈m, u〉 �|= A

〈m, u〉 |= A ∨ B iff 〈m, u〉 |= A or 〈m, u〉 |= B

〈m, u〉 |= �A iff 〈m, u + 1〉 |= A

〈m, u〉 |= A iff ∀u′ ∈ N. if (u ≤ u′) then 〈m, u′〉 |= A

〈m, u〉 |=♦A iff ∃u′ ∈ N. (u < u′) and 〈m, u′〉 |= A

Fig. 1. Formal Semantics of the temporal language

A close link between theory and implementation is maintained by directly ex-
ecuting the specification of the behaviour of an agent, represented by a temporal
formula [1]. The execution process first transforms the temporal specification into
a specific normal form, SNF [8], then it attempts to build a model for the for-
mula in a simple forward-chaining fashion, constraining the construction of the
model by trying to satisfy goals, represented by eventualities of the form ♦A.
This is extended, in [9], whereby the choice of which eventualities to satisfy is
provided by user defined deliberation functions, rather than by a fixed ordering
heuristic.

Instead of going into details we illustrate an example of how temporal logic
can be used to specify an agent’s behavour. Imagine a ‘car’ agent which can
be go, turn and stop, but can also run out of fuel (empty) and overheat. We
can specify the behaviour and goals of the ‘car’ agent with the following set of
temporal formulae
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start⇒ ¬moving
go⇒♦moving

(moving ∧ go) ⇒ �(overheat ∨ empty)

Thus, moving is false at the beginning of time; whenever go is true, a com-
mitment to eventually make moving true is given; and whenever both go and
moving are true, then either overheat or empty will be made true in the next
moment in time.

By executing the temporal specification directly, particularly using a forward
chaining approach, we are carrying out gradual model construction; this corre-
sponds to our (usual) notion of execution.

2.2 Adding Ability, Belief and Confidence

An extension of the approach presented above is introduced in [10, 11], where
the propositional linear temporal logic is combined with a multi-context belief
logic [13], a simple notion of ability, and a notion of confidence obtained as a
combination of belief and eventualities.

Adding Belief. The main idea is to add to the language a set of belief predicates,
B1, . . . , Bn, where formulae of the form ‘Biφ’ mean “agent i believes that φ”,
and to structure the belief of an agent ε about a set I = {1, . . . , n} of agents,
into a structure of belief contexts (see [10] for further details).

Adding belief gives the specification language the capability of expressing
facts like:

Bme♦Byouattack(you,me) ⇒ Bme
�attack(me, you)

that is,

if I believe that, in the future, you believe you will attack me, then I
believe that I will attack you next

Adding Ability. Here we add to the language a set of ability predicates, A1, . . . ,
An, where formulae of the form ’Aiφ’ mean “agent i is able to do φ”. Abilities
in our formalism are not very sophisticated. In particular they are constant over
time, that is if agent i is able to do φ now, it was, and will be, able to do φ always
in time. While this confirms the fact that this version of our formalism is only
appropriate for situations where agents never gain or loose the ability to achieve
something, it does simplify the formal framework required. As we will see later,
our typical examples of agent reasoning are not affected by this hypothesis. On the
contrary, this assumption seems appropriate every time we wish to enforce that, if
an agent is confident about something and has the ability to achieve it, then that
thing will eventually occur.

Adding ability gives the specification language the capability of expressing
facts like:
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Ameattack(me, you) ⇒ �attack(me, you)

that is,

if I’m able to attack you, then I will attack you at the next moment in
time

Adding Confidence. The concept of confidence is defined in terms of the logic
we already have. Thus, if we were to introduce a new logical operator to repre-
sent confidence, we would in fact define it exactly as Bi♦ϕ. That is, an agent
being confident about something is defined as meaning that the agent believes
that thing will occur at some point in the future. Confidence helps during the
deliberation process. In particular confidence seems appropriate every time we
wish to enforce that, if an agent is confident about something and has the ability
to achieve it, then that thing will eventually occur. In logical terms, this means
that agent i satisfies

Bi♦ϕ ∧ Aiϕ ⇒♦ϕ (1)

which is an important property showing that if agent i is able to perform ϕ, and
also believes that ϕ will occur sometime in the future, then it will effectively try
to actively make ϕ happen.

Finally, we note that the underlying logic is a combination of linear-time
temporal logic and several modal dimensions. Since we do not have complex
interaction axioms between the modal and temporal dimensions, then this logical
basis remains decidable.

3 Grouping Logic-Based Agents

3.1 Agents in Groups

Agents, encapsulating state and behaviour, are the basic entities within our
framework. By default, the description of each agent’s behaviour is based on the
logic described in §2. Individual agents only act depending on their state which
can be altered through identified messages (modelled as predicates) received
from their execution environment. Agents are concurrently active, in particu-
lar they are asynchronously executing; and communicate via message-passing.
Specifically, the basic communication mechanism between elements is broadcast
message-passing. Thus, when an agent sends a message it does not necessarily
send it to a specified destination, it merely sends it to its environment, where it
can be received by all other agents within the environment. Although broadcast
is the basic mechanism, both multicast and point-to-point message-passing can
be implemented on top of this.

The default behaviour for a message is that if it is broadcast, then it will
eventually be received by all possible receivers. Note that, by default, the order
of messages is not preserved, though such a constraint can be added if necessary.
Individual elements only act upon certain identified messages. Thus, an element
is able to filter out messages that it wishes to recognise, ignoring all others.
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We could simply define a multi-agent system as a collection of agents, and
define the semantics of the entire system as a suitable combination of the seman-
tics of the individual agents. This choice would lead us to an unstructured agent
space. While there are multi-agent systems of this form, the majority involve
highly structured agents spaces. Thus, our aim is to be able to model both sim-
ple, unstructured, multi-agent systems and complex multi-agent systems which
can benefit from high-level structuring abstractions.

In order to give structure to the agent space, we allow agents to occur in
groups. Groups are dynamic and open, groups may contain different elements
(agents or sub-groups), and each agent can be a member of several groups.
Groups are used in our framework both for structuring the agent space and for
restricting the extent of broadcast within the system. Groups must understand
certain messages, in particular those relating to group manipulation, such as
adding, deleting, and so on.

While the basic purpose of groups is to restrict the set of receivers for broad-
cast messages, and thus provide finer structure within the element space, more
complex applications can be envisaged. For example, the group element might
enforce a different model of communication within that group. Thus, groups can
effectively enforce their own ‘meta-level’ constraints on message-passing between
elements, for example specifying that the order of messages is preserved.

3.2 Agents as Groups

Recent work has shown that agent groups can productively be treated in a sim-
ilar way to agents [12]. Thus, in our framework, groups and agents are basically
the same entities, avoiding the need to introduce separate mechanisms and enti-
ties dealing with the agent structuring and organisation. Thus, groups are also
agents. More surprisingly, perhaps, agents are also groups. In fact, basic agents
are simply groups with no content. One of the values of identifying these two
concepts is that any message that can be sent to an agent, can be sent to a
group (concerning cloning, termination, activation, etc) and vice versa (concern-
ing group membership, addition to groups, etc). Thus, not only can agents be
members of one or more groups, but they can also serve as groups for other
agents. Further advantages of this approach are:

– communication (which, in our approach, is based on broadcasting) can be
limited to particular networks of groups;

– since agents have behaviour, and groups are also agents, groups can also
have internal policies and rules. Therefore groups are much more powerful
than mere “containers”1;

– the inherent structure can be exploited to group agents based on different
aspects such as problem structure, abilities, and even meta-information such
as owner, physical location etc; and

1 As an example, in [15] we showed how simple rules could be used to formulate
different behaviours of agents, and how those behaviours influence the resulting
group structures.
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– groups can capture key computational information. For example groups can
be transient, can be passed between agents, can evolve, while long-lived
groups may also capture the idea of “patterns of activity”.

Thus, from the different behaviours of agents, different group behaviours can
follow. And vice versa.

In order to realise the equivalence between agents and groups, the core com-
ponents of an agent2 is now be defined as:

Agent ::= Behaviour : Logical Specification
Contents : P(Agent)
Context : P(Agent)

Thus, a very simple agent can be defined with Contents = ∅, a very simple
group can have Behaviour = ∅, while more complex entities can be obtained
adding elements to Contents and Behaviour. Notationally, we sometimes use
CN and CX to denote Content and Context, respectively.

B

D
F

C

E

A

A

B C

D E F

Agent CN CX

A {B,C} ∅
B {D,E} {A}
C {E,F} {A}
D ∅ {B}
E ∅ {B.C}
F ∅ {C}

Fig. 2. The agents’ structure - three different representations

3.3 Structuring the Agent Space

Using groups as the basic components of an agent space, and the notions of
content and context, makes us able to structure this space in a very flexible
way. Fig. 2 shows a simple example of an agent space and its description using
different notations.

The agent space is obviously dynamic, and agents can be organised, and
reorganised, in some collections according to the specific scenarios we have to
model or to the actual needs of the agents themselves. We consider here three
simple, yet very common, examples of behaviour involving agents belonging to
some sort of collections, and we illustrate how to represent these behaviours in
our framework.

Point-to-Point Communication. In order for agent E1 to communicate directly
to (and only with) agent E2, E1 may

2 In the following, the terms ‘agent’ and ‘group’ mean the same thing. Which one we
use depends on the intuitive role that the entity plays in the system.
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1. make a new group, called G,
2. add both itself and E2 to G,
3. then broadcast a message, m, within G.

E1
E2E1

G

E1 E2

G

E2

Filtering. Agent E is a member of both F and G. When F broadcasts messages
to its contents, E will receive these and can pass on selected messages to G.
Thus, E acts as an intermediary between F and G.

F G
E

Ability Groups. Agent E wishes to collect together all those elements that have
the capability to solve a certain problem φ. Thus E can broadcast A?φ asking
for agents who have the ability to solve φ. Assume agents F and P receive the
request and have the ability to do φ. E has now different possible choices:

– E invites F and P to join its content

E
E

E

F P

– E creates a new dedicated element, G, and asks F and P to join G. G will
serve as a container for agents having the ability to solve φ.

P

G

E
E

G

F
E

– E creates a new dedicated element, G, joins G and asks F and P to join G.

GG

E
E PE F

Depending on the choice, agent E has different forms of control, visibility and
knowledge over the activities and the communication between agents F and P.
For instance E has a strict control over F and P in the case they join its content,
while these agents remain more autonomous if they join an “ad hoc” group
G. On the other hand E becomes more complex and may be involved in more
“administrative” activities in the first case, especially if it starts collecting more
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and more sets of agents having certain abilities, while it can maintain a more
agile structure if it creates external groups able to provide the required abilities.
A better analysis of the different group policies that agents can implement is
contained in [16].

In order to make the agent space dynamic and make the examples above pos-
sible, agents need to exchange an appropriate set of message, which will trigger,
in the implementation of the system, the corresponding appropriate actions. As
we already said, agents and groups must understand certain messages, in partic-
ular those relating to group manipulation, such as adding, deleting, etc. Thus,
the basic properties we require of agents is that they should be able to

– send a message to a group,
– receive a message,
– send a message to the entire agent space (sendAll),
– add an agent to the content or context (addToContent/addToContext),
– disconnect an agent from its content or context,
– create a new group,
– move an agent ‘up’ in the hierarchy. We envisage two different “move up”

actions: moveUp and goUp. While moveUp is initiated by the element that
moves, goUp would be sent to an element by one of the elements in its
context. Fig. 3 illustrates the difference between the two actions. The figures
on the top represent the group structure before the composite actions are
executed, while the bottom part represent the new group structures after
the execution of the composite actions.

– move an agent down in the hierarchy. We envisage two different move down
actions: moveInto and goInto. Again, moveInto is initiated by the moving
element, while goInto is initiated by the one that will receive the moving
element (see Fig. 3),

– die, that is, stop the computation of the agent gracefully, merge and clone.
The modification of these actions to the agent space is shown in Fig. 4. The
actions are initiated by the agent(s) represented as an empty circle.

E

E

GoUp
F

G

E

E MoveUp
F

G

F

G

F

G

E E
GoInto

F

G

E
E

F

G

F

G

F

G

MoveInto

moveUp/goUp moveInto/goInto

Fig. 3. Changing the agent space: movement
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die merge clone

Fig. 4. Changing the agent space: restructuring

4 Implementing the System

The current implementation is based on Java. Agents are represented by threads,
and communicate via shared objects, so-called MessageBuffers. Each agent has
one Inbox, and two lists of references to other agent’s Inboxes, the Content and
the Context, as depicted in Fig. 5.

CXCN

CN CX
CN CX

CN: CONTENT
CX: CONTEXT

INBOX

INBOX
INBOX

E3E1 E2

Fig. 5. A simple multi agent system

4.1 Execution

Execution is driven by a MetateM engine (see §2.1), which interprets a set
of rules that describe the behaviour of the agent, which constructs a model in
a forward-chaining fashion. At each cycle, the agent first checks its Inbox for
new messages. The MetateM engine then uses the predicates contained in the
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messages just received, predicates that were made true from the last state, and
eventualities that need to be honored still, to create a new state for the agent
execution. If the created state turns out to be consistent, the cycle is repeated
with the newly created state, otherwise, backtracking occurs, firstly within the
state (by making a different set of predicates true) and if that fails by rolling back
states. Again MetateM tries to resolve the contradiction by assigning different
truth values to predicates within the state. Note that we allow an agent only
to backtrack to the point where it interacted with its environment, by sending
messages or executing side effects connected with certain predicates3. This is due
to the inability of agents to un-do effects on the environment. (Part of our future
work is to examine alternative approaches providing possible (partial) solutions
involving Nested Transactions [3].)

4.2 Side Effects

As mentioned above, certain predicates can have side-effects. That is, the role
of certain predicates is not only to describe a certain behaviour (and thus to be
true or false), but also to “make things happen”. We distinguish between two
types of side effects. First, we have the, so-called, internal side effects. These
are side effects connected to predicates provided by the system, and that can-
not be changed or adapted by the programmer. Examples of currently imple-
mented internal side effects are: send(Set,Message), doAddToContent(Agent),
and doRemoveFromContent(Agent). Similar internal side effects allow to ma-
nipulate Context, while further internal side effects concern the creation and
deletion of new agents.

The other set of side effects is connected with the, so-called, external abilities.
External abilities can consist of (i) a set of SNF rules, (ii) a Java class (which
implements a certain interface), or (iii) a combination of both. External abilities
can be described as external predicates, which are then represented as normal
Java objects. They can be used by an agent to manipulate its environment, from
printing status information on the screen to accessing external databases.

4.3 Rule-Based System

Agents are programmed using temporal formulae in SNF form. It may be clear
to the reader that while an arbitrary temporal formula can be transformed into
SNF, it will often be transformed into a set of several smaller formulae. There-
fore an agent program will be often composed of many small SNF formulae,
where blocks of SNF formulae may describe a certain behaviour that could be
represented in a more compact way as a single complex temporal formula. While
SNF formulae are good for execution they are not as good for structuring and
representation of code. In order to overcome this problem we have introduced
the possibility of tagging rules. The reason for this is twofold. Firstly, it allows
the programmer to better structure her code. More importantly, it allows for sets

3 Reading messages is not direct interaction, as the agents keeps track of messages
read during each cycle, and re-reads them in case of backtracking.
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of formulae which describe a complex behaviour to be identified, and possibly
modified (to modify the complex behaviour) within an agent.

We provide a (simple) implementation of most of the behaviours depicted in
Fig. 3 as a file which agents can load. However, in order to allow the program-
mers to devise their own behaviours, and overwrite the default implementations,
they can re-define groups of rules and this will completely overwrite the default
behaviour. To give an example, Fig. 6 illustrates two sets of tagged rules. These
tagged rules contain a simple definition for moveInto and addToContent . In
more complex agents, moveInto and addToContent will most probably need to
be adapted/rewritten to, e.g., only allow certain agents to join the group.

Note also the use of $Self in Fig 6. $Self refers to the agent interpreting the
rules. In the example of addToContent, only the agent mentioned as first argu-
ment will match a given addToContent message and execute the rules associated
with it.

addToContent: {

addToContent($SELF,Sender) =>

NEXT doAddToContent(Sender).

addToContent($SELF,Sender) =>

NEXT send(Sender, addedToContent($SELF,Sender)).

addedToContent(Sender,$Self) =>

NEXT doAddToContext(Sender).

}

moveInto: {

moveInto($Self, FromGroup, TargetAgent) =>

NEXT removeFromContext($Self,FromGroup).

moveInto($Self, FromGroup, TargetAgent) =>

NEXT removeFromContent($Self,TargetAgent).

moveInto($Self, FromGroup, TargetAgent) =>

NEXT addToContext($Self,TargetAgent).

}

Fig. 6. Code to implement addToContent and moveInto

5 Practical Examples

In order to show the versatility and general usage of the agent programming
language, we will present here two short examples, including some code frag-
ments. Due to space constraints we will not include the entire code. Instead we
will show and comment in detail on relevant parts of the implementation of the
examples.

The first example concerns a coffee delivering agent and is used to show
how the structure of the agent space can be used to encode information, such
as the information about the physical space, that usually has to reside within
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the agents. The second example, which is a typical example of a travel agent,
explains how the dynamics of the agent space structure can be used to solve
problems.

5.1 The Coffee Agent

Suppose we have an office building, with an arbitrary number of rooms, attached
to corridors, which may also connect to other floors. Suppose furthermore that
we want to create a system that lets users order a coffee agent to bring coffee to
their desks.

We represent rooms and corridors as agents. Each corridor agent contains all
the room agents that it connects to. Note that room agents can be member of
more than one corridor agent if, for instance, they have doors leading to different
corridors.

agent room1: room1.agent;

agent room2: room2.agent;

agent room3: room3.agent;

agent room4: room4.agent;

agent corr1: corr1.agent;

agent corr2: corr2.agent;

agent coffeerobot: coffeerobot.agent;

...

room1: { context: corr1; content: coffeerobot; }

coor1: { content: room1, room2, room3}

coor2: { content: room4}

...

Fig. 7. An example of an environment definition

The system is initialised by defining the initial structure of agents and groups
using a simple language. This structure reflects the structure of the building. To
define two corridors, one with 3 rooms and another with 1 room, we could use
a definition like the one in Fig. 7. The first part defines the agents and their
definition files, while the second part defines the relation between the agents.

A user now sends a request for coffee (needcoffee(X)) to its room agent (the
variable X represents a number to distinguish between different requests). The
definition file of a room can contain a piece of code similar to the one depicted in
Fig. 8, while a coffee robot agent can be defined by the code shown in Fig. 9. Note
the external ability of the coffee robot to move. The room agents, upon receiving
a request, store that request (as execution consists of building new states, we
need to ensure that predicates that have to “live” for more than one state are
made true in following states), and forward it to their Content. If no answer
arrives after a given time, they assume that there is no robot in their room and
forward the request to their Context (the corridor, which in turn forwards it to
the other rooms connected to it). The forwarded request is adapted to reflect the
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name room1;

coffee: {

receive(needCoffee(From, User)) =>

NEXT rememberQuery(needCoffee(From, User)).

receive(needCoffee(From,User)) =>

NEXT send({content},

needCoffee($Self, needCoffee(From, User))),

wait(30,needCoffee(From, User)).

waited(needCoffee(From, User)),needCoffee(From,User) =>

NEXT send({context},

needCoffee($Self,

needCoffee(From, User))).

rememberQuery(X), not(delivered(X)) =>

NEXT rememberQuery(X).

receive(delivering(Robot, User)),

rememberQuery(needCoffee(From,User)) =>

NEXT send(Robot, move($Self, From)), delivered(X).

}

Fig. 8. An example file for a room agent

path that the message took - this allows the robot to follow the message path
to its origin.

name coffeerobot;

ability move: Move;

receive(needCoffee(From,User)),not(delivering(_)) =>

NEXT send(delivering($Self, User)),

delivering(User).

receive(addedToContent(Room)), delivering(X) =>

NEXT send(Room, delivering($Self, X)).

delivering(X), not(delivered(X)) => NEXT delivering(X).

Fig. 9. An example file for a coffee robot

The above example is obviously a simplification. For example, we do not deal
with the situation where more than one coffee agent exists. We also assume that
there won’t be more than one request at a time (as a request now would not
be answered by the agent, and get therefore lost eventually). However, one can
see that neither the robot nor the rooms have any explicit knowledge about
their location. In fact, the latter does not even know the number of rooms /
corridors they are connected to. Yet the robot will move through the space
without difficulty.
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5.2 The Travel Agent

The final example we provide concerns a common (at least in research papers)
agent scenario. For this example, we will describe, informally, how the agents
will work, rather than giving detailed code. This agent based system consists of
a Personal Agent (PA) which is asked to organise a holiday, and is given certain
dates and preferences to guide this choice. The PA knows that a holiday consists
of booking a flight, an hotel, and entertainment, but it does not have the abilities
to do either.

A possible way of reaching its goal is to create a new vacation agent within
its Content, which it seeds with the rules it has about organising the holiday.
The PA then has no further interaction with the holiday planning.

The vacation agent itself creates three new groups/agents in its Context,
(one with the ability of booking flight, one for booking hotels, and one for or-
ganising entertainment) as in the third option of the Ability Groups described
in §3.3, and invites appropriate agents to join. It then sends its requests to these
agents. By being a member of the three different groups, the vacation agent will
listen to offers of the different groups, and will be able to fine-tune the negotia-
tion. In this case, the system’s ability to dynamically change the agent space is
exploited. Different ways to interact with groups can be deployed depending on
the circumstances.

Although we have not provided explicit code here, this type of example
combining rational behaviour in individual agents, together with organisational
grouping, is just the type of scenario our language was designed for.

6 Conclusions

Agent-based systems are clearly important within both Computer Science re-
search and the software industry. They are used in many areas, including e-
commerce [14], industrial process control [4], web services [17] and autonomous
vehicles [18]. Moreover, as computational platforms and wireless networking be-
comes ubiquitous, and software artifacts will increasingly be able to migrate
through large physical/virtual distances, access vast amounts of information,
spawn new computations on a wide variety of platforms, and so on, so agent-
based techniques for mobile and ubiquitous systems will provide such software
artifacts with autonomous and ‘intelligent’ behaviour to cater for their dynamic
environment, requirements and knowledge.

We have based the programming of individual agents, their dynamic be-
haviour and the evolution of their knowledge and goals on the framework of
executable temporal logic [7, 10], augmented with the concepts of ability, belief,
and confidence [11]. This framework provides high-level descriptions of the con-
cepts we are interested in, while having clearly defined semantics. The system
implemented incorporates more recent work on the problem of organising agents
within multi-agent systems, not just programming individual agents. Although
we have shown that organisational aspects are independent of the language used
in each agent, we believe that, by again using executable temporal and modal
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logics, a high-level language for developing multi-agent structures can be devel-
oped [15]. This combination of executable temporal and modal logics, together
with a flexible agent grouping mechanism, has now been implemented in Java.
It is this that we have described in this paper.
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Abstract. In this paper, we propose a framework for information exchange among
abductive agents whose local knowledge bases are enlarged with a set of abduced
hypotheses. We integrate the aspects of information exchange and abductive rea-
soning, and show theoretically the information inferred by the single abductive
agent as a product of joint reasoning activity. We show examples, like dining
philosophers, resource exchange and speculative computation, and give an imple-
mentation of the space of interactions based on CLP (SET ).

1 Introduction

In the past years, Computational Logics has proved itself to be a powerful tool for mod-
elling and implementing many forms of reasoning of intelligent systems, such as deduc-
tion (the basic logic reasoning method), abduction (Abductive Logic Programming) for
reasoning from effects to causes, machine learning (Inductive Logic Programming).

Traditionally, such techniques have been developed for monolithic systems, to solve
problems such as diagnosis (expert systems) and learning by examples. More recently,
following the development of multi-agent research, considerable effort has been done in
exporting the technological achievements of Computational Logics into a multi-agent
setting [1]. For instance, through abduction, an agent can make hypotheses on the outer
world, and on causes of observable events, which is a natural extension of what happens
in an expert system. But the role of abduction in multi-agent systems can go beyond the
internal agent reasoning.

In general, sociable agents will exchange knowledge, ask questions, provide services
to each other and, eventually, get to reasonable agreements when decisions are necessary.
In this paper, we propose a Computational Logic-based framework for the integration
of abductive reasoning and communication.

One of the first approaches to modelling agents based on Computational Logics was
proposed by Kowalski and Sadri [2]. The authors propose an agent cycle where logic
agents reason based on an abductive logic program, the hypotheses produced within the
agent represent actions in the outer world, and the observations from the outer world
are mapped into “abduced” that enlarge the agent’s knowledge base. Communication
primitives are considered as a particular case of actions. Agent communication can take
place for various reasons, e.g., in reaction to stimuli, or as part of a plan to achieve a goal.

J. Dix and J. Leite (Eds.): CLIMA IV, LNAI 3259, pp. 34–52, 2004.
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The sequence of communicative actions can follow a certain protocol, or else they can
be less constrained like in the case of agent dialogues. In this setting, the communication
plan is based on the abductive reasoning of the agents. The communication primitives
are modelled as predicates at the object level. The integrity constraints and the knowl-
edge base that constitute the agent’s abductive logic program define the communication
protocol by stating explicitly how to react to incoming communication actions. Building
on [2], several other proposals have been published that map agent communication acts
into abductive atoms [3, 4, 5].

In the present work, we take a different approach. By means of the well-understood
declarative semantics of abduction, we give a formal understanding of information ex-
change. Similarly to the above cited work, we achieve information exchange by means
of abducible predicates, but the purpose of this work is to give an abductive semantics to
the reasoning activity of the overall group of agents involved in the derivation of goals.
Our approach can be considered top-down, meant to define the semantics of a group
reasoning activity, while many approaches are more bottom-up, in the sense that they
give a declarative reading of the individual agents’ knowledge bases, and derive a group
behaviour which is hopefully sound to the semantics. With this we do not mean that we
model through abduction all the possible flavours of emergent behaviour in a bunch of
agents, but that the user can state a common goal of the agent group, and the group will
try and find an abductive solution to the goal of the group. Moreover, this work is not
about agent communication in the sense that we do not provide a semantics at a the high
abstraction level, such as social semantics [6, 7, 8] or semantics based on speech acts
[9, 10, 11]. We do not model roles and contexts. We put our work at a lower abstraction
level, which nicely integrates the two essential concepts of reasoning and information
exchange in a uniform semantic characterisation. We identify the information exchanged
when agents come to a global agreement upon hypotheses.

Drawing inspiration from ALIAS [12], we group abductive agents interacting to-
gether and provide them with a shared repository of communicative actions, which we
call Δ. Based on it, we establish abduction as a virtual machine given by communicating
agents. All the agents will share the same Δ and a solution must satisfy all the (local)
integrity constraints. In this way, communication primitives are transparent to the abduc-
tive reasoners and the communication protocol is implicitly defined in the program and
in the integrity constraints of the agents. In a sense, we abstract away from protocols:
the agents do not need to name explicitly the others in the group, they do not even need
to know how many agents participate in the distributed computation, while trying and
find a global agreement.

Consider, for example, a system that monitors some electronic equipment. We may
have an abductive agent that monitors each of the alarms. A first agent, C1, is responsible
for checking the temperature of the whole system. It may have rules saying that the
temperature can get high if the fan in one of the subsystems is broken, or in case of short
circuit in one subsystem:

KB1
high temp← broken device(fan, System).
high temp← short circuit(System).
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A second abductive agent, C2, checks the output of each subsystem, and knows that
the wrong output of a system can be due to a failure in a device of such a system.

KB2 wrong output(System) ← broken device(Device, System).

Finally, a third agent, C3, checks the current absorption, and may have an integrity
constraint saying that there cannot be, in a subsystem, low current and short-circuit:

IC3 ← low current(System), short circuit(System).

Now, if we have high temperature, low current in all subsystems, and wrong output on
subsystem amplifier2, none of the single agents can get to the right solution; however, to-
gether they can identify the failing device (namely, the fan in amplifier2). Notice that they
will need to unify their possible guesses (C1 could hypothesise broken device(fan, S)
and C2 broken device(D, amplifier2)) to get to the complete solution. Moreover, they
will need to check the integrity constraints of all the abductive agents to get a consistent
solution. We see by this simple example how variable binding can be considered as both
the subject and the vehicle of information exchange.

In this paper, we propose a framework of abductive reasoners that share a common
hypothesis space. We do not explicitly address some typical issues of Multi-Agent Sys-
tems, like autonomy and pro-activity. Our focus is rather on the communication part
and its relation with the agent’s reasoning. Notice that it is not necessary that each
agent exports its whole hypothesis space, but only the part related to communication,
while its internal reasoning may remain private. We formally define the framework and
theoretically show how the information is passed (Sect. 3).

In this work, we also discuss about the outcome of the collaborative reasoning process
in terms of local vs. global consistency. To this end, we introduce the concepts of inde-
pendence and compositionality of programs, and we prove that, in terms of consistency
and under certain conditions, collaborative reasoning is equivalent to local abductive
reasoning.

We show various examples of communication patterns that can be obtained in
our framework (Sect. 4). We provide a prototypical implementation of our framework
(Sect. 5), we discuss related work in Sect. 6 and, finally, we conclude.

2 Preliminaries on Abductive Logic Programming (ALP)

If F is a formula, with ∃̃F (resp. ∀̃F ) we denote the existential (resp. universal) closure
of the formula. If t is a term, with ∃̃tF (resp. ∀̃tF ) we will indicate the existential
(universal) closure of F restricted to the variables in t.

Definition 1. An abductive logic program is a triple 〈KB, Ab, IC〉 where:

– KB is a (normal) logic program, that is, a set of clauses (“definitions") of the form
A0 ← A1, . . . , Am, where each Ai (i = 1, . . . , m) is a positive or negative literal;

– Ab a set of abducible predicates, p, such that p does not occur in the head of any
clause of KB;

– IC is a set of integrity constraints, that is, a set of closed formulae.



An Abductive Framework for Information Exchange in Multi-agent Systems 37

Following Eshghi and Kowalski [13], an abductive logic program 〈KB, Ab, IC〉
can be transformed into its positive version. The idea is to view default literals as new
abducible positive atoms. In the rest of the paper, we will use the symbol not to indicate
negation, and suppose that it is treated as by Eshghi and Kowalski [13].

Definition 2. Given an abductive program 〈KB, Ab, IC〉 and a goal G, an abductive
explanation for G is a set Δ (such that Δ ⊆ Ab) with a substitution θ such that KB∪Δ
is consistent and

– KB ∪Δ |= ∀̃(G/θ)
– KB ∪Δ |= IC

We suppose that each integrity constraint has the syntax

(⊥) ← A1, . . . , An.

whereA1, . . . , An is a conjunction of atoms. Let I be the implicationA0 ← A1, . . . , Am;
we call head(I) the atom A0 and we denote with body(I) the set {A1, . . . , Am}.

Given this syntax, the previous definition KB∪Δ |= IC is equivalent to saying that
the atoms appearing in the body of an integrity constraint cannot be all true in order for
the program (with the Δ) to be consistent: ∀ic ∈ IC,∃a ∈ body(ic) s.t. KB ∪Δ �|= a.

3 Formalisation

In this section, we give the formalisation of our framework for information sharing.
Let Ci denote an agent, provided with an abductive logic program 〈KBi, Ab, ICi〉.1

In order to (abductively) prove a goal Gi, Ci will try to find a binding θi and a set of
abductive hypotheses δi such that

KBi ∪ δi |= Gi/θi

that satisfies all the integrity constraints:

KBi ∪ δi |= ICi.

If the set δi can contain non ground literals, then the substitution θi will also apply
to the set δi; all the remaining variables in δi/θi should be considered existentially
quantified2

∃̃δi/θi
(KBi ∪ δi/θi |= Gi/θi).

1 Since in this work we are tackling the problem of information sharing in the context of agents
reasoning based on abductive logic programs, from now on we will use – with abuse of notation
– the same symbol to denote both the agents and the ALP that they enclose. Indeed, in a more
elaborated agent architecture, the abductive logic program will only represent a part of the
whole agent. Also, in this simplified setting we consider – without loss of generality – the set
Ab to be the same for all the agents in the system.

2 Other variables which may appear in Gi are considered free, as in the IFF proof procedure [14].
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Communication between agents will appear as a binding on the set of abduced
hypotheses. Given n abductive agents Ci, i = 1..n, each providing an answer to a goal:

∃̃δi/θi
[KBi ∪ δi/θi |= Gi/θi]

communication will appear as (one) solution of the following equations:

Δ =
⋃

k δk (1)

∃̃Δ∀k(KBk ∪Δ |= ICk). (2)

that can be seen as a CLP (SET ) problem [15, 16].

Definition 3. The property in Eq. 2 will be referred to as Global Consistency.

Global consistency is equivalent to abduction performed by a single agent that has
the union of the KBs and the union of the ICs. In order to prove this property, we
introduce the concepts of independency and compositionality of programs, and show
that independency implies compositionality.

Definition 4. A set of atoms Δ is independent of a logic program KB, and we write
ind(Δ, KB), iff ∀a ∈ Δ �d ∈ KB s.t. a/head(d).

Definition 5. A logic program KB1 is independent of a program KB2, and we write
ind(KB1, KB2), iff ∀di ∈ KB1 ind({head(di)} ∪ body(di), KB2).

Note that this definition is not symmetric: ind(KB1, KB2) �⇒ ind(KB2, KB1).

Theorem 1. Compositionality. Suppose that KB1 and KB2 are mutually independent
and that Δ is a set of ground facts independent of KB1 and KB2 (but, nevertheless,
KB1 and KB2 may depend on Δ).

Then, ∀a,

KB1 ∪KB2 ∪Δ |= a ⇐⇒ (KB1 ∪Δ |= a) ∨ (KB2 ∪Δ |= a)

Proof. Let us consider the immediate consequence operator, T ; we will show that,
∀n, Tn

KB1∪KB2∪Δ = Tn
KB1∪Δ ∪ Tn

KB2∪Δ.

T 1
KB1∪KB2∪Δ = T 1

KB1∪Δ ∪ T 1
KB2∪Δ, as it only contains the ground facts in the Δ

and in the two KBs.
By induction, let us suppose that Tn

KB1∪KB2∪Δ = Tn
KB1∪Δ∪Tn

KB2∪Δ. By definition
of T , since Δ only contains facts,

Tn+1
KB1∪Δ = Tn

KB1∪Δ ∪
{
X : X ← B ∈ KB1, B ⊆ Tn

KB1∪Δ

}
and analogously for agent A2.

Tn+1
KB1∪KB2∪Δ = Tn

KB1∪KB2∪Δ∪
∪

{
X : X ← B ∈ KB1, B ⊆ Tn

KB1∪KB2∪Δ

}
∪

∪
{
X : X ← B ∈ KB2, B ⊆ Tn

KB1∪KB2∪Δ

}
=

= Tn
KB1∪Δ ∪

{
X : X ← B ∈ KB1, B ⊆ Tn

KB1∪Δ ∪ Tn
KB2∪Δ

}
∪

Tn
KB2∪Δ ∪

{
X : X ← B ∈ KB2, B ⊆ Tn

KB1∪Δ ∪ Tn
KB2∪Δ

}
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Now we only have to show that{
X : X ← B ∈ KB1, B ⊆ Tn

KB1∪Δ

}
=

=
{
X : X ← B ∈ KB1, B ⊆ Tn

KB1∪Δ ∪ Tn
KB2∪Δ

} (3)

(and the same for KB2).
Eq. 3 is true if for each clause (X ← B) ∈ KB1 and each atom S ∈ B, S /∈

Tn
KB2∪Δ \ Tn

KB1∪Δ. If S belonged to that set, then there would be a clause (S′ ←
B′) ∈ KB2 that unifies with S (by definition of TKB2∪Δ), and this is impossible by
hypothesis. �

Achieving compositionality in a system of autonomous agents is not difficult: in fact,
we can assume that the “private" atoms used by the various agents (those that are not
intended for direct sharing) can either have different functor names or arity, or they can
be labelled with the name of the agent. Instead, for what regards the abducible predicates
used for communication, we can assume [17] that they have no definition.

We now extend Definition 5 for Abductive Logic Programs; intuitively, integrity
constraints in one of the programs should not reference predicates defined in the other.

Definition 6. An Abductive Logic Program 〈KB1, Ab, IC1〉 is independent of a pro-
gram 〈KB2, Ab, IC2〉 iff

– ind(KB1, KB2), and
– ∀ici ∈ IC1, ∀a ∈ body(ici), ind({a}, KB2).

Theorem 2. Let 〈KB1, Ab, IC1〉 and 〈KB2, Ab, IC2〉 be two mutually independent
abductive logic programs. Then, global consistency is equivalent to (centralised) ab-
duction, with KB = ∪iKBi and IC = ∪iICi; i.e., the two following conditions are
equivalent

– ∃̃Δ∀i(KBi ∪Δ |= ICi)
– ∪iKBi ∪ ∃̃Δ |= ∪iICi

Proof. The set Δ is existentially quantified; let us take a ground version of it.
Suppose that the first condition holds. This means that for each abductive logic

program i, for each integrity constraint ici
j ∈ ICi there is an atom a that is not entailed

by KBi:
∀i ∀ici

j ∈ ICi ∃a ∈ ici
j : KBi ∪Δ �|= a.

If a is abducible, it can be true only if a ∈ Δ, but this is not the case, since we know
that KBi ∪Δ �|= a. Since a ∈ ici

j ∈ ICi, a cannot be defined in any KBm with m �= i.
Thus, we have that a is not entailed by any of the KBs (union Δ):

∀i ∀ici
j ∈ ICi ∃a ∈ ici

j : ∀mKBm ∪Δ �|= a.

By Theorem 1, ∀i∀ici
j ∈ ICi ∃a ∈ ici

j : ∪mKBm∪Δ �|= a, thus ∀i∀ici
j ∪mKBm∪

Δ |= ici
j . Since this holds for every integrity constraint, we have that ∪mKBm ∪Δ |=

∪i ∪j ici
j that is

∪mKBm ∪Δ |= ∪iICi.
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Viceversa, suppose that the second condition holds. This means that for each agent i,
for each integrity constraint ici

j ∈ ICi there is an atom that is not entailed by the union
of the KBs:

∀i ∀ici
j ∃a ∈ ici

j : ∪mKBm ∪Δ �|= a.

By Theorem 1, this is equivalent to

∀i ∀ici
j ∃a ∈ ici

j : ∀mKBm ∪Δ �|= a

In particular, if none of the KBs (union Δ) entails a, even more so neither the KB
of the agent i (union Δ) to which ici

j belongs entails a:

∀i ∀ici
j ∃a ∈ ici

j : KBi ∪Δ �|= a

which means that
∀i ∀ici

j : KBi ∪Δ |= ici
j

since every integrity constraint of the agent is entailed, also their union is entailed �
Note that Global Consistency requires that all the abductive reasoners will “agree"

on one substitution of the variables in Δ. A weaker variant is Local Consistency:

Definition 7. A set Δ of abduced hypotheses is Locally Consistent if the following
condition holds:

∀i(KBi ∪ ∃̃Δ |= ICi). (4)

If each of the agents checks the consistency of the set Δ locally, local consistency is
ensured. However, local and global consistency are different properties:

Example 1. Consider the following situation, where p/2 is abducible.

Agent 1
{

IC1 ← p(X, Y ), not q(X, Y ).
KB1 q(X, Y ) ← X > Y.

Agent 2
{

IC2 ← p(X, 1), not f(X).
KB2 f(X) ← X < 0.

Should both agents try to assume p(X, Y ), we could obtain Δ = {p(X, 1)}, and
Agent 1 will receive the binding Y/1. This is locally consistent, in fact for Agent 1
there exists a value of X that satisfies its integrity constraint (every value greater than
one), and, similarly, for Agent 2 there exists at least one value (any value less than zero)
that satisfies IC2. Obviously, it is not consistent, because there is no value for X that
satisfies all the integrity constraints, thus it is not globally consistent, and the hypothesis
(∃X)p(X, 1) should be rejected.

One may think, operationally, to enforce only local consistency, because it is less
expensive. However, in this case, an eventual inconsistency might not be detected, and
an expensive failure would be obtained in a later computation.

Various types of communication may appear in this framework, e.g., communication
of a failure, communication triggered by integrity constraints, etc. In this paper, we
focus on the communication given by a shared abduced hypothesis. Intuitively, when
hypotheses made by different agents are unified, communication appears as a binding.
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3.1 Communication Through a Shared Abduced Hypothesis

Once global consistency is enforced, we can identify the information exchanged among
agents, if some of them share (at least) one predicate name in the abducible space. In
fact, given two abductive agents, xi, i = 1..2, each enclosing an abductive logic program
〈KBi, Ab, ICi〉, for all i we have:

∃̃δi/θi
KBi ∪ δi/θi |= Gi/θi.

If the set inequality δ1/θ1 ∩ δ2/θ2 �= ∅ has solutions, i.e., if there is a substitution θ′

such that
∃θ′ : (δ1/θ1)θ′ ∩ (δ2/θ2)θ′ �= ∅

then information exchange can occur by way of a variable binding.
The communication is, in general, bidirectional: both agents will receive the binding

θ′. The information that agent 1 will receive is the substitution for its variables, θ′|δ1/θ1 ,
and, in the same way, agent 2 will receive the information θ′|δ2/θ2 .

Example 2. Let us consider the following instance, where a/1 is the only abducible.

Agent 1 Agent 2
IC1 {← a(X), a(Y ), X �= Y.

KB1

{
p(X) ← a(X), b(X).
b(r(1, B)).

KB2

{
q(X) ← a(X), f(X).
f(r(A, 2)).

The integrity constraint IC1 tells that there can be only one atom a/1 in the Δ. If
the first agent proves p(Z) and the second one q(Q), the individual results will be:

θ1 = {Z/r(1, B)} δ1 = {a(r(1, B))}
θ2 = {Q/r(A, 2)} δ2 = {a(r(A, 2))}

In this case there is only one most general unifier, namely θ′ = {B/2, A/1}. Both of
the agents receive this substitution; the received information is the substitution restricted
to their variables, i.e.,Agent 1 receives θ′|δ1/θ1 = {B/2} andAgent 2 θ′|δ2/θ2 = {A/1}.

4 Examples

Various information exchange patterns can be implemented on top of our the framework
of abductive communication. In this section, we show some simple examples, that exploit
non trivial communication patterns enclosed in the framework.

4.1 Dining Philosophers

The dining philosophers problem [18] is a classic problem in inter-process synchronisa-
tion. The problem consists of a group of philosophers sitting at a table; each philosopher
has a chopstick on his right and one on his left. A chopstick cannot be used by two
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philosophers at the same time, and one philosopher needs both the chopstick on his right
and the one on his left to eat.

We do not wish to propose with our framework a new solution to the dining philoso-
phers, but instead, we will use the well-known example to show the inter-process com-
munication involved and the abductive semantics that we give to it.

We propose a model based on abductive agents, each one representing a philosopher;
agents share resources (the chopsticks), and communicate by means of abducible pred-
icates that they derive within the knowledge base. Such predicates represent the state
of the philosophers with respect to the chopsticks: chop(C, F, T ), where C indicates a
chopstick, F represents a philosopher (abductive agent) and T is the time.

The set Δ, which grows during the individual computation activities of agents, con-
tains all their abducible predicates, which must be agreed upon by all of them at all
times. It represents a partial schedule of the allocation of chopsticks in time. Due to
the conflicts on the use of resources (the chopsticks), the reasoning activity must be
coordinated, and in particular it must comply with some constraints that must never be
violated. For example, a chopstick cannot be taken by two different agents at the same
time. In ALP terms, we would impose an integrity constraint such as:

← chop(C,F,T), chop(C,F1,T), F �= F1 (5)

This constraint implies that for all ground instances of the first two predicates, the
third one must fail (F must be equal to F1). That is, if an agent abduces chop(1, 1, t),
then ∀X, chop(1, X, t) /∈ Δ \ {chop(1, 1, t)}.

A resource at a given time is denoted as free by leaving its second parameter – the one
representing the owner – as a variable. In this way, releasing a resource means abducing
a fact with a variable as owner. Acquiring a resource means abducing a chop atom in
which the second variable is not free. If a chopstick was released at a given time point,
then Δ contains chop(C, F, T ), where F is a variable. A philosopher F1 can take it by
abducing chop(C, F1, T ), and either F will be unified with F1 or (as a choice point) Δ
will contain both the abducibles and the constraint F �= F1.

This predicate shows the behaviour of a single philosopher:

phil(P) ←
compute needed chops(P,Chop1,Chop2),
% Get needed resources
chop(Chop1,P,T), chop(Chop2,P,T),
eat(T,T1),
% Release the resources
chop(Chop1, ,T1), chop(Chop2, ,T1).

compute needed chops(P,P,P1) ←
number philosophers(Pn), P<Pn, P1 is P+1.

compute needed chops(P,1,P) ← number philosophers(P).

Let us see an example with three philosophers: p1, p2, and p3 (all philosophers will
have number philosophers(3) ← . in their knowledge base). At the beginning (time
zero) all the resources are free. We model this by introducing in the Δ three atoms
chops(i, ,0), where i = 1..3. Let us suppose the first philosopher, p1, tries to
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get its needed resource first: it will abduce chop(1, p1, T1), chop(2, p1, T1), i.e., it will
try to get two chopsticks in a same time stamp. Since the set Δ currently leaves all
the resources free at time zero, the philosopher gets the binding T1/0 and the Δ will
contain information that two chopsticks are no more available. If philosopher p2 tries to
get its resources, it cannot get them at time zero, because the integrity constraint forbids
to abduce both chop(2, p1, 0) and chop(2, p2, 0) (p1 �= p2); the only possibility is to
abduce new facts chop(2, p2, T2), chop(3, p2, T2). The second philosopher still does
not know in which time tick it will get the resources (T2 is still a variable). If now p1
releases its resources at time 3, abducing chop(2, , 3), this atom unifies with one request
of p2, so p2 gets the binding T2/3.

Step Δ

start chop(1, ,0) chop(2, ,0) chop(3, ,0)
p1 get chops chop(1,p1,0) chop(2,p1,0) chop(3, ,0)
p2 ask chops chop(1,p1,0) chop(2,p1,0) chop(3, ,0)

chop(2,p2,T2) chop(3,p2,T2)
p1 release chops chop(1,p1,0) chop(2,p1,0) chop(3, ,0)

chop(1, ,3) chop(2,p2,3) chop(3,p2,3)

We specified the program in a general way, i.e., independent of the philoso-
pher. In fact, if we instantiate it to a specific philosopher (e.g., we define phil(p1)
and compute needed chops(p1, P, P1) instead of the generic predicates phil(P ) and
compute needed chops(P, P, P1) that we defined above) we obtain three mutually
independent programs, for which the results of Theorem 2 hold. In that case, global
consistency is equivalent to centralised abduction. Similar considerations apply to the
other examples that will follow this section.

This example must not be seen as a possible solution to the synchronisation problems
of the dining philosophers, but rather as an example of information sharing. p1, p2,
and p3 will collaborate to generate a schedule of resource usage, and the semantics
and properties of the framework ensure that their constraints are not violated. Indeed,
different agents with different programs and constraints can participate in the solution
of this problem, each one adopting suitable strategies (e.g., coordination mechanisms or
ad-hoc ordering to prevent starvation).

4.2 Dialogues and Negotiation

In this section we would like to show how it is possible to model in our framework
a two-agent dialogue. We will take as an example the negotiation dialogues produced
by N+-systems [4]. Such dialogues – sequences of dialogue moves satisfying certain
requirements – can be used to solve a resource reallocation problem.N+-agents produce
dialogue moves produced by means of an abductive proof procedure, during the think
phase of an observe-think-act life cycle [2]. In the context of resource reallocation
considered in [4], agents have goals to achieve, resources to use in order to achieve them,
and they produce dialogues among each other in order to obtain the resources that they
miss to make a certain plan feasible. In the simplified setting that we are considering
now, the purpose of producing a dialogue move is either to reply to a request, or to
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request a missing resource. N+-agents keep requesting resources to the other agents
until they either obtain all the missing resources or they realise that there are not enough
resources in the system to make their plan feasible. At the same time, agents must reply
to asynchronously incoming requests. The policy used to produce requests and to reply
to the other agents’ requests is encoded into an abductive logic program.

We propose here an alternative implementation ofN+-agents based on non-ground
abducible predicates where an agent does not explicitly poll each other agent in the
group, but posts a request in the common Δ with a variable as addressee. Other agents
can hypothesise to be the addressee of the message and, consequently, reply.

We express dialogue moves by means of envelopes t/3 that have the following
syntax: tell(Sender, Receiver, Subject), where Sender, Receiver, and Subject
are terms that carry the obvious meaning.

The definition of the predicates is below. We divide the agent resources into two
groups: those that are missing (and that the agent must somehow obtain in order to
succeed in its goal, make plan feasible), and those that the agent may give away.
For the sake of simplicity, we adopt here a static representation of the problem in which
the set of missing resources is defined through a missing/1 predicate. A resource r is
instead available if a predicate available(r) is true. We consider a setting in which
three agents (a, b, and c) have the program below. It is given independently of the agent,
but we assume that each agent has its own definition of missing/1, available/1,
and self/1, this latter used to provide each agent with a unique identifier.

make plan feasible ← missing(M), get all(M).
get all([]).
get all([R|R1]) ← get(R), get all(R1).
get(R) ← self(S),
tell(S,A,request(give(R))), S �= A,
tell(A,S,accept(give(R))).

manage request(S,X,R) ← available(R),
tell(S,X,accept(give(R))).

manage request(S,X,R) ← not(available(R)),
tell(S,X,refuse(give(R))).

The integrity constraints are the following:

← tell(S,R,refuse(give(R))), tell(S,R,accept(give(R))).(6)

← self(S), tell(Y,S,request(give(R))),
not manage request(S,Y,R).

(7)

The first one states that an agent cannot reply both accept and refuse to the same
request. The second one is used to react to a request of other agents by invoking
manage request if a request is addressed to the agent.

Let us see an example with three agents, called a, b and c. Suppose that the individual
knowledge bases of the three agents are the following:
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Agent a Agent b Agent c
self(a). self(b). self(c).
missing([nail]). missing([pen]). missing([knife]).
available(pen). available(pen). available(nail).
available(knife).

Suppose that agent a starts first, and posts a request for its missing resource:
tell(a, X, request(give(nail))). It will also try to abduce that the same agent that
will reply, X , will accept to give the resource: t(X, a, request(give(nail))). This
second hypothesis is motivated by the fact that without the resource, a cannot execute
its plan, so a’s computation would fail.

Agent b considers its integrity constraint (7) and has two possibilities: either variable
X of the atom in the Δ is equal to b, or it is different from b. In other words, either it
supposes to be the addressee of the request or not. In the first case it should reply refuse,
as it does not have an available nail; however this reply would not be consistent with
the hypothesis formulated by a that the reply would be accept. The Δ would contain
both answers accept and refuse from b to a, and this is inconsistent with the integrity
constraint (6). The only globally consistent possibility is that b is not the addressee of the
request. Agent c will, in its turn, hypothesise to be the addressee: it will reply accept,
which is consistent with both ICs.

4.3 A Meeting Room Reservation Problem

Speculative computation by Satoh et al. [19] is a technique used to carry on with a
distributed computation where information exchange is involved, without waiting for
such information to be available. To this purpose, it uses default assumptions on the
missing information, and it provides an operational model for the consistency of the
overall computation with the assumed defaults – once the information becomes available
– or for activating alternative branches in case of inconsistency. The authors present
a meeting room reservation problem as an example of computation with defaults, in
an environment with unreliable communication. The problem is to organise a meeting
among three agents: a, b, and c. If less than two agents attend the meeting, the meeting
is cancelled. If exactly two agents attend the meeting, we book a small room. If three
agents come, we book a big room.

The problem is modelled in [19] by adopting a master-slave system architecture,
where {a, b, c} are the slave agents, and a master agent m is introduced, whose goal is
to reserve the meeting room. By default, m assumes that a and b are available, while
c is not. In the reservation process m asks all agents about their availability, while it
continues reasoning based on its default assumptions. If m does not receive any answer,
a small room is reserved. If m receives an answer that contradicts its assumptions before
a certain timeout, e.g., the end of the computation required to solve the top-goal, m
backtracks and proceeds accordingly to the received replies.

Roughly speaking, the approach proposed in [19] to this problem is to activate several
concurrent processes, each representing a positive or negative assumed answer to a
certain question that has been made to the other agents. The processes waiting for an
answer are suspended, while those that contain an assumption that is contradicted by an
already received answer are killed (in a further refinement of the algorithm [20], such
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processes are not killed but only suspended, in order to allow further revision of a given
answer).

We could model the communication underlying the meeting room reservation prob-
lem by means of abduction, and the shared Δ, with a common abducible predicate
free/2. The master agent has the following program3:

plan(small room,[X,Y]) ←
free(X,true), free(Y,true), free(Z,false), X �= Y.

plan(big room,[X,Y,Z]) ←
free(X,true), free(Y,true), free(Z,true),
alldifferent([X,Y,Z]).

plan(cancel meeting,[]) ←
free(Y,false), free(Z,false), Y �= Z.

← free(X,true), free(X,false).

For each case (i.e., reserve a small or big room or even cancel the meeting), the
master abduces a reply, one for each agent involved in the meeting. For instance, if the
(expected) default answer is two agents are available, and one busy, then the master agent
plans to reserve a small room, on the basis of the abduced replies (e.g., free(X, true),
free(Y, false) and free(Z, true)), and the computation proceeds.

In the program of the master agent, while exploiting abduction, we can constrain
variables X, Y and Z to be all different and each assuming one value among a, b or
c. Thus, abduced atoms are ground. However, in our framework, we can also abduce
hypotheses with unbound variables, lifting the approach of speculative computation to
non ground-terms.

As the computation proceeds, it can be the case that a reply comes from the agents
(all, or some of them). In our framework, this reply is abduced by each agent itself,
and stored in the common Δ. For each abducible free(X, true) a choice point is
left open, e.g., X/a ∨ X �= a. If the reply provided by some of the agents, a, violates
the integrity constraint, i.e., the master agent has assumed the availability of a, and this
is not the case since a is busy, then the master agent has to backtrack, and consider
a different set of abducibles. Nonetheless, if no answer comes from the agents, then
the default is assumed, once and forever. This framework is able to provide the same
answer also in case an atom free(a, true) is posted in the blackboard by agent a
before the room reservation process is started by m: in this way, we give a declarative
counterpart to a multiple-party speculative computation setting, more general than the
one considered in [19], and a framework capable of dealing with non-ground terms.
We see by this example how the communication can be obtained through bindings of
variables in abduced literals, and how a default can be taken: agent m receives the names
of the agents that will participate to the meeting and will retract its default assumption
(that exactly two agents will participate) only if it is proven false, independently on who
are the agents participating.

3 We report only the part related to the replies, which is the most interesting, being the request
and the reservation of the room quite straightforward. Also, we associate to the variables X, Y,
Z the domain [a,b,c].
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In future work, a full operational semantics should be given, and could be inherited
from the works by Satoh et al., possibly extended in order to recover both synchronous
or asynchronous communication: when abducing an atom with non-ground terms, the
process can suspend thus miming the behaviour of read-only variable of concurrent
logic languages (and obtain a synchronous communication), or proceed (asynchronous
communication).

5 Abduction and Set Operations: Experiments with CLP (SET )

As we noticed in Sect. 3, communication is based on operations on sets. For this reason,
we decided to perform our experiments on CLP (SET ) [15], a constraint language based
on sets. CLP (SET ) is an instance of the general CLP framework [21] which provides
finite sets, along with a few set-based operations, as primitive objects of the language.

Each of the agents could use one of the existing abductive proof procedures (e.g.,
[22, 14, 23, 24]) to perform abductive reasoning, and produce a set of abducibles. The
hypotheses proposed by the various agents, δi, could be combined as explained in Sect. 3
with CLP (SET ), in order to obtain a globally consistent set of hypotheses Δ (Def. 3).

It is worth noticing that abduction itself can be thought of as based on set operations,
thus one may implement also the abductive proof procedure in CLP (SET ). In fact,
in the abductive computation of each agent, the expected result includes the set δi of
abduced hypotheses, along with bindings of variables. Each hypothesis is inserted in the
set δi by an abductive step, affirming that the hypothesis belongs to the set δi. The space
of possible hypotheses is limited by ICs, that forbid some conjunctions of hypotheses in
δi. Consider, for example, the IC:

← L1, L2.

where both L1 and L2 are abducibles. This integrity constraint limits the possible hy-
potheses: if δ contains the atom L1, then it cannot contain L2 and viceversa.

All the operations on the set δi can be defined in terms of two basic operations: the
abduction step (making an hypothesis, i.e., L ∈ δi) and the check/propagation of the
integrity constraints, that can reject some possible hypotheses (state that some hypotheses
cannot belong to δi, i.e., L �∈ δi). Both these operations, the set membership operation
and its denial, can be considered as constraints, meant to define the set δi, which is the
result of the computation.

We made our experiments by defining a simplified abductive proof procedure in
CLP (SET ). In our implementation, the abduction of an atom, L1, is given by two steps.
Firstly, we impose that the set δi contains the atom L1, with the constraint L1 ∈ δi. This
will result in the unification δi = {L1|δ′

i}, which, in CLP (SET ) syntax, means that
δi = {L1} ∪ δ′

i.
The second step is imposing integrity constraints. Whenever a new atom is abduced,

constraints are imposed on the rest of the set δi. In our example, when abducing L1, we
impose that the rest of δi should not contain the abducible L2: L2 /∈ δ′

i. The structure of
the predicate responsible for abduction can be the following:
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abduce(Atom,Delta) ← Delta = Atom | D1,
collect ics(Atom,ICs), impose ics(ICs,D1,Atom).

collect_ics collects all the variants of ICs that contain an atom unifying with the
abduced atom, together with the corresponding substitution θ. Intuitively, when we
abduce an atom L1, we want to falsify at least one atom in each integrity constraint.
impose_ics tries to find, in each IC/θ, an atom which is false for all the possible
instantiations of its (remaining) universally quantified variables.

It is worth noticing that some of the transitions in the operational semantics of
abductive proof procedures are automatically performed by constraint propagation in
CLP (SET ). For example, proof procedures typically try to find a possibly minimal
set of hypotheses, thus they try to unify couples of hypotheses in δ (with transitions
called solution reuse [23] or factoring [14]). Given two hypotheses p(X) and p(Y ),
abductive proof procedures unify X and Y , but also consider X �= Y upon backtracking.
In CLP (SET ), if δ contains a non-ground atom p(X), i.e., δ = {p(X)|δ′}, when
abducing a new atom p(Y ) (i.e., imposing the constraint p(Y ) ∈ δ) the nondeterministic
propagation provides the two alternative solutions δ = {p(X)|δ′} with X = Y and
δ = {p(X), p(Y )|δ”} with X �= Y .

Future work will focus on a fully distributed implementation of Global and Local
Consistency algorithms.

6 Related Work and Discussion

Torroni [25] investigates how to coordinate the abductive reasoning of multiple agents,
developing an architecture (ALIAS) where several coordination patterns can be chosen.
A logic-based language (LAILA) is defined for expressing communication and coor-
dination between logic agents, each one equipped with abductive reasoning capability
[12]. LAILA can be used to model the social behaviour of logic-based agents, enabling
them to express at a high level several ways to join and coordinate with one another. Our
work approaches agent interaction from another perspective: no explicit coordination
operators are needed, and the role of abduction is mainly in giving a semantics to interac-
tion seen as information exchange, and not in the agent’s internal reasoning. Differently
from [12], in this work agents share predicates which are not necessarily ground, and
a form of information exchange results from unification and variable binding. This al-
lows for asynchronous interaction patterns, where in principle no agent needs “starting”
the distributed proof of a goal, nor coordinating the reasoning activity of others. Fol-
lowing ALIAS, in [26] the authors propose an operational semantics based on a proof
system for the consistent execution of tasks in a constrained multi-agent setting, and
they prove the soundness and completeness of such operational semantics to be used
to verify the correct execution of tasks. This work and [26] propose two logic based
approaches to reasoning on the group activity of agents and enforcing properties such
as consistency. However, their scope and purpose are different: here, the semantics of
information exchange for abductive logic agents, in [26], the consistency of a joint work
activity.

Hindriks et al. [27] propose a logic-based approach to agent communication and
negotiation where deduction is used to derive information from a received message, and
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abduction is used to obtain proposals in reply to requests. In particular, deduction serves
to derive information from a received message. Abduction serves to obtain proposals
in reply to requests. A semantics based on deduction is proposed for the ask and tell
primitives, similarly to other proposals in the literature, while a semantics based on ab-
duction is proposed for the req and offer primitives. The semantics that they propose,
based on the existence of free variables in the communicative acts, shows some similari-
ties with ours; the main difference is that we do not distinguish among the different kinds
of communication primitives, and the semantics of information exchange is uniformly
based on abduction.

Sadri et al. [4] propose a framework for agent negotiation based on dialogue, which
we sketched in section 4. The work of Sadri et al. [4] differs from ours in its purpose,
which is not to give a semantics to agent interaction, but to give an execution model for
the activity of the single agent and - based on it - to study formal properties of agents inter-
acting with each other. In [3], the authors represent Kowalski-Sadri agents as abducible
theories, and formalise communication acts by means of inter-theory reflection theo-
rems, based on the predicate symbols tell and told. Intuitively, each time a tell(a1, A)
atom is derived from a theory represented by an agent a2, the atom told(a2, A) is
consequently derived in the theory represented by a1, and therefore the proposition A
becomes available to it. The framework is provided with a nice formalisation, and is
based on two particular predicates (tell/told) that allow peer-to-peer communication.
In our work, we aim to cater for different interaction patterns, possibly involving more
than one peer, and to consider communication acts as bi-directional knowledge sharing
activities, where several parties may contribute in shaping new information through the
unification mechanism.

Bracciali and Torroni [28] propose a framework for knowledge revision of abductive
agents through their interaction. They focus on several aspects of agent interaction at
a higher level than the one we study in this work, by showing how negotiation about
knowledge can be used to make the agents’ knowledge evolve as they interact.

Satoh et al. [19] present a master-slave system in a setting where communication
is assumed to be unreliable, which we briefly introduced in Section 4. The system is
given a formal proof-procedure, that consists of two steps: a process reduction phase,
and a fact arrival phase. Differently from our work (more focussed on the declarative
semantics), speculative computation is an operational model.

Finally, a comment about the proof procedure for abduction. We chose to make our
experiments with CLP (SET ), that has the advantage that it provides set unification as a
first class operation. But there are several abductive proof procedures that could be used
instead for our purpose. Of course, our framework requires abduction of non ground
atoms, as variables in abducibles can represent request for information.

Denecker and De Schreye [22] introduce a proof procedure for normal abductive logic
programs by extending the SLDNF resolution to the case of abduction. The resulting
proof procedure (SLDNFA) is correct with respect to the completion semantics. A cru-
cial property of this abductive procedure is the treatment of non-ground abductive goals.
The authors do not consider general integrity constraints, but only constraints of the kind
← A, notA. To overcome this limitation, in a later work [29], they consider the treatment
of general integrity constraints but in a quite inefficient way. In practice, they check all
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the integrity constraints at the end of the proof for a query, i.e., only when the overall set
of abductive hypotheses supporting the query has been computed. More recent work is
represented by the SLDNFA(C) system [30] which extends SLDNFA with constraints.

A recent abductive proof procedure dealing with constraints on finite domains is
ACLP [23]. ACLP interleaves consistency checking of abducible assumptions and con-
straint satisfaction. Finally,A-system [24], follow-up of ACLP and SLDNFA(C), differs
from previous two for the explicit treatment of non-determinism that allows the use of
heuristic search with different types of heuristics.

A different viewpoint of integration of constraints and abducibles has been studied by
Kowalski et al. [31]. The authors group in a same framework the concepts of constraint
logic programming, abduction and semantic query optimisation.

7 Conclusions and Future Work

In this work, we presented a framework that gives a uniform treating of abductive rea-
soning and communication. Groups of abductive agents communicate by abducing non-
ground terms and obtain binding for their variables as the result of an (implicit) agreement
with other agents. The result of the interaction is modelled as a set of abductive predicates
(Δ), consistent with all the local integrity constraints of the agents. We showed some
properties of the framework which make it possible to give a semantic characterisation
to the information exchanged in the abductive process. We presented various examples
of communication patterns that can be emulated, like the the dining philosophers and
speculative computation. We gave them semantics in terms of abduction and set-based
unification. Since the set Δ is constructed by the union of the local hypotheses, we
sketched a prototypical implementation in CLP (SET ).

In future work, we plan to implement the framework in a fully distributed envi-
ronment, possibly by exploiting proof procedures based on constraint satisfaction tech-
nology. We also plan to provide an operational semantics for our framework, with the
semantics of suspension, possibly drawing inspiration from concurrent logic languages.
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Abstract. Middle-agents are used by end-agents to locate service providers in 
multi-agent systems. One central middle-agent represents a single point of 
failure and communication bottleneck in the system. Thus a structure of middle-
agents can be used to overcome these issues. We designed and implemented 
a structure of middle-agents called dynamic hierarchical teams that has user-
defined level of fault-tolerance and is moreover fixed scalable. We prove that 
the structure that has teams of size  has edge and vertex connectivity equal to  
and is maximally fault tolerant. We focus on social knowledge management 
describing several methods that can be used for social knowledge propagation 
and related methods to search for knowledge in this structure. We also test 
the fault-tolerance of this structure in practical experiments. 

1 Introduction 

Social knowledge in multi-agent systems can be understood as knowledge that is 
used to deal with other agents in the multi-agent system. Social knowledge 
consists of the information about the name of agents, their location (address), 
their capabilities (services), the language they use, their actual state, their 
conversations, behavioral patterns, and so on [13]. Knowledge that is located in 
agents can be formally split into two distinct types [2]: 

• domain knowledge (or problem-solving knowledge [13]) - concerns 
a problem-solving domain and an environment of an agent. Domain 
knowledge represents the decision-making process of an agent. 

• social knowledge - allows an agent to interact with other agents and possibly 
improves this process. 

One of the main advantages in using multi-agent systems is fault tolerance. When 
an agent fails a multi-agent system could ‘offer’ another agent that can be used 
instead. Is this enough to ensure fault tolerant behavior? If a multi-agent system uses 
a middle-agent [4] to search for the capabilities of providers, i.e., to search for 
an alternative agent with the same capability, then this middle-agent can become 
a single point of failure, i.e., social knowledge is centralized in this case. It is not 
possible to search for capabilities of other agents and to form virtual organizations 
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any more if the system looses the middle-agent. Fault tolerance issue is tightly 
coupled with load sharing. When only one middle-agent is used then it becomes 
a communication bottleneck and can be easily overloaded. 

Several approaches have been used already to deal with these issues. Mainly 
the teamwork-based technique [11] has been proposed that uses a group of N middle-
agents where each middle-agent is connected to all other middle-agents forming 
a complete graph. This technique offers fault tolerance but since it uses a complete 
graph this structure is not fixed scalable as shown in section 2.4. Another example is 
distributed matchmaking [18] that focuses on increasing the throughput of 
matchmaking services by creation of hierarchy but does not deal with fault tolerance. 
Another approach to distribute social knowledge among agents is to use for instance 
acquaintance models [13], but this technique implicitly does not ensure fixed 
scalability since in the worst case each agent keeps knowledge about all other agents 
(see section 2.4). 

2 Dynamic Hierarchical Teams Architecture 

We propose the dynamic hierarchical teams (DHT) architecture [20] to take 
advantage of both hierarchical and distributed architectures. The pure hierarchical 
architectures offer the scalability, but they are not designed to be fault-tolerant. 
On the other hand, the pure distributed architectures offer the robustness, but they are 
not scalable since any middle-agent is connected to all other middle-agents. 

2.1 DHT Architecture Description 

Assume that a multi-agent system consists of middle-agents and end-agents. Middle-
agents form a structure that can be described by the graph theory. Graph vertices 
represent middle-agents and graph edges represent a possibility for direct 
communication between two middle-agents, i.e., communication channels. 

The first main difference from the pure hierarchical architecture is that the DHT 
architecture is not restricted to have a single root of the tree that serves as a global 
middle-agent. The single global middle-agent easily becomes a single point of failure 
and possibly also a communication bottleneck. In addition, any other middle-agent 
that is not in a leaf position in the tree has similar disadvantages. 

Therefore, to provide a more robust architecture, each middle-agent that is not 
a leaf in the tree should be backed up by another middle-agent. Groups of these 
middle-agents we call teams (see Fig. 1). Whenever one of the middle-agents from 
the team fails, other middle-agents from the team can subrogate this agent. 

During the normal operation of the DHT structure all middle-agents use only 
primary communication channels. The usage of secondary communication channels 
will be further described in section 2.5. 

The DHT structure is not limited only to two levels, but it can support an N-level 
structure. For the cases where N > 2 teams compose a hierarchical structure in 
the form of a tree (see Fig. 2), i.e., the structure of teams does not contain cycles and  
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M-A 11 M-A 12 M-A 21 M-A 22 

M-A 1 M-A 2 

primary 
secondary

Team 

 

Fig. 1. Example of 2-level DHT architecture 

the graph is connected. The tree structure holds only if we consider one edge of the 
resulting graph per a set of primary and secondary connections between two teams. 

More complex is the structure of middle-agents (not teams), since this structure is 
not limited to be a tree. First of all, a team consists of at least one middle-agent. To 
increase fault tolerance, a team should consist of two or more middle-agents. All 
members of a team are interconnected via communication channels, forming 
a complete graph. The members of the top most team (Team1) are interconnected via 
primary communication channels while the members of other teams are 
interconnected via secondary ones. 

  

M-A 111 M-A 112 M-A 121 M-A 122

M-A 11 M-A 12 

M-A 211 M-A 212 M-A 221 M-A 222

M-A 21 M-A 22 

M-A 2 M-A 1 
Team 1 

Team 2 Team 3 

Associated structure 
of teams: 

T2 

T1 

T3 

 

Fig. 2. Example of 3-level DHT architecture and associated structure of teams 

If we restrict the DHT structure to contain only teams that consist of only one 
middle-agent then we end up with hierarchical structure (a tree). On the other hand, if 
we restrict it to one team plus possibly one middle-agent that is not a part of this team 
then full-connected network of middle-agents is created, i.e., a structure similar to 
the teamwork-based technique [11]. The DHT structure is therefore flexible in this 
respect. 

Let G be a graph where each middle-agent i in the dynamic hierarchical teams 
(DHT) structure is represented by a graph vertex vi  V and each primary  
or secondary connection among middle-agents i and j is represented by an edge e = 
{vi, vj} between vi and vj. 
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Definition 1. (DHT) A graph G will be called DHT graph if there exist non-empty 
sets V1, …, Vn  V(G) such that they are pairwise disjoint and V1  …  Vn  V(G). 
In that case, the complete subgraph Gi of the graph G induced by the set of vertices Vi 
will be called a team of G if all of the following is satisfied: 

1) v(v  V(G) \  V1  j w(w  Vj  {v, w}  E(G) ) )1 
2) v(v  V(G)  v  V1  …  Vn)  !j w(w  Vj  {v, w}  E(G) ) )2 
3) j((j > 1)  (j  n)  !k((k < j)  v w(v  Vj  w  Vk  {v, w}  

E(G))  u m(u  Vm  (m < j)  (m  k)  {v, u}  E(G) ) )3 

Definition 2. (DHT- ) The graph G is called DHT-  if G is DHT and |Vi| =  for 
every i = 1,…,n , where   N. 

2.2 Fault Tolerance in DHT Architecture 

The vertex and edge connectivity of a graph (see below) provide information about 
possibility to propagate knowledge through the network of middle-agents and 
communication channels despite failures on these multi-agent system components. 
Therefore, only the dynamic impact of these failures is studied in this paper. Static 
impact of these failures is out of scope of this paper. In that case we study various 
static parameters, e.g., a minimal/maximal percentage of end-agents about which 
social knowledge stored in middle-agents is lost when k middle-agents fail 
simultaneously, minimal/average redundancy of the social knowledge, etc. Also 
problems related to intrusions to the system, e.g., denial of service attack, disruption 
of connection, etc. are also out of the scope of this paper. 

The fault tolerance of an undirected graph is measured by the vertex and edge 
connectivity of a graph [5]. To briefly summarize these terms, a graph G is said to be 
 vertex-connected if the deletion of at most  - 1 vertices leaves the graph connected. 

The greatest integer  such that G is  vertex-connected is the connectivity (G) of G. 
A graph is called  edge-connected if the deletion of at most  - 1 edges leaves 
the graph connected. The greatest integer  such that G is  edge-connected is 
the edge-connectivity (G) of G. 

Claim 1. If the graph G is DHT-  then for each vertex v  V(G) there exists a vertex 
w  V1 such that there is a path in G starting from v and ending at w after removing  
 - 1 vertices or  - 1 edges from G. 

Proof. Assume the case where v  V1 since otherwise the path is v itself. For each 
team of DHT-  |Vj| = . Thus there are at least  edges {v, w1} such that j w1 
(w1  Vj  {v, w1}  E(G)). Since |Vj| =  then after the elimination of  - 1 vertices 

                                                           
1 For all vertices v of G except V1 (since there is no team with lower index than V1) there has to 

be a team such that v is connected to all members of this team. 
2 For all vertices v that are not members of any team there are only connections to one team and 

there cannot be any other connection from v. 
3 All members of each team except G1 are connected to all members of exactly one other team 

with lower index. 
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or  - 1 edges there exists a path starting from v and ending at w1 where w1  Vj. 
If j = 1 then the resulting path is vw1. Otherwise, since |Vj| =  the rule 3) from 
the definition of DHT can be repeatedly applied to construct a path in G despite 
the elimination of  - 1 vertices or  - 1 edges starting from w1 and ending at wk where 
wk  V1. Therefore the resulting path in this case is vw1w2…wk.   

Lemma 1. If the graph G is DHT-  then G is  vertex-connected and  edge-
connected. 

Proof. 1) We prove that the graph G of type DHT-  is  edge-connected. Suppose (for 
contradiction) that there is a  - 1 edge cut set in G. Assume that it separates G into 
pieces C1 and C2. Let v1  V(C1) and v2  V(C2). We already proved that after 
removing  - 1 edges there exists a path starting from a vertex v1 (or v2 respectively) 
and ending at w1 (or w2 respectively) where w1  V1 and w2  V1. If w1 = w2 then a path 
from v1 to v2 already exists. Otherwise it remains to prove that any two vertices w1  
w2 such that w1  V1 and w2  V1 are connected after elimination of  - 1 edges from 
G. At least  - 1 edge cut set is required to split the complete graph G1 into two pieces 
but since G1  G thus w3(w3  V1  w3  V(G)) for which vk(vk  V1  {w3, vk}  
E(G) holds since either w3  V2 or the number of teams n = 1. Then a subgraph of G 
induced by V(G1)  { w3 } is a complete graph of order  + 1 and therefore there is at 
least one path in G after elimination of  - 1 edges from G that leads from w1 to w2. 
Thus there is no edge cut set of size  - 1. 

2) We prove that the graph G of type DHT-  is  vertex-connected. Suppose (for 
contradiction) that there is a  - 1 vertex cut set in G. Assume that it separates 
the graph at least into pieces C1 and C2. Let v1  V(C1) and v2  V(C2). We already 
proved that after removing  - 1 vertices there exists a path starting from a vertex v1 
(or v2 respectively) and ending at w1 (or w2 respectively) where w1  V1 and w2  V1. If 
w1 = w2 then a path from v1 to v2 already exists. Otherwise since G1 is a complete graph 
then any two vertices w1  w2 where w1  V(G1) and w2  V(G1) are connected after 
elimination of  - 1 vertices from G. Thus there is no vertex cut set of size  - 1.   

Claim 2. If the graph G is DHT-  then the minimum degree (G) = . 

Proof. We already proved that G is  edge-connected and therefore (G)  . From the 
definition of DHT rule 1) and the fact that V1  …  Vn  V(G) there has to be at least 
one vertex v’  V(G) for which v’  V1  …  Vn holds and j w(w  Vj  {v’, w} 

 E(G) ). Since |Vj| =  for DHT-  thus there are at least  edges {v’, w} and since 
from the definition of DHT rule 2) !j w(w  Vj  {v’, w}  E(G) ) holds there are 
no more than  edges {v’, w} and therefore d(v’) = . Since (G)   and d(v’) =  thus 
(G) = .   

Theorem 1. If the graph G is DHT-  then the vertex connectivity (G) =  and 
the edge-connectivity (G) = . 
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Proof. We already proved that the graph G of type DHT-  is  vertex-connected and  
edge-connected thus it remains to prove that (G)   and (G)  . For every non-
trivial graph G the equation (G)  (G)  (G) holds [5]. We already proved that 
(G) =  therefore (G)   and (G)  .   

The DHT structure where teams consist of  middle-agents is therefore fault 
tolerant to simultaneous failure of at least  - 1 middle-agents and also to 
simultaneous failure of at least  - 1 communication channels. 

A graph G is called maximally fault tolerant if vertex connectivity of the graph G 
equals the minimum degree of a graph (G) [22]. 

Theorem 2. The graph G of type DHT-  is maximally fault tolerant. 

Proof. We already proved that the graph G of type DHT-  has vertex connectivity 
(G) =  and we also proved that it has the minimum degree (G) = .  

The maximally fault tolerant graph means that there is no bottleneck in 
the structure of connections among nodes, i.e., middle-agents in the case of the DHT 
architecture. 

The problem of directly computing the most survivable deployment of agents has 
been introduced recently in [10]. Although, disconnect probabilities of all nodes have 
to be known either by collecting statistical data or by experts (that can be hard to 
obtain and values are not only application specific but can also vary in time) then it is 
possible to compute the optimal survivable deployment. This probabilistic approach 
cannot be used in our study since these values are not available. 

In addition, N-version programming [3] can be directly applied to the DHT 
architecture to increase robustness of the whole system. Assume that the teams are of 
size N and consist of N independently developed middle-agents (by N different 
developers, by N different programming languages, etc.). Then the whole structure of 
middle-agents is fault tolerant to the simultaneous failure of all middle-agents that 
were developed by N-1 development processes. 

2.3 Social Knowledge Management in DHT Architecture 

We identified several approaches to social knowledge management based on 
the amount of social knowledge that is stored in the low-level middle-agents. In this 
section we describe breadth knowledge propagation, depth knowledge propagation, 
and no knowledge propagation. The efficiency of these three methods can be further 
improved by knowledge propagation on demand or by knowledge caching. To 
formally describe these methods, we first define neighbors, parents, and team 
members of a middle-agent. 

Definition 3. Assume that a graph G is DHT with G1, ..., Gn its teams. Then we define 
all of the following: 

1) Ep(G)  E(G) as a set of edges where each e  Ep(G) represents a primary 
communication channel. 

2) Neighbors(v, G) = { w| {v, w}  Ep(G)}. 
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3) Parents(v, G) = { w| {v, w}  Ep(G)  j k(w  V(Gj)  v  V(Gk)  k > j)}. 
4) If v  V(Gj) then TeamMemembers(v, G) = V(Gj)   {v}. 

    If v  V(Gj) for every j = 1,…, n then TeamMemembers(v, G) = . 

Breadth Knowledge Propagation. We define breadth knowledge propagation in 
such a way that every middle-agent in the system ultimately knows social information 
about all end-agents in the system. 

The following message routing algorithm is used for routing messages in 
the breadth knowledge propagation approach and holds for each middle-agent: 

Definition 4. (full message routing) Assume that a graph G is DHT. Let m be a 
message instance that the middle-agent represented by vertex v  V(G) received from 
a middle-agent represented by vertex vorig  V(G) or from an end-agent for which vorig 

 V(G). Let AddOrig(m, V’(G)) be a subroutine that stores a set of vertices V’(G)  
V(G) in the message m and returns this result as a message m’. Let Vorig(m)  V(G) be 
a set of vertices stored in the message m such that v  Vorig(AddOrig(m, {v}))4. 
Let Send(H, m) be a subroutine that sends a message m to all middle-agents that are 
represented by vertices v  H where H  V(G). Let KB(v) be an internal knowledge 
base of the middle-agent represented by a vertex v. Let Update(v, m) be a subroutine 
that updates KB(v) of the middle-agent v based on message m5. Let Store(v, w, c) be 
a subroutine that stores a reference to the middle-agent w under the message context 
c into KB(v) and let Retrieve(v, c) be a subroutine that returns H  V(G) where 
a vertex w  H iff KB(v) contains w under the message context c. Let Context(m) be 
a subroutine that returns context of a message m, i.e., the same value for all messages 
that are successors of the original request message. Then the full message routing in 
G is defined by the following algorithm that is performed by a middle-agent v upon 
receiving a message m: 

IF Retrieve(v, Context(m)) =  THEN 
{ Update(v, m) 
 Let R(v) = {w | w  Neighbors(v, G)  w  vorig   
  w  Vorig(m)} be a set of potential receivers. 
 Let S(v) = {w | w  R(v)  w  TeamMemembers(v, G)} 
 FOR EACH w  R(v) 
 { IF w  TeamMemembers(v, G) THEN Send({w}, m) 
  ELSE Send({w}, AddOrig(m, {v}  (S(v)\{w}))) 
 } 
 IF R(v)   THEN Store(v, vorig, Context(m)) 
} 

                                                           
4 AddOrig subroutine is typically used to store a set of vertices into the message m and then 

the resulting message m’ is sent to other middle-agents. The receiver of this message m’ can 
retrieve this set of vertices by Vorig(m’) and avoid to contact these middle-agents thus avoiding 
circuits in communication. 

5 Update subroutine is one of the main parts of a middle-agent where information from 
the message is processed and possibly stored to the internal knowledge base. 
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Based on this message routing in the breadth knowledge propagation we can 
distinguish how different types of messages are propagated. 

1. Registration, unregistration or modification types of messages are routed to 
all middle-agents via the full message routing. 

2. A search request is replied to the sender by using only the locally stored 
knowledge. 

When an end-agent anywhere in the system contacts a local middle-agent and 
passes registration information to it, this middle-agent updates its internal database 
based on the incoming message and propagates this information to all neighbor 
middle-agents over primary communication channels except the sender and except 
any middle-agent that is already mentioned in the incoming message to avoid loops of 
size less than four. Since some of the communication channels can be faulty, the top 
most team that consists of more than three middle-agents can have a loop of size 
greater or equal to four. Therefore the context of the message is used to avoid these 
types of loops. The breadth knowledge propagation approach holds for requests for 
registration or unregistration of an end-agent and also for the modification of social 
knowledge. Search requests can be handled by middle-agents locally since knowledge 
about all end-agents in the system is ultimately present in every middle-agent. 

Depth Knowledge Propagation. The second approach to social knowledge 
management is depth knowledge propagation, in which a middle-agent propagates 
social knowledge only to the higher level of the hierarchy of teams. In this approach 
only the topmost middle-agents contain social knowledge about all end-agents in 
the system. The following message routing algorithms are used for routing messages 
in the depth knowledge propagation approach and hold for each middle-agent: 

Definition 5. (root message routing) Apply the same set of assumptions as for the full 
message routing. Then the root message routing in G is defined by the following 
algorithm that is performed by a middle-agent v upon receiving a message m from 
vorig: 

IF Retrieve(v, Context(m)) =  THEN 
{ Update(v, m) 
 Let R(v) = {w | (w  Parents(v, G)  TeamMemembers(v, 
  G))  {v, w}  Ep(G)  w  vorig  w  Vorig(m)} 
 Let S(v) = {w | w  R(v)  w  TeamMemembers(v, G)} 
 FOR EACH w  R(v) 
 { IF w  TeamMemembers(v, G) THEN Send({w}, m) 
  ELSE Send({w}, AddOrig(m, {v}  (S(v)\{w}))) 
 } 
 IF R(v)   THEN Store(v, vorig, Context(m)). 
} 

Definition 6. (parent retrieval message routing) Apply the same set of assumptions as 
for the full message routing. Also let Process(v, m) be a subroutine that changes 
message m based on information of middle-agent represented by vertex v and returns 
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true if all objectives of m have been satisfied and false otherwise. Then the parent 
retrieval message routing in G is defined by the following algorithm that is performed 
by a middle-agent v upon receiving a message m from vorig: 

IF Retrieve(v, Context(m)) =  THEN 
{ IF Process(v, m) THEN Send( Retrieve(v, Context(m)), m) 
 ELSE 
 {  FOR EACH w  Parents(v, G) 
  Send({w}, m) 
    IF Parents(v, G)   THEN Store(v, vorig, Context(m)) 
    ELSE Send({vorig}, m) 
 } 
} 
ELSE Send( Retrieve(v, Context(m)), m) 
 
Based on this message routing in the depth knowledge propagation we can 

distinguish how different types of messages are propagated. 

  M-A 11 

M-A 12 M-A 13 

M-A 21 

M-A 22 M-A 23 

M-A 31 

M-A 32 M-A 33 

M-A 4 M-A 5 M-A 6 M-A 7 M-A 8 M-A 9 

E-Agent1 

2

3 

4
4

6

10

E-Agent2

51

9

Team 1

Team 2 Team 3
7

8

 

Fig. 3. Depth knowledge propagation example. Only interactions that are directly related to 
the registration process and to the search process are described. 
1. E-Agent1 sends a registration request to its local middle-agent (M-A 4). 
2. M-A 4 forwards the registration information to M-A 22. 
3. M-A 22 forwards the registration information to M-A 12. 
4. M-A 12 forwards the registration information to M-A 11 and 13. 
5. E-Agent2 sends a search request to its local middle-agent (M-A 7). 
6. M-A 7 forwards the search request to M-A 32 since it cannot be satisfied locally. 
7. M-A 32 forwards the search request to M-A 13. 
8. M-A 13 is able to satisfy the search request and replies with the search result to M-A 32. 
9. M-A 32 propagates the search result back to M-A 7. 
10. M-A 7 finally replies with the search result to E-Agent2. 
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1. Registration, unregistration or modification types of messages are routed via 
the root message routing. 

2. If a search request can be satisfied using local knowledge then reply with 
the result to the requester. 

3. If a search request cannot be satisfied using local knowledge then it is routed 
via the parent retrieval message routing (if the set of receivers is non empty); 
otherwise, reply to the requester that the search was unsuccessful. 

4. Forward the result of the search request back to the original requester (stored 
in vorig under the same context as the result). 

No Knowledge Propagation. The last approach to social knowledge propagation is 
no knowledge propagation. In this approach the end-agents register, unregister, and 
modify registration information only at the local middle-agents; this information is 
not further propagated. This type of technique is used for instance in multi-agent 
systems that are FIPA compliant [6] as JADE [8]. 

Definition 7. (full retrieval message routing) Apply the same set of assumptions as for 
the parent retrieval message routing. Let StoreExpectedReply(v, w, c, m) be a 
subroutine that stores a reference to middle-agent represented by a vertex w under 
the message context c into KB(v) and RemoveExpectedReply(v, w, c) be a subroutine 
that removes a reference to middle-agent represented by a vertex w under the 
message context c from KB(v). Let RetrieveExpectedReplies(v, c) be a subroutine that 
returns a set of vertices stored in KB(v) under the message context c. Let AddReply(v, 
c, m) be a subroutine that stores information from m to the database of v under the 
context c and GetReply(v, c) retrieves composite message based on previously stored 
information in KB(v) under the message context c. Then the full retrieval message 
routing in G is defined by the following algorithm that is performed by a middle-agent 
v upon receiving a message m from vorig: 

IF Retrieve(v, Context(m)) =  THEN 
{ IF Process(v, m) THEN Send(Retrieve(v, Context(m)), m) 
 ELSE 
 { Let R(v) = {w |w  Neighbors(v, G)  w  vorig  
   w  Vorig(m)} 
  Let S(v) = {w |w  R(v)  w  TeamMemembers(v, G)} 
  FOR EACH w  R(v) 
  {    StoreExpectedReply(v, w, Context(m)) 
       IF w  TeamMemembers(v, G) THEN Send({w},m) 
       ELSE Send({w}, AddOrig(m, {v}  (S(v)\{w}))) 
  } 
  IF R(v)   THEN Store(v, vorig, Context(m)) 
  ELSE Send({vorig}, m) 
 } 
} 
ELSE 
 IF vorig  RetrieveExpectedReplies(v, Context(m)) THEN 
 { AddReply(v, Context(m), m) 
  RemoveExpectedReply(v, vorig, Context(m)) 



Fault Tolerant and Fixed Scalable Structure of Middle-Agents 63 

  IF RetrieveExpectedReplies(v, c) =  THEN 
       Send(Retrieve(v, Context(m)), GetReply(v, 
          Context(m))) 
 } 

The no knowledge propagation approach can be described by the following rules 
that hold for each middle-agent: 

1. Registration, unregistration or modification types of messages are handled 
locally. 

2. If a search request can be satisfied using the locally stored knowledge then 
reply to the requester with the result. 

3. If a search request cannot be satisfied using the locally stored knowledge 
then it is routed via the full retrieval message routing (if the set of receivers 
is non empty); otherwise, reply to the requester with an unsuccessful result. 

4. Store each result of a search request. 
5. When all results of the search request are stored, assemble the results of 

the search request into a reply and send the reply back to the original 
requester (stored in vorig under the same context as the result). 

There is no communication among middle-agents during the registration phase, 
but there is much more communication during the search for information and the 
update of information. Since there is no clue where to search for any information, 
the searching process must be exhaustive. All middle-agents, both the ones upstream 
at the top of the hierarchy and the ones downstream in the lower levels of 
the hierarchy, must be searched. 

The requester can, however, limit the search space. The information about 
the depth of search can be added to the request or the requester can limit the number 
of results (for instance specified by FIPA). 

Knowledge Propagation on Demand. Both depth knowledge propagation and no 
knowledge propagation can be further improved with knowledge propagation on 
demand. Using this technique, information is discovered on demand and remembered 
for further use. Knowledge propagation on demand can be described by the following 
additional rule that holds for each middle-agent in the hierarchy: 

1. During the forwarding of the result of the search request remember 
the information that is contained in the result of the search. 

Suppose a middle-agent needs to contact the parent middle-agent to search for 
information. When a response propagates back with possibly a positive result, middle-
agents remember this information along the propagation path. 

Propagation on demand brings one complication to social knowledge update. To 
assure that information gathered on demand is up-to-date, we must introduce one of 
the refresh mechanisms. 

• Subscribe and advertise mechanism. When a middle-agent remembers some 
social knowledge, it subscribes for the update of this knowledge with 
the middle-agent that supplied the knowledge. When this knowledge gets 
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updated then all middle-agents on the path of this update also send updates to 
all of their subscribers of this knowledge. This mechanism is used for instance 
in KQML specification [9]. 

• Time stamping mechanism. When a middle-agent stores social knowledge 
gathered on demand, this knowledge is time-stamped. The middle-agent can 
then examine the time-stamp to determine whether this knowledge is still valid 
or too old to be used. The examination process happens either periodically or 
at the time when this knowledge is accessed. The time stamping is well known 
mechanism used for instance for revocation of certificates [15]. 

Knowledge Caching. Both depth knowledge propagation and no knowledge 
propagation can be further improved by using the knowledge caching mechanism. 
The knowledge caching mechanism can be described by the following additional rule 
that holds for each middle-agent in the hierarchy: 

1. During the forwarding of the search result only remember the knowledge 
that is contained in the result if the receiver is the original requester of 
the search, i.e., the receiver is not a middle-agent. 

Knowledge caching is an alternative approach to knowledge propagation on 
demand in which knowledge is not remembered all the way back to the requester, but 
only at the last middle-agent on the path to the requester. In this way the knowledge 
redundancy is very low despite the fact that knowledge is located at the proper places. 

Note that we omitted describing all the cases in which the search was 
unsuccessful. The subscribe-and-advertise or time stamping mechanism has to be 
used again to ensure that the registration information is up-to-date. 

All of these techniques are intended to work behind the scenes as part of the agent 
platform functionality. The hierarchy of middle-agents should be transparent to end-
agents in the system. The end-agents register and modify information using their local 
middle-agent and ask for information again from their local middle-agent. 

2.4 Scalability of DHT Architecture 

Although the term scalability is frequently used it is not precisely defined so far. 
Researchers in the parallel processing community have been using for instance 
Amdahl’s Law and Gustafson’s Law [7] and therefore tie notions of scalability to 
notions of speedup. Nevertheless, speedup is not the main concern in the area of 
social knowledge since there is not one task that is split and solved in parallel. Thus 
these definitions are not sufficient and we present several other definitions. 

“A system is said to be scalable if it can handle the addition of users and resources 
without suffering a noticeable loss of performance or increase in administrative 
complexity” [16]. 

“A scalable parallel processing platform is a computer architecture that is 
composed of computing elements. New computing element can be added to 
the scalable parallel processing platform at a fixed incremental cost” [12]. 
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A formal definition of scalability in distributed applications is given in [19]. 
An important aspect of this definition is the distinction between performance and 
extensibility since the previous definitions are based on just one of these attributes. 
Very roughly, an application A is scalable in an attribute a if A can accommodate 
a growth of a up to defined maximum, if it is possible to compensate a performance 
degradation caused by increase of a, and if the costs that compensate performance 
degradation are limited. 

To determine scalability without measuring resulting performance we can use 
definitions that are based on the extensibility and evaluate whether the cost to add 
new computing element is fixed. Thus we reformulate the scalability definition that is 
based on extensibility [12] to be used in the area of social knowledge architectures. 

Definition 8. Let G = (V(G), E(G)) be a graph that represents the structure of middle-
agents and assume that G is of type6 T. Then let H be a graph of type T such that V(H) 
= V(G)  V (H) and E(H) = E(G)  E (H) where V (H) is a set of vertices that were 
added to V(G) and E (H) is a set of edges where each edge is adjacent to at least one 
vertex from V (H). If for each such G there exists  > 0 such that for each V (H) there 
is E (H) with |E (H)|  |V (H)| then G is called fixed scalable. 

Theorem 3. If the graph G is DHT then G is fixed scalable. 

Proof. Assume that G’  G is such team of G where its order  is the biggest one. 
Assume that H  G such that V(H) = V(G)  {v}. Then a set of edges E (H) has to 
satisfy for instance that w(w  V(G’)  {v, w}  E (H)) to ensure that H is also 
DHT7. Therefore |E (H)| = . We can repeat this process for all v  V (H’) where H’ 

 G, H’ is again DHT, and where V(H’) = V(G)  V (H’) and E(H’) = E(G)  E (H’) 
hold. Therefore for each V (H’) exists E (H’) such that |E (H’)| = |V (H’)|.          

Table 1. Fixed scalability of various types of social knowledge distributions 

Social knowledge distribution Fixed scalable? 

Centralized No 

Distributed Acquaintance models No8 

Teamwork-based technique No 

Distributed matchmaking Yes Hybrid 

Dynamic hierarchical teams Yes 

                                                           
6 The type T is for instance DHT, structure defined by distributed matchmaking, teamwork-

based, etc. 
7 Note that to ensure fixed scalability as defined above there is not requirement on the final 

structure of edges. Any structure that satisfies DHT type of graph is sufficient. 
8 Note that end-agents are used in this case instead of middle-agents. Also note that if we ensure 

that each end-agent has a limited number of connections to other end-agents than these 
structures become fixed scalable. 
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Note that, for instance, the centralized architecture is obviously not fixed scalable 
since it cannot accommodate more than one middle-agent. Also, for instance, 
the teamwork-based technique [11] is not fixed scalable since the structure of middle-
agents has to form a complete graph. Thus we present Table 1 of fixed scalability for 
various structures of social knowledge distribution. 

2.5 Reconfiguration in DHT Architecture 

In Fig. 1 we present the concept of primary and secondary communication channels. 
During normal operation of the DHT architecture all middle-agents use only primary 
communication channels. Secondary communication channels are used in the case in 
which at least one of the following occurs: 

• primary communication channels failed to transmit messages; or 
• a receiving middle-agent failed. 

These failures can be detected by various failure detection mechanisms, e.g., 
heartbeat mechanism [1], meta-agent observation [17], etc. 

The secondary communication channel does not mean ‘second’; there can be more 
than one secondary communication channel per primary one. When a middle-agent is 
unable to use the primary communication channel then one of the secondary ones is 
used instead. The structure of interconnections of the primary communication 
channels is dynamically reshaped by this change. Nevertheless, it is beyond the scope 
of this paper to describe the details of this reshaping process. 

The same process of dynamic reconfiguration is used when a communication 
channel fails to transmit a message. In this case also the sender middle-agent will use 
the secondary one. Note that the secondary communication channels replace only 
the primary ones that failed. 

Another type of dynamic reconfiguration occurs when a new (or possibly cloned) 
middle-agent tries to register into the system or a previously failed middle-agent tries 
to reregister into the system. 

3 Experiments with DHT Architecture 

To test the robustness of the DHT architecture and to test various knowledge 
propagation methods in practical experiments, we created the test case setting as 
follows. There are twelve possible types of end-agents. An end-agent that is registered 
into the system has one or two from the six possible capabilities. An end-agent 
location is randomly9 chosen, i.e., an end-agent registers with one of the local middle-
agents (M-As). The DHT structure of middle-agents has been practically tested in the 
Chilled Water System based on the Reduced Scale Advanced Development (RSAD) 
model that is a reconfigurable fluid system test platform, i.e., a chilled water part of a 
shipboard automation for US-Navy vessels. Nevertheless, the following experimental 
results have been obtained on the same system where all M-As and end-agents run on 

                                                           
9 A uniform distribution of probability is used whenever we use the term randomly chosen. 
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a single computer Pentium III/800Mhz as separate threads under Agent-OS ([14] and 
[21]). The test case consists of an initial phase and a test phase described as follows: 

1. During the initial phase 20 randomly chosen end-agents are created and 
registered into the system. 

2. The test phase consists of 1000 actions. Three types of actions can occur. 
a) Create a new end-agent. A new end-agent of a randomly chosen type is 

created and registered to one randomly chosen M-A. 
b) Delete one of the existing end-agents. One randomly chosen end-agent is 

unregistered from its local M-A and then the end-agent is deleted. 
c) Search for a capability. One randomly chosen end-agent sends a search 

request to its local M-A for a randomly chosen capability. 

The distribution of probability to choose an action is as follows. The probability 
that the search action is chosen, denoted as PS, is used as a parameter for each test 
case. The create and delete actions each has in every test case the same probability to 
be chosen, i.e., (1-PS)/2. 

3.1 Comparison by the Number of Messages 

The purpose of this test case is to determine which knowledge propagation method is 
the best one to be used when considering the number of messages, i.e., which method  
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Fig. 4. Test case of knowledge propagation methods for the number of messages. The X-axis 
represents the probability that the search action is chosen, denoted as P

S
. The Y-axis represents 

the total number of messages in the test run, where only messages that are related to 
the registration, unregistration, and to the search process are considered. Each value of each 
graph is the average (arithmetic mean) of 50 measurements 

needs fewer messages for a completion of the test case. The testing architecture 
consists of one global middle-agent (GM-A), i.e., a middle-agent in the top-most 
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team, and five local middle-agents that have GM-A as their parent. The goal of these 
tests is not to test robustness since there is only one GM-A used, but to compare 
presented knowledge propagation methods. 

From the measurements presented in Fig. 4 we can conclude that the no 
knowledge propagation method gives the best results in the case in which the 
probability that an agent uses the search action is less than 35%. The depth knowledge 
propagation method gives the best results in the case in which PS is greater than 35% 
and less than 82% and the breadth knowledge propagation method gives the best 
results otherwise. These results have been proved also theoretically [20]. The depth 
knowledge propagation method is nearly independent of the search probability 
parameter since the average deviation is 276, whereas values measured for the other 
two methods have the average deviation greater than 1642. 

3.2 Experiments with Robustness in DHT Architecture 

To test the robustness of the DHT architecture in practical experiments, we created 
an experiment where the structure of middle-agents consists of three GM-As that 
form a team plus six M-As that are evenly distributed using their primary connections 
among the three GM-As. The test case should prove that the DHT architecture with 
teams that consist of N middle-agents (3 in this test case) is able to withstand at least 
N - 1 failures of the middle-agents 
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Fig. 5. Two failures of the global middle-agents in the DHT architecture with three members of 
the team. The architecture uses the depth knowledge propagation method. The graph depicts the 
communication frequency where the test run is split into time slots of 20 seconds (X-axis) with 
the number of messages in each time slot on the Z-axis connected by a line. The first graph on 
the Y-axis labeled GM-A1 is filtered in such a way that only outgoing messages from the first 
global middle-agent are considered, and so on 
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After 150 seconds the first GM-A simulates a failure and the system is not able to 
use it to propagate requests. The requests that are sent to this GM-A stay pending 
until the system discovers that it failed. The local M-As that are initially connected to 
the first GM-A dynamically switch to another GM-A, in this case the second one. 

After 300 seconds from the beginning of the test case also the second GM-A 
simulates a failure. In this case also the local M-As that are initially connected to 
the first and to the second GM-A dynamically switch to the third GM-A and 
the system is still able to respond to the incoming requests. 

After 450 seconds from the beginning of the test case the first GM-A is repaired, 
followed by the second GM-A 150 seconds later. The local M-As dynamically switch 
back to their preferred GM-As again. 

4 Conclusion 

We have proposed and implemented the DHT structure of middle-agents that can be 
used to increase the fault-tolerance of a multi-agent system. We have proved that 
the structure which consists of teams of size N is fault tolerant to failure of N-1 
middle-agents or N-1 communication channels. Moreover, we have proved that 
the structure is maximally fault tolerant. We have proved that the DHT structure is 
fixed scalable, i.e., can be scaled-up at a fixed incremental cost. We defined several 
methods for social knowledge propagation, such as breadth, depth, and no knowledge 
propagation and corresponding search techniques. 

We have experimentally tested proposed knowledge propagation methods in DHT 
structure to determine their advantages and disadvantages on a real multi-agent 
system. The experiments revealed that all proposed knowledge propagation methods 
can be efficiently used in presented testing environment based on the probability PS 
that end-agents request the search action when measuring number of messages. 
We have experimentally tested robustness and reconfiguration of proposed 
architecture on a real multi-agent system with successful results. Despite the DHT 
structure has many advantages, it has also disadvantages. Namely, the development 
and debugging process is more complicated than previous designs. Also, since the 
social knowledge is distributed there are more possibilities for inconsistencies in 
social knowledge than, for example, in the centralized type of system. 
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Abstract. Negotiation over resources and multi-agent planning are im-
portant issues in multi-agent systems research. Previously it has been
demonstrated [18] how symbolic negotiation and distributed planning
together could be formalised as distributed Linear Logic (LL) theorem
proving. LL has been chosen mainly because of its expressive power for
representation of resources and its computation-oriented nature. This
paper extends the previous work by taking advantage of a richer frag-
ment of LL and introducing two sorts of nondeterministic choices into
negotiation. This allows agents to reason and negotiate under certain
degree of uncertainty. Additionally, a way of granting unbounded ac-
cess to resources during negotiation is considered. Finally we extend our
framework with first-order LL for expressing more complex offers during
negotiation.

1 Introduction

Although the idea of distributed theorem proving as a formalism for agent negoti-
ation is not new, there are still many open issues which require special attention.
In particular, not much is known about limits of logics when it comes to captur-
ing encodings of certain offers and reasoning about specific dialogues. Another
important issue is computation—in order to ensure finiteness and efficiency of
negotiations we may have to develop a special technique for more efficient proof
search. This paper contributes to both issues—we extend expressiveness of pre-
vious work based on linear logic [9] (LL) and introduce new LL inference figures,
which allow us to simplify proof search in our fragment of LL.

It was argued in [18] that distributed LL theorem proving could be applied for
symbolic agent negotiation. Also a formal mechanism for generating new offers
was proposed there. The corresponding framework allows agents to negotiate
over resources and to exploit capabilities of their partners. Since all participating
agents have to achieve their personal goals, each agent has to make sure which
resources could be given away and which capabilities could be accessed by other
agents.
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Agent reasoning in [18] is an interactive process involving Partial Deduction
(PD) and LL theorem proving. PD is applied there as a method of deducing
subproblems, which from negotiation point of view are interpreted as offers.
However, it was assumed that all offers, that an agent distributes, are indepen-
dent from each-other.

In this paper we augment the previous approach with a mechanism for pro-
ducing multiple interdependent offers at once. This provides competing agents
with some hints about other distributed offers and available resources. Although
the LL fragment in [18] permits usage of nondeterministic offers, it was not
described how these offers are generated. We cover this aspect in our paper.

While in [18] the propositional intuitionistic multiplicative additive fragment
of LL was considered, here we take advantage of full intuitionistic LL. This
allows us to describe unbounded access to certain resources. Additionally we
take advantage of first-order intuitionistic LL as a negotiation language.

Although several articles discuss language and representation issues of sym-
bolic negotiation, we are more concerned with the computational side of the
negotiation process. This paper presents a formalism for generating new offers
using PD during negotiation. We define PD steps as inference figures in LL.
While using those inference figures instead of basic LL rules, we can achieve
higher efficiency during proof search. These inference figures represent speciali-
sation of LL to symbolic negotiation.

The paper is organised as follows. In Section 2 we present a general model
of distributed problem solving and give an introduction to LL and PD. Addi-
tionally the LL formalisation to negotiation is given there. Section 3 describes a
motivating example and illustrates how negotiation between agents works within
our formalism. Section 4 presents new PD steps for agent negotiation. Section 5
reviews related work. The last section concludes the paper and discusses future
work.

2 Formalisation of Negotiation

2.1 Agent Communication Architecture

In this paper we consider self-interested cooperative agents. This means that
agents cooperate with each other as long as it does not prevent them to achieve
their own goals.

We define offers as instances of the following structure:

(idreq ,S ,R,O),

where idreq , S, R and O denote respectively a message identifier, its sender, its
receiver and an offer itself in a declarative language. The message identifier is
needed to keep track of different negotiations. The sender and the receiver are
identifiers of participating agents and the offer content is represented with a LL
formula.
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While naming message identifiers, we apply the following conventions:

– if agent A sends out an initial offer, then a is its message identifiers name
– if a represents an offer, then a′ represents its counter-offer
– if an agent A sends out more than one offer, then their messages are indexed

as a1, a2, . . .

LL Theorem Proving

Partial Deduction

Collect Answers

Distribute Subproblems

Agent 2

CA

LL Theorem Proving

Partial Deduction

Collect Answers

Distribute Subproblems

Agent 1

Fig. 1. General CPS model

Our general problem solving model is presented in Figure 1. In this model
each agent initially tries to solve its problem alone. If the agent cannot find
a solution then subproblems are generated. The subproblems are distributed
among the partners and they are treated as offers to other agents. In other
words, they present what an agent can provide and what it expects to get in
return. If it should happen that an agent dies during symbolic negotiation, then
possibly some negotiation steps should be cancelled or revised. CA in Figure 1
denotes to Communication Adapter, which translates offers from one agent such
that a receiver could understand it. Formalisation of CA is given in Section 2.6.

2.2 Linear Logic

LL is a refinement of classical logic introduced by J.-Y. Girard to provide means
for keeping track of “resources”. In LL two copies of a propositional constant A
are distinguished from a single copy of A. This does not apply in classical logic,
since there the truth value of a fact does not depend on the number of copies of
the fact. Indeed, LL is not about truth, it is about computation.

In the following we are considering intuitionistic fragment of LL (ILL) con-
sisting of multiplicative conjunction (⊗), additive disjunction (⊕), additive con-
junction (&), linear implication (�) and “of course” operator (!). In terms of
resource acquisition the logical expression A⊗B � C ⊗D means that resources
C and D are obtainable only if both A and B are obtainable. After the sequent
has been applied, A and B are consumed and C and D are produced.

The expression A � B ⊕ C in contrast means that, if we have resource A,
we can obtain either B or C, but we do not know which one of those. The
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expression A&B � C on the other hand means that while having resources A
and B we can choose, which one of them to trade for C. Therefore it is said that
⊕ and & represent respectively external and internal choice. To increase the
expressiveness of formulae, we use the following abbreviation an = a⊗ . . .⊗ a︸ ︷︷ ︸

n

,

for n > 0.
In order to illustrate the above-mentioned features we can consider the follow-

ing LL sequent from [20]—(D⊗D⊗D⊗D⊗D) � (H⊗C⊗(O&S)⊗!F⊗(P⊕I)),
which encodes a fixed price menu in a fast-food restaurant: for 5 dollars (D) you
can get an hamburger (H), a coke (C), either onion soup O or salad S depend-
ing, which one you select, all the french fries (F ) you can eat plus a pie (P ) or
an ice cream (I) depending on availability (restaurant owner selects for you).
The formula !F here means that we can use or generate a resource F as much
as we want—the amount of the resource is unbounded.

Lincoln [21] summarises complexity results for several fragments of LL. Propo-
sitional multiplicative additive (MALL) is indicated to be PSPACE-complete,
whilst first-order MALL is at most NEXPTIME-hard. If we would discard ad-
ditives ⊕ and & from MALL, we would get multiplicative LL (MLL). Both,
propositional and first-order MLL, are NP-complete. According to Lincoln these
complexity results do not change, if respective intuitionistic fragments of LL
are considered. These results hint that for practical computations either MLL or
propositional MALL (or their intuitionistic variants MILL and MAILL (IMALL),
respectively) might be applied.

2.3 Agents in LL

An agent is presented with the following LL sequent:

Γ ; S � G,

where Γ is a set of extralogical LL axioms representing agent’s capabilities, S
is the initial state and G is the goal state of the agent. Both S and G are
multiplicative conjunctions of literals. Every element of Γ has the form

� I � O,

where I and O are formulae in conjunctive normal form which are, respectively,
consumed and generated when a particular capability is applied. It has to be
mentioned that a capability can be applied only, if conjuncts in I form a subset
of conjuncts in S. It should be also underlined that in order to achieve their
goals, agents have to construct (and then execute) the following program/plan
from the elements of Γ :

� S � G.

2.4 Partial Deduction and LL

Partial deduction (PD) (or partial evaluation of logic programs first introduced
in [16]) is known as one optimisation technique in logic programming. Given a
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logic program, partial deduction derives a more specific program while preserving
the meaning of the original program. Since the program is more specialised, it
is usually more efficient than the original program, if executed. For instance,
let A, B, C and D be propositional variables and A � B, B � C and C �
D computability statements in LL. Then possible partial deductions are A �
C, B � D and A � D. It is easy to notice that the first corresponds to
forward chaining (from initial states to goals), the second to backward chaining
(from goals to initial states) and the third could be either forward or backward
chaining.

Although the original motivation behind PD was to deduce specialised logic
programs with respect to a given goal, our motivation for PD is a bit different.
We are applying PD for determining subtasks, which cannot be performed by a
single agent, but still are possibly closer to a solution than an initial task. This
means that given a state S and a goal G of an agent we compute a new state S′

and a new goal G′. This information is forwarded to another agent for further
inference. From PD point of view this means that the program Γ � S′ � G′

would be derived from Γ � S � G. Then the derived program is sent to other
entities, who modify it further.

The main problem with PD in LL is that although new derived states and
goals are sound with respect to an initial specification, they may not preserve
completeness anymore. This is due to resource-consciousness of LL—if a wrong
proof branch is followed, literals in the initial state may be consumed and thus
further search becomes more limited. Therefore agents have to search, in the
worst case, all possible PDs of an initial specification to preserve completeness
of the distributed search mechanism. In [22] completeness and soundness issues
of PD are considered for classical logic programs. Issues of completeness and
soundness of PD in LL will be considered within another paper.

The following LL inference figures, Rb(Li) and Rf (Li), were defined in [18]
for PD back- and forward chaining steps respectively:

S � B ⊗ C
S � A⊗ C

Rb(Li)
A⊗ C � G
B ⊗ C � G

Rf (Li)

Li in the inference figures is a labelling of a particular LL axiom representing
an agent’s capability (computability clause in PD) in the form � B �Li

A.
Rf (Li) and Rb(Li) apply clause Li to move the initial state towards the goal
state or the other way around. A, B and C are formulae in ILL.

In Rb(Li) inference figure formulae A ⊗ C and B ⊗ C denote respectively
goals G and G′. The inference figure encodes that, if there is an extralogical
axiom � B � A, then we can change goal A ⊗ C to B ⊗ C. Analogously, in
the inference figure Rf (Li) formulae B ⊗ C and A ⊗ C denote states S and S′

respectively. The inference figure encodes that, if there is an extralogical axiom
� B � A, then we can change initial state B ⊗ C to A⊗ C.

Although the defined PD steps consider only application of agent capabilities,
they can be used for modelling resource exchange as well. We model exchange
of resources with execution of capabilities, which generate those resources.
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In addition to Rb(Li) and Rf (Li) we define other PD steps for constructing
nondeterministic offers, to handle first-order representation and nondeterminism
arising from usage of unbounded resources. Finally we introduce macros for more
efficient PD.

2.5 Encoding Offers in LL

Harland and Winikoff [11] presented the first ideas about applying LL theorem
proving for agent negotiation. The main advantages of LL over classical logic are
its resource-consciousness and existence of two kinds of nondeterminism. Both
internal and external nondeterminism in negotiation rules can be represented.
In the case of internal nondeterminism a choice is made by resource provider,
whereas in the case of external nondeterminism a choice is made by resource con-
sumer. For instance, formula Dollar5 � Beer ⊕ Soda (at the offer receiver side)
means that an agent can provide either some Beer or Soda in return for 5 dol-
lars, but the choice is made by the provider agent. The consumer agent has to be
ready to obtain either a beer or a soda. The formula Dollar � Tobacco&Lighter
(again at the offer receiver side) in contrary means that the consumer may select
which resource, either Tobacco or Lighter , s/he gets for a Dollar .

In the context of negotiation, operators & and⊕ have symmetrical meanings—
what is A⊕B for one agent, is A&B to its partner. This means that if one agent
gives an opportunity to another agent to choose between A and B, then the
former agent has to be ready to provide both choices, A and B. When initial
resources owned by agents and expected negotiation results have been specified,
LL theorem proving is used for determining the negotiation process.

In [18] the ideas of Harland and Winikoff were augmented by allowing trading
also services (agent capabilities). This is a step further toward the world where
agents not only exchange resources, but also work for other agents in order to
achieve their own goals. We write A � B � C to indicate that an agent can
trade resource A for a service B � C. B � C denotes to a service, which
consumes B and generates C.

There is another kind of nondeterministic construction in LL, namely the !
operator. Since !A means that an agent can generate as many copies of A as
required, the number of literals A is unbounded and represents additional kind
of nondeterminism. From negotiation point of view, !A represents unbounded
access to resource A.

2.6 Communication Adapter

In [24] bridge rules are used for translating formulae from one logic to another,
when agents exchange offers. We adopt this idea of Communication Adapter
(CA) for two reasons. First, it would allow us to encapsulate agents’ internal
states and, second, while offers are delivered by one agent to another, view-
point to the offer is changing and internal and external choices are inversed. By
viewpoint we mean an agent’s role, which can be either receiver or sender of
an offer. Additionally, we could consider CA as a component in a distributed
problem solving system, where agent communication protocols are implemented
and target agents are determined, if an agent proposes an offer.
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The CA rule is described as follows. As long as formulae on the left and
the right hand side of sequents consist of only ⊗ and � operators, the left
and the right hand sides of sequents are inversed. However, if formulae contain
disjunctions, their types have to be inversed as well. This has to be done because
there are 2 disjunctions in LL—one with internal and another with external
choice. Since internal and external choices are context-dependent, they have to be
inversed, when changing viewpoints. For instance, sequent A⊗(A � B) � C⊕D
is translated to C&D � A⊗ (A � B) by the CA rule:

&
j

Bj �
⊕
i

Ai

&
i

Ai �
⊕
j

Bj

CA

Although reversion of offers is not needed for PD itself, it is essential when
an agent checks whether the offer matches its own initial state and goal. For
instance, if agent’s initial state and goal are described with sequent X � Y ,
then the agent would definitely accept offer X � Y , since the latter satisfies
completely agent’s requirements. However, the offer is sent by another agent in
form Y � X. Therefore it has to be reversed when it arrives to its target.

In the CA rule A and B consist of multiplicative conjunctions and linear
implications. We allow & only in the left hand side and ⊕ only in the right hand
side of a sequent. Due to LL rules R& and L⊕ the following conversions are
allowed:

D �&
j

Dj =⇒
⋃
j

(D � Dj),

⊕
j

Dj � D =⇒
⋃
j

(Dj � D).

Therefore we do not lose in expressive power of LL, when limiting the syntax
of offers in that way. Although this bridge rule is intended for agents reasoning
in LL only, additional bridge rules may be constructed for communication with
other non-LL agents.

3 A Motivating Example

To illustrate the symbolic negotiation process with our formalism, we consider
the following example. Let us have 3 agents representing a musician M, a writer
W and an artist A. They all have personal goals they would like to achieve. We
would like to emphasise that this example is supposed to demonstrate syntactical
and computational aspects only and no pragmatic issues are considered here. We
have considered more practical examples in the field of automated Web service
synthesis [25]. The examples involve more extralogical axioms and longer proofs.
They are, however, not so sophisticated from formal point of view.
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The musician would like to go out with her husband and therefore needs 2
concert tickets. Unfortunately the concert, she is interested in, has been sold
out and therefore the only way to acquire the tickets is to ask them from other
agents. In return she can grant a certain book and unlimited access to digital
version of her albums. Thus

GM = {Ticket2},

SM = {!MP3 ⊗ Book}

and
ΓM = ∅.

The artist has promised to perform at a conference and thus needs 2 hours
of background music and an MP3 player. Since the performance takes place at
the same time as the concert he can give away the concert ticket. Formally,

GA = {Perf },

SA = {Ticket}

and
ΓA = {� MP3 2 ⊗MP3Player � Perf }.

The writer wants to relax and this can be achieved by reading a book and
listening to music. He has both—a CD player and an MP3 player. Additionally
he can write CDs from MP3 files. He also has a ticket to the same concert with
the artist. However, he prefers staying at home this time. Thus formally this is
described as follows:

GW = {Relaxed},

SW = {Ticket ⊗ CDPlayer ⊗MP3Player},

ΓW =
� (CD ⊗ CDPlayer)⊕ (MP3 ⊗MP3Player) � Music,
� Music ⊗ Book � Relaxed ,
� MP3 � CD .

Our representation language so far differs from [18] by additional usage of
⊕ and !. While ! allows representing unbounded usage or access to a resource,
⊕ represents nondeterministic choice, which will be discussed below in more
details.

Let us describe now the symbolic negotiation process between these 3 agents.
The negotiation is initiated by agents M and W. Agent M is unsure whether
anyone has two tickets left to the concert. Therefore she decides to propose 2
separate offers instead of a single one and delivers them to A and W:

(m1 ,M,A, !MP3 ⊕ Book � Ticket)

and
(m2 ,M,W, !MP3&Book � Ticket).
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The first offer means thatM gives A an opportunity to choose between !MP3
and Book . The proposal to W, however, means that W could get either !MP3
or Book , but the choice is made by M. This is intuitive since M has no idea
whether A would choose either !MP3 or Book .

The proposals describe internal and external choices in LL and are repre-
sented with operators & and ⊕ respectively. While ⊕ from the sender’s point of
view gives choice to the receiver, & is the opposite—the sender makes the deci-
sion of which resource to deliver. It should be mentioned that messages, when
received by agents, are translated using the CA rule.

Agent W sends out the following offer:

(w1 ,W,A,MP3Player � MP3 ⊗ Book)

which means that he can trade an MP3 player and a book for 1 hour of MP3
music. The offer was achieved in the following way:

Ticket ⊗MP3Player � MP3 ⊗ Book CDPlayer � CDPlayer Id

Ticket ⊗ CDPlayer ⊗MP3Player � MP3 ⊗ CDPlayer ⊗ Book
L⊗, R⊗

Ticket ⊗ CDPlayer ⊗MP3Player � CD ⊗ CDPlayer ⊗ Book
Rb(burnCD)

Ticket ⊗ CDPlayer ⊗MP3Player � Music ⊗ Book
Rb(playCD)

Ticket ⊗ CDPlayer ⊗MP3Player � Relaxed
Rb(relax )

It has to be mentioned, that the agent omitted literal Ticket from its offer
since a particular PD strategy determined that only a part of the resulting state
could be made public through an offer. Although the strategy may slow down
the negotiation process, it allows agents to hide partially their internal states
and optimise resource usage according to certain policies.

The following responses are received:

(m ′
1 ,A,M,Ticket �!MP3 )

and
(w ′

1 ,A,W,MP3 � MP3Player).

Based on the message from A to W, the latter generates a new offer:

(m ′
2 ,W,M,Ticket � Book).

The message from W to M means that W is not satisfied with the proposal
and wants to be more precise. Namely, he is ready to trade his ticket for the
book. Fortunately, A has chosen !MP3 and the proposal from W to M can be
satisfied now. Additionally W accepts the proposal from A and everybody is
now satisfied.

The result of symbolic negotiation is depicted in Figure 2. Circles denote
there resource exchange events between agents, while rounded rectangles rep-
resent execution of agents’ capabilities. The vertical arrows between circles and
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burnCD

playCD

relax

perform

AMW

Book

Ticket Ticket

!MP3

MP3Player

MP3

Fig. 2. The result of symbolic negotiation

rectangles represent ordering of activities, which was achieved through symbolic
negotiation. The horizontal arrows represent which resources are exchanged at
particular time points.

The scenario presented in this section describes only which proposals were
exchanged. The methodology for constructing these offers deserves special at-
tention and is clarified in the following sections. However, we only define new
PD steps. Which steps and in which order are chosen during PD, depends on a
particular PD strategy and is not covered here. This would be covered in another
paper together with other formal results.

4 Additional PD Steps for Agent Negotiation

In this section we describe additional PD steps, which are needed for generating
offers in ILL. These PD steps allow construction of nondeterministic offers and
to handle unbounded access to resources. Additionally special PD steps for first-
order ILL are introduced.

4.1 Generating Nondeterministic Offers

Nondeterministic offers can be generated basically in two ways. First, there may
exist a particular capability having nondeterministic effects. Second, an agent
uses some internal mechanism for composing such offers from scratch. Since in
the first case nondeterministic offers are achieved via basic PD forward and
backward steps, we consider here only the second case.

In order to describe how offers !MP3 ⊕ Book � Ticket and !MP3&Book �
T icket were achieved from !MP3 ⊗ Book � Ticket2 in Section 3 we present the
following LL proof (M , T and B stand for MP3 , Ticket and Book ,
respectively):
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!M �!M
Id

B � B
Id

B �!M ⊕ B
R ⊕ (b)

!M, B �!M ⊗ (!M ⊕ B)
R⊗

!M ⊗ B �!M ⊗ (!M ⊕ B)
L⊗

B � B
Id

!M �!M
Id

!M �!M ⊕ B
R ⊕ (a)

!M, B � B ⊗ (!M ⊕ B)
R⊗

!M ⊗ B � B ⊗ (!M ⊕ B)
L⊗

!M ⊗ B � (!M ⊗ (!M ⊕ B))&(B ⊗ (!M ⊕ B))
R&

!M ⊗ B � (!M&B) ⊗ (!M ⊕ B)
Rewrite

!M&B � T !M ⊕ B � T

(!M&B), (!M ⊕ B) � T ⊗ T
R⊗

(!M&B) ⊗ (!M ⊕ B) � T ⊗ T
L⊗

!M ⊗ B � T ⊗ T
Cut

The proof can be generalised to a Partial Deduction (PD) step. This step
generates multiple nondeterministic offers at once. This forward chaining PD
step, called Branch in other sections of the paper, is defined as follows:

.

.

.

.

n⊗
i=1

Ai � (
k
&

i=1
Ai) ⊗ . . . ⊗ (

n⊕
i=l

Ai)

Rewrite

k
&

i=1
Ai � B1

n⊕
i=l

Ai � Bm

.

.

.

.

. . . ⊗ (
n⊕

i=l
Ai) � m⊗

i=2
Bi

(
k
&

i=1
Ai), . . . ⊗ (

n⊕
i=l

Ai) � m⊗
i=1

Bi

R⊗

(
k
&

i=1
Ai) ⊗ . . . ⊗ (

n⊕
i=l

Ai) � m⊗
i=1

Bi

L⊗

n⊗
i=1

Ai � m⊗
i=1

Bi

Cut

where 1 ≤ l, k ≤ n, n > 1. While the right branch of that inference figure
generates multiple nondeterministic offers at once, the left branch ensures con-
sistency of the offers. Rewrite indicates that the right hand side of a sequent is
transformed to disjunctive normal form with respect to the & operator. From a
negotiation point of view this represents a higher priority of offers, which include
&, at the offer receiver side.

The number of nondeterministic branches cannot be larger than n, since we
have only n resources. Additionally, the number of ⊕-offers (at sender side) is
not greater than n/2. The latter derives from 2 assumptions: (1) for a choice at
least 2 literals are needed and (2) ⊕-offers (from proposer point of view) must
not overlap (otherwise it may happen that 2 agents choose the same resource and
conflicts may occur). Generally, we assume that we can insert as many constants
1 as needed to enlarge m, since m has to be greater than or equal to the number
of branches, which is limited by n.

Therefore, offers !MP3 ⊕ Book � Ticket and !MP3&Book � Ticket were
achieved from !MP3 ⊗ Book � Ticket2 by applying inference figure Branch in
the following manner:

!MP3 ⊕ Book � Ticket !MP3&Book � Ticket
!MP3 ⊗ Book � Ticket2

Branch

4.2 First-Order Offers

So far we have employed only the propositional part of ILL. Let us consider now
the same example from Section 3 but we modify it by replacing GM, ΓM, SW
and SA with the following formulae:
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GM = {Concert(c)}

ΓM = {� ∀x∀y .(Ticket(x , y)⊗ Ticket(x , y + 1 ) � Concert(x ))}

SA = {Ticket(c, 4 )}

SW = {Ticket(c, 5 )⊗ CDPlayer ⊗MP3Player}

Here Ticket(x, y) denotes a ticket to concert x and seat y (for simplicity
we assume that all places have unique sequential number—this can be easily
modified to a row and places system). It means that the musician goes to a
concert only, if she has 2 tickets to the concert c and, moreover, only tickets for
seats next to each-other are accepted.

In our formulae we allow only usage of the universal quantifier ∀. Its intended
meaning is rather for any than for every. Although agents may send out first
order offers, which have not been instantiated yet, their current state must be
ground. To illustrate the construction of first-order offers, let us consider how
agent M should proceed (again we indicate predefined literal symbols with their
first letters):

∀y.(T (c, y) ⊗ T (c, y + 1)) � ∀y.(T (c, y) ⊗ T (c, y + 1))
Id

C(c) � C(c)
Id

∀y.(T (c, y) ⊗ T (c, y + 1) ⊗ (T (c, y) ⊗ T (c, y + 1) � C(c))) � C(c)
L �

∀x∀y.(T (c, y) ⊗ T (c, y + 1) ⊗ (T (x, y) ⊗ T (x, y + 1) � C(x))) � C(c)
L∀

.

.

.

.

!M ⊗ B � ∀y.(T (c, y) ⊗ T (c, y + 1)) � ∀x∀y.(T (x, y) ⊗ T (x, y + 1) � C(x))
Axiom

!M ⊗ B � ∀x∀y.(T (c, y) ⊗ T (c, y + 1) ⊗ (T (x, y) ⊗ T (x, y + 1) � C(x)))
R⊗

.

.

.

.
L∀

!M ⊗ B � C(c)
Cut

Thus a new offer was generated:

!M ⊗B � ∀y.(T (c, y)⊗ T (c, y + 1)).

However, if the current state/goal pair of agent M is described with

Ticket(c, 4 )⊗ Ticket(c, 5 ) � A,

where A is an arbitrary goal, then the following inference could be applied and
a new offer C(c) � A is generated:

T (c, 4) ⊗ T (c, 5) � T (c, 4) ⊗ T (c, 5)
Id

C(c) � A

T (c, 4) ⊗ T (c, 5) ⊗ (T (c, 4) ⊗ T (c, 5) � C(c)) � A
L �

T (c, 4) ⊗ T (c, 5) ⊗ (∀x∀y.(T (x, y) ⊗ T (x, y + 1) � C(x))) � A
L∀

.

.

.

.

T (c, 4) ⊗ T (c, 5) � T (c, 4) ⊗ T (c, 5)
Id � ∀x∀y.(T (x, y) ⊗ T (x, y + 1) � C(x))

Axiom

T (c, 4) ⊗ T (c, 5) � T (c, 4) ⊗ T (c, 5) ⊗ (∀x∀y.(T (x, y) ⊗ T (x, y + 1) � C(x)))
R⊗

.

.

.

.
L∀

T (c, 4) ⊗ T (c, 5) � A
Cut

We can generalise these inferences to PD steps:

S � A⊗ C
S � B ⊗ C

Rb(Li(x)) A⊗ C � G
B ⊗ C � G

Rf (Li(x))
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where Li(x) is defined as � ∀x.(A′ �Li(x) B′) for Rb(Li(x)) and as
� ∀x.(B′ �Li(x) A′) for Rf (Li(x)). A, B, C are LL formulae. Additionally

we assume that a
def
= a1, a2, . . . is an ordered set of constants, x

def
= x1, x2, . . . is

an ordered set of variables, [a/x] denotes substitution, and X = X ′[a/x]. When
substitution is applied, elements in a and x are mapped to each other in the
order they appear in the ordered sets. These sets must have the same number
of elements.

LL inference figures for Rb(Li(x)) and Rf (Li(x)) look as follows. Backward
chaining step Rb(Li(x)):

S � A ⊗ C � ∀x.(A′ �Li(x) B′)
Axiom

S � A ⊗ C ⊗ (∀x.(A′ �Li(x) B′))
R⊗

C � C
Id

A � A
Id

B � B
Id

A, (A �Li(a) B) � B
L �

A ⊗ (A �Li(a) B) � B
L⊗

C, A ⊗ (A �Li(a) B) � B ⊗ C
R⊗

A ⊗ C ⊗ (A �Li(a) B) � B ⊗ C
L⊗

A ⊗ C ⊗ (∀x.(A′ �Li(x) B′)) � B ⊗ C
L∀

S � B ⊗ C
Cut

Forward chaining step Rf (Li(x)):

B ⊗ C � B ⊗ C
Id � ∀x.(B′ �Li(x) A′)

Axiom

B ⊗ C � B ⊗ C ⊗ (∀x.(B′ �Li(x) A′))
R⊗

C � C
Id

B � B
Id

A � A
Id

B, (B �Li(a) A) � A
L �

B ⊗ (B �Li(a) A) � A
L⊗

C, B ⊗ (B �Li(a) A) � A ⊗ C
R⊗

B ⊗ C ⊗ (B �Li(a) A) � A ⊗ C
L⊗

B ⊗ C ⊗ (∀x.(B′ �Li(x) A′)) � A ⊗ C
L∀

A ⊗ C � G

B ⊗ C ⊗ (∀x.(B′ �Li(x) A′)) � G
Cut

B ⊗ C � G
Cut

4.3 Unbounded Access to Resources

In order to manage access to unbounded resources, we need PD steps RCl
, RLl

,
RWl

. They are formalised as the following LL inference figures:

!A⊗!A⊗B � C
!A⊗B � C

RCl

A⊗B � C
!A⊗B � C

RLl

B � C
!A⊗B � C

RWl

The inference figures reflect directly LL rules !C, !L and !W .
PD step RCl

:

!A �!A Id !A �!A Id

!A, !A �!A⊗!A R⊗

!A �!A⊗!A C!
B � B

Id

!A, B �!A⊗!A⊗B
R⊗

!A⊗B �!A⊗!A⊗B
L⊗ !A⊗!A⊗B � C

!A⊗B � C
Cut
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PD step RLl
:

A � A
Id

!A � A
L!

B � B
Id

!A, B � A⊗B
R⊗

!A⊗B � A⊗B
L⊗

A⊗B � C
!A⊗B � C

Cut

PD step RWl
:

B � B
Id

!A, B � B
W !

!A⊗B � B
L⊗

B � C
!A⊗B � C

Cut

Additionally we define a macro,R!l(n) using the previously specified inference
figures:

!A⊗An ⊗B � C
....

!A⊗A⊗B � C
!A⊗!A⊗B � C

RLl

!A⊗B � C
RCl

5 Related Work

As it has been indicated in [14] negotiation is the most fundamental and powerful
mechanism for managing inter-agent dependencies at run-time. Negotiation may
be required both for self-interested and cooperative agents. It allows to reach a
mutually acceptable agreement on some matter by a group of agents.

Kraus et al [17] give a logical description for negotiation via argumentation
for BDI agents. They classify arguments as threats and promises, which are
identified as most common arguments in human negotiations. In our case only
promises are considered, since in order to figure out possible threats to goals
of particular agents, agents’ beliefs, goals and capabilities should be known in
advance to the persuader. We assume, that our agents do not explicitly commu-
nicate about their internal state. Thus, our agents can provide higher degree of
privacy in agent applications compared to particular BDI agents.

Fisher [6] introduced the idea of distributed theorem proving in classical logic
as agent negotiation. In his approach all agents share the common view to the
world and if a new clause is inferred, all agents would sense it. Inferred clauses are
distributed among agents via broadcasting. Then, considering the received in-
formation, agents infer new clauses and broadcast them further again. Although
agents have a common knowledge about inferred clauses, they may hold differ-
ent sets of inference rules. Distribution of a collection of rules between agents
means that different agents may have different capabilities and make different
inferences. The latter implies that different agents contribute to different phases



Symbolic Negotiation with Linear Logic 85

of proof search. Our approach differs from that work mainly in 2 aspects (in
addition to usage of another logic): (1) our agents do not share a common view
of a world and (2) inference results are not broadcasted.

Parsons et al [24] defined negotiation as interleaved formal reasoning and
arguing in classical logic. Arguments and contra arguments are derived using
theorem proving whilst taking into consideration agents’ own goals. Sadri et
al [26] propose an abductive logic programming approach to automated negoti-
ation, which is built on Amgoud et al [1] work on argumentation. The work of
Sadri et al is more specialised and detailed than the work by Amgoud et al. That
allows deeper analysis of the reasoning mechanism and the knowledge required
to build negotiation dialogues.

There are some similarities between abduction and PD. However, while ab-
duction is about finding a hypothesis to explain given results, then PD achieves
the hypothesis as a side-effect. The latter could be explained by stating that in
our case the given results are a part of a program and PD is about program
transformation, not about finding an hypothesis. By taking into account the
preceding, abduction could be implemented through PD.

Our approach could be viewed as distributed planning similarly to the work
in [5]. Case-based planning has been used for coordinating agent teams in [8].
The planner generates a so called shared mental model of the team plan. Then
all agents adapt their plans to the team plan. This work is influenced by the
joint intentions [19, 4] and shared plans [10] theory.

In [3] LL has been used for prototyping multi-agent systems at conceptual
level. Because of the fixed semantics of LL, it is possible to verify whether a
system functions as intended at conceptual level. Although the prototype LL
program is executable, it is still too high level to produce a final agent-based
software. Thus another logic programming language is embedded to compose
the final software.

Harland and Winikoff [12] address the question of how to integrate both proac-
tive and reactive properties of agents into LL programming framework. They use
forward chaining to model the reactive behaviour of an agent and backward chain-
ing to model the proactive behaviour. This type of computation is called as mixed
mode computation, since both forward and backward chaining are allowed.

According to [2] our theorem proving methodology is characterised with par-
allelism at the search level. The approach relates by theorem proving methodol-
ogy mostly to the successors of Team-Work [7]. Fuchs [7] describes an approach,
where distribution of facts and sub-problems is organised on request—that is
the basic mechanism behind our methodology as well. However, Fuchs considers
first-order logic with equality, which is somehow different from LL.

6 Conclusions and Future Work

In this paper we augmented a symbolic negotiation framework, which was ini-
tially introduced in [18]. More specifically, we introduced PD steps for gener-
ating nondeterministic offers and handling unbounded access to resources. We
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also extended the framework with first-order PD steps and thus increased ex-
pressiveness of offers. We defined PD steps as special LL inference figures. While
applying these inference figures during proof search instead of basic LL rules we
can gain higher efficiency.

We have implemented a planner on top of a first-order MILL theorem prover.
Instead of applying individual LL inference rules, the theorem prover behind the
planner applies the inference figures presented in [18]. Although that approach
makes the prover application specific, it allows higher computational efficiency.
In future we would like to extend the prover to cover ILL as well. The planner is
available at http://www.idi.ntnu.no/~peep/RAPS. Additionally we have im-
plemented an agent system, where the planner is applied during symbolic nego-
tiation for constructing new offers. The agent system is based on JADE and can
be download from http://www.idi.ntnu.no/~peep/symbolic. Although in the
current version of the agent software the derived offers are broadcasted, we are
working on a P2P implementation of the symbolic negotiation system. The P2P
implementation would release agents/mediators in the system from the burden
of keeping track of all participating agents in the system. Relevant agents are
discovered dynamically during problem solving.

One significant disadvantage of symbolic negotiation is that agents lack an
opportunity to negotiate over the amount of information (in terms of the number
of literals) which should be exchanged. Anyway, by applying PD, certain PD
strategies could be developed for optimal resource usage according to different
criteria. Then the strategy would guide agents to achieve their goals by providing
the least amount of information/resources.

There are many open issues related to agent systems, negotiation and LL.
Since LL has been extended with temporal properties [13, 15], we would like to
introduce the notion of time to our framework as well. Additionally it has been
indicated in [23] that modal logic S4 has a direct translation to LL. This result is
motivating for considering whether current BDI-theories could be embedded into
our framework. We also have plans to apply our approach to some more practical
cases of negotiation, in particular, to distributed Web service composition.
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Abstract. We discuss some features of the new logic programming language
DALI for agents and multi-agent systems, also in connection to the issues raised
in [12]. We focus in particular on the treatment of proactivity, which is based
on the novel mechanism of the internal events and goals. As a case-study, we
discuss the design and implementation of an agent capable to perform simple
forms of planning. We demonstrate how it is possible in DALI to perform STRIPS-
like planning without implementing a meta-interpreter. In fact a DALI agent,
which is capable of complex proactive behavior, can build step-by-step her plan
by proactively checking for goals and possible actions.

1 Introduction

The new logic programming language DALI [2], [4], [3] has been designed for modeling
Agents and Multi-Agent systems in computational logic. Syntactically, DALI is close
to the Horn clause language and to Prolog. In fact, DALI can be seen as a “Prolog for
agents” in the sense that it is a general-purpose language, without prior commitment
to a specific agent architecture. Rather, DALI provides a number of mechanisms that
enhance the basic Horn-clause language to support the “agent-oriented” paradigm.

The definition of DALI has been meant to be a contribution to the understanding of
what the agent-oriented paradigm may mean in computational logic. In fact, in the context
of a purely logic semantics and of a resolution-based interpreter, some new features have
been introduced: namely, events can be considered under different perspectives, and there
is a careful treatment of proactivity and memory. In his new book [12], R. A. Kowalski
discusses at length, based on significant examples, the principles and techniques an
intelligent logical agent should be based upon. In this paper we will argue that DALI,
although developed independently, is able to cope with many of the issues raised in [12].

DALI programs may contain a special kind of rules, reactive rules, aimed at interact-
ing with an external environment. The environment is perceived in the form of external
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events, that can be exogenous events, observations, or messages from other agents. In
response, a DALI agent can either perform actions or send messages. This is pretty usual
in agent formalisms aimed at modeling reactive agents (see among the main approaches
[10], [6], [7] [21], [20], [24]).

There are however in DALI some aspects that can hardly be found in the above-
mentioned approaches. First, the same external event can be considered under different
points of view: the event is first perceived, and the agent may reason about this perception;
then a reaction can take place; finally, the event and the (possible) actions that have been
performed are recorded as past events and past actions. The language has advanced
proactive features, on which we particularly focus in this paper.

The new approach proposed by DALI is compared to other existing logic program-
ming languages and agent architectures such as ConGolog, 3APL, IMPACT, METATEM,
AgentSpeak in [4]. It is useful to remark that DALI is meant to be a general-purpose
language, and thus does not commit to any specific agent architecture. Differently from
other significant approaches, e.g., DESIRE [9], DALI agents do not have pre-defined
submodules. Thus, different possible functionalities (problem-solving, cooperation, ne-
gotiation, etc.) and their interactions must be implemented specifically for the particular
application. DALI is not directly related to the BDI approach, although its proactive
mechanisms allow BDI agents to be implemented.

The declarative semantics of DALI, briefly summarized in Section 4, is an evolu-
tionary semantics, where the meaning of a given DALI program P is defined in terms of
a modified program Ps, where reactive and proactive rules are reinterpreted in terms of
standard Horn Clauses. The agent receiving an event/making an action is formalized as a
program transformation step. The evolutionary semantics consists of a sequence of logic
programs, resulting from these subsequent transformations, together with the sequence
of the models of these programs. Therefore, this makes it possible to reason about the
“state ”of an agent, without introducing explicitly such a notion, and to reason about the
conclusions reached and the actions performed at a certain stage. Procedurally, the in-
terpreter simulates the program transformation steps, and applies an extended resolution
which is correct with respect to the model of the program at each stage.

The proactive capabilities of DALI agents, on which we concentrate in this paper,
are based on considering (some distinguished) internal conclusions as events, called
“internal events”: this means, a DALI agent can “think” about some topic, the conclusions
she takes can determine a behavior, and, finally, she is able to remember the conclusion,
and what she did in reaction. Whatever the agent remembers is kept or “forgotten”
according to suitable conditions (that can be set by directives). Then, a DALI agent
is not a purely reactive agent based on condition-action rules: rather, it is a reactive,
proactive and rational agent that performs inference within an evolving context.

An agent must be able to act in a goal-oriented way, to solve simple planning problems
(regardless to optimality) and to perform tasks. To this aim, we have introduced a subclass
of internal events, namely the class of “goals”, that once invoked are attempted until they
succeed, and then expire. For complex planning tasks however, from DALI rules it is
possible to invoke anAnswer Set Solver [23]. In fact,Answer Set Programming [17] [16]
(based on the Answer Set Semantics of [13] [14]) is a new logic programming paradigm
particularly well-suited for planning. In particular, given (in a file) a knowledge base
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describing actions, constraints and the goal to be reached, the solver returns possible
plans in the form of Answer Sets, each of them containing the composing steps of a
single plan. The DALI agent can then choose among the Answer Sets according to her
criteria.

To demonstrate the usefulness of the “internal event” and “goal” mechanisms, we
consider as a case-study the implementation of STRIPS-like planning. We will show
that it is possible to design and implement this kind of planning without defining a
meta-interpreter like is done in [18] (Ch. 8, section on Planning as Resolution). Rather,
each feasible action is managed by the agent’s proactive behavior: the agent checks
whether there is a goal requiring that action, sets up the possible subgoals, waits for the
preconditions to be verified, performs the actions (or records the actions to be done if
the plan is to be executed later), and finally arranges the postconditions.

The paper is organized as follows. In Section 2 we summarize how we have un-
derstood the discussion in [12]; in Section 3 the language syntax, main constructs and
their use are illustrated; in Section 4 the evolutionary semantics is briefly recalled; in
Section 5 we present the case-study, and finally in Section 6 we conclude.

2 How to be Artificially Intelligent, the Logical Way

This is the topic treated at length by R. A. Kowalski in his new book [12], which is
aimed at understanding which principles an intelligent logical agent should be based
upon. According to our understanding of the interesting and deep discussion reported
there, there are some important features and functionalities that any approach to agents
in computational logic should include, mainly the following:

– Being able of forward reasoning, for interacting with the external world: on the one
hand, for going from perceptions to goals; on the other hand, for going from goals
or candidate actions to actions.

– Making a distinction between high-level maintenance goals and achievement goals
Maintenance goals constitute the “consciousness ” of what the agent has to fulfill
in order to stay alive, keep herself in an acceptable state, be able to perform her
main tasks. Achievement goals are needed in order to reach maintenance goals, and
can in turn leave to low-level subgoals. The step between a maintenance goal and
the achievement goals that are needed in order to make it done is in principle a step
of forward reasoning. Instead, achievement goals can be coped with by means of
backward reasoning, unless they are low-level, and thus require a forward reasoning
step for making actions that affect the world.

– Combining different levels of consciousness. An agent is computationally conscious
when she is aware of what she is doing and why she is doing it, which means that
her behaviour is described by means of an high-level program, which manipulates
symbols that have meaningful interpretations in the environment. Equivalently, an
agent is logically conscious when her behaviour is generated by reasoning with
goals and beliefs. Consciousness must be suitably combined with lower-level input-
output associations or condition-action rules, which can also be represented as goals
in logical form. Wishfully, it should be possible to compile and de-compile between
high-level and low-level representations.
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– Keeping track of time, both to timestamp externally observed events and to compare
the current time with the deadlines of any internally derived future actions.

– Keeping memory of past observations, so as to be able to generate hypothetical
beliefs, to explain the past and predict the future.

– Coping with a changing world, possibly by an approach focused on the occurrence
of events and on the effect of events on local states of affairs, such as the Event
Calculus [11].

In the rest of this paper we will argue that DALI, although developed independently,
is able to cope with many of the issues raised in [12].

3 DALI

DALI is a logic programming agent-oriented language, aimed at a declarative specifica-
tion of agents and multi-agent systems. While describing the main features of DALI, we
will try to focus where these features find a convergence with the points raised in [12]
that we have reported above.

A DALI program is syntactically very close to a traditional Horn-clause program.
In fact, a Horn-clause program is a special case of a DALI program. Specific syntactic
features have been introduced to deal with the agent-oriented capabilities of the language,
and in particular to deal with events, actions and goals.

Having been designed for defining agents and multi-agent systems, DALI has been
equipped with a communication architecture [5]. For the sake of interoperability, the
DALI communication protocol is FIPA compliant, where FIPA (Foundation for Intelli-
gent Physical Agents) is the most widely acknowledged standard for Agent Communi-
cation Languages. We have implemented the relevant FIPA primitives, plus others which
we believe to be suitable in a logic setting. We have designed a meta-level where: on
the one hand the user can specify, via two distinguished primitives tell/told, constraints
on communication and/or a communication protocol; on the other hand, meta-rules
can be defined for filtering and/or understanding messages via applying ontologies and
forms of commonsense and case-based reasoning. These forms of meta-reasoning are
automatically applied when needed by form of reflection [1].

3.1 Events

Let us consider an event arriving to the agent from its “external world”, like for instance
bell ringsE (postfix E standing for “external”). From the agent’s perspective, this event
can be seen in different ways.

Initially, the agent has perceived the event, but she still has not reacted to it. The
event is now seen as a present event bell ringsN (postfix N standing for “now”). She
can at this point reason about the event: for instance, she concludes that a visitor has
arrived, and from this she realizes to be happy.

visitor arrived :- bell ringsN.

happy :- visitor arrived.



Planning Experiments in the DALI Logic Programming Language 93

Then, the reaction to the external event bell ringsE consists in going to open the
door. This is specified by the following reactive rule. The new token :> used instead
of :- emphasizes that this rule performs forward reasoning, and is activated by the
occurrence of the event which is in the head.

bell ringsE :> go to open.

About opening the door, there are two possibilities: one is that the agent is dressed
already, and thus can perform the action directly (open the doorA, postfix A standing for
“action”). The other one is that the agent is not dressed, and thus she has to get dressed
before going. The action get dressedA has a defining rule. This is just a plain horn rule,
but in order to emphasize that it has the role of specifying the preconditions of an action,
the new token :< is used instead of :- .

go to open :- dressed, open the doorA.

go to open :- not dressed,

get dressedA, open the doorA.

get dressed :< grab clothes.

DALI makes a distinction between low level reaction to the external events, and high-
level thinking about these events. Since thinking and reacting are in principle different
activities, we have introduced the two different points of view of the same event: as an
external event to be reacted to, and as a present event to be conscious of. Then, when
coping with external events DALI is able to combine, as advocated in [12], different
“levels of consciousness”: high-level reasoning performed on present events, that may
lead the agent to revise or augment her beliefs; low-level forward reasoning for reaction.

DALI keeps track of time, since all events are timestamped. As we will see later,
DALI also keeps track of events and actions that occurred in the past. The timestamp
can be explicitly indicated when needed, and omitted when not needed. I.e., for any
timestamped expression Expr, one can either write simply Expr, or Expr : T . External
events and actions are used also for sending and receiving messages [5].

3.2 Proactivity in DALI

The basic mechanism for providing proactivity in DALI is that of the internal events.
Namely, the mechanism is the following: an atom A is indicated to the interpreter as
an internal event by means of a suitable directive. If A succeeds, it is interpreted as an
event, thus determining the corresponding reaction. By means of another directive, it is
possible to tell the interpreter that A should be attempted from time to time: the directive
also specifies the frequency for attempting A, and the terminating condition (when this
condition becomes true, A will be not attempted any more).

Thus, internal events are events that do not come from the environment. Rather, they
are predicates defined in the program, that allow the agent to introspect about the state of
her own knowledge, and to undertake a behavior in consequence. This mechanism has
many uses, and also provides a mean for gracefully integrating object-level and meta-
level reasoning. It is also possible to define priorities among different internal events,
and/or constraints stating for instance that a certain internal event is incompatible with
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another one. Internal events start to be attempted when the agent is activated, or upon
a certain condition, and keep being attempted (at the specified frequency) until the
terminating condition occurs. The syntax of a directive concerning an internal event p is
the following:

try p [since SCond] [frequency f ] [until TCond].

It states that: p should be attempted at a frequency f ; the attempts should start
whenever the initiating condition SCond becomes true; the attempts should stop as soon
as the terminating condition TCond becomes true. All fields are optional. If all of them
are omitted, then p is attempted at a default frequency, as long as the agent stays alive.

Whenever p succeeds, it is interpreted as an event to which the agent may react, by
means of a reactive rule:

pI :> R1, . . . , Rn.

The postfix I added to p in the head of the reactive rule stands for “internal”, and the
new connective :> stands for determines. The rule reads: “if the internal event pI has
happened, pI will determine a reaction that will consist in attempting R1, . . . , Rn”. The
reaction may involve making actions, or simply reasoning on the event.

Internal events are the DALI way of implementing maintenance goals. The relevant
aspects of the agent’s state are continuously kept under control. In fact, repeatedly
attempting an internal event A means checking whether a condition that must be taken
care of has become true. Success of A triggers a reaction: by means of a step of forward
reasoning, the DALI agent goes from the internal event to whatever needs to be done in
order to cope with it.

Frequency and priorities are related to the fact that there are conditions that are more
critical then others, and or that evolve differently with time.

The reasons why A may fail in the first place and succeed later may be several. As a
possible reason, the agent’s internal state may change with time:

time to go home :- time(T), T >= 17:00pm.

time to go homeI :> stop work, go to bus stopA, take busA.

Or, the agent’s internal state may change with time, given her internal rules of func-
tioning (below, she gets hungry after some time from last meal), which may imply setting
achievement goals (get food) and making actions (eat food):

hungry :- time(T), time last meal(T1), finished energy(T,T1).

hungryI :> get food, eat foodA.

Notice that the reaction to an internal event corresponding to a maintenance goal
resembles what in the BDI approach is called an “intention” , i.e., the act of taking
measures in order to reach a desirable state.

Another reason why an internal event may initially fail and then succeed is that the
state of the external world changes with time. In the example below, a meal is ready as
soon as the cooking time has elapsed. The definition uses timestamps: the agent knows
when the soup was previously (postfix P ) put on fire from the enclosed timestamp, and
can thus estimate whether the cooking time has elapsed:
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soup ready :- soup on fireP:T,

cooking time(soup,K), time elapsed(T,K).

soup readyI :> take off pan from stoveA, turn off the fireA.

Or also, there may be new observations that make the internal event true:

ready(cake) :- in the oven(cake), color(cake,golden), smell(cake,good).

readyI(cake) :> take from oven(cake), switch off the oven, eat(cake).

Or, the reasoning about a present event may lead to a conclusion or to a new belief,
that may trigger further activity. In a previous example, we have the conclusion happy,
drawn from the present event bell rings (but in general, this conclusion will be possibly
drawn from several other conditions). It may be reasonable to consider “happiness” as
a relevant aspect of the agent’s state, and thus interpret predicate happy as an internal
event, that causes a reaction (e.g., a smile) whenever true.

visitor arrived :- bell ringsN.

happy :- visitor arrived.

happyI :> smileA.

This shows that internal events not only can model maintenance goals, but can also
model a kind of “consciusness” or “introspection” of the agent about her private state of
affairs. When internal events are used in this way, the definition of the reaction specifies
a sort of “individuality” of the agent, i.e., a kind of peculiar behaviour not strictly related
to a need.

3.3 Past Events

The agent remembers events and actions, thus enriching her reasoning context. An event
(either external or internal) that has happened in the past will be called past event, and
written bell ringsP , happyP , etc., postfix P standing for “past”. Similarly for an action
that has been performed. It is also possible to indicate to the interpreter plain conclusions
that should be recorded as past conclusions (which, from a declarative point of view,
are just lemmas). Past events are time-stamped, i.e., they are actually stored in the form:
predP : timestamp.

Then, past events can remind the agent of:

– An external event that has happened; in this case, the time-stamp refers to the moment
in time when the agent has reacted to the event.

– An internal event that has taken place; also in this case, the time-stamp refers to
reaction.

– An action that has been performed; the time-stamp refers to when the action has
been done.

– A conclusion that has been reached; the time-stamp records when.

It is important to notice that an agent cannot keep track of every event and action
for an unlimited period of time, and that, sometimes, subsequent events/actions can
make former ones no more valid. Then, we must equip an agent with the possibility to
remember, but also to forget things.
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According to the specific item of knowledge, the agent may want:

– To remember it forever.
– To forget it after a certain time.
– To forget it as as soon as subsequent knowledge makes it no more valid.

Moreover, if the recorded item concerns an event that may happen several time (i.e.,
rain) the agent may want:

– To remember all the occurrences.
– To remember only some of them, according to some conditions (the simplest one is

a time-interval).
– To remember only the last occurrence.

In essence, there is a need to express forms of meta-information about the way in
which the agent manages her knowledge base. Modifying this meta-information makes
the behavior of the agent different. However, these aspects cannot be expressed in the
agent logic program, which is a first-order Horn theory. Nor we want to hardwire them
in the implementation.

Then, we have introduced the possibility of defining directives, that are by all means
part of the specification of an agent, but are not part of the logic program. They are an
input to the interpreter, and can be modified without altering (and even without looking
at) the logic program, in order to “tune ” the agent behavior.

Then, all the above-mentioned conditions can be specified via directives. Examples
of directives are the following:

keep predP until Time.

where PredP is removed at the time Time,

keep predP until Condition.

where PredP is removed when Condition becomed true,

keep predP forever.

where PredP is never removed (think as an example to the birth-date of people, as a
kind of information that never expires).

As a default, just the last occurrence of PredP is kept, with its time-stamp, thus
overriding previous ones. A directive can however alter this behavior, and the agent can
look for various versions (for the sake of simplicity, we do not detail this point here).
In the agent program, when referring to PredP the agent implicitly refers to the last
version.

If the directives for keeping/removing past events/actions/conclusions are specified
carefully, we can say that the set of the last versions of past events/actions/conclusions
constitutes an implicit representation of the frame axiom. This because this set represents
what has happened/has been concluded, and has not been affected yet by what has
happened later in the agent evolution.

Past events, past conclusions and past actions, which constitute the “memory” of the
agent, are an important part of the (evolving) context of an agent. Memories make the
agent aware of what has happened, and allow her to make predictions about the future.
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It is interesting to notice that DALI management of past events allows the program-
mer to easily define Event Calculus expressions. The Event Calculus (EC) has been
proposed by Kowalski and Sergot [11] as a system for reasoning about time and ac-
tions in the framework of Logic Programming. The essential idea is to have terms,
called fluents, which are names of time-dependent relations. Kowalski and Sergot write
holds(r(x, y), t) which is understood as “fluent r(x, y) is true at time t”.

Take for instance the default inertia law formulated in the event calculus as follows:

holds(f,t) ← happens(e),

initiates(e,f),

date(e,t s),

t s < t,

not clipped(t s,f,t)

where clipped(ts, f, t) is true when there is record of an event happening between ts
and t that terminates the validity of f . In other words, holds(f, t) is derivable whenever
in the interval between the initiation of the fluent and the time the query is about, no
terminating events has happened.

In DALI, assuming that the program contains suitable assertion for initiates as well
as the definition of clipped, this law could be immediately reformulated as follows.
We just reinterpret Happens(e), date(e, ts) as a lookup in the knowledge base of past
events, where evp finds an event E with its timestamp Ts (where, in this case, Ts initiates
fluent f ):

holds(f,T) :- evp(E,T s),

initiates(E,T),

T s < t,

not Clipped(T s,f,T)

The representation can be enhanced by defining holds as an internal event. This
means, the interpreter repeatedly attempts to prove holds(f, T ). Upon success, a reactive
rule can state what to do in consequence of this conclusion. Then, holds(f, T ) will be
recorded as a past event holdsP (f, T ), thus creating a temporal database where holds
atoms are kept, and possibly removed according to the associated directives.

3.4 Goals

A special kind of internal event is a goal. Differently from the other internal events,
goals start being attempted either when encountered during the inference process, or
when invoked by an external event. Each goal G will be automatically attempted until it
succeeds, and then expires. Moreover, if multiple definitions of G are available, they are
(as usual) applied one by one by backtracking, but success of one alternative prevents
any further attempt. attempt. DALI goals are a way of implementing [12] achievement
goals, that must be attempted whenever needed, and possibly decomposed into subgoals.

We have implemented goals (postfix G) on top of internal events, by exploiting a
practically useful role of past conclusions: i.e., that of allowing one to eliminate subse-
quent alternatives of a predicate definition upon success of one of them. Assume that
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the user has designated predicate q as a conclusion to be recorded (it will be recorded
with syntax qP ). Then, she can state that only one successful alternative for q must be
considered (if any), by means of the following definition:

q :- not qP, 〈def1〉.
. . .

q :- not qP, 〈defn〉.

Coming back to goals, whenever goalG becomes true, a reaction may be triggered,
by means of an (optional) reactive rule:

goalGI :> R1, . . . , Rk

A slightly different postfix, namely GI , is used to distinguish the head of the reactive
rule, so as to visually remark that this internal event is in particular a goal. After reaction,
the goal is recorded as a past event goalP , so as the agent is aware that it has been
achieved. If there is no reactive rule, the past event is recorded as soon as goalG becomes
true. This past event may in turn allow other internal events or goals to succeed, and so
on. Then, a DALI agent is in constant evolution.

Goals can be used in a planning or problem-solving mechanism, for instance by
employing the following schema.

RULE 1: goal prerequisites

goalG :- condition1, . . . , conditionk(1)
subgoalG1, . . . , subgoalGn(2)
subgoalP1, . . . , subgoalPn(3)

RULE 2: goal achievement

goalGI :> actionA1, . . . , actionAm

where:

part (1) of Rule 1 verifies the preconditions of the goal;
part (2) of Rule 1 represents the invocation of the subgoals;
part (3) of Rule 1 verifies that previously invoked subgoals have been achieved (they

have become past conclusions);
Rule 2 (optional) performs the actions which are needed to achieve the present goal,

and to set its postconditions.

The reason why goalG must be attempted repeatedly by Rule 1 is that, presumably,
in the first place either some of the preconditions will not hold, or some of the subgoals
will not succeed. The reason why part 3 of Rule 1 is needed is that each of the subgoals
has the same structure as the overall goal. I.e., first its prerequisites have to succeed by
Rule 1, and then it is actually achieved by the reaction in Rule 2 (if present), and finally
becomes a past event. Then, by looking for past events part 3 checks that the subgoals
have been properly achieved.

If the given goal is part of a problem-solving activity, or if it is part of a task, then the
reaction may consist in directly making actions. In planning, the reaction may consist in
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updating the plan (by adding to it the actions that will have to be performed whenever
the plan will be executed).

For convenience, a conjunction goalG,goalP that attempts a goal and waits for it to
be achieved is denoted by the shorthand goalD, D standing for “done”. Then, the above
rules can be rewritten more shortly as:

RULE 1: goal prerequisites

goalG :- condition1, . . . , conditionk

subgoalD1, . . . , subgoalDn.

RULE 2: goal achievement

goalGI :> actionA1, . . . , actionAm

Also, it is possible to associate a timeout to the goal: by writing goalD:T we say that
if the goal has not been achieved within the given time period T , then it fails.

Notice that the mechanism of DALI goals fulfills the structure advocated in [12] for
achievement goals: there is a backward reasoning part in Rule 1, that possibly splits the
goal into subgoals; there is (if needed) a forward reasoning part in Rule 2, for performing
actions.

An easy improvement, demonstrated below, copes with situation where there are
goals, and the agent may want to achieve as many of them as possible, regardless to the
others.

many goals :- condition1, . . . , conditionk, goalsG.

goalsG :- goalD1:T1 :: . . . :: goalDn:Tn.

On the invocation of goalsG, the interpreter invokes all goals in the body of the rule.
The body succeeds if at least one of them succeeds. This mechanism is composable, in
the sense that any of the goalGi’s can in turn be defined in this way.

Conceptually, there is a declarative rewriting of the above rule, taking profit of the
fact that if there are alternative definitions for goalG, then the first successful alternative
is taken. One should then specify as many rules as the possible combinations.

The examples that we propose in the ongoing for STRIPS-like planning are aimed
at showing the power, generality and usability of DALI internal events and goals.

3.5 Coordinating Actions Based on Context

A DALI agent builds her own context, as suggested in [12], by keeping track of the events
that have happened in the past, and of the actions that she has performed. As discussed
above, whenever an event (either internal or external) is reacted to, whenever an action
subgoal succeeds (and then the action is performed), and whenever a distinguished
conclusion is reached, this is recorded in the agent knowledge base.

Past events and past conclusions are indicated by the postfix P , and past actions by
the postfix PA. The following rule for instance says that Susan is arriving, since we
know her to have left home.

is arriving(susan) :- left homeP(susan).

The following example illustrates how to exploit past actions. We consider an agent
who opens and closes a switch upon a condition. For the sake of simplicity we assume
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that no exogenous events influence the switch. The action of opening (resp. closing) the
switch can be performed only if the switch is closed (resp. open). The agent knows that
the switch is closed if she remembers to have closed it previously. The agent knows that
the switch is open if she remembers to have opened it. Predicates open and close are
internal events, that periodically check the opening/closing condition, and, whenever
true, perform the action (if feasible). previously.

open :- opening cond.

openI :> open switchA.

open switchA :< switch closed.

switch closed :- close switchPA.

close :- closing cond.

closeI :> close switchA.

close switchA :< switch open.

switch open :- open switchPA.

In the example, the agent will remember to have opened the switch. However, as soon
as she closes the switch this record becomes no longer valid and should be removed: the
agent in this case is interested to remember only the last action of a sequence. As soon
as the until condition is fulfilled, i.e., the corresponding subgoal has been proved, the
past action is removed. Then, the suitable directives for past actions will be in this case
the following:

keep open switchPA until close switchA.

keep close switchPA until open switchA.

The following example illustrates the use of actions with preconditions. The agent
emits an order for a product Prod of which she needs a supply. The order can be done
either by phone or by fax, in the latter case if a fax machine is available. We want to
express that the order can be done either by phone or by fax, but not both, and we do
that by exploiting past actions, and say that an action cannot take place if the other one
has already been performed. Here, not is understood as default negation.

need supplyE(Prod) :> emit order(Prod).

emit order(Prod) :- phone orderA(Prod),

not fax orderPA(Prod).

emit order(P) :- fax orderA(Prod),

not phone orderPA(Prod).

This can be reformulated in a more elaboration-tolerant way by the constraints:

:- fax orderA(Prod), phone orderPA(Prod)
:- fax orderPA(Prod), phone orderA(Prod)

thus eliminating negations from the body of the action rules.
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4 Semantics

The DALI interpreter can answer user queries like the standard Prolog interpreter, but in
general it manages a disjunction of goals. In fact, from time to time external and internal
event will be added (as new disjuncts) to the current goal. The interpreter extracts the
events from queues where they occur in the order in which they have been generated.

All the features of DALI that we have previously discussed are modeled in a declara-
tive way. For a full definition of the semantics the reader may refer to [4]. We summarize
the approach here, in order to make the reader understand how the examples actually
work.

Some language features do not affect at all the logical nature of the language. In
fact, attempting the goal corresponding to an internal event just means trying to prove
something. Also, storing a past event just means storing a lemma.

Reaction and actions are modeled by suitably modifying the program. This means,
inference is performed not in the given program, but in a modified version where language
features are reformulated in terms of plain Horn clauses.

Reception of an event is modeled as a program transformation step. I.e., each event
that arrives determines a new version of the program to be generated, and then we have
a sequence of programs, starting from the initial one. In this way, we do not introduce
a concept of state which is incompatible with a purely logic programming language.
Rather, we prefer the concept of program (and model) evolution.

More precisely, we define the declarative semantics of a given DALI program P in
terms of the declarative semantics of a modified program Ps, obtained from P by means
of syntactic transformations that specify how the different classes of events/conclusions/
actions are coped with. For the declarative semantics of Ps we take the Well-founded
Model, that coincides with the the Least Herbrand Model if there is no negation in the
program (see [19] for a discussion). In the following, for short we will just say “Model”.
It is important to notice that Ps is aimed at modeling the declarative semantics, which is
computed by a bottom-up immediate-consequence operator. The declarative semantics
will then correspond to the top-down procedural behavior of the interpreter.

We assume that events which have happened are recorded as facts. We have to
formalize the fact that a reactive rule is allowed to be applied only if the corresponding
event has happened. We reach our aim by adding, for each event atom p(Args)E , the
event atom itself in the body of its own reactive rule. The meaning is that this rule can
be applied by the immediate-consequence operator only if p(Args)E is available as a
fact. Precisely, we transform each reactive rule for external events:

p(Args)E :> R1, . . . , Rq.

into the standard rule:

p(Args)E :- p(Args)E, R1, . . . , Rq.

In a similar way we specify that the reactive rule corresponding to an internal event
q(Args)I is allowed to be applied only if the subgoal q(Args) has been proved.
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Then, we have to declaratively model actions, without or with an action rule. An
action is performed as soon as its preconditions are true and it is invoked in the body of
a rule, such as:

B :< D1, . . . , Dh, aA1, . . . , aAk. h ≥ 1, k ≥ 1

where the aAi’s are actions and the Dj’s are not actions. Then, for every action atom
aA, with action rule

aA :- C1, . . . , Cs. s ≥ 1

we modify this rule into:

aA :- D1, . . . , Dh, C1, . . . , Cs.

If aA has no defining clause, we instead add clause:

aA :- D1, . . . , Dh.

We repeat this for every rule in which aA is invoked.
In order to obtain the evolutionary declarative semantics of P , we explicitly associate

to Ps the list of the external events that we assume to have arrived up to a certain point,
in the order in which they are supposed to have been received. We let P0 = 〈Ps, []〉 to
indicate that initially no event has happened.

Later on, we have Pn = 〈Progn, Event listn〉, where Event listn is the list of the
n events that have happened, and Progn is the current program, that has been obtained
from Ps step by step by means of a transition function Σ. In particular, Σ specifies that,
at the n-th step, the current external event En (the first one in the event list) is added to
the program as a fact. En is also added as a present event. Instead, the previous event
En−1 is removed as an external and present event, and is added as a past event.

Formally we have:

Σ(Pn−1, En) = 〈ΣP (Pn−1, En), [En|Event listn−1]〉

where

ΣP (P0, E1) = ΣP (〈Ps, []〉, E1) = Ps ∪ E1 ∪ E1N

ΣP (〈Progn−1, [En−1|T ]〉, En) =
{{Progn−1 ∪ En ∪ EnN ∪ En−1P } \ En−1N} \ En−1

It is possible to extend ΣP so as to deal with internal events, add as facts past actions
and conclusions, and remove the past events that have expired.

Definition 1. Let Ps be a DALI program, and L = [En, . . . , E1] be a list of events. Let
P0 = 〈Ps, []〉 and Pi = Σ(Pi−1, Ei) (we say that event Ei determines the transition
from Pi−1 to Pi). The list P(Ps, L) = [P0, . . . , Pn] is the program evolution of Ps with
respect to L.

Notice that Pi = 〈Progi, [Ei, . . . , E1]〉, where Progi is the program as it has been
transformed after the ith application of Σ.
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Definition 2. Let Ps be a DALI program, L be a list of events, and PL be the program
evolution of Ps with respect to L. Let Mi be the Model of Progi. Then, the sequence
M(Ps, L) = [M0, . . . , Mn] is the model evolution of Ps with respect to L, and Mi the
instant model at step i .

The evolutionary semantics of an agent represents the history of the events received
by the agents, and of the effect they have produced on it, without introducing a concept of
a “state”. It is easy to see that, given event list [En, . . . , E1], DALI resolution simulates
standard SLD-Resolution on Progn.

Definition 3. LetPs be a DALI program, Lbe a list of events. The evolutionary semantics
EPs

of Ps with respect to L is the couple 〈P(Ps, L),M(Ps, L)〉.

The behaviour of DALI interpreter has been modeled and checked with respect to
the evoltionary semantics by using the Murφ model checker [8].

5 A Sample Application: STRIPS-Like Planning

In this section we show that the DALI language allows one to define an agent that is able to
perform planning (or problem-solving) in a STRIPS-like fashion, without implementing
a metainterpreter.

For the sake of simplicity, the planning capabilities that we consider are really basic,
e.g., we do not consider here the famous STRIPS anomaly, and we do not have any
pretense of optimality.

We consider the sample task of putting on socks and shoes. Of course, the agent
should put her shoes on her socks, and she should put both socks and both shoes on.

We suppose that some other agent sends a message to ask our agent to wear the shoes.
This message is an external event, which is the head of a reactive rule: the body of the rule
specifies the reaction, which in this case consists in invoking the goal put your shoesG.

goE :> put your shoesG.

This goal will be attempted repeatedly, until it will be achieved.
It is important to recall the mechanism of DALI goals:

– For a goal g to be achieved, first of all the predicate gG must become true, by means
of a rule gG :- Conds, where Conds specify preconditions and subgoals.

– For a goal g to be achieved, as soon as gG becomes true the (optional) reactive
rule gGI :> PostAndActions is activated, that performs the actions and/or sets
the postconditions related to the goal.

– as soon as a goal gG is achieved (or, in short, we say that gG succeeds, even though
this involves the above two steps), it is recorded as a past event, in the form gP .

– the conjunction gG, gP that invokes a goal and waits for it to be achieved is denoted
by gD.

This explains the structure of the rule below:

put your shoesG :- put right shoeD, put left shoeD.
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In particular, it is required that the agent puts both the right and left shoe on. This
means, put your shoesG will become true as soon as both of its subgoals will have been
achieved. In practice, after the invocation of the subgoals, the overall goal is suspended
until the subgoals become past events.

In the meantime, the subgoals put right shoeG and put left shoeG will be attempted.

put right shoeG :- have right shoe, put right sockD.

This rule verifies a precondition, i.e., that of having the shoe to put on. Then it
attempts the subgoal put right sockG and waits for its success, i.e., waits for the subgoal
to become a past event. The rule for the subgoal is:

put right sockG :- have right sock.

This rule doesn’t invoke subgoals, but it just checks the precondition, i.e., to have
the right sock. Upon success, the corresponding reactive rule is triggered:

put right sockGI :> right sock on.

Now we have two possibilities: in a problem-solving activity, we will have the rule:

right sock on :- wear right sockA.

that actually executes the action of wearing the sock.
In a planning activity, we will have instead the rule:

right sock on :- update plan(wear right sock).

that adds to the plan that is being built the step of wearing the sock. In any case, the goal
put right sockG has been achieved, and will be now recorded as past event, and thus
put right sockD becomes true. Consequently, also put right shoeG becomes true, thus
triggering the reactive rule:

put right shoeGI :> right shoe on.

After having made (or recorded) the action of wearing the shoe, put right shoeP will
become true, thus obtaining put right shoeD.

Analogously, the agent will eventually record the past event put left shoeP, thus
obtaining put left shoeD. Since the subgoals of wearing the right and the left shoe are
unrelated, no order is enforced on their execution. Only, the overall goal becomes true
whenever both of them have been achieved.

At this point, the reactive rule related to the overall goal will be activated:

put your shoesGI :> message(tell shoes onA).

which means that the goal has succeeded, and in particular the agent declares to have
the shoes on.

The planning mechanism that we have outlined consists of a descendant process
that invokes the subgoals, and of an ascending process that executes (or records) the
corresponding actions.
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This methodology allows an agent to construct plans dynamically. In fact, a change
of the context, i.e., new information received from the outside, can determine success
of subgoals that could not succeed before.

A future direction of this experimental activity is that of writing a meta-planner with
general meta-definitions for root, intermediate and leaf goals. This meta-planner would
accept a list of goals, with the specification of their kind, and for each of them the list
of preconditions, subgoals and actions.

Below we show an example of use of conditional goal rules, where

gG :- Conds, gD1 :: , . . . , , :: gDn

means, as previously discussed, that if Conds are true, then the body of the rule succeeds
provided that at least one of the gDi’s succeeds (though the interpreter invokes them
all, and tries to achieve as many as possible). The point is that the failure of non-critical
partial objectives does not determine the failure of the overall goal. The example consists
in an agent that has to go to the supermarket in order to buy milk and bananas, and to
the hardware shop in order to buy a drill. He tries to go both to the supermarket and
to the hardware shop. However, if one of them is closed he just goes to the other one.
In each shop, he tries to buy what he needs, without making a tragedy if something is
missing. There is a failure (and then the agent is disappointed) only if either both shops
are closed, or all items are missing.

buy :- buy allD.

disappointed :- not buy.

buyI :> go homeA.

disappointedI :> some reaction.

buy allG :- buy at supermarketD :: buy at hardware shopD.

buy at supermarketG :- supermarket open,

buy bananasD :: buy milkD.

buy at hardware shopG :- hardware shop open,

buy drillG.

6 Conclusions

We have presented how to implement a naive version of STRIPS-like planning in DALI,
mainly by using the mechanism of internal events and goals. However, the ability of
DALI agents to behave in a “sensible” way comes from the fact that DALI agents have
several classes of events, that are coped with and recorded in suitable ways, so as to form
a context in which the agent performs her reasoning. In fact, we have argued that DALI
fulfills many of the points raised in [12] about which features any logical formalism
aimed at defining intelligent agents should possess.

A simple form of knowledge update and “belief revision” is provided by the con-
ditional storing of past events, past conclusions and past actions. They constitute the
“memory” of the agent, and are an important part of her evolving context: memories
make the agent aware of what has happened, and allow her to make predictions about the
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future. The ability of specifying how long and under which conditions memories should
be kept allows the agent behavior to be specified in a more sophisticated and flexible
way. For the sake of flexibility and of conceptual clarity, the directives that cope with
the knowledge base of the agent memories are distinct from the agent logic program. In
the future however, more sophisticated belief revision strategies will be integrated into
the formalism.

DALI is fully implemented in Sicstus Prolog [22]. The implementation, together with
a set of examples, is available at the URL http://gentile.dm.univaq.it/
dali/dali.htm.
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Abstract. In a dynamic environment, even if an agent makes a plan to
obtain a goal, the environment might change while the agent is executing
the plan. In that case, the plan, which was initially valid when it was
made, might later become invalid. Furthermore, in the process of replan-
ning, it is necessary to take into account the side effects of actions already
executed . To solve this problem, we have previously presented an agent
life cycle that interleaves HTN planning, action execution, knowledge
updates, and plan modification. In that agent life cycle, the plans are
always kept valid according to the most recent knowledge and situation.
However, it deals with only total-order plans. This paper extends the
agent life cycle so that the agent can handle partial-order plans.

1 Introduction

As agents are working on the Internet, adaptation to dynamic environments is
becoming an important subject. Because environments change, even if the agent
obtained a goal in the past, it does not mean that the agent can obtain the same
goal in the same way. Making inferences is an effective approach to adapt to
such a dynamic environment. In fact, mobile agents of Jini [19] and MiLog [6]
make inferences using Prolog. Mobile agents of Plangent [16] make a plan before
acting.

If an agent makes a complete plan just before acting, the agent can adapt
to the dynamic world to some extent. However, this is not enough: the agent
might not be able to execute some actions as expected; the agent might get
new information which affects the plan. In the former case, the agent needs to
suspend the plan currently being executed and switch to an alternative plan.
In the latter case, the agent needs to check the validity of the plan and modify
it if necessary. Therefore, in order to adapt to the changing environment, it is
necessary to check and modify plans continually and incrementally.

As pointed out in [4], much of the research into continual, distributed plan-
ning is built around the notion of abstract plan decomposition such as hierarchi-
cal task network (HTN) planning. HTN planners, such as SHOP [14], decompose
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a task to more primitive tasks. If an agent keeps an abstract plan, the agent
can successively decompose the abstract tasks in the plan as it gets new infor-
mation from another agent, the user, or the environment. HTN planning is also
useful for joint planning where one agent makes abstract plans and other agents
decompose abstract tasks in the plans.

Unlike standard partial-order planners, when planning, HTN planners do not
always connect preconditions and postconditions (effects) of actions. Instead,
such HTN planners decompose an abstract task into a more detailed plan. In
this approach, plan decomposition is done by replacing the abstract task into
the ready-made plan that is chosen from the plan library. Obviously, in this
case, the agent can save the time to construct the ready-made plan. Note that
this task decomposition is similar to the literal decomposition of Prolog. Prolog
decomposes a literal using a clause that is selected from the Prolog program.
The clause shows a plan (the body of the clause) for the abstract task (the head
of the clause), and the Prolog program corresponds to the plan library.

Although the task (or literal) decomposition of HTN planners or Prolog is
useful for agents in dynamic environments, we need to extend them so that they
can incrementally and dynamically modify the plans. This is an important sub-
ject, which is recognized also in [5]. To deal with this problem, we previously
designed an HTN planner [9] for speculative computation in multi-agent systems
that interleaves planning, action execution, knowledge updates, and plan modifi-
cations. We also implemented the dynamic planning mobile agent system [10] on
top of our picoPlangent mobile agent system. Based on Prolog’s proof procedure,
this planner makes (possibly more than one) plans, and incrementally modifies
the plans. When one plan does not work or other plans become more attractive,
the agent switches to another plan. The agent checks and modifies plans when ex-
ecuting an action or updating the program (Prolog’s clauses). Plans are checked
and modified after executing an action in a plan because this action might pre-
vent the execution of the other alternative plans. Plans are also checked and
modified after updating the program because some plans, which were initially
valid when they were made, might become invalid and also it might be possible
to make new valid plans after the program update.

Our previous HTN planner made it possible to guarantee the validity of
plans with regard to the newest knowledge of the agent and its history of action
execution. However, it can handle only total-order plans, which causes another
problem: when switching from one plan to another, the agent sometimes cancels
an action and re-executes the same action. For example, consider the following
two total-order plans:

– [buy(a), buy(b), assemble(pc)]
– [buy(c), buy(a), assemble(pc)]

Informally, according to the first plan, the agent is expected to buy the part
a, buy the part b, and then assemble pc. (See Figure 1.) The second plan is
interpreted in the same way. Suppose that the agent has executed the action
buy(a). Our previous planner modifies the plans as follows:
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buy(a) buy(b) assemble(pc)

Fig. 1. A Total-Order Plan

buy(a)

buy(b)

assemble(pc)

Fig. 2. A Partial-Order Plan

– [buy(b), assemble(pc)]
– [return(a), buy(c), buy(a), assemble(pc)]

From the first plan, the executed action (buy(a)) has been removed. There
is no problem with regard to the first plan. However, according to the second
plan, the agent is expected to return(a) and later buy(a). Although the second
plan is correct, it is wasteful to redo what is undone. This problem is caused
because the second total-order plan specifies the order of buying the parts a and
c although the order is not a matter of concern. If we can use partial-order plans,
we do not have to specify the order of buy(a) and buy(c). In order to avoid
this kind of unnecessary execution of canceling actions, we have extended our
previous planner so that it can handle (restricted) partial-order plans. If we can
use partial-order plans, we can express plans such as:

– [{buy(a), buy(b)}, assemble(pc)]
– [{buy(c), buy(a)}, assemble(pc)]

In the first plan, the execution order of buy(a) and buy(b), which is written
between ”{” and ”}”, is not specified. (See Figure 2.) Similarly, the second plan
does not specify the execution order of buy(c) and buy(a). Therefore, after
executing buy(a), these plans can be modified as follows:

– [buy(b), assemble(pc)]
– [buy(c), assemble(pc)]

In summary, this paper presents a new agent life cycle that deals with (re-
stricted) partial-order plans and that integrates the following:

– Decomposition of abstract tasks (literals);
– Action execution and plan modifications;
– Program updates and plan modifications.

This paper is organized as follows. In the next section, we define basic termi-
nologies. Section 3 defines the procedure for task (literal) decomposition. This
planning (task decomposition) procedure records extra information to prepare
for future plan modifications. Section 4 shows how to modify the plans after
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X1 X2 X3

Fig. 3. Execution Order of a Plan (Type 1)

Y1

Y2

Y3

Fig. 4. Execution Order of a Plan (Type 2)

action execution. Plans are modified considering the side effects of actions. Sec-
tion 5 shows how to modify the plans after a program update: invalid plans
are removed; new valid plans are added. Section 6 introduces the agent life cy-
cle that integrates task decomposition, action execution, program updates, and
plan modifications. Section 7 evaluates the efficiency of the plan modification
method in Section 5 by means of experiments. Section 8 defines an independent
semantics and shows the soundness of the agent life cycle. Section 9 explains
why our incremental plan modification approach is important in implementing
multi-agent systems. Section 10 discusses related work.

2 Terminology

This section defines basic terminologies including plans, clauses, dynamic plan-
ning framework, action data, and history of action execution. Like Prolog, (posi-
tive) literals will be defined using constants, variables, functions, and predicates.

Definition 1. A complex term is of the form: F(T1, ...,Tn) where n ≥ 0, F
is an n-ary function, and each Ti (1 ≤ i ≤ n) is a term. A term is one of
the following: a constant; a variable; a complex term. A literal is of the form:
P(T1, ..,Tn) where n ≥ 0, P is an n-ary predicate, and each Ti (1 ≤ i ≤ n) is a
term. When P is a 0-ary predicate, the literal P() can be abbreviated to P.

Plans are defined using literals as follows.

Definition 2. A plan is either Type 1 of the form: [X1, ...,Xn] or Type 2 of
the form: {Y1, ...,Yn} where n ≥ 0, each Xi and each Yi (1 ≤ i ≤ n) is a literal or
a plan, which is called a subplan. The plan [] and the plan {} are called empty
plans.

Intuitively, Figure 3 expresses the execution order of a plan (Type 1):
[X1, X2, X3], and Figure 4 expresses the execution order of a plan (Type 2):
{Y1, Y2, Y3}. These execution orders will be reflected in the definition of action
consumability of plans.

Example 1. Figure 5 expresses the execution order of a plan (Type 2): {[a1, a2],
a3,[a4,a5]} in which two subplans of Type 1 ([a1,a2] and [a4,a5]) occur.
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a1

a3

a4

a2

a5

Fig. 5. Plan which has subplans

We define clauses using plans. Unlike Prolog’s clauses, the execution order of
literals in a clause is partially specified.

Definition 3. A clause defining the literal LIT by the plan PLAN is of the form:
LIT ⇐ PLAN. When PLAN is an empty plan, this clause is called a fact and can
be abbreviated to LIT.

Intuitively, in the above definition, LIT ⇐ PLAN means that LIT is satisfied
when the execution of PLAN is completed.

Next, we define the dynamic planning framework, which will be used for our
planning procedure.

Definition 4. A dynamic planning framework is of the form: 〈A, D, P〉
where A is a set of literals (called actions), D is a set of literals (called dy-
namic literals) that are not actions, P is a set (called program) of clauses
that do not define any action. An instance of an action is also an action. An
instance of a dynamic literal is also a dynamic literal.

In the above definition, actions are executed by an agent. The program will
be used for planning. The definition clauses of dynamic literals in the program
might be updated in the future by adding (or deleting) a clause to (respectively,
from) the program.

Following the intuitive execution order of plans, we define action consuma-
bility of plans as follows. Informally, a plan can consume an action if the action
is one of the next actions to be executed according to the plan.

Definition 5. In the dynamic planning framework, the action A is consum-
able for the plans of the form:

1. [X1, ...,Xn] where
– n ≥ 1, and X1 is either an action that is unifiable with A or a subplan

such that A is consumable.
2. {Y1, ...,Yn} where

– n ≥ 1, and there exists Yi (1 ≤ i ≤ n) such that Yi is either an action
that is unifiable with A or a subplan such that A is consumable.

Definition 6. In the dynamic planning framework, the action A is inconsum-
able for the plans of the form:
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1. [X1, ...,Xn] where
– n = 0 or;
– n ≥ 1 and X1 is either an action that is not unifiable with A or a subplan

such that A is inconsumable.
2. {Y1, ...,Yn} where

– n ≥ 0 and each Yi(1 ≤ i ≤ n) is either an action that is not unifiable
with A or a subplan such that A is inconsumable.

Example 2. In a dynamic planning framework, suppose that a1, a2, a3, a4, and
a5 are actions. The plan {[a1,a2],a3,[a4,a5]} can consume a1, a3, and a4
but cannot consume a2 and a5. (See Figure 5.)

An action execution in a plan might affect the execution of other plans. The
action data of an action, defined as follows, will be used to record the data
regarding the side effects of the action.

Definition 7. In the dynamic planning framework, the action data of the action
A is one of the following forms:

– dataA(A, noSideEffect)
– dataA(A, undo(seq,A−))
– dataA(A, undo(con,A−))
– dataA(A, cannotUndo)

Informally, in the above definition, each action data has the following mean-
ing:

– A does not have side effects.
– A has side effects. A− is the action that will undo the execution of A unless

other actions with side effects are executed between the execution of A and
A−.

– A has side effects. A− is the action that will undo the execution of A. We do
not care when A− undoes A.

– A has side effects that cannot be undone.

Finally, we define the history of action execution, which records the order
of actions that have been executed recently. It also records the side effects of
actions already executed. This information will be used for plan modification.

Definition 8. A history of action execution is of the form: [H1, ...,Hn] where
n ≥ 0, and each Hi (1 ≤ i ≤ n) is an action data.

3 Decomposition of Abstract Tasks (Literals)

This section introduces a new procedure for planning via literal decomposition.
In the dynamic planning framework, the program might be updated even after
making plans. The planning procedure adds extra information to plans so that
the plans can be modified when necessary. A plan plus, defined below, records
such extra information (clauses and history of action execution) in association
with a plan.
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Plan1

Plan2 Plan3

Clause12 Clause13

Plan1

Plan2 Plan3

Clause12 Clause13

Plan6

Clause36
Decomposing a dynamic literal 

in Plan3 by Clause36

Recorded as a 
supplementary plan

A new frontier plan

Fig. 6. Search Tree

Definition 9. In the dynamic planning framework, a plan plus is of the form:
(PLAN, CSET, HISTORY) where PLAN is a plan, CSET is a set of clauses (called
prerequisite clauses of PLAN) in the program, and HISTORY is history of
action execution.

Prerequisite clauses of a plan were used to derive the plan. Therefore, if
a prerequisite clause of a plan becomes invalid, the plan becomes invalid. The
history of action execution (See Definition 7) that is recorded in association with
a plan records actions already executed, which have not been reflected in the
plan yet.

Two kinds of plan pluses will be used by our planning procedure. The fol-
lowing plan goal records these two kinds of plan pluses.

Definition 10. In the dynamic planning framework, a plan goal is of the form:
(PLANS+, SPP+) where PLANS+ and SPP+ are sets of plan pluses. Each plan
plus in PLANS+ is called a frontier plan plus. Each plan plus in SPP+ is
called a supplementary plan plus. The plan mentioned in a frontier plan
plus is called a frontier plan. The plan mentioned in a supplementary plan
plus is called a supplementary plan. For each supplementary plan, exactly
one dynamic literal that occurs in the supplementary plan is marked.

Frontier plans correspond to leaves in the search tree. In Figure 6, the left
search tree means that Plan2 is derived from Plan1 using Clause12. Similarly,
Plan3 is derived from Plan1 using Clause13. In this search tree, the frontier plans
are Plan2 and Plan3. Our planning procedure will make plans by decomposing
the selected literal in a frontier plan. If the selected literal is a dynamic literal,
we record the frontier plan as a supplementary plan. For example, in Figure 6,
when decomposing a dynamic literal in Plan3, Plan3 is recorded as a supplemen-
tary plan. Therefore, each supplementary plan has the selected dynamic literal,
which is marked. Supplementary plans correspond to intermediate nodes (not
leaves) from which another branch might be added. Note that a clause defining
a dynamic literal might be added to the program later by a program update.

Like Prolog, a plan is resolved by a clause as follows.

Definition 11. Let PLANv be a new variant1 of PLAN. Suppose that the occur-
rence of the literal LITv in PLANv corresponds to the occurrence of the literal

1 A new variant of X is made by replacing all the variables in X with new variables.
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LIT in PLAN. Suppose that HEAD ⇐ BODY is a new variant of the clause CL,
and that LIT, LITv, and HEAD are unifiable.

When LIT in PLAN is selected, the resolvent of PLAN by CL is made from
PLANv by first unifying LITv and HEAD with the most general unifier θ, and
then replacing the occurrence of θ(LITv) in θ(PLANv) with θ(BODY).

Example 3. When the literal x2(b) in the plan [x1(a),x2(b)] is selected, the
resolvent of the plan [x1(a),x2(b)] by the clause x2(V) ⇐ {y1(V), y2(V)} is
[x1(a),{y1(b),y2(b)}].

Now, we define a derivation of plan goals. This derivation is our planning
procedure. Not only does the derivation resolve plans, but it also records extra
information which will be used for plan modification, when necessary.

Definition 12. In the dynamic planning framework, a derivation from the
plan goal GOAL1 to the plan goal GOALn (n ≥ 2) is a sequence of plan goals:
GOAL1, ..., GOALn such that each GOALk+1 (1 ≤ k ≤ n − 1) is derived from
GOALk (= (PLANS+, SPP+)) by one of the following derivation rules.

p1 Select a plan plus (PLAN, CSET, HISTORY) which belongs to PLANS+. Select
a literal L that occurs in PLAN and that is not a dynamic literal. Suppose
that C1, ..., Cs (s ≥ 0) are all the clauses in the program such that each Cu

(0 ≤ u ≤ s) defines a literal which is unifiable with the selected literal L.
Suppose that RPLANi (1 ≤ i ≤ s) is the resolvent of PLAN by Ci. GOALk+1
is made from GOALk by replacing the occurrence of the selected plan plus:

(PLAN, CSET, HISTORY)
with the following plan pluses:

(RPLAN1, CSET, HISTORY), ..., (RPLANs, CSET, HISTORY).
p2 Select a plan plus (PLAN, CSET, HISTORY) which belongs to PLANS+. Select

a literal L that occurs in PLAN and that is a dynamic literal. Suppose that
C1, ..., Cs (s ≥ 0) are all the clauses in the program such that each Cu

(0 ≤ u ≤ s) defines a literal which is unifiable with the selected literal L.
Suppose that RPLANi (1 ≤ i ≤ s) is the resolvent of PLAN by Ci. GOALk+1
is made from GOALk by replacing the occurrence of the selected plan plus:

(PLAN, CSET, HISTORY)
with the following plan pluses:

(RPLAN1, {C1}∪CSET, HISTORY), ..., (RPLANs, {Cs}∪CSET, HISTORY),
and adding the selected plan plus: (PLAN, CSET, HISTORY) to SSP+ as a
supplementary plan plus with the selected literal marked.

Rule p1 decomposes a literal whose definition clause will not be updated. On
the other hand, Rule p2 decomposes a dynamic literal whose definition clauses
might be updated. When resolving a plan by a clause, Rule p2 records the clause
in association with the resolved plan because if the clause becomes invalid, the
resolved plan also becomes invalid. (See Figure 9.) Rule p2 also records the
resolved plan as a supplementary plan because if another new clause which
defines the selected literal becomes valid, it is possible to resolve the plan by the
new valid clause.
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Example 4. In the dynamic planning framework, suppose that x2(V) is a dy-
namic literal. When resolving the plan [x1(a), x2(b)], as shown in Example 3,
using the clause x2(V) ⇐ {y1(V), y2(V)}, Rule p2 records this clause in associa-
tion with the plan [x1(a), {y1(b), y2(b)}]. Also Rule p2 records [x1(a), x2(b)] as
a supplementary plan with the selected literal x2(b) marked.

4 Action Execution and Plan Modification

When one plan does not work, we might want to suspend the plan execution and
switch to another plan. However, some actions that have been executed following
a plan might prevent another plan from functioning. This section defines how to
modify plans after an action execution.

Definition 13. In the dynamic planning framework, the plan modification
rules after the execution of the action A are as follows where PLAN is the
plan to be modified by a plan modification rule, and only one plan modification
rule is applied to PLAN if more than one plan modification rule can be applied
to PLAN.

– When A is consumable for PLAN:

a1 If PLAN is of the form: [A
′
, X1, ...,Xn], n ≥ 0, and A and A

′
are unifiable,

then unify A and A
′
with the most general unifier θ and modify PLAN to

θ([X1, ...,Xn]).
a2 If PLAN is of the form: [SUBPLAN, X1, ...,Xn], n ≥ 0, and SUBPLAN is

a subplan, then modify SUBPLAN following the plan modification rules
after the execution of A.

a3 If PLAN is of the form: {X1, ...,Xn}, n ≥ 1, and Xi (1 ≤ i ≤ n) is
unifiable with A, then unify Xi and A with the most general unifier θ,
and remove θ(Xi) from θ(PLAN).

a4 If PLAN is of the form: {X1, ...,Xn}, n ≥ 1, and Xi (1 ≤ i ≤ n) is a
subplan which can consume A, then modify Xi following the plan modifi-
cation rules after the execution of A.

– When A is inconsumable for PLAN and DATA is the action data of A:

b1 If DATA is of the form: dataA(A, noSideEffect), then PLAN is not
modified.

b2 If DATA is of the form: dataA(A, undo(seq,A−)), then modify PLAN to
[A−, PLAN].

b3 If DATA is of the form: dataA(A, undo(con,A−)), then modify PLAN to
{A−,PLAN}.

b4 If DATA is of the form: dataA(A, cannotUndo), then delete PLAN.

When PLAN can consume A, Rules a1-a4 removes A from the plan because
A has been executed. When PLAN cannot consume A, one of the rules b1-b4
is applied to the plan. If A does not have side effects (b1), we do not have to
care. If A has side effects (b2, b3, b4), it is necessary to undo A. As shown in
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A PLAN-

Fig. 7. Sequentially Undoing Action

A

PLAN

-

Fig. 8. Concurrently Undoing Action

Figure 7, some A have to be undone before PLAN is executed (b2). As shown in
Figure 8, some A can be undone anytime (b3). If A cannot be undone (b4), it is
impossible to use PLAN. More intuitive meaning of undoing actions is explained
in the following example:

Example 5. Four examples are shown to further understand the intuitive mean-
ing of sequentially undoing actions, concurrently undoing actions, actions whose
side effects cannot be undone, and actions that does not have side effects:

– Suppose that the agent has executed the action (scrap(pLine)) that scraps
the production line of pc before executing the plan ([assemble(pc)]) for
assembling pc. In order to reuse the plan, we need to rebuild the production
line before assembling pc. In this case, we should modify the plan to:

[build(pLine),[assemble(pc)]]2

where build(pLine) is the action that builds the production line of pc.
We can express the action data of scrap(pLine) as follows:

dataA(scrap(pLine),undo(seq,build(pLine)))
– Suppose that the agent has executed the action (buy(x)) that buys the

part x which is not necessary for assembling pc. In order to use the plan
([assemble(pc)]) for assembling pc, we need to return the part x. However,
it is not very important when the agent returns the part x. In this case, we
should modify the plan to:

{return(x),[assemble(pc)]}3
where return(x) is the action that returns the part x. We can express the
action data of buy(x) as follows:

dataA(buy(x),undo(con,return(x)))
– In the previous example of buying x, if the part x cannot be returned, the

plan [assemble(pc)] is discarded because the agent cannot use the plan.
In this case, We can express the action data of buy(x) as follows:

dataA(buy(x),cannotUndo)

2 This plan will be simplified to [build(pLine),assemble(pc)] in the plan simplifi-
cation step of the agent life cycle, which will be introduced in Section 6.

3 This plan will be simplified to {return(x),assemble(pc)} in the plan simplification
step of the agent life cycle, which will be introduced in Section 6.
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– Suppose that the agent has executed the action (checkPrice(x)) that checks
the price of the part x. This action execution is not related to the plan
([assemble(pc)]) for assembling pc, but this action does not have side
effects. In this case, the agent does not modify the plan [assemble(pc)]
because this plan is not affected by the execution of checkPrice(x). We
can express the action data of checkPrice(x) as follows:

dataA(checkPrice(x),noSideEffect)

The plan modification rules after the execution of the action A can be applied
to a plan only if it is possible to judge whether the plan can consume A or not.
For example, if the literal lit1 is not an action, it is impossible to apply the plan
modification rules to the plan [lit1, lit2]. However, when the plan is resolved
further and the literal lit1 is decomposed into an action, we can apply the plan
modification rules to the resolved plan. In order to apply plan modification rules
later to this kind of plan, we record the history of action execution in association
with the plan.

Definition 14. In the dynamic planning framework, the plan plus modifi-
cation rules after the execution of the action A are as follows where
(PLAN, CSET, [H1, ...,Hn]) (n ≥ 0) is the plan plus to be modified by a plan plus
modification rule.

c1 If n = 0 and A is either consumable or inconsumable for PLAN, then mod-
ify PLAN by applying a plan modification rule (defined in Definition 13) to
PLAN.

c2 If n ≥ 1 or A is neither consumable nor inconsumable for PLAN, update the
history of action execution from [H1, ...,Hn] to [H1, ...,Hn, Hn+1] where Hn+1

is the action data of A.

Finally, we define how to modify a plan goal after an action execution.

Definition 15. In the dynamic planning framework, the plan goal modifica-
tion rule after the execution of the action A is as follows where PGOAL is
the plan goal to be modified by the plan goal modification rule:

d1 Modify each plan plus that occurs in PGOAL by the plan plus modification
rule (defined in Definition 14) after the execution of A.

Even if an action is neither consumable nor inconsumable for a plan, after
further resolving the plan, the action might become consumable or inconsum-
able for the resolved plan. In that case, we modify the resolved plan using the
information that is recorded in the history of action execution.

Definition 16. In the dynamic planning framework, the plan plus modifi-
cation rule after resolution is as follows where (PLAN, CSET, [H1, ...,Hn])
(n ≥ 0) is the plan plus to be modified by a plan plus modification rule after
resolution.
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e1 If n = 0, then the plan plus is not modified.
e2 If n ≥ 1, H1 is the action data of A, and A is neither consumable nor incon-

sumable for PLAN, then the plan plus is not modified.
e3 If n ≥ 1, H1 is the action data of A, and A is either consumable or incon-

sumable for PLAN, then the plan plus is modified to:
(NEWPLAN, CSET, [H2, ...,Hn])

where NEWPLAN is made from PLAN by applying a plan modification rule
after the execution of A (Defined in Definition 13). If possible, further modify
the plan plus in the same way.

Definition 17. In the dynamic planning framework, the plan goal modifica-
tion rule after resolution is as follows where PGOAL is the plan goal to be
modified by the plan goal modification rule:

f1 Modify each frontier plan plus that occurs in PGOAL by the plan plus modi-
fication rule after the execution of A (defined in Definition 16).

Example 6. Suppose that the agent has decomposed an abstract plan and de-
rived the plan [buy(b),assemble(pc)]. Suppose that the action buy(b) has
been executed before deriving [buy(b),assemble(pc)], and that the action
data of buy(b) is recorded in the following plan plus in association with the
plan [buy(b),assemble(pc)]:

([buy(b),assemble(pc)],∅,[dataA(buy(b),undo(con,return(b)))])
Following the plan plus modification rule e3 after resolution, which is defined

in Definition 16, the plan plus is modified as follows:

([assemble(pc)],∅,[])
Note that the already executed action buy(b) has been removed from the

plan, and that the history of action execution has become empty. In this way,
the plan can be modified using the history of action execution.

Similarly, consider the following plan plus:

([buy(c),assemble(pc)],∅,[dataA(buy(b),undo(con,return(b)))])
This plan plus is modified to the following plan plus:

({return(b),[buy(c),assemble(pc)]},∅,[])
Note that return(b) has been inserted to the plan using the action data of

buy(b), and that the action data of buy(b) has been deleted from the history
of action execution.

5 Program Updates and Plan Modification

This section defines how to modify plans when the program is updated. A pro-
gram update is done by clause addition or clause deletion, which affects the
derivation that is based on the program: the addition (or deletion) of a clause
adds (respectively, cuts) branches to (respectively, from) the search tree of the
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derivation. (See Figure 9.) When adding a clause to the program, we make new
valid plans, if possible, using the added clause. When deleting a clause from the
program, we delete the invalid plans that are derived using the deleted clause.

Definition 18. In the dynamic planning framework, the plan goal modifica-
tion rules after a program update are as follows where (PLANS+, SSP+) is
the plan goal to be modified by a plan goal modification rule:

– When adding the clause C, which defines the literal LIT, to the program:

g1 Suppose that
(PLAN1, CSET1, HISTORY1), ..., (PLANn, CSETn, HISTORYn)

are all the supplementary plan pluses in SSP+ such that n ≥ 0 and
the marked literal in each supplementary plan PLANk (1 ≤ k ≤ n) is
unifiable with LIT. Let RPLANi be the resolvent of PLANi (1 ≤ i ≤ n)
by C where the marked literal in RPLANi is selected for resolution. The
plan goal (PLANS+, SSP+) is modified by adding each plan plus:

(RPLANi, {C} ∪ CSETi, HISTORYi)
(1 ≤ i ≤ n) to PLANS+.

– When deleting the clause C from the program:

g2 The plan goal (PLANS+, SSP+) is modified by deleting each plan plus
that records C as a prerequisite clause.

The clause that might be added to the program defines a dynamic literal. In
Figure 9, when resolving Plan 3 by decomposing a dynamic literal L, following
the derivation rule p2, we record Plan 3 as a supplementary plan. Therefore,
even if Clause 37 that defines L is added to the program after the resolution, we
can still make Plan 7 resolving Plan 3 by Clause 37. Note that this resolution
corresponds to the addition of a new branch to the search tree.

On the other hand, if a clause is deleted from the program, the plans that
were derived using the deleted clause become invalid. In Figure 9, Plan 2, Plan
4, and Plan 5 depend on Clause 12. If Clause 12 defines a dynamic literal, the
derivation rule p2 records Clause 12, as a prerequisite clause, in association with
Plan 2. In this case, Clause 12 is recorded also in association with Plan 4 and Plan
5 because these plans are made by resolving Plan 2. Therefore, when deleting
Clause 12 from the program, we can delete Plan 2, Plan 4, and Plan 5, which are
the only plans that have become invalid. Note that this plan deletion corresponds
to the deletion of a branch from the search tree.
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6 Agent Life Cycle

This section defines an agent life cycle that integrates planning, action execu-
tion, program updates, and plan modifications. Given the initial goal (a literal),
the agent makes plans to obtain the initial goal, selects a plan, and starts the
plan execution. After executing an action or updating the program, the agent
incrementally modifies its plans. When one of the plans becomes empty and its
history of action execution becomes empty, the agent finishes its life cycle as the
initial goal has been satisfied.

Definition 19. In the dynamic planning framework, given a literal L as the
initial goal, the agent life cycle is defined as follows:

1. Let {L} be the initial plan IPLAN. Let (IPLAN, {}, []) be the initial plan
plus IPLAN+. Let ({IPLAN+}, {}) be the initial plan goal IPGOAL. Set the
current plan goal to IPGOAL.

2. Repeat the following procedure until one of the frontier plans in the current
plan goal becomes an empty plan and its history of action execution becomes
empty:

(a) (Program Updates) Repeat the following procedure if necessary:

i. Add (or delete) a clause4 C that defines a dynamic literal to (respec-
tively, from) the current program.

ii. After the program update, apply a plan goal modification rule, which
is defined in Definition 18, to the current plan goal.

(b) (Action Execution) Repeat the following procedure if necessary:

i. If possible, select a frontier plan which is mentioned in the current
plan goal, select an action A which is consumable for the selected
plan, and execute A.

ii. If the execution of A is successful, apply a plan goal modification rule,
which is defined in Definition 15, to the current plan goal.

(c) (Plan Decomposition) If possible, make a derivation from the current
plan goal to another plan goal PGOAL, and update the current plan goal
to PGOAL.

(d) (Plan Modification Using History of Action Execution) Apply a plan goal
modification rule after resolution, which is defined in Definition 17, to
the current plan goal.

(e) (Simplification of Plans) Repeat the following procedure, if possible:

i. Delete empty subplans5 of a plan that occurs in the current plan goal.
ii. If a subplan SPLAN of a plan that occurs in the current plan goal is

of the form {E} or of the form [E], where E is a literal or a subplan
of SPLAN, then replace SPLAN with E.

4 We assume that the agent has the module that decides how to update the program.
This module chooses the clause to add or delete at Step 2(a)i.

5 An empty plan is not deleted if it is not a subplan.
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Example 7. In the dynamic planning framework, suppose that good(X) is a dy-
namic literal, that buy(X) and assemble(X) are actions, and that the program
is as follows:

make(X) ⇐ [getPartsFor(X), assemble(X)].
getPartsFor(X) ⇐ {parts(X, Y), get(Y)}.
get([]).
get([H|T])⇐ {good(H), buy(H), get(T)}.
parts(pc,[a,b]). parts(pc,[b,c]). parts(pc,[c,a]).
good(a). good(b). good(c).

Note that good(a), good(b), and good(c) are speculatively assumed to be
true. (We do not know if those parts are good until we actually buy them.) Given
the initial goal make(pc), the agent makes the following three plans:

[{buy(a),buy(b)},assemble(pc)]
[{buy(b),buy(c)},assemble(pc)]
[{buy(c),buy(a)},assemble(pc)]

According to the above plans, the agent is expected to buy some parts and
assemble a PC. Note that the execution order of assembling the parts is not
specified.

Now, suppose that the agent selects the action buy(a) in the first plan. Sup-
pose that dataA(buy(X),undo(con,return(X))) is the action data of buy(X).
After executing buy(a), the plans are modified as follows:

[buy(b),assemble(pc)]
{return(a),[{buy(b),buy(c)},assemble(pc)]}
[buy(c),assemble(pc)]

From the first and third plan, the executed action buy(a) has been removed.
In the second plan, return(a), which will undo buy(a), has been inserted. Note
that the execution order of return(a) and the rest of the plan is not specified.

At this point, suppose that the agent has got the information that the part
“a” is broken and erased good(a) from the program. Because the agent records
good(a), as a prerequisite clause, in association with the first plan and the third
plan, the agent erases these two plans. As a result, only the valid second plan
remains:

{return(a),[{buy(b),buy(c)},assemble(pc)]}

Suppose that the agent has executed buy(b). The agent erases buy(b) from
the above plan.

{return(a),[buy(c),assemble(pc)]}

Suppose that the agent has found that the part “a” is not broken and added
good(a) again to the program. The agent makes again the two plans that were
erased when good(a) was deleted from the program.
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[assemble(pc)]
{return(a), [buy(c), assemble(pc)]}
{return(b), [buy(c), assemble(pc)]}

Note that the execution of buy(b) has been reflected in the two revived plans:
[assemble(pc)] and {return(b),[buy(c),assemble(pc)]}. This is because
the supplementary plan from which [assemble(pc)] and {return(b),[buy(c),
assemble(pc)]} are derived records the history of action execution.

7 Experiments

This section evaluates our plan modification method that is described in Section
5 by means of experiments. We compare our plan modification approach with the
naive approach of replanning from scratch. We implemented the planning and
replanning algorithm in SWI-Prolog, Version 5.3.0. The scenario is as follows:

The agent wants to cook mochi, which is Japanese sticky rice cake. In
order to make mochi, the agent needs to pound steamed mochi rice as
many times as possible. Afterwards, the agent gives taste to mochi by
spreading either anko paste or kinako paste according to the preference.

First of all, we show the actions, the dynamic literals, and the program, which
are used for our experiments. Using Prolog, the actions are declared as follows:

action(pound(mochi)).
action(spread(_)).

Here, two actions: pound(mochi) and spread( ) are declared. The literals
that are unifiable with these actions are also recognized as actions. For example,
spread(anko) and spread(kinako) are both actions because they are unifiable
with spread( ). We declare the dynamic literal prefer( ) in a similar way:

dy(prefer(_)).

Because no action is executed in our experiments, we do not need the action
data, which describe the side effects of actions. The program is described as fol-
lows:

axiom(seq,make(mochi,N),[repeatPound(N),giveTaste]).
axiom(con,repeatPound(0),[]).
axiom(con,repeatPound(N),[pound(mochi),repeatPound(M)]):-

N>0, M is N-1.
axiom(con,giveTaste,[prefer(X),spread(X)]).
axiom(con,prefer(anko),[]).

In the above description of the program, the following description of clauses:

axiom(seq,H,[B1,...,Bn])
axiom(con,H,[B1,...,Bn])

respectively describes the following clauses:
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Table 1. Time for Program Updates and Replanning

Replanning Method \ N (Times) 200 400 600 800 1000

Replanning from Scratch (msec) 97 327 688 1215 1790

Replanning by Plan Modification (msec) 0 0 3 0 3

H ⇐ [B1, ...,Bn]
H ⇐ {B1, ...,Bn}.

Because this description of the program is interpreted by the interpreter that
is implemented in Prolog, we can write the condition under which a clause can
be used. For example,

axiom(con,repeatPound(N),[pound(mochi),repeatPound(M)]):-
N>0, M is N-1.

describes the clause:

repeatPound(N) ⇐ {pound(mochi), repeatPound(M)}

and this clause can be used if “N > 0” and “M is N-1” are true.
Given make(mochi,N) as the initial goal, the agent makes the plan to pound

mochi (pound(mochi)) N times and spread anko (spread(anko)). After making
this plan, suppose that the agent deletes prefer(anko) from the program and
adds prefer(kinako) to the program. Now, the agent needs to replan because
the program is updated. If replanned using our plan modification method in
Section 5, the modified plan will be to pound mochi (pound(mochi)) N times
and spread kinako (spread(kinako)). Because no action is executed, the agent
can make the same plan even if it replans from scratch.

Based on this replanning scenario, we conducted the same experiments three
times and measured the average time (msec) for updating the program and
replanning. We checked both our plan modification approach and the naive re-
planning approach. The result is shown in Table 1. If replanned from scratch,
the time for updating the program and replanning monotonously increases as
the value of N increases. On the other hand, if replanned using the plan modifi-
cation method in Section 5, the time for updating the program and replanning
is almost 0 msec regardless of the value of N. Our plan modification method is
faster in this example because it reuses the subplan to pound mochi N times. In
general, our plan modification method is more efficient than the naive replanning
method as long as it can save much time by reusing already computed subplans.
Because plans are modified only partially in a lot of cases, there should be many
examples where our plan modification method can save much time. For example,
our plan modification method is based on Dynamic SLDNF (DSLDNF) [7, 8],
and DSLDNF succeeded in saving time for recomputing the route for a mobile
robot. Especially, DSLDNF saved time when the route is modified partially and
many parts of the route are reused.
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8 Semantics

It is an important subject of research to prove the soundness of planning al-
gorithms. In fact, soundness is proved in many planning algorithms. Because
the agent continuously updates its knowledge and modifies its plans during its
life cycle, it is not enough to prove the soundness of a plan when its was made
with regard to the initial knowledge of the agent. What we need to prove is that
the agent obtains the initial goal, when successfully finishing its life cycle, with
regard to the updated knowledge of the agent. In other words, we need to prove
the soundness of the agent life cycle. The purpose of this section is to define an
independent semantics and prove the soundness of the agent life cycle.

In the semantics we introduce in this section, we use the following predicate
of classical logic:

hold(L, [A1, ...,An], PLAN)

Intuitively, this predicate means that after executing the actions A1, ..., An

in this order, the plan for the initial goal L is PLAN. In other words, PLAN takes
into account all the actions that have been already executed. After executing the
actions A1, ..., An and successfully finishing the agent life cycle, if we can prove

hold(L, [A1, ...,An], ∅)

then we can prove the soundness of the agent life cycle because the empty plan
shows that the agent does not have to do anything to obtain the initial goal.

First of all, we define an independent semantics as follows. Note that the
connective “←” means the implication of classical logic, which is different from
“⇐” that is used to describe clauses.

Definition 20. In the dynamic planning framework DPF, axiom(DPF) is de-
fined as follows:

ax1. For any literal L, the following holds:

∀hold(L, [], {L})
∀hold(L, [], [L])

ax2. Let L be any literal. Let A1, ..., and An be any n (n ≥ 0) actions. If PLAN
is the plan that can consume the action A, the following holds:

∀(hold(L, [A1, ...,An, A], PLANdel(A)) ← hold(L, [A1, ...,An], PLAN))

where PLANdel(A) is the plan that is made from PLAN by removing one of
the occurrences of A following the plan modification rules after the execution
of A, which is defined in Definition 13.

ax3. Let L be any literal. Let A1, ..., and An be any n (n ≥ 0) actions. Let
PLAN be any plan. If dataA(A,noSideEffect) is the action data of the action
A, then the following holds:

∀(hold(L, [A1, ...,An, A], PLAN) ← hold(L, [A1, ...,An], PLAN))
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ax4. Let L be any literal. Let A1, ..., and An be any n (n ≥ 0) actions. Let PLAN
be any plan. If dataA(A,undo(seq,A−)) is the action data of the action A,
then the following holds:

∀(hold(L, [A1, ...,An, A], [A−, PLAN])← hold(L, [A1, ...,An], PLAN))

ax5. Let L be any literal. Let A1, ..., and An be any n (n ≥ 0) actions. Let PLAN
be any plan. If dataA(A,undo(con,A−)) is the action data of the action A,
then the following holds:

∀(hold(L, [A1, ...,An, A], {A−, PLAN}) ← hold(L, [A1, ...,An], PLAN))

ax6. For each clause L ⇐ PLAN in the program, the following holds:

∀hold(L, [], PLAN)

ax7. Let L and B be any literals. Let A1, ..., and An be any n (n ≥ 0) actions.
Let SPLAN be any plan. If PLAN is the plan in which B occurs, then the
following holds:

∀(hold(L, [A1, ...,An], PLANSPLAN/B) ←
hold(L, [A1, ...,An], PLAN) ∧ hold(B, [], SPLAN))

where PLANSPLAN/B is the plan that is made from PLAN by replacing one of
the occurrences of B with SPLAN.

ax8. Let L be any literal. Let A1, ..., and An be any n (n ≥ 0) actions. If PLAN
be is a plan that has an empty subplan, then the following holds:

∀(hold(L, [A1, ...,An], PLANdel(∅)) ← hold(L, [A1, ...,An], PLAN))

where PLANdel(∅) is the plan that is made from PLAN by deleting one empty
subplan.

ax9. Let L be any literal. Let A1, ..., and An be any n (n ≥ 0) actions. Let E be
any literal or any plan. If PLAN is the plan such that {E} or [E] occurs as a
subplan, then the following holds:

∀(hold(L, [A1, ...,An], PLANnobracket(E)) ← hold(L, [A1, ...,An], PLAN))

where PLANnobracket(E) is the plan that is made from PLAN by replacing one
occurrence of the subplan of the form [E] or {E} with E.

In the above definition, ax1 justifies the initial plan. From ax2, ax3, ax4, and
ax5, we can justify the plan modification method after the action execution of
A. In ax2, PLAN can consume A. In ax3, A does not have side effects. In ax4
and ax5, A can be undone by A−. In ax4, A− need to be executed before PLAN.
In ax5, the execution order of A− and PLAN is not a matter of concern. The
meaning of clauses is defined by ax6. Literal decomposition is justified by ax7.
Plan simplification is justified by ax8 and ax9. From ax8, we can remove empty
subplans. From ax9, we can remove unnecessary brackets.

In order to prove the soundness of the agent life cycle, we need the following
lemma:
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Lemma 1. In the dynamic planning framework DPF, given the literal L as the
initial goal, suppose that the agent has started its life cycle, created the initial
plan goal, and finished the k-th cycle (k ≥ 0) of its agent life cycle. Let A1,...An

(n ≥ 0) be all the actions that the agent has executed (in this order) since the
beginning of its life cycle. Let PLAN be any plan mentioned in the current plan
goal. If the action data of Am+1, ..., An (0 ≤ m ≤ n) are mentioned in the history
of action execution that is recorded in association with PLAN, then there exists
a substitution θ such that the following holds:

(*1) axiom(DPF) |= ∀(θ(hold(L, [A1, ...,Am], PLAN)))

Proof. Proof by induction with regard to k. (Sketch of proof)

– (Base case) When k is 0, the agent has just created the initial plan {L},
which is the only plan mentioned in the current plan goal. From ax1 of
axiom(DPF), the following holds:

axiom(DPF) |= ∀hold(L, [], {L}).
Since the agent has not executed actions yet, the history of action execution
recorded in association with the initial plan {L} is empty. Therefore, Lemma
1 holds.

– (Inductive step) Suppose that Lemma 1 holds when finishing the k-th cycle
of the agent life cycle.

• When deleting a clause from the program in the (k + 1)-th cycle, all the
invalid plans that were derived using the deleted clause are deleted from
the current plan goal. Therefore, for each plan (PLAN) that has not been
deleted from the current plan goal, (*1) holds.

• When adding a new clause to the program in the (k + 1)-th cycle, some
frontier plans might be added to the current plan goal. In this case, each
of the added frontier plans is the resolvent of a supplementary plan men-
tioned in the current plan goal. From the assumption of induction, (*1)
holds where PLAN is the supplementary plan. Therefore, from ax6 and
ax7 of axiom(DPF), (*1) holds where PLAN is the newly added plan.

• When executing an action in the (k + 1)-th cycle, each plan plus in the
current plan goal is modified. When modifying a plan plus after executing
an action, either the plan in the plan plus is modified or the history of
action execution is updated.

∗ If the plan in a plan plus has been modified, the history of action
execution recorded in the plan plus is empty. From ax2, ax3, ax4,
and ax5 of axiom(DPF) and from the assumption of induction, (*1)
holds where PLAN is the modified plan.

∗ Otherwise, when the history of action execution is updated, the action
data of the executed action is just added to the history of action
execution. In this case, the plan, with which the updated history of
action execution is recorded, is not modified. Therefore, from the
assumption of induction, (*1) holds where PLAN is the plan with
which the updated history of action execution is recorded.
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• When resolving a frontier plan in the (k + 1)-th cycle, from ax6 and ax7
of axiom(DPF) and from the assumption of induction, (*1) holds where
PLAN is the new resolvent.

• When modifying a plan using the action data in the history of action
execution in the (k + 1)-th cycle, the action data is deleted from the
history of action execution. From ax2, ax3, ax4, and ax5 of axiom(DPF)
and from the assumption of induction, (*1) holds where PLAN is the
modified plan.

• When simplifying a plan in the (k +1)-th cycle, empty subplans and un-
necessary pairs of brackets are removed. From ax8 and ax9 of axiom(DPF)
and from the assumption of induction, (*1) holds where PLAN is the sim-
plified plan.

Consequently, after the (k+1)-th cycle of the agent life cycle, Lemma 1 holds.

From the above lemma, the following theorem holds.

Theorem 1. (Soundness of the agent life cycle) In the dynamic planning frame-
work DPF, given the literal L as the initial goal, suppose that the agent has suc-
cessfully finished its life cycle. Let A1,...An (n ≥ 0) be all the actions that the
agent has executed (in this order) since the beginning of its life cycle. There
exists a substitution θ such that the following holds:

axiom(DPF) |= ∀(θ(hold(L, [A1, ...,An], ∅)))

Proof. When the agent has successfully finished its life cycle, there exists an
empty frontier plan ∅ such that its history of action execution is empty. There-
fore, from Lemma 1, Theorem 1 holds.

9 Towards Multi-agent Systems

Although the system we have described so far is a single agent system, our in-
cremental plan modification technique is extremely important for making multi-
agent systems. This section gives two important examples in which our dynamic
planning framework is useful for the implementation of multi-agent systems.

Speculative computation in multi-agent systems is an important subject of
research. In multi-agent systems, an agent does not necessarily retrieve informa-
tion from another agent even if the information is vital to obtain a goal. One
way to solve this problem is to speculatively make plans based on assumptions.
This is an important subject of multi-agent systems, which is also recognized in
[18]. For example, suppose that the user agent needs to reserve a plane ticket
and a room in a hotel for the user who wants to stay either in Hawaii or in
Guam. At first, the user agent asks an airline agent to reserve a plane ticket
to Hawaii. However, the user agent does not have the answer immediately from
the airline agent. Because the hotel in Hawaii tends to be very busy, the user
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agent wants to reserve a room in the hotel as soon as possible. Therefore, the
user agent might reserve a room in the hotel by speculatively assuming that the
plane ticket is available before receiving the answer from the airline agent. This
is fine as long as the user agent can get the plane ticket. However, when the
user agent receives the information that the plane ticket is not available, the
user agent might change the destination to Guam. In that case, the agent has
to change the plan and cancel the hotel reservation in Hawaii. Note that this
scenario includes knowledge updates and action canceling, which can be handled
in our dynamic planning framework.

Joint planning in mobile agent systems is another important subject of re-
search. A mobile agent is a kind of software which moves from one computer to
another computer through the network. As mentioned in the introduction, we
implemented our previous dynamic planning framework on top of our mobile
agent system, called picoPlangent [10]. As shown in Figure 10, the picoPlangent
mobile agent works on a platform on which some components are installed. The
mobile agent uses a component on the platform when executing an action. The
components on the platform can be regarded as local agents that do not move
from the platform. Local agents sometimes modify the plans of mobile agents by
decomposing a literal into more primitive literals or adding additional goals to
the plan. As surveyed in [4], HTN planning is becoming popular in multi-agent
systems because an agent can make abstract plans and later another agent can
decompose the abstract plans into more concrete plans. This is why HTN plan-
ning is important in joint planning in multi-agent systems. Incremental plan
modification approach of our planner is very important when plans are partially
decomposed or refined by another agent. If replanned from scratch, the agent
will forget all those refined plans. In our mobile agent system, the local agent
can update the knowledge (program) of mobile agents by adding the “assert”
action or the “retract” action to the plans of mobile agents. After executing
these knowledge updating actions, the mobile agents modify the plans using our
plan modification techniques. This feature is very important because in many
cases, a mobile agent does not know the up-to-date information that is available
on a remote computer unless the mobile agent actually moves to the computer.
Therefore, the mobile agent should be able to modify the plans after moving to
a computer and getting the new information from the local agents.
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10 Related Work

Our plan modification method after program updates is based on the proof pro-
cedure called Dynamic SLDNF(DSLDNF) [7, 8], which incrementally updates
the program and modifies the computation. There is a proof procedure [18] of
abductive logic programming (ALP) which is closely related to DSLDNF. This
dynamic ALP procedure is different from the standard ALP procedure [11] be-
cause it can handle the abducibles whose truth value dynamically changes. The
similarity of our planner (or DSLDNF) and the dynamic ALP procedure can be
observed as follows:

– While our planner records clauses in association with a plan, the dynamic
ALP procedure records abducibles in association with a process.

– On the one hand, our planner deletes a plan when a clause recorded in
association with the plan becomes invalid. On the other hand, the dynamic
ALP procedure suspends a process when an abducible recorded in association
with the process becomes invalid.

– On the one hand, our planner makes a new plan from a supplementary plan
when a new clause becomes valid and the supplementary plan can be resolved
to the new plan using the new valid clause. On the other hand, the dynamic
ALP procedure makes the status of a suspended process to active when all
the abducibles recorded in association with the suspended process become
true.

From this observation, we can understand that our plan corresponds to the
process of the dynamic ALP procedure, that our clause corresponds to the ab-
ducible of the dynamic ALP procedure, that our supplementary plan corresponds
to the suspended process of the dynamic ALP procedure. It is pointed out, in
[18], that DSLDNF is very much related to the dynamic ALP procedure. The
main differences between our planner and the dynamic ALP procedure is as
follows:

– On the one hand, our planner can update the program and incrementally
modify plans, even after executing actions, by canceling some actions. On the
other hand, the dynamic ALP procedure cannot modify plans by canceling
actions after executing some actions.

– On the one hand, our planner updates the validity of clauses. On the other
hand, the dynamic ALP procedure updates the truth value of abducibles,
which are literals. Note that clauses can express facts that are literals. In
this sense, our planner is more general than the dynamic ALP procedure.

Another proof procedure for multi-agent systems, called the iff proof proce-
dure [12], modifies the computation after observation. The iff proof procedure is
also based on ALP. When observing a fact, the iff procedure checks the integrity
constrains, and tries to restore the consistency of computation by assuming ex-
tra abducibles, if necessary. Once a fact has been observed, however, this proof
procedure cannot delete observed facts from the knowledge base. It keeps adding
abducibles to the knowledge base. (This is not a defect for a system which never
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deletes data.) Since our planner does not use integrity constraints, observed facts
never affect the validity of derived plans. However, if negation as failure is used,
we will have the same problem: the added clauses or observed facts might affect
the validity of derived plans. This problem has been solved in the full version [8]
of DSLDNF.

In MINERVA [13], the agent can assimilate clauses of generalized logic pro-
gramming, and a special semantics is used to interpret the possibly contradictory
programs. We do not have this problem because we do not use generalized logic
programs that use explicit negation. We are working on the topic of how to
modify computation after program updates, while the challenge of MINERVA is
about how to interpret mutually contradictory programs.

Transaction logic programming (TLP) [2] is related to our plan modification
method after action execution in Section 4. Like Prolog, the procedure in [2]
executes literals in the body of a clause from left to right. When backtracking,
it undoes actions. There is also a concurrent version [1] of TLP. The action
cancellation of our procedure is different from that of TLP in the following
points:

– On the one hand, our planner incrementally modifies plans without back-
tracking by adding undoing actions to some (not all) of the plans. On the
other hand, TLP undoes actions when backtracking.

– One the one hand, in order to avoid unnecessary action cancellation, our
planner uses two kinds of undoing actions: sequentially undoing actions and
concurrently undoing actions. On the other hand, TLP undoes actions simply
in the backtracking order.

The importance of canceling actions is recognized also in the area of web
services. For example, according to the specification of BPEL4WS [3], which
can express the flow of web services, if an activity in a scope is not executed
as expected, the activities already executed in the scope will be undone. For
example, suppose that the activities A1, A2, A3 in a scope have been executed
in this order. When undoing activities in that scope, it first undoes A3, then
undoes A2, and finally undoes A1. This is similar to the backtracking of TLP.

The standard replanning method of partial-order planning is explained in
such a standard AI textbook as [17]. In the standard partial-order planning
algorithm, the plan is made by connecting “preconditions” and “postconditions
(effects)” of actions, which is used also for the purpose of replanning. Our planner
is different and makes plans by decomposing literals, which is closer to HTN
planners such as SHOP [14]. Although SHOP deals with total-order plans only,
SHOP2 [15], a new version of SHOP, can handle partial-order plans. Note that
we do not use the preconditions and postconditions of actions at all. Although
SHOP and SHOP2 use the preconditions and postconditions, they are used for
the purpose of task decompostion, which is different from the standard partial-
order planning. As mentioned in [5], replanning in dynamic environments is the
important future work for SHOP.
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11 Conclusion and Future Work

We have shown how to integrate task decomposition of HTN planning, action
execution, program updates, and plan modifications. When updating the pro-
gram or executing an action, our procedure incrementally modifies the plans.
Although our procedure does not use the knowledge describing the effects of
actions on the state of the world expressed by fluents, it takes into account the
side effects of actions when modifying plans after action execution. We have also
defined an independent semantics and showed the soundness of the agent life
cycle.

Compared with our previous work, we have improved our planning procedure
using (restricted) partial-order plans, by which we can further avoid unneces-
sary cancellation of already executed actions when switching from one plan to
another. In addition, we introduced a new type of undoing actions that can be
executed anytime, which also contributes to the avoidance of action cancellation.

As mentioned in the previous section, the plan modification method after a
program update is based on the proof procedure of DSLDNF. When updating the
program, invalid plans are removed and new valid plans are added. In [7, 8], using
the robot navigation example, it was shown that DSLDNF generally replans
faster than SLDNF. This is because DSLDNF reuses already derived plans while
SLDNF has to recompute from scratch. We confirmed the same result by means
of experiments in Section 7, using a different scenario.

Finally, we showed two examples where our planning framework plays very
important roles in multi-agent systems. From those examples, we can understand
that our incremental plan modification is very effective in speculative computa-
tion in multi-agent systems and joint planning between mobile agents and local
agents in mobile agent systems.

An important subject for future work is the research into the selection strat-
egy of actions and plans. Another subject for future work is handling the inter-
ference between subplans. Finally, the most important subject for future work
for us is application development although we have tested our new planning
algorithm and confirmed it works.
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Abstract. In this paper we extend the Revision Programming framework—a
logic-based framework to express and maintain constraints on knowledge bases—
with different forms of preferences. Preferences allow users to introduce a bias in
the way agents update their knowledge to meet a given set of constraints. In par-
ticular, they provide a way to select one between alternative feasible revisions and
they allow for the generation of revisions in presence of conflicting constraints,
by relaxing the set of satisfied constraints (soft constraints). A methodology for
computing preferred revisions using answer set programming is presented.

1 Introduction

Multi-Agents Systems (MAS) require coordination mechanisms to facilitate dynamic
collaboration of the intelligent components, with the goal of meeting local and/or global
objectives. In the case of MAS, the coordination structure should provide communication
protocols to link agents having inter-related objectives and it should facilitate mediation
and integration of exchanged knowledge [7]. Centralized coordination architectures (e.g.,
mediator-based architectures) as well as fully distributed architectures (e.g., distributed
knowledge networks) face the problem of non-monotonically updating agent’s theories
to incorporate knowledge derived from different agents. The problem is compounded
by the fact that incoming knowledge could be contradictory—either conflicting with the
local knowledge or with other incoming items—incomplete, or unreliable. Recently a
number of formalisms have been proposed [16, 4, 2, 20, 8] to support dynamic updates
of (propositional) logic programming theories; they provide convenient frameworks
for describing knowledge base updates as well as constraints to ensure user-defined
principles of consistency. These types of formalisms have been proved effective in the
context of MAS (e.g., [12]).

One of such formalisms for knowledge base updates is Revision Programming. Re-
vision programming is a formalism to describe and enforce constraints on belief sets,
databases, and more generally, on arbitrary knowledge bases. The revision programming
formalism was introduced in [15, 16]. In this framework, the initial database represents
the initial state of a belief set or a knowledge base. A revision program is a collection of
revision rules used to describe constraints on the content of the database. Revision rules
could be quite complex and are usually in the form of conditions. For instance, a typical
revision rule may express a condition that, if certain elements are present in the database
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and some other elements are absent, then another given element must be absent from (or
present in) the database. Revision rules offer a natural way of encoding policies for the
integration of agent-generated knowledge (e.g., in a mediator-based architecture) or for
the management of inter-agent exchanges.

In addition to being a declarative specification of a constraint on a knowledge base, a
revision rule also has a computational interpretation—indicating a way to satisfy the con-
straint. Justified revisions semantics assigns to any knowledge base a (possibly empty)
family of revisions. Each revision represents an updated version of the original knowl-
edge base, that satisfies all the constraints provided by the revision program. Revisions
are obtained by performing additions and deletions of elements from the original knowl-
edge base, according to the content of the revision rules. Each revision might be chosen
as an update of the original knowledge base w.r.t. the revision program.

The mechanisms used by revision programming to handle updates of a knowledge
base or belief set may lead to indeterminate situations. The constraints imposed on the
knowledge base are interpreted as hard constraints, that have to be met at all costs; never-
theless this is rather unnatural in domains where overlapping and conflicting consistency
constraints may be present (e.g., legal reasoning [18], suppliers and broker agents in a
supply chain [13])—leading to the generation of no acceptable revisions. Similarly, sit-
uations with under-specified constraints or incomplete knowledge may lead to revision
programs that provide multiple alternative revisions for the same initial knowledge base.
While such situations might be acceptable, there are many cases where a single revision
is desired—e.g., agents desire to maintain a unique view of a knowledge base.

Preferences provide a natural way to address these issues; preferences allow the re-
vision programmer to introduce a bias, and focus the generation of revisions towards
more desirable directions. Preferences between revisions rules and/or preferences be-
tween the components of the revisions can be employed to select the way revisions are
computed, ruling out undesirable alternatives and defeating conflicting constraints. The
use of preference structures has been gaining relevance in the MAS community as key
mechanism in negotiation models for MAS coordination architectures [9, 11].

In this work we propose extensions of revision programming that provide general
mechanisms to express different classes of preferences—justified by the needs of knowl-
edge integration in MAS. The basic underlying mechanism common to the extensions
presented in this work is the idea of allowing classes of revision rules to be treated as soft
revision rules. A revision might be allowed even if it does not satisfy all the soft revision
rules but only selected subsets of them; user preferences express criteria to select the
desired subsets of soft revision rules.

Our first approach (Section 3) is based on the use of revision programs with pref-
erences, where dynamic partial orders are established between the revision rules. It
provides a natural mechanism to select preferred ways of computing revisions, and to
prune revisions that are not deemed interesting. This approach is analogous to the or-
dered logic program (a.k.a. prioritized logic program) approach explored in the context
of logic programming (e.g., [6, 5]). In a labeled revision program, the revision program
and the initial knowledge base are enriched by a control program, which expresses pref-
erences on rules. The control program may include revision literals as well as conditions
on the initial knowledge base. Given an initial knowledge base, the control program
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and the revision program are translated into a revision program where regular justified
revisions semantics is used. This approach provides preference capabilities similar to
those supported by the MINERVA agent architecture [12].

The second approach (Section 4) generalizes revision programs through the introduc-
tion of weights (or costs) associated to the components of a revision program (revision
rules and/or database atoms). The weights are aimed at providing general criteria for the
selection of subsets of the soft revision rules to be considered in the computation of the
revisions of the initial database. Different policies in assigning weights are considered,
allowing for the encoding of very powerful preference criteria (e.g., revisions that differ
from the initial database in the least number of atoms). This level of preference manage-
ment addresses many of the preference requirements described in the MAS literature
(e.g., [11]).

For each of the proposed approaches to the management of preferences, we provide
an effective implementation schema based on translation to answer set programming—
specifically to the smodels [17] language. This leads to effective ways to compute
preferred revisions for any initial database w.r.t. a revision program with preferences.

The main contribution of this work is the identification of forms of preferences
that are specifically relevant to the revision programming paradigm and justified by the
needs of knowledge maintenance and integration in MAS, and the investigation of the
semantics and implementation issues deriving from their introduction.

2 Preliminaries: Revision Programming

In this section we present the formal definition of revision programs with justified revision
semantics and some of their properties [16, 15, 14].

Elements of some finite universe U are called atoms. Subsets of U are called data-
bases. Expressions of the form in(a) or out(a), where a is an atom, are called revision
literals. For a revision literal in(a), its dual is the revision literal out(a). Similarly, the
dual of out(a) is in(a). The dual of a revision literal α is denoted by αD.A set of revision
literals L is coherent if it does not contain a pair of dual literals. For any set of atoms
B ⊆ U , we denote Bc = {in(a) : a ∈ B} ∪ {out(a) : a /∈ B}. A revision rule is an
expression of one of the following two types:

in(a) ← in(a1), . . . , in(am), out(b1), . . . , out(bn) or (1)

out(a) ← in(a1), . . . , in(am), out(b1), . . . , out(bn), (2)

where a, ai and bi are atoms.A revision program is a collection of revision rules. Revision
rules have a declarative interpretation as constraints on databases. For instance, rule (1)
imposes the following condition: a is in the database, or at least one ai, 1 ≤ i ≤ m, is
not in the database, or at least one bj , 1 ≤ j ≤ n, is in the database.

Revision rules also have a computational (imperative) interpretation that expresses
a way to enforce a constraint. Assume that all data items ai, 1 ≤ i ≤ m, belong to the
current database, say I , and none of the data items bj , 1 ≤ j ≤ n, belongs to I . Then,
to enforce the constraint (1), the item a must be added to the database (removed from it,
in the case of the constraint (2)), rather than removing (adding) some item ai (bj).
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Given a revision rule r, by head(r) and body(r) we denote the literal on the left
hand side and the set of literals on the right hand side of the←, respectively.

A set of atoms B ⊆ U is a model of (or satisfies) a revision literal in(a) (resp.,
out(a)), if a ∈ B (resp., a �∈ B). A set of atoms B is a model of (or satisfies) a revision
rule r if either B is not a model of at least one revision literal from the body of r, or
B is a model of head(r). A set of atoms B is a model of a revision program P if B is
a model of every rule in P . Let P be a revision program. The necessary change of P ,
NC(P ), is the least model of P , when treated as a Horn program built of independent
propositional atoms of the form in(a) and out(b).

The collection of all revision literals describing the elements that do not change their
status in the transition from a database I to a database R is called the inertia set for I
and R, and is defined as follows:

Inertia(I, R) = {in(a): a ∈ I ∩R} ∪ {out(a): a /∈ I ∪R}.

By the reduct of P with respect to a pair of databases (I, R), denoted by PI,R, we
mean the revision program obtained from P by eliminating from the body of each rule
in P all literals in Inertia(I, R). The necessary change of the program PI,R provides a
justification for some insertions and deletions. These are exactly the changes that are a
posteriori justified by P in the context of the initial database I and a putative revised
database R.

Given a database I and a coherent set of revision literals L, we define

I ⊕ L = (I \ {a ∈ U : out(a) ∈ L}) ∪ {a ∈ U : in(a) ∈ L}.

Definition 1 ([16]). A database R is a P -justified revision of database I if the necessary
change of PI,R is coherent and if R = I ⊕NC(PI,R).

Basic properties of justified revisions include the following [16]:

1. If a database R is a P -justified revision of I , then R is a model of P .
2. If a database B satisfies a revision program P then B is a unique P -justified revision

of itself.
3. If R is a P -justified revision of I , then R ÷ I is minimal in the family {B ÷ I :

B is a model of P}—where R÷ I denotes the symmetric difference of R and I . In
other words, justified revisions of a database differ minimally from the database.

Another important property of revision programs is that certain transformations
(shifts) preserve justified revisions [14]. For each set W ⊆ U , a W -transformation
is defined as follows ([14]). If α is a literal of the form in(a) or out(a), then

TW (α) =
{

αD, when a ∈W
α, when a /∈W .

Given a set L of literals, TW (L) = {TW (α):α ∈ L}. For example, if W = {a, b},
then TW ({in(a), out(b), in(c)}) = {out(a), in(b), in(c)}. Given a set A of atoms,
TW (A) = {a: in(a) ∈ TW (Ac)}. In particular, for any database I , TI(I) = ∅. Given
a revision program P , TW (P ) is obtained from P by applying TW to every literal in
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P . The Shifting Theorem [14] states that for any databases I and J , database R is a
P -justified revision of I if and only if TI÷J(R) is a TI÷J(P )-justified revision of J .
The Shifting Theorem provides a practical way [14] to compute justified revisions using
answer set programming engines (e.g., smodels [17]). It can be done by executing the
following steps.

1. Given a revision programP and an initial database I , we can apply the transformation
TI to obtain the revision program TI(P ) and the empty initial database.

2. TI(P ) can be converted into a logic program with constraints by replacing revision
rules of the type (1) by

a← a1, . . . , am, not b1, . . . , not bn (3)

and replacing revision rules of the type (2) by constraints

← a, a1, . . . , am, not b1, . . . , not bn. (4)

We denote the logic program with constraints obtained from a revision program Q
via the above conversion by lp(Q).

3. Given lp(TI(P )) we can compute its answer sets.
4. Finally, the transformation TI can be applied to the answer sets to obtain the P -

justified revisions of I .

3 Revision Programs with Preferences

In this section, we introduce revision programs with preferences, that can be used to
deal with preferences between rules of a revision program. We begin with an example
to motivate the introduction of preferences between revision rules. We then present the
syntax and semantics and discuss some properties of revision programs with preferences.

3.1 Motivational Example

Assume that we have a number of agents a1, a2, . . . , an. The environment is encoded
through a set of parameters p1, p2, . . . , pk. The agents perceive parameters of the envi-
ronment, and provide perceived data (observations) to a controller. The observations are
represented using atoms of the form: observ(Par, V alue, Agent), where Par is the
name of the observed parameter, V alue is the value for the parameter, and Agent is the
name of the agent providing the observation.

The controller combines the data received from agents to update its view of the
world, which includes exactly one value for each parameter. The views of the world are
described by atoms: world(Par, V alue, Agent), where V alue is the current value for
the parameter Par, and Agent is the name of the agent that provided the last accepted
value for the parameter. The initial database contains a view of the world before the new
observations arrive. A revision program, denoted by P , is used to update the view of the
world, and is composed of rules of the type:
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in(observ(Par, V alue, Agent)) ←

which describe all new observations; and rules of the following two types:

in(world(Par,Value,Agent))← in(observ(Par,Value,Agent)) (a)

out(world(Par,Value,Agent))← in(world(Par,Value1,Agent1)), (b)
(where Agent �= Agent1 or Value �= Value1).

Rules of type (a) allow to generate a new value for a parameter of a world view from a
new observation. Rules of type (b) are used to enforce the fact that only one observation
per parameter can be used to update the view.

It is easy to see that if the value of each parameter is perceived by exactly one agent
and the initial world view of the controller is coherent, then each P -justified revision
reflects the controller’s world view that integrates its agent observations whenever they
arrive. However, P does not allow any justified revisions when there are two agents
which perceive different data for the same parameter at the same time. We illustrate this
problem in the following scenario. Let us assume we have two agents a1 and a2, both
provide observations for the parameter named temperature denoting the temperature in
the room. Initially, the controller knows that world(temperature, 76, s2). At a later time,
it receives two new observations

in(observ(temperature, 74, a1)) ←

in(observ(temperature, 72, a2)) ←

There is no P -justified revision for this set of observations as the necessary change
with respect to it is incoherent, it includes in(world(temperature, 74, a1)) (because of
(a) and the first observation) and out(world(temperature, 74, a1)) (because of (a), (b),
and the second observation).

The above situation can be resolved by placing a preference between the values pro-
vided by the agents. For example, if we know that agent a2 has a better temperature sensor
than agent a1, then we should tell the controller that observations of a2 are preferred
to those of a1. This can be described by adding preferences of the form: prefer(r2, r1),
where r1 and r2 are names of rules of type (a) containing a1 and a2, respectively. With
the above preference, the controller should be able to derive a justified revision which
would contain world(temperature, 72, a2). If the agent a2 has a broken temperature
sensor and does not provide temperature observations, the value of temperature will be
determined by a1 and the world view will be updated correctly by P .

The above preference represents a fixed order of rule’s application in creating re-
visions. Sometimes, preferences might be dynamic. As an example, we may prefer the
controller to keep using temperature observations from the same agent if available. This
can be described by preferences of the form:

prefer(r1,r2) ← world(temperature,Value,a1) ∈ I , in(observ(temperature,NewValue,a1));

prefer(r2,r1) ← world(temperature,Value,a2) ∈ I , in(observ(temperature,NewValue,a2));
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where r1 and r2 are names of rules of type (a) containing a1 and a2 respectively, and I
is an initial database (a view of the world before the new observations arrive).

3.2 Syntax and Semantics

A labeled revision program is a pair (P,L) where P is a revision program and L is
a function which assigns to each revision rule in P a unique name (label). The label
of a rule r ∈ P is denoted L(r). The rule with a label l is denoted r(l). We will use
head(l), body(l) to denote head(r(l)) and body(r(l)) respectively. The set of labels
of all revision rules from P is denoted L(P ). That is, L(P ) = {L(r) : r ∈ P}. For
simplicity, for each rule α0 ← α1, . . . , αn of P , we will write:

l : α0 ← α1, . . . , αn

to indicate that l is the value assigned to the rule by the function L.
A preference on rules in (P,L) is an expression of the following form

prefer(l1, l2) ← initially(α1, . . . , αk), αk+1, . . . , αn, (5)

where l1, l2 are labels of rules in P , α1 . . . , αn are revision literals, k ≥ 0, n ≥ k.
Informally, the preference (5) mean that if revision literals α1 . . . , αk are satisfied by

the initial database and literals αk+1, . . . , αn are satisfied by a revision, then we prefer
to use rule r(l1) over rule r(l2). More precisely, if the body of rule r(l1) is satisfied then
rule r(l2) is defeated and ignored. If body(l1) is not satisfied then rule r(l2) is used.

A revision program with preferences is a triple (P,L, S), where (P,L) is a labeled
revision program and S is a set of preferences on rules in (P,L). We refer to S as the
control program since it plays an important role on what rules can be used in constructing
the revisions.

A revision program with preferences (P,L, S) can be translated into an ordinary
revision program as follows. Let UL(P ) be the universe obtained from U by adding new
atoms of the form ok(l), defeated(l), prefer(l1, l2) for all l, l1, l2 ∈ L(P ). Given an
initial database I , we define a new revision program PS,I over UL(P ) as the revision
program consisting of the following revision rules:

• for each l ∈ L(P ), the revision program PS,I contains the two rules

head(l) ← body(l), in(ok(l)) (6)

in(ok(l)) ← out(defeated(l)) (7)

• for each preference prefer(l1, l2) ← initially(α1, . . . , αk), αk+1, . . . , αn in S such
that α1 . . . , αk are satisfied by I , PS,I contains the rules

in(prefer(l1, l2)) ← αk+1, . . . , αn (8)

in(defeated(l2)) ← body(l1), in(prefer(l1, l2)) (9)

Following the compilation approach in dealing with preferences, we define the notion
of (P,L, S)-justified revisions of an initial database I as follows.
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Definition 2. A database R is a (P,L, S)-justified revision of I if there exists R′ ⊆
UL(P ) such that R′ is a PS,I -justified revision of I , and R = R′ ∩ U .

The next example illustrates the definition of justified revisions with respect to revi-
sion programs with preferences.

Example 1. Let P be the program containing the rules

r1 : in(world(temperature, 76, a1)) ← in(observ(temperature, 76, a1)).
r2 : in(world(temperature, 77, a2)) ← in(observ(temperature, 77, a2)).

and the set S of preferences consists of a single preference prefer(r1, r2). Let I1 =
{observ(temperature, 76, a1), observ(temperature, 77, a2)} be the initial database. The
revision program PS,I1 is the following:

in(world(temperature, 76, a1)) ← in(observ(temperature, 76, a1)), in(ok(r1))
in(world(temperature, 77, a2)) ← in(observ(temperature, 77, a2)), in(ok(r2))

in(ok(r1)) ← out(defeated(r1))
in(ok(r2)) ← out(defeated(r2))

in(prefer(r1, r2)) ←
in(defeated(r2)) ← in(observ(temperature, 76, a1)),

in(prefer(r1, r2))

Since I1 has only one PS,I1-justified revision,

R1 =
{

observ(temperature, 76, a1), observ(temperature, 77, a2),
world(temperature, 76, a1), prefer(r1, r2), ok(r1), defeated(r2)

}
,

then I1 has only one (P,L, S)-justified revision, {world(temperature, 76, a1)}1.
Now, consider the case where the initial database is

I2 = {observ(temperature, 77, a2)}.

The revision program PS,I2 = PS,I1 . Since I2 has only one PS,I2-justified revision,

R2 =
{

world(temperature, 77, a2), observ(temperature, 77, a2),
prefer(r1, r2), ok(r1), ok(r2)

}
,

we can conclude that I2 has only one (P,L, S)-justified revision,

{world(temperature, 77, a2)}1.

Notice the difference in the two cases: in the first case, rule r2 is defeated and cannot
be used in generating the justified revision. In the second case both rules can be used.

1 We omit the observations from the revised database.
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3.3 Properties

Justified revision semantics for revision programs with preferences extends justified
revision semantics for ordinary revision programs. More precisely:

Theorem 1. A database R is a (P,L, ∅)-justified revision of I if and only if R is a
P -justified revision of I .

Proof. (⇒) Let R be a (P,L, ∅)-justified revision of I . By definition, there exists R′ ⊆
UL(P ) such that R′ is a P ∅,I -justified revision of I , and R = R′ ∩ U . By definition
of a justified revision, NC((P ∅,I)I,R′) is coherent, and R′ = I ⊕ NC((P ∅,I)I,R′).
Revision program P ∅,I consists of the rules of the form (6) and (7) only. Therefore, R′

does not contain atoms of the form defeated(l) (l ∈ L(P )). Thus, (P ∅,I)I,R′ consists of
rules

head(l′) ← body(l′), in(ok(l′)) (for all l′ ∈ PI,R)

in(ok(l)) ← (for all l ∈ L(P ))

Hence, NC((P ∅,I)I,R′) =NC(PI,R)∪{ok(l) : l ∈ L(P )}. Since NC((P ∅,I)I,R′)
is coherent, NC(PI,R) is coherent, too. If we take intersection with U of left- and right-
hand sides of equation R′ = I ⊕ NC((P ∅,I)I,R′), we get R = I ⊕ NC(PI,R). By
definition, R is a P -justified revision of I .

(⇐) Let R be a P -justified revision of I . Consider R′ = R ∪ {ok(l) : l ∈ L(P )}.
Let us show that R′ is a P ∅,I -justified revision of I . Indeed, Inertia(I, R′) contains all
revision literals of the form out(defeated(l)). Therefore, (P ∅,I)I,R′ consists of rules

head(l′) ← body(l′), in(ok(l′)) (for all l′ ∈ PI,R)

in(ok(l)) ← (for all l ∈ L(P ))

Thus, NC((P ∅,I)I,R′) = NC(PI,R) ∪ {in(ok(l)) : l ∈ L(P )}. Consequently,
I ⊕ NC((P ∅,I)I,R′) = (I ⊕ NC(PI,R)) ∪ {ok(l) : l ∈ L(P )} = R ∪ {ok(l) :
l ∈ L(P )} = R′. By definition, R′ is a P ∅,I -justified revision of I . Hence, R is a
(P,L, ∅)-justified revision of I . �

We will now investigate other properties of revision programs with preferences.
Because of the presence of preferences, it is expected that not every (P,L, S)-justified
revision of I is a model of P . This can be seen in the next example.

Example 2. Let P be the program

r1 : in(a) ← out(b) r2 : in(b) ← out(a)

and the set S consists of two preferences: prefer(r1, r2) and prefer(r2, r1). Then, ∅ is
(P,L, S)-justified revision of ∅ (both rules are defeated) but not a model of P .

The above example also shows that circular preferences among rules whose bodies
can be satisfied simultaneously, may lead to a situation when all such rules will defeat
each other, and therefore, none of the rules involved will be used in computing justified
revisions. This situation corresponds to a conflict among preferences. For instance, in the
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above example a conflict is between a preference to use r1 instead of r2 and a preference
to use r2 instead of r1. In order to satisfy the preferences both rules need to be removed.

The next theorem shows that for each (P,L, S)-justified revision R of I , the subset
of rules in P that are satisfied by R, is uniquely determined. To formulate the theorem,
we need some more notation. Let J be a subset of UL(P ). By P |J we denote the program
consisting of the rules r in P such that

• ok(L(r)) ∈ J , or
• ok(L(r)) �∈ J and body(r) \ Jc �= ∅.

Theorem 2. For every PS,I -justified revision R of I , the corresponding (P,L, S)-
justified revision R ∩ U of I is a model of program P |R.

Proof. Consider a rule r in P |R. Let us prove that R ∩ U is a model of r. If body(r)
is not satisfied by R ∩ U , then r is trivially satisfied by R ∩ U . Assume that body(r)
is satisfied by R ∩ U . Since all revision literals in body(r) belong to U c, body(r) is
satisfied by R, and body(r) \Rc = ∅. By definition of PS,I , rule r′

r′ = head(r) ← body(r), in(ok(L(r)))

belongs to PS,I . By definition of P |R, ok(L(r)) ∈ R. Hence, body(r′) is satisfied
by R. By definition of a (P, L, S)-justified revision, R is a model of PS,I . Therefore,
head(r′) = head(r) is satisfied by R. Since head(r) ∈ U c, it is satisfied by R ∩ U .
Thus, R ∩ U is a model r. Consequently, R ∩ U is a model of P |R. �

In the rest of this subsection, we discuss some properties that guarantee that each
(P, L, S)-justified revision of I is a model of the program P . We concentrate on con-
ditions on the set of preferences S. Obviously, Example 2 suggests that S should not
contain a cycle between rules. The next example shows that if preferences are placed on
a pair of rules such that the body of one of them is satisfied when the other rule is fired,
then this may result in revisions that are not models of the program.

Example 3. Let P be the program

r1 : in(a) ← in(b) r2 : in(d) ← out(a)

and the set of preferences S consists of prefer(r2, r1). Then, {b, d} is (P,L, S)-justified
revision of {b} but is not a model of P .

We now define precisely the conditions that guarantee that justified revisions of
revision programs with preferences are models of the revision programs as well. First,
we define when two rules are disjoint, i.e., when two rules cannot be used at the same
time in creating revisions.

Definition 3. Let (P,L, S) be a revision program with preferences. Two rules r, r′ of P
are disjoint if one of the following conditions is satisfied:

1. (head(r))D ∈ body(r′) and (head(r′))D ∈ body(r); or
2. body(r) ∪ body(r′) is incoherent.
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We say that a set of preferences is selecting if it contains only preferences between
disjoint rules.

Definition 4. Let (P,L, S) be a revision program with preferences. S is said to be a set
of selecting preferences if for every preference

prefer(r, r′) ← l1, . . . , lk

in S, rules r and r′ are disjoint.

Finally, we say that a set of preferences is cycle-free if the transitive closure of the
preference relation prefer does not contain a cycle.

Definition 5. Let (P,L, S) be a revision program with preferences and <S= {(r1, r2) |
prefer(r1, r2)occurs as head of a preference in S and (body(r1)∪body(r2)) is coherent}.
S is said to be cycle-free if for every rule r of P , (r, r) does not belong to the transitive
closure <∗

S of <S .

Lemma 1. Let (P,L, S) be a revision program with preferences where S is a set of
selecting preferences. Let R be a (P,L, S)-justified revision of I . For every rule r in P
such that head(r) �∈ Rc and body(r) ⊆ Rc there exists a rule r′ such that (r′, r) ∈<S ,
head(r′) �∈ Rc, and body(r′) ⊆ Rc.

Proof. Let R′ ⊆ UL(P ) be a PS,I -justified revision of I such that R = R′ ∩ U
(it exists by definition of a (P,L, S)-justified revision). Because head(r) �∈ Rc and
body(r) ⊆ Rc, we have that defeated(r) ∈ R′. Hence, there exists a rule r′ in P and a
preference

prefer(r′, r) ← l1, . . . , lk

in S such that {l1, . . . , lk} ⊆ Rc and body(r′) ⊆ Rc. Since body(r) ⊆ Rc and
body(r′) ⊆ Rc, the set (body(r′)∪ body(r)) is coherent. Therefore, (r′, r) ∈<S . Rules
r and r′ are disjoint because S is a set of selecting preferences. Condition 2 in the
definition of disjoint rules for r and r′ is not satisfied because (body(r′) ∪ body(r)) is
coherent. Hence, condition 1 must be satisfied. Namely, (head(r))D ∈ body(r′) and
(head(r′))D ∈ body(r). Because body(r) ⊆ Rc and Rc does not contain a pair of dual
literals, we conclude that head(r′) �∈ Rc. This proves the lemma. �

The next theorem shows that the conditions on the set of preferences S guarantee
that preferred justified revisions are models of the original revision program.

Theorem 3. Let (P,L, S) be a revision program with preferences where S is a set of
selecting preferences and is cycle-free. For every (P,L, S)-justified revision R of I , R
is a model of P .

Proof. Let r be a rule in P . If body(r) is not satisfied by R then rule r is trivially
satisfied by R. Assume that body(r) is satisfied by R. That is, body(r) ⊆ Rc. We need
to prove that in this case head(r) ∈ Rc. Assume the contrary, head(r) �∈ Rc. By
Lemma 1, we know that there exists a rule r1 such that (r1, r) ∈<S , body(r1) ⊆ Rc,
and head(r1) �∈ Rc. Applying Lemma 1 one more time, we conclude that there exists a



Revising Knowledge in Multi-agent Systems 145

rule r2 such that (r2, r1) ∈<S , body(r2) ⊆ Rc, and head(r2) �∈ Rc, etc. In other words,
this implies that there exists an infinite sequence r0 = r, r1, . . . , rk, rk+1, . . . such that
(rj+1, rj) ∈<S . Since P is finite, we can conclude that there exists some t > s such
that rt = rs. This implies that (rt, rt) ∈<∗

S , i.e., S is not cycle-free. This contradicts
the assumption that S is cycle-free. In other words, our assumption that head(r) �∈ Rc

is wrong. This proves the theorem. �

The next theorem discusses the shifting property of revision programs with prefer-
ences. We extend the definition of W -transformation to a set of preferences on rules.
Given a preference on rules p of the form (5), its W -transformation is the preference

TW (p) = prefer(l1, l2) ← initially(TW (α1), . . . , TW (αk)), TW (αk+1), . . . , TW (αn).

Given a set of preferences S, its W -transformation is TW (S) = {TW (p) : p ∈ S}.
Theorem 4. Let (P,L, S) be a revision program with preferences. For every two data-
bases I1 and I2, a database R1 is a (P,L, S)-justified revision of I1 if and only if
TI1÷I2(R1) is a (TI1÷I2(P ),L, TI1÷I2(S))-justified revision of I2.

Proof. Let W = I1 ÷ I2.
(⇒) Let R1 be a (P,L, S)-justified revision of I1. By definition, there exists R′

1 such
that R′

1 is a PS,I1-justified revision of I and R1 = R′
1 ∩ U . It is straightforward to

see that TW (PS,I1) = TW (P )TW (S),I2 . This together with the Shifting Theorem [14]
implies that TW (R′

1) is a TW (P )TW (S),I2-justified revision of TW (I1) = I2. Notice
that TW (R′

1) ∩ U = TW (R1). Therefore, TW (R1) is a (TW (P ),L, TW (S))-justified
revision of I2.
(⇐) The proof in the other direction is similar. �

4 Soft Revision Rules with Weights

Preferences between rules (Section 3) can be useful in at least two ways. They can
be used to recover from incoherency when agents provide inconsistent data, as in the
example from Section 3.1. They can also be used to eliminate some revisions. The next
example shows that in some situations, this type of preferences is rather weak.

Example 4. Consider again the example from Section 3.1, with two agents a1 and a2
whose observations are used to determine the value of the parameter temperature. Let
us assume now that a1 and a2 are of the same quality, i.e., temperature can be updated
by one of the observations yielded by a1 and a2. This means that there is no preference
between the rule of type (a) (for a1) and the rule of type (a) (for a2) and vice versa. Yet,
as we can see, allowing both rules to be used in computing the revisions will not allow
the controller to update its world view when the observations are inconsistent.

The problem in the above example could be resolved by grouping the rules of the
type (a) into a set and allowing only one rule from this set to be used in creating revisions
if the presence of all the rules does not allow justified revisions.

Inspired by the research in constraint programming, we propose to address the sit-
uation when there are no justified revisions by dividing a revision program P in two
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parts, HR and SR, i.e., P = HR ∪ SR. Rules from HR and SR are called hard rules
and soft rules, respectively. The intuition is that rules in HR must be satisfied by each
revision, while revisions may satisfy only a subset of SR if it is impossible to satisfy all
of them. The subset of soft rules that is satisfied, say S, should be optimal with respect
to some comparison criteria. In this section, we investigate several criteria—each one is
discussed in a separate subsection.

4.1 Maximal Number of Rules

Let P = HR ∪ SR. Our goal is to find revisions that satisfy all rules from HR and
the most number of rules from SR. Example 4 motivates the search for this type of
revisions. In the next definition, we make this precise.

Definition 6. R is a (HR,SR)-preferred justified revision of I if R is a (HR ∪ S) -
justified revision of I for some S ⊆ SR, and for all S′ ⊆ SR such that S′ has more
rules than S, there are no (HR ∪ S′)-justified revisions of I .

Preferred justified revision can be computed, under the maximal number of rules
criteria, by extending the translation of revision programs to answer set programming,
to handle the distinction between hard and soft rules. The objective is to determine
(HR ∪ S)-justified revisions of an initial database I , where S is a subset of SR of
maximal size such that (HR ∪ S)-justified revisions exist.

The idea is to make use of two language extensions proposed by the smodels
system: choice rules and maximize statements. Intuitively, each soft rule can be either
accepted or rejected in the program used to determine revisions. Let us assume that
the rules in TI(SR) have been uniquely numbered. For each initial database I , we
translate P = HR∪SR into an smodels program lp(TI(HR))∪ lp′(TI(SR)) where
lp′(TI(SR)) is defined as follows. If the rule number i in TI(SR) is

in(a) ← in(p1), . . . , in(pm), out(s1), . . . , out(sn)

then the following rules are added to lp′(TI(SR))

{rulei} : − p1, . . . , pm, not s1, . . . , not sn.
a : − rulei

where rulei is a distinct new atom. Similarly, if

out(a) ← in(p1), . . . , in(pm), out(s1), . . . , out(sn)

is the rule number i in TI(SR), then the following rules are added to lp′(TI(SR))

{rulei} : − p1, . . . , pm, not s1, . . . , not sn.
: − rulei, a.

where rulei is a distinct new atom. Finally, we need to enforce the fact that we desire to
maximize the number of SR rules that are satisfied. This corresponds to maximizing the
number of rulei that are true in the computed answer sets. This can be directly expressed
by the following statement:

maximize{rule1, . . . , rulek}. (10)
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where k is the number of rules in SR. The way how smodels system processes
maximize statement is as follows. It first searches a single model and prints it. Af-
ter that, smodels prints only "better" models. The last model that smodels prints
will correspond to a (HR,SR)-preferred justified revision of I . Notice that this is the
only occurrence of maximize in the translation which is a requirement for the correct
handling of this construct in smodels.

4.2 Maximal Subset of Rules

A variation of definition from Section 4.1 can be obtained when instead of satisfying
maximal number of soft rules it is desired to satisfy a maximal subset of soft rules. In
other words, given P = HR∪SR, the goal is to find revisions that satisfy all rules from
HR and a maximal subset (with respect to set inclusion) of rules from SR. The precise
definition follows.

Definition 7. R is a (HR,SR)-preferred⊆ justified revision of I if R is a (HR ∪ S) -
justified revision of I for some S ⊆ SR, and for all S′ if S ⊂ S′ ⊆ SR, then there are
no (HR ∪ S′)-justified revisions of I .

The procedure described in Section 4.1 allows to compute only one of (HR,SR)-
preferred⊆ justified revisions which has maximal number of soft rules satisfied.

4.3 Weights

An alternative to the maximal subset of soft rules is to assign weights to the revisions
and then select those with the maximal (or minimal) weight. In this section, we consider
two different ways of assigning weights to revisions. First, we assign weight to rule.
Next, we assign weight to atoms. In both cases, the goal is to find a subset S of SR such
that the program HR ∪ S has revisions whose weight is maximal.

Weighted Rules. Each rule r in SR is assigned a weight (a number), w(r). Intuitively,
w(r) represents the importance of r, i.e., the more the weight of a rule the more important
it is to satisfy it.

Example 5. Let us reconsider the example from Section 3.1. Rules of the type (a) are
treated as soft rules, while the rules of type (b) are treated as hard rules. We can make
use of rule weights to select desired revisions. For example, if an observed parameter
value falls outside expected value range for the parameter, it may suggest that an agent
that provided the observation has a faulty sensor. Thus, we may prefer observations that
are closer to the expected range. This can be expressed by associating to each rule r of
the type (a) the weight

w(r) = min{0, MaxEV − V alue}+ min{0, V alue−MinEV },

where MaxEV and MinEV are maximum and minimum expected values for Par.

Let us define the rule-weighted justified revision of a program with weights for rules.

Definition 8. R is called a rule-weighted (HR,SR)-justified revision of I if the fol-
lowing two conditions are satisfied:
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1. there exists a set of rules S ⊆ SR s.t. R is a (HR ∪ S)-justified revision of I , and
2. for any set of rules S′ ⊆ SR, if R′ is a (HR ∪ S′)-justified revision of I , then the

sum of weights of rules in S′ is less or equal than the sum of weights of rules in S.

Let us generalize the implementation in the previous sections to consider weighted
rules. The underlying principle is similar, with the difference that the selection of soft
rules to include is driven by the goal of maximizing the total weight of the soft rules
that are satisfied by the justified revision. The only change we need to introduce w.r.t.
the implementation is in the maximize statement. Let us assume that w(i) denotes
the weight associated to the ith SR rule. Then, instead of the rule (10) the following
maximize statement is generated:

maximize[rule1 = w(1), rule2 = w(2), . . . , rulek = w(k)].

Weighted Atoms. Instead of assigning weights to rules, we can also assign weights to
atoms in the universe U . Each atom a in the universe U is assigned a weight w(a) which
represented the degree we would like to keep it unchanged, i.e., the more the weight of
an atom the less we want to change its status in a database. The next example presents
a situation where this type of preferences is desirable.

Example 6. Let us return to the example from Section 3.1 with the same partition of
rules in hard and soft rules as in Example 5. Let us assume that the choice of which
observation to use to update the view of the world is based on the principle that stronger
values for the parameters are preferable, as they denote a stronger signal. This can be
encoded by associating weights of the form

w(world(Param, V alue, Sensor)) = −V alue

and minimizing the total weight of the revision.

Let us define preferred justified revision for programs with weight atoms.

Definition 9. R is called an atom-weighted (HR,SR)-justified revision of I if the
following two conditions are satisfied:

1. there exists a set of rules S ⊆ SR s.t. R is a (HR ∪ S)-justified revision of I , and
2. for any set of rules S′ ⊆ SR, if Q is a (HR ∪ S′)-justified revision of I , then the
sum of weights of atoms in I ÷ Q is greater than or equal to the sum of weights of
atoms in I ÷R.

Atom-weighted revisions can be computed usingsmodels. In this case the selection
of the SR rules to be included is indirectly driven by the goal of minimizing the total
weight of the atoms in I ÷ R, if I is the initial database and R is the justified revision.
We make use of the following observation: given a revision program P and an initial
database I , if TI(R) is a TI(P )-justified revision of ∅, then TI(R) = I ÷R. Thanks to
this observation, the computation of the weight of the difference between the original
database and a P -justified revision can be computed by determining the total weight of
the true atoms obtained from the answer set generated for the TI(P ) program.
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The program used to compute preferred revisions is encoded similarly to what is
done for the case of maximal number of rules or weighted rules, i.e., each soft rule is
encoded using smodels’s’ choice rules. The only difference is that instead of making
use of a maximize statement, we make use of a minimize statement of the form:

minimize[a1 = w(a1), a2 = w(a2), . . . , an = w(an)] (11)

where a1, . . . , an are all the atoms in U .

4.4 Minimal Size Difference

In this subsection, we consider justified revisions that have minimal size difference with
initial database. The next example shows that this is desirable in different situations.

Example 7. Assume that a department needs to form a committee to work on some
problem. Each of the department faculty members has his or her own conditions on the
committee members which need to be satisfied. The head of the department provided an
initial proposal for members of the committee. The task is to form a committee which
will satisfy all conditions imposed by the faculty members and will differ the least from
the initial proposal — the size of the symmetric difference between the initial proposal
and its revision is minimal.

In this problem we have a set of agents (faculty members) each of which provides
its set of requirements (revision rules). The goal is to satisfy all agent’s requirements in
such a way that the least number of changes is made to the initial database (proposal).

Assume that faculty members are Ann, Bob, Chris, David, Emily and Frank. Condi-
tions that they impose on the committee are the following:

Ann : in(Bob) ← out(Chris)
in(Chris) ← out(Bob)

Bob : out(David) ← in(Bob)
Chris : out(Ann) ← out(David)
David : in(David) ← in(Chris), out(Ann)

The initial proposal is I = {Ann, David}. Then, there is one minimal size difference
P -justified revisions of I , which is R1 = {Ann, David, Bob}. The size of the difference
R1 ÷ I is 1.

Ordinary P -justified revisions of I also include R2 = {Bob} with size of the differ-
ence R2 ÷ I equal to 3.

The next definition captures what is a minimal size different justified revision.

Definition 10. R is called a minimal size difference P -justified revision of I if the
following two conditions are satisfied:

1. R is a P -justified revision of I , and
2. for any P -justified revision R′, the number of atoms in R÷ I is less than or equal
to the number of atoms in R′ ÷ I .

Minimal size difference justified revision can be computed in almost the same way
as for atom-weighted justified revisions. The intuition is that instead of minimizing the
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total weight of I ÷ R (where I is the initial database and R is a P -justified revision),
we would like to minimize the size of I÷R. This can be accomplished by replacing the
minimize statement (11) with the following minimize statement:

minimize{a1, a2, . . . , an}

where a1, . . . , an are all the atoms in U .

5 Related Work

Since revision programming is strongly related to the logic programming formalisms
[15, 14, 19], our work is related to several works on reasoning with preferences in logic
programming. In this section, we discuss the differences and similarities between our
approach and some of the research in this area. In logic programming, preferences
have been an important source for “correct reasoning”. Intuitively, a logic program is
developed to represent a problem, with the intention that its semantics (e.g., answer set
or well-founded semantics) will yield correct answers to the specific problem instances.
Adding preferences between rules is one way to eliminate counter-intuitive (or unwanted)
results. Often, this also makes the program easier to understand and more elaboration
tolerant. In the literature on logic programming with preferences, we can find at least
two distinct ways to handle preferences. The first approach is to compile the preferences
into the program (e.g., [10, 6]): given a program P with a set of preferences pref, a new
program Ppref is defined whose answer set semantics is used as the preferred semantics
of P with respect to pref. The second approach deals with preferences between rules
by defining a new semantics for logic programs with preferences (e.g., [5, 21]). The
advantage of the first approach is that it does not require the introduction of a new
semantics — thus, answer set solvers can be used to compute the preferred semantics.
The second approach, on the other hand, provides a more direct treatment of preferences.

Section 3 of this paper follows the first approach. We define a notion of revision
program with preferences, which is a labeled revision program with preferences between
the rules. Given a revision program with preferences, we translate it into an ordinary
revision program, and we define justified revisions w.r.t. the revision program with
preferences as justified revisions w.r.t. the revision program obtained by translation. Our
treatment of preferences is similar to that in [10, 6, 1]. In section 4, we introduce different
types of preferences that can be dealt with more appropriately by following the second
approach.

We will now discuss the relationship between our approach and others in greater
detail. We will compare revision programs with preferences with ordered choice logic
programs [21] and preferred answer sets [5]. Both frameworks allow preferences between
rules — similar to our prefer relation — to be added to programs (choice logic programs
[21], and extended logic programs [5]). The main difference between our approach and
the approaches in [5, 21] lies in that we adopt the compilation approach while preferences
in [5, 21] are dealt with using the second approach.

Ordered choice logic programs are introduced in [21] for modeling decision making
with dynamic preferences. An ordered choice logic program (OCLP) P is a pair (C,�)
where C is a set of choice logic programs whose rules are of the form A ← B where
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A and B are finite sets of atoms and � is a partial order on C. Intuitively, atoms in
A represent alternatives and are assumed to be xor’ed together. Each member of C is
called a component of P . Intuitively,� specifies an order in which the components of P
are preferred. This ordering is used to select rules that can be applied to generate stable
models of P . Given an interpretation I , a rule r is defeated with respect to I if there
exist(s) some not less preferred rule(s) that can be applied in I whose head(s) contain(s)
alternatives to the literals in the head of r. The stable model semantics of OCLP is defined
in the same fashion of the original stable model semantics, i.e., given an interpretation M
of P , a reduction of P with respect to M – which is a positive logic program – is defined;
and, M is a stable model of P iff M is the stable model of the reduction of P with respect
to M . It is worth noticing that in the first step of the reduction, defeated rules with respect
to M are removed from P . The syntax difference between OCLP and revision program
with preferences does not allow a detailed comparison between the two approaches.
However, we note that OCLP follows the second approach to deal with preferences
while our revision program with preferences uses the compilation approach. It is also
interesting to notice that when the head of every rule in a OCLP program P has exactly
one element then the preference order does not make any difference in computing stable
models of P since there are no defeated rules. This could lead to a situation where P has
a stable model M and P contains two rules, r and r′, which belong to two components
Pi and Pj , respectively, Pj is more specific than Pi, bodies of both r and r′ are satisfied
in M , and both r and r′ are fired. Our formalization makes sure that this situation never
happens (due to (6) and (7)). For example, consider the program P = (C,�) with

C = {P1, P2}, P1 = {p ←}, P2 = {q ←}, and �= {P1 ≺ P2}.

Then, {p, q} is a stable model of this program. On the other hand, the corresponding
revision program with preferences (P ′,L, S) with

P ′ = {r1 : in(p) ←, r2 : in(q) ←}, and S = {prefer(r1, r2)}

has only {p} as its unique (P ′,L, S)-justified revision of ∅.
In [5], preferred answer sets for prioritized logic programs with preferences between

rules are defined. A new semantics is introduced that satisfies the two principles for
priorities: one represents a meaning postulate for the term “preference” and the other is
related to relevance. A detailed discussion on the differences and similarities between
preferred answer sets for prioritized logic programs and other approaches to preferences
handling in logic programming can be found in [5]. For a prioritized logic programs
(P, <), where P is an extended logic program and < is a preference ordering between
rules of P , the semantics in [5] requires that if A is a preferred answer set of (P, <)
then A is an answer set of P . Furthermore, A is generated by applying the rules in
the order specified by <. Because this is not a requirement in compilation approach,
it is not surprising to see that the approach we have taken to deal with preferences in
labeled revision programs yield different results comparing to preferred answer sets. For
example, consider the program (P, <) with

P = {r1 : p ← not q, r2 : q ←}, and <= {r1 < r2}.
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Then, (P, <) does not have a preferred answer set because its only answer set {q}
cannot be generated by first applying the rule r1 and then the rule r2. On the other hand,
the corresponding labeled program (P ′,L, S) with

P ′ = {r1 : in(p) ← out(q), r2 : in(q) ←}, and S = {prefer(r1, r2)}

will have only {p} as its unique (P ′,L, S)-justified revision of ∅ because rule r2 is
defeated.

We notice that the preferences in the above examples, viewed under the revision
program framework, are non-selecting preferences (Definition 4), and justified revisions
are not models of the program. Theorem 3 discusses a condition under which (P,L, S)-
justified revisions are models of the original program P . We show next that under this
condition and when only preferences with empty bodies are used, our framework coin-
cides with preferred answer sets for prioritized logic programs [5].

Before we introduce the theorem about the relationship between revision program
with preferences and preferred answer sets for prioritized logic programs, we need
some more notation. First, we will assume that for every revision program with pref-
erences (P,L, S), S is a set of selecting preferences, cycle-free, and the body in each
preference of the form (5) in S is empty. We will refer to such programs as static
revision programs with preferences. For such a program, we define a corresponding pri-
oritized logic program Q(P ) = (lp(P ), <) where lp(P ) is defined as in Section 2 and
<= {(l1, l2) : prefer(l1, l2) ∈ S}.

Theorem 5. Let (P,L, S) be a static revision program with preferences. Then, R is a
(P,L, S)-justified revision of the empty database iff R is a preferred answer set of Q(P )
as defined in [5].

The proof of this property can be found in the appendix.
Our work in this paper is also strongly related to dynamic logic programming (DLP)

[4]. DLP is introduced as a mean to update knowledge bases that might contain gener-
alized logic programming rules. Roughly, a DLP is an ordered list of generalized logic
programs, where each represents the properties of the knowledge base at a time moment.
The semantics of a DLP – taking into consideration a sequence of programs up to a time
point t – specifies which rules should be applied to derive the state of the knowledge
base at t. It has been shown that DLP generalizes revision programming [4]. DLP has
been extended to deal with preferences [3, 1]. A DLP with preferences, or a prioritized
DLP, is a pair (P, R) of two DLPs; P is a labeled DLP whose language does not contain
the binary predicate < and R is a DLP whose language contains the binary predicate <
and whose set of constants includes all the rule labels from both programs. Intuitively,
(P, R) represents a knowledge at different time moments – the same way a DLP does
– with the exception that there are preferences between rules in (P, R). An atom of the
form r1 < r2 represents the fact that rule r1 is preferred to rule r2. The semantics of
prioritized DLP makes sure that the preference order between rules is reflected in the set
of consequences derivable from the knowledge base. More precisely, for two conflicting
rules r1 and r2, if r1 < r2 is derived, then the consequence of the rule r1 should be
preferred over the consequence of r2. Prioritized DLP deals with preferences using the
compilation approach. In fact, the approach coincides with that of preferred answer sets
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for extended logic programs [5] when the DLP consists of a single program as shown in
[3]. In this sense, the prioritized DLP approach is similar to the approach described in
Section 3, in which we add to a revision program a preference relation between its rules
and define the semantics of a revision program with preferences following the compi-
lation approach. It follows from our discussion in the previous paragraph that revision
programming with preferences and DLP with preferences will yield different results in
certain situations. Other difference between our work and prioritized DLP lies in that we
consider other types of preferences (e.g., maximal number of applicable rules, weighted
rules, weighted atoms, or minimal size difference) and prioritized DLP does not. We
plan to investigate the use of these types of preferences in DLP in the future.

Finally, DLP is also used as the main representation language for a multi-agent
architecture in [12]. In this paper, we take the first step towards this direction by using
revision programming with preferences to represent and reason about beliefs of multi-
agents in a coordinated environment. A detailed comparison with MINERVA is planned
in the near future.

6 Conclusions

The notion of preference has found pervasive applications in the context of knowl-
edge representation and commonsense reasoning in MAS. Indeed a large number of
approaches have been proposed to improve the knowledge representation capabilities
of logic programming by introducing different forms of preferences. In this paper, we
presented a novel extension of the revision programming framework which provides the
foundations for expressing very general types of preferences. Preferences provide the
ability to “defeat” the use of certain revision rules in the computation of the revisions;
this allows us to either reduce the number of revisions generated (eventually leading to
a single revision), or to generate revisions even in the presence of conflicting revision
rules.

We proposed different preference schemes, starting from a relatively dynamic partial
order between revision rules (revision programs with preferences), and then moving to
a more general notion of weights, associated to revision rules and/or database atoms.
Soft revision rules can be dynamically included or excluded from the generation of
revisions depending on optimization criteria based on the weights of the revision (e.g.,
minimization of the total weight associated to the revision). We provided motivating
examples for the different preference schemes, along with a precise description of how
preferred revisions can be computed using the smodels answer set inference engine.

7 Appendix

In this section we give a proof of Theorem 5, that under certain conditions, the justified
revisions of labeled revision programs with preferences coincide with the preferred
answer sets of prioritized logic programs introduced in [5].
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A prioritized logic program2 is a pair (P, <) where P is a logic program and < is a
preference relation among rules of P . The semantics of (P, <) is defined by its preferred
answer set - answer sets of P satisfying some conditions determined by <. We will first
recall the notion of preferred answer sets from [5]. A binary relation R on a set S is
called strict partial order (or order) if R is irreflexive and transitive. An order R is total
if for every pair a, b ∈ S, either (a, b) ∈ R or (b, a) ∈ R; R is well-founded if every set
X ⊆ S has a minimal element; R is well-ordered if it is total and well-founded.

Let P be a collection of rules of the form

r : l0 ← l1, . . . , lm, not lm+1, . . . , not ln

where li’s are ground literals. Literals l1, . . . , lm are called the prerequisites of r. If
m = 0 then r is said to be prerequisite free. A rule r is defeated by a literal l if l = li for
some i ∈ {m + 1, . . . , n}; r is defeated by a set of literals X if X contains a literal that
defeats r. A program P is prerequisite free if every rule in P is prerequisite free. For a
program P and a set of literals X , the reduct of P with respect to X , denoted by XP , is
the program obtained from P by

– deleting all rules with prerequisite l such that l �∈ X; and
– deleting all prerequisites of the remaining rules.

Definition 11. [5] Let (P, <) be a prioritized logic program where P is prerequisite
free and < is a total order among rules of P . An answer set S of P is a preferred answer
set of (P, <) if C<(A) = A where (i) C<(A) is the smallest set of ground literals that
is logically closed (wrt. P ); (ii)

⋃∞
i=0 Si ⊆ C<(A); and (iii) the sequence Si is defined

as follows:

S0 = ∅

Sn =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⋃n−1
i=0 Si if rn is defeated by

⋃n−1
i=0 Si

or rn is defeated by A and head(rn) ∈ A

⋃n−1
i=0 Si ∪ {head(rn)} otherwise

and rn is the nth rule in the order <.
For an arbitrary prioritized logic program (P, <), a set of literals A is called a

preferred answer set of (P, <) if it is a preferred answer set of (AP, <′)) for some total
order <′ that extends A< which inherits from < by the map: f : AP → P , i.e., r′

1
A<r′

2
if and only if f(r′

1) < f(r′
2) where f(r′) is the first rule in P with respect to < such that

r′ is obtained from r through the reduction A.

Now we are ready to give the proof of Theorem 5.

2 In this appendix, by a logic program we mean a propositional logic program. This is because
we only work with propositional revision programs.
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Theorem 5. Let (P,L, S) be a static revision program with preferences. Then, R is a
(P,L, S)-justified revision of the empty database if and only if R is a preferred answer
set of Q(P ).

Proof. Let U be the set of all atoms that appear in the program P .
(⇒) Let R be a (P,L, S)-justified revision of the empty database. We have that R

is a model of P (Theorem 3). Hence, R satisfies the rules of lp(P ). Furthermore, there
exist a PS,∅-justified revision R′ such that R′ ∩ U = R.

We will first show that R is a minimal set of literals satisfying the rules of lp(P ).
Assume the contrary, that there exists M ⊂ R such that M satisfies the rules of lp(P ).
Considera ∈ R\M . Sincea ∈ R, there exists a rule r ofPS,∅ such thathead(r) = in(a),
in(a) ∈ NC(PS,∅

∅,R′), and body(r) is satisfied by R′. Because r ∈ P , we have that
ok(r) ∈ R′. Hence, lp(r) ∈ lp(P ) and the body of r is satisfied by R. This contradicts
the fact that M is closed under lp(P ). This allows us to conclude that R is an answer
set of P .

It remains to be shown that R is a preferred answer set of (lp(P ), <). Consider the
prioritized program (R(lp(P )), <′) where R(lp(P )) is the reduct of lp(P ) with respect
to R and <′ inherits from < (as defined in Definition 11). It follows from the definition
of the reduct that if r ∈R (lp(P )) and r is not defeated by R then head(r) ∈ R.

We need to show that R is a preferred answer set of (R(lp(P )), <′). Let <∗ be the
transitive closure of <′, RN = {r | r ∈ (R(lp(P )), r is not defeated by R and r does
not occur in <∗}, and RD = {r | r ∈ (R(lp(P )), r is defeated by R and r does not
occur in <∗}. Let rn1, . . . , rnn1 be an enumeration of RN and rd1, . . . , rdn2 be an
enumeration of RD. We define an ordering <′′ on the rules of (R(lp(P )) as follows.

– r <′′ r′ if r <∗ r′;
– rni <′′ rnj for 1 ≤ i < j ≤ n1;
– rnn1 <′′ r for r occurs in <∗;
– rdi <′′ rdj for 1 ≤ i < j ≤ n2; and
– r <′′ rdi for r occurs in <∗ and 1 ≤ i ≤ n2;

We have that <′′ is a total order on the set of rules of R(lp(P )). Let r1, . . . , rm be
the sequence of rules of R(lp(P )), ordered by <′′. Let S0, . . . , Sm be the sequence of
sets of literals defined for R(lp(P )) with respect to <′′. It is easy to see that because R
is an answer set of P ,

⋃m
i=0 Si ⊆ R. Thus, we only need to show that for every a ∈ R,

there exists 0 ≤ j ≤ m such that a ∈ Sj .
Consider an arbitrary a ∈ R. It follows from the definition of answer set that there

exists some rule r of lp(P ) such that head(r) = a and body(r) is satisfied by R. This
implies that the reduct r′ of r belongs to R(lp(P )). Clearly, r′ is not defeated by R.
Without the lost of generality, we can assume that r′ = rl is the first rule in the sequence
of the rules of R(lp(P )) whose head is a. Together with the fact that

⋃l−1
i=0 Si ⊆ R,

we can conclude that head(r) ∈ Sl. Thus, we have that R ⊆
⋃m

i=0 Si. This, together
with the fact that R is an answer set of lp(P ), shows that R is a preferred answer set of
(lp(P ), <).

(⇐) Let R be a preferred answer set of Q(P ), i.e., R is a preferred answer set of
(lp(P ), <′) for some total order <′ that extends <.
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First, because R is an answer set of lp(P ) we have that R is a P -justified revision
of ∅. Let IN ′ = Inertia(∅, R) = {out(a) : a �∈ R}. We have that

R = {a ∈ U : in(a) ∈ NC(P∅,R)}

where P∅,R consists of rules of the form

head(r) ← body(r) \ IN ′

where r ∈ P and where, by definition, NC(P∅,R) is the least model of P∅,R, when
treated as a Horn program built of independent propositional atoms of the form in(a)
and out(b). Let

d(R) = {defeated(r) | r ∈ P,∃r′.[r′ < r, R satisfies body(r′)]},
ok(R) = {ok(r) | r ∈ P, defeated(r) �∈ d(R)},

and
R′ = R ∪ d(R) ∪ ok(R) ∪ S.

We will show that R′ is a PS,∅-justified revision of ∅. Because the initial database is
empty, we have that

Inertia(∅, R′) = {out(a) : a ∈ UL(P ) �∈ R′}.

To simplify the presentation, let us denote Inertia(∅, R′) by IN . From the construc-
tion of R′, we have that IN ′ = IN ∩ {out(a) : a ∈ U}.

We will now construct the program P ′ = PS,∅
∅,R′ . We have that P ′ consists of the

following rules:

(a) head(r) ← body(r) \ IN, in(ok(r)) where r is a rule in P , body(r) \ IN is the set
of literals occurring in body(r) which do not occur in IN .

(b) in(ok(r)) ← out(defeated(r)) \ IN ;
(c) in(prefer(r, r′)) ← if prefer(r, r′) ∈ S;
(d) in(defeated(r)) ← body(r′) \ IN, in(prefer(r′, r)) if prefer(r′, r)) ∈ S.

We will now show that R′ is P ′-justified revision of the empty database. It follows
from Definition 1 that we need to show that R′ = {a : in(a) ∈ NC(P ′)}. Let a ∈ R′.
We consider four cases:

– a = ok(r) for some r. By construction of R′, we have that a ∈ R′ iff defeated(r) �∈
d(R) iff defeated(r) �∈ R′ iff out(defeated(r)) ∈ IN iff in(ok(r)) ∈ NC(P ′);

– a = prefer(r, r′). From the construction of R′, a ∈ R′ iff prefer(r, r′) ∈ S iff
in(prefer(r, r′) ← belongs to P ′ iff in(prefer(r, r′)) ∈ NC(P ′).

– a ∈ U . We will show that for every a ∈ U , in(a) ∈ NC(P ′) iff a ∈ R′ and
out(a) ∈ NC(P ′) iff a �∈ R′. Observe that for every rule of the type (a) we have
that head(r) ← body(r) \ IN ′ belongs to the program P∅,R. Therefore, a ∈ R
(resp. a �∈ R) implies that in(a) ∈ NC(P∅,R) (resp. out(a) ∈ NC(P∅,R)). Let T
be the fix point operator that is used in computing the least fix point of the program
P∅,R. We have that a ∈ R (resp. a �∈ R) if and only if there exists a minimal
number k such that in(a) ∈ T k(P∅,R) and in(a) �∈ T i(P∅,R) for i < k (resp.
out(a) ∈ T k(P∅,R) and out(a) �∈ T i(P∅,R) for i < k). We can prove by induction
over k that in(a) ∈ NC(P ′) (resp. out(a) ∈ NC(P ′)):
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• Base: k = 0 implies that in(a) = head(r) is a fact in P∅,R. Hence, in(a) ←
in(ok(r)) is a rule in P ′. We would like to show that ok(r) ∈ R′. Assume the
contrary, ok(r) �∈ R′. This implies that there exists a rule r′ in P such that
prefer(r′, r) ∈ S and R satisfies body(r′). Because (P,L, S) is static, we have
that (i) body(r′) ∪ body(r) is incoherent; or (ii) (head(r))D ∈ body(r′) and
(head(r′))D ∈ body(r). Since the body of r is empty, (i) cannot happen. If (ii)
happens, we have that R cannot satisfy the body of r′ due to the fact that R is
a P -justified revision of ∅. This implies that our assumption is incorrect, i.e.,
ok(r) ∈ R′. From the first item, we have that ok(r) is a fact in P ′. Thus, in(a) ∈
NC(P ′). Similar argument allows us to conclude that if out(a) ∈ T 0(∅) then
out(a) ∈ NC(P ′).

• Step: Assume that we have proved the conclusion for k. We need to show that
if in(a) ∈ T k+1(P∅,R), then in(a) ∈ NC(P ′). Similar to the base case, we can
show that there exists a rule r or P such that head(r) = in(a),
body(r)\IN ⊆ NC(P ′) and in(ok(r)) ∈ NC(P ′). This allows us to conclude
that in(a) ∈ NC(P ′). The same argument holds for out(a) ∈ T k+1(P∅,R).
This proves the inductive step.

– a = defeated(r) for some r. Then, a ∈ R′ if and only if there exists a rule r′,
prefer(r′, r) ∈ S such that the body of r′ is satisfied by R. Thus, body(r′) \ IN is
satisfied by R′, i.e., in(defeated(r)) ∈ NC(P ′).

The above items show that a ∈ R′ if and only if {a | in(a) ∈ NC(P ′)}. This implies
that R′ is a PS,∅-justified revision of ∅, i.e. R is a (P,L, S)-justified revision of ∅. �
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Abstract. In this paper we discuss the design of a knowledge revision
framework for abductive reasoning agents, based on interaction. This
involves issues such as: how to exploit knowledge multiplicity to find
solutions to problems that agents may not individually solve, what in-
formation must be passed or requested, how agents can take advantage
of the answers that they obtain, and how they can revise their reasoning
process as a consequence of interacting with each other. We describe a
novel negotiation framework in which agents will be able to exchange not
only abductive hypotheses but also meta-knowledge, which, in particular
in this paper, is understood as agents’ integrity constraints. We formalise
some aspects of such a framework, by introducing an algebra of integrity
constraints, aimed at formally supporting the updating/revising process
of the agent knowledge.

1 Multiple-Source Knowledge and Coordinated
Reasoning

The agent metaphor has recently become a very popular way to model dis-
tributed systems, in many application domains that require a goal directed
behaviour of autonomous entities. Thanks also to the recent explosion of the
Internet and communication networks, the increased accessibility of knowledge
located in different sources at a relatively low cost is opening up interesting
scenarios where communication and knowledge sharing can be a constant sup-
port to the reasoning activity of agents. In knowledge-intensive applications,
the agent paradigm will be able to enhance traditional stand-alone expert sys-
tems interacting with end-users, by allowing for inter-agent communication and
autonomous revision of knowledge.

Some agent-based solutions can be already found in areas such as information
and knowledge integration (see the Sage and Find Future projects by Fujitsu),
Business Process Management (Agentis Software), the Oracle Intelligent Agents,
not to mention decentralized control and scheduling, and e-procurement (Rock-

J. Dix and J. Leite (Eds.): CLIMA IV, LNAI 3259, pp. 159–177, 2004.
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well Automation, Whitestein Technologies and formerly Living Systems AG,
Lost Wax, iSOCO), just to cite some.1

In order to make such solutions reliable, easy to control, to specify and ver-
ify, and in order to make their behaviour easy to understand, sound and formal
foundations are needed. This reason has recently motivated several Logic Pro-
gramming based approaches to Multi-Agent Systems. Work done by Kowalski
and Sadri [1] on the agent cycle, by Leite et al. [2] on combining several Non-
Monotonic Reasoning mechanisms in agents, by Satoh et al. [3] on speculative
computation, by Dell’Acqua et al. [4, 5] on agent communication and updates, by
Sadri et al. [6] on agent dialogues, and by Ciampolini et al. [7] and by Gavanelli
et al. [8] on the coordination of reasoning of abductive logic agents, are only some
examples of application of Logic Programming techniques to Multi-Agent Sys-
tems. A common characteristic among them is that the agent paradigm brings
about the need for dealing with knowledge incompleteness (due to the multiplic-
ity and autonomy of agents), and evolution (due to their interactions).

In this research effort, many proposals have been put forward that consider
negotiation and dialogue a suitable way to let agents exchange information and
solve problems in a collaborative way, and that consider abduction as a priv-
ileged form of reasoning under incomplete information. However, such infor-
mation exchange is often limited to simple facts that help agents revise their
beliefs. In [7], for instance, such facts are modelled as hypotheses made to ex-
plain some observation in a coordinated abductive reasoning activity; in [3] the
information exchanged takes the form of answers to questions aimed at confirm-
ing/disconfirming assumptions; in [6] of communication acts in a negotiation
setting aimed at sharing resources. In [4] and previous work, the authors present
a combination of abduction and updates in a multi-agent setting, where agents
are able to propose updates to the theory of each other in different patterns.
In this scenario of collaboration among abductive agents, knowledge exchange,
update and revision play a key role. We argue that agents would benefit from
the capability of exchanging information in its various forms, like predicates,
theories and integrity constraints, and that they should be able to do it as a
result of a negotiation process regarding knowledge itself.

Finally, the relevance of abduction in proposing revisions during theory re-
finements and updates is widely recognised. In [9], for instance, it is shown how
to combine abduction with inductive techniques in order to “adapt” a knowledge
base to a set of empirical data and examples. Abductive explanations are used
to generalise or specify the rules of the knowledge base according to positive and
negative information provided. In agreement with the basis of this approach, we
discuss knowledge sharing mechanisms for agents based on an abductive frame-
work, where information is provided by the interaction between agents, which
exchange not only facts, but also constraints about their knowledge, namely in-

1 A summary about industrial applications of agent technology, including ref-
erences to the above mentioned projects and applications, can be found at:
http://lia.deis.unibo.it/~pt/misc/AIIA03-review.pdf.
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tegrity constraints of an abductive theory. Agent knowledge bases can hence be
generalised or specialised by relaxing or tightening their integrity constraints.

In this paper we focus on information exchange about integrity constraints,
abstracting away from issues such as ontology and communication languages and
protocols: we assume that all agents have a common ontology and communicate
by using the same language. In this scenario, autonomous agents will actively
ask for knowledge, e.g. facts, hypotheses or integrity constraints, and will au-
tonomously decide whether and how to modify their own constraints whenever
it is needed. For instance, an agent, which is unable to explain some observation
given its current knowledge, will try to collect information from other agents,
and possibly decide to relax its own constraints in a way that allows him to ex-
plain the observation. Conversely, an agent may find out that some assumptions
that he made ought to be inconsistent (for instance, due to “social constraints”
[10]), and try to gather information about how to tighten his own constraints or
add new ones which prevent him from making such assumptions.

The distinguishing features of the distributed reasoning revision paradigm
that we envisage consist of a mix of introspection capabilities and communica-
tion capabilities. In the style of abductive reasoning, agents are able to provide
conditional explanations about the facts that they prove, they are able to com-
municate such explanations in order to let others validate them, and they are
able to single out and communicate the constraints that prevent from or allow
them to explain an observation. The following example informally illustrates
such a scenario.

Example 1. Let us consider an interaction among two agents, A and B, having
different expertise about a given topic.

(1) A �|=IC′′ ¬f, b Agent A is unable to prove (find an explanation for)
the goal (observation) “there is a bird that does not
f ly”, and he is able to determine a set IC′′ of in-
tegrity constraints which prevent to explain the ob-
servation . . .

(2) A → B : ¬f, b . . . hence A asks B for a possible explanation . . .
(3) B |=IC′

Δ ¬f, b . . .B is able to explain the observation ¬f, b (e.g.,
by assuming a set of hypotheses Δ including p: a
penguin is a bird that does not fly), and also to deter-
mine a (significant) set IC′ of integrity constraints
involved in the abductive proof;

(4) B → A : IC′ B suggests IC′ to A;
(5) A
IC′′⊕IC′ |=Δ′ ¬f, b A revises his own constraints according to the in-

formation provided by B, by means of some updat-
ing operation, and explains his observation, possibly
with a different explanation Δ′.

At step (5), the updating operation has been accepted by A, according to a
conservative policy, since it relaxes the original constraints of A, and in particular
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those preventing to explain the observation (IC′′), with a more generic constraint
provided by B, e.g. {b,¬f,¬p → false} (a bird does not fly, unless it is a
penguin).

This example will be further elaborated later on, once the necessary notation
is introduced. The various steps involve, to some extent, deduction, introspection,
interaction, and revision, and will be further discussed to illustrate the global
picture. Then we will focus on the integrity constraint revision process, as part
of the overall framework.

The rest of this paper is organised as follows: Section 2 recalls Abductive Logic
Programming, Section 3 discusses the above mentioned general steps. Section 4
presents the formal model we devised to address constraint-based knowledge
revision: an algebra of constraints, relevant constraint selection operators, and
constraint updating/revising operators. Possible applications of the framework in
knowledge negotiation scenarios are illustrated in Section 5. Concluding remarks
and future work are summarised in Section 6.

2 Background on Abductive Logic Programming

An Abductive Logic Program (ALP) is a triple 〈T,A, IC〉, where T is a theory,
namely a Logic Program, A is the set of “abducible” predicates, and IC is a set
of integrity constraints. According to [11], negation as default can be recovered
into abduction by replacing negated literals of the form ¬ a with a new positive,
abducible atom not a and by adding the integrity constraint← a, not a to IC. In
line with [12], along with the abducible (positive) predicates, A will also contain
all negated literals, which will be generally left implicit. Given an ALP and a
goal G, or “observation”, abduction is the process of determining a set Δ of
abducibles (Δ ⊆ A), such that:

T ∪Δ |= G, and
T ∪ IC ∪Δ �|= ⊥.

For the sake of simplicity, we assume that T is ground and stratified. In this
case, many of the semantics usually adopted for abduction, like stable model se-
mantics or well-founded semantics, are known to coincide, and hence the symbol
|= can be interpreted as denoting entailment according to any of them. If there
exists such a set Δ, we call it an abductive explanation for G in 〈T,A, IC〉:

〈T,A, IC〉
abd

|= Δ G

Abduction is reasoning in presence of uncertainty, represented as the possi-
bility to assume the truth or falsity of some predicates (called “abducibles”) in
order to explain an observation. In this context, the set of integrity constraints
IC of an ALP determines the assumptions which can coherently be made to-
gether. Informally speaking, IC restricts the choice of possible explanations to
observations, or in other words, it rules out some hypothetical worlds from those
modelled by a given ALP.
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Syntax and Semantics of Integrity Constraints. We consider integrity
constraints of the form ⊥ ← L1, . . . , Ln, where L1, . . . , Ln are literals, i.e. atoms
or negations of atoms, whose set is indicated as body(ic). Singleton integrity
constraints are indicated as ic, ic1, ic2, ic′, ic′′, . . . , sets of integrity constraints
as IC, IC1, IC2, . . . , IC′, IC′′, . . . , and sets of literals as Δ, Δ1, Δ2, . . . , Δ′,
Δ′′, . . . . We will use capital letters to refer specific agents (i.e., A, ICA, TA,
. . . in Example 2) and lower case to denote generic knowledge without referring
to a specific agent (i.e., a, ICa, ICb, . . . in Section 4.3). Finally, in the following,
we will adopt the notation ← L1, . . . , Ln as a shorthand for ⊥ ← L1, . . . , Ln.

Intuitively, an integrity constraint ← L1, . . . , Ln represents a restriction,
preventing L1, . . . , Ln from being all true all at the same time. If some of the Lj in
the body of ic are abducible atoms, ic constrains the set of possible explanations
that can be produced during an abductive derivation process. Constraints of the
form ⊥ ← x,¬x, with x an atom, which prevent x and ¬x from being true at
the same time, are left implicit in the agents’ abductive logic programs, and they
can be used to implement negation by default.

Example 2. Let us consider agent A of Example 1. Its abductive program states
that something can be considered a bird if it either f lies or it has feathers, while
it can be considered a dolphin if it swims and has no hair, or a mammal if it
has hair:

TA =

⎧⎪⎪⎨
⎪⎪⎩

b ← fe.
b ← f.
d ← s,¬ha.
m ← ha.

⎫⎪⎪⎬
⎪⎪⎭ A = {f, s, fe,ha} ICA =

{
← b,¬f.
← d,¬s.

}

In order to explain its observations, agent A can make assumptions according
to its set A, and, for instance, classify an animal as a dolphin by assuming that
it is able to swim. Note how abducibles have no definitions. ICA, together with
all the implicit integrity constraints, prevents A from considering in their models
a bird that does not fly or a dolphin that does not swim. It is clear that there
is no Δ ⊆ A such that TA ∪Δ |= b,¬f and TA ∪Δ ∪ ICA �|= ⊥, and hence, as
supposed in point (1) of Example 1 (in its informal language), A �|= b,¬f .

We consider abductive agents to be agents whose knowledge is represented by
an abductive logic program, provided with an abductive entailment operator. At
this stage, we do not make assumptions on the underlying operational model.

3 Issues in a Constraint Revision Framework

Example 1 has informally introduced some issues which a framework supporting
a distributed constraint revision process must address. In this section, we discuss
them in more detail. The next section will provide a better technical insight, by
presenting some results, specifically about constraint-based knowledge revision.
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3.1 Communication

Points (2) and (4) of Example 1 require communication between agents. We are
aware that the literature on this topic is huge. There is a large number of exist-
ing proposals for agent communication models and languages, several dedicated
discussion forums such as the Workshop on Agent Communication Languages
and Protocols [13, 14], and several conference tracks and special journal issues
on this topic. Here, we do not intend to propose a new communication language
or a new interaction model, but we assume that agents are able to communicate
according to some language and protocols, and that they have a common ontol-
ogy. The focus of the present work is rather on the content than on the syntax,
semantics, or pragmatics of the messages that agents exchange with each other,
or on the protocols which support at a lower level the knowledge revision process
that we envisage. In this section, we make some remarks about communication
in our framework from this perspective.

Assumption and Constraint Exchange. Point (4) requires that agents are
able to exchange the sets of assumptions they make. In general, existing abduc-
tive agent frameworks deal with assumptions at a semantic level, but do not
consider assumptions as a first order object in the content of a message. For
instance, in [6], the messages themselves are modelled as abducible predicates,
but they do not predicate about assumptions. In the computational model of [7]
and [8], when agents cooperatively resolve a query, the computational model is
in charge of checking the global consistency of the assumptions made against
the integrity constraints of all the agent, but, still, agents can not, for instance,
directly ask other agents to check for the consistency of a given set of abducibles.

This enhancement with respect to the previous work done on the subject is
necessary in order to exploit assumptions in the process of determining significant
sets of constraints, like in points (3) and (5). Moreover, agents could be required
to explain an observation, starting from a given set of assumptions, or using
them in order to determine sets of integrity constraints that have supported
(or denied) a proof yielding those explanations. Similarly, it is also necessary
to communicate sets of constraints, point (4), which is not allowed in existing
abductive agent frameworks either, to the best of our knowledge, and for which
analogous considerations hold.

Identity Discover. Starting from point (2), agent A establishes a conversation
with agent B. This requires a mechanism allowing A to select B to speak with.
For instance, this could be accomplished by means of access mechanisms to semi-
open societies [15], such as facilitators or directory servers which let A meet its
possible partners. This kind of problem is not addressed in this paper. Instead,
we will restrict ourselves to a two-party setting, where agents are already aware
of each other.

Trust and Agent Hierarchies. Almost all interaction described in Example 1
is based on relations of trust or dependency among agents [16], based on some
form of reputation or determined by social ties, such as those given by a hierarchy.
In particular, in the example, agent A and B expose their assumptions and
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even their constraints, and agent A revises its knowledge based on the view
of the world of B. Similarly to the previous point, we do not discuss here the
mechanisms which justify such relations. The hypothesis that cooperating agent
will share parts of their knowledge is an assumption that we have in common
with other work in literature, such as [4] and [7].

Social Constraints. We would like to make a final remark about the use of
communicating constraints within a society. Although integrity constraints and
assumptions are specific of abductive agents, in [10] an interaction framework
is proposed where integrity constraints are used to model interaction protocols.
Such protocols are not inside the agents but in a social infrastructure which is
outside the agents. In this setting, a society where certain interaction protocols
are defined by way of integrity constraints could notify such constraints to new-
comers, in order to help them to behave according to the protocols. Or else, a
society could notify protocol updates to its members.

3.2 Proof of Goals and Relevance of Integrity Constraints

Constraint revision, as illustrated in Example 1, requires the capability to de-
termine a set of constraints which are “relevant” for a given computation, either
because that they contribute to defining a set of assumptions in a successful
proof, or because they make a proof fail. For instance in point (3), B, relatively
to the explanation Δ, determines the set IC′ of integrity constraints supporting
the explanation of the observation.

From a declarative perspective, relevant sets for a successful proof are for-
mally defined in Section 4.1. This definition is used, for instance, by agent B in
determining the set IC′ = {← b,¬f,¬p} which is relevant for the proof of the
query, and relaxes (see below) the set IC′′, points (3) and (5) of the example.
The definition of a proof procedure implementing the declarative definition of
relevance is one of our ongoing activities, although we reckon that the problem
of determining significant integrity constraints for a given proof may be compu-
tationally hard.

In general, there will be several alternative sets of relevant constraints for
the same query, e.g., because there are different alternative proofs for it. The
existence of a unique minimal set is not guaranteed either. For this reason, we
envisage that the knowledge revision process will have to go through a search
process for suitable sets. For instance, agents can iterate a cooperative dialog,
similar to that of Example 1, in which they propose to each other a number of
(minimal) significant sets, until they converge to a successful proof, if there exists
any. This is in line with the approach of [7] and [6]. In Section 5, we illustrate a
possible cycle which allows for such an interaction in the form of a dialogue.

3.3 Constraint Hierarchies

Point (5) requires the definition of the concept of relaxation of a set of constraints,
i.e. the capability to determine, given a set IC, another set IC′ that relaxes it. In
order to address this issue, we propose in Section 4.2 an algebra of ICs, provided
with a relaxation-based partial order.
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Intuitively, a set IC′ of integrity constraints relaxes a set IC, IC <IC IC′,
if all the goals that can be proved with respect to IC can be also proven with
respect to IC′.

The relaxing relation, in some basic cases, can be checked by means of a simple
necessary condition, namely a syntactical comparison. This happens when the
relation is the set inclusion partial order. More in general, the relation may fail
to be a partial order, in which case it is a pre-order, and checking whether a set
relaxes another one according to the definition of relaxing relation may require a
more complex analysis, based on the semantics of the corresponding ALP. This
point is currently under investigation.

Clearly, the partial order can also be read as a tightening-based partial order,
i.e. IC′ tightens IC, IC′ <IC IC, when the goals that can be proved with respect
to IC′ are a subset of those that can proved with respect to IC. A possible
definition of <IC can be found in Section 4.2. Hence, the same formal model
can be used to describe interactions, which, possibly depending on the issues
discussed in Section 3.1, may lead an agent to restrict his own believes.

Finally, the partially ordered set of integrity constraints can be equipped with
operations for relaxing, tightening and more in general revising sets of integrity
constraints, as described in the next sections.

3.4 Constraint Revision

Once that a relaxing IC′ has been found, it is necessary to be able to use it
in order to revise the constraint set IC of an agent, as it happens in point (5),
where A revises its own integrity constraints.

In general, only a subset of the integrity constraints of an agent will have
to be revised according to a relaxing or tightening operation. To this aim, we
have defined a relaxation operator which, given two sets of integrity constraints
ICa and ICb returns a third set of integrity constraints, IC′ = ICa

⊎
ICb which

relaxes ICa in case ICa <IC ICb (see Section 4.3). We present in this paper
a specific operator

⊎
, but indeed, within our framework, other tightening and

revising operations can be defined.

Example 3. After having explained in more detail the steps for constraint revi-
sion, let us now possible reconsider Example 1, and let A’s program be the one
introduced in Example 2.

(1) A
abd

�|= ¬f, b A is not able to prove ¬f, b and IC′′ = {← b,¬f}
is not satisfied by any possible explanation for the
observation, and hence are candidate for a possible
revision;

(2) A → B : ¬f, b A asks B about its observation;

(3) B
abd

|= ΔIC′ ¬f, b Δ = {¬f, p,¬ha} is an abductive explanation of B,
and IC′ = {← b,¬f,¬p} is a relevant constraint for
the proof of B;
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(4) B → A : IC′ B suggests to A the (singleton) set of integrity con-
straints IC′ = {← b,¬f,¬p};

(5) A
IC′′⊕IC′
abd

|= Δ′ ¬f, b A relaxes its constraints using IC′ and is now able
to explain his original observation ¬f, b, by using a
Δ′ = {¬f, p}

4 A Formal Model for Constraint Revision

In this section we illustrate some technical aspects we devised in order to support
the model for constraint revision that we informally discussed in the previous
sections. First, we define the set of integrity constraints that are significant in
a successful or failed proof; second, we present a partial order of constraint
sets according to a relaxing relation (that can be dually read as a tightening
relation); finally, we introduce an updating operator for revising a (significant)
set of constraints, which is based on the partial order presented.

4.1 Determining Significant Sets of Constraints

Definition 1 below characterises a set of the constraints involved in a successful
abductive proof, relatively to a (minimal) set of explanations Δ. All the con-
straints in the set are directly involved in the proof. Indeed, as soon as one of
them is removed, a smaller set of assumptions can be produced by a successful
proof for the same goal.

Definition 1. Let P = 〈T,A, IC〉 be an abductive logic program and G a goal,

such that 〈T,A, IC〉
abd

|= Δ G (i.e., Δ is a possible explanation for G in P ). Let

us assume that Δ is minimal, i.e. � Δ̂ ⊂ Δ such that 〈T,A, IC〉
abd

|= Δ̂ G.2 A set
of integrity constraints IC′ ⊆ IC is relevant with respect to P , G and Δ, written
IC′ rel (〈T,A, IC〉, G, Δ),

def⇐⇒

∀ ic ∈ IC′ ∃Δ′ ⊂ Δ such that 〈T,A, IC \ ic〉
abd

|= Δ′ G. (i)

Example 4. Let us consider agent B of Example 1. Its program TB says that
something can be considered a bird if either it flies or it is a penguin, or in any
case if it is not a mammal. Something is a mammal if it has hair. Its constraints
in ICB say that a bird either flies or is a penguin, and that dolphins swim.

TB =

⎧⎪⎪⎨
⎪⎪⎩

b ← f.
b ← p.
b ← ¬m.
m ← ha.

⎫⎪⎪⎬
⎪⎪⎭ A = {f, p,ha} ICB =

{
← b,¬f,¬p.
← d,¬s.

}

2 One amongst the minimal sets can be freely chosen.
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Agent B can assume that something flies or it is a penguin, or it has hair,
according to its set A.

It turns out that 〈TB ,A, ICB〉
abd

|= {¬f,p,¬ha} ¬f, b, and {¬f, p,¬ha} is mini-
mal. Moreover,

IC′ = {← b,¬f,¬p} rel (〈TB ,A, ICB〉, ¬f, b, {¬f, p,¬ha}),

since 〈TB ,A, ICB \ IC′〉
abd

|= {¬f,¬ha} ¬f, b, and {¬f,¬ha} ⊂ {¬f, p,¬ha}.

In the following, we will use the simplified notation IC′ rel (〈T,A, IC〉, G)
meaning ∃Δ | IC′ rel (〈T,A, IC〉, G, Δ)

The previous example shows how Definition 1 characterises the set of con-
straints that B is able to propose to A in points (3) and (4) of our Example 1. The
definition represents a “sufficient” condition to individuate relevant constraints.
Even if more general criteria are under investigation, this simple definition al-
lows us to substantiate the approach. We are also studying its computational
counterpart.

On the other hand, given a failing derivation 〈T,A, IC〉
abd

�|= G of an abductive
agent, it is also worth giving a characterisation of a (minimal) subset of IC such
that, once relaxed, or removed, allows G to be proved. This is the notion of
minimally relaxing set defined by Definition 2.

Definition 2. Let P = 〈T,A, IC〉 be an abductive logic program, and G a goal

such that 〈T,A, IC〉
abd

�|= G (i.e., there is no explanation for G in P ). A set of
integrity constraints IC′ ⊆ IC is minimally relaxing P (towards explaining G),

written IC′ min relax (〈T,A, IC〉, G),
def⇐⇒

∃Δ such that 〈T,A, IC \ IC′〉
abd

|= Δ G, and (ii)
(IC′ is minimal) � IC′′ ⊂ IC′ s.t. IC′′ min relax (〈T,A, IC〉, G) (iii)

Example 5. Let us consider an agent A whose abductive logic program is the
one introduced in Example 2. Trivially, it turns out that

IC′ = {← b,¬f} min relax (〈TA,A, ICA〉, b,¬f).

4.2 A Relaxing-Tightening Hierarchy of Constraints

In this section, we define a partial ordering relationship among integrity con-
straints, and then we lift it to sets of integrity constraints. For this purpose, we
introduce a symbol <IC(to be read: “more restrictive than”, or “less relaxed
than”). This (complete, under reasonable hypothesis) partial ordering is a spe-
cific instantiation of the general notions of relaxation and tightening applied to
set of constraints, and it will be used in the next section to define the revision
operators.
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Definition 3. Given a pair of integrity constraints, ici and icj,

ici <IC icj
def⇐⇒ ∀Δ, Δ ∪ {ici} �|= ⊥ ⇒ Δ ∪ {icj} �|= ⊥.

Example 6. Let us consider the following constraints:
(ic1) ⊥ ← a, b,
(ic2) ⊥ ← a, b, c,

Then, ic1 <IC ic2.

We can generalize the ordering relationship, from pairs of integrity constraints
to pairs of sets of integrity constraints.

Definition 4. Given two sets of integrity constrains, ICi and ICj,

ICi <IC ICj
def⇐⇒ ∀Δ, Δ ∪ ICi �|= ⊥ ⇒ Δ ∪ ICj �|= ⊥.

The ordering initially introduced between pairs of integrity constraints is
a special case of the more general ordering relation between pairs of sets. In
particular, from Definitions 3 and 4 it follows that:

Lemma 1. Given a pair of integrity constraints, ici and icj,

body(ici) ⊂ body(icj) ⇔ ici <IC icj (iv)
{ici} <IC {icj} ⇔ ici <IC icj (v)

If ICj is constituted by a single element, ICj = {icj}, we use the notation
ICi <IC icj to denote ICi <IC {icj}.

Example 7. By defining the zero element of the <IC relation as ic0 def⇐⇒ ⊥ ←,
i.e. the integrity constraint which is never satisfied, it is easy to see that

∀ic. ic0 <IC ic.

Example 8. Let us consider the following constraints:
(ic1) ⊥ ← a, b,
(ic3) ⊥ ← c,¬b,
(ic4) ⊥ ← a, c, and the implicit constraint
(ic5) ⊥ ← b,¬b.

Then, {ic1, ic3, ic5} <IC ic4.

4.3 A Constraint Updating Operator

We define an “update with relaxation” operator ICa

⊎
ICb, which updates the

set of integrity constraints ICa with respect to ICb, relaxing, whenever possi-
ble, the constraints in ICa that are “less relaxed than” (<IC) those in ICb.
More precisely, given two constraints ica ∈ ICa and icb ∈ ICb, if ica <IC icb

then ica �∈ ICa

⊎
ICb. Example 9 illustrates the use of the operator, whose

definition is straightforward for the basic cases 1. and 2. of the next definition.
Further examples of its usage in Section 5 will hopefully make the rationale of its
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definition clearer, in particular when the set ICb has been proposed by a collab-
orative agent as a relaxation for explaining some facts. This operator supports
the revision step done by A in point (5) of the Example 1.

Definition 5. Let ICa and ICb be two sets of integrity constraints. Then, the
update with relaxation of ICa by ICb, denoted as ICa

⊎
ICb, is defined as

follows:
ICa

⊎
ICb

def⇐⇒ ICa \ IC′
a ∪ ICb,

where IC′
a =

⋃
IC′′

a ⊆ICa
IC′′

a such that IC′′
a <IC

(min) icb for some icb ∈ ICb.
IC <IC

(min) ic is defined as follows:

IC <IC
(min) ic

def⇐⇒
{
IC <IC ic
� IC′ ⊂ IC such that IC′ <IC ic

We have two special cases of ICa

⊎
ICb:

1. given two integrity constraints, ica and icb,

{ica}
⊎
{icb} ⇐⇒

{
{icb}, if ica <IC icb

{ica, icb}, otherwise

2. given an integrity constraint ica and a set of integrity constraints ICb,

{ica}
⊎

ICb ⇐⇒
{

ICb, if ∃icb ∈ ICb such that ica <IC icb

{ica} ∪ ICb, otherwise

Example 9.
Given the following constraints: The following propositions hold:

(ic1) ← a, b.
(ic3) ← c,¬b.
(ic4) ← a, c.
(ic5) ← b,¬b.
(ic6) ← a, b,¬c.

(p1) ic1 <IC ic6;
(p2) {ic1, ic3, ic5} <IC

(min) ic4;
(p3) {ic6} = {ic1}

⊎
{ic6};

(p4) {ic1, ic6} = {ic6}
⊎
{ic1};

(p5) {ic4} = {ic1, ic3, ic5}
⊎
{ic4};

(p6) {ic3, ic4, ic6} = {ic1, ic3}
⊎
{ic4, ic6};

(p7) {ic4, ic5} = {ic1, ic3, ic5}
⊎
{ic4, ic5};

5 An Example of Application of Our Framework

In this section we show a possible instantiation of the general framework. We
consider, for the sake of simplicity, a 2-agent setting. Agent a is equipped with
the abductive logic program 〈Ta,A, ICa〉; agent b with 〈Tb,A, ICb〉. Whenever a
fails to explain an observation G within its current abductive logic program, it
starts an interaction with b, in order to find a suitable relaxation of its integrity
constraints that allows him (a) to explain G. On the other hand, b will have to
reply to a’s request according to some internal policy.
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We distinguish between two phases of the interaction between a and b: (i)
the process of (pro-actively) asking for a piece of information, be it a set of
assumptions, a set of integrity constraints, a set of definitions, or a combination
of them, and (ii) the process of reacting to incoming requests of that kind. As far
as the first point, we imagine that agents will act according to certain internal
cycles and policies. For the sake of clarity, and in order to keep the two things
separate, we will call cycle the sequence of steps related to the activity described
as (i), policy that related to the activity described as (ii).

5.1 Cycle

We define a predicate request(a, b, IC′
a, G) which an agent a will use to request

a set of constraints IC′
b from an agent b.

As we said earlier in Section 3, in general, there will be several alternative
sets of relevant constraints for the same query. For this reason, the knowledge
revision process will have to go through a trial-and-error search process for suit-
able minimal sets. For instance, agents can iterate a cooperative dialog, similar
to that of Example 1, in which they propose to each other a number of minimal
significant sets, until they converge to a successful proof, if any.

In Cycle 1, we illustrate a possible cycle which allows for such an interaction
in the form of a dialog.

Cycle 1 Agent update cycle for an agent a

To explain an observation G, if 〈Ta, A, ICa〉
abd

�|= G:
1: Find a minimal relaxation, IC′

a min relax (〈Ta, A, ICa〉, G)
2: repeat
3: Send request(a, b, IC′

a, G)
4: Wait for reply(b, a, IC′

a, G, IC′
b)

5: repeat
6: IC′′

a = ICa

⊎
IC′

b

7: if 〈Ta, A, IC′′
a〉

abd

|= Δ G then
8: Update ICa by IC′′

a

9: else
10: Send request(a, b, IC′

a, G)
11: Wait for reply(b, a, IC′

a, G, IC1
b)

12: IC′
b ← IC1

b

13: end if

14: until 〈Ta, A, ICa〉
abd

|= Δ G or IC′
b = ∅

15: if 〈Ta, A, ICa〉
abd

�|= G then
16: Find a new minimal relaxation, IC1

a min relax (〈Ta, A, ICa〉, G)
17: IC′

a ← IC1
a

18: end if

19: until 〈Ta, A, ICa〉
abd

|= Δ G or IC1
a = ∅
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The intuitive reading of Cycle 1 is the following: whenever a has an obser-
vation G that he cannot explain, he will:

1. try and find a minimal relaxation IC′
a for G (1:);

2. ask b (3:) whether he can tell him something about it (more details about
b’s reply are given below);

3. once a receives a reply from b (4:), reply(b, a, IC′
a, G, IC′

b), if a is able
to relax his own constraints by means of IC′

b) and therefore explain the
observation, he will revise his knowledge (8:) accordingly;

4. otherwise, a will keep asking for different sets of integrity constraints un-
til either he manages to explain his observation, or b has no other sets of
constraints (14:) to communicate to him;

5. if a does not succeed with IC′
a) (15:), the cycle is repeated until either a

has managed to explain his observation, or there are no more “new” possible
minimal relaxations (19:).

A dialogue initiated by an agent by means of request(a, b, IC′
a, G) terminates

when the cycle is terminated. The use of such a cycle to try and achieve an
agent’s needs is in line with the approach of [7] and [6]. In [7], the object of
communication are the hypotheses, in the form of predicates. Groups of agents
try to explain an observation consistently with the integrity constraints of each
other, and re-iterate the whole computational process by proposing different sets
of constraints, until a fixpoint is reached. In [6], agents have a similar cycle when
they try to obtain the resources that they are missing. The purpose of defining
a cycle in this way is to be able to prove some properties about the outcome of
the interaction. We will comment more on this in the following.

5.2 Policy

Upon receipt of a’s request, b will adopt some policy to put together a set of
constraints in reply. We use the predicate: reply(b, a, IC′

a, G, IC′
b) to indicate

b’s reply to a’s request. Policy 1 is one particular policy, defined for an agent
b. Its intuitive reading is the following: whenever b receives a message of kind
request(a, b, IC′

a, G) from an agent a, b will do the following:

1. check if he can find an abductive explanation for G (1:), and answer back
with an empty set in case of failure (2:);

2. otherwise single out a minimal subset IC′
b of integrity constraints (4:) in

ICb, which are relevant for such an explanation, and which b has not yet
communicated to a by means of reply(b, a, IC′

a, G, IC′
b);

3. communicate IC′
b to a (7:): reply(b, a, IC′

a, G, IC′
b)

This policy is only one example. Other ones are indeed possible. A reason why
we have chosen the combination of Policy 1 and Cycle 1 is that they allow for
exchanging meta-knowledge (constraints) by way of dialogues of the kind of the
one shown in the introduction (see Example 10 below). Another reason is that,
under some assumptions (atomicity), this combination guarantees termination
of the interaction process. In fact, let us consider two agents, a and b, each
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Policy 1 Agent policy of an agent b for replying to a request(a, b, IC′
a, G)

To reply to a request(a, b, IC′
a, G):

1: if 〈Tb, A, ICb〉
abd

�|= G then
2: IC′

b = ∅
3: else
4: IC′

b is a subset of ICb with the following properties:
(i) IC′

b rel (〈Tb, A, ICb〉, G);
(ii) ∃ica ∈ IC′

a, icb ∈ IC′
b such that ica <IC icb

(potentially, IC′
b could be exploited to relax some constraints);

(iii) IC′
b has not been yet communicated to a as a reply to request(a, b, IC′

a, G)
(to prevent b from proposing he same IC′

b twice in reply to the same
request of a’s);

5: if such a subset cannot be found, then IC′
b = ∅

6: end if
7: reply(b, a, IC′

a, G, IC′
b)

of them behaving according to Cycle 1 and Policy 1 when they are engaged
in a dialogue. Let us assume that the interaction happens “atomically”, i.e.,
once a initiates a dialogue by a request to explain a goal G, neither agent will
update his knowledge base until a succeeds in explaining G, or the interaction has
terminated. Then, an interaction protocol initiated by either agent will terminate
in a finite number of steps. Informally, this is the case because, given a set IC,
there is a finite number of subsets of IC;3 at each iteration a different subset of
IC is considered, and the two agents will not revise their knowledge base until
the interaction has terminated, either successfully or unsuccessfully. Since no
message is exchanged twice, and since there is a finite number of messages that
a and b can exchange, the interaction finishes in a finite number of steps.

Another property that we would like to achieve is: given two agents a and
b, the former trying to relax his constraints by adopting a specific cycle (such
as Cycle 1), the latter responding to a’s requests by following a specific policy
(such as Policy 1), either b is unable to explain a certain observation G, or it
is possible for a to revise his own integrity constraints based on b’s reply, and
finally explain G using his revised knowledge. This is subject for current work.

A last remark, before we conclude by giving an example where two agents
interact by following Cycle 1 and Policy 1. While in this work we are concerned
with the exchange of information about constraints, it could also be the case that
b’s explanation is not prevented by any constraint of a’s, but instead a is unable
to explain G only because a is missing some definition which b instead knows.
In order to tackle this situation, we will need to consider different introspection
and updating operators, which need to reason upon and modify not only the

3 We are considering in this work only propositional abductive logic programs. If
we extend it to the non-propositional case, the cycle/policy would also have to be
suitably adapted.
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agents’ integrity constraints, but also their programs, and we would need to find
some suitable cycles and policies that support such a process.

Example 10. Let us consider two agents A and B, where the abductive logic
program of A is that defined in Example 2, and the abductive logic program of
B is that defined in Example 4, as reported below. We assume now that A and
B have the same set of abducible predicates A = {f, s, fe,ha, p}.

TA =

⎧⎪⎪⎨
⎪⎪⎩

b ← fe.
b ← f.
d ← s,¬ha.
m ← ha.

⎫⎪⎪⎬
⎪⎪⎭ ICA =

{
(ic1) ← b,¬f.

← d,¬s.

}

TB =

⎧⎪⎪⎨
⎪⎪⎩

b ← f.
b ← p.
b ← ¬m.
m ← ha.

⎫⎪⎪⎬
⎪⎪⎭ ICB =

{
(ic2) ← b,¬f,¬p.

← d,¬s.

}

Let us assume that both A and B follow Cycle 1 to request relaxations of
constraints and Policy 1 to answer to incoming requests. Finally, we assume
that at some point A makes the observation G = {¬f, b}. Then, the behaviour
of the system {A, B} is the following:

(1) 〈TA,A, ICA〉
abd

�|= {¬f, b}. At this point A looks for a minimal relaxation of
its constraints towards explaining {¬f, b} (see Example 5), and it finds it in
{ic1} = {← b,¬f.}:

{← b,¬f.} min relax (〈TA,A, ICA〉, G)

(2) Following Cycle 1, A asks B a set of relevant integrity constraints of his,
that are relevant for the explanation of G:

request(a, b, {← b,¬f}, {¬f, b});

(3) Upon receipt of A’s request, according to Policy 1 B verifies that he is

able to prove G: 〈TB ,A, ICB〉
abd

|= {¬f,p,¬ha} {b,¬f}. B finds a set of integrity
constraints IC′

B = {ic2} that are relevant to A’s request (see Example 4):

{← b,¬f,¬p.} rel (〈TB ,A, ICB〉, {b,¬f}),

and indeed {← b,¬f} <IC {← b,¬f,¬p}. At this point, B replies to A’s
request by communicating IC′

B :

reply(a, b, {← b,¬f}, {¬f, b}, {← b,¬f,¬p});

(4) A generates the set IC′′
A =

{
← b,¬f,¬p.
← d,¬s.

}
as a revision of its own ICA by

IC′
B : IC′′

A = ICA

⊎
IC′

B . Since 〈TA,A, IC′′
A〉

abd

|= {b,¬f,p} {b,¬f}, A updates
his own abductive logic program.
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6 Concluding Remarks

In this work, we have described a framework for agent interaction where the
object of interaction is the agent knowledge at different levels. We have con-
sidered the case of abductive agents that are capable to formulate assumptions
to explain some observations. The agent knowledge is coded into an abductive
logic program, consisting of a theory, a set of abducible predicates, and a set
of integrity constraints. Indeed, abduction, which we considered as representing
the entire agent knowledge, could be part of a more comprehensive agent archi-
tecture, like that of computees [17], which allows for multiple forms of reasoning
and knowledge representation within an agent.

In this work, we discuss about the characteristics of an interaction frame-
work that can be used to exploit the abductive reasoning of a possibly more
complex agent. Agents exchange information about the assumptions that they
make in order to explain observations, and the integrity constraints used during
their reasoning. Integrity constraints “shape” the reasoning processes of agents
by ruling out the set of explanation which are considered to be inconsistent.
Exchanging constraints help revising the reasoning capabilities of agents. The
methodology presents some difficulties that we singled out, like understanding
the role of sets of constraints in a proof, defining constraint revising mechanisms,
or design suitable interaction schemata for the collaboration of agents within a
society.

We identified some issues that must be tackled by such a framework, both
with respect to the kind of communication required and the kind of agent rea-
soning involved in the revision process. We instantiated the general framework
by choosing a specific syntax for abductive logic programs, defining a partial
ordering relation among sets of integrity constraints, and proposing a specific
revision operator. In the last section of this paper, we showed a possible ap-
plication of the framework to specific interaction patterns, and we commented
on the kind of properties that we want the framework to exhibit. An issue that
will have to be investigated is the computational complexity of such interaction
patterns, both for what concerns (i) the computational cost of proceeding in the
protocol (i.e., by finding a minimal relaxation), and (ii) the properties related
to the protocol itself, such as guaranteed termination and convergence. In doing
so, we plan to build on results from literature, such as [18, 19] for (i), and [20]
for (ii).

This work represents a proposal for a framework to tackle issues that we con-
sider important in multi-source knowledge-intensive applications, and to the best
of our knowledge its approach is original. In the future, we intend to complete the
formalisation of the aspects that are not already covered by our model. For in-
stance, it seems interesting to work on the definition of further revision operators
and on giving a declarative semantics to some specific patterns of interaction,
such as the one suggested in Section 5, and, also, to provide a computational
counterpart to it.
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We would like to thank Lúıs Pereira and the anonymous referees for their valu-
able comments and feedback. This work was partially funded by the Informa-
tion Society Technologies programme of the European Commission, Future and
Emerging Technologies under the IST-2001-32530 SOCS project [17], within the
Global Computing proactive initiative, and by the MIUR COFIN 40% project
Sviluppo e verifica di sistemi multiagente basati sulla logica.

References

1. Kowalski, R.A., Sadri, F.: From logic programming towards multi-agent systems.
Annals of Mathematics and Artificial Intelligence 25 (1999) 391–419

2. Leite, J.A., Alferes, J.J., Pereira, L.M.: MINERVA: A dynamic logic program-
ming agent architecture. In: Intelligent Agents VIII: 8th International Workshop,
ATAL 2001, Seattle, WA, USA, Revised Papers. Lecture Notes in Artificial Intel-
ligence 2333, Springer-Verlag (2002) 141–157

3. Satoh, K., Inoue, K., Iwanuma, K., Sakama, C.: Speculative computation by ab-
duction under incomplete communication environments. In: Proceedings of the
4th International Conference on Multi-Agent Systems, Boston, USA, IEEE Press
(2000) 263–270

4. Dell’Acqua, P., Nilsson, U., Pereira, L.M.: A logic based asynchronous multi-agent
system. Electronic Notes in Theoretical Computer Science 70 (2002)

5. Dell’Acqua, P.: Weighted multi dimensional logic programs. In this volume.
6. Sadri, F., Toni, F., Torroni, P.: An abductive logic programming architecture for

negotiating agents. In Greco, S., Leone, N., eds.: Proceedings of the 8th European
Conference on Logics in Artificial Intelligence (JELIA). Lecture Notes in Artificial
Intelligence 2424, Springer-Verlag (2002) 419–431

7. Ciampolini, A., Lamma, E., Mello, P., Toni, F., Torroni, P.: Co-operation and
competition in ALIAS: a logic framework for agents that negotiate. Computational
Logic in Multi-Agent Systems. Annals of Mathematics and Artificial Intelligence
37 (2003) 65–91

8. Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: An abductive framework for
information exchange in multi-agent systems. In this volume.

9. Mooney, R.J.: Integrating abduction and induction in machine learning. In Flach,
P.A., Kakas, A.C., eds.: Abductive and Inductive Reasoning. Pure and Applied
Logic. Kluwer Academic Publishers (2000) 181–191

10. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Specification and
verification of agent interactions using social integrity constraints. Electronic Notes
in Theoretical Computer Science 85 (2003)

11. Eshghi, K., Kowalski, R.A.: Abduction compared with negation by failure. In Levi,
G., Martelli, M., eds.: Proceedings of the 6th International Conference on Logic
Programming, MIT Press (1989) 234–255

12. Kakas, A.C., Mancarella, P.: Generalized stable models: a semantics for abduc-
tion. In: Proceedings 9th European Conference on Artificial Intelligence, Pitman
Publishing (1990)

13. Dignum, F., Greaves, M., eds.: Issues in Agent Communication. Lecture Notes in
Artificial Intelligence 1916, Springer-Verlag (2000)



A New Framework for Knowledge Revision of Abductive Agents 177

14. Huget, M.P., Dignum, F., eds.: Advances in Agent Communication: International
Workshop on Agent Communication Languages, ACL 2003, Melbourne, Australia,
July 14, 2003. Revised and Invited Papers. Lecture Notes in Artificial Intelligence
2922, Springer-Verlag (2004)

15. Davidsson, P.: Categories of artificial societies. In Omicini, A., Petta, P., Tolksdorf,
R., eds.: Engineering Societies in the Agents World II. Volume 2203 of Lecture
Notes in Artificial Intelligence., Springer-Verlag (2001) 1–9

16. Castelfranchi, C., Falcone, R., Firozabadi, B., Tan, Y.H.:, guest eds.: Special Issue
on “Trust in Agents”, Parts 1 and 2. Applied Artificial Intelligence 14 (2000)

17. Societies Of ComputeeS (SOCS): a computational logic model for the description,
analysis and verification of global and open societies of heterogeneous computees.
Home Page: http://lia.deis.unibo.it/Research/SOCS/.

18. Eiter, T., Makino, K.: On Computing all Abductive Explanations. In: Proceedings
of the 18th National Conference on Artificial Intelligence, AAAI’02, Edmonton,
Alberta, Canada (2002) 62–67

19. Lin, F., You, J.: Abduction in logic programming: a new definition and an abduc-
tive procedure based on rewriting. Artificial Intelligence 140 (2002) 175–205

20. Torroni, P.: A study on the termination of negotiation dialogues. In Castelfranchi,
C., Lewis Johnson, W., eds.: Proceedings of the First International Joint Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS-2002), Part III,
Bologna, Italy, ACM Press (2002) 1223–1230



Weighted Multi Dimensional Logic Programs

Pierangelo Dell’Acqua

Department of Science and Technology - ITN,
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Abstract. In a previous work we introduced a logical framework suit-
able to formalize structures of epistemic agents. Such a framework is
based on the notion of weighted directed acyclic graphs (WDAGs) that
allow one to assign a measure of strength to the knowledge relationships
represented by the edges. In this paper we present the declarative and
operational semantics of such a framework, and give results of correct-
ness. We illustrate the usage of the framework by formalizing social agent
structures.

1 Motivation

In previous papers [5, 7, 9] we presented a logical formalization of a framework
for multi-agent systems where we embedded a flexible and powerful kind of
epistemic agent. In fact, these agents are rational, reactive, abductive, able to
prefer and they can update the knowledge base of other agents (including their
own). There we presented a declarative semantics for this kind of agent. In [1] we
provided a syntactical transformation that is at the basis for a proof procedure
for updating and preferring in agents, and in [6] we presented a framework for
handling the communication among epistemic agents asynchronously.

It is advocated, especially in open multi-agent systems (cf. [3, 16]), that there
is a need to make the organizational elements as well as the formalization of
the agent interactions of a multi-agent system externally visible rather than be-
ing embedded in the mental state of each agent, i.e., it is desired to explicitly
represent the organizational structure and the agent interactions. Zambonelli
[15] states that modelling and engineering interactions in complex and open
multi-agent systems cannot simply rely on the agent capabilities for communi-
cating. Rather, there is a need for concepts like organizational rules, social laws
and active environments. For the effective engineering of multi-agent systems,
high-level, inter-agent concepts, language extensions, and abstractions must be
defined to explicitly model the organization, the society in which agents oper-
ate, and the associated organizational laws. With this purpose in mind, in [8]
we elaborated over the approach proposed in [7], and usher in the more flexible
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c© Springer-Verlag Berlin Heidelberg 2004



Weighted Multi Dimensional Logic Programs 179

notion of weighted directed acyclic graphs (WDAGs), generalizing the notion of
directed acyclic graphs (DAGs), and permitting us to address the issues at hand
by assigning a measure of strength to the knowledge sharing relationships rep-
resented by the edges. In [8] we first introduced the paradigm of weighted multi
dimensional logic programing (WMDLP) as a formal tool for knowledge repre-
sentation and reasoning. WMDLP generalizes the paradigm of multi dimensional
logic programming (MDLP) presented in [12] by replacing the path relation over
DAGs (on which MDLP is based) with a prevalence relation (over WDAGs) in-
duced by the weights assigned to the edges of the WDAG. The declarative and
procedural semantics of WMDLP are similar to the ones of MDLP except for
employing the prevalence relation.

Arguably, the use of WMDLPs as a representational tool allows one to for-
malize in a natural and abstract way agent societies (cf. [8]). In this paper, we
illustrate the expressivity and flexibility of the usage of WMDLP by exploring
social agent societies. It is worth noting that WMDLP also promotes modularity
and information hiding. Consider for example a society comprising two agents,
α and β. To express that α is predominant over β, we can associate a weight to
α greater than the weight associated to β without having to know the internal
representational structure of the agents.

In this paper we (i) refine the prevalence relation (wrt. the original defini-
tion given in [8]) and discuss its properties (Section 3); (ii) recall the declara-
tive semantics (Section 4) and illustrate the usage of WMDLP to model social
agent structures (Sections 5, 6 and 7); (iii) provide the operational semantics
for WMDLP together with results of correctness (Section 8); and finally (iv)
formally discuss the relationship between WMDLPs and MDLPs (Section 9).

An implementation of WMDLP is available at http://www.itn.liu.se/∼piede.

2 Background

Generalized Logic Programs. To represent negative information we allow
default negation not A to occur in premises of rules as well as in their heads1.
By a generalized logic program P over a language L we mean a finite or infinite
set of rules of the form L0 ← L1, . . . , Ln, where each Li is a literal (i.e. an atom
A or its default negation not A). We use ’;’ to separate the rules in a program.
For instance, if a program P contains the rule a ← b, c together with the rule
e ← f and the fact d, we write P = {a ← b, c; e ← f ; d}. In the following we
syntactically represent generalized logic programs as propositional Horn theories.
In particular, we represent default negation not A as a propositional variable.
Given an arbitrary set K of propositional variables, whose names do not begin
with not, the propositional language L generated by K is the language whose set
of propositional variables consists of:

{A | A ∈ K} ∪ {not A | A ∈ K}.

1 For further motivation and intuitive reading of logic programs with default negations
in the heads see [2].
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If r is a rule of the form L0 ← L1, . . . , Ln, by head(r) we mean L0, and
by body(r) we mean L1, . . . , Ln. If head(r) = A (resp. head(r) = not A) then
not head(r) = not A (resp. not head(r) = A). By a (2-valued) interpretation
M of L we mean any set of literals from L that satisfies the condition that
for any atom A, precisely one of the literals A or not A belongs to M . Given
an interpretation M , we define M+ = {A | A ∈ M} and M− = {not A |
not A ∈M}.

Following established tradition, wherever convenient we omit the default
atoms when describing interpretations and models. We say that a (2-valued)
interpretation M of L is a stable model of a generalized logic program P if
M = least(P ∪M−). The class of generalized logic programs can be viewed as
a special case of yet broader classes of programs, introduced earlier in [13], and,
for the special case of normal programs, their semantics coincides with the stable
models semantics [10].

Directed Acyclic Graphs. A directed graph D = (V, E) is a pair comprised
of a finite set V of vertices and a finite set E of ordered pairs (v1, v2) called
edges, where v1 and v2 are vertices in V with v1 �= v2. The vertex v1 is the initial
vertex of the edge and v2 the terminal vertex. The in-valency of a vertex v is
the number of edges with v as their terminal vertex. The out-valency of a vertex
v is the number of edges with v as their initial vertex. A source is a vertex with
in-valency 0 and a sink a vertex with out-valency 0. A path in a directed graph
is a sequence of consecutive edges in the graph that begins at an initial vertex
and ends at a terminal vertex. If there exists a path from a vertex v1 to a vertex
v2 we write v1 ≺ v2, otherwise v1 ⊀ v2. We write v1 � v2 if v1 ≺ v2 or v1 = v2.
We write v1 � v2 if v1 ⊀ v2 and v1 �= v2. Sometime to make explicit the vertices
occurring in a path v1 ≺ vn we write the sequence 〈v1 v2 . . . vn〉 of all vertices
occurring in the path. A cycle is a path in which the initial vertex of the path
is also the terminal vertex. A directed acyclic graph (DAG) is a directed graph
that does not contain any cycle.

3 Weighted Directed Acyclic Graphs

In this section, we first introduce weighted directed acyclic graphs (WDAGs)
that generalize the notion of DAGs to associate weights to their edges, and then
we presents a number of notions based on WDAGs. Some of these notions were
first introduced in [8].

Definition 1. A weighted directed graph is a tuple (V, E, w) where V is a set
of vertices, E a set of edges and w : E → R

+ a function mapping the edges in
E to positive real numbers in R

+. A weighted directed acyclic graph (WDAG)
is a weighted directed graph that does not contain any cycle.

Given two vertices v1 and vn in a WDAG, the following definition distin-
guishes the paths from v1 to vn that are dominant.
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Fig. 1. WDAGs of Example 1, 2 and 3

Definition 2. Let D = (V, E, w) be a WDAG and v1 ≺ vn (1 < n) a path
with vertices 〈v1 v2 . . . vn〉. Then, v1 ≺ vn is a dominant path iff for every path
〈a1 a2 . . . am〉 (1 < m) such that a1 = v1, am = vn and vi = aj for some i, j
with 1 < i ≤ n, 1 < j ≤ m it holds that w((vi−1, vi)) ≥ w((aj−1, aj)).

Example 1. Let D = (V, E, w) be the WDAG depicted in Fig. 1a, where V =
{v1, v2, v3, v4}, E consists of the edges: e1 = (v2, v1), e2 = (v3, v2), e3 = (v3, v1),
e4 = (v2, v4) and e5 = (v4, v1). Let w(e1) = 0.4, w(e2) = 0.8, w(e4) = 0.3 and
w(e3) = w(e5) = 0.6. Then there exist two paths from v3 to v1 that are dominant:
the path 〈v3 v1〉 and the path 〈v3 v2 v4 v1〉. Note that the path 〈v3 v2 v1〉 is not
dominant.

Definition 3. Let D = (V, E, w) be a WDAG and v1 ≺ vn a dominant path
with vertices 〈v1 v2 . . . vn〉. Then, the prevalence relation is defined as follows:

– Every vertex vi prevails v1 wrt. vn, for every 1 < i ≤ n.
– If there exists a path a1 ≺ vi with vertices 〈a1 . . . am vi〉 (1 ≤ m), for some

1 < i ≤ n, and w((vi−1, vi)) < w((am, vi)), then every vertex aj prevails v1
wrt. vn, for every 1 ≤ j ≤ m.

In the following, we write v1 ⊂
v

v2 to indicate that v2 prevails v1 wrt. v, and

v1 �⊂
v

v2 to indicate that v2 does not prevail v1 wrt. v.

Example 2. Let D = (V, E, w) be the WDAG depicted in Fig. 1b, where V =
{v1, v2, v3, v4, v5, v6}, E consists of the following edges e1 = (v2, v1), e2 = (v3, v2),
e3 = (v4, v2), e4 = (v5, v1) and e5 = (v6, v5). Let w(e1) = 0.5, w(e2) = w(e3) =
0.8, w(e4) = 0.6 and w(e5) = 0.2. Then, the prevalence relation includes among
the others the following: v4 ⊂

v1
v1, v2 ⊂

v1
v1, v6 ⊂

v1
v5, v2 ⊂

v1
v5 and v4 ⊂

v1
v6.

Example 3. Let D = (V, E, w) be the WDAG depicted in Fig. 1c, where V =
{v1, v2, v3, v4}, E consists of the following edges e1 = (v2, v1), e2 = (v3, v2),
e3 = (v4, v1) and e4 = (v4, v3). Let w(e1) = 0.2, w(e2) = 0.3, w(e3) = 0.4 and
w(e4) = 0.2. Then, the prevalence relation contains: v3 ⊂

v1
v1, v4 ⊂

v1
v1, v2 ⊂

v1
v4

and v3 ⊂
v1

v4. The vertex v3 does not prevail v4 since the unique dominant path

from v4 to v1 is 〈v4 v1〉.
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Fig. 2. WDAGs of Example 4 and 5

The next result presents the basic properties of the prevalence relation.

Lemma 1. Let D = (V, E, w) be a WDAG and ⊂
v

the prevalence relation wrt.

a vertex v ∈ V over D. Then, it holds that:

a) ⊂
v

is irreflexive, i.e., ∀v1 ∈ V. v1 �⊂
v

v1,

b) ⊂
v

is not antisymmetric, i.e., it does not hold ∀ v1, v2 ∈ V. v1 ⊂
v

v2 ⇒ v2 �⊂
v

v1,

c) ⊂
v

is not transitive.

The next examples illustrate two WDAGs whose prevalence relation is neither
antisymmetric nor transitive.

Example 4. Let D = (V, E, w) be the WDAG depicted in Fig. 2a, where V =
{v1, v2, v3, v4, v5}, E consists of the edges e1 = (v2, v1), e2 = (v3, v1), e3 =
(v4, v2), e4 = (v5, v3), e5 = (v4, v3) and e6 = (v5, v2). Let w(e1) = w(e2) =
w(e3) = w(e4) = 0.1 and w(e5) = w(e6) = 0.2. Then, we have that v4 ⊂

v1
v5 and

v5 ⊂
v1

v4. Thus, ⊂
v1

is not antisymmetric.

Example 5. Let D = (V, E, w) be the WDAG depicted in Fig. 2b, where V =
{v1, v2, v3, v4, v5, v6}, E consists of the edges e1 = (v2, v1), e2 = (v3, v1), e3 =
(v4, v2), e4 = (v5, v2), e5 = (v5, v3) and e6 = (v6, v3). Let w(e1) = w(e2) =
w(e3) = w(e5) = 0.1 and w(e4) = w(e6) = 0.2. Then, we have that v4 ⊂

v1
v5 and

v5 ⊂
v1

v6. Since v4 �⊂
v1

v6, ⊂
v1

is not transitive.

To avoid cases of vertices that can reciprocally prevail one another, we intro-
duce the notion of strong prevalence.

Definition 4. Let D = (V, E, w) be the WDAG. A vertex v2 ∈ V strongly
prevails a vertex v1 ∈ V wrt. a vertex v ∈ V iff v1 ⊂

v
v2 and v2 �⊂

v
v1.

We write v1 
v
v2 to indicate that v2 strongly prevails v1 wrt. v. The properties

of the strong prevalence relation are summarized by the next result.

Lemma 2. Let D = (V, E, w) be a WDAG and 
v

the strong prevalence relation
wrt. a vertex v ∈ V over D. Then, it holds that:
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a) 
v

is irreflexive,

b) 
v

is antisymmetric, and

c) 
v

is not transitive.

4 Logic Framework

In this section, we generalize MDLPs (introduced in [12]) to allow for states to be
represented by the vertices of WDAGs and their relations by the corresponding
weighted edges. This enables us to prioritize the dimensions of a representational
updatable system. Such a system is suitable to formalize among others organi-
zational structures for epistemic agents (cf. [8]), and societies of social epistemic
agents. In this setting, WMDLP assigns semantics to sets of generalized logic
programs, depending on how they stand in relation to one another.

The next definition extends the original definition of MDLP to take into
consideration WDAGs.

Definition 5. Let L be a propositional language. A weighted multi-dimensional
dynamic logic program (WMDLP) P is a pair (PD, D), where D = (V, E, w) is
a WDAG and PD = {Pv | v ∈ V } is a set of generalized logic programs over L
indexed by the vertices v ∈ V .

Following the established terminology of MDLP, we call states the vertices
of WDAGs. We can now introduce the declarative semantics for WMDLPs.

Definition 6. Let P = (PD, D) be a WMDLP, where D = (V, E, w) and PD =
{Pv | v ∈ V }. Let s ∈ V be a state and 

s
the strong prevalence relation wrt. s

over D. An interpretation M is a stable model of P at state s iff

M = least( [Q(P, s)− Reject(P, s, M) ] ∪Default(Q(P, s), M) )

where:

Q(P, s) =
⋃
v�s

Pv

Reject(P, s, M) = {r ∈ Pv2 | ∃r′ ∈ Pv1 , head(r) = not head(r′), M � body(r′),
and v2 

s
v1}

Default(Q(P, s), M) = {not A | �r ∈ Q(P, s), head(r) = A and M � body(r)}.

Q(P, s) contains all rules of all programs that are indexed by a state along
all paths to a state s, i.e. all rules that are potentially relevant to determine
the semantics at s. The set Reject(P, s, M) of rejected rules contains those rules
belonging to a program indexed by a state v2 that are overridden by the head
of another rule with true body in state v1 such that v1 strongly prevails v2 wrt.
s. Note that we need to use strong prevalence (and not prevalence) otherwise
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Fig. 3. WDAGs of Example 6, 7 and 8

we can have situations where rules reject each other. For instance, given the
two programs Pv2 = {a} and Pv1 = {not a}, if the two states v1 and v2 re-
ciprocally prevail one another, then both rules a and not a would be rejected.
Default(Q(P, s), M) contains default negations not A of all unsupported atoms
A, i.e., those atoms A for which there is no rule in Q(P, s) whose body is true
in M .

It is worth noting that MDLP [12] is a special case of WMDLP where all
the edges have the same weight (see Appendix 9 for a discussion). In this case,
the strong prevalence relation reduces to the path relation over which MDLP
is based. Hence, at the semantical level the sets of rejected rules in MDLP and
WMDLP are the same.

Example 6. Let P = (PD, D) be the WMDLP depicted in Fig. 3a, where D =
(V, E, w) and V = {v1, v2, v3}. E consists of e1 = (v1, v3) and e2 = (v2, v3).
Let PD = {Pv1, Pv2, Pv3} with Pv1 = {a}, Pv2 = {not a} and Pv3 = {}. If
w(e1) = w(e2), then there exists no stable model of P at state v3. In fact,
Q(P, v3) = {a;not a} and Reject(P, v3, M) = {}, Default(Q(P, v3), M) = {},
for any interpretation M . Thus, there exists no interpretation M such that M =
least(Q(P, v3)). If instead w(e1) > w(e2), then there exists a unique stable model
M = {a} of P at state v3. In fact, Reject(P, v3, M) = {not a} as v2 

v3
v1,

Default(Q(P, v3), M) = {} and M = least({a}).

Example 7. Let P = (PD, D) be the WMDLP depicted in Fig. 3b, where D =
(V, E, w) and V = {v1, v2, v3, v4}. E consists of e1 = (v2, v1), e2 = (v3, v1)
and e3 = (v4, v3), and w(e1) = 0.7, w(e2) = 0.4 and w(e3) = 0.2. Let PD =
{Pv1, Pv2, Pv3, Pv4} with Pv1 = {b}, Pv2 = {a}, Pv3 = {not a; d ← a, b} and
Pv4 = {not b}. The unique stable model of P at state v1 is M = {a, b, d}. In fact,
as it holds that v4 

v1
v1 and v3 

v1
v2, we have that Reject(P, v1, M) = {not a;not b}

and Default(Q(P, v1), M) = {}. Thus, M = least({a; b; d ← a, b}).

Example 8. Let P = (PD, D) be the WMDLP depicted in Fig. 3c, where D =
(V, E, w) and V = {v1, v2, v3}. E consists of e1 = (v2, v1), e2 = (v3, v1) and e3 =
(v3, v2), and w(e1) = 0.1, w(e2) = 0.4 and w(e3) = 0.1. Let PD = {Pv1, Pv2, Pv3}
with Pv1 = {c ← a, b,not d}, Pv2 = {b;not a} and Pv3 = {a;not c}. The unique
stable model of P at state v1 is M = {a, b, c}. In fact, as it holds that v2 

v1
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v3, we have that Reject(P, v1, M) = {not a;not c} and

Default(Q(P, v1), M) = {not d}. Thus, M = least({a; b;not d; c← a, b,not d}).

5 Modelling Epistemic Agents

In this section we consider epistemic agents and show how to formalize them by
means of WMDLPs. We consider epistemic agents whose theories are composed
by sets of modules. A module for instance can formalize an agent’s specific
capability (e.g., problem solving, planning, and learning), a view that the agent
has of other agents (i.e., an internal representation of another agent’s theory), or
the normative relations of the agent (i.e., what the agent is obliged, permitted,
has the right to do). All the modules that form the theory of an agent are
linked together to implement the agent’s overall behavior. We assume that each
agent has a distinguished module to which the other modules are linked to that
represents the query point of the agent. We name such a module inspection point
of the agent. It is here that the overall “personality” (in terms of knowledge and
behavior) of the agent emerges.

An epistemic agent can be directly formalized by a WMDLP by expressing
the knowledge of its modules by generalized logic programs, and its module
structure by a WDAG.

Example 9. Consider a simple situation where we have an agent, Ivan, whose
theory consists of three modules, as depicted in Fig. 4a. The first module (repre-
sented by i) expresses Ivan’s own knowledge, the second one (represented by t)
his view of the theory of his friend Tatiana, and the last (represented by i′) is the
inspection point of Ivan. The first module expresses that if someone is sick, then
he should not go on vacation, and that anyone must work. The second module
expresses that anyone must not work during summer, and if someone does not
work, then he can go on vacation. Suppose that Ivan gives precedence to what
Tatiana believes rather than to his own believes (i.e., he gives precedence to the
second module over the first one). This situation can be formalized by a WMDLP
P = (PD, D), as follows. Let D = (V, E, w), where V = {i, t, i′}, E consists of
the edges e1 = (i, i′) and e2 = (t, i′), with w(e1) = 0.1 and w(e2) = 0.2. Let
PD = {Pi, Pt, Pi′} be the following set of generalized logic programs:
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Pi =
{

work
not vacation← sick

}

Pt =
{

not work← summer
vacation ← not work

}

Pi′ = {}
Then, the unique stable model of Ivan at state i′ is Mi′ = {work}.

To capture the dynamic behavior of the world in which they are situated,
epistemic agents must be able to evolve by updating their information. At every
time stamp, an agent may receive new information and thereby evolve to the
next state. An agent may acquire new information via its sensing actions, com-
munication acts, and so on. When the agent evolve to the next state, he does
so by updating some (possibly all) of its modules to take into consideration the
new incoming information.

Example 10. Consider the scenario described in Example 9. Assume that at
the next state t2, things change and it becomes summer. This situation can be
formalized (as depicted in Fig. 4b) by adding three new vertices indexed by the
time stamp 2 to the WDAG of Example 9. Thus, we obtain P2 = (PD2 , D2),
where D2 = (V2, E2, w2) with V2 = {i, t, i′, i2, t2, i′2}, E2 consists of the edges
e1 = (i, i′), e2 = (t, i′), e3 = (i2, i′2), e4 = (t2, i′2), e5 = (i, i2), and e6 = (t, t2),
with w(e1) = w(e3) = w(e5) = w(e6) = 0.1 and w(e2) = w(e4) = 0.2. Let
PD2 = {Pi, Pt, Pi′ , Pi2 , Pt2 , Pi′

2
} where Pi, Pt, Pi′ are as defined in Example 9,

Pt2 = Pi′
2

= {} and Pi2 = {summer}.
Then, the unique stable model of Ivan at state i′2 is Mi′

2
= {summer, vacation}.

In fact, having the module formalizing the theory of Tatiana priority over the
module formalizing Ivan’s own knowledge, we have that not work prevails over
work.

Note that in the example above the graph structure as well as the weights
of the edges remains unchanged when the agent evolves to the successive state.
This needs not to be so. One may define a more general scenario where the
agent’s graph structure changes as well. Furthermore, explicitly encoding the
graph structure within the theory of the agent makes it possible to declaratively
define the agent self-evolution.

6 Adding Roles to Epistemic Agents

Agents typically operate in the context of multi-agent systems. Most of these
systems, like those for electronic auctions, can be best understood as computa-
tional societies. It is argued (cf. [4]) that there is a need to make organizational
and legal elements of the society externally visible, rather than being embedded
into the beliefs of each agent. In literature, there have been several attempts
to engineer agent societies based on notions of teams, groups, and institutions
[3, 11, 14].
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When agents are situated in an environment and therefore they can interact
with one another, the problem of determining the kind of interaction arises. This
leads to the concept of role. A role can be understood as a set of obligations,
rights and privileges that governs the behavior of an agent occupying a particular
position in the society.

The adoption of roles as a tools for description and modelling in multi-agent
systems has several benefits. For example, formal roles allow for generic models of
agents with unknown internal states to derive enough information to predict the
agent behavior. Furthermore, the use of roles promotes flexibility since different
modes of interaction become possible among agents. An agent may fulfill different
roles depending on the agents it is interacting with. Finally, roles can adapt and
evolve within the course of interactions to reflect the learning process of the
agents. This allows for dynamic systems where the modes of interactions change.

We believe WMDLPs is an adequate tool for formalizing social agent societies
where the roles as well as the society’s structure can evolve. We start by defining
what is a role, and what is an agent playing a role.

Typically, roles are associated to a default context that defines the different
social relationships, like authority and friendship, and specifies the behavior of
the roles between each other. Hence, the default context defines a partial order
between roles. Generally, in a society agents may interact in several, different
contexts. Therefore, there is a need to consider different abstraction levels of
contexts. More specific contexts can overturn the orderings between the roles of
more general contexts, and establish a social relation among them. This leads
us to define a role as a theory composed of several modules where each module
defines the normative relations with respect to a specific context in the society.

When an agent plays a role, the overall behavior of the agent obeys both the
“personality” of the agent as well as its role. We call actor an agent playing a
role:

actor := 〈 role, agent 〉
actor := 〈 role, actor 〉

An actor is an agent playing a role, or an actor itself playing a role. The notion
of actor is important to define situations where an agent plays a role in virtue of
the fact of playing another role. For example, in an organization an employee can
be selected to be the manager of his group. Thus, this employee plays the role of
group manager. Typically, an organization has the board of directors consisting
of the chairman of the organization, together with some selected manager. In
such a case, our employee may play the role of director being a manager.

Actors can be expressed in our framework in a modular, flexible way. Let
R and A be two WDAGs formalizing a role and an agent, respectively. Then,
a WDAG RA formalizing an actor is obtained from R and A by introducing a
new vertex i, and by linking the inspection points a and r of A and R with i, as
showed in Fig. 5a. The new vertex i is the inspection point of the actor.

By assigning different weights to the edges linking the vertices a and r to
i, one can model different types of behavior. For example, by letting w1 > w2
we can enforce that the actor obeys the norms of its role. On the contrary, if
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Fig. 5. (a) An actor (b) Graphical representation of an actor (c) Adding a temporal
dimension to actors

w2 > w1 then the personality of the agent will prevail its role. We may also define
a situation, by letting w1 = w2, where the actor will operate in accordance to
both its personality and role. As depicted in Fig. 5b, we graphically represent
roles and agents by boxes and triangles, respectively.

An actor can fulfill several roles depending on the context. Fig. 6 shows
two distinct agents playing the same role, and an agent playing two distinct
roles. It is worth noting that the use of WDAGs promotes both modularity
and information hiding. In fact, in Fig. 6a for example, one needs not to know
the internal structure of the agent and of the role to built up an actor. One
simply combines these two modules by assigning weights that reflect the way he
wants to combine them. The situation is different in MDLP where one needs to
combine these two modules one after the other one (i.e., in sequence) to achieve
the desired effect. Hence, one needs to know the DAG of the receiving module
to be connected with the inspection point of the incoming module.

i

w1 w2 w3
w4

i i

w1 w2 w3
w4

i2 2

(a) (b)

Fig. 6. (a) Two agents playing the same role (b) An agent playing two roles

Fig. 7a shows a role r2 that overrides another role r1 and an actor i that
plays the second role. Fig. 7b shows two actors: i and i2. Note that the actor
i2 consists of the actor i playing the role r2. Fig. 7c shows a hierarchy of two
distinct actors i and i2. Letting w3 be greater than both w1 and w2 will make i
predominant over i2.
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7 Engineering Social Agent Societies

Having defined some key concepts for epistemic agents, we can now present
our conception of an agent society. We consider social agent societies where the
behavior of their members is regulated by normative relations describing what
an agent is obliged, permitted, and has the right to do. For simplicity, we only
consider static societies where the temporal dimension is not present. We start by
defining the notion of context, and assume given a corresponding theory defining
its normative relations.

Definition 7. Let Ag be a set of agents and R a set of roles. Then, a context
is a pair (Ac, T ) where Ac is a set of actors defined over Ag and R, and T is a
theory defining the normative relations of the context.

A context consists of a set of actors together with a theory T expressing
the obligations, and rights of its members. A context can be represented by a
WMDLP as depicted in Fig. 9a. The basic idea is to link the theory T with the
inspection point i of each actor. Letting the weight of the edge (T, i) be greater
that any other edge incoming to i will make that actor respect the obligations
imposed by the context. The following example illustrates the use of contexts.

Example 11. Consider a group of two actors, A and B. We want to formalize a
situation where A is the manager of the group and B is an employee. Suppose
that the behavior of both A and B is characterized by the following policy:

EmpPolicy =

⎧⎨
⎩

give← request,not need
not give← request,need,not higher rank

give← request,need, higher rank

⎫⎬
⎭

When requested, an employee gives an object to the questioner if the employee
does not need it; an employee keeps the object if he needs it and he is not requested
by a superior; a request from a superior is stronger than an employee’s own need.
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In addition, we have a theory representing the general behavior of the com-
pany’s employees:

ComPolicy =
{

need← urgent need
not give← urgent need

}

An employee keeps the requested object in case he has an urgent need of it.
Such a group can be represented via a context C = (Ac, T ) depicted in Fig.

8 where Ac = {A, B} and T is the theory ComPolicy above.
Assume that the own personality of each employee prevails the role he plays.

This situation can be formalized as follows.
Let PA and PB be the WMDLPs formalizing the actors A and B. Let PA =

(PDA
, DA) where DA = ({v2, v4, v5}, {(v4, v2), (v5, v2)}, wA), wA((v4, v2)) = 0.1,

wA((v5, v2)) = 0.2, Pv4 = EmpPolicy, Pv5 = {not give ← competitor}, and v2
is the inspection point of A (hence, Pv2 = {}). Let PB = (PDB

, DB) where
DB = ({v3, v6, v7}, {(v6, v3), (v7, v3)}, wB), wB((v6, v3)) = 0.1, wB((v7, v3)) =
0.2, Pv6 = EmpPolicy, Pv7 = {request;need; higher rank; competitor}, and v3 is
the inspection point of B.

The context C is represented by introducing a new vertex v1 together with
the edges (v1, v2), (v1, v3) whose weight is 0.1. We let Pv1 = ComPolicy.

Suppose that B operates (strictly) in accordance with the manager A. To
enforce such a constraint we add the edge (v2, v3) with weight 0.3.

According to the declarative semantics of WMDLPs, B will not give the
object requested by a higher-rank employee that is a competitor. In fact, the
semantics of B, whose model is determined at its inspection point v3, is Mv3 =
{request;need; higher rank; competitor}.

We can now define the notion of agent society.

Definition 8. An agent society is modelled as a tuple:

Σ = (Ag, R, C)

where Ag is a set of epistemic agents, R is a set of roles, and C is a set of
contexts over Ag and R.
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An agent society can be formalized by a WMDLP as depicted in Fig. 9b.
Modelling agent societies by means of the notion of contexts is general and
flexible. In fact, several organizational structures (see [16]) can be expressed in
terms of contexts. For example, agents often forms subgroups inside a greater
society of agents. These subgroups usually inherit the constraints of the greater
society, override some of them and add their own constraints. Such a situation
can be expressed in our framework by simply defining two contexts, C1 and
C2. C1 represents the greater society, and C2 the subgroup. Then, the two new
contexts can be linked together by adding an edge from the theory T of C1 to
the theory T of C2.

T
T

T

T

T

(a) (b)

Fig. 9. (a) Context (b) Agent society

In general, we can incorporate a temporal dimension into the modelling of
the agent society. Doing so will allow us to capture the dynamic behavior of
the contexts and therefore of the entire society. For example, we can formalize
situations where the normative relations of the contexts and the roles of the
agents change. Thus, by exploiting the use of WMDLP several representational
dimensions of the agent society can be formalized in a flexible and uniform
manner.

8 Syntactic Transformation for WMDLPs

We next present a syntactical transformation that, given a WMDLP P, pro-
duces a generalized logic program whose stable models coincide with the stable
models of P. Thus this transformation provides the grounds for implementing
WMDLPs. The transformation is established based on the proven correct syn-
tactical transformation for the original definition of MDLP over DAGs given
in [12]. The transformation is based on the following definitions.
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Given a set K of propositional variables and a set V of states, we write K∗

to indicate the following set of propositional variables:

K∗ = K ∪ {A−, As, A
−
s , APs , A

−
Ps

, reject(As), reject(A−
s ) }

for every atom A ∈ K and state s ∈ V ∪ {s0}, where s0 �∈ V is a reserved state
called initial state. Let L∗ be the propositional language generated by K∗. In the
remaining of the paper we assume that every WDAG D does not contain the
initial state s0 among its vertices. Instead, s0 belongs to the relevancy WDAG
of D, defined next.

Definition 9. Let D = (V, E, w) be a WDAG and s ∈ V a state. The relevancy
WDAG of D wrt. a state s is the WDAG D′ = (V ′, E′, w′) where:

X = {v | v ∈ V and v � s}
Y = {(v1, v2) | (v1, v2) ∈ E and v2 ∈ X}
V ′ = X ∪ {s0}
E′ = Y ∪ {(s0, v) | for every vertex v ∈ X that is a source}

w′(e) =
{

w(e) if e ∈ Y
0.1 if e ∈ (E′ − Y )

The relevancy WDAG of D wrt. a state s is the subgraph of D consisting of
all vertices and edges contained in all paths to s together with the initial state
s0 and the set of edges (s0, v) connecting the initial state to all the sources v in
X. Note that the value 0.1 of the weight associated to every edge of the form
(s0, v) is irrelevant since that is the unique edge incoming to v (by construction).

Since the relevancy WDAGs contain the initial state s0 and new edges out-
going from it, we need to define the prevalence relation for relevancy WDAGs.
The idea is to let every vertex of a relevancy WDAG prevail s0 wrt. any other
vertex.

Definition 10. Let D = (V, E, w) be a WDAG and 
s

the strong prevalence

relation wrt. a state s ∈ V over D. Let D′ = (V ′, E′, w′) be the relevancy WDAG
of D wrt. s. Then, the strong prevalence relation �

s
wrt. s over D′ is defined

as:
∀ v1, v2 ∈ V ′. v1 

s
v2 ⇒ v1�

s
v2

∀ v ∈ V ′. s0 �= v ⇒ s0�
s

v

The following example illustrates the use of relevancy WDAGs.

Example 12. Let D = (V, E, w) be the WDAG of Example 4. The relevancy
WDAG D′ of D wrt. v1 is D′ = (V ′, E′, w′) where V ′ = {s0, v1, v2, v3, v4, v5}
and E′ consists of the edges e1 = (v2, v1), e2 = (v3, v1), e3 = (v4, v2), e4 =
(v5, v3), e5 = (v4, v3), e6 = (v5, v2), e7 = (s0, v4) and e8 = (s0, v5). The weight
function is w′(e1) = w′(e2) = w′(e3) = w′(e4) = w′(e7) = w′(e8) = 0.1 and
w′(e5) = w′(e6) = 0.2. Thus, the strong prevalence relation �

v1
over D′ wrt. v1
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is defined as: v2�
v1

v1, v3�
v1

v1, v4�
v1

v1, v5�
v1

v1, s0�
v1

v1, v4�
v1

v2, v5�
v1

v2, s0�
v1

v2,

v4�
v1

v3, v5�
v1

v3, s0�
v1

v3, s0�
v1

v4 and s0�
v1

v5.

The following proposition establishes that when determining the stable mod-
els of a WMDLP P at a state s, we can restrict our attention to the part of P
corresponding to the relevancy WDAG wrt. s.

Proposition 1. Let P = (PD, D) be a WMDLP. Suppose that D = (V, E, w)
and PD = {Pv | v ∈ V }. Let s ∈ V be a state. Let P ′ = (PD′ , D′) be a
WMDLP such that D′ = (V ′, E′, w′) is the relevancy WDAG of D wrt. s, and
PD′ = {Pv | v ∈ V ′} where Ps0 = {}. Then, M is a stable model of P at state
s iff M is a stable model of P ′ at state s.

Note that the program Ps0 associated to the initial state does not contain
any rule.

The following definition presents a syntactic transformation that allows one
to map WMDLPs into generalized logic programs. Such a transformation is
based on the syntactic transformation for MDLPs [12]. They differ only in the
treatment of the rejection rules.

Definition 11 (Mapping Φ). Let P = (PD, D) be a WMDLP over the propo-
sitional language L. Suppose that D = (V, E, w). Given a state s ∈ V , the
generalized logic program Φ(P, s) consists of the following generalized rules over
the language L∗.

Let P ′ = (PD′ , D′) be a WMDLP where D′ = (V ′, E′, w′) is the relevancy
WDAG of D wrt. s, and PD′ = {Pv | v ∈ V ′} where Ps0 = {}.

(RP) Rewritten Program Clauses:

APv
← B1, . . . , Bm, C−

1 , . . . , C−
n (1)

or
A−

Pv
← B1, . . . , Bm, C−

1 , . . . , C−
n (2)

for any clause:
A ← B1, . . . , Bm,not C1, . . . ,not Cn (3)

respectively, for any clause:

not A ← B1, . . . , Bm,not C1, . . . ,not Cn (4)

in the program Pv ∈ PD′ . The rewritten clauses are obtained from the orig-
inal ones by replacing atoms A (respectively, the default atoms not A) oc-
curring in their heads by the atoms APv

(respectively, A−
Pv

) and by replacing
negative premises not C by C−.

(IR) Inheritance Rules:

Av ← Au,not reject(Au) (5)

A−
v ← A−

u ,not reject(A−
u ) (6)
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for every atom A ∈ K and every edge (u, v) ∈ E′. The inheritance rules say
that an atom A is true (respectively, false) in the state v ∈ V ′ if it is true
(respectively, false) in any ancestor state u and it is not rejected, i.e., forced
to be false (respectively, true).

(RR) Rejection Rules:

reject(A−
u ) ← APv

(7)

reject(Au) ← A−
Pv

(8)

for every atom A ∈ K and every state u, v ∈ V ′ such that u�
s

v, where

�
s

is the strong prevalence relation wrt. s over the relevancy WDAG D′.

The rejection rules say that if an atom A is true (respectively, false) in the
program Pv, then it rejects inheritance of any false (respectively, true) atom
of any state u that is strongly prevailed by v wrt. s.

(UR) Update Rules:

Av ← APv
(9)

A−
v ← A−

Pv
(10)

for every atom A ∈ K and every state v ∈ V ′. The update rules state that
an atom A must be true (respectively, false) in the state v if it is true (re-
spectively, false) in the program Pv.

(DR) Default Rules:
A−

s0
(11)

for every atom A ∈ K. Default rules describe the initial state s0 by making
all atoms initially false.

(CSs) Current State Rules:

A ← As (12)

A− ← A−
s (13)

not A ← A−
s (14)

for every atom A ∈ K. Current state rules specify the current state s in
which the program is being evaluated and determine the values of the atoms
A and A−, and the default atom not A.

The following result establishes the correctness of the syntactic transforma-
tion.

Theorem 1. Given a WMDLP P over the language L, the stable models of
Φ(P, s), restricted to L, coincide with the stable models of P at state s.
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9 Relationship Between WMDLPs and MDLPs

This section describes the relationship between MDLPs and WMDLPs. We start
by showing how to embed MDLPs into WMDLPs.

Definition 12 (WMDLP-Embedding). Let n ∈ R
+ be any positive real

number. Let P = (PD, D) be an MDLP, where D = (V, E). A WMDLP-
embedding of P is a WMDLP P ′ = (PD′ , D′) such that PD′ = PD, D′ =
(V, E, w) and w(e) = n, for every edge e ∈ E.

By simply assigning the same weight n to every edge, we can embed MDLPs
into WMDLPs. The correctness of the embedding is stated by the next result.

Theorem 2. Let P be an MDLP and P ′ a WMDLP-embedding of P. Then, the
stable models of P at state s coincide with the stable models of P ′ at state s.

In general, it is not possible to embed WMDLPs into MDLPs unless by
duplicating states in the DAGs of MDLPs. This is due to the fact that WDAGs
are based on the notion of prevalence relation that is not transitive, while DAGs
are based on the notion of path relation that is transitive. Thus, by duplicating
vertices in DAGs one can rule out tuples in the path relation that are derived
by transitivity. For instance, consider the strong prevalence relation 

v1
over the

WDAG depicted in Fig. 2b. It holds that v4 
v1

v5, v5 
v1

v6, and v4 �
v1

v6. By

embedding 
v1

into the path relation ≺, we would obtain three paths v4 ≺ v5,

v5 ≺ v6, and by transitivity v4 ≺ v6. Instead, by duplicating the vertex v5 into a
new vertex v′

5 and by substituting the edge (v5, v3) with (v′
5, v3), we obtain only

two paths v4 ≺ v5 and v′
5 ≺ v6.

However, by restricting the attention to WDAGs whose prevalence relations
satisfy certain properties, it is possible to directly embed WDAGs into DAGs
without having to duplicate vertices. This result is important because it allows
one to relate WMDLPs to MDLPs. We introduce a function mapping WDAGs
into directed graphs. Note that this translation is possible only by fixing a state
s over D.

Definition 13 (Mapping Γ ). Let D = (V, E, w) be a WDAG. Given a state
s ∈ V , the function Γ (D, s) maps D and s into a directed graph D′ = (V ′, E′)
as follows:

– V ′ = V , and
– E′ = {(v1, v2) | for every v1, v2 in V such that v1 

s
v2}.

The following example illustrates the usage of Γ .

Example 13. Let D1, D2 and D3 be the WDAGs in Fig. 1a, 1b, and 1c. Then,
the DAGs in Fig. 10a, 10b and 10c are the DAGs Γ (D1, v1), Γ (D2, v1) and
Γ (D3, v1), respectively.

Not always the directed graph obtained via the mapping Γ is a DAG because
it can contain cycles. For instance, if it holds that v1 

s
v2, v2 

s
v3, and v3 

s
v1
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v1

v2

v4v3

v1

v3 v6

v2

v4

v5

v1

v3

v2

v4

(a) (b) (c)

Fig. 10. Mapping WDAGs into DAGs

over D, then there exists a path 〈v1 v2 v3 v1〉 over Γ (D, s) that is a cycle. As
next result shows, cycles can be ruled out provided that some condition holds.
Below we write 

s

∗ to indicate the transitive closure of 
s
, and we write 

s
≡ 

s

∗ to
indicate that the strong prevalence relation and its transitive closure are equal,
that is, for every vertex v1, v2, it holds that v1 

s
v2 iff v1 

s

∗ v2.

Proposition 2. Let D = (V, E, w) be a WDAG and s ∈ V a state. Let 
s

be the

strong prevalence relation wrt. s over D. If 
s
≡ 

s

∗, then Γ (D, s) is a DAG.

The following property relates the strong prevalence relation and the path
relation.

Proposition 3. Let D = (V, E, w) be a WDAG and s ∈ V a state. Let 
s

be the
strong prevalence relation wrt. s over D. If 

s
≡ 

s

∗, then it holds that v1 
s
v2 over

D iff v1 ≺ v2 � s over Γ (D, s), for every state v1, v2 in V .

The following example shows that the mapping Γ is not functional over D.
This property prevents us from having an incremental implementation of Γ .
Note also that not necessarily it holds that E′ ⊆ E.

Example 14. Let D = (V, E, w) be a WDAG, where V = {v1, v2, v3} and E
consists of the edges e1 = (v3, v2) and e2 = (v2, v1) with w(e1) = w(e2) = 0.1.
Then, it holds that Γ (D, v1) = (V, E).

If we add the edge e3 = (v3, v1) to E with w(e3) = 0.4, then Γ (D, v1) =
(V, E′) where E′ = {(v2, v1), (v2, v3), (v3, v1)}.

Note that Γ (D, v1) of Fig. 11 contains the edge (v3, v2), while Γ (D, v1) of
Fig. 12 contains the opposite edge (v2, v3).

0.1
v1

v2 v3
0.1

v1

v2 v3

D Γ (D, v1)

Fig. 11.
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0.1
v1

v2 v3

0.4

0.1

v1

v2 v3

D Γ (D, v1)

Fig. 12.

Definition 14 (MDLP-Embedding at a state). Let P = (PD, D) be a
WMDLP where D = (V, E, w) and s ∈ V a state. The MDLP-embedding of P
at state s is the MDLP P ′ = (PD′ , D′) such that PD′ = PD and D′ = Γ (D, s).

The next theorem states the properties of correctness of Γ . This result does
not hold in general, but only for those WDAGs whose strong prevalence relation
equals its transitive closure.

Theorem 3. Let P = (PD, D) be a WMDLP where D = (V, E, w). Let s ∈ V
be a state and P ′ the MDLP-embedding of P at state s. Let 

s
be the strong

prevalence relation wrt. s over D. If 
s
≡ 

s

∗, then it holds that the stable models

of P at state s coincide with the stable models of P ′ at state s.

Example 15. Let P = (PD, D) be the WMDLP depicted in Fig. 3c of Example
8. Let 

v1
be the strong prevalence relation wrt. v1 over D. Clearly, it holds that


v1
≡ 

v1

∗. The unique stable model of P at state v1 is M1 = {a, b, c}. Let P ′ =

(PD′ , D′) be the MDLP-embedding of P at state v1. The DAG D′ is depicted in
Fig. 12. Then, the unique stable model of P ′ at state v1 is M2 = {a, b, c}. Thus,
we have that the stable models of P and P ′ at state v1 coincide.

The next example illustrates a situation where the stable models of a WMDLP
P and its MDLP-embedding do not coincide being the property 

s
≡ 

s

∗ not sat-
isfied.

Example 16. Let P = (PD, D) be the WMDLP where D is the WDAG of Exam-
ple 5 and P = {Pv1, Pv2, Pv3, Pv4, Pv5, Pv6, } with Pv1 = Pv2 = Pv3 = Pv5 = {},
Pv4 = {not a} and Pv6 = {a}. Let 

v1
be the strong prevalence relation wrt.

v1 over D. Clearly, it holds that 
v1
�≡ 

v1

∗. Let P ′ = (PD′ , D′) be the MDLP-

embedding of P at state v1 where D′ is depicted in Fig. 13. Then, M = {a} is
a stable model of P ′ at state v1, while it is not a stable model of P at state v1.

10 Related Work and Concluding Remarks

We have presented a logical framework that allows one to model structures of
social agent societies. In doing so, we have first introduced the notion of WDAG
that extends directed acyclic graphs to associate weights to every edge of the
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v1

v4 v6

v2

v5

v3

Fig. 13. DAG of Example 16

graph. Then, we have presented our framework WMDLP with the corresponding
declarative and operational semantics, and we have given results of correctness.
The framework having a formal semantics will allow us to study and prove the
properties of social agent societies.

WMDLP is based on and builds upon MDLP [12] by employing WDAGs
and by replacing the path relation (used by MDLP) with the prevalence relation
between vertices of a WDAG. By exploiting the weights, WMDLP allows to
represent the knowledge of a system at a level of abstraction higher than the one
of MDLP. Furthermore, WMDLP promotes modularity and information hiding.
The relationship between MDLP and WMDLP has been discussed in Section 9.

To illustrate the usage of WMDLP we have formalized social agent societies
by introducing the notions of role and context in the same spirit as [11, 14]. How-
ever, these two approaches essentially differ from our. Kakas and Moräitis [11]
present a framework based on argumentation with the aim to support the de-
liberation process of an agent. This framework uses roles and contexts to define
dynamic preferences between alternative arguments of the agents fulfilling cer-
tain roles. The representation of role and context information is then expressed
directly in the framework in terms of priority rules. In turn, these rules form new
arguments and are reasoned about in the same way as object level arguments.

Lindemann and Münch [14] focus on the concept of role and discuss the
importance of using roles in organizational structures for modelling social actions
in multi-agent systems. In situations where agents interact, and communication
and observation are insufficient for the agents to draw conclusions, then roles
can be used to mimic the expectations of behavior of one agent towards another
agent. In contrast to [11, 14] we use contexts and roles to design and model
agent societies. In our approach roles are added to epistemic agents to guide
their behavior and regulate their interactions with other agents within the same
context. We have shown that WMDLPs is a suitable tool to formalize roles and
contexts in a modular and flexible way, and it is general in the sense that several
representational dimensions of a society can be uniformly represented in the
same framework, like a temporal dimension. This would allow the modelling of
societies whose roles and contexts evolve.

Our framework builds on the notion of prevalence of vertices. However, other
notions of prevalence can be accommodated within it. To do so it is necessary
to incorporate these new notions both at the semantical level, that is to modify
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the definition of Reject(P, s, M) in Def. 6, and at the syntactical level, that is
to modify the Rejection Rules (RR) in Def. 11 to reflect the new relation.

In a previous work [8], we explored how to explicitly represent organizational
structures in epistemic multi-agent systems (eMAS), including groups of agents,
institutions, and complex organizational structures for agent societies. Here, we
have illustrated the usage of WMDLPs to represent social agent societies. For
simplicity, we haven’t considered the dynamic aspects of the agent knowledge
like, for example, when an agent updates its knowledge to incorporate new in-
coming information (via updates). These aspects are discussed in [7].

An interesting direction for future work is to represent the logical framework
within the theory of the agent members of the society. That is, we can code the
graph structure of the agents and the links among them into the theory of the
agents themselves. Doing so will empower the agents with the ability to reason
about and to modify the structure of their own graph together with the general
group structure comprising the other agents. At the level of each single agent,
declaratively expressing the graph structure enables that agent to reason over it
in a declarative way. At the level of the group structure, this ability will permit
the managing of open societies where agents can enter/leave the society. This
in fact can be achieved by updating the graph structure representing the group
by adding/removing vertices and edges. Therefore, encoding the graph structure
within the language of the agents makes the system updatable to capture the
dynamic aspects of the system, i.e., of the open society.
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Abstract. This paper focuses on the features of belief change when
agents have to consider information received from other agents. We fo-
cus on belief change operators when agents have to process messages
about a static world. We propose to consider agents’ belief state as a set
of pairs 〈belief, origin of the belief〉 combined with a preference relation
over the agents embedded in the multi-agent system. The belief revision
procedure for handling received messages is a safe base revision proce-
dure where messages are considered in their syntactic form. According to
the reliability of the sources of the conflicting belief, agents remove the
less reliable belief in order to handle the received message. Notice that
the less reliable source can be the sender of the message itself. In order
not to loose precious information conflicting belief are not removed but
considered as potential belief. As the agent changes its belief, potential
belief is reconsidered and may be reinstated as current belief. In a sim-
ilar way, messages can concern statements that should not be believed,
called disbelief. As belief, disbelief can become potential. These different
kinds of belief enables us to propose a new semantics for a modal based
language for describing (dis)belief. Agents may handle sequences of mes-
sages since the proposed belief change operators handle iterated belief
change.

1 Introduction

It is quite common to characterize intelligent agents in cognitive terms such as
the well known belief, desire, intention mental attitudes [15]. In that context,
belief change is a key problem for agents. In a multi-agent system, agents com-
municate with each other in order to solve a problem such as building a plan or
establishing a diagnosis.

In this paper we focus on how an agent should change its beliefs when it
receives new information from the other agents, i.e. how its beliefs should look
like after interpreting the received message [13]. We focus here on multi agent
systems that exchange messages about a world that does not change. In that
context, belief change has to be considered as belief revision. In our proposal
agents handle iterated belief revision [3] which is a key feature when we consider
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autonomous agents able to take into account sequences of messages. In addition,
agents do not always adopt the received messages so that the proposed opera-
tors belong to the family of non-prioritized operators [8]. Agents consider the
reliability of the senders to select inconsistent beliefs that should be dropped
when a change raises inconsistencies in their beliefs.

In this work we focus on the characteristics of information held by agents, i.e.
agents do not only maintain beliefs. Instead of dropping inconsistent belief during
the process of belief change, agents move them into a potential belief set. As new
messages come, some potential beliefs become consistent with the new belief set.
Agents move them to this new set. This approach enables agents to consider as
much as possible of the received messages. In addition, agents maintain a set of
statements that should not be believed: these statements, called disbeliefs, are
justified by messages describing what should not be believed. We show that our
belief change operators in that context respect most of the AGM postulates.

This work extends a previous one [11] (i) by removing a strong constraint
that was requiring a linear order over the (dis)beliefs for revising them and (ii)
by proposing a modal-language for describing epistemic attitudes. The semantics
of this language is based on the interpretation of the messages and the notions of
belief, disbelief and potential belief. This language allows to describe the opinion
of an agent. After it received a message with content φ: the agent has an opinion
about φ and it believes or disbelieves φ.

The paper is organized as follows: section 2 presents an intuitive example for
justifying our framework. Section 3 presents the formal definitions for describing
an agent’s belief state, messages and reliability levels of beliefs. Section 4 presents
a semantics for describing epistemic attitudes based on the agent’s (dis)belief
state. In section 5, we present constructive definitions for the change functions.
In section 6 we revisit the intuitive example in a formal way. Section 7 concludes
the paper by discussing related works and some open issues.

2 An Intuitive Example

Let us consider three agents: Paul, Peter and the police department. Paul tells
Peter that John is a murderer. Peter adopts this statement and believes it.
Paul also says to Peter that if John is a murderer, John will go to jail. Thus,
Peter believes that John has killed somebody and consequently that John will
go to jail. Next, the police department tells Peter that if John is a murderer then
there is evidence against him. In addition, they say that they do not believe that
there is evidence against John. Because Peter considers the police department
has a more reliable source of information than Paul, Peter does not believe, i.e.
disbelieves, that John has killed somebody and thus he also disbelieves that
John will go to jail. This last statement may be considered as a “potential
belief” since Peter may adopt it later if the police department tells in a future
message that it has been proved that John is a murderer. Suppose that next
the police department tells Peter it has found evidence that John has actually
killed someone. Thus, Peter both believes that there is evidence and potential



(Dis)Belief Change Based on Messages Processing 203

belief “John is a murderer” is consistent again with Peter’s beliefs. Thus Peter
believes again that John is a murderer and that John will go to jail.

As we can see, every message received by an agent triggers a change in its
beliefs. Some messages do not concern belief but rather disbelief. A new dis-
belief may entail inconsistency with the already adopted beliefs. Consequently,
the agent has to reconsider some beliefs as potential beliefs. At the same time,
the agent may reinstate potential beliefs when it changes its set of beliefs and
disbeliefs.

3 Agent Beliefs

We assume that beliefs are expressed in a propositional language L0. Changes
in a belief set are caused by communication. We assume throughout the paper
that the external world is static; handling changes caused by ”physical” actions
would require the integration of belief update to our formalism, which we leave
for further work. Thus, we are considering cases such as diagnosis. We assume
that messages are sent point-to-point. In order to identify the sender of messages
we introduce a set of agent id: let A = {a, b, c · · · } be this set. We usually denote
by s the sender agent and by r the receiver.

3.1 Describing Messages

In our context, an agent may send two kinds of messages to other agents: agent a
informs agent b that φ holds or not. These messages may occur after a request
sent by b to a and asking if φ holds or not. In more formal terms, we get:

Definition 1 (Message). A message M is defined as a tuple of receiver r,
sender s, content φ, status st. The receiver and the sender are agent ids, the
content is an L0-formula and the status is one of the two possible status: {Hold,
NotHold}. Inconsistent statements are not allowed (φ � ⊥). Let M be the set of
all possible messages.

When the agent r receives a message about φ with a status equals to Hold,
it will try to insert φ in its belief base. Similarly, if the status of φ is equal
to NotHold, agent r will consider φ as a disbelief, i.e. it should not believe φ.
Thus NotHoldφ is not equivalent to Hold¬φ. At each moment one agent sent
one message and the receiver changes its beliefs and disbeliefs accordingly.

Definition 2 (Sequence of Messages). A sequence of messages σ is a func-
tion which associates integers and messages: σ : N →M

3.2 Describing Agent Beliefs

The key idea is to represent the ”belief state” of an agent as three sets:

– a set of labeled statements representing current beliefs. The set of current
belief changes with respect to the flow of messages about statements which
have a status equal to Hold;
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– a set of disbeliefs representing statements that should not be believed by
the agent. The set of disbeliefs changes with respect to the flow of messages
including statements that do not hold;

– a set of potential beliefs: messages received by the agent which could not
be handled since they are in conflict with its current beliefs (respectively
disbeliefs). As the current beliefs (disbeliefs) change with respect to the
received messages, some potential beliefs may become consistent with the
new current beliefs (disbeliefs) and thus will be considered as current beliefs
(disbeliefs) in future states.

To represent beliefs of an agent, we define a signed belief as a pair 〈statement,
origin of the statement〉 (the associated message):

Definition 3 (Signed Belief). Let σ be a sequence of messages. A signed
belief is a pair 〈φ, i〉 where φ is a L0-formula and i ∈ N s.t. (∃r, s, st)(σ(i) =
〈r, s, φ, st〉) . Let S be the set of signed beliefs and let SB = 2S be the set of all
sets of signed beliefs.

Example 1. Let a and b be two agents and a message σ(1) = 〈a, b,¬φ, Hold〉.
The pair 〈¬φ, 1〉 is the associated signed belief.

Based on the set of signed beliefs, we define which statements are inferred by
an agent:

Definition 4 (Belief Set). Let Bel be a function which maps a signed belief
set S to a set of L0-formulas: Bel(S) = {ψ|

∧
〈φ,i〉∈S φ � ψ}. Bel(S) represents

the belief set associated to S.

Example 2. Suppose two messages σ(1) = 〈a, b,¬φ, Hold〉 and σ(2) = 〈a, b,¬φ →
φ′, Hold〉. The belief set associated to S = {〈¬φ, 1〉, 〈¬φ → φ′, 2〉} contains all
the consequences of ¬φ,¬φ → φ′, i.e. φ′ ⊆ Bel(S).

From a set of signed beliefs, we consider the minimal subsets entailing a
specific conclusion. Let φ be a formula and S a set of signed beliefs. Let support
be a function returning the set of minimal subsets of S entailing φ.

support(S, φ) = {s′|s′ ⊆ S, Bel(s′) � φ and ∀s′′ ⊂ s′(Bel(s′′) � φ)}

In order to describe what is believed by an agent, we introduce the notion
of epistemic state. An epistemic state describes what is “currently” believed by
the agent, what should not be believed and what could be potentially believed
or disbelieved. Let us stress that our definition of epistemic states should not
be confused with the epistemic states defined by [3] since we do not consider
preferences at this stage.

Definition 5 (Epistemic State). Let σ be a sequence of messages. The epis-
temic state of agent r is a structure: 〈CB, DB, PB〉 where CB ∈ SB, DB ∈ SB
and PB ∈ SB. CB represents the current beliefs, DB represents disbeliefs and
PB represents the potential beliefs such that:
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1. (∀〈φ, i〉 ∈ CB)(∃s) s.t. (σ(i) = 〈r, s, φ, Hold〉) and Bel(CB) � ⊥;
2. (∀〈φ, i〉 ∈ DB) (∃s) s.t. σ(i) = 〈r, s, φ, NotHold〉) and (Bel(CB) � φ);
3. (∀〈φ, i〉 ∈ PB s.t. (∃s)σ(i) = 〈r, s, φ, Hold〉)(Bel(CB)∧φ � ⊥ or (∃〈φ′, i′〉 ∈

DB)(Bel(CB) ∧ φ � φ′));
4. (∀〈φ, i〉 ∈ PB s.t. (∃s)σ(i) = 〈r, s, φ, NotHold〉) (Bel(CB) � φ);

Let ES be the set of all epistemic states.

According to definition 5, condition (1) states that statements in CB are
consistent and have their status equals to Hold; condition (2) states a similar
constraint for disbeliefs; condition (3) and (4) states that potential beliefs are
signed beliefs in conflict with current beliefs or disbeliefs.

Example 3. Suppose the following messages σ(1) = 〈a, b,¬φ, Hold〉, σ(2) =
〈a, b,¬φ → φ′, Hold〉, σ(3) = 〈a, c,¬φ′, Hold〉, σ(4) = 〈a, c,φ′′, NotHold〉 and
σ(5) = 〈a, d, φ′ → φ′′, Hold〉. Assume agent a has adopted messages 1 and
2 as current beliefs and message 4 as a disbelief: let E = 〈{〈¬φ, 1〉, 〈¬φ →
φ′, 2〉}, {〈φ′′, 4〉}, {〈¬φ′, 3〉, 〈φ′ → φ′′, 5〉}〉 be its epistemic state. The signed be-
lief 〈¬φ′, 3〉 belongs to PB since ¬φ′ contradicts Bel(CB). The signed belief
〈φ′ → φ′′, 5〉 also belongs to PB because if it were a member of CB then the
disbelief 〈φ′′, 4〉 would have been violated.

According to example 5, agent a could have reached another epistemic state
by selecting other messages for its current beliefs and disbeliefs. Actually, agents
use a procedure for changing their epistemic states. This procedure considers
the reliability of the senders in order to state what are current beliefs, disbeliefs
and potential beliefs. This procedure will be discussed section 5 after giving a
semantics for interpreting messages.

4 A Semantics for Describing Belief and Disbelief

The aim of this section is to propose a modal based language for reasoning
about the epistemic states of agents. By considering current beliefs, disbeliefs
and potential beliefs we describe the following epistemic attitudes:

– an agent has an opinion about φ: the agent believes or disbelieves φ;
– an agent believes φ: φ belongs to its current belief set;
– an agent does not believe φ: φ belongs to its set of disbeliefs;
– an agent could believe, respectively disbelieve, φ: φ belongs to its set of

potential beliefs. Thus it has no opinion about φ.

Notice that we do not define non-beliefs by considering beliefs. The classical
approach such as the BDI-based representation, supposes that an agent does not
believe a statement if this statement does not belong to its set of beliefs. We
propose to re-consider this approach by considering two cases: (i) an agent has
an opinion on φ (i.e. it previously received a message about φ) and it does not
believe φ; (ii) an agent has no opinion about φ since it does not received any
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message about this statement. This distinction is useful when we consider the
context of an investigation: the detectives may explicitly ignore some testimonies.

The proposed logic extends the propositional logic by considering modal op-
erators. Let L be this language. We limit the agent’s belief to propositional
sentences. In order to define L, we introduce the following notations: Baφ means
agent a believes φ; DBaφ means agent a disbelieves φ; Oaφ means agent a has
an opinion about φ, PBaφ means that φ is a potential belief for a; PDBaφ means
that φ is a potential disbelief for a. �φ means that the L-statement φ held in
the past.

Definition 6 (Syntax). A L-formula is defined as follows. Let PROP be a
set of propositional symbols. If φ ∈ L0 and a ∈ A then Baφ ∈ L, DBaφ ∈ L,
Oaφ ∈ L, PBaφ ∈ L, PDBaφ ∈ L; if φ, ψ ∈ L then φ∨ψ, φ∧ψ, φ → ψ, ¬φ, �φ
belong to L.

Let us consider a function M which associates moment n, agent ids and
epistemic states: M : N×A → ES. With respect to a sequence of messages and
an interpretation M we define agent’s epistemic attitudes:

Definition 7 (|=). Let σ be a sequence of messages, M an interpretation, a
an agent id and n ∈ N be a moment in time. Let En

a = 〈CBn
a , DBn

a , PBn
a 〉 =

M(n, a). A model M and a sequence σ satisfy a formula φ at n according to the
following rules:

– M, σ, n |= Baφ iff φ ∈ Bel(CBn
a ).

– M, σ, n |= DBaφ iff ∃〈φ, k〉 ∈ DBn
a .

– M, σ, n |= PBaφ iff M, σ, n �|= Baφ and
support(CBn

a ∪ {〈ψ, k〉 ∈ PBn
a |∃s s.t. σ(k) = 〈a, s, ψ, Hold〉}, φ) �= ∅.

– M, σ, n |= PDBaφ iff ∃〈φ, k〉 ∈ PBn
a s.t. ∃sσ(k) = 〈a, s,φ, NotHold〉.

– M, σ, n |= Oaφ iff M, σ, n |= Baφ or M, σ, n |= DBaφ.
– M, σ, n |= �φ iff ∃n′ < n s.t. M, σ, n′ |= φ.
– M, σ, n |= ¬φ iff M, σ, n �|= φ.
– M, σ, n |= φ ∨ ψ iff M, σ, n |= φ or M, σ, n |= ψ.
– M, σ, n |= φ ∧ ψ iff M, σ, n |= φ and M, σ, n |= ψ.
– M, σ, n |= φ → ψ iff if M, σ, n |= φ then M, σ, n |= ψ.

We write |= φ iff for all σ, M and n, we have M, σ, n |= φ

The following formulas characterizing some epistemic attitudes are valid in
our framework:

(1) Ba(φ → ψ) → (Baφ → Baψ) (2) �(φ → ψ) → (�φ → �ψ)
(3) Baφ → ¬Ba¬φ (4) DBaφ → ¬Baφ

Formulas (1) and (2) correspond to the K axiom schema. Formula (3) corre-
sponds to the D axiom schema (consistency of current beliefs). The last formula
enforces the consistency of current beliefs by linking them to disbeliefs (i.e.
none disbelief is believed). Let us mention that the K-like formula, Oa(φ →
ψ) → (Oaφ → Oaψ), is not valid. Notice also that the opposite of formula
(4): ¬Baφ → DBaφ, is not valid. This is due to our distinction between belief,
disbelief and ignorance.
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Example 4. Let us reconsider example 3. According to the sequence of messages
σ and the interpretation M(6, a) = 〈{〈¬φ, 1〉, 〈¬φ → φ′, 2〉}, {〈φ′′, 4〉}, {〈¬φ′, 3〉,
〈φ′ → φ′′, 5〉}〉, we get the following epistemic attitudes:

M, σ, 6 |= Oaφ′ ∧ Baφ′ ∧ Oaφ′′ ∧ DBaφ′′ ∧ PBaφ′

In the following of the paper, we mainly focus on the dynamics of epistemic
states in presence of disbelief and potential belief. The advantage of the logic
proposed here is to help understanding the interest of disbelief and potential
belief in terms of describing epistemic states of agents. This logic is closed to
the logic presented in [12]. In [12], the proposed logic does not take into account
potential beliefs but handles preferences. A detailed study of the behaviour of
the modal operators is presented in [12].

5 Epistemic State Change

In order to handle messages, agents need change operators. The proposed oper-
ators belong to the family of non-prioritized operators [6, 8] because the main
criterion for adopting a message is the reliability of the sender and not the nov-
elty of the message. In our context, the operators have to handle belief, disbelief
and potential belief.

The reliability of agents introduces a preference order noted �: each agent
considers its own most reliable sources. Agents that could not be distinguished
are considered in an equal way which entails a total preorder. This preorder
entails a preorder over signed beliefs (since every signed belief is associated to
a message through σ and thus to a sender). This latter preorder over signed
beliefs will be used (i) to check if a change operation has to occur and (ii) to
select (dis)beliefs to be retained in the change operation.

Definition 8 (Agent Preferences). Let P be a function associating each
agent a with a total preorder �a, P : A → 2A×A. P describes the agent prefer-
ences.

Writing a <r b means that b is a strictly better source than a for agent r:
a �r b but b ��r a. The preorder over agents entails a preorder over signed beliefs
also noted �r.

Definition 9 (Preferences Over Signed Beliefs). Let us consider two signed
beliefs 〈φ, i〉 and 〈ψ, j〉 s.t. σ(i) = 〈r, s, φ, st〉 and σ(j) = 〈r, s′, ψ, st′〉. Let �r

be the preferences of agent r. Preferences over signed beliefs are determined as
follows: 〈φ, i〉 �r 〈ψ, j〉 iff s �r s′.

Let S be a set of signed beliefs; since P(r) is total, min(S) is always defined.
According to their current belief base and their preferences, agents change

their epistemic state as they interact with other agents. We describe the two
main kinds of belief change: contraction and revision. Let us consider a set of
agents A where their initial epistemic states is empty: (∀a ∈ A)E0

a = 〈∅, ∅, ∅〉,
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some preferences P and a sequence of messages σ. Messages received by agents
entail a revision or a contraction action. Let n ∈ N and σ(n) = 〈r, s, φ, status〉
be a message. Suppose En

a = 〈CB, DB, PB〉 be the epistemic state of agent a
at n. The epistemic state of a is recursively defined accordingly to P(a) for any
message received by a at n′ < n. Since only one message is sent at n, only one
agent changes its epistemic state.

Definition 10. Let A be a set of agents, En
a be the epistemic state of each agent

a at n and σ(n) = 〈r, s, φ, status〉 be a message.

En+1
a =

⎧⎪⎨
⎪⎩

(En
a ) if a �= r

(En
a )∗

〈φ,n〉 if status = Hold and a = r

(En
a )−

〈φ,n〉 if status = NotHold and a = r

Agents are autonomous, thus, the change action should not be specific to a
belief state but must be appropriate for handling sequences of belief change. Our
framework enables agent to handle iterated belief change [3] since preferences are
not specific to an epistemic state. When agents determine which beliefs should
be dropped they consider beliefs in their syntactic form, i.e. the messages, and
thus change will be based on this approach [5, 10].

Agent r revises its epistemic state if the status of the received statement is
Hold: it inserts in a consistent way the new piece of information and moves some
of its current beliefs or disbeliefs into its potential belief set. Agent r contracts its
epistemic state if the status of the received statement is NotHold: it moves some
current beliefs into its set of potential beliefs and expands its set of disbeliefs.
In both cases, agent r reconsiders its potential beliefs in order to reinstate some
of them if they are consistent with the new epistemic state.

5.1 Contraction

In this section, we describe the contraction operator −. Let σ(n) = 〈r, s, φ,
NotHold〉 be a message, En = 〈CB, DB, PB〉 be the epistemic state of agent r
at n and En+1 = (En)−

〈φ,n〉 be the resulting epistemic state of the contraction of
En by the signed belief 〈φ, n〉. When we contract the epistemic state of agent r,
we check the degree of φ according to preferences (see def 11): if s is lower than
the highest degree of a conflicting belief of r then φ simply goes to the potential
belief set; otherwise agent s has to be trusted and we actually performed the
contraction.

In order to check the degree of φ, we consider the set Γ of minimal subsets
of L0-statements issued from CB entailing φ: Γ = support(CB,φ). Then, we
employ a complete preorder with maximal elements on the entire set Γ [10]
based on �r: we say that a set γ1 is preferred to a set γ2, noted γ2 "r γ1, if the
maximal element of γ1 is strictly preferred to the maximal element of γ2; γ1 is
equally preferred to γ2, γ2 =r γ1, if the maximal element of γ1 is equal to the
maximal element of γ2. Note that such maximal elements of γ always exist.

Definition 11 uses the following notions that will be further discussed in
the following of the paper: function esc gives the new current belief set and
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it is a safe contraction function [1] based on "r. Current beliefs which have
been removed by contraction function esc are added to the potential beliefs.
If the received message do not entail a contraction then it is considered as a
”potential disbelief”. The set Π represents the most preferred potential beliefs
which are consistent with the contracted current belief set. it has to be added
to esc(CB, 〈φ, n〉). Similarly, the set Δ represents the potential disbeliefs that
have to be reinstated (since current beliefs have been changed) (definition of Π
and Δ are presented definition 13).

Definition 11 (-). Let σ(n) = 〈r, s, φ, NotHold〉 be a message and E−
〈φ,n〉 be the

epistemic state of agent r at the moment n + 1 s.t.:

– if Bel(CB) � φ and ∃γ ∈ support(CB,φ) s.t. {〈φ, n〉} "r γ then

E−
〈φ,n〉 = 〈CB, DB, PB ∪ {〈φ, n〉}〉

– else

E−
〈φ,n〉 = 〈esc(CB, 〈φ, n〉) ∪Π, DB ∪Δ ∪ {〈φ, n〉},

PB −Π −Δ ∪ (CB − esc(CB, 〈φ, n〉))〉

The contraction operator is a two stage operator: firstly the current beliefs are
contracted if the sender of the message is sufficiently reliable and secondly, the
potential beliefs that are consistent with the resulted current beliefs are added
to them.

First Stage, Contracting CB: Here, we use the degree of each conflicting
belief. We remove minimal elements in every set γ ∈ support(CB,φ), one by
one, in an iterative way, w.r.t. "r. Let min(Γ ) be the set of minimal subsets of
Γ with respect to "r. The contraction function, esc removes from CB the less
reliable signed beliefs belonging to min(Γ ), i.e. min(min(Γ )).

Definition 12 (esc). The contraction of the current signed beliefs of an epis-
temic state E by a signed belief sb = 〈φ, n〉 is defined as esc(CB, sb) = CB|Γ |

where CB|Γ | is defined as follows:

– CB0 = CB, Γ 0 = support(CB0, φ);
– CBi+1 = CBi −min(∪γ∈min(Γ i)γ);
– Γ i+1 = support(CBi+1, φ).

Before stating the behavior of esc we reformulate the AGM postulates [7]
w.r.t. our definitions:

(C1) esc(CB, 〈φ, n〉) is a set of signed beliefs.
(C2) esc(CB, 〈φ, n〉) ⊆ CB.
(C3) If φ �∈ Bel(CB) then esc(CB, 〈φ, n〉) = CB.
(C4) If � φ then φ �∈ Bel(esc(CB, 〈φ, n〉)).
(C5) If φ ∈ Bel(CB), then CB ⊆ esc(CB, 〈φ, n〉) ∪ {〈φ, n + 1〉}.
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(C6) If � φ ↔ ψ, then esc(CB, 〈φ, n〉) = esc(CB, 〈ψ, n〉).
(C7) esc(CB, 〈φ, n〉) ∩ esc(CB, 〈ψ, n〉) ⊆ esc(CB, 〈φ → ψ, n〉).
(C8) If φ �∈ Bel(esc(CB, 〈φ∧ψ, n〉)), then esc(CB, 〈φ∧ψ, n〉) ⊆ esc(CB, 〈φ, n〉).

We get the following theorem for the contraction function esc:

Theorem 1 ([10]). Let r be an agent, �r be its preferences, En = 〈CB, DB,
PB〉 its epistemic state and a message σ(n) = 〈r, s, φ, NotHold〉. The contrac-
tion function esc determined by En, �r and 〈φ, n〉 satisfies AGM postulates for
contraction (C1) through (C5), (C7) and (C8).

AGM postulate (C6) which states the syntax irrelevance principle is not
satisfied since we consider a syntax-based technique.

Second Stage, Adding/Removing Potential Beliefs and Disbeliefs: Af-
ter contracting its current belief set, agent r has to consider all potential beliefs.
Indeed, some potential beliefs may be consistent with new set esc(CB, sb). A
potential belief may be reinstated if it does not entail (i) an inconsistency with
the current beliefs, (ii) nor with the disbeliefs and (iii) no potential disbelief is
more reliable. In order to define which potential beliefs may be reinstated, we
introduce two functions, CBeligible and DBeligible, which state if a potential
belief may be reintroduced in the set of current beliefs or disbeliefs.

Sets Π and Δ represent the sets of potential beliefs that have to be reinstated
as current belief and disbelief. For this, we consider the most preferred potential
beliefs with the contracted current belief set and we build Π, a set of potential
beliefs that should be added to esc(CB, 〈φ, n〉), i.e. to the new set of current
beliefs. We proceed in a similar way for the set Δ.

Definition 13 (Π and Δ). The set Π of potential beliefs to add to the new
current belief set and the set Δ of potential beliefs that have to be considered as
disbeliefs are defined as follows:

– PB0 = PB, Π0 = ∅, Δ0 = ∅;
– Let 〈ψ, k〉 ∈ PBi. If

1. CBeligible(〈esc(CB, 〈φ, n〉) ∪Πi, DB ∪Δi, PBi〉, {〈ψ, k〉}) = true and;
2. (∀〈ψ′, k′〉 ∈ PBi)CBeligible(〈esc(CB, 〈φ, n〉)∪Πi, DB∪Δi, PBi〉, {〈ψ′,

k′〉}) = true ⇒ 〈ψ, k〉 <r 〈ψ′, k′〉.
then

Πi+1 = Πi ∪ {〈ψ, k〉} and Δi+1 = Δi

– Let 〈ψ, k〉 ∈ PBi. If DBeligible(〈esc(CB, 〈φ, n〉) ∪Πi, DB ∪Δi, PBi〉, {〈ψ,
k〉}) = true then

Δi+1 = Δi ∪ {〈ψ, k〉} and Πi+1 = Πi

– PBi+1 = PBi − {〈ψ, k〉}.

The sets Π, Δ are equal to Π |PB| and Δ|PB|.
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The sets Π and Δ have to be removed from the potential beliefs. Now, we
give the definitions of the functions CDeligible and DBeligible which states if
a potential belief can be reinstated.

Definition 14 (CBeligible). Let CBeligible be a function stating if a signed
belief can be added to a set of current beliefs. Let Er = 〈CB, DB, PB〉 be the
epistemic state of agent r, 〈ψ, k〉 be a signed belief, �r be the preferences of r
and σ be a sequence of messages.

– CBeligible(Er, 〈ψ, k〉) = true iff:

1. (∃s′)(σ(k) = 〈r, s′, ψ, Hold〉);
2. Bel(CB ∪ {〈ψ, k〉}) � ⊥ and
3. (∀〈ψ′, k′〉 ∈ DB) ((∀γ ∈ support(CB ∪ {〈ψ, k〉}, ψ′))(〈ψ, k〉 ∈ γ ⇒
{〈ψ′, k′〉} "r γ)).

4. (∀〈ψ′, k′〉 ∈ PB) (∃s′′)(σ(k′) = 〈r, s′′, ψ′, NotHold〉) ⇒ 〈ψ′, k′〉 �r 〈ψ, k〉
– CBeligible(Er, 〈ψ, k〉) = false otherwise.

In other words, a signed belief may be chosen for becoming a current belief
(w.r.t. to an epistemic state) iff (1) the status of the signed belief is Hold (i.e. the
agent has to consider that the statement has to be believed); (2) the statement is
consistent with the current beliefs; (3) the statement do not entail the violation
of a disbelief or if it entails a violation of a disbelief then the statement is more
reliable than the violated disbeliefs; (4) there is no potential disbelief that is
more “important” (w.r.t. to the preferences) than this signed belief. In a similar
way, DBeligible is a function stating if a potential disbelief has to be considered
as a disbelief.

Definition 15 (DBeligible). Let DBeligible be a function stating if a signed
belief can be added to a set of disbeliefs. Let Er = 〈CB, DB, PB〉 be the epistemic
state of agent r, 〈ψ, k〉 be a signed belief, � be the preferences of r and σ be a
sequence of messages.

– DBeligible(Er, 〈ψ, k〉) = true iff:

1. (∃s′)(σ(k) = 〈r, s′, ψ, NotHold〉);
2. Bel(CB) � ψ or (∀γ ∈ support(CB, ψ))({〈ψ, k〉} �"r γ)
3. (∀〈ψ′, k′〉 ∈ PB) (∃s′′)(σ(k′) = 〈r, s′′, ψ′, Hold〉) ⇒ 〈ψ′, k′〉 �r 〈ψ, k〉

– DBeligible(Er, 〈ψ, k〉) = false otherwise.

A signed belief may be inserted in a set of disbeliefs iff: (1) the status of
the signed belief is equal to NotHold; (2) the current beliefs do not entail the
statement associated to the signed belief or, if the statement is entailed by the
current beliefs, then the statement is more reliable than every minimal subsets
issued from the current beliefs entailing it; (3) there is no possible belief that is
more reliable than this potential disbelief.

A consequence of the definition of − is that every state has a successor state.
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Observation 1. Let E be an epistemic state and sb a signed belief. E−
sb is an

epistemic state.

Notice that according to the definitions of CBeligible and DBeligible a con-
tracted epistemic state may admit several successor states.

Observation 2. Let E be an epistemic state and sb a signed belief. There exists
at least one epistemic state characterizing E−

sb.

5.2 Revision

Our revision operation is based on the safe contraction operation previously de-
fined and the Levi identity. In order to contract the epistemic state, we introduce
the notion of the negation of a signed belief:

Definition 16 (〈φ, i〉). Let σ be a sequence of messages and m = 〈r, s, φ, Hold〉
be a message s.t. σ(i) = m. Let 〈φ, i〉 be a signed belief, called the mirror of 〈φ, i〉
s.t. the associated message to 〈φ, i〉 is equal to 〈r, s,¬φ, NotHold〉.

Let σ(n) = 〈r, s, φ, Hold〉 be a message, En be the epistemic state of agent
r at n and En+1 = (En)∗

〈φ,n〉 be the resulting epistemic state of the revision of
En by the signed belief 〈φ, n〉. Set of current beliefs CB is ”contracted” by the
mirror of 〈φ, n〉〉:

Definition 17 (esr). Let E = 〈CB, DB, PB〉 be an epistemic state. The revi-
sion of the set CB by a signed belief 〈φ, n〉, s.t. σ(n) = 〈r, s, φ, Hold〉 is defined
as:

esr(CB, 〈φ, n〉) = esc(CB, 〈φ, n〉) ∪ {〈φ, n〉}

As for the contraction function esc all the postulates describing revision ac-
tions [7] are satisfied except the syntax-independence postulate.

The second stage where we consider potential beliefs that may be reinstated
slightly differs from the one previously described. The main difference concerns
the disbeliefs since some of them should no longer hold. The disbeliefs that
should no longer considered have to be removed from DB and transferred into
PB. Definitions of Π is unchanged. Let Δ be this set of this disbeliefs:

Δ = {〈ψ, k〉|σ(k) = 〈r, s′, ψ, NotHold〉 and
Bel(esr(CB, 〈φ, n〉) ∪Π) � ψ and

(∃γ ∈ support(esr(CB, 〈φ, n〉, ψ)))({〈ψ, k〉}) "r γ)}

Definition 18 (∗). Let E∗
〈φ,n〉 be the epistemic state of agent r at moment n+1:

– if ((∃〈ψ, k〉 ∈ DB) s.t. (∀γ ∈ support(esr(CB, 〈φ, n〉), ψ))(γ "r {〈ψ, k〉}))
or ((∃γ ∈ support(CB,¬φ)({〈φ, n〉} "r γ)) then

E∗
〈φ,n〉 = 〈CB, DB, PB ∪ {〈φ, n〉}〉
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– else

E∗
〈φ,n〉 = 〈esr(CB, 〈φ, n〉) ∪Π, DB ∪Δ−Δ, PB −Π −Δ ∪Δ〉

As for the contraction function, we can make a similar observation about the
successor states.

Observation 3. Let E be an epistemic state and sb a signed belief. There exists
at least one epistemic state characterizing E∗

sb.

Now, we describe the behavior of the function ∗, i.e. how this function respects
AGM postulates. We propose here to rephrase the AGM postulates for revision
in a way similar to those exhibit by A. Darwiche and J. Pearl in [3] for their
epistemic states. Before introducing the modified postulates which are a KM
formulation of the AGM postulates [3, 9], let us briefly describe the expansion
of an epistemic state. Let sb be a signed belief and E an epistemic state:

E+
sb = 〈CB ∪ {sb}, DB, PB〉

To simplify notation in the postulates, we use Bel(E) instead of Bel(CB)
(E = 〈CB, DB, PB〉). The modified AGM postulates are:

(R ∗ 1) Bel(E∗
〈φ,n〉) � φ.

(R ∗ 2) If Bel(E) � ¬φ then E∗
〈φ,n〉 = E+

〈φ,n〉.
(R ∗ 3) If � ¬φ then Bel(E∗

〈φ,n〉) � ⊥.
(R ∗ 4) If E = F and φ ↔ ψ then Bel(E∗

〈φ,n〉) ↔ Bel(F ∗
〈ψ,n〉).

(R ∗ 5) Bel((E∗
〈φ,n〉)

+
〈ψ,n+1〉) � Bel(E∗

〈φ∧ψ,n〉).
(R ∗ 6) If Bel((E∗

〈φ,n〉)
+
〈ψ,n+1〉) � ⊥ then Bel(E∗

〈φ∧ψ,n〉) � Bel((E∗
〈φ,n〉)

+
〈ψ,n+1〉).

We have the following theorem:

Theorem 2. Let r be an agent, �r be its preferences, En = 〈CB, DB, PB〉 its
epistemic state and a message σ(n) = 〈r, s, φ, Hold〉. The revision function ∗
determined by En, �r and 〈φ, n〉 satisfies modified AGM postulates for revision
(R ∗ 2) and (R ∗ 3).

AGM postulate (R ∗ 1) which states the success principle is not satisfied
since cases may occur where input is not inserted in the current beliefs. (R ∗ 4)
states syntax irrelevance principle and as previously it is not satisfied since we
consider a syntax-based technique (regardless the definition of the equality of
two epistemic states). Postulates (R ∗ 5) and (R ∗ 6) are not satisfied since input
may be considered in the resulting epistemic state as current or potential belief.

Because function ∗ is non-prioritized, postulates introduced by A. Darwiche
and J. Pearl in [3] characterizing iterated revision do not hold.

5.3 Linking Change Action and Models for Epistemic Attitudes

Since we have shown how a sequence of actions is handled for constructing
epistemic states, we refine interpretation function M described section 4. Let σ
be a sequence of messages, P be agent preferences. Let M : N×A → ES be the
interpretation function defined as follows:
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– for all a ∈ A, M(0, a) = 〈∅, ∅, ∅〉
– for all a ∈ A and n > 0 s.t. σ(n− 1) = 〈r, s, φ, status〉:

M(n, a) =

⎧⎪⎨
⎪⎩

M(n− 1, a) if a �= r

M(n− 1, a)∗
〈φ,n〉 if status = Hold and a = r

M(n− 1, a)−
〈φ,n〉 if status = NotHold and a = r

Actually, the procedure for handling changes, and thus the sequence of mes-
sages, justifies the epistemic attitudes section 4.

6 Revisiting the Example

In this section, we revisit the example described at the beginning of the paper.
Let us consider three agents pa(ul), pe(ter), po(lice). The preferences of peter
are: P(pe) = 〈{(pa < pe, pe < po)}〉 and the initial state is E0

pe = 〈∅, ∅, ∅〉. murd,
evid and jail stand for murderer, evidence and jail. Let us consider what paul
tells peter about John: we get the following messages σ(0) and σ(1):

σ(0) = 〈pe, pa, murd, Hold〉
σ(1) = 〈pe, pa, murd→ jail, Hold〉

After processing these two messages as revision actions, peter believes all the
consequences of Bel(CB1

pe) = {α|murd ∧ (murd → jail) � α}. The resulting
epistemic states are:

E1 = 〈{〈murd, 0〉}, ∅, ∅〉
E2 = 〈{〈murd, 0〉, 〈murd → jail, 1〉}, ∅, ∅〉

Next peter processes the messages sent by the police (john is a murderer iff
there is evidence against him; and the police do not believe there is evidence):

σ(2) = 〈pe, po, murd→ evid, Hold〉
σ(3) = 〈pe, po, evid, NotHold〉

According to the preferences and the change operators, we get the following
epistemic states for peter:

E3 = 〈{〈murd, 0〉, 〈murd → jail, 1〉, 〈murd → evid, 2〉}, ∅, ∅〉
E4 = 〈{〈murd → jail, 1〉, 〈murd → evid, 2〉}, {〈evid, 3〉}, {〈murd, 0〉}}〉

At this moment, peter does no longer believe that John is a murderer and he
will go to jail. Indeed Bel(CB3

pe) � evidence and evidence is inserted in DB4
pe

(because of the reliability of the police) and thus murderer is moved into PB4
pe.

Finally, the police informs peter about proofs against John:

σ(4) = 〈pe, po, evid, Hold〉
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We get the following epistemic state for peter:

E5 = 〈{〈murd, 0〉, 〈murd → jail, 1〉, 〈murd → evid, 2〉, 〈evid, 4〉}, ∅, {〈evid, 3〉}}〉

Messages 0, 1, 2 and 4 entail a revision operation while message 3 entails
a contraction operation. Notice that statement “John is a murderer” has been
reinstated as a current belief since it is consistent with the new epistemic state.
Let us also notice that the last message (police informs peter that evidence
holds) entails that jail is believed by peter. This is due to the fact that agent
police is more reliable that paul. Suppose now, that instead of agent police,
agent paul informs peter about evidence against John. We have:

σ(4b) = 〈pe, pa, evid, Hold〉

Finally, we get the following epistemic state for peter:

E5b =〈{〈murd→ jail, 1〉, 〈murd→ evid, 2〉}, {〈evid, 3〉}, {〈murd, 0〉, 〈evid, 4〉}}〉

In other words, disbelief evid(ence) which is stronger (since it has been send
by po and po is better than pa) prevents agent peter to adopt the statement
murd(erer). However, peter considers that there is potentially evidence against
John.

Let M be an interpretation function reflecting the changes, i.e. M(5, pe) =
E5. According to the sequence of messages and M , we get the following epistemic
attitudes about the content of the messages:

M, σ, 5 |= Bpejail M, σ, 5b |=DBpeevidence

M, σ, 5 |= Opemurderer M, σ, 5b |=�(Bpemurderer)
M, σ, 5 |= PDBpeevid ∧murd M, σ, 5b |=PBpejail

Next, let us assume a statement γ s.t. γ has nothing in common with φ and
ψ; a1 has no opinion about γ and thus does not believe or disbelieve γ:

M, σ, 5 |= ¬Oa1γ ∧ ¬Ba1γ ∧ ¬DBa1γ

7 Discussion

Our work focusses on belief change when agents exchange information about
a static world. The first characteristic of our operators is to enable agents to
handle any sequence of messages. The second characteristic of our framework
is to keep all the received messages and to reconsider them whenever a change
action occurs so that received information is handled as much as possible. The
third characteristic of our proposal is a semantics for describing beliefs, disbeliefs,
potential beliefs which is explicitly based on messages. Moreover, the proposed
semantics enables to represent opinions.

A. Dragoni and P. Giorgini present a similar framework [4]. They propose
to apply non-prioritized belief revision in a multi-agent system by considering
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the origin of information. Based on the reliability of the incoming statements,
agents can reject new information. Agents can also reconsider all the previous
messages and more specifically discarded beliefs can be reinstated. J.W. Roorda
et al. [14] present also a similar work based on modal logics. They propose a
function returning the history of messages and a second one to select a subset
of messages in a consistent way. Thus, changes are handled only by expansions.
The main difference with our work is that they do not consider disbeliefs in
an explicit way and thus they do not take into account contraction operations.
A second difference is that we consider more fine-grain epistemic attitudes: for
instance, we can describe potential belief and thus what could be believed by
agents. Our work is also connected to the work of S. Chopra et al. [2] which
proposed a definition of non-prioritized belief and disbelief change based on the
notion of ranked belief state. As [2], we claim that in order to handle iterated
contraction, we need a ”memory” for these actions and disbelief represents this
memory. However, [2] does not consider potential belief which provides a memory
for discarded belief or disbelief.

Our approach does have some limitations. In a short term, we would like
to generalize our framework in order to handle the limitation about the static
world, i.e. handling belief update. In a more longer term, our aim is to enable
agents to reason about their different kinds of beliefs so that they can initiate
messages for acquiring new information and adopting new epistemic attitudes
(knowledge, goals, desires, commitments...). We are currently investigating all
these topics.
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2 Université Paris 6, Laboratoire d’Informatique de Paris 6, UMR 7606 - CNRS,

8 rue du Capitaine Scott, Paris 75015, France
Amal.Elfallah@lip6.fr

Abstract. This paper deals with the issue of learning in multi-agent
systems (MAS). Particularly, we are interested in BDI (Belief, Desire,
Intention) agents. Despite the relevance of the BDI model of rational
agency, little work has been done to deal with its two main limitations:
i) The lack of learning competences; and ii) The lack of explicit multi-
agent functionality. From the multi-agent learning perspective, we pro-
pose a BDI agent architecture extended with learning competences for
MAS context. Induction of Logical Decision Trees, a first order method,
is used to enable agents to learn when their plans are successfully exe-
cutable. Our implementation enables multiple agents executed as paral-
lel functions in a single Lisp image. In addition, our approach maintains
consistency between learning and the theory of practical reasoning.

1 Introduction

The relevance of the BDI (Belief, Desire, Intention) model of rational agency
can be explained in terms of its philosophical grounds on intentionality [7] and
practical reasoning [2], as well as its elegant abstract logical semantics [23, 25, 29].
In addition, different implementations of the model, e.g., IRMA [3], and the PRS-
like systems [11], have led to successful applications, including diagnosis for
space shuttle, factory process control, and business process management [12].
However, two limitations of the BDI model are well known [13]: Its lack of
learning competences; and the lack of explicit multi-agent functionality. Both
limitations constitute an issue of what is now known as MAS learning [28, 26],
roughly characterized as the intersection of MAS and Machine Learning (ML).
MAS learning is justified as follows: Learning seems to be the way to deal with
the complexity inherent to agents and MAS, while at the same time, learning
on the MAS context could improve our understanding of learning principles in
natural and artificial systems.

From the MAS learning perspective, this paper shows how a BDI architec-
ture, based in dMARS specification [15], was extended to conceive a BDI learn-
ing architecture. The design of this architecture is inspired by the definition of
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a learning agent by Stuart Russell and Peter Norvig [24]. Design choices were
constrained by the fact that BDI agents perform practical reasoning to behave.
Practical reasoning, together with BDI semantics, pose a hard design problem:
Learning methods directed towards action, very popular in MAS learning, use
representations less expressive than those used in the BDI model, i.e., basically
propositional representations as in classic reinforcement learning [27]; Learning
methods with more expressive representations are usually conceived as isolated
learning systems, directed towards epistemic reasoning. This may explain why
in the abundant MAS learning literature, only Olivia et al. [21] has consid-
ered the problem of BDI learning agents, despite the relevance of the model in
agency and MAS. The approach we use to solve this problem, applies Induc-
tive Logic Programming (ILP) [20] methods, particularly Induction of Logical
Decision Trees [4], to learn when plans are executable, as expressed by the con-
text of plans, i.e., the components of the BDI model behind choices in practical
reasoning.

This paper is organized as follows: Section 2 introduces the key BDI con-
cepts that are necessary to explain our approach. Emphasis is set on the aspects
of intentional agency and practical reasoning, involved in learning. Section 3
describes our BDI learning architecture and justifies the choices of design and
implementation. Justifications include a hierarchy of learning MAS, built on the
concept of awareness, to decide when agents should learn either by themselves or
in cooperation with other agents. Also, the section briefly describes the learning
method used on the architecture – Induction of Logical Decision Trees. Section
4 introduces an example of learning BDI agent at level 1 of the proposed hierar-
chy, i.e., centralized learning; Details of MAS learning at level 2, i.e., distributed
learning, are considered in section 5. Finally, section 6 deals with related work
and concludes this paper.

2 BDI Agency

Software agents are usually characterized as computer systems that exhibit flex-
ible autonomous behavior [29], which means that these systems are capable of
independent, autonomous action in order to meet their design objectives. BDI
models of agency approximate this kind of behavior through two related theories
about the philosophical concept of intentionality: Intentional Systems, defined
by Daniel Dennett [7] as entities which appear to be subject of s, desires and
other propositional attitudes; and the Practical Reasoning theory, proposed by
Michael Bratman [2] as a common sense psychological framework to understand
ourselves and others, based on beliefs, desires, and intentions conceived as par-
tial plans. These related notions of intentionality provide us with the tools to
describe agents at the right level of abstraction, i.e., in terms of beliefs, desires
and intentions (BDI), adopting the intentional stance; and to design agents in
a compatible way with such intentional description, i.e., as practical reasoning
systems. Different aspects of intentionality and practical reasoning have been
formally studied, resulting in the so called BDI logics [23]. For a road map of
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the evolution of these formalisms, see [25, 29]. Implementations make use of re-
finement techniques, e.g., using specifications in Z language [17].

This section sketches our BDI architecture, based on dMARS [15] specifica-
tion, using a very simple scenario proposed by Charniak and McDermott [8].
This scenario (Fig. 1) is composed of a robot with two hands, situated in an en-
vironment where there is a board, a sander, a paint sprayer, and a vise. Different
goals can be proposed to the robot, e.g., sand the board, or even get self painted!
this introduces the case of incompatible goals, since once painted the robot is
not operational (its state changes from ok to painted) for a while. The robot
has different options, i.e., plans, to achieve its goals. It is possible to introduce
other robots (see agent r2) in the environment to experiment social interactions
[6], e.g., sharing goals, conflict for resources, etc. This scenario will be used in
the examples in the rest of the paper.

Fig. 1. A simple scenario for the examples in this paper and a simplified BDI plan

2.1 The BDI Model

In general, an architecture built on the BDI model of agency is specified in terms
of the following data structures:

Beliefs. They represent information about the world. Each belief is represented
as a ground literal of first-order logic. Literals not grounded, known as belief
formulae, are used to define plans, but are not considered beliefs. They are up-
dated by the perception of the environment, and the execution of intentions. The
scenario shown in Fig. 1 can be represented with the following beliefs: (p-state
r1 ok), (p-at sander free), (p-at board free), (p-handfree r1 left),
(p-handfree r1 right), (p-at sprayer free). Where free is a constant
meaning that the object is not at the vise or an agent has it. The rest is self
explicative.

Desires. Also known as goals, correspond to the tasks allocated to the agent.
Usually, they are considered logically consistent among them. Desires include
to achieve a belief, and to test a situation, expressed as a situation formula,
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i.e., a belief formula or a disjunction and/or a conjunction of them, e.g., (test
(and (p-state r1 ok) (p-freehand r1 ?x))). All strings starting by ’?’ are
variables. Those starting by ’p-’ are predicate symbols.

Event Queue. Perceptions of the agent are mapped to events stored in a queue.
Events include the acquisition or removal of a belief, e.g., (add-bel (p-sand
board)), the reception of a message, e.g., (told r2 (achieve (p-sand
board))), and the acquisition of a new goal. These examples are simplified,
events are implemented as structures keeping track of historical information.
What is shown corresponds to a trigger, a component of events, used to identify
them. The reception and emission of messages is used to implement MAS com-
petences of our BDI agents. For the moment, no explicit agent communication
language (ACL) is considered, but they can easily be included in our architecture
since Lisp packages exist for them, at least for FIPA ACL and KQML.

Plans. BDI agents usually have a library of predefined plans. Each plan has
several components, the most relevant for us are shown in the simplified plan
on Fig. 1. The plan-id is used to identify a plan in the plan library. In our
example, the plan is identified as p007. The trigger works like an invocation
condition of a plan, it specifies the event a plan is supposed to deal with.
Plan p007 is triggered by an event of the form (achieve (p-sanded ?obj)).
Observe that the use of variables is allowed here. If the agent registers an
event like (achieve (p-sanded board)) in the event queue, it will consider
plan p007 as relevant to deal with such event. The context specifies, as a situ-
ation formula, the circumstances under which a plan should be executed. Re-
member that a situation formula is a belief formula or a conjunction and/or
disjunction of them. Plan p007 is applicable if the agent has one hand free
and the object to be sanded is free. The plan body represents possible courses
of action. It is a tree which nodes are considered as states and arcs are ac-
tions or goals of the agent. The body of plan p007 starts with an external
action, identified by a symbol starting by ’*’, (*pickup ?x). External actions
are like procedures the agent can execute directly. Then the body continues
with two goals. Goals are posted to the event queue when the plan is exe-
cuted, then other plans that can deal with such events are considered, and
so on. Additionally, plans have some maintenance conditions which describe
the circumstances that must remain to continue the execution of the plan. A
set of internal actions is specified for the cases of success and failure of the
plan. Finally, some BDI architectures include some measure of the utility of
the plan.

Intentions. They are courses of action an agent has commited to carry out.
Each intention is implemented as a stack of plan instances. In our example, as
seen above, in response to the event (achieve (p-sanded board)), plan p007
is considered as relevant. If the context of a plan is a consequence of the beliefs
of the agent, the plan is considered executable. A plan instance is composed of a
plan, as defined in the plan library, and the substitutions that make it relevant
and applicable, e.g., (board/?obj, left/?hand, r1/?ag). If the event that triggered
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the plan is an external one, i.e., no plan has generated it, then an empty stack
is created and the plan instance is pushed on it. If the event is internal, i,e.,
generated by a plan, then the plan instance is pushed on the existing stack
containing the plan that generated the event, e.g., imagine that a plan instance
p005 deals with the event (achieve (p-at(board, vise))), generated while
executing p007, this plan instance will be pushed on the stack containing p007,
resulting on (p005 p007).

Fig. 2. Our BDI architecture inspired in dMARS specification

These structures interact with an interpreter, as shown in Fig. 2. Different
algorithms for the interpreter are possible, the most simple is:

1. Update the event queue by perception and internal actions to reflect the
events that have been observed;

2. Select an event, usually the first one in the queue, and generate new possible
desires by finding the set of relevant plans in the library for the selected
event, i.e., those plans whose trigger condition matches the selected event;

3. Select from the set of relevant plans an executable one, i.e., one plan whose
context is a logical consequence of the beliefs of the agent, and create an
instance plan for it.

4. Push this instance plan onto an existing or new intention stack, as explained
before;

5. While the event queue is empty, select an intention stack, take the top plan,
and execute its current step. If this step is an action, execute it, otherwise
if it is a subgoal, post it to the event queue.

Michael Wooldridge [29] presents some algorithms for the BDI interpreter,
corresponding to different commitment strategies, e.g., single-minded and open-
minded commitments. David Kinny and Michael Georgeff [16] present a com-
parative study of two strategies identified as bold and cautious. Both strategies
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perform well if the environment is not very dynamic, but if this is not the case,
cautious agents out perform bold ones.

2.2 Some Issues on Implementation

Given the nature of the PRS-dMARS approach, we considered using a sym-
bolic programming language to implement our architecture. Since we decided
to do our own Lisp implementation of a BDI architecture, some arguments are
in place. We knew that different implementations for BDI architectures already
existed. For PRS [11], and its re-implementation dMARS [15], we only had ac-
cess to formal specifications. A PRS-like system, Jam! [14], became available
once we had started implementing our interpreter, but its semantics differs from
the specification we were using, particularly the context of plans are defined as
conjunctions of belief formulae. Most importantly, there is evidence [18] that
adapting existing software, even when disposing of low level specifications, to
produce a learning agent or to attach one to existing software, is not obvious at
all. In addition, sometimes it is even impossible without depth changes in the
design of the original software. We found out that the structures and procedures
used in the dMARS, fit well the features of Lisp, i.e., uniformity of representa-
tion for data and procedures as lists, data an procedure abstraction, etc. Note
that PRS was originally developed using Lisp, so that dMARS, at least at the
specification level, is pretty much influenced by this language.

Our architecture already provides functions to define primitive actions avail-
able to the agents in the system; to define plans that may use these primitive
actions; to define and assign different competences to agents, in terms of a plan
library; to bootstrap goals for each agent in terms of initial events; and to execute
agents under different commitment strategies. These can be considered standard
BDI features, together with syntax verification tools for the BDI language used
to define agents, and built-in functions to test if BDI formulae are a logical
consequence of a set of beliefs. The interface with the OS is provided by Lisp.

Non standard BDI features in our architecture include a set of functions to
simulate agents in a MAS, as parallel processes running in the same Lisp im-
age; and an interface to use DTP theorem prover [10] in the case agents need to
perform more sophisticated epistemic reasoning, beyond the built-in logical com-
petences. DTP does refutation proofs of queries from databases in First-Order
predicate calculus, using a model elimination algorithm and domain indepen-
dent control reasoning. The use of sub-goaling inference with model elimination
reductions, makes the inference of DTP sound and complete.

3 BDI Learning Agents

Based on the definition of a well posed learning problem as proposed in ML
[19], Stuart Russell and Peter Norvig [24] have conceptually structured a
generic learning agent architecture into four components: i) A learning compo-
nent responsible for making improvements by executing a learning algorithm;
ii) A performance component responsible of taking actions; iii) A critic com-
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ponent responsible for providing feedback; and iv) A problem generator re-
sponsible for suggesting actions that will lead to informative experiences. The
design of the learning component, and consequently the choice of a particular
learning method, is usually affected by five major issues. They are considered
here assuming that our BDI architecture, adapted after dMARS specification
[15] as described up to here, corresponds to the performance component of a
BDI learning architecture.

3.1 Which Elements of the Performance Component Are to be
Improved by Learning?

BDI agents perform practical reasoning [2] to behave, i.e., reasoning directed to-
wards action, while no-agent AI systems, may be seen as performing epistemic
reasoning, i.e., reasoning directed towards beliefs. From the role of beliefs in the
theory of practical reasoning, e.g., the asymmetry thesis, the standard and filter
of admissibility, it is clear that even when they justify the behavior of the agent,
they do it as a part of a background frame that, together with prior intentions,
constrain the adoption of new intentions. In doing so, they are playing a dif-
ferent role that the one they play in epistemic reasoning. Particularly, practical
reasons to act sometimes differ from epistemic reasons. This is the case for rea-
sonableness of arbitrary choices in Buridan cases1, e.g., it is practical reasonable
to choose any plan in the set of relevant applicable plans to form an intention,
even if there is no epistemic reason, no reason purely based on the beliefs of
the agent, behind this choice. The context of plans may be seen as encoding
practical reasons to act in some way and not in another, that together with the
background frame of beliefs and prior intentions, support the rational behavior
of intentional agents. Then we decided to extend the BDI architecture, enabling
the agents to learn about the context of their plans, i.e., when plans are exe-
cutable. Properly, our agents are not learning their plans [9], but when to use
them.

3.2 What Representation Is Used for These Elements?

As mentioned, representations in our BDI architecture are based on two first-
order formulae: Belief formulae and situation formulae. Beliefs are grounded
belief formulae, like Prolog facts. Belief formulae are used to define plans. Every
belief formula is also a situation formula, but situation formulae also include
conjunctions and/or disjunctions of belief formulae. The context of plans are
represented as situation formulae. These representation issues have two immedi-
ate consequences when considering candidate learning methods: First, given the
representation of belief and situation formulae, propositional learning methods
are discarded. Second, the fact that the context of plans is represented as situ-
ation formulae, demands that the target representation of the learning method,
enables disjunctive hypothesis, e.g., decision trees.

1 According to the philosopher Jean Buridan, they are situations equally desirable.
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3.3 What Feedback Is Available to Learn?

Getting feedback from our BDI architecture is almost direct, since it already
detects and processes success and failure of the execution of plan instances.
This is done by executing a set of internal actions, up to now, add and delete
beliefs. These internal actions are predefined for each plan in the library. The
architecture is then extended with a special internal action, that generates a
log file of training examples for the learning task. Items to built these ex-
amples include: the beliefs characterizing the moment when the plan was se-
lected, the label of success or failure after the execution of the plan, and the
plan-id.

3.4 What Prior Information Is Available to Learn?

There are already two sources of prior information in our BDI architecture.
First, the plan library of the agents can be seen as prior information, in the
sense that plans state expected effects which, from the perspective of the agent,
must hold in the environment, i.e., the event e will be satisfied if the plan p is
executed, and this is the case if the context of p is a logical consequence of the
beliefs of the agent. Second, our BDI architecture also keeps track of predicates,
functions, and their signatures, used to define the plans in the library of each
agent. These elements can be used to specify the language for the target concept
of the learning process.

3.5 Is It a Centralized or Distributed Learning Case?

We believe that awareness seems to be indicative of a learning MAS hierarchy of
increasing complexity. In a certain way, this hierarchy of learning environments
corresponds to the scale of intentionality of Daniel Dennett [7]. We intend to
perform learning at levels 1 and 2 of this hierarchy. Level 0, i.e., only one agent
is there, the true isolated learning case, can be seen as a special case of level 1.
Levels in this hierarchy are as follows:

Level 1. At this level, agents act and learn from direct interaction with the en-
vironment, without being explicitly aware of other agents in the MAS. However,
the changes other agents produce in the environment can be perceived by the
learning agent. Consider again the robot scenario with two robots: one special-
ized in painting objects, the other in sanding objects. It is possible to program
the painter robot, without awareness of the other robot in the environment, i.e.,
all it has to learn is that once an object is sanded, it can be painted.

Level 2. At this level, agents act and learn from direct interaction with other
agents, using exchange of messages. For the example above, the sander robot can
inform the painter robot, that an object is already sanded. Also, the painter agent
can ask the sander robot for this information. Exchange of training examples in
learning processes is also considered at level 2.

Level 3. At this level, agents learn from the observation of the actions per-
formed by other agents in the system. It involves a different kind of awareness
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from that of level 2. Agents are not only aware of the presence of other agents,
but are also aware of their competences, hence the painter robot is able to per-
ceive that the sander robot is going to sand the table.

3.6 Top-down Induction of Logical Decision Trees

From the representation of the context of plans, as discussed above, we decided
to use decision trees as target representation. Top-down induction of decision
trees (TDIDT) is a widely used and efficient machine learning technique. As
introduced in the ID3 algorithm [22] it approximates discrete value-target func-
tions. Learned functions are represented as trees, corresponding to a disjunction
of conjunctions of constrains on the attribute values of the instances. Each path
from the decision tree root to a leaf, corresponds to a conjunction of attribute
tests, and the tree itself is the disjunction of these conjunctions, i.e., the kind
of representation we need for the plan context. However, training examples are
represented as a fixed set of attribute-value pairs, i.e., a propositional repre-
sentation, which does not fix our requirements. Another limitation of ID3-like
algorithms, is that they can not use information beyond the training examples,
i.e., other things the agent believes, as their plans. ILP [20] can overcome these
two main limitations of classic ML inductive methods.

Logical decision trees upgrade the attribute-value representation to a first-
order representation, using the ILP paradigm known as learning from interpre-
tations [4]. In this setting, each training example e is represented by a set of
facts that encode all the properties of e. Background knowledge can be given in
the form of a Prolog program B. The interpretation that represents the example
is the set of all ground facts that are entailed by e ∧ B, i.e., its minimal Her-
brand model. Observe that instead of using a fixed-length vector to represent
e, as the case of attribute-value pairs representation, a set of facts is used. This
makes the representation much more flexible. Learning from interpretations can
be defined as follows. Given: i) A target variable Y ; ii) A set of labelled examples
E, each consisting of a a set of definite clauses e labelled with a value y in the
domain of Y ; iii) A language L; iv) A background theory B. Find a hypothesis
H ∈ L such that for all examples labelled with y: i) H ∧ e ∧ B |= label(y); and
ii) ∀y′ �= y : H ∧ e ∧B �|= label(y′).

Learning from interpretations exploits the local assumption, i.e., all the in-
formation that is relevant for a single example is localized in two ways. Informa-
tion contained in the examples is separated from the information in background
knowledge. Information in one example is separated from information in other
examples. The learning from interpretations setting can be seen as situated some-
where between the attribute-value and learning from entailment [20] settings. It
allows extending attribute-value representation towards ILP, without sacrifying
efficiency.

ACE [5] is a learning from interpretations system, building logical decision
trees, that is, decision trees where every internal node is a first-order conjunc-
tion of literals. It uses the same heuristics that ID3 algorithms (gain-ratio and
post-pruning heuristics), but computations of the tests are based on the classical
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refinement operator under Θ-subsumption, which requires the specification of
a language L stating which kind of tests are allowed in the decision tree. This
is exemplified in the next section, showing how the agents in our extended ar-
chitecture, guided by autonomy and intentionality, determine when they should
learn, configure its learning set, and execute ACE.

4 Learning at Level 1 (Centralized Learning)

Consider that the agent identified as r1 in figure 1, has selected the plan p007
to deal with the event (achieve (p-sanded board)). Then during the execu-
tion phase of the interpreter, this plan will either succeed or fail. If the plan
fails, we want the agent trying to learn why the plan failed considering that the
agent had practical reasons, expressed in the context of the plan, to adopt it
as an intention. So the agent should reconsider after its experience, the situa-
tion formula expressing the context of the plan. In order to execute the learning
process, the agent needs to generate a set of three files consisting of the train-
ing examples, the background theory, and the parameters for ACE, including
the specification of the target language L, the desired format output, etc. The
plan-id is used to identify these files. Files are as follows: i) The knowledge
base, identified by the extension .kb, which contains the examples labelled with
the class they belong to; ii) The background theory, identified by the extension
.bg; and iii) the language bias, identified by the extension .s. These files are
generated automatically by the agent, as follows.

When the success or failure of its intention is detected, the agent r1 tracks
these executions in a log file identified as p007.kb to indicate to ACE that it
contains the examples associated to this plan. Models for the example are shown
in table 1. Each model starts with a label that indicates the success or failure
of the plan execution. Then a predicate plan is added to establish that the model
is an instance of the execution of a particular plan by a particular agent. The
model also contains the beliefs of the agent when the plan was selected to create
the plan instance. Partial models are memorized by the agent when the plan is
selected as relevant and applicable. The label is added in the execution phase.
The knowledege base for the examples is stored in the file p007.kb.

The background theory contains information about the plan being learned.
The symbols for the variables and constants are taken from the plan definition.
A function of our system translates the original definition of plan p007 to this
format. It encodes the plan context of p007:

plan_context(Ag,p007) :- p_handfree(Ag,Hand), p_at(Obj,free).

Then the configuration file is generated. Following the example, this informa-
tion is stored in a file called p007.s. The first part of this file is common to all
configurations. It specifies the information ACE prints while learning (talking);
the minimal number of cases to learn; the format of the output (either a logical
decision tree or a logic program); and the classes used for the target concept,
i.e., either success or failure.
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Table 1. Training examples as models at level 1, examples are generated by a single
agent

begin(model(1)). begin(model(2)). begin(model(3)).

success. success. failure.

plan(r1,p007). plan(r1,p007). plan(r1,p007).

p state(r1,ok). p state(r1,ok). p state(r1,painted).

p handfree(r1,left). p handfree(r1,right). p handfree(r1,left).

p at(board,free). p at(board,free). p handfree(r1,right).

end(model(1)). end(model(2)). p at(board,free).

end(model(3)).

begin(model(4)). begin(model(5)). begin(model(6))

failure. success. success.

plan(r1,p007) plan(r1,p007) plan(r1,p007)

p state(r1,painted). p state(r1,ok). p state(r1,ok).

p handfree(r1,right). p handfree(r1,left). p handfree(r1,left).

p at(board,free). p at(board,free). p at(board,free).

p at(sander,vise). end(model(5)). end(model(6))

end(model(4)).

talking(0).
load(models).
minimal_cases(1).
output_options([c45,lp]).
classes([success, failure]).

The second part of the configuration file specifies the predicates to be consid-
ered while generating tests for the nodes of the tree. The way our agent generates
this file relies on the agent definition. Every time a plan is defined, the inter-
preter keeps track of the predicates used to define it, and their signature. In
this example, three predicates have been used to define the agent: (p state/2,
p freehand/2, p at/2). So the agent asks the learning algorithm to consider these
predicates with variables as arguments:

rmode(p_state(Ag,State)).
rmode(p_freehand(Ag,Hand)).
rmode(p_at(Obj,Place)).

Then the agent asks the learning algorithm to also consider these predicates
with arguments instantiated after the examples:

rmode(p_state(+Ag,#)).
rmode(p_freehand(+Ag,#)).
rmode(p_at(+Obj,#)).

Finally the predicates used in the background theory are considered too. At
least the two following forms are common to all configurations:
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rmode(plan_context(Ag,Plan)).
rmode(plan_context(+Ag,#)).

The rmode command is used by ACE to determine the language bias L. The
’#’ sign may be seen as a variable place holder, that takes its constant values
from the examples in the knowledge base. The ’+’ prefix means the variable
must be instantiated after the examples in the knowledge base.

Once the number of examples is greater than a threshold (5 in the example)
the agent executes a modified non-interactive version of ACE, and suggests the
user to watch the p007.out file, containing the result of the learning process, to
accordingly modify the definition of the plan. It is also possible that the agent
modifies the definition of the plan itself. The strategy adopted to incorporate
the results of learning, depends on the domain of application, i.e., sometimes the
supervision of the user is preferable.

Output for our example is:

Compact notation of pruned tree:
plan_context(Ag,p007) ?
+--yes: p_state(Ag,painted) ?
| +--yes: [failure] [2.0/2.0]
| +--no: [success] [3.0/3.0]
+--no: [succes] [1.0/1.0]

Equivalent logic program:
n1:-plan_context(Ag,p007).
n2:-plan_context(Ag,p007),p_state(Ag,painted).
class([failure]):-plan_context(Ag,p007),p_state(Ag,painted).
class([succes]):-not(n1).
class([succes]):-plan_context(Ag,p007),not(n2).

Fractions of the [i/j] form indicate that there were i examples in the class,
and that j of them were well classified by the test proposed. This example used
six models and the time of induction was 0.01 seconds, running on a Linux
RedHat 8.0 Pentium 4, at 1.6 GHz.

5 A MAS of BDI Learning Agents (Level 2)

The example of the previous section corresponds to level 1 in our hierarchy of
learning MAS. At level 2, agents are supposed to learn while they are aware of
other agents. Communication is very important when learning in a MAS, but the
design of the agent should determine when, what, and why should an individual
agent communicate [1].

There are two situations under which a BDI agent should consider commu-
nicating while learning. First, the agent is no able to start the execution of its
learning process, i.e., it does not have enough examples to run ACE. In this case
the agent can ask other agents in the MAS for training examples. Second, the
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agent is unable to find out a hypothesis to explain the failure of the plan in
question, i.e., after the execution of the learning process, the tree produced by
ACE has only the node [failure], or the hypothesis found is the original plan
context being learned. This means that the examples used by the BDI agent
to learn, were insufficient to find out why the plan has failed. In this case the
agent may ask other agents in the MAS for more evidence, before executing ACE
again.

The results of a learning process are shared by the agents in the MAS due
to the way they are defined in the BDI architecture. If the agent has found a
hypothesis for the failure of its plan, it will communicate this result to the user,
asking for modifications of the plan definition accordingly to the decision tree
found. If the user modifies the plan definition, this change automatically affects
all agents having this plan in the library. Observe that this does not imply that
all plans are shared by the agents, therefore heterogeneous MAS are possible in
our architecture.

The concept of competence is used to address communications. It is defined
as the set of all the trigger events an agent can deal with, i.e., the union of
all triggers in the agent’s plan library. Then two ways of sending messages are
possible. The agent broadcasts its message including the trigger and the plan-id
of the plan to be learned, The other agents accept and process the message if
the trigger event is on their competences. Alternatively, competence is used to
build a directory for each agent, where each trigger event in the competence of
an agent, is associated to the id of other agents in the system that deal with
the same trigger event.

Competence and plans determine what to communicate. If two agents have
the same plan for the same event, they can be engaged in a process of distributed
data gathering, i.e. they can share the examples they have collected. In this case
agents are involved in collecting data, but each agent learns locally. The models
obtained from three agents in the scenario of figure 1 are shown in table 2. Agent
r2 is the learner agent.

This learning process results in the same decision tree obtained in the previous
section, but since the first execution done by the learning agent r2 of plan p007
lead to a failure (model 1), it would not be able to collect success training
examples for this plan (the BDI interpreter blocks plans that failed for a given
event, to avoid the agent trying to execute them again). It means that outside
the MAS, agent r2 is not able to learn for this plan. Also the failure example of
agent r3 is important, since without it ACE is not able to induce a tree.

6 Conclusion

We have shown how ILP methods, particularly the induction of logical decision
trees, can be used to extend a BDI architecture to endow agents with learning
skills. These skills were designed to be compatible with the practical rationality
behind the behavior of BDI agents. The result is a BDI learning agent archi-
tecture implemented on Lisp. The architecture also includes two non-standard
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Table 2. Models at level 2, examples are generated by different agents

begin(model(1)). begin(model(2)). begin(model(3)).

failure. success. success.

p state(r2,painted). p freehand(r1,right). p state(r1,ok).

p freehand(r2,right). p at(board,free). p at(board,free).

p freehand(r2,left). plan(r1,p007). p handfree(r1,left).

p at(board,free). p state(r1,ok). plan(r1,p007).

plan(r2,p007). end(model(2)). end(model(3)).

end(model(1)).

begin(model(4)). begin(model(5)). begin(model(6)).

success. success. failure.

p state(r3,ok). p state(r1,ok). p state(r3,painted).

p freehand(r3,left). p freehand(r1,left). p freehand(r3,right).

p at(board,free). p at(board,free). p freehand(r3,left).

plan(r3,p007). plan(r1,p007). p at(board,free).

end(model(4)). end(model(5)). plan(r3,p007).

end(model(6)).

BDI features, several options for MAS simulation, and an interface to the DTP
theorem prover. The example introduced in the previous section, shows that BDI
agents situated in a MAS, increase their chances of learning if they can share
training examples. Our research contributes from a MAS learning perspective,
to extend the well known and studied BDI model of rational agency, beyond its
limitations, i.e., lack of learning competences and MAS functionality.

As mentioned here in, at the moment of submission, only Cindy Olivia et al.
[21] are focused on the same problem. They present a mono-agent Case-Based
BDI framework applied to intelligent search on the web. Even when agents in this
framework are based on BDI representations, they perform case-based reasoning
(CBR) to act, instead of practical reasoning. CBR is a learning method directed
towards action, which makes it very attractive for learning agents, nevertheless
much more work is needed to understand the relationship between CBR and
the theory of practical reasoning, i.e., what the meaning of similarity functions
in terms of practical reasoning is. Observe that this work is ssituated at level
0 (true isolated agents) of the hierarchy of MAS learning systems proposed
here.

Future work includes implementing more MAS features for the architecture,
e.g., including an ACL. More interestingly, it is possible to design protocols for
sharing information of the learning set in more complex situations, e.g., agents
having the same competences, but different plans. This is particularly true if
ACE is modified to learn incrementaly with each example it receives. We must
also consider the relationship between learning and the multi modal logic theories
of intentional agency, e.g., If the learning processes described here, maintain the
strong-realism conditions, and other forms or realism.
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Abstract. Apriori Stochastic Dependency Detection (ASDD) is an algorithm 
for fast induction of stochastic logic rules from a database of observations made 
by an agent situated in an environment. ASDD is based on features of the Apri-
ori algorithm for mining association rules in large databases of sales transac-
tions [1] and the MSDD algorithm for discovering stochastic dependencies in 
multiple streams of data [15]. Once these rules have been acquired the Prece-
dence algorithm assigns operator precedence when two or more rules matching 
the input data are applicable to the same output variable. These algorithms cur-
rently learn propositional rules, with future extensions aimed towards learning 
first-order models. We show that stochastic rules produced by this algorithm are 
capable of reproducing an accurate world model in a simple predator-prey envi-
ronment. 

1   Introduction 

This paper introduces the Apriori Stochastic Dependency Detection (ASDD) algo-
rithm for fast induction of stochastic logic rules from a database of observations. The 
focus of our research is on methods by which a logic-based agent can automatically 
acquire a rule-based model of a stochastic environment in which it is situated from 
observations and use the acquired model to form plans using decision theoretic meth-
ods. Examples in this paper are geared towards this research, but the algorithm is ap-
plicable to induction of stochastic logic rules in the general case. 

The key feature of this algorithm is that it can eliminate candidate n element rules 
by reference to n-1 element rules that have already been discounted without the need 
to for expensive scans of the data set. This is achieved via a breadth first search. Rules 
are discounted at each level of the search if they do not occur regularly in the data set 
or the addition of extra constraints has no statistical significance on their performance. 

Although research in stochastic rule induction is in its infancy, some previous re-
search includes MSDD [14], ILP [12], and the schema mechanism [2]. For a discus-
sion on the topic see [10]. 

                                                           
* Corresponding author. 
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Our research is motivated by the observation that rule based methods in decision 
theoretic planning, such as stochastic STRIPS operators (SOPs) promise to be a 
highly efficient method of representing a world model for an agent in a stochastic en-
vironment [2]. The main advantage of SOPs is that they provide a solution to the 
frame problem which other methods in this area do not address [11].  

Previous research in automatic acquisition of stochastic environment models has 
been focused on either explicit state space models or dynamic Bayesian networks 
(DBNs). State space models record the relative frequency with which each action 
available to an agent leads to a next state from an initial state [16]. These methods do 
not scale up well because each environment state must be explicitly enumerated. Dy-
namic Bayesian networks are an example of a factored state approach, in which the 
state space is modeled as a set of nodes representing state variables, and dependencies 
represented as connections. Although methods exist for modelling DBNs from data 
[13] the representation must explicitly assert that variables unaffected by an action 
persist in value and therefore suffers from the frame problem. Variables which are 
unaffected by an action in the probabilistic STRIPS representation, however, need not 
be mentioned in the actions description [2]. 

In order to give context to the ASDD algorithm, an example predator-prey domain 
and probabilistic strips operators (PSOs) are first introduced, which will form the ba-
sis of examples in the remainder of the paper. Section (1) describes the ASDD algo-
rithm for stochastic rule induction. Section (2) describes the Precedence algorithm for 
operator precedence. Section (3) describes the process of state generation from PSO 
operators. Section (4) gives results comparing the algorithms performance against 
MSDD and a state space method. Conclusions and future work are presented in  
section 6. 

1.1   Example Predator Prey Domain 

The environment consists of a four by four grid surrounded by a “wall”. There is one 
predator and one prey. The predator will be assumed to have caught the prey when it 
lands on the same square. The prey selects a random action at each move. Both preda-
tor and prey have four actions: move north, east, south and west. An action has the ef-
fect of moving the agent one square in the selected direction, unless there is a wall, in 
which instance there is no effect. The predator and prey move in simultaneous turns.  
 

 

Fig. 1. Simple predator prey scenario. Predator and prey in a 4 by 4 grid. P indicates the 
predator and A the prey agent. The percept from the predator’s perspective is shown to the right 
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The agent’s percept gives the contents of the four squares around it and the square 
under it. Each square can be in one of three states: empty, wall or agent. For example 
a predator agent has a wall to the west and a prey to the east would have the percept 
{EMPTY_NORTH, AGENT_EAST, EMPTY_SOUTH, WALL_WEST, EMPTY_UNDER} corre-
sponding to the squares to the north, east, south, west and under respectively (shown 
in figure 1).  

1.2   Probabilistic STRIPS Operators 

The STRIPS planning operator representation has, for each action, a set of precondi-
tions, an “add” list, and a “delete” list (Fikes and Nilsson 1971) [6]. The STRIPS 
planner was designed for deterministic environments, with the assumption that actions 
taken in a state matching the operator’s preconditions would consistently result in the 
state changes indicated by the operator’s add and delete lists. In a non-deterministic 
environment a less restrictive view is taken, allowing actions to be attempted in any 
state. The effects of the action then depend on the state in which it was taken and are 
influenced by some properties external to the agents perception which appear random 
from the agent’s perspective. 

The following format for a stochastic STRIPS operator is an adaptation of that 
used by Oates & Cohen [15] to the form of stochastic logic programs (section 1.3). A 
stochastic STRIPS operator takes the form: prob: e  a, c, where a specifies an ac-
tion, c specifies a context, e the effects and prob the probability of the effects. If the 
agent is in a state matching the context c, and takes the action a, then the agent will 
observe a state matching the effects e with probability prob. 

The agent is assumed to have a set of n possible actions, A = {a1, …, an} and can 
perceive m possible state variables P = {p1, … pm}, each of which can take on a finite 
set of possible values. Let pi = {pi1, …, pik} be the values associated with the ith vari-
able.  The context, c, of an operator is specified as a set of variables from P represent-
ing the perception of the agent. In order to restrict the number of possible operators, e 
is defined to be a single variable for each operator, again taken from the set P. A 
combination of single variable operators is, however, sufficient to generate a full per-
cept. 

In the predator prey domain: 

− A = {MOVE_NORTH, MOVE_EAST, MOVE_SOUTH, MOVE_WEST} 
− P = {NORTH, EAST, SOUTH, WEST, UNDER} 
− PNORTH = {EMPTY_NORTH, WALL_NORTH, AGENT_NORTH} 
− PEAST, PSOUTH, PWEST, PUNDER follow the same form as PNORTH 

1.3   Stochastic Logic Programs 

Stochastic logic programs (SLPs) are first-order logic program extensions of stochas-
tic grammars. Although ASDD is currently not able to learn first-order programs, the 
full SLP representation is presented, with the eventual goal of this research being  
to learn programs of this nature. Muggleton [12] defines the syntax of an SLP in as 
follows: 
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“An SLP, S, is a set of labelled clauses p:C where p is a probability (i.e. a number 
in the range [0,1] and C is a first-order range-restricted clause. The subset Sp is of 
clauses in S with predicate symbol p in the head is called the definition of p. For each 
definition Sp the sum of probability labels πp must be at most 1. S is said to be com-
plete if πp = 1 for each p and incomplete otherwise. P(S) represents the definite pro-
gram consisting of all the clauses in S, with labels removed.” 

2   Apriori Stochastic Dependency Detection (ASDD) 

ASDD is based on the Apriori algorithm for mining association rules (section (2.1)), 
and the MSDD algorithm for finding dependencies in multiple streams of data. 
MSDD has previously been applied to the problem of learning probabilistic STRIPS 
operators in [15] [4]. 

2.1   The Apriori Method for Association Rule Mining 

The Apriori algorithm was designed to address the problem of discovering association 
rules between items in a large database of sales transactions. A record in these data-
bases typically consists of a transaction date and the items bought in the transaction 
(referred to as basket data). An example of association rule is that 98% of customers 
purchasing tyres and auto accessories also purchase automotive services [1]. The form 
of this rule is similar to a stochastic logic rule of the form: 0.98: Automotive Services 

 Tyres, Accessories. The Apriori algorithm and its descendants have been shown to 
scale up to large databases and methods also exist for incrementally updating the 
learned rules [3]. For a survey see [7]. These features are highly desirable to probabil-
istic STRIPS learning with its need to process a large database of perceptions, and in-
crementally improve these rules as the agent receives new data. The language used to 
describe ASDD ((2.2)) has been chosen to reflect that used in [1]. The algorithm is 
largely similar, but has an additional aprioriFilter step ((2.2.5)) which removes  
potential conditions from rules if they are shown to have no significant effect on their 
probability. There is also a final filter step, which is equivalent to that used in MSDD. 

2.2   Apriori Stochastic Dependency Detection (ASDD) 

The task of learning probabilistic STRIPS operators proceeds as follow: The sets P 
and A are as defined in section (1.2). Let D be a set of perceptual data items (PDIs) 
from an agent, where each PDI is a triplet of the form {Pt-1, At-1, Pt} i.e. the percept 
and action at time t-1 and the percept at time t. The elements of P ∪ A are collectively 
defined as rule elements. 

A PDI contains rule element set X, if X ⊆ Pt-1 ∪ At-1. A rule is an implication from 
a rule element set to an effect, e, of the form e  X, where e ∈ Pt. In logic 
programing terms e is the head of the rule and X is the body. 

A PSO (prob: e  X) is a rule with an associated probability (prob). A rule holds in 
the data set D with probability prob if prob% of PDIs which contain X also contain e. 
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The rule e  X, has support s in the perceptual data set D if s of PDIs in D 
contain e ∪ X. minsup defines the minimum support a PSO has to display before it is 
admissible to the rule base1. 

The problem of discovering a PSO set can be separated into three sub-problems: 

1. Discover large rule element sets at level k exhibiting support above minsup. The 
support for a rule element set is the number of PDIs that contain the rule element 
set. The level of a rule element set is defined as the number of rule elements it 
contains (section 2.2.1). 

2. Combine rule element sets at level k to form a list of candidate sets for level k+1 
using aprioriGen, which removes all candidates that cannot have minimum sup-
port (section 2.2.3). 

3. After level 3, apply the AprioriFilter function to remove stochastic planning op-
erators (rule element sets with a result element) at level k, which are covered by 
an operator at level k-3 (section 2.2.5).  

4. Finally, filter the remaining rules to remove stochastic planning operators which 
are covered by a rule at any level (section 2.2.4). 

2.2.1   Discovering Large Rule Element Sets 
Discovering large rule element sets involves making multiple passes over the percep-
tual data set D. In the first pass (giving level k = 1) the support of individual rule ele-
ment sets is counted to determine which of them are large, i.e. have minimum sup-
port. In each subsequent pass, large rule element sets from the previous pass (k-1) are 
used to create candidate rule element sets.  

The support for each of these candidate sets is counted in a pass over the data. 
Candidates that do not have minimum support are removed and the remaining candi-
dates are used to generate candidates for the next level. After the third pass, rule ele-
ment sets that have an effect element (rule head) can be filtered by rules at the k-1th 
level to see if additional conditions have a significant effect on its probability (section 
(2.2.5)). This process continues until no new sets of rule elements are found. 

The AprioriGen algorithm (adapted from [1]) generates the candidate rule element 
sets to be counted in a pass by considering only the rule element sets found to be large 
in the previous pass. Candidates with k rule elements are generated by rule element 
sets at the k-1 level. Any generated candidates containing a k-1 set which does not 
have minimum support are then removed in a the prune step, because any subset of a 
large set must also be large. This avoids the need for an expensive pass over the data 
set when generating candidates. 

The notation is used in the following algorithms is: 
− L[k]: Set of large k-rule element sets (those with minimum support). Each mem-

ber of this set has four fields:  
 

                                                           
1  This definition of support is slightly different from the Apriori algorithm, in which support is 

defined as a percentage of the data. 
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1. elements: a set of rule elements. 
2. support: the number of times the rule matched the database (if the set of rule 

elements has an effect (rule head). 
3. bodySupp: the number of times the body of the rule matched the database. 
4. ruleSet: see section 3.1. 

− C[k]: Set of candidate k-rule element sets (potentially large sets). Fields are iden-
tical to L[k]. 

2.2.2   The ASDD Algorithm 
The first part of the Apriori algorithm simply counts occurrences of single rule  
elements to determine large 1 rule element sets. A subsequent pass consists of the  
following steps: 

1. Large rule element sets L[k-1] found in the pass (k-1) are used to generate the 
candidate rule element sets C[k], using the aprioriGen function (section 2.2.3).  

2. The support of candidates in C[k] is counted by a database scan using the subset 
function, which returns the subset of C[k] contained in a PDI2. 

3. Rule element sets with below minimum support are removed. 
4. If rule element set has no effect (head) bodySupp = support. 
5. Rules, which are rule element sets with an effect element (rule head), are filtered 

against rules that subsume them at the level k-3 by the aprioriFilter function 
(section 2.2.5). 

Finally, rules are filtered with a greater test for statistical significance by the filter 
function (section 2.2.4). 

ASDD(D) 
L[1] = {large 1-literalsets}; 
for (k = 2; L[k-1] ≠ ∅; k++) { 
   Ck = AprioriGen(L[k-1]);   //(1) 
   for (pdi ∈ D) {        //(2) 
      Ct = Subset(Ck, pdi) 
      for (c ∈ Ct) 
         c.support ++; 
   } 
   L[k] = {c ∈ Ck | c.support ≥ minsup}  //(3) 
   for (l ∈ L[k] where not HasEffect(l)) 
         l.bodySupp = l.support; 
   if (k > 3) 
      L[k] = AprioriFilter(L[k], L[k-3]);  //(4) 
} 
ruleSet = ∪ for k of L[k]; 
return Filter(ruleSet, D, g); 

2.2.3   AprioriGen 
The aprioriGen function generates a set of potentially large k-rule element sets from 
(k-1) sets. 

                                                           
2  An efficient subset function is described in the original algorithm but is not used in the  

implementation tested here. 
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There are two main steps: 

1. The join step joins L[k-1] with L[k-1] to form candidate rule sets C[k]. 
2. The prune step deletes generated candidates for which some (k-1) subset is not 

present in L[k-1]. 

For the purposes of rule generation, the following steps have been added: 

1. Rules (rule element sets with an effect element) will have a body that is equal to 
one of the rules used to form them. In this case the bodySupp variable is copied 
to restrict the number of database passes required. 

2. Effects are restricted to just one variable. If both L[k-1] rules have an effect vari-
able (rule head) they are not combined (the HasEffect function will return true). 

Join(L[k-1]) 
C[k] = ∅ 
for (p ∈ L[k-1]) { 
   for (q ∈ L[k-1]) { 
      generate = true; 
      if (p == q) next q; 
      if (HasEffect(p) and HasEffect(q)) next q; 
      if (p.lastElement > last(q.elements)) { 
         generate = false; next q; } 
      for (i from 0 to num elements in p-2) { 
         if (p.elements[i] ≠ q.elements[i]) 
            generate = false; next q; 
      } 
      if (!generate)  
         next q; 
      newC.elements = p.elements + last(q.elements); 
      if (HasEffect(newC) { 
         if (body(newC) == body(p)) newC.bodySupp = p.bodySupp; 
         if (body(newC) == body(q)) newC.bodySupp = q.bodySupp; 
      } 
      add(C[k], newCandidate); 
}}  
return C[k] 

Prune(Ck, L[k-1]) 
for (c ∈ C[k]) { 
   forall (k-1 size subsets s of c) { 
      if (s ∉ L[k-1]) delete c from C[k] 

Note: The body function returns all rule elements excluding effect rule elements (rule 
head).  

Example: L[3] rule element sets are (  indicates an effect element):  

1. {MOVE_NORTH, AGENT_NORTH , EMPTY_EAST},  

2. {MOVE_NORTH, AGENT_NORTH , WALL_SOUTH},  

3. {MOVE_NORTH, EMPTY_EAST, WALL_SOUTH},  

4. {MOVE_NORTH, EMPTY_EAST, WALL_NORTH}, 

5. {AGENT_NORTH , EMPTY_EAST, WALL_SOUTH}.  
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The join step creates the C[4] rule element sets as follows: From a combination of 
1 and 2: {MOVE_NORTH, AGENT_NORTH , EMPTY_EAST, WALL_SOUTH). From a combi-
nation of 3 and 4: {MOVE_NORTH, EMPTY_EAST, WALL_SOUTH, WALL_NORTH}. 

The prune step will delete the rule element set {MOVE_NORTH, EMPTY_EAST, 

WALL_SOUTH, WALL_NORTH} because the subset {MOVE_NORTH, WALL_SOUTH, 

WALL_NORTH} is not contained in L[3]. In the full data set this behaviour is observed 
because the agent cannot perceive the conditions WALL_SOUTH and WALL_NORTH si-
multaneously. The algorithm is able to draw this conclusion without a further pass 
through the data. 

2.2.4   Filter 
The filter function was presented in (Oates and Coen) [15] as an extension to the 
MSDD algorithm. It removes rules that are covered and subsumed by more general 
ones. For example, the rule {Prob 1.0: WALL_NORTH  MOVE_NORTH, WALL_NORTH, 

WALL_EAST} is a more specific version of {Prob 1.0: WALL_NORTH  MOVE_NORTH, 

WALL_NORTH,} and therefore subsumes it. If the extra condition has no significant ef-
fect on the probability of the rule then it is covered by the more general rule (and 
therefore unnecessary). In this example the additional condition WALL_EAST has no 
significant effect. 

More general operators are preferred because they are more likely to apply to rules 
outside the original data set and a reduced number of rules can cover the same infor-
mation. The test determines whether Prob (e| c1, c2, a) and Prob (e | c1, a) are signifi-
cantly different. If not, the general operator is kept the specific one discarded. 

Filter (R, D, g) 
sort R in non-increasing order of generality 
S = {} 
while NotEmpty(R)  
   s = Pop(R) 
   Push (s, S) 
   for (r ∈ R) 
      if (Subsumes(s, r) and G(s, r, D) < g) 
         remove r from R 
Return S 

R is a set of stochastic rules. D is the set of PDIs observed by the agent. Sub-
sumes(d1, d2) is a Boolean function defined to return true if dependency operator d1 is 
a generalisation of d2. G(d1, d2, H) returns the G statistic to determine whether the 
conditional probability of d1’s effects given its conditions is significantly different 
from d2’s effects given its conditions. The parameter g is used as a threshold, which 
the G statistic must exceed before d1 and d2 are considered different3. For an explana-
tion of calculation of the G statistic see [14]. 

2.2.5   AprioriFilter 
The AprioriFilter function is similar to filter, but checks candidate rules at level k 
against rules at level k-3. 

                                                           
3  A value of 3.84 for g tests for statistical significance at the 5% level. 
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AprioriFilter(Ck, L[k-3], significant) 
RulesL[k-3] = {l ∈ L[k-3] | HasEffect(l)} 
for (c ∈ Ck where HasEffect(c)) 
   for (lr ∈ RulesL[k-3]) 
      if (Subsumes(lr,c) and G(c,lr) < significant) { 
         remove c from Ck; 
         next c; 
      } 
return Ck  

The significant parameter defines the g statistic level at which we filter. Rules fil-
tered by this function are removed in the same way as pruned rules, and therefore take 
no further part in rule generation. For example, if the rule: a  b is removed by this 
method no further rules will be generated with head a and body b (e.g. {a  b,c}, {a 

 b,d}). This can cause a problem when the effect of b as a condition for a is not 
immediately apparent (e.g. the XOR function in which the output is determined by a 
combination of each input, with the observation of a single input appearing to have no 
bearing on the output). 

The problem was resolved by setting the significant parameter to 0.1 (3.84 would 
be 95% significance), by not filtering until rules at level 4 (i.e. the rule {a  b,c,d} 
can be filtered by {a  b,c}, and by filtering against rules with three less conditions 
(k-3). Further experimentation is required in this area. 

The aprioriFilter function alters the stopping criteria through removing rules that 
do not appear significant at each level. Apriori halts when there are no further rules 
that can be generated above minimum support. ASDD halts with the additional crite-
ria that there are likely to be no further significant rules. 

2.2.6   Generating Rule Probabilities 
The rule probability (prob), which is the probability of the effect (rule head) being 
true if the body (conditions) is true is derived empirically as prob = sup-
port/bodySupp. This is called rule confidence in association rule literature. 

2.2.7   Add Rule Complements 
The Filter function often filters rules and not their complements. For example, the 
variable, NORTH, can take the values: EMPTY_NORTH, AGENT_NORTH, and WALL_NORTH. 

The filter process could filter rule 2 below, but leave 1 and 3. 

1. 0.6:  EMPTY_NORTH   MOVE_NORTH, EMPTY_WEST 

2. 0.1:  AGENT_NORTH   MOVE_NORTH, EMPTY_WEST 

3. 0.3:  WALL_NORTH   MOVE_NORTH, EMPTY_WEST 

This would cause a problem in the state generation (section (4)), because the set of 
rules will not generate states with AGENT_NORTH present. The algorithm iterates 
through all rules in the learned dependencies, R, checking that all possible values of 
its effect fluent are either present in R already or do not match any observations in the 
data D. If a missing rule is found it is added to R. 

AddRuleComplements(R, D) 
for (r ∈ R) do 
   f = r.head; 
   for (fValue ∈ possibleValues(f)) 
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      if (fValue ≠ f.value) 
         newRule = copy of f with f.head set to fValue 
            if (newRule ∉ R) 
               if (newRule matches a PDI in D) 
                  add newRule to R 

3   The Precedence Algorithm 

The Precedence algorithm provides a method of resolving conflicts when more than 
one rule set is applicable to the same state. A rule set is defined as a set of rules that 
apply to the same output variable and has the same body. 

Example: The percept at time t-1 is {EMPTY_NORTH, WALL_EAST, AGENT_SOUTH, 

EMPTY_UNDER} and the action at time t-1 is MOVE_NORTH. The conflicting rule sets in 
Table 1 and Table 2 apply to the same output variable, NORTH, which can take values 
WALL_NORTH, EMPTY_NORTH, AGENT_NORTH. The Precedence algorithm defines how 
conflicts of this nature are resolved. 

Table 1. Rule set with body: action = MOVE_NORTH and percept contains EMPTY_NORTH 

Effect Conditions 
0.6: EMPTY_NORTH   MOVE_NORTH, EMPTY_NORTH 
0.1: AGENT_NORTH  MOVE_NORTH, EMPTY_NORTH 
0.3: WALL_NORTH  MOVE_NORTH, EMPTY_NORTH 

Table 2. Rule set with body: action = MOVE_NORTH and percept contains AGENT_SOUTH 

Effect Conditions 
0.7: EMPTY_NORTH   MOVE_NORTH,AGENT_SOUTH 
0.3: WALL_NORTH  MOVE_NORTH,AGENT_SOUTH 

The precedence algorithm evaluates the precedence of a generated set of rules R, 
over a set of PDIs, D, and proceeds in the following 2 steps: 

1. Categorise all rules into rule sets. A rule set is a group of rules with the same 
output variable and the same body (section 3.1). 

2. For all PDIs in the database, if two rule sets apply to the same PDI and have same 
output variable, define which one has precedence using the FirstRuleSetSuperior 
function. This function finds the subset of PDIs for which both rule sets apply and 
uses an error measure to check which set performs best on the subset (section 3.2). 

Precedence(R, D) 
ruleSets = FormRuleSets(R, D) 
for (p ∈ D){ 
   matchedRules = MatchingRules(ruleSets, p); 
   for (rSet1 ∈ RuleSetsIn(matchedRules)) { 
      for (rSet2 ∈ RuleSetsIn(matchedRules)) { 
         if (rSet1 == rSet2) next rSet2; 
         if (OutputVar(rSet1) ≠ OutputVar(rSet2)) next rSet2; 
         if (PrecedenceSet(rSet1, rSet2) next rSet2; 
         if (FirstRuleSetSuperior(set1, set2)) 
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            SetPrecedenceOver(set2, set1); 
         else 
            SetPrecedenceOver(set1, set2); 
}  }  } 

The MatchingRules function returns the subset of rule sets with a body matching 
the percept and action from the PDI. The RuleSetsIn function returns the rule sets con-
tained in the matching rules. The OutputVar function returns the variable that forms 
the head of a rule (rather than it’s actual value). If the head of a rule is EMPTY_NORTH 

then the variable is NORTH. 
Note that D can be either the same set of data used to learn the rules, or a separate 

set used purely to test the rules. If the same data set is used, the speed of the algorithm 
can be increased by the observation that a specific rule set (one with more conditions) 
will always have precedence over a general one (section 3.2). 

3.1   FormRuleSets 

Rule sets are sets of rules with the same conditions (rule body) which apply to the 
same output variable. E.g. {Prob: 0.5: EMPTY_NORTH  MOVE_NORTH, Prob: 0.5: 

AGENT_NORTH  MOVE_NORTH} is a rule set for the variable NORTH.   

FormRuleSets(R) 
for (r ∈ R) { 
   if (NotEmpty(r.ruleSet) next r; 
   for (c ∈ R) { 
      if (Body(r) ≠ Body(c)) next c; 
      if (OutputVar(r) ≠ OutputVar(c)) next c; 
      if (r ∈ c.ruleSet)) { 
         copy(r.ruleSet, c.ruleSet)); next r; } 
      r.ruleSet += c; 
}} return R; 

3.2   FirstRuleSetSuperior 

The FirstRuleSetSuperior function returns true if the first rule set should have prece-
dence in situations where the two rule sets conflict. This is achieved by comparing the 
probability values for the output variable of the rule sets with a new rule set generated 
by combining their conditions. The probabilities for the new rule set are generated 
empirically in the same manner as all other rules (section 2.2.6) prob = sup-
port/bodySupp. 

Example: The rule sets in Table 1 and Table 2 have the conditions {MOVE_NORTH, 

EMPTY_NORTH} and {MOVE_NORTH, AGENT_SOUTH} respectively. If the two sets of 
conditions are combined and the effects (rule heads) added the new rule set shown in 
Table 3 is generated.  

Table 3. Rule set formed from the combination of rule sets in Table 1 and Table 2 

0.75: EMPTY_NORTH   MOVE_NORTH, EMPTY_NORTH, AGENT_NORTH 
0.0: AGENT_NORTH  MOVE_NORTH, EMPTY_NORTH, AGENT_SOUTH 
0.25: WALL_NORTH  MOVE_NORTH, EMPTY_NORTH, AGENT_SOUTH 
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The rule set that has the least error when compared to the combined rule set is 
given precedence over the other. In the implementation used for this paper, an error of 
+0.5 was given for each non-matching output and the difference otherwise. The rule 
set in Table 1 would therefore have an error of 0.5 (for AGENT_NORTH) + (0.75 – 0.6 = 
0.15) for EMPTY_NORTH + (0.3 – 0.25 = 0.05) for WALL_NORTH. The total error is 
therefore 0.7. This error measure is somewhat arbitrary, but was defined in order to 
penalise rules which failed to generate all values for a variable, however infrequently 
that value occurs. 

Note 1: A rule set which is subsumed by a more general rule will always have 
precedence over a general one, if we are using the same data set to test rule sets as to 
create them. This is because the combined rule set will be equal to the more specific 
rule set. For example, if we have a rule with conditions {a,b} and a rule with condi-
tions {a}, the combined rule has conditions {a,b}. 

Note 2: If the combined rule set applies to a limited number of examples from the 
data this method is likely to produce spurious results. 

4   Generating States from Learned Rules 

The state generator function generates all possible next states (with associated  
probabilities) for an action that the agent could take in a given state. These states are 
generated using the rules learned by ASDD from the history of observations. The 
generated states can then be used as a model by a reinforcement learning algorithm 
such as value learning to generate a policy. This method has been applied previously 
in [4]. 

Our implementation of the ASDD algorithm generates a set of rules with only one 
fluent in the effects in order to reduce substantially the number of rules that must be 
evaluated. States are generated as follows: 

1. Find all rules matching the current state and selected action. This is the subset of 
rules with conditions matching the state and action. 

2. Remove rules that defer to other matching rules. For each rule in the rule set from 
step 1, remove it if another rule has precedence over it. 

3. Generate possible states and probabilities (section 4.1). 
4. Remove impossible states using constraints and normalise the state probabilities 

(section 4.2). 

4.1   Generate Possible States 

The possible states are generated as follows: 

1. Create a new state from each combination of effect fluent values in the rules re-
maining after steps 1 and 2 above. 

2. Multiply the probability of each effect rule to generate the probability of each 
state.  
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In order to demonstrate this process, we refer back to the predator-prey scenario, 
introduced in section 4, which forms the basis of the experiments in section 0 and 
shows how the predator generates states from the learned rules. 

After steps 1 and 2 from section 0, we are left with the rules in Table 4 for the ini-
tial percept {WALL_NORTH, EMPTY_EAST, EMPTY_SOUTH, AGENT_WEST, 

EMPTY_UNDER} and action MOVE_NORTH. 

Table 4. Rules generated by the ASDD algorithm for the predator prey scenario matching the 
initial percept WALL_NORTH, EMPTY_EAST, EMPTY_SOUTH, AGENT_WEST, EMPTY_UNDER 
and action MOVE_NORTH, after removal of rules by precedence 

Prob: Effect Conditions 
1.0 WALL_NORTH  MOVE_NORTH, WALL_NORTH 
1.0 EMPTY_EAST  MOVE_NORTH, EMPTY_EAST, AGENT_WEST 
1.0 EMPTY_SOUTH MOVE_NORTH, WALL_NORTH, AGENT_WEST 
0.59  EMPTY_WEST MOVE_NORTH, EMPTY_EAST, AGENT_WEST 
0.41 AGENT_WEST MOVE_NORTH, EMPTY_EAST, AGENT_WEST 
0.63 EMPTY_UNDER MOVE_NORTH, WALL_NORTH, AGENT_WEST 
0.37 AGENT_UNDER MOVE_NORTH, WALL_NORTH, AGENT_WEST 

The states generated from the rules in Table 4 are shown in Table 5. The prob-
abilities for each state are generated by multiplying the probabilities of each rule that 
generated the state. 

Table 5. Generated states and associated probabilites from the rules in Table 4 

WALL_NORTH EMPT_EAST EMPT_SOUTH EMPT_WEST EMPT_UNDER Pr: 0.37 
WALL_NORTH EMPT_EAST EMPT_SOUTH EMPT_WEST AGEN_UNDER Pr: 0.22 
WALL_NORTH EMPT_EAST EMPT_SOUTH AGEN_WEST EMPT_UNDER Pr: 0.25 
WALL_NORTH EMPT_EAST EMPT_SOUTH AGEN_WEST AGEN_UNDER Pr: 0.15 

There were two rules for the west variable with results EMPTY and AGENT, and two 
rules for the under fluent with results EMPTY and AGENT. The other rules had one re-
sult each resulting in a total of: 2 * 1 * 1* 2 * 1 = 4 possible states. 

4.2   Removing Impossible States with Constraints 

Some of the states generated could not occur in the domain area. For example in the 
predator-prey scenario, the operators may generate a percept with two agents when 
there is only one agent in the world (e.g. the rule in Italics in Table 5). Ultimately, the 
agent should automatically generate constraints that define impossible world states. A 
rule such as IMPOSSIBLE (AGENT_NORTH, AGENT_SOUTH) allows elimination of the im-
possible world states generated. If we do not use these constraints, the erroneous gen-
erated states will propagate (e.g. predator agents, three walls etc.), and the model be-
comes meaningless, as it is too far detached from the real world states. Currently our 
system removes impossible states by checking that each generated state contains only 
one agent, and does not have walls opposite each other, but the impossible function 
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should be simple to create by observing rule element sets eliminated in the prune step 
of the ASDD algorithm. 

After elimination of illegal states, the probabilities of remaining states are normal-
ised by dividing the probability of each state by the total probability of all generated 
states to give the final states.  

Despite the addition of the two constraints mentioned, the state generator is still 
able to generate erroneous states as is demonstrated below. Removing states of this 
type is a complex problem as the states themselves are not impossible. 

 

Fig. 2. Generation of erroneous states. From the initial state P1 in which the prey (P) is  
immediately to the west, the state generator generates the states Pa and Pb after a move west 
action. Situation Pa is in fact not possible, because the predator and prey take simultaneous 
moves. For the predator to be on top of the prey after a move west, the prey would have to have 
stayed still. This is only possible if it moved into a wall, which it cannot have done as all the 
square around it are empty 

Results 

Table 6 compares the speed of ASDD against the MSDD algorithm. Timings were 
taken on learning rules from data sets of 100 to 20000 observations of random moves. 
Performance was measured on a 350MHz Pentium with 256MB RAM. Although 
these are only preliminary tests, we found that ASDD displayed roughly equal  
performance to MSDD initially, and that the time taken to learn rules increased 
roughly in proportion to the size of the data set for MSDD. On larger data sets time 
taken by ASDD starts to level and thus shows a dramatic performance increase 
against MSDD for 20000 observations. ASDD minimum support was set to 1 (any 
occurrence means a rule set is not discarded), and significant in AprioriFilter to 0.1. 
For both ASDD and MSDD g in Filter was set to 1.17. 

Table 7 gives an error measure of the state generation ability of ASDD, MSDD 
and a state map against an empirical measure of the state transition probabilities taken 
from a state map of 200,000 trials (a “correct” state map). The state map records, for 
each percept and action, the relative frequencies of each next percept. The error meas-
ure is defined as follows: For each state generated which is not present in the “correct” 
state map add 0.5 to the error. For each in the “correct” state map which is not in the 
generated set, add 0.5 to the error. If both state sets contain the same state add the abso-
lute difference in probability for the two states. The total number of state-action pairs 
in the “correct” map was 168 and total state-action following states was 852. 
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Table 6. Time taken (in seconds) to learn rules with data collected from 100, 1000, 2000, 5000, 
10000 and 20000 random moves 

 100 1000 2000 5000 10000 20000 
ASDD 36 227 303 471 641 828 
MSDD 12 213 442 1151 2363 4930 

Table 7. Error measure of generated states generated from rules learned from data collected 
over 100, 1000, 2000, 5000, 10000 and 20000 random moves 

 100 1000 2000 5000 10000 20000 
State Map 415.9 355.2 261.8 135.1 40.5 15.3 
ASDD 480.0 335.1 274.6 220.4 197.9 108.9 
MSDD 482.7 333.5 280.5 198.7 137.6 92.18 

The performance of both rule-learning methods is poor against a state map gener-
ated from the same number of trials except in the case where there is a limited amount 
of data. The performance of the rule sets generated by ASDD and MSDD are, how-
ever, approximately equal in generating states. This indicates that the error lies in our 
state generation process, rather than the rules themselves. Further investigation is re-
quired to discern why the error rate is high for both rule sets. A possible reason for the 
error is the removal of impossible states problem outlined in section 4.2. 

6   Conclusions 

This paper presents the ASDD algorithm, which is the first step in the development of 
an efficient algorithm for learning stochastic logic rules from data. Results in our pre-
liminary tests are extremely encouraging in that the algorithm is able to learn rules 
accurately and at over twice the speed of MSDD. Future extensions to the method are 
expected to greatly increase the performance and application of the algorithm. Some 
initial areas to examine are: 

− Increasing the performance of the algorithm by use of efficient subset function 
and transaction ID approaches from Apriori. 

− Testing the algorithm on a wide variety of data sets to give a better performance 
measure.  

− Implementing incremental updating of rules using methods from association rule 
mining. 

− Generating first-order rules from data through the inclusion of background 
knowledge. 
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